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Abstract: The question of whether it is possible to automate the scientific process is of both great theoretical 
interest and increasing practical importance because, in many scientific areas, data is being generated much 
faster than they can be effectively analyzed. I describe here a virtual robotic system which can be physically 
implemented that applies techniques from artificial intelligence to carry out cycles of scientific experimenta-
tion. I am exploring an analogy with the idea of “intelligent” machine, to understand the way we, archae-
ologists, think. If a computer can be programmed to perform human-like tasks it offers a “model” of the 
human activity that is less open to argument than the empirical explanations that are normal in philosophy. 
The purpose is to understand how intelligent behavior in archaeology is possible. 

Introduction

Two years ago, at the Computer Applications in 
Archaeology meeting held in Tomar (Portugal) I 
asked a very provocative question: Is it possible 
to build a machine to do archaeology? Very few 
people at the lecture said “not yet”. Most claimed: 
“fortunately, never!” This paper is the necessary 
second part for the arguments put on that occa-
sion. Of course, I’m not suggesting that we should 
substitute human archaeologists by so called “in-
telligent” machines, but I am exploring an analogy 
with the idea of artificial intelligence to under-
stand the way we, archaeologists, think. If a com-
puter can be programmed to perform human-like 
tasks it will offer a “model” of the human activity 
that is less open to argument than the empirical  
explanations that are normal in philosophy  
(Marr 1982; Drennan 2005).

Archaeological Reasoning as Algorithmic 
Search in a Conceptual Space

The assumption that allows any “intelligent” pro-
gram to work in our research domain seems to be 
that incoming patterns are matched against a set 
of previously memorized templates by means of 
some explicit rules linking external input and in-
ternal explanations (Margolies 1987; ChurChlanD 
1989; siMon 1996; Klahr 2000). By making use of 
some previously stored knowledge, an automated 
archaeologist would infer from sensory data, what 
it is that gave rise to that data. If such a model is 
right, then a specific explanation will be created by 
searching through a space of possible explanations 
until the knowledge necessary to generate that ex-
planation is discovered. This requires a great deal of 
central processing, which is equivalent to a human 
rational mind (o’reilly / MunaKata 2000; BeChtel /  
aBrahaMsen 2005). The idea is then that an automat-
ed archaeologist will first plan how to decompose 
a given archaeological problem into sub problems 
for which knowledge already exists, and then it 
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will look for the specific linking of sub-explanations 
bringing a solution to the preliminary problem. This 
type of organization can be described as a sequence 
of THINK (rationally), PERCEIVE-EXPLAIN where 
the comma indicates that rational thinking, that is, 
conscious problem decomposition, is done at one 
step, and data acquisition (“perceiving”) is made 
afterwards, using a-priori background knowledge 
(thagarD 1989; siMon 1996; MarCus 2001; WagMan 
2002; russell / norvig 2003). 

However, there is a problem. A big one, indeed! 
It is obvious that we do not understand past social 
actions by enumerating every possible outcome of 
every possible social action. A template matching 
scheme could work provided we had precompiled 
rules for all events to be explained. To explain so-
cial action produced in the past, the automated 
archaeologist would need a universal knowledge 
base covering the entire domain of interaction. Un-
fortunately this is almost impossible to achieve, be-
cause it implies the existence of an infinite number 
of rules which have the ability of recognizing each 
unique archaeological evidences for what it is and 
then selecting an appropriate explanation for each 
possible historical state. An automated archaeolo-
gist cannot simply be programmed with predefined 
bits of knowledge (FranKlin 1995; henDriKs-Jans-
en 1996; ClanCey 1997; arKin 1998; BrooKs 1999;  
PFeiFFer / sCheier 1999). 

We should go elsewhere for defining a more con-
venient analogy for an automated archaeologist. I 
suggest the use of idea of “reverse engineering” and 
“inverse problems” for finding the right approach 
for archaeology automatization.

Archaeological Reasoning as Reverse  
Engineering

Archaeological problem solving is a fast perfect ex-
ample of inverse reasoning. That is, the answer is 
known, but not the question. The problem we want 
to solve can always be represented in the motto: 
“Guessing a past event from its vestiges”. Here the 
past event is the question we are looking for, and the 
vestiges are the answer we can observe. In archaeol-
ogy, the main source for inverse problems lies in the 
fact that archaeologists generally do not know why 
archaeological observables have the shape, size, 
texture, composition and spatio-temporal location 
they have. Instead we have sparse and noisy obser-
vations or measurements of perceptual properties, 

and an incomplete knowledge of relational contexts 
and possible causal processes. From this informa-
tion, a reverse engineering approach should be used 
to adequately interpret archaeological observables 
as the material consequence of some social actions 
performed in the past, and probably altered since 
the moment they were performed.

An inverse problem can be solved by conjectur-
ing unobservable mechanisms that link the input 
(observation) with the output (explanation). It can 
be defined as the recognition of observed patterns 
or the prediction of unobserved outcomes by gen-
eralizing from a group of measurements for which 
the desired outcome is known to a larger set of cir-
cumstances. Since Aristotle, generalization has been 
the paradigmatic form of inductive inference. In our 
case, the task will be to find the common structure 
in a given perceptual sequence under the assump-
tion that structure that is common across many in-
dividual instances of the same cause-effect relation-
ship must be definitive of that group (hollanD et al. 
1986; thagarD 1988; Donahue / PalMer 1994; gillies 
1996; Konara 2000).

The presence of communalities implies a high 
level of regularity in the data, which means that cer-
tain characteristics or properties are more probable 
than others. In agreement with the most habitual 
definition of probability, we could affirm, then, that 
a causal event would exhibit some degree of regu-
larity when the more characteristics are “frequent”, 
and the less characteristics are “infrequent” in the 
known series of observed events. The propensity, 
inclination or tendency of certain states or events to 
appear together is then what we need to learn; how 
unobserved facts can be similar to observed ones.

That is, the automated archaeologist will learn 
a mapping from the cause to the effect provided 
some instances of such a mapping are already 
known or can be provided by direct experience 
in the world. When subsequently asked to deter-
mine whether novel instances belong to the same 
causal event, those instances that are similar to in-
stances characteristic of a single event of a single 
class of events will tend to be accepted (hollanD 
et al. 1986; shrager / langley 1990; langley 1996;  
WagMan 2000).

This way of understanding archaeological prob-
lem solving lead us directly to the concepts of Clas-
sification and Clustering, because we can always 
understand the learning task as the partitioning of 
an observation set according to the similarity crite-
rion and generating class descriptions from these  
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partitions. After all, programming computers to 
make inference from data is a cross between sta-
tistics and computer science, where statisticians  
provide the mathematical framework to make the 
inference.

Archaeological Reasoning as a Non-standard 
Statistical Mechanism

One way of understanding the idea of scientific 
discovery as relational learning is in “functional” 
terms: two objects are functionally equivalent (or 
analogous) if they do the same (or similar) things in 
the same (or similar) systems in the same (or simi-
lar) knowledge domain. The key is the emphasis on 
the word “do”. No other features of the objects are 
relevant other than the fact that they do the same 
things under certain conditions - this is to say that it 
is their potential behavior that is important. Conse-
quently, relational learning can only be carried out 
in terms of causal interactions. To identify and dis-
entangling the non explicit relationships, we should 
use available knowledge about the process that gen-
erated those effects. And this conjures up an image 
of a problem solver that is going to use knowledge 
of possible causal relationships to create knowledge 
of relationships. Therefore not only communalities 
are necessary for learning archaeological explana-
tions, but also some kind of contingent relationship 
between the observed examples, which will deter-
mine the type of association learned. 

The central problem of inverse engineering is 
then to specify constraints that will ensure that the 
predictions drawn by an automated archaeologist 
will tend to be plausible and relevant to the system’s 
goals. Which inductions should be characterized as 
plausible can be determined only with reference to 
the current knowledge of the system. Inverse en-
gineering is thus highly context dependent, being 
guided by prior knowledge activated in particular 
situations that confront the automated system as it 
seeks to achieve its goals.

The trouble with learning based on implicit rela-
tionships is that they are not always apparent. To 
solve this situation we need prior knowledge. There 
is not any possibility of archaeological explanation 
based on observations alone. We have to know the 
solution of the problem if we want to solve it! And to 
know such a solution implies to have prior knowl-
edge about the social action and how people gen-
erated material effects when they did something at 

some place, sometime. Such knowledge can be inte-
grated in an automated mechanism by means of: the 
experimental replication, the controlled observation 
or the simulation of the related factors.

Experimental analysis is the process whereby the 
antecedents of a phenomenon are manipulated or 
controlled and their effects are measured. The hy-
pothesized cause is replicated in laboratory condi-
tions in order to generate the material effect as the 
result of just a single action, all other actions being 
controlled. 

An obvious example is modern use-wear analy-
sis. By replicating lithic tools and using them a de-
termined period of time performing some activity 
– i.e. cutting fresh wood – we will be able to test 
the relationship between kinematics, worked ma-
terial and observed use-wear on the surface of the 
tool. It is the archaeologist who makes the tool and 
who performs the activity. In this way the material 
consequences of cutting fresh wood can be made ex-
plicit, and used to discriminate other activity also 
performed by the archaeologist, for instance, cutting 
fresh bone. 

Regrettably, not all social activities performed 
in the past can be replicated in the present. What 
cannot be replicated, on many occasions can be ob-
served or has been observed and someone has wit-
nessed it. Ethnoarchaeology has been defined as 
the observation in the present of actions that were 
probably performed in the past. Ethnographic and 
historically preserved ancient written sources can 
be used as observational situations in which some 
causal events took place and were described. The 
problem with ethnoarchaeological knowledge pro-
duction is that each description should be consid-
ered as a local instance of a more general process. 
We do not have enough with just one singe known 
case. To quote the classical example by Binford: Nu-
namiut description is not enough for understand-
ing Musterian variability. We need a big database of 
universally distributed hunter-gatherer household 
descriptions and linked archaeological records if 
we want to infer some general cause-effect pattern 
about domestic spaces in such societies. 

The implementation of some causal or function-
al knowledge inside a machine to explain what it 
“sees”, is usually called computer “simulation” of 
a causal process. The simulation happens when the 
automated archaeologist executes the knowledge in 
a controlled way. Such an implementation of knowl-
edge within a computer can be seen as the action 
of embedding a model of behavior within another 
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model, where the notion of embedding may be en-
visioned as a logical or causal relation. In some way 
this approach emulates logical deduction, with the 
advantage that it is not limited to standard logics.

Archaeological Reasoning as a Probabilistic 
Framework

Solving an archaeological problem quickly is al-
ways uncertain, because some indeterminacy may 
appear between actions of human work and the 
visual and structural properties of the material re-
sults of such a work. Sometimes a social action hap-
pens, but the expected material consequence may 
not always take place. Other times, the entity we 
study does not seem to experience any perceptible 
change which allows us to know if some social ac-
tion or sequence of social actions were having any 
causal influence.

The challenge is to derive a consistent map-
ping from a potentially infinite set of social actions 
through time to a relatively small number of ob-
servable outcomes in the present. What we need 
are inverse reasoning methods that allow an auto-
mated archaeologist to predict a cause even when 
it is not universally and directly tied with its effect. 
Rather than assuming that data is generated by a 
single underlying event, it should be assumed that 
the archaeological explanation can be modeled as 
a collection of idiosyncratic “processes”, where a 
process is characterized by a particular probabilis-
tic rule that maps input vectors to output vectors. 
Therefore, an automated archaeologist can be seen 
as a kind of heuristic classification machine, a clas-
sifier which has the smallest probability of making 
a mistake. 

Accordingly, the solution of archaeological in-
verse problems should be approached within  
a probabilistic framework. At one level, the ma-
jor task of the system may be described as reduc-
ing uncertainty about the knowledge domain. In 
order to accomplish this, the system must learn 
about the variability characteristic of various prop-
erties and relationships, gaining knowledge of 
what falls inside the range of permissible variation  
for a category and what falls outside, in the region 
of the unclassifiable or intrinsically uncertain. In 
this way, our computational system will be able 
to learn partially predictive rules even if some  
irreducible amount of error variance cannot be  
accounted for.

Conclusions

Artificial Intelligence offers us powerful methods 
and techniques to bring about this new task. Fuzzy 
logic, rough sets, genetic algorithms, neural net-
works and Bayesian networks are among the direc-
tions we have to explore to build a truly automated 
archaeologist. Although statistical reasoning is still 
giving its support to all these methods, it is not clas-
sical statistical inference. Artificial Intelligence para-
digms, differ from usual classification and cluster-
ing methods in that they are (in comparison at least) 
robust in the presence of noise, flexible as to the 
statistical types that can be combined, able to work 
with feature (attribute) spaces of very high dimen-
sionality, they can be based on non-linear and non 
monotonic assumptions, they require less training 
data, and make fewer prior assumptions about data 
distributions and model parameters.

Bringing artificial intelligence into archaeology 
introduces new conceptual resources for dealing 
with the structure and growth of scientific knowl-
edge. The discussion is between what is considered 
an artificial way of reasoning (computer programs), 
and a natural way of reasoning (verbal narrative). 
Critics of computationalism insist that we should not 
confound scientific statements with predicate logic 
operations, since discursive practices or argumenta-
tions observed in a scientific text are not “formal”. 
By that reason, they are tributary, to a certain extent, 
from the Natural Language and the narrative struc-
ture (literary) of which scientific texts derive. I take 
the opposite approach: scientific problem solving 
stems from the acquisition of knowledge from a spe-
cific environment, the manipulation of such knowl-
edge, and the intervention in the real world with the 
manipulated knowledge. The more exhaustive and 
better structured the knowledge base, the more it 
emulates a Scientific Theory and the easier will be 
the solution to the scientific problem, and more ad-
equate the interpretations we get (BarCeló 2008).
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