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Zusammenfassung

Experimantelle Manipulation von photonischer Ver-
schränkung

Die Quanteninformationsverarbeitung (QIV) und ihre Anwendungen im Bereich der

Quantenkommunikation und Quantenrechnung war in den letzten zwanzig Jahren

eines der am stärksten wachsenden Gebitet der Physik. In der Zukunft wird die

QIV beeindruckende Verbesserungen unter anderem auf den Gebieten der Kom-

munikationssicherheit, der Rechengeschwindigkeit und der Fähigkeit zur Simulation

von quantenmechanischen Prozessen erlauben. Diese Dissertation beschreibt vier

Experimente zur Physik der Verschränkung mehrerer Photonen und ihre Anwen-

dung auf dem Gebiet der QIV: Die Implementierung einer deterministischen Quelle

für polarisationsverschränkte Photonenpaare. Die Entwicklung eines Interferome-

ters zur Erzeugung von Viel-Teilchen-Verschränkung mit bis zu sechs Photonen.

Die erzeugte Sechs-Teilchen-Verschränkung wurden dann zur ersten experimentellen

Quanten Teleportation eines zusammengesetzten Zwei-Teilchen Zustandes, zur er-

sten ”Ubertragung von Verschränkung über mehrere Abschnitte und zur ersten

Implementierung eines teleportationsbasierten ‘bedingten-NICHT-Gatters’ für eine

fehlerto- lerante Quantenrechnung verwendet. Die in dieser Dissertation entwickel-

ten experimentellen Techniken sind fundamental sowohl fuer Anwendungen in der

QIV als auch für zukünftige grundlegende Experimente der Quantenmechanik.

Abstract
Experimental Manipulation of Photonic Entangle-
ment

Quantum information processing (QIP) with its applications in quantum communi-

cation and quantum computation has been one of the most rapidly emerging field of

physics over the last twenty years. QIP is promising to allow tremendous improve-

ments in communication security, computational speed and the ability to simulate

quantum mechanical processes. This thesis describes four experiments on the physics

of multi-photon entanglement and its application in QIP: We have implemented an

event-ready source of polarization entangled photon pairs. We have developed an

interferometer to generate multipartite entanglement between up to six photons. By

exploiting the generated six-photon entanglement, we report the first experimental

quantum teleportation of a two-qubit composite system, the first realization of multi-

stage entanglement swapping and the first implementation of a teleportation-based

controlled-NOT gate for fault-tolerant quantum computation. The experimental

techniques developed in the course of this thesis are of great significance as well for

applications in QIP as for future fundamental experiments on quantum mechanics.
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Chapter 1

Introduction

In 1905, basing his work on PlanckŠs quantum hypothesis, Albert Einstein showed

that an electromagnetic wave such as light could be described by a particle, indi-

vidual quanta called ’photon’ carrying a discrete energy dependent on its frequency.

This led to a theory called waveŰparticle duality, in which particles and waves were

neither one nor the other, but had certain properties of both. From Einstein’s simple

postulation was born a flurry of debating, theorizing and testing, and thus, the en-

tire field of quantum physics. Quantum theory was born and, during the twentieth

century, proved to be a successful theory.

Quantum theory and quantum mechanics do not account for single measurement

outcomes in a deterministic way. According to an accepted interpretation of quan-

tum mechanics known as the Copenhagen interpretation, a measurement causes an

instantaneous collapse of the wave function describing the quantum system into an

eigenstate of the observable that was measured. This principle of superposition is

the fundamental basis of quantum mechanics (QM) and a rather counterintuitive

concept to human kind: According to classical physics a system is in one state at a

time. In contrary to this, a quantum mechanical system can be in a superposition

of arbitrary many states with certain probabilities at the same time. QM predicts

probabilities in situations where classical physics predicts certainties. Its correct-

ness was later on proven by several interferometric experiments, e.g. by Young’s

Double-Slit experiment and others [1, 2, 3, 4].

What are the consequences of this superposition principle?

In 1935 Einstein, Podolsky and Rosen [5] performed the following Gedanken-

experiment for the combined system of two or more subsystems: they considered two

distant particles that have interacted in the past and are in a superposition of states

of the combined system. Depending on the choice of measurement of one physical

parameter (e.g. momentum or position) of particle A, particle B will collapse into a

different state. This behaviour, that Einstein called “spooky action at a distance”,

acts instantaneous and is completely independent of the distance between the two

particles. According to its authors the EPR experiment yields a paradox. Either

1. The result of a measurement performed on particle A of the quantum system

1



CHAPTER 1. Introduction

has a non-local effect on the physical reality of the other distant particle B, in the

sense that quantum mechanics can predict outcomes of some measurements carried

out at B;

or...

2. Quantum mechanics is incomplete in the sense that some element of physical

reality corresponding to B cannot be accounted for by quantum mechanics (that is,

some extra variable is needed to account for it.)

They claim that given a specific experiment, in which the outcome of a measure-

ment could be known before the measurement takes place, there must exist some-

thing in the real world, an ”element of reality”, which determines the measurement

outcome. They postulate that these elements of reality are local, in the sense that

they belong to a certain point in spacetime. This element may only be influenced

by events which are located in the backward light cone of this point in spacetime.

Even though these claims sound reasonable and convincing, they are founded on

assumptions about nature which constitute what is now known as local realism.

How to deal with the problem that QM predicts correlations, which violate the

principle of local realism?

The solution came in 1964, when Bell proposed an experimental test of the local

hidden variable model (LHVM), which was invented complete QM to circumvent the

EPR paradox [6]. LHVM assumes that (i) measurement results are determined by

properties the particles already carry before, and independent of, the measurement

(reality), (ii) results obtained in one location are independent of actions performed

in a space like separated place (locality), and (iii) that the measurement apparatus is

not influenced by the hidden variables, which determine the local results (free will).

He found an inequality, which holds for any LHVM , but is allowed to be violated by

QM, since the expectation values for any LHVM and for QM differ for specific sets of

measurements. This “Bell inequality” was first violated experimentally by Aspect et

al. in 1982 [7, 8, 9] and afterwards has been tested in subsequent experiments, which

have overwhelmingly supported QM [10, 11]. However, there still exist experimental

problems, known as ”loopholes”, that affect the validity of these experimental findings

and, in principle, allow other interpretations than the QM one.

Quantum entanglement, this strange phenomenon of QM first described by EPR,

is a possible property of a quantum mechanical state of a system of two or more

objects, in which the quantum states of the constituting objects are linked together

so that one object can no longer be adequately described without full mention of

its counterpart - even though the individual objects may be spatially separated.

This interconnection leads to non-classical correlations between observable physical

properties of remote systems, often referred to as nonlocal correlations. Entangle-

ment is one of the properties of quantum mechanics that caused Einstein and others

to dislike the theory. However, after Bell had recognized that entanglement leads

to experimentally testable deviations of QM from classical physics, entanglement

was recognized as a resource for testing quantum mechanics and with the advent of

2



quantum information theory attracted the attention of many scientists.

Over the past twenty years quantum information processing (QIP) has become

an emerging field of modern physics exploiting entanglement as a new quantum

resource for tasks that cannot be performed by means of classical resources [12].

Entanglement can be manipulated, broadcasted, controlled and distributed [13] and

its intrinsic properties allowed significant progress in many QIP protocols.

QIP can mainly be divided into the two areas of quantum communication and

quantum computation [14, 15]:

• Quantum communication describes the transfer of quantum states over large

distances, which can lead to drastic improvements in security – quantum cryp-

tography [16, 17] – and channel capacity – quantum dense coding [18]. It

further covers the distribution of bi- or multi-partite entanglement between

different parties, separated by large distances [19, 20]. Remarkable experimen-

tal and theoretical effort has been employed to the implementation of different

areas of QIP. Quantum cryptography, in particular quantum key distribution

[16, 17] is an example for quantum communication, which is already at the

verge to commercial use, while as well research on quantum repeaters [21, 22],

essential building blocks for the realization of entanglement distribution over

large distances, made fast progress.

• Quantum computation is dedicated to the implementation of algorithms that

exploit the superposition character of quantum entanglement to dramatically

speed up computational tasks such as a reduction of time needed to search an

unsorted database of N elements. Probably the most famous quantum algo-

rithm is Shor’s algorithm to factorize large numbers [23]. Its introduction in

1994 has triggered tremendous efforts in the new field of QIP, both on the the-

oretical and experimental side. Although, realizations of quantum computers

to implement quantum algorithms are still at the very first stages and a great

deal of fundamental research still lays ahead.

There are several candidates of quite different physical systems that can in prin-

ciple be used to implement QIP, all holding their experimental advantages and dis-

advantages. Promising candidates are, but not limited to, ion traps [24], nuclear

magnetic resonance [25], quantum dots [26, 27], super-conducting devices (Joseph-

son junction) [28] and photons [29].

We try to implement QIP with photons and linear optics for various reasons such

as very strong robustness against de-coherence, extremely fast and accurate imple-

mentations of universal single qubit operations and the vast availability of already

existing electro-optic devices. We exploit spontaneous parametric down-conversion

(SPDC)[30], which is still the best source for entangled photon pairs, together with

basic linear optics elements to generate multi-photon entanglement. With these

3



CHAPTER 1. Introduction

building blocks at hand, we on the one hand conduct experimental tests of the

fundamental nature of quantum mechanics and on the other hand try to design

and develop new techniques and methods necessary for future applications in QIP.

Performing these multi-photon experiments we already experienced the limits of ef-

ficiency introduced by the probabilistic nature of the SPDC process. This motivated

us to implement a novel scheme of a heralded photon source, which still makes use

of the advantages provided by SPDC and at the same time allows to significantly

improve the feasibility and application of the developed techniques for their future

use in QIP.

In this thesis we report the experimental implementation of a heralded source

for entangled photon pairs, the first quantum teleportation of a two-qubit composite

system, the first experimental realization of multi-stage entanglement swapping and

the first implementation of a teleportation-based quantum gate for fault-tolerant

quantum computation. The main contents of the thesis are organized as follow:

Chapter 1 gives a brief introduction to the field of quantum entanglement and

QIP and s short overview over the contents of this thesis.

Chapter 2 presents the theoretical background of some fundamental concepts of

QIP and the necessary experimental prerequisites, which provide the basis for all the

experiments performed in the course of this thesis. In the first section we introduce

quantum bits. In the second section we discuss their manipulation and control,

explain the fundamental concept of quantum interference and how to produce bi-

partite entanglement. In the third section we present the source for entangled photon

pairs used throughout all experiments in this thesis. In section four we discuss the

construction of multipartite entanglement, including some of its classes and their

properties. In section five we introduce ways to detect, classify and verify it.

In Chapter 3 we report the experimental demonstration of a heralded source for

polarization entangled photons. Entanglement sources based on the probabilistic

generation process of SPDC allow demonstrations of a number of quantum proto-

cols, but do not permit on-demand applications, deterministic quantum computing

and significantly limit the efficiency of multi-photon experiments. Therefore the

controlled generation of entangled states is a long-standing goal in quantum infor-

mation processing. Here we present a source for entangled photon pairs generated in

event-ready manner by conditioned detection of auxiliary photons: a scheme, which

profits from the stable and robust properties of SPDC and requires only modest ex-

perimental means. We introduce the experimental setup and evaluate and compare

the performance of the implemented source.

In Chapter 4 we demonstrate the first quantum teleportation of a two-qubit

composite system. Quantum teleportation, a way to transfer the state of a quantum

system from one location to another, is central to quantum communication and

plays an important role in a number of quantum computation protocols Quantum

teleportation of a single photonic state has first been demonstrated in 1997. We

4



depict the design and development of a six-photon interferometer that has been

used in most of the experiments described within this thesis.

In Chapter 5 we report the first experimental realization of multistage entangle-

ment swapping. Entanglement swapping is of fundamental interest since it can be

used to entangle particles that have never physically interacted in the past. Its real-

ization over multiple stages, however, is an essential prerequisite for the implementa-

tion of quantum repeaters. The experimental results clearly show the entanglement

of the final outgoing photon pair.

In Chapter 6 we finally present the first experimental realization of a teleportation-

based controlled-NOT gate that can, in principle, be used for fault-tolerant quantum

computation. The coupling of quantum states to their environment imposes a ma-

jor challenge to the implementation of realistic quantum computers. Quantum error

correcting codes and fault-tolerant quantum gates are thus of significant importance

to QIP.

In Chapter 7 we conclude this thesis by summarizing its main results and provide

an outlook to future work.
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Chapter 2

Photonic Entanglement

Quantum entanglement describes correlations between quantum systems that are

much stronger than any classical correlation could be. It is an essential feature of

quantum mechanics [31] and therefore a fundamental tool in quantum information

processing (QIP): experimental realizations of entangled photon pairs were used to

demonstrate the quantum nature of polarization correlations, to confirm quantum

predictions and falsify semi-classical models, such as test Bell’s theorem and ex-

clude local realistic descriptions of the observed quantum phenomena [6, 7, 8, 9].

It followed the discovery of QIP, partly triggered by the introduction of quantum

cryptography[16, 17]. Quantum entanglement is a fundamental resource for QIP

as a computational source [29], as a quantum channel in quantum communication

(e.g. for quantum state teleportation [32, 33] or quantum dense coding [18, 34]).

In this chapter some basic concepts and procedures of quantum entanglement

and QIP are introduced, which are essential to the experiments performed within

the framework of this thesis. We start with the introduction to quantum bits and the

possibilities of their control and manipulation by the means of linear optics and the

creation of entangled photons. Here we first discuss the meaning of entanglement,

first in bipartite systems giving the definition of the Bell-state basis. We introduce

the source, that we used in our experiments to generate entangled photon pairs. We

then proceed to multipartite entanglement and outline different classes of states. We

show how they can be detected by briefly discussing the experimental realization of

key elements, e.g. the Bell-state analyzer, that were used in all experimental setups.

Finally we discuss the detection, including its technical limitations, and introduce

some measures for existence and quality of quantum entanglement.

2.1 Quantum Bits

In classical information processing the smallest unit carrying information is a bit, a

binary digit taking the value 0 or 1. In analogy, a quantum bit is the state vector of

a two-level system with the basis states |0〉 and |1〉. In contrast to a classical bit a

7



CHAPTER 2. Photonic Entanglement

Figure 2.1: Bloch sphere. A vector from the origin to the surface of the sphere

represents the state of the qubit. |0〉/|1〉 are the eigenstates in the computational

basis, |±〉 = 1√
2
(|0〉 ± |1〉) in the diagonal basis, and |R〉/|L〉 = 1√

2
(|0〉 ± i|1〉) in the

circular basis

quantum bit, commonly know as qubit, can take values that are in a superposition

of the two basis states:

|Ψ〉 = α |0〉+ β |1〉 (2.1)

The pre-factors α and β can be any complex numbers satisfying |α|2 + |β|2 = 1.

A graphic interpretation of a qubit is the Bloch sphere, which is shown in

Fig. (2.1). The state of the qubit is represented by a vector from the origin to

the surface of the unit sphere. The complex nature of the relative phase between α

and β accounts for the three axes given by |0〉/|1〉, |+〉/|−〉 and |R〉/|L〉. Here,

|H〉 = |0〉 , |V 〉 = |0〉,

|+〉 =
1√
2
(|0〉+ |1〉) , |−〉 =

1√
2
(|0〉 − |1〉),

|R〉 =
1√
2
(|0〉+ i|1〉) , |L〉 =

1√
2
(|0〉 − i|1〉) (2.2)

are the three in QIP commonly used orthonormal bases. In analogy to the

polarization state of light they are often called H/V basis, diagonal (|+〉/|−〉) and

8



2.2. Quantum Entanglement

circular (|R〉/|L〉) basis, respectively. Note that, for a qubit in a pure state, the state

vector always has unit length. However, for a qubit in a mixed state, the length is

smaller than unity. For example, the state vector for a completely random qubit is

represented by a point at the origin.

2.2 Quantum Entanglement

2.2.1 Manipulating and Controlling Photonic Qubits

Simple Optical Elements

In our experiments we try to implement QIP with photons and linear optics for var-

ious reasons such as very strong robustness against de-coherence, extremely fast and

accurate implementations of universal single qubit operations, the vast availability

of already existing electro-optic devices and the implementation under modest ex-

perimental requirements. As already mentioned, aside from photons of course there

are also other promising candidates for the implementation of QIP, such as ion traps

[24], nuclear magnetic resonance [25], quantum dots [26, 27] and super-conducting

devices (Josephson junction) [28], which all provide their experimental advantages

and also disadvantages, e.g liquid helium cooling or large volume setups.

The possibility of applying coherent control of a photonic qubit to perform QIP

tasks is based on the fact that the information can be encoded in the polarization

degree of freedom of the individual photon and that this photon can be manipulated

with a high precision of about 99% by simple optical elements. Aside from wave

retardation plates (their working principle can be found in standard textbooks as

[35]), two main optical elements for photonic manipulation are polarizing and non-

polarizing beam splitters.

The BS is polarization independent and is characterized by the following trans-

formation on the incoming modes a and b

a→ 1√
2
c+

i√
2
d

b→ i√
2
c+

1√
2
d (2.3)

For the standard 50:50 BS the particle will be found with equal probability (50%)

in output mode c or d, independently from the incoming mode. The factor i in Eq.

2.3 is a consequence of unitary and describes the physical effect of a phase jump

upon reflection at the semi-transparent mirror [36].

Now suppose that two photons, 1 and 2, enter the BS: photon 1 in the state

|Ψ〉1 = α|H〉 + β|V 〉 (|α|2 + |β|2 = 1) enters in input mode a, and photon 2 in

the state |Ψ〉2 = γ|H〉 + δ|V 〉 (|γ|2 + |δ|2 = 1) enters in input mode b. For this

general case, four different possibilities arise: both particles are (1)reflected or (2)

9



CHAPTER 2. Photonic Entanglement

Figure 2.2: Function of the BS. The BS coherently transforms two spatial input

modes a and b into two output modes c and d. The four possibilities how two in-

coming photons can leave the BS are displayed.

10



2.2. Quantum Entanglement

Figure 2.3: Function of the PBS. The PBS transmits horizontal, and reflects ver-

tical polarization. If the two photons have identical polarization they will always exit

at different ports, such that there will be exactly one photon in each output mode. If

the two photons have opposite polarization they will exit at the same port, such that

there will be two photons in one of the ports and therefore none in the other.

transmitted, (3) the first particle is reflected and the second one is transmitted, and

(4) the first one is transmitted and the second one is reflected. If the two photons

have the same frequency and arrive at the BS simultaneously, we have to consider

coherent superpositions of the amplitudes for these different possibilities.

For photons 1 and 2 passing through the BS their spatial modes will undergo a

corresponding unitary transformation. The two-photon state thus evolves into

|Ψ〉12 = 1√
2

[(α|H〉1 + β|V 〉1)(i|c〉1 + |d〉1)⊗
(γ|H〉2 + δ|V 〉2)(|c〉1 + i|d〉1)]

(2.4)

Because the total two-photon state, including spatial and spin part, needs to obey

bosonic statistics, we also need to include its exchange wave function to symmetrize

the state to the exchange of the labels 1 and 2. Such the final outgoing state is

|Ψ〉 = |Ψ〉12 + |Ψ〉21 (2.5)

After this transformation photons 1 and 2 are not distinguishable anymore. In

the following we will see that we have produced a two-photon state which already

allows us to project it onto a maximally polarization entangled state.

The polarizing beam splitter (PBS) has two spatial input modes a and b and

two output modes c and d (Fig. 2.3). If a photonic qubit in the general state |Ψ〉 =

11
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α|H〉 + β|V 〉is directed onto a PBS it will be found in the transmitted (reflected)

beam with probability |α|2 (|β|2)

(α|H〉+ β|V 〉) |a〉 → α|H〉|c〉+ iβ|V 〉|d〉
(α|H〉+ β|V 〉) |b〉 → iβ|V 〉|c〉+ α|H〉|d〉 (2.6)

where |a〉 (|b〉) describes the spatial quantum state of the photon in input beam

a(b). The PBS perfectly transmits (reflects) horizontally (vertically) polarized light.

Here again, the factor i in front of the reflected term is a consequence of unity and

corresponds to a phase jump upon reflection.

Thus the input state of the two photons will undergo the following transformation

|Ψ〉12 = 1√
2

[(α+ β)|H〉1|c〉1|H〉2|d〉2 + i(γ + δ)|H〉1|c〉1|V 〉2|c〉2
+i(γ − δ)|V 〉1|d〉1|H〉2|d〉2 + (α− β)|V 〉1|d〉1|V 〉2|c〉2]

(2.7)

If the two photons incident into the beam splitter have identical polarization they

will always exit in different directions, whereas if they carry orthogonal polarization

they will both exit into the same output mode and none in the other. This way the

PBS acts as a polarization comparer.

By placing two half wave plates (HWP) before the entrance facets of the PBS,

we can retard the polarization of the input photons to the diagonal basis. Assuming

the two incident photons are now both in the state 1√
2
(|H〉+ |V 〉) the PBS acts the

same way as the 50:50 BS. Thus also the PBS is suitable for creating entanglement.

With these simple optical elements, which exploit the concept of interference,

large optical networks can be constructed to map an arbitrary input state onto an

output state. In the following chapter we will discuss these quantum interference

phenomena in more detail before we will proceed to discuss, what actually is entan-

glement.

2.2.2 Quantum Interference

The Hong-Ou-Mandel Interference

Quantum interference phenomena occur due to the indistinguishability of photons.

Since photons obey the bosonic statistics, all interference effects which result from

their indistinguishability can be obtained by the symmetrization of the amplitudes

of the final state. Because the photons are not labelled their exchange will not lead

to a change of the sign of their amplitude. It is convenient to describe the HOM

interference in terms of the formalism of bosonic creation and annihilation operators,

as its algebra already takes into account this symmetrization.

We start with the most elementary optical interference effect: the Hong-Ou-

Mandel (HOM) interference at a beam splitter. This photon-photon interaction,

which is also exploited in the standard projective BSM measurement, is required

12
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Figure 2.4: Two-photon interference of “Hong-Ou-Mandel-dip ” kind. Two pho-

tons, each from a pair in the Bell state |Φ+〉 are interfered on a PBS and detected in

the diagonal basis. The remaining two photons are used as triggers to reduce noise

contributions. The data points are fitted with Gaussian curves to guide the eye.

Outside the coherence length there is no interference because of the temporal distin-

guishability. Maximum interference occurs at zero delay between the two photons at

the interference PBS.

13
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for the realization of two photon quantum logic gates [29, 37]. As we have seen

previously, upon reflection off a symmetric 50:50 beam splitter (we now call the

input modes a1 and a2 and the output modes b1 and b2) a photon picks a phase shift

i. Thus, if we have two spectrally identical photons arriving simultaneously at the

opposite input ports 1, 2 of the beam splitter, the initial state â†1â
†
2|Ω〉 is transformed

into
1√
2
(â†1 + iâ†2)

1√
2
(â†2 + iâ†1)|Ω〉 = i

1

2
(â†21 + â†22 )|Ω〉.

Since i2 = −1, which results in the cancellation of the two terms describing the cases,

in which the photons exit through different exit ports. This cancellation occurs due

to the assumed perfect indistinguishability of the two photons â1â2 = â2â1. The

final state reads i1
2
[(â†1)

2 + (â†2)
2]|Ω〉, namely, the two photons will exit the BS at

the same output port. The so-called photon’s bunching effect due to the bosonic

character of photons will thus not allow any coincidences between the output ports.

If the photons are not indistinguishable we shall describe them by annihilation

operators â and b̂), so that the initial state is given by â†1b̂
†
2|Ω〉. Since a 6= b there is

no cancellation of the terms, also the terms 1
2
(â†1b̂

†
2− â

†
2b̂

†
1)|Ω〉, in which each photon

exits through a different exit port contribute. Therefore the Hong-Ou-Mandel effect,

which depends entirely on the indistinguishability of photons, will not appear.

The bunching effect of two photons described above constitutes the basis of the

Hong-Ou-Mandel dip in coincidences recorded between two single-photon detectors

in modes b1 and b2 as function of the flight time difference of the incident photons;

no coincidence can be observed for zero flight time difference for the usual sym-

metric spatial state of the two photons. The two incident photons can also be in

an antisymmetric spatial state (which occurs if the two-photon polarization state is

also antisymmetric). In this case, the two amplitudes interfere constructively. This

results in the two photons always exiting in separate beams for zero flight time dif-

ference, namely, a coincidence peak instead of dip appears. This effect is thus called

photon anti-bunching.

As discussed in the previous chapter it is also possible to create quantum inter-

ference at a PBS. In this case we will also find a similar kind of HOM dip. The

dip shown in Fig. 2.4 is recorded at one of our interference PBS. In the experiment

a translation stage with a resolution of 0.5 nm allows us to adjust the flight time

difference between the interferometric arms.

2.2.3 Bipartite Entanglement and Bell-States

We have seen in the chapter 2.2.1 that we can use the HOM interference at a BS or

PBS to make two single photons indistinguishable. In the following we will define

what a so called maximally entangled state is and discuss its fascinating features,

as bipartite system already allow to observe many of these fascinating features of

quantum entanglement and observe some fundamental predictions of QM. Moreover

we will see, that many operations in QIP can be reduced to two particle operations.
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We start with the most simple case, the entanglement of two single particles,

called bipartite entanglement. As we have seen in the previous two sections, by

interfering two spectrally identical photons at a BS we can make them indistin-

guishable and delete any information about the input port of the photon (Welcher-

Weg-Information). The full expansion of the final outgoing state behind the BS

given by Eq. 2.5 is

|Ψ〉 = 1
2
√

2
[(αγ + βδ)(|H〉1|H〉2 + |V 〉1|V 〉)2 × i(|c〉1|c〉2 + |d〉1|d〉2)

+(αγ − βδ)(|H〉1|H〉2 − |V 〉1|V 〉2)× i(|c〉1|c〉2 + |d〉1|d〉2)
+(αδ + βγ)(|H〉1|V 〉2 + |V 〉1|H〉2)× i(|c〉1|c〉2 + |d〉1|d〉2)
+(αδ + βγ)(|H〉1|V 〉2 − |V 〉1|H〉2)× (|d〉1|c〉2 − |c〉1|d〉2)]. (2.8)

The combined state of two qubits forms a four-dimensional Hilbert space. It can

be easily seen, that by applying an appropriate measurement protocol the resulting

two-photon state can be projected onto any of the four maximally entangled Bell-

states

|Φ±〉12 =
1√
2
(|H〉1|H〉2 ± |V 〉1|V 〉2)

|Ψ±〉12 =
1√
2
(|H〉1|V 〉2 ± |V 〉1|H〉2) (2.9)

The Bell states can not be expressed as a product of two single-particle wave

functions. Particles in a Bell state are thus non-separable, they are entangled!

To emphasize the importance of this characteristic we will perform a little Gedanken-

experiment. Let us assume that two friends, in QIP commonly known as Alice

and Bob, choose to share a pair of qubits that are in the entangled Bell state |Φ+〉
(e.g. polarization-entangled photons or spin-entangled electrons). Now Alice chooses

to measure her qubit in the computational basis yielding either a |H〉 or |V 〉 with

equal probability. However, since her qubit was originally entangled with Bob’s

qubit, the combined state collapses to one of the two separable terms of |Φ+〉 (|H〉|H〉
or |V 〉|V 〉). Therefore, Bob’s measurement will now with certainty yield the same

result that Alice has obtained. In other words, Alice’s measurement has changed

the combined state and thereby the state of Bob’s qubit.

Either one of Alice and Bob can transform the combined system to another Bell

state without any help or even knowledge of the other, just by applying a local (only

at her/his side) unitary (LU) Pauli operation

Î =

(
1 0

0 1

)
, σ̂x =

(
0 1

1 0

)
,

σ̂y =

(
1 0

0 −1

)
, σ̂z =

(
0 −1

1 0

) (2.10)
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If, for example, Alice wants to change the state from |Φ+〉 to |Φ−〉, all she needs

to do, is to apply a unitary σ̂z Pauli operation to her qubit. Likewise, she can

transform the state into the other two Bell states by applying a σ̂x or σ̂y operation,

respectively. The Bell states are thus equivalent under LU.

One may now claim that the same results could have been obtained by simply

using a machine that randomly distributes a pair of equal classical bits to Alice and

Bob. Then Alice’s result is again completely random and is always in a perfect

correlation to Bob’s result. However, if Alice and Bob are also allowed to measure

their qubit in the diagonal basis, things become different. Some measurement results

can no longer be explained by classical physics. To understand this, consider the

following scenario: Alice and Bob again share a pair of qubits in the state |Φ+〉.
They now choose to measure their qubit in the computational or diagonal basis

independently of each other. There are thus four possible combinations:

Alice’s choice Bob’s choice measurement

of basis of basis results are

1 |0〉/|1〉 |0〉/|1〉 correlated

2 |0〉/|1〉 |+〉/|−〉 not correlated

3 |+〉/|−〉 |0〉/|1〉 not correlated

4 |+〉/|−〉 |+〉/|−〉 correlated

(2.11)

The first row describes the case already discussed above. In the second case Alice’s

measurement again projects the combined state onto |0〉|0〉 or |1〉|1〉. However, since

Bob now decides to measure in the diagonal basis, he obtains |+〉 or |−〉 with equal

probability. Alice’s and his results are thus not correlated. The argument for the

third case works analogous. The measurement results in the last case on the other

hand are perfectly correlated. These results become obvious by rewriting |Φ+〉 in

the diagonal basis:

|Φ+〉 =
1√
2
(|+〉|+〉+ |−〉|−〉) (2.12)

Since Alice and Bob both measure in the diagonal basis, this case is identical to the

first case up to a simple transformation of basis. However, under no circumstances

are we able to construct a classical machine that yields the combined measurement

results for the four cases of Table (2.11).

The projection of the combined state by Alice’s measurement acts instantaneous

and is completely independent of the distance between Alice and Bob and such was

considered as a “spooky action at a distance” violating locality. Or, as Einstein,

Podolsky and Rosen (EPR) [5] argued, that a physical property of a system can-

not be considered real if its value is undefined until measurement, and therefore

entanglement contradicts realism.
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However, in our above example the value of Alice’s qubit is undefined until she

decides to measure it. Alice’s measurement forces the combined state to collapse and

thereby changes the state of Bob’s qubit independently of Bob’s location. Due to

this controversy EPR reasoned that quantum mechanics (QM) must be incomplete.

This contradiction is called the EPR paradox. To solve this problem, local hidden

variable theories (LHV) were suggested. The idea is that all properties of a physical

system are well defined at all times by a set of variables that is not or not yet

accessible to us. Hence, no outcome of a measurement is random, but already

predetermined by these variables. In 1964, Bell proposed an experimental test [6]

for LHV theories that were considered to complement QM and thus to circumvent

its counterintuitive characteristics. He noticed that the expectation values for any

LHV and QM differ for specific sets of measurements. More precisely, he formulated

an inequality, which holds for any LHV, but is allowed to be violated by QM. This

“Bell inequality” was first violated experimentally by Aspect et al. in 1982 [7, 8, 9].

However, there are two technical limitations that impose severe drawbacks on

most experimental setups and in principal leave the back door open for some other

interpretation than the quantum mechanical one.

1. The detector efficiency loophole. In many setups based on photons, photo-

detectors detect photons only in a fraction of the experiments, while those

experiments in which there are no photons detected (no ”clicks”) go unnoticed.

We assume, naturally, that the unnoticed experiments have the same statistical

properties as the noticed ones. However, a so far unknown mechanism could

cheat us in this respect. It could happen, that all the experiments together

would not violate a Bell inequality, however, the subset, for which our detectors

click, violate it [38].

2. The locality loophole. Ideally, before each correlation measurement the circuits

connected to the detectors should decide locally which operator to measure.

This has to be done such that the detectors cannot communicate their choice

if we assume that the speed of this communication cannot be larger than the

speed of light. In practice this means that the event of deciding the measure-

ment direction for one of the detectors must be space-like separated from event

of reading out the measurement on the other detector.

When we experimentally test Bell Inequality, these two loopholes make it in

principle still possible that the experimental results can be explained with a LHV

model. Closing these loopholes still is a technically challenging task.

Note that despite the violation of realism and locality, quantum entanglement

can not be used to contradict special relativity. Since it still requires a classical

communication channel Bob to learn anything about Alice’s measurement, super-

luminal information transfer is not possible.
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Figure 2.5: Hadamard gate. The unitary single-qubit gate transforms states from

the computational basis to the diagonal basis.

Figure 2.6: Controlled-NOT (C-NOT) gate. The unitary two-qubit gate flips the

second qubit (target) under the condition that the first qubit (control) is a |1〉.

Preparation of Bell-States

Any change introduced to a quantum state when passing through an optical circuit

can be described using the language of quantum computation. Analogous to the way

a classical computer is build from an electrical circuit containing electric wires and

logic gates, a quantum computer is build from a quantum circuit containing wires

and quantum gates to transfer and manipulate the quantum state. To introduce this

concept, in this section we will describe the quantum circuit, which is able to create

and measure a Bell state.

In many QIP protocols particle pairs in one of the four Bell states are used as an

entanglement resource. Also projective measurements of particles onto the Bell basis

are performed to entangle other particles, which can be spatially separated and do

not share a common past. The properties of the individual qubits of an maximally

entangled pair are completely undefined. Since it is not straight forward to prepare

(or to identify) them, a quantum circuit consisting of Hadamard and controlled-NOT

gates is needed for this task. The action of a Hadamard gate (Fig. 2.5) is equivalent

to the following unitary transformation

|0〉 → 1√
2
(|0〉+ |1〉)

|1〉 → 1√
2
(|0〉 − |1〉) (2.13)
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Figure 2.7: Quantum circuit for generation and detection of Bell states. The inputs

and outputs are two qubits in the computational basis, respectively.

The controlled-NOT (C-NOT) gate (Fig. 2.6) flips the second of two qubits, if

and only if the first is |1〉, namely

|0〉|0〉 → |0〉|0〉
|0〉|1〉 → |0〉|1〉
|1〉|0〉 → |1〉|1〉
|1〉|1〉 → |1〉|0〉. (2.14)

Now consider the network shown in Fig. (2.7). Under the action of the gates on

the left-hand side of the network, the input two-qubit states will undergo a series

of unitary transformations. For example, after passing through the two gates the

input state |0〉|0〉, will be transformed into:

|0〉|0〉
Hadamard
−−− −→ 1√

2
(|0〉|0〉+ |1〉|0〉)

C−NOT
−−− −→ 1√

2
(|0〉|0〉|+ |1〉|1〉) = |Φ+〉

(2.15)

We have thus been able to create one of the four Bell states. Correspondingly,

the network can prepare the two qubits in one of the remaining three Bell states:

|1〉|0〉 −→ 1√
2

(|0〉|0〉| − |1〉|1〉) =
∣∣Φ−〉

|0〉|1〉 −→ 1√
2

(|0〉|1〉|+ |1〉|0〉) =
∣∣Ψ+

〉
|1〉|1〉 −→ 1√

2
(|0〉|1〉| − |1〉|0〉) =

∣∣Ψ−〉
(2.16)

The right hand side of the network shown in Fig. 2.7 then corresponds to the

measurement of the Bell state by disentangling the state. This way the Bell mea-

surement is reduced to two single particle measurements.
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Before we proceed to the creation of multi-partite entanglement we will first intro-

duce a source for bipartite entanglement, that we used in all experiments throughout

this thesis. Bipartite entanglement can be generated by an decay process of a single

photon inside a non-linear crystal. The output of this decay process will be a pair of

photons in a maximally entangled Bell state. After detailed discussion of the conver-

sion process and the technical requirements, that are needed to build such a source,

we will afterwards continue with the discussion how one can use these maximally

entangled pairs to construct multipartite entanglement.

2.3 Generation of Entanglement

In the previous chapters we have seen that entanglement can be generated from

single photons by applying an appropriate optical circuit. But there exists also a

source, which produces photons in a maximally entangled state, provided we obey

some technical conditions, e.g. filtering spatial and frequency modes.

2.3.1 Spontaneous Parametric Down Conversion (SPDC)

In this section, we will describe the process of spontaneous parametric down-conversion,

the source for entangled photon pairs that was used for all experiments performed

in the course of this thesis. SPDC is still the best source for producing entangled

photon pairs with sufficient intensity and in good purity. In the experiment, the

desired polarization-entangled state is produced directly out of a single nonlinear

crystal [BBO (β-barium-borate)], which is a non-centrosymmetric crystal with non-

linear electric susceptibility. In such a medium, an incoming photon can decay inside

the crystal with relatively small probability of p ≈ 0.001 into two photons in a way

that energy and momentum are conserved. In the following we will describe a sim-

ple technique to produce polarization-entangled photon pairs using the process of

non-collinear type-II parametric down-conversion [30].

The generated photons are emitted into two cones with opposite polarizations

(Fig. 2.8) while their emission directions [30, 39] always add up to the momentum

of the pump photon. Thus, the emission direction of each individual photon is

completely uncertain within the cone, but once one photon is registered, and thus

its emission direction is defined, the other photon is found just exactly opposite with

respect to the pump beam on the other cone. Thus, at the intersections â and b̂ the

polarization of neither photon is defined, but what is defined is the fact that the two

photons have to have different polarizations.

Of course, during the SPDC process also more than one entangled photon pair

can be generated. The Hamiltonian governing the down-conversion process in the

weak conversion regime describes two independent processes: the generation and

the annihilation of a photon pair in the output modes âx; b̂y or ây; b̂x, where indices

x and y denote the polarization. The two processes add coherently with opposite
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Figure 2.8: Principle of type-II parametric down-conversion from a β-barium-

borate crystal (BBO). Inside the nonlinear crystal the incoming pump photon decays

spontaneously (with a probability of p ≈ 0.001) into two photons. The two down-

converted photons are emitted into cones with orthogonal polarization. Each photon

is e. The photon of the top cone is vertically polarized while its exactly opposite

partner in the bottom cone is horizontally polarized. At the intersection of the cones

their polarizations are undefined; all that is known is that they have to be different,

which results in polarization entanglement between the two photons in intersections

A and B.
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probability amplitudes. Assuming the effective dimensionless interaction time of the

UV pulse in the photonic crystal is r, we can decompose the output state into terms

that contain a fixed number of down-converted photons [40, 41]

|Ψ〉 = exp[r(â†xb̂
†
y − âxb̂y)− r(â†y b̂

†
x − ây b̂x)]|vac〉 (2.17)

=
inf∑

n=0

λn|Ψn〉 (2.18)

with

λn =
√
n+ 1(tanhn r/ cosh2 r). (2.19)

being the probability amplitude of generating n photon pairs. From Eq. 2.18 one

can see that the complete emission of the down conversion process is a superposition

of all n-pair emissions.

The value for the dimensionless interaction parameter r is not easy to obtain

theoretically, since it contains many parameters that depend on the structure of the

crystal and its non-linear properties. That’s why we derived the value for λ1 from

our experimental one pair rate per second according to

λn,exp =

(
# coinc/s
# pulses/s

)n

×
(

1

(detection efficiency)2

)n

For n = 1 just multiplying the number of two photon coincidences per pulse with

the 1/detection efficiency for the pair (we only detect a fraction of the generated

photons) will leave us with the creation probability for one pair. The number of

pulses per second is determined by the repetition rate of the laser. From λ1 we then

calculated r. The probabilities for higher order emission can also be calculated by

Eq. 2.3.1 assuming that, as a first order approximation, for the creation probability

of n pairs holds pn = pn
1 .

From the theoretical formular given in Eq. 2.19 (using the experimentally derived

value for r), as well as from Eq. 2.3.1 using only the experimental values, we will

obtain the following probabilities λn for the emission of n = 1, 2, 3, 4 pairs per UV

pulse:

λn theoretical estimation experiment value

λ1 0.0467 0.0468

λ2 0.00172 0.00219

λ3 0.00000565 0.0000102

λ4 0.000001738 0.00000479
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The result shows that our experimental values are in the same order as the theoret-

ically calculated values using an experimentally derived value for r.

Starting from Eq. 2.18 the normalized n-pair wave function then takes the fol-

lowing form

|Ψn〉 = 1√
n+1

∑n
m=0(−1)m|n−m,m;m,n−m〉 (2.20)

= 1
n!
√

n+1
(â†xb̂

†
y − â†y b̂

†
x)

n|vac〉. (2.21)

The occupation numbers n,m in the first line correspond to the to the ordering

of the modes as |âx, ây; b̂x, b̂y〉. So the total quantum mechanical state of the SPDC

emission is a superposition of all nth order pairs in the emission modes.

For simplicity, let’s step back to the case n = 1: Measurement on each of the

individual photons is totally random and gives with equal probability vertical or

horizontal polarization. But once one photon, for example photon A, is measured,

the polarization of the other photon B must be orthogonal! Choosing an appropri-

ate basis, e.g. |H〉 and |V 〉, the state at the two intersections A and B is thus a

superposition of |H〉|V 〉 and |V 〉|H〉

1√
2
(|H〉A|V 〉B + eiα|V 〉A|H〉B) (2.22)

where the relative phase α arises from the crystal birefringence and an overall phase

shift is omitted.

Using an additional birefringent phase shifter the value of α can be adjusted,

e.g. to the values 0 or π. A net phase shift of π may be obtained by a 90◦ rotation

of a quarter wave plate in one of the paths. Similarly, a half wave plate in one path

can be used to change horizontal polarization to vertical and vice versa. One can

thus very easily produce any of the four Bell states of Eq’s. (2.9).

The birefringent nature of the down-conversion crystal complicates the actual

entangled state produced, since the ordinary (o) and extraordinary (e) photons have

different velocities inside the crystal, and propagate along different directions even

though they become collinear outside the crystal. The resulting longitudinal and

spatial walk-offs between the two terms in the state of Eq. (2.22) are maximal for

pairs created near the entrance face, which consequently acquire a relative time

delay δT = L(1/uo − 1/ue) (L is the crystal length, and uo and ue are the ordinary

and extraordinary group velocities, respectively) and a relative lateral displacement

d = L tan ρ (ρ is the angle between the ordinary and extraordinary beams inside

the crystal). If the longitudinal walk-off δT ≥ τc, the coherence time of the down-

conversion light, then the terms in Eq. (2.22) become, in principle, distinguishable

by the order in which the detectors would fire, and no interference will be observable.
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Similarly, if d is larger than the coherence width, the terms can become partially

labelled by their spatial location.

Because the photons are produced coherently along the entire length of the crys-

tal, one can completely compensate for the spatial and longitudinal walk-off [42].

After compensation, interference occurs pairwise between processes where the pho-

ton pair is created at distances ±x from the middle of the crystal. The ideal com-

pensation is to use two crystals, one in each path, which are identical to the down-

conversion crystal, but only half as thick. If the polarization of the light is first

rotated by 90◦ (e.g. with a half wave plate) and then send through the compensation

crystals, which are oriented along the same direction as the down conversion crystal

itself, the retardation between the o and e components is exchanged and complete

spatial and temporal indistinguishability is restored. In the following experiments

we always slightly tilted the orientation of one of the compensation crystals to tune

the relative phase α = π.

The BBO crystal in our experiments is 2.0mm thick and was cut at θpm = 43.5◦

(the angle between the crystal optical axis and the direction of the pump beam).

To optimize the coupling efficiency, the cones have to intersect with orthogonal

tangents, which was the case, if the cone-overlap directions and the direction of the

pump beam include a 3◦. The transverse walk-off d (0.2mm) was negligible compared

to the coherent pump beam width (2mm). However, it was necessary to compensate

for longitudinal walk-off of δT = 260fs, while the coherence length τc, determined by

the interference filters centered at 780nm and a bandwidth of 3.2nm (FWHM), was

at about of the same order. Therefore we used an additional BBO crystal of 1.0mm

thickness ( θpm = 43.5◦) in each path, preceded by a half wave plate to exchange the

roles of the horizontal and vertical polarizations.

2.3.2 A Stable High-Intensity Entangled Photon Source

Photons are robust against de-coherence and high precision unitary transformations

on photons can be carried out with linear optical devices, while various efforts have

been made to greatly improve the brightness and stability of the entangled pho-

ton sources. Therefore in the presented experiments we chose to use polarization-

entangled photon pairs generated by parametric down-conversion [30].

A natural way to obtain a brighter entangled photon source is to increase the

power of the ultraviolet (UV) light necessary for parametric down-conversion. To

achieve this, we needed a more powerful ultra-fast infrared (IR) laser system for the

up-conversion process: we have used an all-solid-state CW laser Verdi-V18 to pump

a modified mode-locked Ti:sapphire laser system Mira900-HP (Mira) as is shown in

Fig. (2.9). Unfortunately, a brighter pump laser into the Mira cavity will make the

output IR pulse unstable. A new output coupler with higher transmission efficiency

is used in the cavity to stabilize the output laser. Moreover, we constantly flush the

Mira’s Ti:sapphire crystal with nitrogen of highest purity in order to keep it clean,

24



2.3. Generation of Entanglement

Figure 2.9: Method to increase the power of the ultraviolet (UV) light. A modi-

fied mode-locked Ti:sapphire laser (MIRA), pumped with an all-solid-state CW laser

Verdi-V18 (operating at 14W), is used to produce high-intensity ultra-fast infrared

(IR) light pulses. The IR light pulse passes through the LBO crystal to generate via

up-conversion the UV pulse necessary for parametric down-conversion. Behind the

LBO, two cylindrical lenses with orthogonal axes, (one horizontal and one vertical)

are used to shape and focus the ultraviolet beam and five dichroic mirrors (DM) are

used to separate the UV from the IR light.

Figure 2.10: Performance of the LBO crystal. Measured two-fold coincidences with

and without moving the translation stage of the LBO up-conversion crystal over time.
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have constantly low humidity and provide highest temperature stability in addition

to the improved water cooling cycle. After these innovations, we achieved an ultra

fast IR pulse with an output power of about 2.9W with the Verdi-V18 operated at

14W, which is almost twice as high as before.

The high power IR pulse was properly focussed on a LiB3O5 (LBO) crystal to

achieve the best up-conversion efficiency. To avoid damage to the LBO, caused by

the focussed laser beam, the LBO is mounted on a motorized translation stage and

will be moved by a distance of 10 µm to another point once the reference - single

count rate of chosen detector - is below a certain threshold. To demonstrate the

advantage of this technique, we measure the two-fold coincidence count rates over

time, first without and then with moving the translation stage of the LBO. As can

be observed in Fig. (2.10), our feedback control system greatly improves the stability

of the down-conversion rates. Since back-reflection of the LBO into the Mira system

can destroy the mode-lock condition, perfect control of the LBO motion is crucial.

Due to the brighter IR pulse we needed better filtering to separate the UV from

the IR light. Therefore we installed two additional dichroic mirrors (to have a total

of seven) in comparison to former experiments, to decrease the IR noise introduced

into our experimental cycle.

To have a better collection efficiency of entangled photon pairs, we significantly

shortened the distance between the BBOs and the fiber couplers to make our setup

more compact. The best collection efficiency was achieved at a distance of 55 cm.

Besides the improvement in collection efficiency, a compact setup also helps to sig-

nificantly improve the stability, especially for the interferometer based experiments.

In the experiments, which use more than one BBO we optimized the collection

efficiency for all three entangled photon pairs by choosing a 10 cm focus lens between

the BBOs to refocus the ultraviolet pulse, such that it has the same beam parameters

in all BBO pumping processes. As we discovered stability problems with the 20 cm

radius concave mirror behind the second BBO, we later on exchanged this one by

an additional 10 cm lens and at third BBO to create the third pair. With these

modifications, we achieved a stable high-intensity entangled photon source.

2.4 Multipartite Entanglement

The interest to create and observe entanglement of more than two particles orig-

inates from the possibility to observe dramatic conflicts between on the one hand

side EPR’s ideas and local realism and quantum mechanics on the other side [43].

Tests of quantum mechanics that are conceptually different from standard bipartite

Bell tests become possible with multipartite entanglement. For example all-versus-

nothing tests with tripartite systems do not violate any inequalities but yield expec-

tation values that are genuinely different for quantum and classical physics [44, 45].

Besides the interest in fundamental physics, multipartite entanglement attracts a lot

of research as it is the most important resource for many quantum computation algo-
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Figure 2.11: Six-photon polarization entanglement source. Two diagonally polar-

ized photons, one at = 45◦ and one at −45◦, originating from an entangled pair each

are interfered on a PBS. Due to the fact that a PBS always transmits horizontally

polarized and reflects vertically polarized light, a signal in all six output modes de-

tects the occurrence of a six-photon GHZ-state. F denotes the narrow band width

filters, D the detectors.

rithms and protocols such as Grover’s search algorithm for unsorted databases [46],

Shor’s algorithm for factoring large numbers [23] and the Deutsch-Jozsa algorithm

[47].

2.4.1 Construction of multi-photon entanglement

While for the implementation of the heralded entanglement source we used a higher

order emission of the SPDC process from one photonic crystal, for the other multi-

photon experiments performed throughout this thesis we constructed the multi-

photon entanglement by interfering photons from different SPDC pairs according to

the scheme presented in Fig. 2.12

As discussed in chapters 2.2.1, 2.2.2 and 2.2.3 the interference of two photons on

a BS or a PBS will delete any information about the origin of the single photon and

result in an entangled two-photon state. In our experiments we used an extension

of the scheme to create four-photon polarization entanglement, which was originally

proposed by Zeilinger et al. and first implemented by Pan and Zeilinger [48, 49]

To explain the working principle we start with the emission of only two EPR

sources: for simplicity consider the two sources emitting one pair each in the same

entangled state 1√
2
(|H〉|H〉 + |V 〉|V 〉). Interfering two photons, one photon from

each pair, at a PBS will result in the state

1
2
(|H1〉|H2〉|H3〉|H4〉+ |V1〉|V2〉|V3〉|V4〉

+|H1〉|H2〉|V3〉|V4〉+ |V1〉|V2〉|H3〉|H4〉). (2.23)
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Only for the superposition |H1〉|H2〉|H3〉|H4〉+ |V1〉|V2〉|V3〉|V4〉 we will observe a

fourfold coincidence in the appropriate detectors (either only all detectors detecting

H or only all detectors detecting V fire) each of the four arms. For the moment

it is sufficient to know that this state resembles a four-photon Greenberger-Horne-

Zeilinger (GHZ) state [44]. In the following chapter we will define, what a GHZ

state is and discuss its properties. Experimentally we cannot distinguish the GHZ

state from the really prepared full state due to the finite detector efficiency. Even if

we would be able to only generate full GHZ states we could only detect a fraction of

them. Thus we conclude that a conditional GHZ state is sufficient to experimentally

demonstrate all features of a full four-particle GHZ state.

Now we can easily extend this scheme to six photons: adding another EPR source

emitting a third photon pair in the state 1√
2
(|H〉|H〉+|V 〉|V 〉) and following the same

procedure will also allow us to prepare

1
2
(|H1〉|H2〉|H3〉|H4〉+ |V1〉|V2〉|V3〉|V4〉

+|H1〉|H2〉|V3〉|V4〉+ |V1〉|V2〉|H3〉|H4〉)
⊗

1√
2
(|H〉|H〉+ |V 〉|V 〉)

= 1
2
√

2
(|H1〉|H2〉|H3〉|H4〉|H5〉|H6〉+ |V1〉|V2〉|V3〉|V4〉|V5〉|V6〉

+|V1〉|V2〉|V3〉|V4〉|H5〉|H6〉+ |H1〉|H2〉|V3〉|V4〉|H5〉|H6〉
+|V1〉|V2〉|H3〉|H4〉|H5〉|H6〉+ |H1〉|H2〉|H3〉|H4〉|V5〉|V6〉
+|H1〉|H2〉|V3〉|V4〉|V5〉|V6〉+ |V1〉|V2〉|H3〉|H4〉|V5〉|V6〉) (2.24)

Here only for the superposition |H1〉|H2〉|H3〉|H4〉|H5〉|H6〉+|V1〉|V2〉|V3〉|V4〉|V5〉|V6〉,
which resembles a six-photon Greenberger-Horne-Zeilinger (GHZ) state, we will ob-

serve a sixfold coincidence in all the appropriate detectors (either only all detectors

detecting H or only all detectors detecting V fire) each of the six arms.

To ensure that when detecting the photons at least some of them cannot be

identified anymore, neither on the basis of their path nor their creation time, we

moreover have to ensure that their coherence time will be artificially prolonged by

using the appropriate narrow band with filters to be larger than the pulse length,

during which they were created. This we achieve by using the appropriate narrow

band with filters (F) before the detectors.

2.4.2 Classes of Multipartite Entanglement

Multipartite entanglement is genuinely different from entanglement in quantum sys-

tems consisting of two parts: In contrast to bipartite systems, multipartite systems

may contain different types of entanglement. The complexity of a physical system

grows exponentially with the number of its dimensions or degrees of freedom. To il-

lustrate this difference, let us consider a quantum system that is composed of several

qubits. Each of the qubits is thought to be held by a separated party, respectively.
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It may come as quite a surprise that depending on the type of entanglement between

the qubits, a single party may or may not be able to destroy the entanglement of the

entire system with a single measurement. The different kinds of entanglement may

differ for various characteristics such as robustness against de-coherence, connectiv-

ity or violation of classical physics.In the following we will shortly discuss different

kinds of multipartite entanglement and their properties.

The smallest number of dimensions for a physical system to feature more than

one class of entanglement is three [50]. The degree of entanglement of a multipartite

system can range between highly entangled and fully separable. However, many

multipartite entangled states feature almost exactly the same characteristics and as

a matter of fact can be categorized to posses the same class of entanglement.

Assuming a pure three-qubit state we will find different notions of entanglement

and separability. In the case of the fully separable state

|Ψfs〉1|2|3 = |α〉1 ⊗ |β〉2 ⊗ |γ〉3 (2.25)

the three particles show no entanglement at all. In the bi-separable case two

particles are grouped together, e.g.

|Ψbs〉1|23 = |α〉1 ⊗ |δ〉23 (2.26)

where δ denotes a two particle state, that might be entangled. Finally, if the

state is neither separable nor bi-separable, we call it a genuine tripartite entangled

state, such as e.g. the GHZ or the W state.

Green-Horne-Zeilinger (GHZ) States

The class of GHZ- states are represented by

|Ψ±〉 =
1√
2
(|H〉1|H〉2|H〉3 + |V 〉1|V 〉2|V 〉3) (2.27)

States of the GHZ-class can demonstrate strong violations of local realism [44,

43, 51] and for many Bell inequalities it can be shown, that they are the unique state

leading to maximal violation [52]. Moreover they allow applications such as quantum

secret sharing [53], open destination teleportation [54] and quantum computation

[55]. Unfortunately, GHZ states are more sensitive to de-coherence or the loss of

a qubit. If one particle of the system prepared in a GHZ- state is traced out, the

remaining two particles will be left completely unentangled. This means that, if one

of the parties sharing the system prepared in a GHZ state decides not to cooperate

with the other two, or if for some reason the information about one of the qubits

is lost, then the remaining two parties cannot use their entanglement resources to

perform communication tasks.
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W States

The class of W states [50] is represented by

|W 〉 =
1√
3
(|H〉1|V 〉2|V 〉3 + |V 〉1|H〉2|V 〉3) + |V 〉1|V 〉2|H〉3). (2.28)

The W-class states feature fundamentally different behaviors. On the one hand,

states of the W-class can only demonstrate less strong violations of locality , on the

other hand, the W-class is much more robust against de-coherence and the loss of a

qubit. If in a three-qubit system prepared in a W state one of the qubits is traced

out then the remaining two qubits remain entangled . Indeed, from a single copy of

the reduced density matrix for any two qubits belonging to a state form the W-class,

one can always obtain a state which is arbitrarily close to a Bell state by means of a

filtering measurement [56]. This means that, if one of the parties sharing the system

prepared in a W state decides not to cooperate with the other two, or if for some

reason the information about one of the qubits is lost, then the remaining two parties

still can use their entanglement resources to perform communication tasks.

Any genuinely tripartite entangled state can be converted by the means of local

operations and classical communication (LOCC) into one of two standard forms,

namely either a GHZ state [44] or else a W state. If a state |Ψ〉 can be converted

into the state |GHZ〉 of Eq. (2.27) under LOCC and another state |Φ〉 can be

converted into the state |W 〉 of Eq. (2.28), then it is not possible to transform, even

with only a very small probability of success, |Ψ〉 into |Φ〉 nor the other way round.

There are thus two classes of entanglement for genuinely tripartite entangled states.

Graph States

For higher dimensional multipartite entanglement the number of entanglement classes

equivalent under LOCC already become numerous and difficult to characterize. How-

ever, there exist certain patterns, which reoccur in all multi-partite systems. There

exists a graphical representation of these patterns, which is closely related to the

entanglement properties of these so called graph states [57].

Graph-states can be associated with graphs of vertices and edges. Each vertex

represents a qubit prepared in the state

|+〉 =
1√
2
(|0〉+ |1〉) (2.29)

and each edge represents a controlled-phase (C-phase) gate having been applied

between the two connected qubits. A C-phase gate flips the sign of the state if and
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only if both qubits are |1〉, namely:

|0〉|0〉 → |0〉|0〉
|0〉|1〉 → |0〉|1〉
|1〉|0〉 → |1〉|0〉
|1〉|1〉 → −|1〉|1〉

(2.30)

and thus entangles two qubits initially prepared in the state |+〉 of Eq. (2.29).

For a given number of dimensions there exists a finite (large) number of possi-

bilities for different graph states.

We will not discuss graph states and their properties in detail, but immediately

proceed to one special subclass, the cluster state, which can serve as an essential

resource for many QIP tasks. As it is also universal resource for quantum compu-

tational tasks, we have constructed and used such a cluster state in our experiment

presented in Chapter 6.

Cluster states

While the two-qubit cluster state and the three-qubit cluster state are LOCC-

equivalent to a maximally entangled Bell state and a three-qubit GHZ state, re-

spectively, the four-qubit cluster state features a new type of entanglement [58].

A cluster state can produced experimentally using the spatially and polarization

entangled output of SPDC and linear optical elemnts presented in Chapter 2.2.1.

Then the cluster state emerges from entangling two neighboring qubits prepared

in state 2.29 by the phase controlled operation in given in 2.30. The choice of

the qubits and the specific entangling operation determines the structure of the

cluster. The structure of the cluster predefines which basic quantum circuit it can

implement. Measurement on a qubit in the computational basis H/V have the

effect of disentangling (removing) the qubit from the cluster and will thus change

its structure and the imprinted circuit.

2.5 Detection and Verification of Entanglement

2.5.1 Bell State Analyzer

The projective measurement of two photons on one of the four Bell state, a so called

Bell State Measurement (BSM), is a fundamental procedure in QIP. It is an essential

component in many protocols, e.g. as quantum teleportation. To detect a Bell state

one employs the fixed optical circuit shown in Fig. 2.12(a): a Bell state analyzer.

Here we will describe its implementation with linear optics as we have used it in the

experiments described in the following chapters.

The Bell state analyzer is based on the two-photon interference effect at a non-

polarizing beam splitter (BS) or a polarizing beam splitter (PBS). The first Bell
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Figure 2.12: Bell state analyzer (a) using a BS. Two photons in input modes a

and b are interfered on the BS. The two output modes c and d are analyzed with the

help of a PBS. A coincidence detection of photons in modes e+g or f+h corresponds

to a |Ψ−〉 detection, whereas a signal in e+f or g+h coincidence corresponds to a

|Ψ+〉 detection. (b) Two photons in input modes a and b are interfered on the first

PBS. The two output modes c and d are analyzed with a half-wave plate (HWP) and

a second PBS, respectively. A coincidence detection of photons in modes e+h or f+g

corresponds to a |Φ−〉 detection, whereas a e+g or f+h coincidence corresponds to a

|Φ+〉 detection.

state analyzer proposed by Weinfurter et al. only utilizes a BS and a polarization

analyzers in each output mode. As we have mentioned in chapter 2.2.1, by interfering

two photons in the general state |Ψ〉1 = α|H〉 + β|V 〉 and |Ψ〉2 = γ|H〉 + δ|V 〉 at a

BS we are able to create a two-photon state, which can already be projected onto a

maximally entangled state. From Eq. 2.8 it is easy to verify that the two outgoing

photons only exit at different ports, if and only if their polarization state is in the

state 1√
2
(|H〉|V 〉− |V 〉|H〉) ≡ |Ψ−〉. Inserting additional PBS in the outgoing modes

c and d enable us to split the vertically polarized photons from the horizontally. An

outcoming photon, e.g. in mode c, with horizontal polarization will give rise to a

signal in detector e, a horizontally polarized photon will yield a signal in f. Looking

at Fig. 2.12 it is obvious that for the case 1√
2
(|H〉|V 〉 − |V 〉|H〉) ≡ |Ψ−〉 we should

detect one photon each either in detectors e and g or f and h. The additional PBS

moreover alow us to identify the state 1√
2
(|H〉|V 〉 + |V 〉|H〉) ≡ |Ψ+〉: even though

the two photons will exit into the same outgoing mode c (or d) they carry orthogonal

polarization and therefore they can be separated to to be detected in e and f (or g

and h). With this setup using a BS we can thus identify two out of the four Bell

states, namely |Ψ+〉 and |Ψ−〉.
In our experiments we mainly used the slightly modified setup [59], where the

BS is replaced by a PBS and two half wave plates are inserted in the output modes

The entire setup is shown in Fig. 2.12(b). As shown in Eq. (2.6), for photons 1 and

2 passing through the PBS their spatial modes will undergo a corresponding unitary

transformation. The two-photon state thus evolves into
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|Ψ〉12 = 1√
2

[(α+ β)|H〉1|c〉1|H〉2|d〉2 + i(γ + δ)|H〉1|c〉1|V 〉2|c〉2
+i(γ − δ)|V 〉1|d〉1|H〉2|d〉2 + (α− β)|V 〉1|d〉1|V 〉2|c〉2]

(2.31)

The HWP in output modes c and d are set with their fast axis to an angle of

22.5◦ to the horizontal axis. By this, the HWPs essentially implement Hadamard

gates and the state of Eq. (2.31) evolves to

|Ψf〉12 = 1
2
√

2
{ (α+ β)[|H〉1|H〉2 + |H〉1|V 〉2 + |V 〉1|H〉2 + |V 〉1|V 〉2]|c〉1|d〉2

+i(γ + δ)[|H〉1|H〉2 − |H〉1|V 〉2 + |V 〉1|H〉2 − |V 〉1|V 〉2]|c〉1|c〉2
+i(γ − δ)[|H〉1|H〉2 + |H〉1|V 〉2 − |V 〉1|H〉2 − |V 〉1|V 〉2]|d〉1|d〉2
−(α− β)[|H〉1|H〉2 − |H〉1|V 〉2 − |V 〉1|H〉2 + |V 〉1|V 〉2]|d〉1|c〉2}

(2.32)

After that the the output modes c and d are directed onto the PBSs of the

polarization analyzers. Just like in Eq. (2.31) the photons in modes c and d will

undergo corresponding unitary transformations:

|Ψf〉12 = 1
2
√

2
{ (α+ β) [|H〉1|e〉1|H〉2|h〉2 + i|H〉1|e〉1|V 〉2|g〉2

+i|V 〉1|f〉1|H〉2|h〉2 − |V 〉1|f〉1|V 〉2|g〉2]
+i(γ + δ) [|H〉1|e〉1|H〉2|e〉2 − i|H〉1|e〉1|V 〉2|f〉2

+i|V 〉1|f〉1|H〉2|e〉2 + |V 〉1|f〉1|V 〉2|f〉2]
+i(γ − δ) [|H〉1|h〉1|H〉2|h〉2 + i|H〉1|h〉1|V 〉2|g〉2

−i|V 〉1|g〉1|H〉2|h〉2 + |V 〉1|g〉1|V 〉2|g〉2]
−(α− β) [|H〉1|h〉1|H〉2|e〉2 − i|H〉1|h〉1|V 〉2|f〉2

−i|V 〉1|g〉1|H〉2|e〉2 − |V 〉1|g〉1|V 〉2|f〉2]}

(2.33)

Close inspection of Eq. (2.33) shows that we can identify two out of the four Bell

states, namely |Ψ+〉12 and |Ψ−〉12.The probability to find a photon each in output

modes e and h is exactly |β|2/2. The same probability arises for a coincidence

detection of photons in modes f and g. The overall probability for these two cases

is thus |β|2,which is exactly the probability for photons 1 and 2 to be in the Bell

state |Φ−〉12. Thus for β = 1 (β = 0) we know with certainty that the photons

will (never) jointly emerge either from modes e and h or modes f and g. Since our

system only consists of two particles, we are forced to conclude that a coincidence

detection of photons in modes e+h or f+g projects photons 1 and 2 onto the state

|Φ−〉12. Correspondingly, we are able to identify the state |Φ+〉12 by registering a

coincidence in modes e and g or f and h (probability = |α|2). Note, that we are

not able to distinguish between the states |Ψ+〉12 and |Ψ−〉12 since no coincidence

configuration can be genuinely associated with either one of them. With the help of

our Bell state analyzer we are thus able to identify two out of the four Bell states

via two-fold coincidence analysis and post selection.
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Since the SPDC happens with some small probability most of the time the pump

photons pass through the crystal without down-conversion. Therefore it is essential

to detect the right number of photons in the right modes to ensure the experiment

was performed successfully. In experiments with more than two photons, the pho-

tons are usually generated by higher order emissions of SPDC or by interaction of

entangled photon pairs via beam splitters. Then, it happens that the N photons

are not equally distributed over the N spatial modes, i.e., with some probability one

mode may contain more than one photon and some modes may contain none. This

means that only those events, when all N detectors register a photon are counted.

This counting is called post-selection and implies, that the generated state will

be destroyed by this measurement. Therefore we cannot really claim, that we have

’prepared’ a certain state in our experiment.

2.5.2 Verification Criteria

In the above sections, we have discussed several aspects of quantum entanglement

and QIP. Up to now we have silently assumed that we are able to generate perfectly

pure states with certainty. In the experiment, however, this is not the case. We

are only able to generate mixed states that resemble the desired pure states up

to a certain degree. Therefore we have to include a term representing the noise

introduced to our pure state |ψ〉〈ψ|, so that as a simple approximation one may

consider a mixed state % of the form

%(p) = p|ψ〉〈ψ|+ (1− p)
1

4
, (2.34)

where 1/4 is the maximally mixed state of two qubits, %̂ is the density matrix of

the generated mixed state and |Ψ〉 is the state vector of the desired pure state. It is

thus necessary to obtain knowledge of the quality of the generated states. Complete

knowledge of the density matrix gives in principle all information about the state of

a system.

Fidelity

Quantum fidelity is a measure for the purity of the created state %(p) and is defined

as

F = Tr[ρ̂|Ψ〉〈Ψ|] (2.35)

The fidelity can take values between 1, the generated state is perfectly equal to

the desired state, and 0, the generated state contains no parts of the desired state.

For all procedures in QIP there exists a certain threshold that marks the mini-

mum fidelity for which a task can still be accomplished.
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Figure 2.13: Schematic picture of the set of all states and the set of separable states

as nested set. The black line represent the hyperplane, where Tr(Ŵ%) = 0.

Entanglement Witnesses

For many experiments, though, it is sufficient to proof the presence of genuine mul-

tipartite entanglement. Entanglement witnesses are a recently developed criterion

to detect the presence of entanglement in terms of directly measurable observables

with only a minimum number of measurements involved. For a detailed overview

over the field of entanglement detection see the review paper by Guehne and Toth

[60].

Here will try to introduce the basic idea of the working principal of entanglement

witnesses.

An observable Ŵ is called an entanglement witness (short: witness), if

Tr(Ŵ%s) ≥ 0 for all separable states %s,

T r(Ŵ%e) < 0 for entangled states %e. (2.36)

If Tr(Ŵ%) < 0 one knows for sure that the state % is entangled.

Entanglement witnesses have a clear geometrical meaning: the set of states where

Tr(Ŵ%) = 0 holds is a hyperplane in the set of all states, cutting this set into two

parts. In the part with Tr(Ŵ%) > 0 lies the set of all separable states, the other

part [with Tr(Ŵ%) < 0] is the set of states detected by Ŵ . This idea is sketched in

Fig. 2.13. From this geometrical interpretation it follows that to detect a particular

entangled state one has to construct the appropriate witness Ŵ .

Taking into account that in the experiment we never fully succeed to create pure

states, the witness to detect our state can be constructed from the consideration,

that states close to an entangled state must also be entangled. Therefore, one may

try for a given entangled pure state |ψ〉 to write down a projector-based witness

like Ŵ = α 1 − |ψ〉〈ψ|. This witness can be interpreted as follows: The quantity

Tr(%)|ψ〉〈ψ| = 1̂|ψ〉%〈ψ| is the fidelity of the state |ψ〉 in the mixed state %, and if
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Figure 2.14: Schematic picture of the set of mixed three-qubit states with three

witnesses: The witness

mathcalŴGHZ detects GHZ-type states, the witness Ŵ3 tells apart three-qubit entan-

glement from bi-separable (bs) states, and the witness Ŵe rules out full separability

(fs).(Picture is taken from [[60]])

this fidelity exceeds a critical value α, then the expectation value of the witness is

negative and the state % must be entangled.

Clearly, witnesses can also be used to distinguish the different classes of multipar-

tite entanglement. Contrary to the bipartite case, one has several types of witnesses,

for the different types of multipartite entanglement. A quantum witness of genuine

n-partite entanglement is an observable which has a positive expectation value on

states with (n− 1)-partite entanglement and a negative expectation value on some

n-partite entangled states. The latter states and their entanglement, respectively, are

said to be detected by Ŵ . As depicted in Fig. 2.14 witnesses for genuine tripartite

entanglement, denoted by Ŵ3, have a positive expectation value on all bi-separable

(bs) states, thus a negative expectation value indicates the presence of true tripartite

entanglement. Witnesses for bi-separable entanglement Ŵe have a positive expecta-

tion value on all fully separable (fs) states, thus a negative expectation value is still

a signature of entanglement, which might be only bi-separable entanglement.

In our ’Multistage swapping’ experiment described in Chapter 5 we apply a

witness measurement to determine the entanglement of our bi-partite output state.

Since a witness is, up to a constant, a projector onto one of the Bell states and such

a nonlocal observable it cannot easily be implemented into an experiment. But,

as mentioned previously, the polarization state of a qubit is completely described

by its density matrix % and our experimentally accessible observables are the Pauli

spin matrices σ̂x, σ̂y, σ̂z and the identity operator 1. We can express the expectation
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value of these observables in terms of the density operator as

〈σ̂z〉 = Tr[%σ̂z] = %H,H − %V,V

〈σ̂x〉 = Tr[%σ̂x] = %H,V + %V,H

〈σ̂y〉 = Tr[%σ̂y] = i(%H,V − %V,H), (2.37)

where %i,j are the elements of the density matrix % representing the density

operator in the H/V basis. Provided that we are able to subsequently produce many

identical copies of our state, it can be easily seen that, this way it is possible to

determine all elements by measuring just local observables. By increasing statistics

this can be done as accurate as desired.

This technique can easily be extended to two and more photons: also for multi-

partite states local observables like 〈σz ⊗ σz〉 or projectors like 〈|0〉〈0| ⊗ |0〉〈0|〉 can

easily be measured in any experiment. For the experimental implementation it is

just necessary to decompose the witness into operators that can be measured locally

[61]. Thus, we need a decomposition into projectors onto product vectors of the

form

Ŵ =
k∑

i=1

ci|ei〉〈ei| ⊗ |fi〉〈fi|, (2.38)

which can be measured locally: Alice and Bob measure the expectation values

of the |ei〉〈ei| ⊗ |fi〉〈fi| and add their results with the weights ci. One can construct

such a decomposition in many ways, but it is reasonable to do it in a way that

corresponds to the smallest possible experimental effort for Alice and Bob.

How to construct an appropriate witness is explained in detail in the review by

Gühne and Tóth [60].

We have seen that with the help of a local decomposition entanglement witnesses

can be used for the experimental detection of entanglement. For two qubits, this re-

quired only three local measurements, which is less than quantum state tomography

that would require 32 = 9 measurements, namely the measurement of all correlations

〈σi ⊗ σj〉.

Quantum State Tomography

In some cases though it is not possible to apply a witness operator, e.g. if the kind of

entanglement is unknown, so that an appropriate witness cannot be constructed, or

to explicitly exclude the possibility that the analyzed state reveals any entanglement

whatsoever.

By considering the expectation values of all different combinations of Pauli oper-

ator products for all n photons of the analyzed state, we can reconstruct every entry

of the density matrix %i,j = 〈i|%̂|j〉 from the measured expectation values of all Pauli
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matrix combinations 〈σ̂1
i σ̂

2
i σ̂

3
i ...σ̂

n
i 〉. Here, i identifies one of the Pauli matrices or

the identity [x, y, z, I] and n is the number of qubits in the system. However, the

number of measurements needed for quantum state tomography grows exponentially

with n, which can result in a very long measurement time and is thus unpractical

for various experimental applications.
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Chapter 3

A Heralded Source for Polarisation

Entangled Photon Pairs

3.1 Introduction

Quantum entangled states are one of the key resources in quantum information

processing and communication. Besides the feature to reveal fundamental aspects of

quantum mechanics, they are also crucial for a variety of quantum information tasks

[62, 15]. In particular, photonic entangled states are robust against decoherence,

easy to manipulate, show little loss rates, both in fiber and free space, and thus are

exceptionally well suitable for long distance quantum communication and quantum

computing. The controlled generation of entangled states is a long-standing goal in

quantum information processing, since it is indispensable for quantum computing

and a number of quantum protocols [62, 15].

The generation of polarization entangled photon pairs by spontaneous paramet-

ric down conversion (SPDC) [30] is widely used, however, its emission is probabilistic

and can only be utilized with post selection and destructive photon detection. En-

tanglement sources based on the probabilistic generation process of SPDC allow

demonstrations of a number of quantum protocols, but do not permit on-demand

applications, deterministic quantum computing and significantly limit the efficiency

of multi-photon experiments. Consequently, an event-ready source for entangled

photonic states is of great importance, both from fundamental and practical point

of view.

In the following we present a source for entangled photon pairs generated in

event-ready manner by conditioned detection of auxiliary photons: a scheme, which

profits from the stable and robust properties of SPDC and requires only modest

experimental means. Alternative solutions such as the controlled biexciton emission

of a single quantum dot [63, 64, 65] or the creation of heralded entanglement from

atomic ensembles [66] face severe experimental disadvantages, such as liquid-helium

temperature environment and large-volume setups. Moreover, there has been consid-
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erable progress in generating photonic entanglement in a non-probabilistic manner,

like the Knill-Laflamme-Milburn scheme [29] or the scheme proposed by Browne and

Rudolph [67]. However, both schemes require on-demand single photon sources and

the still unavailable photon-number-resolving detectors. Novel ideas based on condi-

tional detection of auxiliary photons or multi-photon interference were recently pro-

posed to overcome the probabilistic character of SPDC [68, 69, 70, 71, 72, 73, 74, 75].

Following this line, we demonstrate the experimental realization of an – in princi-

ple deterministic – entanglement source proposed by Śliwa and Banaszek [70]. The

scheme is based on the conditional detection of four auxiliary photons heralding

the presence of one polarization entangled pair, which then can be used in event

ready manner. The fully deterministic implementation cannot be realized due cur-

rent technical limitations, but employing beam splitters with different transmission

ratios allows to significantly increase the state preparation efficiency of the source up

to 52 %. Together with a fidelity better than 87 % this is a significant improvement

compared with previous experiments for on-demand sources [75]. The source also

presents a substantial advancement over the general methods by using linear optics

[29], which require simultaneous emission of four pairs [68].

The demonstrated source might be of promising use in essential photon based

quantum information tasks. It is feasible to support on-demand applications, such as

the controlled storage of photonic entanglement in quantum memory [76] to realize

the quantum repeater scheme [21]. Moreover, it is suitable to serve on-chip waveg-

uide quantum circuit applications, which are potential candidates for profound new

technologies in quantum optics [77].

3.2 Conditional Preparation of Entangled Photon

Pairs

The idea of the experiment is employ a type-II SPDC source [30] as presented in

Chapter 2.3.1 using its three pair emission component as the desired input state

into the optical circuit, since three photon pairs are the minimum number required

to generate one event ready pair of polarization entangled photons by detection of

four auxiliary triggers [69]. Through the linear optics circuit shown in Fig. 3.1, in

an ideal case the three-pair state can provide a maximally entangled photon pair in

the output modes, if and only if the rest of the photons give a fourfold coincidence

between the four trigger modes.

In Chapter 2.3.1 we have already introduced the higher order emission of the

SPDC source and stated that the randomness of the type-II SPDC process for pho-

tonic entanglement is manifested through the indeterministic creation of states with

n indistinguishable photon pairs. Remind, that any nth order of SPDC emission can
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Figure 3.1: Schematic representation of the setup for the heralded generation of

entangled photon pairs. Partial reflecting beam splitters split mode a (b) into a

transmitted mode e (f) and the output mode c (d). The auxiliary trigger photons are

detected in (f ′x, f
′
y) in the diagonal basis and in ex, ey in the computational (H/V)

basis.
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then be expressed in the following form [40]

|Ψn〉 =
1

n!
√
n+ 1

(â†xb̂
†
y − â†y b̂

†
x)

n|vac〉. (3.1)

Creation operator â† (b̂†) denotes that the photon will be emitted into the cor-

responding mode, index x(y) denotes the horizontal (vertical) polarization of the

photon. Indeed, the state generated from the source is a coherent superposition

of all n-pair photon states. Nevertheless, lower-order contributions to the trigger,

namely from second order emission , don’t need to be considered, since they will

vanish due to the destructive two-photon bunching effect [78, 41] induced by the

optical circuit.

According to the first line in Eq. (2.21) the initial state given in Eq. (3.1) can

also be expressed as

|Ψ3〉 = 1√
2
(|3, 0; 0, 3〉 − |2, 1; 1, 2〉+ |1, 2; 2, 1〉 − |0, 3; 3, 0〉), (3.2)

where the occupation numbers correspond to the ordering of the modes as |âx, ây; b̂x, b̂y〉.
The complete optical linear circuit placed after the nonlinear crystal can be

expressed by the following transformation of the operators of the down conversion

modes:

âx =
√
Taĉx +

√
Raêx

ây =
√
Taĉy +

√
Raêy

b̂x =
√
Tbd̂x +

√
Rb

1√
2
(f̂x′ − f̂y′)

b̂y =
√
Tbd̂y +

√
Rb

1√
2
(f̂x′ + f̂y′) (3.3)

As depicted in Fig. 3.1 the photons in modes (âx, ây) and (b̂x, b̂y) are directed onto

a non-polarizing partial reflecting beam splitters (BS) with the amplitude transmis-

sion coefficients Ta/b, so that a fraction of the amplitude Ra/b = 1− Ta/b is reflected

to the trigger modes (êx, êy) and (f̂x, f̂y), respectively, while the transmitted fraction

will go to output modes (ĉx, ĉy) and (d̂x, d̂y). In (f̂x, f̂y) the trigger mode is trans-

formed by a half wave plate to f̂x = (f̂x′ − f̂y′)/
√

2, f̂y = (f̂x′ + f̂y′)/
√

2. Only the

second and third term of |Ψ3〉, which contain at least one photon of each polarization

in mode â and b̂, can contribute to a desired trigger signal, since for a two fold trig-

ger in mode êx and êy the photons taken from mode (âx, ây) have to have different

polarization. Thus the remaining photons are in the state −|1, 0; 1, 2〉 + |0, 1; 2, 1〉.
Whereas to obtain a trigger in f̂x′ and f̂y′ the photons need to originate from the same

polarization mode, either b̂x or b̂y, and therefore their joint state in mode (f̂x, f̂y)

before the half wave plate was the coherent superposition |2, 0〉− |0, 2〉/
√

2. The re-

maining photons exiting at the output modes (ĉx, ĉy) and (d̂x, d̂y) will consequently

be in the state |1, 0; 1, 0〉+ |0, 1; 0, 1〉.
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After the transformation by the optical circuit the desired output state is of the

following form

|Ψ3〉 = 1√
2
TaTb

√
Ra

√
Rb

1√
2
(ĉ†xd̂

†
x + ĉ†yd̂

†
y)

×(ê†xê
†
yf̂

†
x′ f̂

†
y′)|vac〉+ .... (3.4)

and under detection of the four auxiliary triggers in modes (êx, êy; f̂x′ , f̂y′) the two

photons in the output modes (ĉx, ĉy) and (d̂x, d̂y) collapse to the maximally entangled

Bell state

|Φ+〉 = 1√
2
(ĉ†xd̂

†
x + ĉ†yd̂

†
y))|vac〉. (3.5)

We note, that this Ansatz silently assumes, that the photons emitted by the

down conversion process are detected behind filters with a bandwidth smaller than

that of the pump light, and that the time window in which they are recorded as

coincidences is narrower than the inverse bandwidth of the radiation [79, 80].

Now one might say, that according to this calculation any time we observe a trigger

we will for sure obtain an entangled photon pair in the output. However, this is not

the case due two technical limitations of the standard single photon detectors most

frequently used in photonic experiments, which significantly affect the performance

of many experimental setup: With single photon resolving detectors and 100% de-

tection efficiency we could ensure that only perfectly created three-pair component

contributes to the measured final state. However, with the widely used standard

single photon counting modules (SPCM) one cannot discriminate single photons

and only provide a limited detection efficiency resulting from limited collection and

detector efficiencies. The limited detection efficiency is therefore considered in the

theoretical calculation by replacing the creation operator for each trigger mode, e.g.

êx by a combination
√
ηêx +

√
1− ηˆ̃ex, where the last term represents the unde-

tected fraction of photons. The inability to discriminate single photons leads to the

significant problem of the proposed scheme: under counting photons. It means that

the trigger detectors give a trigger even though more than two photons from either

mode (âx, ây) or (b̂x, b̂y) or both have been transmitted to the trigger channels.

As already indicated by ”...” in Eq. (3.4) the complete output state includes

additional terms

|Ψ3〉 = α|θ〉t|Φ+〉s + β|ϑ〉ts + γ|ϕ〉ts. (3.6)

The first term of Eq. (3.6) denotes the desired output state as given in Eq. (3.5),

where |θ〉 describes the perfect four photon trigger state, whose appearance will her-

ald a photon pair in state |Φ+〉 in the output with a probability of 100 %. The

second term β|ϑ〉ts represents all additional states, which yield a trigger in (êx, êy)

and (f̂x′ f̂y′) generated by more than four photons, but the state in the output (ĉx, ĉy)

and (d̂x, d̂y) contains only a single photon or vacuum. These states are orthogonal
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to the desired output state. For completeness, the last term γ|ϕ〉ts represents states,

which do not contribute to the trigger, but contain more than two photons in the out-

put modes. These states do not affect our experimental results since without trigger

signal their contribution is not recorded. All normalization factors are summarized

in α, β and γ. For the results of the theoretical calculation see Table I.

According to Eq. (3.6) anytime we obtain a trigger, we can expect the state

|Φ+〉 in the output with a certain probability. Then we can define the probability

of getting state |Φ+〉 as the state preparation efficiency of our source. Obviously,

additional terms yielding triggers will thus result in a reduction of the preparation

efficiency. Their emergence can be limited by decreasing the transmission coefficients

Ta/b = T of the BS. In this regime, the probability of transmitting more than the

minimum number of photons to the trigger becomes lower and such the danger of

under counting photons in the trigger detectors decreases. Fig. 3.3 demonstrates

that for low enough transmission coefficients the state preparation efficiency will

approach unity and under this condition the source could be called deterministic.

However, enhancing the state preparation efficiency in this way will lower the over all

preparation rate. In order to show that the efficiency of successful state preparation

depends on the transmission coefficients T of the partial reflecting beam splitters as

efftheory =
R2

(1− ηtrig

2
T )2

, (3.7)

we have chosen BS with three different reflection/transmission ratios: 50/50, 60/40

and 70/30 in the experiment (Fig. 3.2). Eq. (3.7) is directly derived from the

definition of the state preparation efficiency. The effect of limited detection efficiency

has been considered. The dependence of the preparation efficiency on the variation

of the transmission coefficient is shown in Fig. 3.3.

3.3 Experimental Setup

A schematic diagram of the experimental setup for the heralded entanglement source

is illustrated in Fig. 3.2. In contrary to the previous experiments the pulsed high-

intensity ultraviolet (UV) laser passes through only one β-Barium-Borate (BBO)

crystal generating three polarization entangled photon pairs via third order type-II

SPDC process. The third order emission takes place with a probability of p ≡ 0.0001.

At an average power of 880 mW UV-light we observe ∼ 80 × 103 photon pairs per

second at a visibility of V = 91± 3%.

The aim of the experiment is to show that the emergence of additional triggers can

be limited by decreasing the transmission coefficients Ta and Tb. In this regime the

probability of transmitting more than the minimum number of photons to the trigger

becomes lower and such the danger of under counting photons in the trigger detectors

decreases. In order to show that the efficiency of successful state preparation depends

on the amplitude transmission coefficients Ta and Tb of the partial reflecting beam
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Figure 3.2: The experimental setup for the heralded entanglement source. Sending

the pulsed high-intensity ultraviolet (UV) laser through one β-Barium-Borate (BBO)

crystal we generate three polarization entangled photon pairs via third order type-II

SPDC process. The longitudinal and spatial walk off of the photons in mode â and

b̂ will be corrected by a half wave plate and a correction BBO before the photons

are redirected onto the partially reflecting beam splitters. The transmitted photons

are going into the trigger detectors in modes ê and f̂ and the reflected photons are

going to the polarization state analyzers installed in the output modes ĉ and d̂. To

control the additional phase introduced by the partial reflecting beam splitters (BS)

we employed a combination of two half wave plates and one quarter wave plate. All

photons are filtered by narrow bandwidth filters (∆λ = 3.2 nm) and are monitored

by silicon avalanche photon detectors. Coincidences are recorded by a laser clocked

FPGA based coincidence unit.
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splitters we have chosen three different reflection/transmission ratios: 50/50, 60/40

and 70/30. From the experimental setup given in Fig. 3.2 it can be seen that

the partial reflecting mirrors can be exchanged conveniently in order to vary the

number of photons transmitted into the trigger modes. The trigger photons are

detected in modes (êx and êy) in the computational basis and in modes (f̂x′ and

f̂y′) in the diagonal basis. The signal photons in modes (ĉ and d̂ are detected by

polarization analyzers as described in Chapter 2.5.1. Before the detection we had

to correct the additional phase introduced by the partial reflecting BSs with the

help of a combination of two HWPs and a QWP. As a result from the different

distances between the couplers and the BBO, we reach a mean detection efficiency

of ηtrig = 18.2% for the trigger detectors and ηsig = 13.7% for the signal detectors.

3.4 Experimental Results

The dependence of the preparation efficiency on the variation of the amplitude trans-

mission coefficient is shown in Fig. 3.3. It can be clearly seen that the danger of

under counting photons can be reduced by decreasing the amplitude transmission

coefficient and that it is such possible to increase the preparation efficiency of the

desired state. The solid line represents the theoretical state preparation efficiency

based on third order contribution and assuming a mean detection efficiency of all

detectors of 15 %. It can clearly be seen, that by choosing a high enough beam

splitting ratio the proposed source is able to reach the deterministic region. To bet-

ter take our experimental conditions into account, we accustomed the theoretical

predictions by taking the different detection efficiencies for the trigger an the signal

detectors into account. The results are shown by the dots marked as ’Accustomed

theory’. Our experimental results definitely follow the theoretical predictions. The

given errors are statistical. The deviation of the performance of the experiment from

the theoretical prediction mainly results from differences in the quality of the align-

ment. With our setup we achieve to significantly improve the preparation efficiency

in comparison to the efficiency provided by the standard procedure of preparing sin-

gle pairs by SPDC, where the efficiency is determined by the number of emitted pairs

per UV pulse [40]. However, enhancing the preparation efficiency in this way will

lower the over all preparation rate. To still obtain a reasonable over all preparation

rate one could employ a laser with a higher pulse repetition rate.

Note, that increasing the input power of UV light into the BBO will lower the

fidelity of the generated photon pairs significantly, so that the contributions from

imperfectly created pairs cannot be omitted anymore. For perfectly created pairs

negative two-photon interference effects [78] will delete the contribution of two pair

emission to the trigger signal. Four-pair emission will contribute, not only to the

triggers but also to the signal. The experimentally estimated creation probability

for a four-pair emission is only of the order of p ≈ 5× 10−6 per pulse. But since we

again face the problem of under counting photons, four-pair contribution will lead to
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Figure 3.3: Theoretical and experimental values of the state preparation efficiency

for the three amplitude transmission coefficients Ta = 0.5, 0.4 and 0.3. The solid line

represents the theoretical state preparation efficiency based on third order contribu-

tion and assuming a mean detection efficiency of all detectors of 15 %. It can clearly

be seen, that by choosing a high enough beam splitting ratio the proposed source is

able to reach the deterministic region. The theoretical predictions shown by the dots

marked as ’Accustomed theory’ are taking the different detection efficiencies for the

trigger an the signal detectors into account. Our experimental results definitely fol-

low the theoretical predictions. The errors of the experimental data are statistical

and the fluctuations mainly result from the quality and stability of our alignment

and the laser.
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Figure 3.4: Experimental results for the expectation values of the entangled state

of the heralded photons in the output modes for the three different splitting ratios

R/T a) 50/50, b) 60/40 and c) 70/30 of the partial reflecting beam splitters. Three

complementary basis were used: |H〉/|V 〉, |+〉/|−〉 and |R〉/|L〉 corresponding to

the three different local measurements σ̂zσ̂z, σ̂xσ̂x and σ̂yσ̂y. Measuring a |HH〉 or

|V V 〉 (|HV 〉 or |V H〉) coincidence for the σ̂zσ̂z setting, |+ +〉 or | − −〉 (|+−〉 or

| −+〉) for the σ̂xσ̂x and |RR〉 or |LL〉 (|RL〉 or |LR〉) for the σ̂yσ̂y respectively, the

result is equivalent to +1 (−1). For each basis we measured ≥ 50 desired six-fold

coincidences.
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an error of the calculated theoretical value of the expected preparation efficiency of

4.5%. Here, the four-pair contribution is evaluated in the same way as the three-pair

state, where the limited detection efficiency of the trigger detectors is considered in

the calculation.

To evaluate the quality of the entanglement of the output photons we have de-

termined the fidelity of the state by analyzing the polarization state of the photons

in modes ĉ and d̂ with the help of polarization state analyzers. The fidelity of the

output state is defined as

F = Tr[ρ̂|Φ+〉〈Φ+|]

=
1

4
(1− 〈σ̂xσ̂x〉 − 〈σ̂yσ̂y〉 − 〈σ̂zσ̂z〉), (3.8)

where ρ̂ is the density matrix of the output state and |Φ+〉〈Φ+| = 1
4
(Î−σ̂xσ̂x−σ̂yσ̂y−

σ̂zσ̂z). σ̂x, σ̂y and σ̂z are the Pauli matrices. Eq. (3.8) implies that we can obtain the

fidelity of the prepared state by consecutively carrying out three local measurements

σ̂xσ̂x, σ̂yσ̂y and σ̂zσ̂z on the photons in the modes (ĉx, ĉy) and (d̂x, d̂y).

The experimental results are shown in Fig. 3.4. For all three splitting ratios

we measured more than 50 desired counts for each basis. For all three amplitude

transmission coefficient T = 0.3, 0.4, 0.5 we were able to achieve a preparation fidelity

of 0.870, which is sufficient to violate CHSH-type Bell’s Inequality [81] for Werner

states by three standard deviations. All theoretical and experimental values for the

efficiencies and the measured fidelities can be viewed in Table I.

3.5 Discussion

In conclusion we have shown that the Śliwa’s and Banaszek’s scheme is indeed suit-

able to implement a heralded source for polarization entangled photon pairs. We

have totally realized the proposed scheme, which was considered to be experimen-

tally challenging under the limiting conditions of the present technical standard.

The experiment is based on the well known technique of type-II SPDC, which is

robust, stable and involves modest experimental demands. Photon number resolving

Table 3.1: Experimental data for the preparation efficiency and the fidelity of the

entangled state in comparison to the theoretically predicted efficiency for the three

amplitude transmission coefficients Ta. The theoretical values are calculated solely

from third order contributions.

Ta efftheory[%] effexp[%] fidelity

0.5 27 23± 1 0.870± 0.028

0.4 39 41± 2 0.875± 0.030

0.3 52 46± 2 0.873± 0.030
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detectors are not involved in the setup, and therefore we do not face the restriction

inherent to other schemes for implementing heralded entanglement sources [68, 71].

We have shown that by appropriately picking the trigger photons from the emission

modes we will indeed obtain an entangled photon pair in the output modes. Al-

together, only using standard techniques, we have proven the possibility to build a

heralded source of entangled photons to overcome the probabilistic nature of spon-

taneous parametric down conversion sources. To evaluate the performance of our

source, we have measured a fidelity of the output state of better than 87 %, and

demonstrated the correlation between the transmission coefficient of the used beam

splitter and the preparation efficiency of the source, which can even exceed 52 % by

choosing an even lower transmission coefficient. This is a significant improvement

compared with previous experiments for on-demand sources.

For future applications, the simple optical circuit of our source could be miniatur-

ized by an integrated optics architecture on a chip using a silica-on-silicon technique

[82]. Using wave guides instead of bulk optics would improve stability, performance

and scalability [83, 77]. Therefore, the demonstrated source might be of promising

use in essential photon based quantum information tasks.
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Chapter 4

Quantum Teleportation of a

Two-Qubit Composite System

4.1 Introduction

In Science Fiction literature a great dream of human kind has been realized already

long time ago: the ability to travel by simply disappearing and then reappearing at

some distant location (nowadays the most famous: Star Trek). To create a copy of

an object at a distant location one does not need the original parts and pieces. The

object to be transferred or teleported can be fully characterized by its properties,

which in classical physics can be determined by measurement. Therefore all that is

needed is to send the scanned information so that it can be used for reconstructing

the object. But how precisely can this be an exact copy of the original? What

happens to the individual quantum properties of the particles, which according to

Heisenberg’s uncertainty principle cannot be measured with arbitrary precision?

Bennett et al. [32] have suggested that it is possible to transfer the quantum state

of a particle onto another particle at a distant location - the process of quantum

teleportation - provided one does not get any information about the state in the

course of this transformation. This requirement can be fulfilled by using quantum

entanglement.

As we will see quantum teleportation is indeed as well a critical component

of quantum computation and communication, as its experimental realization also

allows new studies of the fundamentals of quantum theory. Therefore it is certainly

one of those keystones of QIP [14] and thus central to a number of QIP protocols

[21, 55, 29, 84].

4.2 Theory of Quantum Teleportation

The idea of teleportation is illustrated in Fig. 4.1. Alice wants to teleport particle

1, which is in the initial state (|χ〉1 = α |H〉1 + β |V 〉1) to Bob. A key role in the

51



CHAPTER 4. Quantum Teleportation of a Two-Qubit Composite System

Figure 4.1: Scheme showing the principle of quantum teleportation. Alice has a

quantum system, particle 1, in an initial state, which she wants to teleport to Bob.

Alice and Bob also share an ancillary entangled pair of particles 2 and 3 emitted by

an EPR source. Alice then performs a joint Bell-state measurement (BSM) on the

initial particle and one of the ancillaries, projecting them onto an entangled state.

After she has sent the result of her measurement as classical information to Bob, he

can perform a unitary transformation (U) on the other ancillary particle resulting

in it being in the state of the original particle.
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4.2. Theory of Quantum Teleportation

teleportation scheme is played by an ’ancillary pair’ of particles 2 and 3, which is

in a maximally entangled Bell state, and is initially shared by Alice and Bob. This

entangled state contains no information on the individual particles; it only indicates

that the two particles will be in opposite states. As a tribute to Einstein, Podolsky

and Rosen, these pairs are often called EPR pairs.

∣∣Φ+
〉

23
=

1√
2
(|H〉2 |V 〉3 − |V 〉2 |H〉3). (4.1)

This entangled pair, emitted by an EPR source, is a single quantum system in an

equal superposition of the states |H〉2|V 〉3 and |V 〉2|H〉3.
The essential point to achieve teleportation is to perform a joint BSM on particles

1 and 2 which projects them onto one of the four Bell states of Eq’s. (2.9). Alice

performs a BSM on ’her’ particle 1, initially in the state |Ψ〉1, and the ancillary

particle 2, which is entangled with the other ancillary particle 3 in the hands of Bob.

Although this establishes the possibility of nonclassical correlations between Alice

and Bob, the entangled pair at this stage contains no information about |Ψ〉1. Indeed

the entire system, comprising Alice’s unknown particle 1 and the entangled pair is in

a pure product state, |Ψ〉1 |Φ+〉23, involving neither classical correlation nor quantum

entanglement between the unknown particle and the entangled pair. Therefore no

measurement on either member of the entangled pair, or both together, can yield

any information about |Ψ〉1. The complete state of the three particles before Alice’s

measurement is

|Ψ〉123 = |Ψ〉1|Φ+〉23 = α√
2
(|H〉1|H〉2|V 〉3 − |H〉1|V 〉2|H〉3)

+ β√
2
(|V 〉1|H〉2|V 〉3 − |V 〉1|V 〉2|H〉3) .

(4.2)

In the above equation particles 1 and 2 are represented in the computational basis.

However, we can express the combined state in the Bell basis and can thus rewrite

Eq. (4.2) as:

|Ψ〉123 = 1
2
[|Ψ−〉12 (−α |H〉3 − β |V 〉3)

+ |Ψ+〉12 (−α |H〉3 + β |V 〉3)
+ |Φ−〉12 (α |V 〉3 + β |H〉3)
+ |Φ+〉12 (α |V 〉3 − β |H〉3)]

(4.3)

Note that particle 1 is still completely separable from particles 2 and 3, since the

state in Eq. (4.3) is still the same as in Eq. (4.2). During the teleportation Alice

will destroy the quantum state at hand while Bob receives the quantum state, with

neither Alice nor Bob obtaining information about the state |Ψ〉.
Eq. (4.3) implies that the four BSM outcomes are equally likely, each occurring

with probability 1/4. Quantum physics predicts that once particles 1 and 2 are
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projected into one of the four entangled states, particle 3 is instantaneously projected

into one of the four pure states superposed in Eq. (4.3)

−|χ〉3 , −ẑ|χ〉3 , x̂|χ〉3 , x̂ẑ|χ〉3 (4.4)

Each of these possible resultant states for Bob’s EPR particle 3 is related in a

simple way to the original state |Ψ〉1 which Alice sought to teleport. In the case

of the first outcome (|Φ+〉) the state of particle 3 is the same as the initial state of

particle 1, so Bob needs do nothing further to produce a replica of Alice’s unknown

state. In the other three cases, Bob could accordingly apply one of the unitary Pauli

transformations in Eq. (2.10) to convert the state of particle 3 into the original state

of particle 1, after receiving via a classical communication channel the information

which one of the four BSM results was obtained by Alice.

After Bob’s unitary operation, the final state of particle 3 is therefore

|Ψ〉3 = α |0〉3 + β |1〉3 . (4.5)

Note that during the BSM particle 1 loses its identity because it becomes entan-

gled with particle 2. Therefore the state |Ψ〉1 is destroyed on Alice’s side during

teleportation. Performing BSM does not reveal any information on the properties

of any of the particles. The fact that no information whatsoever on either particle

is gained is also the reason why quantum teleportation escapes the verdict of the

no-cloning theorem [85]. After successful teleportation particle 1 is not available in

its original state anymore, and therefore particle 3 is not a clone but really the result

of teleportation.

The transfer of quantum information from particle 1 to particle 3 can happen

over arbitrary distances, hence the name teleportation. Experimentally, quantum

entanglement has been shown to survive over a distance of 144 km [20]. We note

that in the teleportation scheme it is not necessary for Alice to know where Bob is.

Furthermore, the initial state of particle 1 can be completely unknown not only to

Alice but to anyone. It could even be quantum mechanically completely undefined

at the time the Bell-state measurement takes place. This is the case when, as already

remarked by Bennett et al. [32], particle 1 itself is a member of an entangled pair

and therefore has no well-defined properties on its own. This ultimately leads to

entanglement swapping [80, 86] which will be discussed in more detail in C hapter

5.

Experimental demonstrations of teleportation have been implemented with pho-

tons [33, 87, 59] and ions [88, 89]. Very recently long-distance teleportation [90, 91]

and open-destination teleportation [54] have also been realized. However, the tele-

portation of single qubits is insufficient for a large-scale realization of quantum com-

munication and computation [21, 55, 29, 84]. The teleportation of a composite

system containing two or more qubits has thus been seen as a long-standing goal in

quantum information science.
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Figure 4.2: Schematic diagram showing the principle of two-qubit teleportation.

Alice wants to teleport an unknown state of a system composed of photon 1 and 2 to

Bob. To do so, Alice and Bob first share two entangled photon pairs (EPR source),

photon pairs 3-5 and 4-6. Alice then carries out a joint Bell-state measurement

(BSM) both on photons 1 and 3 and on photons 2 and 4, respectively. On receiving

Alice’s BSM results via classical communication, Bob can then carry out a corre-

sponding unitary transformation (U) on both photons 5 and 6 to convert them into

the original state of photons 1 and 2.

4.3 Teleportation of a Two-Qubit System

In this chapter we will discuss the first experimental demonstration of a two-photon

quantum teleportation. In the experiment, we develop and exploit a six-photon

interferometer to teleport an arbitrary polarization state of two photons. Not only

does our six-photon interferometer provide an important step towards teleportation

of a complex system, it will also enable future experimental investigations on a

number of fundamental quantum communication and computation protocols [55,

92, 93, 94]. The concept of two-qubit teleportation and the experimental six-photon

setup described in this chapter furthermore constitute the basis for the experiments

of the following chapters (5,6).

Although there exist other ways to achieve teleportation of a composite system

[95, 96], our experimental scheme [29, 97] closely follows the original proposal for

teleportation of single qubits (chapter 4.2). In the two-qubit teleportation, the

sender, Alice, wants to send an unknown state of a system composed of qubits 1 and

2,

|χ〉12 = α |H〉1 |H〉2 + β |H〉1 |V 〉2 + γ |V 〉1 |H〉2 + δ |V 〉1 |V 〉2 , (4.6)

where α, β, γ and δ are four arbitrary complex numbers satisfying |α|2 + |β|2 + |γ|2 +

|δ|2 = 1, to a distant receiver, Bob (Fig. 4.2). In order to achieve teleportation, Alice
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and Bob first have to share two ancillary entangled photon pairs (photon pairs 3-5

and 4-6) which are prepared in the Bell state |Φ+〉 (see Eq. 2.9). The two-qubit

teleportation scheme then works as follows.

Alice first teleports the state of photon 1 to photon 5 following the standard

teleportation protocol. In terms of the four Bell-states of photons 1 and 3,

|Φ±〉13 =
1√
2
(|H〉1|H〉3 ± |V 〉1|V 〉3)

|Ψ±〉13 =
1√
2
(|H〉1|V 〉3 ± |V 〉1|H〉3), (4.7)

the combined state of photons 1, 2, 3 and 5 can be rewritten as

|χ〉12|Φ+〉35 =
1

2
(|Φ+〉13|χ〉52 + |Φ−〉13σ̂5z|χ〉52

+ |Ψ+〉13σ̂5x|χ〉52 + |Ψ−〉13(−iσ̂5y)|χ〉52), (4.8)

where σ̂x, σ̂y and σ̂z are the well-known Pauli operators. Eq. (4.8) implies, that by

performing a joint Bell state measurement (BSM) on qubits 1 and 3, Alice projects

the state of qubits 5 and 2 onto one of the four corresponding states. After she has

told Bob her BSM result via a classical communication channel, Bob can convert

the state of qubits 5 and 2 into the original state |χ〉52 by applying to photon 5

a corresponding local unitary transformation (Î , σ̂x, σ̂y, σ̂z), independent of the

original state.

Similarly, the combined state of photons 2, 4, 5 and 6 can be rewritten in terms

of the four Bell-states of photons 2 and 4 as

|χ〉52|Φ+〉46 =
1

2
(|Φ+〉24|χ〉56 + |Φ−〉24σ̂6Z |χ〉56

+
∣∣Ψ+

〉
24
σ̂6X |χ〉56 +

∣∣Ψ−〉
24

(−iσ̂6Y ) |χ〉56). (4.9)

Following the above procedure, Alice can also teleport the state of photon 2 to photon

6. First, Alice performs a joint BSM on photons 2 and 4 and sends the BSM result

to Bob. Upon the BSM result received, by applying to photon 6 a corresponding

local unitary transformation (Î , σ̂x, σ̂y, σ̂z ), Bob can convert the state of qubits 5

and 6 into the original state

|χ〉56 = α|H〉5|H〉6 + β|H〉5|V 〉6 + γ|V 〉5|H〉6 + δ|V 〉5|V 〉6 (4.10)

to accomplish the task of the most general two-qubit teleportation.

The above scheme has a remarkable feature: it teleports the two photonic qubits,

1 and 2 individually. This way, neither the two original qubits nor the teleported

qubits have to be in the same place. Such a flexibility is desired in distributed

quantum information processing, such as quantum telecomputation [84] and quan-

tum secret sharing [53, 98]. Moreover, the above method of teleporting each qubit

of a composite system individually can be easily generalized to teleport a N -qubit

complex system.
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4.4 Experimental Setup

A schematic diagram of our experimental setup is shown in Fig. (4.3). The devel-

oped high-intensity ultraviolet laser successively passes through two BBO crystals to

generate three polarization-entangled photon pairs [30]. The ultraviolet laser beam

is circularized and has a central wavelength of 390 nm, a pulse duration of 180 fs,

a repetition rate of 76 MHz and an average power of 1.0 W. All three photon pairs

are originally prepared in the Bell state |Φ+〉 = (|HH〉 + |V V 〉)/
√

2. Following the

efforts described in the above section, we managed to observe on average 105 photon

pairs per second from each source. This is almost five times brighter than the source

achieved in a recent teleportation experiment [54]. With this high-intensity entan-

gled photon source we could obtain in total 10 six-photon events per minute. This is

two orders of magnitude higher than any former photonic teleportation experiment

could have achieved.

With the help of wave plates and polarizers, we prepared photon pair 1-2 in the

desired two-qubit state |χ〉12 that is to be teleported. Photon pairs 3-5 and 4-6,

which are in the state |Φ+〉, are used as the two ancillary pairs.

To implement two-qubit teleportation, it is necessary to perform a joint BSM

on photons 1 and 3 and photons 2 and 4, respectively. To demonstrate the working

principle of two-qubit teleportation it is sufficient to identify one of the four Bell-

states in both BSMs, although this will result in a reduced efficiency - the fraction

of success - of 1/16. In the experiment, we decide to analyze the Bell-state |Φ+〉 (see

chapter 2.5.1). This is achieved by interfering photons 1 and 3 and photons 2 and 4 on

the polarizing beam-splitters, PBS13 and PBS24, respectively. To interfere photons

1 and 3 (photons 2 and 4) on the PBS13 (PBS24), it has to be guaranteed that the

two photons have good spatial and temporal overlap at the PBS such that they are

indistinguishable. To achieve this, the two outputs of the PBSs are spectrally filtered

(∆λFWHM = 2.8nm) and monitored by fiber-coupled single-photon detectors [79].

Moreover, perfect temporal overlap is accomplished by adjusting the path length of

photon 3 (photon 2) by a delay prism 1 (prism 2) to observe “Hong-Ou-Mandel”-

type interference fringes (HOM) [99, 78] behind the PBS13 (PBS24) in the diagonal

(|+〉/|−〉) basis [100]. These interferometers are sensitive only to length changes on

the order of the coherence length of the detected photons (∼110 µm) and stay stable

for weeks. With the help of polarizers at 45◦, the required projection of photons 1

and 3 (2 and 4) onto |Φ+〉 can then be achieved by detecting behind PBS13 (PBS24)

a |+〉|+〉 or |−〉|−〉 coincidence between detectors D1 and D3 (D2 and D 4) [100],

as we have described in detail in chapter (2.5.1). Note that, in the experiment,

only the |+〉|+〉 coincidence is registered, which further reduces the teleportation

efficiency to 1/64. However, by inserting one PBS and two detectors behind each

output of PBS13 and PBS24, respectively, both |Φ+〉 (by detecting a |+〉|+〉 or

|−〉|−〉 coincidence) and |φ−〉 (by detecting a |+〉|−〉 or |−〉|+〉 coincidence) can be

identified and thus the efficiency can be increased up to 1/4 [49].
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Figure 4.3: A schematic diagram of the experimental setup. The ultraviolet pulse

passes through a BBO crystal to generate a polarization-entangled photon pair in

modes 3 and 5 (i.e. the first ancillary entangled photon pair). After the first BBO, a

10-cm-focus lens is introduced to refocus the ultraviolet pulse onto the second BBO to

produce another entangled photon pair in modes 1 and 2 (to prepare the two qubits

to be teleported). Reflected by a concave mirror, the ultraviolet pulse pumps once

more into the second BBO and generates the third entangled photon pair in modes 4

and 6 (that is, the second ancillary photon pair). Prisms 1 and 2, both mounted on

step motors, are used to compensate the time delay for the interference on polarizing

beam splitters PBS13 and PBS24, respectively. PBS5 and PBS6 are used to verify

the teleported state with the help of wave plates in front of them. The photons are

all detected by silicon avalanched single-photon detectors. Coincidences are recorded

with a coincidence unit clocked by the infrared laser pulses. Pol. are linear polarizers

and Filter labels the narrow band filter with ∆λFWHM = 2.8nm.
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As shown in Eq. (4.8) and Eq. (4.9), the projection measurements onto |Φ+〉13

and |Φ+〉24 leave photons 5 and 6 in the state |χ〉56, i.e. the original state of photons 1

and 2. To demonstrate that our two-qubit teleportation protocol works for a general

unknown polarization state of photons 1 and 2, we decide to teleport three different

initial states:

|χ〉A = |H〉1|V 〉2
|χ〉B = 1

2
(|H〉1 + |V 〉1) (|H〉2 − i|V 〉2)

|χ〉C = 1√
2
(|H〉1|V 〉2 − |V 〉1|H〉2)

(4.11)

|χ〉A is simply one of the four computational basis vectors in the two-qubit Bloch

sphere (Fig. 2.1); |χ〉B is composed of a linear polarization state and a circular

polarization state, which is also a superposition of all the four computational basis

vectors; and |χ〉C is a maximally entangled Bell state.

4.5 Experimental Results

We quantify the quality of our teleportation experiment by looking at the fidelity of

the teleported state as defined in Eq. (2.35). To measure the fidelity of two-qubit

teleportation, two PBSs (PBS5 and PBS6) and corresponding wave plates (HWP

and QWP), as shown in Fig. (4.3), are combined properly to analyze the teleported

state of photons 5 and 6.

The fidelity measurements for the |χ〉A and |χ〉B teleportation are straight for-

ward. Conditioned on detecting a |+〉|+〉 coincidence between D1 and D3, D2 and

D4, respectively, we analyze the teleported state of photons 5 and 6 in the computa-

tional basis for the |χ〉A teleportation; whereas we analyze photon 5 in the diagonal

basis and photon 6 in the circular basis for the |χ〉B teleportation. As the above

state analysis only involves orthogonal measurements on individual qubits, the fi-

delity of the teleported state is directly given by the fraction of observing a |χ〉A or

|χ〉B state at detectors D5 and D6. The measurement results are shown in Fig. (4.4).

The experimental integration time for each fidelity measurement was about 60 hours

and we recorded about 100 desired two-qubit teleportation events. The integration

time is slightly longer than would be expected from the original source rate, due to

the additional losses at the interference PBSs. On the basis of our original data, we

conclude that the fidelity for |χ〉A and |χ〉B is 0.86±0.03 and 0.75±0.02, respectively.

The measurement on the fidelity of the |χ〉C teleportation is a bit more complex,

since a complete Bell state analysis on photons 5 and 6 usually requires nonlinear

interaction between them. Fortunately, the fidelity can still be determined by local

measurements on individual qubits. To see this, we write the density matrix of |χ〉C
in terms of the Pauli matrices:

|χ〉CC〈χ| = |Ψ−〉〈Ψ−| = 1

4

(
Î − σ̂xσ̂x − σ̂yσ̂y − σ̂zσ̂z

)
(4.12)
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Figure 4.4: Experimental results for the teleportation of the |χ〉A state and the |χ〉B
state. Each measurement took 60 h. (A) The |χ〉A state. We measured photon 5

and 6 in the computational basis. (B) The |χ〉B state. We measured photon 5 in

the diagonal and photon 6 in the circular basis. The fraction of |H〉|V 〉 (|+〉|R〉) to

the sum of all counts shows the fidelity for the teleportation of the |χ〉A (|χ〉B) state

in A (B).
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Figure 4.5: Experimental results for the |χ〉C teleportation. Three complementary

bases were used: (A) computational, (B) diagonal and (C) circular basis, corre-

sponding to the three different local measurements 〈σ̂xσ̂x〉, 〈σ̂yσ̂y〉 and 〈σ̂zσ̂z〉. Each

measurements took 60 hours. In A whenever there is a |H〉|H〉 or |V 〉|V 〉 coinci-

dence, the result of σ̂xσ̂x is +1, whereas |H〉|V 〉 or |V 〉|H〉 represents −1. In B,

|+〉|+〉 or |−〉|−〉 represents +1, whereas |+〉|−〉 or |−〉|+〉 represents −1. In C,

|R〉|R〉 or |L〉|L〉 displaces +1, whereas |R〉|L〉 or |L〉|R〉 displaces −1.
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Fidelities after

Original States Fidelities subtraction of noise

|H〉|V 〉 0.86± 0.03 0.97± 0.03

(|H + V 〉|H − iV 〉)/2 0.75± 0.02 0.83± 0.02

(|H〉|V 〉 − |V 〉|H〉)/
√

2 0.65± 0.03 0.77± 0.03

Average 0.75± 0.03 0.86± 0.03

Table 4.1: Fidelities of quantum teleportation of a two-qubit composite system.

With Eq. (4.12) we can expand the fidelity to

F = Tr
(
ρ̂|Ψ−〉〈Ψ−|

)
=

1

4
Tr

[
ρ̂

(
Î − σ̂xσ̂x − σ̂yσ̂y − σ̂zσ̂z

)]
. (4.13)

This implies that we can obtain the fidelity of the |χ〉C teleportation by consecu-

tively carrying out three local measurements 〈σ̂xσ̂x〉, 〈σ̂yσ̂y〉 and 〈σ̂zσ̂z〈 on the two

teleported qubits. The measurement results for the three operators are shown in

Fig. (4.5), each of which took about 60 hours. Using Eq. (4.13) we determine an

experimental fidelity of 0.65± 0.03.

As can be seen from the above experimental results, all the teleportation fidelities

are well beyond the state estimation limit of 0.40 for a two-qubit composite system

[101], hence successfully demonstrating quantum teleportation of a two-qubit com-

posite system. The imperfection of the fidelities is mainly due to the noise caused

by emission of two pairs of down-converted photons by a single source [33]. In our

experiment, this noise contributes around 10 spurious six-fold coincidences in 60

hours and was not subtracted in the fidelity estimation. Table (4.1) clearly shows

that by subtracting this noise, as it was done in a previous experiment [33], the

fidelities improve strongly. Besides the double pair emission, the limited interference

visibility and imperfect entangled state also reduce our teleportation fidelities. We

notice that the fidelities of |χ〉B and |χ〉C teleportation are worse than those of |χ〉A.

This is because the fidelities of |χ〉B and |χ〉C teleportation depend on the interfer-

ence visibility on PBS13 and PBS24, while the |χ〉A teleportation fidelity does not.

Moreover, as the quality of the initial entangled state |χ〉C is not as good as for the

disentangled states |χ〉A and |χ〉B, the fidelity of |χ〉C teleportation is worse than

that of the other two.

4.6 Discussion

In this chapter, we have discussed the development and exploration of a six-photon

interferometer to report the first experimental demonstration of a two-qubit com-

posite system. Not only does our experiment present an important step towards

teleportation of a complex system, the techniques developed also enable immedi-

ate experimental investigations on novel quantum communication and computation
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protocols, which will become more apparent in the following Chapters 5 and 6: Our

six-photon interferometer allows the demonstration of a multiple swapping opera-

tion of an entangled state – in combination with quantum memory an indispensable

prerequisite for large scale quantum communication networks. Using a slightly mod-

ified setup, photons 3,4,5 and 6 can first be prepared in a four-photon cluster state,

which can further be exploited to demonstrate a teleportation-based controlled-NOT

operation on photons 1 and 2 – this operation constitutes the kernel of fault tolerant

quantum computation.
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Chapter 5

Multistage Entanglement

Swapping

5.1 Introduction

There exists an alternative way to create entanglement between two particles: it

employs the projective Bell-State measurement (BSM) of the state of two particles

onto an entangled state. If now these two particles, on which the BSM is performed,

are taken from already entangled pairs, meaning each of the particles have a partner

particle, then these remaining partner particles will automatically also collapse into

an entangled state. This striking application of the projection postulate is called

entanglement swapping[80].

Entanglement swapping thus provides a method of entangling distant particles,

that never interacted and do not share a common past. The original idea was to use

entanglement swapping for the so called ’event-ready detection’ of entangled pairs.

But moreover it became one of the most important ingredients for many concepts and

protocols, which lay at the heart of quantum communication [21, 22, 92, 102, 103].

In photonic quantum communication, the distance over which information can be

transferred is largely limited due to de-coherence from coupling to the environment

and an increasing loss of photons in a quantum channel. This leads to an exponential

fidelity decay of quantum information. This problem can be solved by subdividing

larger distances into smaller sections over which entanglement or quantum states can

be distributed. The sections are then bridged by entanglement swapping processes

[21, 22, 92, 102]. The swapping procedure therefore constitutes one of the key ele-

ments for a quantum relay, and a full quantum repeater if combined with quantum

purification [104, 105, 106, 107] and quantum memory [108, 109, 76]. As a result,

quantum communication becomes feasible despite of realistic noise and imperfec-

tions. At the same time, the overhead for the used resources and communication

time only increase polynomially with the distance [21, 22, 92, 102, 103].

When dividing a quantum channel into many segments, with the length of each
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segment comparable to the channel loss length, one can achieve reliable and robust

long-distance quantum communication by connecting two adjacent segments through

entanglement swapping. Experimentally, photonic entanglement swapping has so far

successfully been achieved for the case of discrete variables [59, 110, 111], and for

continuous variables [112, 113, 114], both via a single stage process. However, only

after successful multiple swapping, we are able to have a fully functional quantum

repeater. For quantum information carriers possessing mass, multiple swapping pro-

cesses can speed up the distribution of entanglement by a factor that is proportional

to the number of segments used [86]. Moreover, multistage entanglement swapping

can improve the protection of quantum states against noise suffered from amplitude

errors [86].

In this chapter we discuss an experimental demonstration of entanglement swap-

ping over two stages. Employing three highly bright and spatially independent pairs

of polarization entangled photons, and performing BSMs among the three segments

finally yields a maximally entangled pair distributed between the two distant parties.

To quantitatively evaluate the performance, we have observed the quality of the out-

put state by the characterization of an entanglement witness, which confirms genuine

entanglement generation. Our experiment implements an entanglement distribution

over two distant stations which are initially independent of each other and have never

physically interacted in the past. This proof-of-principle demonstration constitutes

an important step towards robust long-distance quantum relays, quantum repeaters

and related quantum protocols based on multiple entanglement swapping.

5.2 Multistage Entanglement Swapping

The principle for multistage entanglement swapping is sketched in Fig. (5.1). Con-

sider three independent sources, simultaneously emitting each a pair of maximally

entangled photons (EPR pair). In anticipation of our experiments we assume that

these are polarization entangled photons in the state

|Ψ〉123456 = |Ψ−〉12 × |Ψ−〉34 × |Ψ−〉56, (5.1)

where |Ψ−〉ij is one of the four maximally entangled Bell states of Eq. (2.9). Note

that photon pairs 1-2, 3-4 and 5-6 are entangled in the antisymmetric polarization

state, respectively. However, the states of the three pairs are factorizable from each

other, namely there is no entanglement among any photons from different pairs.

As a first step we perform a joint BSM on photons 2 and 3, i.e. photons 2 and

3 are projected onto one of the four Bell states. Moreover, this measurement also

projects photons 1 and 4 onto a Bell state, in a form depending on the result of the

BSM of photons 2 and 3. Close inspection shows that for the initial state given in

Eq. (5.1), the emerging state of photons 1 and 4 is identical to the one that photons

2 and 3 collapse into. This is a consequence of the fact that the state of Eq. (5.1)

66



5.2. Multistage Entanglement Swapping

Figure 5.1: Principle of multistage entanglement swapping. Three Einstein Podol-

sky Rosen (EPR) sources produce pairs of entangled photons 1-2, 3-4 and 5-6. Pho-

ton 2 from the inial state and photon 3 from the first ancillary pair are subjected

to a joint BSM, and so are photon 4 from the first ancillary and photon 5 from

the second ancillary pair. The two BSMs project outgoing photons 1 and 6 onto an

entangled state. Thus the entanglement of the initial pair is swapped to an entan-

glement between photons 1 and 6.

can be rewritten as

|Ψ〉123456 = 1
2
[|Ψ+〉14|Ψ+〉23 − |Ψ−〉14|Ψ−〉23
−|Φ+〉14|Φ+〉23 + |Φ−〉14|Φ−〉23]
×|Ψ−〉56

(5.2)

In all cases photons 1 and 4 emerge entangled despite the fact that they never

interacted with one another in the past. After the joint measurement of photons 2

and 3 one knows immediately about the entanglement type between photons 1 and

4.

Without loss of generality, we assume in the first step that photons 2 and 3

have collapsed into the state |Φ+〉23 as a result of the first BSM. The remaining

four-photon state is then of the form

|Ψ〉1456 = 1
2

[|Ψ+〉16|Φ−〉45 + |Ψ−〉16|Φ+〉45
−|Φ+〉16|Ψ−〉45 − |Φ−〉16|Ψ+〉45]

(5.3)

In a similar manner we perform a second BSM on photons 4 and 5. Again a

detection of the state |Φ+〉45 results in projecting the remaining photons 1 and 6

onto the Bell state

|Ψ−〉16 =
1√
2
(|H〉1|V 〉6 − |V 〉1|H〉6) (5.4)
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5.3 Experimental Setup

A schematic diagram of our setup for multistage entanglement swapping is illus-

trated in Fig. (5.2). The used setup is very similar to the one used in the previous

chapter (4). The pulsed high-intensity ultraviolet (UV) beam successively passes

through three β-Barium-Borate (BBO) crystals to generate three polarization en-

tangled photon pairs via type-II parametric down conversion [30]. For the joint BSM

of photons 2 and 3 (photons 4 and 5), we choose to analyze the case of detecting

the projection onto a |Φ+〉 state. Using once again the method of chapter (2.5.1)

the Bell state analyzer allows the projection of photons 2 and 3 (4 and 5) onto the

state |Φ+〉 upon the detection of a |+〉|+〉 or |−〉|−〉 coincidence at detectors D2

and D3 (D4 and D5). Again, only the |+〉|+〉 coincidences are registered, which

yields an overall success efficiency of 1/64. The resulting state of photons 1 and 6 is

polarization analyzed behind PBS1 and PBS6, respectively.

5.4 Experimental Results

As shown in equations Eq. (5.2, 5.3, 5.4) the projection measurements onto |Φ+
23〉 and

|Φ+
45〉 leave photons 1 and 6 in the maximally entangled state |Ψ−

16〉. In contrast to

quantum state tomography, the measurement of witness operators does not provide

a complete reconstruction of the original quantum state, it however allows to check

with a minimal number of local measurements for an entanglement character of a

quantum state (see section 2.5.2). To verify that the two photons really result in

an entangled state, and thus the swapping operation is successful, the expectation

value of the corresponding witness operator [61, 115] is expected to take a value

between -1 and 0. In our case, the applied witness operator W is the most efficient

one since it involves only the minimal number of local measurements [61]. It can

be measured locally by choosing correlated measurement settings, that involve only

the simultaneous detection of linear, diagonal and circular polarizations for both

photons. We have performed local measurements on the outgoing state of photons 1

and 6 in the three complementary bases; linear (computational) (|H〉/|V 〉), diagonal

(|+〉/|−〉) and circular (|R〉/|L〉).
The entanglement witness is given by

Ŵ = 1
2

(|HH〉〈HH|+ |V V 〉〈V V |+ |+ +〉〈+ + |
+| − −〉〈− − | − |RL〉〈RL| − |LR〉〈LR|).

(5.5)

In the experiment, we perform measurements for each correlation function of the

entanglement witness. The expectation values are shown in Fig. (5.3). Experimental

integration time for each local measurement took about 60 hours and we recorded

about 180 events of desired two-qubit coincidences. Every expectation value for a

correlation function is obtained by making a von Neumann measurement along a

specific basis and compute the probability over all the possible events. For example,
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Figure 5.2: A schematic diagram of the experimental setup. The focused ultraviolet

laser beam passes through the first BBO generating photon pair 1-2. Refocussed, it

passes through the second BBO generating the ancillary pair 3-4. After reflection

it again passes through the second BBO generating pair 5-6. In order to perform

a BSM of photons 2 and 3 (4 and 5), they are interfered at PBS23 (PBS45) and

analyzed with polarizers at 45◦. PBS1 and PBS6 are polarization analyzers for the

swapped entangled state.
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Figure 5.3: Experimental expectation values for every correlation function of the

entanglement witness for the swapped state. The results are derived by twofold co-

incidence measurements along three complementary common bases (a) |H〉|V 〉, (b)

|+〉|−〉 and (c) |R〉|L〉, conditioned on a fourfold coincidence event in | + + + +〉
for detectors D2-D3-D4-D5 which ensures two successful Bell state measurements.

for a HH correlation Tr(ρ̂|HH〉〈HH|), we perform measurements along the linear

(computational) basis. Then its value is given by the number of coincidence counts

of HH over the sum of all coincidence counts of HH, HV, VH and VV. We proceed

likewise for the other correlation settings. The witness can then directly be evaluated

to

Tr(ρ̂Ŵ) = −0.16± 0.03. (5.6)

The negativity of the measured witness implies clearly that the original entanglement

has indeed been swapped. The imperfection of our data is due to the non-ideal

quality of entangled states generated from the high power UV beam, as well as the

partial distinguishability of independent photons at PBS23 and PBS45, which leads

to non-perfect interferences and a degrading of the entanglement output quality

[116, 117]. Moreover, double pair emission by a single source causes noise of an

order of 10 spurious six-fold coincidences in 60 hours and was not subtracted in

calculating the expectation value of the witness operator.

To ensure that there is no entanglement between photons 1 and 6 before nei-

ther of the entanglement swapping process, we have performed a complete quantum

state tomography of the combined state. The experimental expectation values for

various bases are illustrated in Fig. (5.4). Concurrence [118] is a monotone func-

tion of entanglement, ranging from 0 for a separable state to 1 for a maximally
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Figure 5.4: Complete quantum state tomography on photons 1 and 6 before entan-

glement swapping. Label X corresponds to measurement setting σ̂x, while Y and Z

are for σ̂y and σ̂z, respectively. The result shows that the photons didn’t reveal any

entanglement whatsoever before the swapping operation.
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entangled state. In terms of concurrence, we can thus quantify the degree of en-

tanglement through a reconstructed density matrix ρinit for the initial combined

state from the data shown in Fig. (5.4). The concurrence Cinit derived from ρinit is

Cinit = max(0,−0.39±0.01) = 0. As expected, the concurrence C is exactly 0, which

shows that photons 1 and 6 were independent and did not reveal any entanglement

whatsoever before the swapping. Ideally, for a completely mixed state the expec-

tation value for all local measurements should be 0, except for the unity operator,

which should be 1. The contributions of the measurement settings other than the

unity operator are mainly due to noise caused by scattered light of the UV beam at

the BBO crystal. After the two-stage entanglement swapping, entanglement arises

as unambiguously confirmed by the witness measurement of Eq. (5.6).

5.5 Discussion

In this chapter, we have discussed the first demonstration of a proof-of-principle

implementation of a two-stage entanglement swapping using photonic qubits. The

feasibility and effectiveness of this process has been verified by a successful dis-

tribution of genuine entanglement after two simultaneously independent swapping

processes. This result yields the possibility of immediate near-future applications of

various practical QIP tasks. If combined with narrow-band entanglement sources,

the implementation of quantum relays (without quantum memory) and quantum

repeaters (with quantum memory) for either free space or fiber-based entanglement

distribution could become within current reach, as well as quantum state transfer

and quantum cryptography networks in a more efficient way and over much larger

distances of around hundreds of kilometers. Our demonstration also allows for the

possibility of utilizing multi-party, multiple stages entanglement swapping to achieve

global quantum communication networks, though with significant challenges ahead

[86].
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Chapter 6

Teleportation-Based

Controlled-NOT Gate for

Fault-Tolerant Quantum

Computation

6.1 Introduction

Quantum computers promise a dramatic speed up for many computational tasks

and, in theory, can outperform their classical counterparts in various computational

applications such as searching an unsorted data base [46] or factorizing large numbers

[23]. They further promise efficient simulation of dynamics of complex quantum

systems, which is not possible with conventional computers [12].

For large-scale quantum computation however, the inevitable coupling of physi-

cal qubits to the noisy environment and residual imperfections in physical systems

[119, 120, 121] impose a major challenge to a practical implementation. Namely, this

coupling can lead to errors among the processed qubits making quantum error cor-

rection schemes necessary. Several algorithms to encode a logic qubit onto a number

of physical qubits have been developed [93, 104, 122, 123, 124, 125]. These codes

are able to correct for any single qubit error, as long as maximally one of the phys-

ical qubits has been altered. After decryption one is able to recover the unaltered,

original logic qubit. A next problem arises once we want to perform quantum gates,

i.e. to perform logic operations on the protected data. Since the logic qubit has

been encoded, we need to perform corresponding operations on the physical qubits.

Depending on the characteristics of the chosen code and gate (in particular condi-

tional gates), errors may then not only propagate between blocks of encoded qubits

but also within them. This can compromise the code’s ability to correct for these

errors. The solution are the so-called “fault-tolerant quantum gates”. A procedure is

called fault-tolerant if its failing components do not spread more errors in the block
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of encoded output qubits than the code can correct. In a seminal paper, Gottes-

man and Chuang (GC) introduced a novel protocol to implement any quantum gate

needed for quantum computation in a fault-tolerant manner [55]. A procedure is

fault-tolerant if its failing components (this includes the input) do not spread more

errors in the block of encoded output qubits than the code can correct.

In this chapter we present the non-trivial realization of the GC scheme. We im-

plemented the proposed architecture by performing a teleportation-based two-qubit

controlled-NOT gate through linear optics with a high-fidelity six-photon interfer-

ometerby combining the techniques of quantum teleportation of a composite system

[126] and the creation of a four-qubit photon cluster state [127]. In the experiment,

we chose to implement a teleportation-based controlled-NOT (C-NOT) gate, which,

together with very easy to implement single qubit operations, is sufficient to per-

form all logic operations needed for quantum computation [128, 129]. The obtained

results clearly prove the involved working principles and the entangling capability

of the gate. Our experiment represents an important step towards the feasibility

of realistic quantum computers and triggered many further applications in linear

optics quantum information processing, such as one-way quantum computation [94]

and linear optics quantum computation [29].

6.2 The Teleportation-Based C-NOT gate

The approach of Gottesman and Chuang, a generalization of quantum teleportation

[32, 33] (see chapter 4.2), is straight forward and requires only a minimum of re-

sources. A key element of their work is the C-NOT gate, which acts on two qubits,

a control and a target qubit. The logic table of the C-NOT operation (UC−NOT ) is

given by (see chapter 2.2.3)

|H〉i|H〉j → |H〉i|H〉j ,

|H〉i|V 〉j → |V 〉i|V 〉j ,

|V 〉i|H〉j → |V 〉i|H〉j and

|V 〉i|V 〉j → |H〉i|V 〉j ,

where we have used the photon polarization degree of freedom to encode our qubits.

Instead of directly performing complicated gate operations on the input qubits,

we prepare a two-photon input

|Ψin〉ij = α|H〉i|H〉j + β|H〉i|V 〉j + γ|V 〉i|H〉j + δ|V 〉i|V 〉j (6.1)

|Ψin〉ij can be in a completely random state, in which qubit j acts as the control

bit |C〉j and qubit i as the target bit |T 〉i and the pre-factors α, β, γ and δ are

four arbitrary complex numbers satisfying |α|2 + |β|2 + |γ|2 + |δ|2 = 1. Serving as a

C-NOT gate the entangling properties of our four-photon cluster state |χ〉 have to

fulfill the condition, that the output state is equivalent to the input state up to the
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Figure 6.1: (a) Quantum circuit for teleporting two qubits through a C-NOT gate.

Time flow is from left to right. The input consisting of the target qubit |T 〉1 and con-

trol qubit |C〉2 can be arbitrarily chosen. Bell State Measurements (BSMs) are per-

formed between the input states and the outer qubits of the special entangled state |χ〉.
Depending on the outcome of the BSMs, local unitary operations (X, Z) are conducted

on the remaining qubits of |χ〉, which then form the output |out〉 = UC−NOT |T 〉1|C〉2.
Single lines correspond to qubits and double lines represent classical bits. (b) The

special entangle state |χ〉 can be constructed by performing a C-NOT gate on two

EPR pairs, with |Φ+〉 = 1√
2
(|H〉|H〉+ |V 〉|V 〉).
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following unitary transformation

|Ψout〉ij = ÛC−NOT |Ψin〉ij (6.2)

. As sketched in Fig. 6.1a) the four-qubit photon cluster state |χ〉 we will construct

beforehand. After the creation of |χ〉 one transfers the data of the two input qubits,

the target bit |T 〉i and the control bit |C〉j, onto |χ〉 by quantum teleportation. This

is done by successively performing a joint “Bell-State-Measurement” (BSM) between

the target (control) qubit and the two outer qubits of |χ〉. As a direct consequence

of the projective BSMs and the four-partite entanglement of |χ〉, the remaining two

(output) qubits

|Ψout〉ij = α|H〉i|H〉j + β|V 〉i|V 〉j + γ|V 〉i|H〉j + δ|H〉i|V 〉j (6.3)

already posses the information originally carried by the input qubits. The target

qubit i of the output state is flipped on the condition that the control qubit j is

in the state |V 〉. Finally, we need to apply single qubit (Pauli) operations to the

output qubits, depending on the outcome of the BSMs.

Note, that in the above scheme all qubits are logic qubits. However, the scheme

generalizes in a straight forward manner when we use a larger number of physical

qubits to encode our logic qubits. The procedure is then fault-tolerant since all

operations are transversal, i.e. qubits of one block of encoded qubits interact only

with corresponding qubits in other code blocks. A further advantage is the fact that

only classically controlled single-qubit operations and BSMs are needed to perform

the actual gate and that the resource of the special entangled state |χ〉 can be

constructed in forehand. If its generation fails nothing is lost by discarding it and

trying again until successful generation. We would like to emphasize two aspects:

First, the setup can be used to process any unknown input state and second, several

other quantum gates can be implemented by this scheme. The choice of gate only

depends on the form of the ancillary state |χ〉.
In the following, we will give a step by step analysis of the teleportation-based

C-NOT gate, as implemented in our setup given in Fig. 6.2: We align each β-

barium borate (BBO) crystal carefully to produce two pairs of polarization entangled

photons 3,4 and 5,6 in the state

|Ψ+〉 =
1√
2

(|H〉|H〉+ |V 〉|V 〉) (6.4)

According to the method described by Kiesel et al. [127], to prepare the cluster

state |χ〉 we now direct photons 4 and 6 to the two input modes of a polariza-

tion dependent beam splitter (PDBS), respectively. The transmission TH (TV ) of
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Figure 6.2: A schematic diagram of the experimental setup. A high-intensity pulsed

ultraviolet laser beam (UV) passes through three β-barium borate (BBO) crystals to

generate three polarization entangled photon pairs via SPDC (see chapter 2.3.1). At

the first BBO the UV generates a photon pair in modes 1 and 2 (that is, the input

consisting of the target and control qubit). After the crystal, the UV is refocused

onto the second BBO to produce another entangled photon pair in modes 3 and

4 and correspondingly for modes 5 and 6. Photons 4 and 6 are then overlapped

at a PDBS and together with photons 3 and 5 constitute the cluster state. Two

PDBS’ are used for state normalization. The prisms are mounted on step motors

and are used to compensate the time delay for the interference at the PDBS and

the BSMs. A BSM is performed by overlapping two incoming photons on a PBS

and two subsequent polarization analyses (PA). A PA projects the photon onto an

unambiguous polarization depending on the basis determined by the choice of HWP

or QWP. The photons are detected by silicon avalanched single-photon detectors.

Coincidences are recorded with a coincidence unit clocked by the infrared laser pulses.

Pol. are polarizers to prepare the input state and Filter label the narrow band filters

with ∆FWHM = 3.2 nm.
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horizontally (vertically) polarized light at the PDBS is 1 (1/3), and we thus get

→ 1

2

(
|H〉3|H〉4′|H〉5|H〉6′ +

1√
3
|H〉3|H〉4′|V 〉5|V 〉6′

+
1√
3
|V 〉3|V 〉4′|H〉5|H〉6′

−1

3
|V 〉3|V 〉4′|V 〉5|V 〉6′

)
. (6.5)

Here we have neglected terms with more than one photon in a single output mode of

the PDBS, since in the experiment we post select only terms that lead to a six-fold

coincidence.

In order to symmetrize the state we place a PDBS’ (TH = 1/3, TV = 1) in each

output mode of the PDBS and receive

→ 1

6

(
|H〉3|H〉4′′|H〉5|H〉6′′ + |H〉3|H〉4′′|V 〉5|V 〉6′′

+|V 〉3|V 〉4′′|H〉5|H〉6′′ − |V 〉3|V 〉4′′|V 〉5|V 〉6′′
)
. (6.6)

This is already the desired four-qubit cluster state up to local unitary operations.

To bring it to the desired form, we place half-wave plates (HWPs) – with an angle

of 22.5◦ between the fast and the horizontal axis – into arms 3 and 4. This yields

→ (|H〉3|H〉4′′ + |V 〉3|V 〉4′′) |H〉5|H〉6′′

+ (|H〉3|V 〉4′′ + |V 〉3|H〉4′′) |V 〉5|V 〉6′′

= |χ〉34′′56′′ , (6.7)

where we have neglected the overall pre-factor 1/6 and we arrive at the desired an-

cillary four-photon cluster state |χ〉 described in ref. [55]. Note, that altogether, the

probability of having one photon in each desired output, and thus having successfully

created the cluster state, is 1/9.

The state given in Eq. 6.7 is a four-particle cluster state [130] of the form

|χ〉 =
1

2
((|H〉|H〉+ |V 〉|V 〉)|H〉|H〉+ (|H〉|V 〉+ |V 〉|H〉)|V 〉|V 〉) . (6.8)

Due to the special entanglement characteristics of |χ〉, after the teleportation the

output state is equivalent to the desired unitary transformation of the input state

given by

|out〉 = ÛC−NOT |T 〉1|C〉2. (6.9)

As can be seen in Fig. (6.1b) |χ〉 can be created simply by performing a C-NOT

operation on two EPR pairs. This C-NOT operation is the essential difference to

the original teleportation scheme and is the reason for the fact that the output state

is not identical to the input state, but rather in the desired form of Eq. (6.9).
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To see this let us now have a look at the teleportation in more detail: Photons 1

and 2 constitute the input to our C-NOT gate. We assume that they are in a most

general input state |Ψin〉12

|Ψin〉12 = α|H〉1|H〉2 + β|H〉1|V 〉2 + γ|V 〉1|H〉2 + δ|V 〉1|V 〉2 (6.10)

In this case Eq. (6.9) takes the form

|Ψout〉46 = ÛC−NOT |Ψin〉12
= α|H〉4|H〉6 + β|V 〉4|V 〉6 + γ|V 〉4|H〉6 + δ|H〉4|V 〉6 (6.11)

Together with photons 3, 4, 5 and 6 in the cluster state of Eq. (6.8) we can now

express the combined state of all six photons in terms of Bell states for photons

1-3 and 2-5 and in terms of the desired output state |Ψout〉46 for photons 4-6 with

corresponding Pauli operations

|Ψin〉12 ⊗ |χ〉3456 =

|Φ+〉13|Φ+〉25 |Ψout〉46 +|Φ+〉13|Φ−〉25 σ̂6
z |Ψout〉46

+|Φ+〉13|Ψ+〉25 σ̂4
xσ̂

6
x|Ψout〉46 +|Φ+〉13|Ψ−〉25 σ̂4

xσ̂
6
xσ̂

6
z |Ψout〉46

+|Φ−〉13|Φ+〉25 σ̂4
z σ̂

6
z |Ψout〉46 +|Φ−〉13|Φ−〉25 σ̂4

z |Ψout〉46
+|Φ−〉13|Ψ+〉25 σ̂4

xσ̂
4
z σ̂

6
xσ̂

6
z |Ψout〉46 +|Φ−〉13|Ψ−〉25 σ̂4

xσ̂
4
z σ̂

6
x|Ψout〉46

+|Ψ+〉13|Φ+〉25 σ̂4
x|Ψout〉46 +|Ψ+〉13|Φ−〉25 σ̂4

xσ̂
6
z |Ψout〉46

+|Ψ+〉13|Ψ+〉25 σ̂6
x|Ψout〉46 +|Ψ+〉13|Ψ−〉25 σ̂6

xσ̂
6
z |Ψout〉46

+|Ψ−〉13|Φ+〉25 σ̂4
xσ̂

4
z σ̂

6
z |Ψout〉46 +|Ψ−〉13|Φ−〉25 σ̂4

xσ̂
4
z |Ψout〉46

+|Ψ−〉13|Ψ+〉25 σ̂4
z σ̂

6
xσ̂

6
z |Ψout〉46 +|Ψ−〉13|Ψ−〉25 σ̂4

z σ̂
6
x|Ψout〉46

(6.12)

From this we can directly see, that two BSMs on photons 1-3 and 2-5, project the

output photons 4 and 6 onto a state that is directly correlated to the desired final

state given in Eq. (6.11). The only thing left to do is to apply corresponding Pauli

operations, depending on the outcome of the BSMs. With the help of polarizing

beam splitters, in our experiment we are able to identify the Bell states |Φ±〉13 and

|Φ±〉25, i.e. we project the combined state of photons 1, 2, 3 and 5 onto one of the

four possibilities |Φ±〉13|Φ±〉25. We thus have to consider four different results of the

BSMs

Result of BSMs Output state

|Φ+〉13|Φ+〉25 |Ψout〉46
|Φ+〉13|Φ−〉25 σ̂6

z |Ψout〉46
|Φ−〉13|Φ+〉25 σ̂4

z σ̂
6
z |Ψout〉46

|Φ−〉13|Φ−〉25 σ̂4
z |Ψout〉46

To receive the desired final state of photons 4 and 6, we have to apply corresponding

Pauli operations, depending on the outcome of the BSMs.
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6.3 Experimental Setup

A schematic diagram of our experimental setup is shown in Fig. 6.2. All three

photon pairs are originally prepared in the Bell-state |Φ+〉 = 1√
2
(|H〉|H〉+ |V 〉|V 〉).

We observe on average 7 × 104 photon pairs per second from each (EPR) source.

With this high-intensity entangled photon source we obtain in total 3.5 six-photon

events per minute. This is less than half the count rate of our previous six-photon

experiments [126, 131]. Since the new scheme is more complex and involves more

interferences, the fidelity requirements are more stringent. Thus, we have to reduce

the pump power from 1.0 W to 0.8 W in order to reduce noise contributions that

arise from the emission of two pairs of down-converted photons by a single source

(double-pair-emission). We are able to achieve a count rate for the four-qubit cluster

state |χ〉3456 that is two orders of magnitude larger than in a recent experiment [127].

The improvement of the count rate is necessary in order to be able to perform the

six-photon experiment in a reasonable amount of time over which the experimental

setup can be kept stable.

With the help of wave plates (HWPs) and polarizers, we prepare photon pair

1&2 in the desired two-qubit input state |Ψ〉12. Photon pairs 3&4 and 5&6, which

are both in the state |Φ+〉, are used as a resource to construct the special entangled

state |χ〉3456 by directing photons 4 and 6 to the two input modes of a polarization

dependent beam splitter (PDBS). As can be observed in Fig. 6.2 Photons 4 and 6 are

interfered on a beam splitter with a polarization-dependent splitting ratio (PDBS),

i.e. the transmission for horizontal (vertical) polarization is TH = 1 (TV = 1/3). In

order to balance the transmission for all input polarizations, beam splitters (PDBS’)

with reversed transmission conditions (TH = 1/3, TV = 1) are placed in each output

of the overlapping PDBS. Altogether, the probability of having one photon in each

desired output, and thus having successfully created the cluster state, is 1/9. Half

wave plates (HWPs) in arms 3 and 4 are used to transform the cluster state to the

desired state by local unitary operations. Teleporting the input data of |ψ〉12 to

|χ〉3456 requires joint BSMs on photons 1&3 and photons 2&5. To demonstrate the

working principle of the teleportation-based C-NOT gate, it is sufficient to identify

one of the four Bell states in both BSMs [126, 132]. However, in the experiment we

decide to analyse the two Bell states |Φ+〉 and |Φ−〉 to increase the efficiency - the

fraction of success - by a factor of 4. This is achieved by interfering photons 1&3

and photons 2&5 on a polarizing beam splitter (PBS) and performing a polarization

analysis (PA) on the two outputs [49]. With the help of a HWP, a PBS and fiber-

coupled single photon detectors, we are able to project the input photons of the BSM

onto |Φ+〉 upon the detection of a |+〉|+〉 or |−〉|−〉 coincidence, and onto |Φ−〉 upon

the detection of a |+〉|−〉 or |−〉|+〉 coincidence (where |±〉 = (|H〉± |V 〉)/
√

2). The

increase in success efficiency compared to [126, 132] allows us to reduce the pump

power in order to reduce noise contributions while preserving the overall count rate.
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Figure 6.3: Experimental results for truth table of the C-NOT gate. The first

qubit is the target and the second is the control qubit. The average fidelity for the

truth table is 0.72± 0.05.

6.4 Experimental Results

The projective BSMs between the data input photon 1 (2) and photon 3 (5) of the

cluster state leave the remaining photons of the cluster state 4&6 up to a unitary

transformation in the state |out〉46. This is the desired final state of having performed

a C-NOT operation on photons 1&2. To demonstrate that our teleportation-based

C-NOT gate protocol works for a general unknown polarization state of photons 1&2,

we decide to measure the truth table of our gate. That is, we measure the output

for all possible combinations of the two-qubit input in the computational basis.

The fidelity measurements for the truth table are straightforward. Conditional on

detecting a fourfold coincidence at the two BSMs, we analyze the output photons

4&6 in the computational H/V basis. Depending on the type of coincidence at

the BSM (|+〉|+〉, |+〉|−〉, |−〉|+〉, |−〉|−〉), i.e. depending onto which Bell state

the photons have been projected, we analyze the output by taking into account

the corresponding unitary transformation. Since this state analysis only involves

orthogonal measurements on individual qubits, the fidelity of the output state is

directly given by the fraction of observing the desired state. The measurement

results are shown in Fig. 6.3.

We quantify the quality of our output state by looking at the fidelity as defined

by

F = Tr(ρ̂|out〉〈out|),

where |out〉 is the theoretically desired final state and ρ̂ is the density matrix of

the experimental output state. To analyze the operation and to experimentally

measure the fidelity of the two-qubit output, we again use PAs. Depending on the

81



CHAPTER 6. Teleportation-Based Controlled-NOT Gate for Fault-Tolerant
Quantum Computation

measurement setting we use quarter wave plates (QWP) or HWP in front of the

PBS. A total of 12 single-photon detectors have been used in the experiment. The

experimental integration time for each possible combination of the input photons was

about 50 hours and we recorded about 120 desired two-qubit events. The overall

count rate is reduced by a factor of 1/72 due to the success probability of creating

the cluster state (1/9), the success probability of the BSMs (1/4) and due to the

loss by initializing the input state with polarizers (1/2). On the basis of our original

data, we conduct that the average fidelity for the output states of the truth table is

0.72± 0.05.

However, that is not sufficient to show the quantum characteristic of a C-NOT

gate. The remarkable feature of a C-NOT gate is its capability of entangling two

separable qubits. Thus, to fully demonstrate the successful operation of our protocol,

we furthermore choose to perform the entangling operation

|H〉T ⊗
1√
2
(|H〉C + |V 〉C)

C−NOT−→ 1√
2
(|H〉T |H〉C + |V 〉C |V 〉C) = |Φ+〉TC .

The determination of the entangling capability is a bit more complex. Since the

output state is entangled, we are not able to determine its fidelity by a single mea-

surement setting. However, with three successive local measurements on individual

qubits we are still able to accomplish our task. This can be seen by a closer look at

the fidelity under scrutiny

F = Tr(ρ̂|Φ+〉〈Φ+|) =
1

4
Tr

(
ρ̂(Î + σ̂xσ̂x − σ̂yσ̂y + σ̂zσ̂z)

)
This implies that by measuring the expectation values 〈σ̂xσ̂x〉, 〈σ̂yσ̂y〉, 〈σ̂zσ̂z〉 we

can directly obtain the fidelity of the entangled output state. The experimental

results for the correlated local measurement settings are shown in Figures 6.4, 6.5

and 6.6, for a more quantitative overview see Table. 6.1. The integration time for

the first and last setting was about 60 hours and for the second setting about 80

hours. Using the above equation, we determine from our experimental results an

fidelity of 0.575± 0.027. This is well beyond the state estimation limit of 0.40 [101].

Furthermore and most importantly, the result proofs genuine entanglement between

the two output photons, since it is above the entanglement limit of 0.50 [61].

In addition, we have measured the fidelity of the used four-qubit cluster state

|χ〉3456 and obtain an experimental result of 0.694 ± 0.003. This measurement has

been performed in complete analogy to Kiesel et al. However, at the cost of a

bit lower fidelity, we have achieved a count rate that is more than two orders of

magnitudes larger.

All experimental results are calculated directly from the original data and no

noise contributions have been subtracted. The rather large imperfection of the fideli-

ties has several causes. First of all due to the large pump power double-pair-emission

contributes largely to the noise. Furthermore, the interference visibility is limited

since the complex phase compensations drift over the long measurement times. Also
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Figure 6.4: Experimental results for the fidelity measurement of the entangled out-

put state in the computational basis. The measured expectation value for 〈σ̂zσ̂z〉
is 0.403± 0.066.

Figure 6.5: Experimental results for the fidelity measurement of the entangled

output state in the diagonal basis. The measured expectation value for 〈σ̂xσ̂x〉 is

0.462± 0.057.

Figure 6.6: Experimental results for the fidelity measurement of the entangled

output state in the circular basis. The measured expectation value for 〈σ̂yσ̂y〉 is

−0.434± 0.062.
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00 01 10 11 expectation value

σxσx 81 42 19 72 0.462± 0.057

σyσy 39 103 108 50 −0.434± 0.062

σzσz 65 29 28 69 0.403± 0.066

Table 6.1: Experimental results for fidelity measurement of entangled output state.

Three complementary basis are used: (A) 〈σ̂xσ̂x〉 with 0/1 standing for |+〉/|−〉; (B)

〈σ̂yσ̂y〉 with 0/1 standing for |L〉/|R〉 = 1√
2
(|H〉 ± i|V 〉) and (C) 〈σ̂zσ̂z〉 with 0/1

standing for |H〉/|V 〉.

imperfect input states reduce the quality of our output states. Note that we achieve

a better fidelity for the truth table than for the entangling case. This is because

for the latter one the fidelity depends on the interference visibility at the PBS of

the BSM. All given errors are of statistical nature and correspond to ±1 standard

deviations.

6.5 Discussion

Compared to previous six-photon experiments [126, 132] our experimental setup is

more complex and involves more interferences, which introduces additional phases

that are difficult to control. Various efforts have been made to compensate these

phases and to achieve the stringent fidelity requirements and a sufficient six-photon

count rate. Although there is fast progress in the theoretical description of quantum

information processing, the difficulties in handling quantum systems have not al-

lowed an equal advance in the experimental realization of the new proposals. Up to

now, not even a proof-in-principle demonstration of a teleportation-based quantum

logic gate, the fundamental building block of the Gottesman-Chuang (GC) scheme,

had been realized.

With our setup we have demonstrated the first non-trivial proof-of-principle im-

plementation of the protocol introduced by Gottesman and Chuang. We have ex-

perimentally realized a C-NOT gate based on quantum teleportation. With our

six-photon architecture we have experimentally demonstrated the ability to entangle

two separable qubits and have measured the truth table of the gate. Note however,

that strictly speaking we did not show complete fault-tolerance, since in our exper-

iment we did not encode logic qubits onto a larger number of physical qubits. The

principle of the scheme, on the other hand, stays exactly the same and the developed

techniques of our setup can be readily extended for the case of a larger number of

encoded qubits. Although the generation of a large number of qubits, as well as a

necessary improvement of the fidelity still requires extensive efforts in the future.

In summary, the teleportation-based scheme proposed by Gottesman and Chuang

offers a novel way for scalable quantum computing. Most attractively however, this

architecture allows for realizations of universal quantum gates in a fault-tolerant
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manner, and in fact serves as an important basis for measurement-based quantum

computing. Thus, our experimental demonstration represents an important step

towards the realization of resource-efficient, scalable quantum computation.
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Chapter 7

Conclusions and Outlook

In this thesis, we have reported our research on the field of quantum information

processing. We have used pairs of polarization-entangled photons as produced by

pulsed parametric down-conversion to experimentally explore interference phenom-

ena of multi-particle quantum systems.

Within the work of this thesis we have designed and developed a new generation

of a high power EPR source, which we have exploited to build an event-ready source

for entangled photon pairs:

• (i) We experimentally realized the event-ready entanglement source proposed

by Śliwa and Banaszek. Demonstrating a state preparation efficiency of the

source up to 52 % at a fidelity better than 87 % is a significant improvement

compared with previous experiments for on-demand sources. The working

principle presents a substantial advancement over the general methods by using

linear optics, so that the demonstrated source might be of promising use in

essential photon based quantum information tasks. It is feasible to support

on-demand applications and suitable to be integrated into on-chip waveguide

quantum circuit applications, which are potential candidates for profound new

technologies in quantum optics.

Moreover we have implemented a six-photon interferometer – the first of its kind

– and demonstrated its experimental versatility in several applications in QIP:

• (ii) We have experimentally demonstrated quantum teleportation of a two-

qubit composite system. We have been able to teleport a polarization entan-

gled photon pair, which on the one hand denotes an important step towards the

teleportation of complex systems but on the other hand and even more impor-

tantly constitutes the basis for various QIP schemes and protocols, such as the

demonstration of a multiple swapping operation of an entangled state – in com-

bination with quantum memory an indispensable prerequisite for large scale

quantum communication networks – or to demonstrate a teleportation-based

controlled-NOT operation for fault tolerant quantum computation. Besides
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these two applications, whose experimental implementation was demonstrated

within this thesis, the six photon interferometer can also be used to construct

five- and six-photon clusters.

• (iii) We have further demonstrated entanglement swapping over multiple stages.

By this we have generated entanglement between particles that have never in-

teracted in the past with the help of ancillary particles that also do not share

any common history. The swapping procedure constitutes one of the key el-

ements for a quantum relay, and a full quantum repeater if combined with

quantum purification and quantum memory. As a result, quantum communi-

cation becomes feasible despite of realistic noise and imperfections and at the

same time, the overhead for the used resources and communication time only

increase polynomially with the distance.

• (iv)

For large-scale quantum computation the inevitable coupling of physical qubits

to the noisy environment and residual imperfections in physical systems im-

pose a major challenge to a practical implementation. Quantum error correc-

tion codes and fault-tolerant quantum gates are therefore critical components

in QIP. We have reported the first successful realization of the novel proto-

col to implement any quantum gate needed for quantum computation in a

fault-tolerant manner proposed by Gottesman and Chuang. The in-principle

demonstration shows the feasibility of the scheme and opens doors for possi-

ble future large scale implementations of quantum networks as well as it is an

important step towards the feasibility of realistic quantum computers.

Although significant theoretical and experimental progress in the field of linear

optic QIP has been demonstrated over the last few years, it is still a long way towards

efficient, scalable and large-scale multi-photon implementations:

One obvious drawback of the current realization of linear optic QIP is the process

of generating entangled photons by the process of SPDC. Although it yields high

quality entanglement of photons and – by employing a pulsed laser setup – can be

used to generate multi-photon entanglement, its probabilistic nature makes scalable

and thus large-scale implementations impossible. With our six-photon interferom-

eter we were approaching the maximum number of entangled photons that can be

generated via SPDC. A problem we tried to fight by implementing the heralded

photon source proposed by Śliwa and Banaszek.

There exist various promising alternatives to generate photonic entanglement:

Quantum dots can be used to generate single photons on demand [65]but still suffer

from poor quality and the lack of ability to develop a large number of identical

sources. Another promising approach is the application of atomic ensembles as

quantum memories and single photon sources [76].
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The second huge problem of the current technology is the poor overall coupling

efficiency of the widely available photon detectors. Mainly due to insufficient mode

matching and additional loses at the filters only ∼ 15% of the generated photons

are actually detected. Thus, even with a deterministic single photon source, large

scale quantum operations are severely limited by this drawback. A miniaturization

of bulk optics setups as approached by [82] is a promising solution to this problem

and would allow to enhance performance and reduce resource requirements.

Even though presented techniques and demonstrated experiments need to be

combined with other physical systems and technical developments to show their dif-

ferent strengths and advantages, in this thesis we have proven several important QIP

protocols and their applications in quantum communication, quantum teleportation

and quantum computation.

As a final remark, we would like to note that a number of text paragraphs in

Chapters 3 to 6 were taken from our publications listed in the Appendix. The

formulations found there are difficult to improve.
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Within the framework of this thesis the following publications have been achieved:

• Qiang Zhang, Alexander Goebel, Claudia Wagenknecht, Yu-Ao Chen, Bo

Zhao, Tao Yang, Alois Mair, Joerg Schmiedmayer and Jian-Wei Pan. Exper-

imental Quantum Teleportation of a Two-Qubit Composite System. Nature

Physics 2, 678 - 682 (2006) (Chapter 4)

• Alexander M. Goebel, Claudia Wagenknecht, Qiang Zhang, Yu-Ao Chen,

Kai Chen, Joerg Schmiedmayer and Jian-Wei Pan. Multistage Entanglement

Swapping. Phys. Rev. Lett. 101, 080403 (2008) (Chapter 5)

• Alexander M. Goebel, Claudia Wagenknecht, Qiang Zhang, Yu-Ao Chen

and Jian-Wei Pan. Teleportation-Based Controlled-NOT Gate for Fault-Tolerant

Quantum Computation. submitted to PRL, preprint: www.arXiv.org:0809.3583

(Chapter 6)

• Claudia Wagenknecht, Che-Ming Li, Andreas Reingruber, Xiao-Hui Bao,

Alexander Goebel, Yu-Ao Chen, Qiang Zhang, Kai Chen and Jian-Wei Pan.

Experimental Demonstration of an Event-Ready Entanglement Source. in

preparation (Chapter 3)
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