
Chapter 11

Provenance Determination of Archaeological 

Metal Objects

Ernst Pernicka

A Short History of Provenance Analysis of Archaeological 

Metal Objects

The application of scientific methods to the analysis of metals goes back to the very 

beginnings of analytical chemistry in the modern sense, as the first quantitative anal­

ysis of any metal alloy was performed on a Roman coin and published by Martin 

Heinrich Klaproth in the late eighteenth century. In this study, he mainly addressed 

the question of material composition. However, within a few decades the idea of 

provenance determination was formulated, for example by Gbbel (1842), who pub­

lished an article entitled: “On the impact of chemistry on the tracing of prehistoric 

peoples, or results of the chemical investigations of ancient metal objects, especially 

of those from the Baltic region, to determine the peoples from whom they derive” (my 

own translation). He suggested from the geographical distribution of about 120 anal­

ysed objects that they represented well-defined ethnic groups as was normal during 

that time.

It should be remembered that the three-age system had been proposed only a few 

years before (by C. J. Thomsen in 1836) and that an additional motivation for the 

analyses was the hope that metal objects could be dated based on their compositions. 

However, already in the nineteenth century it was discovered that this was a moot 

point and the interest of researchers concentrated on the question of provenance. Soon 

thereafter, it was proposed that minor elements were more useful in determining the 

nature of the ore from which the metal came and perhaps even its geographical 

origin (von Fellenberg 1860-1867; von Bibra 1869). Furthermore, it was found 

that compositional differences between copper metals were to be expected when 

native copper, oxide or sulphide ores were used for smelting (Wibel 1863), an idea
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repeated almost exactly a hundred years later by Friedman et al. (1966). However, 

the analytical methods available then did not allow further progress because of the 

large sample requirements and a small sample throughput.

Although most scholars agreed that trace elements were most indicative of the 

ore sources, the limited analytical means of that time did not allow them to make 

use of this knowledge. Accordingly, there was little further progress until the late 

1920s, when instrumental analytical techniques became available. They were almost 

immediately applied to the concept of provenance studies of ancient metals. As 

an example, the Sumerian Metals Committee, inspired by the exceptional finds at 

the Royal Cemetery at Ur in Mesopotamia (Woolley 1931), was appointed by the 

Royal Anthropological Institute to investigate the origins of Mesopotamian metals. 

The committee reported on the origin of Sumerian copper, assuming that its nickel 

content could be indicative of an orc source in Oman (Desch 1928-1938). Oman 

was suggested as a possible region of origin because it was known that the basic and 

ultrabasic rocks there (so-called ophiolites) are enriched in nickel. The problem is 

that there are also ophiolites on Cyprus and in eastern Turkey, so that without field 

work the problem cannot be resolved. From these interim reports, it is obvious that 

the original objective was not really achieved, but they resulted in the creation of a 

further unit, the Ancient Metal Objects Committee, in 1939.

Halle

With the advent of atomic emission spectrometry around 1930 (Gerlach and 

Schweitzer 1930), it became possible to determine many trace elements in reason­

ably small samples of a few milligrams with sufficient sensitivity (in the range of 

0.001-0.01 %) and in a short time. This opened the door to systematic studies of 

ancient metals, beginning in 1931 by W. Witter, a prehistoric archaeologist based in 

Halle with a background in mining engineering. Witter was later joined by H. Otto 

and together they began to systematically analyse all available metal objects in Ger­

many from the Neolithic to the Early Bronze Age (Otto and Witter 1952). They were 

motivated by two aims: to determine whether there was Bronze Age copper mining 

in Germany and to develop a methodology for relating archaeological objects back 

to specific ore deposits. They refined their method to allow for the analysis of ten 

elements (Fe, Co, Ni, Cu, As, Sn, Ag, Sb, Pb, Bi and S) in some 1,300 objects within 

a few years—much more than had been accomplished over the preceding 100 years.

Otto and Witter then classified the objects according to their compositions into six 

groups that were based on the general knowledge of copper ore mineralogy. These 

groups were (in chronological order): (1) very pure copper; (2) unalloyed copper with 

minor impurities; (3) arsenical copper; (4) fahlore metal with high concentrations of 

arsenic, antimony and silver; (5) copper with nickel and arsenic as major impurities 

and (6) copper-tin alloys. This is the beginning of the concept of “Leitlegierungen” 

(major alloy types), which is generally still valid with the exception of the last group. 

As was later shown by the Stuttgart group (see below), very pure copper is typical of 
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the fifth and early fourth millennia BC in southeast and central Europe, and arsenical 

copper dominates in the fourth and early third millennium. At the beginning of the 

Early Bronze Age, fahlorc metal is most abundant in central Europe, which is later 

replaced by copper with arsenic and nickel as major impurities. As will be shown 

below, some of these copper types can indeed be related to certain mineralised 

regions, although it is usually difficult to pinpoint the exact mine.

A major deficiency of this study was the lack of an equal number of analyses of 

copper ores from deposits that were considered to be likely sources for the analysed 

artefacts. Although in their publication, Otto and Witter (1952) explicitly emphasised 

the necessity to analyse also ores and slag from ancient smelting sites, only a few 

examples from the geological literature were used for comparison. Furthermore, the 

ore deposits were implicitly considered to be homogenous and to be differentiated 

in their compositions. For the comparison of artefact and ore analyses, they did not 

consider the changes in chemical composition during smelting and used all measured 

elements including tin, which is obviously an alloying element as tin and copper ores 

rarely occur together. Using this approach, they concluded that 97 % of all prehis­

toric metal objects found in Germany were produced from copper ores in Saxony. 

Although this conclusion cannot be supported today, and was most likely influenced 

by nationalistic preoccupations, it is nevertheless a pioneering study, both from the 

methodological view and from the archaeological scope. It was the first large-scale 

attempt to determine the provenance of prehistoric metals with an appropriate an­

alytical method, based on a large number of analyses and a classification method 

that was governed by substantial knowledge in economic geology. The importance 

of field work was also clearly expressed as well as the idea that chemical analyses 

could provide evidence for ancient exploitation of mines that do not have any visible 

remains of ancient mining due to modern activities.

Vienna

Parallel with the investigations in Halle, another group in Vienna under the direction 

of Richard Pittioni and Ernst Preuschen worked along similar lines. They specifically 

set out to determine “from which production area a specific object would derive” 

(Preuschen and Pittioni 1937). Their emphasis was on field work and mining ar­

chaeology, both having been educated as mining engineers. Accordingly, they not 

only had a more realistic view of the problems of characterising ore deposits geo- 

chemically, but they actually performed a large number of analyses on ore samples, 

mainly from prehistoric mining districts in Austria. More than 2,000 ore analyses 

formed the database on which they attempted to establish a clear relationship be­

tween “ore deposits and finished objects”. Unlike the Halle group, the Vienna group 

was aware of the fact that trace element concentrations in ore deposits can be quite 

variable and that the concentrations are further altered during the production of cop­

per metal. Using this knowledge they decided that the sensitivity of the analytical 

method should be more important than its reproducibility, because only the presence 
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or absence of a certain element should be used to determine the trace element pattern 

as a whole. While this is generally true, it was an unfortunate decision, because 

they did not attempt to actually quantify the spectra but estimated the concentrations 

by visual inspection of the spectral lines on a film detector. This resulted in semi- 

quantitative analyses without numerical values for the concentrations so that they 

are hardly usable today. They also used the objects and ores directly as electrodes to 

avoid any alteration of the chemical composition during sample preparation. This, 

however, meant that only the surfaces of the objects were analysed, which are often 

not representative of the whole composition.

The Vienna group classified more than 6,000 analyses of artefacts, from the central 

European Bronze Age, into five groups that they assigned to different ore deposits in 

the eastern Alps and in Slovakia. There was much dispute between the two groups 

about the correct methodological approach, which continued when the methodology 

that was developed in Halle was continued in an even larger project in Stuttgart. 

However, the Vienna group is credited with the insight that provenance analysis of 

metal artefacts has to be accompanied by field work in ancient mining districts. In­

deed, the results of their mining archaeological research have long remained without 

parallel.

Stuttgart

Considering the problems of relating metal artefacts to specific ore deposits, a new 

group in Stuttgart and Freiburg directed by Siegfried Junghans and Edward Sang- 

meister decided not to search for the origin of the raw metals, but simply use the 

chemical analyses of metal objects as an independent criterion for classification in 

addition to conventional typologies. They assumed that prehistoric metal workers 

would receive their raw metal primarily from the same source(s), similar to potters 

and that they also applied similar processes to produce copper. If this assumption 

holds, then one would try to identify workshops rather than to identify the mines 

where the ore would have come from. By preparing distribution maps of copper 

types that were identified based on their chemical composition, it was hoped that 

one would obtain insight into the production and distribution of metals in Europe. 

For this purpose, more than 22,000 objects from all over Europe (Junghans et al. 

1960, 1968, 1974) were sampled and analysed with practically the same method as 

in Halle.

In order to identify workshops, the analytical results were grouped according 

to their chemical similarity: first into 12 (Junghans et al. 1960) and later into 29 

groups (Fig. 11.1). The grouping method used statistical methods of variance analysis 

(Junghans et al. 1954) based on histograms of the elemental concentrations. It was 

found that five elements contributed most of the variance of the data, namely Ag, Ni, 

As, Sb and Bi. In the histograms of these elements, several peaks were observed. The 

minima between such peaks were defined as limits between different groups. This is
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Fig. 11.1 The classification scheme developed and used by the Stuttgart team to find chemically 

similar prehistoric copper objects
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certainly a reasonable procedure, but lor many archaeologists it lacked the clearness 

of the groups defined in Halle and Vienna by their “Leitlegierungen” based on the 

general knowledge of ore deposits. The Stuttgart team then went on to study the 

distribution of these metal groups in time and space, and inferred from these patterns 

the production centres and socioeconomic relationships in the early metal-using 

periods of Europe.

Similar programs were established in other European countries, such as in Sweden 

(Oldeberg 1942), France (Marcchai 1963; Briard and Giot 1956) and in Britain 

(Coghlan^and Case 1957; Blin-Stoyle 1959; Britton 1961). However, by far the 

largest programs of systematic analyses were established in the former Soviet Union 

by Selimkhanov (1960) in Baku and Evgeny Chernykh (1966) in Moscow, which 

resulted in well over 50,000 analyses of ancient metal objects mainly from Eurasia.

With so many data at hand, one may well ask what these exercises have yielded and 

what additional information could be gained by them. This is not the place to evaluate 

the achievements and possible failures of all these studies. It may suffice to remark 

that we have a profound knowledge of the alloy compositions used in prehistoric 

times in Europe and in northern Asia. It has been established beyond doubt that 

metallurgy began with the use of native copper and that extractive metallurgy does 

not appear to have been significant before the fifth millennium BCE. Even then, 

copper remained rather pure, probably deriving from very rich ores. In the fourth 

millennium, arsenical copper dominated over a large area and it has been suggested 

that this may be due to common metallurgical practices that would imply rapid 

technological exchange over wide distances (Chernykh 1992). It has also become 

clear that all over Europe, the compositions of metal objects changed significantly 

with the beginning of the Bronze Age, not only concerning the major composition 

but also the minor elements. This means that either very little ol the Chalcolithic 

metal survived and was reused in the Early Bronze Age or that the amount of metal 

in the system increased substantially so that any reuse would be insignificant. It has 

also been established that certain metal groups are not equally distributed but are 

rather concentrated in restricted areas and periods that suggests the occurrence of 

one or several ore sources within those areas.

Nevertheless, the results of these large analytical programs were received with 

scepticism among non-specialists and a general opinion gained ground that metal 

analyses would not be able to make any significant contribution to the question of the 

provenance of metals (Hall 1970; Coles 1982). Major points of criticism, especially 

of the Stuttgart project, were: (1) the representativeness and accuracy ol the analyses; 

(2) the methods of classification; (3) possible changes during metal production (and 

thus the difficulty in relating a metal object to a specific orc deposit) and (4) the 

chronological framework used for the evaluation of the analyses.

The first point is certainly justified. There were at this time no inter-laboratory 

comparisons and no internationally recognised reference materials available with 

which laboratories could compare their results. This is standard laboratory practice 

today, but was not applied in the early days of spectral analysis. Indeed, two programs 

(Chase 1974; Northover 1996) to compare the analyses of different laboratories 

indicated that there were many problems and that some seriously deviating results 
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were produced and published. At least for the two largest series of metal analyses 

(in Stuttgart and Moscow), the accuracy of the data could be confirmed even though 

the precision of the spectroscopic method applied was rather low (Pernicka 1984; 

Pernickaet al. 1997).

On the other hand, the assertion that small samples taken from heterogeneous 

copper alloys would not be representative (e.g. Slater and Charles 1970) can now be 

rejected. The sample mass of 40 mg is more than sufficient for representative analyses 

(Pernicka 1984), if it is taken from the interior, usually by drilling with a steel drill. 

However, this does not exclude the possibility that some analyses may still be grossly 

wrong (e.g. Barker and Slater 1971) as was demonstrated by Pernicka (1990). It 

rather turns out that especially the large analytical programs in Stuttgart and Moscow 

produced essentially accurate analyses but with low precision of about 30 % relative 

(Fig. 11 -2), while modern methods usually range between 2 and 5 %. It is difficult 

and requires much effort to obtain better precisions. Nevertheless, one frequently 

finds published data with four or more significant digits which are meaningless 

and only demonstrate lack of a sense of reality by the authors. For classification 

and provenance very high precision is actually not needed, since the variation of 

elemental concentrations in most ore deposits ranges over an order of magnitude or 

two. More important is the elemental pattern (e.g. Radivojevic et al. 2010). This 

argument has also been used by Pittioni (1957) and overstrained at the same time, 

because he maintained that semi-quantitative analyses should be sufficient. As a 

consequence the large dataset produced by the group in Vienna cannot be used for 

comparison with modern analyses. On the other hand, high precision is required to 

answer questions of the type, if two or more objects may belong to the same casting. 

Nowadays, there is a tendency to exaggerate the damage induced by sampling and 

non-invasive analytical methods like X-ray fluorescence techniques are advocated. 

This neglects the problem that with these methods only the surface of an object is 

analysed which is often not representative of the metal composition, especially of 

corroded objects. With the new mobile X-ray fluorescence spectrometers, there is a 

definite danger that untrained personnel will propagate the idea that non-destructive 

analysis is fully quantitative and that again series of incomparable or even wrong 

(and thus unusable) analyses will make it into the literature.

The classification procedure of the Stuttgart team has mainly been criticised by 

Dutch archaeologists (Butler and van der Waals 1964; Waterbolk and Butler 1965) 

but it soon became clear that they were simply overstrained with the large data set. 

They suggest a graphical method of grouping of smaller subsets of the data which 

uses essentially the same reasoning as the Stuttgart team and, not surprisingly, comes 

to similar results (Hiirke 1978). Later, cluster analysis was introduced to deal with the 

same problem (Hodson 1969) and, again, the Stuttgart groups were largely confirmed 

when some 25,000 analyses were treated (Pernicka 1990).

Changes in chemical composition during metal production were actually of no 

concern as long as workshops were sought and not the geological origin of the copper. 

Some confusion and reluctance to accept the conclusions of the Stuttgart team may 

well be due to the chronological system used at the time for the archaeological 

interpretation, which adhered to “conventional” dates, especially for the southeast
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Heidelberg (%)

Heidelberg (%)

Heidelberg (%)

Fig. 1J.2 Comparison of analyses obtained with atomic emission spectrometry at the Wiirttem- 

bergisches Landesmuseum in Stuttgart ("Studien zu den Anfangen der Metallurgie" analyses) with 

results obtained with neutron activation analysis (As, Sb, Ni, Ag and Sn) and atomic absorption 

spectrometry (Pb and Bi) at the Max-Planck-Institute for Nuclear Physics in Heidelberg (from Per­

nicka 1990). The four outliers in the Sb diagram (indicated as squares) arc due to an interference 

from Fe. (Pernicka 1984)
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European Copper Age. However, it has to be remembered that the Radiocarbon Rev­

olution (Renfrew 1973) had not yet occurred in European prehistory. A re-evaluation 

of the Stuttgart data based on the material classification by Pernicka (1990) has 

been attempted by Krause (2003). In summary, the very large analytical programs 

seem to have been ahead of their time despite the lack of a consistent chronological 

framework for all of Europe, a computer technology that could deal with such large 

datasets, or the analytical stringency that nowadays is a standard practice in profes­

sional laboratories. The high hopes that were originally connected with the analysis 

of metal objects to determine their provenance were seemingly disappointed.

The Revival of Metal Provenance Through Isotope Analyses

Some fifty years ago, new methods seemed to open a way out of this somewhat 

depressing situation. The earliest method was the introduction of lead isotope anal­

ysis, first applied to lead (Brill and Wampler 1965; Grbgler et al. 1966) and silver 

(Gale et al. 1980) and later extended to copper and copper-based alloys (Gale and 

Stos-Gale 1981; Pernicka et al. 1984). The second method was the application of 

new analytical techniques that were more sensitive and more precise than the pre­

viously prevailing optical emission spectrometry. Most elements consist of different 

isotopes, i.e. atoms with very similar chemical characteristics but varying in weight. 

Compounds of elements of low atomic number can thus differ significantly in their 

molecular weight.

For example, HjO exists in the form of nine different isotopic varieties ranging 

from 16 to 22 amu (atomic mass units). The differences in the molecular weights 

affect the way these molecules respond to certain kinds of physical processes that 

are mass dependent. This leads to slightly varying isotopic compositions in different 

reservoirs. For example, seawater and rainwater differ in their isotopic composition, 

as does rainwater collected at different geographical latitudes. The study of these 

subtle effects (referred to as isotope fractionation) has become very important not 

only for the Earth sciences, but also for provenance studies of materials that contain 

elements of low atomic number (such as marble) or for the study of prehistoric diet. 

The application of this method requires that the raw material of the artefact has not 

undergone any change of chemical or physical state, because such processes could 

induce additional isotopic fractionations that could delete the original differences of 

the geological sources. Thus, elements of low atomic numbers are generally of little 

value for the study of metal artefacts.

Elements of high atomic number, on the other hand, generally show no measur­

able isotope fractionation in the natural environment. However, some elements such 

as lead consist partly of isotopes that are products of radioactive decay. For example, 

uranium and thorium decay with half-lives of several billion years into the lead 

isotopes 206Pb, 207Pb and 208Pb. Lead consists of these three isotopes and a fourth, 

204Pb, that is not produced by radioactive decay. It is evident that the lead isotope 

composition of the Earth will change through geologic time scales. It is also evident
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Fig. 11.3 Basic principles of 
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that lead deposits in the Earth’s crust can vary in their isotope composition, depend­

ing on their geological age and the U/Pb and Th/Pb ratios of the geological reservoir 

that supplied the lead. By the formation of a lead deposit, these elemental ratios are 

changed by many orders of magnitude so that any further contribution by the decay 

of uranium and thorium becomes insignificant and the lead isotope composition 

becomes fixed. It is also then extremely unlikely that the lead isotope ratios will be 

altered by any of the physical and chemical processes that occur during the metal­

lurgical process from ore to finished artefact, save for the mixing of lead of different 

origins. By and large the same arguments apply to lead in copper deposits; thus, 

lead isotope analysis can also be applied to copper-based metal objects (Fig. 11.3).

The advantage of looking at the isotopic composition of an element, rather than 

at abundances (or the abundance pattern) of minor and trace elements, is that the iso­

topic composition of a heavy element like lead does not change on the way from ore 

to artefact. Regardless of the processes involved in the treatment of ores or metal  

whether it is roasting or smelting, cupellation or melting, alloying, dissolution or 

corrosion—the isotopic composition remains constant. Most of these processes are 

diffusion controlled and from physical laws one can deduce that measurable (i.e. in 

the permille range) effects can only be expected when the mass difference between 

two species or isotopes is larger than 10%. The largest mass difference of the stable 
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lead isotopes is 4 amu, just about 2 %. Isotope fractionation of lead can be induced 

in the laboratory, if lead is volatilised (e.g. by converting it into hydride) and almost 

completely removed from the sample. This has been observed (Pernicka, unpub­

lished) but there is no similar process in copper metallurgy. It would certainly have 

to be considered with volatile elements such as mercury and zinc, if one would like to 

use their isotope ratios for provenance studies. This has two important consequences. 

First, neither the exact pathway from ore to artefact, nor the metallurgical techniques 

employed, need to be known. While both processes affect the behaviour of trace 

elements and govern how the elemental abundance pattern in ores relates to that in 

the metal, they have no bearing on the isotopic composition.

Second, the isotopic composition is not dependent on how lead is distributed 

between different phases. That is, different segregated phases in artefacts may have 

grossly different lead contents, but the lead will have the same isotopic composition. 

Similarly, there are no noticeable differences in the isotope abundances between 

the lead in slags and that in the complementary metal. Thus, sample heterogeneity 

(which is notorious for making many chemical analyses difficult to interpret) is of no 

relevance for the isotopic composition. Of course, a prerequisite for even attempting 

to utilise isotope abundance measurements for provenance studies is that the isotopic 

composition of lead from different parts of the world must vary. This is indeed the 

case, and the variations found in nature are many times larger than the analytical 

precision with which the composition can be determined.

Once there are a sufficient number of isotope measurements of an ore deposit 

available, it can be considered to be isotopically characterised. The question of how 

many measurements are required cannot be answered in a general way. Some de­

posits show a small variation in their lead isotope ratios and those are the ones that 

can best be used for provenance discussions. It is often found that lead ore deposits 

show this behaviour. In such cases, five to ten analyses may be sufficient for their 

charactersiation. On the other hand, there are lead deposits with large variations (e.g. 

the so-called Mississippi Valley Type deposits or MVT deposits) and then even 50 

analyses may not be sufficient. It is now increasingly recognised that many copper 

deposits with low lead concentrations exhibit large variations in their lead isotope 

ratios. In such deposits, the assumption described above that the lead isotope ratios 

do not change after their formation does not apply, because the U/Pb and Th/Pb 

ratios may not be reduced to insignificant values. Accordingly, radiogenic lead will 

alter the lead isotope ratios even after the formation of the deposit. Since uranium 

and thorium are bound to be heterogeneously distributed in minerals on a small 

(mm to cm) scale, a large range of lead isotope ratios can develop since the for­

mation of the deposit. This was first recognised in the Chalcolithic copper mine at 

Rudna Glava in Serbia (Pernicka et al. 1993) and later in many other copper de­

posits like Feinan in Jordan, the Erzgebirge in Saxony and in the greywacke zone 

of the eastern Alps. But even under these circumstances one can come to reason­

able conclusions, if larger groups of ore and artefact samples are compared (e.g. 

Hoppnerct al. (2005).

Nevertheless, also lead isotope ratios of single artefacts can be compared with 

those of an ore deposit. If they are different, then it can be concluded that the 
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artefacts do not derive from that specific ore source. Conversely, it is not possible 

to regard the provenance of an artefact as proven, even if it shares the same iso­

topic signature as an ore deposit. The reason for this is that although the variation 

of lead isotope ratios in ore deposits is much smaller than that of trace element 

concentrations, there exists the possibility that another deposit has the same lead iso­

tope ratios. This is indeed increasingly being recognised as more deposits become 

characterised.

In the early days of lead isotope analysis in archaeology, neglecting this simple 

logic sometimes led to affirmative statements concerning the provenance of copper 

artefacts that did not stand up to later results. Thus, the general pattern of overop- 

timistic expectations followed by disappointment (as with trace element studies) 

seems to have been repeated with isotope analysis. It has also been stated that only 

lead isotope ratios are useful for provenance studies, while chemical analyses can­

not match copper-alloy artefacts to their parent copper ores. Although this is often 

correct, there are cases where the trace element pattern may be more indicative of 

an ore source than lead isotope ratios. At Feinan (Jordan), for example, the ore de­

posit is chemically homogeneous but shows wide variations in its lead isotope ratios 

(Hauptmann et al. 1992).

With four stable lead isotopes, one has a maximum of three independent variables 

(i.e. lead isotope ratios). These could be plotted in a three-dimensional space but 

usually one uses two diagrams, in which the same lead isotope ratio is plotted on 

the abscissa and the two others on the ordinate (Fig. 11.4). As is obvious from the 

diagrams, lead isotope ratios are strongly correlated, which results in their alignment 

along a straight line, which further reduces their discrimination power, because 

they occupy only a minor part of the theoretically possible space, resulting in a 

tendency for different ore deposits to overlap. In such a situation, it is common 

sense that a combination of both sets of data—lead isotope ratios and trace element 

concentrations—will provide better discrimination between different sources.

The Information from Trace Elements

In provenance studies, only those elements that follow copper during smelting are 

useful, which means that the element/copper ratio largely remains the same between 

the ore and the final product. Five major complications and misconceptions have to 

be considered at this point. First, ores are generally inhomogeneous on all scales. The 

opinion has often prevailed that this precludes any correlation between artefacts and 

ores. However, this need not be so as the prehistoric mining region of the Mitterberg 

in Salzburg (Austria) shows. Here, trace element concentrations in chalcopyrite-rich 

ores vary over two orders of magnitude, yet this variation is not a random one. It is 

known, for example, that nickel in this region occurs mainly in the form of Ni-As 

minerals such as gersdorffite (NiAsS), so that copper produced from Mitterberg ores 

is characterised by a combination of about equal concentrations of nickel and arsenic 

as major impurities at variable concentrations combined with relatively low contents
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Fig. 11.4 Lead isotope ratios in copper ores, copper slag and native copper from some 170 oc­

currences in Southwest Asia (Afghanistan, Iran, southern Caucasus, Anatolia, Arabah valley and 

Oman). The analytical uncertainties are comparable with the size of the symbols. Although there is 

some separation between the (presently analysed) copper ores from various regions visible, it is ob­

vious that it would be impossible to determine the provenance of a metal object from Mesopotamia, 

for example, with lead isotope ratios alone. (Data are from: Begemann and Schmitt-Strecker 2009; 

Seeligeretal. 1985; Wagner et al. 1986, 1989, 2007; Hauptmann et al. 1992, 2003; Begemann et al. 

2003; Begemann and Schmitt-Strecker 2009, Yener et al. (1991); Hirao et al. (1995); Sayre et al. 

(2001); Nezafati et al. (2009); Pernicka et al. (2011) and Meliksetian and Pernicka (2010))

of antimony, silver and bismuth (Fig. 11.5). In a study of some 1,200 Bronze Age cop­

per artefacts from the adjacent area, it was found that about 80 % of the copper alloys 

conformed to this general pattern. Knowing that the peak production period at the 

Mitterberg was during the Late Bronze Age Umfield culture (about 1,300-800 BCE),
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Fig. 11.5 Variation of trace 

element concentrations in the 

Bronze Age copper mine of 

Mitterberg (Austria). 

Although arsenic and nickel 

concentrations vary over 

several orders of magnitude, 

they are tightly related so that 

in copper metal there are 

always roughly equal 

concentrations of arsenic and 

nickel. The star indicates the 

concentrations in the sky disc 

of Nebra and the dots the 

metal objects that were found 

with it

it is only reasonable to assume that a correlation between ores and artefacts does 

exist.

A second complication arises from the behaviour of minor and trace elements dur­

ing the smelting process, as this will differ depending on the type of ore being used. 

Reduction of oxide ores is quite straightforward compared with the processing of 

sulphide ores. Although it cannot be expected that reduction happened under chemi­

cal equilibrium conditions, it is possible to use thermodynamic data for equilibrium 

reactions to predict the general behaviour of certain trace elements during smelting 

(Pernicka 1987; Table 11.1). Using a similar approach and stressing non-equilibrium 

conditions, it was suggested that the concentration of some elements (notably nickel 

and arsenic) strongly depends on the smelting temperature and that copper (with or 

without nickel) could be produced from the same ore (Pollard et al. 1991). This is, 

however, a very theoretical possibility and requires the assumption that high and 

low impurity coppers were being produced intermittently due to different smelting 

temperatures. It is hard to imagine that ancient smelters did not know what they 

were doing and so sometimes smelted with low efficiency and without slag forma­

tion below the melting point of copper and at other times at very high temperatures 

above 1,200 °C. It is far more likely that people who were able to cast copper and 

thus achieve temperatures above 1,100 °C would strive to smelt at the maximum 

temperature obtainable with charcoal (between 1,200 and 1,300 °C). Under these 

circumstances, both slag and metal are liquid and the smelting process is easier to 

control and much more efficient. Consequently, it is most likely that the reduction 

smelting of ores containing nickel and arsenic would produce copper rich in both 

elements.
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‘ only for authenticity investigations

b only for native copper

‘ Rare Earth Elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Th, Dy, Ho, Er, Tm, Yb, Lu)

Table 11.1 Classification of elements reported in analyses of ancient copper-based objects 

concerning their bearing on provenance and/or smelting technology

Copper and copper alloys

Production technology Provenance and/or 

production technology

Provenance

Al', B, Be, Ba, Ca, Cr, Cs, As, Co, In, Pb, Re, Ag, Au, Bi, Ir, Ni

Fe, Ga, Ge, Hf, K, Li, Mg', Sb, Sn, Se, Te, Zn Os, Pd, Pt, Rh, Ru

Mn", Mo, Na, Nb, P", Pb, Rb, Cd“, Hgb, Tlb

S, Sc, REEb, Si', Sn, Sr, Ta,

Ti', Th, U, V, W, Y, Zn, Zr

Sn > ca. 1% Sn < ca. 1% routinely analyzed

Pb > ca. 5% Pb < ca. 5% routinely analyzed

Zn > ca. 2% Zn < ca. 2%

Sulphide ores are more difficult to smelt because they cannot be reduced directly, 

but must be oxidised (roasted) before reduction in order to remove most of the sulphur. 

This is usually accomplished at around 700 °C, well below the melting point of copper 

and most ore minerals. However, it is possible that elements that are volatile or form 

volatile compounds like zinc, arsenic, antimony and (presumably) selenium and 

tellurium are lost during roasting (Tylecote et al. 1977). As a result, these elements 

are of limited use to relating copper artefacts to ore deposits, although it has been 

shown that the fahlore signature (high arsenic, antimony and silver concentrations) 

is at least partly preserved in the metal (Pernicka 1999).

A third complication in relating trace elements in ores to those in finished artefacts 

is the fact that early metallurgy is often envisaged as a two-step process, which may 

leave little or no slag—the so-called slagless process. According to this model, there 

is first the reduction of copper ore to copper metal in a solid-state reaction, which 

requires reducing conditions and temperatures from 700 °C upwards (Budd 1991), 

and second there is the actual melting of copper metal, which requires temperatures in 

excess of 1,080 °C. In this two-step model, the reducing stage is characterised by the 

necessarily incomplete burning of charcoal, which results in limited heat generation 

and may lead to the reduction of some copper oxide to copper metal. This metal 

would form in a finely dispersed form within any gangue components (such as iron 

oxides or silicates) that come together with the copper mineral. Any copper formed 

in this hypothetical process would then have to be melted in order to collect it and 

cast it into an artefact shape. To do this, one would have to raise the temperature 

above 1,084 °C, the melting point of copper.

This hypothetical scenario is rather unrealistic. There are several physical­

chemical and practical arguments against it:
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Fig. 11.6 Curve 1 in the 

figure shows the equilibrium 

relationship for the reaction 

CO? + C = 2 CO, which is 

called Boudouard’s 

equilibrium. In the 

neighbourhood of 1,200 K, 

carbon dioxide that has been 

formed by burning of 

charcoal is changed into 

carbon monoxide by this 

reaction, making it possible to 

maintain the reducing 

capability of the gas. It is 

evident that below 1,000 K 

the reducing capability of the 

gas decreases rapidly

1. Reduction of copper to metal is much more efficient in the liquid phase due to 

much higher diffusion rates.

2. The reducing agent is gaseous carbon monoxide (CO) in all cases, which is 

produced when there is an excess of charcoal in contact with the burning charcoal. 

This so-called Boudouard equilibrium of the reaction CO2 + C = 2 CO favours the 

CO side only above ca. 800 °C (Fig. 11.6). Below this temperature, the reduction 

efficiency (i.e. the amount of CO present) would be very low, so that the postulated 

solid-state reduction at such a moderate temperature would be very slow.

3. Finally, it would be very difficult for the ancient smelter to keep the tempera­

ture relatively low throughout the reaction vessel, due to inevitable temperature 

gradients from the tip of the blow pipe to areas further away. In effect, it would 

be difficult to control the temperature in the region between 800 and 900 °C if 

one were determined to reduce copper at such a low temperature. Therefore, it 

is highly unlikely that the early smelters consciously aimed at such a two-step 

process. It is much more likely that the two discrete aspects ol copper smelting— 

chemical reduction and physical melting—may well have been combined in one 

process. The suggestion of a purely solid-state and “slagless” copper production 

remains hypothetical at best, even for the earliest periods ol metallurgy.

The fourth complication arises from the treatment of smelted copper to produce the 

finished object. Nowadays, black (the first product of a smelting furnace) or “dirty” 

copper is generally refined to remove sulphur, iron and other impurities and this may 

also have been true in prehistoric times. This is an easy process because all that is 

required is to re-melt the copper under mildly oxidising conditions. Iron and other 

easily oxidised impurities are then removed as dross. It has been suggested that the 

refining of copper erases most of the chemical characteristics that survived from the 

ore (Merkel 1983,1990). However, using Merkel’s experimental data it can be shown 

that this is not the case for elements like silver, nickel and antimony (Fig. 11.7).
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Fig. 11.7 Summary of 

refining experiments 

performed by Merkel (1983, 

1990). It is evident that the 

concentrations of most 

elements relative to copper do 

not significantly change on 

simple re-melting, except for 

Fe, S and Mo, all of which are 

irrelevant for provenance 

studies. It is unlikely that 

molten copper was regularly 

exposed to a blast of air for 

extended time as indicated in 

the third column (re-melted 

and oxidised copper). But 

even then, only Co, Ni and Pb 

are reduced by a factor of 2, 

which is of little significance 

when ores are compared with 

artefacts. (After Pernicka 

1987)

xIO

A final consideration is that some elements were deliberately alloyed to copper. In 

antiquity these were mainly arsenic, tin, lead and zinc. Copper-arsenic alloys have 

long been seen as accidental products of arsenic-rich copper ores and this may still 

be true in many cases. However, only recently it has been shown that speiss (an iron 

arsenide of variable composition) produced from arsenopyrite without copper may 

have been added to molten copper to enhance its arsenic content (Thornton et al. 

2009; Rehren et al.). The effect on the trace element pattern of the copper is as yet 

unclear, but arsenopyrites are known to often contain gold so that the content of 

at least this element and possibly others as well may be altered compared with the 

copper ore. On the other hand, alloying with tin most likely produces little change 

in the trace element pattern of the copper as most cassiterites (SnO2) are rather pure 

and the alloy usually contains an order of magnitude less tin than copper. Addition 

of lead to copper or bronze can alter the silver and antimony concentrations but not 

those of nickel, cobalt and gold. The effect of the addition of zinc to copper is difficult 

to assess, because this could only be achieved by the so-called cementation process, 

in which zinc metal in the vapour phase is taken up by the copper. Most likely there 

will be little change of the trace element pattern but some experimental research on 

this question would be helpful.

Since arsenopyrites and cassiterites usually contain very little lead, the effect on 

the lead isotope ratios of the copper should be minimal and is usually neglected. 

The opposite is true for the addition of lead. If it is assumed that lead was added 

intentionally to an alloy then the lead isotope ratios can only be used to discuss the 

provenance of the lead and not the copper. How can the intentional addition of lead 

be detected? This is not straightforward, because many copper deposits also contain 

lead minerals and substantial amounts of lead could accidentally be included in the
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Fig 11-8 Lead isotope ratios in various copper deposits in southeast Europe and in Chalcolithic 

copper artefacts (Pernicka et al. 1993,1997). This shows that the major copper sources in this period, 

namely Ai Bunar in Bulgaria and Majdanpek in Serbia, partly overlap in their lead isotope ratios

copper. It is usually assumed that lead concentrations above 5 % most likely indicate 

intentional addition of lead and that below 1 % it is almost certain that there was no 

intentional addition. The region in between is a matter of discussion, depending on 

the date of the objects, their context and so on.

Table 1 contains a summary of the information provided by various elements that, 

in principle, can be found in ancient copper. There are few elements that are solely 

indicators of provenance. However, in very early times, when deliberate alloying 

did not occur, a whole suite of elements are available that can be useful in help­

ing to determine provenance. The provenance of Chalcolithic copper in the Balkans 

(Pernicka et al. 1993, 1997) may serve as an example. Two of the earliest cop­

per mines presently known, Ai Bunar in Bulgaria and Majdanpek in Serbia (only 

indirectly shown to have been exploited in the fifth millennium BC), have partly 

overlapping lead isotope signatures (Fig. 11.8) but can be differentiated by their 

trace element pattern (Fig. 11.9).

Finally, one of the most frequent questions relating to provenance analysis of 

copper alloys deals with mixing cither of ores or of metal, for example recycling 

of scrap metal. In the earlier literature it was sometimes maintained that this can 

be recognised and taken into account. Today we realise that mixing of metals from 

different sources destroys the information on provenance of each component com­

pletely. This would be the case if many different metal pieces from random sources
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Fig. 11.9 Trace element 

patterns of Chalcolithic 

copper objects that are 

attributed to a Ai Bunar 

(Bulgaria) and b Majdanpek 

(Serbia) based on lead isotope 

ratios and their chemical 

compositions. The richest ore 

sample from Ai Bunar (solid 

line) is entirely consistent 

with this pattern

were mixed. But how realistic is this model? Mixing and recycling did occur, of 

course, but often within a certain region and period of time. An example is the Late 

Bronze Age ol western Switzerland, where bun-shaped ingots were found that con­

tained semi-molten pieces of identifiable metal objects. This is the best evidence for 

recycling that one can ask for. Nevertheless, Rychnerand Klantschi (1995) were able 

to identify local groups of metal objects of identical composition so that at least their 

classification was possible. It seems that in this case, recycling occurred within a 

pool of metal that was available and came from one source only. Thus, it is apparent 

that mixing did not obscure all information on provenance.

Another case that is often encountered when metal analyses arc discussed is the 

question of whether a certain metal composition can be explained as a mixture of 

two other compositions. This problem was tackled in a systematic way by Pcrnicka 

(1987), who investigated whether any of the 46 metal objects could be derived from a 

mixture of any other two objects from the same suite. For this purpose, he compared 

lead isotope ratios and trace element concentrations (Fig. 11.10). The result was 

negative, at least for this limited problem. If one has to assume that more than 

two metal compositions were mixed, then there is no chance to calculate a mixing 

model, because the boundary conditions are not known. However, if mixing and 

reuse of metal would regularly occur, then there would be a tendency towards a 

homogenisation of the composition and no metal groups would be identifiable at all. 

As the opposite is observed (i.e. metal artefacts do group meaningfully), one can 

conclude that mixing and recycling was not important, at least in the early metal 

ages. Generally, one can state that the concentration of any element in an object 

on the extreme end on cither side of the frequency distribution should indicate the 

absence of mixing. If, for example, an object shows a very low concentration of gold 

(e.g. less than a factor of ten below the average value of about lOmg/kg), then its 

overall composition cannot be derived from mixing, unless one assumes the utterly 

improbable case that only copper scrap with unusually low gold concentrations was 

mixed. The same applies for very high concentrations of elements such as antimony 

or nickel, which are often found in the Early Bronze Age of central Europe and the 

Middle East/Caucasus.
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Ag/Pb Ni/Pb

Fig. 11.10 Mixed diagram of one lead isotope radio and two element/lead ratios to demonstrate the 

method to identify mixing between two metal compositions. Plotted are the compositions of two 

metal objects from Troy (HDM 100 and HDM 260) and one from the Troad (HDM 63) published 

by Pernicka et al. (1984). From the left diagram one could conclude that sample HDM 260 could 

be a mixture of HDM 100 and HDM 63, because it plots exactly on the mixing line between the 

two concerning the lead isotope ratio and the Ag/Pb ratio. Note that simply plotting the silver 

concentration would not be correct, because the position of a sample on the mixing line of lead 

isotope ratios depends on the lead concentrations of the mixed components. However, in the case 

of mixing, similar lines must be obtained with all other element/Pb ratios. In this example, this 

is obviously not the case as shown in the right part of the diagram. Even if one allows for the 

possibility of a concentration change of a factor of 2 on melting (indicated by the horizontal error 

bar, the vertical error bar is the uncertainty of the lead isotope measurement), then sample 260 

cannot be explained as a mixture of samples HDM 100 and HDM 63.

The question of recycling is so obvious because we are living in an era where 

the resources of some metals are becoming scarce and recycling is an economic 

necessity. The modern recycling rate of copper is the highest among all engineering 

metals and well above 50%. But was this always so? The answer is most probably 

no, but this depends again on the period considered and the region. In Europe, one 

can identify certain compositional groups of copper-based objects that are restricted 

in time and space. This would not be possible if recycling of metal from widely 

distributed sources were the rule. Note that recycling of copper from one source 

within a limited area would not have the same effect. On the other hand, in metal­

poor regions like Mesopotamia, recycling was probably more important than in 

others. There is textual evidence of recycling and, indeed, low tin concentrations 

up to 2 % begin to become more abundant towards the end of the third millennium 

BCE (Hauptmann and Pernicka 2004). Such low tin concentrations do not alter 

the properties of the alloy significantly and are usually interpreted as indication for 

recycling scrap metal. Generally, one can assume that in expanding economies, the 

recycling rate should be small, because fresh metal must come into the system. If 

metal objects were removed from the system in the same period, either by loss or by



1 1 Provenance Determination of Archaeological Metal Objects 259

intentional deposition, then this metal had little chance to be recycled. On the other 

hand, in declining cultures, the recycling rate should increase, because the economic 

structures become obsolete or are destroyed so that the metal supply is interrupted. 

A good example is the late Roman Empire and the Migration period. It is known that 

all kinds of old metal was actively sought and reused, be it lead pipes or iron clamps 

from buildings.

Other Metals

Attempts to elucidate provenance was not restricted to copper and its alloys. Already 

in the nineteenth century, series of analyses of silver and iron objects were performed 

(von Bibra 1873). The problems were the same as with the copper alloys. The 

analytical methods were not yet developed to achieve results that were useful for 

archaeology. After 1950, ancient silver was frequently analysed but concentrated on 

a narrow artefact group, namely coins (e.g. Gordus 1967), and it was often not the 

provenance of the silver that was sought but rather the alloy composition, especially 

the silver content. More focussed on provenance was the study of trace elements 

in Roman lead (Wyttenbach and Schubiger 1973) that could and should have been 

complemented by lead isotope analysis, which had already been introduced to the 

investigation of archaeological material (Brill and Wampler 1965; Grogler et al. 

1966).

The pioneering work on the provenance of ancient silver was performed at the 

Max-Planck-Institut fur Kernphysik in Heidelberg, where extensive field surveys 

for lead and silver deposits in the Aegean were combined with trace element and 

lead isotope analysis of ancient silver coins (Gale et al. 1980). Until the Middle 

Ages, silver was almost exclusively produced from argentiferous lead ores by a two- 

stage process, whereby lead ores were first smelted to produce lead metal that was 

then selectively oxidised in the molten condition to produce lead oxide until a small 

amount of silver remained (a process known as “cupellation”). The remaining lead 

in the silver is an ideal tracer for the provenance of the metal as has been shown by 

later work on Early Bronze Age finds (for a summary of the research in the Aegean, 

see Gale and Stos-Gale 1981; Pernicka 1990). In later periods, one has to take into 

account that cupellation was also used to purify the noble metals silver and gold. 

The lead used for this process may derive from a different source than the silver and 

be irrelevant for the provenance thus be irrelevant for the provenance of the silver. 

There is circumstantial textual evidence for this practice in the second millennium 

BCE. In the Roman period it is likely that debased silver coinage was purified this 

way and, beginning in the fifteenth century CE, lead metal was used to extract silver 

from argentiferous copper ores. In the Middle Ages, silver coinage was frequently 

recalled and re-minted so that provenance studies with this group of artefacts are 

fraught with problems.

For provenance investigations of lead, its isotope ratios are clearly the most valu­

able parameter. Trace element concentrations can be useful, if it can be assumed that 

the metal is the product of primary smelting. This is usually indicated by its silver 

content. Below a certain silver concentration it was not practical or economical to 
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extract the silver, and lead was then used for other purposes. In the Bronze Age, 

this limit of silver extractability seems to have fallen from somewhere between 500 

and 800mg/kg to 200-300 mg/kg until it reached around lOOmg/kg in the Roman 

period, where it remained so until the eighteenth century CE. However, lead that has 

been desilvered through cupellation carries no memory of the trace element pattern 

of the original ore.

In principle, the problems associated with provenance studies of base metals and 

silver should not apply to gold, because this element mainly occurs in the metallic 

form in nature. Therefore, one would think that the analytical problem should be 

similar to rocks (e.g. obsidian, marble etc.) and that there would be no compositional 

change between the natural occurrence and the finished product. Unfortunately, this 

is not the case. There are several reasons why provenance determination of gold is 

even trickier than with base metals:

1. Gold is relatively pure in nature, although usually admixed with substantial silver 

contents (leading to natural electrum). This requires a very sensitive analytical 

method. Combined with the exceptional value that is always ascribed to ancient 

gold objects, the analytical task is formidable, because sampling is either not 

allowed or restricted to extremely small sample masses. The best method today is 

certainly mass spectrometry with inductivclycoupled plasma excitation combined 

with laser ablation sampling (LA-ICP-MS).

2. Silver as the major “impurity” in native gold exhibits a wide range of variation 

within gold occurrences so that it is of little use to discriminate between gold 

sources.

3. The majority of gold occurs in the form of small flakes cither as alluvial gold or 

in rocks, which are usually powdered and the gold is extracted from the powder 

by some sort of panning. For manufacture, the gold was most certainly melted 

and this process induces significant changes in the trace element pattern of the 

gold (Hauptmann et al. 1995).

4. Many of the gold sources exploited in the past are gcochcmically insufficiently 

explored so that it is difficult to define characteristic elements for their discrimi­

nation. However, a pilot study has indicated that this may be possible (Schmiderer 

2008). It has been found that many prehistoric gold objects contain more copper 

than is on average found in native gold. This means that copper may have been 

added to gold either intentionally or as a kind of contamination. This will certainly 

alter the trace element pattern of the alloy.

5. Native gold, especially alluvial gold, tends to have very low lead concentrations 

so that lead isotope analysis is either not possible (see 1) or difficult to interpret, 

because the source of the lead may not be always clear. In a study of Celtic gold 

coins, the question of provenance was not addressed because of evidence for 

recycling and alloying with copper (Bendall et al. 2009).

6. The hopes connected with the observation of inclusions of platinum group miner­

als (PGM) in ancient gold (Young 1972) concerning provenance analysis quickly 

evaporated when it was discovered that even within a single object the composi­

tional (Meeks and Tite 1980) as well as the osmium isotopic (Junk and Pernicka 

2003) variations were as large as found in nature. Therefore, discrimination of 

sources was not possible.
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In this situation, the only realistic chance for gold provenance is the trace element 

pattern, concentrating on trace elements like Pd and Pt that are characteristic of the 

gold, do not change on melting and are not introduced by alloying with copper (Guerra 

2004, Ehser et al. 2011). The most comprehensive analytical study of prehistoric gold 

objects was performed at the Wiirttembergisches Landesmuseum by Hartmann (1970, 

1982). He used optical emission spectroscopy and published some 5,000 analyses. 

This study has also been received with scepticism but it showed that, similar to copper 

and copper alloys, certain compositional groups could be identified that showed a 

restricted distribution in time and space.

For a long time, provenance discussions of ancient iron were largely based on 

conjecture rather than objective facts. In most cases it was simply assumed that the 

geographically nearest iron deposit was the source sought. This was hardly disputed 

as there are many iron ore occurrences known compared with copper and other base 

metals. However, recent studies have shown that even with iron, matters are not so 

simple. Iron was traded in the form of bipyramidal ingots that were often welded from 

two heterogeneously carburised halves. In a pilot study, a series of middle and late 

Iron Age iron finds from the Celtic oppidum of Manching in southern Bavaria were 

analysed in order to determine their possible provenance by combining trace element 

patterns of slag inclusions. Lead isotopic analysis, well established in non-ferrous 

archaeometallurgy but hardly employed for iron, was introduced as a new approach 

(Schwab et al. 2006). The methods applied provided valuable information but each 

is limited in some aspects. Small-scale variations within the ores are thus reflected 

in the iron artefacts and even large variations cannot be separated by the methods 

employed. Nevertheless, it was possible to distinguish various iron ore occurrences 

near the settlement, and bog ores have been generally identified as most likely sources 

for iron smelting in the nearby of Manching. Actually, only one local bog ore deposit 

matches the characteristics of the iron artefacts examined in all aspects (Schwab et al. 

2006). Degryse et al. (2007) proposed to adapt the combination of lead isotope with 

strontium isotope ratios for the provenance study of iron objects as it has already 

been introduced for ancient glass.

In a different and complementary approach, slag inclusions in ancient iron arte­

facts were analysed also with the view to obtain information on their provenance 

(Hedges and Salter 1979). Similar to copper, it is important to understand the chem­

ical heritage (major and trace elements) from the ore into the iron artefacts. Much 

work has been invested in this direction by a French group (Coustures et al. 2003; 

Desaulty et al. 2009). It was demonstrated that the study of major elements in the 

slag inclusions allows the identification of ore groups characterised by high levels of 

certain elements such as P or Mn. In a first step, a group of artefacts with potentially 

common provenance was found and, more important, some provenance hypotheses 

could be rejected. By including rare earth elements in the study, it was found that 

their respective ratios remain constant from the original orc to the slag inclusions. 

Thus, if the chemical signature of a given area is known, it is possible to verify 

its compatibility with an artefact by performing trace element analyses of slag in­

clusions. This was verified by the French team for the Pays de Bray region using 

archaeological ore and experimental smelting. With many elements at hand, one can 

add multivariate methods of data analysis (as with pottery) to compare ores with slag 

inclusions in iron artefacts.
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Conclusion

To summarise, in this contribution the view is held that the scientific analysis of 

archaeological metal objects is not only a valuable contribution to archaeological 

research, but is necessary to correctly describe the archaeological material at the basic 

level. In many cases, metal finds that originally were described by the excavator as 

“bronze” turned out to be unalloyed copper or another copper alloy or even a different 

metal (e.g. silver). Analyses can also be used to classify metal objects according to 

their composition. This classification can be compared with the typological groups, 

and in the case of congruency, one may be able to identify the products of a particular 

workshop.

The most demanding and most difficult question relates to the provenance of 

the metal, especially in regions where no metallic ore deposits are known. It has 

been suggested that it may only be possible to identify the type of ore that has 

been used for primary smelting (Friedman et al. 1966; Budd et al. 1992). While 

it is possible to identify native copper rather securely by its trace element pattern 

(Pernicka 1990), despite assertions to the contrary (Maddin et al. 1980), it is more 

difficult to distinguish between oxidic and sulphidic ores post-smelting. The sulphur 

content is not a reliable indicator, as sulphur is concentrated in the metal phase 

and most oxidic ores contain small amounts of the primary sulphidic ore. The most 

reliable indicator seems to be the iron content (Craddock and Meeks 1987).

However, the key question remains to determine the geological source (or at least 

the original workshop) of a metal object. One may well ask why bother? Should we 

give up reaching for the stars and “rethink the quest for provenance” (Budd et al. 

1996)? The answer is simple: we study provenance of metals because metal ores are 

unevenly distributed over large areas, so that some kind of long-distance transport 

naturally has to be assumed. Furthermore, metals are a new commodity that—much 

more than agricultural wealth—can be accumulated and hoarded. Accordingly, it 

has an influence on social dynamics that cannot be overestimated. Since metals are 

rare, their intrinsic value is high, so that small pieces of metal arc equivalent in 

value of larger volumes or masses of other commodities, which made them ideal as 

exchange tokens. At least from the third millennium onwards, most values of all kind 

of merchandise were calculated in equivalent weights of metal, usually silver.

What is the Future of Provenance Studies?

These are just a few examples to show that provenance studies are important, espe­

cially for the reappraisal of hypotheses concerning contacts and relations of different 

regions and cultures on the basis of excavated materials and their distribution. It has 

taken a long time for the different strands of knowledge to be brought together that 

really promote our understanding of the unrecorded history of metallurgical produc­

tion and exchange. The basis is, of course, a broad knowledge of the archaeological 

period under investigation to tackle the archaeologically relevant problems, select the 

appropriate material for this task and finally translate the analytical results into the 
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cultural historical perspective. This applies to work in museum as well as in the field. 

Archaeologists are usually not trained to excavate and interpret metallurgical instal­

lations and know even less about ancient mining. Only when archaeological field 

surveys are combined with expert knowledge in mineralogy and economic geology 

can the metallurgical potential of a given region be correctly assessed. It requires a 

deep understanding of metallurgical practices and physical chemistry to understand 

the processes of metal production and the consequences for the chemical and iso­

topic composition of the metallic products. Last but not least, it requires a fair deal of 

experience in analytical chemistry to produce reliable data that do not lead us astray, 

as it has sometimes happened in the past.

Where do we go from here? Although a fairly good coverage of the geochemical 

characteristics of base metal deposits in the Mediterranean and in central and western 

Europe are now available, we will never reach a position as in provenance studies of 

obsidian where it is usually possible to pinpoint a certain geological obsidian source 

for every single artefact (at least in the eastern Mediterranean). Ore deposits are 

simply too heterogeneous, so that overlap between different sources is unavoidable. 

Actually, we are in the uncomfortable position that the more data we produce, the 

less (apparent) clarity we have. The way to escape this vice is the combination of 

parameters such as trace element patterns and lead isotope ratios. This may still not 

be successful in all cases, but important questions have been resolved in this way 

(such as the provenance of the Late Bronze Age oxhide ingots and Chalcolithic cop­

per production and distribution in southeastern Europe). Furthermore, field studies 

will have to continue, because the most convincing relation between an ore deposit 

and archaeological metal artefacts is a match of the trace element patterns, lead iso­

tope ratios and metal mining and production in the period in question, as was also 

demonstrated in southeastern Europe (Pernicka et al. 1997).

New parameters will be added in future and have already been tested, such as 

isotope ratios of copper (Klein et al. 2010), zinc (Budd et al. 1999), osmium (Junk 

and Pernicka 2003, Brauns et al. 2013) and recently also tin (Haustein et al. 2010). 

Of these, osmium may be most useful for the provenance of iron and still possibly 

of gold. Tin isotope ratios have already yielded a very surprising result in that it was 

found that the tin of the famous sky disc of Nebra most likely derives from Cornwall 

and not from the relatively nearby Erzgebirge, corroborating Pare’s (2000) scenario 

of Early Bronze Age tin trade in central Europe. Provenance studies of all kinds of 

metal will certainly form an important component of archaeometallurgy also in the 

foreseeable future.
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