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Zusammenfassung

Resonante Fluoreszenz und Elektronenspin in Halbleiter Quan-
tenpunkten

In dieser Dissertation wird die erste Beobachtung von spinabhaengiger resonanter Fluoreszenz eines
einzelnen Quantenpunktes vorgestellt, sowie ihre Anwendung fuer die Bestimmung der Dynamik
von Elektronenspins aufgezeigt.

Das Mollow-Triplett und das Mollow-Quintuplett, Kennzeichen resonanter Fluoreszenz, zeigen
sich in dem nicht-spinaufgeloesten, respektive spinaufgeloesten resonanten Fluoreszenz-Spektrum.
Ein vernachlaessigbarer Laserhintergrund, ein fast nur radiativ linienverbreitertes Spektrum sowie
Photon Antibunching implizieren dass die Seitenband-Photonen hintergrundstrahlungsfreie und
nahezu transformlimitierte einzelne Photonen sind. Dies ist ein vielversprechender Schritt in Rich-
tung der Erzeugung einzelner Photonen und Bestimmung des Elektronenspins.

Anstatt das Spektrum aufzuloesen, wird ein alternativer Weg gezeigt den Elektronenspin auszule-
sen, welcher auf Photon Zaehlung der resonanten Fluoreszenz bei moderater Laserleistung beruht.
Die Elektronenspindynamik wird mithilfe n-mal wiederholter zeitlich aufgeloester resonanter Fluo-
reszenz gemessen, um die Rueckwirkung der Messaktion auf den Elektronenspin sowie die Elektro-
nenspinrelaxation zu bestimmen. Hyperfeinwechselwirkung und ”Hole Mixing“ von leichten und
schweren Loechern werden als die relevanten Mechanismen fuer die Rueckwirkung identifiziert,
waehrend phononunterstuetzte Spin-Orbit Wechselwirkung die Spinrelaxation dominiert. Nach
einer detailierten Diskussion von Spin-Ladungskonfigurationen in gekoppelten Quantenpunktsys-
temen wird die Spinbestimmung in einer Einzelmessung vorgeschlagen.

Abstract

Resonance Fluorescence and Electron Spin in Semiconductor
Quantum Dots

The work presented in this dissertation contains the first observation of spin-resolved resonance
fluorescence from a single quantum dot and its application of direct measurement of electron spin
dynamics.

The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluores-
cence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum,
respectively. The negligible laser background contribution, the near pure radiative broadened
spectrum and the anti-bunching photon statistics imply the sideband photons are background-free
and near transform-limited single photons. This demonstration is a promising step towards the
heralded single photon generation and electron spin readout.

Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance flu-
orescence photons under moderate laser power is demonstrated. The measurements of n-shot
time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of
the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-
light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant
spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin con-
figurations in coupled quantum dots system, the single-shot readout on electron spin are proposed.
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Preface

That was three years ago, my colleagues in Heidelberg demonstrated the first six-

photon entanglement [1], meanwhile they approached the bottleneck on the bright-

ness and fidelity of generating multiphoton entanglement through spontaneous para-

metric down conversion due to its probabilistic nature. In order to continue the leg-

end of photonic qubits in implementing quantum information processing, the quan-

tum memory and deterministic indistinguishable single photon source are expected.

Since then, I started my PhD and chose to pursue the single photon generation from

solid state system, especially the semiconductor quantum dots. To the end of this

period, there turns out more than what I predicted. Photon, electron and the meso-

scopic environment, they all come into the picture, make the role of quantum dots

as the interface of flying qubits (photons) and stationary qubits (electrons) more

and more vivid, and also bring me much more joy of research.

Before I started in this field, there has been plenty of work demonstrated that

quantum dot can emit single photons, especially from single InAs/GaAs self-assembled

quantum dots [2, 3, 4]. However the issue about how to make the photons indistin-

guishable, which is the crucial precondition for multiphoton manipulation, was still

there[5, 6]. Although using photons generated from same quantum dot can fulfill

the conditions of same central frequency, same bandwidth and same polarization

which are required for being indistinguishable, the uncontrolled time jitter on the

photon emission times, due to the nonradiative relaxation of excitons down to the

lowest quantum dot state, diminishes the coherence of the emitted photons, makes

the photons still distinguishable. A common feature in all the previous studies is the

incoherent pumping of the transitions through optical exciton generation in either

the host matrix such as GaAs or the quasi-continuum states above the higher lying

confined states of the quantum dot. In an attempt to address this shortcoming,

our attention focused on the resonant optical excitation of quantum dots, and it

excitingly brought us our first result, spin-resolved resonance fluorescence [7], after
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one year lab building in Cavendish. The resonance fluorescence photon is expected

to be transform limited, i.e. follow the mechanism of pure radiative broadening, but

our observation suggested about 80MHz upper-bound dephasing, which may come

from the interactions between electron spin states to their mesoscopic environments,

such as nuclear spin ensemble. More understanding of physics behind are required

before we move on to any further single photon applications. Therefore, we pull

back to carefully study the electron spin dynamics using new fluorescence technique

we developed. It turns out the n-shot resonance fluorescence spin readout is much

more powerful than traditional differential transmission measurement. However, in

the single quantum dots system, the fast measurement induced back action is the

obstacle for us to pursue the single-shot spin readout. Recently, we upgraded our

system to coupled quantum dots, which opens up the exact way towards the single-

shot spin readout using resonance fluorescence with the suppressed back action.

Moreover, the coupled quantum dots system bring us some other new ideas such as

the coherent generation of photon pairs and photon-electron entanglement base on

two-qubit gate.

This thesis contains five chapters. Chapter 1 is an introduction chapter, where the

concept and basic optical properties of self-assembled InAs/GaAs quantum dots are

presented. Photoluminescence and differential transmission are the main experimen-

tal technique for this chapter. In Chapter 2, we investigate resonance fluorescence

spectrum of Mollow-triplet and Mollow-quintuplet. The single photon generation

based on electron spin state is also discussed. Chapter 3, as one direct application of

resonance fluorescence technique, we perform N-shot measurements to reveal elec-

tron spin dynamics in single quantum dots. Chapter 4 is devoted to the study of

coupled quantum dots, where theoretical model and current experimental progress

are presented. An outlook is given in Chapter 5.
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Chapter 1

Quantum Dots — from
cleanroom to quantum
optics laboratory

In the past decade, physical properties of low-dimensional solid-state structures is

a field under intense study. This is because the gained knowledge is essential as

the feature sizes of manufacturable semiconductor devices decrease, and also hold

great promise as quantum systems with applications in the cutting-edge field of

Quantum Information Processing (QIP). Among them, a zero-dimensional system,

self-assembled quantum dot (QD) attracts more and more attention, which can

provide three-dimensional confinement of carriers, show atom-like properties such as

the discrete electronic states, strong photon antibunching [3, 4] and near transform-

limited fluorescence [7, 8, 9, 10]. Moreover, the quantum dots (QDs) intrinsically

locate within the matrix of the surrounding materials, and naturally form a potential

trap for the electrons and holes. By integrating the diode structure onto the sample,

we can deterministically charge the QDs and tune the interactions between electronic

states. With the developed quantum optics techniques, a concept of the all-optically

controlling[11, 12, 13, 14] and detecting[15, 16, 17] carriers’ spin states in single QD

has been widely demonstrated. In this chapter, we will firstly discuss the growth

of self-assembled QDs, and then study the basic optical properties in QD by using

photoluminescence (PL) and differential transmission (DT) technique. Both of them

are carried out at the cryogenic temperature of about 4.2 K in either Helium flow

cryostat or Helium bath cryostat.
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CHAPTER 1. Quantum Dots — from cleanroom to quantum optics laboratory

1.1 Growth of self-assembled quantum dots

The potential for an electron in the conduction band is given by the band edge, so is

the potential of a hole in valence band. In this way, different materials can be com-

bined to create a potential that is varying in space. In particular, a low-band-gap

semiconductor in a larger band-gap semiconductor results in a trapping potential

for the carriers. This is realized with semiconductors in a so called heterostructure.

Depending on the hetero-structure trapping potential size, quantization effects oc-

cur.

1.1.1 Self-assembly of single quantum dots

QDs are heterostructures of reduced dimensionality down to zero, providing three

dimensional confinements in real space, while still maintaining the mesoscopic struc-

ture. Remarkably, this ultimate spacial confinement can be formed naturally by

self-assembly in a strain-driven phase transition that takes place when combining

two materials of different lattice constants during one material growth protocol. The

particular materials covered in this work are Indium Arsenide (InAs) as the micro-

crystallite islands and Gallium Arsenide (GaAs) as the surrounding matrix. There is

7% lattice constants mismatch between these two materials (Fig. 1.1 (a)). Applying

molecular beam epitaxy (MBE) technique, crystal is grown through monolayer-by-

monolayer formation of thin epitaxial films. As illustrated in Fig. 1.1 (b-c), in the

Stranski-Krastanow growth mode [18], the growth initially occurs in forming the

so-called wetting layer (Fig. 1.1 (b)). After the deposition of a few monolayers, the

critical thickness is reached and the phase transition begins (Fig. 1.1 (c)). This

growth mode is employed for growing QDs allowing relaxation of strain energy by

island formation without dislocations. After the nucleation of the InAs island, the

sample is annealed for 30 s at 545◦C followed by GaAs overgrowth at the same tem-

perature with at least 15 nm of capping layer (Fig. 1.1 (d)). The growth temperature

can then be raised to its normal value for additional capping-layer deposition.

However, a practical difficulty for optical studies of InAs QDs in GaAs is the

energy of the emitted photons which is lower than or close to the bandgap energy of

silicon. This excludes the use of Si CCD cameras for detection of the luminescence.

It turned out to be very practical to blue-shift the emission wavelength by adding

annealing steps during the capping of the islands. Among the techniques developed

2



1.1. Growth of self-assembled quantum dots

(a) (b)

(c)

InAs

GaAs

First layer

(d)

Figure 1.1: Illustrated formation of self-assembled InAs/GaAs QDs. (a) Lattice constants for
InAs and GaAs. (b) The first layer growth of two materials, the wetting layer is about 1.7 mono-
layers. (c) Nucleation of the InAs island. (d) Capping InAs island by GaAs.

for this purpose, the partially covered island (PCI) [19] technique is used on the

QDs covered in this work. The basic PCI process is shown in Fig. 1.2. After the

annealing step mentioned above, a thin GaAs layer is grown for partially capping

island and annealed once more for another 30s. The top section of the island diffuses

onto the overgrown GaAs layer re-wetting the surface. The annealing allows for the

evaporation of this local wetting layer and the re-melting of the island. The main

results of this process are a decrease of the island height and an intermixing between

Indium and Gallium.

(d)(c)(b)(a)

Figure 1.2: Schematic diagram of the steps in the PCI technique for blue-shifting the emission
from QDs. (a) The growth is interrupted after the nucleation of InAs island. (b) The InAs island
is partially covered by a thin layer of GaAs. (c) Additional annealing process allows the InAs to
reflow onto the new surface and evaporate shortly, thereby decreasing the thickness of the island.
Finally, (d) the QD is capped completely.
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CHAPTER 1. Quantum Dots — from cleanroom to quantum optics laboratory

1.1.2 Stacking of quantum dots

Recently, coupled quantum dots (quantum dot molecules) attracted more attention

due to the much richer optical and electrical properties induced by either electron-

electron coupling interactions or hole-hole coupling interactions, which benefit more

sophisticated quantum control applications compared to single QDs system. The

coupled quantum dots (CQDs) covered in Chapter 4 are the vertically stacked self-

assembled QD pairs, which are grown by using self-aligning technique. This tech-

nique allows the sequent dots layer has the nucleation preferably on top of the QDs

of the previous layer.

InAs Dots

Strain field

GaAs Buffer
layer

Bottom InAs Dots

Top InAs Dots

(a) (b)

GaAs Spacing
layer

GaAs Capping
layer

Chemical
Potential

In atoms

Figure 1.3: Schematic diagram of the stacking of quantum dots. (a) Self-aligning stacking process.
The surface chemical potential (black dotted line) is decreased due to the strain field (red dotted
line) induced by the buried QD. (b) QDs from top layer stacked onto QDs from bottom layer with
certain probability.

Figure 1.3 shows a schematic view of the stacking of QDs. The larger lattice

constant of InAs relative to bulk GaAs gives coherently strained islands. The strain

in these islands is compressive, leading to tensile stress in the GaAs surrounding

the island. The strain field (red dashed line in Fig. 1.3 (a)) on the surface of the

spacer layer is maximum on top of the buried QD. This stress field reduces the

surface chemical potential (black dashed line in Fig. 1.3 (a)) of InAs and seeds

the nucleation: as an In adatom is physisorbed on the surface, it diffuses until it

is chemisorbed on the most favorable site. The QDs in top layer are intrinsically

bigger then bottom layer due to the preferable nucleation. We normally keep the top

QDs layer optically red shifted with respect to the bottom QDs layer, even with PCI

growth. We indicate the QDs from two layers with blue and red color as shown in

Fig. 1.3 (b). The probability of stacking decreases with the thickness of the spacing

layer increasing.
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1.2. Excitonic states and optical transitions

1.2 Excitonic states and optical transitions

Due to the 3D quantum confinement, the typical electronic band structure of semi-

conductor material is fully quantized to be discrete energy levels within QD region.

The self-assembled QDs with PCI process covered in this thesis are lens-shaped with

the in-plane diameter ∼20 nm and hight ∼4 nm along crystal growth axis (defined

as “z” axis), therefore the z-quantization energy largely exceed the in-plane quanti-

zation energy, so that the discrete energy level in QD is dominated along z direction.

Figure 1.4 presents the typical diagram to indicate QD band structure along z di-

rection. Not only the quantized band structure, the strain profile also takes part

in determining the quantum dot states. Moreover the Coulomb interaction between

the quantum confined carriers has to be taken into account.

CB

VB

CB

VB

buffer
layer D

o
t capping

layer

(a) (b)

D
o

t

s
p

a
c
in

g
la

y
e

r

buffer
layer

capping
layerD

o
t

GaAS InAS

z z

Figure 1.4: Band structure diagram for single QD (a) and coupled QDs (b), respectively. The z
direction corresponds to the vertical direction in Fig. 1.2 and Fig. 1.3. “CB” is the abbreviation
for “Conduction Band” and “VB” is for “Valence Band”.

1.2.1 The optical spectrum in single quantum dots.

The lowest-lying optical transitions can be experimentally studied by using photo-

luminescence (PL) technique, which has been widely used in the field of QD spec-

troscopy within the last decade. Figure 1.5 illustrates the typical process of the PL

measurements. The excitation laser with photon energy lager than the band gap of

GaAs, creates electron-hole pairs in the host material. For seeking the lowest energy

states, electrons and holes relax into QD region through non-radiative process and
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CHAPTER 1. Quantum Dots — from cleanroom to quantum optics laboratory

end up at lowest states of conduction band and valence band respectively with the

time scale about several tens of picosecond. Consequently, a recombination happens

between paired electron and hole and result in a single photon emission with the

time scale about several hundreds of picosecond.

CB

VB

(b)

CB

VB

CB

VB

CB

VB

CB

VB

CB

VB

Excitation Relaxation Recombination

X
0

X
1-

hn1

hn2

(a)

Figure 1.5: Processes in a photoluminescence experiment with (a) an exciton (X0) in single QD
and (b) a trion (X1−) in single QD.

The non-radiative relaxation can lead to different charge configurations within

QD. With the case that QD traps one electron and one hole, which are bound to-

gether with Coulomb interaction forming a quasi-particle “exciton” (X0), the photon

emitted with frequency ν1 through recombination as illustrated in Fig. 1.5 (a). With

the case that QD traps two electron and one hole, the recombination of quasi-particle

“trion” (X1−) gives photon with different frequency ν2 due to the different Coulomb

interaction from X0 case as illustrated in Fig. 1.5 (b). Other configurations, such

as positive trion (X1+) with two holes and one electron and “Biexciton” (XX) with

two electron-hole pairs, have their characteristic emission frequencies as well. This

frequency shift due to the Coulomb interaction is named as Coulomb Renormaliza-

tion, and used to identify the charge states of QD. One typical PL spectrum of single

QD is shown in Fig. 1.6. The Coulomb Renormalization is also the key feature used

for selecting certain emission in traditional single photon generations [3, 4].
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1.2. Excitonic states and optical transitions

Figure 1.6: Typical photoluminescence spectrum from a single quantum dot with tentative iden-
tification of transitions, cited from [20]

1.2.2 Deterministically charging quantum dots

In order to eliminate the uncertainty of the charge states in QD as the tentative

identification shown in Fig. 1.6, we incorporate the QD samples discussed above

into the intrinsic part of a n-i-Schottky diode structure [21]. By tuning the electric

field over the QDs, we realized the deterministic control of their charge states.

We show the corss-section of the gated single-layer QD sample in Fig. 1.7 (a).

Differently from the samples we discussed above, one highly n-doped GaAs layer, as

the electron sea as well as the part of the gate structure, need to be grown below

the InAs QDs layer, with an intrinsic GaAs layer as the electron tunneling barrier

in between. The diode structure is consist of a back contact and a Schottky win-

dow, which are fabricated after the MBE growth. The back contact is processed by,

firstly wet-etching a certain area of the sample from the surface down to a certain

depth before touching n-doped layer, secondly, evaporating alloy (Ni, Au, Ti) into

the etched region, and thirdly annealing the alloy so that the alloy can reach the

n-doped layer by defusing and forming an ohmic contact which provides linear and

symmetric voltage-current (V-I) corresponds between the different attached materi-

als. The Schottky window is one semi-transparent Titanium layer (∼4 nm thickness)

directly evaporated onto the GaAs surface functioning as the top contact without

annealing. For compensating the different work functions of different materials, the

7



CHAPTER 1. Quantum Dots — from cleanroom to quantum optics laboratory

direct attaching of metal-semiconductor for Schottky window results in a negative

potential barrier (∼ -0.7 V) respect to the Fermi level of the back contact. The in-

trinsic semiconductor layers between the two contacts is about 200 nm thick in the

samples covered here, therefore the response of the band structure to the potential

difference is treated linearly.

Ti window
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(d)(c)

EF
EF

Figure 1.7: Schematic of the charge controlling device. (a) the cross section diagram of the n-
i-Schottky diode structure. (b) The microscope picture for the gold grids structure fabricated on
top of the titanium Schottky window, for mapping the sample surface and marking the working
QD in-plane locations. The minimum squire box indicates an area of 20µm × 20µm. (c) and (d)
band structure diagram for gated sample. (c) the voltage V1 = 0, QD is favorable for non electron
residence, (d) the voltage V2 > V1, where QD is favorable for single electron residence.

By applying DC gate voltage to the diode structure, we can tune the quantized

energy levels of QDs respect to the Fermi level of the electron sea. When the QD

levels are above the Fermi level, the QDs remains empty (Fig. 1.7 (c)). At a different

voltage the QD levels are tuned below the Fermi level and it is energetically favored

to have an electron trapped in (Fig. 1.7 (d)). Moreover, the confinement-induced

Coulomb interaction strongly inhibits the tunneling of an additional electron into

the quantum dot, unless the extra cost of charging energy (∼20 meV) is provided by

means of energy level difference. As a result, the different charge states correspond
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1.2. Excitonic states and optical transitions

to different voltage ranges, which are utilized to deterministically control the charge

number in QDs.

Figure 1.8 (a) presents the typical discrete steps in the PL spectrum where essen-

tially only one type of emission is linked to a particular charge configuration at any

given gate voltage value. However, in some cases, although the QDs are indeed de-

terministically charged, depending on the thickness of the tunneling barrier between

the n-doped layer and QDs, as well as the power of above-band-excitation laser, PL

does not present the one-to-one map between the spectra and the charge states as an

example shown in Fig. 1.8 (b). The competition among the mechanisms of electron

tunneling, charge relaxation and charge recombination determines the PL behavior.

With thick tunneling barrier and high excitation power, the electron tunneling rate

is not fast enough to equilibrium the trapped electrons with the Fermi sea of back

contact before the charge relaxation and recombination, the overlap of the PL charge

plateaus happens. However, if the excitation is resonant with the lowest excited QD

levels, no electron-hole pair generated somewhere else but at these levels, the initial

equilibrium charge states determine the transitions, so that the plateau overlap, i.e.

the uncertainty of the charge states, can be eliminated.

All the charge plateaus in Fig. 1.8 have slops which are due to the DC-Stark shift

of the permanent dipole in a linearly varying electric filed.

Figure 1.8: Voltage sweep of photoluminescence spectrum for different samples. Both present
voltage dependent behaviors. (a) presents clear one-to-one map between charge plateaus and
voltage ranges, cited from [22], (b) presents the big overlap of charge plateaus due to the different
sample growth and excitation parameters.
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CHAPTER 1. Quantum Dots — from cleanroom to quantum optics laboratory

1.2.3 Spins in single quantum dots

As we learnt from the PL measurements discussed above, each optical transition

corresponds to a particular charge configuration, moreover, it also carries the in-

formation of spin for all the charge carriers involved. Electrons’ wavefunctions in

lowest conduction band have s-wave symmetry sustaining a twofold spin-degeneracy

of (Se, Se,z) = (1/2,±1/2). On the other hand, wavefunctions in highest valence

band have p-wave symmetry sustaining sixfold pseudo-spin-degeneracy formed by

quadruplet of (Je, Je,z) = (3/2,±3/2 ± 1/2) and doublet of (Je, Je,z) = (1/2,±1/2).

However, the doublet is dramatically separated from the quadruplet due to the

spin-orbit coupling, forming so called spin-orbit levels. Further splittings also hap-

pen within the quadruplet, where the degeneracy is lifted since heavy hole (Jh,z =

−Je,z = ±3/2) and light hole (Jh,z = ±1/2) experiencing different strain confinement

due to their different effective masses.

According to the optical selection rules, which require the angular momentum

transferred to single photon is Mz = ±1, the recombination can only be allowed

between the electron with spin Se,z = −1/2 ( Se,z = 1/2) in the conduction band and

the hole with pseduo-spin Jh,z = 3/2 (Jh,z = −3/2) in valence band. The electron-

hole pairs with Mz = Se,z + Jh,z = ±1 form twofold “bright” excitons, on the other

hand, the electron-hole pairs withMz = Se,z+Jh,z = ±2 form twofold“dark”excitons

which do not result in recombination. Moreover, for neutral excitonic state X0, there

are nonzero electron-hole spin exchange interactions that firstly lift the energetic

degeneracy of the bright and dark states forming separate subspaces and secondly

mix the states in each subspace [23] leading to further level splitting as the fine

structures. For example, in the twofold bright-exciton subspace, the new eigenstates

are two superposition states of original degenerate states with |Mz〉 = | ± 1〉, which

result in the lift of level degeneracy and the change of emission polarization from

circular (σ+ : |1〉, σ− : | − 1〉) to linear (x : |1〉 + | − 1〉, y : |1〉 − | − 1〉). Details

about spin exchange interactions for neutral exciton will be discussed in Chapter 4 .

For charged exciton, such as trion X1−, because of the pairing of the electrons, the

total spin for electron pair is zero and the spin exchange interactions are shielded.

The resonant excitation is the reverse of recombination, moreover it is the direct

way to address the optical transition without any non-radiative relaxation. During

the process, the electron from the valence band is excited to conduction band and

leave a hole behind in the valence band. The generated electron-hole pairs have the

10



1.2. Excitonic states and optical transitions

-3/2 3/2

-1/2 1/2

-1/2 1/2

VB

CB

g

3/2 3/2

-1/2 1/2

-1/2 1/2

VB

CB

e =X1-

(a) (b)

s+ s-

B=0

s+ s-

g

e

(c)

Figure 1.9: Resonant excitation of singly charge QD. (a) The initial state of QD is single electron
with spin state |g〉 = |1/2〉 = | ↑〉. (b) The excited state of QD is trion state with total spin state
|e〉 = |3/2〉 = | ↑↓⇑〉. (c) The level diagram indicates the excitation.

total spin states |Mz = ±1〉, but no dark excitons can be generated. For the case of

one electron charged QD initial states, the optical allowed transitions are strict with

the initial spin states of electrons. Taken initial state of electron |1/2〉 (indicated as

| ↑〉) as an example, as shown in Fig. 1.9 (a), the excited electron can only reach

| − 1/2〉 (indicated as | ↓〉) forming a trion X1− (| ↑↓⇑〉) by absorbing σ+ polarized

photon due to the Pauli blockade as shown in Fig. 1.9 (b) (c). Here, hole spin states

|3/2〉 and | − 3/2〉 are indicated as | ⇑〉 and | ⇓〉, respectively.

The experimental techniques for resonantly studying QDs covered in this thesis

are the “differential transmission” (DT) and the “resonance fluorescence”. We will

finish this chapter by the following discussion about DT and start next chapter with

resonance fluorescence.

1.2.4 Differential transmission

In recent years, the differential transmission (DT) becomes a very powerful technique

for resonantly studying the quantum dipole system. Especially on the studies of

QDs. most of the recent significant studies on QD spins benefit from DT, such as

[11, 12, 13, 16, 24, 17, 25, 26] for single electron spin, and [27, 28] for hole spin.

Compared with the typical spectral resolution ∼ 30µeV for PL, DT can provide

high spectral resolution typically as 2 MHz (∼ 0.01µeV ) in our setup, which is

crucial for resolving the lineshape of the QD transitions (∼ 2µeV ) and any other

fine structures.

For measuring the transmission signal of single dipole like quantum dot, the

11



CHAPTER 1. Quantum Dots — from cleanroom to quantum optics laboratory
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Figure 1.10: Detecting coherently scattered photons by differential transmission. (a) The illus-
tration of detecting interference between the focused laser and the dipole field. (b) The schematic
of the lock-in technique for detecting QDs transmission signal.

forward-scattered photons are in the single-photon level that is negligible compared

with the laser background along the excitation axis. Intuitively, such small signal is

difficult to be distinguished. However, there are two features of DT that make the

small signal visible. The first one is the interference. As we will discuss the whole

spectra of the resonance fluorescence in the next chaper, the scattered photons are

consist of two components, the coherent part and incoherent part. The coherently

scattered photons have the same spectral properties as the excitation laser, therefore

they can interfere with the background laser, as we see in Fig. 1.10 (a). The total

intensity of the light seen by the detector is:

Itotal = IL + Iincoh + Icoh + Ied, with Ied ∝ ELEcohf(ψ), (1.1)

where IL, Iincoh and Icoh are the intensities of laser, incoherent scattered photons

and coherent scattered photons, respectively. Ied is the interference where the small

amplitude of coherent photon can be amplified by laser amplitude with certain phase

condition (f(ψ)). A detailed study about transmission spectroscopy of QDs can be

found in [29]. However, the coherent scattered photons only dominate the emission

in weak excitation regime. From the calculation in [29], the transmission signal

under weak excitation can be estimated as:

T = 1− α0

Γ2
sp

4∆2 + Γ2
sp

, (1.2)

where α0 is the effective absorption strength, ∆ is the laser detuning respect to the

QD transition, Γsp is the spontaneous rate. Experimentally, a significant challenge

lies in the fact that α0, determined by laser focusing area and the dipole oscillating

12



1.2. Excitonic states and optical transitions

strength, is typically with the order of 0.005. Considering the normal experimental

noise floor, this small proportion signal is still difficult to be extracted. The second

feature of DT is the lock-in technique, which can filter out the signal from the noisy

environment. The schematic drawing of the lock-in detection is shown in Fig. 1.10

(b). According to the DC-Stark shift, the transition of QD can be turned on or off

respected to the laser excitation by tuning the gate voltage applied on the sample.

We modulate the gate with a square wave at a small frequency (∼ 2 KHz) far away

from the noise zoo in frequency domain, so that the transmission signal is only

detected at the modulation frequency. A lock-in amplifier synchronized with the

modulation is used to filter out and amplify the signal only at the set modulation

frequency.

Figure 1.11: Typical DT data for X1− transition. (a) 1D DT data obtained by scanning laser
frequency across the QD transition with fixed gate offset. (b) 2D frequeny-gate mapping of the
X1− plateau.

Figure 1.11 (a) shows one typical DT data for X1− transition by scanning laser

frequency with a fixed gate offset. The lineshape of transmission signal is not a

symmetric Lorentzian but with a little dispersion, that is the result of the certain

phase difference between two interfering fields. We fit the data with a detailed

formula for the normalized total intensity:

Itotal(∆) = 1 + AL(∆) +BL(∆)
(2∆

Γ
cosψ + sinψ

)
, (1.3)
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CHAPTER 1. Quantum Dots — from cleanroom to quantum optics laboratory

where,

L(∆) =
1

4∆2 + Γ2

is a Lorentzian profile, Γ is the homogeneous linewidth. A and B are the extra fitting

parameters. We fit out the phase ψ = 1.57 rad and Γ = 574 MHz. Figure 1.11 (b)

is the 2D scan of X1− plateau with the gate offset swept. The whole plateau has

the frequency span about 13 GHz and gate span about 90 mV, the DC-Stark shift

is then estimated as 144 MHz/mV.

So far, we have discussed the material structure and growth techniques of InAs/GaAs

self-assembled QDs and their basic optical properties through PL and DT measure-

ments. Especially DT is such a powerful tool which is the most mature technique

in our lab and also widely used in most of the leading QD research groups around

the world. It keeps producing interesting and significant work. However, we see

its drawbacks. Firstly, DT signal relies on the interference between the photon and

background laser, intrinsically, we don’t have the access of the photon for further

applications. Secondly, for extracting DT signal, modulation is added on the gate

in our case, so during the measurements the QD transitions are constantly driven to

jump back and forth, which limits further applications, for example one requires to

continuously tune transitions by gate. Thirdly, the time resolution of DT readout is

limited by time constant of lock-in amplifier and the modulation frequency, which

limits the studies of any fast dynamics. For addressing those shortcomings, we are

motivated to get access of the resonance fluorescence photons, it turns out to be our

discussions in the following chapters.
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Chapter 2

Spin-resolved resonance
fluorescence from single
quantum dots

In this chapter we report the first observation of spin-resolved photon emission from

a resonantly driven QD transition. The hallmark of resonance fluorescence, i.e. the

Mollow triplet [30] in the scattered photon spectrum when an optical transition is

driven resonantly, is presented as a natural way to spectrally isolate the photons of

interest from the original driving field. We go on to demonstrate that the relative

frequencies of the two spin-tagged photon states are tuned independent of an applied

magnetic field via the spin-selective dynamic Stark effect induced by the very same

driving laser. This demonstration is a promising step towards the realization of

heralded single photon generation for linear optics quantum computing, challenging

tasks such as electron spin readout, and spin-photon entanglement. 1

1This chapter is based on publication [3]
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CHAPTER 2. Spin-resolved resonance fluorescence from single quantum dots

2.1 Resonance fluorescence in two-level atomic system

As a preparation of our experimental observations, we discuss basic understandings

of resonance fluorescence (RFL) in two-level atomic system driven by the resonant

or near resonant optical field in this section.

2.1.1 Two level system driven by optical field

As the singly charged QD discussed in chapter 1, under zero external magnetic field,

the electron spin states are degenerate and as well as the two trion states, so that we

have an effective two level system (states |e〉 and |g〉) with non-polarization selective

transition (with frequency ω = ωe − ωg). The Hamiltonian of the system is written

as

H = H0 +HI , (2.1)

where H0 and HI represent the unperturbed and interaction parts, respectively.

By quantizing the QD electron system but classically treating the light field [31],

H0 represents the atomic part H0 = ~ωg|g〉〈g| + ~ωe|e〉〈e|, and HI represents the

interaction of atomic system with radiation field in dipole approximation:

HI = −ex · E(t) = −(Dge|g〉〈e|+ Deg|e〉〈g|) · E(t), (2.2)

where Dge = D∗eg = e〈g|x|e〉 is the matrix element of the electronic dipole moment,

and E(t) is the field at the atomic system. If we assume a linearly polarized light field

along x direction, we can write E(t) = ε cos (ωLt), and define the Rabi frequency as

ΩR = |Dge|ε/~.

The further derivation of the Hamiltonian is to apply a unitary transform U(t) =

exp (− i
~H0t) to the system, so that we can assign the time dependence of the state

vector due only to the interaction energy. With the rotating wave approximation

and in a frame rotating at the laser frequency (ωL = ω+ δ), the Hamiltonian of the

system now reads:

Hs =
~δ
2

(|g〉〈g| − |e〉〈e|) +
~ΩR

2
(|e〉〈g|+ |g〉〈e|). (2.3)

We use density matrix to describe the system state as:

ρ = |ψ〉〈ψ|

= ρgg|g〉〈g|+ ρge|g〉〈e|+ ρeg|e〉〈g|+ ρee|e〉〈e|. (2.4)

16



2.1. Resonance fluorescence in two-level atomic system

The motion of density matrix is given by Master equation

ρ̇ = − i
~

[Hs, ρ] + Lrelax[ρ], (2.5)

which includes the Lindblad term which is the dumping term due to the coupling to

the reservoir. In the case of two level system here, we consider the coupling to the

vacuum mode fluctuation only, i.e. the spontaneous emission (Γsp).

Lrelax[ρ] =
Γsp
2

(2σgeρσeg − σeeρ− ρσee), (2.6)

where σge = σ†eg = |g〉〈e|, and σee = |e〉〈e|. Therefore, the motion equations for all

the components of ρ are:

˙ρgg = − ˙ρee =
iΩR

2
(ρge − ρeg) + Γspρee, (2.7)

˙ρge = ˙ρ∗eg =
iΩR

2
(ρgg − ρee)− (iδ + Γsp/2)ρge. (2.8)

2.1.2 Correlation functions of resonance fluorescence

The coherent properties of the light emissted by a single atomic system in free space

can be conveniently calculated with use of the source-field expression [32]. The

electric field at point r radiated by the atomic system at r0 is given as:

E(r, t) = E+(r, t) + E−(r, t) (2.9)

with retarded time term

E+(r, t) = − eω2
0

4πε0c2

Dge · (r− r0)

|r− r0|2
σge

(
t− |r− r0|

c

)
. (2.10)

Using the field operator above, we derive the normalized first and second corre-

lation functions as:

g(1)(τ) =
〈E−(r, t)E+(r, t+ τ)〉
〈E−(r, t)E+(r, t)〉

=
〈σeg(t)σge(t+ τ)〉
〈σeg(t)σge(t)〉

, (2.11)

g(2)(τ) =
〈E−(r, t)E−(r, t+ τ)E+(r, t+ τ)E+(r, t)〉

〈E−(r, t)E+(r, t)〉2

=
〈σeg(t)σeg(t+ τ)σge(t+ τ)σge(t)〉

〈σeg(t)σge(t)〉2
. (2.12)
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CHAPTER 2. Spin-resolved resonance fluorescence from single quantum dots

The correlation functions are mapped to the expectation values of the two-time

products of atomic projection operators. However, the expectation values of the

single-time projection operators not the two-time ones can be directly calculated.

〈σge(t)〉 = Tr{ρσge} exp (−iωLt)

= ρeg(t) exp (−iωLt), (2.13)

〈σeg(t)〉 = ρge(t) exp (−ωLt), (2.14)

〈σeg(t)σge(t)〉 = ρee(t), (2.15)

here the density matrix is the solutions of the master equations (2.7) and (2.8) in a

rotating frame with laser frequency. With the help of quantum regression theorem

[33], the t+ τ dependent operators can be written as a linear superposition of the t

dependent operators, therefore, we can eventually calculate the correlation functions

using the single-time density matrix elements[32].

When the laser is resonant with the transition, we get g(1) for RFL as:

g(1)(τ) = exp (−iωτ)

{
Γ2
sp

Γ2
sp + 2Ω2

R

+
1

2
exp (−Γspτ

2
)

+
(Γsp − 4iλ)2 exp [−iλτ − (3Γspτ/4)]

16iλ(3Γsp + 4iλ)
+ (λ→ −λ)

}
, (2.16)

where λ =
(
Ω2
R − 1

16
Γ2
sp

)1/2
, and the fourth term in the large bracket is as same as

the third term with the sign of λ reversed.

For g(2), in the weak incident field limit (ΩR � Γsp) we got,

g(2)(τ) = (1− exp (−Γspτ/4))2, (2.17)

and for the case of ΩR > Γsp/4, we got

g(2)(τ) = 1− [cos (λτ) + (3Γsp/4λ) sin (λτ)] exp (−3Γspτ/4). (2.18)

Simulations of g(2) are shown in Fig. 2.1, which indicate the nonclassical effects such

as photon anti-bunching and sub-Poisssonian statistics. However, an oscillatory

dependence on time delay τ and Rabi frequency makes it unique from the single

photon emission by above band excitation [2, 3, 4] . We will come back to this later

in Subsection 2.1.4.
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2.1. Resonance fluorescence in two-level atomic system

Figure 2.1: Simulations for time delay τ dependence of resonance fluorescence second correlation
function for zero detuning and different Rabi frequencies. The black curve corresponds to the case
of ΩR � Γsp, the red curve corresponds to the case of ΩR = 2.5Γsp, and the blue curve corresponds
to the case of ΩR = 20Γsp.

2.1.3 Fourier transform of the time dependent correlation function

The correlation functions discussed in last section reveal the coherent properties

of RFL, while from the other perspective, the RFL spectrum reveals more direct

information of the source, the atomic system. According to Wiener-Khintchine

theorem [34], the spectrum F (r, ωsc) is obtained by taking the Fourier transform of

the first order correlation function with respect to τ ,

F (r, ωsc) =
1

π
Re

∫ ∞
0

dτ〈E−(r, t)E+(r, t+ τ)〉exp(iωscτ). (2.19)

From Eq. (2.10), we have,

〈E−(r, t)E+(r, t+ τ)〉 = I0(r)〈σeg(t)σge(t+ τ)〉, (2.20)

where

I0(r) =

(
eω2

0

4πε0c2

Dge · (r− r0)

|r− r0|2

)2

. (2.21)
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CHAPTER 2. Spin-resolved resonance fluorescence from single quantum dots

Hence, with the light field resonant with the transition (ωL = ω), we have the

spectrum [31],

F (r, ωsc) =
1

π
I0(r)Re

∫ ∞
0

dτ〈σeg(t)σge(t+ τ)〉exp(iωscτ)

=
I0(r)

4π

(
Ω2
R

Γ2
sp + 2Ω2

R

)[
4πΓ2

sp

Γ2
sp + 2Ω2

R

δ(ω − ωsc)

+
Γsp

(ω − ωsc)2 + (Γsp/2)2
+

a+

(ω + λ− ωsc)2 + (3Γsp/4)2

+
a−

(ω − λ− ωsc)2 + (3Γsp/4)2

]
, (2.22)

where a± = 3Γsp

4
P ± (ω ± λ− ωsc)Q, and

P =
2Ω2

R − Γ2
sp

2Ω2
R + Γ2

sp

, Q =
Γsp
4λ

10Ω2
R − Γ2

sp

2Ω2
R + Γ2

sp

. (2.23)

Although the equation above gives a complicate formula for the spectrum, it is

clear that we can decompose it into two categories. The first term of the four

is one delta function which indicates the dipole oscillating with the driving field

and emitting monochromatic radiation at this frequency ωL. This term is denoted

by the coherent part or the elastic scattering part of the spectrum, which has the

same spectral properties as the driving laser. The rest three terms of the spectrum

formula is denoted by the incoherent part or the inelastic part, and it becomes

more pronounced with the strong field limit when ΩR � Γsp/4, produce the striking

character of RFL, the Mollow-triplet,

F (r, ωsc) =
I0(r)

8π

[
Γsp

(ω − ωsc)2 + (Γsp/2)2
+

3Γsp/4

(ω − ΩR − ωsc)2 + (3Γsp/4)2

+
3Γsp/4

(ω + ΩR − ωsc)2 + (3Γsp/4)2

]
, (2.24)

which has three Lorentzian peaks located at frequencies of (ω − ΩR, ω, ω + ΩR),

with linewidthes of (3Γsp/2,Γsp, 3Γsp/2), the peak height ratio of 1 : 3 : 1 and the

integrated intensity ratio of 1 : 2 : 1. One simulation is shown in right-bottom panel

of Fig. 2.2.
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2.1. Resonance fluorescence in two-level atomic system

2.1.4 Dressed state picture

Dressed state picture [35] is the more physical aspect to understand the RFL spec-

trum, especially for the strong field case. The concept of “dress” comes from the

coupling between the atomic system and light field. For more convenient discussion,

we quantized the light field and rewrite the Hamiltonian (2.3),

Hs = −(1/2)~δσz + ~g(a†σge + aσeg), (2.25)

where σz = |e〉〈e|−|g〉〈g|, g = e(ωL/2ε0~V )1/2eL ·Dge is the coupling strength, a†and

a are the creation and annihilation operators for laser field, respectively. Without

bare states dressed states

atom- photon
coupling

e,n+1 g,n+2

e,n g,n+1

e,n-1 g,n

e

g

Gsp

WR

Atomic 2-level +
system (g,e)

light field (n)

Gsp

Gsp

3 /2Gsp3 /2Gsp

2,n+1

1,n+1

2,n

1,n

2,n-1

1,n-1

Figure 2.2: Schematic of dressed states for a two-level system resonantly driven by a single mode
light field. The bare states are denoted by state |g, n〉 and |e, n〉 with photon number n of the light
field. The dressed states are denoted by |1, n〉 and |2, n〉. The two panels on the right side are
the single Lorentzian decay spectrum of two level system and Mollow-triplet spectrum of dressed
states, respectively.

the atom-light coupling, i.e. the second term of the Eq.( 2.25), the Hamiltonian only

has diagonal term, the eigenstates of the system are labeled by atomic discrete level

e and g associated with laser photon number n as |e, n〉 and |g, n+1〉, and named by

“bare states”. However, when the light coupling term is taken into account, which

brings the off-diagonal term to the Hamiltonian making the bare states no longer

the eigenstates, the atomic system is “dressed” by the light field. The eigenstates

|1, n〉 and |2, n〉 of the dressed system are the superpositions of the bare states, and
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CHAPTER 2. Spin-resolved resonance fluorescence from single quantum dots

named by “dressed states”.

Under the basis of manifold {|e, n〉, |g, n+ 1〉}, the matrix of Eq.( 2.25) is,

Hs =
~
2

(
−δ ΩR

ΩR δ

)
(2.26)

where ~ΩR/2 = g
√
n+ 1 with the large photon number approximation, so that

n − 1 ≈ n ≈ n + 1. Considering the coupling strength g is extremely small due to

the large mode volume, so that any observable coupling effects need huge number of

photons, which supports the classical treatment of the light field in previous three

subsections.

The dressed states are:

|1, n〉 = sin θ|g, n+ 1〉+ cos θ|e, n〉, (2.27)

|2, n〉 = cos θ|g, n+ 1〉+ sin θ|e, n〉, (2.28)

where tan 2θ = −ΩR/δ. The two states are separated by an interval

~Ω = ~
√
δ2 + Ω2

R, (2.29)

which is also the definition of effective Rabi frequency.

In the case of resonant atom-light coupling (δ = 0, Ω = ΩR), we have the level

schematic in Fig. 2.2. Jaynes-Cummings ladder [36] is shown there. The incoherent

emission comes from the spontaneous cascade decay between the dressed-state man-

ifolds. There are four decay paths, two of them carry the central frequency ωL, and

other two are symmetrically blue- and red-shifted from the central frequency with

the detuning ΩR, respectively. Moreover, the dressed states are the superpositions

of bare states with equal coefficients (sin θ = cos θ =
√

2/2), so that the four decay

channels have the same strength, which results in the integrated intensity of the three

peaks as 1 : 2 : 1 and is consistent with the conclusion made in subsection 2.1.3.

More generally, with nonzero detuning δ, the three peaks located at (ωL −
Ω, ωL, ωL + Ω), and the intensity of the three peaks can be derived by solving the

steady states from Master equations with Hamiltonian (2.25) and the Lindblad term
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2.2. Experimental setup and control abilities

of Γsp [35].

Γblue = Γred =
sin4 θ cos4 θ

sin4 θ + cos4 θ

Γsp
2
, (2.30)

Γcentral =
2 sin4 θ cos4 θ

sin2 θ cos2 θ + cos2 θ sin2 θ

Γsp
2
. (2.31)

Now, under the dressed state picture, we revisit the g(2) discussion in Subsec-

tion 2.1.2, where the unique oscillating photon correlation is presented. The photon

emission process could be understood as projecting the upper (n + 1) manifolder

dressed states to |e, n+ 1〉 and lower (n) manifolder dressed states to |g, n+ 1〉. Af-

ter one photon emitted, the atomic system starts state oscillation between |g, n+ 1〉
and |e, n〉 with the Rabi frequency Ω reforming dressed states. If the Rabi frequency

is much faster than the decay rate, we expect to observe the oscillation within g(2)

valley as shown in Fig. 2.1. Therefore, the oscillating second order correlation implies

the photon cascade decay process between dressed states.

2.2 Experimental setup and control abilities

Our aim is to demonstrate RFL in single QD system. The two-level system selected is

the single electron spin states and their related trion states
(
|g〉 = | ↑〉, |e〉 = | ↑↓⇑〉

)
or
(
|g〉 = | ↓〉, |e〉 = | ↓↑⇓〉

)
. With the case of zero external magnetic field B = 0 and

erasing the polarization information (σ+, σ−) of their optical transition (X1−), this

two two-level systems are degenerate, and can be treated as one two-level system, as

shown in Fig. 2.3 (a). For driving the two level system, one CW laser with power and

frequency controlled is required. For measuring the spectrum, photon lifetime and

photon number statistics, one high resolution spectrometer, one femtosecond pulse

laser and one g(2) setup are required, respectively. In the following subsections, they

will be introduced in turn. Starting from this section, all the frequencies applied are

in the linear definition.

2.2.1 General optics

The QD operating system is shown in Fig. 2.3 (b). The QD sample is gated, housed

in a magneto-optical bath cryostat and cooled to 4.2 K. A cubic zirconia solid im-

mersion lens (SIL) is mounted on the epitaxial sample surface in order to improve

both the light focusing and light gathering power of the fiber-based confocal micro-

scope. The beam-spliter (BS) used here has 4% reflectivity, therefore its reflection
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Figure 2.3: Degenerate two two-level systems in singly charged QD (a), and control-measure
interface of QD operating system (b). The input ports of the system are: excitation laser port
and QD sample gate control port. The output ports of the system are: emission collecting port,
bottom detector readout port and laser power monitor port.

arm is used for excitation and transmission arm is for collection. For exciting the de-

generate two-level system, we pass the excitation laser through one linear polarizer.

Another polarizer is mounted on the emission collecting arm but with perpendicular

axis to the one in excitation arm. The two polarizers form the dark field measure-

ment geometry, which can in principle block the strong excitation laser background

from the emission. In our case, half of the emission can pass through the linear

polarizer, meanwhile, their circular polarization information is erased. The bottom

detector is used for DT, which can assistant us to find transition resonance. The

96% transmission CW excitation laser through the BS is monitored by one photode-

tector, which is connected to one PID for sending feedback signal to stabilize the

laser power.

2.2.2 Laser frequency and power control

In our experiments, the gate voltage, laser frequency and laser power are the key

knobs for tuning atomic-light coupling. The gate on the sample can both control

the charge status and tune the transition respect to the laser through DC-Stark

shift, where the laser frequency need to be locked. On the other hand, when gate

voltage is fixed, we need the control of both the tunability and stability of the laser
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2.2. Experimental setup and control abilities

frequency. Laser frequency can be controlled by applying DC/AC voltage to the

piezo in the diode laser head2 to control its outer cavity.

Tunable CW laser 1
~960 nm

PID feed back for
power lock 1

AOM 1

Tunable CW laser 2
~950 nm

Wavemeter
Frequeny

Lock

Feed back
to laser
Piezo

Feed back
to laser
Piezo Ch1

Ch2

PID 2

Laeser 2 power
monitor & PID 2
power lock feed back

AOM 2

Spectrometer

PID 3 Photoreceiver

FP cavity frequency lock
feed back to cavity Piezo

Excitation
Lasers port

FP Cavity
reference port

FP Cavity
reference port

Emission
collecting
Port

(a)

(b)

Figure 2.4: Tunable CW laser frequency and power control system (a) and Fabry Perot cavity
based high resolution spectrometer (b). Laser 1 is for QD excitation and laser 2 is for locking
Fabry Perot cavity. The frequency of the laser is locked by home made multichannel frequency
lock system. The power of the laser is locked by PID circuits sending feedback signal to control
the intensity portion of the zero order diffraction of the AOM.

As shown in Fig. 2.4 (a), one multichannel wavemeter3 is used for monitoring laser

frequencies, its outputs are sent to one home made multichannel frequency digital

lock system and compared with the setpoints, which are either constant values or

varying values from a function, and then the fast feedback signals are sent to the

piezos of each laser head. Our frequency lock system has the channel capacity of 4,

the locking stability of around 1MHz (Fig. 2.5), and the ability of arbitrary function

scan.

2New Focus “Velocity” laser, Toptica DL pro940 laser
3HighFinesse SW-U wavemeter
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CHAPTER 2. Spin-resolved resonance fluorescence from single quantum dots

Figure 2.5: Laser frequency stabilization. The frequency is monitored by wavemeter and recorded
for 50 minutes. The insert is the histogram of the frequency record, which is fitted by Gaussian
function with the width of 1.25MHz.

One laser power locking system consists an Acousto-Optic modulator (AOM)4, a

photodetector and a PID circuits5. In Fig. 2.4, each laser beam is passing through

one AOM and the zero-order diffraction is coupled into a fiber for following applica-

tions. The photodetector (the one is connected with PID1 in Fig. 2.3 (b) or the one

is connected with PID2 in Fig. 2.4 (a)) monitor the laser power after the last output

fiber coupler for each beam path so that power varying due to both laser itself and

fiber transmission are taken into account. The measurements of photodetector are

sent to PID (PID1 or 2), where the measured values are compared with the setpoint,

then feedback signals are sent to AOM to adjust the power portion in its zero-order

diffraction. Our typical power stability is about 0.5%.

2.2.3 High resolution spectrometer

For resolving the resonance fluorescence spectrum, we need spectral resolution to be

smaller than Γsp (typically several hundred MHz). A two-mirror Fabry Perot cavity

(FP cavity) is set up for this purpose. This cavity can function as one tunable

spectral band pass filter with the tunability of 30 GHz (Free Spectral Range) and

the spectral window of about 35 MHz (Fig. 2.6). The throughput of the transmission

peak is about 30%. The control scheme for the FP-cavity transmission frequency

4AA Opto-Electronic, MT80-A1,5-IR
5Stanford Research Systems, SIM900
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2.3. Quantum dot spin-resolved resonance fluorescence

is shown in Fig. 2.4 (b). We send a frequency controlled and power stabilized

laser beam as the reference passing through the cavity aside from the RFL signal

path. The reference transmission signal is monitored and the middle point on its

slop is selected as the setpoint of PID circuits (PID3), so that by sending feedback

signal to the piezo of the cavity mirror we can lock the FP cavity onto a certain

transmission frequency with a certain detuning from the reference laser. So, tuning

cavity transmission frequency is equivalent to tuning the reference laser frequency.

Figure 2.6: The measured transmission linewidth of the FP cavity as it is scanned across frequency
locked laser with the uncertainty about 1.25 MHz.

2.2.4 Second order correlation function and lifetime setup

In Fig. 2.7, we present the experimental setup for g(2) and lifetime measurements.

Three lasers are used for different tasks: the frequency and power controlled CW

laser is used for resonant excitation scheme. the 780-nm CW laser is used for the

above-band excitation and the Ti:Sa pulsed laser is used for direct lifetime measure-

ment, where APD3 is triggered by the pulsed laser to give start signals and APD1

measures the PL photon to give the time delayed stop signals.

2.3 Quantum dot spin-resolved resonance fluorescence

In this section, we discuss our spectrum measurements of RFL from single QD. With

zero external magnetic field, we observed the excitation power and frequency depen-

dent RFL spectrum. With nonzero external magnetic field in Faraday configuration,

i.e. the orientation of the magnetic field is along z direction, we observed spin-resolve
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Figure 2.7: The experimental scheme for g(2) and photon lifetime measurements. (a) The exci-
tation laser setup, (b) The g(2) setup. (c) The lifetime setup.

RFL spectrum. We note the linear-frequency symbols used in this section from their

circular counterparts:

ω → ν, ωL → νL, ΩR → ΩR, Ω→ Ω, δ → ∆. (2.32)

2.3.1 Mollow triplet under laser power control

By using the setup presented in Fig. 2.3 (b) and Fig. 2.4, under zero magnetic field we

record the scattered light intensity as a function of FP cavity transmission frequency.

Figure 2.8 (a) presents X1− RFL spectra on a linear-log scale for a range of driving

laser power from 0.512 nW (ΩR ≈ 0.13Γ) to 1.825 µW (ΩR ≈ 8Γ). The laser is set

to be resonant with the doubly degenerate bare X1− QD transition frequency, which

was determined from our DT measurements. For laser powers above 216 nW, two

equal weight sidebands emerge, which, together with the central feature, constitute

the Mollow triplet. The two sidebands arise from radiative transitions between the

outer (blue arrow) and inner (red arrow) rungs of the Jaynes-Cummings ladder

in Fig. 2.2. The strong central feature is the result of the unsuppressed residual
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2.3. Quantum dot spin-resolved resonance fluorescence

laser leaking through our cross-polarizer instrumentation. Peak-to-peak sideband

splittings determined from this data set are plotted in Fig. 2.8 (b) against the square-

root of the laser power. In the strong excitation regime of ΩR ≥ Γsp, the linear fit

with a slop of 0.127 GHz/
√

nW indeed confirms the expected dependence of the

sideband splitting on the bare Rabi frequency, or the square-root of the laser power

[30].

Figure 2.8: Power dependent resonance fluorescence. (a) Evolution of the Mollow triplet spectrum
as the resonant laser power is increased from 0.512 nW to 1.852 µW under zero magnetic field.
The intensity of the spectrum is plotted in logarithmic scale. Each data point is recorded for 60
seconds. (b) Extracted sideband splitting as a function of pump field strength with a linear fit. (c)
Zoom-in plot of the 1.852 µW fluorescence spectrum sidebands with a linear intensity scale. The
boxes highlight the sidebands from which we extract a transition linewidth of 343(±39) MHz. and
a collected photon rate of about 45,000 per second per sideband.

Figure 2.8 (c) is a linear-linear scale zoom-in to highlight the two Mollow side-

bands when X1− is driven by a 1.852-µW laser. When fitted with the expected

multi-Lorentzian RFL spectrum, a transition linewidth Γ of 343(±39) MHz per
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CHAPTER 2. Spin-resolved resonance fluorescence from single quantum dots

sideband can be extracted. For comparing this linewidth with the pure sponta-

neous emission rate, we apply the indirect (above band excitation g(2)) and direct

lifetime measurements as shown in Fig. 2.9 (a) and (b) respectively. There we get

the Γsp is about 225 MHz. In the presence of additional fast dephasing Markovian

mechanisms, the transition linewidth is no longer determined by the pure sponta-

neous emission rate and is broadened to Γ = Γsp + 2γdephasing. The fitted sideband

linewidth suggests that such dephasing mechanisms, if they at all exist in this regime

of operation, are bounded by about 80MHz maximum possible rate, which suggests

that emission from the triplet sidebands of the optically dressed QD transition is a

predominantly radiative broadened process yielding near transform-limited photons;

a pre-requisite for all proposed linear optics QIP applications.

Figure 2.9: Indirect and direct life-time measurement. (a) Second order correlation function
measurement with above band excitation at a power well below the saturation level and carrier
capture effects displays the true radiative lifetime of the excited state. The Γsp is fitted as 227(±7)
MHz (b) Lifetime measurement. The blue curve is the instrument response function, the black
circles are the measured raw data and the red curve is the best fit to the measured data obtained
by convolving the instrument response function with an exponential function with a decay time of
711(±21) ps, which corresponds to Γsp = 224(±7) MHz.
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2.3. Quantum dot spin-resolved resonance fluorescence

Figure 2.10: Dependence of resonance fluorescence on laser detuning. (a)Measured sidebands of
the Mollow triplet as a function of laser detuning from the bare X1− resonance under zero magnetic
field. The laser power is fixed at 1.852 µW. The red and blue dashed curves tracing the side bands
are guides to the eye commensurate with the red and blue curves in (b). (b) Simulation of the
scattered photon frequencies (red and blue solid curves) for the dressed states of an X1− transition
as a function of laser detuning. The dashed green line corresponds to the bare X1− transition and
the black dashed line indicates both the laser frequency and the central peak of fluorescence. (c)
Side band splitting as a function of laser detuning.

2.3.2 Mollow triplet under laser frequency control

In addition to the laser power, the sideband spectrum may be tuned by controlling

another externally accessible degree of freedom; the laser frequency. In Fig. 2.10 (a)

the measured X1− RFL spectra, driven by 1.852 µW laser power (ΩR ≈ 8Γ), are

plotted for a set of laser frequency detunings (∆). For comparison, Fig. 2.10 (b)

plots triplet peak frequencies

νblue = ν + ∆ + Ω, νcenter = ν + ∆, νred = ν + ∆− Ω (2.33)

as a function of the laser frequency detuning at fixed laser power. Measuring the

spectral separation of the red sideband, when the laser is red detuned by 2.48 GHz,

to the blue sideband, when the laser is blue-detuned by 3.32 GHz, it is possible

to achieve photon emission across a frequency band of 14 GHz. This is 40 times
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CHAPTER 2. Spin-resolved resonance fluorescence from single quantum dots

larger than the 356-MHz spontaneous emission rate, and is by no means an upper

limit, but can be further increased by laser power and detuning. In order to relate

this range to other tuning mechanisms, we emphasize that 13 GHz is the range

obtainable via DC stark shift of the X1− transition throughout the whole single

electron charging plateau [12]. Alternatively, this is the same frequency shift that

each of the two degenerate X1− transitions experiences under an applied magnetic

field of 1 Tesla [23]. The sideband splittings extracted from the data set of Fig. 2.10

(a), are plotted in Fig. 2.10 (c) as a function of laser detuning. The red fit curve

with the two times effective Rabi frequency (2
√

Ω2
R + ∆2) can be used to determine

a bare Rabi frequency of 2.76(±0.2) GHz. From this value we determine a dipole

moment of 27.8(±0.2) Debye in agreement with our DT measurements.

2.3.3 Spin-selective dynamic Stark effect and Mollow quintuplet

The final part of this section is on optical access to a QD spin, via RFL, where a finite

magnetic field splits the electronic spin ground states lifting theX1− spin degeneracy.

A reproduction of Fig. 2.10 (b) under finite magnetic field and accounting for spin is

presented in Fig. 2.11 a. The two dressed Zeeman split sidebands (the blue and red

solid lines) are directly correlated to the spin state of the electron and their frequency

splitting is controlled by laser detuning beyond that manifested by the magnetic

field. In what follows all frequencies are referenced to the zero magnetic field QD

X1− resonance. First, a 50 mT external magnetic field is applied in the Faraday

configuration. In Fig. 2.11 b the RFL spectrum of the blue-detuned sideband (the

blue box in Fig. 2.11 a) is plotted for laser detunings of 1.75, 1.25, and 0 GHz, from

left to right. By varying the laser detuning, at constant power, the Zeeman splitting

of the transitions induced by the magnetic field can be altered (Fig. 2.11 b panels 1

& 2) and even cancelled (Fig. 2.11 b panel 3).

What we have demonstrated is a combined outcome of the Zeeman and dynamic

Stark effect [37, 38, 39, 40], which allows us to tune independently the energy split-

ting of the ground and excited states. For InGaAs QDs, the electron and hole g-

factors are known to be around -0.6 and 1.4 [23]. Therefore, the ground and excited

state manifolds respond differently to the external magnetic field. The dynamic

Stark effect, however, is independent of either manifold’s Landé factor. Conse-

quently, the two state manifolds in this regime display level splittings corresponding

to an effective Landé factor tuned by the properties of the laser. The essence of this
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2.3. Quantum dot spin-resolved resonance fluorescence

Figure 2.11: Spin-selective dynamic Stark effect. (a) The simulated scattered photon frequencies
for the 1-GHz Zeeman split X1− transitions under a 50-mT external magnetic field. The blue solid
lines are the dressed sidebands corresponding to the blue shifted bare Zeeman transition (dashed
blue line) and the red solid lines are the dressed sidebands corresponding to the red shifted bare
Zeeman transition (dashed red line). The ends of each line are decorated with an illustration
indicating the specific QD spin ground state for each transition. The blue box and the vertical
solid black lines highlight the spectral window and laser detunings we experimentally investigate
in panel (b). (b) The evolution of the blue-detuned Mollow sideband spectrum for a series of
laser frequency detunings. The inset in the upper left corner illustrates how the laser detunes
from the blue (red) Zeeman split transition. The number in the upper right corner designates the
corresponding line cut indicated in panel a. The external magnetic field for all spectra is fixed to
50 mT, and the change in spin-splitting originates from laser detuning only.

effect lies in the imbalance of the effective Rabi frequencies experienced by the two

spin transitions. In this work we utilize the ∆-dependence to enforce this imbalance

and show the cancellation of the magnetic field induced spin-splitting. The condi-

tion given in panel 3 of Fig. 2.11 b is particularly interesting, since both the ground

and the excited states are identically split resulting in an effective Landé factor of

0.4. The consequence is the generation of photons with full spectral overlap, but

well-defined spin tags in their circular polarization state for any applied magnetic

field strength.

Finally, laser detuning and magnetic field are used to imprint the spin informa-

tion onto the RFL in the form of a clear, background-free, spectrally distinguished

sideband doublet. Figure 2.12 (a) is a linear-log plot of the full emission spectrum

of another QD under 100 mT magnetic field, 13.2 µW laser power (ΩR ≈ 17Γ) and

2.5 GHz red laser detuning. The plot exhibits a distinctive five-Lorentzian structure

in the RFL spectrum beyond the previously discussed triplet and each sideband

transition is now a clear doublet linked with a QD electronic spin state. In total

there are 6 features in the spectrum, but, much like the Mollow triplet, the central
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CHAPTER 2. Spin-resolved resonance fluorescence from single quantum dots

Figure 2.12: Mollow quintuplet and spin-resolved fluorescence. (a) The full span of the resonance
fluorescence spectrum under application of a 100 mT magnetic field and a 2.5 GHz red detuned
laser at a power of 13.2 µW (ΩR ≈ 17Γ) plotted in a linear-log scale (blue circles). The number
above each sideband peak indicates its central frequency with respect to the bare QD transition
identified as the origin. (b) A zoom-in of the blue sideband spectrum plotted on a linear-linear
scale. The data (black circles) are fit to two Lorenztian profiles (red curve) with a splitting of
1.38 GHz. The background is measured for identical conditions without the X1− resonance (open
circles).

line is comprised of two degenerate transitions locked to the detuned laser frequency

yielding a spectral signature for the Mollow quintuplet. A zoom-in plot of the blue

sideband doublet, indicated by the blue rectangle, is presented in Fig. 2.12 (b) in

linear-linear scale. The red curve is a fit of two Lorenztians and the open circles

represent the recorded signal in identical conditions except the single electron in the

QD is unloaded back to the reservoir eliminating the X1− transitions (The closest

possible QD transition is detuned 1290 GHz from the laser frequency). This back-

ground signal constitutes less than 2% of the total signal. We note here that for all

laser powers above 617 nW, when the two sidebands are clearly separable, the total

number of photons collected per sideband remains constant confirming the absence

of significant laser background in the above-quoted photon number.
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2.3. Quantum dot spin-resolved resonance fluorescence

2.3.4 Photon correlation of resonance fluorescence

Photon correlation measurement is also important for RFL study, however, we did

not focus on this too much, partially because observing spectrum is more challenge-

able and has the benefit for revealing the spin-tagged information, and the other

reason is that the time resolution (jitter) of our APDs, which is about 500 picosec-

ond, is insufficient for solving oscillations for high Rabi frequency as we expected in

Fig 2.1. We note that Flagg et. al. [8] and Ates et. al. [10] have demonstrated nice

measurements on photon correlations.

Figure 2.13: Second-order correlation function for RFL. From (a) to (d), the laser power is in-
creasing. Panel (b), (c) and (d) are subtracted with the laser-leakage background and normalized
with signal floor far from the time origin, panel (a) is only normalized without background sub-
traction. The red curves are the fitting from Eq. 2.18 with the parameters ΩR = 0.25Γsp for (a),
ΩR = 0.71Γsp for (b), ΩR = 2.05Γsp for (c) and ΩR = 3.41Γsp for (d), respectively.

We measured the second order correlation function g(2) with several laser powers

by using the setup presented in Fig. 2.7, where no spectral resolution of the photon

is required. Figure 2.13 only shows four results, among them, panels (b), (c) and (d)

are subtracted with their laser-leakage background and normalized by the signal from

large time delay, panel (a) is only normalized without subtraction, which strongly

indicates the single photon character. The data are fitted by Eq. 2.18. We noticed
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that we could not observe clear oscillation in g(2) when Rabi frequency is lager than

the spontaneous decay rate, however for smaller Rani frequency, our measurement

matches the theory very well.

2.4 Single photon generation and other applications

Coherently generating single photons from QDs motivated us from the begining for

realizing RFL, which is expected to provide transform-limited photons with high

indistinguishability suitable for QIP applications. Moreover, due to the spin tagged

character of our protocol, plenty of applications based on spin-photon interface of

QDs become available, benefit both the QIP and the study of mesoscopic system.

2.4.1 Single photon generation

For single photon generation, we have some notes,

1. The photons from RFL are single photons. this has been demonstrated in

Fig. 2.13, especially in panel (a).

2. We did not execute Hong-Ou-Mandel type measurement to examine the in-

distinguishability. The extracted transition linewidth from the sidebands of

Mollow-triplet in our measurements suggests an upper bound about 80 MHz

for non-radiative dephasing, so that we only claim our RFL photon is near-

transform limited. Soon after we published the results, another group demon-

strated the indistinguishability about 90% of RFL photons from QDs by two-

photon-interference measurements [10], which shows the significant progress

compared with previous incoherent-excitation approach [5]. For further im-

provements, we need to investigate more possible mechanisms effecting the

photon emission in QD mestroscopic system.

3. In our RFL scheme, we need light field constantly drive the system forming

sidebands, where we can collect background free single photons, therefore, CW

laser is required. We have no control of when to generate photon, i.e. the gen-

eration is not deterministic. Realizing RFL sideband photons by pulsed laser

is quite challengeable, however, resonantly driving one transition of a three-

level Λ system, collecting stokes or anti-stokes photons might be a good choice

for deterministic single photon generation in coherently pumping regime [41].
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Alternatively, we would like to point out another interesting regime obtained

via detuning. When the excitation laser frequency (νL = ν + ∆) is consider-

ably far red-detuned, the red (blue) sideband frequency approaches 2νL − ν

(ν). This is indeed the analogous regime studied by Aspect et al., on single

atomic transitions [42]. In this seminal work, photon correlation measurements

between these two sidebands revealed that the emission dynamics of the two

sidebands in this regime is substantially different from that obtained in the

near-resonant laser excitation. Specifically, the red-sideband photon has to be

generated from two virtual states, while the blue-sideband photon is emitted

from the two real atomic states. Due to the complex nature of this scattering

process, the first photon to be emitted is hence always in the blue sideband,

followed instantaneously by a photon in the red sideband. This regime of op-

eration has immediate impact on heralded (on-demand) generation of single

photons from the red-detuned sideband, when triggered by the detection of a

photon from the blue-detuned sideband.

Last, for QIP applications, collection efficiency is as important a factor as spec-

tral purity, so we present an estimate of the photon number collected from the

sideband emission. At 13.2 µW excitation power, more than 98% of the emission

is coming from the sidebands. Integrating across the blue sideband within the 4 to

7 GHz window (book-keeping for the cavity transmission and detector efficiencies)

we estimate that 48,000 photons per second per spin-sideband reach the input of

our two-mirror cavity. We note that the emission from the two spin-sidebands is

anticorrelated determined by the electron spin. Therefore, by matching the cavity

transmission spectrum to a spin-sideband, QD spin measurements with above unity

signal-to-noise ratio can be performed within a time integration of around 1 mil-

lisecond. While this timescale is already at the threshold of single-shot spin readout

regime, straightforward technical improvements in photon collection efficiency [43]

will further better this figure of merit.

2.4.2 Other applications

Most straight forward and expected application of our spin-resolved RFL is the

electron spin readout. By simply collecting the RFL photons in moderate light-

driving regime, we already achieved electron spin readout, which we will devote the

whole next chapter to discuss. Another scheme is to select sideband photons with
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their spin-tagged character, such as the spin-selectivity of the sideband in Mollow-

quintuplet. For this scheme, we need the FP cavity with broad transmission band-

width. One more interesting application is the spin-photon entanglement, which

came to our mind at the first time we observed the Zeeman-splitting cancellation in

Mollow-quintuplet spectrum. It will definitely strengthen the candidate-ship of QDs

as the promising interface of flying- and stationary- qubits in QIP. However, in our

present setup, we can not go further on this application, since the cross polarizer

settings remove the polarization information of emitted photons. Alternative exper-

imental designs can overcome this issue, such as in the work [8, 10], microcavities

are fabricated around QDs, which can enhance the photon collection perpendicular

to the excitation laser without any polarizers as filters. Unfortunately, they have

no gate control on the QDs, so no control of electron spin states. Integrating gate

structure to microcavity will be our common task in the near future.
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Chapter 3

Direct electron spin readout
in single quantum dots by
resonance fluorescence

In this chapter, we present an important application following last chapter, probing

optical transitions by counting resonance fluorescence photons without spectral res-

olution, which is widely applied in many other systems such as trapped single ion.

More interestingly, probing the spin-selective transitions provides us a technique for

electron spin readout which is one of the most crucial requirements for both quantum

information processing and the study of mesoscopic system. For studying the dy-

namics of confined electron spin in QDs, we carry out the first n-shot time-resolved

resonance fluorescence (TRRFL) measurements. Firstly, we study the back action

on the electron spin states induced by optical measurements to quantify the charac-

teristic time TBA, which denotes the time an optical field can cycle a spin-selective

dipole transition before a spin-pumping event happens. We study the explicit de-

pendence of the spin-pumping Raman scattering timescale on the properties of the

magnetic field and show that this process is mediated by ground-state mixing due

to electron-nuclei coupling up to 0.6 Tesla, while the excited-state mixing due to

the hole spins mediates the same process for higher magnetic fields. Secondly, we

study the electron spin relaxation process to quantify the characteristic time T1. We

further demonstrate the spin relaxation rate (1/T1) can vary more than two orders

of magnitude following the magnetic field dependence expected from spin-orbit in-

teraction inducing a ground-state spin admixture. In the last section we discuss

the time resolution, or fastest experimentally accessible timescale of TRRFL in the
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CHAPTER 3. Direct electron spin readout in single quantum dots by resonance fluorescence

context of single-shot readout of spins in QDs.1

3.1 Probing two-level system by counting resonance fluo-
rescence photons

Before we study the electron spin dynamics, we carry out the measurement to cali-

brate the ability of probing optical transitions on spin-free states. With zero external

magnetic field, the singly charged state and the trion state are selected to form the

two level system as shown in the inset of Fig. 3.1. Fixing the gate voltage applied

Figure 3.1: The integrated resonance fluorescence (purple circles) from the X1− transition as a
function of laser detuning. The laser power is about the spontaneous emission rate (ΩR ∼ γsp ≈ 227
MHz). Each data point corresponds to 300 ms of integration. The blue squares indicate the
background level when the transition is far detuned via gate voltage. There is no external magnetic
field and the insert is the schematic of the degenerated two level system of X1−.

on the QD sample, we scan the laser frequency across the transition and collect the

resonance fluorescence photons at each data point for 300 ms integration. The data

indicate a symmetric Lorentzian lineshape which directly reflects the properties of

the dipole transition2 we probed as shown in Fig. 3.1. The signal-to-noise ratio

(SNR) reach 190 (with the noise level of 13) which is larger than DT measurements

1This chapter is based on publication [1]
2As long as the lineshape of the total signal is symmetric, the interference term between the coherent scattering

and the laser leakage carries the same spectral properties as the dipole transition probed as we shown in Eq. (1.3).
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3.1. Probing two-level system by counting resonance fluorescence photons

with even longer integration time3, the signal-to-background ratio (the background

data is shown as the blue square in the Fig. 3.1) is 18, and the linewidth is 492 MHz.

More systematic calibrations are shown in Fig. 3.2. Panel (a) shows the linewidth

Figure 3.2: The systematic calibrations of the transition readout using resonance fluorescence
as a function of laser power. (a) The linewidth measurement indicating the power broadening
mechanism. (b) The saturation curve of the the peak counts of the transition, where the laser
background is subtracted. (c) The signal-to-background ratio.

increasing as the excitation power is increased, which indicates the power broadening

mechanism (FWHM = (Γ2
sp+2Ω2

R)1/2). Panel (b) is the saturation curve of the peak

counts of the transitions, which corresponds to the population of the excited states

(ρee = Ω2
R/(Γ

2
sp + 2Ω2

R))4. Panel (c) is the dependence of the signal-to-background

ratio (SBR) on the excitation power, and the fitting function is actually the ratio be-

tween the saturation curve from panel (b) and the linear corresponds of the leakage

background to the laser power

SBR(Plaser) =
Signal(Plaser)

Leakage(Plaser) +DarkCounts
(3.1)

here, Plaser is the power of the excitation laser. After these calibrations, we will

move on to reveal the electron spin dynamics in the next two sections.

3In chapter 1, Fig. 1.11 implies the SNR of DT is about 30 for the time constant of 100 ms and 24 dB/oct, which
corresponds to the time resolution as 1s.

4With zero laser detuning (∆ = 0) and subtracting the laser leakage counts, Eq. (1.3) is proportional to ρee
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CHAPTER 3. Direct electron spin readout in single quantum dots by resonance fluorescence

3.2 Environmental couplings of electron spin in single quan-
tum dot

As we introduced in Chapter 1, self-assembled QD provides us a physical environ-

ment with the effectively reduced dimension down to zero, but it still keeps the

mesoscopic structure. The carriers trapped inside have different couplings with the

environment. The electron spin dynamics studied here are the results of these cou-

plings. Among them, the coupling with nuclear-spin environment, the coupling with

phonon environment and the coupling with the Fermi sea of the back contact mainly

dominate the electron behaviors, and will be studied in the following subsections.

3.2.1 Coupling of confined electron spin with nuclear-spin reservoir

As the lattice atoms constructing InAs/GaAs self-assembled QD, the Arsenic atom

and Gallium atom both have the unclear spin IAs = IGa = 3/2, and Indium atom

has the nuclear spin IIn = 9/2. The hyperfine interaction considered is the Fermi

contact interaction of an electron spin with a surrounding nuclear spin ensemble,

the interaction Hamiltonian is written as: [44]

Hhyp = ν0

N∑
i

Ai|ϕe(Ri)|2(Ii · S). (3.2)

The sum runs over all nuclei i ∈ N in the lattice. ν0 is the volume of a unit cell of

the dot material, ϕe(Ri) is the electron envelope wavefunction at the ith nucleus,

Ii and S are the spin operators of nuclear and electron spins, respectively. Ai is

the hyperfine coupling strength. If we span the electron spin subspace with two

z-direction electron spin states | ↓〉 and | ↑〉 as the basis, the Hamiltonian above

can be separated into two parts as the z component and the in-plane component,

respectively.

Hhyp = ν0

N∑
i

Ai|ϕe(Ri)|2
{
IizSz +

1

2
(Ii+S− + Ii−S+)

}
. (3.3)

Here, the in-plane part indicate the spin flip-flop process between the nuclear and

electron spins. From the view of electron, this hyperfine interaction can also be

treated as an effective magnetic field from the collective behavior of nuclei, which is

42



3.2. Environmental couplings of electron spin in single quantum dot

commonly referred to Overhauser field with the form of

BN =
ν0

µBge

〈
N∑
i

Ai|ϕe(Ri)|2Ii

〉
N

. (3.4)

Here, 〈...〉 is the quantum average over N nuclei in the ensemble. The nucleus

number N is about 104 ∼ 105 for InAs/GaAs dot.

We assume that the electron spin sees a static Overhauser field, so that the z

component BNz will introduce a Zeeman splitting to the electron spin states along

z direction, while the in-plane component BNxy will coherently couple the two spin

states with the coupling strength ΩH [13] defined as:

~ΩH =
geµBBNxy

2
. (3.5)

Statically, this coupling dresses the bare states (| ↓〉 and | ↑〉) to form the new

eigenstates for the electron spin subspace in the form of

|↓̃〉 = cosφ| ↓〉 − sinφ| ↑〉, (3.6)

|↑̃〉 = sinφ| ↓〉+ cosφ| ↑〉, (3.7)

with φ = ΩH/ωz, and ~ωz = geµB(Bz + BNz). Bz refers the external magnetic

field in Faraday configuration. The coefficients cosφ and sinφ in the form of above

admixture states imply the hyperfine interaction induced electron spin dynamics can

be suppressed under high external magnetic filed, which can be understood as the

portion of the Overhauser field in the total magnetic field becomes negligible.

In reality, due to the dipolar-dipolar interactions between nearby nuclear spins

and electron spin mediated spin-flip events between distant nuclear spins [45], the

Overhauser field fluctuates all the time. The correlation time of the nuclear spin is

on the order of milliseconds, which is excepted to be similar to the decay time of

nuclear spin polarization in the presence of an electron in QD [46]. However, the

assumption above of the static hyperfine field seen by electron spin is appropriate

as long as the electron spin dynamics occur on a time scale much shorter than the

nuclear spin correlation time. That is always the case when we optically excite the

electron spin in InAs/GaAs self-assembled QDs, where the excitonic state has the

lifetime on the order of hundred picosecond as we studied in Chapter 2. Therefore

the fluctuation of Overhauser field is frozen for each excitonic event. Statistically,
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CHAPTER 3. Direct electron spin readout in single quantum dots by resonance fluorescence

the Overhauser field for each frozen moment follows a Gaussian distribution

f(BN) =
1

(2π)3/2B3
nuc

exp

(
−|BN |2

2B2
nuc

)
, (3.8)

which gives

〈BN〉 = 0

〈|BN |2〉 = 3B2
nuc. (3.9)

The rms value Bnuc is typically estimated as 15 mT [13] for each spacial component

of BN through our discussion in this thesis.

In terms of non-optical dynamics of electron spin in ground states, the fluctuation

of the Overhauser field is the main cause for the dephasing of the electron spin

states. We also note that the Fermi contact interaction relies on a finite Bloch

wavefunction at the sites of the nuclei. Differently from the s-like symmetry of

electron wavefunction, the p-like symmetry of wavefunction isolates hole from such

interaction.

3.2.2 Coupling of confined electron spin with phonon reservoir

Besides the hyperfine interaction, spin-orbit (SO) coupling can also admix the spin

ground states. The spin-orbit Hamiltonian (HSO) couples the states with both

different orbital and different spin parts [47]

〈nl ↓ |HSO|n′l′ ↑〉 6= 0, (3.10)

Here, the quantum numbers (nl) and (n′l′) indicate different orbital states. With first

order perturbation, the non-normallized eigenstates due to the spin-orbit interaction

can be written as [48]:

|ñl ↑〉 = |nl ↑〉+
∑
n′l′ 6=nl

〈n′l′ ↓ |HSO|nl ↑〉
Enl − En′l′ −∆Ez

|n′l′ ↓〉, (3.11)

|ñl ↓〉 = |nl ↓〉+
∑
n′l′ 6=nl

〈n′l′ ↑ |HSO|nl ↓〉
Enl − En′l′ + ∆Ez

|n′l′ ↑〉. (3.12)

Here ∆Ez = ~ωz = geµBBz is the unperturbed spin splitting. It is clear that electric

field can not cause transitions between pure spin states, however, with the SO inter-

action, as the admixtures of spin and orbital states, the eigenstates can be coupled

by electric field, and electric-field fluctuation can lead to the spin relaxation [47].
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3.2. Environmental couplings of electron spin in single quantum dot

In semiconductors, the electric-field fluctuation comes from the phonon reservoir.

First, deformation potential phonons inhomogeneously deform the crystal lattice,

therefore altering the band gap in space, which gives the fluctuation of electric field.

Second, in polar crystals such as GaAs, the homogeneous strain also leads to elec-

tric fields through piezoelectric effect. The spin-relaxation rate can be described by

Fermi’s golden rule [48],

κphonon =
2π

~
∑
n,l

|〈ñl ↓|He,ph|ñl ↑〉|2D(∆̃Ez). (3.13)

He,ph is the Hamiltonian of electron-phonon coupling, D(E) is the density of phonon

states of energy E. With the typical magnetic field value of several tesla used in our

lab for studying the spin relaxation process, we have the condition of geµBBz �
kBT , the approximation below is valid [47, 49],

|〈ñl ↓|He,ph|ñl ↑〉| ∝ (geµBBz)3/2. (3.14)

The density of the phonon states is proportional to the square of the energy. So the

final dependence of spin-relaxation rate on the magnetic field is:

κphonon ∝ (geµBBz)
5. (3.15)

For the small magnetic field case, where geµBBz � KBT , the dependence is replaced

by κphonon ∝ (geµBBz)
4.

We notice that, neither SO coupling or electron-phonon coupling can individually

result in the spin-relaxation. SO coupling provides the states admixtures so that

phonon can couple the spin ground states and provide the energy cost to realize the

dissipative spin flip. It also has been proposed that phonon assisted hyperfine inter-

action can lead to the spin relaxation [50]. There the dependences of κhyp ∝ B2 and

κhyp ∝ B3 are predicted according to the different magnetic field ranges. However,

the rate κhyp will be less than 1 Hz at 1 Tesla considering the large quantization en-

ergy of our InAs/GaAs dot, which can be neglected compared with phonon assisted

SO interaction. Any other mechanisms leading to the slow spin relaxation are not

considered here either.

3.2.3 Coupling of confined electron spin with Fermi sea

In our sample, under the QDs layer, we have one hightly n-doped GaAs layer as the

back contact of our diode structure. This n-doped layer is also the nearest Fermi sea
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around the QDs. The first order coupling interaction between QD and Fermi sea

is the electron tunneling, which is utilized to charge and de-charge the QDs. The

second order coupling interaction is the exchange process between the electrons in

the QDs and the Fermi sea, respectively. This coupling is named as “cotunneling”

and reaches its maximum rate at the intersection where the charge states in QD are

switched, and gets strongly suppressed when the charge state is stable [13]. Involving

the Fermi sea as the electron spin reservoir, cotunneling leads to the electron spin

relaxation process [51, 52], which can be utilized to randomize the spin states.

3.2.4 Hole mixing

Although the valence-band mixing in QDs is dramatically reduced compared with

the case of quantum well, it is still, nevertheless, excepted to play a role in QD

dynamics. The hole mixing discussed here is referred as mixing between heavy holes

and light holes in the valence band, for example,

|⇑̃〉 = |+ 3/2〉+ ε+|+ 1/2〉+ ε−| − 1/2〉, (3.16)

and we define |εhl|2 = |ε+|2 + |ε−|2 as the hole mixing strength, which is estimated

on the order of few percent for InAs/GaAs QD [53].

Through optical transitions, electron spin and hole spin can be linked together.

The hole mixing results in the admixture of excited states respect to the electron

spin ground states, which implies an important role of hole mixing in electron spin-

flip process. For example, by absorbing σ+ photon, electron spin | ↑〉 state is excited

to form a trion state as | ↑↓ ⇑̃〉. Then, through the decay channel involving light

hole spin | + 1/2〉 and electron spin | ↑〉, the excited QD emits one σ+ photon and

leaves an electron spin | ↓〉 state as the ground state. So that the electron spin is

flipped.

3.3 Direct measurements of quantum dot spin dynamics

In this section, we apply n-shot time-resolved resonance fluorescence (TRRFL) mea-

surements to reveal the electron spin dynamics discussed in last section. To investi-

gate the spin dynamics of singly confined electron in single QDs, a finite magnetic

field is required to lift the spin degeneracy. In our case, the external magnetic field is

applied in Faraday configuration. What we are concerning about the measurements

in this section are the time scales, which includes the measurement time Tm, the
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3.3. Direct measurements of quantum dot spin dynamics

characteristic time TBA for the back action induced by the measurements, and the

characteristic time T1 for spin relaxation. With the condition of

Tm < T1 < TBA, (3.17)

we can reveal the spin relaxation dynamics before inducing the back action to the

system; with the condition of

Tm < TBA < T1, (3.18)

although we can still reveal the back-action dynamics, the spin relaxation is fully

affected by the measurement and no natural properties can be extracted. The worst

case for the study of spin dynamics is

TBA < Tm, (3.19)

where, the measurement fully erases the information of any spin-dynamics.

About the measurement Tm, we can make an estimation by analyzing our in-

struments involved. In the experimental setup, after the background suppression

polarizer (seen in Fig. 2.3 (b), the polarizer on the collection arm before the fiber

coupler), RFL photons are directly coupled into a fiber and led to an avalanche pho-

todiode (APD), which is set in free-running mode. There is one switch circuit5 with

the time resolution about 6 ns between APD and the data acquisition system6. The

data acquisition system has the time resolution 800 ns. We will see in the next sub-

section, the time resolution of n-shot TRRFL is only limited by the switch circuit,

so we can set Tm any value larger than 6ns. From previous studies [12, 13, 47, 49],

the TBA is estimated on the order of microseconds and spin-relaxation time T1 is

normally on the order of milliseconds, so at least we can avoid the condition (3.19)

to study some of the electron spin dynamics.

3.3.1 Optically induced back action on electron spin — Spin pumping

Firstly, we would like to study the dynamics of measurement induced back action on

electron spin in single QDs by quantifying the time scale of TBA. This back action

results in the spin-flip event of electron, thereby it is also referred to “Spin Pumping”

which was studied recently by using DT technique [12].

Here, we revisit the DT measurements first, and then provide our RFL solution

5Mini-Circuits, ZYSWA-2-50DR
6National Instruments, PCIe-6259
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for a direct measurement on the spin-pumping timescale Tp, which represents TBA

in this particular case. As shown in Fig. 3.3 (a), with zero external magnetic field,

we got the whole X1− transition plateau by two dimensional DT scan. With finite

gate
voltage

APD
window

laser
pulse

on-windowoff-

Control Pulses

0e 1e

(a) (b)

(c) (d)

Figure 3.3: Electron spin pumping and time-resolved resonance fluorescence measurement. (a)
2D DT of X1− transition plateau at zero magnetic field. (b) The blue Zeeman branch of X1−

transition under 350 mT magnetic field. The insert shows the reduced four-level system in our
single QD system and the relative transitions. Here we didn’t specify the admixing states from
pure spin state by different labels. (c) The control traces of gate, laser and APD for the n-shot
TRRFL measurement. (d) The TRRFL data for three locations labeled in panel (b).

external magnetic field in Faraday configuration, we have the Zeeman splitting, but

the middle part of the each Zeeman transition is missing, for example the blue

transition as shown in Fig. 3.3 (b). That is the result of spin pumping, which can be

descirbed through the insert of Fig. 3.3 (b). As we discussed in Chapter 1, in this
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reduced four level system. in principle, only the direct optical transitions are allowed

as | ↑〉 ↔ | ↑↓⇑〉 and | ↓〉 ↔ | ↓↑⇓〉. However, these rely on the assumption that both

the ground states and excited states are the un-coupled states. From the discussion

in Subsection 3.2.1, we know the hyperfine interaction results in the admixture of the

electron spin ground states. From the discussion in Subsection 3.2.4, we know the

hole mixing results in the admixture of the excited states. Both the ground states

mixing and the excited states mixing can enable the indirect transition channel in

the insert of Fig. 3.3 labeled by the decay rate γ. Back to our measurement, when

we optically drive the blue transition for example, after several direct cyclings, the

electron spin will end up at the other spin state. For DT measurement, enough

transition cycling is required for getting the signal out of the noise floor. Normally,

the indirect transition has the strength 1000 times weaker as direct transition, but

thousand cyclings is far from enough to get DT signal, so we miss the middle part

of the transition plateau. The two edges of the plateau are in the situation we

discussed in Subsection 3.2.3, where the electron in the QD can exchange its spin

with the electron reservoir in the back contact by cotunneling. Through this process,

the electron spin can be randomized so that the direct transition cyclings can be

preserved with a certain rate and the DT signal is visible.

For determining the time scale of this spin-flip process, we carry out the n-shot

TRRFL measurement with the merit of much more fine time resolution down to 6

ns compared with DT which is intrinsically limited by lock-in technique. Figure. 3.3

(c) shows the temporal control traces for gate, laser and APD respectively. For

each cycle (Tcycle) of the n-shot, we control the gate to switch from off-window to

on-window, where the off-window corresponds to the case of no electron in QD and

the on-window corresponds to the case of single electron charging, so that we can

artificially randomize the electron spin in a control way. Simultaneously with the

gate switched to on-window, the laser is switched on as well and set to be resonant

with one of the transitions, for example the blue transition in our discussion here.

The large repetition number (n ∼ 105) guarantees the enough photon counts with

small integration time of APD and meanwhile fulfill the condition n × Tcycle > 800

ns for getting rid of the acquisition time limitation. We walk the APD on-window

within the gate on-window, pin down the scattered photon numbers statistically

before the spin flipped at different time delays, eventually, we map out the TRRFL

as shown in Figure. 3.3 (d). There we present three sets of data corresponding to the
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three locations labeled as 1,2,3 in the 2D-DT of Figure. 3.3 (b). Location 1 is the

middle of cotunneling region where the fast electron spin exchange blocks any spin-

pumping effort resulting in the time independent RFL data (red square) as shown

in Fig. 3.3 (d). Location 2 is the edge of the cotunneling region, where the spin

exchange can only partially block the spin-pumping process resulting in the purple

square data in Fig. 3.3 (d). We fit the data by solving the master equation of three-

level system [13] to extract the cotunneling rate as ξ↑↓ = 2π×37 KHz. Location 3 is

the middle of the X1− plateau, where the electron spin can be efficiently pumped to

| ↓〉 state as the exponential decay data shown in Fig. 3.3 (d) (blue square), and the

spin-pumping time (Tp) or the spin-pumping rate (1/Tp) can be directly extracted

here.

Figure 3.4: Dependence of the spin-pumping rate as a function of the excitation laser frequency
detuning for a fixed laser power of 4nW. The magnetic field is 350 mT in Faraday configuration.
(a) A two-dimensional map of the recorded time-resolved resonance fluorescence photon counts for
a range of excitation laser frequency detuning. (b) The blue density 2D plot is the simulation of
panel (a) by solving master equations, the red data and the red fitting curve are the extracted
spin-pumping rates and their Lorentzian fit, respectively.

By fixing laser power and gate voltage applied on the sample, we measure the

spin-pumping rate versus laser detuning as shown in Fig. 3.4. Panel (a) records the

raw data of TRRFL for different laser detuning. Panel (b) shows the 2D simulation

of panel (a) by calculating three-level master equations. The extracted spin-pumping

rates (red square data) are also shown in panel (b) and fitted by a Lorentzian (red

curve).
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Through above two-dimensional TRRFL measurements, we can determine the

resonance for certain excitation power, and then we carry out power dependent

TRRFL measurements resonantly as shown in Fig. 3.5. By increasing excitation

power, the spin-pumping time becomes shorter, or equivalently the spin-pumping

rate becomes larger, and tends to reach saturation.

Figure 3.5: Dependence of the spin-pumping rate as a function of the excitation laser power.
The magnetic field is 350 mT in Faraday configuration. (a) The raw data of the time-resolved
resonance fluorescence for a range of different laser powers. The laser frequency is on resonance
with the X1− transition. (b) The extracted spin-pumping rate, which tend to saturation with the
excitation power increasing.

For quantitatively studying the spin flip, we define a branching ratio η as η =

γ/(γ + Γ) [13], which quantifies the normalized number of photons scattered by

the transition before the electron flips its spin. With a fixed branching ratio, the

spin-pumping rate is determined by the population of the excited state | ↑↓⇑〉,
which has been demonstrated above by the measurements of the dependence of

spin-pumping rate on laser detuning and power under a fixed magnetic field. To

elucidate the two physical mechanisms which mediate the optical induced spin flip,

we study the magnetic field dependence of Tp (1/Tp). The laser power is set well

above the saturation power, the laser is resonant with transition and gate voltage

are fixed at the position 1 in Fig. 3.3 (b) for each magnetic field value. Figure 3.6

presents the magnetic field dependence of spin-pumping rate. Each data point is

extracted from TRRFL on resonance. The fitting curve includes the functional
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Figure 3.6: The magnetic field dependence of the spin-pumping rate with a fixed laser power of
60 nW. The lowest magnetic field value of selected to ensure the electronic ground states are split
by ∼ 1.5 GHz which is 3 times the transition linewidth.

dependence on magnetic field of hyperfine interaction and hole mixing that admix

the spin states coherently. In the low magnetic field limit, the hyperfine interaction

efficiently mediates the spin-flip events and result in a quadratic variation of the

spin-pumping time with applied external magnetic field according to (Bnxy/Bext)
2.

Whereas, for magnetic field beyond 0.6 T, hole mixing mediates the spin-pumping

process and contributes a constant spin-pumping rate about 1.27 MHz independent

of the external magnetic field. The theoretical curve is obtained using an RMS

in-plane nuclear field Bnxy = 15 mT. The corresponding heavy-light hole mixing

strength is |εhl| = 2.8%, which is within the estimated range based on previous

reports using DT measurements [13]. We do note that the value of hole-mixing

strength will vary among QDs due to the shape anisotropy and the large variation

of hole-spin g-factor.

As a short summary, we note that the back action induced by measurement on

single electron spin confined in single QD is the spin pumping. The n-shot TRRFL

is a type of measurement with Tm � TP (TBA), which let us reveal the back-action

dynamics.
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3.3.2 Observed electron spin relaxation in single quantum dot

The electron spin relaxation happens between two electron eigenstates, and the idea

of measuring spin relaxation is to initialize the electron spin in one of the eigenstates

first and then statistically measure the spin-filp events to the other eigenstate. The

temporal control traces for gate, laser and APD are shown in Fig. 3.7 (a), respec-

tively. For each control cycle, we randomize the electron spin states by switching the

gate
voltage

APD
window

laser
pulses

spin pumping

check points

waiting
time

on-windowoff-

(a) (b)

Figure 3.7: The n-shot TRRFL measurement for electron spin relaxation. (a) The temporal
control traces for gate, laser and APD. (b) The TRRFL data for electron spin relaxation at 6 T.
The red curve is fitted to the data for extracting the T1 time.

gate between off- and on- window. When the gate is in on-window, laser is turned

on immediately to be resonant with blue transition (| ↑〉 ↔ | ↑↓⇑) here for a time

duration 50 µs to ensure the electron spin being initialized to spin-down state (| ↓〉)
through spin pumping process. Then the electron is left in the dark for a waiting

time spanning 0 ∼ 20 ms. The laser is then turned back on for 5 µs coinciding

in time with the APD detection window. An optional check-points gate window is

set to check both the background and the RFL counts corresponding to the electron

spin thermalization which could be our reference for data fitting. One set of TRRFL

data in Fig. 3.7 (b) shows the measured signal recovery under 6 T magnetic field.

Initially, electron still resides in the dark spin down state | ↓〉 and no photon scatter-

ing occurs. As time progresses, and the probability that the electron has flipped its

spin increases, the probability to scatter photons also increases. Using the function:

ρ↑↑ ∼ a(1− e−t/Teff ), (3.20)
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we can extract a corresponding effective spin-flip time for this certain magnetic field.

The spin-relaxation time T1 can then be extracted from Teff , and we will explain it

as following. The time T1 is denoted by T↑↓ for spin relaxation process from | ↑〉 to

| ↓〉 and by T↓↑ for the process from | ↓〉 to | ↑〉. Then we have the rate equation for

ρ↑↑ as

˙ρ↑↑(t) = − 1

T↑↓
ρ↑↑(t) +

1

T↓↑
ρ↓↓(t), (3.21)

and

ρ↓↓(t) = 1− ρ↑↑(t). (3.22)

By solving this differential equation with the initial condition {ρ↑↑(0), ρ↓↓(0)} =

{1, 0}, we get:

ρ↑↑(t) = 1− 1

T↑↓ + T↓↑

[
T↑↓ + T↓↑ exp

(
− T↑↓ + T↓↑

T↑↓T↓↑
t
)]
. (3.23)

We define

Teff =
T↑↓T↓↑
T↑↓ + T↓↑

, (3.24)

which can be extracted from the TRRFL measurement directly. Considering the

thermal equilibrium ˙ρ↑↑(∞) = 0 and Boltzmann distribution, we get

T↑↓
T↓↑

= exp
(geµBBz

KBT

)
, (3.25)

so that, by knowing Teff , we can calculated T↑↓ and T↓↑ respectively.

Figure 3.8 (a) shows a set of TRRFL data for different magnetic fields, the ex-

tracted Teff are recorded as the red circles in panel (b), and the corresponding T↓↑

are recorded as the red squares in panel (c). The highest measured Teff of 17.3 ms

at 2.2 Tesla corresponding to T↓↑ of 31.3 ms. The red curves in panel (b) and (c)

are the fitted to the data using C ∗B−m, and we get the m = 4.87(17) for panel (b)

and m = 5.02(17) for panel (c), which imply the dynamics of spin relaxation we are

studying here is dominated by phonon assisted SO coupling as we discussed in Sub-

section 3.2.2. We notice that, firstly, even with condition KBT > geµBBz, we still

have the T1 power dependence of B−5; secondly, our T1 results shown to be shorter

than the average value from a QD ensemble measured in [54], the discrepancy may

be due to the anisotropy enhanced spin-orbital coupling for our single QD case.

Another feature we would to show is that we could precisely calculate the spin-
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(a) (b) (c)

Figure 3.8: The n-shot TRRFL measurements for spin relaxation. (a) The TRRFL data under
different magnetic fields. (b) The extracted Teff shown as red circles from the data in panel (a).
The red fitting curve gives the power dependence of about B−4.87. As a comparison, the black
curve corresponds to the power dependence of B5. Blue triangle data are the calculated 1-fidelity
for spin pumping. (c) The calculated T↓↑ from Teff data of panel (b). The red fitting curve gives
the power dependence of about B−5.02.

pumping fidelity from our Tp and T1 measurements. The fidelity is defined as

Fidelity = 1− Tp/Teff . (3.26)

The calculated Tp/Teff data are shown as the blue triangles in Fig. 3.8 (b), and the

maximum corresponding fidelity there is 99.996% at 2.2 Tesla.

As a short summary, we note that, in our T1 measurement, we didn’t introduce

any measurement induced back action, since we let electron relax its spin in the dark.

Therefore, we have TBA → ∞. Overall, we fulfill the condition Tm < T1 < TBA, so

that we can reveal the spin-relaxation dynamics.

3.3.3 Towards single-shot measurement of an electron spin

It is always of great interest to attempt fast readout of quantum states. The fine

time resolutions of the n-shot measurements discussed above only work for resolv-

ing the statistical properties of the physical dynamics. If we want to record the

real-time response from the system, single-shot measurement is required. Figure 3.9

illustrates the ideas for n-shot measurement and single-shot measurement, respec-

tively. For n-shot measurement shown in panel (a). The time tm1 denotes the pulse

duration of each shot there. One n-shot data is accumulated equivalently to the

time duration of n × tm1. Therefore the high SNR and fine time resolution can be
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Figure 3.9: The schematic for the ideas of n-shot measurement and single-shot measurement.
(a) The three dimensional pulse traces illustrate the n-shot data accumulation. (b) The two
dimensional pulse trace illustrates the single-shot data accumulation.

achieved simultaneously by selecting big number of n. For single-shot measurement

shown in panel (b), the pulse duration tm2 is the data-accumulation time as well as

the measurement resolution, as a result, there is a trade off for reaching high SNR

and fine time resolution at same time.

For calibrating our system for single-shot measurement, we switch off the mag-

netic field for spin-free transition probing as we did in Section 3.1. In Fig. 3.10 we

present 100 ms worth of real time RFL counts with 10 µs, 30 µs and 50 µs time

bin, respectively. For each set of data, the first 50 ms time trace is obtained when

trion transition is resonant with the excitation laser at ∼ 10 times the saturation

power. The second 50 ms part is obtained when the transition is far off resonance

with the laser dictating the overall background level. Compared with SNR, the value

of readout error is more convenient to indicate the readout ability in photon-count

measurement. The readout error is defined as ε = 0.5(εon + εoff ) [55], where εon

(εoff ) is the fraction of declared to be off (on) since the count is below (above) the

set threshold. With a threshold of 0.5 we deduce measurement fidelities (1 − ε) of

0.63, 0.77 and 0.84 for the 10 µs, 30 µs and 50 µs time bin, respectively. These num-

bers are satisfactory when compared with spin relaxation timescales, therefore the

single-shot readout is in principle possible with sufficient margin with respect to all

spin relaxation time of Fig. 3.8 (b). However, for finite magnetic fields the optically

induced back action time sets the natural limit for a non-destructive readout in tri-

onic transition of a single QD, where the measurement time is required much shorter

than 1 µs. In a word, for the single-shot measurement using our experimental setup

right now, we are in the condition of TBA < Tm < T1, which implies no electron
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3.3. Direct measurements of quantum dot spin dynamics

spin information can be extracted by single-shot readout. There are two ways to

solve this issue. The first one is to increase the RFL photon collection efficiency by

using mcirocavity for example, so that the Tm can be reduced. When Tm < TBA,

the dynamics of back action can be resolved. The other solution is to avoid back

action or to slow down its process. This solution is more powerful since it can lead

to Tm < TBA < T1 or Tm < T1 < TBA, and the second condition corresponds to the

non-destructive measurement. Suppressing back action requires new QD structures,

which is exactly what we would like to discuss from next chapter, we will propose

one single-shot electron spin readout experiment in the system of coupled quantum

dots pairs.
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CHAPTER 3. Direct electron spin readout in single quantum dots by resonance fluorescence

Figure 3.10: Single-shot readout for X1− transition at zero magnetic field. (a) Real-time moni-
toring of the photon stream scattered from the X1− transition at zero magnetic field (first 50 ms)
and the background detection events (second 50 ms) for an integration time of 10, 30 and 50 µs.
(b) The corresponding histograms of detection events for each integration time bin. The threshold
of 0.5 is indicated by the horizontal dashed lines.

58



Chapter 4

Charge and spin
configurations in coherently
coupled quantum dots

In this chapter, we start to investigate the optical properties of a system formed by

two vertically stacked QDs, which has been discussed in Chapter 1 from the view

of sample-growth technique. In stead of being two individual quantum systems, the

two stacked QDs are coupled together by sharing the confined carriers, similarly

to a two-atom molecule. Thereby, a pair of coupled QDs (CQDs) is also referred

to a “Quantum-Dot Molecule”. The coupling strength corresponds to the rate of

carriers’ tunneling through the potential barrier between two QDs. Due to this

tunnel coupling, the original electronic energy levels of the two QDs are hybridized

[56], resulting in rich spectral signatures [57, 58, 59, 60, 61]. Before the detailed

discussion in this chapter, we would like to give an overview on how the rich spectral

signatures of CQDs look like. Figure 4.1 presents a set of PL data from one dot of

a coupled pair. There, each anti-crossing in the data indicates the strong electron-

tunnel coupling for a certain charge and spin configuration. Our discussion in this

chapter will be focused on revealing these charge and spin configurations. We will

present our theoretical model, and then match the simulations to our experimental

data to explain the dynamics involved. All these will help us to propose more

sophisticated applications for near future study.
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CHAPTER 4. Charge and spin configurations in coherently coupled quantum dots

Figure 4.1: Gate sweep of photoluminescence spectrum for the red dot of a coupled quantum dots
pair (CQD1) with the tunneling barrier of 13 nm. Two red dashed boxes indicate two studying
areas which will be covered in the following text.

4.1 Samples and methods

The band-structure diagram of the gated CQDs is shown in Fig. 4.2 (a). The vertical

stacked CQDs sample consists of two QD layers separated by a tunneling barrier

(spacing layer) of thickness d1 and another tunneling barrier between the bottom QD

layer and the back contact which is labelled d2. The CQD1 and CQD2 covered in this

thesis are from a wafer with tunneling barriers of d1 = 13 nm and d2 = 30 mn. As

we discussed in Chapter 1, generally the QDs from the top layer are optically shifted

to the red side of the QDs from the bottom layer, so we label the QDs from the top

layer as the“Red(R)”dots and the QDs from the bottom layer as the“Blue(B)”dots.

With this stack configuration, the paired QDs are preferably coupled by tunneling of

conduction-band electrons. Ec and Ev in Fig. 4.2 (a) represent the conduction band
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4.1. Samples and methods

energy and valence band energy respectively; Ef is the fermi energy level; V0, around

−0.7 V, is the conduction band offset of the Schottky contact. The positive gate

voltage VGate was applied to reduce this band offset. In Fig. 4.2 (a), we also define a

parameter ∆ as the s-shell electric level detuning of the blue dot with respect to the

red dot. When VGate is increased, ∆ will be decreased, and VGate and ∆ are linearly

dependent on each other,

VGate(∆) = −|a|∆ + b. (4.1)

Here a and b are constant parameters determined by the sample structure. Figure 4.2

(b) shows the CQDs schematic used in the following figures, which describes the

charge configurations.
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Figure 4.2: (a) The energy band diagram of the vertically stacked CQDs. Due to the different
confinements, the two dots are labeled as “B”(blue) and “R” (red), respectively. (b) The CQDs
schematic used in the following figures.

The measurements performed in this chapter are Photoluminescence (PL) and

differential transmission (DT) at 4.2 K under zero external magnetic field. According

to the discussion about the gate controlled PL in Chapter 1, the thick tunneling

barrier d2, and high power excitation will result in the overlap of charge plateaus. In

CQDs, this will lead to more complicate spectrum which can not be observed in DT.

However, DT provides much higher spectral resolution for unambiguously revealing

the fine structures due to the spins. Although lacking for the rich spectrum, DT

provides deterministic probing of the transition with static ground states. This is

essential for any control experiments.
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CHAPTER 4. Charge and spin configurations in coherently coupled quantum dots

4.2 The basic interactions

The total Hamiltonian of the CQDs system is written as,

Htot = H0 +Hc +Hex
e−h, (4.2)

which contains the single particle energy H0, the charge-charge Coulomb interaction

Hc and the electron-hole exchange interaction Hex
e−h.
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Figure 4.3: The schematic energy dispersion diagram for the singly charged (a) and doubly
charged (b) CQDs ground states, respectively.

4.2.1 One-electron ground states: 1e system

The simplest case is single electron sitting in the coupled system. There is no

Coulomb interaction and e-h exchange interaction. The coupling is given by the

electron tunneling through the barrier. We define the electron states in the blue (B)

dot and the red (R) dot as,

|1〉(1e) = e†B|0〉, |2〉(1e) = e†R|0〉,

here e†B(R) is the electron creation operator in blue (red) dot. The Hamiltonian of

the system with the states above as the basis is,

Htot(1e) =

(
εB te

te εR

)
=

(
εR 0

0 εR

)
+

(
−∆ te

te 0

)
︸ ︷︷ ︸

H(1e)

. (4.3)
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4.2. The basic interactions

Here εB(R) is the single particle energy defined as εB(R) = 〈0|eB(R)H0e
†
B(R)|0〉 and

εB = εR −∆. Since the diagonal single particle energy term can be extracted as a

constant part from the total Hamiltonian even for the multi-carriers cases, and it

does not reflect the signature of the system, we will neglect this term in the following

analysis. The off-diagonal element te is the single electron tunneling rate defined

as te = 〈0|eBH(1e)e
†
R|0〉. The eigenstates of H(1e) are admixtures of the uncoupled

states |1〉(1e) and |2〉(1e) due to non-zero off-diagonal term. We calculate eigenvalues

of H(1e) for a gate-voltage range and get an energy dispersion diagram as shown in

Fig. 4.3 (a), which indicates the evolution of the eigenstates under gate control. The

anti-crossing of the eigenstates is the signature of electron tunnel coupling. At the

gate voltage VGate(∆1e), where the two uncoupled states are resonant (∆1e = 0),

the energy splitting between the two eigenstates indicates the coupling strength

which is 2te for the 1e system. In the following discussions, we always indicate the

anti-crossing by the resonance point of the uncoupled states.

4.2.2 Two-electron ground states: 2e system

In the case of two-electron systems, the Coulomb interaction is included. The

Coulomb Hamiltonian for the 2e system is

Hc
(2e) =

1

|re1 − re2|
, (4.4)

and we define

V ab
ij,kl =

∫ ∫
drdr′ϕai (r)ϕaj (r)Hcϕbk(r

′)ϕbl (r
′). (4.5)

Here ϕai (r) is the single-particle envelope wavefunction on dot i = B,R for conduc-

tion band electrons (a, b = e) or valence band holes (a, b = h).

There are three distributions for electrons in this system (the position of the

electron is given with respect to the center of mass of the electron wavefunction

here): both electrons are in the blue dot (2e, 0), both electrons are in the red dot

(0, 2e), and each electron in each dot of the pair(1e, 1e). Due to the Pauli exclusion

principle, if the two electrons are both on the ground level, they can only form spin

singlet state in the cases of (2e, 0) and (0, 2e), but in the case of (1e, 1e), there are

four fundamental states. If we have (σB, σR) to denote the spin configuration of

(1e, 1e), the four states are (↑, ↓), (↓, ↑), (↑, ↑) and (↓, ↓). Considering the spin is

conserved during the carrier tunneling, the states (↑, ↓) and (↓, ↑) are coupled to
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CHAPTER 4. Charge and spin configurations in coherently coupled quantum dots

each other though the states (2e, 0) and (0, 2e). In the subspace expanded by (↑, ↓)
and (↓, ↑), we can choose different basis consisting of the states 1√

2
[(↑, ↓) − (↓, ↑)]

and 1√
2
[(↑, ↓) + (↓, ↑)]. Including (↑↓, 0) and (0, ↑↓), the six states form a complete

basis for the system and can be classified into two categories by the symmetry. In

order to see the symmetry more clearly, we have e†nσ to denote the operator for

creating spin σ(=↑, ↓) state on electron n(= 1, 2), and e†ni to denote the operator for

placing electron n(= 1, 2) in the dot i(= B,R), and write down the six states under

consideration of Fermion’s statistical properties as:

(↑↓, 0) =
1√
2

(e†1↑e
†
2↓ − e

†
1↓e
†
2↑)⊗ e

†
1Be

†
2B|0〉,

(0, ↑↓) =
1√
2

(e†1↑e
†
2↓ − e

†
1↓e
†
2↑)⊗ e

†
1Re
†
2R|0〉,

1√
2

[(↑, ↓)− (↓, ↑)] =
1√
2

(e†1↑e
†
2↓ − e

†
1↓e
†
2↑)⊗

1√
2

(e†1Be
†
2R + e†1Re

†
2B)|0〉,

1√
2

[(↑, ↓) + (↓, ↑)] =
1√
2

(e†1↑e
†
2↓ + e†1↓e

†
2↑)⊗

1√
2

(e†1Be
†
2R − e

†
1Re
†
2B)|0〉,

(↑, ↑) = e†1↑e
†
2↑ ⊗

1√
2

(e†1Be
†
2R − e

†
1Re
†
2B)|0〉,

(↓, ↓) = e†1↓e
†
2↓ ⊗

1√
2

(e†1Be
†
2R − e

†
1Re
†
2B)|0〉. (4.6)

From these expressions, it is obvious that the first three states consist of an anti-

symmetric spin part and a symmetric spatial part, the other three states consist of

a symmetric spin part and an anti-symmetric spatial part. For simplicity, we write

the six states in the following way:

|1〉(2e) = e†B↑e
†
B↓|0〉,

|2〉(2e) = e†R↑e
†
R↓|0〉,

|3〉(2e) = (1/
√

2)(e†B↑e
†
R↓ − e

†
B↓e

†
R↑)|0〉,

|4〉(2e) = (1/
√

2)(e†B↑e
†
R↓ + e†B↓e

†
R↑)|0〉,

|5〉(2e) = e†B↑e
†
R↑|0〉,

|6〉(2e) = e†B↓e
†
R↓|0〉.

Here, we denote e†iσ = e†nσ ⊗ e
†
ni. Table 4.1 records calculated elements of Hamilto-

nian H(2e) with the six states shown above as the basis. Clearly, the states of two

symmetries are well separated into two isolated diagonal blocks of the matrix, which

implies the symmetries are conserved in this 2e system. The states |4〉(2e), |5〉(2e)
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4.2. The basic interactions

and |6〉(2e) are linked to the triplet states |T0〉, |T+〉 and |T−〉 respectively, which are

energetically degenerate and do not get involved in (2e, 0)−(1e, 1e)−(0, 2e) coherent

coupling. At certain values of ∆, ∆2e(1)(= VBB − VBR) and ∆2e(2)(= VBR − VRR),

resonance between the states |1〉(2e) and |3〉(2e) and resonance between the states

|3〉(2e) and |2〉(2e) will occur, respectively, the coupling strength for both of the cases

is 2T2e,

T2e =
√

2(te + V ee
BB,BR) '

√
2(te + V ee

RR,RB), (4.7)

which indicates the tunnel-coupling events involving two electrons. Figure 4.3 (b)

is a simulation showing how the eigenstates of the 2e system evolve under the gate

voltage control.

H(2e) |1〉(2e) |2〉(2e) |3〉(2e) |4〉(2e) |5〉(2e) |6〉(2e)

(2e)〈1| VBB − 2∆ Jee T2e 0 0 0
(2e)〈2| Jee VRR T2e 0 0 0
(2e)〈3| T2e T2e +Jee + VBR 0 0 0

−∆
(2e)〈4| 0 0 0 −Jee + VBR 0 0

−∆
(2e)〈5| 0 0 0 0 −Jee + VBR 0

−∆
(2e)〈6| 0 0 0 0 0 −Jee + VBR

−∆

Table 4.1: Matrix elements of the Hamiltonian H(2e) with the states from |1〉(2e) to |6〉(2e) as
the basis. VBB = V ee

BB,BB , VRR = V ee
RR,RR and VBR = V ee

BB,RR are charge-charge direct Coulomb
interactions. Jee(= V ee

BR,BR) is the electron-electron Coulomb exchange interaction which couples
the fist two singlet states where the two electrons are in the same dot, and also contributes the
S-T splitting. It blue shifts the (1e,1e) singlet state, but red shift the triplet states.

Further estimate of the magnitudes of parameters V ab
ij,kl and te requires the in-

formation of the carriers’ wavefunctions. For simplicity, we considered the dot in a

model [58] with parabolic confinement in the lateral directions and InAs/GaAs band

offsets in the vertical direction (z direction). We just show the off-diagonal elements

Jee and T2e(te) since they determine the coupling. We get

Jee = V ee
BR,BR ≈ exp (−2κel)V

ee
BB,RR, (4.8)

te = 2εe exp (−2κel), (4.9)

here κe is the inverse decay length for electron, l is the thickness of the GaAs

tunneling layer from the top of the blue dot to the bottom of the red dot, and εe is
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CHAPTER 4. Charge and spin configurations in coherently coupled quantum dots

the single electron energy in the dot. The relation we get between Jee and te is

Jee ≈ te ×
V ee
BB,RR

2εe
. (4.10)

Normally, V ee
BB,RR ≈ 10meV and 2εe & 1eV , so Jee . te/100. What we would like

to note from above are:

1. We made the assumption that the wavefunctions of the carriers in the dot

have a very small dependence on the gate voltage (the level detuning ∆ or the

vertical electric field), so that we neglected this dependence. From the measured

spectrums in Fig. 4.1, each intra-dot charge plateau shows the common linear

dependence of the DC-stark shift on the gate voltage. This linear dependence

indicates the permanent vertical dipole in the dot, and gives evidence that the

wavefunctions are essentially static with the changing voltage, or at least the

center of mass of the wavefunction is stable. These are the clues of strong

quantum confinements of the QDs in their growth directions.

2. With the assumption of static wavefunctions, we get constant te and Coulomb

terms, especially the Coulomb term Jee, which contributes the constant part of

the singlet-triplet (S-T) splitting of the (1e, 1e) case. Although te is constant,

its effect increases the S-T splitting in the vicinity of the resonance points such

as VGate(∆2e(1)) and VGate(∆2e(2)) in Fig. 4.3 (b), and keeps decreasing with the

gate running away from the resonance. Moreover, te’s effect has different signs

on the different sides of the resonance, but Jee always raises the energy of the

(1e,1e) singlet state and lowers the energy of triplet states. In Fig. 4.3 (b),

between the two resonances, the triplet (green lines) are energetically higher

than the singlet (blue line), there te’s effect dominates. In most of the case, Jee

is neglected in the calculations. [58, 59, 60]

3. There is another view of Jee. As we see in Tab. 4.1, Jee is the coupling term for

states (2e,0) and (0,2e), there the coupling should be the second order electron

tunneling process which is expected to be very small.

4. From the experimental experience, we estimate V ee
BB,BB = V ee

RR,RR ≈ 20 meV

and V ee
BB,RR ≈ 10 meV, therefore, we calculate ∆2e(1) ≈ 10 meV and ∆2e(2) ≈

−10 meV.

All the signatures of the 2e system can be labeled as singlet or triplet, since
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4.2. The basic interactions

the electron tunneling dominates the coupling mechanism of the system. This in-

teraction can also be named “kinetic exchange interaction” [59]. Up to now, the

singlet-triplet (S-T) basis is demonstrated as the proper representation of the 2e

system.

4.2.3 Direct and indirect excitons: 1e1h system

Now we switch to the case of one electron and one hole in the CQDs. Instead of

the kinetic exchange of electrons, the electron-hole exchange dominates the 1e1h

system. In our sample, due to the relatively long distance from the red dot layer

to the Schottky contact as compared to the distance from the blue dot layer to the

red dot layer, the hole has much longer resident time in the red dot compared with

the blue dot. The excitons studied following are the direct exciton (0, 1e1h) with

both one electron and one hole in the red dot, and the indirect exciton (1e, 1h)

with one electron in the blue dot but one hole in the red dot. Tunneling of the

electron between red and blue dots results in the coherent coupling of the 1e1h

system. Thereby we have direct and indirect electron-hole exchange interactions,

respectively. We will see that the indirect one is negligible.

The general form of the electron-hole exchange interaction is proportional to the

integral [23]

Hex
e−h ∝

∫ ∫
dr1dr2Ψ∗X(re = r1, rh = r2)

1

|r1 − r2|
ΨX(re = r2, rh = r1). (4.11)

ΨX is the wavefunction of the exciton, r1 and r2 can be either in the same dot or in

different dots. In fact, this integral is proportional to the the overlap of the electron

and hole wavefunctions [62]. From the view of the carriers’ spins, the Hamiltonian

of the electron-hole interaction of an exciton formed by a hole with spin Jh and an

electron with spin Se is given by [23]

Hex
e−h = −

∑
i=x,y,z

(aiJh,iSe,i + biJ
3
h,iSe,i). (4.12)

As we discussed in Chapter 1, the spin states concerned here are Jh = ±3/2 for

heavy holes and Se = ±1/2 for electrons, and the angular momentum projections

of the exciton states are Mz = ±1,±2. Only the states with Mz = ±1 are optically

allowed, denoted by “bright states”, while, the states with Mz = ±2 are denoted

by “dark states”. Considering the indirect and direct exciton with different spin

configurations, there are eight states to describe the 1e1h system,
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CHAPTER 4. Charge and spin configurations in coherently coupled quantum dots

|1〉(1e1h) = e†B↓h
†
R⇑|0〉, |5〉(1e1h) = e†B↑h

†
R⇑|0〉,

|2〉(1e1h) = e†R↓h
†
R⇑|0〉 = B†+|0〉, |6〉(1e1h) = e†R↑h

†
R⇑|0〉 = D†+|0〉,

|3〉(1e1h) = e†B↑h
†
R⇓|0〉, |7〉(1e1h) = e†B↓h

†
R⇓|0〉,

|4〉(1e1h) = e†R↑h
†
R⇓|0〉 = B†−|0〉, |8〉(1e1h) = e†R↓h

†
R⇓|0〉 = D†−|0〉.

Here h†iσ is the operator for generating a hole state with spin σ(=⇑,⇓) in the dot

i(= B,R), B†±|0〉 and D†±|0〉 are the operators for generating bright states with

Mz = ±1 and dark states with Mz = ±2 respectively in the red dot.

Equation (4.12) can be written in a more detailed form:

Hex
e−h = −1

2

3

2
(az +

9

4
bz)︸ ︷︷ ︸

δ0

σhzσ
e
z +

+
3

4
(bx − by)︸ ︷︷ ︸

δ1

(σh3+σ
e
− + σh3−σ

e
+) +

3

4
(bx + by)︸ ︷︷ ︸

δ2

(σh3+σ
e
+ + σh3−σ

e
−)

 .(4.13)

The spin operators used in the equation above are defined as:

σhz | ± 3/2〉Jh
= ±| ± 3/2〉Jh

, σez| ± 1/2〉Se = ±| ± 1/2〉Se ,

σh3+| − 3/2〉Jh
= |+ 3/2〉Jh

, σh3+|+ 3/2〉Jh
= 0,

σh3−|+ 3/2〉Jh
= | − 3/2〉Jh

, σh3−| − 3/2〉Jh
= 0,

σe+| − 1/2〉Se = |+ 1/2〉Se , σe+|+ 1/2〉Se = 0,

σe−|+ 1/2〉Se = | − 1/2〉Se , σe−| − 1/2〉Se = 0.

The Hamiltonian of the 1e1h system, defined in Eq. (4.2), is calculated below, ne-

glecting the constant single particle energies of one electron and one hole,

H(1e1h) =

(
H(1e1h)B 0

0 H(1e1h)D

)
. (4.14)

Including indirect and direct excitons, the two diagonal blocks H(1e1h)B and H(1e1h)D

are for bright states and dark states respectively, and their matrix elements are

recorded in Tab. 4.2 and 4.3. The off-diagonal blocks in Eq. (4.14) are zero under zero

in-plane external magnetic field. We show the simulation of the eigenstates evolving
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4.2. The basic interactions

under the gate voltage control for the 1e1h system in Fig. 4.4 (a). Because the 1e1h

system is an excitonic system, and the corresponding ground state is the empty QD

state, so that the optical transitions directly reflect the eigenstates information of

the system. We carry out PL measurements on the red dot of CQD1, and present

the data in Fig. 4.1. The area, which corresponds to the 1e1h situation, is selected in

Fig. 4.1 by a small dashed box, and is re-presented in Fig. 4.4 (b) for more analysis.

H(1e1h)B |1〉(1e1h) |2〉(1e1h) |3〉(1e1h) |4〉(1e1h)

(1e1h)〈1| VBR + 1
2δ

BR
0 −∆ te(1e1h) − 1

2δ
BR
1 0

(1e1h)〈2| te(1e1h) VRR + 1
2δ

RR
0 0 − 1

2δ
RR
1

(1e1h)〈3| − 1
2δ

BR
1 0 VBR + 1

2δ
BR
0 −∆ te(1e1h)

(1e1h)〈4| 0 − 1
2δ

RR
1 te(1e1h) VRR + 1

2δ
RR
0

Table 4.2: Matrix elements of the diagonal block H(1e1h)B of the Hamiltonian H(1e1h) with the
states from |1〉(1e1h) to |4〉(1e1h) as the basis. VBR = −V eh

BB,RR + di
V
L and VRR = −V eh

RR,RR + dd
V
L

are charge-charge direct Coulomb interactions, here di and dd are permanent electric dipoles for the
indirect exciton and direct exciton respectively, V is the effective voltage between the back contact
and the Schottky contact of the sample defined in Fig. 4.2 (a), and L is the sample thickness. δBR

0,1

is the e-h exchange interaction term δ0,1 defined in Eq. (4.13) for the indirect exciton, and δRR
0,1 is

for the direct exciton in the red dot. te(1e1h) = te−V eh
BR,RR is the tunneling rate for single electron

in system 1e1h.

H(1e1h)D |5〉(1e1h) |6〉(1e1h) |7〉(1e1h) |8〉(1e1h)

(1e1h)〈5| VBR − 1
2δ

BR
0 −∆ te(1e1h) − 1

2δ
BR
2 0

(1e1h)〈6| te(1e1h) VRR − 1
2δ

RR
0 0 − 1

2δ
RR
2

(1e1h)〈7| − 1
2δ

BR
2 0 VBR − 1

2δ
BR
0 −∆ te(1e1h)

(1e1h)〈8| 0 − 1
2δ

RR
2 te(1e1h) VRR − 1

2δ
RR
0

Table 4.3: Matrix elements of the diagonal block H(1e1h)D of the Hamiltonian H(1e1h) with the
states from |5〉(1e1h) to |8〉(1e1h) as the basis. δBR

2 is the e-h exchange interaction term δ2 defined
in Eq. (4.13) for the indirect exciton, and δRR

2 is for direct exciton in the red dot.

About the Hamiltonian shown in the table and the data in figures, we have some

notes,

1. The eight basis states were written in a simple form. In the actual calculation,

the Fermi statistics were considered in the same way as for the 2e system.

2. In Fig. 4.4 (a), we neglected the indirect e-h exchange interaction terms δBR0,1,2,

since the indirect overlap of the electron and hole wavefunctions are much

smaller than the direct overlap. The interaction ratio of indirect to direct is

about 1 : 1000. Normally, δRR0 is in the order of 100µ eV [59, 60, 63] and δRR1,2

is in the order of 10µ eV [23], and we can thereby safely neglect δBR0,1,2. In the

following discussions, δ0,1,2 will be used in stead of δRR0,1,2.
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Figure 4.4: The energy dispersion for the 1e1h system. (a) The simulated evolution of eigenvalues
of Hamiltonian H1e1h under gate control. The blue and black curves correspond to the bright and
dark exciton transitions, respectively. The parameters are set as δ0 = 230 µeV, δ1 = 20 µeV and
δ2 = 30 µeV, the tunneling rate te(1e1h) = 256 µeV comes from the PL measurement in panel
(b). (b) The zoom-in figure of the selected area within the small red dashed box in Fig. 4.1. The
direct- and indirect- exciton transitions and the coherent coupling can be revealed from this PL
measurement. The strong passing-through PL data comes from the 3e1h system, which does not
interact with the 1e1h system. The overlap is due to the charge fluctuation in PL measurement.

3. By seen in Eq. (4.14) and Tab. 4.2 and 4.3, the exchange terms δ0,1,2 determine

the fine structures of excitonic states. For the direct excitons, δ0 is the global

diagonal energy detuning between bright states (states 2 and 4 ) and dark states

(states 6 and 8). δ1 mixes the two bright states to form two new eigenstates

(blue lines in Fig. 4.4 (a)), which are optically coupled to the ground state

(empty dot) by two orthogonal linear lights with the energy detuning δ1. And

this splitting is normally referred to X-Y splitting. Similarly, δ2 mixes the two

dark states to form two new eigenstates (black lines in Fig. 4.4 (a)) with the

energy detuning δ2, but they are still optically dark. Since we neglected the

indirect e-h exchange terms, there is no fine structures for the indirect excitons.

4. Unfortunately, the resolution for PL in not sufficient to resolve the bright fine
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4.2. The basic interactions

structure, in our simulation, we set δ1 = 20 µeV according to our DT measure-

ments on another charge-spin configuration, which will be discussed in next

section. For the case of dark-exciton fine structure, we do not have the optical

access to probe it, so we estimate δ0 ≈ 230 µeV [60] and set δ2 as 30 µeV in

simulation, which will not change our analysis on bright states.

5. The resonant coupling strengths of the bright and dark states are both 2te(1e1h).

According to our calculation model, we have the formula,

te(1e1h) = te − V eh
BR,RR. (4.15)

We extract te(1e1h) as about 257 µeV from the bright states in PL measurement

shown in Fig. 4.4 (b) and apply this value in our simulation in Fig. 4.4 (a).

6. Without resolving the fine structures, we observe three branches in gate-sweep

PL measurements in the 1e1h resonance area. As shown in Fig. 4.4 (b), the two

anti-crossing branches belong to the 1e1h system in agreement with our simula-

tion. However, the passing-through PL branch belongs to another charge-spin

configurations. The non-interacting overlap between different charge configura-

tions is due to the charge fluctuation in PL measurement. This passing-through

PL branch might correspond to the transition between the excited state of (2e,

1e1h) and the ground state of (2e, 0)

7. From the experimental experience, we have the estimate V eh
RR,RR ≈ 24 meV and

V eh
BB,RR ≈ 10 meV, therefore, we estimate ∆1e1h = −V eh

BB,RR+V eh
RR,RR ≈ 14 meV.

We have already discussed three cases for the basic interactions in the CQDs

system. Besides the linear dependence of the permanent dipole to the external

electric field, Coulomb interactions are the constant parts of the energy structures,

they determine the fundamental signatures of the charge configurations. The inter-

dot tunneling is the main mechanism for the coherent coupling of the system, the so

called kinetic exchange interaction can form singlet-triplet states precisely describing

the 2e system. The intra-dot electron-hole exchange interaction is the spin-spin

interaction, and determines the intra-dot energy fine structures. The e-h exchange

interaction is proportional to the overlap of the carriers’ wavefuncitons, so the inter-

dot e-h exchange interaction is normally negligible.

71



CHAPTER 4. Charge and spin configurations in coherently coupled quantum dots

4.3 Optical Transitions of the Multi-charge System

In last section, except the case of the 1e1h system, the other two charge configu-

rations correspond to the optical ground states, which are more interesting for the

applications of quantum control. In QIP, both single-electrons spin and double-

electron spins are proposed to be the candidates for qubits. In this section, we will

experimentally study the ground-state dynamics we modeled in last section through

the optical transitions with their excited states. The 3e1h system, as the excitation

of the 2e system will be discussed first, since it is only observable feature left in PL

data (Fig. 4.1). The 2e1h system, as the excitation of the 1e system will be discussed

secondly, and it is the only coupling feature we can observe in DT measurement,

implying the 2e1h as the only deterministic coupling case in our CQDs structure.

4.3.1 Doubly charged exciton: 3e1h system

In our PL data (Fig. 4.1), except the feature of the 1e1h system, we have the other

impressive “X” shape feature indicating the case of doubly charged exciton, the 3e1h

system. The detailed charge configurations involved are (2e,1e1h) and (1e,2e1h).

Considering the spin freedom, we have in total eight states to span the space of the

3e1h,

|1〉(3e1h) = e†B↓(e
†
R↑e
†
R↓)h

†
R⇑|0〉, |5〉(3e1h) = e†B↑(e

†
R↑e
†
R↓)h

†
R⇑|0〉,

|2〉(3e1h) = (e†B↑e
†
B↓)e

†
R↓h

†
R⇑|0〉, |6〉(1e1h) = (e†B↑e

†
B↓)e

†
R↑h

†
R⇑|0〉,

|3〉(3e1h) = e†B↑(e
†
R↑e
†
R↓)h

†
R⇓|0〉, |7〉(3e1h) = e†B↓(e

†
R↑e
†
R↓)h

†
R⇓|0〉,

|4〉(3e1h) = (e†B↑e
†
B↓)e

†
R↑h

†
R⇓|0〉, |8〉(3e1h) = (e†B↑e

†
B↓)e

†
R↓h

†
R⇓|0〉.

Here, the two creation operators e†i↑e
†
i↓ (i = B,R) are bracketed above to indicate

creating an intra-dot spin-singlet state.

The interactions involved in the 3e1h system are very similar to the 1e1h system.

Firstly, There are always two of the three electrons forming a singlet which does not

contribute to the electron-hole exchange interaction, so that the remaining electron

and the hole form the direct or indirect excitons and dominate the electron-hole

exchange interactions in the 3e1h system. Secondly, only one of the three electrons

gets involved in the tunneling event due to spin-conversation and the Pauli blockade.

For example, the coupling between states |3〉(3e1h) and |4〉(3e1h) can only be mediated

by a spin-down electron, and there is only one spin-down electron in the system,
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4.3. Optical Transitions of the Multi-charge System

i.e. (↑ ↓, ↑⇓) ←→ (↑, ↓ ↑⇓). Therefore, the Hamiltonian of the 3e1h has the same

formula as the 1e1h,

H(3e1h) =

(
H(3e1h)B 0

0 H(3e1h)D

)
, (4.16)

neglecting the constant single particle energies of three electrons and one hole.

Including direct and indirect doubled charged excitons, the two diagonal blocks

H(3e1h)B and H(3e1h)D are for bright excitons and dark excitons respectively, and

their matrix elements are recorded in Tab. 4.4 and 4.5.

H(3e1h)B |1〉(3e1h) |2〉(3e1h) |3〉(3e1h) |4〉(3e1h)

(3e1h)〈1| VBRRR + 1
2δ

BR
0 te(3e1h) − 1

2δ
BR
1 0

−∆
(3e1h)〈2| te(3e1h) VBBRR + 1

2δ
RR
0 0 − 1

2δ
RR
1

−2∆
(3e1h)〈3| − 1

2δ
BR
1 0 VBRRR + 1

2δ
BR
0 te(3e1h)

−∆
(4e1h)〈4| 0 − 1

2δ
RR
1 te(3e1h) VBBRR + 1

2δ
RR
0

−2∆

Table 4.4: Matrix elements of the diagonal block H(3e1h)B of the Hamiltonian H(3e1h) with the
states from |1〉(3e1h) to |4〉(3e1h) as the basis. VBRRR = −V eh

BB,RR−2V eh
RR,RR +2V ee

BB,RR +V ee
RR,RR +

di
V
L and VBBRR = −2V eh

BB,RR − V eh
RR,RR + 2V ee

BB,RR + V ee
BB,BB + dd

V
L are charge-charge direct

Coulomb interactions, here di and dd are permanent electric dipoles for the indirect exciton and
direct exciton respectively, V is the effective voltage between the back contact and the Schottky
contact of the sample defined in Fig. 4.2 (a), and L is the sample thickness. δBR

0,1 is the e-h exchange
interaction term δ0,1 defined in Eq. (4.13) for the indirect exciton, and δRR

0,1 is for the direct exciton
in the red dot. te(3e1h) = te + V ee

BR,RR + V ee
BR,BB − V eh

BR,RR is the tunneling rate for single electron
in the 3e1h system.

H(3e1h)D |5〉(3e1h) |6〉(3e1h) |7〉(3e1h) |8〉(3e1h)

(3e1h)〈5| VBRRR − 1
2δ

BR
0 te(3e1h) − 1

2δ
BR
2 0

−∆
(3e1h)〈6| te(3e1h) VBBRR − 1

2δ
RR
0 0 − 1

2δ
RR
2

−2∆
(3e1h)〈7| − 1

2δ
BR
2 0 VBRRR − 1

2δ
BR
0 te(3e1h)

−∆
(3e1h)〈8| 0 − 1

2δ
RR
2 te(3e1h) VBBRR − 1

2δ
RR
0

−2∆

Table 4.5: Matrix elements of the diagonal block H(3e1h)D of the Hamiltonian H(3e1h) with the
states from |5〉(3e1h) to |8〉(3e1h) as the basis. δBR

2 is the e-h exchange interaction term δ2 defined
in Eq. (4.13) for the indirect exciton, and δRR

2 is for direct exciton in the red dot.

We calculate eigenvalues of the Hamiltonian H(3e1h) for a range of gate voltage
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CHAPTER 4. Charge and spin configurations in coherently coupled quantum dots

to show the evolution of the eigenstates under gate control, and present this calcu-

lation in the upper part of Fig. 4.5 (a). Neglecting δBR1,2 , we have the fine structures

on states (2e,1e1h). The location of the anti-crossing for the 3e1h system is the

resonance point of the uncoupled doubly charged direct excitons and indirect exci-

tons, ∆3e1h = VBBRR − VBRRR. With the estimate, V eh
BB,RR ≈ V ee

BB,RR ≈ 10 meV,

V ee
RR,RR ≈ V ee

BB,BB ≈ 20 meV and V eh
RR,RR ≈ 24 meV, we calculate ∆3e1h ≈ 14 mV.

As we mentioned at the beginning of this section, we are interested in the optical

transitions. Here, the ground states of the 3e1h system are the two-electron states.

We include the 2e states in Fig. 4.5 (a) so that we can clearly map the transitions.

We notice that the anti-crossings for the 2e system occurs at ∆2e(1) = 10 mV and

∆2e(2) = −10 meV, according to Eq. 4.1, we have

VGate(∆3e1h) < VGate(∆2e(1)) < VGate(∆2e(2)). (4.17)

As a result, in Fig 4.5 (a) we have the displacement of the anti-crossings along the

gate-voltage dimension.

In Fig 4.5 (a), without resolving the fine structures and lifting the spin degeneracy,

we have six groups of optical transitions between the excited states and ground states

labeled from ¬ to ±. The corresponding transition energies are calculated and shown

in Fig 4.5 (b), which do match our observations for the PL measurement shown in

Fig 4.5 (c), which is the zoom-in figure of the area selected by the big red dashed

box in Fig 4.1. About these optical transitions, we have some notes:

1. The displacement of the eigenstate anti-crossings in the 3e1h and 2e configu-

rations results in the “X” shape optical transitions. The coupling strengths for

both cases can be extracted. Both of the two anti-crossings at lower gate volt-

age come from the excited states (3e1h), and the corresponding tunnel coupling

strength is 2te(3e1h). From our calculation model, we have the formula,

te(3e1h) = te + V ee
BR,RR + V ee

BR,BB − V eh
BR,RR

≈ te + 2V ee
BR,BB − V eh

BR,RR. (4.18)

Both of the two anti-crossings at higher gate voltage come from the ground

states (2e), and the corresponding tunnel coupling strength is 2Te. From our

PL measurement, we extract te(3e1h) ≈ 295 µeV and Te ≈ 476 µeV, respec-

tively. Together with te(1e1h) ≈ 257 µeV extracted from PL measurement in

last section and the equations (4.7), (4.15) and (4.18), we can also extract
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Figure 4.5: The energy dispersion for the 3e1h system. (a) The simulated evolutions of eigenvalues
of both the excited state Hamiltonian H3e1h and the ground state Hamiltonian H2e under gate
control. For the excited states, the blue and black curves correspond to doubly charged bright and
dark excitons, respectively. For the ground states, the blue and black curves correspond to singlet
states and triplet states, respectively. (b) The calculated energies for the six group of transitions
labeled in panel (a), blue and black curves correspond to the transitions from bright and dark
excited states, respectively. The dashed curves indicates the weak and undetected signal. The red
dashed circle indicates the data area where the coherent coupling of the 2e ground states can be
fully revealed. The red dashed box indicates a data area for later discussions. The parameters
used are δ0 = 230 µeV, δ1 = 20 µeV and δ2 = 30 µeV, the tunneling rate te(3e1h) = 295 µeV and
Te = 476 µeV are extracted from the PL measurement in panel (c). (c) The zoom-in figure of the
selected area within the big red dashed box in Fig. 4.1.

the pure single-electron tunneling rate te ≈ 317 µeV and the Coulomb terms

V ee
BR,RR ≈ V ee

BR,BB ≈ 19 µeV and V eh
BR,RR ≈ 60 µeV.

2. The direct and indirect excitons defined for the 3e1h system here are with

respect to the unpaired electron and the red-dot hole for the simplicity of the

modeling, however the actual transitions can involve the hole and one electron

from the two-electron pair, and the definitions of bright and dark states are

relative as well. For example, according to our nomenclature, state |5〉(3e1h) =

(↑, 2e ⇑) is a doubly charged indirect dark exciton, but it can optically decay to

the state (↑, ↑) through intra-dot recombination involving the spin-down hole
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CHAPTER 4. Charge and spin configurations in coherently coupled quantum dots

and the spin-up electron from the intra-dot singlet.

3. Keeping our nomenclature about the excitons for the 3e1h system, all the dark

states optically decay to the electron spin triplet states,

|5〉(3e1h) = (↑, ↑ ↓⇑) −→ (↑, ↑) = |T+〉, (4.19)

|6〉(3e1h) = (↑ ↓, ↑ ⇑) −→ (↑, ↑) = |T+〉, (4.20)

|7〉(3e1h) = (↓, ↓ ↑⇓) −→ (↓, ↓) = |T−〉, (4.21)

|8〉(3e1h) = (↓ ↑, ↓ ⇓) −→ (↓, ↓) = |T−〉, (4.22)

here, the underlined spins are involved in the transitions. As a result, the

optical decays ¬, ­, ° and ± in Fig. 4.5 (a) and (b) do not involve doubly

charged dark excitons, because the ground states are the electron spin singlet

states.

4. As shown in Fig. 4.5 (a), optical decays ® and ¯ are expected to end up with

the electron spin triplet states. Investigating our PL data in Fig. 4.5 (c), for

the gate-voltage values larger than VGate(∆3e1h), transition ® is clearly observed

but transition ¯ is extremely weak or undetected.

For the case of transition ¯, after the 3e1h resonance, the excited states are

dominated by the state components with the charge configuration of (2e, 1e1h),

which include the doubly charged direct bright excitons |2〉(3e1h) and |4〉(3e1h)

and the doubly charged direct dark excitons |6〉(3e1h) and |8〉(3e1h). The intra-dot

transitions are only possible for the bright states,

|2〉(3e1h) = (↑↓, ↓⇑) −→ (↑↓, 0) = |S2,0〉, (4.23)

|4〉(3e1h) = (↑↓, ↑⇓) −→ (↑↓, 0) = |S2,0〉. (4.24)

The singlet ground states are in conflict with the triplet requirement, as a

result, the intra-dot transitions are strongly suppressed. This situation could be

perfect for studying the inter-dot transitions, as a matter of fact, the undetected

result convinces the inter-dot transitions are negligible.

Whereas, when transition ¯ is strongly suppressed, the excited states of tran-

sition ® are dominated by the state components with the charge configuration

of (1e,2e1h), which are the doubly charged indirect excitoins |1〉(3e1h), |3〉(3e1h),
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4.3. Optical Transitions of the Multi-charge System

|5〉(3e1h) and |7〉(3e1h). The intra-dot transitions,

|1〉(3e1h) = (↓, ↑ ↓⇑) −→ (↓, ↑) =
1√
2

(|T0〉 − |S1,1〉), (4.25)

|3〉(3e1h) = (↑, ↓ ↑⇓) −→ (↑, ↓) =
1√
2

(|T0〉+ |S1,1〉) (4.26)

have 50% probability to fulfill the transitions ® and 50% probability to be

suppressed. The transitions shown in Eq. (4.19) and (4.21) fully meet the

requirements of transition ®. Therefore, we can observe the strong PL signal

for transition ®, which link to the electron triplet states in CQDs system. In

Fig. 4.5 (b), a red dashed circle indicate an area where the optical transitions

¬, ® and ° can fully reveal the coherent coupling of the 2e ground states.

From our calculation model, the 3e1h resonance point is where the two groups

of transitions ® and ¯ swap their excited states. In the case of the gate

voltage being smaller than VGate(∆3e1h), transition ¯ will become stronger,

while transition ® will fade away with the gate voltage decreased.

5. In Fig. 4.5 (c), the passing-through signal between transitions ¬ and ­, ­

and ±, ° and ± might come from the 1e1h charge configuration. The overlap

between different charge configurations is due to the charge fluctuations in PL

measurements.

Up to now, we have already explained the main features of the PL data shown

in Fig. 4.1 for CQD1. Especially, we revealed the 2e ground state coupling through

optical transitions from the 3e1h system. We also carry out PL measurements on

other CQDs from the same wafer and realize that the PL we discussed above is very

typical for this wafer. They always show the coupling features for the 1e1h and 3e1h

transitions. The drawbacks of PL measurements are the low spectral resolution and

charge fluctuation. For unambiguous study of the CQDs system, we move on to DT

measurement.

4.3.2 Singly charged exciton: 2e1h system

Our original idea for doing DT measurement is to reveal the fine structures which

can not be resolved in PL measurements and then to investigate further applications.

However the only tunnel-coupling event we observed from DT is for the 2e1h charge

configuration, which is not observed in PL measurement with our samples of 13
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nm spacing layer, but it has been observed with the sample of 15 nm spacing layer

[60, 64].

Figure 4.6: Two dimensional DT scan for both the blue dot and red dot of CQD2 under zero mag-
netic field. The vertical dashes lines mark the gate-voltage range for different charge configurations
in CQD2. The red dashed box select a data area for later discussions in the text.

Figure 4.6 is the full map of two dimensional DT measurement on both blue and

red dots of CQD2, which has the similar PL data as CQD1. Here, we have the

unambiguous and static ground-state charge configurations for CQDs system. We

notice that there is no overlap between the case of blue dot being singly charged

and the case of red bot being singly charged, hence there is no single-electron tunnel

coupling for the 1e system in CQD2. As a result, within the gate-voltage range

460 mV∼570 mV, the anti-crossing observed must come from the electron tunnel

coupling in excited states which have the 2e1h charge configuration.

Although both carrying two electrons, the tunnel coupling for the 2e1h system
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4.3. Optical Transitions of the Multi-charge System

is different from the 2e system. Both the kinetic exchange interaction and the e-

h exchange interaction determine the coupling behavior in the case of the 2e1h.

Let’s recall the analysis of symmetry for the 2e system, there the triplet states

were well separated from the singlet states, as shown in Tab. 4.1. From the view

of singlet-triplet basis, when an extra hole is added in the red dot (for example a

hole with spin ⇑), we get the off-diagonal element of the matrix for the Hamiltonian

(2e)〈3|hR⇑(H(2e1h))h
†
R⇑|4〉(2e) = −1

2
δ0, which is not zero any more, so (1e, 1e1h) sin-

glet is mixed with (1e, 1e1h) triplet state T0, the symmetry is broken. Even more,

considering the different hole spin states, there will be more off-diagonal elements

with δ1 and δ2 to mix singlets and triplets even further. Therefore the singlet-triplet

basis can not properly describe the 2e1h system. The twelve more fundamental

states are used here as the basis.

|1〉(2e1h) = e†B↑e
†
B↓h

†
R⇑|0〉, |7〉(2e1h) = e†B↑e

†
B↓h

†
R⇓|0〉,

|2〉(2e1h) = e†R↑e
†
R↓h

†
R⇑|0〉, |8〉(2e1h) = e†R↑e

†
R↓h

†
R⇓|0〉,

|3〉(2e1h) = e†B↑e
†
R↓h

†
R⇑|0〉, |9〉(2e1h) = e†B↑e

†
R↓h

†
R⇓|0〉,

|4〉(2e1h) = e†B↓e
†
R↑h

†
R⇑|0〉, |10〉(2e1h) = e†B↓e

†
R↑h

†
R⇓|0〉,

|5〉(2e1h) = e†B↑e
†
R↑h

†
R⇑|0〉, |11〉(2e1h) = e†B↑e

†
R↑h

†
R⇓|0〉,

|6〉(2e1h) = e†B↓e
†
R↓h

†
R⇑|0〉, |12〉(2e1h) = e†B↓e

†
R↓h

†
R⇓|0〉.

The Hamiltonian of the 2e1h system, defined in Eq. (4.2), is calculated below, ne-

glecting the constant single particle energies of two electron and one hole,

H(2e1h) =

(
H(2e1h)⇑ H(2e1h)⇑↔⇓

H∗(2e1h)⇑↔⇓ H(2e1h)⇓

)
. (4.27)

The diagonal blocks H(2e1h)⇑ and H(2e1h)⇓ and off-diagonal block H(2e1h)⇑↔⇓ are

recorded in Tab. 4.6, 4.7 and 4.8, respectively.

Following the same route as our previous discussions for other charge configura-

tions, we calculate eigenvalues of the Hamiltonian H(2e1h) for a range of gate voltage.

Together with the (1e,0) ground states, we show the evolution of eigenstates for both

the excited states and the ground states under gate control in Fig. 4.7 (a). Accord-

ing to the static charge configurations revealed by DT measurement, the transitions

between the 2e1h and 1e are only available within a gate-voltage range close to

VGate(∆2e1h(1)) but far from VGate(∆2e1h(2)) as indicated by a light-yellow window in
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CHAPTER 4. Charge and spin configurations in coherently coupled quantum dots

H(2e1h)⇑ |1〉(2e1h) |2〉(2e1h) |3〉(2e1h) |4〉(2e1h) |5〉(2e1h) |6〉(2e1h)

(2e1h)〈1| VBBR − 2∆ Jee te(2e1h) −te(2e1h) 0 0
(2e1h)〈2| Jee VRRR te(2e1h) −te(2e1h) 0 0
(2e1h)〈3| te(2e1h) te(2e1h) VBRR + 1

2δ0 −Jee 0 0
−∆

(2e1h)〈4| −te(2e1h) −te(2e1h) −Jee VBRR − 1
2δ0 0 0

−∆
(2e1h)〈5| 0 0 0 0 VBRR − 1

2δ0 0
−Jee −∆

(2e1h)〈6| 0 0 0 0 0 VBRR + 1
2δ0

−Jee −∆

Table 4.6: Matrix elements of the diagonal block H(2e1h)⇑ of the Hamiltonian H(2e1h) with the
states from |1〉(2e1h) to |6〉(2e1h) as the basis. VBBR = V ee

BB,BB − 2V eh
BB,RR + 2di

V
L , VRRR =

V ee
RR,RR − 2V eh

RR,RR + 2dd
V
L and VBRR = V ee

BB,RR − V eh
BB,RR − V eh

RR,RR + di
V
L + dd

V
L are charge-

charge direct Coulomb interactions, here di, dd, V and L have the same definitions as in Tab. 4.2.
te(2e1h) = te + V ee

BB,BR − V eh
BR,RR ≈ te + V ee

RR,BR − V eh
BR,RR is the tunneling rate for single electron

in the 2e1h system.

H(2e1h)⇓ |7〉(2e1h) |8〉(2e1h) |9〉(2e1h) |10〉(2e1h) |11〉(2e1h) |12〉(2e1h)

(2e1h)〈7| VBBR − 2∆ Jee te(2e1h) −te(2e1h) 0 0
(2e1h)〈8| Jee VRRR te(2e1h) −te(2e1h) 0 0
(2e1h)〈9| te(2e1h) te(2e1h) VBRR − 1

2δ0 −Jee 0 0
−∆

(2e1h)〈10| −te(2e1h) −te(2e1h) −Jee VBRR + 1
2δ0 0 0

−∆
(2e1h)〈11| 0 0 0 0 VBRR + 1

2δ0 0
−Jee −∆

(2e1h)〈12| 0 0 0 0 0 VBRR − 1
2δ0

−Jee −∆

Table 4.7: Matrix elements of the diagonal block H(2e1h)⇓ of the Hamiltonian H(2e1h) with the
states from |7〉(2e1h) to |12〉(2e1h) as the basis.

Fig. 4.7 (a). The calculated transitions are presented in Fig. 4.7 (b). The corre-

sponding DT observation is shown in Fig. 4.7 (c), which only reveal the coupling

structures matching the transitions within the select area in Fig. 4.7 (b) by a red

dashed box. About these transitions, we have some notes,

1. The 2e1h system is more complicated than the others discussed previously,

due to the interplay between kinetic exchange interaction and e-h exchange

interaction, each eigenstate of the Hamiltonian H(2e1h) is the admixture of

the twelve states we defined above. From the view of direct excitons, states

|2〉(2e1h), |3〉(2e1h)), |6〉(2e1h), |8〉(2e1h)), |10〉(2e1h) and |11〉(2e1h) are linked to the

bright transitions, while states |4〉(2e1h), |5〉(2e1h), |9〉(2e1h) and |12〉(2e1h) are

linked to the dark transitions. Due to the electron tunnel coupling, dark state
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4.3. Optical Transitions of the Multi-charge System

H(2e1h)⇑↔⇓ |7〉(2e1h) |8〉(2e1h) |9〉(2e1h) |10〉(2e1h) |11〉(2e1h) |12〉(2e1h)

(2e1h)〈1| 0 0 0 0 0 0
(2e1h)〈2| 0 0 0 0 0 0
(2e1h)〈3| 0 0 0 0 − 1

2δ1 0
(2e1h)〈4| 0 0 0 0 0 − 1

2δ2

(2e1h)〈5| 0 0 − 1
2δ2 0 0 0

(2e1h)〈6| 0 0 0 − 1
2δ1 0 0

Table 4.8: Matrix elements of the off-diagonal block H(2e1h)⇑↔⇓ of the Hamiltonian H(2e1h).

|4〉(2e1h) (|9〉(2e1h)) is mixed with bright states |2〉(2e1h) and |3〉(2e1h) (|8〉(2e1h)

and |10〉(2e1h)). Since the gate-voltage range we have the 2e1h system in DT

measurements is far from the VGate(∆2e1h(2)), the coupling between |4〉(2e1h) and

|2〉(2e1h) (|9〉(2e1h) and |8〉(2e1h)) is negligible. Although the coupling term Jee

between |4〉(2e1h) and |3〉(2e1h) (|9〉(2e1h) and |10〉(2e1h)) is very small, it is still

finite, and results in the bright-dark hybridisation 1. The brightening of dark

state |5〉(2e1h) (|12〉(2e1h)) is realized by coupling to state |9〉(2e1h) (|4〉(2e1h)) via

e-h exchange interaction δ2. Some signatures of brightened dark states were ob-

served in the work by Falt et. al. [60]. We didn’t observe any brightened dark

transitions in DT, so the simulated dark transitions are indicated by dashed

curves in Fig. 4.7 (b).

2. In order to extract the fine-structure coupling strength δ1 from the combined

interaction, we need to switch off the kinetic exchange interaction. It can be

done by change the charge state of the ground states to disable the transitions

forming the 2e1h states. In Fig. 4.7 (c), when the gate voltage is switched from

the gate-voltage range for (1e,0) to the range for (2e,0), the behavior of the two

transitions are switched from the anti-crossing to the X-Y splitting. There, δ1

is extracted to be about 5 GHz (≈20 µeV). Although the value is for CQD2,

from our experience on this wafer, this number is very typical, and could be

used as a good estimate for other CQDs. The other coupling strengths δ0,2 are

not revealed in our measurements.

3. The tunneling rate defined for the 2e1h system is calculated from the Hamil-

tonian H(2e1h),

te(2e1h) = te + V ee
BB,BR − V eh

BR,RR ≈ te + V ee
RR,BR − V eh

BR,RR. (4.28)

1We notice that, the coupling between |4〉(2e1h) and |3〉(2e1h) is equivalent to |4〉(2e1h) ↔ |1〉(2e1h) ↔ |3〉(2e1h)

via second order electron tunneling.
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Figure 4.7: The energy dispersion for the 2e1h system. (a) The simulated evolutions of eigenvalues
of the excited state Hamiltonian H2e1h and the ground state (1e,0) under gate control. The light-
yellow window indicates the transitions involved in DT measurement. (b) The calculated energies
for the of transitions, blue curves correspond to the transitions of the bright states. The dashed
black curves indicates the transitions of the dark states. The red dashed box indicates the area
matching the observation of DT. (c) The DT measurements on the neutral red dot of CQD2 with
the blue dot singly and doubly charged as the ground states.

We notice that, due to the intra-dot e-h exchange interaction, the anti-crossing

we observed only involves single-electron tunneling events. Because of the res-

ident hole with a certain spin state in the red dot, tunnelings for different

electron spins need to cost different energies. If one of two electron spins is

energetically favorable, the other one will be not.

4. The resonance points for the 2e1h system are calculated as, ∆2e1h(1) = VBBR−
VBRR ≈ 24 meV and ∆2e1h(2) = VBRR − VRRR ≈ 4 meV, with the typical

estimate on Coulomb terms, V eh
BBRR ≈ 10 meV, V eh

RRRR ≈ 24 meV, V ee
BBRR ≈ 10

meV and V ee
BBBB ≈ 20 meV.

5. Besides the 2e1h transitions, we also observe some small features for the 3e1h

transitions from DT data in Fig. 4.6. In Fig. 4.8, we compare the two selected

areas form Fig. 4.5 (b) and Fig. 4.6, and confirm the transitioins observed
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4.3. Optical Transitions of the Multi-charge System

corresponding to the transition ¬. At the gate voltage 630 mV, we start to see

the nonlinear slope which implies the start of the anti-crossing. Unfortunately,

the (2e, 0) charge configuration switches to (2e,1e) after 640 mV, otherwise, we

would have chance to reveal the resonance of the 3e1h system.
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Figure 4.8: The DT data for the 3e1h system. (a) The select area from Fig. 4.5 (b), (b) The
select area from Fig. 4.6.

It is not too surprising that DT reveals totally different charge and spin config-

urations from PL measurements. In PL measurements, we excite the system using

above-band excitation, a large number of electrons and holes are created in the host

material. Consequently, they effectively build an internal electric field which lower

down the level arm of the band structure, so that all the charge states can happen

at smaller gate voltage compared with the cases in DT measurement. This effect is

not stable, therefore, different charge states can have overlaps. That results in the

much richer spectrum observed in PL. But as we mentioned at the beginning of this

section, DT provides the information of static states, which are more important for

the deterministic control of the quantum system.
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CHAPTER 4. Charge and spin configurations in coherently coupled quantum dots

4.4 The gate-voltage map for charge and spin configurations
in CQDs

As the last section of this chapter, we summarize charge and spin configurations

which are relevant to our CQDs system and mark them on the axis of gate voltage.

So that we can have a full picture about where and how the coherent coupling

happens.

In last two sections, we estimated the values of ∆ for all the resonance points.

They are: ∆e ≈ 0 meV, ∆2e(1) ≈ 10 meV, ∆2e(2) ≈ −10 meV, ∆1e1h ≈ 14 meV,

∆3e1h ≈ 14 meV, ∆2e1h(1) ≈ 24 meV and ∆2e1h(2) ≈ 4 meV. According to the

definition of VGate(∆) in Eq. (4.1), we have:

VGate(∆2e1h(1)) < VGate(∆1e1h) ≈ VGate(∆3e1h) <

< VGate(∆2e(1)) < VGate(∆2e1h(2)) < VGate(∆e). (4.29)
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Figure 4.9: Gate-voltage map for charge and spin configurations involved in coherent coupling
in CQDs system. The tunneling rates are indicated by neglecting the Coulomb terms for better
qualitative comparison between different tunnel couplings.

We mark these gate voltages qualitatively on the axis and link them to the cor-

responding optical transition pattens as shown in Fig. 4.9, so that we can get a map

for indicating the relative position for each coupling in CQDs system. We can also

label the tunneling rate for each resonance point onto the map. As we did in Fig. 4.9,
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4.4. The gate-voltage map for charge and spin configurations in CQDs

for better qualitative comparison, we neglect the Coulomb terms in the tunneling

rate here and use 2te and 2
√

2te to indicate the cases of single-electron tunneling

and two-electron tunneling, respectively. Eventually, a pair of the resonance gate

voltage and the corresponding tunneling rate becomes a joint signature for a certain

charge and spin configuration in CQDs. For example, by observing the PL data in

Fig. 4.1, we can immediately identify the two main features corresponding to the

1e1h transitions and the 3e1h transitions, respectively.

Moreover, since VGate(∆1e1h) ≈ VGate(∆3e1h), from the map, the 1e1h transitions

and the 3e1h transitions are supposed to have overlaps in the spectrum, which can

provide us a feasible explanation for the unpredicted passing-through PL data in

both transition pattens.
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Chapter 5

Outlook

5.1 Towards single-shot measurement of an electron spin

We notice that the title of this section is identical to the one of subsection 3.3.3,

since we will continue the previous discussion here by proposing one solution to

the question left before. The question is about how to make the back-action time

(TBA) much longer than the characteristic time for the dynamics we want to probe.

Meanwhile, the measurement time (Tm) is required to be small enough for resolving

the dynamics and big enough for good SNR. As we learnt in subsection 3.3.2, in

single QDs, the spin-relaxation time T1 can be tens of millisecond, and the RFL

measurement time (Tm) with good SNR can be tens of microsecond. The only

obstacle there is the back-action time which is with the order of one microsecond.

The back action in single QD is due to the hyperfine interaction and the heavy-light

hole mixing. The hyperfine interaction can be suppressed by increasing the external

magnetic field, however the hole mixing is independent on magnetic field. There is

a solution can be used to suppress both of them, that is to reduce the wavefunction

overlap of the hole and the target electron. The CQDs provide us a system where the

target electron can be placed in one dot and optical transitions can be probed in the

other dot. The similar idea for probing the charge state, named as “charge sensing”,

has been realized by Falt et. al. [60]. For probing the spin states, Kim et. al.

[17] have demonstrated this idea using DT measurement and showing no significant

back action within the measurement time scale. But for probing the spin dynamics,

DT readout is not as fast as RFL readout, therefore, we propose a single-shot RFL

measurement in CQDs for single-spin readout.

For demonstrating the feasibility of our proposal, we give an overview on how to

identify the spin states and suppress the measurement induced back action in CQDs.
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As we learnt from subsection 4.3.2, if we select the single electron in blue dot as the

target electron, the corresponding optical transitions in red dot are shown in Fig. 4.6.

Setting the gate voltage at 565 mV where blue dot is in single-electron cotunneling

regime, we carry out DT measurements under swept magnetic field. The idea here

is to use magnetic field lifting the spin degeneracy. Staying in cotunneling regime is

to make sure we have the visible signal in spite of any possible spin pumping effects.

The measured data are shown in Fig. 5.1 (b). The corresponding simulations for the

excited states and ground states are shown in Fig. 5.1 (a).

Figure 5.1: Magnetic sweep of DT on red dot of a CQDs pair. (a) The simulation for the excited
states and ground states involved in 2e1h transitions with fixed gate voltage but swept magnetic
field. The dashed black curves indicate the splitting for intra-dot dark states which are negligible
for optical transitions. (b) Magnetic sweep of DT on red dot of CQD2 at 565 mV with the magnetic
field range from 0 to 1.6 Tesla. the diamagnetic shift is subtracted from the data.

We indicate relevant states by using their most possible state components in

Fig. 5.1 (a). Considering transitions ¬ and ­, they both correspond to the σ+ tran-

sition. In the case of single QDs, this two transitions are degenerate in magnetic

field. However, the observation from CQDs suggests the electron tunnel coupling al-

tering the electron wavefunction, so that the two transitions are distinguishable. The

energy splitting of them is consistent with the splitting we observed in DT for two
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bright transitions under zero magnetic field, there the kinetic exchange interaction

dominates the splitting. Compared with transition ¬, the weak signal of transition

­ does not necessarily suggest a weak spin-pumping effect, since state (↑, ↓⇑) could

mix with state (↑↓,⇑) via electron tunneling coupling, and state (↑↓,⇑) is optically

non-favorable for DT due to its indirect excitation. Whereas, transition ¬ has the

excited state with two parallel electron spins, due to Pauli exclusion principle, two

electrons repel each other, therefore, both the mixing with other states and the po-

tential spin pumping are suppressed. According to these analysis, when we probe

transition ¬, we expect the time scale for TBA is much larger than spin-relaxation

time T1. In principle, recording real-time stamps of single electron spin dynamics

dominated by spin relaxation can be achieved by single-shot RFL readout with a

comfortable timebin for good SNR in CQDs system. For seeing that, we still need

more investigations on CQDs system. For calibration, N-shot measurements are

suggested for statistically revealing the dynamics expected and unexpected.

5.2 Probing nuclear-spin dynamics using resonance fluores-
cence

The studies on dynamics of nuclear spin in QDs always have great impacts on

both QIP applications and the fundamental research for mesoscopic system. For

competing the drawback of the electron-spin dephasing, which is induced by the

nuclear-spin fluctuation, several experiments were carried out to polarize the un-

clear spin for suppressing their fluctuations [65, 66, 67, 68, 69, 70, 71]. Our recent

work [25] revealed a bi-directional polarization mechanism for the nuclear spin using

resonant laser driving a singly charged QD. More interestingly, we observed similar

phenomena by resonantly driving the neutral QDs. Those phenomena could not yet

be well explained by our model applied in the case of singly charged QDs. Most

of those measurements were done by DT. We suggest RFL measurements on the

studies of nuclear-spin dynamics, both the fast RFL readout and spectrum resolving

can provide us insightful information for approaching the eventual understanding.

We would like to show one measurement of spectrum, which is applied for revealing

the change of the resonance for a transition interacting with the nuclear-spin reser-

voir. Under 6 Tesla magnetic field, we measure the RFL spectrum of X0 transition

for a series of laser frequencies. With the laser frequency dunned from small value

to big value, we extract the effective Rabi frequencies by measuring the frequency
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separation between the central Mollow peak and a side Mollow peak, we plot data

in Fig. 5.2. What we observed is that, the separation gets smaller when we are

approaching the resonance, once we reach the resonance, the resonant condition will

be kept for about 2 GHz laser frequency detuning, which is expected as the result

of polarizing nuclear spin forming a compensate magnetic field to the laser detun-

ing. After reaching one critical frequency point, the resonance will be lost abruptly.

RFL spectrum measurements can unambiguously reveal the resonance, so that we

are convinced the the transition is resonantly locked onto the laser for a 2 GHz

tuning range. However, there are still plenty of features in this measurement even

beyond our current phenomenological understanding. Those are worthy of more

investigations in the near future.

Figure 5.2: Extracted effective Rabi frequencies from X0 RFL spectrum measurements for a laser
tuning from lower frequency to higher frequency under 6 Tesla magnetic field. The laser power is
about 412 nW. The calculated quadratic curves indicate the expected Rabi frequencies respect to
the previous one without any effects from environment. The two inserts show the raw spectrum
data measured for two laser frequencies of being far detuned and being resonant, respectively.
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5.3 More in the near future

The CQDs provide us a more complicate and challengeable system. The study of

the multi-electron spin states, especially the two-electron singlets and triplets, are

drawing more and more attentions due to their useful properties with respect to spin-

related dephasing [72, 73], as seen in recent experiments in electrically controlled

CQDs [74, 71]. For the case of self-assembled CQDs, our plan is to realize the

preparation, manipulation [75] and readout of singlet-triplet states. RFL will be used

there as a powerful technique to reveal the dynamics of multi-spin states via n-shot or

single-shot measurements. Base on the singlet-triplet states, we will investigate the

coherent generation of photon pairs from CQDs carrying electron-spin information

towards the photon-electron entanglement and the photon-photon entanglement.

We are also interested in investigating the the two-qubit logic gates based on dipole-

dipole interaction between charged excitons in CQDs [76] for quantum computation.
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Summary

In this work, firstly, we demonstrated the spin-resolved resonance fluorescence from

a single quantum dot. Under zero magnetic field, two electron spins are degenerate,

so the Mollow triplet is the characteristic spectrum for resonance fluorescence pho-

tons. We measured the Mollow-triplet spectrum under the control of laser power

and laser frequency, respectively. In the case of power control, we extracted the

transition linewidth Γ from the sideband spectrum, and compared it with the spon-

taneous emission rate Γsp extracted from life time measurements. As a result, an

upper bound of the dephasing rate is estimated as 80 MHz. Together with the

small laser background contribution (< 2%) and the photon anti-bunching behav-

ior in g(2) measurements, we claimed the sideband emissions are background-free

and near transform-limited single photons. Under nonzero magnetic field, the spin

degeneracy is lifted. If the single driving laser couples two spin transitions with dif-

ferent strengths, the Mollow quintuplet can be observed in the spectrum with split

sideband tagged by two spin states.

Secondly, instead of resolving the spectrum, we probed the optical transitions

by counting resonantly scattered photons with moderate excitation power. Com-

pared with the differential transmission technique, resonance fluorescence readout

provides better SNR with the same measurement time scale. We carried out n-shot

time-resolved resonance fluorescence measurements on spin-selective transitions to

reveal the electron spin dynamics of the measurement induced back action and the

spin relaxation. The characteristic time TBA for the back action was studied un-

der the control of gate voltage, laser frequency, laser power and external magnetic

field, respectively. Especially the magnetic field dependence identifies the hyperfine

interaction dominating the back action up to 0.6 Tesla, and the heavy-light hole

mixing dominating the case of higher field. The spin relaxation time scale T1 was

also studied under different magnetic fields. As a result, the phonon assisted spin-

orbit interaction is identified to dominate the spin-flip precess by mixing the ground
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SUMMARY

states under the magnetic fields lager than 2 Tesla. Then, we analyzed time scales

Tm, TBA and T1 to investigate the possibility for pursuing single-shot spin readout.

It turns out that, with our current setup, for the case of single quantum dots system,

the condition is TBA < Tm < T1, which implies no electron spin information can be

extracted. The ultimate solution is to suppress the back action. Coupled quantum

dots system is expected to provide this solution.

Thirdly, we had a comprehensive study on charge-spin configurations in the cou-

pled quantum dots system. We established a theoretical model and matched the

simulations to the spectrum we observed from both PL and DT measurements and

explained the electron tunnel coupling events involved.

At the end, we propose a single-shot spin readout measurement base on the

(1e,1e1h) charge-spin configurations in coupled quantum dots system.
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[12] Mete Atatüre, Jan Dreiser, Antonio Badolato, Alexander Högele, Khaled Kar-
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I am indebted to Dr. Mete Atatüre, my second supervisor. He treat me not only

as his first PhD student, but also as his friend and even his younger brother. The

two-year study with him in Cavendish Lab is the most fruitful period I ever have.

The most efficient way for me to get more understanding in physics is to chat with

him. Not only the physics, he also passed me his enthusiasm and commitment to

the research. What I have learnt from him will definitely deeply influence my future

life.

I am very grateful to Prof. Atac Imamoglu for offering me the opportunity to

get my first knowledge of quantum dots in Quantum Photonic group in ETH. I also

especially thank Prof. Peter Schmelcher and Prof. Peter Michler to be my examiners

of my viva.

I will never forget the members of our AMOP/MESS group in west Cambridge.

Dr. Nick Vamivakas and Chaoyang Lu are my best buddies in quantum dots subject.

Without their helps, none of the results in this thesis can be achieved. I would like

to thank Dr. Laurent Lombez and Dr. Yury Alaverdyan for sharing their knowledge,

research experience and delighted time with me. I would also like to thank Tina

Muller and Clemens Matthiesen for their kind helps in the lab work and on the

revision of my thesis.

My deep appreciation also goes to my former and present colleagues in QUO

111



ACKNOWLEDGEMENT

group in Physikalisches Institut, Uni. Heidelberg. I want to thank Prof. Shuai Chen,

Dr. Zhen-Sheng Yuan, Dr. Yu-Ao Chen, Dr. Bo Zhao, Prof. Kai Chen, Prof. Youjin

Deng, and Dr. Thorsten Strassel for insightful discussions about my project. I

especially thank Dr. Fan Yang, Xiaohui Bao, Dr. Cheming Lee and Xiaofan Xu for

their assistance and support during my thesis writing.

For the colleagues outside the institute, I want to thank Dr. Stefan Fält and
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