
International Workshop on the
Design of Dependable Critical Systems

 ECOMODIS

Proceedings

of the

International Workshop on the
Design of Dependable Critical Systems

“Hardware, Software, and Human Factors
in Dependable System Design”

DDCS 2009

September 15, 2009
Hamburg, Germany

In the framework of
The 28th International Conference on

Computer Safety, Reliability and Security
SAFECOMP 2009

Edited by

Achim Wagner1, Meike Jipp1, Colin Atkinson2 and Essameddin Badreddin1

1 Automation Laboratory, Institute of Computer Engineering,

University of Heidelberg
2 Chair of Software Engineering, University of Mannheim

Measuring the Dependability of Dynamic
Systems using Test Sheets

Colin Atkinson, Florian Barth and Giovanni Falcone

Lehrstuhl für Softwaretechnik, Universität Mannheim,

68131 Mannheim, Germany
{atkinson, barth, falcone}@informatik.uni-mannheim.de

Abstract. Determining a system or component’s dependability invariably involves
some kind of statistical analysis of a large number of tests of its behavior under
typical usage conditions, regardless of the particular collection of attributes chosen to
measure dependability. The number of factors that can affect the final figure is
therefore quite large, and includes such things as the ordering of system operation
invocations, the test cases (i.e. the parameter values and expected outcomes), the
acceptability of different operation invocation results and the cumulative effect of the
results over different usage scenarios. Quoting a single dependability number is
therefore of little value without a clear presentation of the accompanying factors that
generated it. Today, however, there is no compact or unified approach for
representing this information in a way that makes it possible to judge dynamic
systems and components for their dependability for particular applications. To address
this problem, in this paper we describe a new, compact approach for presenting the
tests used to determine a dynamic system’s dependability along with the statistical
operations used to turn them into a single measure.

1 Introduction

Quantifying the dependability of software components and dynamic systems is a
major challenge. In contrast with traditional “hard-wired” systems whose behavior
remains fixed (or should remain fixed) as they execute, dynamic systems change their
apparent behavior as time goes by – in other words, they remember the effects of
previous operations and modify their behavior accordingly. According to this
definition, most none trivial software systems and components are dynamic systems.
Because of the memory effect, the dependability of dynamic systems cannot be
calculated from a single metric derived by the repetitive application of a fixed
evaluation criterion (e.g. MTTF from system failures or availability from system
crashes etc.). Instead, the dependability of dynamic systems has to be determined
from compound measures obtained by applying different evaluation criteria to the
system’s behavior using non-trivial scenarios resembling typical usage patterns. Only
then does a dependability measure give a true estimate of the lilkihood that a dynamic
system will deliver satisfactory service in a typical usage situation.

Intuitively, Dependability is a measure of the degree to which the users of a system
can justifiably rely on the service it delivers – that is, its behavior. In general, there

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

28

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

28

are numerous properties or attributes of a system that influence its dependability,
including [1][2]:

• Availability: the readiness for usage
• Reliability: the continuity of correct service
• Safety: the non-occurrence of catastrophic consequences on the environment
• Confidentiality: the non-occurrence of unauthorized disclosure of

information
• Integrity: the non-occurrence of improper alterations of information

However, combining these separate factors into a single dependability measure is a

highly application specific problem and there is currently no widely accepted theory
that can be applied in a general way across different domains. To address this
problem, the Ecomodis project has developed an approach to dependability
specification and measurement that uses user-defined acceptability functions to
provide an application-specific measure of a service’s acceptability [3]. By observing
a systems behavior over a series of carefully defined tests that mimic its real usage
environment a picture of the system’s overall behavior can be developed, and by
using hypothesis-measurement statistics from such fields as psychology, a measure of
a system’s likely dependability for new applications can be obtained.

This approach relies on the clear and precise description of the tests used to
exercise a system as well as the system’s response to those test. However, traditional
testing technology provides no concise way of describing such complex test scenarios
or how the results of the tests are combined into higher-order measures. The most
common way of doing this today is to write a software program in a general purpose
programming language like Java or C++ that performs all the tests and applies the
necessary statistical calculations to the results. However, just as with mainstream
testing techniques based on standard software packages such as JUnit [4], this
approach has a number of drawbacks. First, the ingredients and approach used are
only understandable to software engineers who are familiar with the programming
language used. Domain experts and managers who are unfamiliar with programming
are unable to understand such descriptions. Second, even for people with the
necessary expertise, the important information is obscured in a lot of superfluous
programming “scaffolding” needed to create correct programs in the language
concerned. This not only obscures the key test information and makes it more difficult
to see, it also makes the task of writing correct descriptions more arduous and error
prone.

To address this problem, the Ecomodis project has developed a new test
specification technique to support the Ecomodis dependability model [3]. This
approach, known as “Test Sheets” [5], was developed to combine the simplicity and
readability of tabular test definition approaches such as FIT [6] with the flexibility of
programmatic test definition approaches such as JUnit into a single unified approach
based on the ubiquitous metaphor of spreadsheets. As well as allowing simple
sequences of operation invocations (test cases) to be defined with the same expressive
power as programming languages (but without the superfluous programming
scaffolding) the approach also allows test case definitions to be nested to arbitrary

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

29

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

29

levels and parameterized in arbitrary ways. In contrast with programmatic
approaches, test sheets can also describe the results of tests. To support the
assessment of dependability, standard test sheets have been enhanced with (a) an
additional set of columns which describe the satisfaction functions (in input test
sheets) and the satisfaction values (in output test sheets) defined on operation
input/output values, and (b) an additional row that allows statistical operations to be
applied to these acceptability values and other values derived from the test. In this
paper we provide an overview of this enhanced form of test sheet and explain the new
features designed to support the measurement and specification of the dependability
of dynamic systems. We first describe the basic principles behind test sheets and then
show how they are used through a small case study.

Expressing Usage Profiles with Test Sheets

The Test Sheet approach is a metaphor for test definition, application, and
reporting which attempts to combine the power of programmatic approaches to testing
with the readability and ease-of-use of tabular approaches. To achieve this goal a
spreadsheet metaphor is used to identify the inputs to, and outputs from, operation
invocations and express relationships between them. When complete, a language-
independent test sheet can be transformed into source code in a specific target
language for execution. Once executed, the test results can be visualized as a result
test sheet. Furthermore, Test Sheets allow the definition of probabilistic or
deterministic description of the test execution, thus allowing all kinds of behavioural
protocols, algorithms [7] or any probabilistic operational profiles [8]to be defined.

To illustrate how test sheets support the process of measuring primitive
dependability metrics and their combination into higher-order, compound metrics we
use the example of a calculator. This component offers a number of mathematical
operations that can be separated into two distinct groups that provide the basis for two
different usage profiles:

• basic operations: add, subtract, multiply and divide
• advanced operations: log, sqrt, pow.

One usage profile characterizes applications that only use the basic operations of

the calculator such as accounting applications. The other usage profile characterizes
applications that also used the advanced operations such as scientific applications.
Figure 1 and Figure 2 show the test definitions for the basic and the advanced usage
profiles respectively.

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

30

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

30

Figure 1 Test Sheet for the basic usage scenario

The Test Sheet in Figure 1 tests the calculator component using a basic usage
scenario. The first line initializes the component, while lines 2 to 5 invoke the basic
arithmetic operations with random values. More specifically, line 2 invokes the add
operation (cell B2) of the calculator object returned from first operation (cell A2) with
two random values uniformly distributed between 1 and 100 with a step width of 0.5
(cells C2 and D2). The result of the computation is compared against the sum of the
two parameters to determine its correctness (cell E2).

The order in which these operations are invoked is defined by the behavioral
information in lines 6 to 8 which represents a simple state machine. Execution starts
with line 6. Cell A5 states that with a probability of 100% the control flow will be
transferred to line 7 after performing the operation invocation in line 1, the
initialization. Cell A7 to E7 define the relative probabilities of subsequent operations.
If any of the cells A7 to D7 is selected, the execution state returns to line 7 after the
corresponding operation invocation is performed. However, if cell E7 is selected
(which has a probability of 10%) the control flow will be transferred to line 8, which
is empty, thus terminating the test execution. The state machine represented by this
test sheet is shown as a UML state diagram in Figure 3.

Figure 2 Test Sheet for the advanced usage scenario

Figure 2 shows the test sheet representing the advanced usage scenario. In order to
validate the return values of the advanced operations, a helper component is
introduced that serves as a test oracle. The helper object is initialized in line 2 after
the initialization of the calculator component. Lines 7 through 12 show how results
returned by invocation of the advanced operations (lines 8, 10 and 12) are verified
using results derived from operations of the helper component (lines 7, 9 and 11
respectively). In line 7, the log operation of the helper is invoked to obtain the value
used to verify the result returned by the calculator’s log operation. In line 8, that log

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

31

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

31

operation is invoked just like the basic operations in lines 3 to 6. However, in this
case the input parameters are exactly the same as those used in the invocation of the
helper component, indicated by the references to cells C7 and D7. The result of the
calculator’s log operation can thus be verified by comparing the value returned by the
calculator to that returned by the helper component (cell E8). As before, the order of
operation invocations is determined by the behavioural part of the test sheet in lines
13 through to 16. This is illustrated as a state diagram in Figure 4. In line 13 a
decision is made whether to execute either a basic operation (line 14), an advanced
operation (line 15) or to terminate the test execution (line 16) with the specified
relative probabilities. In lines 14 and 15, the lines that represent the operations of the
calculator are executed and the control flow is transferred to line 13 again, thus
starting another loop through the algorithm.

Figure 3 State diagram basic scenario Figure 4 State diagram advanced scenario

Test Sheet Extension for Dependability Measurement

The test sheets shows in the previous section are “standard” test sheets that can be
used to define ordinary tests. Their strength is that by supporting the definition of
behavioral information, components can be tested using realisitic, non-trivial
scenarios. This provides the basis for obtaining meaningful dependability measures.
However, it does not yet support the application of acceptability functions, nor the
combination of acceptability values into higher-order measures. To support these, two
further enhancements are introduced: acceptability cells and summary cells.

Acceptability Cells

To support the application of acceptability functions, an additional column group
called acceptability cells is added to the right side of the standard test sheet layout

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

32

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

32

(see Figure 5 Figure 7). These columns allow one or more satisfaction values to be
calculated as defined by the equation or operation invocation in each cell. The
contents of these cells can use the full expressive power of test sheets, like arithmetic
expressions, cell references, etc. This allows the computation of complex metrics
based on the runtime behavior of the component being tested.

Figure 5 shows the enhanced tests sheet corresponding to the simple scenario in
Figure 1, illustrating the use of acceptability cells. The test sheets measures the
acceptability of the results returned by the basic operations by computing the absolute
delta between the returned and expected values. Line 2, in Figure 5 invokes the add
method of the calculator component and the resulting value is stored in cell E2.

Figure 5 Enhanced Test Sheet for Basic Usage Scenario

The formula for the acceptability value first computes the delta between the
returned and the expected result:

C2+D2 – E2

and then computes the absolute value of that delta:

|C2+D2 – E2|

This absolute delta is then put into a normalization function, in this case:

1/(x+1)

Figure 6 shows a plot of this function. The domain of the function is [0,!] while
the codomain is (0,1]. Hence the maximum value of the function is 1 for x = 0. The
function is monotonically non-increasing so the value decreases for x-values greater
then 0.

Figure 6 Normalisation Function: 1 / (x+1)

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

33

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

33

The complete formula is:

1/(|C2+D2-E2|+1)

Notice that this is only one possible acceptability function and the user is free to
define computation formulas as needed. An additional option that becomes possible
with acceptability cells is to use them to define the binary fail/pass criterion in the
associated “Result Cells”. In this case, the test will be marked as failed if the value of
the satisfaction function is lower than 0.99 (cell E2).

Figure 7 shows the enhanced test sheet for the advanced usage scenario. In this

case the acceptability of the advanced operation is calculated with a helper
component. Instead of calculating the expected result inline as with the basic
operations, the result of the helper component and the returned result of the calculator
component are directly plugged into the function described before.

Figure 7 Enhanced Test Sheet for Advanced Usage Scenario

Summary Cells

To allow high-order values to be derived from the information in the acceptability
and result cells a new area containing the summary cells has been introduced beneath
the definition of the behavior. These cells not only contain the formulas or
invocations used to determine new higher-order values, they also represent return
values of the test sheet for potential use in higher order test sheets. The keyword
"errors" generates a list of cells that failed the check against the expected result.
Similar to the formula notation supported by spreadsheets users may define arbitrary
formulas for the calculation of further return values.

Summary cells enable the user to define computations that summarize the
behaviour of the component during the test, thus allowing the definition of
dependability metrics and the calculation of higher order measures in a consistent and
readable way. Using higher-order test sheets that allow test sheets to be arranged in
hierarchies, the return values of the test sheet invocations, i.e. the lower level
summary measures, can be used for further computations. This allows different
dependability measures to be further merged into a single compound measure. The
test sheets in Figures 5 and 7 contain summary cells. In the case of the basic usage
scenario (Figure 5) the first summary value is the list of failed cells, the second is the

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

34

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

34

average normalized deviation from the reference result, and the third is the
normalized deviation. In the case of the advanced usage scenario (Figure 7) the same
summary values are computed. Notice that in this case only cells that carry a value are
relevant to the calculation, e.g. cell E7 will be left out when calculating the average or
sum.

Conclusion

In this paper we described how test sheet can be used to support the measurement
and specification of system dependability, and presented two enhancements to
standard test sheets introduced for this purpose. Because of tests sheets’ ability to
define behavioural information it is possible to test dynamic systems with realistic
usage patterns, thus enabling the assessment of meaningful dependability measures.
The first enhancement to standard test sheets is the introduction of a new column
group to support the application of acceptability functions. These complement the
result cells (that represent a binary decision on a test's success) using a continuous
measure for the evaluation of the test results. The second enhancement is the
introduction of a row group for the application of statistical operations to the test's
return values. This facilitates the computation of compound measures and their
presentation in a consistent and understandable way.

References

[1] Melhart, B.; White, S., "Issues in defining, analyzing, refining, and specifying
system dependability requirements," Engineering of Computer Based Systems,
2000. (ECBS 2000) IEEE Proceedings.

[2] Randell, B., "Dependability-a unifying concept," Computer Security,
Dependability and Assurance: From Needs to Solutions, 1998. Proceedings , vol.,
no., pp.16-25, 1998

[3] C. Atkinson, A. Wagner and E. Badreddin, Towards a Practical, Unified
Dependability Measure for Dynamic Systems, Workshop on the Design of
Dependable Critical Systems, Hamburg, 2009.

[4] K.Beck. Test Driven Development: By Example, 2002.
[5] C. Atkinson, D. Brenner, G. Falcone, M. Juhasz. Specifying High-Assurance

Services. IEEE Computer, vol. 41, no. 8, pp. 64-71, 2008.
[6] R. Mugridge and W. Cunningham, FIT for Developing Software. Framework for

Integrated Tests, Robert C. Martin, 2005.
[7] H. Bär. Statische Verifikation von Softwareprotokollen. PhD thesis, University

Fridericiana of Karlsruhe, 2004.
[8] J. D. Musa. Operational Profiles in Software-ReliabilityEngineering. IEEE

Software. 10, 2 (Mar. 1993), 14-32, 1993.

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

35

International Workshop on
the Design of Dependable Critical Systems
September 15, 2009, Hamburg, Germany

35

	Kanstren: Oberserver-Based Modeling ..
	Armoush: Safety Recommendations ..

	Wagner: Towards a Practical ..
	Atkinson: Measuring the Dependability ..
	Farjado-Silva: Fault Propagation ..
	Jipp: The Impact of Individual Differences ..
	Abkai: Real-Time Physiological Simulation ..
	Luo: An Integrated Monitor-Diagnosis-Reconfiguration Scheme..
	Atef: Quantifying Safety in Software ..
	Jipp: The Role of Task and Situational ..
	Zouaghi: Hierarchical Hybrid Monitoring ..
	Bartolein: Dependable System Design ..
	Zouaghi: Dependable Component-based Design ..

