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Dynamik der Wasserbewegung an den Grenzschichten der
ungesattigten Zone

Die Prozesse an den Grenzschichten der ungesittigten Bodenwasserzone wurden untersucht:
am oberen Rand Verdunstung an der Boden-Atmosphire Grenzschicht und am oberen Rand
der Kapillarsaum. Am oberen Rand wurde ein Verdunstungsexperiment auf der Skala des
reprasentativen Elementarvolumens (REV) betrachtet. Ein Modell mit einer diffusiven Grenz-
schicht und einer 1D Richards-Beschreibung beschrieb die experimentellen Daten gut. Es zeig-
te ein grenzschichtlimitiertes Regime im feuchten Bereich und ein hydrauliklimitiertes Regime
im trockenen Bereich. Das Modell wurde unter Verwendung eines Monte-Carlo-Levenberg-
Marquardt-Verfahrens erfolgreich zur inversen Bestimmung der hydraulischen Bodeneigen-
schaften mittels des entsprechenden Verdunstungsexperiments benutzt. Fiir den unteren Rand
wurden Lichttransmissions- und bildgebende NIR-Spektroskopieverfahren entwickelt und an-
gewendet, um mikro- und makroskopisch die Wasserverteilung, die als Antwort auf transiente
Randbedingungen entstand, in einem Semi-2D-Sandmedium mit hoher zeitlicher und raum-
licher Auflosung zu messen. Die Analyse zeigte, dass gekoppelte Mehrphasen- und Nicht-
gleichgewichtseffekte sowie sub-REV-Prozesse eine wesentliche Rolle in der Wasserbewegung
im dynamischen Kapillarsaum spielen.

Dynamics of Water Movement near Boundaries of the Vadose Zone

Processes at boundaries of the unsaturated soil water zone were investigated: At the upper
boundary evaporation at the soil-atmosphere interface, and at the lower boundary the dynamic
capillary fringe. For studying the upper boundary, an evaporation experiment at the represen-
tative elementary volume (REV) scale was considered and modelled numerically. A model
with a diffusive boundary layer and a 1D Richards” description including vapour transport fit-
ted well to experimental data. It showed a boundary layer dominated regime in the wet range
and a regime where dynamics is controlled by soil hydraulic properties in the dry range. The
model could successfully be used to determine soil hydraulic properties from the correspond-
ing evaporation experiment by inverse modelling using a Monte-Carlo Levenberg-Marquardt
approach. For the lower boundary, light transmission and NIR imaging spectroscopy meth-
ods were developed and employed to measure the micro- and macroscopic water distribution
in response to transient boundary conditions in a semi-2D sand medium in a Hele-Shaw cell
with high temporal and spacial resolution. The analysis showed that coupled multi-phase
and dynamic non-equillibrium effects are essential to understand water movement in dynamic
capillary fringes, and sub-REV processes play an important role in the dynamics.
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1 Introduction

For life, water is maybe the most important resource on earth. Although 71 % of earth’s surface
is covered by oceans, man’s activity is mainly limited to land. Here, soils are the most important
ingredient and it is essential to understand the dynamics of water movement in soils in order
to comprehend the water cycle. In the last decades, large progress was made in understanding
the different parts of earth’s system as soils, ocean, or atmosphere. However, also the coupling
between these components has a major influence on the dynamics. While in the past scientists
often concentrated on their respective parts of interest, in recent years the complex interactions
between the different systems have come more into focus. Yet these boundaries are much less
understood than the parts themselves.

There are three major interfaces in earth’s system: (i) the soil-atmosphere interface, (ii) the
water-atmosphere interface, and (iii) the water-soil interface. In the broadest meaning, the third
type also includes the interface between the water saturated groundwater zone and the unsat-
urated multi-phase zone (vadose zone) of the soil, the so-called capillary fringe. Two of those
interfaces, namely the soil-atmosphere boundary and the capillary fringe, are investigated in
the two respective parts of this thesis. For the soil-atmosphere boundary, the focus was on the
evaporation process.
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2 Fluid flow in porous media

Soils are porous materials. They consist of the soil material itself, i.e. the grains or particles
the soil is made of, called soil matrix, and the intermediate space called pores. These pores
can be filled with fluids such as water or air. Fluid dynamics in porous media is in general a
multi-phase problem, since a change in one fluid content necessarily involves a change of fluid
content of at least one other fluid.

Here we give an introduction to the concepts used in this thesis. For a detailed review and
discussion of fluid flow and solute transport in porous media it is referred to ( )-

2.1 Microscopic description

At the microscopic scale, fluid flow is governed by Navier-Stokes” equation, supplemented by
appropriate initial and boundary conditions. Navier-Stokes” equation can be derived by writing
Newton’s law, f = pv, where f is force density, p density and v velocity, for the fluid (note that
all variables implicitly depend on space and time):

o0v
pz’z:pg%—p(v-V)v:f: —Vp+ pg +¥.0 (2.1)
~—

pressure gravity frlctlon

The terms of the right correspond to the forces due to pressure, gravity, and friction, respec-
tively. p denotes pressure, g the acceleration of gravity, and

9, av] Bv;
nij =1 (a ox; 1] Z ox ) &511 Z (2.2)

is the friction tensor ( , , §15). Here, 7 is the dynamic viscosity and
¢ the second viscosity coefficient. The fluid is assumed to be Newtonian, i.e. friction only
depends linearly on the first derivatives of the velocity and not on higher order derivatives.

The boundary conditions for the microscopic description must include the exact geometry
of the porous domain and the fluid-fluid interfaces. For the latter, capillary forces must also
be considered. These stem from inter-molecular forces which originate from electromagnetic
interactions between atoms or molecules. While in gases the density is so low that intermolec-
ular forces are only relevant when two particles collide, the density in liquids is high enough
that these interactions play a fundamental role for the properties of the liquid. In the bulk of
a liquid volume, the molecules are arranged such that forces average out. At the interfaces to
other fluids however the forces cannot be compensated and thus a net force develops. On the
other hand, moving molecules into the inside of the liquid would increase pressure. In equilib-
rium the liquid will occupy a state of minimal total energy. Thus, a surface energy density, the
interfacial or capillary energy ¢ (energy per area) can be assigned to the surface. It depends
on the properties of the two media at the interfaces. Notice that ¢ may become negative if the
attraction between molecules within fluid 1 is smaller than with molecules of fluid 2 or a solid.
This leads to dissolution of fluid 1 in 2 or, in case of a solid, complete coverage of the solid by
the fluid.



2 Fluid flow in porous media

023 . . .
Figure 2.1: Tensions exerted by the three interfaces between a solid 1

and two fluids 2 and 3. The contact angle 7 adjusts itself such that
012 the forces balance.

013

Figure 2.2: Three-dimensional microscopic re-
construction of a soil sample. Dark areas
denote pores. Image courtesy of H.-J. Vogel.

If three different fluids or two fluids and a solid are brought into contact, at the contact point
of all three phases, the surfaces have a certain angle <, the so-called contact angle. This is
illustrated in figure 2.1 for a solid. In equilibrium, the forces balance and one obtains

023CO8Y = 013 — 012 (2.3)

The pressure at a curved fluid-fluid interface is discontinuous due to the capillary energy.
The pressure difference is

1 ]

Pl—P2=(7<1+1> , (2.4)

where r; and r, are the major radii of curvature of the interface between fluids 1 and 2 (Landau
and Lifschitz, 1991, §61). Equation (2.4) is called Young-Laplace equation.
The boundary condition for the interface between the two fluids 1 and 2 reads

n{(pl—pz)—a<1+1>}:(I'I1—I'I2)~n—i—V(7, (2.5)
r1 2

where n denotes the normal unit vector pointing into the inner of fluid 1. Note the Young-
Laplace term describing the effects of capillarity. Vo on the right describes the tangential force
exerted by capillarity.

In principle equations (2.1) and (2.5) can be used to solve the flow problem. A first step
into this direction was done by Heimann (2009). However, the exact geometry of a soil is very
complicated (figure 2.2) and has structures at many different scales, with typical dimensions
ranging from micrometres (loam particles) to centimetres (larger constituents) and even metres.
The exact geometry is difficult to obtain, especially for larger samples. Also, it requires an
incredibly large amount of data for larger samples. In a pore geometry with relevant structures
of about some micrometres, just 1 m® would already have about 10® degrees of freedom.



2.2 Macroscopic description
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Figure 2.3: Sketch of the variation of the averaged
\ macroscopic quantity aj" in phase i depending
m on the extend of the averaging volume ||Q)|.

ic [ If || 3]] is small, " depends crucially on the
choice of «. If the averaging volume becomes
larger than a critical value [|Q)||, it eventually
becomes stable. If ||Q)]| is increased even more,
at some point macroscopic heterogeneities be-
|| QR H HQ H come visible if the soil is not homogeneous.
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2.2 Macroscopic description

In most cases the detailed geometry is not of interest, but only the effective macroscopic dy-
namics. In analogy to thermodynamics of gases, where macroscopic properties like pressure
are of interest and the trajectories of the particles do not matter, some averaging can be done.
One scale is picked out, and a description is chosen which emphasises the aspects of that scale.

Let xi(x) be the phase indicator function for phase i, where i might be soil matrix (m), water
(w), or air (a),

1, x € phasei
xi(x) = phaset (2.6)
0, x ¢ phasei

Averaging a microscopic quantity a* leads to the averaged (macroscopic) quantity aj" in phase
i

" (x, 1) 1= /sz”(x =& )xi(x = Ox(8)dg = (a¥xi) , (2.7)

where « is the averaging weight function and Q) the support of « ( , ). Naturally x(x) >
0 for all x and [, x(x) dx = 1 are required. Popular choices for x are box functions which are
constant inside a cube or sphere and 0 outside. Then x can be interpreted geometrically as the
averaging volume.

In general, the macroscopic property a® will depend on the choice of x which makes a
meaningful definition of " impossible. However, if the porous medium is sufficiently uniform
and « is non-zero in a volume which is large enough, eventually the value of " will not depend
on the actual size or shape of the averaging volume anymore (figure 2.3) and reach the value a",
(convergence). Such an averaging volume is called a representative elementary volume (REV)
The existence of an REV is a prerequisite for a macroscopic description. Note that the REV is
defined as the smallest possible volume where the averaging converges. Due to the multi-scale
nature of soils ( , , sect. 3.1), larger volumes might exist were the averaging converges
to a different value af" # af}.

Obviously, to calculate macroscopic variables, x; and thus the detailed microscopic geometry
must be known. As outlined above, this is normally not the case, therefore these values have
to be estimated experimentally.

In the following it is assumed that the averaging converges and thus macroscopic variables
exist. For simplicity the superscript ™ will be dropped from the quantities. The compressibility
of water in the pressure range which can be found in soils is so small that the water phase can
be assumed to be incompressive, py, = const. The porous medium is assumed water-wettable!,

1 This means that ows < 0. Water-wettable surfaces are always covered by a thin film of water, if enough liquid is
available. An example is clean glass.
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which is a good assumption for almost all soils, and rigid.

2.2.1 Macroscopic variables

The macroscopic variable 0; := (x;) is called the fluid content of fluid i. It can be interpreted
as volume fraction of fluid i. ¢ := 1 — (Xm) = Yicniuids 0; is called porosity and denotes the
total volume fraction of pore space. If only water is considered, the abbreviation 6 := 6,

is used. Note that while at the pore scale every point belongs exactly to one phase, in the
macroscopic description one point belongs to several phases. The state of a fluid element of a
fluid i in a porous medium is defined by its height z;, its pressure p;, its temperature T; and the
concentrations C;; of dissolved chemicals j.

Potential

The density of potential energy ¥;(x) of a fluid i is defined by the energy that is necessary to
move a unit volume of fluid from the reference state z = zg, p = po, T = To, Cij = 0 to the state
at position x. pg is normally chosen to be the ambient air pressure. In an isothermal situation
with no dissolved chemicals, only pressure and gravitation contribute to the energy density:

Yl = i) = po— [ pi0)g dC - (2.8)
N’
::1’0"10 L\,d
=g

By convention, the z direction points downwards into the ground.

In an incompressive medium, the density p; is constant, and the second term, the potential
due to gravity, simplifies to i;, (x) = (z — z9)p;g. The pressure term ¢;, may consist of several
components and can be of complex structure. In case of neglectable air pressure gradients, it
corresponds to the pressure jump at the interface, pw — pa, and is also called matric potential
{m. Further details follow below in section 2.4.

2.2.2 Empirical flux law of Buckingham-Darcy

With the prerequisite that (a) the external forcing (i.e. the influence of external forces to the
system) changes so slowly that the flow may be considered stationary, (b) the flux is so small
that inertia can be neglected, (c) the dimensions of the system are small enough that gravitation
can be neglected compared to viscosity, and (d) the fluid is considered incompressible, Navier-
Stokes’ equation can be simplified to Darcy’s Law

j=—KVp (2.9)

using a similarity analysis ( , ). Due to the small dimensions and low velocities,
there is no turbulent flow inside the medium, hence the linear dependence of the flow on the
driving force. Note the analogy to other flow equations, e. g. in electrodynamics. K denotes the
hydraulic conductivity, in general this is a second rank tensor, as flow and driving force are not
necessarily in parallel.
If gravitation cannot be neglected, an additional driving force adds up to the pressure gradi-
ent:

j=—-K(Vp-pg) (2.10)

In a homogeneous medium, the tensor K reduces to a scalar K, the flow is parallel to the
driving forces. Vp — pg can be identified with V¢; = V[(p; — po) — (z — z0)pig|, because py
and zg are constants.
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(@) (b) (©

Figure 2.4: Illustration of the dependence of water content on potential for a simple
pore. The right of the pore is connected to atmosphere. When reducing water pres-
sure py at the left of the pore, the radius of the interface adjusts according to Young-
Laplace’s equation (2.4) (b). If the corresponding radius drops below the radius of
the pore, the interface cannot be sustained and the pore is drained (c). The water
recedes to the next position where an interface is energetically possible.

If more than one fluid is considered, everything gets much more complicated. In general,
one falls back to Buckingham’s conjecture. It states that Darcy’s law remains valid, but the
conductivity of the fluid 7 will be a function of the fluid fraction 6;:

ji = —Ki(0;) V; . (2.11)

This law is called Buckingham-Darcy law. It is an empirical flux law, because it describes
measured processes reasonably well but cannot be deduced from first principles. Onsager’s
theorem would suggest an equation of the form j; = — Y, K;;(6;,) Vi, i. e. a sum of all phases [
instead of a dependence on the same fluid alone. However, this issue has not yet been explored

(Roth, )-
2.2.3 Material properties

Soil water characteristic

The pressure jump at the interface between water and air, ¥, = pw — pa, is connected with the
curvature of the interface via Young-Laplace’s relation (2.4). The radius of the interface cannot
be smaller than the radius of the pore the interface is located in. If ¥, is reduced (e.g. by
applying an external pressure), the radius |r| of the interface must become smaller according
to equation (2.4). If |r| gets smaller than the radius 7; of pore i, |r| < 7;, the interface cannot be
sustained anymore, and that pore will be drained (figure 2.4). This point is called the air entry
point.

This line of thoughts reveals that the water content 6, is a function of the matric potential
Pm, Ow = Ow(Pm). It is called soil water characteristic or water retention curve. The function
depends on the geometry of pore space and is thus a material property, which is fixed (but
hysteretic) for rigid porous media. When the potential becomes more negative, large pores are
drained first since 1/|r| is smaller for large |r|.

Conductivity

Pores which are filled with air are not available for liquid water transportation since this would
require moving water-air interfaces. Typically gradients are not large enough for this. Chang-
ing water-air interfaces normally involves changing the water content. Therefore, the greater
the water content 6, the larger the hydraulic conductivity K. Large connections are better con-
ductors than narrow necks: according to Hagen-Poiseuille’s law, the conductivity for laminar
flow in pipes of radius R increases with R* (remember that soil water flow does not exhibit
turbulence). With decreasing water content, large pores are drained first and the remaining
water is located in smaller pores with smaller conductivity. As a result, the hydraulic conduc-
tivity of (liquid) water K, decreases rapidly with decreasing water content. Additionally, the
path between two points A and B which only consists of water filled pores becomes longer
when the medium gets drier. This effect is called tortuosity and also decreases the effective
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(macroscopic) hydraulic conductivity Ky,. Consequently, K,y is a function of the water content,
Kyw = Ky (0w). As 6y, is a function of ¢, Ky, also depends on ¢p,.

Parametrisation

If the exact geometry of pore space is not available, which is normally the case, the hydraulic

properties cannot be calculated or deduced from first principles. Thus, they have to be mea-

sured. Hence, some kind of parametrisation is needed to be fitted to experimental data.
Commonly, these parametrisations are formulated in terms of the water saturation

0 — o,

@::795_9r’

(2.12)

where 6, and 6 are the residual and the saturated water content, respectively, and the subscript
w has been dropped. Based on a power-law distribution of pore radii with a finite upper end,

( ) introduced the parametrisation
—A
O(¢Pm) = /el < e (2.13)
1 /lpm Z lpe

where 9. is the air entry potential and A > 0 an empirical parameter. ( )
developed a parametrisation whose shape is similar to the one of ( ) but
which has continuous derivatives:

O(¢m) = [1+ (agpm)"] ™" (2.14)
with parameters &« > 0, n > 1 and m > 0. It is more popular because the capacity C = a?Tgm

which can be found in Richards” equation (2.19) is continuous. Often, m =1 —1/n is used and
the number of free parameters thereby reduced by one.

Newer experiments revealed that in some cases these parametrisations are not flexible enough
to describe measured (¢, ) curves accurately ( g ). Therefore, more
flexible approaches like spline parameterisations are currently being investigated.

Using a simple model of pore space, a relation between K and ® can be deduced.
(1976) used an isotropic medium with randomly connected stacks of capillary bundles. In each
capillary, knowing its radius, the conductivity can be calculated according to Hagen-Poiseuille’s
law. The matric potential is related to the radius of the interface according to equation (2.4).
Only the fraction of capillaries which have a radius equal or smaller than the corresponding
matric potential are water filled and thus contribute to the conductivity. With this idea, he
obtained the relation

K(©) = K0

o) _ 2
Jo ¥m(8) 71 dE ] (2.15)

Jo ¥m(@)~1 dE

where K denotes the saturated conductivity and the factor ©®" describes tortuosity. Inserting

the inverted ( ) parametrisation (2.13) yields
K(®) = K,@"+2+2/2 (2.16)
which is called Mualem-Brooks-Corey parametrisation. Applying (2.15) to the
( ) parametrisation (2.14) leads to the Mualem-van Genuchten parametrisation
1-1/n72
K(®) = K,@" [1 - (1 - ®”/<"—1>> "} . (2.17)
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2.3 Scales

As shown above, water content 6 is only defined macroscopically. At a scale below the REV
scale, 0 is undefined. The REV length scale is at least a few correlation lengths of the medium.
An illustrative example for a measured 3D soil structure is given in ( , sect. 3.2.1).
Hence, water content in a homogeneous medium is always smooth. However, a water front
moving through the soil may be very sharp. Especially during infiltration, the infiltration front
is self-sharpening, since water further away from the front is faster because conductivity is
higher due to higher water content (see also ( , sect. 5.4)). Consequently the front on a
sub-REV scale is different to the front as seen on a REV scale. Although Richards’ equation is
capable of describing this self-sharpening mechanism, the resulting dynamics may have length
scales below the REV size and thereby implicitly produces results on a scale the equation is not
capable to describe by definition. Accordingly sub-REV front widths as described by Richards’
equation do not necessarily describe the real microscopic behaviour correctly. Macroscopic
water content changes will always be much smoother and do not represent the front sharpness
at the microscopic scale. Here, the front is only defined in the length scale of the REV and no
finer features are resolved. This is sketched in figure 2.5. The discrepancy may be particularly
large in coarse textured media and on fast movements where non-equilibrium processes are
involved.

If the local equilibrium hypothesis is violated, the macroscopic variables are no well-defined
quantities any more and REV-scale effective properties do not exist. An example is a rapid
water movement which involves positive water pressure in the unsaturated zone and therefore
reverse-curvature at water-air interfaces. Here, a sub-REV description must be used. Note that
in such situations, Richards’ equation is also not valid and it cannot be used to describe such
phenomena.

The driving force of water movements is a gradient in the matric potential ¥,. At the
microscopic scale, it is defined by the curvature of the water-air interfaces according to Young-
Laplace’s equation (2.4). In the bulk of the water, {y, is per definition the energy density caused
by capillarity which is necessary to move the water in from a reference state and thereby
equal to the curvature of the nearby interfaces. In the air phase, the potential is defined by
equation (2.26). Assuming local thermodynamic equilibrium, it is equal to the potential of
the interfaces around it, which causes a very high water vapour saturation. Accordingly, the
microscopic i, is continuous across water/air phase boundaries. However, it is undefined
in the matrix. At the macroscopic scale ¥, denotes the average curvature in the REV and
in equilibrium, it is always coupled with 6 by the water characteristic 6(¢m). Gradients at
scales smaller than the REV and especially dynamic positive curvature which is caused by
forced imbibition at positive pressure into a low-conductive medium are not represented at the
macroscopic scale and indicate that the macroscopic description is at its limit.

If the system response due to rapid changes is to be analysed, the contrast explained above
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Figure 2.6: Vertical water content distribution profile in static equilibrium of the sand
medium in the Hele-Shaw cell at different scales. Water content was observed with
X-ray transmission at a sub-REV resolution of 1 mm/pixel, REV data was averaged
with a Gaussian filter of ¢ = 4 mm radius, which yields an effective resolution of
8mm. The profile was made at one vertical position.

has a crucial influence. On one hand, macroscopic water content is to be measured and the
scale has to be selected accordingly. On the other hand, infiltration and drainage fronts micro-
scopically are often sharper than the REV size, and if these fronts are to be analysed, sub-REV
resolution is required for precise front characterisation. Of course, then the values for the
amount of water do not represent a macroscopic water content any more.

In static equilibrium, the water content distribution along the height represents the water
characteristic, 6 = 0(pwgz). If the water characteristic is very sharp in contrast to the REV size,
the transition will also be at a sub-REV scale. This may be the case with relatively coarse media.
Here, we again have the problem of resolving the transition in the macroscopic description.
This is illustrated in figure 2.6. As expected, the water content distribution is much smoother,
but the transition is also blurred.

If the requirements for an REV would be weakened by allowing shape-dependence, the
problem may be alleviated. When approaching the front, REVs would have to be stretched
alongside the front and compressed perpendicular. This would allow to locate the front more
sharply in the macroscopic description. However, it would have implications on the macro-
scopic properties, since they have other characteristics than with normal averaging.

2.4 Flow regimes in the subsurface

Due to the multiphase nature of the flow process, the dynamics of water in soils differs fun-
damentally in different regions of the soil with different water contents. This is schematically
shown in figure 2.7 and described in the following.
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A
atmosphere pg
\\ —>9W
\
9
B
vadose Figure 2.7: Flow regimes in soils. Far from the groundwa-
zone ter, in the degenerate multiphase regime, water content 0, is
so small that the air phase is continuous and connected to
\ the atmosphere, gradients of p, are negligible compared
\ to those of py. The two phases are decoupled (A). Further
\ down, nearer to the groundwater or with high infiltration,
== _ _ ‘ gradients of p, cannot be neglected any more due to low
Tee 0,, although the air phase is still continuous. Hence, the
¢ two phases become coupled. This regime is called contin-
\« capillary uous multiphase regime (B). With Ow increas%ng even more,
v | fringe the air phase becomes discontinuous, leading to the discon-
/‘> tinuous multiphase regime where entrapped air bubbles can
/ ground- be found (C). Even further down, below the groundwater
SR where all gas is dissolved, only the water phase exists. This
Y is the groundwater or singlephase regime. Image source:
z (2005)

2.4.1 Degenerate multiphase regime

Where water content is low, far from the groundwater, the air content is high and thus the
air phase continuous and connected to the atmosphere. Since the viscosity of air is much
smaller than the one of water (y,/pw = 0.0136 at T = 10°C), the pressure gradient necessary
to move the air can be neglected in this situation (i. e. the air is assumed to be infinitely mobile,
#a = 0). Thus, the two phases decouple, a movement of the water phase is always followed
by an instantaneous movement of the air phase. The volume change of air is buffered by
the atmosphere which is a pressure reservoir, p, = pg = const. The system can therefore be
adequately described with only the water phase. The only contribution to the pressure potential
is given by the interfacial forces, equation (2.4). In that case, ¢, is called matric potential ¥,
because it describes the energy density which is caused by the geometry of the soil matrix due
to capillarity:

Pm = Pw — Pa - (2.18)

In the convention used here, ¢, is negative if the water is bound (pw < po) and positive if it is
free. This regime is called degenerate multiphase regime.

Inserting the flux law, equation (2.11), jw = —K(6w)[V¢¥m — pwg], into the mass balance
for water, %OW +divjy = 0, yields an equation which describes the water movement in the
degenerate multiphase regime:

aGw m ) m
Sl 90 3 K () (T )] = 0. @19

It is called Richards” equation, since is was proposed by ( ). For a complete de-
scription, the material properties 0y (m) and K(6y) (see section 2.2.3) must also be given. A

11



2 Fluid flow in porous media

prerequisite is that the system is in a state of dynamic equilibrium such that these relation-
ships exist. This is similar to thermodynamics where the equations of state are only defined
in thermodynamic equilibrium. The estimation of the material properties is normally the most
difficult problem when using Richards” equation.

2.4.2 Continuous multiphase regime

Both air and water phase are continuous, i.e. any two points in phase i can be connected by a
path within that same phase, but due to higher water content than in the degenerate multiphase
regime, gradients of p, cannot be neglected. For example, if the air must flow through small
channels, a non-neglectable pressure gradient is necessary to push the air through. Since only
small pressure fluctuations are considered, the air is assumed to be incompressible. The flux of
each phase is then described by the Buckingham-Darcy law (2.11) and the potential as defined

in (2.8). One-dimensional horizontal (i. e. no gravity) flow is then described by ( , )
. 0
Ja = _Kaglpa (2.20)
. 0 0
Jw = _Kw [axﬁbm + ax¢a] (2-21)

since P = [pw — Pa) + [Pa — Po] = Pm + Pa, with P = pw — pa as defined in equation (2.18).
Sometimes ¥y, is also called static capillary pressure and (P, + Y2 dynamic capillary pressure. The
conservation of mass and thus (since the fluids are considered incompressible) fluid volume is
written as ( , )

0 0 0
T [Ka(ea)axl[)a} =0 (2.22)
0 0 0 0
0 0
02t 50w =0, (2.24)

where the last equation describes that pores are only filled with water or air. To describe
the simultaneous flow of water and air in soils, these systems of coupled partial differential
equations have to be solved.

2.4.3 Discontinuous multiphase regime

When air content becomes small enough, the air phase will not be continuous anymore, but
discontinuous patches of air totally enclosed by water form which typically reside in large
pores. Air may leave such regions as bubbles or by dissolution. As a consequence of bubble
formation and dissolution, the air pressure in different isolated regions may be different. To
solve the flow problem, the pore-scale processes of bubble formation, transport, and dissolu-
tion must be averaged, which has not been solved to date ( , ). Numerical codes for
multiphase flow typically use macroscopic fluid contents and potentials for both fluids and
couple these macroscopic variables with heuristic equations. However, physically the coupling
is microscopical and averaging would have to be done after coupling the phases.

2.4.4 Singlephase regime

Only the water phase is remaining and saturation is constant, 8, = 0 and 65 = ¢. Since no
fluid-fluid interfaces are present, the dynamics are linear, conductivity K is a constant which
only depends on the porous material, i. e. the geometry of the soil matrix.

12



2.5 Water vapour transport

2.5 Water vapour transport

In the dry range, water vapour transport becomes a relevant transport process. To distinguish
liquid and vapour, superscripts g (gas) and /¢ (liquid) are used in the following. The equivalent
flux of liquid water transported by diffusion of water vapour f¥ is given by the diffusion law

fa = —VmwD&VV% (2.25)

where Vi, is the molar volume of liquid water, Dg, the diffusion coefficient of water vapour

in air, and v§, the molar density of water vapour. Assuming local thermodynamic equilibrium,

V& is given by ( , )

g pW,S(T) leVW,m
v = RT exp [ RT , (2.26)

where py,s(T) is the partial pressure of water vapour over pure liquid water at temperature T.
It can be described with Magnus’ formula ( , ) as

(2.27)

pus(T) = 610.78 Paexp (17.2694(T — 273.16K)>

T —35.86K

These relations can also be used to calculate the equivalent matric potential from a given water
vapour concentration.
Equation (2.25) can be reformulated, using the chain rule, as

& 8
]§v — _Vw,ng’v %VT + aVWVle] . (2.28)

aT MPm

By neglecting the temperature dependent part, approximating the vapour by an ideal gas, and
using equation (2.26) one obtains

Pws(T)VZ exp < lmeV%v'm )
5 __ _ 8 !
Jw = —Dy% [RT]2 Vipm . (2.29)

To account for tortuosity ¢, the model

o 0°
¢(e") = e (2.30)
is used ( p )- The diffusion of water vapour is not hindered as much by liquid
films as that of other gases, because it can condensate on one side and re-evaporate on the other.
While ( ) limit this effect to thermal induced vapour flow, it appears

plausible that it also holds for isothermal vapour transport. Therefore the saturated water
content 65 can be used for 6 in the tortuosity model yielding the relation D§, = 62/3D

w,atm
where D;gv,atm is the diffusion coefficient for water vapour in free air. Inserting the tortuosity

model into equation (2.29) yields
% = —K8(¢m) Vihm (2.31)
with

mVWm
K8 N Gg/SPW,S(T)Vr%Lw exp (1/; RT )
(llJm) — Ywatm [RT]Z :

(2.32)
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2 Fluid flow in porous media

Since equation (2.31) has the same form as the Buckingham-Darcy law, Richards’ equation
(2.19) can be extended to include water vapour transport as effective conductivity:

aaig _v. [Kg(¢m)v¢m + K6V [1,[]m —nggzﬂ

=V [[KE () + K 6]V [ — plegz]] -

The neglected term —K38(¢,)V (0%, ¢z) is small since ...

(2.33)

2.6 Dynamic effects

The water content at a particular potential sometimes differs greatly from the retention curve,
especially during rapid flow. The hydraulic relations not only depend on actual system state
and the wetting/drying history, but also on rate of system change. A long time is required
until the system re-enters equilibrium.

Various authors showed dynamic non-equilibrium in experiments with traditional probes
like tensiometers and time domain reflectometry (TDR). Reviews are given by

( ); ( ). The dynamic effect depends on the size of pressure

changes, it is larger for big changes. It is also larger for soils with wide pore-size distribution.
According to ( , ), the problem of dynamic effects has not been treated
adequately yet.

( ) made imbibition and drainage experiments, where more water was
removed in one large step than in a sequence of smaller steps. ( ) compared
6(¢m) of vertical sand columns. During drainage, at a given ¢, 6 was higher in transient
experiments than in static equilibrium or steady-state conditions. ( ) conducted
a series of imbibition/drainage cycles with horizontal sand columns using stepwise pressure
changes and found 6(¢m) to be unique during imbibition but not during drainage. Given
an initial 6 > 6O, where O is the critical water content, they found 6(¢m) to depend on
the pressure step size and on the time required to reach an equilibrium state. No deviations
of gas pressure from atmospheric pressure could be detected. ( ) made a
similar experiment with the same results. In drainage experiments in vertical packed sand
columns, ( ) found that during dynamic flow, the water content 6 was higher than
in the static retention curve. He as well found no deviation of gas phase from atmospheric
pressure. ( ); ( ) conducted evaporation experiments with silty soils
and measured ¢, with micro-tensiometers and 6 with TDR in different heights. They found
that local 6(¢m) curves, depending on height, differed considerably. The differences were
systematic and reproducible. ( ) made a systematic investigation with evaporation
experiments. He found clear differences, but no clear trends. ( ), in one-
and multistep-outflow-experiments, measured (¢,) using tensiometers and average water
content 6. In coarse-textured media, they found that with a given ¢,,, more water was retained
with greater pressure steps, while they found no effect for fine-textured media. In contrary,

( ), in one- and multistep outflow experiments, found more water with lower
pressure steps. The origin of this discrepancy is not clear.

Mechanisms for dynamic effects

One mechanism for dynamic effects is the dynamic contact angle ( , )- An experi-
ment by Aribert (1970), as described by ( ), shows that for two immiscible fluids in
a tube, the contact angle depends on velocity. However, ( ) reported that

the contribution of dynamic contact angle to dynamic effects is minor, the contact angle change
due to velocity was found to be smaller than 30° in any case, sometimes it does not change at

14



2.6 Dynamic effects

all. The following additional mechanisms were reported: (i) entrapment of water at high flow
rates leads to hydraulic isolation of water-filled pores, (ii) pore water blockage: after a pressure
step, the lower sample part is drained faster, isolating flow paths, and (iii) air entrapment.

( ) found that a considerable portion of the dynamic effects were caused
by a non-negligible air permeability and concluded that a two-phase model is needed to rea-
sonably describe dynamic effects. They also pointed out that measuring air pressure is difficult
and tensiometer no longer measure ¢y, if the air pressure is not constant and equal to ambi-
ent pressure (section 2.4). They stated that a quantification and isolation of two-phase flow,
hysteresis, and true dynamic effects is needed for further process.

Models
( ) used an empirical extension of the retention characteristic which depended on
the change of water content: Am = Pmayn = Pmgar = —ocpw%. The free parameter a was

estimated by plotting %—f against Ay /pw and fitting a straight line. His data fitted relatively
well to that model.

( ) developed a model for the dynamic contact angle effect on the hydraulic
functions, depending on capillary number Ca = £°. The model showed that for higher Ca, the
water content at given ¢, was lower. However, for reasonable capillary numbers, the effect
due to dynamic contact angle was minor. It began to be significant at Ca ~ 10~*. This fits with

the conclusions of ( ) who reported that the influence of the dynamic
contact angle was minor.
The ( ) model combined Richards” equation with a kinetic description.

They decoupled 6 from ¥, obtaining two independent variables. The coupling was done with
the additional requirement % = f(0,0equi)- f is a known function which describes the equili-

. . . . . . Oe uil 79
bration of dynamic features. A linear driving was assumed by choosing f (6, fequil) = ~%5—,

where T is the equilibration time. The dynamic water content was numerically approximated

using the iterative procedure /1 = 0/ + [9{;;11 — 0/ [1 — e~2/T]. When decoupling 6 and ¥,

it must be decided whether K(fequi1) or K() is to be used for conductivity estimation.
(2000) chose K = K(¢m) = K(Bequil(¥m))- According to (2003) this

means to fill large pores first. Using K(6) reduces the non-equilibrium features.
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3 Hysteresis

3.1 Definition and characteristics of hysteresis in general

Consider a thermodynamic system with the independent state variables x; and dependent
variables y;. If the system is taken from a state A to a state B within an equilibrium process,
i.e. infinitely slow, along a given path, the dependent variables y; will run through certain
values. If the process is reversed and the system is brought back to A, normally the y; pass
reversely the same values as on the way A — B (figure 3.1(a)).

For a certain set of processes however, even if the process is exceedingly slow, the path taken
by the y; from B back to A is different from that on the way A — B. Two types of such processes
can be distinguished: metastability and hysteresis ( , ). If any part of the
process involves non-stationarity, it is called metastable. An example for metastability is melting
and then freezing a pure substance which exhibits super-cooling. Here, x is temperature and
y may be entropy. On the reverse way, the still liquid substance has a temperature lower than
the melting point and solidifies instantaneously on small disturbances (figure 3.1(b): when
decreasing x, the system jumps from C to D, but on the way back it continues on the upper line
until point E, before it jumps down to F). On the other hand if both paths correspond to stable,
reproducible values of the dependent variables y;, the process is called hysteretic (figure 3.1(c)).

Hysteresis can be produced if a system consists of a large number N of small sub-systems
which exhibit metastability. Then the superposition of the many sub-systems leads to a smooth
path. Equivalently, the corresponding thermodynamic potential of the system has several local
minima such that, at some points, the state can jump from one minimum to another. This
is indicated in figure 3.2. A system features irreversible processes until the thermodynamic
potential reaches a minimum (or the entropy a maximum). Thus, if the system is brought to
point C on the red line by increasing x, the system jumps to point D and thereby changes its
state to a stable minimum. Going back by again decreasing x, the system now follows the blue
line.

Figure 3.1(c) shows the so-called “main hysteresis loop”. This loop is encountered if the

v v v
B E B
D B
E F D
A C A
. AT . C .
X X X
(a) normal behaviour (b) metastability (c) hysteresis

Figure 3.1: Example system loops for a normal system (a), a system exhibiting metasta-
bility (b) and hysteresis (c).
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3.2 Mechanisms for hysteresis in porous media

ey
Figure 3.2: Hysteresis caused by non-uniqueness of the thermody-
C 1/ namic potential. If the system is on the red curve and x increased,
- at point C it jumps to point D and thereby switches to the blue
ve line, where it reaches a new stable minimum.
ye
B
A
&  Figure 3.3: First-order (black) and higher-order (blue, cyan) scanning
X curves of a hysteretic process. The main curve is shown in gray.

system is brought through the whole range of possible values until the branches of the the
hysteresis loop again meet each other. If the direction is reverted while the system is still on
a branch, the system exhibits so-called scanning loops as shown in figure 3.3. These curves are
always located inside the main loop. Every point inside the loop can be reached by a quasi-
infinite number of possible ways. The simplest form of a scanning curve is a return curve
or first-order scanning curve, which is obtained by starting from one end and reversing on a
main branch, e.g. at point F in figure 3.1(c). These curves are typically leading towards the
other branch (but not necessarily reaching them). If the direction is reverted again somewhere
on the scanning curve, higher-order scanning curves are obtained, shown in blue and cyan in
figure 3.3.

3.2 Mechanisms for hysteresis in porous media

In general, in a porous medium 6(¢,) will not be a unique function even if the saturation-
drainage process is infinitely slow and thus in theory reversible. Indeed, this has already been
found by the first experiments in the 1930s. Figure 3.4 shows an example of wetting and drying
loops as reported by ( )-

There are several mechanisms at the micro scale which lead to hysteresis. These are explained
in the following.

3.2.1 Inkbottle effect

Look at a single pore in pore space (figure 3.5). Initially, the pore is saturated with water
(figure 3.5 (a)). Now, pressure on the left end of the pore is decreased. The water-air interface
moves continuously into the pore up to the first minimal radius (b), which corresponds to a
certain pressure p; according to equation (2.4). Reducing the pressure any further empties
the whole cavity, until the interface can form an even smaller radius: the possible radii in the
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3.2 Mechanisms for hysteresis in porous media

Figure 3.5: [llustration of hysteresis in a porous medium caused by the ink-bottle effect.
Water is displayed in blue, air in yellow. Sub-frame (a) shows a completely saturated
pore, (b) that pore at the air entry point p;, sub-frame (c) at pressure p, < p; and
sub-frame (d) at p; after re-irrigation, with the same curvature radius as (b), but dif-
ferent water content.

--_ - -
(a) (b)
() (d)

Figure 3.6: [llustration of hysteresis in a porous medium caused by entrapped air.
Water is displayed in blue, air in yellow. (a) Both pores are saturated, (b) during
drainage the water flows out of all pores, (c) on imbibition water flows faster in the
small pore due to higher capillary forces, (d) this leads to air entrapment in the large
pore.

cavity are too large to sustain the interface as the pressure difference is too high. This leads to
figure 3.5 (c).

At this point the process is reverted and the pressure is increased again. This does not lead
back to (b); instead, at p;, the configuration (d) will be found, which has the same curvature
radius as (b) but a different water content 6. This effect is called the ink-bottle effect and is
caused by the connection of small and large cavities in pore space.

3.2.2 Entrapped air

On imbibition, smaller pores are invaded first due to higher capillary forces. Therefore, in a
system consisting of a large and a small pore (figure 3.6) the water in the small pore reaches
the end junction first (sub-frame (c)) and air is entrapped in the large pore (d). The result is
entrapped air that is completely enclosed by water and thus does not form a connected phase
any more. Thereby, the system has another water content than the fully water-filled one at the
same potential (a). Thus, after drying and re-wetting, even if the pressure is set to the same
value as before, the water content 6 does not reach its initial value again. As a result, the
main hysteresis loops change. Draining once more hence results in another (¢ ) curve, the
“secondary drainage branch”, and so on.

On drainage, the entrapped air can hinder the water in the small pore to flow out. When the
water recedes, due to the much lower pressure inside the air phase in the bubble, the pressure
gradient may not be large enough to move the minisci and the air bubble stays at its place
while the water in the large pore recedes. Thereby, parts of the pore space could be “locked
up” by air bubbles.

Note that when entrapped air is present, the Richards’ formulation may not be valid any
more if the non-continuous air phase drastically changes the flow behaviour such that Darcy’s
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Figure 3.7: Contact angle hysteresis: (a) contact angle when the drop is inflated, (b)
contact angle when the drop is deflated.

law is not valid. On the other hand, if the amount of entrapped air is small, the system may
still be described with Richard’s equation with an effectively smaller pore space available for
water transport and therefore slightly modified parameters. Thus, in that case, macroscopically
the entrapped air only has an indirect influence.

3.2.3 Contact angle hysteresis

The surface of the solid phase is not completely smooth; there are always disturbances, at least
in some molecular level. Hence, the contact angle is not unique any more, the receding contact
angle is smaller than the advancing contact angle ( , ). For example, if a
drop is inflated (figure 3.7(a)), the contact angle & can exceed the equilibrium contact angle, but
the line of contact still does not move. Not before the contact angle exceeds a certain threshold
a,, the advancing contact angle, the line of contact begins to move. Similar, in deflating the
drop, the line of contact does not move before the contact angle drops below a, (receding
contact angle). This leads to a hysteretic behaviour of the line of contact.

On a “good” surface, &, — a; is small (< 5°), while on rough and/or dirty surfaces, it can
exceed 50° ( , ).

3.2.4 Pinning and snap-off

Often a local increase in the wettability is found, i. e. there are spots with a higher wettability
than the rest of the surface (e.g. a sand grain). The hysteretic effect of such spots (

, ) is shown in figure 3.8. The receding line of contact is moved to the right (a). On
encountering the disturbance, it is pinned locally by the higher wettability and stretched (b).
Finally, at a certain distance d when the force is high enough, the line breaks off (c). This
break-off dissipates energy.

On the way back however, the line of contact moves very close to the disturbance without
anything happening (figure 3.8(d)). At some small distance d* which is much smaller than 4,
the water nearly instantaneously covers the disturbance (e). This is a very quick process which
happens in less than 0.1s.

3.2.5 Surface roughness

The wettability also depends on surface roughness. As roughness increases, a hydrophilic sub-
stance becomes even more hydrophilic, while a hydrophobic one can become literally “super-
hydrophobic” ( , )- (1998) demonstrated that the effective
properties of a medium with microscopically heterogeneous wettabilities may be obtained from
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(©

(d) ()

Figure 3.8: Hysteresis caused by pinning of the receding triple line. The top row shows
the receding line of contact, the bottom row the advancing one.

a weighted average of the constituents. If the roughness changes on a macroscopic level, differ-
ent regions of the medium have different properties which might lead to different flow paths
on wetting and drainage.

3.3 Modelling hysteresis

Understanding the mechanisms on the microscopic level, hysteresis for 6 (i) will be expected.

The macroscopic water content is made up of a complex microscopic water configuration.
There are many different possibilities how a certain curvature (determined by the matric head
which corresponds to a pressure jump) can be realised, corresponding to different water con-
tents 6. At a given value of ¥, the change of water content 8?70; depends on that complicated
microscopic configuration. In the non-hysteretic case, the system averages itself when the soil
hydraulic properties are estimated experimentally and nothing needs to be known about the
microscopic water configuration at any point. This situation changes completely when hys-
teresis is encountered. At a certain point (m, ) where the direction of flow is inverted, the
microscopic water configuration at that precise point determines a?Tem' But, in difference to the
non-hysteretic case, it may not have be estimated experimentally because it is impossible to
run experiments for every single possible hysteresis loop since the number is infinite. Thereby,
when modelling the soil, one runs into a fundamental problem. There are several ways to solve
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Figure 3.9: [llustration of the independent domain model: (a) The characteristics of an
atomic domain and (b) the resulting characteristics of a large number N of indepen-
dent domains with distributed characteristics. The model can also reproduce scan-
ning curves, shown as the dotted line.

it:

1. Something must be said about the microscopic behaviour of the system. A physical
model for the hysteresis process is made and calibrated with experimental data. The
major existing models are reviewed below.

2. Empirical parameterisations are used to estimate scanning curves by measured main hys-
teresis loops, often by scaling and shifting. There is no physical insight obtained from this
strategy, so only the results of a selected number of models is compared to experimental
data here.

3. The system is explicitly simulated at a microscopic scale and the macroscopic properties
are estimated using this simulation. This presupposes that the microscopic structure is
measured e. g. using micro-tomography. It is also very costly in terms of computational
power and, at the time of writing, no sufficiently functional microscopic model is avail-
able.

4. Tt is claimed that the hysteretic process becomes non-hysteretic again if an additional
variable of state, e. g. the area of the interface, is included in the consideration.

3.3.1 The independent domain model

The independent domain model proposed by ( ) is a general model for
hysteresis and was later adopted to capillary hysteresis by ( ) and modified
by many others, e. g. ( ). It is based on the assumption that the system consists of

many independent binary atomic sub-systems which exhibit metastability, the so-called “do-
mains”, and that the total effect is made up of the sum of the sub-systems. The domains are
assumed to have two possible states I and II. It is supposed that the characteristics of the indi-
vidual sub-systems vary such that the threshold X for the switch from state I to II on the path
A — B is distributed according to the random distribution p. The threshold X on the reverse
path is distributed according to f(x) = p(x + &). The offset ¢ = X — X is also distributed
according to a random distribution ps.

Figure 3.9 illustrates this approach. The atomic domains have a rectangular path. Due to
the many domains with different characteristics, every domain switches at a slightly different
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3.3 Modelling hysteresis

value, and a smooth hysteretic curve forms whose shape depends on the distribution functions
p and ps.

Applied to a porous medium, this leads to the assumption that the medium consists of a
large number of independent pores which switch instantaneously from a complete water-filled
to a complete dry state at a potential {5 and vice versa at ¢; > g (“d” stands for drainage,
“i” for imbibition). The difference i; — ¢4 is assumed to be independent of . Pq and ; are
distributed according to a distribution function p(¢g4, ¢i). p corresponds to the relative water-
filled volume. After a sequence of imbibition and drainage processes, the actual water content
can be calculated by integrating the distribution function p. An implicit assumption is that the
water content only depends on the last drainage/imbibition processes and the previous cycles
are irrelevant.

(1973) made the simplifying assumption that p is separable:

p(Ya, i) = L(pa)h (1) - (3.1)

This assumption greatly simplifies the calculation. The water content on a wetting curve then
becomes

Pm i
Oulpm) = [ B(y) | [ 10pa) | dys 62)
Pmin Pmin

where §min is the minimal possible water content. The drainage curve is calculated similarly. /
and & can be estimated using measured primary imbibition and drainage data.
( ) simplified the model even more by assuming

() = h(y), (3.3)

thus p(¢q, ¥i) = h(pq)h(y;). This additional simplification allows to use only either the main
drainage or the main imbibition loop to calibrate the model, but means that the distribution of
bottlenecks is equal to the distribution of cavities, which is not obvious.

3.3.2 The dependent domain model

The dependent domain theory is an extension of the independent domain theory presented
in section 3.3.1 above. It was proposed by ( ) and accounts for the fact that if
a domain i changes its state from (say) 1 to 2, it may either aid or hinder the transition of
neighbouring domains. For example, in magnetic hysteresis, if several domains are already
aligned according to the external field and exhibit an additional magnetic moment, it exerts
an aligning tendency on the neighbouring domains. In capillary hysteresis, if one pore has
been drained, it can block the neighbouring pore because its water cannot flow out through the
drained pore.

As in the independent domain model, the domain i changes from state I to Il at x = X; and
from II to I at x = X;. However, for a given domain, X and X will not be fixed but will depend
on the state of the neighbouring domains. They can either increase or decrease on a switch of
a neighbour, depending on the interaction type (ease or hindrance).

Consider a one-dimensional array of domains (figure 3.10). Suppose that a switch of a do-
main eases the switch of a neighbouring domain. When x is increased (path A — B), X; is
reduced if domain i — 1 switches from I to II and reduced even more if domain i + 1 switches
as well. Thus the transition of the neighbours might reduce X; below the current x and domain
i may switch too (figure 3.10(d)). This may transform another neighbour and so on, such that
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3 Hysteresis

(a)
(b)

()

(d)

Figure 3.10: [llustration of the dependent domain theory with a linear chain. Gray
fields are supposed to be in state II. The cyan filling in domain i represents how far
it is from switching, i.e. X; — x. On increasing x, when the neighbouring domains
switch from I to II, X; is reduced, the cyan area increases.

a chain of transformations might be started. It ends when a domain is reached which does not
switch even if the neighbour has already transformed.

A dependent domain model for capillary hysteresis was introduces by ( ) and
changed and improved by many other researchers (e. g. , ;
, ; , ). The base idea is to introduce weight factors, g4 < 1 which

denotes the volume ratio of actually drained pores and the drained pores in the independent
domain model, and similar g; for the imbibed pores. They account for blockage by water and
air. Thus, the model is not strictly a dependent domain model in the way suggested by

( ). A matrix-like notation is introduced which denotes the history of imbibition

(from bottom to top) and drainage (from top to bottom) processes. < ¥ ¥2 ) thus denotes
1

an imbibition from ¢ to 1. The water content calculation now becomes

09m) = | [ (91,9035 (81 ¥, 8, Bm)9a (91, 91 6, Ym) A iy (64)

which is an integral equation for 6. As this is difficult to calculate, averages

() )
90<... " lpm)—f?o('” %)

and 74(0) (similar) are used. The dots ... denote any number of previous processes, 6 is
the water content without blockage, as calculated by the independent domain model. Equa-
tion (3.5) therefore is the ratio of the real water content change introduced by the last imbibition
process and the water content change of the same process as given by the independent model.
The g; are assumed to depend on 6 only. As a further simplification, blockage against air entry
is assumed to be negligible, g4 = 1.

7:(0) =

In the ( ) model, experimental data of a scanning curve is needed
in addition to the main wetting and drainage curves to obtain g;. The ( ) model
is based on the extended similarity hypothesis equation (3.3) and only needs the primary
hysteresis curves for calibration.
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Figure 3.11: Comparison of the performance of four hysteresis models in reproduc-
ing wetting scanning curves by ( ). Solid lines (main loop) and points are
measured, broken lines are fitted values. (a) slope, (b) point, (c) linear method, (d)

( ) model. This figure was extracted from figure 4 of the original
publication.

3.4 Model performance

Although the hysteresis algorithms mostly were tested in the context of the flow problems
for which they were developed, systematic comparisons of several models with the same data

are rare. ( ) compared four different hysteresis models using experimental data by
( ). Three of them are empirical models: (a) a point method (
, ), (b) a linear method ( , ), (c) slope method by the author of the
comparison himself. The forth model (d) is the domain model of ( ).

Figure 3.11 shows the ability of the four models to reproduce wetting scanning curves. All
models were calibrated with the main loops. All models predict the measured data poorly.
Parts of the lines are far off the measured values and partly even do not get the shape correctly.

( ) measured the response of a sand column to a fluctuating water table.
Water content was measured with TDR probes and the matric potential with tensiometers. They
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Figure 3.12: Simulated (lines) and experimental (symbols) data at four locations of flow
with cyclic water table fluctuations by ( ). This figure was extracted
from figure 12 of the original publication.

compared the results with simulations using the ( ) model. The main hysteresis
loop was measured directly with the same experimental setup using quasi-static conditions.
Figure 3.12 shows the result of one of the experiments. The agreement between experiment
and simulation is poor and partly not even qualitatively correct. For example, the curve at
7 cm has large asymmetric fluctuations which are not seen in the data, the 43 cm simulation is
even anti-cyclic to the measurement. ( ) attribute parts of the discrepancy
to uncertainty in the estimation of the main loop. This is certainly correct, as the direct method
applied there is not very precise. All the same the aberration seems too large to be explained
by deviations of the main loop only.

( ) also investigated the so-called “capillary pumping” of the four models. If
Pm cycles between two fixed values, some algorithms predict progressively decreasing water
content, until a stable loop is found. This is claimed to be an artefact and no real property of
porous media ( , )- However, entrapped air would have exactly such
an effect, which is also indicated by newer experiments.

Models (a) and (b) (as defined at the beginning of the section) exhibit distinct pumping
behaviour and also partially crossing scanning curves which is definitely incorrect. Model (c)
was explicitly developed to avoid the pumping effect which was achieved fairly well. However
it seems doubtful if in reality the scanning curves would stay on a nearly straight line. Model
(d) shows a more realistic behaviour, as a parting of the paths in the two directions would be
expected.
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Figure 3.13: Comparison of the capillary pumping behaviour of four hysteresis mod-
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4 Image analysis

This is a short introduction into the methods of image analysis used in this thesis. A compre-
hensive treatment can be found e. g. in ( ).

4.1 Image representation

Images constitute a spatial distribution of the irradiance. In the real physical world, at a
macroscopic scale this is a continuous function E(x). However, as computers can only handle
finite arrays of discrete numbers, the irradiation must be discretised to an array of points. This
process is called sampling and is described below. A digital camera for example samples the
data in its photo-sensor, which has a discrete number of photo diodes. A discrete 2D image is
represented by an M x N matrix, a point in that 2D grid is called pixel. Its position is given in
the matrix notation: g;; denotes the pixel in the ith row and the jth column. Note that images or
signals are indexed beginning at 0, the first entry of a 2D image is goo. In contrast, dimensions
are indexed beginning at 1, e. g. in a 2D space x; would be the x-axis and x; the y-axis.

M x N dimensional 2D images can be considered as an M x N dimensional vector space
with a vector product

N-1,M-1
xy= Y} X (4.1)
i,j=0
A natural basis of this vector space is

(" B)ij = 6pidmj (4.2)

where J;; denotes Kronecker’s delta. An image can be transformed into another basis without
loss of information. Another important vector space for images is Fourier space, which is
introduced in section B.

4.1.1 Homogeneous coordinates
For any N-dimensional vector space, affine transformations can be written as

E=Ax+b. (4.3)

However, it would be favourable to write this transformation as a simple matrix multiplication.
This would also allow to concatenate several transformations into one matrix. It is achieved by
introducing homogeneous coordinates. For that, the dimension of the vector space is increased
by 1 as follows:

x:(xl, X2, .., XN)HD?:(JQ, X2, ..., XN, 1) . (44)

The additional component may only have the values one or zero. If after a transformation
the additional vector element is not equal to one or zero, the vector is re-scaled such that that
element again equals one:

(x1, oo, N, w) e (3, L, 1) (4.5)

w’ w
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4.2 Sampling and sampling theorem
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Figure 4.1: Demonstration of the aliasing effect: a 1D signal is sampled with a sam-
pling distance Ax of 9/10 of the wavelength of the original (red) signal. The result
is an aliased signal with an apparent wavelength of 10 times the sampling distance
(blue).

With this new vector space, affine transformations are written as
&= Ax, (4.6)

where the N +1 x N + 1 matrix A implicitly contains b.

4.2 Sampling and sampling theorem

It is intuitively clear that sampling leads to a reduction in resolution. Structures equal or finer
than about the scale of the sampling distance is lost. Considerable distortions may occur when
the sampled object contains finer structures. This is demonstrated in figure 4.1 which shows
a sinusoidal signal which is sampled with a sampling distance Ax slightly smaller than the
wavelength. As a result a signal with a much larger wavelength is observed. This effect is
called aliasing or Moiré effect.

Thus it is important to understand the sampling process and how to avoid the loss of infor-
mation. Since the aliasing effect was demonstrated with a periodic signal, it is clear that the
key is to analyse the sampling process in Fourier space.

Consider the digitisation of the continuous irradiance field E(x) to a discrete grid
rij = (iAxl,ijQ) with l,] ez, (4.7)
where Ax; is the spacing in i-direction of the rectangular grid. Each pixel in (for example) the

photo-sensor has a finite sensitive area which averages the radiation according to its specific
point spread function /1, (x). Assuming that &, is equal for all pixels one obtains

8(r) = [ E@hplry— )z . «8)
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Thus, E is convolved with the PSF of the pixels and then sampled at the grid points. Accord-
ingly, these two processes can be treated separately. As convolved is an associative process, we
can combine the PSF of the optical system F, (lens, shutter, etc.) with the PSF of the pixels ,
to a total PSF h.

Sampling means that all information which is not on a grid point is lost, i. e. the function g is
multiplied with the “é-comb”, which has §-functions on the grid points and is zero on all other
points:

gS(x) Z(S x_rl] O_'gs Zg _1’1] (49)
where
1A‘i]' = (lel,ZDkz) with Z,] € Z and Dkl = % (4.10)
1

is the reciprocal grid. In Fourier space, g is convolved with another §-comb whose grid con-
stants are reciprocal to the grid constants in position space. A dense mesh in position space
therefore yields a coarse mesh in Fourier space and vice versa.

As mentioned in Appendix B, a result of the Fourier transform is that images are periodic. If
the image spectrum is so large that parts of it overlap with the periodically repeated copies, it
cannot be distinguished weather the spectral amplitude comes from the original spectrum or
from its copy. This is illustrated with the periodic structure in figure 4.2. The spectrum contains
one peak. As the wave number is too large for the sampling grid, the central cell only contains
a periodic copy of the peak. Thus, the observed apparent wave vector kap, differs from the
true one by a grid translation vector #;; on the reciprocal grid. It has both a wrong length and
direction. If there were other structures, they would overlap with k,p, and thereby create a
so-called Moiré or aliasing effect. In the one-dimensional example in figure 4.1, one obtains an
aliased wave number of kapp = k — Uk = 9/1000k — [k = —1/10k.

Therefore, overlapping must be avoided. This can be achieved by limiting the spectrum to
the area that extends up to one element of the reciprocal grid (the first dashed lines around a
grid point in figure 4.2), i. e. to the first Brillouin zone. Thus, a periodic structure will only be
obtained correctly if at least two samples per wavelength are taken ( , ):
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4.3 Neighbourhood operations

Theorem 4.1 (Sampling theorem). If the spectrum ¢ (k) of a continuous function g(x) is band-limited
such that

Vi:V|ki| > 0k;/2: §(k) =0, (4.11)
then it can be reconstructed exactly from samples with the distance Ax; = 1/0k;.

The maximum wavenumber which can be sampled without errors with a given grid is called
Nyquist wave number. It is often convenient to use dimensionless wave numbers which are
scaled to the limiting wave number:

- k

Reconstruction from samples

The sampling theorem states the conditions under which a continuous signal can be recon-
structed from sampled points. The reconstruction is performed by interpolation of the sampled
points. The interpolated points are calculated from the weighted sampled values g(r;;):

Zh 7’1] 8s rl])

_/ x—¢ Z(Srl] (8) dg oo &r(k) = hr(k) }_gs(k — #y)

The interpolated function is only equal to the original one if the weighting function # is a
box function with the size of the elementary cell of the reciprocal grid. Then all replicated and
shifted spectra are eliminated and the original band-limited function is reproduced.

The inverse Fourier transform of the box function is the sinh function. It only decreases with
1/x, therefore a correct interpolation requires an infinitely large signal. This condition can be
weakened if the sampling theorem is “more than fulfilled”, i.e. ¢(k) becomes zero before the
Nyquist zone is reached. Then, according to equation (4.13), /i(k) can be chosen arbitrarily in
the region where ¢ is zero. This freedom can be used to construct an interpolation function
that has a minimum-length interpolation mask.

4.3 Neighbourhood operations

Neighbourhood operations relate pixel values in a small region. They are used for feature
extraction.

4.3.1 Averaging

Gaussian averaging

In the most simple case averaging filter can be used to identify regions with constant illumi-
nation. Noise or inhomogeneous background can be detected. Convolution is the basis for
a large number of average filters. These filters should be shift invariant, preserve the mean
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Figure 4.3: [llustration of the operation of the median filter with N = 3. All values in
the 3 x 3 neighbourhood of the pixel to be processed are sorted. The middle value is
taken as new pixel value. Image source: (2005)

value and (in most cases) should be isotropic. The transfer function is expected to decrease
monotonously.

A reasonable averaging filter is the (linear) binomial filter. Its transfer function is a cosine to
the power of R, where R is the order of the binomial used as the discretisation for the Gaussian.
For R = 2 the 1D filter mask is b = [1/4,1/2,1/4] and the transfer function b = cos?(7tk/2),
where k is the normalised wave number. Since the Gaussian is separable, multi-dimensional
filters result from convolution of horizontal and vertical 1D filter. For broad averaging, a multi-
scale representation is useful (see ( , sect. 11.5, sect. b)).

Median filter

Linear filters blur edges and mix objects and background. They effectively eliminate Gaussian
noise, but they are not efficient for binary (“salt and pepper”) noise. This is eliminated by the
median filter. It is invariant for constant neighbourhood and edges, but eliminates impulse-like
pixels (outliers). The filter works in the following way: All pixel values in the N neighbourhood
are sorted linearly and the middle value (the so-called median) is then used as new pixel value.
This process is illustrated in figure 4.3. The median filter is a non-linear filter.

4.3.2 Edge detection and derivatives

Edge detection requires neighbourhood operations which detect gray value changes while ig-
noring constant gray values. Thereby an image is generated which marks changes, while all
other regions are dark. Ideally, an edge is a spatial discontinuity of the gray value. In practice,
e.g. noise smears out the edges. Edges can be detected by derivatives. Since images are dis-
crete, the derivative has to be approximated by finite differences. For not breaking symmetries,
a symmetric difference approach is best suited. It is defined by the filter mask [1/2,0, —1/2].
When using two element masks, the grid is shifted by half a pixel. Due to the discrete nature
the gradient filter exhibits anisotropy of direction and an error in the direction of the gradient
which must be kept in mind when using those filters.

4.4 Noise model for image sensors
Digital image sensors are semiconductor solid state devices. In each pixel, the photons interact

with the semiconductor. Electrons are released due to the photo effect. Let Ny, be the number
of photons which hit one pixel. Due to the statistical nature of light, the number of photons

32



Pixelfly QE/c204, 1.70ms, low gain, 270xs3706

4.5 Deconvolution

A602f/c066, 4.30ms, gain 1

900 1.8
800 Lo 1.6 o
700 R e
K600 et S .
[} . Y 1.21 .
2 500 .. < .
< . & 1.0} s *
g 400 L 5 e
300 T > 0.8r ..
200 - 061
100f " 041
- 0.2 s s ' ' '
0 500 1000 1500 2000 2500 3000 3500 4000 0 50 100 150 200 250

gray value g

gray value g

Figure 4.4: Variance versus gray value of two scientific cameras. The measured data fits
well to the simple noise model. This figure was extracted from (2005).

is Poisson distributed. For large Ny, the Poisson distribution converges towards a Gaussian
distribution with mean Npp, and standard deviation oy, = /Nph-

Let n7 be the quantity yield, i. e. on average one photon releases 7 electrons (7 < 1). Then the
number of electrons, Ne, is Ne = 77Npp, and the standard deviation is oy, = v/ Ne. A typical CCD
pixel element collects about 10000 or a bit more electrons. Thus, even with ideal electronics the
error is already 1 %.

The read-out electronics, amplification etc. add additional sources of noise. It can be assumed
that all these are Gaussian distributed independent random variables. Thus, the signal Q is

Q=Ne+Qo (4.14)
with variance

(Té = alz\fe + (7(220 . (4.15)
The amplifier is assumed to be linear. Thus, the gray value g is

g =KQ (4.16)
and its variance

oy = K2og = K20} + K*Ne = K*(0f, — Qo) + K*°Q = 0§ + Kg . (4.17)

This equation predicts a linear increase of the variation with the measured signal. Normally,
image sensors fit quite good to that simple noise model. Figure 4.4 shows experimental data of
two scientific cameras ( , )-

4.5 Deconvolution

As mentioned above, during image acquisition the true irradiation is convolved with the PSF of
the acquisition system. Additionally, there might be convolution in the physical system being
investigated, for example according to multiple scattering. As convolution is linear, these can
be put into one single PSF p. The spreading of an initially infinitesimally small light beam by
multiple scattering in a porous medium is shown schematically in figure 4.5.
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Figure 4.5: Schematic illustration of the spreading of a point source by multiple scatter-
ing in a porous medium.

p can also be interpreted as a PDF: p(x — ¢) is the probability that, presumed that a photon
was emitted at location ¢, it will be detected at location x. Accordingly, it is a conditional
probability, which can be written p(x|¢) (read: the probability that X = x provided that & = ¢,
where X and E are random variables with samples x and ¢).

The problem is the restoration of the original (or true) image f from the observed blurred im-
age g with the known PSF p. This approach is called deconvolution or inverse filtering. At first
glance, it might seem easy: Using the convolution theorem, equation (B.13), the convolution

§(k) = f(k)p(k) can be readily inverted, obtaining

’ 8(k) _ siryp-t

k) =<+ =gk k (4.18)

Flo) = Sy = 80P ()
meaning the observed image is simply multiplied by the inverse of the optical transfer function
(OTE), ﬁfl. However, additional noise n during the measurement process will also affect the
observed image. As the absolute value of the optical transfer function is very small in large
regions, the numerical division leads to very large numbers at high wave numbers, which
amplifies noise.
For a quantitative analysis the simple image formation model

g(x) = [f x pl(x) +n(x) (4.19)

can be used which states that the noise is added to the image after the convolution: The noise
largely stems from the sensor and the Poisson nature of the collected photons. In the following,
this model is referred to as “model I”. In real images, as described in section 4.4, the variance
depends on the gray value. Therefore, to make n(x) an independent noise term which does
not depend on the actual image, the image must be transformed with a bijective gray value
transformation to obtain constant, gray value independent noise:

h@:§M@+ﬁ, (4.20)

where K and oy are the slope and offset obtained from the camera calibration, as defined in
equation (4.17). Using error propagation results in

2
2
o2 = [ah} oy = IR S [Kg+o3] =1, (4.21)

93 \/Kg+ 0

thus after the transformation the noise is constant with variance 1 and the image fits to the noise
model (4.19). After deconvolution the image is transformed with the inverse transformation
h~1 to re-obtain the original values.
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4.5 Deconvolution

As an alternative to model (4.19) where the noise is included explicitly,

g(x) = [f* pl(x) (4.22)

might be interpreted as one sample of the random variable G. Here, the noise is implicitly
included in the stochastic nature of g. Knowing the PDF of G, we can obtain the image f with
maximal likelihood. This approach, in the following referred to as “model I1”, is used in the
Richardson-Lucy deconvolution, section 4.5.3

Being an inverse problem, deconvolution is also an ill-posed problem, and no unique solution
can be found, especially in the presence of noise ( , )- This is due to the fact that
many light distributions are, after convolution, compatible with the observed image. Therefor,
regularisation techniques have commonly used to put constraints on the reconstructed image,
e. g. smoothness constraints. Care must also be taken that the sampling theorem is still fulfilled
in the deconvolved data ( , ).

4.5.1 Determination of the PSF

The most straight-forward way to determine the PSF would be to measure the response to a
point light source. This method is frequently used in astronomy; due to their large distance,
single objects have in good approximation an angular extend of zero. However, in light trans-
mission experiments infinitely small light sources are difficult to achieve. Another possibility
is a line source to obtain the PSF in one dimension. Measurements along all dimensions are
necessary to obtain the full PSF if no symmetries can be exploited. But again, infinitely small
light sources are experimentally difficult.

To overcome the experimental limitations of § light sources, edges can be used. Mathemati-
cally, an edge can be described with Heaviside’s function,

1 ,x>0
hix) = ! . 423
(x) {0 e @29

If a slit is positioned vertically between light source and object, the resulting irradiance is

f(x,90) = folh(x —x1) — h(x — x2)] (4.24)

assuming a homogeneous light source with irradiance fy, where x; and x; are the x coordinates
of the edges of the slit. The observed image is then g(x) = (f * p)(x). By derivating g in respect
to x at a fixed yo, one obtains

w2 [ rope-gde= [ o+ @50 e
[ e R —0)
=~ [re®5 e | .
- [ 2O - FEre -0
~o —

=0(x—x1)—0(x—x7) =0

= plx —x1) = p(x — x2)

Thus, the PSF can be determined by derivating the measured images of slits positioned in
all directions. When some knowledge about the expected shape of the PSF is available, an
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Figure 4.6: Sketch of the determination of the horizontal component of the PSF using a
slit, assuming a Gaussian shaped PSF.

analytical function can be fitted to the derived data to obtain an analytical expression of the
PSE. The advantage is that noise which is always present in the derived image does not disturb
the PSF as much as in a sampled representation. Figure 4.6 shows this approach schematically.

4.5.2 Band-limiting deconvolution

The easiest way to circumvent the amplification of noise at high wave numbers is to band-limit
the inverse OTF to some constant a: The effective inverse OTF is set to

Lo k| <
g(k) == ¢ P8 k| < (4.26)
1 ,else

assuming that wave numbers with a norm larger than a primarily contain noise. & must be
tuned to the noise level of the image; this is a tradeoff between loosing details and noise in the
deblurred image.

The lower the noise level of the observed image, the better this approach works. When a
certain level is exceeded, a reasonable deconvolution is not possible: « must be set so small for
a reasonable noise level that too much information is lost. If, in such a case, « is chosen large
enough to retain the details, the image is much too noisy.

The constant in (4.26) for |k| > a could also be set to zero; however, the effect is that too
much details are lost and the image is more smoothened than sharpened.

As the jump in the inverse OTF introduces artificial discontinuities, another approach is to
continue the inverse OTF with a polynomial 7 to assert smooth values and first derivative.
A third-order polynomial has four degrees of freedom, which are defined by the following
conditions:

Pkp) = 1/p(kp) (4.27)
(k) D .

i = 5!/ Plks) (4.28)

k) =1 (4.29)
(k)

(k) —o (4.30)
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4.5 Deconvolution

where k, = {k | |k| = a} is the boundary wave number and k. with |k.| > |k,| the wave
number where § begins to be constant. Note that k;, and k. are sets of points. k. can be set
to (1+ B)ky, where B is an additional free (scalar) parameter. This approach for defining k.
conserves the symmetries of the optical transfer function. The conditions (4.27))-(4.30) define
a set of linear equations for each coordinate which can be solved for the unknown coefficients
of the polynomial 7.

4.5.3 Richardson-Lucy deconvolution

The Richardson-Lucy (R-L) deconvolution algorithm is an iterative procedure proposed by

( ) and ( ) to obtain the most likely true image using the model (4.22).
It is useful if the PSF is known, but nothing special about the noise. A review can be found
in ( )- An effective implementation to accelerate the procedure was given by

(1997).
As mentioned above, g is assumed to be one sample of the random variable G. G is assumed
to be Poisson distributed, according to the process of photon counting. Then, the probability
to measure a value g(x) at location x is

P(G(x) = g(x)) = X @s1)

g(x)!

where 7y (x) is the expected value of G at location x.

For simplicity, in the following all K := M - N pixel at locations x;; are labelled linearly with
one index k, k = 1,...,K. The probability that all measured pixel of the image have the value
gk is the product of the probabilities of each single pixel (4.31),

K ,— Sk
e 'ka)/k
i1 8K

P(G=g) = (4.32)

The true image, i.e. the expected value of f, is unknown. The idea now is to estimate a
solution ¢, using to the model (4.22) (i.e. v = ¢ * p), such that the probability P(G = g)
for obtaining the actually measured image ¢ is maximised. In other words, the PDF of G is
adjusted such that it is most likely to measure g. This is done by adjusting ¢ (and thereby
the expected value 7 of the Poisson distribution). Accordingly, we interpret P as a function
of 7(¢) (recall that 7; = YK | opix, where py = pi_x = p(x; — &) is the discrete PSF), g is a
known parameter.

Maximising P is equivalent to maximising In’P. The maximum is found by setting the
derivative in respect to the unknown ¢; to zero:

amP] K71 9 9 3
[ ]_Z _M7k+8ka¢ln7k—0]zzpki [il;_ }
i 1 k=1

i o

0. (4.33)

A solution of equation (4.33) is v = g.

Still the question of estimating ¢ remains. To obtain an iterative procedure, f and g are
regarded as PDFs. This can always be done if they are normalised. They would then express
the probability to have a photon detected in a certain pixel. As explained above, p can be seen

as conditional probability. Then, Bayes” law ( , , sect. 16.2.1.3, p. 771) can be
used to estimate the (inverse) probability g(¢|x) that & = ¢ presumed that X = x:
x x

glx)  [fxpl(x)
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4 Image analysis

q is the inverse PSF, q(&) = p~1(¢):

f(8) = [8(x) *q(g]x)] () (4.35)
Inserting (4.34) into (4.35) yields

)= s+ (o) ©

p(x]2)
=/ )[ = ) Fx )*P(x!x)]] (©)

Although this equation, when directly evaluated using g(x) = (f * p)(x), results in 1 = 1, it
can be used to motivate an iterative procedure. f on the left side is interpreted as an updated
approximation to ¢, while f on the right as an old approximation. g(x) is the measured data.
The term f * p in the denominator is thus an approximation to . Then we have

#( i
(Pm

where ¢™ denotes the mth iteration of ¢. Obviously, this iteration scheme converges when
¢ = 7: In that case, the fraction becomes one and f"*! = ™. Equation (4.33) told us that
g = 7 is also the solution with maximum likelihood. Therefore, if the iteration (4.37) converges,
it converges to the most likely solution.

Note that the sum in equation (4.37) is not a convolution of the fraction g/ with p, as we
sum over k but the indices of p are ki, not ik.

Recall that all images are positive, as no negative numbers are possible when counting pho-
tons. Of course the PSF p is also positive (remember that it can be interpreted as a PDF). Thus,
provided an initial positive guess ¢°, equation (4.37) shows that ¢™ will also be positive for all
m.

In realistic cases, due to measurement noise, oy will not fit the data perfectly. Then the
procedure will converge to the most likely solution. This can be realised as follows: One
iteration step changes ¢; by

(4.36)

p(xk|Si) , (4.37)

A} = o' — g} = gf" [Z 8kP ’“—1] (4.38)
k=1 Yk

For small Ag, the change of the logarithm of the likelihood, A[lnP], can be approximated by a
first-order Tailor expansion. Noting that Yk ; py; = 1, as p is a PDF, one obtains

2

K .

AllnP]" ~ agrq‘)f]mr = ¢ !Z SkPii _ 1] >0. (4.39)
i k=1

As noted above, all ¢™ are positive if ¢¥ is positive. Therefore A[lnP] is also always positive,
the likelihood increases with every iteration step.

Suppressing noise

A problem of R-L is that it may yield noise amplification. This is a generic problem of maximum
likelihood algorithms, which try to fit the data as closely as possible. With too many iterations,
the deconvolved image sometimes shows “speckles” (figure 4.7) which are not representative
of a real structure but the result of fitting the noise too closely ( , ). In order
to reproduce a small noise bump in the observed data, the reconstructed data must have a
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4.5 Deconvolution

Figure 4.7: “Speckle” artefacts generated by
noise amplification by the Richardson-Lucy
deconvolution: (a) original image, (b) de-
convolved image.

1600
intensity

large noise peak. To conserve the optical flux, pixels near the bright spike must then be very
dark. In the R-L method, only the non-negativity requirement limits noise amplification: If the
compensating dark areas have decreased to zero, nearby spikes cannot grow any further.

A practical approach to limiting noise amplification is simply to stop the iteration in time.
However, it is difficult to say when exactly to stop. There is no criterion for R-L how close
the fit should be. Additionally, the required number of iterations may be different in different
image areas. Smooth, extended areas may be fitted well after only a few iterations, while peaks
or abrupt changes need much more iterations.

An effective approach for an adaptive stopping is to modify the maximum likelihood func-
tion equation (4.32) such that it becomes flatter in the vicinity of a good fit by introducing a
damping function § with parameter 7, as described in Hanisch et al. (1997). Instead of InP,
d(InP) is minimised, with

1L (1 oyl 1
5(y) = {r]+1 L=y tyh), y<1 (4.40)
Y, y=>1

¢ is chosen to be linearly proportional to y for y > 0, constant for y ~ 0 and has continuous
first and second derivatives at y = 1. 1 determines how sudden é becomes flat for y < 1. For
11 = 0 there is no flattening at all. The larger 7, the flatter becomes J.

To determine the threshold at which damping occurs, a new variable ¢ is introduced into
InP and the constants in are chosen such that in the modified In P/, the expected value in the
presence of Poisson noise is 1 if t = 1. ¢ then determines the number of standard deviations ¢
of G when damping occurs. Using Stirling’s formula, Inn! ~ nlnn — n, one obtains

K
InP'(G =g) ~ 2 tz Sk n;——vwgk (4.41)

4.5.4 Wiener filter

Wiener’s algorithm (Liickenhaus, 1997; Gonzalez and Woods, 1993, sect. 5.5) is a linear decon-
volution filter derived from a least-squares relation for noise model I. The idea is to minimise
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4 Image analysis

the mean error,

E([f(x) — ¢(x)]*) — min , (4.42)

where E denotes the expected value (equation (A.4)), and ¢ the reconstructed image. The goal
is to obtain the best linear estimate, i.e. find the inverse PSF g with ¢(x) = [g * ¢](x) which
solves (4.42). The minimum with respect to g is calculated by setting the derivative to to zero.
Since E is linear, derivative and expectation can be interchanged and we obtain

E(i[f—q*gm — EQlf —q#8][-g]) =0 (4.43)
E(fg) =q+E(gg) ., (4.44)

because ¢ is not a random variable and thus can be taken out of the expected value. E(fg) is
the cross-correlation of f and g and E(gg) the autocorrelation of g. Fourier-transforming (4.44)
allows solving for § yields

O
oq

S,
Ssg

4= (4.45)

where Sgo = ¢*¢ e E(gg), the Fourier transform of the autocorrelation, is the spectral power
density of g, § e=8" f e E(fg) and a* denotes the conjugate complex of a. Using the acqui-
sition model, (4.19), and considering that the noise n and the original image f are uncorrelated,
equation (4.45) can be rewritten in terms of the OTF p, the spectral power density of the noise
Snn and the spectral power density of the original image S/

p(k)Sys (k) _ Pk

10 = o - rE
PUOPSy (k) +Sunk) — [pio)2 + 208

(4.46)

This is the OTF of the Wiener filter.

Without noise, the Wiener filter reduces to the simple deconvolution, § = 1/p. For large
noise, the noise term S, /Sy gets large and the frequency response goes to zero. This leads to
a smoothing of noisy parts of the image. Thus, the Wiener filter is a combination of an inverse
filter and a noise-dependent smoothing.

In practice, the spectral power densities of noise and original image are unknown. Thus, a
reasonable estimate is necessary. If the properties of the noise are known, e.g. via a calibra-
tion measurement of the image acquisition sensor, S, can be reasonably estimated. Another
possibility is extracting the noise from the measured image g using a noise elimination filter,
e.g. a median filter, and obtaining a noise estimate using the difference between measured and
denoised image. S¢r normally has to be estimated from the measured image. In the absence
of further information, Sy, (k)/Sfs(k) is often assumed to be constant for all frequencies. Then
the required information reduces to the noise-to-signal power ratio.

The Wiener filter preserves the optical flux. However it sometimes generates spherical arte-
facts around peaks, or line-shaped artefacts alongside edges.

4.5.5 Ringing

The appearance of spurious high-frequency structures in the reconstructed image is called
“ringing”. It can also occur in perfectly noiseless data because the high-frequency structures
vanish in the blurred original data. These correspond to frequencies where the OTF has zeros.
Ringing can only be eliminated by placing constraints on the object.
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5 Light transmission through porous media

With modern cameras, optical measurements provide a high spacial and temporal resolution,
which is very attractive and allows assessing phenomena which cannot be investigated with
traditional sensors. At any rate, the measured irradiance must be a proxy for the quantities
of interest, thus some processes must exist which depend on the quantity of interest and have
an influence on the optical properties of the investigated object. This influence can then be
exploited to optically measure the quantity of interest. In the context of this thesis, water in
porous media is to be measured optically. In the following, the theoretical foundation of this
measurement is presented.

5.1 Properties of light

Light, or more generally electromagnetic radiation, and its interactions with matter are de-
scribed by quantum theory. However, in the limiting case of large quantum numbers, i.e. for
macroscopic and also some atomic phenomena, the discrete nature of radiation can be ne-
glected and it can also be described with classical electrodynmical methods ( , , 11).
For example, in 1 m distance from a 100 W light bulb, there are about 1015 photons cm2s. In
terms of the classical theory, radiation is a wave solution of Maxwell’s equations. Assuming
non-magnetic, non-conductive media, the wave equations

9’E

V2E — e€opo oy =0 (5.1)
9’B

VZB - 660;/{0W - 0 (52)

can be derived from Maxwell’s equations, where E is the electric field vector, B the magnetic
field vector, €y the electric field constant, € the relative electric permittivity which describes the
medium, po the magnetic field constant, and ¢ = 1/, /€opio the vacuum light velocity (

, ). The wave velocity, or phase velocity, in the medium is u = c¢/+/e. The influence
of the medium on wave propagation is thus described by the relative electric permittivity e.
n := /€ is called the refractive index of the medium. 7 is in general a complex number and
depends on wavelength.

Solutions of the wave equation are plain waves,

E.(x,t) = Egexpi(k - x + wt) (5.3)

and any linear combinations hereof, with the additional requirement

2.2 2f_ 2
k*u —knz—w , (5.4)

where k is the wave vector, w the angular frequency, and Ej the amplitude of the electric field
( , , sect. 7). Equation (5.4) is called dispersion relation and relates the absolute
value of the wave vector with the angular frequency. The wave length is defined as A =

= 2% and describes the length between two wave minima or maxima. The velocity and
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5 Light transmission through porous media

therefore the wavelength may change if the wave comes into another medium with a different
permittivity. The frequency v = 7 describes the number of periods per time. Energy transport
by electromagnetic waves, i. e. its energy flux density, is described by the Poynting vector

S =eyc?>(ExB). (5.5)

The temporal average of S during one oscillation period results in the radiation intensity I

( , 2009):

I =S| = eonc|E|?. (5.6)

5.1.1 Refraction and Reflection

At the interface between two materials with different permittivities €; and e, light can be
refracted, reflected, and/or diffracted. If the thickness of the bulk of the two materials 1 and
2 is large compared to the wavelength, ¢ >> A, i.e. additional interfaces to other materials are
far off such that the radiation does not “see” them when it is located at the boundary (but the
wavelength is still not short enough that the radiation resolves the atomic scale), it is sufficient
to consider the isolated interface of two semi-infinite media (figure 5.1). By considering the
boundary conditions for the phase factors at the boundary, Snellius” refraction law,

sinae K| m
— == 5.7
sin o/ k n1 (57)
and a” = « for reflection can be deduced ( , , sect. 7.3). By exploiting the continuity

conditions at the interface, Fresnel’s formulas for the amplitude of the refracted and reflected
waves can be derived ( , , sect. 7.3):

E/ 2111 COS &
) = EOL = (5.8)
0L nycosa+y/n3 —n?sin®a
EY.  mjcosa —y/n3 —n?sin®a
0L
rp = = (59)

2

2 _n?sin®a

Eo1 n1cosa + 4/ n5 —nj

fy = So _ 2n1ny cos & (5.10)

Eo| n3cosa + nyy/n3 — n?sin’ a
2

E'" n3cosa —nyy/ng —ndsin’w
T’H = a = ’ (511)

n3cosa + nyy/nj — n?sin’a

where E| and E| denote the electric field components tangential and parallel to the interface,
respectively. The intensity reflection coefficient is then
Il/
R=—= |#]?, (5.12)
where r = r, +r is the vector consisting of the two components 7, and r|. When calculating
the intensity transmission coefficient it must be regarded that for radiation beams with finite

extent the area of the light beam changes for a # 0 since &’ # « ( , ):
r 5 COS & > M)
T=">—|t — |t ) 5.13
I i cos o/ i ny (-13)
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5.1 Properties of light

| &
€2
k/
DC,
> X
) Figure 5.1: Geometry of refraction and reflection at the interface of two
K ra K media with different permittivities €; and ep: A wave with wave vec-
. tor k hits the interface and leads to a refracted wave with k’ and a
1 reflected wave with k”.

5.1.2 Absorption

Inside one medium, the wave propagates linearly in direction of the wave vector. The imaginary
part of n describes absorption of the medium and leads to an exponential decay of the intensity,
which can be seen when inserting the dispersion relation with n = n’ 4 in” explicitly into the
wave equation (5.3):

/

[nw k nw k
E = Eyexp (1 [Cw-x—wt]>exp <_c|k]‘x) . (5.14)

By using equation (5.6) the intensity decrease due to absorption can be calculated. The resulting
relation is called Lambert-Beers law and can be written as

(L) = e 170 (5.15)

where L denotes the optical path inside the medium, Iy is the intensity at the start of the path, I
the intensity after passing the path L, ¢ the cross section and p density. Note that cross section
and density may change along the path which is not explicitly noted in equation (5.15), and
also depend e.g. on pressure. The product y = po is called absorption coefficient with unit
inverse length. In a homogeneous medium equation (5.15) simplifies to I = Iy exp(—opL). The
absorption coefficient is related to the complex refractive index by y = 2wn’ /¢, as can be seen
by comparing with equation (5.14).

Absorption is caused by the interaction of the radiation with the medium, which is described
by quantum theory. Photons can be absorbed if their energy hv matches to put the atom or
molecule into another quantum-mechanical state. This causes the discrete nature of absorption
spectra. If the energy of the photon is large enough to overcome the binding energy of an
electron, that electron can be removed from the atom (photo effect). The molecule or atom is
also needed for momentum conservation since it takes the recoil, absorption is not possible for
free electrons. Thereby, a free electron with energy hv — E,, is produced, where Ey, is the binding
energy. Here, a continuous absorption spectrum is encountered since the free electron may have
an arbitrary amount of kinetic energy. The excited atom relaxes be filling the hole caused by
the missing electron with one from a higher shell. During this process a characteristic photon
is emitted, or a secondary (Auger) electron may be produced. The photo effect dominates for
X-ray photons with hv < 200keV. Its cross section depends on the energy of the photon, the
cross section is ¢ « (hv)~7/2 for non-relativistic rays ( , ). This leads to a change
of the spectrum towards higher photon energies by absorption, the so-called beam hardening.
Photons with lower energy and thus higher cross section are absorbed first and the photons
with higher energies remain.

For small molecules like water, Ny, or O,, at room temperature, only rotational states are
excited thermally. These are occupied according to the Boltzmann distribution. Vibrational and
electronical transitions have much higher energies, thus these molecules are in the electronic
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Jtinal
10 .
. 6 .'
Pb W - Rbranch
ranc - N Figure 5.2: Fortrat diagram of a vibration-rotation transition.
-2 Points mark possible transitions with the corresponding en-
- ergy hv according to the rotation quantum number | of th final
hvg hv state. (According to (2000))

and vibrational ground state. Typically vibrational transitions have energies corresponding to
the infrared and electronical transitions energies corresponding to visible to ultra-violet.

Homo-nuclear biatomic molecules like N, and O, do not have a dipole moment. Since
therefore no dipole interactions are possible, vibration-rotation transitions do not take place.
Thus, these molecules cannot absorb thermal radiation. (Higher order moments and changing
polarisability allow transitions with very low intensity.) For other molecules, since the photon
has an angular momentum of 17, due to angular momentum conservation, changes of the
vibrational state must include a change of the rotational state of A] = +1, where | is the
rotation quantum number. This leads to vibration-rotation absorption bands. Depending on
the initial value of | in the absorbing molecule, different energies are found for the vibration-
rotation transition (figure 5.2). In the approximation of the harmonic oscillator, the change of
the vibration state must be Av = £1, where v denotes the vibration quantum number. For the
anharmonic oscillator, the selection rules also allow Av = {42,+3,...}, so-called overtones,
with much lower intensity than Av = +£1 ( , )-

The excited state typically has a short lifetime. It may return by emitting a photon, or by
inner conversion to another rotational state and subsequent relaxation. With relaxation, the
energy is emitted non-radiative as heat by collisions with other molecules.

For higher photon energies like X-rays, Compton scattering becomes relevant. This is an
inelastic scattering process where the energy loss depends on the incident angle between the
photon before and after the scattering process. If the energy of the photon is larger than the
rest energy of an electron-positron pair, hv > 2mec?> = 2-511keV, a pair can be produced
if another particle is present which is needed for momentum conservation. Due to the high
energy needed, this effect is only relevant for gamma rays.

5.1.3 Geometric optics

For more complex problems than simple refraction and reflection, e. g. imaging, the application
of Maxwell’s equations would be relatively complicated. However in the case ¢ > A considered
above where all dimensions of the problem are much larger than the wavelength and therefore
all interfaces can be considered as interfaces of semi-infinite media, only the linear propagation
of radiation inside one medium and the reflection and refraction laws are needed. This limit is
called geometric optics. Formally, Maxwell’s theory simplifies to geometric optics in the limit
A — 0. However, the wavelength must not be so short that the radiation resolves the atomic
scale, since then no macroscopic properties are encountered and the interactions are totally
governed by quantum effects.

If the wavelength of the radiation becomes comparable to the dimensions of objects with
which it interacts, A ~ ¢, the assumption of two semi-infinite media and thus Fresnel’s equa-
tions are not valid anymore. Here, Maxwell’s equations must be solved explicitly for the special
boundary conditions ( , ). For example, spherical particles with d ~ A ex-
hibit Mie scattering (e.g. droplets in clouds). Interactions where / < A are again different
(Rayleigh scattering).
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151 %) V3
A =2734nm A = 6270nm A = 2662nm

Figure 5.3: Normal oscillations of the water molecule. (According to

(2005).)
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5.2 Optical properties of water

The three-atomic water molecule (H,O) is special compared to other natural oxides. It is liquid
at ambient temperature and shows an anormal density behaviour with the highest density at
4°C. This is due to the molecule structure. The two hydrogen atoms have a binding angle of
104.5° and due to the higher electron density at the oxygen atom the molecule is polar. There-
fore it facilitates H-bonds with neighbouring H,O molecules with a binding energy between
covalent and van der Waals bonds, about 5 times larger than thermal energy ( , )-
Therefore, in the liquid phase, water molecules form (H,O), clusters. These clusters fluctuate
on a time scale of 10~ 12s.

A system of N mass points has 3N degrees of freedom, thereof (for N > 2) 3 of translation,
3 of rotation and 3N — 6 of inner motion. Therefore as a three-atomic molecule water has three
possible normal oscillations which are sketched in figure 5.3. All possible vibrational states
are linear combinations of these normal oscillations. All three exhibit periodic changes of the
dipole moment. In liquid water, due to the molecule clusters and the corresponding interaction
between molecules, absorption bands become broader. The main stretching bands v; and v3
in liquid water are shifted to a lower frequency and they are close to each other (

, ). Therefore the stretching band is often considered as one single band

(2865 nm) and denoted vs. The bending frequency v; is increased (6079 nm) and the 21, band is
very close to the v5 band ( , ). Figure 5.4 shows the absorption of
liquid water measured by ( ) with added labels of absorption bands
according to ( )-

Figure 5.5 shows the wavelength-dependent real refractive indices of water and ice. The
real part of the refractive index is determined by the atomic composition of a material. The
incoming wave induces dipole vibrations of the electron shell, which in turn couple with the
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Figure 5.6: Propagation of radiation in a porous medium. Incoming radiation is re-
flected and refracted on the water-matrix, water-air, and air-matrix interfaces ac-
cording to the actual geometry and the refractive indices #;. In the bulk of the ma-
terials, absorption according to Lambert-Beers law takes place. Note that this is a

cross-section of a 3D medium, which leads e. g. to apparently floating grains in the
figure.

electromagnetic wave.
The optical properties of free water differs from that of water bound to a surface of another
medium due to the different arrangement of water molecules ( : , A.4.3), since

clusters cannot form as inside the bulk of free water. Due to the changed hydrogen-bonding
network, also the optical properties differ slightly.

5.3 Radiative transport through thin porous media
5.3.1 Visible and infrared light

Typical dimensions of soil grains are in the order of several hundred micrometers. The sands
used in the Hele-Shaw-cell experiments carried out in this thesis had a grain sizes of more than
250 um. Even if pores can be of smaller size than the grain size by a factor of 2 or 3, for the
wavelengths considered in this thesis, A < 1700nm and thus ¢ > A is a reasonable assumption.
Hence geometric optics can be used to describe the propagation of radiation.

Radiation entering the porous medium is reflected and refracted according to the actual ge-
ometry of the water-air, matrix-water and matrix-air interfaces and their respective refractive
indices it encounters (figure 5.6). In the bulk it is absorbed according to Lambert-Beers law.
Table 5.1 shows mean real refractive indices for the constituents of the soil for visible light. The
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5.3 Radiative transport through thin porous media

Table 5.1: Refractive indices of sand, water, and air for visible light ( , ; ,

).

material refractive index

sand 1.6
water 1.33
air 1.0

refractive index of water is much nearer to that of sand than the refractive index of air. Ac-
cording to Fresnel’s formulas, equations (5.8)—(5.11), radiation is scattered in forward direction
more often if the difference of refractive indices at the interface is smaller. Therefore, if more
water is in the medium, there are more water-sand interfaces and less air-sand interfaces and
more radiation will be transmitted and less reflected. This effect can be seen when walking
on the beach, where the wet sand directly beside the shore is dark while the dry sand fur-
ther away from the sea is bright. If there is no considerable absorption in water or air, this
effect dominates radiative transport through the porous medium. However, if there are strong
absorption bands at the wavelength considered (e. g. the water absorption at 1455 nm), the in-
tensity increase at higher water contents can be masked by the absorption due to a longer path
in water, and the intensity may actually decrease when the water content increases. In that
case, wavelength dependent information can be used to separate the processes.

Let the radiation intensity in front of the sample be Iy(x), where x denotes the (2D) spatial
position on the surface of the medium. The light beam then propagates through the medium.
Parts of the beam are eventually transmitted through the cell. Let the transmitted light intensity
be I(x). After passing the complicated path through the medium with refraction, reflection,
and absorption, the intensity of one particular beam can be written as

Nt Nr

1= ][] Riexp |~ [p@0(@) ] , (5.16)
i=1 i=1 I

where N; is the number of transmissions and N; the number of reflections along the light path,
T; and R; are the corresponding transmission and reflection coefficient, respectively, for each
incident, and L parametrises the light path. The T; and R; depend on the materials on each side
of the interface and the incident angle, therefore on the actual matrix/water/air configuration
in the medium and thus also on the water content. The optical properties T;, R;, and ¢ depend
on the wavelength. To obtain the total transmitted intensity at one particular location, the
intensity contributions by all the light paths to that point must be added:

Ny Ny,

10 = ¥ Iy IRyexe | - [p@)e(@)dz | - 517)
i=1 tj

jEpaths i=1

Consider a porous medium of fixed thickness d with the constituents matrix (sand), water,
and air. It is assumed that each of the three phases is optically homogeneous, i.e. p and ¢ are
constant within the phase (but still change with wavelength). In such a medium, equation (5.16)
can be rewritten as

Ni Nr
I = IOHTiHRi exp (— Z PiU—idi> ’ (518)
i=1 i=1

i€phases
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5 Light transmission through porous media

where d; denotes the total length of the light beam in phase i. Absorption in the air phase is
very small and can be neglected. The transmitted light intensity at x can then be written as

I(x) = In(x) f(0(x)) exp(—pwowdw(x)) , (5.19)

where f is a function which implicitly contains the T; and R; along all light paths and the
contribution of absorption by the matrix. It is a priori not known, because it depends on the
complicated matrix/water/air configuration. Note that although the light paths start from a
small region around x, in (5.19) the incoming intensity of all light paths has been assumed to
be Iy(x), because I is typically varying slowly in space.

For wavelengths where water is transparent, oy, ~ 0, 0 can be estimated from I/Iy. By using
the standard two-point calibration ( , , sect. 10.3.3), the measured intensity can be
normalised such that also fixed-pattern perturbations such as the grain structure of the matrix
are removed. With an image of the completely saturated and completely dry medium, one
obtains

I—lay _ f(6) = f(6:) _
Iwet - Idry N f(Gs) —f(@r) o F(®> ' (520)

This normalisation has the advantage that not only inhomogeneous illumination is corrected
(note that Iy cancels in (5.20)), but also the fixed grain structure. Therefore one can concentrate
on the property of interest. The relation F(®) is to be estimated separately.

Since the real part of the refractive index varies slowly with wavelength, it can be assumed
constant for two adjacent wavelengths. By choosing these wavelengths such that for A; the
absorption of water is significant and for A, it is approximately zero, division of equation (5.19)
for these two wavelengths yields

;Ez: j\\l; - 222/\3 exp(_pw[(fw(/\l) - (Tw(/\z)]dw(x)) . (5.21)

Accordingly, the mean path length in water d,, which is a measure for water content can
be determined without knowledge of f if the difference of pyow of both wavelengths and
the relative spectral intensity Io(A2)/Ip(A1) are known. The latter can be estimated using a
measurement of the completely dry sample.

Since the precise path of radiation through the porous medium and thus the change of light

intensity strongly depends on the actual geometry, for a quantitative calculation of radiative
transport in porous media the precise geometry of all phases must be known.
( ) presented a two-dimensional beam tracing model to calculate the reflectance and trans-
mittance in a small soil sample. Two-dimensional cross sections of a pore network were set up,
using artificial data or a sand cube measured with X-ray tomography. Water configuration was
calculated with four different models, by adding water films of increasing thickness around
the grains, by using a pore-network model, or a Lattice-Boltzmann simulation. The beams of a
virtual diffuse light source were traced with a numerical model using a wavelength-dependent
complex refractive index for water. Wet porous media contain bound water, which has a dif-
ferent molecular arrangement than bulk water, and thus also the refractive index is different.
Therefore ( ) used the refractive index of ice for bound water. Using the
model, reflection and transmission coefficients were calculated depending on the water content
of the medium.

As expected, the simulations show an increasing transmittance with increasing water content
(figure 5.7). The decrease in transmittance at very low water saturation is due to changing
optical properties when the very thin water film is added to the grains after a state with no
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5.3 Radiative transport through thin porous media
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0 0.2 0.4 0.6 0.8 1 water distribution was calculated with
water saturation degree [-] a pore network model.

water. Here, the light absorption is more significant than the scattering behaviour. Results also
show that the spatial arrangement of the water is relevant for radiative transfer. Due to the
changing light paths in the complicated geometry, changing the spatial location of the water
while retaining the same water content may lead to different optical properties.

( ) found that especially for small samples, arrangement may be “more dominant
than the amount of water”, which was caused by too small a cross-sectional image used for
the 2D radiative transfer model, and they concluded that the cross section should contain a
significant number of grains to represent the scattering medium. Therefore, it is also likely that
if the sample thickness is too small, experimental water content determination may run into
such problems.

5.3.2 X-rays

X-ray radiation has such a short wavelength that it resolves the atomic scale (X-rays with an
energy of 100keV have a wavelength of 0.12A). Therefore, the radiation encounters single
atoms and does not recognise macroscopic material properties or interfaces. Thus, X-rays do
not encounter multiple scattering in porous media. If the radiation passes different materials,
density and atomic weight and therefore the attenuation changes. Processes leading to attenu-
ation of photons are described in section 5.1.2. The attenuation is specified by Lambert-Beers
law, equation (5.15). For a medium of constant thickness d consisting of sand, water, and air
inside a sample cell, the attenuation reads

I = IO eXp(—{ .usanddsand + ,uwaterdwater + Vairdair + ,ucelldcell})

5.22
= IO eXP(—{[(l - ¢),usand + Gﬂwater + ((P - Q)Vair]d + Vcelldcell}) ’ ( )

where y; = o;p; are the attenuation coefficients of the different materials and d; is the corre-
sponding optical path length. With A := —1In /I one obtains
AW_Ad - Hs_er -

o, (5.23)

where A, and Aq refer to the fully saturated (6 = 6;) and dry (0 = 6;) medium, respectively
( , ). Thus, the water saturation can directly be measured with X-ray attenuation.
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6 Numerical simulation and inverse modelling

In many cases, the partial differential equations (PDEs) describing the dynamics of the system
of interest cannot be solved analytically. This is also true for Richards” equation (2.19). Thus,
the equation must be solved numerically to obtain an approximate solution.

Recall that for physically meaningful problems initial and boundary conditions in connec-
tion with the PDE represent a unique solution of the evolution of the system. Thus, using a
numerical simulation, starting from an initial condition, one can simulate the evolution of a
system, using its PDE and boundary conditions, to an arbitrary point in the future.

Consider the one-dimensional Richards equation:

oy, O OPm
C(lpm)% - EK(le) <El)Pz - ng> =0 (6.1)

A solution ¢, (z,t) satisfies the PDE in the domain Q) = {(z,¢) | z € [z0,z1], t € [to, 1]}, the
initial condition ¢ (z, fo) = ¥Pm((z) and the boundary conditions m(zo,t) = Bo(t), Pm(z1,t) =
By (t).

The fundamental problem when numerically solving such problems is that PDEs are con-
tinuous functions and thus have an infinite amount of information, while computers can only
handle a limited amount of information. The solution to this is discretisation, typically in space
and time, but sometimes also in frequency. The unknown function is approximated on a grid
consisting of a finite number of points or elements inside the domain (). This can be done
in several ways. The discretisation must be sufficiently fine to capture all significant changes
of the unknown function. The shape of the grid may be adopted to the special geometry of
the problem. The time step is often adopted during the simulation depending on how fast the
solution changes in a particular time period.

Only a short overview of possible discretisations is given here. Extensive information on the
numerical treatment of partial differential equations can be found in textbooks as

(2005).

6.1 Finite differences

The starting point for finite differences consists of approximating the unknown function on a
finite number of points on a grid and replacing derivatives by differences on that grid (Taylor
series expansion). Assume that space was discretised homogeneously with grid constant Az in
space and At in time. Quantities are only defined on the points z; = iAz € R and t; = jAt € R,
ie{l,...,N} C N,je{l,...,M} C N. To approximate the derivatives of a function f,
differences between adjacent grid points are used. Adding and subtracting Taylor series of

f(z+ Az) and f(z — Az) results in ( , )
of .\ _ flz+Az) — f(z— Az)
?f . flz+Az) —2f(z) + f(z — Az)
522 )~ (Az)? ‘ o
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6.2 Finite volumes

A first order (forward differences) approximation in time leads to

af . h(t+At) —h(t)
() ~ - . (6.4)

With 1/]{ = ¥m(zi t)), CZ = C(gbf:) and K{ = K(l[){), the terms of equation (6.1) can be
approximated as ( , )

9 j+1
C(lpm(zi/tjﬂ) g/ft (i, ]+1) C]H% (6.5)
0 0
g2 K ) 9 i) = pug] | =
KL ko — 9l =Kl -vl) K, -],
(AZ)2 _png' (6.6)

Evaluating equation (6.6) at ;1 and inserting it and (6.5) into (6.1) results in

. Y o= DY TS PO NS Py NS R AS | 1 il

el =yl K Wi =9 1=K ¥ — ¥l K=K
C1+1 i [ + Pw8 2 —=0. (67)
i At (Az)? Az

The time discretisation chosen above is named implicit Euler. Here, evaluation at ¢;,; leads
to the so-called implicit formulation. A system of equations must be solved for each time
step, one for lpf+1 at every node in space. For example, for Dirichlet boundary conditions,
the number of equations is N — 2, since at the boundary nodes the boundary conditions come
in. The advantage of this formulation is that it is more stable, however at the price of lower
accuracy. The resulting equations are non-linear since C and K depend on ¥, in a non-linear
way. A set of non-linear equations is difficult to solve, but efficient methods to solve a set of
linear equatlons are available. Therefore the equations are linearised. A common solution is to

guess the 1,[1] necessary to evaluate C and K based on 1,[1{ With fixed C and K, the system is

linear. Then, K and C are iteratively improved with the new lpfrl.

In equation (6.7), values of K between nodes have to be approximated (e. g. for Ki s ). How
this is done, and where C and K are evaluated, is crucial for the performance of the solver.
Details are discussed in textbooks, e. g. ( ).

6.2 Finite volumes

As seen previously, the finite differences approach requires the unknown function to be dif-
ferentiable twice and the function K once. With another formulation the differentiability re-
quirements can be weakened. Also, for flux equations the mass balance is an important issue.
The mass conservation can be implicitly put into the discretisation. The method also has some
further advantages like higher flexibility in the discretisation of irregularly shaped domains.
The domain is partitioned into small sub-regions (control volumes, typically low-order sim-
plices). The spacial discretisation is performed by requiring the partial differential equation to
be satisfied in average on each control volume. By using integration by parts, portions of the
volume integrals are converted into surface integrals which then couple neighbouring volumes.
A finite volume scheme can also be interpreted as a special kind of finite element discretisation.
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6 Numerical simulation and inverse modelling

Typically, the differential equation is discretised with an Euler or Runge-Kutta type integrator
in time, and for the resulting spacial equation finite volumes are used. For a mass conservative

solution, Richards” equation is written in mixed form ( , ):
a0 0 0 .
3% + % { (lpm)[ 1Pm ng]} in O C R ’ 6.8)

with boundary conditions

Ym =P inIp C Q) (Dirichlet-type) (6.9)
g-v=¢ inIn=00-Ip (flux or Neumann-type) , (6.10)
where v is the normal vector.
Let C; be the control volume around grid point i, y;; the common surface between volumes i
and j, v;; the normal vector on 7;;, n; the index set of neighbour volumes of control volume i and

b; the index set of boundary neighbours. The latter can be split into b;p and b; \ for Dirichlet
and Neumann boundaries, respectively. On the 1-dimensional space used here [. 1dz = Az

and [, 1ds = 1. Time is discretised as in the example of the previous section above with

ty =kAt, k € {1,...,N} C N. Again abbreviations 1/)5‘ = m(z;, t;) and similar for § and K are
used. Integrating over any cell similar to ( , sect. 7.1) leads to

aq _

at/ 9+Z/ qg-vds+ ) q-v;ds

jen; Y i j€b;
0
~ EG(ZZ-)AZ + Y 1g-vi+ Y 1q- v
jEN; JjEb;
okl _ gk A
~ A M LKy Az P8
]Gnl
¢k+1 k+1

1
Azj2 T Pw8

- ) {K]- } - Y ¢(z), (6.11)
j€bip jebin

where Gauss’ theorem was used in the first line, the boundary integral was split into the
different faces of the cell in the second line, the midpoint rule was applied in the third line.
In the last line, the remaining differentiations were approximated by finite differences and the
boundary faces were split into Dirichlet type and Neumann type boundaries. Equation (6.11)
is a set of non-linear equations which must then be linearised and solved as described above in
the finite differences section.

For faces between volumes i and j inside (), K may be evaluated either on the face corre-
sponding to control volume i or on the face corresponding to volume j. These values may
differ due to the discrete character of the solution. Therefore, some decision must be made
about where to evaluate. Here, typically the volume where the velocity points outwards, the
so-called upwind volume, is chosen. This method is called “upwinding”.

6.3 Inversion

Simulation is a flexible tool for a forward problem, i.e. solving Richards” equation with given
initial and boundary conditions. However, the hydraulic parameters are not known a priori,

52



6.3 Inversion

thus a simulation offhand is not possible.

To obtain the parameters, an inverse modelling approach is used: initially, a parameter set is
guessed and the forward problem is numerically solved. Then, the deviation of the modelled
and the experimental data is analysed using an objective function. A natural choice of the
objective function for uncorrelated normal distributed variables is the root mean square of
deviations, that is

2
1 N xmodel _ x’?xp
(6.12)

— il i i
X N Z ( O_iexp

i=0

where the x; denote the data points, and N is the number of points.

An iterative generic minimisation method is used to adjust the parameter set in order to
minimise these deviations. Every iteration results in a new, corrected parameter set, which is
then put into the model and the forward problem is again solved numerically, until a reasonable
agreement between the measured and the modelled data is achieved, i.e. until x is minimal.
In practise, several conditions are often used to detect convergence, e.g. if x has reached the
value theoretically predicted as minimal value, or the decrease of x has become smaller than a
particular (small) value.
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Part Il

The soil-atmosphere boundary during
evaporation
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7 Introduction

The upper boundary of the vadose zone is the interface to the atmosphere. Interactions in-
clude precipitation, evaporation, transpiration, and the exchange of gases. The boundary
conditions imposed by the atmosphere force the soil system and to a relatively large extent
determine its state. On the other hand, the soil-atmosphere interaction is also important for
atmospheric cycles and of significance for the climate. Thus, understanding the processes at
the soil-atmosphere boundary is also of relevance for climate models, and the comprehension
of the water and carbon cycle and of trace gases. In the following, evaporation is considered
in more detail. It also plays a major role in practical applications like agriculture, in partic-
ular in semi-arid or arid regions with irrigation. Furthermore, it is not only important for
the soil-atmosphere boundary, but also for many industrial and engineering applications like
drying.

Many investigations are reported in the literature which assess the evaporation process.
Evaporation involves coupled mass and heat transfer and depends in a complicated way on the
atmospheric boundary conditions as well as on the properties of the porous medium. Evapora-
tion from an initially saturated porous medium typically begins with a relatively high drying
rate determined primarily by the external forcing. This phase continues as long as the medium
can sustain the evaporative flow. Then it changes to a stage with falling drying rates. Re-
searchers as early as ( ) reported these two different regimes which he called
“constant-rate period” and “falling-rate period” in experimental observations of paper drying.
He divided the falling-rate period into two sub-periods, one directly following the constant-rate
period where the decrease was attributed to a decrease in wetted surface area, and a second
one where internal liquid diffusion controls the evaporation rate. In his review ( )
focused on drying in gels and ceramic. For the constant rate period, the evaporation rate was
given with a diffusion-like law. They attribute the end of the constant rate period to the end
of shrinkage of the sample, when the menisci are driven into the medium. The difference be-
tween the first and second falling rate period was explained by available film-like liquid water
transport to the surface and totally diffusion controlled vapour flow.

Extensive work has been put into pore-scale modelling of the drying process; a review is
given by (2002). The main objective of REV-scale pore models is the determination of
parameters like the permeability or the effective diffusion coefficient as a function of the sat-
uration © in the limit of slow drying, while product-scale models are used to determine the
liquid phase distribution and the evolution of drying rates (I’rat, ). An explicit network of
pores connected with bonds is solved numerically on a lattice. Inversion percolation theory is
applied for modelling. The pore-scale analysis is valuable for the understanding of the detailed
pore-scale processes. It shows that the drying front consists of a fractal region whose width is
limited by capillary forces, since capillary pumping disrupts the inversion percolation pattern
( , ). However these models typically cannot be directly applied for
macroscopic problems, since the actual geometry of the medium is usually unknown.

( ) confirmed the fractal geometry of the drying front with drying exper-
iments of sand in Hele-Shaw cells. They measured water content distribution with neutron
absorption and the drying rate by mass loss recorded by digital balances. Their experiments
focused on drying behaviour during the first stage. Within the unsaturated zone hydraulically
connected pathways from the drying front to the evaporating surface were found. The front
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7 Introduction

morphology and dynamics were reported not to be affected by the evaporation rate.

On medium and large scales, several semi-empirical models exist for soil-atmosphere cou-
pling. An overview is given in ( ). These include energy balance models which
normally use meteorological variables like temperature, wind speed and radiation along with
some geophysical measurements to calculate cross-interface fluxes (e.g. Penman-Monteith),
multi-layer models which parametrise energy balance for different layers separately, and resis-

tance models. ( ) describe recommended field-scale evapo-transpiration models
in detail.
The novel evaporation setup presented by ( ) allows laboratory measurements

of bare soil with controlled atmospheric boundary conditions. A model for the soil-atmosphere
boundary was also proposed in that thesis. It used a diffusive boundary layer approach cou-
pled with a Richards” pore space model. It is reasonably simple but still provides a sufficient
macroscopic description. For a deeper understanding of the processes described by that model
numeric experiments are helpful, because detailed potential and water content profiles, sensi-
tivity studies etc. are easily possible, which is not feasible in the laboratory. One aim of this
study was to investigate the physical processes at the soil-atmosphere boundary as represented
by that numerical evaporation model in more detail.

Evaporation experiments can also be used to determine hydraulic properties of soils. Move-
ment of soil water is usually described by Richards” equation ( , ). A crucial part
of this are the hydraulic material properties, in particular the soil water characteristic 6(¢m)
and the hydraulic conductivity function K(6y). These properties are difficult to measure di-
rectly ( , ) which led to the development of inverse methods where a given
parametrisation is adjusted such that modelled results are in optimal agreement with the corre-
sponding measurement. Comprehensive reviews are provided e. g. by
( ) and ( ). Most popular today is the multi-step outflow (MSO) method
( , ; , ) which evolved from one-step outflow ( ,

). However the method is only applicable for the range of moderately negative potentials,
hence to the rather wet range of soils.! Evaporation experiments allow virtually unlimited
values of the matric potential (by making the air above the surface dry). More precisely, they
are a natural complement to MSO: They are sensitive for strongly negative potentials but their
accuracy deteriorates rapidly as potentials approach 0kPa, the range where MSO works best.

( ) were the first to propose such experiments. Their setup was basi-
cally retained in later studies ( , ; , ; ,

; , ). Here, a saturated soil sample is placed on a balance and ex-
posed to free air while the matric potential in several depths is measured by tensiometers.
However, a number of fundamental difficulties arise with this approach ( ; ). The
limitations of this setup are overcome by the setup presented by ( ).

Virtual experiments allow the investigation of experimental design issues like the choice and
placement of measurement devices and the choice of boundary conditions to optimally deter-
mine the hydraulic properties. The second aim of this study was to investigate and optimise

1 In outflow methods, gas pressure pg in the soil sample equals ambient atmospheric pressure, as is the case in
soils, while the pressure p; in the liquid phase at the lower end of the sample is reduced in one or more steps.
Correspondingly, the matric potential ¥m = py — pg in the sample is reduced and the resulting flow of water is
recorded. Obviously, these methods are fundamentally limited to {, > —100 kPa since p, must be larger than the
vapour pressure of water. Practical limitations like the permeability of the phase separator at the lower boundary
are more strict and typically lead to ¢, > —20kPa. A seemingly simple way to circumvent the fundamental
limitation of multi-step outflow measurements would be to keep p; constant at ambient atmospheric pressure
and to increase pg. Since there is no fundamental limit to increasing pg, ¥m can be made arbitrarily negative.
However, the water phase now is in a state completely different from that in a natural soil with the same value
of Pm. Since the relation between the water contents of these two states is unknown, the parameters are not
transferable.
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the determination of hydraulic properties using the ( ) experiment. Specifically,
(i) the sensitivity of the measurands to parameter changes to optimise the boundary conditions
of the experiment was studied, (ii) it was explored if adding more observables into the inver-
sion process yields significantly more information about the system, and (iii) the identifiability
and uniqueness of the solution were analysed. The analysis also revealed valuable information
about the physical processes. Multi-dimensional non-linear optimisation problems often have
more than one minimum and the minima are often not well-localised, leading to ambiguous
or contradictory solutions. Thus it is important to preclude such a behaviour with a detailed
analysis.

The parameters of a sandy loam sample of a test site near Heidelberg, Germany were es-
timated by inverting the data of an evaporation experiment. This showed that the model is
capable of describing the involved physical processes reasonably and that the new setup is
suitable for parameter estimation.

57



8 Materials and Methods

8.1 Setup of the Evaporation Experiment

The soil sample is contained in a PVC cylinder. The bottom of the column is closed, the top
of the soil column is closed by a gas-tight head space (evaporation chamber) (figure 8.1). A
constant flow of air is established through the head space to remove the water vapour. The
water vapour partial pressure p,, and temperature T of the incoming air are controlled and
thereby the boundary condition at the upper boundary is set. The water flux is quantified
by the difference of water vapour content before and after the evaporation chamber and the
prescribed air flow through the head space.

The incoming air is conditioned with a cold trap, where the air is cooled to a defined tem-
perature and abundant water is frozen out. The remaining water vapour corresponds to the
saturation water vapour at the temperature of the cold trap. Afterwards the air is passively
warmed back to ambient temperature in a copper calorifier. Water vapour concentration v is
measured by an infrared absorption gas analyser simultaneously before and after the head
space. Inside the head space temperature and total pressure are measured. A fan in the head
space mixes the air and ensures a homogeneous potential. This is required for the measure-
ment used here to work, since otherwise a water vapour gradient would evolve in the head
space and the water vapour content of the incoming air would not necessarily be the same as
directly above the boundary layer. The total pressure is needed to calculate the water vapour
partial pressure p,, from water vapour concentration v. Air flow through the system is con-
trolled with an adjustable vacuum pump and measured using the pressure drop in a capillary
with known conductivity or using a flowmeter. Additionally, water content was measured with
a time domain reflectometry (TDR) probe. It could be inserted either horizontally, or vertically
to measure the total water content. Experimental details are described in Schneider (2005). In
contrast to Schneider (2005), the bottom of the sample was totally sealed.

T‘|__

_ atmosphere Pw,

TDR
I9}oWIOISUR]

Figure 8.1: Sketch of the experimental setup. Evaporation takes place into a gas-tight
head space above the soil surface. Air is flowing through it to take away the water.
Water vapour molar fraction and temperature in the head space is controlled to de-
fine the boundary condition. The water flux is measured by vapour difference of
incoming and outgoing air and the controlled gas flow.
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8.2 Numerical Model

8.2 Numerical Model

The numerical model p¢! was used for simulations. Within a collaboration with its developer, it
was extended to include the soil-atmosphere boundary and vapour transport. The soil column
is modelled as a uniform one-dimensional medium with Richards” equation (2.33) including
water vapour transport as effective conductivity (section 2.5). It is assumed that the soil water
characteristic may be described by the van Genuchten or Brooks-Corey parametrisation, respec-
tively, and the hydraulic conductivity function by the corresponding Mualem parametrisation
(section 2.2.3).

A crucial step in the modelling is the representation of the upper boundary. At the transition
between soil and air, many effects will affect the potential, resulting in a potential in the upper
soil lower than the effective potential of the air. The air in the head space is turbolently mixed.
The eddies cannot penetrate the boundary, thus eddy size will decrease when approaching the
surface. In a thin layer around the surface, diffusive transport will dominate. Since turbolent
mixing is much more efficient than diffusive transport, the vapour flow is controlled by a thin
diffusive layer around the soil-atmosphere boundary. Because the soil is rigid, the boundary
layer thickness is not likely to change. Therefore the boundary is modelled as a diffusive layer
of constant thickness r, assuming that the time scale of diffusion across this layer is much
smaller than the time scale on which the boundary condition changes. This appears reasonable
since the time scale of diffusion, given by rZ/[2D,,], where D,, is the diffusion coefficient of
vapour in air, is some 0.1s for a layer thickness of 1, = 2mm. The vapour flux across such a
layer is given by the diffusion law as

. Iy
Jwbnd = — Dw Vw,m g
Vw,air — Vw,soil
e 5.1)
1l’mvw,m
B Dy Vw,m Pwexp — Pw,s ( T) exp < RT )
N RT p

where vy, is the molar density of water vapour, Viym the molar volume of liquid water, py,exp the
partial pressure of water vapour and T the temperature in the well-mixed head space above the
soil column, and r, the effective thickness of the boundary layer. In the last step, molar density
was replaced by partial pressure using the ideal gas law, and equation (2.26) on page 13 was
used to describe the partial pressure inside the soil using the matric potential. By definition,
the processes in this layer are not resolved well. The real soil surface is rough. The physical
location of the boundary layer is not well defined, i. e. the fraction of the layer that is within the
soil column, and the porosity of the respective parts of the soil. Also the transition from liquid
to vapour occurs in the boundary layer. However, in the thin layer considered here, all these
effects are linear and only change the effective thickness of the boundary layer r,,. Therefore 7,
becomes an effective fitting parameter without direct physical interpretation.

Hydraulic parameters were estimated from the measurements using inverse modelling. The
numerical forward model together with the Levenberg-Marquardt algorithm was used, where
the residuum is calculated by the squared sum of normalised deviations:

model
Yi (8.2)

—Y;
i

=Y

measured ] 2
i

1 Developed by Olaf Ippisch, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University
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8 Materials and Methods

Table 8.1: Parameters used for the synthetic data sets: The van Genuchten parameters
« and n, the saturated hydraulic conductivity K, residual water content 6, the satu-
rated water content 65, and the resistance of the boundary layer r,.

parameter  sand sandy loam silt

a/m! 5 10 0.5
n 42 2 2
Ks / emh™t 2 0.1 0.1
6s / m>m=3 0.3 0.3 0.3
6,/ m*m=3 0 0 0
", / mm 3 3 3

Table 8.2: The different boundary condition scenarios used in the simulations. All sim-
ulations were simulated isothermally at T = 293 K and carried out until + = 550 h.

scenario pw / kPa
“onestep” 1

“twostep” {

025 ,t<288h

2 ,t>288h

025 ,t<625h

“threestep” 2 ,t>625h At <1963h
025 ,t>196.3h

The p¢ forward model integrates Richards” equation using a cell-centred finite-volume scheme
with full-up-winding in space and an implicit Euler scheme in time. Linearisation of the non-
linear equations is done by an inexact Newton method with line search. The linear equations
are solved with a direct solver. For the time solver the time step is adapted automatically. A
no-flux condition was used for the lower boundary. At the upper boundary the evaporation
was calculated by equation (8.1).

Energy loss due to the latent heat of evaporation and the heat transfer in the soil sample was
not simulated, assuming that the heat exchange between the sample and its environment is fast
enough to compensate for the heat loss by evaporation. As shown in section 9.2 this assump-
tion is violated in the initial phase of an experiment with a sandy loam. While no principle
differences in the system behaviour are expected, the consequences of this simplification still
have to be studied in the future.

The sensitivities required by the Levenberg-Marquardt algorithm were derived by external
numerical differentiation.

8.3 Numerical Experiments and Analysis

Virtual experiments (by running the numerical model) were conducted where the true parame-
ters are known and therefore the performance of the inversion process as well as the parameter
space can easily be analysed. In this study, three parameter sets were used: a sand, a silt and a
sandy loam. The corresponding parameters are given in table 8.1. All experiments were simu-
lated isothermally with T' = 293 K. Boundary conditions which were finally used are given in
table 8.2.

To test if additional measurements can improve the quality of the parameter estimation be-
sides the evaporation flux j, two additional (virtual) measurements are considered: (i) the

60



8.3 Numerical Experiments and Analysis

Table 8.3: Uncertainties assumed for the virtual measurement devices.

device measurand uncertainty
flux upper boundary jw 5% of value
tensiometer Pm 0.1kPa

permittivity €c 2% of value

matric potential ¢, measured by a tensiometer, and (ii) the water content § measured by di-
electric (compound) permittivity e.. Both probes are assumed to be installed 2cm below the
surface. The influence of the installation depth is analysed below. The measurement uncer-
tainty assumed for each of the virtual devices is given in table 8.3. Note that, in contrast to
real measurements, the virtual instruments provided point measurements. For the permittivity
measurement, s was used as porosity and €5, was assumed to be known.

If the potential falls below the air-entry value of a tensiometer or below the vapour pressure
of water, whichever is higher, the tensiometer releases water to the sample. To prevent this
disturbance, the tensiometer is removed at —30kPa. To analyse the impact of this removal also
simulations were the tensiometer was removed at —70kPa, and simulations with a (hypotheti-
cal) unlimited measurement range were conducted.

Measurements were made after logarithmically growing time intervals At; = 300s +2000s x
log(i), starting again with i = 1 after each change of the boundary condition.

As large gradients are encountered in the simulated soil, especially at the drying front, a
fine grid and small time steps are needed to avoid numeric noise. On the other hand, to keep
the runtime reasonable, the spatial grid should be as coarse as possible. A grid convergence
study was conducted showing that a reasonable grid convergence was obtained with a 1000
point non-regular grid with exponentially decreasing cell heights towards the soil surface. The
uppermost cell had a height of 1 x 1072 m. Of course, this exceedingly small size is not related
to the real physics at that scale. However, one has to bear in mind that the necessary grid
resolution can also depend on the hydraulic parameters used in the simulation. The time step
was adopted automatically by the model.

Forward simulations of the evaporation experiment were used to study the physical dy-
namics of the system. To obtain the maximum amount of information about the unknown
parameters to be optimised, a sensitivity analysis was performed for the experiment. Relative
sensitivity coefficients were calculated according to

mi(tz,pj+Ap;)—mi(tzp;)

am;
o (L2,pjf)
. N — api("] "y Apj
sil 2, 1)) = gy mi(tz,p)) ' ®3)
pj Pj

where m; denotes measurand quantity i (e. g. the water flux at the upper boundary jiy) and p; is
the jth parameter. s; is a dimensionless quantity normalised by the measurand and parameter
value which allows to compare the sensitivities of different measurands and different param-
eters, and is (except for numeric noise caused by the numeric differentiation) independent of
the step size Ap;. The results of the sensitivity analysis were used to optimise the boundary
conditions of the experiment.

To check whether the data measured in the experiment is sufficient to identify a unique
set of soil hydraulic parameters, response surfaces were calculated for all scenarios (similar
to ( ) for the onestep outflow experiment and ( ) for
traditional evaporation experiments). Two parameters were varied independently while all
other parameters were kept at their true values. The x? surface, defined by equation (8.2), is
then displayed in contour plots. While this only shows a subset of the true five-dimensional
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parameter space along parameter planes and new features might occur in the intermediate
space, it is nevertheless a good indicator whether one unique and identifiable minimum exists.
In the simulations, parameter i was multiplied by a factor <;, with 7; varying from 0.1 to 2 in
steps of 0.1 and from 2.2 to 3.8 in steps of 0.4, respectively.

Response surfaces were also used to investigate if adding more observables yields substan-
tially more information for the inversion process. The x? sum visualises the power of the
experiment to identify the parameters. If the minimum is more localised, the parameters are
identified easier and noise on the experimental data is less severe.

Finally, it was checked how well the inverse model converges to the real parameters given
the measurement error and the cross correlation between the model parameters. The forward
model was used to generate synthetic data for the best combination of observations as de-
termined from the response surfaces. Random noise normally distributed with a standard
deviation of 0; was added to the data, where 0; is the measurement uncertainty in the evapo-
ration experiment (table 8.3) as determined by ( ). Five different data sets were
generated for each scenario to account for the random influence of measurement noise. From
each of this data sets, the parameters «, 1, K; and 85 of the van Genuchten/Mualem model and
the resistance of the boundary layer r, were estimated with a variety of initial conditions. 10
parameter sets were randomly created in the range reasonable for the soil under examination.
A logarithmic random distribution between the upper and the lower limit was used. These sets
were used as start parameters for the gradient based inversion process resulting in 50 sets of
estimated parameters for each soil. This approach combines a Monte-Carlo method with the
Levenberg-Marquardt minimisation (Monte-Carlo Levenberg-Marquardt, MCLM). The inverse
solutions were then compared with the real parameters and the resulting hydraulic functions
with the true functions. A deviation coefficient was defined according to

pinv - Ptrue
d="—" 8.4
ptrue ( )

where pin, denotes the inverted and pirye the true parameter.
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9 Results

9.1 Numerical study of the evaporation process and parameter
estimation analysis of the evaporation experiment

As the results of the numerical experiments are quite similar for the three different soil types
under examination, only the results for the silt are discussed in detail. The results of the inverse
modelling are given for all three soil types.

9.1.1 Onestep experiment
Physics of the process

The most simple scenario for an evaporation experiment which is also used in classical evapo-
ration experiments is a onestep experiment as shown in figure 9.1. After saturation the sample
is exposed to a constant vapour pressure at the upper boundary resulting in a progressive
drying of the sample.

In this scenario two different regimes are distinguishable: Regime I, where the outflow is
limited by the resistance of the boundary layer r;,, and regime II, where it is limited by the soil
hydraulic properties. These two regimes are in accordance with experimental findings in the
literature. Regime I leads to a constant value of j,, which only depends on r,. Therefore, in
this regime hydraulic properties cannot be determined with only the outflux as measurand.
A sketch of the potential profile near the surface for three times is shown in figure 9.2. The
major part of the potential drop is caused by the resistance of the boundary layer. Due to
the much higher conductivity in the soil, water is delivered to the evaporating surface with a
minimal gradient, which can also be seen in the simulation results (figure 9.3.(a)). Hence, the
hydraulic properties have only a minimal influence on the flux. However, the potential of the
sample changes with time due to the successive drying of the soil. Measurements of potential
could therefore give information about the hydraulic properties of the sample. For t < 20h, the
potential in the soil is above —10kPa and therefore can be measured easily with a tensiometer.
However, due to the small deviations from the linear decrease (which would be expected for a
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Figure 9.3: Potential ¢, (z) (a), water content 6(z) (b) and hydraulic conductivity
K(6(z)) (c) distributions for the onestep experiment at different times #;: (1) at an
early time in regime I, (3) directly before the transition to regime II, (4) a short time
later after the transition, (6) at the end of the experiment. Notice the non-linear scal-
ing of the depth axis.

hydraulic conductivity which is constant over the whole sample), one would need a very high
accuracy to obtain information about the hydraulic conductivity.

With continuing evaporation the potential and the water content decrease (figure 9.3), most
rapidly near the surface. Eventually the conductivity of the soil becomes limiting. The system
enters regime II and j,, starts to decrease rapidly. This transition is quite abrupt because (i) the
function K(6) is very steep in the relevant range and (ii) the effective hydraulic conductivity is
dominated by the dry low-conductive layers. Therefore the hydraulic properties seen in this
regime are the properties of the dry region. During this transition a drying front forms at the
surface and then moves into the soil (figure 9.3).

Regime I occurs only if the saturated hydraulic resistance is lower than the resistance of
the boundary layer. This is illustrated by reducing Ks by a factor of 20 (figure 9.4, blue and
dashed cyan curves). K is now lower than the flux which can be evaporated through the
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Figure 9.5: Sensitivity coefficients s(t) for the onestep experiment for the outflux (left),
the potential in 2cm (middle) and the water content in 2 cm (right).

soil-atmosphere boundary layer. Thus, the sample directly enters enters regime II.

Sensitivity analysis

The relative sensitivity coefficients according to equation (8.3) were calculated for each mea-
surement type for all hydraulic parameters (figure 9.5).

As the system is in regime I at the start of the experiment, the water flux is limited by
the resistance of the soil-atmosphere boundary layer alone. At early times, the outflux j is
therefore most sensitive to r,, while the sensitivity to all other parameters is very small.

When the topmost layer of the soil has dried out, the soil hydraulic properties, in particular
the hydraulic conductivity, become limiting for the evaporation rate. The evaporation flux is
most sensitive to all parameters exactly at the bend point where the system enters regime II and
the outflow starts to decrease after the plateau. The sensitivity on r, decreases continuously
because the drier the sample, the less important is the resistance of the boundary layer. As 6
scales the amount of available water when 0; is held constant, the sensitivity of 65 stays more
or less constant after a quick decay. For all other parameters the sensitivity decreases after
the maximum and after a zero-crossing eventually increases again with opposite sign. The
zero-crossing can be explained by mass conservation. As the total water content of the sample
is constant, a higher evaporation at earlier times has to be compensated by lower evaporation
toward the end of the experiment and vice versa.

In contrast to the evaporation flux, the potential ¢, is at the beginning of the experiment
most sensitive to &« and n which control the shape of the soil water capacity curve. Ks is the
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only parameter for which the sensitivity is nearly zero during regime I. The sensitivity on r,
and 0; are less important at the beginning, but increase during regime I and reach a maximum
at the transition to regime II as well as the sensitivity on n.

r, determines the speed of drainage in regime I, it is clear that the potential, which is con-
nected to the water content by the water characteristic, is also dependent on ry,. This effect will
become more pronounced as time passes because the longer a different outflux caused by a
different ry, is retained, the higher are also the differences in the potential. 6; determines the
amount of available water. With a constant evaporation rate, the more water is available, the
less is the relative change of water content and therefore the change of potential when all other
parameters are kept constant. Thus, the behaviour of 65 is analogous to the one of 7y,

The maxima are much less pronounced than for the evaporation flux. For all parameters the
sensitivity is more or less constant or increases slowly in regime II and reaches a large peak at
t ~ 370h which is caused by the passing of the drying front at the tensiometer position. This
peak is discussed in more detail in section 9.1.2. A zero-crossing only exists for n as only n
influences the shape of the soil water capacity curve. The generally higher sensitivity in the
dry range is in accordance with the result of ( ) for traditional evaporation
experiments. As they pointed out, the water characteristic becomes steeper for more negative
potentials and thus parameter changes have more influence at lower potentials.

The water content is less sensitive to parameter changes than the evaporation flux and the
potential. During regime I the only sensitive parameters are 65 and r,, which both increase
with time. The maximum is again at the transition to regime II. For all other parameters there
is no pronounced maximum at the transition point, but all sensitivity curves show a sensitivity
maximum at the passing of the drying front. The water content is most sensitive to n and
Ks during the early stage of regime II and to the available water s towards the end of the
experiment.

The sensitivity to changes of the saturated hydraulic conductivity is rather low for all types
of measurements and reaches significant values only for the evaporation at the transition point
and at the passing of the drying front.

9.1.2 Multistep experiments
Physics of the process

As the transition from regime I to regime II contains much information, one would suggest
that multistep experiments can drastically improve the sensitivity if it is possible to reproduce
the switch from regime I to regime II with boundary condition steps. To switch from regime II
back to I, either the conductivity in the upper soil or the resistance of the boundary layer must
be increased, or the potential drop on the boundary layer decreased. As the resistance of the
boundary layer 1}, is constant, this cannot be achieved by lowering the boundary potential.
Lowering the boundary potential speeds up the drainage of the sample but does not lead to
new features.

If the sample is already in regime II and the water vapour pressure at the surface is increased,
a second plateau and a second drop of the flux can be seen if the pressure jump and the
time between the steps are chosen adequately. This is illustrated with a twostep experiment,
figure 9.4 (red and dashed magenta curves). To make the second step more pronounced, a
20 times higher a was used for this simulation. When the vapour pressure at the boundary
is increased, the potential drop over the boundary layer and thus the water flux decreases,
the boundary layer becomes limiting again. The flow inside the soil is now higher than the
evaporation flux. This leads to an increase of the water content and thus the potential at the
soil surface, resulting in a larger potential drop on the boundary layer and therefore an again
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entering regime II and (4) at the end of the experiment. Notice the non-linear scaling
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higher evaporation flux (see figure 9.6). When this adaptation stage is finished, the increase
of water content in the upper soil and therefore the increase of the evaporation rate ends, the
delivery from below and the evaporation flux are equal again. If the change in the boundary
condition was large enough, the resulting evaporation flux at this point is low enough to be
sustained by the soil for a longer time span and regime I is reached again, else the system stays
in regime II. This depends on the relation between the new potential drop on the boundary
layer and the hydraulic conductivity in the soil (soil water state).

The same effect also occurs with the normal value of «, but it is harder to see (figure 9.7
red line). The higher a results in a less negative potential in the soil before the switch and
a relaxation to a higher water content after the switch. Therefore it takes longer until the
conductivity drops low enough to reach regime II again.

Acknowledge that any change in the direction of flow leads to hysteresis, which was not
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considered in the simulation. Further work is needed to investigate if the influence of hysteresis
can be seen in simulations and experimentally and how severe it changes the system.

The twostep experiment has the disadvantage that the potential range covered is too small
during a reasonable measuring time. This can be compensated by applying a third step after
the experiment has entered the hydraulically dominated regime again to speed up drainage.
This results in a threestep experiment (figure 9.7, red and dashed magenta curves) which has
identical general features as the twostep experiment but has a much larger potential range in
2 cm depth during the same measuring time.

The same boundary conditions may not produce a second regime switch with any type
of soil. If the boundary conditions are changed too early, the plateau just changes its level
as the potential difference changes. In this case the threestep experiment does not enhance
the estimation of the hydraulic properties. However, it still gives more information about
the resistance of the boundary layer. Prior knowledge about the soil hydraulic properties is
required to choose the optimal boundary condition steps in a multistep experiment. This
knowledge could be obtained by first performing a onestep experiment and then using this
information to design a multistep experiment. However, a major disadvantage of this scheme
is the long time required to conduct two experiments.

To study the importance of water vapour flow inside the soil compared to the flow of liquid
water, also a simulation where the effective conductivity contributed by water vapour flow was
disabled was performed (figure 9.7). Water vapour flow inside the soil is especially important
at later times, when the soil becomes very dry after the third step of the boundary condition
at t = 196.3h. Without the water vapour transport the hydraulic conductivity is already too
low to get an increase of the evaporation flux when the vapour pressure at the boundary
is reduced. The sample is effectively sealed by a very dry layer at the sample surface with
very low conductivity, which prevents the further drying of deeper regions. A second feature
not present in the simulation without vapour transport in the soil is the “undershoot” of the
evaporation at the transition back to boundary layer dominated regime at t = 62.5h. With
vapour transport, the evaporation before the switch is higher and thus the potential at the
surface is lower. This results in a more pronounced drop of the evaporation and a longer time
till the dynamic equilibrium in the soil is reached again.

Sensitivity analysis

While there is no big change in the relative sensitivities for the potential and the water con-
tent 2 cm below the soil surface compared to the onestep experiment, the sensitivities of ji,
increase substantially for experiments that re-enter regime I (figure 9.8). Multistep experiments
which do not re-enter regime I show no strong effect in the sensitivities (data not shown here).
Thus, with the restriction that the effect of hysteresis must be investigated in future studies,
multistep experiments are a good tool to increase the sensitivity. Considering the larger poten-
tial range which is covered by the threestep experiment, it is also considered superior to the
corresponding twostep experiment.

To determine the optimal position of a tensiometer or permittivity probe, profiles of relative
sensitivity have been analysed. Figure 9.9 (top) shows profiles of the relative sensitivity of the
matric potential to changes in a. Generally, the sensitivity is lower near the sample surface
especially at later times. After the onset of regime II, a large sensitivity peak appears, which
moves downward with time. At t = 44 h the sensitivity drop below the peak even leads to
a zero-crossing of the sensitivity. After the increase of water vapour pressure at the upper
boundary and the transition back to regime I the sensitivity peak vanishes for a short time and
reappears after the fall-back to regime II.

The peaks are located at the drying front (as can be seen for t = 176.9h from a comparison
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with figure 9.10) where the gradients are particularly high and thus small deviations in the
parameters lead to large changes in the solution. As changes of the parameters also affect the
position of the drying front, small parameter changes generate huge potential differences in
its proximity. Figure 9.10 illustrates the change in the profiles of matric potential and water
content at = 176.9h if « is increased by 10 %. A zero-crossing of the sensitivity occurs if the
parameter change leads not only to a different position, but also to a change in the steepness
of the drying front.

This is in accordance to ( ) who reported that sensitivities of the
matric potential in traditional evaporation experiments in the uppermost part of the soil show
increasing curvatures and a drop to zero. They noticed that this especially happens at larger
times when Ay, “changes its sign in close proximity to the evaporating surface”. A change in
the sign of Ay, corresponds to a change of the sign of the corresponding sensitivity coefficient
as it was found in our study.

The sensitivity of the water content to changes in « is similar (figure 9.9, bottom). However,
there is always a relevant sensitivity at the soil surface and a zero-crossing which is located
above the peak at the drying front for later times.

In principle the profiles of the relative sensitivity are similar for all parameters. As shown
in figure 9.10 the profiles of the sensitivity of the matric potential at t = 176.9h for different
parameters mainly differ in the size and the sign of the peak. The sensitivity to changes of n
has a very pronounced zero-crossing as n always influences the steepness of the drying front.
The sensitivity peaks are most pronounced for the parameters 05 and r,, as these parameters
have the strongest influence on the propagation speed of the drying front, by determining the
speed of drainage in regime I and thus the starting time of the drying front movement.

For the permittivity probe a position nearer to the surface than the 2cm used here would
be advantageous as the sensitivity of the water content is always high there, but this is hard
to realise experimentally. For the tensiometer a depth of 2cm is quite fine, as the sensitivity
at this depth is high except for very late times after the passing of the drying front. When
the drying front passes, the potential drops so low (—10 x 10* kPa — this corresponds to —1km
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water column — or less, see figure 9.10, bottom) that it is outside the measurement range of
traditional tensiometers. Thus, for a real measurement tensiometers have to be removed before
the drying front passes to avoid a leakage of water into the soil and therefore the sensitivity
peaks of potential cannot be utilised with traditional tensiometers.

Especially the sensitivity peaks of the water content measurements open up the possibility
to “scan” different sample layers during one experiment, as the sensitivity is focused on a very
small height interval and penetrates with time. If the soil has different layers, the sensitivity
would penetrate through these layers with the drying front. However, measurements of the
whole water content profile would be necessary to exploit this. If only point measurements
are available, the gathered information is not sufficient to distinguish influences at different
depths, i. e. if changes in the drying front propagation are caused by another layer above or by
different parameters of the same layer. The measurement of water content profiles could be
done e.g. by X-ray, neutron or gamma adsorption.

9.1.3 Response surfaces

Figure 9.11 shows the response surfaces of the threestep experiment with j, and ¢, as tar-
get variables. The tensiometer was removed at —30kPa. Generally, there is a single global
minimum and it is relatively well-defined. Only the combinations («, K;), (1, K;), (Ks, 6s), and
(Ks, 1) where K is involved have small valleys and the slope to the absolute minimum in the
direction of the valleys is low. This is a consequence of the low sensitivity of the measure-
ments to changes in K. As n = 2 and the van Genuchten/Mualem parametrisation does yield
non-physical hydraulic conductivity functions for n < 2 ( , ), the part of the
response surface with n < 2 must be regarded with care. For the other target variable combi-
nations and boundary conditions the response surfaces look similar and thus are not all shown
here.

To identify the essential measurements for a good estimation of the parameters the response
surfaces of the threestep experiment are analysed for Ky and n for combinations of the three
measurement types (figure 9.12). The parameter combination was chosen because K is espe-
cially hard to estimate due to its low overall sensitivity. If only the evaporation flux j,, is used
the residual does not have a well defined minimum but more a banana like shaped extended
region. The minimum in the direction of # is better defined if only the matric potential in 2 cm
depth is used but there is still a very long valley in the direction of K;. This valley becomes
much shorter if a combination of j,, and ¢, is used. The addition of permittivity (i.e. water
content) measurements improves the situation only in the combination €. + ¢, in all cases
involving the evaporation flux the changes are very small. However, it should be noted that
accurate permittivity measurements (e. g. with TDR probes) in the dry range are not feasible.
The reasons are: (i) Since the traveltime error is constant, the relative error increases with de-
creasing e€.. (ii) The compound permittivity €. is a function of the soil matrix permittivity eqei,
of the porosity ¢, and the actual geometry. For low water contents, the uncertainty of the mea-
surement diverges since the permittivity contribution of the remaining water becomes equal
to or even lower than €4, ¢ is not known accurately, and the geometry is unknown. (iii) For
thin films of water as found in the dry region, €yater is different from the one of bulk water.
Additionally, the measurement volume which was neglected in the simulations will smear out
gradients, and results are expected to be worse than in the ideal case of a point measurement.

As jy is the derivative of the total water content, it is reasonable that adding a water content
measurement does only give slightly more information. In contrast, i, is an independent
observable and therefore gives more information about the soil water capacity curve. However
the fundamental difficulties with tensiometers must be regarded. The information is only
provided in a small potential window and great care must be taken that the tensiometer is
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Figure 9.11: Response surfaces for the threestep experiment with j,, and ¢, as target
variables. The light regions with deviation coefficients larger than 2 were calculated
with a smaller resolution of 0.4. Non-matching structures between the two regions
are caused by the different resolution. Note that a x? above 10 is displayed in white,
points where the model did not finish after 120000 time steps is marked grey.

removed before the potential in the soil drops below its air entry point, or the water vapour
pressure, whatever is higher. Therefore it was also investigated whether a tensiometer which
can measure up to ¥, = —70kPa or even without a limit makes a considerable difference.
The results on the response surface are illustrated in figure 9.13. The lower the tearoff of the
tensiometer, the better the data. Going from ¢, = —30kPa to —70kPa gives a significant
enhancement. For the hypothetical case of unlimited potential measurement, the minimum is
so localised that x? is above the upper colour scale limit for all values but the minimum itself
(data not shown). Apparently, tensiometers with a much wider range of measurements like the
ones presented by Balkker et al. (2007) would be most helpful for this type of experiment.

9.1.4 Convergence study

The convergence study revealed the existence of local minima which are not visible in the
response surfaces, because they are not located in two-dimensional sub-planes of the five-
dimensional parameter space. When initially running the inverse fits with potential and out-
flux data, the convergence was poor. The reason was that when the outflux peaks did not fit
initially and the algorithm slightly modified the solution vector to improve it, the potential in
the new solution fitted worse. Because the potential has a relatively low standard deviation,
the residuum was not improved and therefore the inverse fit could not improve the solution.
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Figure 9.13: Same as figure 9.11 but for different tensiometer tearoff values ;p,;; with
jw and 1 as target variables.

To resolve that problem, the inversion was first run with the outflux data only to obtain a rea-
sonable start parameter set. After convergence, the potential data was added and the inversion
was restarted.

Using that modified approach there were still a few non-converged fits. However these could
be identified clearly because the system response was apparently not fitting the data. These
tits were taken out manually. The criteria for sorting out were (1) the outflux peaks were not
represented, (2) the potential systematically deviated by more than 10¢ (this corresponds to
1kPa), and (3) the outflux plateau at the beginning of the experiment was not reproduced at
all. For criterium (3), if a fit was just at the limit it was accepted to avoid too strict sorting.
figure 9.14 shows a comparison between the accepted fit with the highest residuum and the
rejected fit with the lowest residuum for all investigated soils.

Using this procedure, the parameters were reasonably reproduced. The mean and stan-
dard deviation of the estimated values for each parameter is given in table 9.1, the hydraulic
functions for all converged fits together with the ones for the true parameters are shown in fig-
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Figure 9.14: Comparison between the accepted fits with the largest residuum and the
rejected fits with the lowest residuum, for sand (a) (residuum 4900 (accepted) vs.
9700 (rejected)), loamy sand (b) (residuum 28000 vs. 3300), and silt (c) (residuum
4600 vs. 7300), respectively. The reason for rejecting the curves were for (a) the devi-
ation of the tensiometer, for (b) the first plateau was not represented, and for (c) the
first peak was not represented, respectively. Note that for (b), although the potential
of the accepted fit matches worse than in the accepted one, its deviation is just at the
sort-out limit and limit cases were still accepted, while the plateau in the rejected fit
is definitely not represented at all.
ure 9.15. The deviations in each column of table 9.1 were calculated from the ensemble mean

of converged results. When comparing the results of the inversion and its standard deviation
calculated from the analysis of the sensitivity matrix with the real parameters and the vari-
ance encountered by the different fits in the ensemble, one can see that the standard deviations
calculated from the analysis of the sensitivity matrix are too small in almost all cases. This is
attributed to the fact that the sensitivity matrix does only give a linear approximation of the
uncertainties. Deviations of the resulting fit parameters are quantified by the deviation coeffi-
cient 4. No systematic deviations are found for the silt, however small systematic deviations
are present for the sand and the sandy loam. This is expected, since the evaporation method
is most sensitive in the dry range, where dynamics of the silt actually take place, but it is rela-
tively insensitive for the wet range, the region of most of the dynamics of the sand and sandy
loam soil. The silt has the smallest deviations since its dynamics are reaching most into the
dry region of the three soils. This is also confirmed by the plots. For the water characteristic
of the sand with 42 fits, 38 practically overlap while 4 deviate quite a bit. The sandy loam has
the most significant deviations of all three soils in the water characteristic, only 12 of 27 fits are
practically overlapping and 3 have small deviations, while the remaining 12 fits are relatively
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9.2 Inversion of experimental data

Table 9.1: Results of the convergence study with j,, and ¢, as target variables. For the
resulting parameters and standard deviations from the model output, as well as the
deviation coefficients d defined by equation (8.4), mean and variance of the inversion
of the start parameter sets with each of the data sets are shown.

Sand (42 fits)

parameter unit real value result standard deviation deviation coeff. d
o m! 5 4.90 £ 0.04 0.024 £ 0.001 —0.020 £ 0.009
Ks cmh™! 2 2.11 £+ 0.07 0.014 4 0.002 0.05 £ 0.04
¢ m’m~> 03 0.2985 £ 0.0003  0.00076 + 0.00001  -0.0049 £ 0.0009
b mm 3 3.013 £ 0.003 0.0086 + 0.0002 0.004 £ 0.001
n - 4 42 £0.1 0.0218 £ 0.0008 0.05 £ 0.02
Sandy loam (27 fits)
parameter unit real value result standard deviation deviation coeff. 4
b m ! 10 8.6 £ 0.5 0.045 £ 0.005 —0.14 £ 0.05
K cmh™! 0.1 0.08 £+ 0.01 0.0010 4= 0.0001 —-02+0.1
¢ m*m~> 03 0.309 £ 0.003 0.00090 + 0.00001  0.03 £ 0.01
b mm 3 2.83 + 0.08 0.020 £ 0.002 —0.06 +0.03
n - 2 2.18 £ 0.07 0.0062 £ 0.0004 0.09 £ 0.03
Silt (34 fits)
parameter unit real value result standard deviation deviation coeff. 4
o m! 0.5 0.503 £ 0.003 0.0012 +£ 0.0001 0.006 £ 0.006
Ks cmh™! 0.1 0.12 £ 0.02 0.0007 £ 0.0002 02+£02
¢ m*m~> 03 0.298 £ 0.003 0.00074 £ 0.00005  —0.01+£0.01
b mm 3 3.02 £ 0.05 0.011 £ 0.001 0.01 £ 0.02
n - 2 2.000 £ 0.009 0.0052 + 0.0004 0.000 £ 0.004

bad. The silt is nicely represented in all fits, only 2 of 34 fits are deviating slightly. Consid-
ering that the estimation of the hydraulic conductivity is difficult, the conductivity function is
well represented for all soils. The analysis shows that applying the Monte-Carlo Levenberg-
Marquardt approach for real experimental data would lead to a reasonable estimate of the
parameters, since most fits converge to the correct parameters and the few deviating fits could
be identified in the ensemble.

9.2 Inversion of experimental data

The sample was taken from a field site directly into the PVC sample cylinder. It was then
slowly saturated from below with deionised water with 0.352 mmol/1 CaCl, until the hydraulic
potential at the bottom of the sample was equal to the the static gravimetric pressure of the
sample height 1, P, = pwg”n, and no more water was flowing in. Then bottom and top of
the sample were closed and the sample was allowed to equilibrate for some days. Finally the
evaporation chamber was installed on top and the experiment was started. It was run for 640 h.

Notice that while the boundary condition (figure 9.16 upper frame) suggests that the experi-
ment only covers very low potentials — the maximal value of the potential boundary condition
is —39 MPa - in the soil itself the whole potential range from 0 kPa onwards is encountered as
the experiment started at saturation.

The measured flux and potential is shown in figure 9.16. Integrating the flux resulted in a
cumulative outflow of (27.1 £ 1.3) mm. Weighing the sample before and after the experiment
yielded (26.5+ 0.5)mm. The aberration in the boundary condition around ¢t = 300h was

75



9 Results

1 - - le2
0.9 38 of 42 fits overlapping
0.8 =
0.7 g
§ 06 g
T 2
:é 05 - E
o 0.4 - S
0.3 ‘g’
0.2 ©
0.1+r
0 le-10 : : : :
-lel -1le0 1 0.8 0.6 0.4 0.2 0
potential / kPa saturation
1 — - 1e0
0.9 12 of 27 fits overlapping
0.8 | | = le-2 +
0.7 €
le-4 -
5 06 =
T L 2 6 L
£ 0.5 £ le-6
© 0.4 °
%] >
0.3 g le-8
0.2 ©
le-10 +
0.1
0 ! I 1e-12 I I I I
-1le3 -le2 -lel -1e0 -le-1 1 0.8 0.6 0.4 0.2 0
potential / kPa saturation
1 — - 1le0
0.9 32 of 34 fits overlapping
il le-2
0.8 =
0.7 + g le-4 L
S 06 S les|
8 o5/ 2
=1 =
§ 0.4 L g le-8 +
03} 2 lel0f
0.2 - © le12
01t eLr
0 : L 1e-14 . . . .
-led -1e3 -le2 -lel -1e0 1 0.8 0.6 0.4 0.2 0
potential / kPa saturation

Figure 9.15: Hydraulic functions of the inverse solutions (gray), and the functions for
the true parameters (black line), for the sand (top, 42 fits, 38 practically overlapping),
sandy loam (middle, 27 fits, 12 practically overlapping), and silt (bottom, 34 fits, 2
deviating slightly), respectively.

caused by heating of the laboratory. Its result on evaporation can be seen in the flux rate and
further corroborates the correctness of the data.

Figure 9.18 shows the total water content, measured by TDR. The permittivity of the soil
matrix was determined based on volumetric porosity and water content measurements as well
as TDR bulk permittivity measurements on the field site when the sample was taken during
an excavation. The total change in water content is (25 & 3) mm. This is consistent with the

flux and weight measurements. The figure also shows the mass balance 76(t) + fot Jwexp(T) AT,
where 7 denotes the height of the sample. It is assumed to be constant during the whole
measurement. The decrease at the beginning is attributed to larger pores around the TDR rods
which were created by the insertion of the probe, analogous to the sand sample. Because these
larger pores are drained first, the measured water content was not representative for the whole
sample. As the potential became more negative, the smaller pores in the undisturbed part of
the sample were drained as well and the real water content again matched the one measured
by TDR.
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Figure 9.16: Results of the evaporation experiment with the undisturbed soil sam-
ple. Matric potential of the air (boundary condition) was calculated from water
vapour partial pressure and temperature (upper frame). Notice that measured
and simulated flux (middle frame) practically overlap. The relative deviation
(jwexp — Jwmodel)/ jw,exp is shown in the bottom frame together with the measuring
uncertainty from figure 9.17
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Figure 9.18: Total water content (expressed as equivalent height of water in the soil col-
umn) of the undisturbed soil sample, measured by TDR (blue), and the mass balance

no(t) + fot Jwexp(T) dT (red). The black horizontal line represents the initially mea-
sured water content.
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9.2 Inversion of experimental data

Table 9.2: Resulting parameters and their standard deviations resulting from the analy-
sis of the sensitivity matrix for the undisturbed soil sample.

parameter fitted value standard deviation
A (=) 1.03 +0.1  (10%)

P (Pa) 1020 +40  (4%)

Ks (cm/h) 0.116 +0.009 (8 %)

0s — 6: (m3/m3) 0.306 £0.002 (1 %)

1p (mm) 2.74 +0.05 (2%)

The relative error is shown in figure 9.17. In this particular experiment, the absolute pressure
at startup had an error of 1kPa. The error of the potential is 1% to 2% and water flux error
4.5% to 5%. This high data quality is crucial for the quality of the result of the inversion
process.

Hydraulic parameters were estimated from the measured values using the inverse model
described in section 8.2. Only evaporation rates were used as target variables. Fitted param-
eters are the Brooks-Corey parameters A and ., the saturated hydraulic conductivity K, the
available water content 65 — 0;, and the effective thickness r,, of the boundary layer. The value
of T was fixed at 0.5 as suggested by ( ). The amount of data used for the in-
version process was reduced by filtering to keep the model runtime reasonable. Data points
were retained if the difference to the last kept point was Ap,, > 15Pa partial pressure or
jw > 0.005 mm/h water flux, or if the time step At was greater than 5h. A grid convergence
study gave a necessary spatial resolution of 0.125 mm equivalent to 880 grid points.

Figure 9.16 illustrates that for times ¢ > 30h, the optimised model response is in excellent
agreement with the data. For shorter times, however, the model is obviously not capable to
describe the data. This may be explained by thermal processes that are not represented in
the model. At the start of the experiment, the entire column is in thermal equilibrium. With
the onset of evaporation, latent heat is consumed right at the saturated soil surface. As a
consequence, the temperature drops there and with it the vapour pressure of water. Hence,
with equation (8.1)), the evaporation flux will be reduced. In its current formulation, the model
does not include the effect of latent heat and therefore yields a gross over-prediction of the
evaporation flux. An analytical estimation of the order of magnitude of that effect fitted well
with the observed one. As a consequence, the data for t < 30 h were not used for the inversion.

Once the soil surface starts to dry, the effect of latent heat drops very rapidly because: (i)
the evaporation flux becomes smaller, due to the decreasing hydraulic conductivity, and with it
the rate of latent heat consumption, (ii) with the rapid widening of the region where evapora-
tion occurs, heat is extracted from a larger volume such that the local temperature depression
decreases, and (iii) in the initial phase the strongly temperature-dependent boundary layer
limits the evaporation flux whereas later the less temperature-sensitive hydraulic properties
become determining. This leads to the eventual excellent agreement between model and data.
In particular the aberration caused by the heating of the laboratory is easily reproduced by
the model. While such an agreement is no prove that the model is correct, it is a strong hint
that it may be used as an effective representation of the real system under similar conditions
as those encountered during the experiment. The resulting parameters and their standard de-
viations resulting from the analysis of the sensitivity matrix are given in table 9.2. While no
independent confirmation is available, they appear reasonable for the soil under examination.
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10 Conclusions

Data of an undisturbed soil sample measured with the novel evaporation experiment presented
by ( ) were inverted with the numerical model presented in section 8.2 to obtain
soil hydraulic properties. The excellent agreement between measured and simulated data for
longer times are a strong indication that all the relevant processes, within our window of
view, are captured by Richards” equation with an effective hydraulic conductivity function that
explicitly incorporates vapour transport and with a constant effective diffusive boundary layer
at the soil-atmosphere interface. For shorter times, the discrepancy between data and model
requires the inclusion of additional processes. Qualitatively, the deviations can be understood
in terms of latent heat consumed by the evaporating water. In the current model formulation,
this process and the associated transport of heat is not included.

Virtual experiments for sand, sandy loam and silt parameters were conducted with the nu-
meric model. In accordance with experimental results from the literature, the physical analysis
of the evaporation experiment model showed two different evaporation regimes. In regime I
the outflux is limited by the diffusive soil-atmosphere boundary layer, while in regime II it
is limited by the hydraulic properties. The sensitivity analysis showed that the sensitivity is
especially high at the transition between the two regimes. In regime II, a drying front pene-
trates through the soil. At the location of this front, sensitivity is very high but this sensitivity
peak can only partially be exploited as the potential drops below the measurement range of
traditional tensiometers. However, if a profile measurement of water content is available the
sensitivity peak allows to scan different layers of the sample. Positioning the tensiometer and
the permittivity probe 2 cm below the sample surface gives a good sensitivity over the whole
experiment.

As the transitions between these two regimes can be induced by boundary condition changes,
a three-step experiment, where the water vapour pressure at the boundary is temporarily in-
creased after regime II was reached, yields an increased sensitivity and a high measurement
range.

The analysis of the response surfaces exhibited a single minimum for all parameters, which
was mostly well localised. The estimation of the saturated hydraulic conductivity was im-
proved significantly by adding a potential measurement to the outflux measurement. In con-
trast, adding a water content measurement yields no noticeable improvement. A combination
of water content and tensiometer measurements gave nearly as good a response surface as a
combination of evaporation flux and tensiometer measurements. However TDR probes which
are typically used for water content measurements are no point measurements but have a rather
high sampling volume, and the uncertainty for very dry conditions diverges. Therefore it is
expected that for real measurements the response surface will get much worse. Furthermore
uncertainties in porosity and soil matrix permittivity would introduce additional errors which
were not considered in the simulations. Hence measuring j,, will probably be much more ac-
curate in real experiments. There is a significant improvement if the measurement range of the
tensiometer is extended to —70kPa. A hypothetical tensiometer with unlimited range shows a
huge advantage. This emphasises the importance of extended-range tensiometers.

When excluding obviously diverged fits, the inverse model converged for the silt to correct
solutions from all initial values. For the sand and sandy loam, some fits of the ensemble
deviated significantly while others converged reasonably well to the correct parameters. The
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deviations were attributed to the small sensitivity of the evaporation experiment in the wet
range. Despite of these difficulties, usage of the Monte-Carlo Levenberg-Marquardt approach
allows a meaningful parameter estimation. Comparing the hydraulic functions estimated using
the mean MCLM estimated parameters with the true functions showed that only the water
characteristic of the loamy sand deviated slightly and all others overlapped. The distribution
of the parameters caused by measurement errors and crosscorrelation of the parameters was
acceptable.
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11 Introduction

The capillary fringe (CF) is the interface region between the water saturated groundwater and
the partially water saturated vadose zone. Here, the transition from primarily vertical flow in
the vadose zone to horizontal flow in the groundwater occurs. Due to the irregular forcing by
rain and groundwater level changes, the CF is highly dynamic.

It is expected that the CF has a major impact on flow and transport from the vadose zone
into the groundwater. Due to the dynamic nature, air is entrapped in the CF region, which
probably leads to a relatively high supply of air and thus also oxygen, which is needed by
arobic micro-organisms. On the other hand, water content is high, which is also beneficial for
micro-organisms. Therefore it is probable that the CF plays a major role for the biological degra-
dation of infiltrating contaminants. This has a large practical environmental impact. Biological
activity is tightly coupled with chemical reactions and hydraulic transport. To quantitatively
understand and model these linked processes, it is a prerequisite that the physical processes of
flow and transport in the CF under these transient boundary conditions are known. Biologic
products like surfactants are known to change the hydraulic properties and therefore back-link
the biological activity to the hydraulic processes, which additionally complicates the system.

The CF was for a long time of limited interest for both soil scientists and groundwater hy-
drologists, as it was just the limit of their respective domain of interest, although sometimes a
disquieting one. This is already manifest in the very definition of the CF, or more precisely in
the lack of it. In the most strict meaning, the lower end of the CF is the water table and the
upper limit is the level where the continuous air phase begins. In soil physics, this is sometimes
referred to as the satiated zone ( , ). In the broadest meaning, the CF is bound from
below by the level where all the entrapped air has become dissolved and from above by the
maximum height of the capillary bound water, which is used synonymously with “residual
water content” ( , )- The thicknesses given by these two definitions are typically
orders of magnitudes apart.

Only very few studies provided limited insight into the operation of the CF and its function
for diverse processes. The rapid reaction of the CF to infiltration was demonstrated in several
lab- and field-experiments, e.g., in the context of river recharge ( , )-

(1998) studied the impact of a fluctuating water table and demonstrated, experimentally
and with numerical simulations, that the response of the CF was highly asymmetric. However,
this study was done using tensiometers and TDR-probes and the influence of the sampling
volume of the TDR probes was neglected. The disadvantage of using traditional sensors like
tensiometers and TDR-probes is that measurements with high spatial resolution are very diffi-
cult to achieve. However, these are required for detailed process analyses. Also the simulations
did not fit to the experiments. This is because ( ) used a conventional
Richards” model. As shown in this study, multi-phase and non-equilibrium processes which
are not represented in Richards’ equation play a major role in the CF.

(2000) investigated the response of water table inside a soil column to harmonic forcing of an
external water table in steady-state and reported a harmonic response. Since only flow from
the external reservoir into the column is involved here, this is expected.

As an alternative to traditional sensors, dye tracer experiments are employed and combined
with a qualitative analysis of optical images (e. g., , ). With this approach
the spatial resolution is excellent and is only limited by the resolution of the image sensor. The
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11 Introduction

price, however, is a rather low quality of the data which typically only support some qualitative
assessment of the observed phenomena.

The studies mentioned above and a few others provide perspectives on the range of pro-
cesses in the CF and on their phenomenology. However, ( ) in their review
conclude that there is a lack of flow and transport process studies, particularly at the local
scale, and that “the dynamic interplay of flow and transport mechanisms across and within the
CF is not well understood”.

The aim of this work is to get an insight into the fundamental physical processes which
govern the response of the CF to transient forcing. The dynamics of the CF is investigated ex-
perimentally using the light transmission method. A detailed error analysis which propagates
measurement errors shows the significance of the results. Although this should be a standard
for all measurements, unfortunately it is not common in the field of soil science.

( ) discussed their statistical and systematic errors but did not conduct a complete
error analysis. To the knowledge of the author, this is the first light transmission experiment
with a complete error analysis. Measurement uncertainties are propagated and systematic
error sources are also discussed.

Since per definition the CF is a highly interdisciplinary topic involving hydraulics, transport,
chemistry and biology, an interdisciplinary approach is required to understand the system
in its full beauty. Therefore, recently a DFG-funded research group was initiated incorporat-
ing physicists, micro-biologists, chemists, and mathematicians with the aim of quantitatively
modelling the coupled hydrological-chemical-biological processes within the CF. This thesis
presents a first part of important physical results necessary to understand this interesting com-
plex and important system.
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12 Materials and methods

12.1 Experimental setup — overview

Dynamics of the capillary fringe were observed in a sand sample in a Hele-Shaw cell (sec-
tion 12.3.2). The water content distribution was observed using the light transmission method
(section 12.3) with high spatial and temporal resolution. Since the aim of the experiments
was to investigate the dynamics of the capillary fringe under transient boundary conditions,
these had to be computer-controlled. For the lower boundary, the water table was set to a de-
fined height using a water reservoir. The reservoir height could be controlled using a stepper
motor and a spindle. The water height in the reservoir was kept constant even if water was
extracted from or put into the reservoir by constantly pumping water from a second reservoir
into it which then flowed back through an outflow in the height of the defined water table.
At the upper boundary, a flux boundary condition could be imposed by pumping water with
a computer-controlled perstaltic pump. The water was extracted from a reservoir on a digital
balance. Weight measurements were used to automatically correct the pump rate. This pro-
cedure allowed to accurately define the flux. Temperature was measured at the glass of the
Hele-Shaw cell, in the room and at the light source, to exclude temperature effects. A sketch
and a photo of the setup is shown in figure 12.1. Pumps, balances, and temperature measure-
ments are described in section 12.8. In some of the experiments, a NIR camera for microscopic
measurements was additionally installed beside the visual camera. This also required the use
of another light source, as described in detail in section 12.3.
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Figure 12.1: Experimental setup used for capillary fringe investigations. The sand soil
is contained in a 3 mm thick Hele-Shaw cell. A homogeneous light source illumi-
nates the medium. Transmitted intensity is observed with one or more digital cam-
eras. A stabilised, computer-controlled movable water reservoir defines the lower
boundary condition. At the upper boundary, a flux boundary condition can be set
with a computer-controlled perstaltic pump coupled with a balance.
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Figure 12.2: REM images of the TS9 sand used in the experiments.

12.2 Porous medium

As porous medium, sieved sand with a grain size distribution between 0.63 mm and 1.25mm
was used. The intention here was that a sand medium is more natural than a glass bead
medium, since glass beads have a very smooth surface. Figure 12.2 shows electron-microscopy
images of the used sand.

Filling of the medium

Among the available procedures for sample preparation, raining is probably the method which
simulates a soil fabric most similar to the one found in natural deposits formed by sedimen-
tation (Rad and Tumay, 1987). When filling the medium into the cell, care must be taken to
avoid artificial layering which would affect the results due to structures in the porous medium.
Layers can be created when the medium is filled in several steps. Therefore, a filling funnel
(figure 12.3) was designed which allowed to fill in the sand in one run. The density of the filled
medium can change if the falling height changes due to different specimen velocities. After
a certain height, however, velocity will become constant and relative density will not change
(Rad and Tumay, 1987). Therefore, below the funnel, an extra falling height of 20 cm was in-
stalled. The funnel could be mounted onto the Hele-Shaw cell with a specially designed plastic
mount. A toggle allowed opening and closing the funnel. During the filling procedure, the cell
was mounted on a shaker which supported the homogeneous grain depletion. After the filling
was complete, the cell was again vibrated for settling the grains. This was done to avoid grain
settling during the first imbibition/drainage cycle, which would introduce a medium change
during the experiments.

REV

To characterise the statistical properties of the medium and obtain the REV size, the semi-
variogram was estimated. The visual images from the prewetted fluctuating water table mea-
surement were used for the estimation. Image resolution was (0.346 &+ 0.001) mm/pixel. The
Bayer downsampled dry and wet images were divided by the lightsource image. This step
eliminated possible trends from inhomogeneous illumination. A 100 x 100 sub-region was cut
from the normalised images and the semivariance was estimated. Figure 12.4 shows the result.
The correlation length of the medium is about 2.5 mm for the dry and 3 mm for the wet sample
(vertical black lines). The data of the dry image had a skewness of 1.6 and the wet image of
0.6. The skewness quantifies the deviation from a Gaussian distribution. 1.6 is at the upper
range of acceptable values. Due to that deviation from a Gaussian distribution, the correlation
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Figure 12.3: Filling funnel for Hele-Shaw cells.
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Figure 12.4: Averaged semivariance of the normalised intensities of the dry and the wet
sample.

length may be slightly underestimated. This effect is more pronounced for the dry sample,
which may be an explanation for the smaller correlation length there. The skewness may result
from the used consumer camera which is known to be non-Gaussian. Accordingly, 3mm is
considered to be the more appropriate correlation length. The wet sample has a larger variance
due to higher contrast between wet spots and grains than dry spots and grains. The estimated
correlation length is reasonable for the grain size distribution in the medium, since the cor-
relation length is expected to be about a few grain diameters. The width of the point spread
function (standard deviation of fitted Gaussian) was estimated to o = (1.6 £ 0.2) mm, which is
smaller than the correlation length and indicates that the correlation is not only caused by mul-
tiple scattering, although a part of it may be attributed to that process. For macroscopic water
content estimation, the radius of the averaging area should be at least a bit larger than the cor-
relation length. The small variations still present at higher distances in the semivariogram are
attributed to small heterogeneities in the medium which cannot be avoided and small changes
in cell thickness.
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12.3 The Light Transmission Method

12.3.1 Introduction

As described in section 5, light transmission can be used to quantify water content in thin
cells with porous materials, since the transmission and reflection properties depend on water
content. This allows high resolution measurements spatially and temporally, which is a pre-
requisite for assessing the processes in the capillary fringe. Processes are expected to be highly
dynamic and feature spatial fluctuations and large gradients.

In normal measurements where radiative transfer is used as a proxy for water content, the
exact matrix-water-air geometry is unknown (if it was known, there would be no need for
the measurement). Thus the relation between measured intensity and water content has to
be identified. Several approaches can be found in the literature. The first light transmission
method (LTM) by ( ) was only a point measurement. He used a diaphragm to select
a small light bundle and measured transmitted light with a photo resistance. For the evalua-
tion, he assumed normal light incidence and modelled the porous medium as parallel boxes
with different refractive indices. Pores were assumed to be either full or empty. Transmission
factors for the sand/air/water interfaces were calculated using Fresnel’s law. Absorption was
neglected. The number of water-filled pores was then calculated by I = Iy (T2/ T1)?, where
p is the number of water-filled pores, T; = 0.946 the transmission coefficient for sand-air and
air-sand, and T, = 0.991 the transmission coefficient for sand-water and water-sand. For the
number of pores to water content relation, a calibration measurement with gravimetrical water
content measurements was done. The method was extended by ( ) to a two-
dimensional field by supplying one side of the soil slab with a diffuse light source. Images were
taken with a standard video camera. Only relative water content measurements were done and
the evaluation of ( ) was used without the calibration. ( ) used
the same technique with a CCD grey value camera as measurement device and an improved
evaluation. The measured intensity was corrected for light source drift and normalised with

I-Ig
Iwet*dljry
They abandoned the calibration measurement of ( ) and used the simple model p = k6
to calculate the number of water filled pores, where k is the average number of pores in di-
rection of the light beam and was determined empirically. ( ) compared
this measurement technique with X-ray measurements and found the data to agree within 5 %
saturation. ( ) developed several intensity—saturation relations, based on
different linear box models and one based on a pore model. ( ) also included
liquid films in their consideration.

However, all these authors assumed linear propagation of light and thus box-shaped sand,
water, and pore configurations. Diffuse light sources have many incident angles and due to
the irregular shaped grains and curved water-air interfaces, even light with a normal incidence
angle is refracted and reflected into all directions. The transmitted light has been travelling
on an irregular path with many refractions and reflections (“multiple scattering”, figure 5.6 on
page 46). This also leads to a significant broadening of an initial 5-peak light source, as schemat-
ically shown in figure 4.5 on page 34. This effect can be seen in figure 12.28 on page 113 (a)
and (b) which shows measured images with a slit positioned between (a) the sample and the
camera and (b) the light source and the sample. That broadening effect can be described math-
ematically by convolution with a point spread function and is explained further in sections 4.5
and 12.6. ( ) were the first to account for multiple scattering. They used
an X-ray measurement to calibrate the intensity—saturation relation and found a non-linear
function, thereby showing that the assumption of a linear relationship is invalid. As described
in section 5.1, X-rays do not exhibit multiple scattering in the porous medium.

the standard two-point method, I’ =

, to correct inhomogeneities of the light source.
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For the investigations presented in this thesis, the calibration idea of Rezanezhad et al. (2006)
was used. The measurement procedure was improved and adopted to the light transmission
evaluation as described in section 12.7.

For more precise measurements, near infrared (NIR) imaging spectroscopy has been devel-
oped. With this method, absorption bands of water are used to quantify the amount of water,
more precisely the absorption length, as described in section 5.3.1. In addition to normal light
transmission, the wavelength of the transmitted light can be selected. Spectral information is
then used to directly extract the absorption length. Even at one single absorbing wavelength,
the water can be seen much clearer than with the traditional method. A drawback of the
method is that available cameras in the near infrared are expensive and nevertheless have a
relatively low resolution (standard is 320 x 256 pixels).

12.3.2 Experimental setup

The setup used for light transmission experiments is sketched in figure 12.5. The soil is con-
tained in a Hele-Shaw cell as shown in figure 12.10 and illuminated with a homogeneous light
source. A digital camera is used to capture images of the transmitted light. Optionally, a filter
wheel is used to select appropriate wavelengths with a optical bandpass filters.

VIS light source

The visible light source (figure 12.6) consists of a wooden box with four fluorescent lamps (Os-
ram 75W White) at the rear. Fluorescent lamps have the advantage of limited heat production
compared to thermal emitters. The front side consists of a diffusion foil to homogenise the
light before it enters the Hele-Shaw cell. The other walls of the box are covered with a reflec-
tive aluminium tape to reflect most of the light into the forward direction. For cooling, six fans
are installed inside the box which blow fresh air inside the box from the sides and out again
on the top. This avoids heating of the medium.
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Figure 12.7: Spectral emissivity of the visible light source.

The spectral emissivity of the light source is shown in figure 12.7. The measurement was
made with an Ocean Optics USB2000 spectrometer with a wavelength resolution of 0.6nm.
Emission lines of the gases in the lamp can be seen clearly, with main components at 546 nm
(green) and 611 nm (red).

Drift test: To estimate the stability of the light source, a test experiment was conducted. After
powering on the light source, images were taken every 10 min. Images were dark corrected and
the grey value variance was estimated using the calibration measurement. Each channel of the
Bayer pattern (see section 12.4) was then multiplied with its corresponding Bayer multiplier.
The actual light source was cropped from the image. Images at times t; were divided by the first
image at t = 0 to estimate the change of illumination {. The mean of all pixels is a measure for
the change of the average intensity compared to the first image, while the variance is a measure
for the inhomogeneity. Figure 12.8 shows the temporal evolution. After a first intensity increase
of about a factor of 2 in the first 20 min after power on the fluctuations remain in a relatively
narrow but still significant band. The initial intensity increase is attributed to the equilibration
of the lamps. Hence, it was always waited for at least a few hours for the light source to
stabilise. Remaining fluctuations are corrected. Spatial intensity changes (inhomogeneity) are
relatively small. These cannot be corrected during experiments and introduce a systematical
error. The variance seems to be anti-correlated with the mean intensity. Looking at the images
of ¢ shows that the changes are larger in the central region with high intensity.

NIR/VIS light source

Measuring longer wavelengths where water has significant absorption requires an appropriate
light source. Thermal emitters were chosen, since they emit in all required wavelengths. 28
halogen light bulbs with a power of 50 W (Osram HaloStar 64440 ES) were installed in a 4 x 7
grid. The corresponding spectrum is shown in figure 12.9. As expected it shows the shape of a
thermal emitter. Irradiance in the NIR range is reasonably high, even at 1450nm. A diffusion
foil (Plexiglas Satin Ice transparent 0D010 DF) was used to homogenise the irradiance. Since
the emitted irradiance of the lamps sensitively depends on the current (the relative uncertainty
of the emitted light irradiance is about 6 to 10 times the relative uncertainty of the current
regulation), all bulbs were operated in series. This ensured that all lamps exhibit the same
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Figure 12.9: Picture of the NIR light source (left) and spectral emissivity of the Osram
HaloStar 64440S bulb at a current of 4.35 A and an irradiance of 3451x (right). Emis-
sivity spectrogramm was provided by Osram GmbH, Miinchen.

change in intensity. One regulated high-voltage current source (Delta Electronica SM 400-AR-8)
was used. The temporal stability was specified as 9 x 107>, line regulation as 0.2 mA (0.007 %).
The lamps were operated at 3.5 A. Since brand-new bulbs settle in the first 50h of operation
(during that phase, the irradiance at constant current increases), the light source was operated
for about 55 h before it was actually used in the experiments.

Hele-Shaw cell

To ensure transparency of the medium, the thickness of the soil to be investigated is limited.
Therefore, a semi-two-dimensional sample in a Hele-Shaw cell (figure 12.10) was used. The
Hele-Shaw cell consists of two parallel glass plates (500 mm x 300 mm) positioned at a distance
of 3mm with rubber gaskets. These gaskets also served as sealant. The glass plates were
mounted in a steel frame. The medium is then filled into the space between the glass plates. At
the bottom, the medium was separated by a porous separator (sintered glass, mean pore size
120 um). At the right and left borders, two windows were separated with additional gaskets.
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The one on the right was sealed completely and served as a light source reference, while the
one on the left was open at the bottom such that free water entered the window to mark the
water table height. Blue absorber foils were mounted in front of these two windows to reduce
the light intensity. They were necessary to prevent over-exposing the corresponding pixels in
the digital image, since the porous medium weakened the light intensity by about a factor of
1000. A lid covered the sample on the top to prevent evaporation and simultaneously served
as mount for infiltration tubes.

VIS Camera

A Canon EOS 300D, a consumer digital single-lens reflex camera with a 6.3 MPixel 12 bit CMOS
sensor, was used for macroscopic water content measurements. All automatic functions were
disabled and images were saved as raw data. Image processing was then used to calculate the
corresponding quantities of interest (section 12.3.4). Further information about the consumer
camera is reported in section 12.4 and calibration measurements in section 12.5.

NIR camera
A Xenics Xeva, an industrial /scientific NIR camera with a 320 x 256 pixel 12 bit InGaAs sensor
with 30 pm pixel pitch and a wavelength range of 900 nm-1700 nm was used for detailed micro-
scopic measurements. The camera allows adjustment of the ADC central and window width
voltages, to optimise the quantisation for the actual measurement. Possible frame acquisition
frequencies are up to 100 Hz via USB. A thermo-electric cooler allows controlling the sensor
chip temperature. The camera has a low gain mode, which uses a large integration capacitor in
the trans-impedance amplifier circuit to reduce overall system noise. However longer integra-
tion times are needed. Enabling low gain mode enlarges the sensitivity by a factor of 20, but
also reduces the output conversion factor by a factor of 20.

During measurements, images were acquired and saved as-is without any preprocessing.
Image processing was then used to calculate the corresponding quantities of interest (section
12.3.4). The calibration measurement is reported in section 12.5.2.

Filter wheel and optical bandpass filters

A filter wheel (Optec IFW) was used to select appropriate wavelengths for NIR measurements.
The wheel can hold 8 standard 25 mm filters and automatically senses the correct wheel posi-
tion by using small magnets and hall-effect sensors. The position can be computer-controlled
via a serial RS232 connection, which allows automated measurements.
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Standard optical bandpass filters (Andover Corporation) were used to select appropriate
wavelengths. Wavelengths and bandwidth (full width half maximum) are given in table 12.1.
The effective absorption is given by

I(A) = / Io(A) exp (—(A)padsy) dA

~ Iy exp(—pwiw ln/ T(A)expo(A)dA)) - (12.1)

=10eff

where T is the transmissivity of the optical bandpass filter. Since T is non-zero only in a very
small region (typical full width half maximum is 25 nm), the emissivity of the thermal emitter I
and the absorption length d,, are approximately constant in that range, thus these can be taken
out of the integral. The error introduced by this approximations is considered neglectable.
Thereby one obtains an effective cross-section o.¢, which can be used for determining the
absorption length.

12.3.3 NIR imaging spectroscopy wavelength selection and test

As explained in section 5.3.1, absorption bands of water can be used to calculate the absorption
length (equation (5.21)) if spectral information is exploited. To explore which wavelengths are
best suited for water measurements and to test the measurement principle, test measurements
were made in a Fourier Transform Infrared Spectrometer (FTIR) (Bruker Vertex80). The Hele-
Shaw cell was put into the FTIR at the point of focus (diameter of the ray was about 1 mm) and
measurements of dry, totally saturated, and partially saturated sand were made. Aperture was
4mm and 25 scans were averaged. The transmission coefficient in respect to the dry sample
was calculated by dividing the water measurement data by the dry measurement data.

Figure 12.11 shows the wavelength-dependent transmission coefficient. As expected, the
transmitted intensity increases at wavelengths with neglectable absorption. At other regions,
the intensity increase is masked or even over-compensated by the decrease of light due to ab-
sorption. Comparing with the absorption coefficient of water (figure 5.4 on page 45) shows
a good qualitative agreement of the shape of the absorption. A wavelength with as little ab-
sorption as possible must be chosen as reference to optimise the absorption differences. Using
different absorbing wavelengths allows to change the sensitivity, since a higher absorption co-
efficient difference has a higher sensitivity but may become saturated if the absorption path
is too long. For the measurements, the 1075nm absorption minimum was used as reference,
since it is not too far from the absorbing wavelengths (remember that wavelengths should be
close enough that the real part of the refraction index does not change significantly). The fol-
lowing absorbing wavelengths were chosen: (i) the 1455 nm maximum, (ii) 1505 nm which has
about half the absorption coefficient of 1455nm, and (iii) 1555nm with lower absorption for
long absorption paths. These wavelengths are available as standard bandpass filter for imag-
ing measurements. Table 12.1 shows the corresponding absorption coefficients as interpolated
from the data of ( ) and the bandwidth of the optical filters used in
the experiments for wavelength selection.

The absorption of pure water was also measured in the test but the measurements of

( ) are of much higher quality and therefore were used further on.

To check the wavelength’s dependence on the results, the absorption length was calculated
according to equation (5.21) on page 48 from the test measurement using 1075 nm as reference
wavelength. The result is shown in figure 12.12. Data is only shown for wavelengths A >
1200 nm, since below the absorption coefficient difference is too low which leads to large errors.
The range of values of the absorption length is reasonable for a medium of 3 mm thickness and
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Figure 12.11: Spectroscopic measurement of the light transmission for different water
contents. Due to lower light source intensity, noise is higher for lower wavelengths.

Table 12.1: Absorption coefficients at the chosen wavelengths. Values were interpolated
using the data of ( ). The bandwidth (full width half maxi-
mum) of the corresponding optical bandpass filters are also shown.

wavelength / nm / absorption / cm~ 1 filter bandwidth / nm

1075 0.15 25
1455 31.4 25
1505 18.1 20
1555 10.4 30

a porosity of about 0.4, at higher wavelengths the values seem a bit low. Ideally without optical
dispersion the path length should be constant throughout all wavelengths. The low values at
higher wavelengths are attributed to the change of the real part of refractive index (see figure 5.5
on page 46), which leads to a change in multiple scattering, while the “dips” are assumed to
be caused by the shift of absorption wavelengths with respect to the reference measurement
due to the bound state of the water. However, these effects only affect the absolute value
of the absorption length, but not the relative changes due to changing water content at one
particular wavelength. Also, since the relative change due to water content changes is identical
for different wavelengths, this measurement can be used to correct for these effects.

12.3.4 Image processing

Image processing was done with C++ code, using single precision floating point numbers to
eliminate numerical errors caused by integer arithmetic. Single precision was chosen as an op-
timum between data size and precision (the raw sensor data were 12 bit integers). As first step,
the raw measurement data was dark corrected to remove fixed pattern noise, where underflows
(when the dark current was higher than the value due to statistical fluctuations) were explicitly
avoided by setting these values to zero. Pixel value errors were estimated. Further on, errors
were propagated using Gaussian error propagation. The further processing described below
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Figure 12.12: Absorption path length as estimated from the test measurement using
1075nm as reference.

differed for different cameras and different measurements. Covariances between pixels which
are introduced for example by filters were neglected.

Water content measurement using a consumer camera

For every measurement i at time t;, one image without wavelength selection was taken. Pixel
errors were estimated according to the camera calibration measurement (section 12.5.1) assum-
ing a linear variance model. Images were white-balanced and Bayer-downsampled as described
in section 12.4 and the region with the medium was extracted. Light source fluctuations were
corrected using the data from the light source reference window. A scalar correction factor was
calculated by x; = (wyes(x)/w;(x)), where ws and w; are the light source window of the dry
cell which served as reference, and of measurement i, respectively. (-) denotes the average of
all pixels. All pixels were multiplied by x;. A radius 1 median filter was applied to remove
salt and pepper noise. If the measured and the dry and/or wet images did not overlay due to
camera and/or cell movements, registration was used to correct it. This was done with Matlab
using double precision floating point arithmetic. It was assumed that the movement could
be represented by a projective transformation, which describes the changing projection by the
camera. Cross-correlation was used to tune the transformation parameters. Water content was
then estimated using equation (5.20) on page 48 by applying the inverse of F, ® = F~(I).
In the polynomial evaluation for F~!, the error of the normalised intensity as well as the fit
coefficient errors including covariances were propagated. If normalised intensities were below
the validity range of the calibration, which corresponds to ® = 0.1, but larger than zero, ® was
estimated by linear interpolation between zero and the lower validity limit. This was done to
avoid ambiguities. All these values thereby fall into a known saturation range and can easily
be recognised when looking at the results. It is important to notice that values in the saturation
range below 0.1 have a very high degree of uncertainty. Normalised intensities outside the
range [0,1] are outliers and were kept as-is. Afterwards, a median filter with radius 1 was
applied to eliminate outliers. These were caused by imperfectly overlaying images, which is
unavoidable since the registration is not perfect, and by changing grain structure. If the grain
structure in two images does not match, artefacts in form of large intensity peaks are produced
in the output image. Figure 12.13 shows the normalisation procedure graphically. The relation
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Figure 12.13: Image normalisation for water content estimation.

F(O®) had previously been estimated using an X-ray calibration measurement (section 12.7.1).

The remaining non-correctable image dislocation due to camera and medium changes intro-
duces a background noise that is not covered by the error propagation of uncertainties. It is
difficult to quantify, since it overlaps with real information about heterogeneous water content
changes, therefore it was not incorporated into the uncertainty of the values.

Water measurement using NIR camera (imaging spectroscopy)

The absorption length as a measure for water content was estimated using two different wave-
lengths. With the spectroscopic measurement, a much higher precision is possible than in
normal LTM measurements. The non-linearity correction as determined from the calibration
measurement (section 12.5.2) was applied. For every measurement time ¢;, the absorption
length was calculated by solving equation (5.21) for d,

o I(x, /\z)Io(x, /\1)
dw(x) = 7PWAUWoclog (I(x, FTAES /\2)> , (12.2)

where p,, Aoy, is the difference in absorption coefficient between A; and A, and was determined
from the measurement by Palmer and Williams (1974), and « is a correction factor which ac-
counted for different exposure times for dry (Ip) and normal measurements. It was assumed
that the gray value is linearly related to exposure time, which is true after the non-linearity cor-
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Figure 12.14: Detection of the water table with edge detection.

rection has been applied, thus « linearly scaled the gray value according to the corresponding
titoo
tato,1”

Switching between two filters needed about 3 s. If the system changes during this time, a sys-
tematical error is introduced because the evaluation assumes that images at both wavelengths
show exactly the same state. The extent of that error depends strongly on the processes to be
observed and cannot be quantified. This error will only be of considerable importance on very
fast transitions, e. g. directly at the edges of rectangular forcing. During the rest of the time,
processes are relatively slow and resolution is considered sufficient.

exposure times as o =

High-speed water measurements at one NIR wavelength

Since the time required for changing the optical filter limits the time resolution (switching
between two filters needs about 3s), measurements at one absorbing wavelength were made
to look into fast processes. The camera allows framerates up to 100 Hz, depending on the
integration time. Non-linearity correction was applied. Then the images at time steps t; were
divided by an image of the light source at the same wavelength and settings, which served as
flat field correction.

Water table estimation

Water table heights were extracted from the water table reference window for every measure-
ment. The meniscus of the free water table in the window can be seen as a dark line and the
water-filled region has a higher intensity due to better refractive index matching of water-glass
than water-air. To obtain the water table height, the window region was extracted from the
image and Bayer-downsampled. For every height the image was averaged horizontally since
the data is horizontally homogeneous. A Gaussian filter of radius 6 was applied to reduce ran-
dom noise. Edge detection was then used to detect the water table. The profile was derivated
using the standard symmetric filter. Mean and standard deviation were calculated, and a peak
with at least no was searched. The water table height was defined as the middle between the
crossings, the error was estimated from the two crossings of the peak with the threshold. n was
initially set to 5. If no peak could be detected, n was reduced gradually until the search was
successful. Figure 12.14 illustrates the image processing.
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To obtain the amplitude of the water table fluctuation, different strategies were used for
sinusodial and rectangular forcing. For the sinus, a sinus function z = zo + Asin(27t/T)
was fitted into the data and the amplitude A and zero position z of the fit were then used.
The adjusted function fitted well to the measured data for all experiments. For the rectangle,
every half-cycle was identified using the measurement time and the corresponding values were
averaged. The first 3 points were not taken into account, since due to finite conductivity,
the water table in the cell did not reach the value instantaneously. The amplitude was then
estimated as half the maximum-maximum difference and the zero point as the middle between
the maxima.

Detection of the capillary fringe boundary

As mentioned in the introduction, a process-based definition of the upper boundary of the
capillary fringe is the point where the air phase becomes continuous. However, due to mea-
surement limitations, this criterion cannot be assessed experimentally, since the macroscopic
water content measurement does not resolve microscopic features like air phase continuity.
Therefore, a more practical approach must be used. Here, the upper boundary was defined by
a threshold value of water saturation. The reason was that this is a relatively stable indicator
for the edge of the capillary fringe, while edge detection was found to be unstable, even if the
data was smoothed before edge detection was applied.

The goal was to estimate the mean position of the edge of the capillary fringe in the cell.
Therefore, the data were averaged horizontally. Since the capillary fringe is heterogeneous,
the microscopic water content values at different horizontal positions are not the same and the
values cannot be treated as different realisations of the same random variable. Normal error
propagation was used to estimate the error of the mean since different values are combined to
obtain the mean.

Starting from the bottom, the data were searched for contiguous points where the error
bars were touching the threshold value. A parabola was fitted into these points to check if it
was a true intersection, or if the water content was going back again. If no intersection was
found, the search was continued. Else, a line was fitted using weighted linear regression. It
was tested if the slope was larger than 0.0005 pixel_l, to reject situations where the parabola
intersected but the points were very close to the apex and the water content was going down
again nevertheless. If the test succeeded, the intersection point was calculated. Errors were
estimated using data errors of the pixel closest to the intersection point and the fit errors of the
line including covariances. If no intersection is found, the search is repeated and the rejection
criteria are relaxed by also allowing points where the parabola does not intersect. This is
required for a few special cases with large groups of intersecting points. The procedure is
shown graphically in figure 12.15. The threshold was optimised to 0.8.

Ambiguities occur if several intersections with the threshold are found. One of them must
be chosen arbitrarily. Here, the lowest was used. This leads to jumps in the solution if the data
move into the threshold or out of it vertically. Figure 12.16 depicts such a situation. At the first
timestep, one real intersection is present and it is correctly identified by the algorithm. In the
next timestep, however, the water content decreases due to drying and a second intersection
arises. Since it is at a lower position than the first one, it is chosen by the algorithm and the
solution jumps. This effect cannot be fully eliminated and is a drawback of the particular
definition of the capillary fringe boundary.

CF boundary half minimum-maximum distance

To estimate the half minimum-maximum distance 7 of the CF boundary for rectangular forcing,
a line was fitted into the last points for each half-cycle and then extrapolated to the end of the
half cycle. Even if the CF boundary was still raising, this strategy obtained the correct end
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Figure 12.17: CF heterogeneity measure estimation: The saturation image (a) is bina-
ried (b). Opening and closing is used to eliminate outliers (c). The CF border region
is determined (d) and the absolute value of the area from the middle to the actual
boder is summed up.

point before the CF boundary was going down again. Half the distance between these end
points was then defined as 7. It was obtained separately for each cycle.

Heterogeneity measure of the capillary fringe boundary

To estimate the heterogeneity of the CF and the change of heterogeneity due to transient forc-
ing, a heterogeneity measure H is introduced: the more fragmented the CF, the higher H. A
prerequisite for the measure is that it should not depend on the actual discretisation of the data,
i.e. if for example the discretisation is doubled but the structure of the border is not altered,
the measure should be the same.

Saturation images were binarised with the same threshold as in the CF boundary estimation.
Opening and closing ( , , sect. 18.4.1) with a square 3 x 3 mask are applied to the
binarised image to eliminate single misclassified pixels. To find the edges of the CF border,
starting from the bottom the first totally black line is searched, and from there the first totally
white line below. The area in-between those two lines is defined as the continuous CF border
region and it was cropped from the image. This definition for the border region was chosen to
avoid black or white spots to spuriously enlarge the border region. For each horizontal pixel,
starting vertically from the middle of the CF border region, the distance to the black/white
edge is determined and the absolute value of the area defined by that distance and the pixel
width as determined by the distance-pixel calibration is then added up and normalised by the
image width w:

1 w—1
H = % Z ‘ymiddle(x) _yedge(x)’ . (123)
x=0

Figure 12.17 illustrates the image processing.

If the CF border is homogeneous, i. e. it is a horizontal line, the thickness of the CF border re-
gion and therefore the measure is zero. The more fractured the border, the larger the area from
the middle line to the actual border line and therefore the larger the heterogeneity measure.
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12.4 Consumer DSLR cameras

Figure 12.18: Bayer pattern used in consumer cameras to ob-
tain colour information. 50 % of all pixels are green, 25 %
red and 25 % blue.

The measure H weakly depends on the size of the opening/closing mask. The larger the
mask size, the larger details are lost, but also larger outliers are eliminated and the border
becomes smoother. An optimum mask size was found to be 3 x 3.

Distance-pixel calibration

To obtain the pixel-distance relation, images with a measuring tape were made. The number
of pixels for a certain distance was obtained in several image regions and the millimetre-pixel
relation was calculated. To estimate the distance change over the image due to lens distortions,
an image with a checkerboard marker put onto the cell was made.

12.4 Consumer DSLR cameras

Consumer digital single-lens reflex (DSLR) cameras with large resolution are commonly avail-
able for low prices (less than 1/10th of a professional scientific camera). DSLR cameras use
a mechanical mirror system and a pentaprism to allow the photographer to directly view the
picture through the optical viewfinder on the back of the camera. Most modern cameras have a
12bit CCD or CMOS sensor with several megapixels resolution and feature remote control via
a PC which permits automated measurements. They offer an alternative for measurements on
large timescales which do not require a high acquisition rate. Ideally, the raw format would al-
low to save the sensor-data and camera adjustments as-is with no preprocessing, which would
permit the exact knowledge of all image processing steps. This is important for scientific mea-
surements, because the dependence of the results on the measured irradiance must be known.
In practise, internal preprocessing is done by most consumer cameras and no information
about it is given away from the manufacturers. Here, calibration and test measurements are
necessary to ensure quantitatively correct results.

Colour by Bayer pattern

Almost all consumer colour cameras have just one image sensor. To obtain colour information,
the chip has colour-filter micro lenses in front of the sensor which form a colour matrix. The
colour pattern used by nearly all cameras is called Bayer pattern' and contains 50 % green,
25% red and 25 % blue pixels (figure 12.18), since the sensitivity of the eye is maximal for
green light. Of course, as a result not all colour information is present in every pixel. Thus,
if all colours are required at all pixels, the different colours must be interpolated to obtain a
full resolution colour image, assuming that there are only small intensity differences between
adjacent pixels of the same colour. The most simple interpolation just averages the missing
values between adjacent pixels. However, this method blurs edges. Thus, more advanced
methods interpolate alongside edges. Many camera manufacturers have their own proprietary

1 Bryce E. Bayer submitted a patent in march 1975 on behalf of Eastman Kodak Company (“Color imaging array”,
United States Patent 3,971,065)

101



12 Materials and methods

Figure 12.19: Effect of different white balance adjustments using different colour tem-
peratures. Image source: wikipedia.org

algorithms. There are also quite a few open algorithms. One of the most popular ones is the
adaptive homogeneity-directed (AHD) algorithm (IHirakawa and Parks, 2005).

White balance

Different light sources have a different spectrum, thus depending on the illumination, also
coloured objects have a different spectrum. When looking with the human eye, the visual
impression automatically adapts to changing illumination, such that objects keep their colour.
This ability is called “chromatic adaption”. In contrast, for digital images this process must be
done explicitly. Moreover the colour sensitivity of the image sensor is different from that of the
human eye, and again different from the monitor, or printer, which is used to view the image,
so additional corrections are needed.

The process of adjusting the intensity of the different colours to fit the “natural” appearance
as perceived with the eye is called white balance, because it makes white objects really look
white. Mathematically, constants m; are multiplied to the intensity of each colour channel I; (i
denotes the colour, e. g. red, green, or blue). In normal automatic operation, the camera guesses
the m; according to sensor information by looking for the brightest area, which is assumed to
be white, and forces it to be white by balancing the corresponding colour intensities. The m;
can also be determined manually by taking the image of a white object.

Assuming black body radiation, a temperature can be assigned to the illumination, and
thereby to a specific colour balance of the captured objects. That temperature is called “colour
temperature”. A low colour temperature has more red, a higher one more blue. Normal
daylight has a colour temperature of about 5500 K. The effect of different white balance adjust-
ments is shown in figure 12.19.

102



12.5 Camera calibration

12.4.1 White balance and Bayer pattern averaging in LTM

With LTM, the attenuation of light in the medium is to be quantified. It is assumed that the
light intensity change in respect to water content changes does not depend on the wavelength,
because in the spectral range covered by a colour DSLR camera, there are no absorption bands
of water and the real part of the refractive index of water is approximately constant in respect
to wavelength. If every pixel was processed individually to obtain the attenuation, no white
balance would be needed. However, this would forbid the usage of image processing filters for
image correction prior to the attenuation calculation, because adjacent pixels are illuminated
differently due to the colour filters (see figure 12.20 which shows a histogram of an image of the
LTM light source) and image processing filters combine different pixels. In addition, adjacent
pixels would have different sensitivities, because the quantisation intervals are constant and
the number of photons is different. Thus adjacent pixels could not be compared directly. When
applying the white balance, poorly illuminated pixels are multiplied by high factors and thus
decrease the resolution. The relative variance stays constant since the variance linearly depends
on the grey value. However the relative error (which is proportional to the square root of the
variance) is lower for higher illuminated pixels. Equal illumination of all colours is not possible
because there is no appropriate light source.

To eliminate the need for interpolation between different colour channels and to reduce noise,
the four Bayer pixels were averaged. It can be thought of as putting all detected photons from
the four different Bayer pixels, weighted by the spectral sensitivity, into one bin, u = Y, m;g;,
where g; is the grey value of pixel i, and (7;2, = Y.}, m?c? since the m; are constants. The result
is then divided by 4 to keep the (anyway arbitrarily scaled) grey value number in the same
range as the original values. Remember that for dynamic processes, temporal averages are not
possible due to the low acquisition rate of consumer cameras.

The m; are determined using the light source image. To have equal intensities with equal
attenuation, the light source must be forced to be white. Therefore, a Gaussian is fitted into the
histogram of each colour channel (figure 12.20). The m; are calculated such that the centres of
the Gaussians y; of all colours are shifted to the one with the highest grey value, m; = pmax/ ;.
Thus, m; > 1. This is a usual convention, because for intereger arithmetic as used for consumer
images, a multiplier m; < 1 would decrease the number of used quantisation elements and
thus the resolution. Although this is not the case here since floating point numbers are used
for the LTM evaluation, the convention was used nevertheless.

12.5 Camera calibration

To estimate the error of the measured pixel values according to the sensor noise model (see
section 4.4 on page 32) and to check the linearity and reproducibility of the camera, a calibration
is needed. The camera is illuminated with a homogeneous light source with different known
irradiances, and the measured pixel values are analysed.

12.5.1 Calibration of the consumer camera

The Heidelberg Collaboratory for Image Processing (HCI) has a calibration facility for digital
cameras. Here, the camera without lens is directly mounted on a homogeneous LED light
source with Ulbricht sphere. An Ulbricht sphere is a sphere with a small hole which is coated
with a highly reflective material in the inside. It is illuminated from the inside. The light which
comes out of the aperture has been scattered many times in the sphere, thus the source has a
very flat irradiance field. The lens is removed to prevent distortions. The light intensity can be
controlled by adjusting the LED current. A total illumination measurement can be done with
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Figure 12.20: Histogram of raw pixel values of the VIS lightsource taken with the
Canon EOS 300D, separately plottet for the four Bayer entries. For white balanc-
ing, the light source is made white by shifting the histograms of all colours such that
they overlay each other. A Gaussian was fitted to each colour channel, and the centre
values were used to calculate the multipliers m; to 1.59 £ 0.02, 1.00 £ 0.01,.1.00 £ 0.01,
and 2.18 + 0.03. Note that green has two overlaying entries.

a calibrated photo diode. Statistics were collected spatially, assuming that all pixels are equal
and the ensemble reflects also the statistics of a single pixel (ergodicity hypothesis).

The light intensity was increased in small steps until sensor saturation and then decreased
again to preclude drift. For each measured light intensity, two images were made. Images with
overexposed pixels (saturated grey value) were discarded by visually inspecting the histograms.
Dark current was subtracted and the images were then separated into four sub-images, one
for every Bayer channel. For every light intensity i and every Bayer channel j, the mean u
was calculated using the combined data of the two available images Lijk, ke {1,2}, u =
((Iij1 + Lijz) /2). For the variance, both images were subtracted and the variance was calculated,
which results in twice the variance of a single image, thus

0'2 = 1/2var(Ii]-1 — Iij2) = 1/2<(L]1 — Iij2)2> , (124)

since <Iij1 — Il‘]'2> = 0. This variance calculation has the advantage that inherent structure of the
images, e. g. due to different pixel sensitivities, is neglected.

An example of a dark-corrected calibration image is shown in figure 12.21. The remaining
structure is attributed to different sensitivities of the different pixels. Assuming that the sensor
is linear, i.e. the grey value is g; = a;N + b;, where N is the number of photons in each
pixel, different sensitivities mean that every pixel has slightly different a; and b;. The b; are
eliminated with the dark current subtraction. The linearity check is not disturbed by different
a;, since mean is a linear operation. The systematic error in the variance is kept minimal by
determining the variance of a difference image as given in equation (12.4). The remaining
systematic error is due to the fact that the variance is grey value dependent and different
sensitivities lead to different grey values and thus pixel variances in one image. This effect is
small (a grey value difference of 200 leads to a maximal variance variation of 18) and can be
neglected.
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Figure 12.21: Dark-corrected Canon EOS 300D image of the homogeneous LED
illumination of the HCI calibration facility (blue channel, blue LEDs, N =
1.6061 x 102 photons/ (um?ms)). The remaining structure is caused by the different
sensitivities of the CMOS sensor.

The measurement was done with the smallest available ISO value, ISO 100, and an exposure
time of e = 1/80s. The linearity test for all channels is shown in figure 12.22. Linearity
is reasonable for all channels. A small curvature can still be seen, especially for larger grey
values, which is attributed to camera-internal processing before saving as raw.

The fits for the noise model are shown in figure 12.23. The variance is reasonably linear for
grey values below about 2700, but substantially deviates for larger grey values. The variance
decrease for large grey values is attributed to camera-internal noise reduction. This is also
suggested by the fact that saturated images never have the full 12bit value, but saturation is
already achieved at about 3990, and by the systematic deviation from sensor linearity for large
grey values mentioned above. As there is no information available about internal preprocess-
ing, this assumption cannot be verified, but it seems reasonable. For the linear fit, larger grey
values were neglected. Using the linear fit for error estimation leads to a slight error overesti-
mation of at worst a factor v/2 for large grey values. Since very large grey values are seldom
and the variance values are only used for error estimation, i.e. to see if changes are significant,
this seems acceptable.

The results of the fits are given in table 12.2. Given errors are fit errors. Comparing the
fit coefficients for the different channels shows that they are, within the uncertainty, nearly
equal. Therefore one regression line can be used for all variances. Since the sensor elements
are assumed to be equal and the difference between channels is only the microfilter in front,
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Figure 12.22: Linearity test for Canon EOS 300D with te = 1/80s and ISO 100.

Table 12.2: Calibration results for Canon EOS 300D with t. = 1/80s and ISO 100. Co-
variances between slope and offset are —0.85 to —0.86 for all fits. Given errors are fit
errors.

channel linearity fit variance fit

slope offset slope offset
1 (red) 0.168 £0.001 59+13 | 0.089£0.001 14£2
2 (green) | 0.168 £0.001 63414 | 0.092£0.001 10£2
3 (green) | 0.168 +0.001 59 +13 | 0.089 £0.001 1442
4 (blue) | 0.201 £0.001 59416 | 0.090£0.002 12+3
mean - 0.090 £0.001 1342

this is expected. Once the number of photons necessary for a given grey value passed the
colour filters, the colour channel makes no difference for sensor noise. Thus, the mean variance
fit is used for error estimation in measurements.

Temporal pixel statistics

To assess the temporal fluctuations of the pixels, the camera was positioned in front of an
Ulbricht sphere illuminated with with four halogen lamps. The lamps were operated with a
stabilised power supply to prevent power fluctuations. Therefore, the camera can be assumed
to perceive a locally and temporally constant homogeneous irradiance. N images with exactly
the same settings were taken and statistics were analysed for every pixel. As the shutter is
electronically controlled, the shutter timer error is expected to be constant for all exposure
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Figure 12.23: Variance model for the Canon EOS 300D with fe = 1/80s and ISO 100.
The deviation at large grey values is attributed to the sensitivity structure.

times.

Since it is not possible to visually inspect all pixels for all exposure times, a few pixels were
randomly chosen. Figure 12.24 shows the histogram of one pixel. The shape of the PDF is
not Gaussian as would be expected. A reason for the deviation from the expected shape may
be internal preprocessing in the camera before it saves the raw images. It is known that some
preprocessing is done, but Canon did not give away any information about it. Also a lognormal
distribution does not match the observed PDF. A moved lognormal PDF, i. e. the addition of a
constant (additional fit parameter) describes the data better, but it is not suited for automatic
titting because the fit required manually tuned start parameters to converge. It is also not clear
what this distribution means physically. The slightly distorted distribution has an influence on
the error propagation since a Gaussian distribution is assumed here.

12.5.2 Calibration of the NIR camera

The calibration is sketched in figure 12.25. The light of a Xenon lamp was collimated with a lens
and a slit. A concave grid separated the wavelengths. Then a second slit let only a small range
of wavelengths though. The beam was collimated again with a lens and homogenised with a
diffuser. The camera was put into the calibration unit without lens. The grid could be rotated
computer-controlled for wavelength selection. The wavelength was calibrated with a spectrom-
eter (Ocean Optics). A calibrated photo diode allowed absolute intensity measurements. For
the calibration, different intensities had to be realised using different exposure times.

Three different wavelengths up to 1000nm were used for calibration. Wavelengths above
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Figure 12.24: Histogram of the temporal fluctuations for pixel (881,1413) at constant
homogeneous illumination. Fits of a Gaussian, a lognormal and a moved lognormal
distribution are shown.
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diffusor Figure 12.25: Setup used for the calibration of the NIR cam-
era. The concave grid could be rotated to adjust the wave-
length.
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1000 nm were not possible to select with the setup.

The used InGaAs sensor and readout electronics used in the camera lead to different sensi-
tivities for different pixels. This makes a spatial calibration impossible and every pixel is to be
calibrated separately. 500 images were acquired for about 20 different exposure times, each for
the low gain and high gain mode. During acquisition, the camera was cooled to 270K. The
acquired images were dark-corrected and mean and standard deviation of the 500 measure-
ments was then calculated for every pixel separately. The manual inspection of the histograms
of a few randomly selected pixels showed that the distribution matched closely the expected
Gaussian distribution.

Figure 12.26 shows the sensor response and variance for a randomly selected pixel in low
gain and high gain mode. All examined pixels looked similar. The linearity of the high gain
mode is good, but not as good for the low gain mode, probably due to the additional capacitor.
A parabola fits all data well. An F test was used to test if the data were also compatible with
a linear fit. The linear fit was rejected at the 1% level for nearly all pixels of the low gain and
a few pixel for the high gain mode. For every pixel, the fit coefficients for the grey value —
exposure time relation were saved and used for linearity correction during image processing.
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Figure 12.26: Sensor response and variance for a randomly selected pixel in low gain
(left) and high gain (right) mode.

For pixels where the linear fit was accepted, the quadratic coefficient was set to zero. The
tit errors of the fit coefficients were not used in the error propagation, since the correction of
systematic errors is no statistical process and false errors would be introduced.

The low gain mode has a lower noise as expected. The variance is not linearly related to
the grey value for both modes. A parabola describes the data well. For every pixel, the fit
coefficients were saved for error estimation during image processing.

12.6 Deconvolution

Deconvolution is a method to correct the blurring caused by multiple scattering in the porous
medium. Section 4.5 describes the theoretical basis of deconvolution. A deconvolution strategy
which optimises sharpening versus noise amplification has to be found.

Due to the isotropy of the medium, the spreading is assumed to be isotropic at one partic-
ular water content. Different water content slightly differs the PSF, however the change was
found to be in about the range of the uncertainty of the estimated PSF parameters. Since a
non-uniform PSF poses a rather difficult problem, a mean PSF was determined and the non-
uniformity was neglected. The PSF was assumed to be Gaussian, which closely matched the
experimentally observed shape. For an isotropic medium, a Gaussian shape is expected for
the limit of many scattering incidents (central limit theorem). Since the Gaussian is separable,
G(x) = G1(x1)Ga(x2), the two components of the 2D Gaussian may be determined indepen-
dently. The PSF was determined for every experiment with slits as explained in section 4.5.1 on
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page 35. Vertical and horizontal slits were positioned between light source and measurement
cell. The acquired image was dark-corrected and the Bayer pattern was averaged as described
in section 12.4. The regions with the slits were cut from the resulting image, and the verti-
cal and horizontal components were determined independently by averaging along the slit,
derivating and fitting a Gaussian,

_ (x=)?

Gi(xi; i 07,00) = aie ™7, (12.5)

to both edges (figure 4.6 on page 36). The two 0 obtained for the two edges j € {1,2} of
each slit were averaged. The resulting x and y components of ¢ of the 2D Gaussian, obtained
from the horizontal and vertical slits, respectively, were always equal within their standard
deviation. Therefore a homogeneous Gaussian with the average ¢ was used. The 2D Gaussian
was normalised to one, i.e.

/ G(x)dx =1, (12.6)
IRZ

to avoid changing the average image value by the filter. Further steps depended on the decon-
volution strategy and are described below.

All images were dark-corrected, white-balanced and Bayer-averaged before deconvolution
was applied.

Band-limiting deconvolution
A Gaussian can be transformed analytically to Fourier space ( , ):

X2 A
G(x;0) = ae 22 o—e 20 2ae 200K = G(k;o), (12.7)

where a is defined by the normalisation constraint (12.6). The inverse optical transfer function
(IOTF) is thus §(k) = 1/G(k;o). It was then band-limited as described in section 4.5.2 with
the free parameters « and B. The special case p = 0 specifies an instantaneous cut-off with
a discontinuity at k = ky,. The resulting band-limited IOTF was discretised according to the
discretisation of the image to be deconvolved. After the discrete Fourier transformation (DFT),
the discretisation in k is Ak; = ﬁ (Appendix B), where N; is the number of points in i-
direction, i.e. N = N and N, = M. Since Ax; = 1 for the original image (pixel coordinates),
the discretisation of § must be Ak; = 1/N;. According to the definition of the DFT used
by the FFTW library which was used for the calculations (see equation (B.6)), the constant

frequency element g, = ng\;)_:l(g/lo_) 2 gij is the total sum of all pixels, thus the normalisation in

Fourier space is done by setting §(, = 1. k} is determined from the condition 4(k,) = a as
k3 = Ina/(27*0?). With kj; = (i/N, j/ M) the resulting discrete IOTF is therefore

eanaz(iz/Nerjz/Mz) ,(i2 +j2) < Inwa

27202
qij = r(i/N,j/M) Bl < (24 77) < (14 B) 552 (12.8)
1 (14 B) gy < (P4 7)

where 7 is the polynomial as defined by the requirements (4.27))—(4.30).

The edges of the source images were gradually blurred to zero with the deconvolution PSF
to avoid numeric artefacts from artificial jumps at the edges of the source image when the
discrete Fourier transform is applied. This was done using the Matlab edgetaper () function.
Then the image was Fourier transformed, multiplied by the IOTF specified in equation (12.8),
and inverse Fourier transformed. The constants & and B were tuned to obtain an optimal
deconvolved slit image.
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12.6 Deconvolution

Lucy-Richardson deconvolution

The PSF was discretised in a regular rectangular grid with an edge size of 60 41 and the PSF
centre placed in the middle of the region. The edges of the source images were gradually
blurred to zero with the deconvolution PSF to avoid numeric artefacts from artificial jumps
at the edges of the source image when the discrete Fourier transform is applied. This was
done using the Matlab edgetaper () function. Then the image was deconvolved using Matlab’s
deconvlucy () function. Different damping factors were tested to achieve an optimum between
deconvolution and artefacts. However, the results were not found to be satisfactory, since when
the damping was high enough to avoid artefacts, the image was practically not deconvolved
anymore.

Wiener filter

The PSF was discretised the same way as described above for the Lucy-Richardson decon-
volution. The source image was transformed to have a grey-value independent noise using
equation (4.20). The transformation parameters were extracted from the camera calibration
(section 12.5.1). Of course the PSF is not transformed since it is normalised. The image was
then edge taped as described above, and the Matlab deconvwnr () function was applied. Sev-
eral approaches were used to estimate the noise term v := S,,,/Sys: (i) Since the image was
transformed to obtain a constant noise of 1, v = 1/ 0'}% was used, where & is the transformed
source image. This is the straight-forward approach which uses the known properties of the
image. Note that the properties of the original image are estimated using the blurred image,
since the information about the original image is not known. (i) v(k) = NM/|h(k)[?, which
uses the actual power spectrum of the convolved image as an estimator for the power spectrum
of the original image. (iii) The image F was estimated by applying a 3x3 median filter to the
blurred image, the noise n by the difference between filtered and original image. Then v was
calculated by v(k) = |a(k)[>/|f (k)|>.

Influence of noise

Noise has a major impact on the results of the deconvolution process. To investigate this, a
test image was convolved with a Gaussian PSF and then deconvolved with the cut-off band-
limit method (section 4.5.2). Negative intensities, which are obviously a deconvolution artefact,
were clipped to zero. The result is shown in figure 12.27. Without noise, the image can be
reconstructed reasonably (d). However, if only a small amount of Gaussian noise (¢ = 1,
u = 0) is added after the convolution, the deconvolution results are relatively poor (e, f).

If the zero border around the original image is not large enough, the deconvolved image
is dominated by artefacts (figure 12.27 (c)). This is caused by the smear-out of information
beyond the image boundaries when the image border is smaller than the influence of the PSE.
Due to the periodicity assumption, that information reappears on the other image boundary,
where it interferes with the information at that location.

Comparison of different deconvolution methods
The performance of different deconvolution methods on the acquired images has been analysed
to choose an optimal deconvolution strategy.

To visually inspect the blurring, and the performance of the deconvolution, a direct image
of the slit was taken by placing the slit between the sample and the camera. With this setup,
only the blurring in the optics enters the image. This is only a minor component compared
to the effect of the porous medium. The slit image which was also used to determine the PSF
was deconvolved and compared with the direct slit image. The results for the optimal choice
of parameters are shown in figure 12.28, a profile in figure 12.29.

The Lucy-Richardson deconvolution has the best result. However, it also introduces speckle-
type artefacts (section 4.5.3). This behaviour is not observed when deblurring the slit, but
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Figure 12.27: Test of the influence of noise on the deconvolution process. A test image
(a) was convolved with a symmetric Gaussian PSF of ¢ = 4 (b) and then decon-
volved with the cut-off band-limit method. With too small a border around the orig-
inal test image, the deconvolved image contains artefacts (c). If a larger zero border
is added to (a), the deconvolution (optimal threshold & = 10'!) works fairly well (d).
If a small amount of Gaussian noise with ¢ = 1 and y = 0 is added to the blurred
image (e), the results (optimal threshold &« =2 - 10%) are much worse (f).

enters significantly when deconvolving real images with extended regions, as can be seen in
figure 4.7 on page 39. Reducing the number of iterations or increasing the damping parameter
decreases the artefacts but also decreases the sharpening. When the artefacts are reduced to
an acceptable level, sharpening is so low that the effect of the deconvolution is hardly visible
(figure 12.31).

The cut-off method also significantly reduces the blurring, but introduces artificial oscilla-
tions. Again, reducing the artefacts reduces the sharpening. The influence of « on the result is
shown in figure 12.30. The higher &, the better the sharpening, but the worse the oscillations.
When the oscillations have ceased the sharpening is very small.

The Wiener filter blurs the image far too much. According to section 4.5.4 this indicates
overestimated noise. However, the filter was very insensitive to the noise-to-signal ratio. Even
with the noise-to-signal-ratio set to zero the deconvolution algorithm did the disproportional
blurring.

After investigating the different deconvolution strategies, it was concluded that the decon-
volution procedure introduces more artefacts than it helps. That impression was augmented
by the fact that for example the image analysis groups at the HCI and the MPI for astrophysics
in Heidelberg also do not deconvolve, since they think that deconvolution harms more than it
helps. Thus, deconvolution was abandoned.
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12.6 Deconvolution

Figure 12.28: Comparison of the different deconvolution methods using the slit im-
age: (a) direct slit image, (b) Original image, (c) Cut-off (x = 8, B = 0.2), (d) Lucy-
Richardson (15 iterations, no damping), (e) Wiener filter (NSR 10~?). Negative in-

tensities were set to zero. The black horizontal line marks the location of the profiles
shown in figure 12.29.
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Figure 12.29: Horizontal profiles of the deconvolved slit images shown in figure 12.28.
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Figure 12.30: Comparison of the influence of different cut-off values a on deconvolu-

tion.
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Figure 12.31: Damped Lucy-Richardson deconvolution (3 iterations, damping parame-
ter 4) on the slit (profile, left) and a measured image (right). Although the sharpen-
ing effect has become very small, the artefacts are still quite distinct.

114



12.7 X-ray measurements

detector
X-ray source

?

-

Figure 12.32: Setup of the X-ray measurement
Hele-Shaw cell device

12.7 X-ray measurements

For calibration of LTM, an X-ray facility was used ( , ). It consisted of a medical poly-
chromatic X-ray tube (Philips Optimus Rad) operated at 141keV, a horizontal 12bit CCD line
detector with 1280 pixels of 0.4 mm side length (Hamamatsu C7390) and a computer-controlled
positioning device for tube and detector which allows vertical movement. The Hele-Shaw cell
was positioned in-between, in parallel to the detector. To obtain a two-dimensional image, tube
and detector were moved synchronously and horizontal lines were acquired sequentially. A
sketch of the setup is given in figure 12.32.

To readjust the tube vacuum, a certain procedure has to be executed regularly. To ensure
optimal tube operation, this was done before every measurement. An adjustable copper slit
directly at the tube is used for beam collimation by absorbing radiation with large incident
angles. Yet the resulting radiation is still a fan beam, which limits resolution. For quantification,
a copper marker of 3 mm thickness was installed horizontally on the empty Hele-Shaw cell and
a measurement with a horizontal resolution of 0.26 mm was made. The edges of the copper
block were smeared out over 4 pixel, which indicates a horizontal resolution of about 1 mm for
a medium with 3mm thickness like the medium in the Hele-Shaw cell used here.

Due to the small thickness of the cell, the change in attenuation between the dry and the
wet cell is relatively small. The relative change of attenuation between water and air is about
Ap = 0.03mm ™. With a porosity of 0.4, the absorption length of pore volume is only 1.2mm,
which leads to a relative change of intensity between fully saturated and dry conditions of
Lwet/ Iary =~ 0.96. This is not sufficient for significant results. Thus, the contrast enhancing
agent potassium iodide (KI) was used. Iodide has a high mass and therefore exhibits high X-
ray attenuation. The attenuation enhancement was estimated in a test experiment (table 12.3)
as Ay = (4.740.6) x 107*1/(gmm). A nominal concentration of 400¢g/1 was used, which
leads to a relative intensity change of Iyet/ lary =~ 0.76 and is still much lower than the sol-
ubility (1430g/1 at 20 °C). However iodide may precipitate from the KI solution due to light
illumination and air contact. This leads to a yellow colour which changes the visible light
transmission, and may also cause a change in the X-ray absorption coefficient. Accordingly, it
falsifies the results. Therefore, precipitation must be avoided by minimising measurement and
light illumination time.

Due to Compton scattering, photons do not always travel linearly through the medium,
which causes a deviation from Lambert-Beer’s law. The small cross section of Compton scat-
tering for 141 keV makes this effect small. The polychromatic nature of the X-ray source (beam
hardening effect, section 5.1.2) also leads to deviations from Lambert-Beer’s law. A measure-
ment of the photon energy distribution of the used tube is given by ( , sect. 2.1.3).
Taking this non-linear behaviour into account would require a large amount of information
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Table 12.3: Change of the attenuation due to the contrast enhancing agent KI. Relative
intensities were measured for an attenuation length of d = (13.5 + 1.0) mm for sev-
eral concentrations C. The attenuation due to KI depending on the concentration
was fitted as y = (0.035 £ 0.002) mm ! + (4.7 £ 0.6) x 10~*1g~ ' mm~1)C.

C/g/l ‘ Iwet/ldry ‘ u/1/mm ‘ Iwet/Idry ford = 1.2mm
0 0.6154 £ 0.0006 | 0.031 + 0.003 0.964 4 0.003
10 0.5798 £ 0.0006 | 0.040 + 0.003 0.953 £ 0.003
50 0.4802 £ 0.0005 | 0.054 + 0.004 0.937 £ 0.004
100 | 0.3106 £ 0.0004 | 0.087 £ 0.006 0.901 £ 0.007
which is practically not available. As (1994) pointed out, the chamber glass

acts as filter, absorbing a significant amount of the low-energy photons and leaving a less poly-
chromatic beam. Therefore, non-linear effects were neglected and equation (5.23) was assumed
to be valid.

A calibration measurement of the detector revealed a pixel error of about 145 + 0.5, where
I is measured intensity. Of course the actual numbers depended on the pixel, for example the
offset ranged from —16 to 266. Anyway the error is large. Remembering that due to the small
cell thickness, small attenuation changes must be detectable, this error is clearly not acceptable.
Therefore, temporal averaging was done to minimise the error. With N = 500 measurements,
the error is reduced already by a factor of about 22. This yields a reasonable error. Averaging
has the additional advantage that the measurement error can be estimated by the ensemble
standard deviation.

Drift

To check the long-term stability of the X-ray measurements, a test measurement with no sample
was done every 5min for 24h with always the same settings. At every time step N = 500
measurements were made and averaged for noise reduction and standard deviation estimation.
The temporal evolution of the acquired pixel values was then examined. Ideally, the value
should stay constant during the whole measurement. Figure 12.33 (left) shows the value of two
randomly selected pixels during the 24 h period. The standard deviation of the measurement
as calculated from the ensemble mean is about 1.9 and indicated in the figure by the line
thickness. Apart from the high-frequency noise there is a significant drift with more than
10c. It seems that the different pixels are drifting similarly. However at some times the drift
evolves somewhat different for the different pixels, which can be seen at about t = 12h in
the left plot. For quantification the correlation of one of the two shown pixels with all other
pixels as estimated from the whole measurement time is shown in figure 12.33 left. Indeed the
correlation is very high, but some pixels break the correlation. It is not clear what causes the
drift. Sources might be changes in detector sensitivity, the detector readout, or of the X-ray
source intensity due to temperature.

To correct the systematic error introduced by the drift, the drift is measured at a reference
pixel which has a constant attenuation. The other pixels are then corrected weighted with the
correlation with the reference pixel, such that less correlated pixels will be corrected less. Oth-
erwise artefacts would be introduced if one pixel is corrected although it changed in another
way than the reference pixel. Averaging multiple reference pixels is not possible since this
would change the correlation. The correction factor itself is calculated the same way as in the
drift correction of the visual images. Thus, pixel values are updated according to

I'(x,y) = I(x,y) { [I(Ify) - 1] cor(x, Xyef) + 1} ) (12.9)

Xrefs

where I is the value of the reference pixel at the reference line. This linearly maps the
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Figure 12.33: Drift test measurement of the X-ray facility: Temporal evolution of the
pixel value on two randomly selected pixels for 24 h (left, the thickness of the lines
show the 1¢ error), and the correlation of the first displayed pixel with all other pix-
els (right).

correction term such that it fully corrects with T ;:::y) if the correlation is 1 while the correction
factor is 1 (no correction) if the correlation is 0. To avoid line-type artefacts caused from random
deviations of the reference pixel, the I(x.y, i) profile is smoothed using a Gaussian filter with
o = 2 before applying the correction. A remaining problem is that the high-frequency changes
of the covariance may introduce vertical line-type artefacts. However, no smoothing is possible
here since it would disturb the statistical properties. These remaining artefacts are small and

considered superior to the artefacts introduced by the drift if no correction was made.

12.7.1 Water content calibration

As explained in section 5.3.2, X-rays do not exhibit multiple scattering due to macroscopic
material property changes, which allows to use equation (5.23) for directly calculating the water
saturation from X-ray data. A calibration experiment was done to relate the LTM normalised
intensity data to water content. Since the X-ray measurement takes about 5h, the sample must
be in equilibrium. Otherwise the sample would change during the measurement and different
parts of the image would describe different water content distributions. Images were taken
with both X-ray and visual light as described in sections 12.7 and 12.3, respectively. Water
with (401 £ 6) g/1 KI was used for contrast enhancing of the X-ray measurement as described
above. To prevent precipitation of the KI, light illumination and total experiment time were
minimised.

After filling the sample and installing copper reference markers, measurements of the dry
cell were made. The sample was saturated by a slowly increasing water table of 30 mm/h and
equilibrated for 1h. Then the saturated images were acquired. The watertable was lowered
again with 30mm/h and then equilibrated for 7h. Since the water table had fallen too low, it
was again risen by 20 mm with 30 mm/h and again equilibrated for 3h. Then the water content
profile images were acquired. After finishing the last X-ray image, negligible change of colour
of the KI solution was detected. X-ray measurements were done with 141kV tube voltage,
4mA tube current, and an exposure time of 10 ms. For each line, 250 scans were averaged. I
was measured with a tube current of 1 mA and 500 scans were averaged. Visual images were
acquired with an aperture of 5.6 and an exposure time of 1/13s. 50 images were averaged.
Resolution was (0.340 £ 0.001) mm /pixel.

If the partly saturated image had been taken before the wet image, the whole water content
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range would have been available, whereas for the measurement procedure used here, saturation
between residual and dry was not part of the calibration. The reason was that if the sample is
equilibrated much longer at one particular water table position, which would be necessary for
the measurement, and afterwards wetting is resumed, due to the different water configuration
at that point a water content minimum is found just above the position of the capillary fringe
during the partly saturated configuration. This would introduce artefacts in the wet image.
Since in this work the focus is on the capillary fringe and low watercontents are not of primary
interest, the limited calibration range has been considered superior to artefacts in the calibration
measurement.

Visual images were evaluated as described in section 12.3.4, however in contrast to the normal
evaluation, of course F~! was not invoked. X-ray images were drift-corrected as described
above, and coordinates were shifted to overlay the images. Shifting was necessary because
the cell was moved from one facility to the other during the experiment, which causes slight
changes in position. Registration was performed with Matlab using the edges of the copper
markers as reference. To obtain the offset, the images were binarised. The threshold was chosen
to be the middle value between the the copper marker and mean surrounding intensities. As a
first start, points were set manually and then cross correlation was used for coordinate system
mapping. Only shift and no scaling was used for correction. Saturation was then calculated
according to equation (5.23) on page 49. Pixel 1268 in the light source window was chosen as
reference pixel, and the uppermost line of the dry image as reference line.

Since X-ray and visual images were acquired at different resolutions, registration was needed
to overlay. A projective transformation was used for mapping both images. Again, registration
was performed with Matlab using the edges of the copper markers as references. After estimat-
ing the coordinate system mapping as described above, projection parameters were estimated
in a least square sense from the mapped coordinates. The X-ray saturation image was then
transformed using that transformation to finally overlay the visual normalised intensity image.
This involved interpolation of pixel values. A Gaussian filter with radius 12 pixel (4 mm) was
applied to both X-ray and visual data sets to obtain macroscopic REV-scale water content val-
ues. This is somewhat larger than the correlation length of the medium of 3 mm (section 12.2).
Another reason why averaging is required is that the measurements take place at different
scales. While X-rays propagate more or less linearly through the medium, due to multiple scat-
tering, visual light “explores” a broader area of the medium, which is quantified by the point
spread function. Measurements can only be compared if a scale larger than the PSF extend is
averaged, since only then the same quantity is considered in both measurements. Figure 12.34
shows the two data sets. The lower two images show the propagated measurement uncertainty.
It depends on the value since the uncertainty of the measured pixel intensity depends on the
grey value. The error is relatively low and the quality of the data is good. The typical relative
error 0 /@ is 0.7 % for X-ray and 0.6 % for visual images.

For each pixel, ® as calculated from the X-ray measurement and F(®) as calculated from
the visual light transmission data were assigned to each other. No horizontal averages were
made, since a horizontal average will be disrupted by the horizontal inhomogeneity of the
water content distribution caused by medium heterogeneity. The result of the matching is
shown in figure 12.35 (a). Values are in a plausible range. However, the broad range of F(©)
values assigned to each ® makes a meaningful relation impossible. The range of spreading
is much larger than the errorbars and therefore must stem from another source. Looking at
figure 12.34 shows large-scale structures in the visual image which are not present in the X-
ray image. These are attributed to peaks caused by imperfect registration and changes of the
medium during the experiment. If such peaks are present, they bias the Gaussian averaging
and cause artifacts on the REV scale which are not present in the original medium. They also
cannot completely removed by median filtering, since too large a filter size disturbs the correct
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Figure 12.34: Saturation © measured by X-ray attenuation (left) and corresponding vi-
sual light transmission data F(®) (right). Image dimensions are 192 mm x 214 mm.

features of the image. Gaussian averaging also introduces large correlations between pixels
which may lead to circular structures not present in the original image, as observed in a few
locations. This is also seen in the direct matching as round structures. The deviation in the
upper right is caused by a “hole” in the medium. Grains were laying such that a large pore
was created where direct visual light came through. This resulted in a high intensity for visual
light. In the static equillibrium image, this larger pore was drained and had less water than in
the surrounding which was correctly identified by the X-rays due to lower absorption. General
features, for example the capillary fringe boundary, are well represented in both images and
also the structure of the CF is consistent. This shows that, apart from small deviations, both
images are consistent and can actually be matched. Therefore, a statistical treatment of the data
similar to Buchner (2009) was applied.

If the remaining structure can be described statistically, for one ® interval a range of corre-
sponding F(®) values is expected. Hence, it is plausible to obtain the most likely F(®) value
and then use it for the calibration function. This was done by parting © into intervals of the
width of the mean error of ®, which was 0.002. The mean of all F(®) values within this in-
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Figure 12.35: (a) Pixelwise assignment of visible light transmission data F(®) to X-ray
measured saturation ©, errors were calculated by error propagation from the mea-
surement errors. (b) Statistical evaluation of the values in (a). ©® was divided into
partitions of width 0.002 and the mean was estimated. (c) Number of entries in each
interval. (d) Test of the calibration. The visual light transmission image was evalu-
ated as in the normal experiments, a vertical profile with 2 pixel horizontal average
was made and the result was compared with the matching vertical profile of the X-
ray measured saturation.

Table 12.4: Fit parameters and covariance matrix of the calibration relation F.

COV =
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ci | -0.53572 225961 -0.69589
1.8857 —2.5748 0.82793
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0.82793 —1.1578 0.38292




12.8 Additional instruments

terval was estimated and used as corresponding value. This resulted in figure 12.35 (b). The
error bars were estimated by error propagation. Figure 12.35 (c) shows the number of entries
in each interval. Since no measurement with saturation below residual (® < 0.15) is available,
it is clear that no calibration is possible in that range.

Although figure 12.35 (a) looks rather bad at first sight, the statistical evaluation used here
which leads to figure 12.35 (b) is still considered superior to horizontal averages, since the latter
introduces systematical errors due to the neglect of heterogeneity, while the statistical approach
only averages matching saturations and does not bias the results.

A polynomial ©(I) = YN, c;I' of grade N = 2 was fitted into the data. It was then used
for saturation calibration of measured visual light transmission data during experiments. Ta-
ble 12.4 shows the fit parameters and the covariance matrix.

To test the saturation calibration, the visual light transmission data was re-evaluated accord-
ing to the normal evaluation procedure as described in section 12.3.4. A 12 pixel Gaussian filter
was applied to come to the REV scale and a vertical profile at a randomly chosen horizontal
location was made. It was then compared with the corresponding region in the X-ray measured
saturation. The result is shown in figure 12.35 (d). The data fits well to the actual saturation,
which indicates that the calibration is correct. For lower saturation values, the visual light data
has much more noise than the X-ray measurement. This is attributed to the artefacts described
above. However, since the focus of this work is at higher water contents, this is not considered
to be problematic.

An inherent assumption of the calibration is that F(®) is spacially isotropic, i.e. the same
throughout the cell, since saturation values at different locations were used as calibration and
not different saturation values at each point. This means that the light propagation in the
porous medium is assumed to be independent of the position.

12.8 Additional instruments

12.8.1 Pumps

For infiltration experiments, a computer-controllable multi-channel perstaltic pump (Ismatec
IPC-12) was used. The pump allowed setting the pump speed in 1% steps. 11 infiltration
tubes regularly distributed along the top of the Hele-Haw cell were used for infiltration. The
homogeneity of the infiltration was maximised by adjusting the tube pressure on the different
pump channels. Homogeneity was measured by running the pump for a defined time period
and collecting the amount of pumped water separately for every channel. Remaining non-
fixable flow deviations were typically 4 %. The heterogeneity of the flow field is shown in
tigure 12.36.

Total flow was calibrated by pumping water from one reservoir to another. Both reservoirs
were placed on digital balances which were automatically read out. Pump speed was changed
in 10% steps. Flow rates were estimated by fitting lines on the balance readings for every
pump speed. The error was estimated by the fit error. The total flow per percent pump speed
was estimated as (0.00294 £ 0.00002) mls~1% 1. This was used as initial guess for the pump
speed. During measurements, the actual flow was measured with a balance by weight change
of the reservoir and pump speed was corrected according to these measurements. For data
evaluation, the actually measured flow was used.

12.8.2 Balances

For flux estimation, digital balances (Precisa XB 10200D) with 0.1 g accuracy were used. The
balances could be automatically read out by the control computer via a serial R5232 connection.
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12.8.3 Temperature measurements

Temperature was measured using Pt1000 probes. This is a temperature-dependent resistance
with a nominal value of 1000 Q at 0°C and a temperature dependence of 3.9083 QK~!. The
tolerance of the sensor was +0.52.Q) (1/3 DIN EN 60751 class B) which corresponds to £0.13 K
at 20°C.

The resistance of the sensor is measured with a triplex lead: a current is sent through the
sensor through wire A and ground wire, while the voltage is measured between ground and
wire B. A commercial measurement amplifier conditions the signal before it is converted in a
16 bit ADC in the control computer.

Calibration

The deviation of the Pt1000 elements from their nominal value is small compared to the devi-
ation of the electronics. Therefore, only the electronics were calibrated by using a fine-tunable
known resistance instead of the Pt1000 element. A resistance corresponding to a known tem-
perature was set and the corresponding digit value was read from the ADC. This was done for
several values and a line was fitted through the data.

As a test measurement, the probe was put into ice water with a temperature of 0°C. The
deviation of the sensor was less than 0.2°C. Further tests with the tunable resistance showed
that the error introduced by the electronics and the ADC was less than +0.1°C. Thus, the
accuracy of the temperature measurement was considered +0.2 °C.
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Figure 12.36: Flow inhomogeneity of the dif-

0.026 ‘ ‘ : ‘ : ferent infiltration tubes. The black horizon-
tube no. tal line indicates the mean flow.
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13 Results and discussion

Scales

Being aware of the difficulties described in section 2.3, an optimal strategy for data evaluation
is to be chosen. Figure 13.1 shows the measured water distribution at original resolution and at
an REV scale. As expected, large-scale features are still present in the REV images but sub-REV
scale fluctuations caused by the grain structure are gone. The blurring of front width in the
REV images is also obvious. The resolution to be used for the images depends on what features
are to be evaluated. Of course, to look at water content 6, REV scale images must be used since
0 is undefined below the REV scale. However, if the focus is on the front movements and
sub-REV processes like non-equilibrium effects are to be resolved, the sub-REV scale is more
suited than the REV scale, with the drawback mentioned before. As shown in the evaluation,
non-equilibrium processes play a crucial role in the dynamics of the capillary fringe.

In the following, processes are viewed at three different scales as appropriate: (i) at the REV
scale, where macroscopic water content is investigated, (ii) at a sub-REV scale, where water
distribution is used for front movement and dynamics evaluation, but no single grains are
resolved, and (iii) a microscopic scale where single grains and pores are resolved.

13.1 Dynamics of a fluctuating water table

13.1.1 Measurement protocol

The sample was prepared as described in section 12.2. Porosity was estimated gravimetrically
to ¢ = 0.41 £0.05. Initially, after taking images of the dry sample, the sample was slowly
saturated from below with the water table (WT) raising at 30 mm/h. Images of the wet sample
were taken and the water table was slowly decreased at 30 mm/h to a middle position. Then
the sample was equilibrated for a few days. Subsequently the water table height z,,+ was shifted
periodically, either rectangular, zy: = zg + R(27tt/T), or sinusoidal, zwt = zo + Awesin(27tt/T).
R(t) =Y /2(—1)Ih(jmr) with h being Heaviside’s function (4.23) is the unit rectangle function.
Boundary conditions are shown graphically in figure 13.2. Different amplitudes A and peri-
ods T were applied. During runtime, water content distribution was observed with a temporal
resolution of 2min. Three initial experiments with a rectangle and A = 15cm amplitude were
conducted to bring the experiment in a more natural state. In typical field conditions, the water
table is found in a state where many changes already occurred and the region above the water
table is already wet. Before every experiment, the sample was equilibrated for 12h. The ampli-
tudes and periods used in the different runs are shown in table 13.1. The different experiments
were run automatically in sequence, the different amplitudes were run in a random order to
preclude artefacts which might be produced by increasing or decreasing amplitudes.

To also investigate the dynamics on rapid groundwater changes after a dry period, for ex-
ample due to heavy rainfall, a few additional experiments with an initially dry medium were
conducted. Here, after sample preparation and acquisition of the dry images, the water table
was slowly raised from below at 20 mm /h to a middle position in the initially dry medium and
equilibrated for about 12h. Then the experiment was conducted. Afterwards the medium was
slowly saturated with the water table raising at 20 mm /h and the wet images were acquired.
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Figure 13.1: Sub-REV original (resolution (0.346 + 0.001) mm/pixel) and REV scale im-
ages of water distribution measured with LTM. REV data was estimated by Gaussian
averaging. Typical propagated relative measurement error vg/© is 2 % for original
and 0.1 % for REV resolution. Black scale tics correspond to 50 mm.
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Table 13.1: Amplitudes A and periods T used in the different experiments with a
fluctuating water table and initially pre-wetted condition. All experiments were con-
ducted with both rectangular and sinusoidal forcing. Each amplitude was run with
bothT=Tyand T = T,.

Ayt / mm | 10 15 20 30 50 100 150
Ty / h 1 1 1 1 1 1 1
T,/ h 6 6 6 6 6 6 6
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13.1 Dynamics of a fluctuating water table

Table 13.2: Nominal amplitudes Ayt and periods T used in the different experiments
with a fluctuating water table and initially dry condition.

type sinus rectangle
Awt/mm | 50 50 100 | 50 50 100
T/h 6 24 6 1 24 6

Parameters of the conducted experiments are given in table 13.2. Experiments with initially
dry medium required new sample preparation for every experiment.

Images were acquired with ISO 100, an exposure time of 1/10s and an aperture of 5.6.

To obtain a better understanding of microscopic processes, one experiment was conducted
where the NIR camera was measuring a small cut-out of the Hele-Shaw cell of 20 mm x 16 mm
with microscopic resolution, such that single pores could be resolved. The fluctuating water
table experiment conducted before the infiltration experiments was used for this purpose. The
NIR camera was installed as described in section 13.2 and settings are given in table 13.4.
Boundary conditions were Ayt = 50mm and T = 1h.

The real water table amplitude as measured in the water table window deviated from the
nominal amplitude by typically about 2mm to 4 mm and was always smaller than the nominal
value. These deviations are attributed to the motor accuracy. Since the water table was mea-
sured directly in the cell, the measured value is considered more accurate than nominal values.
The general shape of the temporal evolution was always correct. Because the measured water
table height was used for evaluation, this did not affect the results. In the following, Ay is
used to specify the nominal and A}, to denote real measured amplitudes. It should be kept
in mind that real amplitudes were slightly smaller. With the rectangular forcing, due to finite
conductivity, the water table did not always instantaneously reach the final value but changed
for about 1 mm during the first few measurements.

13.1.2 Evaluation

Data were processed according to section 12.3.4. Sub-REV and microscopic data were used for
evaluation, since the focus was on front dynamics and governing processes (see also section
2.3). To compare experiments with different periods and different amplitudes, dimensionless
time 7 := t/T and dimensionless length { := z/ A}, are introduced.

In accordance to the definition in section 2.2.1, in all experiments, the z (depth) axis and
therefore also the { axis point downwards into the ground.

13.1.3 System response

Films of the system response of all experiments can be found in the accompanying DVD.
Figure 13.3 shows the sub-REV water content distribution of the experiment with A = 50 mm
and T = 1h at different times. Two important features are visible: (i) on the downwards
half-period, a saturation minimum at the former upper CF edge arises which can be seen as a
red region in figure 13.3 (rightmost image), and (ii) after again raising the water table, a small
vertical structure is found in the water distribution at the former lower CF edge.

The first effect is thought to stem from the rapid drainage. When first moving the WT
upwards, the interface is pushed upwards and then allowed to equilibrate during the time
where the boundary condition stays constant. Subsequently the WT is rapidly lowered, which
causes quick outflow. Due to the relatively low conductivity further upwards, the water there
cannot follow that quick movement. It stays where it is and the connection to the receding
water front further below is lost.
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Figure 13.3: Sub-REV saturation © distribution of the moving water table experiment
with rectangular forcing of Ayt = 50mm and T = 1h at different times. Typical
propagated relative measurement error 0 /© is 1%. The black rectangle at the left
of the T = 0 image shows the region covered by the microscopic NIR camera.

Air is entrapped in the following imbibition cycle, when the water front is moving rapidly,
which leads to lower water content minima at later periods. This can be seen by the microscopic
NIR measurement. Figure 13.4 shows the difference of absorption length between several
system states. Negative absorption lengths indicate less water. Since the camera resolved
single pores, the drainage of individual pores and the entrapment of air in them can be seen.
A relatively large amount of air is already entrapped in the first period and as expected the
amount of water does not increase in relation to the saturated sample. In the subsequent
periods, air is entrapped in additional pores. A few pores which were previously empty are
also filled again as seen by positive absorption length differences. Here, the air could escape
because during the drainage a continuous air path was again opened.

Note that these features cannot be described by Richards” equation since, first of all, it as-
sumes local equilibrium. Hence, the continuity of water cannot be lost. Second, the water
minimum cannot be represented since the degenerate multiphase regime does not allow en-
trapped air bubbles but assumes the air phase to be continuous. The minimum would not
persist since gradients of the matric potential would lead to flow ceasing the minimum. Per-
sistent air bubbles could be described by a lower effective amount of fluid, but the air bubbles
could not change or interact with the moving fluid.

The second effect stems from the different equilibration times. While the boundary condition
is constant, the front has time to equilibrate and the menisci can adjust. In contrast, during the
rapid infiltration and drainage, the interface is moved so fast that it has no time to adjust. Once
it has passed, water-filled flow channels are wide enough to sustain much higher velocities
(see also Roth (2005, sect. 5.5.2)). Therefore, at the turning points of the CF movements the
hydraulic state is different to that in the inner part. The importance of non-equilibrium effects
is further corroborated below.

Figure 13.5 shows examples of the evolution of the microscopic water distribution which
was measured with a temporal resolution of 1s. In accordance with the observations of Heow
(2008), large portions of pore space are drained so fast that the drainage of individual pores
cannot be tracked at that time scale. Although a vertical front-like movement can still be seen,
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13.1 Dynamics of a fluctuating water table
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Figure 13.4: Microscopic absorption length difference of the moving water table ex-
periment with rectangular forcing of Awt = 50mm and T = 1h at different times
measured with NIRIS. The first image at T = 0.47 shows the difference to the satu-
rated image, the other images differences to the previous displayed image. A nega-
tive d denotes less water (absorption length has decreased). Image dimensions are
20mm x 16 mm.

no sharp front line is observed, but a heterogeneous boundary area forms. This is an effect of
the sample’s thickness. The interface movement is very convoluted in 3D and only the average
amount of water through the cell’s thickness is observed. During the drainage process, liquid
connections between grains seem to be preserved. Also during infiltration, a microscopic front
is seen which moves upwards. However, even after the front has passed dry spots remain
which are filled later in the imbibition process. This is again caused by the 3D effects.

These results show that the front definition issue is much more complicated than the simple
reflections in section 2.3 may indicate. Further pore-scale investigations are needed to improve
the understanding of these processes.

13.1.4 Capillary fringe edge response

The CF edge was estimated as described in section 12.3.4. The result of a rectangular and a
sinusoidal experiment with A, = 50 mm is shown in figure 13.6 for both initially pre-wetted
and dry conditions.

The overall shape of the CF response of initially dry and pre-wetted experiments does not
differ greatly. The CF edge response is distorted due to the non-linear water characteristic. At
the upper reversal point it is flattened due to pinning (see below). Pre-wetted experiments have
a higher CF edge. At the border to the dry medium, a large potential gradient is found but the
conductivity is very low. Therefore the further upwards movement of the interface into the dry
medium is overwhelmingly slow. The water distribution is “cut-off” compared to the water
characteristic (figure 13.8 (a)). Conductivity in the pre-wetted experiment is higher due to the
residual water, and with the same equilibration time it is much nearer to static equilibrium.
When moving the interface upwards, a positive pressure offset is needed to overcome the
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13 Results and discussion

Figure 13.5: Microscopic NIR measurement of changing water distribution during a
moving water table experiment with rectangular forcing of Awt = 50mmand T =
1h acquired with 1s time resolution at 1505 nm. Water is displayed in black, more
water leads to less transmitted light due to more absorption. Image dimensions are
20mm x 16 mm.

resistance of the low hydraulic conductivity in the upper soil (figure 13.8 (c)). This is a non-
equilibrium process. The threshold pressure is smaller for the pre-wetted sample due to the
higher conductivity and therefore the CF edge rises higher.

On the other hand, the CF edge of the initially dry sample falls further down in the down-
wards period. This is explained below after the CF edge dynamics were investigated in more
detail.

The half minimum/maximum distance # of CF edge fluctuations for the rectangular forcing
was estimated as described in section 12.3.4. The result is shown in figure 13.9. Below a certain
threshold in A, 7 stays constant but positive regardless of the forcing amplitude. Above
a certain threshold, however, 7 linearly raises with A}, with a slope of 0.718 £ 0.006. The
response remains linear for the whole range of A/, considered here, which covers amplitudes
up to twice the equilibrium CF height. The bend point where the linear increase of # begins is
located at A}, = (17.3 £ 0.7) mm, the matching 2A;,, height corresponds to the pressure offset
to drain a pore with a radius of 0.43mm. This is a reasonable pore size for the medium used
here and the offset pressure is likely to correspond to the air entry pressure.

The upper CF boundary had not been risen to the equilibrium height before the water table
was lowered again. Hence the water distribution with height 6(z) does not correspond to
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sub-REV saturation

13.1 Dynamics of a fluctuating water table
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Figure 13.6: Response the the CF edge for pre-wetted and dry experiments. Nominal
water table amplitude was Ayt = 50 mm, period was T = 6 h for the sinusoidal and
T = 1h for the rectangular experiments. Origin of the { axis is the original water
table height. The jump of the CF height for the dry rectangular experiment at T =
0.425 is an artefact which is caused by the threshold and is explained in figure 13.7.
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Figure 13.7: Sub-REV saturation profiles which were used for CF edge estimation for
the initially dry experiment with Ayt = 50mm and T = 1h in the first period (left)
and the second period (right). The dashed black horizontal line marks the threshold.
Due to the low conductivity in the dry sand, water flow in the first period is slow
and the sub-REV saturation of the front raises slowly, which leads to a crossing of
the threshold and thereby a jump in the estimated CF edge position. The oversized
errorbar in the CF edge location in figure 13.7 at T = 0.425 stems from the large
portion of points touching the threshold at that particular time. Choosing a lower
threshold would have made problems in conditions where water is already present
above the CF as shown exemplarily for the second period on the right. Too low a
threshold interferes with the remaining water when the CF is receding. The sub-REV
water content value in that region is even higher for pre-wetted experiments.
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13 Results and discussion

Figure 13.8: Sketch of the non-equilibrium
situation found during a fluctuating
water table. In equilibrium, the water
content distribution corresponds to the
water retention curve. However, if the
water had not enough time to flow up-
wards against the resistance of the low
conductivity, the real water distribution
is “cut-off” (a). Menisci at the water-air
interface therefore have a radius larger

non-equilibrium than the pore radius (b) and a pres-

: ) sure offset is necessary to break them

:0(hm) (“pinning”). On the upwards move-

: N ment, water must be pushed in against
g 2 the low conductivity and a positive
< = pressure is necessary to overcome the
& g resistance (c). When this positive pres-
© § sure ceased, menisci are neutral (d)

S and pinning comes into effect. When
the offset has been overcome, water is
drained according to the water char-

> acteristic started at the cut-off point
Y watercontent0  (g) ) (small dashed cyan line).
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Figure 13.9: Half minimum/maximum distance 7 of the CF edge for the rectangular
forcing and different periods T and amplitudes Aw¢. The line fitted into the raising
points has a slope of 0.718 &= 0.006. The intersection with the constant points is at

vt = (17.3 £0.7) mm, the matching 2A;,, height corresponds to a pore radius of

0.43 mm.
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13.1 Dynamics of a fluctuating water table

the water characteristic but it is “cut off” (figure 13.8 (a)). The time for reaching final static
equilibrium is long, especially for a coarse-grained medium. These non-equilibrium menisci
(figure 13.8 (b)) would adjust by moving further upwards into the drier medium if the sample
would be equilibrated long enough.

The small constant positive distance 7 = (2.0 £ 0.2) mm found before the linear increase is
thought to denote half the small positive pressure required to push the water in against the re-
sistance of the low conductivity in the upper soil (figure 13.8 (c)). When changing the direction
of flow, the front moves back until the dynamic positive pressure has ceased (figure 13.8 (d)).
Then pinning comes into effect. Here the menisci stay in place until the pressure has dropped
low enough that their curvature becomes too small and they are “cracked”. This also leads
to the flattening of the CF edge at the upper reversal point for sinus experiments mentioned
above. After cracking, water is drained according to the water characteristic, starting at the low
cut-off water content (small dashed cyan line).

This also explains the asymmetry in the CF edge response. The downwards amplitude is
much lower than the upwards amplitude, because on the downwards half-period the air-entry
pressure must be overcome.

A slope of less than one shows that non-equilibrium processes take place. In equilibrium, a
slope of 1 would be expected, since the CF should follow the the whole A/, distance of forcing
regardless of the amplitude. The non-equilibrium effects described above lead to a depression
of é. compared to Al,;. On the upwards movement, a part of the forcing amplitude is neces-
sary to build up the positive pressure required to move the interface into the low-conductive
medium. For a higher amplitude, the velocity of the forcing increases and therefore the CF
is compressed further, which leads to a larger depression. On the downwards movement, the
pinning of the menisci and the drainage along the shifted water characteristic (figure 13.8 (a))
additionally depress the response. With all these effects even a slight decrease of the slope with
raising amplitude may be expected. When looking closely at figure 13.9, a very slight decrease
of the slope can really be seen but it is not significant.

With these ingredients one can now readily understand that the CF edge of the initially dry
sample falls further down in the downwards period, as noticed above (figure 13.6). Due to the
much lower conductivity in the initially dry medium, a much higher positive pressure offset is
required to push the interface upwards. Hence, on the uppermost position, the cut-off in 6(z)
as sketched in figure 13.8 (a) is found at a lower position (larger depth) and it is more distinct.
When reverting the direction of the forcing, the backwards movement starts at a lower position
(thin dashed cyan line in figure 13.8 (a) is moved downwards) and consequently, the CF will
be lower than in the wet case, where the start point was at a higher position.

The difference between dry and wet becomes smaller for larger amplitudes, since according
to the water characteristic the water content further upwards is much smaller. Therefore the
difference in conductivity between dry and wet conditions becomes smaller, since the forcing
is fast enough that the system has no time to equilibrate and thereby adjust the water content
before the front reaches the end point during the fast infiltration.

The thickness of the CF 4 is defined as the difference between the CF edge and the water
table. Figure 13.10 shows the thickness of the CF for sinus experiments and different ampli-
tudes. For low amplitudes which are small compared to the CF thickness, the thickness follows
the forcing without significant distortions. The CF edge stays relatively fixed and the thickness
change is dominated by the harmonic water table fluctuation. As seen previously, the water
table fluctuation is also larger than the responding CF edge fluctuation (see e. g. figure 13.6). If
the forcing gets larger than the air entry pressure, however, distortions in the CF response are
seen which become more distinct if the forcing gets larger. These are caused by the non-linear
dynamics of the water movement. When looking at the water retention curve, it is also obvious
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Figure 13.10: CF thickness for the sinusoidal forcing of the initially wet sample, T = 6h
and different amplitudes.

that non-linearity becomes more important if the forcing increases. The increase is expected
to stop once the forcing has explored all of the water retention curve, and dynamics will be
highly non-linear.

For Ayt = 100mm, wiggles can be seen in é.¢. These are caused by the interplay of the har-
monic WT and non-harmonic CF fluctuations as shown in figure 13.11. At first, with raising
WT, the CF edge follows with a delay and the thickness decreases. After a certain pressure
offset is overcome, the CF edge follows at constant distance since a dynamic balance between
moving interface and positive pressure is established. Here, wiggles are caused by slight veloc-
ity differences caused by heterogeneities. When the forcing is reverted, the CF edge is pinned
and the thickness increases again. When the CF edge also starts decreasing the increase slows
down. With a deflection in the CF response, a temporal depression is found until the decrease
of the forcing becomes so steep that it overcomes the speed of the falling CF edge which is
limited due to conductivity. Later on, again a dynamic balance adjusts until the forcing is
reverted. The interface stays constant until the dynamic positive pressure is established and
the cycle restarts. Only very small wiggles are seen during the upwards movement of the
WT compared to the downwards movement due to the asymmetry between imbibition and
drainage.

To investigate the influence of hysteresis, water table location was plotted versus CF edge
location. Results for A+ = 100 mm are shown in figure 13.12. The different periods practically
overlap nearly everywhere. This indicates that the system stays in the same branches of the
hysteresis loop. Due to the many loops which were passed previously, the corresponding
drainage and imbibition loops, respectively, overlay. This is also the state expected in a natural
system. Only at the upper turning point, differences are seen. These are attributed to entrapped
air, which is also seen in the microscopic measurements (figure 13.4). The differences are larger
for the sinusoidal forcing, since the system has more time to equilibrate during the phases of
constant water table in the rectangular forcing.
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Figure 13.11: Illustration of the source of the “wiggles” in the CF thickness for Ay =
100 mm. For more explanations see text.
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Figure 13.12: Water table location versus CF edge location for the pre-wetted Ayt =
100 mm measurements.

13.2 Dynamics of fluctuating infiltration

13.2.1 Measurement protocol

The sample was filled according to section 12.2. Porosity was estimated gravimetrically to ¢ =
0.41 £ 0.05. Additionally, a layer of (22 + 1) mm thickness with fine sand (grain size less than
0.25mm) with a lower saturated hydraulic conductivity was put below the regular medium.
This was done to avoid instantaneous equilibration of the water table during infiltration, which
is usually not given in natural systems.

Images of the dry sample were taken and the sample was then slowly saturated from below
with the water table raising at 30 mm /h. Then, after taking images of the wet sample, the water
table was again slowly decreased at 30 mm /h to a middle position. Afterwards the sample was
equilibrated for a few hours. A fluctuating water table experiment with Ay =50mm, T = 1h
and 10 periods was run to bring the sample into a more natural initial state. Then infiltration
experiments with different fluxes were conducted. Fluxes are given in table 13.3. Temperature
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13 Results and discussion

Table 13.3: Fluxes j and period times T of the different infiltration experiments.

no. j/mm/s T/h comment

1 0.48 £0.02 0.5

2 0.053 £0.004 1.5

3  0.106 £0.009 1

4  0.0091£0.0008 7

5 021£0.02 0.5

6  031+£0.03 0.5

7  047+£0.04 0.5 high resolution
8 0.053 + 0.004 0.5 high resolution
9 042£0.04 0.5

Table 13.4: Camera settings for the NIR measurements (exposure time fex, at different
wavelengths A and amplifier settings).

A/ nm ‘ texp / U8 Other settings

1075 100 Vi 2700
1450 250 Vet 1250
1505 90 Vietcom | 3500
1555 50 T 270K

was constant within 1°C during each measurement.

The glass plates of the Hele-Shaw cell were not perfectly parallel, which led to an error in cell
thickness. The uncertainty was roughly estimated to +1/4mm, which is already a relative error
of 8%. Therefore, also the area estimation of the medium and thus the flux had a relatively
large uncertainty.

The NIR camera was used for microscopic measurements of a cut-out of 20 mm x 16 mm.
The viewed area had to be placed relatively near to the left cell border, since the visual camera
was required to also measure the part of the cell covered by the NIR camera and the optical
setup for the NIR measurement should not interfere the field of vision of the visual camera.
The distance between the left image corner of the microscopic measurement and the cell edge
was about 10mm, which is way above the correlation length of the medium. Therefore the
influence of the border was still considered neglectable. The macroscopic images do not show
any qualitative difference in the dynamics in the region used for the NIR camera to the area in
the centre of the cell.

Naturally the NIR light source was used for this experiment instead of the VIS light source
which was used for the other fluctuating water table experiments. NIR camera settings are
given in table 13.4. Time resolution was 30s for spectroscopic and 1s for fast measurements
at one wavelength, respectively. For the macroscopic visual camera, ISO 100, an exposure time
of 1/8s and an aperture of 9 was used, time resolution was 2min for measurement 4 with
j = (0.0091 £ 0.0008) mm /s and 30's for the other measurements.

13.2.2 System response

Changing water saturation for two different flow rates is shown in figure 13.13. For the high
flux j = (0.48 £ 0.02) mm/s, the infiltration front comes down fast and hits the CF. At the CF
edge, air is entrapped. The CF raises because the infiltration flux is larger than the saturated
conductivity of the fine sand layer at the bottom of the cell. After the infiltration stopped, the
CF edge moves downwards very slowly and does not reach its initial position before the next
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13.3 Dynamics of fingered infiltration

period of infiltration starts. Here, the infiltrated water is still ponded at the low-conductive
layer. The less water is ponded, the slower the outflow through the layer below since the
pressure gradient decreases.

The low flux j = (0.0091 £ 0.0008) mm/s is similar, but water content of the moving front
is much lower. Nevertheless, a water content minimum forms which is much more distinct
than for the high flux. The CF edge still goes further down although infiltration started, since
resulting from the previous infiltration it is still higher than the equilibrium position.

Figure 13.14 shows vertical water saturation profiles of a small band along the cell. It clearly
shows the saturation minimum for all fluxes. This minimum is caused by multi-phase phe-
nomena. The constant imposed flux j leads to a constant flux at all z above the CF edge due to
mass conservation. The entrapped air forces the system to stay in the state of water content gra-
dients, since the air cannot move out. Therefore the air pressure in the entrapped air bubbles
increases and thereby becomes higher than ambient air pressure. This ceases matric potential
gradients and allows water content gradients to persist. Note that this complex situation can-
not be described with Richards” equation (2.19), because that equation assumes a continuous
air phase at constant pressure. In that description opposing water content gradients would
lead to an opposing flux, which contradicts the constant imposed infiltration flux.

The lower the flux, the more pronounced the minimum. The same effect was also observed
by ( ). It disagrees with the immediate intuition that a higher flux would give
the air less time to escape. Also, for lower saturation as found at a lower flux, a higher air
saturation is available to transport the abundant air. The key to understand this effect is the
heterogeneity of the CF and the infiltration flux. Due to heterogeneity, the front hits the CF
first at a few points. As soon as a hydraulic connection between the front and the CF is
established, high-conductive bridges form and the pressure of the infiltration front decreases
drastically since the total resistance dropped. As a positive pressure is necessary to progress
the interface, the air in the remaining regions between the front edge and the CF persists. The
higher the infiltration rate, the lower the heterogeneity of the front (figure 13.13), because at
a higher flux, the interface is pushed so fast into the medium that conductivity differences
due to heterogeneity are not as important as at lower fluxes. This leads to a larger portion of
entrapped air for a lower infiltration flux.

13.3 Dynamics of fingered infiltration

Infiltration into coarse dry porous media typically leads to unstable fingered flow. The inter-
action of such an infiltration with the capillary fringe was investigated in an extra experiment.
Here, a thin (approx. 3mm) layer of fine sand was added at the top of the cell for flow ho-
mogenisation. Porosity of the regular coarse-grained sand medium was estimated gravimetri-
cally to ¢ = 0.38 £ 0.05. After taking dry images, the water table was slowly put into a middle
position and equilibrated for about 15h. Water was infiltrated with j = (0.031 £ 0.003) mm/s
and T = 2h. Three fingers formed sequentially. Since it is not pre-determined where a finger is
initiated, the view of the microscopic NIR camera had to be adopted “on the fly” to optimally
catch the finger.

The result is shown in figure 13.15 macroscopically and 13.16 microscopically. The first
macroscopic image nicely shows the saturation overshoot in the finger tip which is necessary
to initiate the finger ( ; , , sect. 5.5.2). The microscopic measure-
ment shows that a thin air layer along the CF boundary hinders the finger to directly hit the
CF (figure 13.16, second sub-frame). The air is partly moved to the side and, due to the hetero-
geneity of the finger tip, a first connection builds in the left finger edge which hits the CF first.
Here, the same effect as for the infiltration front takes place. After a first conductive bridge
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high flux low flux

Figure 13.13: Response of the CF to fluctuating infiltration. The left six images show
experiment 1 with T = 0.5h, the right six images experiment 4 with T = 7h. Typical
propagated relative measurement error 0g/® is 0.2 %. For more explanations see
text.
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13.3 Dynamics of fingered infiltration

saturation ®

0 50 100 150 200 250 300
depth z / mm

Figure 13.14: Vertical water saturation profile of a 49 mm width band in the middle of
the cell directly before the end of the infiltration for different fluxes.

is formed, the pressure decreases (the saturation overshoot in figure 13.15 declines, compare
first and second frame) due to the dropped resistance and the interface movement is slowed
down dramatically. At longer time scales, the amount of water in the the contact area slowly
increases and the contact of the finger with the CF gets closer. During that process, the finger is
widening. Part of the air is entrapped between the finger and the CF when water flows around
it through more conductive parts.

This shows again the importance of the air phase and its coupling to the water phase near
the CF. Even though with fingered flow, air saturation around the finger in the vadose zone is
very high, air is entrapped at the edge of the CF due to the dynamic interplay of water and
air.
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sub-REV saturation uncertainty

Figure 13.15: Water distribution of unstable infiltration into the capillary fringe as mea-
sured with visual light transmission. Experiment time is given at the upper left cor-
ner of the images. In images 2 and 3, the red box at the left lower image border is
a part of the filter wheel of the NIR camera setup which was moved to optimally
catch the finger and thereby interfered with the visual imaging. Typical propagated
relative measurement uncertainty was 1%, very few outliers which stem from non-
matching grain structure have an error larger than its value. The corresponding ab-
solute uncertainty images are shown on the right.

Figure 13.16: Microscopic images of transmitted normalised intensity at 1450 nm dur-
ing unstable fingered infiltration into the capillary fringe. Water is displayed in
black, more water leads to less transmitted light due to more absorption. Note that
the view was changed slightly after the second and after the forth image to opti-
mally follow the dynamics.
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14 Conclusions

The response of the CF to fluctuating infiltration, both from a homogeneous infiltration front
and unstable fingered flow, and to a fluctuating water table were investigated experimentally
in a Hele-Shaw cell with a quasi-2D sand medium using transmission of visual light and NIR
imaging spectroscopy. This study gave insight into the fundamental physical processes gov-
erning water movement in the capillary fringe under transient boundary conditions.

A water content minimum directly above the CF was observed in infiltration experiments
which is more distinct for lower flux. It is caused by the coupled multi-phase character, the
positive pressure necessary to progress the front and the heterogeneity of front and CF. In
unstable fingered flow, the same effect leads to air entrapment and a widening of the finger
directly at the edge of the CF.

The response of the CF to harmonic forcing becomes non-harmonic for forcing amplitudes
larger than a height corresponding to half the air entry pressure. Below the air entry pressure,
the amplitude of the resulting CF edge fluctuations is small and independent of the forcing
amplitude. Above, for the range of amplitudes considered here it increases linearly with the
forcing amplitude with a slope of less than 1. These effects are caused by the non-equilibrium
imbibition and drainage processes and the corresponding movements of the interfaces which
can only be understood at a sub-REV scale. On rapid drainage, a saturation minimum forms
above the former CF location since the connection to the receding water front is lost. The
progressive air entrapment during successive imbibition and drainage was confirmed by mi-
croscopic measurements. The comparison of dynamics in initially dry with initally wetted
media showed that the general shape of the CF response is very similar. In the initially dry
medium, during infiltration the CF edge is lower due to the much lower conductivity in the
dry soil above, and it moves further down on drainage since the corresponding point of the
water characteristic starts at the lower position.

The majority of these processes cannot be described with a traditional Richards model, and
a multi-phase description coupled with a dynamic non-equilibrium model will be necessary. A
major challange will be the representation of the dynamics at a sub-REV scale.
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This work gave insight into the water movement at the two contrasting boundaries of the
vadose zone in soils, namely the evaporation at the soil-atmosphere boundary at the top and
the capillary fringe at the bottom. Both have a considerable influence on the vadose zone,
since they couple it to the surrounding and force its dynamics. While evaporation at the upper
boundary is characterised by the properties of the boundary layer and their interplay with the
medium which leads to two different regimes in the dynamics, the lower boundary gives rise
to non-equilibrium processes and coupled multi-phase phenomena.

Evaporation from an REV-size sample with water vapour partial pressure and temperature
as prescribed atmospheric boundary conditions was successfully modelled with a diffusive
boundary layer of fixed thickness. Two regimes could be identified, which are caused by the
coupling of that layer with the highly non-linear hydraulics of the vadose zone: (i) a boundary-
layer dominated regime with a constant evaporative flux which only depends on the boundary
layer, (ii) a hydraulically dominated regime where the flux is governed by soil hydraulic prop-
erties and which is characterised by a rapid decrease of flux with ongoing drying. These
regimes are consistent with experimental findings in the literature. The model was also used to
invert soil hydraulic properties from an evaporation experiment. A combination of a statistical
Monte-Carlo and a gradient based Levenberg-Marquardt method was necessary for successful
inversion. The switching between regimes could be forced by convenient boundary conditions.

In contrast, the capillary fringe has a totally different character. This is already reflected in
the much larger vertical extent of the boundary. It has totally different properties than the
small diffusive soil-atmosphere boundary layer. The transient forcing and the highly coupled
flow caused by the high water contents lead to non-equilibrium processes which cannot be
described with the traditional equations. The air phase which is typically neglected in the
traditional description plays a crucial role and leads to qualitatively new phenomena like a
saturation minimum above the capillary fringe during infiltration and the widening of fingered
flow. Sub-REV processes need to be considered to understand the corresponding processes.

Two different boundaries in natural systems were examined in this thesis, one between a
solid porous medium and a fluid, and one inside solid porous media between multi-phase and
single-phase flow. The third type of boundary which was not within the scope of this thesis is
a fluid-fluid interface. Its most prominent representative is the air-sea boundary. Since 71 % of
earth’s surface is covered by oceans, the boundary also plays a major role in the water cycle,
the trace gas budget and for the climate.

The situation for air-sea gas exchange is somewhat similar to the evaporation in regime I,
where the boundary layer controls the water flux and the soil hydraulic properties do not
influence the evaporation flux. Air-sea gas exchange is controlled by the diffusive boundary
layer at the air-sea interface ( , ). In the bulk of atmosphere and ocean,
turbulent convection governs the transport, which is very efficient on large length scales. Since
eddies cannot penetrate the water-air phase boundary, they become successively smaller as
the surface is approached. A thin layer at the boundary therefore is dominated by diffusive
transport. This thin boundary layer has a much higher transfer resistance than the bulk water
and air and is the “bottle neck” for water-air gas exchange. Consequently, to understand and
quantify the exchange of atmospheric gases with the ocean, it is crucial to understand the
physical processes at the air-sea interface. The similarity with the soil-atmosphere boundary is
also manifest in the identical description of the boundary as a small diffusive layer, which in

141



Summary and Side-look

air-sea gas exchange is typically written as
j=k(vw—va), (14.1)

where k is called transfer velocity. Note the similarity to equation (8.1) on page 59.

However, there are many important differences to the soil-atmosphere boundary. First of all,
the water-air interface is a free surface while the soil surface is rigid. This leads to changes in
the boundary layer at the water-air interface and therefore to changes in k depending on the
boundary conditions, for example wind speed and waves. Additional effects are for example
surface renewal if the surface is taken away by breaking waves, and supplementary transfer
by sea spray and white caps. All this makes the interface as such much more complicated.
One important point in air-sea gas exchange is therefore to understand the relation of k with
all these parameters and processes. In soils, only changing water content may affect the layer
thickness. Since the experiment reported in this thesis showed an excellent agreement of the
model with the data, this is considered to be of minor importance at least in the experimental
setup considered.

Second, for soils it is not possible to relate a boundary layer resistance or soil hydraulic prop-
erties obtained from one location to some other location even if the boundary conditions are
exactly equal, since the soil structure (geometry) is different (no ergodicity). The structure and
properties of the soil must be estimated separately for each location, which is a major prob-
lem in hydrology. In contrast, in systems with fully developed turbulence as in atmosphere
or ocean, ergodicity is given and it is possible to measure the transfer velocity at one location
and then use it for another location with the same boundary conditions. This basically enables
to estimate the dependence of the transfer velocity on different parameters and then apply the
relation on the ocean as such, e. g. in climate models. Of course there are practical difficulties.
For example, surface films and surfactants have an influence on the transfer velocity (

, ; , ; , ), therefore surfactant species and con-
centrations must be known. However, the relationship between onshore-offshore surfactant
gradients and air-sea gas exchange is still unknown.

Finally, regime II of evaporation has no equivalent in air-sea gas exchange, since the latter
is always controlled by the water-air boundary layer. This switching between regimes is an
interesting feature of soils. It results from the high dynamics and non-linearity of soil hydraulic
properties and their influence on the processes. Depending on boundary conditions and the
hydraulic state of the system, the governing processes may be qualitatively different.
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A Statistics

A.1 Random variables

Statistics is important in physics because measurements of physical systems are statistic pro-
cesses. Every measurement results in a slightly different value. Thus the measurand x is a
random variable and the measurement is characterised by a probability density function (PDF)

p(x) rather than a single value. The integral | A (&) dE specifies the probability that the

measured values lies within the interval [x, x + Zx]
As digital computers can only handle discrete numbers, discrete random variables are needed
for all computer-based data processing. Discrete random variables can only have a finite num-
ber N of values g; (i = 1,..., N) which are measured with the probability p;. In the following,
the continuous expressions will be displayed on the left and the discrete ones on the right.
Per definition the probability to measure any value is 1, therefore the PDF must satisfy the

condition

—+o00

N
/p(é)d§=1, Y pi=1. (A.1)
i=1

—o0

The basic parameters which describe a random variable are its mean u, also called expected
value,

u=E(x) (A2)
and its moments y,, of order m,
pm =E((x—=p)") , (A.3)

where

M=

I
—_

g(xi)pi (A4)

1

00
Eg(x) = [2@p@ 2, E:() -

with any function g. The moment of order m = 2 is called variance
0* == E((x—p)?) (A5)

and is a measure for the deviation of the of the measured values from the mean value.
The mean can also be estimated using any large number of measurements without explicitly
knowing the PDF by

1 N
= lim — in . (A.6)
i=1

N—oo

In practice it is impossible to have N = co. The estimation with a finite number of measure-
ments N has an uncertainty which depends on N and the form of the PDE.
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A.2 Multi-dimensional random variables

A.2 Multi-dimensional random variables

In almost all cases, many quantities are measured in an experiment. If images are consid-
ered, there are even millions of measurements, as every pixel is a separate variable. Therefore
statistics of multiple random variables is needed.

In general, P random variables are described by a common PDF p(xy,...,xp). However,
if the random variables are statistically independent, the PDF can be written as a product of
single PDFs:

P
x) = pri(xi) & xjindependent foralli=1,...,P (A.7)

The covariance describes the relation of the fluctuations of two random variables. It is defined
in extension to the variance (A.5):

i = [cov(x)]ij = E ((x; — i) (xj — 1)) (A.8)
Thus, 0;; = (71-2. For P random variables 0j; forms a symmetric P X P matrix. The correlation
coefficient

gij .
Cij = oy with |Cij| S 1 (A9)

ivj

relates the covariance with the variances and is a measure for the linear correlation of x; and x;.
If ¢;; = 1, all points (x;,x;) are on a straight line with probability 1. For uncorrelated random
variables c;; = 0 for i # j. On contrary, c;; = 0 does not necessarily mean that the x; are
independent.

As 0jj is a symmetric matrix, the elementary theorem of linear algebra states that it can
always be diagonalised by choosing a set of linear combinations e; of the x; as new random
variables and ¢; are the eigenvalues of 0;;.

A.3 Functions of random variables

Normally, measured values are processed further to obtain the required results. As the mea-
sured values are random variables, the result of such a calculation is also a random variable
and its PDF must be known in order to know its statistical properties.

The most simple case is a function f : R — R which transforms one random variable into
another: y = f(x). If f is a linear function, the PDF of y is the one of x scaled with the inverse
of the factor of proportionality. For a general differentiable function f, the PDF of y is given by

, A.10
Z If/ (A-10)

where x; denotes the S leaves of the inverse function of y = f(x).
For non-linear functions f, the mean of y cannot be directly calculated with E(y) = f(E(x)),

because E(y) = E(f f+°°f (x) dx # f(E(x)). With a Tailor expansion of f(x) to
the order of 2, one obtams

Vy:f<ﬂx)+W+---- (A.11)
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This shows that y, ~ f(u.) is only valid if the curvature of f and the variance of x is small,
i.e. f can be approximated by a linear function in the interval [p — 30, pt + 30].
The variance of y is given by

oy = \p'(yx)\za,%—k... : (A.12)

For multi-dimensional random variables, consider a P-dimensional random vector x € R?
and a function f : R” — R”. By expanding f to a Tailor series, one obtains

E(yp) = f(E(xp)) +

P P
i=1

Y H(fp(E(x)))ijcov(x);j, (A.13)

j=1

2

where H(fy)ij = % is the symmetric Hessian matrix of f, (assuming that the f, are contin-
i0%;

uously differentiable), and

cov(y) = Jeov(x)J', (A.14)

where J;; = % is the Jacobian matrix of f.
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B Fourier transform

It is often desirable to decompose a signal into periodical patterns. A periodical signal is
described by a wave vector k with length |k| = k = 1/A as well as the phase ¢ (figure B.1).
k is the wave number and A the wave length. The direction of k points orthogonal to lines of
constant values. However, it is more convenient to use complex numbers. Then, any periodic
signal can be described as ¢ exp(27ik - x) with a complex ¢. Then, only one complex variable

is required to describe amplitude and phase.

In the discrete case, the wave number is an integer value v. It states how many wave lengths

fit into an interval of length N.

The decomposition of an arbitrary signal into its periodic patterns can be viewed as a basis

transform. The vector space of periodic patterns is called Fourier space.

For a discrete signal g = (go,...,gn-1) € RY, the orthonormal basis vectors are

b, = 1 (ZU?\,, w%,...,wz(\,Nfl)O

VN

with

(27‘[1)
wN = eXp W .

The discrete Fourier transform (DFT) is defined as

2mwiny

1 N-1
gAV:bv.g:\/NZgnexp<— N >, 0<v <N,
n=0

where - denotes the standard scalar product. The inverse transform is given by

1 N=b 27iny

-1 A A

g:b gzi geXp<+ >, 0§7’Z<N
e VN VZ:O ! N

The relation is also written as g o ¢

X2 [ ]
Ax = Ao/ (2m)
A=1/|k|
1/k21 A
Ax™ ' -
-—
1/k X1

Figure B.1: Description of a periodic pattern using the wave vector k and phase ¢.

(B.1)

(B.2)

(B.3)

(B.4)

147



B Fourier transform

Note that the definition of the discrete Fourier transform restricts both the spacial and the
Fourier domain to a finite number of values. Thereby, signals are assumed to be periodic, i.e.
the boundaries of a discrete signal are joined like a ring in 1D or a torus in 2D:

Fourier domain: Vk € Z : §ivun = &i ©5)
space domain: Vk € Z: g N = gi :

Note that the popular FFTW library does not normalise the Fourier transform with /N, thus
it calculates

N—-1 .
g =8VN=Y giexp (_271;1/) : (B6)
n=0

Accordingly, for the inverse transform, a factor of 1/N must be explicitly included.

For continuous signals, g is a continuous quadratic integrable function ¢ : RY — C, W € N.
The basis of continuous Fourier space is

By (x) = e¥ikx (B.7)

and the continuous Fourier transformation is defined as

—+o0

$(k)=Bk-g= / g(x)exp (—2mik - x) dx, (B.8)

—o00
and the inverse transformation by

+o00

¢(x) =Bl g = /g(k)exp (+27ik - x) dk. (B.9)

—0o0

The relation is again written as g(x) o—e ¢(k)

For the more-dimensional case the Fourier transform is analogous to the one-dimensional
case for each dimension.

In general, variables in Fourier space are complex numbers. In contrast, measured signals
are always real functions. Real functions become hermitian functions in Fourier space. Thus,
there is not more information present in the complex Fourier space, and the transformation
back always yields real functions.

For practical applications of the DFT, it is important to know the spatial discretisation Ax
to compare different signals in Fourier space. The different signals may have different dis-
cretisation intervals or some of them may be continuous. The relation can be understood if
the Fourier integral, equation (B.8), is approximated by a sum and discretised both in position
space with x = nAx and in Fourier space with k = vAk, AxAk = 1/N:

+o00
G(VAK) = / (%) exp (—2mivAkx) dx

N
~ Y gnexp (—2minvAkAx) Ax

= (B.10)
= \/NAJCL i ex (_27‘[1111/)
\/N o] g‘rl p N
= VNAxg,
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Thus, a Fourier transform calculated by DFT must be multiplied with vNAx = 1/(v/NAk)
to be referred to the unit interval of wave numbers. Without this normalisation the signal is
referred to the interval /NAk and therefore different for every discretisation.

An analogous normalisation must be done for 2D and higher dimensional signals.

Convolution
An important operation in signal analysis is the convolution

(gxh):= / h(¢)g(x—¢)de (continuous), (B.11)
~

(gxh)i:=) higi; (discrete). (B.12)
j=1

Often, h is zero except for a small area. It is called convolution mask or point spread function (PSF).
For all x, the result is a kind of weighted average of g(x) in the neighbourhood of x. Such a
process is also called filter.

The convolution is symmetric: h* ¢ = ¢ * h, and associative: f * (g*h) = (f*g)*h, and
distributive over addition: (f +¢)*h = f*xh+ g+ h. In the Fourier domain, a convolution
becomes a complex multiplication:

g(x) xh(x) o &(k)h(k)

. B.13
gxh o= Ngh (13

The Fourier-transformed PSF is called optical transfer function (OTF).
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Nomenclature

Notation

The mathematical structure of symbols is indicated by their typographical appearance:
a scalar
a vector or image
A tensor

Symbols

j water flux [ms~!], page 6

k wave vector [m~1], page 147

X position [m]

P potential energy density of fluid i [Jm~3], page 6
¥m  matric potential [Jm~3], page 6

K hydraulic conductivity [kg™! m>s], page 6

0 volumetric water content [-], page 6

t time [s]

z depth [m]

Abbreviations

CF  capillary fringe, page 83

IOTF inverse optical transfer function, page 110
LTM light transmission method, page 88

OTF optical transfer function, page 149

PDF probability density function, page 144
PSF  point spread function, page 149

REV representative elementary volume, page 5
TDR time domain reflectometry

WT  water table
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