Dependable component-based design on the Example of a Heating Control System
Zouaghi, Leila and Koslowski, Markus and Alexopoulos, Alexander and Barth, Florian and Jipp, Meike and Schmidlin Fajardo Silva, Raul and Luo, Yi and Wagner, Achim and Badreddin, Essameddin

URL: http://archiv.ub.uni-heidelberg.de/volltextserver/10050/
URN: urn:nbn:de:bsz:16-opus-100507
Datum: 25. November 2009
Bitte beachten Sie die Nutzungsbedingungen:
http://archiv.ub.uni-heidelberg.de/volltextserver/help/license_pod.html
Dependable component-based design on the Example of a Heating Control System

Leila Zouaghi¹, Markus Koslowski¹, Alexander Alexopoulos³, Florian Barth², Meike Jipp¹, Raul Fajardo³, Yi Luo¹, Achim Wagner¹, Essameddin Badreddin¹

¹Automation Laboratory, University of Heidelberg, Germany
{leila.zouaghi, markus.koslowski, alexander.alexopoulos, meike.jipp, yi.luo, achim.wagner, badreddin}@ziti.uni-heidelberg.de
²Chair of Software Engineering, University of Mannheim, Germany
barth@informatik.uni-mannheim.de
³Department for Application Specific Computing, University of Heidelberg, Germany
raul.fajardo@ziti.uni-heidelberg.de

This poster illustrates new methodologies for the design and the realization of dependable component-based systems covering hardware, software and human factor aspects. The system structure uses the approach of the “Recursive Nested Behavior Control” (RNBC) ensuring dependable operation and seamless interaction of the system’s components [1]. For the design and the specification of the system the component based design Method KobrA [2] is applied. The specification of hardware components based on high-level hardware design, Transaction-Level Model [3], is presented. Dependability relevant concepts such as Quality of Service and built-in tests using test-sheets [4] as a new way of defining the expected functionality of a component are introduced. For the on-line monitoring of the system we propose a particle Petri net model. This model allows the estimation of the hybrid state of the system and the detection of discrepancies between the expected nominal behavior of the system and the observed one. For a better reflexion of the reality we model both discrete and continuous state of the behaviour. An integrated dependability model has been developed which includes system, hardware, software, and human properties on a behavioural view. It defines, how much the system’s behaviour deviates from the desired behaviour over the system’s mission (usage) and how much the system’s behaviour keeps away from the non-desired (critical) behaviour. A literature review has shown that quantitative descriptions of system dependability are generally done over combinations of some attributes [5], [6]. These attributes are: reliability, availability, safety, integrity, confidentiality and maintainability. We introduce a behaviour based modelling approach [7], [8], [9]. A dependability metric was developed, which can be used during design respectively during run-time to measure the sub-systems’ as well as the overall system’s dependability. To be able to measure the involved dependability attributes during run-time built-in test software modules have been generated based on test-sheets.

Approaches for the design of Human-Technology Interaction adapt the technical system to the operator only in a very general way and ignore differences between operators. We adapt the technical system and its interface to the abilities of the operator and take into account the individual differences in these abilities between and within operators [10]. The interfaces are adapted so that its demand character
does not exceed the ability level of the operator. While for some operators it is easier to interpret figural information, figural information will be displayed. Others prefer verbal and numerical information, so that for them, the relevant contents are displayed in the numerical and verbal representation.

In order to demonstrate the feasibility of the proposed methods and techniques (system architecture, dependability modeling and measure, component-based software and hardware design, testing using test sheets, monitoring, human-technology interaction etc.) we use a simple case study from the control engineering domain: Heating Control System (HCS), which is responsible for maintaining a comfortable temperature in a house by regulating the temperature of the available radiators. Using this case study, in which scientist from different disciplines and application domains were involved, the developed methods were tested and adapted. The achieved interesting results show the feasibility of the proposed methods and their usability for the design and the realization of dependable systems.

References