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Zusammenfassung

Dynamik von DNS

in Nukleosomen und Plasmiden

untersucht mit Brownscher Dynamik

In dieser Arbeit wurde die Dynamik von DNS in Nukleosomen (DNS-Protein-Komplexe)
und Plasmiden (DNS-Ringe), welche die grundlegenden strukturellen Einheiten für die
Organisation von DNS in prokaryotischen und eukaryotischen Zellen sind, analysiert.
Die Untersuchung von DNS Bewegung auf dieser Längenskala ist von Bedeutung für
das Verständnis der übergeordneten Struktur, welche einen entscheidenden Faktor
in der Regulierung von fundamentalen Prozessen, wie z.B. Transkription und Re-
plikation, darstellt. Modelle von DNS und Nukleosome sind mit Hilfe von Brown-
schen Dynamik Simulationen untersucht worden in Hinblick auf experimentelle Tech-
niken wie Fluoreszenzkorrelationsspektroskopie (FCS), die zeitaufgelöste Informatio-
nen über die Bewegung von fluorophormarkierter DNS liefert, und dynamische Kraft-
spektroskopie (DFS), die die konformationellen Änderungen der nukleosomalen DNS
unter Anwendung einer externen Kraft misst. Die Bewegung einzelner DNS Monomere
ist bezüglich verschiedener Parameter untersucht worden, wobei eine Beschleunigung
der Fluorophoredynamik in permanent gekrümmten DNS Sequenzen mit zunehmender
Superhelizität aufgezeigt wurde. Darüberhinaus wurde die Rotationsdynamik des
Fluorophoredipolmomentes berücksichtigt, welches eine mögliche Erklärung bietet für
ein experimentell beobachtes Rouseregime der Monomerbewegung. In Simulationen
von Streckungsexperimenten wurde das Abrollen der DNS von dem Proteinkomplex
analysiert. Im Rahmen der DFS Theorie wurden die kinetischen Raten und Energiebar-
rieren entlang des Reaktionweges, sowie Bindungsenergien berechnet und in Bezug zu
experimentellen Daten gesetzt.



Abstract

Dynamics of DNA

in Nucleosomes and Plasmids

studied by Brownian dynamics

This thesis investigates dynamics of DNA within nucleosomes (DNA-protein com-
plexes) and plasmids (DNA rings), which are the basic units of DNA organization
in prokaryotic and eukaryotic cells. The study of DNA motion at this length scale is
important for the understanding of higher-order structure, which plays a key role in
the regulation of fundamental biological processes such as transcription and replication.
Coarse-grained models of DNA and the nucleosome were analyzed using a Brownian
dynamics simulations in the context of experimental techniques such as Fluorescence
Correlation Spectroscopy (FCS), which provides time-resolved information on motion
of fluorophore-labeled DNA, and Dynamic Force Spectroscopy (DFS), which probes
conformational changes of nucleosomal DNA by the application of external force. Sin-
gle DNA monomer motion was analyzed under varying parameters, which showed an
acceleration of fluorophore dynamics in permanently bent DNA sequences with in-
creasing superhelicity. Furthermore, the rotational dynamics of the fluorophore dipole
moment was taken into account, which gives a possible explanation for the experimen-
tally observed appearance of a Rouse-like regime for single monomer dynamics. Using
stretching simulations, the DNA unwrapping transition from DNA/protein complex
was studied. In the framework of the DFS theory, kinetic rates and energy barriers
along the transition pathway as well as binding energies were calculated and related to
experimental data.



Die vorliegende Arbeit wurde in der Zeit von Februar 2006 bis September 2009 am
Deutschen Krebsforschungszentrum in Heidelberg in der Abteilung Biophysik der Makro-
moleküle unter der wissenschaftlichen Anleitung von Herrn Prof. Dr. Jörg Langowski
angefertigt.





Contents

1 Biological Overview 17

1.1 DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 DNA Supercoiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Nucleosome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Theoretical concepts 29

2.1 Polymer theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.1 Ideal chain models . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 Polymer dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.3 Twisting motion in the Barkley-Zimm model . . . . . . . . . . . 35

2.2 Single-molecule force spectroscopy . . . . . . . . . . . . . . . . . . . . . 36
2.2.1 Phenomenological model of the rupture kinetics . . . . . . . . . 37
2.2.2 Model-dependent description of the rupture kinetics . . . . . . . 40

3 Model and Methods 43

3.1 DNA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.1 Mechanical properties of DNA . . . . . . . . . . . . . . . . . . . 43
3.1.2 Electrostatic interaction . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Histone core model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Forces and Torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Hydrodynamic interactions . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Brownian dynamics algorithm . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.1 DNA parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.2 Histone octamer parameters . . . . . . . . . . . . . . . . . . . . 58
3.6.3 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8 Circular and superhelical DNA . . . . . . . . . . . . . . . . . . . . . . 61

3.8.1 Monte Carlo algorithm . . . . . . . . . . . . . . . . . . . . . . . 62
3.8.2 pUC18 plasmid . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.9 Oligonucleosomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.9.1 Nucleosome-Nucleosome interaction . . . . . . . . . . . . . . . . 64
3.9.2 Excluded volume interaction . . . . . . . . . . . . . . . . . . . . 65
3.9.3 Internucleosomal forces and torques . . . . . . . . . . . . . . . . 67
3.9.4 Hydrodynamic interactions in oligonucleosome model . . . . . . 69



4 Dynamics of circular DNA 71

4.1 Circular DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.1 Brownian dynamics time trajectories . . . . . . . . . . . . . . . 72

4.2 Comparison to analytical solution . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Gaussian semiflexible chain model . . . . . . . . . . . . . . . . . 80
4.2.2 Barkley-Zimm model . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Circular DNA with permanently bent sequences . . . . . . . . . . . . . 83
4.4 Polarization effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.1 Fluorophore’s dipole moment dynamics . . . . . . . . . . . . . . 87
4.4.2 FCS simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Nucleosome dynamics 97

5.1 DNA fluctuations at equilibrium . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Nucleosome stretching simulations . . . . . . . . . . . . . . . . . . . . . 100

5.2.1 Nucleosome conformations . . . . . . . . . . . . . . . . . . . . . 101
5.2.2 Force-extension curves . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Dynamic Force Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.1 Rupture force distribution . . . . . . . . . . . . . . . . . . . . . 115
5.3.2 Links to DFS experiments . . . . . . . . . . . . . . . . . . . . . 116
5.3.3 Complete dynamic force spectrum . . . . . . . . . . . . . . . . . 120
5.3.4 Effect of DNA charge renormalization . . . . . . . . . . . . . . . 121

5.4 Oligonucleosomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Concluding Remarks 129

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Appendix 133



List of Figures

1.1 DNA organization in chromatin structure . . . . . . . . . . . . . . . . . 18
1.2 DNA structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Electron microscopy image of supercoiled DNA . . . . . . . . . . . . . 20
1.4 Histone protein and histone protein handshake motif . . . . . . . . . . 22
1.5 Nucleosome structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6 Electron microscope images of the chromatin fiber . . . . . . . . . . . . 26

2.1 Schematic setup of single-molecule force spectroscopy experiment . . . 37
2.2 Schematic representation of energy surface under external force . . . . 39

3.1 Local coordinate system of DNA segments . . . . . . . . . . . . . . . . 44
3.2 Twisting angle between DNA segments . . . . . . . . . . . . . . . . . . 46
3.3 Schematic representation of histone octamer model . . . . . . . . . . . 52
3.4 Initialization of nucleosome conformations . . . . . . . . . . . . . . . . 60
3.5 Nucleosome relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 Nucleosome-nucleosome interaction potential . . . . . . . . . . . . . . . 66

4.1 Circular DNA conformations . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Single monomer mean-square displacement . . . . . . . . . . . . . . . . 74
4.3 Local exponent of single monomer motion . . . . . . . . . . . . . . . . 75
4.4 Local writhe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5 End-loop acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Internal motion of Gaussian semiflexible chain . . . . . . . . . . . . . . 81
4.7 DNA twisting motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.8 Local writhe for circular DNA with/without permanent bends . . . . . 85
4.9 Internal motion of circular DNA with permanent bends . . . . . . . . . 87
4.10 Schematic view of fluorophore attachement to superhelical DNA . . . . 88
4.11 Angular correlation of fluorophore dipole moment . . . . . . . . . . . . 89
4.12 Experimental FCS data on superhelical dynamics . . . . . . . . . . . . 92
4.13 Simulated FCS correlation curves . . . . . . . . . . . . . . . . . . . . . 95

5.1 Thermal fluctuations of DNA in the nucleosome . . . . . . . . . . . . . 99
5.2 Site exposure equilibrium constant . . . . . . . . . . . . . . . . . . . . 100
5.3 Effect of external force on adsorbed DNA . . . . . . . . . . . . . . . . . 101
5.4 Nucleosome conformations during stretching . . . . . . . . . . . . . . . 102
5.5 DNA contour length during stretching . . . . . . . . . . . . . . . . . . 103
5.6 Force-extension curves as function of stretching velocity . . . . . . . . . 105



5.7 Force-extension curves as function of adsorption energy density . . . . . 106
5.8 Mean rupture forces and phenomenological model . . . . . . . . . . . . 107
5.9 Contour surfaces of rupture force RMSD (I) . . . . . . . . . . . . . . . 111
5.10 Contour surfaces of rupture force RMSD (II) . . . . . . . . . . . . . . . 112
5.11 Contour surfaces of rupture force RMSD (III) . . . . . . . . . . . . . . 113
5.12 Description of mean rupture force and force variance by model-dependent

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.13 Rupture force probability distribution of single nucleosomes . . . . . . 116
5.14 Comparison of experimental and simulated rupture forces . . . . . . . . 117
5.15 Complete dynamic force spectrum . . . . . . . . . . . . . . . . . . . . . 121
5.16 Effect of DNA charge renormalization on thermal DNA fluctuations in

the nucleosome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.17 Effect of DNA charge renormalization on force-extension curves and

mean ruputre forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.18 Contour surfaces of rupture force RMSD (IV) . . . . . . . . . . . . . . 125
5.19 Dinucleosome conformation and force-extension curve . . . . . . . . . . 126
5.20 Dinucleosome rupture force distribution . . . . . . . . . . . . . . . . . . 127
5.21 Trinucleosome conformations . . . . . . . . . . . . . . . . . . . . . . . . 127



List of Tables

3.1 DNA model parameter (nucleosome) . . . . . . . . . . . . . . . . . . . 58
3.2 Histone core parameters (nucleosome) . . . . . . . . . . . . . . . . . . . 59
3.3 Simulation parameters (nucleosome) . . . . . . . . . . . . . . . . . . . . 59
3.4 Simulation parameters (circular DNA) . . . . . . . . . . . . . . . . . . 63
3.5 DNA parameters (circular DNA) . . . . . . . . . . . . . . . . . . . . . 63
3.6 Nucleosome-nucleosome interaction parameters . . . . . . . . . . . . . . 66
3.7 Excluded volume parameters . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Mean-square displacement ratios . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Radius of gyration for circular DNA . . . . . . . . . . . . . . . . . . . . 85
4.3 FCS simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Phenomenological model parameters . . . . . . . . . . . . . . . . . . . 108
5.2 Model-dependent approach parameters . . . . . . . . . . . . . . . . . . 114
5.3 Effective adsorption energy density and binding energy . . . . . . . . . 120
5.4 Model-dependent approach parameters for renormalized DNA charge . 123
5.5 Mean nucleosome distances in trinucleosomes . . . . . . . . . . . . . . . 128





Introduction

The DNA molecule has a unique role in any living cell as the carrier of genetic informa-
tion. It encodes the instructions for the synthesis of proteins, which in turn define the
cellular structure and function. A fundamental question in biology is how the access to
certain regions in the genome is regulated, such that DNA-processing proteins respon-
sible for DNA transcription, replication and repair can exert their specific functions.
On the other hand, DNA sequences or genes must be made inaccessible or silenced,
if the corresponding information is not required. At the same time the entire DNA
molecule has to be highly compacted to fit into the cell. These requirements can only
be met by a highly dynamic organization of DNA. In the present work the dynamics
of two basic structural units of DNA organization inside cells are studied - plasmids
and nucleosomes.

DNA in prokaryotic cells often exists in the form of DNA rings, or so-called plasmids.
The DNA molecule itself consists of two individual strands forming a double helix with
a defined number of twists per length in the torsionally relaxed state, but by closing the
DNA ends to a ring, an additional amount of twist can be introduced. The additional
torsional stress of the DNA molecule induces a conformational change of the DNA ring,
such that plasmids often adopt a superhelical conformation, which resembles a twisted
telephone cord. Superhelicity is highly important for biological processes e.g. bringing
two specific DNA sites in close contact, which is necessary for the initiation of tran-
scription, replication and recombination [Wasserman and Cozzarelli, 1986]. A thorough
understanding of these processes requires quantitative information about the internal
dynamics of single sites on DNA. Recently the single monomer dynamics of linear and
circular DNA have been measured with Fluorescence Correlation Spectroscopy (FCS)
[Shusterman et al., 2004, Petrov et al., 2006, Shusterman et al., 2008]. FCS is based
on a correlation analysis of photons emitted by fluorophore-labeled molecules moving
through a small laser excitation focus and allows to calculate the dynamics from the
correlation curves. In the experimental study [Shusterman et al., 2008] an acceleration
of the dynamics on all time scales was observed with increasing superhelicity. Inter-
estingly, on intermediate length scales the monomer dynamics showed characteristics
reminiscent of a Rouse model [Shusterman et al., 2004, 2008]. The Rouse model pro-
vides a description of a flexible polymer in dilute solution neglecting hydrodynamic
interactions between the individual chain monomers. This is surprising, since for a
semiflexible polymer as DNA in dilute solution one would expect that hydrodynamic
interactions are important.
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A purpose of this thesis was to analyze the internal dynamics of single monomer sites by
numerical simulations. A method which is suitable to study such a problem is a Brow-
nian dynamics simulation. In Brownian dynamics (BD) the collisions of the small and
fast solvent molecules are replaced by a stochastic force. The DNA is represented in a
coarse-grained model as a chain of linear segments incorporating mechanical properties
e.g. bending rigidity, as well as hydrodynamic and electrostatic interactions [Klenin
et al., 1998]. The reduction of degrees of freedom allows to access relative large time
and length scales, which are otherwise too costly in terms of computational ressources.
The motion of specific sites in linear DNA in the performed BD simulations was shown
to be in excellent agreement with the theory of semiflexible polymers [Harnau et al.,
1996]. Thus, in this thesis I analyzed how circularization and superhelicity change the
single site motion, in particular whether superhelicity leads to accelerated dynamics.
In plasmids locally curved DNA sequences occur, which adopt a bent conformation at
equilibrium. In this context I also investigated the influence of the monomer position
relative to a bent sequence.
In order to relate the simulations to FCS experiments the motion of a fluorophore
attached to the local DNA segment was explicitly taken into account. Since the fluo-
rophore absorbs linearly polarized light preferentially in direction parallel to its tran-
sition dipole moment, the effect of rotational dynamics on the experimental outcome
in FCS measurements of single-fluorophore-labeled plasmids was studied. A FCS sim-
ulation toolbox [Krieger, 2009] allowed to calculate the autocorrelation function of the
fluorescence intensity. An intermediate regime was observed only by excitation with
polarized light, therefore the inclusion of polarization effects provides a possible mech-
anism to explain for the observed Rouse-like regime in FCS studies.

In eukaryotic cells DNA is wrapped in repetitive units around a cylindrical histone
protein complex in about two turns, forming a series of nucleosomes. The formation
of the complex between the numereous negative charges on DNA and the positively
charged histone core is balanced by a high energy penalty required for bending of the
semiflexible DNA molecule around the protein complex, but quantitative estimates of
the binding energies are still missing [Schiessel, 2003]. In vivo proteins may change the
DNA-histone interaction by reducing the charge on the histone proteins, which affects
the degree of compaction of the chromatin fiber and therefore the activation of genes
in this region of the genome.
On the other hand stretches of DNA buried inside the nucleosome can not be pro-
cessed by many proteins as they are sterically occluded due to the close contact with
the histone core surface. But it was shown that DNA undergoes thermal fluctuations
such that the DNA transiently lifts off the histone core surface [Polach and Widom,
1995, Anderson and Widom, 2000, Li et al., 2005]. These fluctuations may dominate
the binding kinetics for such proteins that do not actively rearrange nucleosomes by
ATP-consumption.
In recent years, the dynamics of nucleosomes have been studied by single-molecule ex-
periments which allowed to probe forces at the molecular level or even actively exert
forces and investigate the mechanical response of DNA and proteins. The basic idea
is that a single molecule is chemically fixed at its ends and stretched under constant
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velocity or force loading rate conditions, while the exerted force is measured. Stretch-
ing experiments of trapped nucleosome arrays have shown that the outer DNA turn in
the nucleosome unwinds at low force, while a considerable energy barrier hinders the
complete unwinding of DNA from the nucleosome [Brower-Toland et al., 2002, Pope
et al., 2005]. Although Brower-Toland et al. postulated strong chemical binding sites
at the position of the energy barrier to explain this peculiar behavior, calculations on
an analytical model indicate that the toroidal geometry of the nucleosome itself is of
great importance to stabilization of the nucleosome [Kulić and Schiessel, 2004].

Here I studied the DNA unwrapping transition with a BD simulation of a coarse-
grained histone core model. The model reflects the superhelical DNA geometry inside
the nucleosome as known from X-ray crystallography [Luger et al., 1997, Davey et al.,
2002]. The conformational DNA fluctuations from the histone core at equilibrium were
simulated, which could be directly related to DNA site exposure probabilities from
restriction enzyme accessibility assays [Polach and Widom, 1995]. In order to probe
the transition to the nucleosome state with unwrapped DNA, I performed stretch-
ing simulations of single nucleosomes, which displayed characteristic force-extension
curves as found in experiments. During unwrapping the transitional state is associated
with a maximum of force, the rupture force, a quantity containing implicitly infor-
mation about the energy landscape. Within the theoretical framework of Dynamic
Force Spectroscopy (DFS) [Evans and Ritchie, 1997, Dudko et al., 2006], estimates
on kinetic transition rates and the energy barrier along the transition pathway were
obtained. Comparisons with stretching experiments of nucleoesomal arrays [Brower-
Toland et al., 2002, Pope et al., 2005] lead to quantitative statements about the strength
of DNA-histone core interactions and binding energies.
At higher-order the nucleosomes fold into the chromatin fiber, whose exact structure
and interactions are to date not fully understood. An experimental technique to test
internucleosomal interactions inside the chromatin fiber is force spectroscopy [Cui and
Bustamante, 2000]. The present work provides a framework for stretching simulations
of oligonucleosomes, extending the single nucleosome model. It was applied to obtain
preliminary results on oligonucleosome conformations and the mechanical response to
stretching of dinucleosomes.

The thesis is organized as follows:
In Chapter 1 a brief biological overview of the genome at the different levels of organi-
zation in eukaryotes and prokaryotes is given.
Chapter 2 provides an introduction to polymer physics. Static and dynamic proper-
ties of ideal chains are summarized, laying the foundation for the DNA model. In the
second part force spectroscopy and its application as a single-molecule manipulation
technique are reviewed and the theoretical framework of DFS is elucidated.
In Chapter 3 a description of the DNA and histone core model is given and the Brow-
nian dynamics algorithm is explained in detail. At the end of the chapter the oligonu-
cleosome model is presented.
In Chapter 4 the dynamics of single monomers in circular DNA are investigated.
The focus of Chapter 5 lies on nucleosome dynamics at equilibrium and under mechan-
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ical stress.
Finally concluding remarks and further perspectives are presented in Chapter 6.



Chapter 1

Biological Overview

The genetic information is stored in a long biomolecule, the DNA. The total length of
DNA is about two meters in human cells, but it has to be compacted into a cell nucleus
of only a few microns. At the same time the information encoded in the genome has
to be processed, such that the cell can efficiently perform their biological functions.
This requires the access of regulatory proteins and transcription factors to DNA. The
solution to this problem lies in the complex hierarchical organization of DNA in the
eukaryotic cell (see Fig. (1.1)).
On the lowest scale DNA is wrapped around a protein complex of cylindrical shape,
which is known as nucleosome core particle. The individual nucleosome core particles
are connected via an additional amount of free DNA, termed linker DNA. This struc-
tural organization provides already a certain compaction in linear dimension. At a
higher scale the nucleosome array adopts an extended beads-on-a-string structure at
low salt conditions, which makes a transition into a denser, more compact structure
- a chromatin fiber with a diameter of 30 nm - by increasing salt to moderate ionic
strength. The 30-nm chromatin fiber undergoes higher-order folding in loop structures
of several kilo base pairs length, which finally are organized into the chromosomes.
In contrast to eukaryotes DNA is found to adopt a circular and often interwound struc-
ture in prokaryotes, which will be also reviewed in this chapter.
In the following section we give a short overview of the individual components of DNA
organization.

1.1 DNA

Deoxyribonucleic acid (DNA) is the carrier of genetic information for all living organ-
isms. It encodes the instructions for the construction of biomolecules such as proteins
and ribonucleic acid (RNA), which are essential for the cell. The building block of
DNA is the nucleotide - a joined structure of a pentose sugar ring (deoxyribose) to
which a phosphate group and a nitrogenous base are covalently bonded. The nu-
cleotide contains one of the four different aromatic bases adenine (A), thymine (T),
cytosine (C) and guanine (G), and which represent the cell’s alphabet to store infor-
mation. Phosphodiester bonds between the sugar and phosphate group link together
individual nucleotides, therefore forming the backbone of a single, unbranched DNA

17



18 CHAPTER 1. BIOLOGICAL OVERVIEW

Figure 1.1: The organization of DNA
within the chromatin structure. The basic
packing unit is the nucleosome, in which
about two superhelical turns of DNA are
wound around a histone octamer. The nu-
cleosomes are connected by linker DNA,
and fold into a fiber of about 30 nm in di-
ameter. The chromatin fiber is folded into
a higher-order structure at the next level of
organization (Figure adopted from [Felsen-
feld and Klug, 2003]).

strand. The linking of the 5
′

carbon atom of a pentose ring to the 3
′

carbon atom of the
adjacent nucleotide via a phosphate group introduces a direction in the DNA strand.
Two antiparallel, complementary polynucleotide strands interact via hydrogen bonding
between the bases. Here adenine pairs with thymine via two hydrogen bonds, while
cytosine binds to guanine with three hydrogen bonds. The double strand is further sta-
bilized by hydrophobic base stacking interactions and van-der-Waals interactions. The
resulting 3-dimensional structure is a right-handed, double helix, in which the strands
wind around each other such that the hydrophobic bases are hidden in the interior of
the structure.
Three different structures of the double helix exists, known as A-DNA, B-DNA and
Z-DNA. At physiological conditions the B-DNA structure is the most common. The
B-DNA structure has a diameter of about 2 nm and successive base pairs in the double
helix are stacked with a distance of 3.4 Å along the helical axis. On average each base
pair is rotated with a twist angle of 34◦ with respect to the adjacent nucleotide pair,
such that a complete helical turn has 10.5 base pairs. As the two DNA strands wind
around each other, a major groove and a minor groove with a width of 22 Å and 12 Å
respectively are formed in between the phosphate-sugar backbone. The geometry of
the minor and major groove are important for the DNA interaction with proteins.

Deformations of the DNA structure like bending or twisting cost energy, as the opti-
mal stacking of the base pairs and form of the phosphate-sugar backbone are distorted.
The DNA structure therefore implies a bending rigidity of DNA, which restricts the
flexibility of the molecule. A measure for the DNA flexibility is the persistence length,
which will be introduced in section (2.1.1) on the basis of polymer models. It approx-
imately describes the length scale on which the polymer can be considered as a stiff
rod, while beyond the persistence length thermal fluctuations result in a decorrelation
of the chain segment orientations.
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(a)
(b)

(c)

Figure 1.2: (a) Space-filling and (b) schematic model of the DNA structure. A DNA
molecule consists of two anti-parallel strands, which are complementary in their nu-
cleotide sequence and form a right-handed double helix with 10.5bp per complete turn.
The double helix structure forms a minor (1.2 nm) and major groove (2.2 nm) between
the two winding DNA strands. Fig. (c) illustrates the formation of hydrogen bonding
between base pairs and the phosphate-sugar backbone DNA strand. Adopted from
[Alberts et al., 2002].

Besides the pure mechanical bending rigidity for DNA also the electrostatic repul-
sion between charges on the DNA backbone plays a central role. DNA is a highly
charged molecule at physiological salt conditions, as the phosphate group of the back-
bone carries two negative elementary charges per base pair. Therefore only at high
salt concentrations, at which the DNA charge is effectively screened, the pure me-
chanical value of 30 nm describes DNA flexibility [Manning, 1981]. Otherwise a higher
value for the persistence length must be assumed. At physiological conditions experi-
mental data is in agreement with a DNA persistence length of 50 nm [Hagerman, 1988].

In cell division the whole genome of the organism must be replicated and for this
the double-stranded DNA structure provides a simple mechanism for DNA replica-
tion. As a result of the rather weak hydrogen bonds as compared to the covalently
bonded sugar-phosphate the two single strands can be separated, while leaving the
backbone intact. Then to each nucleotide in both DNA single strands a corresponding
complementary nucleotide may bind, forming two complete copies of the original DNA
molecule.

1.2 DNA Supercoiling

Biologically active DNA in bacteria and other prokaryotic cells, and also in yeast, is
circular. The structures are called plasmids, and often adopt a supercoiled, conforma-
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tion which resembles a twisted telephone cord e.g. as shown in Fig. (1.3). The typical
plasmid size varies from one to several kilo base pairs.
For the formation of supercoiled DNA one may consider a closed DNA ring lying in
a plane, which is initially in the torsional relaxed state of one complete helical turn
per 10.5 bp. Then additional twist is induced by cutting the DNA at one position,
twisting one DNA end around its axis and linking the two DNA ends together. In this
torsionally stressed state, because neighboring segments of DNA are not coaxial, the
torque will rotate one segment around the axis of the other. Ultimately the chain will
be displaced from the plane in which the DNA was initially located. As a consequence
in closed DNA rings, the change in the number of twist is related to a change of the
spatial shape of the double helix as a whole. It results in a supercoiled structure for
the considered DNA ring, where one DNA is interwound with the second.
The existence of supercoiled DNA was first shown in 1965 by electron microscopy and
sedimentation studies [Vinograd et al., 1965]. Naturally occurring circular DNA chains
are always underwound (negatively supercoiled), which is due to the presence of en-
zymes like gyrases. Gyrases, which are capable of twisting DNA, introduce supercoils
in DNA. Underwound supercoils favor the unwinding of DNA occurring over a certain
length of the molecule and facilitate subsequent processes of replication, transcription
and recombination [Waigh, 2007]. Further enzymes called topoisomerases II change the
topology of DNA rings by mutual crossing of DNA molecules. Bringing two or more
specific DNA sites in close contact is important for many biological processes such as
transcription and recombination [Wasserman and Cozzarelli, 1986]. It has been shown
that supercoiled DNA facilitates the intrachain reaction by juxtapositioning of the sites
greatly compared to relaxed DNA [Vologodskii et al., 1992, Jian et al., 1998]. In this
biological context the dynamics of individual DNA sections is of great importance and
is a main focus of the thesis.

Figure 1.3: Electron microscopy of negatively supercoiled, interwound DNA (Figure
adopted from [Boles et al., 1990])
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1.3 Nucleosome

The basic packing unit of DNA in most eukaryotic cells is the nucleosome. First indirect
evidence that about ≈ 80% of DNA is organized into repetitive units has been found
by nuclease digestion. Nucleases are particular enzymes, which are able to cleave free
DNA at its phosphodiester bonds between the nucleotide subunits of nucleic acids. The
exposure of nuclease to chromatin has revealed that the DNA in chromatin is degraded
in discrete fragments, which contain multiples of a unit consisting of 180 to 200 bp
[Williamson, 1970, Hewish and Burgoyne, 1973]. In the early 70’s electron microscopic
(EM) studies supported the hypothesis of a fundamental repeating unit in chromatin
[Woodcock, 1973, Olins and Olins, 1974]. In detail the EM pictures resolved a bead-
on-a-string structure of the DNA-protein complex fiber (see Fig. (1.6b)), which also
explains why the nuclease acting only on the accessible DNA yields fragments of regular
length. A further milestone was achieved by Kornberg who analyzed the constitution
of the nucleosome in individual components, giving proof that the nucleosome is built
up from histone proteins and DNA [Kornberg, 1974]. From the first structure obtained
by X-ray crystallography [Finch et al., 1977], it was possible to stepwise improve the
resolution of the nucleosome crystallographic structure [Richmond et al., 1984, Arents
et al., 1991, Arents and Moudrianakis, 1993, Luger et al., 1997] up to a resolution
of 1.9 Å [Davey et al., 2002, Richmond and Davey, 2003]. The crystallographic data
established that the nucleosome core particle (NCP) forms a fairly rigid protein complex
of cylindrical shape, consisting of 8 histone proteins, around which 146-147 bp of DNA
are wrapped. The approximative shape of the nucleosome core particle as a cylinder
has a diameter of 11 nm and a height of 5.5 nm.

Histone proteins

The histone core consists of two copies of each core histone protein H2A, H2B, H3 and
H4. All histone core proteins are relatively small proteins with 102-135 amino acids
and have a weight in the range of 11 to 16 kDa. Due to the large amount of lysine and
arginine residues histones are also highly basic at near neutral pH. These proteins are
structured in a histone-fold domain at the carboxyl (C-)terminal end of the protein
and a charged tail at the amino (N-)terminal end [Wolffe, 1995]. In all core histones
a long α-helix is connected by a nonhelical loop segment to shorter α-helices on each
side to form the so-called histone-fold domain. In the nucleosome the histones form
crescent-shaped heterodimers by interaction between the proteins histone-fold domains,
which is described as handshake structural motif. Hereby the histone folds of H2A and
H2B interact with each other, while H3 pairs with the H4 histone. The H3-H4 dimer
associates further with a second H3-H4 dimer to form a tetramer (H3 − H4)2. Finally
the histone octamer is formed by binding of H2A-H2B dimers onto each side of the
(H3 − H4)2 tetramer.
With increasing salt concentration the H2A-H2B dissociate first and subsequently the
H3 and H4 histone. This indicates that the interactions between the histone are mainly
electrostatic in nature. The total histone core has about 220 cationic arginine and
lysine residues [Khrapunov et al., 1997], which are positively charged at physiological
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conditions.

Figure 1.4: A H3 (blue) and a H4 (green) histone protein are represented forming a
dimer via the handshake structural motif. Each histone protein is characterized by
a globular histone domain consisting of 3 α-helices connected by loops and by a less
structured histone tail region.

Histone tails

The histone tails have a high flexibility due to the absence of extensive structured α-
helix formations, and may reach out far from the histone octamer. The tails contain a
major part of the lysine and arginine amino acids of the histone protein, and are there-
fore highly positively charged. From the total of 220 lysine and arginine residues about
103 are located on the unfolded histone tails and about 117 residues are included in
the globular histone domains [Khrapunov et al., 1997]. Although it is known that the
removal of histone tails do not hinder the reconstitution of nucleosomes, they occupy
critical functions in the nucleosome and for the higher-order structure. The functional-
ization of the tails is possible with the high positive charges on the tails, which interact
with the negatively charged DNA or other proteins.
For example the role of the H4 histone tail is to mediate the interaction between dif-
ferent nucleosomes. The H3 tail positioned in proximity of the outgoing linker DNA
arms screens the negative charge on the linker DNA. Consequently the H3 tail has a
large influence on the entry-exit angle of the two linker DNA arms.

Of great interest is the fact that the N-terminal histone tails can be chemically mod-
ified by e.g. acetylation, methylation or phosphorylation. For the variety of modifi-
cations the precise role is still unknown, but is believed to influence e.g. the access
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to DNA or the higher-order organization of DNA. As in vivo enzymes are responsible
for these modifications, it opens the possibility of a regulation mechanism for the cell.
Acetylation of the lysine residues at the N-terminal region of histone proteins as an
example removes positive charges, thereby reducing the affinity between histones and
DNA. RNA polymerase and transcription factors can then access the promoter re-
gion. Therefore histone acetylation enhances transcription while histone deacetylation
represses transcription. The corresponding regulatory proteins for the histone acety-
lation is the histone acetyltransferase (HATs), while histone deacetylases catalyze the
histone deacetylation.
An important consequence of posttranslational modifications of histones is the induced
change of the histone core charge state. The modified total charge is reflected in the
DNA-histone core interaction, which must be taken into account in the simulations of
nucleosomes.

DNA in the nucleosome

The crystallographic data [Luger et al., 1997] shows that the DNA in the nucleosome
structure makes a flat, left-handed superhelix around the histone core of about 1 3/4
turns. The pitch of the superhelix is about 2.39 nm. The histone fold domains account
for the organization of 121 bp of DNA. The H3 α-helix extension and tails bind further
13 bp at each terminus of the superhelix. The superhelical path represents only an ap-
proximation, while in reality DNA shows sharper bends in some regions than in other
positions on the histone core surface. Further the average DNA torsion in the nucleo-
some (10.2bp per turn) deviates from the value observed in free solution (10.5 bp per
turn), which follows from a geometric argument that a right-handed DNA double-helix
is overwound by following a left-handed superhelix around the histone core. But the
twist is also a local property on the exact DNA position in the nucleosome and reflects
the interaction with specific DNA-histone core interaction sites.
A general attraction between DNA and the histone octamer is given by the considera-
tion that a DNA stretch of ≈ 146 bp organized in the nucleosome corresponds to 292
negative charges, while the histone core has about ≈ 220 positive charges. In detail the
DNA-histone interaction is established mainly between the phosphodiester backbone
of the DNA and amino acids in the α-helices or the unstructured loops. The DNA is
bound to interaction sites with the minor groove facing the histone core; in total as
reported in [Luger et al., 1997, Davey et al., 2002] 14 binding sites between histones
and DNA are found in the nucleosome. At the contact site a side-chain of an arginine
residue can penetrate into the minor groove. Further the positive charge of the α-helix
dipole interact with individual phosphate groups and at the interaction sites direct
hydrogen bonds and indirect hydrogen bonds via a bridging water molecule establish
the contact to the phosphate-sugar backbone.
A DNA sequence-dependent affinity to the histone core was shown by [Anderson and
Widom, 2000]. DNA fragments which were prone to bending e.g. sequences containing
many AT-base pairs, performed better in respect to the binding affinity than other
naturally occurring sequences. Competitive nucleosomal reconstitution with artificial
nucleosome-positioning sequences showed also an affinity for sequences with a helical
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periodicity of 10.2 bp/turn [Shrader and Crothers, 1990].

Linker histone

Nuclease digestion of native chromatin showed also the existence of fragments of 166bp
length on intermediate time scales [Bednar et al., 1998]. The protection of the undi-
gested DNA originates from the linker histone H1, which binds to the outgoing linker
DNA. Hereby the immediate digestion of an additional 10 bp linker DNA at each side of
the central 146 bp is sterically hindered by the linker histone. The structure containing
the nucleosome core particle and linker histone with a total of ≈ 166 bp is referred to
as chromatosome [Simpson, 1978].
Electron cyro microscopy images of the chromatosome show a stem-like motif with
an asymmetrically positioned H1. It is known that linker histone H1 facilitates the
compaction of nucleosome arrays [Clark and Kimura, 1990, Bednar et al., 1998] and
the presence of H1 reduces the distance between the outgoing linker arms [Tóth et al.,
2006]. This might involve the screening of the mutual repulsion of the linker DNA
segments by the C-terminal tails of the linker histone.

From the nucleosome to chromatin

In eukaryotic cells DNA is organized into chromatin [van Holde, 1989]. As previously
described, the nucleosome is the basic packing unit of DNA, but on larger length scale
the nucleosomes are compacted into a chromatin fiber. In general the repeat length,
the average base pair number per nucleosome, is in the range from 156 to more than
240 bp [van Holde, 1989]. At low salt conditions the nucleosome array exhibits an ex-
panded structure as shown in Fig. (1.6b), which is termed beads-on-a-string. The array
has a diameter of about 10 nm and has a zig-zag arrangement of nucleosomes. With
increasing ionic strength the beads-on-a-string conformation undergoes a transition
into a more compact fiber [Finch and Klug, 1976], the so-called 30 nm chromatin fiber.
An electron microscope image of the chromatin fiber under physiological conditions
is depicted in Fig. (1.6a). The actual chromatin structure is not known and a vari-
ety of models have been proposed for the spatial conformation of nucleosomes inside
the chromatin fiber. The two most prominent models are the solenoid model and the
zig-zag model. In the solenoid model proposed by Klug et al. the nucleosomes are ar-
ranged on one single solenoid helix, while in the competing zig-zag model the adjacent
nucleosomes are positioned on two helices. In the latter model straight DNA linkers
connect neighboring nucleosomes, while the former model requires bent linkers, which
are energetically unfavorable. Although no chromatin model can be excluded and a
considerable heterogeneity is likely to exist in the higher order structures of chromatin
[Wolffe, 1995], indications for the zig-zag conformation at physiological conditions are
present. According to Ref. [Bednar et al., 1998] the zig-zag structure, confirmed at low
salt, persists also at higher salt without transition to a solenoid arrangement of the
nucleosomes. Scanning force microscopy yielded images of an irregular zig-zag [Leuba
et al., 1994, Zlatanova et al., 1998] and a tetranucleosome structure has been resolved
in X-ray crystallography, which is in agreement with straight linkers of the zig-zag
model [Schalch et al., 2005].
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Figure 1.5: Ribbon diagram of the nucleosome core particle showing 146 bp DNA
phosphodiester backbone and eight histone proteins based on X-ray crystallographic
data of the 1KX5 structure. The histone core is formed by two of each H2A (yellow),
H2B (red), H3 (blue) and H4 (green) histone proteins.

In recent years measurements with single molecule manipulation techniques such as op-
tical tweezers or atomic force microscopy allowed to exert forces on chromatin fibers.
The response to mechanical stress allows to probe the interaction strength between in-
dividual nucleosomes. Stretching experiments of a native chromatin fiber isolated from
chicken erythrocytes have been performed [Cui and Bustamante, 2000]. The value of
the internucleosomal attractive energy estimated from the force-extension curves at
physiological ionic strength is about ≈ 3.4 kBT. Recent force spectroscopy of nucle-
osome arrays reconstituted with recombinant histones reported even an nucleosome-
nucleosome interaction energy in the range of 10 kBT to 16 kBT [Kruithof et al., 2008].
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Figure 1.6: (a) Chromatin isolated directly from an interphase nucleus appears in the
electron microscope as a fiber of 30 nm diameter. (b) Individual nucleosomes are visible
at low salt conditions in a bead-on-a-string structure. (Adopted from [Alberts et al.,
2002]).

Nucleosome dynamics

DNA inside the nucleosome is sterically occluded, which creates obstacles for many
DNA-binding proteins. But the nucleosome is not a static entity but exhibits a highly
dynamic behavior. Sometimes the unwrapping of DNA or translocation of nucleosomes
is the result of ATP-dependent nucleosome remodeling factors [Muchardt and Yaniv,
1999]. The problem remains as the remodeling factors require site-specific DNA-binding
proteins, which in turn have to gain access to nucleosomal DNA. But energy in form of
ATP is not always necessary, because as confirmed in experiments thermal fluctuations
are sufficient for the accessibility of target sites within the nucleosome by regulatory
proteins [Polach and Widom, 1995, Anderson and Widom, 2000]. More direct mea-
surements with the Fluorescence Resonance Energy Transfer technique showed that
nucleosomes undergo conformational fluctuations spontaneously, in which a stretch of
DNA transiently lifts off the histone octamer surface [Koopmans et al., 2007, Li et al.,
2005, Tomschik et al., 2005, Gansen et al., 2009].
The nucleosome dynamics is determined by the interaction energy of DNA and the
histone core, but no reliable quantitative estimates of the binding energy are available.
Based on the accessibility of target sites in the restriction enzyme assays [Polach and
Widom, 1995, Anderson and Widom, 2000], Schiessel proposed a binding energy of
a few kBT per contact site [Schiessel, 2003], which is nearly in balance with bending
energy required to wrap the DNA around the histone core. In the calculation the mu-
tual repulsion of the DNA strands is not taken into account, therefore the total mean
binding energies are higher. Analytical models which explicitly include electrostatic
interactions between DNA-DNA, DNA-histone core and bending energy result in sig-
nificantly higher binding energies [Kunze and Netz, 2000, 2002, Arcesi et al., 2007].
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Stretching experiments are also a useful tool to obtain detailed information on the
DNA-histone core interaction in individual nucleosomes. The technique allows to in-
vestigate the transition to the nucleosome, completely unwrapped from DNA. In this
class of experiments a high energetic barrier of about ≈ 20 − 38KBT, stabilizing the
unwrapping of the inner DNA turn, was revealed [Brower-Toland et al., 2002, Pope
et al., 2005]. A part of this work deals with the simulation of nucleosome unwrapping
under external force. A goal is to relate the simulated unwrapping transitions to ex-
periments and obtain estimates on the binding energies.
The stretching experiments are also of interest from a biological point of view as it is
known that DNA and RNA polymerases can exert transiently considerable forces (and
torques) of about ≈ 40 pN [Yin et al., 1995, Davenport et al., 2000, Forde et al., 2002].
This may allow to open the nucleosome structure and transcribe nucleosomal DNA.
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Chapter 2

Theoretical concepts

In this chapter a basic introduction to polymer physics is given. A comprehensive
review on this topic can be found in [Rubinstein and Colby, 2003, Flory, 1988, Doi and
Edwards, 1986]. The presented polymer models set the framework for the subsequent
description of the polymer dynamics and the employed DNA model in the simulation,
which will be presented in the next chapter.
The next part gives an overview on single-molecule force spectroscopy. A summary of
analytical methods is provided, which allow to obtain relevant parameters e.g. kinetic
rates from Dynamic Force Spectroscopy (DFS).

2.1 Polymer theory

2.1.1 Ideal chain models

Chain models play a prominent role in polymer physics. In the most simplest repre-
sentation of real polymers, a chain of immaterial segments is assumed. Chain models
are termed ideal, when interactions between segments, which are separated by a large
distance, are ignored. Although in real polymers long-range interactions are present
e.g. as excluded volume interaction, polymers can be treated also as ideal under certain
conditions. Despite their simplicity ideal chain models capture already basic physical
polymer properties and provide a good starting point for the description of polymers.

Freely jointed chain and freely rotating chain model

A simple model for a polymer is the freely jointed chain. In this model the chain
consists of N straight segments ~si of fixed length l0 in linear succession, which are
freely rotating at their joints. The total contour length of the polymer is then defined
as Lc = Nl0. An important observable of a polymer is the end-to-end vector, which
is given by the sum of the segment vectors ~R =

∑N
i=1 ~si. Since no preferred directions

of the segments exist and the path of the polymer represents a 3-dimensional random
walk, the ensemble average of the chain end-to-end distance is zero. A second important
observable of a polymer characterizing the size is the second moment 〈R2〉 of the end-
to-end distance distribution. No correlations exist between different segments (〈~si~sj〉 =

29
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δij) and therefore the mean-square end-to-end distance is

〈R2〉 =

N
∑

i=1

N
∑

j=1

〈~si~sj〉 =

N
∑

i=1

〈s2
i 〉 + 2

N
∑

i=1

N
∑

j=1
i<j

〈~si~sj〉 = Nl20. (2.1)

Besides the freely jointed chain different models exist which take into account restric-
tions in the bending angle and the internal rotation angle between neighboring segments
due to the underlying chemical structure of real polymers. One of these models is the
freely rotating chain. Here it is assumed that the bond angles {βi} between adjacent
segments at the joints are fixed to a constant angle β, while allowing free rotation of
the torsion angle {φi} around the axis. The direction of the rotation axis is defined by
the neighboring segment. All torsion angles are equally likely and independent of each
other. The fixing of the bond angle imposes now correlations between the segment
vectors ~si and ~sj

〈~si~sj〉 = l20 (cosβ)|j−i| , (2.2)

and results in the following second moment of the end-to-end distribution

〈R2〉 = Nl20
1 + cosβ

1 − cosβ
(2.3)

for the freely rotating chain.

The flexibility of any real polymer with no long-range interactions can be characterized
by treating the macromolecule effectively as a freely jointed chain. The equivalent chain
is a freely jointed chain with N segments and an effective segment length B, but it has
the same experimentally accessible properties of the actual polymer, such as the same
radius of gyration 〈R2〉 and the same contour length. The effective segment length B
of the equivalent freely jointed chain is termed Kuhn length and gives a measure of
the polymer flexibility. In any ideal polymer chain the correlations between segments
separated by a sufficiently large distance along the contour vanish. In this case the
freely jointed chain model with an appropriately chosen Kuhn length can be applied
to the real polymer.

Worm-like chain model

The worm-like chain (or Kratky-Porod model) is used to represent semi-flexible poly-
mers. In contrast to the presented models consisting of rigid segments, the flexibility
of the polymer is distributed continuously along the chain contour. It can also be
regarded as a special case of a freely rotating chain in the limit of small bond angles
β, while keeping the ratio l0/β

2 and the chain contour length constant. This relation
between the freely rotating chain and worm-like chain will become insightful in the
next chapter 3, when the DNA model is introduced. The path of a polymer ~r (s) in
space with contour length Lc can be parameterized with the distance s ∈ [0, Lc] along
the contour of the polymer. At each point of the chain a tangent vector ~u (s) = ∂~r/∂s
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pointing in the chain direction can be defined. The flexibility of the polymer is taken
into account with a bending energy E(b) proportional to the square of the curvature
∂~u/∂s:

E(b) =
κ

2

∫ Lc

0

ds

(

∂~u

∂s

)2

. (2.4)

Here the bending rigidity κ defines the polymer stiffness. It can be shown that the
correlation function of the cosines between the tangential vector decays exponentially
along the contour

〈~u (s) ~u (0)〉 = exp

(

−
s

lp

)

. (2.5)

The persistence length lp is the correlation length of the decay and gives another
measure of the polymer flexibility. It is directly related to the bending rigidity (an
intrinsic property of the polymer) via κ = kBT lp. The spatial size of the polymer coil
is likewise measured with the mean-square distance, which is in the worm-like chain
model given by

〈R2〉 = 2lp

(

Lc − lp

(

1 − exp

(

−
Lc

lp

)))

. (2.6)

In the limit of chains that are long compared to their persistence length Lc ≫ lp, one
obtains then 〈R2〉 ≈ 2lpLc. The worm-like chain model also recovers the properties of
a freely jointed chain with a Kuhn length B twice the persistence length lp in the limit
of long chains.
The importance of the worm-like chain model in biophysics is due to its good represen-
tation of semi-flexible biopolymers. The fact that especially double-stranded DNA can
be modeled as a worm-like chain yielding good approximations for the conformational
statistics, will be used in this work.

Gaussian chain model

All presented chain models have no long-range interactions but excluded volume, and
furthermore all interactions are local. Therefore it is possible to divide the chain into
N individual segments at the points s0, . . . , sN, which are statistically independent
from each other. Then the probability P (~r (s0) , . . . , ~r (sN)) of a polymer to adopt a
conformation, specified by the spatial positions of the points ~r (s0) , . . . , ~r (sN) can then
be represented as a product of the conditional probabilities g (~r (si) , ~r (si+1)) of finding
the end of the ith segment at the point ~r (si), provided that the (i-1)th segment ended
at the point ~r (si). The general class with the stated properties is called Markov chains,
which encompasses the class of ideal chains. For this class of models it has been shown
that if the separation between two points ~r (si) and ~r (si+1) on the contour exceeds a
Kuhn length, the distribution of distances between these points is Gaussian

g (~r (si) , ~r (si+1)) =

(

3

2πa2

)
3
2

exp

(

−
3 (~r (si) − ~r (si+1))

2

2a2

)

. (2.7)
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In the Gaussian chain model the points {~ri} can be envisioned as beads, which are
connected by springs to maintain the linear connectivity of the polymer. The param-
eter a hereby denotes the root-mean-square distance between neighboring beads. The
Gaussian distribution of neighboring beads allows to assign an interaction energy to
each spring connecting adjacent beads

Ui,i+1 = −kBT

N−1
∑

i=0

ln g (~r (si) , ~r (si+1)) . (2.8)

The polymer properties on the large scale, e.g. as the end-to-end distance 〈R2〉 = Na2,
are independent of the local structure of a chain. With an appropriate choice of the
parameter a, all large-scale properties of the Gaussian chain will coincide with any
ideal polymer.

2.1.2 Polymer dynamics

Until now, only equilibrium properties of polymers have been considered. In the fol-
lowing we briefly review the standard models to describe dynamic properties e.g. the
time-dependence of internal motion. The polymer models provide the framework for
the verification and interpretation of the dynamic properties of the BD simulation.

Rouse model

The standard model to describe polymer dynamics without excluded volume interac-
tions and topological constraints immersed in an immobile viscous medium is the Rouse
model [Rouse, 1953]. The motion of the ith bead in a Gaussian chain as introduced in
the preceding section is governed by the friction force of the solvent, the random force
due to collisions with the surrounding solvent molecules and forces derived from the
interaction energy between neighboring beads according to Eq. (2.8). In the continuous
limit the equation of motion is reduced to a diffusion equation

γ
∂~r (s, t)

∂t
−

3kBT

a2

∂2~r (s, t)

∂s2
= ~Γ (s, t) , (2.9)

where γ denotes the friction coefficien,t and ~Γ is the random force with zero mean and
width 2kBTγ to which each bead is subject in the solvent. The transformation of the
Rouse equation in Fourier space decomposes into a set of k = 0, . . . , N independent
equations for the Rouse modes ψ

(r)
k . The motion of a polymer chain can be represented

as a superposition of the independent Rouse modes. Each Rouse mode is characterized
by a relaxation time

τk =
N2a2γ

3π2kBTk2
, (2.10)
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which sets the time scale on which the Rouse modes ψ
(k)
k are uncorrelated. The mean-

square displacement of a single bead is finally given by the following expression

〈[~r (s, t) − ~r (s, 0)]2〉 =
6kBT

Nγ
t+ (2.11)

4Na2

π2

∞
∑

k=1

1

k2
cos2

(

πks

N

)[

1 − exp

(

−
t

τk

)]

.

The first term on the right hand side covers the normal diffusive motion of the polymer
coil. The diffusion coefficient is compared to a single bead reduced due to the friction
of N beads in the polymer chain. For times t ≫ τ1 the first term greatly exceeds the
second, which describes the contributions to the mean-square displacement from the
internal motion. In the limit t≪ τ1 the mean-square displacement grows as ∝ t1/2.

Zimm model

The Rouse model exhibits discrepancies with experimental results, which stem from
the absence of hydrodynamic interactions. The Zimm model incorporates the pertur-
bation of the surrounding solvent by the motion of the chain segments [Zimm, 1956].
Hydrodynamic interactions between the individual beads is treated on the level of the
Oseen tensor.
The corresponding equation to Eq. (2.9) in the continous limit reads

6πη
∂~r (s, t)

∂t
=

∫ Lc

0

ds′
〈 1

|~r (s, t) − ~r (s′, t) |

〉

(

3kBT

a2

∂2~r (s′, t)

∂s′2
+ ~Γ (s′, t)

)

.

(2.12)

Hereby a preaveraging approximation of the Oseen tensor, which defines the hydro-
dynamic coupling, was performed. The Oseen tensor is averaged over the equilibrium
distribution function P (~r (s0) , . . . , ~rN) of the polymer (see Gaussian chain model in
section (2.1.1)), as indicated by the brackets 〈 〉. If off-diagonal elements of hydrody-
namic tensor are neglected, the Zimm equation adopts the same structure as the Rouse
model. Analogously the solution of the Zimm equation (2.12) can be represented in

terms of Rouse modes ψ
(r)
k with the corresponding relaxation times τ̃k given by

τ̃k =

√

3

π

γ

kBT

(

Na2

k

)
3
2

. (2.13)

In the Zimm model the mean-square displacement follows a power law ∝ t2/3 in the
limit t≪ τ̃1.

Dynamics of a Gaussian semiflexible chain

An analytical description of the dynamics of a Gaussian semiflexible chain has been
given in the work of Harnau, Winkler, Reineker [Harnau et al., 1996]. Basically the
polymer chain is a Gaussian chain represented as a continuous differential space curve
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~r (s, t) with the contour coordinate s along the contour length. Firstly a Gaussian
semiflexible chain is characterized by a Gaussian distribution function of the distances
between two points along the chain contour as defined in section (2.1.1). As a second
property bending is energetically penalized. The same expression (2.4) for the elastic
energy as in the worm-like chain is hereby used in order to incorporate the effect of
chain rigidity.
The resulting equation of motion of the Gaussian semiflexible polymer including hy-
drodynamic interactions is given by the following Langevin equation

∂~r (s, t)

∂t
=

∫ Lc/2

−Lc/2

D (s, s′)

[

2νkBT
∂2~r (s′, t)

∂s′2
− (2.14)

ǫkBT
∂4~r (s′, t)

∂s′4
+ ~Γ (s′, t)

]

ds′

with free-end boundary conditions. The factor ǫ = 3lp/2 is related to the bending
energy, while ν = 3/4lp is associated with the chain stretching flexibility. As before

a stochastic, Gaussian force ~Γ (s, t) with zero mean is added due to the surrounding
solvent. Hydrodynamic interactions are taken into account on the level of a preaveraged
Rotne-Prager tensor D (s, s′) [Rotne and Prager, 1969] obtained by averaging over the
equilibrium polymer conformations

D (s, s′) =
1

3πη
I [δ (s− s′) +Q (s− s′)] (2.15)

Q (s− s′) = Θ (|s− s′| − d)

√

3

2π〈[~r (s) − ~r (s′)]2〉

exp

(

−
3d2

2〈[~r (s) − ~r (s′)]2〉

)

.

The first term represents the local friction, while the Heaviside step function accounts
for the excluded volume of the chain with thickness d. The equation of motion (2.14)
can be solved by a normal mode analysis, expanding the equation in terms of the
eigenfunctions ψk (s) with the eigenvalues ξk:

ψ0 (s) =

√

1

Lc
(2.16)

ψk (s) =

√

Ak

Lc

(

αk
sin (αks)

cos (αkLc/2)
+ βk

sinh (βks)

cosh (βkLc/2)

)

, k odd

ψk (s) =

√

Ak

Lc

(

−αk
cos (αks)

sin (αkLc/2)
+ βk

cosh (βks)

sinh (βkLc/2)

)

, k even

with

β2
k − α2

k = 2ν/ǫ, ξ0 = 0, ξk = ǫα4
k + 2να2

k. (2.17)

The constants αk and βk can be determined from the boundary conditions, while the Ak

are normalization constants. The relaxation times τk of the chain in the free draining
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limit can be expressed by the eigenvalues of the eigenvalue equation: τk = 3πη/ξk.
The relaxation times τ̃k in the presence of hydrodynamic interactions are given by the
matrix elements of Q (s− s′) in terms of the eigenfunctions ψk (s)

τ̃k =
τk

1 + 〈ψk (s) |Q (s− s′) |ψk (s)〉
. (2.18)

Finally the dynamics of the internal motion relative to the motion of the center-of-mass
~rcm can be expressed as

〈~r 2
rel (t)〉 = 〈[~r (s, t) − ~rcm (t) − ~r (s, 0) − ~rcm (0)]2〉 (2.19)

=
2kBT

πη

∞
∑

k=1

τkψ
2
k (s)

(

1 − exp

(

−
t

τ̃k

))

.

The theory yields in the limit of a stiff chain lp ≫ Lc, in which only bending modes
contribute and stretching modes can be neglected, that the internal motion is reduced
to a power law 〈~r 2

rel (t)〉 ∝ t−3/4. A similar power law was derived in [Kroy and Frey,
1997]. The opposite limit lp ≪ Lc of a flexible chain recovers the result of the Zimm
model.

2.1.3 Twisting motion in the Barkley-Zimm model

The double helical structure of DNA allows also torsional motions besides stretching
and bending of the molecule. On the simplest level a description of torsion in DNA
can be given considering a thin, uniform rod of length Lc, which can perform torsional
deformation along the long axis, as done in [Barkley and Zimm, 1979]. Hydrodynamic
interactions have been neglected due to the small perturbations of the surrounding
viscous fluid in the case of twisting. If γ (s, t) describes the relative rotation angle of
two rod cross sections, then the equation of motion for twisting reads

∂γ

∂t
=
C

ρ

∂2γ

∂s2
, (2.20)

where ρ is the frictional coefficient per unit length, and the related diffusion coefficient
D = kBT/ρ. For a circular cylinder with a hydrodynamic radius of rHD the frictional
coefficient per unit length can be given by ρ = 4πηr2

HD. Assuming the torsional defor-
mations to obey Hooke’s law, the elastic energy of this twisted rod is given by

E(t) =
C

2

∫ Lc/2

−Lc/2

ds

(

∂γ

∂s

)2

. (2.21)

We are interested in the temporal evolution of the rotation angle γ (t) at the center
position of the cylinder, when at the initial conditions at time t = 0 the rotation angle
is γ0 and the rod is in thermal equilibrium. For this case in [Barkley and Zimm, 1979]
the time distribution ψ (γ, t|γ0, 0) of the rotation angle γ with the initial rotation angle
γ0 has been calculated:

ψ (γ, t|γ0, 0) =
1

√

πΓ (t)
exp

(

−
(γ − γ0)

2

Γ (t)

)

, (2.22)
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where the twisting decay function is

Γ (t) =
4Dt

Lc
+

8D

σLc

∞
∑

k=1

1 − exp (−σλ2
kt)

λ2
k

, (2.23)

with λk = 2kπ/L , k ∈ N and σ = C/ρ. Barkley and Zimm showed that the elastic
model of DNA is formally equivalent to a bead model, where the adjacent beads are
coupled by harmonic potentials [Allison and Schurr, 1979].

2.2 Single-molecule force spectroscopy

A major focus of this work lies on conformational changes in nucleosomes. The applica-
tion of an external force may induce such changes and facilitate the transition between
different conformational nucleosome states. Since the typical time scale of transition
is shifted by an exernal force to smaller time scales, which are accessible in computer
simulations, it allows to study the transitions numerically. An analogous experimental
tool is single-molecule force spectroscopy, which makes it possible to probe forces and
motions associated with biological molecules or actively exert forces. Molecular-scale
forces play a key role in all biological processes like DNA replication, cellular motility
or protein motors as kinesin and myosin. Different experimental realizations of force
spectroscopy exist e.g. optical tweezers, magnetic tweezers, atomic force microscopy
(AFM), micro-needle manipulation and flow-induced stretching, but the principle idea
remains the same in every case. In general one end of the investigated molecule is fixed
onto a surface, while the other end is attached to a probe. For instance specific binding
between probe and surface is realized with ligand-receptor pairs such as biotin-avidin or
antibody-antigen pairs such as digoxigenin and anti-digoxigenin. The extension of the
molecule is determined from the anchoring point on the surface relative to the position
of the probe, which is monitored in the experiment. The probe can be approximated
by a linear spring with a certain spring stiffness keff , which allows to determine the
force from Hooke’s law (F = −keffx). Therefore the measurement of the deviation x
from the equilibrium position of the probe yields the acting force on the molecule.

In an optical tweezer experimental setup the molecule is attached to a dielectric sphere,
which experience a restoring force due to the interaction of the induced dipole with
the gradient of the electrical field in the laser beam focus [Ashkin et al., 1986]. Within
a certain range the restoring force is linear to the displacement from the equilibrium
position. A typical setup of an optical tweezer experiment to measure forces is shown
in Fig. (2.1).
Besides imaging of surfaces the AFM represents another technique which can be ap-
plied to force measurements. In AFM forces onto the attached molecule under study
are transmitted with the tip of a cantilever, and sensed by deflection of the cantilever
[Binning et al., 1985].
With optical tweezers it is possible to manipulate and measure forces in the range from
0.1 pN up to 100pN, while AFM covers slightly higher force scales from 10pN to 104 pN
due to the higher stiffness of the effective spring.
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(a) (b)

Figure 2.1: (a) Typical experimental setup for single-molecule force spectroscopy with
optical tweezers. Here a nucleosomal array was stretched between the surface of a
microscope coverslip and an optically trapped microsphere. (b) Force-extension curve
of a nucleosomal array recorded with the optical tweezers setup. Adopted from [Brower-
Toland et al., 2002]

A further extension of this technique is Dynamic Force Spectroscopy (DFS), which
was pioneered by Evans et al. [Evans and Ritchie, 1997, 1999]. It represents a powerful
tool to probe single molecules bonds in an adhesion complex. In DFS experiments,
a bond is driven away from its equilibrium by pulling a spring at a constant velocity.
Eventual rupture of the bond occurs by escape from the bound state over an energy
barrier. The analysis of the rupture force spectrum, the peak force measured during
pulling, yields information about the molecular energy landscape and adhesion strength
of the complex. The detailed analytical methods needed to extract the relevant quan-
tities is described in the following sections (2.2.1) and (2.2.1).
Besides the mode in which the molecule is stretched with a constant velocity, the mea-
surements may be conducted at a constant force exerted on the molecule. A constant
force during measurements is achieved by a dynamic feed-back loop of the exerted force
to the displacement of the probe.
New applications for DFS has been recently possible with the work of Jarzynski [Jarzyn-
ski, 1997b,a]. The Jarzynski equation gives the free energy difference of two equilibrium
states in terms of an ensemble of the irreversible work performed along the path con-
necting the two states. As has been demonstrated [Hummer and Szabo, 2001] free
energy surfaces can therefore be reconstructed from repeated pulling experiments.
We further remark that DFS as a single-molecule technique may resolve transient or
multiple configurational states, which otherwise could not be obtained with ensemble
average in bulk measurements.

2.2.1 Phenomenological model of the rupture kinetics

In order to extract information about kinetics and energy landscapes from single-
molecule pulling experiments, several methods have been developed to analyze the
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experimental data. In its simplest form Bell [Bell, 1978] proposed a model for the
bond dissociation rate between a ligand and its receptor. The dissociation of two par-
ticles (receptor and ligand) can be understood as a diffusive motion out of an energy
well U (x), which represents the interaction energy of one particle separated with a
distance x from the second particle. At the absence of an external force, an energy
barrier Eb = U

(

x0
+

)

− U
(

x0
−

)

between the meta stable minimum at the distance x0
−

and the barrier at x0
+ prevents escaping from the energy well. The potential is charac-

terized by the reaction distance between the energy minimum and the energy barrier
d = x0

+ − x0
−. A schematic energy well potential showing the relevant properties is

depicted in Fig. (2.2a). In the limit of large energy barriers compared to the thermal
energy Eb ≫ kBT , the escape rate is related to the energy barrier according to the
Kramers theory [Kramers, 1940, Hänggi et al., 1990]:

koff = k0 exp

(

−
Eb

kBT

)

. (2.24)

One obtains an Arrhenius-like dependence of the escape rate, where the intrinsic es-
cape rate k0 = ω−ω+/2πγ is defined by the curvatures Mω2

± of the potential U (x) at
the extremal points. In this kinetic limit the escape occurs due to thermal fluctuations.

The application of a constant external force F onto one particle, derived from a poten-
tial V (x) = −Fx corresponds to an effective potential U (x)−Fx, in which the particle
moves. The external force shifts the energy minimum x0

− and maximum x0
+ to new

positions x− (F ) and x+ (F ) and under external force the energy barrier Eb becomes
Eb (F ) = U (x+) − U (x−) − Fd. The critical force Fc is defined as the external force
at which the energy barrier vanishes. For small forces in relation to the critical force
F ≪ Fc the potential is only minimally perturbated and therefore the positions of the
energy minima and maxima are only slightly shifted. Consequently, the energy barrier
Eb is reduced in approximation by a linear term −Fd. Under this assumptions the
critical force adopts a value of Eb/d. As a consequence the rate of rupture k̃ (t) scales
with the exponential of the applied force in the phenomenological theory:

k̃ (t) = koffexp

(

F (t) d

kBT

)

. (2.25)

Here koff denotes the rate constant for bond disruption under zero external force as
indicated by Eq. (2.24). Further the external force is generalized to be a function of
time. The application of an external force facilitates the transition beyond the energy
barrier. The tilting of the potential due to the application of an external force is shown
in Fig. (2.2b).
The ansatz implies that the transition of the system can be represented by a 1-
dimensional reaction coordinate x by projection of the entire dynamics onto a single
reaction coordinate. Further the escape rate along the reaction coordinate should also
yield the intrinsic dissociation rate. The approach is valid if the relaxation times of the
other degrees of freedom are smaller than the time scale associated with the dynamics
along the reaction coordinate.
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Figure 2.2: Schematic representation of a 1-dimensional energy surface with a single
energy well. (a) Energy surface with the energy barrier Eb and a reaction distance
d between energy minimum and energy barrier at zero external force. (b) Combined
energy surface U (x)−Fx at an external force F . The energy barrier Eb (F ) decreases
with increasing external force F .

If the transition to the unbound state is assumed to be irreversible beyond the en-
ergy barrier, the process can be described simply by a first order kinetic reaction

dS (t)

dt
= −k̃ (t)S (t) (2.26)

S (t) = exp

(

−

∫ t

0

k̃ (t′) dt′
)

. (2.27)

The probability of the system to be in a state where the transition has not occurred
yet is denoted by S (t).
The transition times are distributed as −Ṡ (t) dt, which is in relation to the probabil-
ity distribution of forces F (t). Then the following equation holds true: P (F ) dF =
−Ṡ (t) dt.
In typical DFS experiments the force is a linear function of time F (t) = rf t with the
force loading rate rf . Changing the variable of integration from time t to the force
F (t), the probability distribution of forces is then given by

P (F ) =
k (F )

rf
exp

(

−
1

rf

∫ F

0

k (F ′) dF ′

)

. (2.28)

From the knowledge of the force distribution (2.28) Gergely et al. derived the mean
rupture force 〈F 〉 as a function of the force loading rate rf [Gergely et al., 2000]. In
the slow pulling regime 〈F 〉 ≪ Fc or correspondingly small forces, Bell’s escape rate
(2.25) is applicable, yielding the expression

〈F 〉 =

∫ ∞

0

F ′P (F ′) dF ′ =
kBT

d
exp

(

kBTkoff

drf

)

E1

(

kBTkoff

drf

)

(2.29)
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with the exponential integral E1 (z) =
∫∞

z
exp (−t) t−1dt [Abramowitz and Stegun,

1970]. If the loading rates rf are sufficiently high, such that the energy barrier is
affected by the pulling in the bond life time koff

−1 without external force or equivalently
kBT ≪ drf/koff holds true, the expression (2.29) can be reduced to

〈F 〉 =
kBT

d

[

ln (rf) − ln

(

kBTkoff

d

)

− γ

]

, (2.30)

Here γ = 0.5772... denotes the Euler-Mascheroni constant. In this regime the rupture
force is a linear function of the logarithm of the force loading rate 〈F 〉 ∝ ln (rf). In
experiments often the most probable rupture force is determined. The most probable
rupture force F ⋆ can be calculated from the derivative of the rupture force distribution:

∂P (F )

∂F

∣

∣

∣

F=F ⋆
= 0 (2.31)

F ⋆ =
kBT

d

(

lnrf − ln

(

kBTkoff

d

))

= 〈F 〉 +
kBTγ

d
(2.32)

We note that the most probable rupture force is shifted with respect to the mean rup-
ture force by a constant term.
The analysis of the rupture forces yields therefore information about the energy land-
scape along the transition pathway.

2.2.2 Model-dependent description of the rupture kinetics

Another class for the description of the kinetics facilitated by external force uses a
defined model potential, while in the phenomenological approach only the reaction
distance as an independent parameter characterizes the energy surface. Further it ac-
counts explicitly for the perturbation of the potential in the presence of an applied force
field. Kurkijärvi has been the first to employ the method in the context of solid-state
physics [Kurkijärvi, 1972], and later it has been analyzed more profoundly by Garg
[Garg, 1995]. But Dudko et al. were the first, who applied the method in the context
of single-molecule DFS [Dudko et al., 2003, 2006].

The main argumentation of Garg’s formalism is as follows. Due to the exponential
dependence of the escape rate on the external force, the escape probability increases
disproportionately high with rising force. Close to the critical force Fc or equivalently
1−F/Fc ≪ 1 the energy barrier disappears and therefore the majority of escapes from
the potential well occurs in this force range. Further it is assumed that for this case all
smooth surfaces can be well represented by a cubic polynomial. As the extremal posi-
tions x± are near the inflection point xc, the energy surface can be expanded around
xc, yielding an approximation of the potential up to the third order

U (x) ≈ U (xc) + Fc (x− xc) +
U ′′′

6
(xc) (x− xc)

3 . (2.33)
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The energy extremal positions for the combined potential U (x) − Fx are then given
by

x± = xc ±

√

−
2Fc

U ′′′ (xc)

√

1 −
F

Fc
. (2.34)

In this high force limit the energy barrier Eb (F ) scales with the external force as

Eb (F ) = Eb

(

1 −
F

Fc

)
3
2

(2.35)

Eb =
2

3

(2U ′
0)

3
2

(−U ′′′)
1
2

. (2.36)

The approximating linear-cubic of the energy surface in the vicinity of the critical force
can be denoted as

U (x) =
3

2
Eb

(x

d

)

− 2Eb

(x

d

)3

, (2.37)

in agreement with the preceding definitions. In order to derive the escape rate k (F ) of
the combined potential U (x) − Fx, one can make use of Kramers theory of thermally
activated escape [Kramers, 1940] (see Eq. 5.5). In a second step, if a constant force
loading rate rf is assumed, the escape rate allows to obtain the distribution of rupture
forces P1 (F ) (see Eq. (5.6)) according to the integral in Eq. (2.28). As in the preceding
section for the phenomenological model, Eq. (2.29) then defines the mean rupture force
and carrying out the integration one obtains

〈F 〉 =
Eb

ν d

(

1 −

(

1

Eb
ln
koff exp (Eb + γ)

d rf

)ν)

. (2.38)

For a linear-cubic energy surface the parameter ν equals a value 2/3 . The variance of
the rupture force σ2

F is given by

σ2
F =

π2

6 d2

[

1

Eb

ln
koff exp (Eb + γ̃)

d rf

]2ν−2

. (2.39)

Here γ̃ has approximately a numerical value of 1.064. In the fast pulling regime the
rupture force scales with 〈F 〉 ∝ ln (rf)

3/2. It should be remarked that the variance
of the rupture force is also a function of the force loading rate. In contrast to the
phenomenological model the variance is independent on rf .

In the limit of very high forces F > Fc the energy barrier vanishes. Thermal fluc-
tuations do not contribute significantly to the escape rate compared to mechanical
pulling. This represents the mechanical limit of force facilitated escape from an energy
well potential.
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Chapter 3

Model and Methods

In this work numerical simulations were used to assess the dynamics of DNA and
DNA/protein complexes. Since the dynamics involves relative long time and length
scales, we focused on the most important physical features of the system and disre-
garded degrees of freedom that are not relevant on the scales of interest. The coarse-
grained simulations are based on the program package corchy++ developed by K.Klenin
et al., which has been already successfully applied to a number of problems [Merlitz
et al., 1998, Klenin and Langowski, 2004]. The chapter is subdivided in a part pre-
senting the DNA model, a description of the nucleosome model and the used Brownian
dynamics algorithm. Subsequently we discuss the developed extension of the nucleo-
some model to allow for simulation of oligonucleosomes.

3.1 DNA model

The DNA is based on the model described in [Klenin et al., 1998]; here we give a
brief overview and state the basic assumptions underlying the simulation. The DNA
polymer is represented as an elastic chain with electrostatic interactions. The chain
has N straight segments and the chain conformation is specified by the positions of its
vertices ~ri (i = 0, . . . , N). The segments are represented by the vectors ~si = ~ri+1 − ~ri
(i = 0, . . . , N − 1). A local right-handed coordinate system of three orthogonal vectors
(

~fi, ~gi, ~ei

)

of unit length is attached to each segment as illustrated in Fig. (3.1). The

~ei-vector is in direction of the ith segment: ~ei = ~si/si, where si = |~si| denotes the
segment length.

3.1.1 Mechanical properties of DNA

The mechanical properties of the DNA have been accounted for by harmonic potentials
for bending, stretching and twisting.
The stretching energy is defined for each ith segment

E
(s)
i

kBT
=

1

2 (l0δ)
2 (l0 − si)

2 , (3.1)

43
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where l0 is the segment equilibrium length and δ the stiffness parameter. The energy
of the system is expressed in units of the thermal energy kB throughout the work. Here
kB denotes the Boltzmann constant and the temperature of the system is held constant
at T.

~fi
~gi

~ei
βi+1

i

i+ 1

Figure 3.1: At each ith segment a local coordinate system
(

~fi, ~gi, ~ei

)

is attached. For

each unbent (i + 1 )th joint the bending angle βi+1 is defined as the angle between ~ei
and ~ei+1.

A bending energy is defined for each chain joint

E
(b)
i

kBT
= αbβ

2
i . (3.2)

Here αb is the bending rigidity parameter and βi denotes the angle between the two
adjacent segments with unit vectors ~ei−1 and ~ei.
Considering Eq. (2.3) for the mean-square end-to-end distance of a freely rotating chain,
the analogue expression for a chain with a bending potential defined by Eq. (3.2) is
given by

〈R2〉 = N〈si〉
2

(

1 + 〈cosβ〉

1 − 〈cosβ〉

)

. (3.3)

Instead of the cosine of the constant bending angle β between adjacent segments in
Eq. (2.3) the mean equilibrium cosine 〈cosβ〉 has been adopted. The mean equilibrium
cosine can be calculated for any isotropic bending potential:

〈cosβ〉 =

∫ π

0
cosβ sinβ exp (−αbβ

2) dβ
∫ π

0
sinβ exp (−αbβ2) dβ

. (3.4)
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As the discrete model chain shall represent an approximation of a worm-like chain with
the same contour length Lc, we can identify the mean-square end-to-end distance for
sufficiently large number of segments N with the mean square distance limit 〈R2〉 = BLc

of the worm-like chain. Then the bending rigidity parameter is related to the Kuhn
length B according to the following equation

B

l0
=

1 + 〈cosβ〉

1 − 〈cosβ〉
. (3.5)

The bending rigidity constant can be tuned, such that the model chain adopts the
Kuhn length for DNA as known from experiments. Within this approach the discrete
chain model represents a good approximation of worm-like chain polymers.

The sequence of the basic building blocks of DNA - the nucleotides adenine, gua-
nine, cytosine and thymine - defines the intrinsic curvature of DNA molecules in 3-
dimensional space. In detail hydrophobic effects and electrostatic interactions between
adjacent base pairs are dependent on the exact sequence of CG-and AT-base pairs.
They influence the relative position (tilt, roll and twist) and orientation (shift, slide
and rise) of neighboring base pairs [Calladine et al., 2004]. In the simulation it is also
possible to introduce sequences with intrinsic curvature. At thermal equilibrium in
sequences without intrinsic curvature adjacent segment vectors ~ei and ~ei−1 are collinear
on average. In permanently bent sequences adjacent segments vectors deviate from
this average collinearity of non-bended sequences at thermal equilibrium. Therefore
an auxiliary unit vector ~bi with the polar coordinates (φ⋆, θ⋆) in the local coordinate
system is introduced at the bent ith joint, such that the relevant bending angle for the
bending energy is now calculated between ~ei−i and ~bi. In the new equilibrium position
the segment vector ~ei points in the direction of the auxiliary unit vector.

The twist energy between two adjacent segments is defined by the following harmonic
potential

E
(t)
i

kBT
=

1

2kBT

C

l0
τ 2
i , (3.6)

where C is the torsional rigidity constant and τi is the twist angle between the (i - 1)th
and ith segments. Here the twist angle τi is defined as the sum of two angles τ1 + τ2.
With the definition of an additional vector ~pi = ~si−1 ×~si, which is normal to the plane
spanned by the segment vectors ~si−1 and ~si, the two angles can be calculated. τ1 is
the angle between the local coordinate unit vector ~fi−1 and the vector ~pi and τ2 is the
angle between the local coordinate unit vector ~fi and the vector ~pi.

3.1.2 Electrostatic interaction

The electrostatic interaction between DNA segments in this model is treated within
the Debye-Hückel approximation, which represents the linearized equation of the full,
non-linear Poisson-Boltzmann equation. The Debye-Hückel theory takes the screening
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~fi

~pi+1

~fi+1

τ1

τ2

Figure 3.2: The twist angle τi+1 is defined as the sum of two angles τ1 and τ2. τ1 is the
angle between ~fi and ~pi+1, while τ1 is the angle between ~pi+1 and ~fi+1.

between charges due to the presence of mobile ions in the solution into account. If no
mobile ions are present the electrostatic interaction between charges separated by a
distance ~r is simply given by the Coulomb interaction

UCoulomb (~r)

kBT
=
lB
|~r|
, (3.7)

where the Bjerrum length lB = e2/ (4πDkBT ) is the distance at which the electro-
static interaction between two elementary charges equals the thermal energy kBT . At
a temperature of 298.15K in water the Bjerrum length lB is about 0.7 nm. The corre-
sponding electrostatic interaction in the Debye-Hückel approximation with mobile ions
in solution is

UDH (~r)

kBT
= lB

exp (−κ|~r|)

|~r|
. (3.8)

Here κ denotes the inverse Debye-Hückel screening length, which is given by the ex-
pression κ2 = 8πe2I/kBTD. The salt solution is specified by the ionic strength I, the
proton charge e and the dielectric constant of water D. Analogously the electrostatic
contribution to the energy for two nonadjacent DNA segments (i, j) in a monovalent
salt solution reads

E
(e)
ij

kBT
=

ν⋆2

kBTD

∫

dλi

∫

dλj
exp (−κrij)

rij
. (3.9)

rij is the distance between the positions along the ith segment and the jth segment,
which are parameterized by the integration parameters λi and λj (see Eq. (3.14)).
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DNA is a highly charged polyelectrolyte with a linear bare charge density ν = −2e/∆,
where ∆ = 0.34 nm is the base pair distance. As will be pointed out the bare DNA
charge is reduced under certain conditions to a renormalized charge density ν⋆. In the
following we consider two approaches for the calculation of the renormalized charge
density.

The first approach follows the charge renormalization procedure developed by Manning
at the end of the 60’s [Manning, 1969a,b, 1977]. Note that calculations of the electro-
static interaction on the level of the Debye-Hückel do not take into account non-linear
effects, which arise due to the presence of salt ions surrounding the charged object. In
such systems two mechanism are competing with each other; counterions are attracted
to the charged DNA surface, but at the same time try to diffuse away from the macro-
molecule in order to maximize the entropy. As a result for charged objects in solution
a counterion condensation transition exists at which binding of the free counterions
occurs.
In this approach the distribution of counterions around highly charged polyelectrolytes
is treated in terms of the Manning parameter ξ = lB/b, which has the meaning of a
dimensionless linear charge density and is central to the condensation transition. Here
b = ∆/2 denotes the distance between two elementary charges positioned along the
polyelectrolyte axis. The counterions valency is denoted with z, which is in the case
of monovalent ions taken to be z = +1. Manning states that in the case of a weakly
charged polyelectrolyte, where the condition ξ < 1/z holds true, the entropy terms
prevail. Then the counterions are driven away from the polyelectrolyte. But for highly
charged polyelectrolytes, where ξ > 1/z, it is energetically favorable due to the strong
electrostatic interaction that a certain fraction of counterions 1− 1/zξ stays bound to
the polyelectrolyte. The resulting linear charge density ν⋆ is therefore renormalized
with respect to its bare linear charge density ν. The two components, the condensed
and the free counterions are in equilibrium with each other. In the weakly charged
regime ξ < 1/z the renormalized charge density ν⋆ equals then exactly the bare linear
charge density ν. In the highly charged regime ξ > 1/z, ν⋆ is renormalized to ν/zξ.
We remark that the renormalized charge density is beyond the transition point just
a constant function of the bare charge density. The important point is now that the
renormalized charge density ν⋆ can be used in the linear Debye-Hückel theory replac-
ing the bare linear charge density ν. Further the renormalization procedure allows to
incorporate non-linear effects on the level of the linear Debye-Hückel approximation.
For DNA the bare linear charge density with two elementary charges per phosphate
group is ν = 5.88 nm−1, which yields a Manning parameter ξ = 4.2 well beyond the
transition point. The corresponding renormalized charge density is then ν⋆ = 1.4 nm−1,
which represents roughly a quarter of the bare linear charge density.
Several limitations of this ansatz have to be considered. At first the method is strictly
speaking only valid in the limit of vanishing salt or correspondingly κ→ 0. At higher
concentration of counterions the condensation is weakened. Also in the presence of a
positively charged macromolecule like the histone core it should be expected that pos-
itive counterions decondense from the DNA. This kind of effects, termed counterion
release, have been studied in many experimental [Koltover et al., 1999] and theoretical
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works [Sens and Joanny, 2000], and have been also applied specific to the nucleosome
system, as done in [Schiessel, 2003].
The two limiting values for the linear charge density of polyelectrolytes in the Debye-
Hückel potential will be used in the simulation to estimate the overall effect of counte-
rion condensation. Therefore the bare linear charge density ν will represent the upper
limiting value, while the charge renormalization due to counterion condensation sets
only a lower bound on the effective linear charge density.

For free DNA, which is not bound to a positively charged macromolecule, an often
used approach is to apply the method developed in the work of Stigter et al. in Ref.
[Schellman and Stigter, 1977, Stigter, 1977]. This ansatz will be used in simulations
of free DNA without the presence of histone cores in this work. In this approach it is
assumed that the ionic atmosphere around a DNA molecule can be classified into three
regions dependent on the radial distance to the DNA axis.

• In the outmost regime the electrical potential is low (eψ/kBT ≪ 1) and deviations
of the DNA molecule from cylindrical symmetry are marginal. Therefore the
potential satisfies the condition for the Debye-Hückel approximation.

• The condition for a weak potential (eψ/kBT ≪ 1) does not hold anymore in the
Gouy region, and the full, nonlinear Poisson-Boltzmann equation has to be used
to calculate the potential. The ions are considered to be point charges and the
cylindrical symmetry holds true.

• In the Stern layer below a radial distance rES a fraction 1 − q of the counterions
is bound permanently e.g. to the phosphate groups of the DNA backbone. The
bound counterions do not participate in laminar hydrodynamic flow when the
macromolecule is in motion as in opposition to the mobile ions in the Gouy
(diffusive) region.

Taking into account the cylindrical symmetry of the system, the problem can be re-
duced to the solution of the full, non-linear Poisson-Boltzmann equation for a cylinder
with a radius rES given by the extension of the Stern layer. The charge density on the
cylinder is renormalized due to the permanently bound counterions to a value qν with
a surface potential eζ/kBT as boundary condition. Now it is always possible to find
a linear charge density ν⋆ such that in the outmost region the Debye-Hückel approx-
imation matches the solution of the full Poisson-Boltzmann equation of the charged
cylinder. The electrostatic radius rES and the surface potential eζ/kBT can now be
determined from experiments of DNA electrophoretic mobility as a function of salt
concentration. Experimental electrophoretic mobility data can be found in [Ross and
Scruggs, 2004]. According to [Schellman and Stigter, 1977, Stigter, 1977] this allows
to set the charge factor q to a value of 0.73 and an electrostatic radius of 1.2 nm for
DNA in the range of physiological salt conditions as considered here in the simulations.

The electrostatic energy of the system is calculated by evaluating the Debye-Hückel
integral (3.9) for each pair of non-adjacent segments, while forces and torques due to
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the electrostatic interaction require partial derivatives of the expression. In order to
save computational time as the calculation scales like N2 with the number of the seg-
ments, pre-computated values of the energy integral are stored in a 4-dimensional table
f (ρij, γij, γji, σij) and the respective partial derivatives at the start of the simulation. A
linear interpolation is used to calculate the partial derivative at arbitrary points in the
parameter space in the simulation. The range of parameter covers the conformational
space of relative segment orientation to each other. The relative orientation of two
segments in space can be described completely by four dimensionless parameters

ρij =
1

l0
(|~rj − ~ri|) (3.10)

γij =
~ei~ρij

|~ρij|
(3.11)

γji = −
~ej~ρij

|~ρij |
(3.12)

σij =
[~si × ~ρij] [~sj × ~ρij]

| [~si × ~ρij] || [~sj × ~ρij] |
. (3.13)

The relative orientation of the segments is defined by the distance ρij of the segmental
middle points to each other, the tilt angle cosine of the ith segment γij, the tilt angle
cosine of the jth segment γji and the twist angle cosine of the two segments σij. The
distance ~rij between two points on the segments can then be parameterized with the
two parameters λi and λj by the expression

~rij = ρ0





0
0

l0ρij



− λi









√

1 − γ2
ijσij

√

1 − γ2
ij

√

1 − σ2
ij

γij









+ λj







√

1 − γ2
ji

0
−γji






. (3.14)

The total contribution to the electrostatic energy is finally the sum over all pairs of
nonadjacent segments (i, j).

3.2 Histone core model

The nucleosome consists of a (H3-H4)2 tetramer and two H2A-H2B dimers forming
a fairly rigid protein complex of cylindrical shape. The crystallographic data shows
further that the DNA in the nucleosome structure makes a flat, left-handed superhelix
around the histone core [Luger et al., 1997]. The basic idea of the histone core model
is that the known superhelical DNA conformation is recovered as ground state of the
DNA-histone core system in the simulations. A description of the histone core model
can be found in [Wocjan et al., 2009a].
Keeping to the idea of coarse-grained modeling and reducing the system to the essential
physical properties, the histone core is represented as a cylinder with radius R(n). In
order to simulate the adsorption of the DNA to the histone core a phenomenological
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potential is assumed such that the requested DNA polymer conformation from the
experiments is recovered at equilibrium. Thus a superhelical path with N (n) turns and
a pitch p(n) according to the known geometry is defined on the surface of the cylinder.
Then the interaction distance | ~Ri| between the ith DNA segment and the protein is
determined as the distance between the closest point on this path and the middle
point ~r

(m)
i of the segment. For physiological conditions as used in the simulations, the

electrostatic interaction between the DNA chain and the octamer can be considered as
short-ranged. A choice fulfilling the requirement is a simple V-groove potential with a
cut-off distance r0 for the distance dependence. The cut-off parameter is of the order
of the screening length κ−1, reflecting the fact that electrostatic interactions between
DNA and histone core are of main importance. The interaction energy E

(n)
i for each

interacting segment can be tuned with the potential well depth parameter U0. The
complete interaction potential is then given by

E
(n)
i

kBT
=







−U0
r0−| ~Ri|

r0

[

Θ0−Θi

Θ0
(1 − k0) + k0

]

Θi < Θ0

−U0
r0−| ~Ri|

r0
k0 Θi ≥ Θ0.

(3.15)

Besides the term describing the distance dependence of the potential in Eq. (3.15),
also a factor for the relative orientation of segment and histone core is included. The
additional factor takes into account the twist, which is induced by the superhelical
geometry of DNA in the nucleosome, and balances this contribution in the twisting
energy. The main idea is that at each point on the superhelical path a vector ~a
is defined, which gives the preferred orientation of the segment on the histone core.

The relative orientation is measured by the angle Θi = arccos
(

~fi · ~a
)

between the ~fi

vector, indicating the orientation of the ith segment, and ~a. The angle dependency
of the potential has a V-groove shape for Θi < Θ0, which energetically favors the
alignment of ~fi in direction of the given orientation ~a at the interaction point on the
superhelical path. Outside the critical angle Θ0 the potential is constant, but reduced
by a factor k0. At the energy minimum of the described interaction potential DNA
adopts a superhelical conformation, while being at the same time twisted according to
the geometry.
The following section shows how to calculate the induced twist, and in detail the
additional twist between two adjacent segments. A general procedure to calculate the
twist Tw (C1, C2) of a space curve C1 about a second space curve C2 is given in Ref.
[White and Bauer, 1986]. The space curves can be parameterized by an angle α in the
x-y plane of a right-handed coordinate system with the z-direction aligned along the
histone core axis ~c. Then the left-handed DNA superhelix ~r and the nucleosome axis
~c are described by

~r (α) = R(n)





cosα
sinα
−γα



 and ~c (α) = R(n)





0
0

−γα



 , (3.16)

where γ = p(n)/
(

2πR(n)
)

defines the slope of the space curve. For the space curves C1

defining the nucleosome axis, while C2 denoting the left-handed DNA superhelix, the
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following equation yields the total twist

Tw (C1, C2) =
1

2π

∫

C2

[

~t (α) × ~n (α)
]

· d~n. (3.17)

Thus the twist is the total change of the vector ~n in the direction mutually perpendic-
ular to the tangent vector of the superhelix ~t and to ~n. Here ~n is the component of the
vector joining a point on C2 to the corresponding point on C1, which is orthogonal to
the tangent vector. The corresponding parameterizations of the tangent vector ~t and
the vector ~n are

~t (α) =
1

√

1 + γ2





− sinα
cosα
−γ



 and ~n (α) = −~b (α) =





− cosα
− sinα

0



 . (3.18)

For this geometry one obtains for the total twist (in number of turns) along C2

Tw (C1, C2) =
1

2π

∫

C2

[

~t (α) × ~n (α)
]

·
d~n

dα
dα (3.19)

= −
γN (n)

√

1 + γ2
(3.20)

The twist angle ∆τ induced by the superhelical geometry for a single segment is there-
fore the fraction

∆τ = Tw (C1, C2)
2πl0γ

H(n)
√

1 + γ2
(3.21)

Now with the knowledge of the additional twist due to the superhelical geometry,
the vector ~a (α) can be obtained by rotation of the vector ~b (α) about the angle

τ = (α/2α0) ∆τ around the axis ~c×~b. Here 2α0 = 2 arctan
(

l0/2R
(n)
)

defines the angle,
which is spanned by a single segment in the x-y plane. Fig. (3.3) shows schematically
the histone octamer model.

Alternatively one can consider without loss of generality two adjacent segments with
the segment center positions ~r (α0) and ~r (−α0) on the predefined superhelical path.
According to the definition in section (3.1.1) the vector ~p is given by the cross prod-
uct of the tangent vectors ~t (−α0) × ~t (α0) of the two segments. Then the twist angle
∆τ = τ1 +τ2 between the two angles is the sum of the angle τ1 between vectors ~n (−α0)
and ~p, and the angle τ2 between ~p and ~n (α0). The resulting twist angle per segment
is given by

∆τ = π − 2 arccos

(

−
γ sinα0

√

γ2 + cos2 α0

)

, (3.22)

which is consistent with the calculated twist angle per segment in Eq. (3.21).
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~fi

~c

~c×~b

~b

~a

τ α

|~Ri|

Figure 3.3: Schematic representation of the histone octamer model. The histone core
is represented as a cylinder with the symmetry axis ~c. A superhelix (blue line) of
1.75 turns is parametrized by the angle α in the plane perpendicular to the ~c-axis.
The distance dependence of the DNA-histone core potential is given by the interaction
distance |~Ri| between the middle point of the ith segment and the closest point on the
superhelix. At each point of the superhelix, a vector ~a is defined, which takes the DNA
twist due to the spool geometry into account. The vector ~a is obtained by rotation of
~b by an angle τ about the rotation axis ~c×~b.

Throughout the work we expressed the interaction strength instead of the energy well
depth U0 by the adsorption energy density ǫ = U0/l0. The adsorption energy density
is hereby only the upper limit of the interaction strength and the effective adsorption
energy density will be lower on average.
In the nucleosome model the path of the DNA is predefined, which is ultimately based
on the crystallographic structure. But the assumptions underlying the model are not
as rigorous as it seems. A general feature of polymer-sphere complexation is that for
polymers with large persistence lengths compared to the sphere radius, the polymer
distribution is rather inhomogeneous on the sphere. In addition if the adsorption
energy is large, then also the fluctuations around the optimal path remain small [Marky
and Manning, 1991, 1995, Schiessel et al., 2000]. Here the amount of wrapped DNA
around the histone core is of the order of the persistence length, and the DNA-histone
complexes can be regarded as strongly coupled due to the present high charge densities.
Therefore the choice of an interaction potential, which enforces the DNA to follow a
single superhelical path according to the distribution of interaction sites in the real
nucleosome system, represents a reasonable approximation.
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3.3 Forces and Torques

The BD algorithm requires the calculation of the forces and torques acting on the
individual segments and the histone core. Forces and torques are given as the partial
derivatives of the total energy over the system coordinates. The total energy of a DNA-
histone core conformation is the sum of the bending, stretching, twisting, electrostatic
and DNA-histone core interaction energies

E =

N−1
∑

i=0

(

E
(b)
i + E

(t)
i + E

(s)
i + E

(n)
i

)

+

N−1
∑

i=0

N−1
∑

j=i+2

E
(e)
ij , (3.23)

as defined in the preceding sections. The complete system is specified by the segment

vertices ~ri and the angle φi of rotation of the local reference system
(

~fi, ~gi, ~ei

)

around

the ~ei-axis. Further additional system coordinates introduced by the nucleosome are
the position of the histone core center ~r(n) and the orientation of the histone core,
which is recorded by the histone core axis ~c. The expressions for forces and torques
acting on the polymer chain due to DNA-DNA interaction have been calculated in
Ref. [Klenin et al., 1998]. Forces and torques acting on DNA and histone core due
to the DNA-histone core interaction can be found in [Wocjan et al., 2009a] and are
summarized in the appendix (7).

In Dynamic Force Spectroscopy experiments external forces can be applied to the
DNA. Alternatively the device can be operated in a velocity mode, where DNA can
be stretched with a constant velocity. In order to simulate these types of experiments,
and the different operating modes, additional forces and constraints are included into
the model.

• An additional time-dependent external force ~F ext can be applied to the DNA
ends of a linear polymer chain. The external force starts with an initial force
~F ext

0 and increases linearly with a constant force loading rate rF, such that the

resulting external force at time t is ~F ext (t) = ~F ext
0 + rFt. The direction of ~F ext

is taken along the direction of the ẑ-axis of the global coordinate system. An
additional force term ∆~F0 and ∆~FN acting on the DNA end vertices ~r0 and ~rN,
respectively, takes the external force into account:

∆~F0 = −~F ext (3.24)

∆~FN = ~F ext. (3.25)

• In the velocity mode at each time step ∆t the DNA end vertices are displaced rel-
ative to each other with a constant stretching velocity ~v, which points in direction
of the ẑ-axis:

∆~r0 = −
~v∆t

2
(3.26)

∆~rN = +
~v∆t

2
. (3.27)
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3.4 Hydrodynamic interactions

In order to describe the dynamics of macromolecules in dilute solution, hydrodynamic
interactions mediated by the solvent particles have to be taken into account. Hydro-
dynamic interactions were introduced to the model by attaching beads to each chain
vertex and an additional bead representing the histone core. The hydrodynamic dif-
fusion tensor D represents the hydrodynamic interaction and is composed of 3 × 3
submatrices Dij, which describe the interactions between the individual beads. The
submatrices can be classified according to the coupling of translational and rotational
motion into translational-translational, rotational-translational, rotational-rotational
and translational-rotational coupling submatrices, denoted as Dtt

ij , Drt
ij , Drr

ij and Dtr
ij ,

respectively. Further it is distinguished if the diffusional submatrix couples two differ-
ent beads (i 6= j) or if the coupling is between the same bead (i = j).
Each bead has an assigned value σi for the bead radius. The radius σi can adopt the
value of the hydrodynamic DNA bead radius a for a DNA bead or the hydrodynamic
histone core bead radius r

(n)
HD for the histone core bead. The DNA bead radius a is

adjusted such that the translational diffusion coefficient of n beads placed equidistantly
in a row with a distance l0 equals the translational diffusion coefficient of a cylinder
with hydrodynamic radius rHD and length nl0. The diffusion coefficient of a cylinder
can be calculated as described in [Tirado and de la Torre, 1979, 1980], while the diffu-
sion coefficient for the string of beads is given in [Hagerman and Zimm, 1981].
In order to obtain the diffusional submatrices the approach given in [Goldstein, 1985]
was applied in the simulation, retaining terms in leading order. The translational-
translational self-diffusion matrix is given by

Dtt
ii =

kBT

6πησi

I. (3.28)

Here η denotes the viscosity of the solution.
For the hydrodynamic interaction between different beads (i 6= j) two cases - over-
lapping and non-overlapping beads - have to be considered. This is due to the fact
that the distance between different DNA beads and on the other hand a DNA and
a histone core bead can become sufficiently small during simulations. The beads are
called overlapping, when the spatial separation rij between the beads is less than the
combined radius of the two beads σi +σj. The Rotne-Prager tensor [Rotne and Prager,
1969] is then modified accordingly for the non-overlapping and overlapping case

Dtt
ij =







kBT
8πηrij

(

1 +
σ2

i +σ2
j

3r2
ij

)

I +
(

1 −
σ2

i +σ2
j

3r2
ij

)

~rij

N

~rij

r2
ij

rij ≥ σi + σj

kBT
6πησeff

[(

1 −
9rij

32σeff

)

I + 3
32σeff

~rij

N

~rij

r2
ij

]

rij < σi + σj .
(3.29)

If the beads have equal radii σeff is simply replaced by the respective bead radius.
As there does not exist a rigorously analytical solution for overlapping beads with
unequal radii, an intermediate value σeff between the different bead radii has been
used throughout the simulations for this case. Then the effective radius is set to

σeff =
√

(

σ2
i + σ2

j

)

/2. (3.30)
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Similar expressions have been proposed in [Carrasco et al., 1999, Arya et al., 2006].
Rotation is treated differently for the histone core bead and DNA beads. The rotational-
rotational self-diffusion matrix for the histone core bead is defined as

Drr
ii =

kBT

8πησ3
i

I. (3.31)

The diffusional submatrix regarding the translation-rotation coupling between a DNA
bead and a histone core bead is given by

Drt
ij =

{ kBT
8πηr3

ij

ǫ · ~rij rij ≥ σi + σj

kBT

8πη(σi+σj)
2 ǫ ·

~rij

rij
rij < σi + σj .

(3.32)

In Eq. (3.32), ǫ is the Levi-Civita tensor and the product ǫ · ~rij is defined, with the
vector ~rij in Cartesian coordinates (xij , yij, zij), in the following way:

ǫ · ~rij =





0 zij −yij

−zij 0 xij

yij −xij 0



 . (3.33)

For beads representing DNA rotational movement is restricted to rotation about the
~ei-axis. We treat therefore the rotation of individual DNA beads as hydrodynamically
decoupled from the remaining beads. The corresponding rotational diffusion coefficient
of a DNA bead is given by

Drot =
kBT

4πηr2
HDl0

. (3.34)

The rotational diffusion coefficient Drot equals therefore the quantity for a cylinder of
DNA radius rHD and length l0.

3.5 Brownian dynamics algorithm

A classical approach for Brownian dynamics simulations is the algorithm developed
by Ermak and McCammon [Ermak and McCammon, 1978]. The central equation
is a first-order approximation to the solution of the stochastic differential Langevin
equation. It was known that the first-order method can be inefficient or numerically
unstable, therefore Iniesta and Garcia de la Torre proposed a second-order algorithm
to circumvent the problems. Based on this work [Iniesta and Garcia de la Torre, 1990]
a second-order Brownian dynamics algorithm [Klenin et al., 1998] is employed in the
simulation to calculate the consecutive chain and histone core conformations.
The spatial conformation of the system at time t is denoted by the super vector
~R (t) = {~ri (t) , ~r

(n) (t) ,~c (t)} composed of Ñ components; in detail 3 (N + 1) DNA

bead components and in addition 6 components for the histone core. ~R (t) keeps track
of the bead positions ~ri, the histone core position ~r(n) and the histone core axis ~c.
Additionally the angular orientation of the segments is recorded by the rotation angle
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φi. The super vector ~A = {~Fi, ~F
(n), ~T (n)} is composed of the corresponding forces ~Fi,

~F (n) and torque ~T (n) acting on the ith DNA segment and histone core. The torque
acting on the ith DNA segment is recorded in Ti.
In the first half-step a vector ~R′ and a rotation angles φ′

i is predicted at time t + ∆t
based on the conformation, forces and torques at time t. The predicted conformation
is calculated according to the following set of equations

~R′
i (t+ ∆t) − ~Ri (t) =

Ñ
∑

j=0

Dij (t)
~Aj (t)

kBT
∆t+ ~Xi (3.35)

φ′
i (t+ ∆t) − φi (t) = Drot

Ti (t)

kBT
∆t+ Φi. (3.36)

The random fluctuations ~Xi and Φi are gaussianly distributed with zero mean

〈 ~Xi〉 = 0 (3.37)

〈Φi〉 = 0, (3.38)

and accordingly with the following covariances

〈 ~Xi
~XT

j 〉 = 2Dij∆t (3.39)

〈ΦiΦj〉 = 2Drot∆t. (3.40)

The determination of the random fluctuations ~Xi requires a Cholesky factorization of
the hydrodynamic diffusion matrix D = LLT , where L is a lower triangular matrix.
In the second half-step the final system coordinates ~Ri (t+ ∆t) and φi (t+ ∆t) are

obtained from the forces and torques ~A′
j calculated at the predicted system coordinates

~R′
i (t+ ∆t) and φ′

i (t+ ∆t) at time t+ ∆t:

~Ri (t+ ∆t) − ~R′
i (t+ ∆t) =

Ñ
∑

j=0

Dij (t)
− ~Aj (t) + ~A′

j (t+ ∆t)

2kBT
∆t (3.41)

φi (t+ ∆t) − φ′
i (t+ ∆t) = Drot

−Ti (t) + T ′
i (t+ ∆t)

2kBT
∆t. (3.42)

The hydrodynamic diffusion tensor D is not updated in every simulation step but only
every 500 simulation steps to speed up the simulation. The speed up is significant due
to the time-consuming Cholesky factorization of the hydrodynamic interaction matrix
during updating and at the same time the dynamic properties remain according to
[Klenin et al., 1998] still within statistical errors.

3.6 Parametrization

We discuss the introduced DNA/histone core model parameters and also general sim-
ulation parameters. If possible we relate the model parameters to experimental data.
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3.6.1 DNA parameters

The choice of the stiffness parameter δ is a tradeoff between computational time and
deviations from the equilibrium segment length (see [Jian et al., 1997]). Large values of
the stiffness parameter δ allow for large deviations σ =

√

〈si
2〉 − 〈l0〉2 of the segment

length si. In contrast small stiffness parameter values result in a significant change of
the stretching forces during the simulation time step ∆t, which sets an upper bound
for the time step ∆t. In the nucleosome simulations a stiffness parameter δ = 0.16 is
used, such that the expected value for σ = 0.156 l0 represents a good compromise. The
Young’s modulus Y of the elastic rod is defined by the formula Fi/A = Y (si − l0) /l0,
where Fi is the stretching force and A is the effective cross-sectional area of the rod.
Often instead of the Young’s modulus the stretch modulus Y A (Y times A) of DNA
is used, which is related to the stiffness parameter via Y A = kBT/l0δ

2. For the used
stiffness parameter we obtain a stretch modulus of ≈ 63.3 pN, which corresponds to a
softer elastic chain than actual DNA.

The bending stiffness of DNA is determined by the energy associated with the deforma-
tion of hydrogen bonds and the electrostatic repulsion of negatively charged monomers
of the DNA. While the first term is charge-independent, resulting in a bare mechani-
cal persistence length, the second term is dependent on the actual salt concentration
of the solution. The bare mechanical persistence length is recovered in the limit of
high salt, yielding a value of ≈ 30 nm in experiments [Manning, 1981, Borochov et al.,
1981, Sobel and Harpst, 1991]. In the range of physiological salt conditions DNA
has a total persistence length lp of about 50 nm [Hagerman, 1988]. As only nonad-
jacent segments contribute to the electrostatic interaction energy, we therefore work
with the total persistence length corresponding to a Kuhn length of B = 2 lp = 100 nm.

The torsional elasticity of the DNA polymer is described in the model with the tor-
sional elastic constant C. Torsion constants have been quantitatively assessed by time-
resolved fluorescence polarization anisotropy (FPA), the topoisomer distributions of
ligated small circular DNA and cyclization of small DNAs as a function of length. The
determined values for the torsional elastic constant range from 2.0×10−19 erg cm [Tay-
lor and Hagerman, 1990], 2.2×10−19 erg cm [Heath et al., 1996] to ≈ 3.0×10−19 erg cm
[Horowitz and Wang, 1984, Shore and Baldwin, 1983]. According to [Heath et al.,
1996] the latter high torsional elastic constants are obtained from experiments with
small DNA rings, which may not be transferable to linear and larger circular DNA.
For the simulations we adopt an intermediate value of C = 2.5 × 10−19 erg cm in the
range of 2.0− 3.0× 10−19 erg cm, as used in previous BD studies [Merlitz et al., 1998,
Vologodskii et al., 1992].

For the hydrodynamic radius rHD of DNA we set the value to 1.2 nm according to
Ref. [Hagerman and Zimm, 1981].

The complete list of DNA model parameters can be found in Tab. (3.1).
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Parameter Description Value

N number of segments 30

l0 equilibrium segment length 2.5 nm

δ stiffness parameter 0.16

B Kuhn length 100 nm

C torsional rigidity constant 61.8 kBT

rHD hydrodynamic DNA radius 1.2 nm

Table 3.1: DNA model parameter values (nucleosome simulation)

3.6.2 Histone octamer parameters

The decisive parameters regarding the nucleosome geometry in the model are the ra-
dius of the DNA superhelix R(n), the pitch p(n) defining the distance between neigh-
boring DNA turns and the number of windings N (n). We take crystallographic data
from Ref. ([Luger et al., 1997]) as a reference nucleosome system, which showed that
the ideal superhelix fit to the double helix axis over 125bp yields a superhelix radius
R(n) = 4.18 nm and a pitch p(n) = 2.39 nm with 1.65 windings. As an additional 20 bp
of DNA are organized in the nucleosome, we set the effective number of turns to the
canonical value N (n) = 1.75.

Based on the dimension of the histone core octamer [Arents et al., 1991] we employ a

value of 3 nm for the hydrodynamic histone core radius r
(n)
HD.

The DNA/histone core potential is parameterized by an interaction strength ǫ. The
adsorption energy density ǫ represents a free parameter, and is determined in this work
by comparison between simulations and experiments. Due to the electrostatic screen-
ing at the physiological conditions a cut-off of 0.5 nm is set, which is of the order of the
screening length κ−1. Further to accommodate for the induced twist in the superhelical
geometry, the potential energetically favors the alignment of the segment orientation
with the preferred orientation ~a on the superhelical path within the interval [−Θ0,Θ0].
We set the critical angle Θ0 to π/2, while outside the interval the interaction energy is
greatly reduced by the factor k0 = 0.1.

The histone core model parameters are listed in Tab. (3.2).

3.6.3 Simulation parameters

In this work all simulations were performed at a constant temperature T of 293.15K.
The time step is fixed at ∆t = 6 × 10−12 s. The surrounding solution has a viscosity
of η = 10−3 Pa s, an ionic strength I = 150mM of monovalent ions and a dielectric
constant D = 80.18 (at the indicated system temperature T).
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Parameter Description Value

R(n) DNA superhelix radius 4.18nm

N (n) number of turns 1.75

p(n) pitch 2.39nm

r
(n)
HD hydrodynamic histone core radius 3.0 nm

Θ0 critical potential angle π/2

k0 potential coefficient 0.1

r0 potential cut-off distance 0.5 nm

Table 3.2: Histone core parameter values (nucleosome simulation)

Parameter Description Value

∆t simulation time step 6.0 ps

T temperature 293.15K

I ionic strength 150mM

η viscosity 10−3 Pa s

D dielectric constant 80.18

Table 3.3: Simulation parameter values (nucleosome simulation)

3.7 Initialization

In order to ensure that the system is in thermodynamical equilibrium, we relaxed
the initial conformation to generate the starting conformation. Hereby the following
protocol was applied:

• An initial conformation is created, where all segments are ordered in a straight
line and the histone core ~r(n) is positioned at a distance R(n) from the middle
chain segment ~r

(m)
N/2 (Fig. 3.7 (a)).

• In a second step a constant external force of 20 pN to the DNA end segments is
applied until a maximum of 3 segments are interacting with the histone core for
105 simulation steps (Fig. 3.7 (b)). The ith segment is termed interacting if the

interaction distance |~Ri|, is within the cutoff distance r0.

• In a last step this extended conformation is relaxed in 108 simulation steps with no
external forces to an equilibrated conformation, where DNA follows a superhelical
path around the histone core (Fig. 3.7 (c)).



60 CHAPTER 3. MODEL AND METHODS

The system reaches thermodynamic equilibrium, when the characteristic observables
cease to show a systematic drift and have started to oscillate about steady mean values
[Allen and Tildesley, 1989]. In (Fig. 3.5) the total energy of the nucleosome system and
the contour length, the amount of DNA interacting with the histone protein, which will
be introduced in section (5.2.1), have been recorded during the final relaxation step.
The observables reach a plateau at a timescale of ≈ 2µs or correspondingly ≈ 3× 106

simulation steps, which represents an upper bound for the relaxation times. There-
fore the number of simulated configurations in the trajectory to generate the starting
conformations exceeds significantly the number of simulation steps to reach the plateau.

For the calculated observables we considered only measurements of trajectories begin-
ning at the starting conformations, while skipping the initial data during the relaxation
protocol.
The stretching simulations have been calculated on a AMD Opteron 2.4 Ghz system,
such that e.g. a 3.6ms Brownian dynamics simulation with 6 × 108 steps took ≈ 1
week of computer time.

(a) (b) (c)

Figure 3.4: The figure series shows representative conformations during initialization:
(a) initial conformation, (b) extended conformation with an external applied force of
20 pN and (c) relaxed starting conformation.
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Figure 3.5: (a) The total energy of the nucleosome system has been monitored to esti-
mate the relaxation times at which equilibrium is reached (ǫ = 8kBT nm−1). Starting
from an extended conformation (see Fig. (3.4b)) the total energy crosses over to a
steady mean value at times > 2µs or correspondingly ≈ 3 × 106 simulation steps. (b)
The amount of adsorbed DNA to the histone core as function of time indicates a similar
relaxation to the nucleosome ground state.

3.8 Circular and superhelical DNA

So far, the simulation model was described within the framework of the nucleosome
system, which consists of a linear DNA chain and the histone core. In this section
the modifications according to [Klenin et al., 1998] for the simulation of circular and
superhelical DNA are summarized.

The circular chain geometry has an additional constraint, that the vertices ~r0 and
~rN are identical. In superhelical dsDNA an important topological invariant is the
number of times the two ssDNA wind around each other - the linking number Lk. If
the contours C1 and C2 of both strands are known, the linking number can be given
by the Gauss integral

Lk =
1

4π

∮

C1

∮

C2

[d~r (s1) × d~r (s2)]

|~r1 − ~r2|3
(~r1 − ~r2) , (3.43)

where s1 and s2 are the positions along the contours of C1 and C2, respectively [Gros-
berg and Khokhlov, 1994]. The linking number Lk can be expressed as the sum of two
geometrical quantities [White, 1969]

Lk = Tw +Wr. (3.44)

The twist Tw describes the twisting of one strand around the other in a planar con-
formation, while the writhe Wr is a measure of the extent to which the DNA axis
coils and folds in three dimensions. The linking number difference ∆Lk = Lk − Lk0
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quantifies the amount of excess superhelicity introduced into the circular structure with
respect to the relaxed B-DNA molecule. The torsionally relaxed B-DNA molecule has
one right-handed twist per 3.4nm. A related quantity to the linking number difference
is the superhelical density

σ =
∆Lk

Lk0

. (3.45)

The linking number difference ∆Lk is introduced in the simulation of circular DNA
as an additional input parameter. The invariance of the linking number difference
according to Eq. (3.44) is checked during the simulation.

3.8.1 Monte Carlo algorithm

A starting conformation for the BD simulation is generated by a Monte Carlo proce-
dure [Klenin et al., 2000]. The Monte Carlo algorithm is derived from [Vologodskii
et al., 1992] with modifications implemented in [Klenin et al., 2000]. The definition of
the segments and beads is identical to the Brownian dynamics simulation. The energy
terms have been also adopted, except that no deviations of the equilibrium segment
length l0 are allowed. The Monte Carlo algorithm uses two different Monte Carlo steps
to allow for adequate sampling of conformation space:
(1) In a pivoting step, a subchain of 2-10 segments is randomly chosen, and ro-
tated about its end-to-end vector by the angle β uniformly distributed in an interval
(−β0, β0). The fraction of this pivoting step is 2/3, and the overall acceptance rate is
≈ 50%.
(2) In a reptation step a randomly chosen subchain of 5 segments is exchanged with a
randomly chosen subchain of 4 segments, if the end-to-end distance of the 5-segment
subschain is not longer than 4 segments. Each subchain was deformed by changing
the end-to-end distance such that it could be incorporated at the position of the other
subchain. The deformation of a subchain was realized as a sequence of rotations of
the individual segment vectors ~si until the condition for the end-to-end distance was
fulfilled. Here each subchain segment was rotated around the vector ~si × ~X by a small
angle proportional to |~si× ~X |, where ~X is the subchain end-to-end vector. The orienta-
tion of the inserted subchain was chosen such that the orientation of the center-of-mass
with respect to the end-to-end axis coincides with the orientation of the center-of-mass
of the exchanged subchain. The fraction of the reptation step is 1/3.
The acceptance of the MC pivoting step is the same as in the standard Metropolis al-
gorithm. Regarding the reptational step the modifications of Ref. [Klenin et al., 2000],
which take into account the entropy change by adjusting the end-to-end distance of
the subchains, have been kept the same. From the initial conformation 108 Monte
Carlo steps have been calculated to obtain the starting conformation for the Brownian
dynamics simulation.

3.8.2 pUC18 plasmid

In order to study the dynamics of circular and superhelical DNA, we used the pUC18
plasmid as a model system. The pUC18 plasmid contains 2686 base pairs, therefore the
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circular DNA was approximated by a closed chain of N = 91 linear segments of length
l0 = 10nm. The bending persistence length lp = 50nm and the torsional rigidity at
C = 2.5 × 10−19 erg cm were the same as for the nucleosome simulations. The same
stretching modulus of 63.3 pN was used, therefore the stiffness parameter was reduced
to δ = 0.08 taking into account the longer DNA segments. The DNA linear charge
density was renormalized according to the described procedure by Stigter [Stigter,
1977]. We studied the circular DNA at different superhelical densities σ = ∆Lk/Lk0

e.g. from relaxed DNA at σ = 0 to σ ≈ −0.037. For linear DNA the same parameters
as for circular DNA has been used. All simulations have been calculated at 0.1M salt
conditions and a temperature T = 293.15K. The time step is set to ∆t = 1ns. Table
(3.4) summarizes all used simulation parameters and Table (3.5) lists the parameters
for the pUC18 plasmid.

Parameter Description Value

∆t simulation time step 1.0 ns

T temperature 293.15 K

I ionic strength 100 mM

η viscosity 1.0 × 10−3 Pa s

D dielectric constant 80.18

Table 3.4: Simulation parameter values (circular DNA simulations)

Parameter Description Value

N number of segments 91

l0 equilibrium segment length 10.0 nm

δ stiffness parameter 0.08

B Kuhn length 100 nm

C torsional rigidity constant 61.8 kBT

rHD hydrodynamic DNA radius 1.2 nm

rES electrostatic DNA radius 1.2 nm

q charge factor 0.73

Table 3.5: DNA parameter values (circular DNA simulations)
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3.9 Oligonucleosomes

In this work the coarse-grained model was extended to allow the simulation of mul-
tiple and interacting nucleosomes. In the following the modifications regarding the
nucleosome-nucleosome and hydrodynamic interactions are described.

3.9.1 Nucleosome-Nucleosome interaction

In the preceding sections it was discussed that the shape of nucleosomes can be ap-
proximated by a cylindric geometry. An interaction potential between nucleosomes
must therefore take into account explicitly the toroidal geometry of the nucleosome.
We follow here an approach, which includes the geometry, and was adapted by [Wede-
mann and Langowski, 2002] to the context of nucleosomes. The basic idea is that
the interaction between non-spherical molecules can be approximated by the overlap
of two identical ellipsoidal Gaussians with arbitrary orientations ûi and ûj [Berne and
Pechukas, 1972]. Hence the orientation-dependent expressions for strength and range of
ellipsoid-shaped particles can be used in a classical Lennard-Jones potential [Lennard-
Jones, 1931], which exhibits a more realistic distance dependence. In the simulation
we use a Gay-Berne potential to model the interactions between nucleosomes [Gay
and Berne, 1981], which is based on the original overlap model and includes modifica-
tions as described in [Kabadi, 1986a,b]. The expression for the nucleosome-nucleosome
interaction potential between nucleosomes at positions ~ri and ~rj is finally given by:

U (ûi, ûj, ~r) = 4ǫ (ûi, ûj, r̂) (3.46)
[

(

σ0

r − σ (ûi, ûj, r̂) + σ0

)12

−

(

σ0

r − σ (ûi, ûj, r̂) + σ0

)6
]

.

The unit vectors ûi and ûj describe the orientation of the symmetry axis of the inter-
acting particles. In the case of nucleosomes the unit vectors point in direction of the
cylinder axis ~c of the respective nucleosome. The molecular separation r = |~r| is defined

by the intermolecular vector between the nucleosomes ~r = ~r
(n)
i − ~r

(n)
j , while r̂ = ~r/r

is the associated unit vector. Further ǫ (ûi, ûj, r̂) denotes the potential well depth and
σ (ûi, ûj, ~r) is the intermolecular separation at which the attractive and repulsive terms
cancel.
In the modified overlap potential [Gay and Berne, 1981], Gay and Berne rectified two
problems encountered in the original overlap model. First they corrected for the dis-
tance dependence of the potential well depth ǫ0 by including besides the original term

ǫ (ûi, ûj) =
(

1 − χ2 (ûiûj)
)− 1

2 , (3.47)

also a second interaction strength term, which is a function of ûi and ûj as well as r̂

ǫ′ (ûi, ûj, r̂) = 1 −
χ′

2

(

(r̂ûi + r̂ûj)
2

1 + χ′ (ûiûj)
+

(r̂ûi − r̂ûj)
2

1 − χ′ (ûiûj)

)

, (3.48)
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such that the total potential well depth is given by the product

ǫ (ûi, ûj, r̂) = ǫ0ǫ
ν (ûi, ûj) ǫ

′µ (ûi, ûj, r̂) . (3.49)

The ratio of an energy well depth ǫs for a lateral configuration and ǫe for a longitudinal
configuration of the interacting particles can be tuned by the well depth anisotropy
parameter χ′

χ′ =
1 −

(

ǫe

ǫs

)1/µ

1 +
(

ǫe

ǫs

)1/µ
. (3.50)

A second improvement upon the original overlap potential was to eliminate the depen-
dence of the potential well width on the orientation by shifting the potential rather
than scaling it. The distance in Eq. (3.46) at which attractive and repulsive terms
cancel is given by

σ (ûi, ûj, ~r) = σ0

[

1 −
χ

2

(

(r̂ûi + r̂ûj)
2

1 + χ (ûiûj)
+

(r̂ûi − r̂ûj)
2

1 − χ (ûiûj)

)]− 1
2

(3.51)

with the constant σ0. The shape anisotropy of the potential is defined by the parameter

χ =
σ2
‖ − σ2

⊥

σ2
‖ + σ2

⊥

. (3.52)

Here σ‖ and σ⊥ signify the major and minor axes of the ellipsoids.

It has been shown that mononucleosomes can form a hexagonal-columnar phase [Lefor-
estier and Livolant, 1997, Leforestier et al., 2001]. The measured mean distances in
the liquid phase are 7.16 ± 0.65 nm between nucleosomes in a single column and
11.55±1 nm between nucleosomes in two columns. The potential parameters can then
be tuned in such a way that the potential minimas match the experimentally found
inter-nucleosomal distances. The energy well depth ǫ0 can be adjusted with comparison
of phase transition temperature in computer simulations [Emerson et al., 1994]. The
choice of parameters is taken according to Ref. [Wedemann and Langowski, 2002]. The
complete set of parameters is listed in Tab. (3.6).
Fig. (3.6a) shows the nucleosome-nucleosome interaction potential as function of the
internucleosomal distance and nucleosome configuration (lateral/longitudinal).

3.9.2 Excluded volume interaction

In systems with more than two nucleosomes the probability of histone core and DNA
collisions increase. Therefore we account explicitly for the excluded volume of the hi-
stone core by including an additional potential between histone core and DNA beads,
which prohibits e.g. the collisions of DNA segments with the histone core and intro-
duces topological constraints for DNA/histone core motion. This is important as so
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Parameter Description Value

ǫ0 potential well depth 0.25 kBT

σ0 ellipsoid diameter 10.3 nm

χ shape anisotropy parameter -0.506

χ′ well depth anisotropy -0.383

ν well depth exponent (1st) 1

µ well depth exponent (2nd) 2

Table 3.6: Nucleosome-nucleosome interaction parameter values
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Figure 3.6: (a) The distance-dependence of the nucleosome-nucleosome interaction po-
tential is shown for a lateral (black) and a longitudinal configuration (red) (b) Distance-
dependence of excluded volume interaction (black).

far the DNA-histone core interaction was restricted to the predefined superhelical path
along the cylinder surface. For the sake of simplicity we use hereby a Lennard-Jones
potential given by

ULJ (r) = kev

(

(σev

r

)12

−
(σev

r

)6
)

(3.53)

with the effective diameter σev, while kev is an energy parameter controlling the steep-
ness of the excluded volume potential. The excluded volume vev is defined with the
help of the Mayer f-function [Rubinstein and Colby, 2003]

f (r) = exp

(

−
ULJ (r)

kBT

)

− 1 (3.54)

by the following expression

vev = −

∫

f (r) d3r =

∫ (

1 − exp

(

−
ULJ (r)

kBT

))

d3r. (3.55)
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σev and kev are adjusted in such a way that the excluded volume for the interaction
potential ULJ (r) equals the excluded volume of a hard-core repulsion potential of a
cylinder with a height 6 nm and diameter 6.5 nm [Arents et al., 1991], while at the
same time the DNA-histone core potential is not significantly disturbed. The used
parameters of the excluded volume interaction are tabulated in Tab. (3.7).

Parameter Description Value

σev effective diameter 6 nm

kev potential prefactor 0.001 kBT

Table 3.7: Excluded volume parameter values

The distance-dependence of the excluded volume interaction with parameters according
to Tab. (3.7) is shown in Fig. (3.6b).

3.9.3 Internucleosomal forces and torques

In this section the forces and torques due to the internucleosomal potential and the
excluded volume interaction are summarized.
The force acting on the ith nucleosome ~Fi exerted from a jth nucleosome is calculated
as the partial derivative with respect to the nucleosome position ~ri

~Fi = −
∂U

∂~ri

. (3.56)

The right-hand side of Eq. (3.56) may be evaluated to

∂U

∂~ri
= 8ǫ0ǫ (ûi, ûj)

(

ǫ′
∂ǫ′

∂~ri

[

(

σ0

r − σ + σ0

)12

−

(

σ0

r − σ + σ0

)6
]

− (3.57)

3ǫ′2

r − σ + σ0

(

r̂ −
∂σ

∂~ri

)

[

2

(

σ0

r − σ + σ0

)12

−

(

σ0

r − σ + σ0

)6
])

with the terms

∂ǫ′

∂~ri

= −
χ′

r

[

r̂ûi + r̂ûj

1 + χ′ (ûiûj)
(ûi + ûj) +

r̂ûi − r̂ûj

1 − χ′ (ûiûj)
(ûi − ûj) (3.58)

−
(r̂ûi + r̂ûj)

2

1 + χ′ (ûiûj)
r̂ −

(r̂ûi − r̂ûj)
2

1 − χ′ (ûiûj)
r̂

]
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and

∂σ

∂~ri
=

σ0χ

2r

(

1 −
χ

2

(

(r̂ûi + r̂ûj)
2

1 + χ (ûiûj)
+

(r̂ûi − r̂ûj)
2

1 − χ (ûiûj)

))− 3
2

(3.59)

[

r̂ûi + r̂ûj

1 + χ (ûiûj)
(ûi + ûj) +

r̂ûi − r̂ûj

1 − χ (ûiûj)
(ûi − ûj) (3.60)

−
(r̂ûi + r̂ûj)

2

1 + χ (ûiûj)
r̂ −

(r̂ûi − r̂ûj)
2

1 − χ (ûiûj)
r̂

]

.

The torque acting on the ith nucleosome ~Ti exerted by the jth nucleosome is calculated
with the following expression

~Ti = −ûi ×

(

∂U

∂ûi

)

. (3.61)

The implemented equation for the torque is given by

∂U

∂ûi
= 4ǫ0

(

(

∂ǫ

∂ûi
ǫ′2 + 2ǫǫ′

ǫ′

∂ûi

)

[

(

σ0

r − σ + σ0

)12

−

(

σ0

r − σ + σ0

)6
]

+
6ǫǫ′2

r − σ + σ0

∂σ

∂ûi

[

2

(

σ0

r − σ + σ0

)12

−

(

σ0

r − σ + σ0

)6
])

, (3.62)

with the partial derivatives

∂ǫ

∂ûi

= χ2 (ûiûj)
(

1 − χ2 (ûiûj)
)− 3

2 ûj, (3.63)

∂ǫ′

∂ûi
= −

χ′

2

[

2 (r̂ûi + r̂ûj)

1 + χ′ (ûiûj)
r̂ +

2 (r̂ûi − r̂ûj)

1 − χ′ (ûiûj)
r̂ (3.64)

−
(r̂ûi + r̂ûj)

2

(1 + χ′ (ûiûj))
2χ

′ûj +
(r̂ûi − r̂ûj)

2

(1 − χ′ (ûiûj))
2χ

′ûj

]

and

∂σ

∂ûi
=

σ0χ

4

(

1 −
χ

2

(

(r̂ûi + r̂ûj)
2

1 + χ (ûiûj)
+

(r̂ûi − r̂ûj)
2

1 − χ (ûiûj)

))− 3
2

(3.65)

[

2 (r̂ûi + r̂ûj)

1 + χ (ûiûj)
r̂ +

2 (r̂ûi − r̂ûj)

1 − χ (ûiûj)
r̂ (3.66)

−
(r̂ûi + r̂ûj)

2

(1 + χ (ûiûj))
2χûj +

(r̂ûi − r̂ûj)
2

(1 − χ (ûiûj))
2χûj

]

.

The contribution of the excluded volume interaction results in an additional force on
the ith DNA bead exerted by the jth histone core:

~F
(ev)
i = −

∂ULJ

∂~ri
= −

∂ULJ

∂r
r̂ (3.67)
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3.9.4 Hydrodynamic interactions in oligonucleosome model

Regarding the hydrodynamic interaction between different histone cores, we have to
specify in addition to the valid definitions in section (3.4) also a rotational-rotational
coupling between the histone cores. With the result from Goldstein [Goldstein, 1985]
we define the rotational-rotational cross diffusional matrix for non-overlapping spheres

Drr
ij =

1

16πηr3
ij

(

−I + 3
~rij

⊗

~rij

r2
ij

)

. (3.68)

Due to the repulsive part of the histone core-histone core interaction we can disregard
the cases with overlapping spheres.



70 CHAPTER 3. MODEL AND METHODS



Chapter 4

Dynamics of circular DNA

This chapter is focused on the dynamics of single monomers in circular DNA. In plas-
mids, the circular DNA has mostly a superhelical conformation. Equilibrium properties
of superhelical DNA were investigated and understood in great detail in experiments
[Adrian et al., 1990, Strick et al., 1996], simulations [Vologodskii et al., 1992, Ham-
mermann et al., 1998] and analytical theories [Marko and Siggia, 1995, Marko, 1997].
Dynamic light scattering measurements provided information on the motion of whole
DNA rings and the dominant mode of their internal fluctuations [Kremer et al., 1993,
Langowski et al., 1994]. Recently Fluorescence Correlation Spectroscopy (FCS) al-
lowed also to monitor the dynamics on the level of individual monomers within poly-
mers. Here we are interested in the effect of superhelicity and bent sequences in DNA
rings on single monomer motion. In the first part time trajectories of circular DNA
were simulated using the Brownian dynamics (BD) algorithm. The BD simulations are
compared to analytical models of semiflexible polymers. The subsequent parts of the
chapter are devoted to the effect of inserting permanent bends into the DNA sequence.
Further the rotational motion of a fluorophore attached to a DNA monomer is ana-
lyzed, which is shown to modify the outcome of FCS measurements on the simulated
DNA monomer trajectories.

4.1 Circular DNA

DNA conformations

The conformation of a DNA molecule in space is related to its internal twist [White,
1969]. If additional twist is introduced in the torsionally relaxed DNA state, which
can not relax e.g. by the rotation of a free DNA end, then the DNA forms a super-
coil. Two kinds of supercoiled conformations exists [Calladine et al., 2004]: (a) The
circular DNA consists of a series of open spirals that wind around an imaginary toroid,
which is known as solenoid, or (b) the DNA crosses over and under itself repeatedly
with terminal loops, the so-called plectoneme. In bacterial plasmids typically the in-
terwound structure was found. The solenoidal winding was observed where DNA is
already highly curved, since the solenoid supercoil geometry requires high curvature
of DNA. The curvature can be on account of either the base pair sequence or due
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to wrapping around proteins e.g. in nucleosomes. Longer DNA strands promote the
branching from a linear interwound structure to single and multiple Y-bifurcation of
the plectoneme, but it is also known that branching is a function of superhelical den-
sity and the effective DNA radius, which corresponds to ionic conditions in the solution
[Vologodskii et al., 1992].
With the Monte Carlo and Brownian dynamics algorithm circular DNA conformations
have been generated. Representative DNA conformations taken from the ensemble are
shown in Fig. (4.1). In the relaxed state with no additional torsional strain (∆Lk = 0),
circular DNA adopts a random coil conformation. Increasing the superhelical density
σ the DNA undergoes a structural transition from the random coil to a supercoiled
plectoneme [Boles et al., 1990]. The transition involves the reduction of superhelical ra-
dius and the increase of the average number of DNA cross-overs as can be infered from
typical conformations in the ∆Lk = −4 and ∆Lk = −10 structure (see Fig. (4.1)b,c).
For higher superhelical densities the structure becomes more regular. Here we refer to
[Klenin et al., 1991, Vologodskii et al., 1992], where extensive and quantitative MC sim-
ulation studies of the equilibrium conformations of supercoiled DNA have been done.
In the following sections we focus on the DNA dynamics.

(a) (b) (c)

Figure 4.1: Representative conformations of 2.7 kbp circular DNA with increasing
superhelical density |σ|. (a) σ = 0 (∆Lk = 0) (b) σ ≈ −0.015 (∆Lk = −4) (c)
σ ≈ −0.037 (∆Lk = −10)

4.1.1 Brownian dynamics time trajectories

The BD simulation allowed us to calculate time trajectories of DNA rings. The polymer
conformations described by the bead positions {~ri} and the segmental orientation {~fi}
have been recorded at a set of M discrete time points {t}. For long time trajectories,
positions and conformations have been saved every 1000th time step ∆t. In order to
resolve dynamics on shorter time scales, additional short time trajectories have been
used, where conformations were recorded at every time step. For each set of parameters
five long and five short time trajectories have been calculated with a length of 500ms
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and 100µs, respectively. The short time trajectories allowed us to obtain properties e.g.
mean-square displacement of a labeled bead, in the time interval [1 ns, 1µs], while the
longer time trajectories were used in the time range from 1µs to 50ms. All calculated
properties have been averaged over the simulated trajectories.

Translational diffusion coefficient

As a first step the translational diffusion coefficient Dt can be estimated from the slope
of the center-of-mass trajectory. The center-of-mass ~rcm is defined as the average of
the bead positions

~rcm (t) =
1

N

N
∑

i=1

~ri (t) (4.1)

and the mean-square displacement (MSD) of the center-of-mass over a time interval τ
is given by the following expression

〈~r 2
cm (τ)〉 =

1

M

∑

{t}

[~rcm (t+ τ) − ~rcm (t)]2 . (4.2)

The MSD of the center-of-mass displays strictly normal diffusion on all time scales. A
fit according to the normal diffusion equation 〈r2

cm (τ)〉 = 6Dtτ yields the translational
diffusion coefficients Dt = 3.9µm2s−1 at ∆Lk = 0 and Dt = 5.0µm2s−1 at ∆Lk = −10.
The higher translational diffusion coefficient at increasing linking number differences
can be explained by the formation of a compact plectonemic structure (see Tab. (4.2)).
In Ref. [Langowski et al., 1994] the pUC18 plasmid (2687 bp) was studied by dynamic
light scattering (DLS) and in addition by computer simulations. The DLS experiments
reported a translational diffusion coefficient in the range Dt ≈ 3.8 − 4.1µm2s−1 for
∆Lk = 0 and Dt ≈ 4.7 − 4.8µm2s−1 for ∆Lk = −10. Chain conformations were
generated by Monte Carlo simulations based upon the program corchy, which incorpo-
rated electrostatic interactions only on the level of a hard-core potential. The diffusion
coefficients of the chain configurations were computed using the modified Kirkwood
approximation found by [De Haen et al., 1983], and supported the experimental find-
ings, although the calculated value for the translational diffusion coefficent was shifted
to slightly higher values Dt ≈ 4.8 − 5.3µm2s−1 for superhelical DNA. We conclude
that the BD simulations in this work reproduce the data found in the MC simulations
[Langowski et al., 1994] and are in good agreement with the DLS data.

Internal dynamics of single DNA monomers

Knowledge of the motion of individual monomers provides valuable insight into the
internal structure, interactions and environment of polymers. In the simulations the
position ~ri of a single, arbitrary bead was tracked. The internal motion of a bead
〈~r 2

rel (τ)〉 as defined relative to the center-of-mass is as follows

〈~r 2
rel (τ)〉 =

1

M

∑

{t}

[(~ri (t+ τ) − ~rcm (t+ τ)) − (~ri (t) − ~rcm (t))]2 . (4.3)
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The simulated data for the internal motion of the labeled bead are depicted in Fig. (4.2a).
At small time scales the internal motion follows a power law 〈~r 2

rel (τ)〉 ∝ τα. For differ-
ent linking number differences ∆Lk we found the exponents α ≈ 0.74 (∆Lk = 0) and
α ≈ 0.72 (∆Lk = −10), where we fitted in the time range 10−7 s < τ < 10−5 s ≪ τ̃1.
Here τ̃1 denotes the longest relaxation time of the polymer. In order to quantify the
effect of DNA circularization we studied also a linear DNA, which had the same con-
tour length of 910 nm as for circular DNA. The monitored bead was positioned in the
center of the DNA chain, such that forces on the bead are exerted symmetrically from
both sides. This is comparable to the situation of a bead in circular DNA and allows
to disregard DNA end effects. The fit yields an exponent α ≈ 0.74 for linear DNA.
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Figure 4.2: (a) The figure shows the MSD 〈~r 2
rel〉 of the DNA monomer relative to the

center-of-mass for circular DNA with different linking number differences ∆Lk = 0
(solid blue), ∆Lk = −10 (solid red) and a linear DNA (solid black). (b) The total MSD
〈~r 2

i 〉 is shown. The color coding is kept as in (a). The dashed line mark τ 3/4-, τ 2/3- and
τ 1/2-power laws (from top to bottom) to guide the eye . In addition the contributions
of the internal motions 〈~r 2

rel〉 taken from (a) are renewed (grey).

All exponents are close to 3/4, which is expected from polymer physics for the dynamics
of linear semiflexible polymers [Kroy and Frey, 1997, Harnau et al., 1996]. The 3/4-
power law is obtained as an approximation in the limit of a stiff chain at length scales
below the persistence length, where the bending modes dominate and the stretching
modes can be neglected. At times longer than the longest relaxation time τ̃1 the internal
motion saturates at a constant value. The longest relaxation time in the case of the
linear polymer is τ̃1 ≈ 1 ms as calculated from the autocorrelation of the end-to-end
vector. At very short times τ < 10−8 s the exponent falls into the range between 0.8
and 0.9.
In Fig. (4.2a) the curve for the linear DNA matches the corrsponding curve for circular
DNA in the relaxed state for a broad range of times up to approximatly τ̃1. Therefore
the formation of a DNA ring represents only a small perturbation with respect to the
linear DNA for the interal motion of a single bead.
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Mean-square displacement of single DNA monomers

A quantity, which is directly accessible to experimental measurements, is the MSD of
a labeled bead 〈~r 2

i 〉. The MSD is the superposition of the internal dynamics and the
center-of-mass motion and is calculated in the simulation according to the following
equation

〈~ri (τ)
2〉 =

1

M

∑

{t}

[~ri (t+ τ) − ~ri (t)]
2 . (4.4)

At small times the motion of the monitored bead is determined predominantly by the
internal motion, while the contribution of the center-of-mass diffusion remains small.
The MSD obeys therefore approximately the 3/4-power law as shown in Fig. (4.2b).
In turn for times t ≫ τ̃1 beyond the longest relaxation times the contribution from
the internal motion become negligible and the dynamics is dominated by the center-
of-mass diffusion.
In order to study further the power law behavior of the MSD, a local time-dependent
exponent β (τ) was defined. The MSD curves were fitted locally to 〈r2

i (τ)〉 ∝ τβ in the
interval [0.1τ, 10τ ] in vicinity of the lag time τ . The results are shown in Fig. (4.3).
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Figure 4.3: The time-dependent local exponent β (τ) of the MSD power-law 〈r2
i 〉 ∝ τβ(τ)

has been obtained by fitting in the time interval [0.1τ, 10τ ]. The local exponent is
depicted for the linear (circle) and the circular DNA for a linking number difference
∆Lk0 (dot) and ∆Lk − 10 (square). In addition crosses mark the contribution of
internal motion for linear DNA.

At long lag times the local exponent should approach unity, characterizing normal
diffusion. Due to the required longer simulation times in calculating the local expo-
nent, this limit is not fully reached, but the center-of-mass diffusion is superimposed
by contributions of internal motion. In the framework of the Rouse and Zimm model
as presented in section (2.1.2) the MSD scales in the limit τ ≪ τ̃1 with a power law
τ 1/2 and τ 2/3, respectively [Doi and Edwards, 1986]. Recent single-molecule experi-
mental studies on dsDNA dynamics in dilute solution lead to a controversy whether
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the monomer motion is controlled by hydrodynamic interactions [Lumma et al., 2003,
Winkler et al., 2006] as predicted by the Zimm model or not [Shusterman et al., 2004]
as follows from the Rouse model. For linear end-labeled dsDNA fragments of different
length L results consistent with the Zimm model have been experimentally observed
only for very long polymers exceeding 104 bp [Petrov et al., 2006], which corresponds
to the limit of flexible polymers L ≫ lp. In this study the experimental data was
interpreted in the framework of the theory of Gaussian semiflexible polymers [Harnau
et al., 1996], which comprises the Zimm regime for long polymers (see section (2.1.2)).
In [Shusterman et al., 2004] the Zimm regime was also observed for the longest mea-
sured linear dsDNA molecule of 23.1 kbp, which corresponds to the common view on
polymer dynamics. But in contradiction an additional Rouse regime on intermedi-
ate time scales was reported for dsDNA in the range from 2.4 to 23.1 kbp of studied
molecule lengths. In a subsequent study [Shusterman et al., 2008] circular DNA con-
structs, in detail pUC18 plasmids, were measured with a similar FCS experimental
setup. For the pUC18 plasmid, which is used here as a model system in the simula-
tions, an exponent β ≈ 0.5 typical of Rouse dynamics was found at intermediate times
τ ≈ 100µs. A recent study [Hinczewski et al., 2009] predicted also the existence of a
sub-Zimm regime for end-monomer MSD in long DNA molecules, but could also not
account fully for the observed Rouse regime.
Here, the BD simulations based on a homogeneously elastic chain do not display an
intermediate regime as reported in [Shusterman et al., 2008], which could have been
attributed to Rouse- or Zimm-like dynamics; the local exponent β (τ) remains on all
time scales above 0.7. But we see a shallow minimum in the local exponent as proposed
recently in [Hinczewski et al., 2009], reflecting the decrease in the internal dynamics
of the semiflexible polymer for the linear and circular DNA before the crossover from
the stiff-rod limit to the flexible chain limit and normal diffusion. The minimum is
observed for lag times ≈ 100µs. Circularization of DNA diminshed the effect, and ad-
ditional torsional stress at higher superhelical densities further reduces the depth of the
local minimum. In circularized DNA due to the compaction the transition to normal
diffusion sets in at smaller time scales, therefore superimposing the local minimum.

Amplitude of internal motion

The internal motion of individual monomers in the DNA coil is restricted and reaches
its maximal MSD eventually for sufficient times as shown in Fig. (4.1.1). The relative
amplitude of internal fluctuations a can be calculated in the saturated constant regime
at times τ > τ̃1. In the limit τ → ∞ the internal motion of a bead 〈~r 2

rel (τ)〉 is related to
the amplitude and can be simply described by the MSD of two independent variables
x1 and x2 distributed uniformly in the interval [−a,+a], which is bounded by the
amplitude of internal motion:

lim
τ→∞

〈~r2
i (τ)〉 =

3

4a2

∫ +a

−a

dx1

∫ +a

−a

dx2 (x1 − x2)
2 = 2a2. (4.5)

Taking into account the independent degree of freedom in x-,y- and z-directions yields
an additional factor 3 in the equation. The amplitudes a = 86.1 nm (∆Lk = 0) and
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a = 65.5 nm (∆Lk = −10) were obtained by fitting 2〈a2〉 in the saturated regime. The
decrease can be rationalized due to the more interwound, tighter structure for higher
superhelical densities, which restricts the motion of the individual segments. Earlier it
has been showed that the amplitude of internal motions decreases approximately by a
factor 2 as a function of increasing superhelical density [Langowski et al., 1994] from
σ = 0 to σ = −0.05. The decrease is nonmonotonic and passes a local maximum at
σ ≈ −0.03.

The same DLS experiment [Langowski et al., 1994] showed that the internal diffu-
sion coefficient, which has been qualitatively interpreted as a measure of the motions
of the smallest rigid DNA subunit in the superhelix, remained unchanged for most
of the superhelical densities. Only well beyond a superhelical density σ = −0.04 a
significant increase of the internal diffusion coefficient with respect to the relaxed state
has been observed. In the simulations the MSD of the internal motion (see Fig. 4.2a)
displays no acceleration of the dynamics up to the investigated superhelical density
σ ≈ −0.037. The ratio of the MSD for the ∆Lk = −10 superhelix and the relaxed
DNA ring as calculated in Tab. (4.1a) deviates on all intermediate time scales at the
most 4 % from unity.

τ [s] 10−7 10−6 10−5 10−4 10−3

(a) 0.98 0.97 0.97 0.97 1.04

(b) 0.98 0.96 0.96 0.94 1.00

(c) 1.07 1.11 1.13 1.12 1.09

Table 4.1: Mean-square displacement ratio of circular DNA at linking number differ-
ences ∆Lk = −10 to ∆Lk = 0. The cases for circular DNA (a) without a permanently
bend sequence, with a permanently bent sequence, where the monitored bead has been
positioned (b) in 25 % of the contour length L relative to the bent sequence and (c)
directly at the bent sequence.

Acceleration of sites in end loops

Circular DNA undergoes a structural transition from a random coil at low superhelical
densities σ to a supercoiled plectoneme [Boles et al., 1990] at high superhelical densi-
ties. The supercoiled plectoneme can be roughly subdivided into a stem region where
two DNA strands are closely interwound and end loop regions, where the DNA makes
a turn, forming a loop. A representative structure of a plectoneme can be found in
Fig. (4.1c). In the following section we have studied the effect on the dynamics, if the
monitored DNA section can be assigned either to a position in the stem region or an
end loop of the plectoneme.

End loops have been identified by using a method developed in [Klenin et al., 1995].
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Figure 4.4: According to [Klenin et al., 1995] the local writhe ω can be used to identify
end loops in DNA conformations, as the end loop position is characterized by a max-
imum in the number of tail cross-overs. Fig. (a) shows the local writhe ω dependent
on the bead position for the DNA conformation in Fig. (b). The numbers indicate the
spatial position of the corresponding beads as counted in Fig. (a).

The method defines in analogy to the definition of the writhe Wr along the total con-
tour [Doi and Edwards, 1986] a local writhe ω (j) in the vicinity of a segment j. The
Gaussian integral describes then the average number of cross-overs between the two
tails of k segments at the segment j:

ω (j) =
1

2

∫ ~rj

~rj−k

∫ ~rj+k+1

~rj+1

(d~r1 × d~r2)
~r1 − ~r2
|~r1 − ~r2|3

. (4.6)

Here we set the number of segments belonging to a tail k = 18, which corresponds
to approximately 3-4 persistence lengths. The Gaussian integral can be evaluated as
shown in [Klenin and Langowski, 2000] to compute the writhe in circular DNA. In
Fig. (4.4a) the local writhe ω has been calculated with help of Eq. (4.6) as a function
of the bead position in the circular DNA. In addition the actual DNA conformation is
depicted in Fig. (4.4b). The maxima of local writhe correspond to the two end loops
as seen in the DNA conformation. From visual inspection of ≈ 100 independent con-
formations it can be stated that in general segments which are characterized by high
local writhe ω belong to the end loops in superhelical conformations.

In order to relate the motion of an individual bead to its positioning within a stem
region or an end loop, bead trajectories were analyzed. The 500ms-trajectories of the
labeled bead were divided into time intervals of 10 ms. For each time interval the aver-
age local writhe 〈ω〉 was calculated. Simultaneously also the MSD 〈~r 2

i (τ)〉 for different
lag times τ was obtained. Fig. (4.5a) shows the relation between the MSD and the
average local writhe. Both quantities display correlations for intermediate times as
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expressed by high correlation coefficient

ρ =
cov (MSD, 〈ω〉)

σMSD σ〈ω〉
, (4.7)

where cov (MSD, 〈ω〉) denotes the covariance of MSD and local writhe and σ the cor-
responding standard deviations. The regression coefficient ρ ≈ 0.89, 0.87, 0.69 and
0.23 decreases continously for the set of lag times τ = 10−6 s, 10−5 s, 10−4 s and 10−3 s.
From the figure we infer that at higher average local writhe, which is related to an
end loop positioning of the labeled bead, the MSD is increased. For example for a
lag time of 100µs the MSD of a DNA monomer in an end loop with a local writhe
〈ω〉 = 1.5 is increased by 30% relative to a non-loop region characterized by the local
writhe 〈ω〉 = 0. This can be rationalized by comparison with linear polymers. The BD
simulations demonstrated clearly that if the labeled bead is positioned at the end of
a linear DNA molecule the internal motion increased relative to the bead positioned
at the DNA center (see Fig. (4.5b)). This can be verified also in the framework of the
Gaussian semiflexible chain model, described in section (2.1.2). If the contour coordi-
nate is shifted from the center position s = 0 to the polymer ends s = ±L/2, then the
calculated contributions from the normal modes and corresponding eigenfunctions ψk

are such that the resulting internal motion is accelerated. In circular DNA we observe
a similar effect for DNA monomers in end loops.
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Figure 4.5: (a) Mean-square displacement 〈r2
i (τ)〉 as a function of the mean local writhe

ω has been calculated for 10ms-time intervals from trajectories of labeled beads. The
MSD has been evaluated at different lag times τ = 10−6 s, 10−5 s, 10−4 s and 10−3 s
(from bottom to top). (b) The internal motion 〈~r 2

rel〉 is compared for linear DNA with
the labeled bead in the DNA center (black) and DNA end (red).
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4.2 Comparison to analytical solution

4.2.1 Gaussian semiflexible chain model

Macromolecules exhibit a broad range of flexibility from very flexible molecules (e.g.
ssDNA), semiflexible molecules (e.g. dsDNA) to rigid objects (e.g. microtubule).
Equilibrium properties of semiflexible polymers are often investigated by the Kratky-
Porod model [Kratky and Porod, 1949] or the Gaussian chain model [Doi and Edwards,
1986] (see section 2.1.1). A description of flexible macromolecules dynamics is provided
by the framework of the Rouse-Zimm model [Rouse, 1953, Bueche, 1954, Zimm, 1956].
An approach for the dynamics of a Gaussian semiflexible chain has been presented in
[Harnau et al., 1995, 1996] by Harnau, Winkler and Reineker (HWR model), which has
the advantage that it is valid for the complete range of polymer stiffness.
In order to validate the simulation, dynamic properties like the internal motion and
the time correlation of the segment vector have been calculated analytically within
this approach. Details of the calculation of the equation governing the internal motion
〈~rrel (τ)

2〉 of a Gaussian semiflexible chain can be found in [Harnau et al., 1996], and
the main points are briefly summarized in section (2.1.2).
The following parameters have been used to allow the direct comparison with the
simulation results. We considered a linear chain of contour length L = 910 nm. Further
a thickness of the molecule d = 2.4 nm is assumed to exclude self-interactions. The
temperature T and viscosity η has been set to identical values as used in the simulations.
In the evaluation of the sum in Eq. (2.19) a final cutoff for the mode number Λ = 150
has been set. The properties have been calculated at the center of the DNA molecule
for a contour coordinate s = 0.
In the analytical HWR model the segment vector ~ei (t) can be approximated by the
normalized difference vector of two points at the continuous contour coordinates s and
s′ on the polymer:

~ei (t) =
~r (s, t) − ~r (s′, t)

|~r (s, t) − ~r (s′, t) |
. (4.8)

Analogously to the derivation of Eq. (2.19) the expansion of ~r (s, t) in terms of the
eigenfunctions allowed us to obtain the temporal correlation function of the segment
vectors 〈~ei (t)~ei (0)〉:

〈~ei (t)~ei (0)〉 =
kBT

πη

∞
∑

l=1

τl exp

(

−
t

τl

)

[

ψ2
l (s) − 2ψl (s)ψl (s

′) + ψ2
l (s′)

]

(4.9)

The equation has been evaluated by setting the separation of the two points on the
contour to l0 (or equivalently s′ = s+l0), which corresponds to the equilibrium segment
length in the discrete simulation model.
The deviations of the internal motion calculated for the HWR model relative to sim-
ulation results do not exceed 22 % and approximate very well the saturated regime at
large times. A close agreement has been found also for the reorientation of the segment
vector with time between HWR model and BD simulation (see Fig. (4.6b)). Consider-
ing the simplicity of the analytical model e.g. preaveraging of the hydrodynamic tensor
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Figure 4.6: (a) The figure shows the MSD 〈r2
rel〉 of the DNA monomer relative to the

center-of-mass for linear DNA (solid). The symbols indicate the analytical prediction
for the internal motion of a linear Gaussian semiflexible chain. Besides the curves
for a mode cutoff Λ = 150 (circle), also the curves for Λ = 91 (diamond) and Λ = 45
(square) were included in the figure. (b) The temporal correlation of the segment vector
was calculated 〈~ei (t+ τ)~ei (t)〉 as obtained by the simulation (line) and the analytical
solution according to Eq. (4.9) (symbols). The separation onto the contour was set to
l0 = 5 nm (diamond), l0 = 10 nm (circle) and l0 = 20 nm (square).

and no fitting parameters, the deviations between the simulation and the HWR model
remain relatively small. Therefore we conclude that the simulation of linear DNA is
reasonably well described by the analytical model. Consequently we have shown that
the BD simulation of the discrete DNA model can be used to compute dynamic proper-
ties of semiflexible polymers. This validation encourages us to apply the BD simulation
to the dynamics of superhelical DNA, for which no consistent analytical theory is still
available.

Discretization

The analytical approach allows us to make some statements regarding the effect of dis-
cretization. The monomer motions at small length scales or equivalently at short times
are the most sensitive to the discrete nature of the DNA model. We can mimic the
discretization by setting the high-frequency cutoff Λ to smaller values, therefore exclud-
ing the contributions of the highest normal modes. Since each mode is associated with
a certain length scale, the cutoff approximates the influence of the discrete segment
length in the simulation. Consequently motions on smaller length scales, corresponding
to modes beyond the cutoff, are disregarded. As seen in Fig. (4.6a) significant devia-
tions for the internal motion 〈r2

rel〉 by changing the cutoff Λ to smaller values arise only
in the limit of small times t < 10−7 s.

The segment vector ~ei is closely connected with the chosen equilibrium segment length
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l0, therefore it is necessary to study the effect of discretization of the simulated polymer.
Within the HWR model the correlation 〈~ei (t+ τ)~ei (t)〉 can be calculated according
to Eq. (4.9) as function of the separation l0 on the contour. Here the following values
for the separation were considered: l0 = 5 nm, l0 = 10 nm and l0 = 20 nm. From
Fig. (4.6b) we can infer that for large times t due to the exponential term the differ-
ences vanish. On the other hand for very short times the contributions of the modes,
which are relevant on the length scale of discretization, become negligible. Therefore
differences between the discretizations are visible only on intermediate time scales. A
finer resolution with a segment lenght l0 = 5 nm added only small corrections with
respect to the segment length l0 = 10 nm.

Thus, we have verified that the HWR model coincides reasonably well with the BD sim-
ulation. In a second step we have also checked with the analytical description that the
effect of discretization does only introduce minor corrections to the polymer dynamics.
The used value of l0 = 10 nm for the segment length throughout the simulations is
therefore a good trade-off between computational time and accuracy.

4.2.2 Barkley-Zimm model

The reorientation of the DNA molecule as outlined in section (2.1.3) can be described
by DNA as a uniform elastic rod that bends and twists in a viscious medium in the
framework of the Barkley-Zimm theory. Barkley and Zimm applied the theory to ex-
perimental data of nanosecond fluorescence spectroscopy, which allows to measure the
DNA rotation. Dyes such as ethidium bind to DNA by intercalation between two base
pairs, such that the transition dipole moment of ethidium lies in the plane of the dye.
The dye is excited with polarized light, and consequently the decay of the emitted
fluorescence intensity of the horizontal and perpendicular components relative to the
initial polarization vector is monitored, which allows to determine the reorientation of
the fluorescent dye embedded in DNA with time. The established lifetime of DNA-
intercalated ethidium bromide is about ≈ 20 − 25 ns, therefore it is assumed that the
main contributions to the fluorescence decay arise from very fast motions. In a real-
ization of this kind of experiment [Wahl et al., 1970] a rapid decay of the fluorescence
polarization was identified with a decay time τ ≈ 28 ns. The Barkley-Zimm theory
predicts the general shape of the fluorescence decay curves. Further it was shown that
the contributions from bending remain small at the nanosecond timescale, which can
be rationalized as rotations around the helical axis take place on shorter time scales as
for rotations perpendicular to the helical axis.

Since reorientations of the helical axis are much slower than rotations around the heli-
cal axis, we restrict the considerations onto only the twisting motions for time scales of
nanoseconds and neglect the small contributions from bending of the helical axis. The
orientation of DNA is recorded within the BD simulation with the ~f -vector, which lies
in the plane perpendicular to the segment vector in the local reference frame. Then
the distribution ψ (γ, τ |γ0, 0) as given by Eq. (2.22) allows to describe analytically the

temporal correlations of the ~f -vector. The equation expresses how the rotation angle
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γ on a specific site on DNA is distributed as a function of time, starting with a given
initial rotation angle γ0 and the system in thermal equilibrium. It should be noted
that the angle between ~f (τ) and ~f (0) is exactly given by the difference γ (τ) − γ0 of
the rotation angle at lag time τ and the initial angle. The following expression was
derived to calculate the temporal correlation:

〈~f (τ) ~f (0)〉 = 〈cos (γ (τ) − γ0)〉 (4.10)

=

∫ ∞

−∞

dγ ψ (γ, τ |γ0, 0) cos (γ (τ) − γ0) .

These parameters were assumed in the calculations: DNA of length L = 910 nm and
the circular DNA cross-section is defined according to the hydrodynamic DNA radius
rHD = 1.2 nm. Further the same torsional rigidity C = 2.5×10−19 erg cm as in the DNA
model was chosen. In Eq. (2.23) the sum is truncated at Λ′ = 150, which corresponds
to a wave length lΛ′ = 2π/λΛ′ = L/Λ′ < l0 and a time scale τΛ′ = 1/σλ2

Λ′ ≪ 10−9 s.
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Figure 4.7: The comparison between the temporal correlation 〈~f (t+ τ) ~f (t)〉 for linear
DNA as calculated from the simulation data (line) and Barkley-Zimm model of the
torsional DNA motions (circles) is shown.

In Fig. (4.7) the reorientation of the ~f -vector due to twisting motions as calculated
from the analytical model together with the simulation data is depicted. We conclude
from the good agreement between the simulation data and the analytical calculations,
that the reorientation of the ~f -vector on the nanosecond timescale in the simulation
can be explained solely by twisting motions.

4.3 Circular DNA with permanently bent sequences

In a preceding section it was argued that DNA segments, which are located tempo-
rally in end loops, are accelerated. This finding might indicate that the experimentally
observed acceleration of dynamics with increasing linking number difference in [Shus-
terman et al., 2008] might stem from the shift of the labeled position towards the end
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loop regions. For the studied pUC18 plasmid it is known that it contains naturally
curved sequences [Muzard et al., 1990, Kremer et al., 1993]. The effect of a permanently
bent sequence is to organize the global structure by increasing the probability at high
superhelical densities for an end loop in vicinity of the bent sequence [Kremer et al.,
1993]. Direct evidence for the positioning of sequence-directed bends at end loops has
been obtained by electron microscopy [Laundon and Griffith, 1988]. In the following
we want to address the question to what extent the insertion of a bent sequence effects
the single monomer dynamics.

DNA conformations with permanently bent sequences

BD simulations of circular DNA with an inserted bent sequence have been performed.
A permanently bent sequence was introduced into the DNA chain by assigning at three
adjacent joints a bending angle θ⋆ of 40◦ lying in the same bending plane (φ⋆ = 0◦),
such that the sequence spans a total bending angle of 120◦.
In Fig. (4.8) it is checked that for relaxed DNA the mean local writhe equals 〈ω〉 = 0.
Introducing additional torsional strain the mean local writhe 〈ω〉 is shifted by a con-
stant value, such that the probability for end loop formation is distributed uniformly
along the DNA chain. In the case of an insertion of a bent sequence at arbitrary bead
positions i = 0, 1 and 2, the bent sequence is correlated with the maximum of the av-
erage local writhe. In addition as reported in [Kremer et al., 1993, Klenin et al., 1995]
an ’echo’ peak of the mean local writhe appeared at the opposing position at approxi-
mately 50 % of the contour length L relative to the bent sequence. As shown for DNA
without an inserted bent sequence, the maximum in local writhe corresponded to end
loops. The ’echo’ peak position depends on the overall DNA length as for longer DNA
molecules the probability of branching increases. The formation of an ’echo’ end loop
at the opposing DNA position is consistent with no or small probability of branching.

We investigated the dynamics of single monomers as a function of the distance from
the bent sequence, using two basic configurations:

• In one configuration of the system the labeled bead was placed directly at the
bent sequence, such that the labeled bead remained a longer fraction of time in
end loops.

• For the second configuration the fact was considered that an ’echo’ end loop
appeared at the opposing position at ≈ 50% of the contour length relative to the
bent sequence in unbranched superhelical conformations. Therefore in order to
probe the dynamics in the stem region of the plectonemic structure, the labeled
bead has been positioned at ≈ 25% of the contour length relative to the bent
sequence. The symmetrical positoning between the bent sequence favouring end
loops and the ’echo’ loop lead to a reduced probability of an end loop formation
at the labeled bead.



4.3. CIRCULAR DNA WITH PERMANENTLY BENT SEQUENCES 85

0 20 40 60 80
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

lo
ca

l w
rit

he
 〈 

ω
 〉

# bead

Figure 4.8: Mean local writhe 〈ω〉 as a function of the bead position. Circular DNA in
the relaxed state (blue) and at ∆Lk = −10 (red) was calculated with inserted perma-
nently bent sequences at bead positions 0-2 (dot-dashed) and without bent sequences
(solid). For relaxed DNA (∆Lk = 0) with and without bent sequences the curves have
zero mean local writhe (〈ω〉 = 0).

Translational diffusion coefficient

The translational diffusion coefficients are obtained by repeating the same calculations
as done for unbent circular DNA. The slope of the center-of-mass MSD yields a trans-
lational diffusion coefficient Dt = 4.9µm2s−1 for ∆Lk = −10 and Dt = 4.4µm2s−1 in
the case of relaxed DNA.
The size of the molecule can be characterized by the square radius of gyration:

〈R2
g〉 =

1

N

N
∑

i=1

N
∑

j=1

〈(~ri − ~rj)
2〉. (4.11)

MC simulations as described in section (3.8.1) were performed with 108 simulation
steps. In the radius of gyration calculation according to Eq. (4.11) only every 1000th
DNA conformation was included. Tab. (4.2) summarizes the results for DNA rings
with and without bent sequences and different linking number differences.

〈R2
g〉

1
2 [nm] unbent bent

∆Lk = 0 84.5 82.7

∆Lk = −4 69.0 68.8

∆Lk = −10 63.6 62.1

Table 4.2: Radius of gyration 〈R2
g〉

1/2
calculated from MC simulations for circular DNA

with and without bent sequences at different linking number differences.
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The size of the polymer decreases with increasing superhelical density |σ|. The bent
sequence induced only an additional minor shrinking of the polymer size.

Internal motion of single DNA monomers

In Fig. (4.9a) the MSD 〈r2
rel〉 of the DNA monomer relative to the center-of-mass with

an intrinsicly bent sequence is plotted versus time. The positioning of the labeled
bead directly at the bent sequence enhanced its internal motion, while for the second
configuration with the labeled bead at a separation of ≈ 25% of the contour length
from the bent sequence the MSD is reduced. The separation of the MSD curves for the
two considered configurations is more pronounced at higher superhelical densities. This
can be explained by the formation of a plectonemic structure with a stem region and
terminal end loops. For circular DNA without permantly bent sequences we already
showed that the monomer motion in the vicinity of an end loop is accelerated. Further
the probability of end loops is increased directly at the bent sequence, as the naturally
curved sequence favours energetically the end loop formation. Therefore the labeled
bead at the bent sequence remains in end loops for a larger fraction of time, and
displays consequently faster dynamics. On the other hand in the second configuration
the labeled bead is positioned predominantly in the stem region between the terminal
loops. The motion is therefore suppressed due to the tight interwound structure, which
is created by the DNA itself.

Mean-square displacement of single DNA monomers

The total MSD is the superposition of internal motion and center-of-mass diffusion,
which is depicted in Fig. (4.9b).
For superhelical DNA at ∆Lk = −10 the accelerated internal motion at the bent site
is overlaid by the fast translational diffusion due to the compact size of the polymer.
Therefore the two motions cooperatively reinforce the acceleration of about 12 − 13%
of the MSD compared to the relaxed DNA at intermediate times τ = 10− 100 µs (see
Tab. (4.1)). On the other hand the difference between the MSD curves for ∆Lk = 0 and
∆Lk = −10 is diminished due to the opposing trends of the center-of-mass diffusion
and the internal dynamics, when the labeled bead is positioned at 25% of the contour
length away from the bead.

4.4 Polarization effects

In a recent study the single monomer dynamics of specially labeled superhelical DNA
have been measured with fluorescence correlation spectroscopy (FCS) [Shusterman
et al., 2008]. Classical experimental techniques, such as dynamic light scattering or
transient electric birefringence deliver information only on large-scale shape fluctua-
tions of macromolecules. FCS [Elson and Magde, 1974, Magde et al., 1974] is a powerful
experimental method that allows to measure the dynamics of molecules in a variety of
sample system. It has been used to measure (anomalous) diffusion [Wachsmuth et al.,
2000, Weiss et al., 2004], flow [Magde et al., 1978, Koehler et al., 2000], fast rotational
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Figure 4.9: (a) The figure shows the MSD 〈r2
rel〉 of the DNA monomer relative to the

center-of-mass for a superhelix with an intrinsicly bent sequence. ∆Lk = 0 (blue),
∆Lk = −10 (red), at the bent sequence (dot-dashed), in a distance of 25%L relative to
the bent sequence (solid). (b) The total MSD 〈r2〉 is shown. The color coding is kept
as in (a). The dashed line mark τ 3/4-, τ 2/3- and τ 1/2-power laws (from top to bottom)
to guide the eye . In addition the contributions of the internal motions 〈r2

rel〉 taken
from (a) are renewed (grey).

motion [Kask et al., 1987, 1989] , photophysical properties [Widengren et al., 1995]
and diverse chemical reactions [Elson and Magde, 1974] both in vitro and in vivo, i.e.
in living cells. FCS is capable of resolving the internal dynamics of molecules that are
larger than the focal volume [Lumma et al., 2003, Shusterman et al., 2004]. It is based
on a correlation analysis of the fluorescence photons emitted by molecules that move
in a tiny laser focus (typical volume of 1 femtolitre) inside the sample.
In the following the BD simulations is adapted to model FCS experiments. Therefore
the motion of the fluorophore’s dipole moment is explicitly taken into account and the
effects of fluorophore excitation with partially polarized light are considered.

4.4.1 Fluorophore’s dipole moment dynamics

At first the dynamics of the fluorophore’s dipole moment was studied. The dipole
vector of the fluorophore is represented by a constant vector ~pi in the local coordinate
system (~fi, ~gi, ~ei) of an arbitrary, single segment i and can be expressed generally as a

superposition of the ~ei- and ~fi-vector. The underlying assumption is that the dipole
vector is rigidly attached to one DNA segment and follows strictly the translational and
rotational motion of the segment. A schematic view of the fluorophore attachement to
superhelical DNA is depicted in Fig. (4.10).
In the FCS experiments with superhelical DNA [Shusterman et al., 2008] a single fluo-
rophore is attached to the DNA by binding it to a third DNA strand that subsequently
forms a triple helix according to the protocol developed in [Pfannschmidt et al., 1996].
One end of the intercalating strand is then fixed covalently to the DNA ring. Under
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Figure 4.10: A representative superhelical conformation at a linking number difference
∆Lk = −10 is shown. Schematically a fluorophore (green oval) is attached to the DNA.

The fluorophore’s orientation is described by the local coordinate system
(

~fi, ~gi, ~ei

)

.

certain experimental conditions this structure is known to be quite stable, which should
make the fluorophore’s dipole moment follow the DNA ring dynamics. When the triple
helix is destabilized the fluorophore is connected to the DNA by a freely moving 10
nucleotide linker and thus the dipole moment’s direction should no longer correlate
with the DNA conformation.

The rotating dipole moment is known to introduce an additional decay term into
the FCS autocorrelation, which is related to the dipole vector angular correlations
〈~pi (t+ τ) ~pi (t)〉. We considered from all possible orientations of the dipole vector ~pi

in the local reference frame, two basic configurations. In the first configuration the
dipole vector ~pi is aligned in the direction of the segment vector ~ei, and in the second
configuration the dipole vector lies in the plane perpendicular to the segment vector,
parallel to the unit vector ~fi. The general case can then be deduced from the two
studied orientations.

• From Fig. (4.11a) one can infer that the decay curve for a relaxed DNA circle
at 25% L from the bent sequence remains mostly unchanged compared to linear
DNA. This correlation curves match also perfectly those for circular DNA without
intrinsic bends (not shown in Fig. (4.11)).
In contrast if additional torsional strain is added into DNA rings the dipole vector
decorrelates faster (~pi ‖ ~ei), which is even enhanced if the fluorophore is attached
directly at the bent sequence. Bent sequences increase the formation probability
of end loops, which are related to faster motion of beads ~ri within end loop. Since
the segment vector ~ei = ~ri − ~ri−1/|~ri − ~ri−1| is a function of ~ri, the reorientation
of the dipole vector along the direction of the segment vector is also accelerated.
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Figure 4.11: The figure shows the calculated angular correlation of the dipole vector
〈~pi (t+ τ) ~pi (t)〉. The labeled bead was positioned directly at the bent sequence (dot-
dashed), while in a second case the labeled bead was introduced in a distance of 25%
of the total DNA contour length from the bend (solid) (∆Lk = 0 (blue); ∆Lk = −10
(red)). For comparison a linear DNA fragment is included (solid black). In (a) the
dipole vector ~pi was aligned parallel to the helix axis (~pi ‖ ~ei) and in (b) perpendicular

to the helix axis (~pi ‖ ~fi).

For the considered configurations the decay of the angular correlation occurs on
time scales of 10..100 µs.

• The dynamics of the dipole vector perpendicular to the helical DNA axis (~pi ‖ ~fi)
is clearly separated by two orders of magnitude from the case of the dipole vector
parallel to the helical DNA axis (~pi ‖ ~ei) (see Fig. (4.11)). For this configuration
circular DNA without bent sequences or a shifted positioning of the labeled bead
relative to the bent sequence exhibited no difference from linear DNA.
In contrast at the bent sequence the decorrelation of the ~fi-vector is slowed down
to time scales comparable to those of the segment vector ~ei, which indicates that
the motions are not independent from each other. An explanation of this coupling
might be provided by considering that at equilibrium the segments in the bent
sequence make a total bend of 120◦ in a plane configuration. Torsional stress
on a segment in the bent sequence, makes it rotate around the axis of adjacent
segments, since the neighboring segments are not coaxial. Thus displacing the
segment from the bending plane in which the DNA was initially located. But
the rotation of segments out of the equilibrium bending plane is counteracted by
bending forces, therefore as a consequence suppressing the twisting motion. As
a result of the coupling of twisting and bending motions, the decorrelation of the
~f -vector occurs then due to rotation of the whole bent sequence, which is much
slower.
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4.4.2 FCS simulation

In the following the BD simulation results were compared with experimental FCS data.
This part of the work was done in collaboration with J.Krieger. The simulated tra-
jectories were used to calculate the expected fluorescence intensity I (t) for a labeled
DNA diffusing through the focus of a FCS setup. The fluorescence intensity I (t) and
the normalized autocorrelation curve g (τ) = 〈I (t+ τ) I (t)〉/〈I〉2 were calculated with
a FCS simulation toolbox, developed by J.Krieger [Krieger, 2009].

Here we shortly summarize the basic principles of the FCS simulation toolbox. Each
trajectory is a time series of the spatial positions of a single bead ~ri(t) to which the
fluorophore is attached. It may also contain the orientations p̂i(t) (|p̂i(t)| = 1) of the
fluorophore’s dipole vector, which can be represented as a superposition of the vectors
~ei and ~fi in the local reference frame. The dipole vector accounts for the interaction of
(partially) polarized excitation light with the fluorophore. If a fraction Fpol ∈ [0, 1] of
the excitation light is linearly polarized, parallel to a unit vector ǫ̂ex = (1, 0, 0), then
according to [Aragón and Pecora, 1975] the excitation probability is reduced:

fpol(p̂i(t)) = (1 − Fpol) + Fpol · (〈ǫ̂ex, p̂i(t)〉)
2 ≤ 1, (4.12)

where 〈·, ·〉 denotes the Euclidean scalar product. The number of detected photons
Nphot(t) ∝ I(t) is calculated by first estimating the average number Nphot(t) of photons
expected in one simulation step [t, t+∆tFCS]. Then Nphot(t) is drawn from a Poissonian
distribution with average Nphot(t). This procedure accounts for the counting statistics
of the photon detection. The expected photon number is given as

Nphot(t) = N0 · ∆tFCS ·
K
∑

i=1

qf · qdet · h(~ri)
2 · fpol(p̂i(t)). (4.13)

Here K denotes the number of fluorophores near the laser focus, N 0 is the maximum
number of possibly detected photons per fluorophore and time step, while qf and qdet

are the quantum efficiencies of fluorescence and detection, respectively. The form of
the excitation and detection profile, which are assumed to be identical and completely
overlapping, is described by

h(x, y, z) = exp

(

−2 ·
x2 + y2

w2
xy

− 2 ·
z2

γ2
FCSw

2
xy

)

. (4.14)

The lateral width of the profile is wxy and γFCS = wz/wxy is its aspect ratio, where wz

is the focal width in z direction.

The photophysical dynamics such as bleaching or triplet blinking are neglected in the
system as the goal is to observe the effects of the DNA motion. The photophysics could
be introduced into the simulation by making the fluorescence efficiency qf time depen-
dent and changing it for every particle with a suitable simulation. A full simulation,
but without the effects of polarization has been described in [Dix et al., 2006]. In real
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experiments care has to be taken to discriminate inevitable photophysical effects from
the other contributions to the measured correlation function. The typical timescale of
the triplet dynamics is [0.1µs, 10µs] [Widengren et al., 1995], which is near the expected
effect of rotational dynamics.

For the simulations the trajectories were shifted in time and space so that they pass the
focus consecutively. Each trajectory of length M was shifted to satisfy ~ri(M/2) ≡ 0.
This ensures that in average there is less than one particle in the focus which mimics
real experiments in strongly diluted solutions. In order to still obtain reasonable pho-
ton statistics from only few trajectories that were simulated, the fluorescence efficiency
was raised to an unrealistically high value of qf = 10. The simulations were compared
for qf < 1 and qf = 10 finding that this change improved the statistics but did not
change the results in any other respect. Refer to Tab. 4.3 for an overview of the FCS
simulation parameters used to generate the data.

Parameter Description Value

∆tFCS FCS simulation time step 1 µs

Ttrajectory single trajectory length 0.5 s

N0 absorbed photons per molecule ≈ 6 · 106 s−1

wxy lateral width of excitation profile 0.5 µm

qf fluorescence quantum yield 10

qdet detection efficiency 0.1

ǫ̂ excitation light polarization (1, 0, 0)

γFCS focus aspect ratio 1

Table 4.3: FCS simulation parameter values for DNA simulations.

FCS autocorrelation curves

In the FCS study [Shusterman et al., 2008] the temporal kinetics of single monomer
MSD in DNA rings with defined degrees of superhelicity was presented. A pUC18
plasmid was tagged with a fluorophore according to the procedure described in sec-
tion (4.4.1). The FCS setup yielded the autocorrelation function g (τ), which contained
information about the motion of a single DNA segment.
As described in [Petrov et al., 2006, Shusterman et al., 2008] for independent point
sources of fluorescence subject to random forces, moving in a Gaussian focus, the
following relation holds between g (τ) and 〈r2

i (τ)〉

g (τ) = g0

(

1 +
2

3

〈r2
i (τ)〉

ωxy

2
)−1

(

1 +
2

3

〈r2
i (τ)〉

γ2ω2
xy

)− 1
2

. (4.15)
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(a) (b)

Figure 4.12: Experimental FCS data on superhelical dynamics have been measured by
Shusterman et al. (a) FCS correlation functions for pUC18 topoisomers with ∆Lk: 0
(blue), -1 (green), -2 (red), -3 (cyan), and -4 (magenta). Insets show schematically the
relaxed (top right) and plectonemic (bottom left) DNA conformations. (b) Temporal
dependences of segmental MSD for different linking numbers ∆Lk. (Adopted from
[Shusterman et al., 2008])

In the equation g0 is a normalization constant, determined from the behavior of g (τ)
at short time scales. Eq. (4.15) was used to convert the autocorrelation function into
the MSD 〈r2

i (τ)〉.
In Fig. (4.12a) the experimental FCS autocorrelation curves from [Shusterman et al.,
2008] are included, while Fig. (4.12b) depicts the corresponding calulated MSD with
help of Eq. (4.15). The following findings were obtained in the experimental study. The
introduction of superhelicity leads to progressively faster dynamics on all time scales,
including the long time regime corresponding to coil diffusion and the short time regime
corresponding to segmental motion within the DNA coil. Three different regimes were
identified: (a) a long time regime in which the labeled segment obeys the normal dif-
fusion law, (b) an intermediate regime at τ ≈ 100µs displaying subdiffusive motion
of the labeled segment within the polymer coil and (c) at short times the motion is
gouverned by dynamics of stiff polymers. Interestingly, on intermediate time scales the
segmental dynamics showed characteristics reminiscent of a Rouse model. According
to the Rouse model the MSD obeys a power-law ∝ t1/2 as summarized in section (2.1.2).

The FCS simulation toolbox allowed to generate from the BD trajectories as input
data the corresponding FCS correlation curves. The resulting correlation curves are
displayed in Fig. (4.13), which are normalized to satisfy g (∆tFCS) = 1. In agreement
with the simulated BD trajectories for circular DNA without intrinsic bent sequences
the FCS correlation curves showed no separation depending on the superhelical density
for short lag times τ (see Fig. (4.13a)). Only at longer times τ > τ̃1 the correlation
curves differ due to different translational diffusion coefficients Dt. If a bent sequence
is inserted into DNA and the fluorophore is positioned at the bend, the FCS curves
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split up at intermediate times (see Fig. (4.13b)). The curves are ordered according to
the linking difference number, showing the slowest decorrelation for relaxed DNA and
fastest for the structure with 10 additional twists. If the fluorophore is excited with
50 % partially polarized light the differentiation still persisted. For an increased focus
aspect ratio γFCS = 5, which corresponds to a focus volume of an ellipsoid shape, the
splitting decreased, but the FCS correlation curves were still clearly distinguishable.

Excitation with partially polarized light

As discussed in section (4.1) the MSD 〈r2
i (τ)〉 did display only two characteristic

regimes, the dynamics of stiff polymers at short times and normal diffusion at long
times. In contradiction Shusterman et al. [Shusterman et al., 2008] claimed that a
third regime appeared at intermediate times. Here it was investigated if excitation
of the flurophore with partially polarized light can generate such kind of effect. The
reasons for partial polarization of the excitation light in experiments may be manifold,
but for example partial polarization in the focus may originate if a non-polarization
maintaining fiber is used in the experimental setup.
In order to compare the results the same approach was applied as used for the exper-
imental data to extract the MSD 〈~r 2

i (τ)〉. The employed transformation between the
correlation function and MSD is given by Eq. (4.15).
The results of the transformation applied to circular DNA with a flurophore attached
directly at the bent sequence, are summarized in Fig. (4.13d). If the fluorophore is ex-
cited with totally unpolarized light still only two regimes corresponding to the known
stiff-rod limit (〈~r2

i (τ)〉 ∝ τ 3/4) and the normal diffusion (〈~r2
i (τ)〉 ∝ τ) are visible. The

MSD curve for the plasmid with ∆Lk = −10 lie on all time scales above the curve for
the relaxed state considering the case of the labeled bead directly at the bent sequence.
Excitation of the flurophore with partially polarized light results in the appearance of
a cross-over regime in between the stiff-rod limit and the translational diffusion. In the
limit of long times τ the MSD curves still merge with the curves obtained by excitation
with unpolarized light. The slope of the intermediate regime depends on the fraction
of linearly polarized light Fpol, but the additional regime is independent of whether a
bend has been inserted and of the position of the observed bead. For a 50% partial
polarization of the excitation light the cross-over regime follows approximately a power
law (〈~r2

i (τ)〉 ∝ τ 1/2) in the time range τ ≈ 10 . . . 103 µs. The time scale is in agreement
with that of the experimentally found intermediate regime and therefore the rotational
dynamics of the fluorophore’s dipole moment might provide an explanation for the
observation of a Rouse-like regime.

In conclusion the simulated FCS correlation curves exhibit the acceleration of the
monomer with increasing superhelical density as claimed in the FCS experiment. But
the statement has to be constrained by the condition that the fluorophore must be
positioned in vicinity of the bent sequence. Overall the effect is significantly smaller
than observed in the experiment. A possible explanation is that additional contribut-
ing terms to the correlation function e.g. triplet term, may alter the course of the curve
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due to the normalization g (tFCS) = 1 of the correlation curve.
We observed also an intermediate regime for excitation with partially polarized light,
which can be attributed to the cross-over from rotational dynamics of the dipole vector
to translational diffusion. The contributions of polarized excitation are commonly not
visible in FCS experiments, as the decorrelation time of the dipole vector is well below
the fastest resolvable time scale. For the simulations presented here, the dipole vector
dynamics (~pi ‖ ~ei) are slow enough to become accessible in experiments. Thus, we con-
clude that the intermediate regime originates from the visibility of two well separated
decay terms for the translational and the rotational motion in the autocorrelation curve
and polarization effects have to be taken into account in the analysis and interpretation
of FCS data.
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Figure 4.13: Figures (a)-(c) shows normalized correlation curves from the FCS simu-
lation toolbox by J.Krieger for different linking number differences ∆Lk = 0 (blue),
∆Lk = −4 (green) and ∆Lk = −10 (red). In (a) circular DNA without an intrinsic
bend was studied, while the data for circular DNA directly at the bent sequence is
shown for excitation (b) without polarized light and (c) with 50 % partially polarized
light. The dipole vector was aligned in direction of the segment (~pi ‖ ~ei). (d) The FSC
correlation curves were converted into MSD as described in the text for the cases in
(b) (solid lines) and (c) (dashed lines).
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Chapter 5

Nucleosome dynamics

The previous chapter was devoted to the dynamics of circular DNA, which is a common
form to store genetic information in bacteria and archaea. In eukaryotic cells, DNA
is organized into a chromatin fiber with its basic packing unit, the nucleosome. This
chapter focuses on the dynamics of conformational changes in nucleosomes. In the
first part of the chapter equilibrium fluctuations of DNA from the histone core are
considered, and equilibrium constants for DNA site exposure are determined within
the nucleosome model. In the second part stretching experiments of single nucleosomes
have been simulated, which allow to probe the intrinsic energy barriers and kinetic
rate constants of the DNA unwrapping transition. At the end of the chapter stretching
simulations are applied to oligonucleosomes.

5.1 DNA fluctuations at equilibrium

DNA sequences inside the nucleosome are largely inaccessible to many proteins due to
the steric occlusion as a consequence of the proximity of DNA to the histone octamer.
But regulatory proteins have to gain access to these buried DNA stretches in order to
fulfill their biological function such as transcription, replication and repair. In vivo it
is known that ATP-dependent remodeling enzymes facilitate the accessibility to nucle-
osomal DNA [Saha et al., 2006]. Alternatively it was proposed that nucleosomes are
dynamic structures, which can spontaneously undergo conformational fluctuations, in
which DNA is transiently released from the histone core [Polach and Widom, 1995].
Accessibility of target sites for regulatory proteins on nucleosomal DNA at equilibrium
has been demonstrated by using restriction enzyme accessibility assays [Polach and
Widom, 1995, Anderson and Widom, 2000]. Therefore Polach et al. inserted sites spe-
cific to a restriction enzyme at defined positions within the nucleosome. They obtained
position-dependent equilibrium constants for target site exposure, which were in the
range of ≈ 1 × 10−2 to 4 × 10−2 for probe sites 3-15 bp relative to the end of DNA,
which is organized in the nucleosome core particle. For probe sites buried deeper in the
nucleosome (≈ 27 to 45 bp from the nucleosomal DNA end) the equilibrium constants
were ≈ 5 × 10−4 to 3 × 10−3 and ≈ 1 × 10−5 to 1 × 10−4 for sites (54-72 bp from
the nucleosomal DNA end) near the nucleosome symmetry axis or so-called dyad axis
(located 72 bp from the nucleosomal DNA end).

97
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Complementary experiments with Fluorescence Resonance Energy Transfer (FRET)
also observed equilibrium fluctuations of DNA breathing. FRET can be used as a ruler
on the molecular scale by measuring the distance-dependent energy transfer efficiency
between an excited donor fluorophore to an acceptor molecule [Förster, 1948]. For
nucleosomes it is possible to determine conformational distributions within an ensem-
ble of molecules and the mononucleosome dynamics between different conformational
states. Koopmans et al. [Koopmans et al., 2007] reported that a small fraction of
intact nucleosomes (≈ 3%) showed DNA breathing, which is consistent to the DNA
detachement of 10 bp or less and a mean lifetime in the unwrapped state of 120ms.

In the following BD trajectories have been calculated, in order to quantify fluctua-
tions in the amount of DNA adsorbed to the histone core at equilibrium. For each
data point we simulated a total of 9 trajectories, each with a simulated time of 3ms.
The key parameter, which was varied was the DNA-histone core adsorption energy
density ǫ. It is used to reflect the varying strength of interactions between DNA and
the histone core in the nucleosome. Several mechanisms in the cell influence the DNA
affinity to the histone core.

• It is known that histone tail modifications play a central role not only in chro-
matin condensation on a large scale, but also in the nucleosome stability. Histone
tail modification e.g. acetylation, where an acetyl group is attached to residues
of the N-terminal histone tails, consequently reduces the overall positive charge
of the histone core. In single-pair FRET it was shown that for end-labeled DNA
acetylation leads to an opening of the nucleosome structure [Gansen et al., 2009].

• Studies also showed sequence-dependent binding affinities of DNA to histone
core proteins [Lowary and Widom, 1998]. The nucleosome stability was found
to be affected by the sequence [Gemmen et al., 2005]. Further the positioning of
nucleosomes on DNA is related to the histone acetylation status and the DNA
sequence [Krajewski, 2002].

Therefore the variability in the biological system is accounted for by a range of adsorp-
tion energy densities ǫ = {6, 7, 8} kBT nm−1 in this work.

The contour length of the adsorbed DNA is defined as the total length of the inter-
acting segments. A segment is termed interacting, if the interaction distance |~Ri| is
within the cutoff distance r0, as defined in section (3.7). P (n) is defined as the prob-
ability for being in a state with n interacting segments or the corresponding average
contour length. The calculated probabilities are depicted in Fig. (5.1a). The effect of
stronger interaction between the histone core and DNA, reflected by a higher adsorp-
tion energy density, is a shift towards a higher mean adsorbed contour length: 44.9 nm
(ǫ = 6kBT nm−1), 47.3 nm (ǫ = 7 kBT nm−1) and 47.8 nm (ǫ = 8kBT nm−1). At the
same time fluctuations allowing spontaneous unwrapping of the first turn are signifi-
cantly suppressed, as can be inferred from Fig. (5.1a), since the probability distribution
is narrowed.
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Figure 5.1: (a) Probability distribution of contour length adsorbed to the histone
core at different adsorption energy densities ǫ = 6kBT nm−1 (red diamonds), ǫ =
7kBT nm−1 (blue circles), ǫ = 8 kBT nm−1 (black squares) (b) Equilibrium constants
Keq dependent on the amount of adsorbed DNA are shown. Dashed lines indicate
fitting curves for the equilibrium constant.

The accessibility of DNA can be quantified by equilibrium constants Keq (n) depending
on the number of interacting segments n. The equilibrium constant is given by the
ratio between the probability P (n) and the probability P (max) at the reference state,
which is defined as the most probable state.

The equilibrium constant is related to the energy associated with the DNA confor-
mation ∆E(conf) in the nucleosome

Keq = exp

(

−
∆E(conf)

kBT

)

. (5.1)

The simplest assumption for the change in energy due to DNA detachment from the
histone core is a linear function in the contour length of adsorbed DNA l, which
reads ∆E(conf) = ǫ(net)

(

l(max) − l
)

. Here ǫ(net) denotes a net adsorption energy den-

sity and l(max) is the contour length of adsorbed DNA in the reference state. The fit
for the simulated equilibrium constants to Eq. (5.1) in the range Keq ≤ 1 yielded the
following net adsorption densities ǫ(net) ≈ 0.3 kBT nm−1, ǫ(net) ≈ 0.8 kBT nm−1 and
ǫ(net) ≈ 1.3 kBT nm−1 in increasing order of the total energy adsorption densities. The
net adsorption energy does not represent the pure adsorption energy but instead the
net gain in energy due to adsorption to the histone core complex reduced by contribu-
tions from bending and electrostatic repulsion.

We did not observe for the considered short simulation times of 3ms any contour
length fluctuations corresponding to unwrapping of the second turn. This can be ra-
tionalized in a first approximation by the fact that the first DNA senses the presence
of the second DNA turn, which is equally charged, therefore exerting an electrostatic
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repulsion force on the first turn [Kulić and Schiessel, 2004]. The unwrapping of the
first turn is therefore facilitated, while the second turn is more strongly bound to the
histone core.

In order to relate the DNA fluctuations to experimental data, a probability P̃ (i) for
each ith DNA segment to interact with the histone core was calculated. Therefore

an equilibrium constant for site exposure
(

1 − P̃ (i)
)

/P̃ (i) could be assigned to each

DNA site. In Fig. (5.2) the simulated equilibrium constant for site exposure were
compared to experimental values as reported by [Polach and Widom, 1995]. The ex-
perimentally measured equilibrium constants fall into the range of simulated data for
energy adsorption densities between 6 kBT nm−1 and 7 kBT nm−1. The BD simulations
are consistent with observed DNA fluctuations, which allow proteins to gain access to
DNA target sites in the nucleosome.
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Figure 5.2: Equilibrium constant of DNA site exposure dependent on the site position
relative to the dyad axis in the nucleosome (ǫ = 6kBT nm−1 (red diamonds) and
ǫ = 7kBT nm−1 (blue circles)) Included are experimentally measured site exposure
equilibrium constant (green) from [Polach and Widom, 1995] as described in the text.

5.2 Nucleosome stretching simulations

For the BD simulations in the following section nucleosomes were analyzed under the
application of an external force. An external force facilitates the unwrapping of DNA
in the nucleosome, which results in a faster dynamics of the unwrapping transition.
Only the shift from relative slow transition times at zero external force to faster time
scales under external force, makes it possible to study the unwrapping in experiments
as well as simulations.



5.2. NUCLEOSOME STRETCHING SIMULATIONS 101

5.2.1 Nucleosome conformations

During the unwrapping from the initial to the final state the nucleosome system tra-
verses several transitional conformations. The initial state was prepared according to
the protocol described in section (3.7). The resulting starting point for the BD simula-
tions is an equilibrated conformation, where DNA is wrapped tightly around the protein
complex. The contour length of adsorbed DNA is then given by the calculated distri-
butions in (5.1). A typical initial conformation is depicted in Fig. (5.4a) with a mean
adsorbed contour length ≈ 48 nm for an energy adsorption density ǫ = 8 kBT nm−1.
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Figure 5.3: The probability distribution of contour length adsorbed to the histone core
is shown in the presence and absence of an applied external force. The state at zero
external force (black squares) and a constant external force of 15 pN (red squares) were
considered (ǫ = 8kBT nm−1).

The effect of a constant external force applied to the DNA ends is to shift the adsorbed
contour length probability distribution towards the unwrapped state. A comparison
of the probability distribution of the ground state and a simulation with a constant
external force of 15 pN is shown in Fig. (5.3). At 15pN a second peak emerges at
≈ 10 nm adsorbed DNA contour length corresponding to the nearly unwrapped nucle-
osome state, while the peak at ≈ 30 − 35 nm represents states with approximately one
fully wrapped DNA turn. In contrast, nucleosome conformations with half windings
are surpressed. At sufficiently large forces the system can therefore be approximated
by a two-state system with one state representing the wrapped state with one wrapped
DNA turn and a second unwrapped state with nearly no DNA bound to the histone
core. A major part of this work is to quantify the kinetics of the transition between the
two states based on the simulations. More precisely a goal is to determine the kinetic
escape rate k (F ) from the wrapped state sw to the unwrapped state su as a function
of the applied external force:

sw
k(F )
−→ su
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In the following simulations were carried out at a constant stretching velocity. From
time t = 0 the DNA end segments were displaced relative to each other with a constant
stretching velocity ~v. The absolute value is denoted by v = |~v|. In the work a range
of stretching velocities v = {0.0025, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0} cm s−1 were used to
test the conformational transition. Fig. (5.4) shows the temporal evolution of the
nucleosome conformation taken from the BD time trajectory at selected time points.
The snapshots were taken for a stretching velocity v = 0.1 cm s−1. Simultaneously the
amount of adsorbed DNA contour length to the histone core was recorded during the
unwrapping transition, which is summarized in Fig. (5.5).

(a) (b) (c) (d) (e) (f)

Figure 5.4: Representative nucleosome conformations during stretching. (a) relaxed
starting conformation at t = 0 µs, (b) t = 46.0 µs, (c) t = 83.5 µs, (d) t = 84.0 µs, (e)
t = 84.3 µs and (f) t = 100 µs.

In the initial phase the histone core is reorientated and the linker DNA is aligned
in direction of the stretching velocity ~v (see Fig. (5.4b)). The DNA remained fully
attached to the histone core and the adsorbed contour length is constant in the first
section of the contour length-time diagram (5.5). From this time point we could identify
three distinct steps, in which DNA is released:

(a) The further pulling of the DNA ends results in a gradual detachment of the
outer DNA turn from the histone core. In this step approximately 16 nm of
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nucleosomal DNA are released, until the amount of adsorbed DNA levels off at
a constant value.

(b) In contrast, the inner DNA turn unwinds in a sudden event. In this step about
≈ 17 − 22 nm of DNA are released. In order to reach the extended state the
histone core has to rotate out of the plane, in which the DNA wraps around the
histone core. The external force can then act to detach the DNA ends still bound
to the histone core. This effect of rotating out-of-plane to reach the unwrapped
state has been already postulated by Cui et al. [Cui and Bustamante, 2000]. The
time scale associated with this process is in the range of µs, which is significantly
faster than the unwinding of the first DNA turn.

(c) The DNA is not totally detached from the histone core as shown in Fig. (5.4f),
but still leaving ≈ 11 − 14 nm of DNA. Further application of force is needed to
peel the remaining DNA from the histone core.

The released amount of DNA is directly related to the geometry of the nucleosome,
which is defined by the radius of the DNA superhelix R(n), the pitch p(n) and the
number of turns N (n). The first step (a) corresponds to the unwinding of . 3/4 turn
of the DNA superhelix, which amounts to ≈ 20 nm for the assumed ideal geometry
parameters. The remaining DNA turn of ≈ 26 nm stores the amount of DNA, which
is released in the two subsequent steps (b)-(c).
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Figure 5.5: A representative time-dependent contour length curve of adsorbed DNA
onto the histone core is shown (ǫ = 8kBT nm−1). Pulling the DNA ends at a constant
velocity v = 0.1 cm s−1 results in a gradual DNA release from the outer DNA turn of
the nucleosome core particle. The inner DNA turn is released in a disruptive event on
a timescale below µs . The dashed lines indicate the mean equilibrium contour length
(≈ 48 nm), mean contour length before disruption (≈ 31 nm) and mean contour length
after disruption (≈ 14 nm).
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5.2.2 Force-extension curves

A further step in the analysis was to measure force-extension curves for the unwrapping
process. During the simulation the force F in direction x̂ of the stretching velocity ~v
or the external force ~F ext were calculated at the DNA end segments (i = 0, N). Si-
multaneously the extension x defined as the DNA end-to-end distance (~rN − ~r0) x̂ was
recorded.
In order to obtain smooth force-extension curves, the forces were averaged over the
extension within a bin width ∆x. The bin width was chosen to adopt the value of
the segment equilibrium length l0, such that a sufficient number N (meas) of force mea-
surements is assured within each bin. For example, at a constant stretching velocity
v the mean dwell time for x to be found within ∆x amounts to ∆x/v, yielding the
number of force measurements N (meas) = f (meas)∆x/v, where f (meas) denotes the force
measurement frequency. Even at the highest applied stretching velocity v = 1 cm s−1

the estimated number of force measurements remains N (meas) > 40, which guarantees
good statistics.

According to the measurement and averaging protocol discussed in the preceding para-
graph, force-extension curves have been obtained at defined stretching velocities and
adsorption energy densities. The resulting force-extension curves are shown in Fig. (5.6)
and Fig. (5.7). As considered before, the first part of the force-extension curve for ex-
tensions below ≈ 20 nm is associated with the pulling of the free, nonadsorbed linker
DNA. Subsequently, the force-extension curve exhibit two distinct regimes, a low-force
regime, which is followed by a high-force regime at greater DNA end-to-end extensions.

(a) In the low-force regime the measured force remains nearly constant. The regime
can be identified with the unwrapping of the first DNA turn.

(b) In the high-force regime the calculated force at the DNA ends increases linearly
with the extension until the inner DNA turn unwraps abruptly. This single event
is accompanied by a sudden drop in the calculated force. The local maximum of
the force is referred to as the rupture force.

(c) Beyond the force peak the forces increase linearly.

Low-force regime

From the first part of the force-extension curves in the force plateau, the mean force
can be obtained. This quantity signifies the mean force, which is needed to detach the
outer DNA turn from the histone core. Since the linker DNA length is about 25 nm,
only extensions x in the range from 20 nm ≤ x < 40 nm, corresponding to detach-
ment of the first DNA turn as confirmed by visual inspection of generated nucleosome
conformations (see Fig. (5.4b)), have been considered in the calculation of the mean
average unwrapping force. The upper limit is defined by the onset of the linear slope
of the measured force and the full detachment of the first DNA turn as shown repre-
sentatively in Fig. (5.4c).
We performed the analysis of BD trajectories with different initialized parameter sets.
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Figure 5.6: Representative force-extension curves were recorded during the stretching
simulation. In this set of simulations the stretching velocities was varied between
v = 2.5 × 10−3cm s−1 (black squares), v = 1.0 × 10−2cm s−1 (red diamonds) and v =
1.0× 10−1cm s−1 (blue circles), while the adsorption energy density was held constant
at ǫ = 8kBT nm−1. Dashed lines indicate the different regimes: orientation of linker
DNA and nucleosome, low-force regime and the onset of the high-force regime (from
left to right).

Depending on the adsorption energy density the analysis yielded mean average un-
wrapping forces of 2.1 pN (ǫ = 6kBT nm−1), 5.3 pN (ǫ = 7 kBT nm−1) and 7.3 pN
(ǫ = 8 kBT nm−1).

High-force regime

As pointed out in section (2.2) single-molecule force spectroscopy involves the mea-
surement of forces by sensing the displacements of a probe. For small deflections of the
probe from its equilibrium position the force is linearly proportional to the displace-
ment and acts as a spring with an elastic constant ks. Furthermore, the probe must
be coupled by a linker molecule to the system, which introduces an additional stiffness
km. The effective spring constant is then given by the serial coupling of the two springs
1/keff = 1/km + 1/ks. In the simulation the DNA end segments are directly displaced,
which would correspond to a very stiff elastic constant ks ≫ 1, therefore the effective
spring constant is specified only by the linker DNA.
In the recorded force-extension curves the effective spring constant keff can be deter-
mined in the high-force regime, in which the force increases linearly with the exten-
sion. The effective spring constant keff = dF/dx was extracted from the curves by
a chi-square fit to the force-extension curves in the range from x ≥ 40 nm up to the
peak force attained at rupture. The average slope of the curves was identified with
the effective spring constant. The effective spring constant was estimated to have a
mean value of keff ≈ 1.2 pN nm−1, which approximates reasonably well the linear force
regime of all force-extenstion curves (with the standard deviation σkeff

< 1 pN nm−1).
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The local maximal force at rupture or shortly the rupture force is a quantity, which im-
plicitly contains information about the energy landscape along the transition pathway.
In detail the dependence of the rupture force on the stretching velocity and adsorption
energy density was studied. From the representative force-extension curves in Fig. (5.6)
one can infer that the system responds to a slower stretching velocity of the DNA ends
with a decreasing rupture force. The observed velocity dependence is in agreement
with predictions of the DFS theory (see section (2.2)).
The analogue figure for the adsorption energy density parameter is shown in Fig. (5.7).
The effect of a smaller adsorption energy density ǫ as a measure of the weakened in-
teraction strength between DNA and the protein complex results in smaller values of
observed rupture forces during stretching.
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Figure 5.7: Representative force-extension curves have been recorded during the
stretching simulation at different adsorption energy densities ǫ = 6 kBT nm−1 (dia-
monds), ǫ = 7kBT nm−1 (circles), ǫ = 8kBT nm−1 (squares). The stretching velocity
was held constant at v = 2.5 × 10−3 cm s−1.

5.3 Dynamic Force Spectroscopy

Dynamic Force spectroscopy allows to investigate rupture forces or force spectra and
the analysis of those provides information about bond strength, lifetimes and energy
landscapes along the transition pathway. Here the Dynamic Force Spectroscopy theory
as presented in section (2.2) was applied to the simulated transition in the nucleo-
some system. The transition starts from a partially wrapped state as represented by
Fig. (5.4c) and passes to a fully unwrapped state shown in Fig. (5.4f). Kinetic rate
constants and energy barriers of the transition were extracted.



5.3. DYNAMIC FORCE SPECTROSCOPY 107

Phenomenological model

In a first step we analyzed the simulated rupture force spectra in the framework of the
phenomenological model (see section (2.2.1)), which is a common way in DFS experi-
ments [Brower-Toland et al., 2002, Pope et al., 2005] to obtain transition parameters.
In DFS experiments the key parameter is the force loading rate rf . In the high-force
regime the force obeys Hooke’s law and is a linear function of the extension F = keffx
with the determined effective spring constant as prefactor. The force loading rate is
then simply proportional to the stretching velocity and all quantities can be expressed
by the force loading rate:

rf =
dF

dt
= keff

dx

dt
= keffv. (5.2)

We proceeded by averaging for each parameter set the measured rupture forces, which

yielded the mean rupture force 〈F (s)〉. Further the variance of rupture force
(

σ
(s)
F

)2

was calculated. Here the quantities are indexed with an ’s’ to indicate that the data
has been acquired in the simulation.
With the help of Eq. (2.30), which relates the mean rupture force 〈F 〉 to the force load-
ing rate rf , the escape rate at zero external force koff and the reaction distance d can
be determined. Since the phenomenological model predicts a linear dependence of the
mean rupture force on log (rf), a linear function was fitted to the mean rupture force
data on a logarithmic scale. The mean rupture forces together with the fitted func-
tions are depicted in Fig. (5.8). The simulated rupture force data reflects the known
connection between mean rupture force and force loading rate/stretching velocity as
stated in the last section.
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Figure 5.8: Rupture forces fitted with the phenomenological model. The fitting pa-
rameters are listed in Tab. 5.1

The fit parameters describing the nucleosome disruption kinetics koff and energy land-
scape d are summarized in Tab. (5.1). The energy barrier Eb is not directly accessible
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by the method, but can be deduced from an estimate of the intrinsic escape rate k0

(see Eq. (2.24). The intrinsic escape rate is dominated by the slowest process involved
in the initial unwrapping of DNA from the nucleosome. In this case the time scale
of the dominant process is of the order of the rotation of a nucleosome-sized sphere.
In literature the following estimated values for the intrinsic escape rate are listed, e.g.
k0 ≈ 105 − 106 s−1 taken from [Kulić and Schiessel, 2004] or k0 ≈ 106 − 108 s−1 [Pope
et al., 2005]. Adopting the latter estimates in the calculations, the energy barriers were
included in Tab. (5.1). In general, we found with the phenomenological model faster
escape rates at zero external force koff ≈ 10−1 − 10−2 s−1 and lower energy barriers
Eb ≈ 15 − 22 kBT as compared to experimentally found values.

d [nm] koff [s−1] Eb [kBT]

k0 [s−1] 1.0 × 106 1.0 × 107 1.0 × 108

ǫ = 6 kBT nm−1 1.96 2.3 × 10−1 15.3 17.6 19.9

ǫ = 7 kBT nm−1 1.64 5.5 × 10−1 16.7 19.0 21.3

ǫ = 8 kBT nm−1 1.34 3.6 × 10−2 17.2 19.5 21.8

Table 5.1: Transition parameters for the phenomenological model

The phenomenological model is in agreement with simulated mean rupture force within
the standard deviations, but several inconsistencies remain with the measured simula-
tion data.

• The phenomenological theory predicts that the variance of rupture force σ2
F is

independent of the force loading rate rf . But from Fig. (5.8) it is evident that
the variance of force from the simulated data set is a non-constant function of
the force loading rate.

• The mean rupture forces can be extrapolated according to the phenomenological
model to slower force loading rates for which experimental DFS data is avail-
able. The resulting mean rupture forces are not consistent with the experimental
mean rupture forces for the considered range of energy adsorption densities, as
determined by equilibrium fluctuations.

An explanation for the discrepancy is that the phenomenological approach for the dif-
fusive barrier crossing is strictly only valid in the range of small forces F ≪ Fc [Lin
et al., 2007]. Here Fc denotes the critical force, as defined in section (2.2) at which the
barrier to escape vanishes. At small forces or correspondingly small force loading rates
the details of the underlying energy landscape of the potential are not important, as the
escape dynamics is determined mainly from the reduction of the energy barrier. But
at high forces the fluctuations of the energy minimum and transition state coordinate
x± under an increasing external force have to be explicitly taken into account. Since
the equation Fc = Eb/d defines the critical force, now the force range consistent with
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the phenomenological model, can be specified. For the parameters defining the energy
landscape listed in Tab. (5.1) and an assumed intrinsic escape rate k0 = 106 s−1 the
critical forces are approximately 36.4 pN (ǫ = 6kBT nm−1), 46.9 pN (ǫ = 7 kBT nm−1)
and 58.9 pN (ǫ = 8kBT nm−1). For the highest force loading rates the rupture forces
(see Fig. (5.8)) are clearly in the strong pulling limit 1−F/Fc ≪ 1, but the limit is valid
in good approximation to the total range of simulated force loading rates accessible to
computer simulations.

Based on the fact that the variance of the rupture force varied with the force load-
ing rate, we conclude that the phenomenological model can not be applied, even if it
describes the mean rupture force data reasonably well. Furthermore, the estimated
parameters show that the measured rupture forces are close to the critical force. This
indicates that the estimated parameters are not consistent with the assumption of
weak pulling forces for the phenomenological model. A priori there exists no criterion
to decide in which limit the simulations were carried out, but the results point at the
conclusion that the force loading rate is within the strong pulling regime.

Model-dependent approach

In the strong pulling regime, close to the critical force 1−F/Fc ≪ 1, alternative classes
of analytical models exist, which assume explicitly a defined potential model disturbed
in the presence of an applied force field. Therefore we also analyzed the simulation
rupture force data with a method which has been proposed by Dudko [Dudko et al.,
2003] and described in a general form in reference [Dudko et al., 2006]. It originates
from Garg’s formalism [Garg, 1995], which is summarized in detail in section (2.2.2).

In the approach taken by Dudko et al. the energy barrier Eb is an additional free
parameter, besides the reaction distance d and escape rate at zero external force koff ,
already present in the phenomenological model. The transition parameters (Eb, d, koff)
are identified with the set of parameters, which minimizes the deviations between the
analytical solution and the simulation data. A similar procedure to analyze the pulling
of a multimodule titin molecule was done in [Szabo and Hummer, 2003].

The deviation of the analytical solution for the mean rupture force Eq. (2.38) with
a specified set of paramters from the simulation results can be quantified by the χ2

F

function. χ2
F is defined as the sum

χ2
F =

∑

{rF}

[

〈F (s) (rF)〉 − 〈F (a) (rF)〉
]2

[

σ
(s)
F (rF)

]2 , (5.3)

where 〈F (s) (rF)〉 and 〈F (a) (rF)〉 are the simulated and analytical average rupture forces
at the considered n force loading rates of the set {rF}, respectively. The ’a’-index
indicates the predictions of the analytical solution for the quantities, in order to differ-
entiate it from the simulated values. In Eq. (5.3) the quadratic deviations between the
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simulated and analytical mean rupture forces are weighted by the inverse of the vari-

ance of simulated rupture force
[

σ
(s)
F

]2

, since the variance is non-uniform for different

force-loading rates.
It has to be remarked that the model-dependent approach extends the number of
parameters, as compared to the phenomenological model, by an additional free param-
eter. The parameter value space, where each point defines a possible set of parameters
(Eb, d, koff), is therefore 3-dimensional. In order to make precise predictions about the
transition parameters, we included the variance of rupture forces in the analysis. It
allows to further narrow the parameter value space to a subspace of parameters con-
sistent with the simulated data. Here we used the fact that the variance of rupture
forces is a function of the force loading rate and contains additional information.
Analogously a quantity χ2

σ can be defined for the standard deviations of the mean
rupture forces:

χ2
σ =

∑

{rF}

[

σ(s) (rF) − σ(a) (rF)
]2

σ2
σ

, (5.4)

which is a measure for the deviations between the simulated and analytical variance
of rupture forces. Here σ(s) (rF) and σ(a) (rF) denote the simulated and calculated
standard deviations at the respective force loading rates. σσ is the assumed uniform
statistical error of the standard deviation. Statistical errors of the standard deviations
have been assumed to have a value of 15% relative error of the maximal standard
deviation, e.g. at an adsorption energy density ǫ = 8kBT nm−1 this corresponds to
≈ 1.1 pN.
The 3-dimensional parameter value space has been restricted by imposing the con-
straint RMSD < 1 for each point in the parameter value space. The root-mean-
square deviation (RMSD) has been obtained by calculating the RMSD of the mean
force RMSDF =

√

χ2
F/n and the RMSD of the standard deviation of the mean force

RMSDσ =
√

χ2
σ/n. The maximum of the two independently calculated root-mean-

square deviations RMSD = max (RMSDF,RMSDσ) is used with the stated condition
to find the parameter values, which are simultaneously consistent with the simulated
mean rupture forces and standard deviations of the mean rupture force.

The root-mean-square deviation RMSD was evaluated at discrete points in the pa-
rameter value space (Eb, d, log10 (koff)). The discrete points in the parameter value
space were positioned equidistantly on a grid. The separations between grid points
∆Eb = 0.05 kBT, ∆d = 0.02 nm and ∆log10 (koff) ≈ −0.37 in the direction of the
energy barrier Eb-, reaction distance d- and escape rate koff -axis respectively, were
chosen sufficiently small to guarantee smooth transitions of the sampled RMSD func-
tion between adjacent grid points. In Fig. (5.9), (5.10), (5.11) the maximum range of
parameters consistent with a given RMSD is determined as function of the adsorption
energy density. Therefore the minimum RMSD was projected along one out of three
axis onto planes of the two remaining parameters Eb , d and koff . The cutoff for the
RMSD was set according to the imposed constraint to unity.
For this choice e.g. in the case of an adsorption energy density ǫ = 8kBT nm−1,
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Figure 5.9: Shown are contour surfaces of RMSD calculated as the maximum of
RMSDF and RMSDσ for the mean and standard deviation of rupture forces, respec-
tively. In order to identify the bounds on the transition parameters Eb, d and koff ,
the minimum RMSD was projected onto the (Eb-d)-, (Eb-koff)- and (koff -d)-planes of
the 3-dimensional parameter value space. The energy adsorption density was set to
ǫ = 6 kBTnm−1. Results from DFS experiments were included from [Brower-Toland
et al., 2002] (crosses) and [Pope et al., 2005] (diamonds). The corresponding energy
barriers have been calculated according to Eq. (2.24) for the set of intrinsic escape
rates k0 ∈ {105 s−1, 106 s−1, 107 s−1, 108 s−1, 109 s−1, 1010 s−1}.
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Figure 5.10: Contour surfaces of RMSD as described in Fig. (5.9), are shown. The
energy adsorption density was set to ǫ = 7kBTnm−1.
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Figure 5.11: Contour surfaces of RMSD as described in Fig. (5.9), are shown. The en-
ergy adsorption density was set to ǫ = 8 kBT nm−1. In addition the transition parame-
ters obtained by the rupture force distribution of single nucleosome (green crosses) and
dinucleosome (first rupture (blue circles) and second rupture (blue squares)) stretching
are included.
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we estimated the parameters to be within the limits 24.9 kBT ≤ Eb ≤ 34.0 kBT,
2.5 nm ≤ d ≤ 3.5 nm and 1.0 × 10−4s−1 ≤ koff ≤ 3.0 × 10−8s−1. The transition
parameters exhibited minimal deviations from the simulated data or a minimal RMSD
for an energy barrier Eb = 28.6 kBT, a reaction distance d = 3.02 nm and an escape rate
koff = 1.91 × 10−6s−1. The optimal transition parameters are tabulated in Tab. (5.2).

Eb [kBT] d [nm] koff [s−1]

ǫ = 6kBT nm−1 26.4 4.36 2.61 × 10−5

ǫ = 7kBT nm−1 28.4 3.76 2.91 × 10−6

ǫ = 8kBT nm−1 28.6 3.02 1.91 × 10−6

Table 5.2: Transition parameters for the model-dependent approach

The projected RMSD (see Fig. (5.9), (5.10), (5.11)) revealed strong correlations be-
tween the three transition parameters of the model for all considered cases. The escape
rate scales exponentially with the energy barrier as expected from Kramers theory,
while the reaction distance scales linearly with the energy barrier.
Further one can infer from the series of Fig. (5.9), (5.10) and (5.11) a gradual shift
of the parameter value space, which fulfills the constraint RMSD < 1. With increas-
ing adsorption energy density the allowed parameter value space is displaced towards
higher energy barriers and consequently slower escape rates, while simultaneously the
reaction distances decrease.

The optimal values found for the transition parameters as tabulated in Tab. (5.2) has
been used with the analytical Eq. (2.38) to calculate the mean rupture force curves.
The analytical curves are shown together with the simulated mean rupture forces in
Fig. (5.12a). Based on the same set of parameters, the variance of rupture forces ac-
cording to Eq. (2.39) was calculated in Fig. (5.12b).

A check for the self-consistency of the model-dependent approach was done. Since the
critical force is given in the model-dependent approach by Fc = Eb/νd, where ν = 2/3,
the resulting critical forces are 36.8 pN (ǫ = 6 kBT nm−1), 45.9 pN (ǫ = 7kBT nm−1)
and 57.5 pN (ǫ = 8kBT nm−1). The measured rupture forces are therefore within the
strong pulling regime 1 − F/Fc ≪ 1. As a consequence the results satisfy the basic
assumption of strong pulling and the application of the model-dependent approach is
valid. Beyond the critical force the mechanical limit is reached, and at that point the
model-dependent approach breaks down.



5.3. DYNAMIC FORCE SPECTROSCOPY 115

10 12 14 16
20

30

40

50

60

70

 ln(r
f
/r

0
)

m
ea

n 
ru

pt
ur

e 
fo

rc
e 

<
F

>
 [p

N
]

(a)

10 12 14 16
0

10

20

30

40

50

60

 ln(r
f
/r

0
)

ru
pt

ur
e 

fo
rc

e 
va

ria
nc

e 
σ2  [p

N
2 ]

(b)

Figure 5.12: (a) Simulated mean rupture forces as a function of the force loading rate
rf are shown for adsorption energy densities ǫ = 6kBT nm−1 (red diamonds), ǫ =
7kBT nm−1 (blue circles) and ǫ = 8kBT nm−1 (black squares). Analytical solutions of
the mean rupture forces derived from the model-dependent approach with parameters
according to Tab. (5.2) are indicated by lines. (b) Simulated variance of the mean
rupture force (red diamonds, blue circles, black squares) and the analytical solution
of the mean rupture force variance (lines) with the same parameters as in (a). r0 =
1pN nm−1 is an arbitary scale on the force loading rate axis.

5.3.1 Rupture force distribution

So far in the analysis only the mean and the variance of the rupture force was used,
but naturally the complete distribution of rupture forces contains further information
about the studied system. By comparison with the simulation the analytical solution
for the rupture force distribution P1 (F ) at a given force loading rate rf serves as a
further method to validate the results. In the model-dependent approach, described in
section (2.2.2), the escape rate k (F ) reads [Dudko et al., 2006]

k (F ) = koff

(

1 −
νFd

Eb

)1/ν−1

exp

[

Eb

(

1 −

(

1 −
νFd

Eb

)1/ν
)]

. (5.5)

The distribution of rupture forces at a given force loading rate rf can then be obtained
analytically with the help of Eq. (2.28)

P1 (F ) =
k (F )

rf
exp

(

koff

drf

)

exp

[

−

(

k (F )

drf

)(

1 −
νFd

Eb

)1−1/ν
]

, (5.6)

which is valid according to [Dudko et al., 2006] for not too high force loading rates.
From a set of Ndata = 105 BD trajectories, the rupture forces in the force-extension
curves have been identified, and subsequently a rupture force histogram was generated.
The analytical rupture force distribution was matched with the simulated distribution
by a simulated annealing MC method. The simulated annealing MC algorithm is based
on Ref. ([Corana et al., 1987]) and was adapted from an implementation by J.Krieger.
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Figure 5.13: Probability distribution P1 (F ) of rupture forces is shown for a stretching
velocity of 0.1 cm s−1 (ǫ = 8kBT nm−1). The histograms have been generated from
N = 105 simulated rupture events with a bin width ∆F = 3 pN. The fit (circles)
to the rupture force distribution yields the parameters Eb = 27.7 kBT, d = 3.19 nm,
koff = 4.1 × 10−6 s−1

The simulated rupture force histogram together with the best analytical fit is shown
in Fig. (5.13). The found transition parameters Eb = 27.7 kBT, d = 3.19 nm and
koff = 4.1×10−6s−1 are reasonably close to the parameters determined by the alternative
method, which supports the applied parameter estimation protocol.

5.3.2 Links to DFS experiments

In this section the findings obtained by BD simulations are compared with available ex-
perimental data on nucleosome disruption. A stepwise release of DNA in three stages
has likewise been observed in DFS studies [Pope et al., 2005, Brower-Toland et al.,
2002]. Brower-Toland et al. used chromatin arrays with purified core histones on a
3684 bp DNA, containing 17 repeating units of the 5S rRNA nucleosome positioning
element, which corresponds approximately to the DNA length in the presented single
nucleosome stretching simulations. In agreement with the simulations at first the outer
DNA turn was released gradually. In this step unwrapping forces beneath 15 pN were
sufficient to release about 76 bp of DNA, consistent with the calculated mean forces
in the low-force regime. The second stage of disruption involved the sudden release
of the next 80 bp, while then still about 11 bp were bound to the histone core. From
the BD trajectories we observed also (see Fig. (5.5)) the effect that DNA remained
bound to the histone core in the last stage of stretching, as the bending energy of the
attached DNA segments is exceeded by the energetic gain due to the DNA-histone core
interaction. The general results are supported by [Pope et al., 2005], who reported on
reconstituted chromatin fibers unwrapping events with discrete force peaks and step
lengths of extension centered at 60 nm, which have been associated with the disruption
of entire nucleosomes, and at 30 nm, corresponding to partial nucleosome disruption
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events. The salt conditions of 150mM NaCl were comparable to the settings in our
simulations.

The rupture forces obtained by the BD simulation were checked against the experimen-
tal rupture forces in stretching experiments. This is achieved with the extrapolation of
the analytical solution to slower force loading rates into the range of typical stretching
experiments. The same transition parameters for the analytical mean rupture force
solution of the model-dependent approach were taken as tabulated in Tab. (5.2). The
extrapolated mean rupture forces as functions of the force loading rate and energy
adsorption density together with the experimental data are shown in Fig. (5.14).
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Figure 5.14: Extrapolation of the analytical solution to intermediate force loading
rates for ǫ = 6 kBT nm−1 (diamonds), ǫ = 7 kBT nm−1 (circles), ǫ = 8 kBT nm−1

(squares). Experimental data taken from [Pope et al., 2005] show the most probable
rupture forces F ⋆ (for low-force (triangles up) and high-force loading rate (triangles
down) distributions) and from [Brower-Toland et al., 2002] (crosses) is included in the
figure.

Pope et al. [Pope et al., 2005] studied the chromatin fiber at different force loading
rates and identified three different rupture force distributions with individual energy
barriers and escape rates. A high-force population has been related to the presence of
a linker histone B4, while the remaining two rupture force distributions with no linker
histone occur at a low and a high force loading rate, respectively. Brower-Toland et al.
used a more well defined system without the presence of linker histone-like proteins B4,
HMG1, HMG2 and other non-histone chromatin-associated proteins, which resulted in
a single rupture force population.
Experimental DFS data is available only for the most probable force. Due to the asym-
metry of the rupture force distribution, the most probable force F ⋆ is related to the
mean rupture force 〈F 〉 by a constant term kBTγ/d according to Eq. (2.31) in the slow
pulling regime. We note that rigorously the experimental data must be shifted to be
compared to the mean rupture force, but for the experimental conditions in [Brower-
Toland et al., 2002, Pope et al., 2005] the shift does not exceed ≈ 1 pN and allows
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therefore direct comparison.

We found that the analytical mean rupture force solution at ǫ ≈ 7 − 8 kBT nm−1

displays the best approximation to the experimental DFS studies. In detail, the rup-
ture force population measured by Brower-Toland can be represented by the (ǫ =
8 kBT nm−1)-curve. For the second experimental data set, only the low-force loading
rate distribution is explained by the presented nucleosome model. The expectation
is that the low-force loading rate distribution represents the unperturbated natural
system at best. We can speculate that the high-force loading rate distribution is ob-
tained by selection of a different reaction pathway during the unwrapping transition,
which would signify an altered energy landscape as defined by energy barrier and re-
action distance along the new pathway. Possible alternative reaction pathways could
be the release of a H2A-H2B dimer and formation of a subnucleosomal particle in the
unwrapping process, which might be induced at high forces or in the case that the hi-
stone protein complex is non-equilibrated due to finite relaxation times at the relative
higher force loading rates. The initial loss of a H2A-H2B dimer in the first stage for
nucleosome disruption was proposed as an alternative model in the same DFS study
[Pope et al., 2005] and is supported by atomic force microscopy data of subnucleosomal
particles with stable wrapping of ≈ 25 nm, and ≈ 50 nm corresponding to a complete
nucleosomal particle [Nikova et al., 2004].
According to Ref. [Dudko et al., 2003], internal degrees of freedom e.g. as in this case
the release of a H2A-H2B dimer during the unwrapping process, can explain for mul-
tiple rupture force distributions and have been also observed in experiments [Liphardt
et al., 2001]. We remark that the presented analytical models are based on the assump-
tion that unwrapping occurs along a single 1-dimensional path, but complex molecules
may have a distribution of conformational states, which depend on the applied force.
But naturally the internal degrees of freedom can not be described within the presented
simulation model.

Based on the first experimental data set by Brower-Toland et al., the phenomenological
model yields a reaction distance d = 3.2 nm and an escape rate koff = 3 × 10−7 s−1.
In contrast, the low force loading rate population in the second data set by [Pope
et al., 2005] was characterized by a lower reaction distance d = 2.2 nm and a faster
kinetic rate koff = 1.7× 10−4 s−1. The energy barrier follows then from the formula for
thermally activated escape from a potential given by Eq. (2.24). In order to allow for
comparisons, we considered a range of intrinsic escape rates k0 from 105 s−1 to 1010 s−1.
The experimental data points from the first study were found to be within the deter-
mined bounds for the transition parameters, if the adsorption energy density was set
to ǫ = 8kBT nm−1 (see Fig. (5.11)). At the same time the intrinsic escape rate lay in
the interval k0 ∈ [106 s−1, 107 s−1], which corresponds well to the upper bound set by
the slowest process, the rotational motion of the histone core complex. For the second
experimental DFS study the measured transition parameters were in proximity to the
found parameter value space in Fig. (5.10) and Fig. (5.11), if an adsorption energy
density of ǫ ≈ 7 − 8 kBT nm−1 is assumed.
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Interestingly, the found energy adsorption densities 7 − 8 kBT nm−1 for DFS exper-
iments are slightly higher compared to 6 − 7 kBT nm−1 as indicated by the equilibrium
DNA fluctuations. Since DFS experiments probe prominently DNA-protein interac-
tions deep inside the nucleosome, this might indicate in reality weaker interactions
between the histone proteins and the outer DNA turn, and a stronger affinity near the
nucleosome dyad axis. Crystallographic data also supports relative stronger binding in
proximity of the dyad axis (superhelical locations SHL±0.5,±3.5) [Davey et al., 2002,
Luger and Richmond, 1998].

For the sake of completeness we note further DFS studies. In Ref. [Brower-Toland
et al., 2005] the contributions of histone tails and acetylation has been investigated
using mechancial disruption similar to the preceding study with intact nucleosomes
[Brower-Toland et al., 2002]. The general effect of acetylation and histone tail removal
was first a reduction of wrapped DNA lenght and second a decrease of the rupture
force, e.g. ≈ 3 pN if all histone tails were removed. Since acetylation/histone tail re-
moval changes the overall charge state of the nucleosome, this relates in terms of the
nucleosome model to simulations at a lower adsorption energy density.
A further study used periodic arrays of nucleosomes assembled on heterogeneous, non-
repetitive DNA with the help of histone chaperone and ATP-dependent chromatin
assembly and remodeling factors (ACF) [Gemmen et al., 2005]. They reported a much
broader distribution of rupture forces (F ≈ 5 − 65 pN), than compared to the more
regular 5S rRNA positioning sequence of [Brower-Toland et al., 2002].

The adsorption energy density in the histone octamer model represents only the upper
bound on the interaction strength, while on average the effective adsorption energy den-
sity ǫ(eff) due to fluctuations from the ground state is much lower. Calculations at equi-
librium as performed in section (5.1) for an energy adsorption energy ǫ = 8 kBT nm−1

yield a reduced effective adsorption energy density of 6.3 kBT nm−1. The effective
adsorption energy density is defined as the average of the total DNA-histone core in-
teraction energy E(n) per contour length of all interacting DNA segments. DNA is a
semiflexible polymer, which is characterized by a large persistence length of 50 nm, and
at the same time must be wound around a cylinder with radius 4.18nm. Consequently
the bending requires a relative huge amount of energy, which amounts to a bending
energy density of 1.2 kBT nm−1, defined in an analog way to ǫ(eff). Also the Coulomb
repulsion between two adjacent DNA strands on different windings in the nucleosome
adds a major contribution in energy. The simulation yields a mean value of ≈ 77 kBT
for the electrostatic energy, which is effective if both turns are wound around the hi-
stone core. Both terms reduce further significantly the effective adsorption energy,
such that the net binding energy ǫ(net) (see section (5.1)) is much lower. An important
quantity regarding the nucleosome stability is the binding energy. The binding energy
represents the difference in the total energy between the DNA-histone core complex
and the dissociated state of DNA and histone core. At ǫ = 8 kBT nm−1 the binding
energy amounts to ≈ −189 kBT, while the values for different interaction strengths can
be found in Tab. (5.3).
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ǫ [kBT nm−1] ǫ(eff) [kBT nm−1] ∆E [kBT]

6 5.2 -141

7 5.8 -168

8 6.3 -189

Table 5.3: Effective adsorption energy density ǫ(eff) and total binding energy ∆E.

In Ref. [Brower-Toland et al., 2002] it was postulated that chemical interaction sites,
presumed to be near the DNA positions +35 bp to +45 bp from the nucleosome dyad
axis (or SHL = ±3.5), are necessary to explain for the high rupture forces. In contrast,
in the presented nucleosome model the DNA-protein interaction is non-localized, but
uniformally distributed. Further it was only assumed that the interaction potential
follows a superhelix along the surface of a toroid, as implied by crystallographic data.
We showed that the assumed toroidal geometry is sufficient to reproduce the charac-
teristic force-extension curves without invoking specific, localized interactions.
The appearance of an energy barrier, which stabilizes the inner DNA turn from un-
wrapping can be understood with the following considerations. According to Kulić et
al. [Kulić and Schiessel, 2004] the interplay of the net adsorption energy, which takes
into account the bending and electrostatic energy of DNA attached to the histone core,
the bending energy of the free DNA arms and the gain in potential energy by pulling
out the DNA ends against an external force, is sufficient to explain the origin of the
energy barrier. In the analytical model from Kulić et al. a superhelical DNA path
inside the nucleosome is assumed, which is comparable to the model used in this work.
The resulting energy terms describe the competition of adsorption and applied external
force as well as a geometric term accounting for loss and gain of potential energy due
to variation of free DNA linker length. The varying length of free DNA arms results
simply from desorption of DNA from the histone octamer and also from rotation of
the nucleosome complex. The last term is due to the bending stiffness of the free DNA
arms.

5.3.3 Complete dynamic force spectrum

The experimental data on nucleosome disruption is available only at relative slow force
loading rates, while computational time restricts BD simulation to fast force loading
rates. Therefore an important question to answer is whether the extrapolation of the
analytical solution over several magnitudes of order is justified. Recently Lin et al.
demonstrated that the phenomenological model and the model-dependent approach
are valid at slow and fast force loading rates, respectively [Lin et al., 2007]. Further
both models represent limiting cases of more general expressions in an unified model
[Friddle, 2008]. The generalized expression for the mean rupture force reads

〈F 〉 = Fc

(

1 −

(

1 −
kBT

Eb
exp

(

koffkBT

rFd

)

E1

(

koffkBT

rFd

))
2
3

)

(5.7)
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and the rupture force variance is given by

σ2
f =




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d
(
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)


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2
[

1 −
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exp

(

koffkBT

rfd

)

E1

(

koffkBT

rfd

)]− 2
3

. (5.8)

In Fig. (5.15) we compared the analytical solutions of the mean rupture force and the
rupture force variance for the model-dependent approach and the unified model in the
complete force spectrum. Fig. (5.15a) verifies that the extrapolated solution of the
model-dependent approach follows the unified model down to force loading rates as
slow as 5 × 10−4 pN s−1, which encompasses the range of experimental force loading
rates. Eq. (5.8) is asymptotically correct at high and low force loading rates, but
underestimates the variance in-between as stated by Friddle, and also relative to the
model-dependent approximation. We thus conclude that the analytical solution at
high force loading rates found by the model-dependent approach remains valid for the
rupture force spectrum ranging from high-force loading rates to slower force loading
rates accessible in DFS experiments.
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Figure 5.15: (a) The mean rupture force according to Eq. (5.7) (symbols) and (b) the
rupture force variance as given by Eq. (5.8) were compared to the model-dependent
approach (lines). The transition parameters listed in Tab. (5.2) were used for ǫ =
6 kBT nm−1 (red diamonds), ǫ = 7 kBT nm−1 (blue circles) and ǫ = 8 kBT nm−1 (black
squares).

5.3.4 Effect of DNA charge renormalization

In the simulation electrostatics is treated on the level of the Debye-Hückel potential,
which is the linearized solution of the full non-linear Poisson-Boltzmann equation. Nev-
ertheless, as described in section (3.1.2) non-linear effects as counterion condensation
can be incorporated into the Debye-Hückel theory by using the charge renormalization
approximation. For highly charged objects, e.g. DNA, the electrostatic attraction of
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counterions outweights readily the entropic factors. Therefore as postulated by Man-
ning the counterrions may condense onto the charged object, renormalizing the effective
charge density. For DNA, the theory predicts that counterions compensate about 75
% of the bare DNA charge. But in real systems the assumptions underlying the the-
ory may not be fulfilled. The renormalized charge is strictly only valid in the limit
of vanishing salt, while counterion condensation is highly suppressed at elevated salt.
Further due to the finite size, end effects become important, which shift the balance
towards counterion decondensation. At last in the nucleosome, the positively charged
histone core complex drives away the condensed counterions from the DNA.
Therefore we regard the renormalized charge density only as a lower bound on the
effective charge density, while the in the preceding sections employed bare DNA charge
represents the upper bound. The two limits for charge density define the range for the
effective DNA charge in real systems and are used to identify the maximal effect of
charge renormalization on the unwrapping transition.
The effect of DNA charge renormalization was studied with BD simulations at equilib-
rium conditions regarding the adsorbed DNA length fluctuations and at non-equilibrium
in stretching experiments. For this the adsorption energy density was held constant at
ǫ = 6kBT nm−1, while the linear charge density was set to the two limiting cases.

Concerning the first part we observed that the weaker Coulomb repulsion between
the DNA strands on different turns increased the mean adsorbed contour length of
DNA to 48.9 nm relative to 44.9 nm for the bare DNA charge. Spontaneous DNA
fluctuations were greatly inhibited, which resulted in a sharp probability distribution
function around the peak value (see Fig. (5.16a)). Analog to the calculations for the
nucleosome systems with bare DNA charge, we estimated the equilibrium constant Keq

as shown in Fig. (5.16b). In respect of the net adsorption densities, the fits of simulated
equilibrium constants to Eq. (5.1) yielded a significantly higher net adsorption energy
density ǫ(net) ≈ 3.1 kBT nm−1; a numerical value closer to the adopted total adsorption
energy density.

In the second part the effect of charge renormalization was also studied in simulated
DFS experiments. The effect can be deduced by the comparison of typical force-
extension curves for bare and renormalized DNA charge (see Fig. (5.17)a). Here the
mean average force needed to unwrap the outer DNA turn from the histone core is
for renormalized DNA charge greatly increased with respect to the bare DNA charge,
amounting to 9.6 pN as compared to 2.1 pN. We conclude that a major driving force for
the unwrapping of the first turn is the electrostatic repulsion between the two adjacent
DNA strands.

In a next step the rupture forces in the high force regime have been analyzed. We
estimated from the linear slope of the force-extension curves an effective spring con-
stant keff ≈ 1 pN nm−1. The functional relation between mean rupture force and force
loading rate is shown in Fig. (5.17b).

Analog to previous calculations the optimal values (see Tab. (5.4)) and bounds for the
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Figure 5.16: Probability distribution of contour length adsorbed to the histone core
(ǫ = 6kBT nm−1) for bare (blank diamonds) and renormalized DNA charge (filled
diamonds).

transition parameters (see Fig. (5.18) were determined.
It was found that for bare DNA charge the Coulombic repulsion between the two DNA
strands also reduces the rupture forces significantly in comparison to renormalized
DNA charge, which is expected foremost to be relevant for the unwrapping of the
outer DNA turn. This indicates that in vicinity of the transition state, e.g. as shown
in Fig. (5.4c,d)), where only at one point the two DNA strands face each other, the
electrostatic repulsion facilitates the transition.

Eb [kBT] d [nm] koff [s−1]

bare DNA charge 26.4 4.36 2.61 × 10−5

renormalized DNA charge 26.8 2.72 9.48 × 10−6

Table 5.4: Comparison of transition parameters between renormalized and bare DNA
charge for the model-dependent approach (ǫ = 6kBT nm−1).

5.4 Oligonucleosomes

DNA in the cell nucleus is organized in a chromatin fiber, which is built up of individual
nucleosomes as repetitive element. The structure of the chromatin fiber is regulated by
internucleosomal, but it is to date not fully understood. Experimentally nucleosome
disruption was studied mostly in oligonucleosomes [Cui and Bustamante, 2000, Brower-
Toland et al., 2002]. In the present work the single nucleosome model was extended to
provide a framework for the simulations of oligonucleosomes. Nucleosome-nucleosome
interactions were incorporated on the level of a modified Gay-Berne potential (see
section (3.9.1)). Preliminary results of oligonucleosome structures and dinucleosome
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Figure 5.17: (a) Representative force-extension curves were recorded during the stretch-
ing simulation for bare (blank diamonds) and renormalized DNA charge (filled di-
amonds). The stretching velocity was held constant at v = 2.5 × 10−3cm s−1

(ǫ = 6kBT nm−1). (b) Simulated mean rupture forces for renormalized and bare DNA
charge. The analytical solutions (lines) of the model-dependent approach are shown.
The respective parameters are listed in Tab. (5.4).

stretching experiments are shown.

In the initialization phase the histone cores were positioned equidistantly along the
DNA fragment. During simulation the histone cores slide and show preference for a po-
sitioning at the DNA ends. A representative conformation of a 180 nm-DNA fragment
containing two nucleosomes is shown in Fig. (5.19). The same effect was demonstrated
in simulations and observed by AFM [Sakaue and Yoshikawa, 2001].

In order to relate the stretching velocity to the force loading rate an effective spring
constant keff ≈ 0.5 pN nm−1 was estimated from the force-extension curves.

In the following we show the reconstruction of single nucleosome kinetic rates and
energy surface parameters from simulated pulling experiments of oligonucleosomes.
Here the stretching of a dinucleosome was considered, but arrays containing multiple
nucleosomes could be also analyzed accordingly in this way.
In a dinucleosome the probability distributions of rupture forces for the occurrence
of the first and second rupture are related to the probability distribution P1 (F ) =
−dS1/dF and to the survival probability S1 (F ) of a single nucleosome, as defined
in section (2.2) and (5.3.1). The survival probability for a dinucleosome for the case
that no rupture has occurred yet, is given by Sa

2 = S2
1 . The underlying assumption

is that the individual nucleosomes disrupt independently and non-cooperatively. The
assumption of an independent nucleosome disruption in nucleosome arrays is often
assumed in the analysis of stretching experiments [Brower-Toland et al., 2002, Pope
et al., 2005]. Therefore the combined survival probability of the dinucleosome can be
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Figure 5.18: Contour surfaces of RMSD, described in Fig. (5.9), are shown for renor-
malized DNA charge (ǫ = 6 kBT nm−1).
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Figure 5.19: (a) The relaxed conformation of a dinucleosome is shown. (b) Force-
extension curves of mononucleosome (red diamonds) and dinucleosome (black squares)
at a stretching velocity v = 0.1 cm s−1 (ǫ = 8kBT nm−1).

written as a product of the single survival probabilities. Then the following expression
describes the rupture force distribution of the first rupture

P a
2 (F ) = 2P1 (F )S1 (F ) . (5.9)

The analog survival probability for a dinucleosome for the case that exactly one nucle-
osome is disrupted, is given by Sb

2 = 2S1 (1 − S1). Hence the rupture force distribution
for the second rupture reads

P b
2 (F ) = 2P1 (F ) (1 − S1 (F )) . (5.10)

We generated from force-extension curves histograms of rupture forces for the first
and for the second nucleosome disruption (see Fig. (5.20)). The simulated annealing
MC algorithm found optimal transition parameters by fitting the histogram data to
the respective rupture force distributions P a

2 and P b
2 . Best estimates of the transition

parameters are (Eb = 29.3 kBT, d = 3.2 nm, koff = 2.3 × 10−7 s−1) for first rupture
and (Eb = 26.8 kBT, d = 2.9 nm, koff = 5.0 × 10−6 s−1) for the second rupture, which
is in good agreement with transition parameters reconstructed from single nucleosome
stretching simulations (see Fig. (5.11)). A further consequence is that at least for the
chosen low nucleosome-nucleosome interaction strength, the individual nucleosome dis-
rupt independently.

A first and initial step towards the chromatin fiber was done by studying a system
containing three nucleosomes on a 200 nm-DNA fragment. The trinucleosome rep-
resents the smallest system of the chromatin fiber for which internucleosomal interac-
tions gain importance, and therefore provides insight into the higher-order organization
of the chromatin fiber. Here the system was investigated for bare and renormalized
DNA charge with respect to compaction. Representative conformations are shown in
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Figure 5.20: Rupture force distributions of a dinucleosome with bare DNA charge.
The generated histograms show the rupture force distribution for (a) the first and (b)
second nucleosome disruption at a stretching velocity v = 0.1 cm s−1 (ǫ = 8 kBT nm−1).
A fit to the rupture force distributions given by Eq. (5.9) and Eq. (5.10) yielded the
transition parameters (a) (Eb = 29.3 kBT, d = 3.2 nm, koff = 2.3 × 10−7 s−1) for
first and (b) (Eb = 26.8 kBT, d = 2.9 nm, koff = 5.0 × 10−6 s−1) for second rupture,
respectively.

(a) (b)

Figure 5.21: (a) Trinucleosome with bare DNA charge adopts an extended conformation
(ǫ = 8 kBT nm−1), while (b) for renormalized DNA charge the structure is compacted
(ǫ = 6 kBT nm−1).

Fig. (5.21) illustrating the different degree of compaction. In Tab. (5.5) the average
center-to-center nucleosome distances between consecutive nucleosomes on the DNA
and outer nucleosomes are listed. The electrostatic repulsion between the linker DNA
favors an extended conformation of the trinucleosome for bare DNA charge, which
is consistent to oligonucleosomes simulations [Arya and Schlick, 2006] observing the
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strong electrostatic contribution of linker DNA to unfolding.

I II

bare DNA charge 20.5 nm 24.7 nm

renormalized DNA charge 13.4 nm 14.5 nm

Table 5.5: Average center-to-center nucleosome distances in trinucleosomes of (I) con-
secutive and (II) outer nucleosomes for bare (ǫ = 8kBT nm−1) and renormalized DNA
charge (ǫ = 6 kBT nm−1).



Chapter 6

Concluding Remarks

6.1 Conclusion

This thesis deals with the dynamics of DNA in plasmids and nucleosomes. In plasmids,
the circular DNA adopts mostly a superhelical conformation, which brings two distant
sites on the DNA ring in close proximity to each other. Such contacts are known to be
necessary for the initiation of DNA transcription and replication. For the understand-
ing of these processes, a detailed knowledge of the dynamics of individual DNA sites
within the plasmid is required. Recently Fluorescence Correlation Spectroscopy (FCS)
studies of single fluorophore-labeled DNA provided information on the motion of DNA
monomers [Shusterman et al., 2004, 2008]. A goal of this thesis was to investigate the
DNA monomer motion by numerical simulations and relate it to observations in the
FCS experiments. Central questions concerned the effect of superhelicity, permanently
bent DNA sequences and the fluorophore positioning on monomer dynamics.
DNA in the nucleosome is wrapped almost twofold around a protein complex. The
nucleosome is not a static entity, but highly dynamic as shown by FRET [Gansen
et al., 2009] and restriction enzyme accessibility [Polach and Widom, 1995] experi-
ments. DNA fluctuations allow many proteins to access nucleosomal DNA, otherwise
sterically occluded inside the nucleosome. Dynamic Force Spectroscopy (DFS) experi-
ments have shown that a considerable energy barrier prevents the complete unwinding
of the inner DNA turn from the histone core [Brower-Toland et al., 2002, Pope et al.,
2005]. Furthermore the conformation of DNA in the nucleosome influences also the
folding of nucleosomes into the higher-order chromatin structure. Therefore the local
nucleosome structure determines the compaction of the chromatin fiber, which in turn
makes certain regions of the genome accessible to regulatory proteins or not. In this
context we studied conformational changes of DNA in the nucleosome by application of
an external force, which allowed to study the transition between the wrapped and the
unwrapped state. A major focus of this thesis is the determination of the unwrapping
transition kinetics and strength of DNA-histone core interaction in relation to experi-
mental DFS data.

The plasmids and nucleosomes were investigated by numerical simulations, which mod-
eled the biological system, but also captured the basic features of the experimental

129
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setups. The broad range of time and length scales involved in the problem necessitated
the use of coarse-grained models. The DNA is modeled as a chain of linear segments
interacting via harmonic potentials for bending, stretching and twisting, and incorpo-
rating hydrodynamic and electrostatic interactions based on the Brownian dynamics
(BD) simulations described in [Klenin et al., 1998]. The nucleosome model [Wocjan
et al., 2009a] takes into account the superhelical winding of DNA around the cylindri-
cal shaped histone core as known from crystallographic data [Luger et al., 1997]. The
DNA-histone core interaction is assumed to be uniformly distributed along the super-
helical path. In the model the DNA ends can be stretched by a constant velocity/force,
which provides a framework to simulate stretching experiments.

A first point concerned how well the dynamics of simulated DNA represent the motion
of semiflexible polymers. In order to answer this question, the simulation results were
compared with an analytical model of a semiflexible polymer. A suitable analytical
description is given by a linear Gaussian chain with hydrodynamic interactions, which
incorporates a bending rigidity [Harnau et al., 1996]. It was confirmed that the simu-
lated mean-square displacement of single monomers is governed on length scales below
the persistence length by the power law 〈~r 2

i 〉 ∝ t3/4 as expected for stiff polymers [Kroy
and Frey, 1997] and normal diffusion in the limit of large length scales 〈~r 2

i 〉 ∝ t. An
excellent agreement was found between the analytical solution and numerical simula-
tion, therefore validating this simulation approach. Rotational motion of a local DNA
segment along the helical axis can be treated within the Gaussian semiflexible chain
model, and rotations perpendicular to the helical DNA axis are consistent with the
Zimm-Barkley model [Barkley and Zimm, 1979].
These findings allowed us to study the changes in DNA dynamics induced by circular-
ization and superhelicity. Here, we focused on whether an acceleration of dynamics with
increasing superhelical density can be observed. Circularization of torsionally relaxed
DNA lead to only minor deviations from linear DNA. However, with increasing super-
helicity the DNA ring undergoes a transition to a plectonemic structure subdivided into
a stem region with interwound DNA strands, which is terminated by end-loops [Boles
et al., 1990, Vologodskii et al., 1992]. The BD simulations showed that monomers in
the end-loop structure are correlated with significantly faster motion, but due to con-
tinuous spatial reformation of the superhelix the effect averages out over time.
Hence, the relation indicates that the acceleration of dynamics possibly stems from a
shift of the fluorophore-labeled monomer towards an end loop region, provided that
the monomer remains a large fraction of time within the end loop. A stabilization of
the end loop is known for naturally bent DNA sequences inside plasmids from electron-
microscopy [Laundon and Griffith, 1988] and Monte Carlo simulations [Kremer et al.,
1993]. Intriguingly, bent sequences can also be found in the studied pUC18 plas-
mid [Muzard et al., 1990] in proximity of the fluorophore-labeling site in the FCS
study [Shusterman et al., 2008]. The insertion of a bent sequence caused that the
motion of single monomers differs depending on their position relative to the bent se-
quence. With increasing superhelicity the monomer motion is accelerated within bent
sequences, while is at the same time suppressed in the stem region.
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A further point of interest was whether an additional intermediate regime appears,
which was reported in experimental studies of circular (2.7 kbp) [Shusterman et al.,
2008] and linear DNA (2-23 kbp) [Shusterman et al., 2004], and therein was associ-
ated with Rouse dynamics of the monomers 〈~r 2

i 〉 ∝ t1/2. But for a sufficiently long
semiflexible polymer as DNA it would be expected that at intermediate length scales
motion is governed by Zimm dynamics 〈~r 2

i 〉 ∝ t2/3, which brought up the question if
dsDNA dynamics in dilute solution are controlled by hydrodynamic interactions. For
the simulated short 2.7 kbp-DNA fragments the intramolecular contribution saturates
fast due to the finite size of the polymer and therefore at first no intermediate regime
was observed as seen in experiments by Shusterman et al..
A possible mechanism which explains the intermediate regime is provided in this thesis.
The interaction of the dipole moment of the attached fluorophore with partially polar-
ized excitation light, as found typically in FCS experiments, depends on the relative
orientation. We accounted explicitly for the rotational motion of the dipole moment,
which is assumed to coherently follow the local DNA segment. A subsequent simula-
tion of the FCS process on the generated BD trajectories yielded a FCS autocorrelation
function, revealing an apparent intermediate regime for the mean-square-displacement.
We propose that the experimentally observed Rouse-like regime originates from the
detection of the local DNA and fluorophore rotation, whose time-scale lies within the
time-resolution of the FCS setup, and represents a cross-over regime from the rota-
tional dynamics of the dipole moment to normal translational diffusion [Wocjan et al.,
2009b]. Naturally, the full extent of fluorophore dynamics and fluorophore coupling to
the DNA remains to be clarified in experimental studies.

In the second part of this thesis the dynamics of nucleosomes were studied. Regard-
ing the fluctuations of DNA from the histone core at thermal equilibrium, we observed
transient unwrapping events of the outer DNA turn. It was possible to relate the results
to equilibrium constants of DNA site exposure from restriction enzyme accessibility as-
says [Polach and Widom, 1995] and therefore determine the strength of DNA-histone
core interaction.
The application of an external force facilitated the DNA unwrapping and allowed us to
probe the transition pathway to the unwrapped nucleosome state and associated con-
formations. As proposed in the stretching experiments [Brower-Toland et al., 2002], the
nucleosome structure opens in distinct steps: In the first step, DNA gradually detaches
from the histone core at low force, followed by disruptive release of the second DNA
turn at the rupture force and is accompanied by a rotation of the histone core [Cui
and Bustamante, 2000]. Characteristic force-extension curves as measured experimen-
tally [Brower-Toland et al., 2002, Pope et al., 2005] have been calculated by the BD
simulations. The rupture forces give insight into the underlying energy landscape. An
analysis of the rupture force distribution in the framework of the DFS theory allowed us
to calculate intrinsic kinetic rate constants and energy barriers of the unwrapping tran-
sition. For the strong pulling conditions the obtained simulation data was shown to be
compatible with a model-dependent approach [Dudko et al., 2006] rather than the phe-
nomenological model [Bell, 1978]. The predicted rupture force based on the analytical
model were compared with available experimental rupture force data [Brower-Toland
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et al., 2002, Pope et al., 2005], and provided quantitative statements about the DNA-
histone core interaction strength as well as nucleosome binding energies.
At higher-order the nucleosomes compact into the chromatin fiber. An initial step to-
wards the simulation of oligonucleosomes including internucleosomal interactions was
also done in this thesis. We developed a model which allowed us to perform stretching
simulations of dinucleosomes, which supported the findings regarding the transition pa-
rameters of single nucleosomes. Lastly the conformations of trinucleosome, the minimal
unit already comprising all relevant interactions in the chromatin fiber, were studied,
which showed folding/unfolding as function of the (linker) DNA charge.

6.2 Future perspectives

In this thesis single monomer dynamics in DNA molecules using BD simulations have
been studied. A focus was put on the rotational motion of a fluorophore attached to
the DNA and its relation to FCS experiments. As the studied DNA fragments were
restricted to a single chain length, a logical extension would investigate the influence
of increasing molecule length. A matter of particular interest is the interplay of the
intermediate regime originating from the rotating dipole moment and the growing in-
tramolecular contribution due to the increasing polymer flexibility for longer DNA
molecules.
The present thesis provides an analysis of the DNA unwrapping transition in the nu-
cleosome. The obtained predictions are based on the underlying assumptions inherent
in the coarse-grained representation of the DNA and the histone octamer. On the
other hand coarse-graining is necessary to limit the range of time and length scales
involved in the problem, while it nevertheless leaves the possibility for more accurate
modeling. Improvement could be done by incorporating localized interaction sites for
the DNA-protein interaction and modulating the uniform adsorption energy density
profile. A possible approach to this would be the distribution of discrete charges on
the histone core surface to mimic the electrostatic potential of the protein complex.
The assigned charges could be optimized to approximate the electrical field of the his-
tone core at atomic resolution. The resulting nucleosome model would display in more
detail crystallographic structure properties such as increasingly stronger DNA-histone
interactions towards the nucleosome dyad axis, which are focused at interaction sites
in 10bp-intervals along the superhelical path. This would likely lead to more specific
predictions of the nucleosome dynamics.
The refinement of the model also applies to the nucleosome-nucleosome interaction.
One shortcoming concerns the salt-dependence of the internucleosomal potential. An
important aspect on this is the role of histone tails mediating attractive interactions
between neighboring nucleosomes. This would open the way to simulate more pre-
cisely, within the developed oligonucleosome simulation, stretching of nucleosome ar-
rays, which combine at low-force, the opening of the chromatin fiber due to nucleosome
rearrangement and at higher forces the disruption of individual nucleosomes.
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Appendix

The appendix provides a synopsis of the forces and torques due to the DNA-histone
core interaction as defined in [Wocjan et al., 2009a]. The forces and torques are the

partial derivatives of the DNA-histone core interaction energy E
(n)
i , given by Eq. (3.15),

over the system coordinates.
The force ~F

(n)
i acting on the ith segment can be expressed as the sum
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The analogous contributions to the DNA-histone core interaction force acting on the
ith vertex from the (i-1)th segment are ~F

(act)
i,prev and ~F

(rot)
i,prev. The terms ~F

(act)
i,prev and ~F

(rot)
i,prev

can be obtained by substituting the ith terms with the corresponding (i-1)th terms in
the respective Eq. (7.2) and Eq. (7.3).
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The torque T
(n)
i on the ith segment is defined as

~T
(n)
i =







U0
r0−|~Ri|

r0

1−k0

Θ0

(

1 −
(

~ai · ~fi

)2
)− 1

2

~ai

[

~ei × ~fi

]

Θ < Θ0

0 Θ ≥ Θ0

(7.4)

The counter force ~F (n) and the counter torque ~T (n) acting on the histone core are then
given by

~F (n) = −

N
∑

i=0

(

~F
(act)
i,prev + ~F

(act)
i,next

)

(7.5)

~T (n) = −

N
∑

i=0

(

~r
(m)
i − ~r(n)

)

×
(

~F
(act)
i,prev + ~F

(act)
i,next

)

. (7.6)
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