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Abstract. Providing a practical measure of the dependability of dynamic 
systems, including software systems and components, has been an elusive goal 
of systems engineers for some time. Measures for static, individual, 
dependability-relevant properties (e.g. reliability, safety, availability etc.) are 
well understood, but to date there is no general and widely accepted way of 
combining these into a single dependability measure that can be used to assess a  
dynamic system’s capability for specific applications. In this paper we present a 
practical approach for obtaining an Integrated Dependability Measure (IDM) by 
placing the onus on system developers and users to capture the acceptability of 
different behavior in the form of acceptability functions rather than by defining 
(or attempting to define) general purpose combinations of separately 
determined dependability ingredients (e.g. reliability, safety etc.).  

Keywords: Dependability Measure, Dynamic Systems, Behaviour-based 
System description  

1 Introduction 

Dependability is a complex concept which attempts to measure the degree to which 
a user can rely on a system to provide a certain level of service in a certain context 
[1]. There is general consensus on the various ingredients that contribute towards the 
dependability of a system such as reliability, safety, availability etc., and these 
ingredients are well understood [2]. However, even for traditional static systems 
which exhibit only “hard wired” patterns of behavior as they execute, there is no 
accepted generic approach for combining these separate ingredients into a single, 
overall dependability measure, and for dynamic systems which change their state over 
time it is even less clear how a the overall dependability can be represented by a 
combination of these attributes. Most of the approaches are related to binary fault 
models such as fault trees, Markov models or Petri-Nets [3]. These models are 
functional abstractions of the real system and their coincidence with the real system’s 
behavior is difficult to prove [4]. Since dependability in general can also be defined as 
the capability of a system to successfully and safely fulfill its mission [5], the purpose 
of the system must be taken into account explicitly within a dependability measure. 
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One basic problem with trying to define a single unified measure of dependability 
from the traditional ingredients (e.g. reliability, safety etc.) is that their combination is 
highly application specific [6]. Thus, for systems which must satisfy strict safety 
requirements, safety measures must be given a much higher weighting than other 
ingredients such as reliability. In contrast, for systems which must satisfy stringent 
reliability requirements, reliability measures must be given a much higher weighting 
than other dependability ingredients such as safety and availability etc. The net effect 
of dependability’s sensitivity to application specific requirements is that it is 
effectively impossible to define a single, generic way of combining the individual 
measures into a single measure. The definition of single, unified measure has 
therefore remained elusive. 

In this paper we present a practical approach for getting around this problem that 
switches the onus for combining the dependability ingredients to system developers 
and users on a case-by-case basis rather than on researchers to find a single generic 
combination approaches. This is achieved by requiring developers to extend the 
specification of system behavior with so called “acceptability functions”. The 
approach is based on a behavioral description of the system and the measurement and 
assessment of the system outputs [5]. In contrast with traditional specifications which 
merely describe the expected behavior of the system in response to stimuli, a 
specification enhanced with acceptability functions describes “how well” the range of 
possible behaviors of the system meet the requirements. In other words, an 
acceptability function describes (in terms of a value between (0..1) how “acceptable” 
a particular behavior of the system is for the application in hand. When defining this 
acceptability function, the system developer has to take into account the appropriate 
weightings of the different factors such as reliability, safety, performance etc. and 
give them the corresponding influence on the acceptability value. By moving the 
problem of weighting the different ingredients to a user-defined acceptability function 
a single, unified approach can be used to calculate and compare overall dependability 
measures.  

In contrast to the classical reliability engineering approach where the source of 
faults is not taken into account, in our approach we consider the behavior of dynamic 
systems. Therefore systems are described using models with uncertainty combining 
deterministic and stochastic processes. For reliability investigations, our assessment 
strategy is based on the hypothesis testing approaches commonly used in many 
disciplines, e.g. metrology and psychology, to determine the level to which a 
particular hypothesis is valid in a particular scenario. The problem of estimating a 
system’s capability for a new application is then cast as the problem of establishing 
the likelihood that a given level of service (the hypothesis) will be delivered by a 
specific system in a given context based on the previous tests performed on that 
system. Another major advantage of the approach is that it lends itself to use of tests 
sheets [7] to define and apply the tests used to ascertain the dependability of a system 
and to document how the acceptability functions are used to calculate the final 
dependability measure [8]. 

In this paper we provide an overview of our Integrated Dependability Metric 
(IDM) approach and explain how system specifications can be enhanced with 
acceptability functions to combine dependability ingredients in an application specific 
way. This is demonstrated through a small case study for a dynamic control system.  
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Theory 

There are various different ways to describe dynamic systems, which can be 
classified as parametric/non-parametric and stochastic/non-stochastic models (see 
Table 1). In system theory, parametric input-output and state space models are very 
common, and are often enhanced by additional noise terms to model the stochastic 
part of the system.  

 
Table 1: Model classification 

 
 
This kind of model covers a broad range of applications. In contrast to pure 

stochastic models the output values are generally correlated, i.e. the random noise due 
a stochastic process is modified by the system transfer function. Thus, not only the 
distribution in the amplitude but also the distribution over the time domain is an 
important property of a stochastic variable. Furthermore deterministic output errors 
can be modelled as a result of parameter errors in the system transfer function. For 
physical systems, samples are directly related to the time at which the samples are 
taken, e.g. using a specified sampling rate. For other systems like software systems 
this sampling time is not obvious. Therefore it may be abstracted using an ordered 
series of samples instead.  

Safety-critical physical states can be represented as internal states in the state space 
representation. However, as long they can be measured, critical states may be visible 
as output values of input-output systems. In order to fit the black-box view of many 
other disciplines, including software engineering the input-output representation for 
dynamic systems is preferred in this paper.  

Dependability Measure 

The dependability measure defined in this paper is based on the definition of 
dependability for autonomous systems [5] and enhanced by an additional stochastic 
view of the system model. Furthermore, the validation against specified system 
properties plays a major role. The formal definition of our dependability measure 
makes the following assumptions: 

1. The specification and the realization of a dynamic system are given: i.e. the 
purpose of the system (usage, mission), the behavioural, structural, 

International Workshop on 
the Design of Dependable Critical Systems 
September 15, 2009, Hamburg, Germany 
 

19



functional and non-functional properties, environmental conditions and 
system boundaries, 

2. The system is operated in an environment with uncertainty, i.e. it is not 
exactly known if errors in the output behaviour are due to disturbances or 
system faults. 

3. The correctness of known system properties is verified by other means 
4. Faults will happen! 

The required dependability measure D describes the correspondence of the actual 
system behaviour to its specified behaviour within the system boundaries and 
according to acceptance criteria. The dependability measure is an objective value and 
therefore free from any human perception and interpretation. The dependability 
measure is a functional, which depends on the actual system output behaviour y, the 
specified reference behaviour yr,, system boundaries and acceptance criteria , a  
mission u (finite set of input test trajectories corresponding to the usage of the system) 
and a number of acceptability functions corresponding to the measured dimension of 
dependability.  

As the Integrated Dependability Measure (IDM) for safety-critical computer 
controlled systems we propose the (time) discrete function: 
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with normalized acceptability factors 
jj AA 1  corresponding to the 

dependability component j with dimension d and the k-th sample of a mission of 
length m. For practical purposes, the acceptability factors 

jA  are normalized 

functions with values in the interval [0, 1]. The values are added using weighting 
factors resulting in the overall dependability function. Thus, dependability is a unique 
normalized value in the range [0, 1] (0 means undependable and 1 dependable) taking 
account of all possible system impairments during a mission. Both the actual 
behaviour and the reference behaviour are considered to be the system response on a 
set of predefined input trajectories called reference missions or usage profiles of the 
system. The reference behaviour represents the desired (expected) system response 
during the application of a specific input trajectory. Depending on the concrete system 
description the test inputs may be fixed trajectories or generated from a test pattern 
generator (e.g. test sheets or Markov-processes for stochastic systems). Prior to the 
execution of the test mission the system is initialized. In order to validate specified 
system properties, a set of criteria related to system behaviour and properties is 
explicitly included in the acceptability functions. Since performance, safety, 
complexity, etc. are often concurrent design parameters, the weights must be chosen 
by the system designer according to the system requirements.  
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Acceptability factors for dynamic system performance 

The definition of errors is domain specific. For instance, in standard software 
technology only the correctness of a result is important and the error is modelled as a 
binary decision about the acceptance of the result. However in the scope of safety-
critical real-time systems also the gradual degraded state must be considered.  

As a basis function for several accessibility measures the relative deviation for 
sample k 

p

krk
krel y

yy
e ,

,


 , (2) 

related to the specified (maximum) error yp can be used. However, erel,k may have 
unlimited positive and negative values. Therefore we propose the squared exponential 
function of erel for the definition of an acceptability term for the system performance: 
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which has a range of [0, 1] and which is approximately (1-e²rel) for small values of 
erel. In case of a non-stochastic dynamic system this term reflects the structural and 
parameter uncertainty of the modelled system. If the system output is a vector y of 
dimension d the Euclidian norm is used to determine the absolute value. In the case of 
stochastic systems erel can be further evaluated by error statistics getting the meaning 
of reliability. Depending on how the system is described and what system property 
shall be highlighted (e.g. reliability or safety) the appropriate element of y must be 
chosen. In case of reliability, the output value is related to the service the system 
delivers. In the case of safety, the output value is related to critical system states (see 
example below). Furthermore, the test mission set must be carefully selected to cover 
the range of system outputs for the system properties under consideration. 

Reliability of dynamic systems 

For systems of high reliability the failure rate during normal operation is low. 
Generally, reliability parameters are determined using a large number of identical 
parts or many samples on one special system. However, for practical reliability 
evaluation of one system the lifetime may be shorter than the time needed to take the 
required number of samples.  

The dependability concept presented here constitutes a generalisation of reliability 
and safety engineering concepts for dynamic systems. Consequently, the 
dependability measure should also include the special case of the reliability of static 
systems. Compared to established reliability measures using a binary fault model, 
here the gradual derivation of the system output can be used to reduce the testing 
effort. 

In order to demonstrate this concept the system is modelled as a deterministic 
input-output system with stochastic uncertainty. The output value depends 
deterministically on an input stimulus, described by a constant transfer function 
known in advance. The output values are superimposed by a pure stochastic process 
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with independent samples. Thus, the stochastic process corresponds to the deviation 
of the actual output from the specified output. We assume that non-stochastic and 
stochastic process can be separated by subtracting both values.  

Special case: Reliability of dynamic systems with noise 

In contrast to static systems the output value of dynamic stochastic system depends 
not only on the actual input value, but also on the actual system state, which results 
from former input values and the initial value of the system. Generally the output 
values are correlated in the time domain, because independent input values, e.g. white 
noise, are modified through the dynamic system transfer function. Besides the 
probability density function (PDF) over the value range, the distribution of the output 
values over the time, respectively, the frequency spectrum, must be considered. 
Accordingly, the times where samples are taken must go along a system trajectory.  

In this case we propose to collect output data from uncorrelated submissions and 
treat them as independent sample. To measure the proposed reliability factor it must 
be assured that the system did not change in between. For software systems, for 
example, this can be done by re-initialising the system.  

Special case: Reliability of stationary systems 

In this section the system under consideration is specified as a probabilistic system 
with the output variable y, statistically independent normal distributed output values, a 
mean value µ=0, and a standard deviation of . Furthermore, it is required, that the 
absolute value of y does not exceed the maximum value ymax with a probability of Psys 
for each sample of y. Thus Psys is a reliability measure for mean failures per 
invocation. The conditional probability  

),0,()|( 0max0max  yyyP   (4) 

can be calculated using the cumulative distribution function ),0,( 0max y  according 

to the normal distribution of y, µ=0, and the specified value  for the standard 
deviation. 

Consequently, the overall probability for an error free system is 

)()|()( 00max0max   PyyPyyPPsys
, (5) 

i.e. the product of the conditional probability of having no errors 
  1)|( 0maxyyP  and the probability of being in the specified range 

  1)( 0P . 

Accordingly, we can find an upper limit  

  )(1)( 0max0max yyPyyPPsys
 (6) 

for the overall error-probability (unreliability). Corresponding to the required 
reliability and the known PDF the value is specified during system design.  In 
order to test the system against its specification, it is not necessary to measure the 
absolute value of the reliability. The -value indicates the level of confidence the 
specified reliability has been reached. If the output samples are collected over a 
number of test missions,  

International Workshop on 
the Design of Dependable Critical Systems 
September 15, 2009, Hamburg, Germany 
 

22



yreliabilitA  (7) 

can be used as an acceptability function for software reliability.  
The system validation is now restricted to the test of the output value’s distribution 

parameters, in this example the standard deviation, which can be performed using 
well known hypothesis tests. We assume that the PDF of the system output is known 
from long term experience, which is the normal distribution function in our case. 
Otherwise, tests known from textbooks can be used to test the PDF [9]. 

The hypothesis H0: 
2
0

2    shall be validated by falsification of the counter 

hypothesis H1: 
2
0

2    with a confidence level 1-, i.e. the probability of accepting 

H0 although H1 is true is less than .  
Since the real value of  is unknown, the sample standard deviation s over a set of 

n sampled output values yi, i=1..n will be used for further calculation. 
For a given confidence level  = f( 2

;1 n
) the test condition for rejecting H1 is 

given by  
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with the critical value 2
;1 n

 of the -distribution with momentum n-1. The value 

2
;1 n can be calculated according to the approximation formula  
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of Wilson and Hilferty with the critical value of the normal distribution y. Since  
decreases more than exponentially with y, the number of samples required only 
increases weakly with decreasing  with  
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In contrast, standard software verification techniques using the zero-error 
hypothesis need a sample size of the order O(ln/p) [10], which may be problematic 
for seldom events with a small probability p. This result is not surprising, because the 
proposed approach uses the complete information over the distribution of the output 
samples and not just the binary decision about the acceptance of the sample. 
Furthermore the assumption of a zero-error system is often not realistic and the 
measured confidence level corresponds to the error probability of the test and not to a 
system property. In case of the continuous model the –value corresponds to the 
confidence in the specified system and its parameters allowing an estimation of future 
system behaviour.  

If the system output has a mean value µ≠0 the complete PDF will be shifted on the 
y-axis resulting in an increase of the error probability P(µ)/P(µ=0)=1+For small 
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positive values of µ the error probability increases approximate linearly with 
=µ·ymax/². Generally, ymax and  are given by the system specification and µ/ 
corresponds to the relative deterministic deviation of the system response erel, i.e. in 
the probabilistic case erel has the meaning of a reliability decrease factor due to the 
non-probabilistic part of the system.  

 

Fig. 2. Relative Increase of the error probability due to shift of the average value (blue line: ymax 
= red line: ymax =3 green line: ymax =6) 

Safety of dynamic systems 

Generally, in the literature safety measures are probabilistic concepts based on 
binary accident events [3][4]. In order to find a safety measure describing the 
degraded state of a deterministic system the concept of the dynamic safety margin 
(DSM) is used [11]. In this concept the safety margin is the distance  to the system 
boundary given by safety critical physical states, e.g. the pressure in a chemical 
reactor.  In control engineering the measured DSM can be used in order to optimize or 
to adapt a controller during system operation.  

Here, the DSM concept is generalized for safety-critical computer systems as a 
measure of how far a system is away from the critical state. Using an input-output 
description of the system, all safety-critical physical states must be accessible from 
outside the system or subsystem measured by the output value y. Similar to the 
performance acceptability a safety acceptability factor can be derived utilizing the 
DSM normalized to specified maximum deviation of the output value yS.  

We propose: 


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, exp
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ksafety y
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For dynamic systems with additional noise the DSM concept can be treated like the 
reliability concept, if we replace the maximum allowed deviation of the system output 
by the DSM. Thus the probability of reaching a critical state can be determined. 
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Illustrative Example 

In order to illustrate the concept of dependability measure a simple heating control 
system is described in this section. The heating system consists of a radiator, a 
switching controller and a temperature sensor. The controller gets the desired 
temperature yr from the input and the actual temperature y from the sensor. If the 
difference of both temperatures leaves a specified range the controller switches the 
radiator ON (uk=1) or OFF (uk=0) corresponding to the control law: 
initial value OFF 
if (yr(k)-y(k))>0.1 && OFF than ON; 
if (yr(k)-y(k))<-0.1 && ON than OFF; 

The radiator temperature has an input-output behaviour corresponding to a first 
order system (low pass) with a time constant of 2300 s yielding the time-discrete 
transfer function 

kkkk uyy  03.03.09996.01  (12) 

with the system input uk (power in watt) and the output yk (°C), normal distributed 
white noise k, and the sample period t. For simplification the index k is used for all 
variables instead of kt, i.e. yk = y(kt). The specified deviation is 0 = 0.15°C. The 
maximum absolute temperature is ymax = 40°C. As a test trajectory a biased sinusoidal 
input is applied with yr,k=38.5°C+sin(2·0.001·kt), m=1000, k = 0..m, t = 1s, and 
initial output value y0 = 38°C.  

The acceptability functions are defined according to (3), (7), and (11) with yp=60, 
ys=0, =y- ymax. The dependability of dimension d=3 is defined according to (1) with 
the acceptability functions A1=Aperformance, A2=Asafety, A3=Areliability, and weighting 
a1=0.3, a2=0.4, a3=0.3.  

The unacceptability of the reliability factor (-value) depends on the number of 
samples taken. In the test case n = 100 samples are taken from independent runs, for 
one special instance of time. Corresponding to the low-pass behaviour of our system, 
the output deviation values are correlated in the short time range, leading to smaller s 
values. In order to get uncorrelated samples, the system relaxation time must be 
awaited before the samples are taken. The time-dependent -values are shown in 
table 2, which increase with time. 

Table 2: Sample of the time-dependent standard deviation of the system output and -value for 
n = 100. 

t (s) s (°C) 
10 0.1021 7.9134e-005 
100 0.1029 9.6890e-005 
1000 0.1047 1.5333e-004 

 
The actual output and the reference output are shown in fig. 3a). The actual output 

has a noticeable noise in addition to the reference value. Correspondingly, 
performance acceptability fig. 3b), blue line, is also noisy and the corresponding 
cumulative function fig. 3b), green line, increases with number of samples 
accumulated.  
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Fig. 3. a) System reference output (green line) and actual output (blue line); b) Performance 
(un)acceptability (blue line) and cumulative value (green line); c) Safety (un)acceptability (blue 
line) and cumulative value (green line); d) Overall system dependability. 

Fig. 3c) shows the safety acceptability which has peak values in the sample range 
n=300..400. Within this range the system output has the minimum distance to the 
maximum system output (see fig. 3a). The overall dependability is plotted in figure 
3d). It is obvious that the dependability decreases monotonically. The maximum slope 
is in the range where the weighted sum of all acceptability terms reaches its maximum 
as well. Therefore, the peaks in the safety function are visible as strong decreases of 
dependability.  

Conclusion 

In this paper an Integrated Dependability Measure (IDM) for dynamic systems was 
proposed combining acceptability factors for different dependability relevant system 
properties. The approach is based on a behavioral system description which 
generalizes diverse system descriptions techniques from different disciplines, e.g. 
systems, hardware and software engineering, human factor engineering. The measure 
is suitable for stochastic as well as for non-stochastic system models and related 
properties.  The measure is a functional of the specified behavior represented by the 
reference output trajectory, the actual behavior represented by the actual output 
trajectory and a specified mission represented by a test input trajectory. Furthermore 
criteria are defined by which the system can be validated. Thus, the dependability 
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measure does not describe the system behavior directly, but how much it deviates 
from the expected behavior.  

The simulation example shows that using the dependability measure (1) the input-
output behavior of a system can be validated against its specifications in relation to 
dependability requirements. As a special case, reliability metrics can also be included 
in the measure. Considering dynamic systems we have to project the system trajectory 
by reducing the time dimension to one single value in order to obtain stationary 
reliability values. Additionally, a method is proposed to validate the reliability by 
comparing the distribution of output values with a defined probability density 
function. This approach reduces the number of required samples significantly, which 
is necessary for a practical application. In this case, the absolute value of the failure 
probability is not required. In contrast, the deviation of the reliability from the 
specified value is measure indirectly. This also enables new testing methods to be 
used. In the future, the unified dependability measure will be applied and evaluated 
for additional systems covering typical examples of human factor engineering. 

References 

[1] Laprie, J. C.: Dependability: Basic Concepts and Terminology. Ed. Springer, 
(1992). 

[2] Avizienis, A. , Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and 
taxonomy of dependable and secure computing. IEEE Trans. on Dependable and 
Secure Computing, 1 (1):11–33, (2004).  

[3] Walter, M., Schneeweiss, W.: The Modeling World of Reliability/Safety 
Engineering. LiLoLe-Verlag GmbH, Hagen, Germany, (2005). 

[4] Rakowsky, U. K.: System-Zuverlässigkeit, Hagen/Westfalen: LiLoLe-Verlag,  
Paperback, ISBN 3-934447-22-8, (2002). 

[5] Rüdiger, J., Wagner A., Badreddin E.: Behavior Based Definition of 
Dependability for Autonomous Mobile Systems, in Proc. of the European Control 
Conference 2007, Kos, Greece,  July 2-5, 2007, WeD11.4, (2007). 

[6] Siewiorek, D. P., Swarz, R. S.: Reliable Computer Systems: design and 
evaluation. 3rd ed., A K Peter Ltd. Massachusetts, USA, (1998). 

[7] Atkinson, C., Brenner, D., Falcone, G., Juhasz, M.: Specifying High-Assurance 
Services. IEEE Computer, vol. 41, no. 8, pp. 64-71, (2008). 

[8] Atkinson, C., Barth, F., Falcone, G.: Measuring the Dependability of Dynamic 
Systems using Test Sheets, Workshop on the Design of Dependable Critical 
Systems, Hamburg, (2009). 

[9] Weber, H.: Einführung in die Wahrscheinlichkeitsrechnung und Statistik für 
Ingenieure. Teubner, Stuttgart, ISBN 3-519-02983-9, (1992). 

[10] Ehrenberger, W.: Software Verifikation: Verfahren für den 
Zuverlässigkeitsnachweis von Software, Carl Hanser, München Wien, ISBN 3-
446-21624-3, (2002). 

[11] Badreddin, E., Abdel-Geliel, M: Dynamic safety margin principle and application 
in control of safety critical systems. International Conference on Control 
Applications, volume 1, pages 689–694, Vol.1, 2-4, (2004). 

 

International Workshop on 
the Design of Dependable Critical Systems 
September 15, 2009, Hamburg, Germany 
 

27


	Kanstren: Oberserver-Based Modeling ..
	Armoush: Safety Recommendations ..

	Wagner: Towards a Practical ..
	Atkinson: Measuring the Dependability ..
	Farjado-Silva: Fault Propagation ..
	Jipp: The Impact of Individual Differences ..
	Abkai: Real-Time Physiological Simulation ..
	Luo: An Integrated Monitor-Diagnosis-Reconfiguration Scheme..
	Atef: Quantifying Safety in Software ..
	Jipp: The Role of Task and Situational ..
	Zouaghi: Hierarchical Hybrid Monitoring ..
	Bartolein: Dependable System Design ..
	Zouaghi: Dependable Component-based Design ..



