
Ruprecht-Karls-Universität Heidelberg
Fakultät für Physik und Astronomie

-Gravitational Lensing-

An advanced method to recover
the mass distribution of galaxy clusters

Julian Merten

mailto:jmerten@ita.uni-heidelberg.de


Advisors:

Matthias Bartelmann
Massimo Meneghetti

Heidelberg & Bologna, March/April 2010

mailto:mbartelmann@ita.uni-heidelberg.de
mailto:massimo.meneghetti@oabo.inaf.it


Dissertation

submitted to the

Combined Faculties of the Natural Sciences and Mathematics

of the Ruperto-Carola-University of Heidelberg, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Julian Merten

born in: Hammelburg, Germany

Oral examination: 23rd of June, 2010.

mailto:jmerten@ita.uni-heidelberg.de


–Gravitational Lensing–
An advanced method to recover the mass distribution of

galaxy clusters

Referees:
Prof. Dr. Matthias Bartelmann (ITA Heidelberg)
Prof. Dr. Hans-Walter Rix (MPIA Heidelberg)

mailto:mbartelmann@ita-uni-heidelberg.de
http://www.ita.uni-heidelberg.de
mailto:rix@mpia.de
http://www.mpia.de


Über eine effiziente Methode zur Massenprofilrekonstruktion von
Galaxienhaufen

Die vorliegende Arbeit beschäftigt sich mit Galaxienhaufen. Diese massereichsten, gravita-
tiv gebundenen Objekte im beobachtbaren Universum repräsentieren das obere Ende der
Massenfunktion und sind von speziellem Interesse für die Kosmologie. Nicht nur lassen sich
mehrere kosmologische Parameter aus der Beobachtung und vor allem aus der Massenbes-
timmung von Galaxienhaufen ableiten, sie stellen auch ideale kosmische Laboratorien dar,
welche einen direkten Vergleich zwischen Beobachtung und numerischer Simulation erlauben.

Die vielleicht vielversprechendste Methode um die Eigenschaften von Galaxienhaufen zu
ermitteln ist der Gravitationslinseneffekt. Das Licht entfernter Hintergrundgalaxien wird auf-
grund der hohen Massekonzentration in einem Galaxienhaufen auf dem Weg zum Beobachter
abgelenkt und trägt daher Informationen über den Deflektor. In dieser Arbeit entwickeln
wir eine neue, moderne Methode welche den sogenannten starken und schwachen Grav-
itationslinseneffekt optimal kombiniert und daher eine nichtparametrische Rekonstruktion
der Massenverteilung des Deflektors erlaubt. Diese Methode ist in einem fortschrittlichen
numerischen Algorithmus implementiert, welcher effiziente numerische Verfahren und par-
allele Höchstleistungs-Computersysteme ausnutzt.

Mit Rekonstruktionen numerisch simulierter Galaxienhaufen zeigen wir die Leistungsfähigkeit
unserer Methode, im Vergleich mit etablierten Techniken. Wir schließen unsere Arbeit mit
Rekonstruktion und Analyse von MS2137.3-2353 und CL0024+1654, zweier wohlbekannter
Galaxienhaufen die spektakuläre Phänomene des starken Gravitationslinseneffektes aufweisen.

An advanced method to recover the mass distribution of
galaxy clusters

This work shall be on clusters of galaxies. Those most massive, gravitationally bound objects
in the observable Universe represent the high-mass tail of the mass function, rendering them
as objects of interest for cosmology. Not only that they allow for the derivation of several
cosmological parameters, but they are also ideal cosmic laboratories. Direct comparisons
between numerical simulations and observations are particularly appealing in the case of
clusters, as we will show.

Maybe the most promising method to derive cluster properties from observations is grav-
itational lensing. Light rays of distant background sources are bent on the way to the ob-
server, due to the high mass concentrations of clusters, and thereby carry important infor-
mation about the deflector. In this work we develop an advanced, nonparametric method
to recover the mass distribution of galaxy clusters by combining weak and strong gravita-
tional lensing. The underlying numerical algorithm makes use of modern concepts of high-
performance computing and is fully parallelised.

We proof the capabilities of our method, compared to established methods, while re-
constructing simulated clusters of galaxies and capitalising realistic lensing scenarios. We
close our work with the reconstruction of two well-known, strongly lensing clusters, namely
MS2137.3-2353 and CL0024+1654.





And the sky is filled with light
Can you see it?

All the black is really white
If you believe it

As your time is running out
Let me take away your doubt
You can find a better a place

In this twilight

Trent Reznor
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1 Introduction: Our picture of the Universe

The last century saw the advent of stringent mathematical formulations of physical princi-
ples, not only to explain experimental observations but also to predict them. One outstand-
ing example of such a mathematical formulation is Einstein’s theory of general relativity (see
e.g. Carroll, 2003, for a modern overview), maybe marking the beginning of a modern in-
terpretation of theoretical physics, together with the discovery of quantised phenomena in
physical processes, which led to the formulation of quantum mechanics and peaked in the
complex mathematical framework of quantum field theory (see e.g Srednicki, 2007, as a
comprehensive textbook).

Figure 1.1: The standard model of particle
physics as it presents itself today. Hadrons
and leptons appear in three families, the
fundamental forces are carried by bosonic
gauge particles. A scalar Higgs particle
is predicted, but not found experimentally,
yet. Gravity is completely neglected. (Cour-
tesy of Fermilab)

Today, we are in the fortunate position
to be able to describe the four discovered
fundamental interaction in nature. But un-
fortunately, this is not possible with a sin-
gle, closed theory. It needs two distinct, so-
called standard models to describe the Uni-
verse ranging from microscopic to macro-
scopic scales. The standard model of par-
ticle physics provides the microscopic part,
describing three of the four fundamental in-
teractions, being the electroweak and the
strong force. This theory is a quantum
field theory, or to be more precise a non-
abelian gauge theory, which describes lep-
tons, hadrons and scalar fields by mathe-
matical objects, so-called Weyl-fields1 in the
case of leptons and hadrons and a complex
scalar field. Mappings between those fields
must obey symmetry under certain gauge
transformations, given by the gauge trans-
formation group SU(2)2 × U(1)3 in the case
of the electroweak force and the SU(3)4 in
the case of the strong force. In a quantised theory, those gauge transformation groups man-
ifest themselves as bosonic gauge particles, namely as photons, gluons, W± and Z0 bosons.
The gauge transformation groups define the “rules” for all physical processes within the the-
ory through their symmetry properties and the associated particles are therefore often called
force carriers. The complete particle content of the standard model is shown in Fig. 1.1. This
complex mathematical structure is mainly inspired by experimental results (see e.g. Perkins,
1987, for an overview), but also predicts the existence of the scalar Higgs particle, whose

1Weyl fields, sometimes also called Weyl spinors, obey the right transformation properties within the Lorentz
group. They are named after Hermann Klaus Hugo Weyl (1885-1955) a German mathematician.

2The set of unitary 2× 2 matrices with determinant 1.
3The set of unitary numbers.
4The set of unitary 3× 3 matrices with determinant 1.
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1 Introduction: Our picture of the Universe

detection was one of the main drivers for the construction of the Large Hadron Collider

(LHC). In total, the standard model is described by 20 independent parameters, including
e.g. the different gauge-coupling constants and the mass of the Higgs boson. This large num-
ber of parameters renders the standard model already somewhat unappealing, but despite
its great success in predicting the results of a larger number of high-precision experiments,
another pretty obvious conceptual problem of the standard model of particle physics is the
complete disregard of gravity, being the forth fundamental force, dominating the Universe
on large scales.

The physical theory closing the gap is general relativity. Einstein’s field equations connect
the metric field, describing the geometry of spacetime, to the energy content in the Universe.
Relativity is a field theory, but not a quantum field theory. It can be shown, that a theory
describing a spin-2 field with respect to the Lorentz group cannot be renormalisable (e.g.
Srednicki, 2007). This renders it impossible to include Einstein’s gravity in the quantisation
machinery of quantum field theory. Even when not matching into a unified mathematical
framework yet, only the combination of quantum field theory and general relativity describes
our Universe completely.

The foundation of the standard model of cosmology is general relativity. While assuming
an isotropic and homogeneous metric, the left-hand side of the field equations largely sim-
plifies. The right-hand side describes the content of the Universe. The actual parameters,
describing the cosmological standard model, are motivated by observations (see e.g. Bartel-
mann, 2010, and references therein). The isotropy of the Cosmic Microwave Background
(CMB) (see e.g. Durrer, 2008, for an extensive overview) indicates, that all regions of the
Universe were in causal contact at an early stage of the cosmic evolution. This, and the fact
that the Universe seems to be spatially flat, again indicated by CMB observations, suggests
an era of extremely rapid expansion in the very beginning of the Universe. This predicted
epoch, called inflation marks the starting point of our ability to describe observationally and
theoretically the global evolution of the Universe, by providing a mechanism to produce the
initial perturbations in the cosmic fluid (see e.g. Liddle and Lyth, 2000), which partly manifest
themselves today as e.g. stars and galaxies. The physics before inflation basically is a mys-
tery to us, because existing theories will presumably break down while reaching the Planck
scale5. Since the end of inflation, the Universe expanded with a rate which can be determined
by observations. The current expansion rate is given by the Hubble6 constant, found to be
H0 = 72 ± 8 km s−1Mpc−1 (Freedman et al., 2001)7. A value which is confirmed by observa-
tions of distant Type Ia supernovae, finding H0 = 74.2± 3.6 km s−1Mpc−1 (Riess et al., 2009)
and furthermore indicating that the Universe entered a phase of rapid expansion, again. One
explanation for this accelerated expansion is given by one particular ingredient in the cosmic
fluid, called dark energy or sometimes also simply denoted as cosmological constant. This
mysterious energy-density component seems to be necessary also for other reasons: Mea-
surements of element abundances in the Universe (see e.g. Steigman, 2007, for a review)
indicate that ordinary matter, as it is described by the standard model of particle physics,

5The Planck scale, e.g. expressed as a mass, is the fundamental constant which can be constructed out of the
fundamental constants in general relativity, Newton’s constant and the speed of light and out of the fundamen-
tal constant in quantum mechanics, Planck’s constant: mpl =

p
~c/G. Physically the Planck scale describes

the presumed regime where the spacetime metric cannot be protected any more from quantum corrections.
(~ = 6.58211889(26)× 10−16eV sec; G = 6.673(10)× 10−8cm3g−1sec−2; c = 2.99792458× 1010cm sec−1)

6The cosmic expansion is sometimes also called Hubble flow, in reference to Edwin Hubble who was one of the
first to discover an increase in the recession velocity of galaxies as a function of distance (Hubble, 1929). The
first discovery of this phenomenon was achieved by Vesto Sliper in the 1910’s.

7Our prefered unit of length in this work is the Mpc. 1 Mpc = 3.09× 1022m = 3.26× 106 light years.
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contributes only a small fraction to the total matter density of the Universe. A finding which
is supported by the shape of rotation curves in spiral galaxies (Sofue and Rubin, 2001). The
missing matter component is thought to consist of an unknown form of matter, called dark
matter since it is interacting only gravitationally. Careful mass determinations of galaxy clus-
ters show, that matter contributes ∼ 25% to the energy density of the Universe. While also
considering the fact that the Universe is spatially flat, as the CMB tells us and the fact that the
contribution of radiation and neutrinos is negligible today, dark energy provides the missing
ingredient. A visual summary of our current understanding of the cosmic timeline is given in
Fig. 1.2.

parameter value
Hubble parameter h = 0.72± 0.03
Total matter density Ωmh

2 = 0.133± 0.006
Baryon density Ωbh

2 = 0.0227± 0.0006
Cosmological constant ΩΛ = 0.742± 0.03
Power spectrum normalisation σ8 = 0.796± 0.036
Spectral index ns = 0.963+0.014

−0.015

Reionisation optical depth τ = 0.087± 0.017

Table 1.1: The main parameters of the cosmological stan-
dard model today, as they are obtained from WMAP5 (Ko-
matsu et al., 2009).

The main task of cosmology
(see Dodelson, 2003; Wein-
berg, 2008, as textbook sug-
gestions) is to precisely de-
termine the parameters, fix-
ing the cosmological stan-
dard model (Lahav and Liddle,
2010), as we show the most
important of them in Tab. 1.1.
The high-precision measure-
ment of the CMB temperature
seems to provide the most
accurate way to achieve this
task (Spergel et al., 2007; Ko-
matsu et al., 2009; Dunkley et al., 2009), which will be even improved by the analysis of
the data from the Planck satellite. Together with the constraints coming from observations
from distant supernovae, the clustering of structure in the Universe, as e.g. observed by cos-
mological lensing (Bartelmann and Schneider, 2001) or baryonic acoustic oscillations (BAO)
(Eisenstein, 2005; Percival et al., 2007), the cosmological parameters can be fixed within sur-
prisingly small bounds. But also the standard model of cosmology suffers from conceptual
problems. Naturally, it considers only gravity, but also the nature of the two main ingredients
of the Universe today, dark energy and dark matter, though they appear as parameters, is
left open.

The point where the cosmological standard model and the one of particle physics meet
again is actually connected to their most severe problems. Both models suffer from a pretty
severe, so-called hierarchy problem. In the standard model of particle physics, the smallest
intrinsic length scale (or largest energy scale) is the scale of the electroweak phase transi-
tion, so the energy below which the symmetry SU(2)×U(1) is broken, to the symmetry under
U(1) gauge transformations, known as electromagnetism. This energy scale turns out to be
17 orders of magnitude smaller than the natural scale of an effective field theory neglecting
gravity, being the Planck scale. This suggests the introduction of a new symmetry, broken
at a much higher energy scale. This extension of the standard model is known under the
concept of supersymmetry, implying that every fermion in the standard model should have
a bosonic partner and vice versa. Supersymmetry also provides the most promising dark-
matter candidate, being the so-called neutralino. But a severe problem remains, namely the
hierarchy problem in the cosmological standard model: The value of the dark-energy param-
eter today is 120 orders of magnitude lower than the one would expect from a simple, but
conceptually appealing, cosmological constant in Einstein’s field equations. It is not unlikely,
that the hierarchy problem of dark energy is related to the hierarchy problem in quantum

3



1 Introduction: Our picture of the Universe

Figure 1.2: The history of the Universe as it is seen by the cosmological standard model.
(Courtesy of the NASA/WMAP Science team)

field theory, regarding the fact that gravity is completely left out of the game of quantised
field theories. A natural explanation for both hierarchy problems might arise from a “theory of
everything”, finally unifying all four fundamental interactions. Recent developments in the
field of supersymmetry and string theory show, that theories going beyond both standard
models (see e.g. Dine, 2007, for an overview) may indeed be able to unify the two.

For the moment it is important to understand better the nature of dark matter and dark
energy. Therefore, we will focus again on the cosmological standard model, also often called
the ΛCDM model and especially on its dark-matter component. In the following, we will
introduce a method, based on gravitational lensing, which is able to map accurately the
mass distribution of galaxy clusters. We describe the concept of gravitational lensing in
chapter 2 and highlight the special significance of clusters of galaxies within a cosmological
model in chapter 3. Chapters 4 and 5 focus on the concrete implementation of our method,
by also incorporating advanced numerical techniques and modern ideas of high-performance
computing. The last three chapters 6, 7 and 8 are dedicated to the results on simulations and
on real observations, obtained with our method and we explain there, how our method can
contribute to the task of shedding light on the dark components of our current cosmological
picture.
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2 Gravitational Lensing

Gravitational lensing, or just lensing as we will often call it, has become a very important
phenomenon in astrophysics during the last decades and created a new, independent field
of research within the community. A very peculiar property of lensing is that it is observed
on virtually every angular length scale and in several wave bands.

So called microlensing techniques can be used for the search of extrasolar planets, where
the presence of a transiting planet characteristically changes the light curve of its host star.
Using this technique, also relatively cold planets with low mass, have been found (Beaulieu
et al., 2006) and large telescope networks constantly monitor the light curves of candidate
systems (Albrow et al., 1995).
Moving up from the size of planets and stars to the size of galaxies, lensing is used to enhance
the observations of distant quasi-stellar objects (QSOs), often called quasars. In fact, Walsh
et al. (1979) discovered the first gravitational lens system, which consisted of the double
image of QSO 0957+561 seen through a foreground galaxy acting as gravitational lens.
On the scale of galaxy clusters, which deflect the light of distant background galaxies, the
effects of lensing are presumably most spectacular. This work is dedicated to this special
field of lensing and we shall discuss it in more detail later on.
Reaching the largest possible scales, the whole Universe can act as a lens and its energy-
density content distorts the shapes of astronomical objects all over the sky. These effects are
actually observable and produce a significant signal, if treated statistically, in observations
with a large field-of-view. This so-called cosmic-shear signal can be used to constrain the
growth of structure in the Universe in a very powerful and direct way. The European Space
Agency (ESA) satellite project Euclid (Refregier et al., 2010; Cimatti et al., 2009), which
recently passed the assessment phase of ESA’s Cosmic Visions program, is dedicated to shed
light on the nature of dark energy through the impact of this mysterious component of the
Universe on the growth of structure. Euclid is supposed to conduct an enormous galaxy
redshift survey and thereby reveal the shape and the time evolution of the spatial correlation
functions of structures, on a wide range of scales. Lensing will be a key player in this survey.

This chapter is organised as follows: We will give a basic derivation of the effects of lens-
ing from general relativity in Sec. 2.1 and focus on more specific applications afterwards.
Weak lensing is covered in Sec. 2.2 and strong lensing in Sec. 2.3. For a comprehensive text-
book, which covers the complete context of lensing, the reader is referred to Schneider et al.
(2006).

2.1 Basic theory of lensing

As we have seen, lensing is used in a variety of applications on different length scales, but
the basic effect is always the same and very simple. Due to the curvature of spacetime,
caused by e.g. massive objects, light rays, which would have followed a straight line in a
Euclidean space, are bent. This effect of light deflection is called gravitational lensing. As
can be derived in the stationary weak-field approximation of general relativity (Carroll, 2003),
the deflection angle α̂, which describes the difference in the direction of a light ray passing
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2 Gravitational Lensing

a massive point mass and the direction of the same light ray in the absence of this mass, is
given by

α̂ =
4GM
c2

ξ

|ξ|2
, (2.1)

with M being the mass of the point mass, G Newton’s constant, c the speed of light and ξ
the impact vector, orthogonal to the incoming direction of the light ray and describing its
distance from the deflector (compare Fig. 2.1). In the following, we will describe extended
deflectors of mass density ρ(r) as continuous ensembles of point masses, each of which
contains an infinitesimal mass element dm in an infinitesimal volume dV

dm = ρ(r)dV. (2.2)

2.1.1 Thin screen approximation

Figure 2.1: From Bartelmann and Schneider
(2001). Sketch of a typical gravitational lens
system.

We will make an assumption on the geom-
etry of the lensing situation, which is gen-
erally fulfilled within the context of lensing
by galaxy clusters. We assume, that the
lensing happens within a distance along the
line-of-sight, which is very small compared
to the typical distances between the deflec-
tor in the lens plane and the light-emitting
source in the source plane Dds, the deflec-
tor and the observer Dd and between the
observer and the source Ds. This typical
lensing situation is sketched in Fig. 2.1. In
other words, we approximate the trajectory
of the light ray as a straight line, which is
abruptly deflected via Eq. 2.1 within an in-
finitesimally thin screen, perpendicular to
the line-of-sight. This assumption is actu-
ally equivalent to the Born approximation in
scattering theory. Thus, we project the mass
density of the lens along the line-of-sight,
which direction we denote as the z coordi-
nate and obtain the surface-mass density Σ
as

Σ(ξ) =
∫
ρ(ξ, z)dz. (2.3)

We derive the total deflection angle by inte-
grating over the total mass distribution

α̂(ξ) =
4G
c2

∫
d2ξ

′
Σ(ξ

′
)
ξ − ξ′

|ξ − ξ′ |2
. (2.4)

2.1.2 The lens equation

By having a close look at Fig. 2.1, we can read off the mapping, which relates the 2D coor-
dinate of a point source in the source plane η to its 2D coordinate in the lens plane ξ, after
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2.1 Basic theory of lensing

deflection by the angle α̂

η =
Ds

Dd
ξ −Ddsα̂(ξ). (2.5)

It should be noted, that the distances Ds, Dd and Dds have to be defined such, that Eq. 2.5
holds for any spatial geometry of the Universe. Therefore, we will use the angular diameter
distance (can e.g. be found in Weinberg, 2008), which satisfies this condition by construction.
With this in mind, we introduce the angular source plane β = η/Ds and lens plane θ = ξ/Dd

coordinates and use them to transform Eq. 2.5 into

β = θ − Dds

Ds
α̂(Ddθ), (2.6)

which motivates the definition of the reduced deflection angle α, to obtain the final, conve-
nient form of the lens equation

β = θ −α(θ). (2.7)

This central equation in gravitational lensing describes the lens mapping from the source
plane to the lens plane and we will make constant use of it.

2.1.3 The lensing potential

In adaptation to the practical considerations of observations, we describe lensing with the
help of angular coordinates. Thus, it appears useful to define a dimensionless equivalent to
the surface-mass density, which we will call the convergence κ. Due to the relation between
the reduced deflection angle α and the deflection angle α̂, we define it as

κ(θ) =
Σ(Ddθ)

Σcr
, (2.8)

with the critical surface density

Σcr =
c2

4πG
Ds

DdDds
. (2.9)

The reduced deflection angle now reads

α(θ) =
1
π

∫
d2θ

′
κ(θ

′
)
θ − θ′

|θ − θ′ |2
, (2.10)

which suggests introducing a 2D gravitational potential ψ, which is adapted to the thin-screen
approximation and for which

∇2ψ = 2κ (2.11)

holds. It describes a rescaled and line-of-sight integrated analogue of the Newtonian poten-
tial. We shall call it lensing potential and formally define it as

ψ(θ) :=
1
π

∫
d2θ

′
κ(θ

′
)ln|θ − θ′ |. (2.12)
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2 Gravitational Lensing

2.2 Weak lensing

We will now begin to describe the effects of lensing on the observations of astronomical
objects, which are in our case distant galaxies with redshifts typically ranging from ∼ 0.5 to
∼ 3. One aspect of Liouville’s1 theorem, which is interesting to us, is that lensing neither
creates nor destroys photons. Translated into the relation between the unlensed surface-
brightness distribution of an object I(s) and the observed surface-brightness distribution I
and while using the lens equation Eq. 2.7 it reads

I(θ) = I(s)[β(θ)]. (2.13)

This equation looks rather harmless, but depending on the lensing potential of the deflector it
can become highly non-linear. We therefore distinguish different lensing regimes. In the case
of so-called weak lensing, we assume that the deflection angles are small and we will locally
expand Eq. 2.13 in terms of the angular coordinate θ. Before we do so, we need to conve-
niently describe the observed surface-brightness distribution, which is why we decompose it
into its multipole moments of different order

M =
∫
d2θ I(θ) (2.14)

Di =
∫
d2θ I(θ)θi i ∈ [1, 2] (2.15)

Qij =
∫
d2θ I(θ)θiθj i, j ∈ [1, 2] (2.16)

Qij...n =
∫
d2θ I(θ)θi...θn i, j, ...n ∈ [1, 2]. (2.17)

2.2.1 Complex spin fields

We have already mentioned, that the lens mapping given by Eqs. 2.7, 2.13 can become quite
complicated because of its nonlinearity and we will now describe a formulation of the prob-
lem, that tremendously simplifies the equations and exploits the symmetries in the structure
of the problem.

A special advantage of the decomposition of the observed images into their multipole com-
ponents is the fact, that the individual elements of the expansion encode symmetries under
rotations in the plane, so under transformations represented by the group SO(2)2. We say,
that a quantity has spin s if it is invariant under a rotation of the Cartesian coordinate frame
by a rotation angle ϕ = 2π/s and s ∈ [1, 2, ...]. A scalar quantity, which is invariant under any
rotation, we say to have spin 0. Since the groups SO(2) and SU(1)3 are at least locally iso-
morphic4 (see e.g. Tung, 1985, as a textbook on group theory) we can furthermore introduce
the complex mapping

v =
(
v1

v2

)
→ v1 + iv2 =

(
v2

1 + v2
2

)1/2
eiϕ with ϕ = arctan

v2

v1
and ϕ ∈ [0, 2π) 5, (2.18)

1Joseph Liouville (1809-1882) was a French mathematician.
2The set of orthogonal 2× 2 matrices with a determinant of one
3The set of unitary numbers with a determinant of one
4Meaning that there exists a bijective map f : SO(2) → U(1), such that for f and f−1 it holds that f(u ∗ v) =
f(u) ·f(v), where u, v are elements of SO(2), ∗ the group operation in SO(2) and · the group operation in U(1).

5Under this restriction the mapping is isomorphic
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2.2 Weak lensing

for every vector quantity, especially θ and simplify the notation.
In this complex notation, a quantity is defined to have spin s if it gets multiplied by a phase

factor of exp(−isϕ) under rotations of the original Cartesian coordinate frame by an angle
of ϕ. In analogy to algebraic solutions of the angular-momentum problem (Varshalovich and
Moskalev, 1988), we define the spin-raising and spin-lowering operators ∂ and ∂∗ with respect
to the angular directions θ1 and θ2 by

∂ := (
∂

∂θ1
+ i

∂

∂θ2
) ∂∗ := (

∂

∂θ1
− i

∂

∂θ2
), (2.19)

which increase or decrease the spin of a complex quantity by one, respectively. Following
the ideas above, we decompose the symmetric6 Cartesian tensors of rank 2, 3 and 4 into
complex quantities, which we will call fields, of spin 0, 1, 2, 3 and 4 defined as

Q0 := Q11 +Q22 (2.20)

Q2 := Q11 −Q22 + 2iQ12 (2.21)

T1 := Q111 +Q122 + i(Q122 +Q222) (2.22)

T3 := Q111 − 3Q122 + i(3Q122 −Q222) (2.23)

F̃0 := Q1111 + 2Q1122 +Q2222 (2.24)

F̃2 := Q1111 −Q2222 + 2i(Q1112 +Q1222) (2.25)

F̃4 := Q1111 − 6Q1122 +Q2222 + 4i(Q1112 −Q1222). (2.26)

Finally, some simple arithmetic rules for calculations with spin fields as given in Schneider
and Er (2008):

1. Terms in a valid equation must have the same spin.

2. The product of a spin-m with a spin-n quantity has spin m+ n.

3. Complex conjugation changes the sign of the spin.

While locally expanding Eq. 2.7, with each additional order in θ more and more spatial
complexity is subsequently added to the lens mapping. We should expect that to be reflected
in the spin properties of the mapping and since the lensing potential is the underlying scalar
quantity, causing the deflection in Eq. 2.7, we define the following five spin fields, by applying
the spin-raising and spin-lowering operators.

α := ∂ψ s = 1 (2.27)

2γ := ∂∂ψ s = 2 (2.28)

2κ := ∂∂∗ψ s = 0 (2.29)

2F := ∂∂∂∗ψ s = 1 (2.30)

2G := ∂∂∂ψ s = 3 (2.31)

We remark that the quantities in Eqs. 2.27, 2.29 are the complex equivalents to the reduced
deflection angle and to the convergence. The other quantities we call from top to bottom,

6This means that a tensor is invariant under index permutations
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2 Gravitational Lensing

the shear, the F-flexion and the G-flexion. The second order expansion of the lens Eq. 2.7
with respect to the position angle and with the use of our complex notation then reads

β = (1− κ)θ − γθ∗ − 1
4
F ∗θ2 − 1

2
Fθθ∗ − 1

4
G (θ∗)2 +O(θ3). (2.32)

This equation is the central result of this section. The locally expanded lens equation decom-
poses the lens mapping into quantities with simple spin properties, derived from the lensing
potential of the deflector. If we define observable quantities through Eqs. 2.20 - 2.26, we
might constrain the deflector through its spin fields (Eq. 2.27 - 2.31), by analysing the lens
mapping given by Eq. 2.32.

2.2.2 Lens mapping of extended sources

In the following derivation, we consider a single background source with a given intrinsic
brightness distribution in the source plane Is(β) and an observed brightness distribution in
the image or lens plane I(θ). We chose our coordinate frame such, that the centre-of-light in
the image plane coincides with its origin θ0 = 0∫

d2θ θ I(θ) = 0. (2.33)

Following the derivations given in Schneider and Er (2008); Okura et al. (2007) or Goldberg
and Leonard (2007), we start from the linearised Jacobian determinant of Eq. 2.32

detA(θ) =
∣∣∣∣∂β∂θ

∣∣∣∣ = (1− κ)2 − γγ∗ − θ
[
(1− κ)F ∗ +

γ∗F + γG∗

2

]
− θ∗

[
(1− κ)F +

γ∗G+ γF ∗

2

]
+O(θ2),

(2.34)

and use it to calculate the relations between the brightness distribution in the source and in
the lens plane. We separate the calculations by multipole order and follow the notation of
Schneider and Er (2008).

Total fluxes (monopole)

While defining the intrinsic, unlensed flux of the source as S0, one finds the following relation
to the observed flux S, with the help of Eq. 2.33

S0 =
∫
d2β Is(β) =

∫
d2θ detA(θ) I(θ) =

[
(1− κ)2 − γγ∗

] ∫
d2θ I(θ)

= detA(θ0)S.
(2.35)

Centroid shift (dipole)

Another interesting effect of gravitational lensing is the shift of the centre-of-light, which is
defined in the source plane as

β̄ =
1
S0

∫
d2β β Is(β). (2.36)
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2.2 Weak lensing

Again, we make use of the lens Eq. 2.32 and its Jacobian determinant given by Eq. 2.34 to
obtain

β̄ =
1

S [(1− κ)2 − γγ∗]

∫
d2θ

[
(1− κ)θ − γθ∗ − 1

4
F ∗θ2 − 1

2
Fθθ∗ − 1

4
G (θ∗)2

]
×
{

(1− κ)2 − γγ∗ − θ
[
(1− κ)F ∗ +

γ∗F + γG∗

2

]
−θ∗

[
(1− κ)F +

γ∗G+ γF ∗

2

]}
I(θ)

(2.37)

Obviously, already for the calculation of this first order moment, the formulas become quite
cumbersome, but by using the complex second-order brightness moments

Q0 ≡
1
S

∫
d2θ θ θ∗ I(θ) and Q2 ≡

1
S

∫
d2θ θ2 I(θ), (2.38)

which have the spin properties that we described in the last section, one can show that
Eq. 2.37 becomes a simple matrix multiplication

β̄ = BG. (2.39)

In the last equation the matrix B depends on Q0 and Q2 and the matrix G depends on the
convergence, the shear and the two flexion fields.

The mass-sheet degeneracy
Before we can investigate the more interesting behaviour of higher-order brightness mo-
ments under the lens mapping, we have to deal with a peculiar ambiguity in gravitational
lensing . Gorenstein et al. (1988) were the first to point out, that the effects of lensing are
unchanged while adding a sheet of constant surface-mass density. Therefore, the conver-
gence of the deflector can be transformed like

κ(θ)→ κ′(θ) = λκ(θ) + (1− λ). (2.40)

Eq. 2.40 is called the mass-sheet degeneracy . Because of this degeneracy, the shear alone
is not a weak-lensing observable but only the reduced shear defined as

g :=
γ

(1− κ)
, (2.41)

which is invariant under the mass-sheet transformation. We also introduce the reduced flex-
ion as derivatives of the reduced shear

G1 := ∂∗g =
F + gF ∗

(1− κ)
, G3 := ∂g =

G+ gF

(1− κ)
, (2.42)

and isotropically rescale the lens equation to obtain

β̂ =
β

(1− κ)
= θ − gθ∗ − 1

4
F ∗

(1− κ)
θ2 − 1

2
F

(1− κ)
θθ∗ − 1

4
G

(1− κ)
(θ∗)2 . (2.43)

The last step ensures invariance of the lens mapping under the transformation given by
Eq. 2.40. The Jacobian determinant of the lens mapping is then given by

detÂ =
detA

(1− κ)2
= 1− gg∗ − η∗θ − ηθ∗, (2.44)

11



2 Gravitational Lensing

where η is related to the reduced flexion as follows

η = G1 −
gG∗1

2
+
g∗G3

2
. (2.45)

Ellipticities (quadrupole)
Now we can have a look at the transformation of the spin-2 brightness moment of the source,
given by

Qs2 =
1
S0

∫
d2β̂ (β̂ − β̄)2 Is(β̂) =

1
S(1− gg∗)

∫
d2θ (β̂(θ)− β̄)2 detÂ(θ) I(θ)

=
1

S(1− gg∗)

∫
d2θ

(
θ − gθ∗ − 1

4
F ∗

(1− κ)
θ2 − 1

2
F

(1− κ)
θθ∗ − 1

4
G

(1− κ)
(θ∗)2 − β̄

)2

× (1− gg∗ − η∗θ − ηθ∗) I(θ),

(2.46)

which can be represented in a more clear form by using the spin-1 and 3 third-order bright-
ness moments

T1 ≡
1
S

∫
d2θ θ2θ∗ I(θ), T3 ≡

1
S

∫
d2θ θ3 I(θ). (2.47)

We find
Qs2 = Q2 − 2gQ0 + g2Q∗2 + AG− β̄2, (2.48)

where A is a matrix, whose elements only depend on T1, T3 and g. The reader is referred to
Schneider and Er (2008) for more details.

Higher-order moments
In order to obtain also an estimate for the flexion of a lens, we need to evaluate the transfor-
mation of third-order brightness moments given by

T s1 =
1
S0

∫
d2β̂ (β̂ − β̄)2(β̂∗ − β̄∗) Is(β̂), (2.49)

and

T s3 =
1
S0

∫
d2β̂ (β̂ − β̄)3 Is(β̂). (2.50)

We use the spin 0, 2 and 4 forth-order brightness moments

F̃0 ≡
1
S

∫
d2θ (θθ∗)2 I(θ), F̃2 ≡

1
S

∫
d2θ θ3θ∗ I(θ), F̃4 ≡

1
S

∫
d2θ θ4 I(θ), (2.51)

to obtain
T s = τ + CG +O(β̄3). (2.52)

This heavily simplified equation contains the third-order brightness moments T s1 and T s3 in
the vector of length four T s. The respective observed third order-moments are truncated
into τ and the 4 × 4 matrix C contains fourth and second order brightness moments. Again,
the explicit representation of those quantities can be found in Schneider and Er (2008).

Shear and flexion estimators
With Eqs. 2.48, 2.52 we have closed the system of equations to derive estimators for shear
and flexion of the lens. By neglecting the higher-order terms in the centroid shift, we invert
Eq. 2.52, which is linear in G, to obtain

G = C−1(T s − τ). (2.53)

12



2.2 Weak lensing

Inserting the equation above into Eq. 2.48 yields

Qs2 = Q2 − 2gQ0 + g2Q∗2 + AC−1(T s − τ)− (BG)2. (2.54)

We will now assume, that sources are randomly oriented, which means that while averaging
over a number of background sources, the expectation values of Qs2 and T s vanish. Thus, we
are left with

Q2 − 2gQ0 + g2Q∗2 = AC−1τ + (BC−1τ)2 =: Y (g), (2.55)

which is an equation where the reduced shear just depends on the observed brightness mo-
ments. Schneider and Er (2008) suggested to solve it in an iterative way, since the right-hand
side is small compared to the left-hand side. Hence, the solutions are implicitly given by

g =
χ

|χ|2

(
1±

√
1− |χ|2 +

Y χ∗

Q0

)
, (2.56)

where we have defined the complex ellipticity as

χ :=
Q2

Q0
. (2.57)

In the case of a weak shear signal, this reduces to the well-known result as e.g. found by
Schneider and Seitz (1995), which relates complex ellipticity and reduced shear

g ≈ χ

2
. (2.58)

To obtain an estimator for the flexion, one considers Eq. 2.53 and assumes e.g. |g| � 1, which
simplifies the appearance of C significantly and the distinction between flexion and reduced
flexion vanishes. Goldberg and Leonard (2007) and Schneider and Er (2008) find

G1 ≈ F ≈
4

9F̃0 − 12Q2
0

T1, G3 ≈ G ≈
4

3F̃0

T3. (2.59)

One last thing, that we have to take into account, is the fact that the redshift of the source
enters into the convergence of the deflector, via the scaling with the critical surface-mass
density in Eq. 2.9. Bartelmann and Schneider (2001) define therefore the cosmological
weight function Z(z) for a given lens redshift zd by

Z(z) :=
limz→∞Σcr(zd, z)

Σcr(zd, z)
H(z − zd) =

D∞Dds

Dd∞Ds
H(z − zd), (2.60)

where the Heavyside step function H ensures, that sources in front of the lens are weighted
with zero. If we consider sources at different redshifts, all relevant lensing quantities of the
deflector, like deflection angle, convergence, shear and flexion scale with the cosmological
weight factor: α(z) = Z(z)α, κ(z) = Z(z)κ, γ(z) = Z(z)γ, F (z) = Z(z)F, G(z) = Z(z)G
where α, κ, γ, F, and G, refer to a fiducial source redshift of z = ∞. We obtain the final
estimators

g(z) =
Z(z)γ

(1− Z(z)κ)
=
〈
Q2(z)
2Q0(z)

〉
(2.61)

G1(z) =
Z(z)F + g(z)Z(z)F ∗

(1− Z(z)κ)
≈ Z(z)F =

〈
4T1(z)

9F0(z)− 12Q0(z)2

〉
(2.62)

G3(z) =
Z(z)G+ g(z)Z(z)F

(1− Z(z)κ)
≈ Z(z)G =

〈
4T3(z)
3F0(z)

〉
, (2.63)

where the brackets< · > indicate, that we are considering expectation values after averaging
over a number of images.

13



2 Gravitational Lensing

2.2.3 Shear and flexion in reality

The last section assumed, that images are observed under ideal conditions, so without any
systematic effects introduced by the observational process. Unfortunately, this does not re-
fer to reality as it is shown in Fig. 2.3. In real astronomical images one has to deal with several
instrumental noises like read-out shot-noise and pixelisation of the detector, sky background
and the blurring of images caused by the atmosphere7. As a result, one cannot directly ob-
serve those brightness moments of an image, which are only due to the intrinsic shape of an
object and to the shape distortions caused by the deflector.

Figure 2.2: From Rowe (2010). A so-called
whisker plot, showing the measured elliptic-
ities of a simulated stellar field containing
2500 stars. The amplitude of the ellipticities
is indicated by the length of the whiskers
and its orientation by their direction.

It has been realised, that reliably measur-
ing shear from real observational surveys
like the Canada-France-Hawaii Telescope

Legacy Survey (CFHTLS) (Fu et al., 2008;
Semboloni et al., 2006) or the COSMOS field
(Massey et al., 2007; Schrabback et al.,
2009) is more challenging than it was
expected initially. Therefore, a series
of test programs have been established,
to investigate the performance of exist-
ing shape-measurement pipelines. This in-
cludes the Shear TEsting Program (STEP)
(Heymans et al., 2006; Massey et al., 2007)
and the GRavitational lEnsing Accuracy

Testing 2008 (GREAT08) (Bridle et al., 2008).
With the help of those programs, the perfor-
mance of the methods, that we will present
further on, in measuring shapes from realis-
tic images, improved significantly.

In order to get an estimate for the distor-
tions, which are not induced by lensing but
by the optics of the telescopes and the see-
ing, one uses reference stars, which can be

assumed to be ideal point sources. To get an idea of the spatial variation of this effect over
the whole field-of-view of the telescope, one observes stellar fields and measures the dis-
tortions for individual stars as indicated in Fig. 2.2. From these measurements the so-called
point-spread function (PSF) of the telescope can be modeled (Rowe, 2010) and subtracted
from the shape measurement. How this is done in practice varies within the different meth-
ods.

Weighted multipole moments

As can be seen from Fig. 2.4, the noise level contained in a realistic image of a galaxy can
hamper the measurement of the multipole moments of this object in areas with low signal-
to-noise ratio. For this reason, a weighting function W (θ) is introduced in the determination
of the different moments

Qij...n =
∫
d2θ W (θ) I(θ) θi...θn i, j, ...n ∈ [1, 2]. (2.64)

7In the literature often called seeing.
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2.2 Weak lensing

To account for the fact that the relations derived in Sec. 2.2.2 are not valid any more due
to the weighting function and the additional convolution with the PSF, a method originally
developed by Kaiser et al. (1995) and commonly called KSB corrects for those effects by
assuming that they can be described as a convolution with a narrow, but highly anisotropic
and a broad, but isotropic kernel. These assumptions do not necessarily hold, especially
when describing complicated PSF’s. Anyway, KSB and its successor called KSB+ (Luppino
and Kaiser, 1997; Hoekstra et al., 1998; Heymans et al., 2005) have proven, that a simple
correction to the measured ellipticity, described via the moments up to the fourth order of the
observed brightness-distribution, the weighting function and its spatial derivatives up to the
second order, provides reasonable estimates for the reduced shear. This approach has been
generalised by Okura et al. (2007); Goldberg and Leonard (2007) and Okura et al. (2008)
to provide the possibility to measure a flexion signal, where the correction terms include
moments of the brightness distribution up to the sixth order and spatial derivatives of the
weighting function up to the third order.

Shapelets

A completely different approach is followed when the objects, which shapes we want to mea-
sure, are not described by their multipole moments but when they are decomposed into
another orthogonal set of basis functions called shapelets. This set of basis functions is
identical to the Eigenfunctions of the quantum harmonical oscillator and can be represented
in Cartesian Refregier (2003) or polar coordinates (Massey and Refregier, 2005). Due to the
convenient mathematical properties of this basis, typical image transformations like convo-
lution and deconvolution or shearing operations can be performed particularly fast and easily
in shapelet space. Therefore, the subtraction of the convolution kernel, which also has to be
modeled by shapelets, from the object of interest is possible and the shape of an object can
directly be measured from the deconvolved shapelet representation. This, so-called ’passive’
approach, where the measurement is directly obtained from the observed object, is followed
by Refregier (2003). To perform this measurement in an ’active’ way, the methods by Kui-
jken (2006) and Bernstein and Jarvis (2002) create an initial, unsheared model, convolve it
with PSF and weighting function and subsequently apply shear to it, until the model matches
best with the image in a least-squares sense. Shapelet methods are in principle also able
to conveniently measure flexion signals and do not suffer from the strong assumptions of
the KSB approach, but Melchior et al. (2010) pointed out, that shapelet models are not ideal
to describe galaxies, whose shapes differ too strongly from the typical Gaussian character of
the basis function. In those cases, measurements based on shapelets tend to underestimate
the shear. Nevertheless, shapelets have several interesting astronomical applications and
an overview is presented in Melchior (2010).

Model-fitting techniques

Another class of ’active’ methods, are direct model-fitting techniques. A very generic model
to describe the shape of a galaxy like an elliptical Sérsic model (Sérsic, 1963) is convolved
with a given PSF model and then compared with the original image. After a best fit is found,
the shear estimate is just given by the ellipticity of the analytic model. The biggest prob-
lem with this approach is the slow model selection process, since several model parameters
have to be fit. The most developed tool available right now is called LensFit (Miller et al.,
2007; Kitching et al., 2008), which uses a Bayesian technique for model selection. Parameter
marginalisation can be used, since we are only interested in the ellipticity measurement and
a self-calibrated prior helps to maximise the posterior probability of the model. With all these
techniques, LensFit is able to find a best-fit model in less than one second per galaxy image.
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2 Gravitational Lensing

Figure 2.3: From Bridle et al. (2008). The upper panel shows the ’forward’ process of gravi-
tational lensing. A galaxy is sheared by the gravitational tidal and its image is convolved
afterwards with the PSF. The pixelised detector output contains additionally a significant
amount of noise. The lower panel shows the same effects on the image of a star, with the
difference that it is not lensed.

A new class of model-fitting techniques was developed in the course of the GREAT08 chal-
lenge. The method by Lewis (2009) does not fit an elliptical model to a single image, but to
a number of stacked images, thereby reducing the noise contamination. While this method
still suffered from the fact that the centroid positions of single images has to be known quite
precisely, Hosseini and Bethge (2009) cured this issue by stacking power spectra in Fourier
space and comparing those to the elliptical model. It still has to be quantified how applicable
those stacking techniques are in real observational applications, but they delivered the best
results in the GREAT08 challenge (Bridle et al., 2009). The main drawback of the model-fitting
techniques is the fact, that to measure a flexion signal, the model complexity has to be in-
creased compared to simple elliptical models, which gives rise to the question if the runtime
of such a method is still feasible.

2.3 Strong lensing

Let us now consider the case where image distortions due to lensing cannot be described
any more with a linearised lens equation. In this so-called strong-lensing regime, image
distortions are not restricted to slight deformations described by shear or flexion, but more
spectacular effects like giant arcs, Einstein rings or multiply imaged sources are observed.
As a rule of thumb one can say, that those effects only appear near the core of lenses, for
which κ > 1 is true somewhere in the observed field but exceptions to this rule are possible.
We will give a more stringent definition of the strong-lensing regime later on. An outstanding
example of a gravitational lens producing hundreds of strong-lensing features is the Golden

Lens, the galaxy cluster Abell 1689, situated at a redshift of zc = 0.181. A composite image
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2.3 Strong lensing

Figure 2.4: This figure, which was kindly provided by Catherine Heymans, shows the necessity
to introduce an appropriate weighting function, in order to measure brightness moments,
which are not contaminated by noise.

of Abell 1689 is shown in Fig. 2.5.

2.3.1 Critical lens mapping

Figure 2.5: A composite image of the spectacular
strong-lensing cluster Abell 1689. One can clearly
identify several strong-lensing features like arcs and
arclets in the centre of the image, which make the
geometry of the dominating dark components of the
lens almost visible by eye.

We go back to the lens Eq. 2.7 to
quantitatively describe the strong-
lensing regime, which is of course
more difficult since the local ex-
pansion of the lens equation does
not hold any more. We have al-
ready seen, that the lens mapping
is described by its Jacobian matrix
A defined as

A =
∂β

∂θ
, (2.65)

and an observed solid-angle ele-
ment of an image δθ2 is related to
the according unlensed solid-angle
element δβ2 via the Jacobian deter-
minant (Narayan and Bartelmann,
1996)

µ :=
1

detA
=
δθ2

δβ2
, (2.66)

where we have defined the magni-
fication µ. Combining Eq. 2.65 with
Eq. 2.7 gives

detA = (1− κ)2 − γ2, (2.67)

where κ and γ are generally func-
tions of the angular coordinate θ. As one can see from Eq. 2.67 the lens mapping can become
singular. At this point our initial assumptions on the lens configuration from Sec. 2.1.1 fail.
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2 Gravitational Lensing

Sets of points, for which detA = 0 form closed curves in the lens plane and we call them
critical curves or sometimes also critical lines. Their original positions in the source plane
are called caustics. Images located near a critical curve appear strongly distorted and give
rise to the term of a gravitational arc . Sources within a caustic are multiply imaged. Those
effects, both related to the critical lines of a cluster are loosely called strong-lensing features
and we will therefore define a cluster as strongly lensing if it produces at least one critical
line .

2.3.2 A spherical model

In the following, we will assume lens models to describe typical observations in the strong-
lensing regime. We start with the very simple case of a point source lensed through a cir-
cularly symmetric lens with otherwise arbitrary mass profile. In this case, the lens equation
reads

β(θ) = θ − Dds

DdDs

4GM(θ)
c2θ

, (2.68)

where θ and β are just the distance from the origin in lens or source plane, respectively. For
a source, sitting in the origin of the source plane β = 0 we find

θ =
Dds

DdDs

4GM(θ)
c2θ

, (2.69)

with the solution being a ring with radius

θE =

√
4GM(θE)

c2

Dds

DdDs
. (2.70)

This special case, where a nearly ideal point source is lensed into the image of a ring with
radius θE is called an Einstein ring and its radius is called the Einstein radius. This simple
example is quite instructive for two reasons. First, it is observed in reality (see e.g. Gavazzi
et al., 2008) and second it provides a natural scale for a lens system. The angular separation
between multiple image systems is typically given by 2θE and images, which approach the
Einstein radius of a lens are typically experiencing strong distortions.

A typical spherically symmetric lens model is derived by assuming a so-called Singular
Isothermal Sphere (SIS) as the underlying mass distribution of the lens. In this model it is
assumed that the ’mass elements’ like stars or galaxies within the lens behave as particles
of an ideal gas, bound by the gravitational potential of the whole structure. By assuming
thermal and hydrostatic equilibrium , we can relate the density profile ρ(r) of the structure
to the velocity dispersion σv of its members (Binney and Tremaine, 2008)

ρ(r) =
σ2

v

2πG
1
r2
, (2.71)

where r denotes the distance from the centre of mass. Projection along the line-of-sight gives
the surface-mass density with the familiar impact parameter ξ

Σ(ξ) =
σ2

v

2G
1
ξ
. (2.72)
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A peculiar feature of the SIS profile is the fact, that the absolute value of the deflection angle
is equal to the Einstein radius of the lens and points towards the centre of the distribution
due to the symmetry of the system

θE = 4π
σ2

v

c2

Dds

Ds
= |α|. (2.73)

The lensing potential is simply given by

ψ = θE|θ|. (2.74)

2.3.3 Observables in elliptical models

We will drop now the assumption on circular symmetry and move towards elliptical lens
models. Blandford and Kochanek (1987) suggested to introduce effective, elliptical lensing
potentials by performing the substitution

|θ| →

√
θ2

1

(1− ε)
+ (1− ε)θ2

2 (2.75)

in Eq. 2.74. The parameter ε = 1 − b/a describes the ellipticity of the lens via the ratio
of its minor and major axis. The derivation of all relevant lensing quantities, especially the
deflection angle is then straight-forward (see e.g. Meneghetti, 2006). More interesting is the
effect of such an elliptical lens on extended sources, as it is shown in Fig. 2.6. The following
effects should be noted:

• An extended circular source, enclosed by the two caustics of the elliptical lens is imaged
five times, including a faint image in the centre of the lens plane.

• The same source close to the inner caustic of the lens gives rise to an arc, which is
tangentially oriented with respect to the centre of the lens.

• The same source enclosed by only one caustic of the lens is imaged three times, includ-
ing a faint central image.

• A source crossing the outer caustic gives rise to an arc, which is radially oriented with
respect to the centre of the lens.

• A source near a so-called cusp of the caustic, is imaged into a giant arc, whose saddle
points in the light distribution cross the critical lines of the lens.
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2 Gravitational Lensing

Figure 2.6: From Narayan and Bartelmann (1996), showing a lens system containing an el-
liptical lens. The upper panel shows a sequence of spherical sources crossing the smooth,
so-called fold, part of the two caustics of the lens. The lower panel shows the crossing
along the cusp part of the caustic.
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3 Clusters of Galaxies

It is not obvious how to define the concrete entity of a galaxy cluster. Originally recognised
as significant concentrations of galaxies, observed in the optical band (e.g. Abell, 1958; Abell
et al., 1989), the picture has changed dramatically with observations in other wave bands and
with the advent of the cosmological standard model and its description of structure formation
in the Universe. Observations in the X-ray bands reveal, that only a very limited number of
the baryons1 in a galaxy cluster are constituted by stars and galaxies, but that most of them
reside in a large, diffuse gas halo surrounding the centre of the cluster. In fact, also this
so-called Intra-Cluster-Medium (ICM) constitutes only 10 - 20 % of the total mass of a galaxy
cluster. Most of its mass is provided by a huge dark-matter halo with the result that the total
mass of the most massive clusters can exceed 1015 M�.

The definition of a galaxy cluster should therefore start from the predictions of a cosmo-
logical model of structure formation. We have already seen, that the initial perturbations in
the smooth cosmological background are presumably seeded by inflation. Due to gravita-
tional attraction, those perturbations grow and might decouple from the Hubble flow, due
to gravitational instabilities. This formation of gravitationally bound structures happens on
very small scales first, amplifies and creates larger and larger objects due to an hierarchical
merging process (see e.g. Bond et al., 1991; Lacey and Cole, 1993; Somerville and Kolatt,
1999). Galaxy clusters are the final result of this process, defining them as the high-mass tail
of structures which decoupled from the Hubble expansion. Due to their formation via sub-
sequent merging, clusters are relatively young structures, accessible to observations and
encoding the full formation history of a structure within the cosmological context. The ob-
served velocity dispersions of cluster members are of order σv ≈ 1000 km s−1(Zwicky, 1933;
Rines et al., 2010) and the typical scales of cluster are of order R ≈ 5 Mpc. The crossing time
of a cluster member defined as

tcr =
R

σv
' 1

(
1

1 Mpc

)( σv

103 km s−1

)−1
Gyr (3.1)

is therefore shorter than the Hubble time 1/H0 ≈ 10 h−1 Gyr, which implies that clusters still
have enough time to reach a virialised state. We will have a closer look into that formation
process in Sec. 3.1.

Due to their extremely high mass and deep potential wells, clusters do not lose their con-
tent to the environment. This is true for the dark-matter component, which is dominated by
gravity and is the most significant component on scales> 1Mpc, but this is especially true for
the content of baryonic gas inside a cluster, which starts playing an important role on scales
< 1Mpc. Usually, this baryonic component makes it difficult to describe the formation and
evolution of a structure theoretically since the underlying physics is much more complicated
than the pure gravitational interaction of dark matter. This problem is less severe in galaxy
clusters, since baryonic physics seems to be less important to describe the properties of an

1In Astrophysics, the term baryons stands for the particles described by the standard model of particle physics.
Within this standard model, where the term baryons denotes noninteger-spin hadrons, the context of this term
is wrong.
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3 Clusters of Galaxies

object, as massive as a cluster (Duffy et al., 2010). Nevertheless, the baryons are present
and obviously observed in different wave bands as we will see in Sec. 3.2. Those peculiar
aspects of cluster physics defines them as ideal laboratories to compare the predictions of
the cosmological standard model to observations, as we will see in Sec. 3.3. Galaxy clus-
ters define in a sense the border line between the cosmological, statistical description of
large-scale structure, dominated by dark matter and dark energy and individual astrophysi-
cal objects, strongly affected by the physics of baryonic matter and therefore directly visible
to observations. For a review on the interplay between those cosmological and astrophysical
considerations, we recommend Voit (2005).

3.1 Cosmological structure formation

A particular interesting field in Cosmology is the formation of structures in the Universe. A
number of excellent textbooks exist on the topic and we would like to mention Padmanabhan
(1993) and Liddle and Lyth (2000). Structure formation aims to describe the evolution of
structures from the initial, smooth background fixed by inflation.

It is useful to divide this description into an homogeneous part since observations of the
Cosmic Microwave Background (CMB) suggest that the Universe is fantastically isotropic on
large scales and into an inhomogeneous part, which describes the deviations from this ho-
mogeneity on smaller scales. The description of these scales is naturally important, due to
the anisotropic character of our direct neighbourhood.

3.1.1 The homogeneous Universe

While thinking about the Universe as a whole, like in the case of cosmological considerations,
gravity is the only relevant interaction in this picture. By now, there is no significant reason to
believe that Einstein’s general relativity is not the theory describing gravity. The description
of an homogeneous Universe is therefore obtained by inserting a homogeneous and isotropic
metric into the field equations of general relativity

Gµν = 8πGTµν , (3.2)

where the Einstein tensor Gµν relates the space-time metric g to the content of the Universe
through the energy-momentum tensor Tµν and Newton’s constant G. A metric describing
such a Universe is given by the Robertson-Walker metric2, with the line element in spherical
coordinates (ω, θ, φ)

ds2 = −cdt2 + a2(t)
[
dω2 + f2

K(ω)
(
dθ2 + sin2 θdφ2

)]
, (3.3)

where a(t) is called the scale factor a(t) and the radial function

fK(ω) =


K−1/2 sin(K1/2ω) (K > 0)
ω (K = 0)

|K|−1/2 sinh(|K|1/2ω) (K < 0)

(3.4)

contains the curvature parameter K, describing the spatial geometry of the Universe.

2Howard Percy Robertson (1903-1961) was an American mathematician and physicist.
Arthur Geoffrey Walker (1909-2001) was an English mathematician.
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3.1 Cosmological structure formation

By assuming that the content of the Universe is described as an ideal fluid, with density ρ
and pressure p, containing a possible cosmological constant Λ, the Robertson-Walker metric
simplifies Einstein’s field equations to

ȧ

a

2

=
8πG

3
ρ− Kc2

a2
+

Λ
3

(3.5)

ä

a
= −4πG

3

(
ρ+

3p
c2

)
+

Λ
3
. (3.6)

The last two equations can be combined to obtain the dynamical relation between the scale
factor and the density

d

dt

(
ρc2a3

)
+ p

d(a3)
dt

= 0. (3.7)

To relate the density to the pressure of different matter components, one needs to provide
an equation of state. For relativistic matter this equation fulfils p = ρc2/3, while for nonrel-
ativistic matter ρc2 = 0 holds. The evolution of the different components is therefore given
by

ρr ∝ a−4 for relativistic matter, also called radiation (3.8)

ρm ∝ a−3 for nonrelativistic matter, also called dust (3.9)

K ∝ a−2 for the curvature parameter (3.10)

Λ ∝ const. for the cosmological constant, hence the name (3.11)

We have good indications that the Universe is spatially flat (Komatsu et al., 2009), meaning
K = 0. While incorporating the contribution from the cosmological constant in the total
density ρ in Eq. 3.5, it is convenient to introduce the so-called critical density of the Universe,
which ensures the flatness condition

ρcr =
3H2

8πG
, (3.12)

where we defined the Hubble function H(a) := ȧ/a.
The scale factor today is conveniently set to one and the values of quantities at that par-

ticular point in cosmic evolution are denoted with the subscript 0. We obtain the Hubble
constant H0 := H(1) and the critical density today

ρcr0 =
3H2

0

8πG
. (3.13)

H0 is often parametrised by the dimensionless quantity h as

h :=
H0

100 km s−1 Mpc−1 . (3.14)

By defining the density parameter Ω = ρ/ρcr, we rescale Eq. 3.7 to the critical density today

H2 = H2
0

[
Ωr0

a4
+

Ωm0

a3
+ ΩΛ0 +

1− Ωm0 − Ωr0 − ΩΛ0

a2

]
. (3.15)

In this form, Eq. 3.15 is often called Friedmann3 equation and describes the evolution of
different energy-density components in an homogeneous Universe Finally, we will introduce
so-called comoving coordinates

x =
1
a
r, (3.16)

3Alexander Alexandrovich Friedmann (1888-1925) was a Russian cosmologist and mathematician.
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3 Clusters of Galaxies

which eliminate the cosmic expansion from the physical coordinates r. The typical measure
of time or distance during cosmic evolution is the so-called redshift given by

z :=
1
a
− 1. (3.17)

3.1.2 Linear structure formation

As we have seen in the last section, the density of radiation in the Universe scales as a−4

in Eq. 3.15, whereas the nonrelativistic matter scales as a−3. Because of its steeper decay
and its small value today, we can safely neglect the density contribution from the radiation
at later times. If we furthermore assume the Universe to be spatially flat, we are left with a
matter component and the cosmological constant.

Evolution of the density contrast
We consider now small perturbations in the smooth matter background, denoted as ρ̄(t) and
governed by Eq. 3.15. The density contrast

δ(x, t) =
ρ(x, t)− ρ̄(t)

ρ̄(t)
, (3.18)

depends on the comoving position x. As is shown in e.g. Dodelson (2003), a linearly per-
turbed Robertson-Walker metric leads to a simple evolution equation for the density contrast

δ̈ + 2Hδ̇ −
(

4πGρ̄+
c2
s∇2

a2

)
δ = 0, (3.19)

with the sound speed for the cosmic fluid defined as c2
s = ∂P/∂ρ. Solutions to this damped

oscillator-like equation are found by writing the density contrast in Fourier space4

δ̈ + 2Hδ̇ −
(

4πGρ̄+
c2
sk

2

a2

)
δ = 0, (3.20)

with the wave vector k describing the scale of a perturbation through its frequency in Fourier
space. This remarkably simple equation holds already several cosmological implications:

1. The cosmic expansion, expressed by the Hubble function H, acts as a damping term
in the equation above. This is not surprising, since it is working against gravitational
collapse and smooths out over-densities.

2. If we neglect the Hubble flow for a moment, so H = 0, the third term of the evolu-
tion equation defines a typical length scale, which is called the Jeans5 length λj = 2π

kj
,

through the Jeans wave number

kj :=
2
√
πGρ̄

cs
, (3.21)

since for k ≥ kj the frequency of the oscillator equation becomes real. The result is that
perturbations smaller then the Jeans length are just oscillating.

3. In the case of k < kj the oscillator frequency is complex and we find a growing and a
decaying solution with time.

4We will suppress the usual hats over the Fourier transformations of quantities. If it is not clear from the context
if an equation is written in the coordinate or frequency domain we will explicitly clarify the notation.

5Sir James Hopwood Jeans (1877-1946) was an English physicist, astronomer, and mathematician
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3.1 Cosmological structure formation

4. The Jeans length depends on the sound speed cs. This concept makes no sense for dark
matter since we assume it to be pressureless. In this case of collisionless fluids, the
Jeans length has to be replaced by a quantity which depends on the velocity dispersion
of the fluid particles. For so-called cold dark matter (CDM), we assume this velocity
dispersion to vanish. Therefore, linear perturbations can grow or decay on all scales6.

Since the decaying solution is not interesting for structure formation, we focus on the
growing solution which can be expressed by δ(a) = δ0D+(a), where the linear growth factor
D+ is given by

D+(a) =
G(a)
G(1)

(3.22)

with the approximative solution in a Universe containing cold dark matter and a cosmological
constant (Lahav et al., 1991)

G(a) = aΩm

[
Ω4/7

m − ΩΛ +
(

1 +
Ωm

2

)(
1 +

ΩΛ

70

)]−1

. (3.23)

The power spectrum
One prediction of inflation is that the initial density contrast is nearly a Gaussian random field
(see e.g. Liddle and Lyth, 2000, for a review). Such a Gaussian random field is completely
described by its mean and variance. The mean of the density contrast is zero by construc-
tion, which leaves the variance to characterise the density contrast. Gaussian perturbations
of different scales k grow independently in linear perturbation theory, as can be seen in
Eq. 3.20. We will therefore describe the variance of the density contrast in Fourier space,
which is called the power spectrum〈

δ(k)δ∗(k′)
〉
≡ (2π)3Pδ(k)δD(k − k′), (3.24)

where Dirac’s7 delta function ensures, that different wave-vector modes remain uncoupled.
The variance of the density contrast in coordinate space is then given by

σ2 = 4π
∫
k2 dk

(2π)3P (k). (3.25)

If only particular, physical scales > R are considered, the variance of the density contrast is
given via a window function in Fourier space

σ2
R = 4π

∫
k2 dk

(2π)3W
2
R(k)P (k). (3.26)

A common normalisation of the power spectrum is obtained by the variance of the density
contrast on a scale of 8 h−1 Mpc. This parameter σ8 is one of the largest uncertainties within
the framework of ΛCDM.

Before we can compute the power spectrum as a function of k, we have to take into account
one more thing. So far we have assumed that perturbations grow in the matter-dominated
era. During the radiation-dominated era, where the contribution of radiation to the total
density of the Universe is larger than the contribution of matter, the growth of structure is
heavily suppressed due to the fast expansion of the Universe. This only affects perturbation

6It is exactly this fact which highly disfavours neutrinos as the only constituent in the dark-matter puzzle
7Paul Adrien Maurice Dirac (1902-1984) was a British theoretical physicist.
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3 Clusters of Galaxies

Figure 3.1: From Bartelmann (2010). Linearly and nonlinearly evolved CDM power spectra.
The linear CDM spectrum is shown for a = 1 and scales like D2

+(a).

modes that were already in causal contact during the time of radiation domination. The
minimum wave number refering to patches of the Universe causally connected at the time
when the density parameter of radiation was equal to the density parameter of matter is
given by

keq =
H0

c

π√
2− 1

(
aeq

Ωm0

)−1/2

. (3.27)

Thus, perturbation modes with k � keq have no imprint of the radiation-dominated era in
their amplitude while we expect structures with k � keq to be significantly suppressed. Up
to an unknown normalisation, the CDM power spectrum is then given by (see e.g. Harrison,
1970; Peebles and Yu, 1970; Zel’dovich, 1972).

Pδ(k) ∝

{
kns (k � keq)

kns−4 (k � keq)
, (3.28)

with the spectral index for the initial seed perturbations ns. A plot of the linear power spec-
trum, compared with the fit to a nonlinear power spectrum found by numerical techniques,
is presented in Fig. 3.1.

3.1.3 Non-linear structure formation and numerical simulations

Linear perturbation theory gives a good conceptual understanding of structure formation and
describes the density contrast well, as long as its value stays well below unity. Nevertheless,
even the largest individual objects in the Universe, decoupled from the Hubble flow, being
clusters of galaxies easily exceed values of 200 in the density contrast. Also in Fig. 3.1 it can
be seen that significant differences appear at the small-scale end of the power spectrum,
when comparing the linear calculation with a numerical, nonlinear result. The reason for
these differences is the transfer of power from larger to smaller scales. This is possible since
perturbations of different scales do not evolve independently any more. In the literature this
phenomenon goes under the name of mode coupling and can only be described in a nonlinear
theory of structure formation.
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3.1 Cosmological structure formation

Zel’dovich approximation
A first step towards a nonlinear theory was done by Zel’dovich (1970) who had the idea that
the peculiar motion of particles in the presence of density perturbations can be described by
a simple displacement in the comoving frame

x = x0 + b(t)f(x0), (3.29)

where the initial position of the particle x0 is shifted by a displacement field f . The time
dependence of the shift is expressed by the function b.
Writing the formula in physical coordinates gives

r(t) = a(t) [x0 + b(t)f(x0)] , (3.30)

thus being a mapping between comoving and physical coordinates incorporating the particle
displacement. While integrating over all particle trajectories and assuming mass conserva-
tion, we can relate the density at the initial comoving position x0 to the comoving mean
density at some time t by the use of the Jacobian determinant of the mapping

ρ(x0, t)
∣∣∣∣ ∂r∂x0

∣∣∣∣ = ρ(x0, t)
∣∣∣∣a(t)δij + a(t)b(t)

∂2f

∂xi∂xj

∣∣∣∣ = a(t)3ρ̄. (3.31)

With (λ1, λ2, λ3) being the eigenvalues of the deformation tensor fij := ∂2f/∂xi∂xj , we find
for the density contrast

δ(x0, t) =
1

[1 + b(t)λ1] [1 + b(t)λ2] [1 + b(t)λ3]
. (3.32)

The Zel’dovich approximation gives already interesting insights into the formation of nonlin-
ear structures. When the trajectories of particles cross the mapping above becomes singular,
meaning that at least one of the eigenvalues becomes zero. It can be shown, while assuming
that the perturbations arise from Gaussian random fields, that the probability of finding two
identical eigenvalues is zero. Hence, gravitational collapse will be anisotropic. This is exactly
what is observed in reality. Collapsed structures appear as filaments and ’blinies’, as they
were called by Zel’dovich.

Spherical collapse
We have just learned, that an isotropic collapse is excluded during structure formation. Nev-
ertheless, we will now assume exactly this condition for the simple reason that it allows an
analytic solution to the evolution of the density contrast.

We consider a spherically symmetric overdense region, embedded in the expanding Uni-
verse. The Newtonian equation of motion for a test particle within a thin shell at physical
distance r from the centre of the sphere is given by

r̈ = −GM(< r)
r2

, (3.33)

with the total mass of the sphere

M(< r) =
4
3
πr3ρ̄

[
1 +

3
r3

∫ r

0
δ(τ)τ2dτ

]
=

4
3
πr3ρ̄

(
1 + δ̄

)
, (3.34)

given by the smooth background density ρ̄ and the average overdensity within the sphere δ̄.
Integrating the equation of motion gives the total Energy per unit mass

E =
1
2
ṙ2 − GM

r
. (3.35)

We can already distinguish three cases:
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3 Clusters of Galaxies

1. If E > 0, ṙ cannot vanish and the sphere will expand forever together with the Universe.

2. If E = 0, ṙ can only vanish for r →∞.

3. If E < 0, ṙ vanishes at a given time tta marking a turn-around when the overdensity
decouples from the expansion and collapses.

We can rewrite the kinetic and the potential term in Eq. 3.35 and relate them to a cosmo-
logical model, which only considers a dark-matter contribution through its density parameter
Ωm. In a flat Universe, the collapse condition E < 0 can be rewritten as δ̄ > Ω−1

m − 1.

ṙ2

2
=
H2r2

2
(3.36)

−GM
r

= −1
2
H2r2

(
1 + δ̄

)
Ωm. (3.37)

The maximum radius of the sphere before collapse at turn-around

rta = r(tta) = ri
1 + δ̄i

1 + δ̄i − Ω−1
m,i

, (3.38)

contains the initial quantities at the onset of the sphere’s evolution. The collapsing sphere will
reach virial equilibrium relating kinetic energy K and potential energy U to the total energy
E, which implies that the radius of the sphere in virial equilibrium is given by rvir = rta/2. As
a next step, it is useful to define the virial overdensity ∆vir defined as the average density of
the sphere at virialisation scaled with the critical density of the Universe.

In order to find the relation between the radius of the sphere and the time, one needs
to solve the equation motion. In the case of an Einstein-de Sitter Universe8, this can be
done analytically and a value for the virial overdensity of ∆vir w 178 is found. If the linear
density contrast is extrapolated to the according time when virial equilibrium is reached in
the spherical collapse model, a value of δc w 1.686 is found. This implies that linear theory is
already falsifying itself, when predicting a density contrast for which its assumptions do not
hold any more. We will use this result later on.

We have already mentioned, that a spherical collapse is not possible in nonlinear struc-
ture formation and the calculations above can only be seen as an instructive, but incom-
plete model. For a more rigorous analytic treatment one has to apply nonlinear perturbation
theory. The mathematics of this extremely interesting subject include representations by
Feynman-diagrams, known from quantum field theory, where linear perturbations of a cer-
tain mode are represented as propagators and nonlinear mode-coupling by vertices of differ-
ent modes, while applying methods of renormalisation. The interested reader is referred to
Crocce and Scoccimarro (2006); Matarrese and Pietroni (2007) and Pietroni (2008).

Numerical simulations
The commonly used approach to master the complexity of nonlinear structure formation ex-
ploits the tremendous numerical performance of modern computer systems. These so-called
numerical simulations of cosmic structure formation can be performed on different length
scales, ranging from volumes significant compared to the size of the Universe (Springel et al.,
2005; Gottlöber et al., 2006; Crocce et al., 2010), down to the formation of the birth places
where the first stars formed (Abel et al., 2000). Also the formation and evolution of galaxy

8Meaning a flat Universe containing only a matter component Ωm = 1
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3.1 Cosmological structure formation

clusters can be modeled via numerical simulations and we will briefly describe this process.
An excellent review on the topic was written by Borgani and Kravtsov (2009).

The full dynamics of dark matter is governed by the collisionless Boltzmann9 equation,
also known as the Vlasov10 equation. It describes the trajectories in the 6D phase space
of coordinates and velocities. Of course, the complete phase space volume cannot be ex-
plored, but characteristic contours of phase-space trajectories are obtained by sampling the
total volume with a number of N particles and integrating their equations of motions in the
gravitational field created by the full ensemble. This method is therefore called an N-body
simulation. Simulations can not only follow dark matter, but also baryonic matter, whose
trajectories in phase space are described by the hydrodynamical equations (e.g. Landau and
Lifshitz, 1987). Therefore, we can now start to leave the track of purely tracing dark matter
in the Universe, which is the dominant component during structure formation, but does not
give rise to the astrophysical processes coupling to the photons that we actually observe.

The first step which has to be fixed before running a cosmological simulation are the initial
conditions deciding how the dark matter and baryonic particles are initially placed within
the simulation box. Fortunately, the initial power spectrum of matter in the Universe at a
very early time is known to a fascinating precision due to the observations of the CMB. The
power spectrum at this time of recombination can be evolved by linear, or mildly nonlinear
techniques like the Zel’dovich approximation, to the initial time step of the simulation. The
particles within the box are placed according to the statistics of this power spectrum (see
Prunet et al., 2008; Sirko, 2005, for recent reviews).

Once the initial conditions are fixed, gravitational forces on the individual dark matter and
baryonic particles in the simulation have to be calculated. This can be done by e.g. di-
rect summation over all particles in the box, but the number of computational operations
would scale with the square of the number of particles in the box. This numerical scheme
is therefore not suited for cosmological simulations involving a large number of particles.
Approximating summation schemes have been developed, representing different levels of
trade-off between numerical accuracy and computational time. We want to mention particle-
mesh and particle-particle/particle-mesh methods (Hockney and Eastwood, 1988; Couch-
man, 1991), which calculate the forces between particles and mass-averaged areas of the
box, tree-codes which hierarchically increase the resolution of the force calculation by an
adaptive multipole-expansion scheme (Barnes and Hut, 1986; Bouchet and Hernquist, 1988)
and hybrid methods, like the widely spread code GADGET by Springel (2005), which combines
both approaches.

More involved is the calculation of the hydrodynamic forces. Two approaches are com-
monly used, smooth particle hydrodynamics (SPH) on the one hand, grid based methods on
the other hand. In SPH (Monaghan, 2005) the fluid is represented by particles and the gov-
erning equations are obtained from the Lagrangian form of the hydrodynamical conservation
laws. In grid based methods a Eulerian approach is followed by discretising the hydrodynam-
ical equations. Both methods have advantages and problems, SPH is fast in its computations
and naturally follows regions of interest with increased resolution, nevertheless it needs to
make use of an artificially introduced viscosity, which prevents the development of shear mo-
tions and usually fails in correctly describing transient areas between different phases of the
fluid. Possible solutions to this problem are e.g. given in Dolag et al. (2005). Grid methods do
not suffer from such shortcomings but are computationally more demanding. Furthermore,
their spatial resolution is somewhat arbitrarily set by the size of the discretising grid. Those

9Ludwig Eduard Boltzmann (1844-1906), Austrian physicist.
10Anatoly Alexandrovich Vlasov (1908-1975), Russian theoretical physicist
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problems are cured while making use of an adaptive-mesh-refinement (AMR) technique (e.g.
Norman and Bryan, 1999), which increases the resolution of the grid in areas of interest,
e.g. in areas of high particle density. This increases the spatial resolution in those areas and
reduces the runtime by lowering the resolution in the other areas. A detailed comparison be-
tween the different hydrodynamical approaches can be found in Agertz et al. (2007). A new
Lagrangian method, using a dynamic Voronoi tessellation was suggested by Springel (2010)
and seems not to suffer from the problems attached to SPH.

In order to make numerical simulations of galaxy clusters more realistic, additional physical
processes are added by introducing sink and source terms on the right-hand side of the
hydrodynamical equations. State-of-the-art simulations of galaxy clusters include:

• Star formation
Whenever a group of baryonic particles reaches a density exceeding a certain thresh-
old, these particles are extracted from the collisional fluid and converted into a colli-
sionless, so-called sink particle representing a population of new-born stars. Of course
the spatial resolution of a simulation is not high enough to resolve the processes of star
formation, which is why the model describing this process approximately on the grid is
assigned to the group of so-called sub-grid models.

• Radiative cooling
Since we are only assuming gravitational and hydrodynamical interactions, the loss of
energy due to the thermal and nonthermal emission of particles has to be modeled
separately. This effect of cooling plays an important role in the description of the intra-
cluster gas, as we will see later.

• Heating by feedback processes
Particles can not only loose energy due to cooling, they can also gain energy via heating
processes. Usually, energy injection due to Supernova explosions and violent accretion
onto the supermassive black hole of an active galactic nucleus (AGN) (see McNamara
and Nulsen, 2007, for a review) is taken into account.

• Chemical enrichment
Observations indicate (see e.g. Werner et al., 2008, for a review), that clusters contain a
significant amount of metals11. This metallicity, which alters heating and cooling within
the cluster, is due to the nuclear processes within stars and enriches the cluster gas
e.g. via supernova explosions.

We note that the influence and evolution of magnetic fields within a cluster simulation, de-
scribed by magneto-hydrodynamics (MHD) , is out of the scope of this work (see Dolag and
Stasyszyn, 2009, and references therein).

An example for a typical result of a state-of-the-art cosmological simulation of the forma-
tion of a galaxy clusters is shown in Fig. 3.2. In general, the results can summarised as
follows:

1. Structure formation is dominated by the dark matter component and follows an hierar-
chical merging process.

2. The gas component follows globally the potential wells of the dark matter, but shows a
smoother structure due to its additional pressure support.

11Defined as any element despite hydrogen
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3. Stars form in high-density regions of the dark matter halo.

4. Turbulent motion plays also an important role in relaxed structures and can signif-
icantly bias the assumption of hydrostatic equilibrium in virialised structures (Rasia
et al., 2004, 2006; Iapichino and Niemeyer, 2008). A trend which seems to be indirectly
confirmed observationally by Mahdavi et al. (2008) and direct observation of turbu-
lent motion within the gas component of galaxy cluster might be possible with future
high-resolution instruments (Inogamov and Sunyaev, 2003).

Despite their tremendous success in reproducing several observed quantities of real clus-
ters, there are still some open questions in the comparison between simulations and obser-
vations, which are mostly related to baryonic physics. We will mention the most pressing:
The first puzzle is the absence of indicators for gas cooling in the observations of dense
and relaxed, so-called cool-core clusters. Because of their high X-ray emissivity the core
should cool relatively fast in the centre. Nevertheless, high-resolution X-ray observations
with Chandra or XMM-Newton do not show any presence of cool gas. A more severe problem
refers to the fact that the derived star formation rate in simulated galaxy clusters differs from
observations by an order of magnitude. This is the manifestation of the so-called overcooling
problem which is, not like the cool-core problem, only an issue at the present time but dur-
ing the whole evolution of a simulated galaxy cluster. Both, the cool-core problem and the
overcooling problem, probably related, show that the gas physics in numerical simulations
of galaxy clusters does not obey yet the right balance between heating and cooling. We will
mention additional problems later on.

3.2 Observations of galaxy clusters

We have learned from the theory of the formation of galaxy clusters, that they consist of three
main components: A large and extended dark-matter halo, a halo of diffuse intra-cluster gas
and the collapsed gas component, forming stars and galaxies. Those three components give
rise to different kinds of observations. The observational analysis of clusters splits into two
important steps. First, clusters have to be detected and objects have to be assigned as
cluster members. Once a cluster is identified, the derivation of astrophysical properties can
be performed, possibly in several wave bands.

3.2.1 Optical

The first detections of galaxy clusters were naturally obtained in the optical wave bands and
go back to early observations of the Virgo and the Coma clusters by Messier and Herschel
in the late 18th century. The first stringent approach to define and categorise clusters of
galaxies was done by Abell (1958), where he was very careful in defining clusters because
projection effects may easily dilute the cluster membership association. Abell’s first step was
to estimate the distance to a cluster candidate through the magnitude of its tenth-brightest
member galaxy. For a given radius, which turned out to be ∼ 2 Mpc for all clusters, he
counted the galaxies with a magnitude not fainter than the magnitude of the cluster candi-
date’s third-brightest galaxy. After subtracting a background level, to account for projection
effects, he defined candidates as a cluster if it exceeded a count of 50. Modern versions of
this heuristic approach to optically detect clusters use additional colour information by ex-
ploiting the so-called red sequence, which reflects the fact that the old stellar population of
cluster galaxies fall into a distinct region within a colour-magnitude diagram (e.g. Gladders
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Figure 3.2: From Borgani and Kravtsov (2009). The formation of a galaxy cluster in a cosmo-
logical context, as described by a hydrodynamical simulation carried out with the Tree-SPH
GADGET code (Springel et al., 2005). Upper, central and bottom panels refer to the density
maps of dark matter, gas and stellar distributions, respectively. From left to right we show
the snapshots at z = 4, where putative proto-cluster regions are traced by the observed
concentrations of Lyman-break galaxies and Lyman-α emitters (e.g. Overzier et al., 2008),
at z = 2, where highly star-forming radio-galaxies should trace the early stage of cluster
formation (Miley et al., 2006; Saro et al., 2009), and at z = 0. This cluster has a total virial
mass Mvir = 1015 h−1 M� at z = 0 (Dolag et al., 2009). Each panel covers a comoving scale
of about 24 h−1 Mpc, while the cluster virialised region at z = 0 is nearly spherical with a
radius of about 3 h−1 Mpc.
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and Yee, 2000). Once a cluster is optically detected, already the observed high-luminosity
tail of its brightest member galaxies yields a mass estimate since their luminosity distribu-
tion generally follows a Schechter function (Schechter, 1976). This allows the definition of
richness criteria (Postman et al., 1996; Yee and López-Cruz, 1999), which can be related to
the total mass of the cluster and represent therefore a first mass estimate.

More elaborate methods of deriving cluster masses from optical observations involve spec-
troscopy. Once radial velocities of member galaxies are determined, it can be measured if
their distribution follows a Gaussian profile with the 1D velocity dispersion σv (Binney and
Tremaine, 2008). These measurements were initially performed by Zwicky (1933, 1937) for
the Coma cluster and he acquired a value of σv ∼ 700 km s−1. By applying the virial theorem
of classical mechanics, a mass estimate of the total mass for the virialised structure, which
has to assumed as a closed physical system with radius R, yields

M ≈ 3Rσ2
v

G
≈ 1015M� h

−1Mpc

(
R

1.5h−1Mpc

)(
σv

1000 km s−1

)
. (3.39)

Mass estimates obtained with the virial theorem are questionable since clusters are not sep-
arate systems with respect to their environment. Nevertheless, those mass estimates where
the first hint towards dark matter, because the calculated cluster masses exceeded the ex-
pectations based on the observed luminosity by orders of magnitude.

Another aspect of the optical analysis of galaxy clusters is provided by the effect of gravi-
tational lensing, where the cluster acts as the lens and bends the light of distant background
sources. This effect has already been discussed and the way to obtain cluster properties
from this method will be the content of the next chapters.

3.2.2 X-ray

We have seen before that clusters contain a large amount (∼ 15% of their total mass) of
baryonic intra-cluster gas. If we assume that the gas follows the same kinematics as the
cluster members from the previous section, we expect a temperature of

kT ≈ µmpσ
2
v ≈ 6

( σv

103 km s−1

)2
keV, (3.40)

with the mean molecular density µ, the proton mass mp and the Boltzmann constant k12.
Indeed, an X-ray continuum due to thermal bremsstrahlung, indicating a gas temperature

of kT & 2 keV is observed. Also a line spectrum contributes, since clusters contain a signif-
icant amount of heavy elements (∼30 % of the solar metallicity). This line spectrum domi-
nates for cluster temperatures . 2 keV. The observed X-ray luminosities of clusters span a
range from 1043 − 1045 erg s−1, making them easily detectable lighthouses in the X-ray sky. A
review on the observations of clusters in the X-ray band and their interpretation is given by
Rosati et al. (2002).

To obtain an X-ray mass estimate, one has to assume spherical symmetry and hydrostatic
equilibrium of the emitting system. While doing so, pressure p and density ρg of the gas are
related by

dp

dR
= −GM(< R)ρg(R)

R2
. (3.41)

We assume an ideal cluster gas and insert the equation of state

p =
ρgkT

µmp
, (3.42)

12k = 8.617342(15)× 10−5 eV K−1.
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to obtain the X-ray mass estimate

M(< R) = − kTR

Gµmp

(
d log ρg

d logR
+
d log T
d logR

)
. (3.43)

X-ray observations provide not only the X-ray luminosity but also the X-ray temperature
through spectral fitting. Both can be obtained nowadays with high angular resolution, us-
ing the space observatories Chandra, XMM-Newton and Suzaku.

In order to obtain the mass from those observed quantities in several radial bins, two tech-
niques are usually applied, labeled forward and backward methods. The forward approach
(Vikhlinin et al., 2006; Pratt and Arnaud, 2003) assumes a parametric form of the gas-density
profile like the β-model (Cavaliere and Fusco-Femiano, 1978)

ρg(r) = ρg,0

[
1 +

(
r

rc

)2
]−3β/2

, (3.44)

or generalisations of it (Pratt and Arnaud, 2002, and references therein) and a parametric
form of the temperature profile (Allen et al., 2001)

T (r) = T0 +
(r/rt)

−a

[1 + (r/rt)b]
c/b
Tcool, (3.45)

projects them properly along the line-of-sight (Mazzotta et al., 2004) and fits them to the
observations. The backward approach (Ettori et al., 2002; Morandi et al., 2007) deprojects the
observed quantities and compares them to the predictions of an analytical 3D mass profile
of the cluster. A comparison between the different methods can be seen in Meneghetti et al.
(2009).

The mass estimates obtained with these methods seem to be quite robust but critical ques-
tions focus on the strong assumptions which went into their derivation, especially the as-
sumption of hydrostatic equilibrium and spherical symmetry. Numerical simulations show,
that these assumptions are not generally a good description of the shape and the dynamical
state of a galaxy cluster, which might contribute to differences as large as factors of two in
the mass estimate obtained with X-ray techniques, compared to more direct methods like
gravitational lensing (Morandi et al., 2010, and references therein).

3.2.3 Microwave

Clusters of galaxies are also observable in the microwave band, due to the the Sunyaev-
Zel’dovich (SZ) effect (Sunyaev and Zeldovich, 1970, 1972). CMB photons pass through the
electrons of the hot cluster gas and experience a shift in frequency by inverse Compton
scattering. This shift can be directly measured in the temperature distribution of the CMB as
a secondary anisotropy. This effect is called the thermal Sunyaev-Zel’dovich effect and the
derivation of the temperature shift

∆TSZE

TCMB
= f(x)y = f(x)

∫
ne

kTe

mec2
σT dl (3.46)

can be followed in the extensive review of Birkinshaw (1999). In the formula above, TCMB

is the measured temperature of the CMB today, y is called the Compton y-parameter, ne is
the electron density in the cluster, Te their temperature and me their mass, σT the Thomson
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scattering cross-section and dl denotes integration along the line-of-sight. x = hν/ (kTCMB)
encodes the frequency dependence of the effect, which depends also on relativistic effects
(Shimon and Rephaeli, 2004; Itoh and Nozawa, 2004) expressed by the correction function
δSZE

f(x) =
(
x
ex + 1
ex − 1

− 4
)

[1 + δSZE(x, Te)] . (3.47)

The overall change in the CMB photon intensity is shown in Fig. 3.3.

Figure 3.3: From Carlstrom (2002). Spectral in-
tensity distortion of the cosmic microwave back-
ground (CMB) radiation due to the Sunyaev-
Zel’dovich effect. The thick solid line is the ther-
mal SZ effect and the dashed line is the kinetic
SZ effect. For reference the 2.7 K thermal spec-
trum for the CMB intensity scaled by 0.0005 is
shown by the dotted line. The cluster proper-
ties used to calculate the spectra are an electron
temperature of 10 keV, a Compton y parameter
of 10−4 , and a peculiar velocity of 500 km s−1.

The so-called kinetic Sunyaev-Zel’dovich
effect is caused by the clusters’ pecu-
liar motion against the CMB background
and gives therefore the possibility of
measuring it. So far, the sensibility of
current instruments is not high enough
to measure peculiar cluster velocities
reliably through the tiny signal of the
kinetic SZ effect as results of Benson
et al. (2003) indicate.

Three things are especially notice-
able about the use of the SZ effect for
understanding galaxy clusters. First,
the effect is independent of the clus-
ter’s redshift and gives therefore the
opportunity to detect also extremely
distant clusters. Second, the effect
is complementary with X-ray observa-
tions and could help to provide bet-
ter estimates for the gas-density pro-
file of the cluster because both effects
are sensitive to the electron density of
the ICM. Third, it allows a direct test
of the Universe’s geometry since one
can derive the physical scale of the
cluster through the line-of-sight integral
(Eq. 3.46) and compare it to the observed scale (Birkinshaw et al., 1991).

3.3 Constraining the universe with galaxy clusters

After we have reviewed the theoretical description of clusters and their actual observations,
we should combine both aspects to put constraints on cosmological models. Interestingly,
clusters of galaxies still provide riddles within the cosmological standard model, which is in
excellent agreement with other cosmological observations by now.

3.3.1 Mass function

An obvious cosmological test with clusters is counting their abundance in the sky and com-
pare it with the theoretical prediction. The number of objects of a certain mass and redshift
range is given by the so-called mass function n(M, z). The pioneering steps of deriving the
mass function from cosmological theories of structure formation were done by Press and
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Schechter (1974), with substantial contributions later by Bond et al. (1991) and Lacey and
Cole (1993).

If Q(M, z) describes that fraction of the volume in the Universe, which contains per unit
redshift structures heavier in mass than M , the mass function is given by

n = − ρ̄

M

∂Q

∂M
=

ρ̄

M

∣∣∣∣ dSdM
∣∣∣∣ ∂Q∂S , (3.48)

where we have identified the variance of the density contrast with S for simplicity. We know
that the variance is a decreasing function of mass, as can be seen in Fig. 3.1 and cancelled
the minus sign. As we have seen in Sec. 3.1.2, the variance of the density contrast in coor-
dinate space depends on a filtering function. If we choose a top-hat filter in Fourier space,
the evolution of the filtered density contrast δf at a given coordinate, as a function of the
filtered variance S = S(M), will be a random walk. The reason for this is that increasing or
decreasing the filtering length and therefore varying the mass scale in which we are inter-
ested, will add or eliminate k-modes in Fourier space, which are independent of each other
in linear perturbation theory.

Following the spherical-collapse model of Sec. 3.1.3, we assume an overdensity as col-
lapsed if the random walk of the density contrast passes over a critical barrier δc(z)13. We
denote the value of δf when it passes the barrier with w(z) = δc(z)/D+(z). In this picture
the problem is boiled down to finding the probability distribution of a random walk in the
(δs, S) plane to be absorbed by a density barrier defined by δc(z). This problem in a more
general context has been solved by Chandrasekhar (1943), finding the fraction of collapsed
structures

Q(S,w) = 1−
w∫

−∞

W (δf , S, w) dδf , (3.49)

and the fraction of trajectories per unit interval in the random walk, that for given variance S
have a density contrast of δf

W (δf , S, w) =
1√
2πS

[
exp

(
−
δ2
f

2S

)
− exp

(
−

2w − δ2
f

2S

)]
. (3.50)

By plugging the derivative with respect to S of Eq. 3.49 into Eq. 3.48 we find the final result
for the mass function

n(M, z) =
ρ̄(z)
M

w(z)√
2πS3/2

exp
[
−w

2(z)
2S

] ∣∣∣∣ dSdM
∣∣∣∣ . (3.51)

If we assume the initial power spectrum to be scale free as in Sec. 3.1.2 we find

S(M) =
(
M

M0

)−α
, (3.52)

with the normalisation M0 and α := (ns + 3)/3. The mass function is then given by

n(M, z) = αρ̄(z)
w(z)√

2π
Mα/2−2

M
α/2
0

exp
[
−w

2

2

(
M

M0

)α]
. (3.53)

13In the case of spherical collapse in an Einstein-de Sitter Universe, this barrier is given by the critical value of
δc = 1.686
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This result is already in excellent agreement with the abundances of structures in simula-
tions, despite its significant amount of assumptions. Nevertheless, the agreement can be
improved by introducing the fitting parameters (A, B, p) in the mass function

n(M, z) = A
√
B
ρ̄(z)
M

w(z)√
2πS3/2

[
1 +

(
S

Bw(z)

)2p
]

exp
[
−Bw

2(z)
2S

] ∣∣∣∣ dSdM
∣∣∣∣ . (3.54)

The original mass function by Press and Schechter (1974) is recovered by setting A = 1/2,
B = 1 and p = 0. By using a more general model of ellipsoidal collapse (Sheth et al., 2001),
which introduces a moving barrier in the random walk, Sheth and Tormen (2002) find A =
0.3222, B = 0.707 and p = 0.3. Another good agreement with numerical results is found by
Jenkins et al. (2001) with A = 0.353, B = 0.73 and p = 0.175. More recently the mass function
was calibrated by Warren et al. (2006) and Tinker et al. (2008), where the latter also accounts
for several different mass definitions, as they can be obtained with observational techniques.

Measuring the mass function is obviously an excellent tracer to determine the normali-
sation of the power spectrum, since it exponentially depends on the variance of the den-
sity contrast for a given mass and redshift. Furthermore, Ωm enters directly into the mass
function through the density evolution of the background. In order to determine the mass
function for a large number of mass bins, one needs a convenient mass-observable relation.
X-ray observables seem to be best suited for that purpose since single X-ray luminosity or
temperature measurements give in principle already a robust mass estimate. Furthermore,
by assuming that the process of cluster formation is self-similar, meaning that clusters of dif-
ferent masses are just scaled versions of one another, simple scaling relations can be derived
for a given redshift between mass and X-ray temperature, between X-ray temperature and
X-ray luminosity and consequently also between mass and X-ray luminosity. Unfortunately,
these simple scaling relations do not hold in reality, due to the complicated gas physics that
we have discussed in Sec. 3.1.3. They have to be parametrised and calibrated by precision
mass measurements from other methods like gravitational lensing or by numerical simula-
tions. A promising feature of large future surveys is the method of self-calibration, which
intrinsically finds the most-likely parameters in the mass-observable relation (Levine et al.,
2002; Hu, 2003; Majumdar and Mohr, 2003, 2004). As was already mentioned, a mass-
observable relation from other methods, like suitable richness measurements of clusters,
gravitational lensing or the observed velocity dispersion is usually more difficult to obtain,
but the derived masses might be more accurate. This allows calibrating the X-ray scaling
relations.

3.3.2 Evolution of the mass function

Much tighter constraints on the cosmological model can be placed if the evolution of the
mass function with redshift is taken into account. The number of structures dN with mass M
within a given solid angle dΩ and redshift interval dz is given by

d3N

dMdΩdz
(M, z) =

dn

dM
(M, z)

d2Vco

dzdΩ
(z), (3.55)

where the geometry of the Universe is probed by the comoving volume factor

d2Vco

dzdΩ
(z) =

cfk(z)
H(z)

. (3.56)
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Figure 3.5: From Vikhlinin et al. (2009). Constraints on the σ8 and Ωm parameters in a flat
ΛCDM cosmology. The solid region is the 68% confidence level region reproduced by
Vikhlinin et al. (2009). Blue contours show the WMAP 3 and 5 year results from Spergel
et al. (2007) and Dunkley et al. (2009) (dotted and solid contours, respectively). For other
measurements, the general direction of degeneracy as a solid line and a 68% uncertainty
in σ8 at a representative value of Ωm is shown. Filled circles show the weak-lensing shear
results from Hoekstra et al. (2006) and Fu et al. (2008) (dashed and solid lines, respec-
tively). Open circle shows results from a cluster sample with galaxy dynamics mass mea-
surements (Rines et al., 2007). Finally, the open square shows the results from Reiprich
and Böhringer (2002) (approximately the lower bound of recently published X-ray cluster
measurements).

Figure 3.4: From Voit (2005). Redshift depen-
dence of the comoving volume in various
cosmologies. The parameter w describes
the dark energy equation of state.

The redshift dependence of the volume
factor in different cosmological models is
shown in Fig. 3.4. A big problem with a
redshift survey, necessary for this kind of
analysis, is the fact that also high-redshift
clusters have to be detected and their mass
has to be determined accurately. The mass-
observable relations are also evolving with
time, which makes the calibration or self-
calibration more difficult. The most recent
analysis of an redshift-evolving mass func-
tion was done by Vikhlinin et al. (2009), who
used a set of 37 galaxy clusters with an av-
erage redshift of z = 0.55 and a sample
of 40 low-redshift clusters with a redshift of
z ≈ 0.05. All cluster where observed in X-
rays. The obtained cosmological constraints
in the Ωm–σ8 plane are shown in Fig. 3.5 and

the constraints on dark energy in Fig. 3.6.
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Figure 3.6: From Vikhlinin et al. (2009). Comparison of the dark energy constraints from
X-ray clusters and from other individual methods, like supernovae (SN), baryon-acoustic
oscillations (BAO), and WMAP. In this figure, ΩX = 1− Ωm and w0 describes the dark energy
equation of state today.

3.3.3 Individual systems as cosmological laboratories

The derivation of cosmological parameters, by means of the cluster mass function is an in-
teresting topic, but clusters do not provide the only possibility to do so. Of course clusters
give valuable input when combined with other datasets, but especially when compared to
observations of distant supernovae or the CMB, the constraints from clusters alone appear
weaker. The real domain of clusters as cosmic tracers lies in individual systems, thereby
comparing observations directly to numerical simulations. In the following, we will list the
most interesting properties which, when observed reliably, can be used to understand the
physics involved in the formation of clusters.

Mass-density profiles

Numerical simulation show that the Navarro, Frenk and White (NFW) profile provides an ac-
curate fit to the simulated density field (Navarro et al., 1996). The parametric form of this
profile is given by

ρNFW(r) =
ρs

r
rs

(
1 + r

rs

)2 . (3.57)

This density profile has two parameters, the characteristic density ρs and the scaling radius
rs, which describes the transition between the steep outer profile an the flattening towards
the core. This profile in different variations is now largely used to model the mass content
in galaxy clusters. More recently Merritt et al. (2006) have shown that the Einasto profile
(Einasto and Haud, 1989, and references therein) fits the density field in simulations even
better. Its functional form is given by

ρE(r) = ρe exp
{
−dn

[
(r/re)

1/n − 1
]}

, (3.58)
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where dn is defined as a function of n such, that ρe becomes the density at radius re with the
help of the complete gamma function

Γ(3n) = 2γ(3n, dn) (3.59)

and the incomplete gamma function

γ(3n, x) =
∫ x

0
e−tt3n−1 dt. (3.60)

Observations of matter-density profiles are still controversial since they usually cannot ex-
clude the, within the standard model unfavoured, SIS profile (Shu et al., 2008) in the strong-
lensing regime and recently Broadhurst et al. (2008) found NFW parameters in tension with
the predictions of ΛCDM.

In the context of dark matter density profiles it seems to be the case that simulations of
clusters converge towards a decisive result. Therefore, more accurate observational meth-
ods have to be developed to confirm or reject these predictions from simulations.

Temperature profiles
This situation changes when more involved gas physics becomes important, as is the case in
the temperature profiles of observed and simulated galaxy clusters. We already mentioned
the problem of cool-core clusters (see e.g. Peterson and Fabian, 2006, for a review), where
the rapid cooling of the high-density core is suppressed due to a not fully understood heating
process. Furthermore, simulated clusters overestimate the star formation rate with respect to
what is observed. Also the observed scaling relations of X-ray observables show a significant
deviation from self-similar models (Pratt et al., 2009; Sun et al., 2009; Boehringer et al., 2009)
and suggest the inclusion of sophisticated models of gas physics, which have to be tested
and calibrated against observations.

Extreme dynamical conditions
An ideal kinematic test site for numerical simulations are merging events, like in the case
of the “Bullet Cluster” 1E 0657-558 (Clowe et al., 2004b, 2006), the “Baby Bullet” MACS

J0025.4-1222 (Bradač et al., 2008) or “The Cosmic Train Wreck” Abell 520 (Mahdavi et al.,
2007a).

Milosavljević et al. (2007); Springel and Farrar (2007); Mastropietro and Burkert (2008)
tried to simulate mergers, similar to the “Bullet Cluster” and only the latter work is able
to reproduce the observed X-ray and lensing features of the cluster. They derive an initial
velocity of the merging subclump (bullet) of the order of ≈ 3000 km s−1. Recently, Lee and
Komatsu (2010) show that the largest available cosmological simulation MICE (Crocce et al.,
2010) disagrees at a high significance level with the existence of such a system. This fact in-
dicates, that also our understanding of merging events within the framework of the standard
model is still incomplete.

Strong lensing features
Another puzzle where simulations disagree with actual observations of clusters is related
to the production of strong-lensing features. The so-called arc-statistics problem, first ad-
dressed by Bartelmann et al. (1998) and since then controversially discussed (Wambsganss
et al., 2004; Horesh et al., 2005; Li et al., 2005; Fedeli et al., 2006, 2008) states the fact that
the observed number of arcs in the sky exceeds the predicted production of arcs in the stan-
dard model by roughly an order of magnitude. A similar problem was addressed by Broad-
hurst et al. (2008) and Zitrin et al. (2010), who claim that the size of observed Einstein radii
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are also incompatible with ΛCDM. This last example of cosmology with galaxy clusters via
their strong lensing features shows instructively how the interplay between simulations and
observations is fruitful to improve the quality of scientific statements on both sides. The arc-
statistics problem, though conceptually simple, is unsolved for a decade by now and helped
to understand better the effects of triaxiality, gas physics and merging events on the lens-
ing properties of galaxy clusters (Oguri et al., 2003; Torri et al., 2004; Puchwein et al., 2005;
Fedeli et al., 2006; Fedeli and Bartelmann, 2007; Puchwein and Hilbert, 2009; Meneghetti
et al., 2010).

With our work that we present from now on, we hope to contribute to the question of the
mass-density distribution of galaxy clusters and to the interpretation of their strong-lensing
properties.
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There are several methods to recover the properties of a galaxy cluster, like the total mass,
the mass distribution and the baryon fraction, from observations. Among them are classical
methods, which use the kinematics of cluster member galaxies, while reconstructions based
on X-ray observations investigate the diffuse, thermal emission of the Intra-Cluster-Medium
(ICM). Gravitational lensing traces the mass distribution of the cluster in a very direct way
and distinguishes between a weak and a strong-lensing regime.
Usually, all these methods are used separately and we intend to demonstrate the possibility
to combine the particular strengths of individual methods into a joint reconstruction, thereby
eliminating the typical limitations of reconstructions based on a single class of observational
constraints.
After describing the basic principle of such an approach in Sec. 4.1, we focus on the weak-
lensing regime in Sec. 4.2, with an excursion towards the special case of flexion in Sec. 4.3.
The strong-lensing regime is covered in Sec. 4.4. These are the areas, which can be com-
bined with our reconstruction method in its actual state. We summarise the advantages and
drawbacks of a joint reconstruction method, as we present it in this work, in Sec. 4.5 and give
a short overview on other observables of galaxy clusters, as they could be included in our
method, in Sec. 4.6.

4.1 A grid-based maximum-likelihood approach

The original idea of such a method goes back to Bartelmann et al. (1996) and has been exten-
sively developed since then (Bradač et al., 2004, 2005, 2009; Cacciato et al., 2006). There
were also several other attempts to combine weak and strong lensing (Diego et al., 2007;
Deb et al., 2008; Oguri et al., 2009), weak lensing and flexion (Leonard et al., 2007; Okura
et al., 2008), strong lensing and kinematics (Sand et al., 2008) or lensing, X-Ray and Sunyaev-
Zel’dovich observations (Puchwein and Bartelmann, 2006, 2007; Mahdavi et al., 2007b) into
a joint reconstruction method.
The method presented in this work delivers for the first time a consistent framework to com-
bine weak lensing, flexion and several strong-lensing constraints, in order to recover opti-
mally the properties of a galaxy cluster and justifies the development of a new algorithm.
Furthermore, combined methods usually suffer from severe problems regarding implemen-
tation and runtime due to the complexity of the problem, which forces them to accept com-
promises regarding the inclusion of the constraints or in the error estimation. We will show
how to overcome these limitations in our implementation.
Another advanced feature of our method, despite its ability to combine a wide range of con-
straints, is the fact that it is fully nonparametric. This means, that no a-priori assumptions on
e.g. the mass profile of the galaxy cluster are necessary. The reconstruction relies purely on
the observational data.
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Figure 4.1: The discretised observational field. The full observational field of the galaxy clus-
ter is divided into a grid and the basic quantity of the reconstruction, the lensing potential,
is defined in each individual grid cell. Here you see a slight zoom on a SUBARU r-band
exposure of Abell 1703 with a field size of ∼ 26.′8× 17.′7

4.1.1 The discretised lensing potential

The first decision, which has to be made while developing a combined reconstruction method,
is what quantity actually describes the cluster best in this context and should therefore be
reconstructed. Possible candidates would be the surface-mass density or, related to it, the
convergence of the cluster. These quantities have clear physical meanings, but nevertheless
they are not ideally suited for a combined reconstruction, since they are not fully general
regarding the observables. As we have seen in Sec. 2.2.2, all effects changing the shapes of
background objects can be described as spin-fields by applying derivative operators to the
lensing potential ψ. Since ψ is the rescaled and projected Newtonian potential of the galaxy
cluster, it can be related to kinematic, X-ray or SZ observations. Those points convinced us
to choose the lensing potential as the reconstruction quantity.
For reasons, which will become more clear in the next section, we will not reconstruct the
continuous lensing potential as a function, but its discretised equivalent. As indicated in
Fig. 4.1, we divide the field, which contains all observational constraints, into a grid. The
lensing potential is then defined on each individual grid cell. This procedure is key to obtain
a fully nonparametric reconstruction, as we will show now.

4.1.2 Combining different constraints

To recover the discretised lensing potential, we perform model-fitting in a least-squares fash-
ion (see e.g. Press et al., 2007; Verde, 2009).
We define a multi-component χ2-function

χ2(ψ) = χ2
1(ψ) + χ2

2(ψ) + χ2
3(ψ) + ..., (4.1)

where all individual terms depend on the lensing potential ψ and refer to different observa-
tional constraints. We minimise the overall χ2-function with respect to the lensing potential
in every grid cell and obtain the discretised lensing potential at every grid position with index
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l as a result

∂χ2(ψ)
∂ψl

!= 0. (4.2)

Every discrete value of ψ is a parameter in this optimisation procedure and if the grid resolu-
tion is suitably high, we will obtain a smooth representation of the galaxy cluster. Therefore,
we will continue calling the method nonparametric and we deal with concrete realisation of
Eq. 4.2 in Sec. 5.4.
Since we are fitting a very high-dimensional model to a probably ill-defined problem, we will
have to deal with the issue of overfitting and may introduce additional regularisation terms
in Eq. 4.1. This is discussed in Sec. 5.5.

4.1.3 Connecting the observables

From now on it is clear how to proceed. We connect the observational quantities, from lensing
or other constraints, to the discretised lensing potential and while doing so, define suitable
terms to be inserted in Eq. 4.1.
While having a look at Eqs. 2.27-2.31, differential operators on the reconstruction grid are
indispensable and we obtain them by following this recipe:

• We use Taylor’s theorem (Rannacher, 2003a,b) to derive the forward (∆h), backward
(∇h) and central (δh) differences to express the partial derivatives in x-direction, with
the horizontal distance between neighbouring grid-cell centres being defined as h1

∂f(x, y)
∂x

=
∆hx [f ](x, y)

h
−O(h) =

f(x+ h, y) + f(x, y)
h

−O(h) (4.3)

∂f(x, y)
∂x

=
∇hx [f ](x, y)

h
−O(h) =

f(x, y)− f(x− h, y)
h

−O(h) (4.4)

∂f(x, y)
∂x

=
δhx [f ](x, y)

h
−O(h2) =

f(x+ 1
2h, y)− f(x− 1

2h, y)
h

−O(h2) (4.5)

∂2f(x, y)
∂x2

=
∆2
hx

[f ](x, y)
h2

−O(h) =
f(x+ 2h, y)− 2f(x+ h, y) + f(x, y)

h2
−O(h) (4.6)

∂2f(x, y)
∂x2

=
∇2
hx

[f ](x, y)
h2

−O(h) =
f(x− 2h, y)− 2f(x− h, y) + f(x, y)

h2
−O(h) (4.7)

∂2f(x, y)
∂x2

=
δ2
hx

[f ](x, y)
h2

−O(h2) =
f(x+ h, y)− 2f(x, y) + f(x− h, y)

h2
−O(h2). (4.8)

With equivalent formulas for the partial derivatives in y-direction.

• By using these finite differences, we can express the deflection angle, convergence,
shear and flexion fields via the discrete representation of ψ. For example three of the

1Not ot be confused with the Hubble parameter.
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nine possible quotient combinations for the convergence are given by

κδδ(x, y) ≈ h−2

{
−2

3
ψ(x, y)− 1

6
ψ(x− h, y)− 1

6
ψ(x+ h, y)

− 1
6
ψ(x, y − h) +

1
3
ψ(x− h, y − h) +

1
3
ψ(x+ h, y − h)

−1
6
ψ(x, y + h) +

1
3
ψ(x− h, y + h) +

1
3
ψ(x+ h, y + h)

}
,

(4.9)

κδ∇(x, y) ≈ h−2

{
1
2
ψ(x− h, y)− 1

2
ψ(x, y) +

1
2
ψ(x+ h, y)

−ψ(x, y − h) +
1
2
ψ(x, y − 2h)

}
,

(4.10)

κ∆∇(x, y) ≈ h−2

{
ψ(x, y)− ψ(x+ h, y) +

1
2
ψ(x+ 2h, y)

−ψ(x, y − h) +
1
2
ψ(x, y − 2h)

}
,

(4.11)

where the subscripts indicates the quotient (forward, backward or central) for the x and
y-direction, respectively.

• This calculation is visualised for all quantities, which we will need to define χ2-functions
on the grid in Figs. 4.2, 4.3, 4.4, 4.5 and 4.6.

• When assuming, that all lensing potential values on the grid are represented by a vector
ψi of length N , where N is total number of grid cells, we can write all relevant lensing
quantities at a grid position with index i as matrix multiplications

α1
i = D1

ijψj (4.12)

α2
i = D2

ijψj (4.13)

κi = Kijψj (4.14)

γ1
i = G1

ijψj (4.15)

γ2
i = G2

ijψj (4.16)

F 1
i = F1

ijψj (4.17)

F 2
i = F2

ijψj (4.18)

G1
i = G1

ijψj (4.19)

G2
i = G2

ijψj , (4.20)

where all matrix quantities are sparse band matrices. Only those entries per row with
index i, which represent a coefficient as shown in Figs. 4.2– 4.6 are non-zero.

This gives us all ingredients at hand to look at several possibilities, which might contribute a
term in Eq. 4.1.

4.2 Weak lensing

We will focus on weak lensing first and the reader is referred to the excellent review of Bartel-
mann and Schneider (2001) for a more complete overview. The main advantage of weak
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4.2 Weak lensing

Figure 4.2: The finite-differences scheme, which belongs to Eqs. 4.9, 4.10, 4.11, 4.14. Marked
in red is the grid cell, for which the convergence is calculated. The coefficients are given
in units of h−2.

gravitational lensing for cluster mass reconstruction is the fact, that it allows for a complete
reconstruction of the whole observed field as long as shape measurements of background
galaxies are available. We have seen in Sec. 2.2.2 that local averages of these measure-
ments are approximately equal to the reduced shear of the lens.
Hence a sufficient number of ellipticity values has been measured, a second advantage of
a weak-lensing reconstruction is the fact, that it allows for a nonparametric recovery of the
mass distribution.
Kaiser and Squires (1993) were the first to notice, that a direct mapping between shear and
convergence exists.
Starting from

2γ = ∂∂ψ, (4.21)

we apply the spin-lowering operator to both sides and use the definition of the convergence

2∂∗γ = ∂∂∗∂ψ (4.22)

∂∗γ = ∂κ. (4.23)

This Cauchy-Riemann equation (Straumann, 1997) is solved with the help of the Green’s
function G̃ of the spin-raising operator, as defined by

∂G̃(θ) = ∂

(
1
θπ

)
= δ(θ), (4.24)

up to an additive constant by the complex field

κ̃(θ)− κ̃0 = ∂−1∂∗γ, (4.25)

with the inverse differential operator

∂−1(·) = − 1
π

1
θ2
∗ (·), (4.26)
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Figure 4.3: The finite-differences scheme for the first component of the deflection angle
(Eq. 4.12) is shown in the top panel. The bottom panel shows the scheme for the sec-
ond component (Eq. 4.13). Marked in red is the grid cell, for which the deflection angle is
calculated. The coefficients are given in units of h. Please note, that a higher-order Taylor
expansion has been used, which is why the schemes in the figure do not match exactly
with Eqs. 4.3, 4.4.
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4.2 Weak lensing

Figure 4.4: The finite-differences scheme for the first component of the shear (Eq. 4.15) is
shown in the top panel. The bottom panel shows the scheme for the second component
(Eq. 4.16). Marked in red is the grid cell, for which the shear is calculated. The coefficients
are given in units of h−2.
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Figure 4.5: The finite-differences scheme for the first component of the F -flexion (Eq. 4.17)
is shown in the top panel. The bottom panel shows the scheme for the second compo-
nent (Eq. 4.18). Marked in red is the grid cell, for which the F -flexion is calculated. The
coefficients are given in units of h−3.
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Figure 4.6: The finite-differences scheme for the first component of the G-flexion (Eq. 4.19)
is shown in the top panel. The bottom panel shows the scheme for the second compo-
nent (Eq. 4.20). Marked in red is the grid cell, for which the G-flexion is calculated. The
coefficients are given in units of h−3.
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4 A joint reconstruction method

and ∗ being the convolution.
Since lensing effects alone cannot create any imaginary parts in this field (Crittenden et al.,
2002), the real part of κ̃(θ) − κ̃0 recovers the convergence as shown by Kaiser and Squires
(1993)

κ(θ)− κ0 =
1
π

∫
R2

d2θ
′<[D∗(θ − θ′)γ(θ

′
)], (4.27)

with a complex convolution kernel D.
A few comments on Eq. 4.27:

1. γ(θ) can at best be determined at discrete points within the reconstruction field, where
shape measurements are available. Thus, smoothing with e.g. a Gaussian kernel D
is required (Seitz and Schneider, 1995), which introduces covariances in the resulting
mass map (van Waerbeke, 2000; Lombardi and Bertin, 1998).

2. Not the shear, but the reduced shear can be related to observations. This problem has
been solved by Seitz and Schneider (1995), while using an iterative approach.

3. Reduced-shear measurements are only available on a finite field, but Eq. 4.27 requires
an integration over the whole sky. This problem has been fixed by a finite-field-inversion
technique (Seitz and Schneider, 1995).

4. A problem, which cannot be fixed in a fully satisfactory way by using a direct-inversion
technique, is that the convergence can only be recovered up to an additive constant.
This problem is called the mass-sheet degeneracy (Falco et al., 1985).

4.2.1 Defining a χ2-function

A way to deal with the last problem is to perform the weak-lensing reconstruction within an
maximum-likelihood approach, as we have presented it in Sec. 4.1.3. This allows for the
introduction of terms, which break the mass-sheet degeneracy.
We know from Eq. 2.58, that we can relate the expectation value of the ellipticity in one
grid cell to the reduced shear of the lens. This suggests the following definition of the weak-
lensing χ2-function

χ2
w =

∑
i,j

(ε− g(ψ))iC−1
ij (ε− g(ψ))j , (4.28)

where the indices i and j run over all cells of the reconstruction grid.
In the case of |g| ≤ 1, we find

χ2
w(ψ) =

∑
i,j

(
ε− Z(z)γ(ψ)

1− Z(z)κ(ψ)

)
i

C−1
ij

(
ε− Z(z)γ(ψ)

1− Z(z)κ(ψ)

)
j

. (4.29)

The covariance matrix Cij describes the noise in the reduced-shear measurements and its
concrete form depends on the averaging scheme that we apply. Generally, it will depend
on the standard deviation σ of the averaging process within each grid cell. This standard
deviation is composed of three different contributions

σ = σint + σsys + σl, (4.30)

with the noise due to intrinsic ellipticity σint, systematic error (measurement noise) σsys and
lensing noise σl. Under lensing noise we understand the noise which arises from the fact
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4.3 Flexion

Figure 4.7: From Clowe et al. (2006). An X-ray view on the “Bullet Cluster” using Chandra.
Encoded in the background-colour map is the X-ray luminosity. The purple contours repre-
sent the convergence levels, obtained by weak lensing and the white contours show the
positions of the convergence centres of the two halos, including error intervals. This figure
shows a clear offset between the X-ray emitting gas components and the dark matter in
the merging cluster 1E 0657-558. The white bar indicates a scale of 200 kpc at the cluster’s
redshift of zc = 0.296.

that the galaxies over which we average, are spatially separated, so the properties of the
lens change inside a grid cell. We assume that for a sample of sufficient size, the intrinsic
ellipticity noise tends to zero, which leaves the lensing and the systematic noise and we will
calculate C for the concrete averaging scheme of our reconstruction method in Sec. 5.3.1.

4.2.2 Problems with weak lensing

The application of weak-lensing reconstruction techniques has become standard in the anal-
ysis of galaxy clusters by now. Outstanding breakthroughs were achieved while using this
technique, with the strong evidence that the “Bullet Cluster” (1E 0657-558) contains colli-
sionless dark matter (Clowe et al., 2004b, 2006; Bradač et al., 2006) being presumably the
most prominent among them (Fig. 4.7). Nevertheless, weak lensing relies on a linearised lens
equation and its assumptions become less and less accurate towards the central regions of
efficient lenses. Whenever the shapes of background sources become distorted in a different
way, than the effects of convergence and shear can explain, weak lensing alone is not able to
explain them any more. Obviously, those effects are indeed observed in the form of arclets,
arcs or multiple-image systems in several galaxy clusters (see e.g. Broadhurst et al., 2005,
as an extreme example).

4.3 Flexion

Flexion is sensitive to the third derivatives of the lensing potential and is therefore ideal
to trace the structure of the deflecting galaxy cluster on a much smaller scale than this
is possible with shear measurements alone. Once a flexion signal was measured with one
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4 A joint reconstruction method

of the techniques that we have described in Sec. 2.2.3, it can contribute important infor-
mation in the transient area between the weak and the strong-lensing regime and unravel
sub-structures, to which the shear alone is blind.

Nonparametric flexion reconstructions
Direct-inversion formulas for flexion are derived from the definitions of the two complex fields

2F = ∂∂∂∗ψ (4.31)

2G = ∂∂∂ψ, (4.32)

by inserting the convergence

F = ∂κ (4.33)

∂∗∂∗∂∗G = ∂4κ. (4.34)

Solving those equations in the same as Eq. 4.23 leads to two new complex fields, which real
part is the convergence and which imaginary part is a quantity, that cannot be due to lensing
and is therefore used to check for systematics in the analysis. These systematics are often
called B-Modes (Crittenden et al., 2002).

(κ+ iB)F = ∂−1F (4.35)

(κ+ iB)G = ∂−4∂∗∂∗∂∗G (4.36)

Parametric flexion fitting
Another way of using the flexion signal in mass reconstructions was chosen by Leonard
et al. (2007). To every flexion measurement an analytic mass profile like e.g. the Singular-
Isothermal-Sphere (SIS) (Binney and Tremaine, 2008) is fitted. The two complex flexion fields,
produced by such an analytic profile, were derived by Bacon et al. (2006)

F (θ) = − θE
2θ2

eiφ, (4.37)

G(θ) =
3θE
2θ2

e3iφ, (4.38)

in polar representation and with the Einstein radius

θE = 4π
(σv

c

)2 Dds

Ds
. (4.39)

σv is the line-of-sight velocity dispersion. The convergence map, like shown in Fig. 4.8, is then
obtained by summing over all SIS-contributions with index i

κ(θ) =
∑
i

θE,i
θi − θ

. (4.40)

4.3.1 Defining a χ2-function

We now define the flexion χ2-contributions of Eq. 4.1, which are quite similar to the case of
shear. By assuming, that local averages of flexion measurements (f and g) in individual grid
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cells are equal to the flexion of the model, based on the lensing potential, we define

χ2
F (ψ) =

∑
i,j

(f − Z(z)F (ψ))i C
−1
ij (f − Z(z)F (ψ))j (4.41)

χ2
G(ψ) =

∑
i,j

(g − Z(z)G(ψ))i C
−1
ij (g − Z(z)G(ψ))j . (4.42)

The same considerations regarding the covariance matrices apply. Again, their exact shapes
depend on the averaging scheme which is applied. This point leads us directly to the first of
some problems, which are still connected with the use of gravitational flexion.

4.3.2 Problems with flexion

Several things are still unclear and problematic in the use of flexion, which is mostly due to
the fact, that the whole field is relatively young and still evolving. The following problems
should be noted:

1. As a second-order contribution, the flexion signal is lower in amplitude and unlike in
ellipticity measurements (Brainerd et al., 1996) the level of intrinsic flexion is not well-
known up to now. Therefore, it is unclear how large the averaging sample for individual
grid cells in Eqs. 4.41, 4.42 should be. Goldberg and Bacon (2005) estimated that
the intrinsic noise level of the flexion signal is lower than in the shear signal, which is a
promising result and suggests that less galaxies have to be averaged to obtain a signal.
This might increase the resolution of reconstructions involving flexion.

2. Schneider and Er (2008) raised the point, that not the originally defined flexion fields F
and G are actually measurable by observations, but the reduced flexion fields

G1 =
F + gF ∗

(1− κ)
and G3 =

G+ gF ∗

(1− κ)
. (4.43)

Our method would not suffer from that point, since it only demands for a slight redefi-
nition of the flexion χ2-function, similar to the case of the reduced shear.

3. As we already pointed out in Sec. 2.2.3, the measurement of flexion from images is
extremely difficult and even if a reliable measurement is given, also the second-order
lens equation, which gives rise to the flexion fields, fails for highly non-linear critical
lensing events near the cluster core. Furthermore, almost no background galaxies are
observed at all in this region, because of foreground light of the brightest cluster galaxy
(BCG) and demagnification effects. This problem also manifests itself in Fig. 4.8, where
a flexion reconstruction of Abell 1689 is compared to a reconstruction, which also in-
cludes strong-lensing constraints.

4.4 Strong lensing

As we have seen, both reconstruction methods based on shear or flexion, have problems in
describing the innermost core of a galaxy cluster due to a lack of constraints and an approx-
imated lens equation. Indeed, tests with simulations show, that pure weak lensing recon-
structions usually recover a mass-profile which is too shallow in the cluster centre (Cacciato
et al., 2006; Merten et al., 2009; Meneghetti et al., 2009). These limitations are cured with
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Figure 4.8: From Leonard et al. (2007). HST/ACS exposure of Abell 1689. Left Panel: The
contours show the convergence levels, obtained by a combined weak and strong-lensing
reconstruction. Right Panel: The contours show the convergence levels of a reconstruction
based on the F -flexion alone. It can be clearly seen, that the reconstruction follows sub-
structure better, but shows a unexpected under-density in the cluster centre. This was
explained in Leonard et al. (2007) as a shot-noise effect, due to a lack of signal in this area.

methods, which rely on the constraints attached to the strong-lensing regime, like multiple-
images systems, giant arcs or Einstein rings. Within the regions where those features appear,
strong-lensing methods deliver excellent results since the constraints are very decisive as we
will see. Nevertheless, the number of those constraints is usually two to three orders of mag-
nitude smaller than in the case of shear or flexion, which means that parametric models are
applied to prevent the problem from being under-constrained.

Parametric methods

As the name already implies, parametric, analytic models like the SIS or the Navarro, Frenk
and White (NFW) (Navarro et al., 1996) profile are used to parametrise the lens and to fit the
observations. As Meneghetti et al. (2007b) have shown, during the modelling process it is
very important to account for asymmetries and substructure in the profile of the main dark
matter halo (see also Keeton, 2003; Meneghetti et al., 2007a). Therefore, generalised, ellip-
tical profiles are used to model the main halo. Significant mass contributions of single clus-
ter galaxies are modelled separately by e.g. a Pseudo-Isothermal-Elliptical-Mass-Distribution
(PIEMD) (Kassiola and Kovner, 1993).
Together, these different mass profiles model the deflector with a parameter vector p of
length Np, where Np is the sum of all parameters from the different contributions to the over-
all mass model.
This parameter vector is then optimised to fit the input observations best. In the case of
multiple-image systems we use the lens equation to derive the source position βi of one
image, observed at position θi

βi = θi − α(θi,p)2. (4.44)

2The reader should remember the complex notation, which applies to the lensing quantities.
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Of course, the original source position is not known, but we can define an average source
position, to which the sample of all images of an multiple-image system is imaged back on
average

〈β〉 =
1
N

N∑
i=1

βi, (4.45)

where N is the number of images in an individual system. Afterwards, we demand that the
deviation of the source position of an individual image from the average source position is as
small as possible in a least-squares interpretation

χ2
sp =

N∑
i=1

(
βi(θi,p)− 〈β〉 (θi,p)

σi

)2

, (4.46)

where σi describes the error in the knowledge of the image position θi. The procedure above
is called source-plane optimisation. Lens-plane optimisation is defined by

χ2
lp =

N∑
i=1

(
θi − θi(β)

σi

)2

, (4.47)

but the minimisation of this χ2-function is a lot more expensive regarding CPU time.
Another possible constraint in the strong lensing regime are giant gravitational arcs. As
indicated in Fig. 4.9, the position of saddle points in the surface-brightness distribution of
arcs gives an estimate on the position of critical lines as they are found in strongly lensing
galaxy clusters. If also the redshift of the arc is known, this can be an extremely powerful
constraint for the reconstruction. The constraint is translated, in terms of model fitting, again
into a likelihood function

χ2 =
N∑
i=1

(
||Oi −Di(p)||

σi

)2

, (4.48)

where O describes the predicted position of the critical line, D the position of the critical
line given the model and σi the error in the prediction. N is the total number of critical-line
predictions.
In the final analysis, the posterior probability, meaning the probability to find the param-
eters p given the observational data is optimised by applying Monte-Carlo-Markov-Chains
(MCMC) and Bayesian model-selection techniques. Verde (2009) gives a decent review on
these methods, especially in cosmological applications.
With the publicly available code LensTool (Jullo et al., 2007; Kneib et al., 1996) and the soon3

publicly available code CLens (Halkola et al., 2006, 2008) very powerful tools exist, which ap-
ply the constraints mentioned above and allow reliable, parametric reconstructions of galaxy
clusters based on strong gravitational lensing.

A nonparametric method, genetic algorithms
Liesenborgs et al. (2006, 2007) suggested a particularly interesting nonparametric, strong-
lensing-inversion method based on a genetic algorithm (see e.g. Deb, 2001; Charbonneau,
1995, for reviews). Genetic algorithms are a special class of evolutionary algorithms, which
mimic natural selection schemes as they are found in biological systems. The solutions to a
certain problem are encoded in a so-called genome4. Several trial-solutions are created in an

3private communication, the author is involved in the further development of the package
4Also the vocabulary of Biology is used in the context of these algorithms
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Figure 4.9: From Jullo et al. (2007). The position of the critical line of a galaxy cluster can
be predicted from the existence of saddle points in the surface-brightness distribution of
gravitational arcs.

initial step and generations of preceding genomes are bred by sexual reproduction, mean-
ing by combining parts of different genomes, or by asexual reproduction, meaning existing
genomes are simply copied. To ensure genetic diversity also mutation is applied during the
evolutionary process. To ensure the survival-of-the-fittest concept, selection pressure has to
be applied by defining a fitness criterion, which gives certain genomes a higher probability
to reproduce themselves. Evolution stops when a specified fitness-criterion is reached by the
genome. The main advantage of genetic algorithms is their ability to solve under-determined
problems, as in the case of nonparametric strong lensing, without any additional constraints.
In Liesenborgs et al. (2006, 2007) the reconstructed lens is represented by a dynamic grid,
which automatically increases its resolution in high-density areas of the reconstruction dur-
ing the evolution. To each grid cell a projected Plummer sphere (Plummer, 1911) is assigned,
which encodes the mass within that cell. The whole lens is defined by the sum of all these
spheres. The lens equation in terms of N Plummer spheres reads

β(θ) = θ − Dds

DsDd

4G
c2

N∑
i=1

θ − θs,i
|θ − θs,i|2 + θ2

P,j

Mi, (4.49)

where M is a measure of the mass within a sphere, θs the centre of this sphere and θP a
measure of its width. The fitness criterion is then defined such, that when remapped into the
source plane, the source-positions of all multiple images within a multiple-images system
overlap as much as possible, given the lens configuration of Eq. 4.49.

4.4.1 Defining χ2-functions

We will implement the strong-lensing constraints into our grid-based, nonparametric method
in a similar way as in the parametric strong-lensing methods. We define a χ2-function for the
multiple-image systems as in Eq. 4.46 with the difference, that the model parameters are not
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given by an analytic model, but by the lensing potential on the grid ψ

χ2
m =

N∑
i=1

(
βi(ψ)− 〈β〉 (ψ)

σi,m

)2

=
N∑
i=1

(
(θi − Z(z)αi(ψ))− 〈β〉 (ψ)

σi,m

)2

=
N∑
i=1

1
σ2
i,m

θi − Z(z)αi(ψ)− 1
N

N∑
j=1

θj − Z(z)αj(ψ)

2

,

(4.50)

where the error σm is given by the grid-cell size.
If we assume a grid cell with index i to be part of the critical line it has to minimise

χ2
s (ψ) =

|detA(ψ)|2i
σ2
i,s

=
|(1− Z(z)κ(ψ))2 − |Z(z)γ(ψ)|2|2i

σ2
i,s

, (4.51)

where the error estimate σ sfs is related to the inaccuracy in predicting the position of the
critical curve. We approximate this uncertainty to first order with the help of the Einstein
radius (see Cacciato et al., 2006)

σs ≈
∂detA

∂θ

∣∣∣∣
θc

δθ ≈ δθ

θE
, (4.52)

with the angular inaccuracy due to pixelisation δθ.
Strictly speaking, the formula above only holds for an isothermal sphere, but nevertheless it
gives us a good approximation for the noise in the critical-curve position.

4.4.2 Problems with strong lensing

Pure strong lensing reconstructions have been applied to several clusters and delivered com-
prehensive results. We will just list some of the more recent. Reconstructions of the “Golden
Lens” Abell 1689 with over 100 strong lensing features were performed by Broadhurst et al.
(2005) and Halkola et al. (2006). Limousin et al. (2008) reconstructed Abell 1703, which is
not less spectacular. Zitrin et al. (2009) identified several unknown multiple-image systems
in CL0024+1654 by using a parametric strong-lensing reconstruction. A sample of 10 clusters
observed by the HST was reconstructed by Comerford et al. (2006).
Despite the detailed recovery of strong-lensing features, like critical lines as shown in Fig. 4.10,
two aspects should be noted while talking about pure strong-lensing reconstructions:

1. Parametric strong-lensing reconstructions can only be as good as the given input model.
The results do not only rely on the data, but also on the assumptions and complexity of
the parametric model. Nonparametric strong-lensing methods exist and have already
been applied to real data (Liesenborgs et al., 2008), but their reliability have still to be
tested carefully.

2. A maybe more severe problem is the fact, that strong-lensing reconstructions rely on
constraints, which are confined to a very limited area of the cluster. It is therefore dan-
gerous to extrapolate the result from a reconstruction of the cluster core to its outskirts
(Meneghetti et al., 2009; Donnarumma et al., 2010). Weak-lensing constraints should
be added in order to constrain cluster properties over the complete field-of-view.
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Figure 4.10: From Zitrin et al. (2009). A parametric strong-lensing reconstruction of
CL0024+1654. Overlaid on top of the HST/ACS exposure are in blue the positions of the mul-
tiple images and in red the position of the reconstructed critical line, assuming a source
redshift of zs = 1.675. The field size is ∼ 100′′ × 100′′.

4.5 Advantages and problems of the approach

The section above finishes the summary of all constraints, which are implemented in our
reconstruction method. We would like to highlight the advantages and problems with our
approach of combining all these constraints into a joint reconstruction method.

Advantages

1. The main advantage is obvious. While combining different observations, one can use
their individual strengths, while eliminating their weaknesses:

• Weak lensing allows a reconstruction over the whole observational field but is
based on a first-order approximation of the lens equation and therefore rather
insensitive to substructure and fails in the highly non-linear regime of the cluster
core.

• Flexion is sensitive to substructure, especially in the transient regime between
weak and strong lensing, but it also does not allow a reliable reconstruction of the
innermost core of the cluster.

• Strong lensing alone should not be used to determine the cluster profile too far
beyond its Einstein radius, which is perfectly covered by weak lensing and flexion
in our method, but it provides excellent reconstructions of the cluster core if strong
lensing constraints are present. A problem of strong lensing can be its dependence
on parametric models of the cluster-mass profile.

2. Since our method is fully nonparametric, also this problem is cured. The problem of
under-determination from which nonparametric strong lensing models usually suffer
does not appear, since the additional constraints maintain the problem fully deter-
mined.
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Problems
1. The biggest problem of an approach, as we have presented it, is the question of error

estimation on the derived quantities. An analytic derivation of the error budget has
not been found yet, so error bars are attached by statistical methods. Input catalogues
are bootstrapped (Bradač et al., 2005; Davison A.C., 1997) and the reconstruction is
repeated for each (∼ 100) resampling of the catalogues. The scatter in the subsequent
analysis provides the error bars.
An even more attractive method to obtain error bars, would be an MCMC sampling of
the parameter space during the optimisation process. Unfortunately, this method is
still too costly with respect to CPU time.

2. This leads to the second problem of our approach. Combined reconstruction methods
call for rather complicated implementations, which are quite computationally demand-
ing. The combination of different lensing regimes, asks for reconstruction on different
length scales within the observational field and nonparametric reconstructions need a
very complex optimisation strategy (compare Liesenborgs et al., 2007).

To explain how to tackle these problems, we spend the whole next chapter on the concrete,
runtime-efficient implementation of our method.

4.6 Additional constraints

We will complete this chapter with an overview over some other observational constraints,
which are not implemented in our algorithm yet, but which are likely to contribute in the
future. For some of them, an implementation, which should still be nonparametric, is quite
straight-forward, while for other constraints the implementation might face significant diffi-
culties.

Magnification
Another lensing observable, which could be included in our code is magnification. Broad-
hurst et al. (1995) suggested the use of magnification in mass reconstructions of galaxy
clusters and Bartelmann et al. (1996) even implemented it already in a maximum-likelihood
approach. Mass reconstructions would profit strongly from the use of a constraint based
on magnification, because this quantity is not invariant under the mass-sheet degeneracy
and could therefore be used to break it (see Sec. 5.6.2). The problem are the difficulties
in measuring a magnification signal since the intrinsic, unlensed flux of an object is usually
unknown.

Kinematics
A constraint, which is not based on gravitational lensing are kinematics of cluster member
galaxies. The velocity dispersion of those objects also reflects very directly the potential wells
within the hosting galaxy cluster. Sand et al. (2002, 2008) suggested a method based on the
velocity dispersion of the BCG and combined this constraint with strong-lensing constraints.
Rines et al. (2010) studied a spectroscopic sample of 15 clusters and infered their virial mass
from kinematic constraints.

Tracers of the Intra-Cluster-Medium (ICM)
Cluster constraints, which are not based on optical observations are mainly X-ray and Sunyaev-
Zel’dovich observations. X-ray reconstructions have proven several times to deliver excel-
lent results, especially in the case of relaxed objects (Schmidt and Allen, 2007; Donnarumma
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et al., 2009; Vikhlinin et al., 2006; Ettori et al., 2002). We saw in Sec. 3.3, that the derivation
of cosmological parameters from large samples of galaxy clusters by applying well-calibrated
scaling relations is a particular strength of X-ray observations (Vikhlinin et al., 2009). Those
scaling relations could be derived from a joint reconstruction method (Meneghetti et al.,
2009) as we present it in this work.
The same is true for observations based on the SZ-effect, which have become more interest-
ing recently, with the first SZ cluster detections (Vanderlinde et al., 2010) by the South Pole

Telescope (Carlstrom et al., 2009).
Both methods could deliver valuable, nonoptical contributions to our method, especially since
they are directly tracing the baryonic component of the ICM and could therefore give insight
to the interplay between the dominant dark-matter component, which lensing is mostly sen-
sitive to, and the baryons in the ICM (Powell et al., 2009).
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This rather technical chapter is dedicated to the concrete implementation of our reconstruc-
tion method and therefore represents the essence of this work. The algorithm encompasses
several different input constraints, confined to different length scales. This calls for several
numerical techniques which are not straight-forward to implement. We will describe them in
quite some detail.
After an overview of modern high-performance computing in Sec. 5.1, we will define a static
version of adaptive-mesh-refinement (AMR) grids in Sec. 5.2. The connection between ob-
servable quantities and their appearance on those AMR grids is made in Sec. 5.3. How to
minimise a multi-component χ2-function, defined on AMR grids, in an extremely fast way is
shown in Sec. 5.4, by using the iterative approach explained in Sec. 5.5. An overview of the
whole reconstruction method, the description of the numerical package and the usage of the
output is presented in Sec. 5.6.

5.1 Modern high-performance computing

Computers are definitely one of the main tools in modern science. Most of the more recent
results and insights would not have been possible without their tremendous speed in numer-
ical calculations and ability to model complex, physical processes. The ability to store vast
amounts of experimental data has just become available in modern times and improved the
understanding of natural laws, by exploiting the increased statistics of the observed samples.
Also Cosmology is footing heavily on modern high-performance computing for two reasons.
First, the observational point of view. Modern surveys will have a huge, almost full, sky cov-
erage and the data that the telescopes take must be selected, stored and analysed. A survey
which has just started to deliver first data products is the Panoramic Survey Telescope &

Rapid Response System (Pan-Starrs) (Kaiser et al., 2002). The Pan-Starrs survey delivers
several TB’s of data every night. An even more extreme case is the planned Large Synoptic

Survey Telescope (LSST) facility (LSST Science Collaborations, 2009). Its enormous GigaPixel
camera will deliver even more data per night and dedicated computation centres will be as-
signed just for the storage, analysis and distribution of this data.
Second, the end of the last century saw the advent of large cosmological simulations as reli-
able scientific tools. These attempts to model the whole1 Universe, or parts of it, on different
spatial and temporal resolutions would not be possible without the computational resources
that we will describe. The most prominent examples in cosmology were the Millennium

(Springel et al., 2005) and MareNostrum (Gottlöber et al., 2006) simulations with huge cos-
mological volumes, or more recently the Aquarius project (Springel et al., 2008), which tried
to model the creation and evolution of a structure compatible in size with the Milky Way.
Of course scientists are interested in an improvement of the numerical performance on mod-
ern computer systems. Basically, this improvement can be achieved in the following ways2:

1Meaning those parts, which are of interest for a certain scientific field
2In principal one should add, that most scientific codes are written in an extremely inefficient way with respect

to memory access and clock rate adaptation and do not use the available resources.
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1. Increase individual CPU performance

2. The use of specialised hardware

3. Massive parallelisation.

As the first point sounds rather trivial, it is indeed the main driver for the rise of modern su-
per computing. The numerical performance of CPU’s increased exponentially since the first
production series in the 1960’s. This performance is mainly given by the number of transis-
tors in the CPU, used to execute instructions, and by its clock rate. Unfortunately, it seems
that both aspects of CPU performance are approaching natural limits dictated by solid state
physics due to limitations regarding further miniaturisation and cooling problems. Ways out
of this dead end are multi-core designs and completely different architectures like quantum
computers in the future.
Another solution to increase the numerical performance in scientific applications is the use
of specialised hardware, which is designed for a specific purpose and not for general pur-
poses like standard CPU’s. An example are custom-built hardware boards called Gravity

Pipe (GRAPE) (Makino and Taiji, 1998). These devices are specifically designed to evaluate the
force equations in astrophysical N-Body simulations in an extremely efficient way. Another,
more general, example are Field Programmable Gate Arrays (FPGA's). Those devices allow
for a direct on-chip implementation of numerical algorithms after the chip was actually manu-
factured. Since the calculations are basically hard-wired an extremely high performance can
be reached. FPGA's are used in several scientific areas. The most prominent example are
the detectors of the Large Hadron Collider where they are used for triggering and event
selection. Also in astrophysical applications they contribute again mostly to accelerate N-
body simulations (Spurzem et al., 2008). Despite their high numerical performance, there is
a severe drawback in specialised hardware. The fact that they are not produced for the mass
market makes those devices expensive in acquirement, and maintenance. Furthermore, spe-
cial knowledge for programming and assembling has to be available.
The standard way to increase the numerical performance on ordinary hardware is massive
parallelisation. In this case a numerical task is split into separate problems, which are then
executed simultaneously. We will focus on parallelisation from now on, since this is also the
way in which our reconstruction method is implemented. We will have to introduce some
vocabulary first3.
A numerical problem we will call a task. If this task can be subdivided into a certain amount
of sub-problems we will call them threads. If a CPU has several independent calculation units
which can execute threads, we will call them compute cores or just cores. If a certain area
of the main memory is accessible only to one thread, we will call it distributed memory, if it
is accessible by several threads we will call it shared memory. A single computer with one
or several cores and a certain amount of main memory we will call a node. If we talk about
process communication, we mean exchange of data between the dedicated memory spaces
of different threads.

5.1.1 Single node computing

Already on single-node systems parallelisation is possible since modern CPU’s are assem-
bled in a multi-core architecture, usually including two, or more recently even four or six,
compute cores. Additionally, powerful server or workstation nodes are mostly equipped with

3The used terms may very well differ from common definitions or from the expressions used by other authors
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5.1 Modern high-performance computing

Figure 5.1: Parallelisation on a single node. Left Panel: The workflow using e.g. OpenMP. The
programme runs on a single memory space, which can be accessed by all compute nodes.
A so-called master thread performs the tasks, which cannot be parallelised like e.g. I/O
operations and calls the different compute cores (in this example three) whenever a task
profits from their combined computational power. Right Panel: The typical workflow when
using MPI. All compute cores (in this example four) access their own, separate memory
space. Message passing (dash-dotted line) is used for communication. I/O operations are
performed by only one or all of the available threads.

more than one CPUs. This gives the user the possibility to split his problem into several
threads and the number of threads usually coincides with the number of compute cores
because overloading the node does generally decrease the numerical performance. A spe-
cific advantage of single node parallelisation is the usage of shared memory. Obviously, all
threads can work on the same memory space and process communication usually just re-
duces to synchronisation instructions. The most commonly-used standard to implement this
parallelisation model is called OpenMP4 and has already been included in the most important
compilers for programming languages used in science like C(++) and Fortran. A graphical
overview of the OpenMP parallelisation model is show in Fig. 5.1.
There might be certain situations where it is eligible to establish a shared-memory paralleli-
sation set-up on a single node. This can be the case when more flexibility within the process
communication is desired. The widely-accepted standard for this programming model is the
Message Passing Interface (MPI) 5. The basic workflow of MPI can also be seen in Fig. 5.1.
All threads maintain their own, separate part of the main memory and communication is per-
formed via the internal bus of the system.
The main disadvantage of single-node parallelisation is simply given by the limited number
of reasonable threads, since the number of available compute cores is also limited.

5.1.2 Cluster computing

The fundamental limitation of single node computation can be overcome by combining a
number of nodes into a large compute cluster. Of course, communication between the differ-
ent nodes must be possible, which is why they are usually connected via a high-performance,

4http://openmp.org/wp/
5http://www.mcs.anl.gov/research/projects/mpi/
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Figure 5.2: Parallelisation on a compute cluster. Left Panel: The basic workflow of an imple-
mentation which is just based on MPI. Several nodes (in this example four) are connected
via an external network and communicate via message passing. Within the nodes, several
cores (in this example four) work on distributed memory spaces and communicate, also by
message passing, via the system bus. Right panel: As before, but the different cores work
on shared memory spaces. One master thread per node communicates with the other
nodes within the cluster.

low-latency network. Most big clusters are using the InfiniBand-specification6 but solutions
using e.g. the standard GigaBit Ethernet specification are also in use. It is clear that in this
way it is possible to construct huge computers, which can execute thousands of threads in
parallel. In fact, the fastest computers in the world are Linux clusters of the form that we
have just described and consist of tens of thousands of nodes, which combine hundreds of
thousands of compute cores7.
Naturally, such a machine cannot be embedded in a single shared-memory environment any
more. The memory spaces of different nodes are physically separated and e.g. MPI has to
be used to allow for process communication between the threads on different nodes. Within
individual nodes one can choose to use either a distributed-memory model to access the
memory of the node or a shared-memory model. Both types of set-ups are illustrated in
Fig. 5.2.
The biggest difficulty in cluster computing is the complexity of the communication between
the possibly huge number of threads. Usually, threads are organised in a number of sub-
groups and process communication is performed at first just within the sub-group and at a
certain point of the task, sub-groups start communicating with each other. Generally, the rel-
atively slow communication between nodes, using the external network, has to be minimised
to achieve the best result possible.

6http://www.infinibandta.org/
7http://top500.org
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5.1.3 GPU computing

The last possible form of parallelisation, that we intend to mention, is somewhat related to
the use of specialised hardware as described in Sec. 5.1. Driven by the multi-billion Dollar
computer-gaming industry, more and more powerful graphics cards were produced. Those
are based on so called Graphics Processing Units (GPU’s), which are a special form of pro-
cessors specialised on parallel calculations. While on normal CPU’s a large number of the
available transistors is dedicated to cache memory, so temporal saving of data and to data-
flow control, only a limited number of transistors is actually dedicated to calculation work.
This picture completely changes on GPU’s. Most of the available resources on the chip are
dedicated to calculations and therefore hundreds of compute cores find space on one single
GPU chip. This opens the door for massive on-chip parallelisation.
This has also been recognised in the scientific community, which is the reason why GPU im-
plementations gain more and more momentum also in astrophysics (Barsdell et al., 2010;
Hassan et al., 2010; Hu et al., 2010; Sainio, 2009; Wang et al., 2009). Of course, there is a
drawback in GPU computing due to the lack of auxiliary transistors on the chip. A specific
task has to be specially suited for parallelisation to take full advantage of the tremendous
computational resources already available with a single GPU. More specifically, a problem
must be data-parallel (NVIDIA, 2009b), which means that all its threads have exactly the
same form with the only difference that they address different positions in memory. Also,
the GPU uses its own on-board memory. As a consequence, data transfers have to be made
between the main memory of the node to the memory of the GPU.
The programming model for parallelsing a task on a GPU distinguishes between a so-called
host code, which runs normally on the node and a so-called device code, which runs massively-
parallel on the GPU. Because of their different architecture, GPU’s need to be addressed by
using a special programming language, which in the case of NVIDIA8 graphics boards, is ei-
ther C for CUDA or the CUDA Driver API (Kirk and Hwu, 2010; NVIDIA, 2009b,a,c). C for

CUDA is a high-level programming language and is easy to learn for an experienced program-
mer. Still, it offers a broad amount of flexibility and enables the usage of several different
memory levels on the Graphics board. This ranges from the global GPU memory down to on-
chip shared memory, which allows small groups of threads memory access on the register
level.
But GPU parallelisation does not end with hundreds of cores on one GPU, several GPU’s can
be used in the same node and several nodes can be combined to form GPU clusters with
thousands of compute cores at extremely low cost. Both models are shown in Fig. 5.3. Also
our reconstruction method is implemented on GPU’s and we will mention how their resources
are used in the course of this chapter.

5.2 Adaptively refined grids

From the computers on which we intend to implement our algorithm, we will now turn the
focus to the basic elements of this implementation. As mentioned in Sec. 4.1.1, we perform
the reconstruction on a grid and we will call the grid cells pixels. Since we have to combine
constraints, which are confined on quite different length scales and therefore on different
resolutions in terms of grids, we will not use a regular grid with fixed pixel size. Instead, we
will make use of a technique well-known as adaptive-mesh-refinement (AMR).
The main feature of AMR grids is their varying pixel size within the full grid area. This enables

8http://www.nvidia.com
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Figure 5.3: GPU computing. Left panel: The workflow of a GPU implementation on a single
node. The programme is started normally in the form of a so-called host code using the
nodes I/O and memory capabilities. At a certain point, data is transfered from the host
memory to the device memory of the GPU. On the GPU the device code uses the resources
of hundreds of available cores for data-parallel code execution. Also, extremely fast on-
chip shared memory can be used. This is indicated by the red areas between the GPU
compute cores. After the execution of the device code, the result is transfered back to
the host, where it is processed further. Right panel: Several GPU-powered nodes can be
combined into a GPU cluster via message passing.

us to increase the resolution in the strong-lensing regime and to follow the strong-lensing
features with high accuracy. Since we are not limited to a single refinement level, we will
also introduce intermediate resolutions to describe the transition between the weak -and the
strong-lensing regime, which is particularly interesting with respect to gravitational flexion.
Another advantage of AMR grids arises from the fact, that the total number of pixels can be
reduced, because the resolution is only high in those areas where this is really necessary.
Runtime improvements are a direct consequence. We will define and explain our implemen-
tation of AMR grids, which simplifies with respect to dynamical AMR implementations (see
e.g. Fryxell et al., 2000) since lensing reconstructions are a static problem. We will explain
our implementation on one projection of a simulated, merging galaxy clusters, which is shown
in Fig. 5.4.

5.2.1 Refinement criterion

We decided that for our purposes it is sufficient to implement three different refinement
levels. We call them refinement level 0, 1 and 2, where level 0 refers to the lowest pixel res-
olution and large pixel size, level 1 describes an intermediate resolution and level 2 stands
for the highest pixel resolution and a small pixel size. The resolution doubles between each
refinement level, which is visualised in Fig. 5.5. A crucial ingredient of an AMR grid is a re-
finement criterion, so a rule which defines what resolution is assigned to a certain area of
the reconstruction grid. Since we want to use the refinement for increasing the resolution of
areas in the reconstruction where strong lensing takes place, the quantity which traces these
areas best is the determinant of the lensing Jacobian as defined in Eq. 2.65. We calculate the
mean and the signal-to-noise values of this quantity on the whole reconstruction grid and
assign a pixel, which exceeds a first S/N-threshold, to refinement level 1 and a pixel, which
exceeds a second, higher SN-threshold, to refinement level 2. The outcome of this proce-
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Figure 5.4: One projection of a simulated, merging galaxy cluster. Upper panel: The lensing
potential on a regular grid with a resolution of 128 × 128 pixels. Lower left panel: The
associated convergence map of the cluster on the same pixel resolution. Lower right panel:
The associated determinant of the lensing Jacobian.
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Figure 5.5: The three different refinement levels of our AMR implementation. While a given
area on the reconstruction grid refers to one pixel on refinement level 0, it refers to four or
16 pixels on refinement level 1 or 2, respectively.

Figure 5.6: Left panel: The refinement map for the cluster shown in Fig. 5.4, based on the
signal-to-noise level of the lensing Jacobian. Black colour refers to a S/N-level <= 2, red
colour to 2 < S/N-level < 3 and white colour to a S/N-level => 3. Right panel: The respec-
tive convergence map. One can clearly identify the three different resolutions in the map,
especially when comparing to the refinement map on the left.

dure is shown in Fig. 5.6, together with the resulting adaptively refined convergence map.
Alternative refinement criterions might be the convergence map of the reconstruction, or an
a-priori user definition of the refinement levels in the different areas of the reconstructed
field. The former following the density distribution of the reconstruction but not necessarily
the strong-lensing features, the latter being somewhat arbitrary and not flexibly changed
during the reconstruction.
One may raise the question from what to derive the signal-to-noise map of the reconstruction
in the first place and we will answer it with an iterative approach that we address in Sec. 5.5.

5.2.2 Pixel indexing

While having defined three different refinement levels and a suitable refinement criterion,
we will now describe the concrete entity of an AMR grid within our reconstruction algorithm.
Every quantity which will be situated on the adaptive grid, will be stored in form of a vector,
having a length identical to the number of pixels in the grid. Thereby is plays no role what
kind of refinement level a certain pixel has, so we have to save this information elsewhere.
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Figure 5.7: Left panel: The scheme for ordering the pixels within the AMR grid vector. Count-
ing starts in the bottom-left corner, continues in x-direction and after reaching the right
border, continues one line above. The pixels of refined grid areas are counted with the
same scheme sequentially. Right panel: The index grid on full (refinement level 2) resolu-
tion to find next neighbours in a simple way.

Following this idea, the AMR grid should be defined by the number of pixels that it contains
and by additional information, unique for each pixel, that we will describe later.
Starting with a refinement map, as it is shown in Fig. 5.6 the number of pixels npix in the grid
is simply calculated by

npix = no + 4n1 + 16n2, (5.1)

where no is the number of pixels with refinement level 0, n1 is the number of pixels with
refinement level 1 and n2 is the number of pixels with refinement level 2. Having obtained
the number of pixels in the grid one can now define a property vector of length npix, which
contains for each pixel the following information:

1. The x-coordinate of the pixel centre with respect to the total grid size,

2. The y-coordinate of the pixel centre with respect to the total grid size,

3. The refinement level of the pixel,

4. The positions of its 48 neighbours within a box of 7× 7 pixels around the pixel centre.

The last information is necessary to perform finite differencing on the AMR grid , that we will
describe in the next section. The process of finding the neighbours of a pixel on the grid is by
no means trivial and is performed in the following way: All grid pixels are ordered as shown
in the left panel of Fig. 5.7. Additionally, an index grid is produced with a pixel size refering
to refinement level 2 (see Fig. 5.7). The 48 neighbours of an individual pixel with a certain
refinement level are found by stepping from the centre of this pixel in the index grid by one,
two or three steps up, down, left or right. The step size reflects the refinement level of the
pixel.
It should be noted, that our AMR implementation also allows for masking the grid. The pro-
cedure described above is not affected by this, besides that certain areas in the index grid
are marked to be not part of the grid.
If a certain neighbour of a pixel does not exist for a pixel, because it would reside outside the
grid or within a masked area, this is remembered by the property vector.
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5.2.3 Noise-reduced finite differencing

A particularly difficult task on AMR grids is finite differencing as we need it for our method.
The problem of this technique, which can be implemented in a very straight-forward way on
regular grids, are the different pixel sizes within the grid. To perform a finite-differencing
operation for a particular pixel, one needs, depending on the differential operator, several
neighbour positions and the distance to these neighbours. Also on regular grids, a problem
appears when a pixel lies near the edges of the grid or near a masked area. Several neigh-
bours might not be available. Therefore, we defined several different forward, backward,
central and mixed finite-differencing schemes (Figs. 4.2-4.6). Depending on the neighbours,
which are available on the grid, the best finite-differencing scheme is applied. The position,
or absence of neighbours is known as described in the previous section.

Priority and rejection
We apply the same idea for finite-differencing on AMR grids , but adding one additional check
and one additional priority. Depending on the refinement of the pixel we are interested in,
the distances to the neighbours are different. Especially if a highly-refined pixel sits next to
a low-resolution area, it might very well be the case that different neighbour positions in the
index grid (Fig. 5.7) belong to the same pixel. If this is the case, while applying a certain
finite-difference scheme, this scheme is rejected by the AMR grid . Furthermore, to ensure
a smooth derivative, we demand all used neighbours for a finite-differencing scheme to be
of the same or higher refinement level as the pixel of interest. If not all of these require-
ments can be fulfilled, the distance to the next neighbours is increased. This priorities for the
choice of the finite-differencing scheme are visualised in Fig. 5.8. After two of these distance
increments the demand for the same or higher refinement level in all neighbours is dropped.
This ensures that the finite differencing procedure can be performed at all for peculiar cases,
which may appear at the border between areas with a high and a low refinement level.

To demonstrate the performance of this priority-and-rejection procedure we also convert
the lensing potential of our example cluster to a representation on the AMR grid . Afterwards,
we perform finite differencing to obtain the convergence map of the cluster. In Fig. 5.9 we
show the result with and without the priority-and-rejection scheme.

5.3 Constraints translation

As described in Sec. 5.2.2 all quantities, which are used in a reconstruction, have to be
defined on the AMR grid . Of course, this applies also to the observational quantities serving
as the main input of a reconstruction. The way in which they are translated onto the AMR grid
depends on the type of the constraint and one should also note that not all of these different
types must be used during the reconstruction. The input formats are defined as follows:

• Ellipticity measurements of background galaxies
must be given in the form of an ASCII-catalogue with the following columns:

x-position y-position ε1 ε2 weighting-factor,

where one row represents one individual galaxy. The units for the x -and y-positions
are arbitrary, as long as they coincide with the coordinate frame of the other input
quantities. Galaxy positions are expected to lie on a plane patch in the sky, so R.A. and
DEC positions need to be converted, accordingly.
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Figure 5.8: The sequence of finite-differencing schemes, ordered by their priority within the
priority-and-rejection scheme. The blue spheres mark the pixel of interest and the red
bars show the forward, backward or central scheme for which neighbours in the grid are
searched. If no suitable neighbours are found, according to the rules described in the text,
the distance within which neighbours are searched is increased.

Figure 5.9: The recovery of the convergence from the lensing potential on an AMR grid . Left
Panel: The result without our rejection technique, which delivers a quite noisy result. Right
Panel: The result with the rejection technique described in the text. The noise has almost
disappeared completely.
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• Flexion measurements of background galaxies
also given in the form of an ASCII-catalogue consisting of the following columns:

x-position y-position f1 f2 g1 g2 weighting-factor,

where the same rules on the positions apply.

• Multiple-image-system positions
which are a little bit more complicated to describe, are also given in ASCII-format con-
sisting of separated blocks, each of which contains information on one individual sys-
tem:

#1 System identifier
Nsys z number of images and redshift of the system
x-position y-position of image one
x-position y-position of image two
x-position y-position of image three
x-position y-position of image four
x-position y-position of image five,

and the next block following.

• Critical-curve-position estimators
are simply provided as an ASCII-catalogue with three columns per estimator and one
estimator per row:

x-position y-position redshift.

5.3.1 Adaptive shape averaging

Given the input catalogues of the previous section, these quantities need to be translated
into grid vectors. As we have mentioned in Sec. 2.2.2, weak lensing has to be treated sta-
tistically, which is why we will apply an adaptive-averaging technique to the ellipticity and
flexion fields. This technique is used identically for the two ellipticity and four flexion compo-
nents .
After the reconstruction field is defined by the coordinates of the four field corners in a co-
ordinate frame which is consistent with the input catalogues, the centres of each pixel in
the AMR grid are calculated. The adaptive averaging starts by defining a circle around each
pixel centre, whose initial radius refers to the pixel size. The number of background galaxies
within this circle is counted and if it does not match or exceed a certain number, which is
given by the user or by the variance in the circle sample, the radius is increased by e.g. 10
%. This procedure, visualised in Fig. 5.10, is repeated until a sufficient number of background
galaxies are contained within the circle around one pixel. Once this is achieved, the following
information is calculated or saved by the adaptive-averaging routine:

1. Mean of the component,

2. Standard deviation of the component,

3. Galaxies associated to this particular pixel.

Means and standard deviations are saved as grid vectors and the galaxy associations are
saved for further processing (Sec. 5.3.2).
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Figure 5.10: The concept of the adaptive-averaging technique.

It should be mentioned at this point, that the adaptive-averaging process can be done inde-
pendently for each individual pixel and is therefore ideal for parallelisation. We implemented
this step, even if it is not that computationally demanding, on GPU’s by processing individual
pixels on separated cores.

5.3.2 Covariances

Since the circles, within which we calculate the averages for an individual pixel, might overlap
(as indicated in Fig. 5.11), we have to take into account the correlations which arise between
the AMR grid pixels. Let, in the course of the argument, Si be the set of galaxies which were
used to calculate the mean and standard deviation in the grid pixel i.
Starting from the considerations in Sec. 4.2.1 we calculate each entry of the covariance
matrix C for the whole reconstruction grid and for all averaged quantities by

Cij = wijσiσj , (5.2)

where σi,j are the standard deviations of the i-th and j-th pixel. The quantity wij is a weight-
ing factor, which describes the overlap between two pixels. It is defined as

wij =
#Sij

1
2 (#Si + #Sj)

, (5.3)

with
Sij = Si ∩ Sj . (5.4)

In this way, the weighting factor w retains the following, required properties

wij = 1 for i = j (5.5)

0 < wij < 1 for Sij 6= Ø (5.6)

wij = 0 for Sij = Ø. (5.7)

This step is computationally rather demanding, especially if a large catalogue of back-
ground galaxies is used. To be more precise, the step of calculating the weighting factor in
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Figure 5.11: Covariances are determined by the number of galaxies which are shared be-
tween neighbouring pixels. For the example of the two pixels in the figure, those galaxies
are marked in orange.

the covariance matrices takes the second most CPU-time in the whole reconstruction pro-
cess, because correlations for all pixel pairs in the grid have to be calculated. There are
two possibilities to speed this operation up. First, the catalogue of background galaxies can
be spatially ordered and overlap searches can be constricted to limited patches. The sec-
ond idea is to exploit the brute computational power of GPU’s and calculate each entry wij
on a separate computation core. The second idea is implemented in our routine and the
performance of the CUDA implementation is evaluated in Sec. 6.1. If the number of used
background galaxies should increase further in the future, we will also implement a suitable
ordering scheme.

5.3.3 Strong lensing

The translation of strong-lensing constraints onto the AMR grid is much easier since no ad-
ditional operations have to be performed on them. Their positions within the observational
field need just to be associated with pixel positions on the AMR grid . Again, the coordinates
of each pixel centre are compared to the coordinates of a multiple image or of a critical curve
estimate. If they match, this pixel is marked as being a carrier of strong lensing information
and will be considered as such during the reconstruction. Also, additional information like
the redshift of the constraint or its association to a certain multiple image system are saved
separately.

5.4 χ2-minimisation

Having collected all ingredients to actually perform a nonparametric reconstruction based on
multiple input constraints, it is time to summarise what we have achieved so far:
We defined all necessary χ2-functions and connected them to the lensing potential. The core
of the whole reconstruction, a flexible AMR grid , was described in Sec. 5.2 and we translated
the input catalogues onto that grid in Sec. 5.3. All these parts will be used to convert the
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χ2-minimisation into a linear system of equations (LSE) by building up a coefficient matrix
and a result vector, to invert the problem and to recover the lensing potential as its solution.

5.4.1 Linearisation in grid space

The overall χ2 (Eq. 4.1) shall be the starting point

χ2(ψ) = χ2
w(ψ) + χ2

s (ψ). (5.8)

The weak-lensing term splits into a shear and a flexion contribution

χ2
w(ψ) = χ2

γ(ψ) + χ2
F (ψ), (5.9)

which consist of two, respectively four components

χ2
γ(ψ) = χ2

γ1(ψ) + χ2
γ2(ψ) (5.10)

χ2
F (ψ) = χ2

F1(ψ) + χ2
F2(ψ) + χ2

G1(ψ) + χ2
G2(ψ) (5.11)

The strong-lensing term splits into the contributions from the multiple-image systems and
from the critical-curve estimators

χ2
s (ψ) = χ2

m(ψ) + χ2
c(ψ) (5.12)

We end up with a sum of several terms, which we will minimise for each term χx separately,
where x substitutes all the different terms above

∂χ2
x(ψ)
∂ψ

!= 0 (5.13)

Now comes the simple, but very important step, which has already been introduced in
Sec. 4.1.2 but we invest the effort to point it out again due to its central role in the whole
reconstruction concept.
We make use of the fact that all our quantities are defined on grid positions, including the
lensing potential. The parameter with respect to which we want to minimise the χ2-function
is the lensing potential itself at every grid position. The solution of this minimisation is also
our final result, since it is that potential, defined on an AMR grid , which is most likely to have
caused the multiple input constraints. Translated into a formula this reads like

∂χ2
x(ψ)
∂ψl

!= 0 with l ∈ [0, ..., Npix]. (5.14)

We will show now for all terms, that this minimisation can be linearised and performed by
solving a LSE. Please note that from now on Einstein’s sum convention applies.

Shear term

We start with x = γ. We only show one of the two components and substitute the quantities
ε1, γ1, C1 and G1 or ε2, γ2, C2 and G2, which were defined in Sec. 4.2.1, with just ε, γ, C and G.
By separating the non-linear (1−Zκ) factors and putting them in the non-linearity matrix Pij
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we rewrite the χ2-function

χ2
γ =

(
εi −

Ziγi
1− Ziκi

)
C−1
ij

(
εj −

Zjγj
1− Zjκj

)
=

C−1
ij

(1− Ziκi)(1− Zjκj)︸ ︷︷ ︸
Pij

(εi(1− Ziκi)− Ziγi) (εj(1− Zjκj)− Zjγj)

= Pij [(εi − εiZiκi − Ziγi)(εj − εjZjκj − Zjγj)]
= Pij [εiεj − εiεjZjκj − εiZjγj − εiεjZiκi + εiεjZiZjκiκj

+εiZiZjκiγj − εjZiγi + εjZiZjκjγi + ZiZjγiγj ] ,

(5.15)

These non-linearities are just kept constant during a reconstruction, which on the one hand
asks for an initial value and on the other hand compromises the accuracy of our calculation.
This problem can be solved in an elegant way and we will deal with it in Sec. 5.5.3.
By applying the partial derivative of Eq. 5.13 to Eq. 5.15 we find

∂χ2
γ(ψ)
∂ψl

= Pij
[
−εiεjZj

∂

∂ψl
κj(ψ)− εiZj

∂

∂ψl
γj(ψ)− εiεjZi

∂

∂ψl
κi(ψ)

+ εiεjZiZjκi
∂

∂ψl
κj(ψ) + εiεjZiZjκj

∂

∂ψl
κi(ψ)

+ εiZiZjκi
∂

∂ψl
γj(ψ) + εiZiZjγj

∂

∂ψl
κi(ψ)

− εjZiZj
∂

∂ψl
γi(ψ) + εjZiZjκj

∂

∂ψl
γi(ψ)

+εjZiZjγi
∂

∂ψl
κj(ψ) + ZiZjγi

∂

∂ψl
γj(ψ) + ZiZjγj

∂

∂ψl
γi(ψ)

]
.

(5.16)

From inserting the representation of the shear and the convergence by the matrix represen-
tation of finite differences applied to the lensing potential γi = Gikψk, κi = Kikψk and the
simple relations ∂

∂ψl
Kikψk = Kikδkl follows

∂χ2
γ(ψk)
∂ψl

= Pij [−εiεjZjKjkδkl − εiZjGjkδkl − εiεjZiKikδkl

+ εiεjZiZjKikψkKjkδkl + +εiεjZiZjKjkψkKikδkl
+ εiZiZjKikψkGjkδkl + εiZiZjGjkψkKikδkl
− εjZiZjGikδkl + εjZiZjKjkψkGikδkl
+εjZiZjGikψkKjkδkl + ZiZjGikψkGjkδkl + ZiZjGjkψkGikδkl] .

(5.17)

From the last equation one can see that we can now write Eq. 5.13 as a linear system of
equations

Blkψk = Vl, (5.18)

with the coefficient matrix

Blk = Pij [εiεjZiZjKikKjl + εiεjZiZjKjkKil + εiZiZjKikGjl
+ εiZiZjGjkKil + εjZiZjKjkGil + εiZiZjGikKjl
+ZiZjGikGjl + ZiZjGjkGil] ,

(5.19)
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and the result vector

Vl = Pij [εiεjKjl + εiZjGjl + εiεjZiKil + εjZiGil] . (5.20)

Flexion term
The same exercise is done for x = F . Again, we perform the calculation only for one compo-
nent so f and F need to be substituted by either f1 and F1, f2 and F2, g1 and G1 or g2 and G2.
Starting from Eqs. 4.41-4.42 the problem is linear. This might very well change if we include
the so-called reduced flexion as stated in Schneider and Er (2008). For now we stick to the
more simple case

χ2
F = (fi − ZiFi) C−1

ij (fj − ZjFj)
= C−1

ij [fifj − fiZjFj − fjZiFi + ZiZjFiFj ] ,
(5.21)

from which we take the derivative with respect to the lensing potential

∂χ2
F

∂ψl
= C−1

ij

[
−fiZj

∂

∂ψl
Fj − fjZi

∂

∂ψl
Fj + ZiZjFj

∂

∂ψl
Fi + ZiZjFi

∂

∂ψl
Fj

]
. (5.22)

Using Fi = Fikψk and ∂
∂ψl

Fikψk = Fikδkl, we find

∂χ2
F

∂ψl
= C−1

ij [−fiZjFjkδlk − fjZiFikδlk + ZiZjFjkFikδlkψk + ZiZjFikFjkδlkψk] . (5.23)

This transforms Eq. 5.13 into the following LSE

Blk = C−1
ij ZiZj [FikFjl + FjkFil] (5.24)

Vl = C−1
ij [fiZjFjl + fjZiFil] (5.25)

Multiple image term
The most difficult case is actually x = m. Because it would be very confusing otherwise,
we drop for a moment the sum convention and consider one multiple-image system s with a
total number of images M .
Using αa = Dakψk along with ∂

∂ψl
αa = Dal, we minimise Eq. 4.50

∂χ2
m

∂ψl
=

M∑
a

2
σ2

[
θaDal +DakDalψk − θa

(
− 1
M

M∑
n=1

Dnl

)
+Dak

(
− 1
M

M∑
n=1

Dnl

)
ψk

+

(
1
M

M∑
n

(θn −Dnkψk)

)
Dal −

1
M

M∑
n,m

(θmDnl −DmkDnlψk)

]

=
M∑
a

2
σ2


[
−θaDal +

1
M

M∑
n,m

(θaDnl + θnDnl − θmDnl)

]

+

[
DakDal +

1
M

M∑
n,m

(DnkDal −DakDnl +DmkDnl)

]
ψk

 ,

(5.26)

and find another LSE

Blk =
M∑
a

2
σ2

[
DakDal +

1
M

M∑
n,m

(DnkDal −DakDnl +DmkDnl)

]
(5.27)

Vl =
M∑
a

2
σ2

[
−θaDal +

1
M

M∑
n,m

(θaDnl + θnDnl − θmDnl)

]
. (5.28)
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Critical curve term

In the case of x = c we return to Einstein’s sum convention in the χ2-function

χ2
c =

(detA)2
i

σ2
i

=
((1− Ziκi)2 − |Ziγi|2)2

σ2
i

, (5.29)

where the non-linear terms are isolated and taken as a constant for now

∂χ2
c(ψk)
∂ψl

=
2(detA)i

σ2
i

∂

∂ψl
(detA(ψk))i

=
2(detA)i

σ2
i

[
∂

∂ψl
(1− Ziκi(ψk)2 − ∂

ψl
|Ziγi(ψk)|2

]
=

2(detA)i
σ2
i

[
2(1− Ziκi(ψk))

(
−Zi

∂

∂ψl
κi(ψk)

)
− ∂

∂ψl

(
Z2
i γ

2
1i(ψk) + Z2

i γ
2
2i(ψk)

)]
=

2(detA)i
σ2
i

[
2(1− Ziκi(ψk))(−ZiKil)− 2Ziγ1i(ψk)ZiG1

il − 2Ziγ2i(ψk)ZiG2
il

]
=

4(detA)i
σ2
i

[
Z2
i KikKilψk − ZiKil − Z2

i G
1
ikG

1
ilψk − ZiKil − Z2

i G
2
ikG

2
ilψk

]
.

(5.30)

The LSE appears as

Blk =
4(detA)i

σ2
i

Z2
i (KikKil −G1

ikG
1
il −G2

ikG
2
il) (5.31)

Vl =
4(detA)i

σ2
i

ZiKil. (5.32)
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The complete system

When assuming that a reconstruction contains all possible contributions we find the following,
total LSE

Blk = P1
ij

[
ε1
i ε

1
jZiZjKikKjl + ε1

i ε
1
jZiZjKjkKil + ε1

iZiZjKikG1
jl

+ ε1
iZiZjG

1
jkKil + ε1

jZiZjKjkG1
il + ε1

iZiZjG
1
ikKjl

+ZiZjG1
ikG

1
jl + ZiZjG

1
jkG

1
il

]
(Reduced shear, first comp.)

+P2
ij

[
ε2
i ε

2
jZiZjKikKjl + ε2

i ε
2
jZiZjKjkKil + ε2

iZiZjKikG2
jl

+ ε2
iZiZjG

2
jkKil + ε2

jZiZjKjkG2
il + ε2

iZiZjG
2
ikKjl

+ZiZjG2
ikG

2
jl + ZiZjG

2
jkG

2
il

]
(Reduced shear, second comp.)

+C1
ij

[
F1
ikF

1
jl + F1

jkF
1
il

]
ZiZj (F−flexion, first comp.)

+C2
ij

[
F2
ikF

2
jl + F2

jkF
2
il

]
ZiZj (F−flexion, second comp.)

+C1
ij

[
G1
ikG

1
jl + G1

jkG
1
il

]
ZiZj (G−flexion, first comp.)

+C2
ij

[
G2
ikG

2
jl + G2

jkG
2
il

]
ZiZj (G−flexion, second comp.)

+
2
σ2

[
D1
akD1

al +
1
M

M∑
n,m

(
D1
nkD1

al −D1
akD1

nl +D1
mkD1

nl

)]
(M. systems, first comp.)

+
2
σ2

[
D2
akD2

al +
1
M

M∑
n,m

(
D2
nkD2

al −D2
akD2

nl +D2
mkD2

nl

)]
(M. systems, second comp.)

+Z2
b

[
KbkKbl −G1

bkG
1
bl −G2

bkG
2
bl

] 4(detA)b
σ2
b

(Critical curve estimator)

(5.33)

Vl = P1
ij

[
ε1
i ε

1
jKjl + ε1

iZjG
1
jl + ε1

i ε
1
jZiKil + ε1

jZiG
1
il

]
(Reduced shear, first comp.)

+P2
ij

[
ε2
i ε

2
jKjl + ε2

iZjG
2
jl + ε2

i ε
2
jZiKil + ε2

jZiG
2
il

]
(Reduced shear, second comp.)

+C1
ij

[
f1
i ZjF

1
jl + f1

j ZiF
1
il

]
(F−flexion, first comp.)

+C2
ij

[
f2
i ZjF

2
jl + f2

j ZiF
2
il

]
(F−flexion, second comp.)

+C1
ij

[
g1
i ZjG

1
jl + g1

jZiG
1
il

]
(G−flexion, first comp.)

+C2
ij

[
g2
i ZjG

2
jl + g2

jZiG
2
il

]
(G−flexion, second comp.)

+
2
σ2

[
−θ1

aD1
al +

1
M

M∑
n,m

(
θ1
aD1

nl + θ1
nD1

nl − θ1
mD1

nl

)]
(M. systems, first comp.)

+
2
σ2

[
−θ2

aD2
al +

1
M

M∑
n,m

(
θ2
aD2

nl + θ2
nD2

nl − θ2
mD2

nl

)]
(M. systems, second comp.)

+ZbKbl
4(detA)b

σ2
b

(Critical curve estimator).

(5.34)

Please note some remarks. Superscripts are actually indices in the two equations above;
i, j ∈ [0, ..., Npix]; a runs over all images in a multiple image system, furthermore it has to be
summed also over the total number of multiple-image systems in the reconstruction, which
has been suppressed for convenience; and b runs over all pixels in the AMR grid , which are
selected to be part of the critical curve.
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5.4.2 Speeding things up

The by far most time consuming part of a reconstruction run is building up the LSE given by
Eqs. 5.33, 5.34. This can be easily seen by a little back-of-the envelope calculation:

• We assume the AMR reconstruction grid to have 2000 pixels. This means that the
indices l, k, i, j ∈ [0, ..., 1999].

• All constraints will be used, but due to the fact that max(a, b, n,m) ∼ 50 we will ignore
the strong lensing contributions.

• One element in Blk is a sum over the indices i and j, one element in this sum consists
of 24 terms, each of which contains is a product of around 6 numbers.

• This gives as a total number of arithmetic operations to build up Blk

2000 · 2000 · 2000 · 2000 · 24 · 6 = 2.304 · 1015 (5.35)

• The same calculations for Vl adds no relevant contribution.

• In principle this value is still assumed low since we need to build up the LSE several
times as we will see in the next section.

• By assuming a performance of∼ 3 GFLOPS for a normal desktop computer, we calculate
a runtime of ∼ 120 days to build up the LSE.

Such a runtime is of course not feasible so we present three different strategies, which
actually reduce the runtime to the time scale of minutes. (See also Sec. 6.2).

Avoiding repetitions

The fact that the matrices P and C are symmetric and a close look at the terms of the reduced
shear in Eqs. 5.33, 5.34 reveal, that several terms become indeed identical while summing
over i and j. Thus, we perform only the sums for one term and multiply by the number of
repetitions afterwards.

Avoiding multiplications with zero

One of the most expensive operations is the multiplication with the finite-differencing matri-
ces like e.g. K or F1. As it is shown in Fig. 5.12, these matrices are, by construction, sparse
band matrices and most of their components are zero. A sum over their full column-length
is therefore pointless and our method applies specific summation schemes, which only sum
over the non-zero entries of the finite-differencing matrices. This procedure actually results
in a tremendous speed-up without which the whole method would not be feasible.

Dividing the work

Since the creation of an individual entry in Blk and Vl is completely independent of the other
entries, it is a perfect candidate for parallelisation. N2

pix threads are created on the GPU
device and each matrix and vector element is calculated on a separated core. Also this
speed-up is tremendous. To get an idea of it one is refered to Sec. 6.2.
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Figure 5.12: The finite-differencing matrix associated with the convergence operator. The
dimensions are 1450× 1450 pixels and one can see the sparse band structure, especially in
the zoom on the diagonal.

5.4.3 Solving the LSE

After the full LSE has been created, the lensing potential is derived by solving it. In our
case, this is done by using advanced Gauss-Jordan algorithms (see Rannacher, 2006). The
computation time for solving a linear system of this dimension is negligible in comparison to
the time needed to build up the linear system.

5.5 An iterative approach

The last section showed in great detail how to perform a reconstruction from the input data.
Unfortunately, this is not enough yet to guarantee a satisfactory result. We will have to per-
form several of these single reconstructions in an iterative way. For this reason, it becomes
very important again, that we implemented our method in a runtime-efficient way. Before
we describe the two different types of iterations, that we use in our method, we will have to
introduce the concept of regularisation.

5.5.1 Regularisation

In statistical methods incorporating a large amount of degrees-of-freedom (DOE) the prob-
lem of overfitting may appear. The model does not only fit the data but it tries to fit noise-
patterns. It might even happen that overfitting becomes the dominant factor during the
reconstruction, especially when using high spatial resolution. This highly contaminates the
final result. Regularisation is a technique to avoid overfitting and to guarantee a smooth re-
sult. It introduces a penalty function, which punishes certain behaviours of the fitting process
or deviations from pre-defined guidelines. In our method, this is achieved by introducing a
regularisation function R in the χ2-function, which also depends on the lensing potential and
becomes large if the model tends to overfit

χ2 = χ2
w(ψ) + χ2

s (ψ) + ηR(ψ). (5.36)
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The regularisation parameter η controls the strength of the penalty and should be chosen
such, that the overall χ2 per DOE is of order unity.
Several different approaches to define the regularisation function have been made, like
maximum-entropy regularisation (Narayan and Nityananda, 1986; Bridle et al., 1998; Seitz
et al., 1998) which seems well suited but we will follow the much simpler and easier-to-
implement approach by Bradač et al. (2005), which has proven its ability to deliver excellent
results in the past.
By comparing to a previous result, the reconstructed model is not allowed to deviate in its
convergence by a too large amount. Therefore, we penalise these deviations with the follow-
ing regularisation function

R = ηi

(
κprevious
i − κi(ψ)

)2
. (5.37)

Minimising Eq. 5.37 leads to

∂R(ψk)
∂ψl

= ηi
∂

∂ψl

(
κp
i − κi(ψk)

)2
= 2ηi(κ

p
i − κi)

(
− ∂

∂ψl
Kikψk

)
= 2ηi

(
κp
i −Kikψk

)
(−Kil)

= 2ηi
(
−κp

iKil +KikKilψk
)
,

(5.38)

which contributes one additional term to the coefficient matrix and the result vector.

Breg
lk = ηiKikKil (5.39)

V reg
l = ηiκ

p
iKil. (5.40)

Additional regularisation terms for the shear or the flexion are also possible.
The question how to obtain the previous result leads us to the first type of iteration.

5.5.2 Outer-level iteration

The whole point of regularisation is to avoid overfitting noise-patterns in the data. These
noise patterns will become more and more pronounced as the grid resolution is increased,
because the statistical sample, which was used to calculate the mean of shear or flexion in
a pixel, becomes smaller and smaller. Furthermore, the correlations between the pixels as
introduced in Eq. 5.2 will become more and more pronounced. This will not be the case for
a very small resolution where the statistics for an individual pixel are good and correlations
within the pixels are not present. Following this idea, we start our reconstruction on a very
coarse resolution, by also assuming that the initial convergence, shear and flexion are flat
and zero. We regularise on this flat prior and also insert it into all the non-linear terms of
Eqs. 5.33, 5.34. After the reconstruction is finished on the coarse resolution, we interpolate
the resulting lensing potential to a slightly higher resolution (e.g. increased by 2 pixels in
both dimensions) by using a reliable bicubic-spline interpolation. We take this interpolation
as a reference for insertion into the non-linear terms and as a regularisation template. We
repeat this procedure until the final reconstruction is reached, which is given by the fact that
pixel correlations become too strong and the covariance matrices (Eq. 5.2) become singular,
thus non-invertible. Typical start and stop resolutions are visualised in Fig. 5.13.
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Figure 5.13: The grid resolution is continuously increased in the outer-level iteration. Starting
from a low start resolution, which is too coarse for noise-patterns to appear, the high, final
reconstruction resolution gives the result.

5.5.3 Inner-level iteration

We finally return to the problem of non-linear terms in Eqs. 5.15, 5.29, which are just held
constant during the build-up of the LSE and fix it with a second type of iteration. As we
have already mentioned, as a first step in each outer-level iteration the non-linearities are
substituted with the values of the regularisation templates. This can serve as a first step but
will not lead to an accurate result. By adopting the scheme as in the direct-inversion method
of Seitz and Schneider (1995), we repeatedly insert the result of a previous reconstruction
into the non-linear terms until convergence is achieved. We confirm this convergence by
monitoring the change in the convergence map of the cluster and explicitly apologise for
the name confusion. Usually, the reconstruction converges towards a unique solution within
2-5 steps. This inner-level iteration is embedded within each outer-level iteration step. A
flowchart diagram, illustrating both iteration levels, can be seen in Fig. 5.14.

5.6 A complete reconstruction package

The last section finished our description of the different steps, which are applied in the course
of a complete reconstruction. We will take the time to summarise and order these steps and
to describe the actual result and how to process it further.

5.6.1 A summary: From the input to the result

Fig. 5.14 summarises the workflow of a complete reconstruction run. Several parameters
have to be set in the beginning, including:

• The output field of the reconstruction,

• The start and stop resolutions (given in terms of refinement level 0 of the AMR grids),

• The minimum number of galaxies used for averaging in one pixel,

85



5 Implementation

• Regularisation parameters, consisting of the quantities to be regularised on and the
regularisation strength.

Of course, also the input catalogues have to be given, including:

• Ellipticities,

• Flexion,

• Multiple-image systems,

• Critical-curve estimators.

Not all of this catalogues have to be used, but it should be noted that a reconstruction, only
based on strong-lensing constraints, is not possible. Either ellipticity or flexion catalogues
have to be present. Pure weak lensing reconstructions based only on ellipticity or/and flexion
are possible, but the advantages of combining weak and strong lensing are obviously not
considered.
Once input and parameters are given, the reconstruction starts on the initial resolution, by
assuming a flat convergence and shear profile. It would also be possible to assume an ini-
tial profile (Bradač et al., 2005) but this prior would spoil the nonparametric nature of our
method. Another idea would be to use the outcome of a preceding direct-inversion tech-
nique. Both possibilities are also included in our method.
By sequentially increasing the reconstruction resolution and performing the necessary num-
ber of iterations to solve the non-linearities within the minimisation process, the final re-
construction resolution is reached. The result is the lensing potential on a highly-resolved,
adaptively-refined grid.

5.6.2 Analysing the result

We obtain a physically meaningful quantity like the convergence by simply applying the
Laplacian to the potential. To obtain the shear, we have to apply the other combinations
of second derivatives to the potential. The convergence is a reasonable quantity, because
it shows us in an intuitive way the mass distribution of the cluster through the surface-mass
density.
Unfortunately, the convergence is again affected by the mass-sheet degeneracy . It can be
transformed like (Gorenstein et al., 1988)

κ(θ, z)→ κ
′
(θ, z) = (1− λ) + λκ(θ, z). (5.41)

So how to fix the convergence? If our observed field is sufficiently large, we would assume
that κ → 0 for the outskirts of our field, so we can use Eq. 5.41, to satisfy this condition.
A more elaborate method is the use of a quantity in the reconstruction, which is not invari-
ant under the mass-sheet transformation and determines potential and convergence. One
possibility would be the use of inverse magnification (Broadhurst et al., 1995)

R =
1
µ

= (1− κ)2 − γ2 ≈ 1− 2κ, (5.42)

embedded in the maximum-likelihood approach

χ2
mag(ψ) =

(R−R(ψ))2
i

σ2
Ri

. (5.43)

86



5.6 A complete reconstruction package

Figure 5.14: The workflow of our reconstruction method. After input catalogues and param-
eter definition follows an initial reconstruction step, assuming flat convergence and shear
priors. The result is fed into the two-level iteration loop which leads to the final result.
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Of course in order to use this method, one has to provide a good idea how to measure a
magnification signal, but promising results including magnification have been made recently
on cosmic scales (Hildebrandt et al., 2009; van Waerbeke, 2010)

µ =
d2Ωlensed

d2Ωunlensed
. (5.44)

Another approach to solve the transformation problem was proposed by Bradač et al. (2004,
2005), who used the knowledge of the redshift distribution of the sources.
Once we have the convergence possibly transformed with the methods shown above, it is
quite easy to get a mass estimate for our lens. Convergence and surface-mass density are
connected by

Σ(Ddθ) =
c2

4πG
Ds

DdDds
κ(θ). (5.45)

If we have the redshift of the lens, we also know the physical area of one pixel and if we have
at least the mean redshift of the sources, we can calculate the surface mass density, which
gives us the total mass of the cluster after summing over the whole grid. Radial profiles
of the surface-mass density or the total mass within radius-bins might be produced, but we
would like to mention that our method specifically tries to avoid the assumptions of radial
symmetry.
Error bars are attached to all derived quantities by bootstrapping the input-catalogues or by
exploring the parameter space through MCMC-methods as described in Sec. 4.5.

5.6.3 Concrete implementation

We decided to implement our method in C++, which is a powerful and highly flexible program-
ming language. The use of object orientation makes the produced code easier to extend and
more accessible to others. A large collection of publicly-available packages are available for
C++ and we make use of the following:

• The GNU Scientific Library9 (GSL), is a very substantial compilation of mathematical
routines and tools, for scientific applications and is available for C and C++. It covers
a whole bunch of different areas, like differential equations, polynomials, minimization
methods, numerical integration and Fourier transformation. It is very well documented
and easy to use. In our code we use GSL for vector and matrix handling, random number
generation and statistics.

• The Linear Algebra Package10 (LAPACK) was originally written in Fortran 77, but is
also available in C and C++. It is highly optimized for linear algebra operations and in
this sector still the best package available11. In our code we use the LAPACK routines,
contained in the Automatically Tuned Linear Algebra Software12 (ATLAS), for high-
dimension matrix inversion and to solve linear systems of equations.

• The common standard in Astronomy for data transport is the Flexible Image Transport

System (FITS). We also make wide use of this data format to store information on disk

9http://www.gnu.org/software/gsl
10http://www.netlib.org/lapack
11If the reader remembers us mentioning that most codes are implemented in an inefficient way with respect to

memory access, this is certainly not the case for these routines.
12http://www.netlib.org/atlas
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5.6 A complete reconstruction package

during the reconstruction process. The library which is needed by C++ to read and write
files in the FITS-format is CFITSIO13 and the C++ wrapper CCfits14.

• For CPU-based parallelisation we use OpenMP15 and the Message Passing Interface16

(MPI).

• For GPU-based parallelisation we use CUDA17 and the CUDA Software Development Kit
(NVIDIA, 2009c,b,a).

The complete code package is of medium size (∼ 12000 lines of code) and the host code
makes extensive use of object orientation. Classes to represent the general parameter-
structure, gravitational lenses, AMR grids and input constraints are implemented with com-
prehensive functionality. This makes it possible to use those classes as a general library also
in other projects. The CPU-demanding routines are implemented in MPI and CUDA and are
highly optimised for numerical performance.
A point which cannot be highlighted enough is documentation. All header-files of the code
are fully documented and class overviews can be created by the use of e.g. Doxygen18. A
comprehensive manual to the complete package is available (Merten, 2009) and the distri-
bution of the code is done via the version-management software Subversion19. All libraries
and packages, mentioned in this section, are publicly available.

13http://heasarc.gsfc.nasa.gov/fitsio
14http://heasarc.gsfc.nasa.gov/fitsio/CCfits/
15http://openmp.org/wp/
16http://www.mcs.anl.gov/research/projects/mpi/
17http://www.nvidia.com/object/cuda_home_new.html
18http://www.stack.nl/ dimitri/doxygen/
19http://subversion.tigris.org/
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6 Proofs of concept

Complex numerical algorithms must not be applied to real data, if they have not been tested
carefully with synthetic data. In this chapter, we will test the most important parts of our
implementation regarding two crucial aspects.

First, we test the numerical performance of our parallel CUDA implementation, compared
to simpler implementations without sophisticated numerical schemes and without paralleli-
sation. In Sec. 6.1 we test the performance of the second-most time consuming step in
our method, which is the process of finding pixel correlations in the reconstruction grid. In
Sec. 6.2 we focus on the most time consuming step in the algorithm, which is the construc-
tion of the coefficient matrix, shown in Eq. 5.33. Sec. 6.3 concludes the proofs of concept
with the reconstruction of an idealised, synthetic cluster to test the accuracy of the whole
package. Such a test is crucial, since it probes the full implementation and, if passed, allows
the application of the code to more realistic data, where non-perfect results might not be due
to the method, but due to the noisy input data.

6.1 Galaxy associations

While reconstructing cluster fields on highly refined grids, neighbouring cells become heavily
correlated as we pointed in Sec. 5.3.2. This need not be a problem, using the techniques that
we have described before. The problem arises from the fact that weak-lensing catalogues
from observations with a wide field-of-view contain a large number of background galaxies,
which renders it time consuming to derive the correlations between the individual reconstruc-
tion pixels. In our implementation, every background galaxy with ellipticity measurement is
associated through the adaptive-shape-averaging technique described in Sec. 5.3.1, to par-
ticular grid pixels. After this association, the covariances between grid pixels are calculated,
by using the number of galaxies that two different grid pixels have in common (see Eq. 5.3).
This means, that for every pixel pair within the reconstruction grid, the full input catalogue
has to be searched and shared background galaxies have to counted. This time consuming
procedure is ideal for parallelisation since the correlations for the different grid pixels can be
treated separately.

6.1.1 Producing a synthetic catalogue

To create a catalogue with a realistic number of background galaxies, we used the lensing
potential of a simulated galaxy cluster with a resolution of 512 × 512 pixels, as shown in
Fig. 6.1. We randomly sampled 10000 positions in this simulated cluster field and analytically
calculated the reduced shear at these positions. This delivered a synthetic weak-lensing
catalogue with 10000 reduced-shear measurements, as it is also shown in Fig. 6.1.
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6 Proofs of concept

Figure 6.1: The left panel shows the lensing potential of a simulated galaxy cluster, discre-
tised on a regular grid of 512 × 512 pixels. In the right panel 10000 of these grid positions
are randomly sampled to create a synthetic weak-lensing catalogue. The axes ticks in the
right panel give the distance from the cluster centre in arcsec.

method runtime [sec]
single-thread 759
GPU 13

Table 6.1: The runtime comparison between a single-thread routine, associating galaxies and
covariances to a grid pixel and a multi-thread GPU routine. The grid size of the AMR grid
is 50 × 50 pixels. The test was performed on a GPU server with two INTEL XEON E5420
quad-core processors, 8GB of main memory and equipped with a NVIDIA TESLA C1060
GPU board with 240 streaming cores and 4GB of graphics memory.

6.1.2 Runtime results and conclusion

We performed the galaxy association and covariance detection with two different routines.
First, using a single-thread routine and afterwards, a massively-parallel routine, implemented
in CUDA. The runtime comparison is shown in Tab. 6.1. Obviously, the combined numerical
power of the 240 available cores on the GPU device helped dramatically to speed up the
calculation. This speed-up is especially important for large weak-lensing catalogues, con-
taining even more shear measurements than the 10000, used in this run. The result of the
correlation detection can be seen in Fig. 6.2, where the number of shared galaxies between
a grid pixel with index i and a grid pixel with index j is shown as a matrix element Cij . The
matrix C is of dimension N2

pix, with Npix being the number of pixels in the reconstruction grid.
Obviously, C is symmetric and that should be taken into account during its construction.

6.2 Building up the coefficient matrix

We have already mentioned in Sec. 5.4.2, that the by far most time-consuming step during
the reconstruction process is the build-up of the linear system of equations and its coefficient
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6.2 Building up the coefficient matrix

Figure 6.2: Shown here is the correlation in a 40 × 40 pixel reconstruction grid in matrix
representation. We express this correlation by the number of galaxies that two pixels i
and j have in common. The main diagonal shows the autocorrelation of the grid pixels
and the distance to the upper and lower neighbours in the grid can be read off from the
distance of the sub-diagonals to the main diagonal. One can also see, that the correlation
is decreasing with increasing distance from the main diagonal, so with increasing distance
between the pixels with index i and j, for which the correlation is evaluated.

matrix in particular. We suggested three recipes to speed this process up, where the first,
being the fact that certain terms in the coefficient matrix are identical, is trivial to realise.
The other two ideas, the usage of specialised summation schemes and the parallelisationof
the whole process, will be tested in the following.

6.2.1 A toy problem

To simplify the test, whose only intention is to show the gain in numerical performance, we do
not create the complicated coefficient matrix from Eq. 5.33, but we will simulate with random
numbers the typical structure of a term in this matrix. The runtime test consists of creating
the square matrix B whose elements are given by

Blk = aibjCijDilEjk. (6.1)

The vectors a and b have the same length as the dimension of the square matrix B. C is the
equivalent of a covariance matrix in a real reconstruction and has the same dimension as
B. D and E represent the sparse finite-differencing matrices, introduced in Sec. 4.1.3. While
applying no numerical optimisation, which makes use of the special structure of D and E , the
summation over the indices i and j in Eq. 6.1 runs over the full dimensionality of B, in other
words

l, k, i, j ∈ [0, ..., N2
pix], (6.2)

where Npix is the number of pixels in the reconstruction grid that we consider.
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method runtime [sec]
full summation 2282
advanced summation 2

Table 6.2: The speed-up of a single-thread routine, while making use of special summation
schemes and exploiting the simple structure of the finite differencing matrices. The test
was run on a INTEL Core2 Duo P8600 with 4GB of main memory. The number of pixels in
this test was fixed to Npix = 400 (see text). The low number of pixels was chosen low to
keep the runtime of the full-summation routine at an acceptable level.

method runtime [sec]
single-thread 82
GPU 1.03

Table 6.3: The same test as in Tab. 6.2 using the advanced summation scheme and run on
the machine of Tab. 6.1, using also the capabilities of the GPU device . The number of
pixels in this test was fixed to Npix = 2500.

6.2.2 Runtime results and conclusion

We have already mentioned that the finite-differencing matrices are sparse and have band
structure, which makes it possible to speed up the summation in Eq. 6.1 significantly. De-
pending on which element of B is considered, only a few entries in D and E are different from
zero. As we see from Eq. 6.1, the index l defines the non-zero elements of D in the summa-
tion over i and k defines the non-zero elements of E in the summation over j. We obtain the
following transformation

i→ i∗(D, l), (6.3)

j → j∗(E , k). (6.4)

Depending on the finite differencing matrix that we consider, the number of summation with
respect to i or j reduces from N2

pix to between three (Eqs. 4.12, 4.13) and nine (Eq. 4.14).
We explore the speed-up of using this advanced summation scheme, compared to the full
summation scheme in Tab. 6.2.

The speed-up, when comparing the advanced summation scheme running as a single
thread, to the scheme running on a massively parallel GPU is shown in Tab. 6.3.

It seems obvious, how heavily the reconstruction algorithms gain from these special im-
plementation techniques, especially when considering high resolution reconstructions with a
large number of iterations, which makes it necessary to build up the linear system of equa-
tions up to 200 times. We would like to point out, that all the techniques to accelerate the
calculation are exact and perform not a single approximation, they just exploit the ideas,
presented in Sec. 5.4.2.

6.3 Reconstruction of idealised input data

In order to test the complete reconstruction package, we considered again the cluster poten-
tial shown in Fig. 6.1 and tried to reconstruct the underlying cluster-mass distribution.
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6.3 Reconstruction of idealised input data

6.3.1 Synthetic catalogues

We derived the weak-lensing catalogue in the same way as in Sec. 6.1.1. To simulate a
somewhat realistic scenario for such a small cluster field, we sampled only 2000 reduced-
shear values. In addition, we calculated the position of the critical curve for this cluster. The
resulting catalogues are visualised in Fig. 6.3.

6.3.2 Results and conclusion

The result of the reconstruction is shown as a comparison between the original density profile
on high resolution and the reconstructed convergence map in Fig. 6.4. One can already see
by eye, that the reconstruction is able to recover the density profile of the simulated cluster
almost perfectly. A more quantitative analysis is presented in Fig. 6.5 by a density profile
along the main diagonal of the field. In that figure, also the results of reconstructions without
the additional strong-lensing constraints and the results without the usage of the adaptively
refined resolution in the cluster centre are shown. The following conclusions shall be noticed:

Figure 6.3: The input catalogues for the syn-
thetic cluster reconstruction. Shown in red
are the 2000 positions of the reduced-shear
sample and in blue one can see the position
of the cluster’s critical line. The axes give
the distance from the cluster centre in arc-
sec.

1. A pure weak-lensing reconstruction
underestimates the steepness of the
density profile. This is not surpris-
ing, since we sampled only a very lim-
ited number of points to constrain the
cluster field, thereby possibly neglect-
ing localised peaks and our algorithm
averages over a number of reduced-
shear values per reconstruction pixel.
This is a general trend of weak-lensing
reconstructions, especially when ap-
plied to real observations.

2. By adding strong-lensing constraints,
the trend described above is signifi-
cantly suppressed.

3. By also using the advantages of an
enhanced central resolution with the
help of our adaptive grid, we can al-
most perfectly recover the original pro-
file even if we have sampled the clus-
ter only with a very limited number of
constraints.
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6 Proofs of concept

Figure 6.4: The left panel shows the smoothly resolved, real convergence map of the simu-
lated cluster on a grid of 512× 512 pixels. The right panel shows our reconstruction with a
pixel resolution refering to 32× 32 pixels in the outskirts of the cluster and to 75× 75 pixels
in its innermost core. The contours start at κ = 0.1 with a linear spacing of ∆κ = 0.12.

Figure 6.5: The convergence profile along the main diagonal of the reconstructed field. The
dotted line shows the original profile of the cluster. The (+)-like data points refer to the
reconstruction without the usage of any strong-lensing constraints. The (x)-like data points
make use of strong-lensing constraints, but not of the AMR grids. The (*)-like data points
use the full potential of our method, while combining weak and strong lensing on adaptively
refined grids.
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7 Weighing simulated galaxy clusters

As the title of the last chapter already indicates, even the reconstruction of the simulated
cluster in Sec. 6.3 can at best be seen as a proof of concept for several reasons. First, the
numerical simulation from which this cluster was extracted, was a pure dark-matter N-body
simulation, neglecting the effects of baryonic physics. Such a simulation cannot compete any
more with modern simulations of galaxy clusters, since the interesting and important effects
within the ICM are not considered and cannot be explored. So even if a pure dark-matter
cluster is reconstructed properly with our method, the conclusions from such a reconstruction
cannot necessarily be compared with real observations, as we have pointed out in Sec. 3.1.3.

A much more severe problem with the approach that we have chosen in Sec. 6.3 arises
from the fact that we have not simulated the actual lensing process, being the effects of a
lens on the photons, emitted from a distant background source, probably seen through the
Earth’s atmosphere, with a real telescope. A realistic lensing scenario introduces a number
of systematic effects, most of which we have already described in Sec. 2.2.3, making it much
more difficult to recover the properties of the deflector reliably.

Both issues are addressed in the realistic lensing scenarios that we use in this chapter
to test and calibrate our reconstruction algorithm. The state-of-the-art numerical hydro-
simulations, from which we extracted the lensing clusters, are described in Sec. 7.1. A com-
prehensive software package named SkyLens, simulating extremely realistic lensing situa-
tions, is described Sec. 7.2. We use SkyLens to compare different lensing-reconstruction
methods, each of which is presented in Sec. 7.3. In addition, an X-ray analysis that was
performed on the simulations is briefly mentioned. The results of the different analysis are
compared and evaluated in Sec. 7.4.

7.1 The cluster simulations

For our analysis we use three different, numerically simulated clusters, each in three projec-
tions along different lines-of-sight. The clusters are called g1, g51 and g72 and we denote
the projection along the different coordinate-frame axes with the addition -z, -y or -x to the
cluster’s name, respectively. We obtain nine cluster projections denoted as g1-z, g1-y, g1-x,
g51-z, g51-y, g51-x, g72-z, g72-y and g72-x.

These clusters are the objects of interest in our subsequent analysis and they have already
been used in several other studies (Dolag et al., 2005; Puchwein et al., 2005; Meneghetti
et al., 2007a, 2008; Rasia et al., 2006, 2008). A detailed description of the underlying hydro-
dynamical simulations is provided in Saro et al. (2006). In the following, we shall just give an
overview on the most important aspects of these simulations.

7.1.1 Initial conditions

For the simulation of our clusters, the technique of re-simulation was used. Starting from
a cosmological parent simulation with a box size of 479 h−1 Mpc and containing only dark
matter particles, areas in which clusters formed, were re-simulated with a much higher mass

97



7 Weighing simulated galaxy clusters

resolution and with an additional baryonic component. The parent simulation is described
in Yoshida et al. (2001) and assumed a flat ΛCDM cosmological model with the following
parameters: Ωm = 0.3, h = 0.7, σ8 = 0.9 and Ωb = 0.04. The initial conditions for the re-
simulations were created with the Zoomed Initial Condition technique (Tormen et al., 1997).
The masses of the dark-matter and gas particles were set to mDM = 1.13 × 109 h−1M� and
mb = 1.7×108 h−1M�, respectively. The number of gas particles was derived from the cosmic
baryon fraction and the initial particle positions were displaced according to the Zel’dovich
approximation (see Sec. 3.1.3).

7.1.2 Physics in the simulations

The re-simulations of Saro et al. (2006) were performed with the tree-SPH code Gadget-2

(Springel et al., 2005) and contained a number of additional physical processes. Apart from
the standard implementations in Gadget-2, including tree N-Body summation, artificial vis-
cosity treatment, (Dolag et al., 2005) radiative cooling and galactic winds (Springel and Hern-
quist, 2003), a more elaborate treatment of supernova feedback and chemical enrichment
was implemented. Not only the energy feedback and ICM enrichment due to supernovae of
type SNII, but also by SNIa was considered and the according sub-grid models assumed an
initial stellar mass function following the logarithmic slope of Salpeter (1955). The simula-
tions assumed a galactic wind speed, driven by the supernova feedback, of vw = 500 km s−1.

7.1.3 Description of the clusters

Those clusters of the simulations, that we used in our analysis, have quite different proper-
ties, which raises the interesting question how the different morphologies will be reproduced
in the following reconstructions. Tab. 7.1 shows the main properties of the three clusters,
where also the parameters of the respective NFW fits are shown. A common reparametrisa-
tion of the scale radius in the NFW profile is given by the so-called concentration parameter
c, which computes the ratio between some given radius and the scale radius c(r) = r/rs.
A typical radius, used to describe clusters, is r200, which is the radius from the cluster cen-
tre within which the average cluster density is more than 200 times higher then the critical
density of the Universe. The according concentration parameter is given by c200 = r200/rs.

The cluster g1 is the most massive cluster in our analysis and it also shows the most regular
shape. The density maps of the three projections can be seen in Figs. 7.7 - 7.15. g51 is less
massive and shows a slightly larger amount of substructure. The most interesting case is
g72, who has a massive companion of 5 × 1013 h−1M� relatively close to the cluster centre
(3 h−1 Mpc). This companion is less visible in the g72-z projection in Fig. 7.13, compared
to the other two projections in Figs. 7.14, 7.15. The mass profiles of all three cluster can be
found in Fig. 7.1.

7.2 The SkyLens lensing simulator

Now that we are in the possession of adequate numerical simulations of galaxy clusters, we
have to make sure that also the lensing process is simulated accurately. For this purpose
we make use of a ray-tracing code named SkyLens, which was first introduced in Meneghetti
et al. (2008) and has been continuously developed. SkyLens simulates the propagation of
light rays between different layers, identical to the scenario shown in Fig. 2.1. In this work,
we will just sketch the content of the different layers, the actual ray-tracing algorithm, which
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7.2 The SkyLens lensing simulator

z r200 M200 b/a c/a θx θy θz c200 rs
g1 0.297 1.54 1.14× 1015 0.64 0.57 33.3 57.4 96.1 4.62 0.310
g51 0.2335 1.39 7.85× 1014 0.78 0.65 81.5 75.59 16.8 5.37 0.241
g72 0.297 1.30 6.83× 1014 0.31 0.29 98.9 92.8 9.4 3.99 0.299

Table 7.1: Main properties of the simulated clusters. Column 1: cluster name; Column 2:
redshift; Column 3: r200 [h−1 Mpc]; Column 4: M200 [h−1M�]; Columns 5-6: principal axes
ratios: b/a, c/a, where a > b > c; Columns 7-9: angles between the main principal axis and
the x−, y−, and z−axes of the simulation box [deg]; Column 10: best-fit 3D-concentration;
Column 11: best-fit 3D-scale radius

Figure 7.1: Mass profiles of the clusters g1, g51 and g72. The solid black and red lines indicate
the total and dark matter only 3D-mass profiles, respectively. The total 2D-mass profiles
corresponding to the x, y, and z projections of each cluster are given by the dotted, dashed,
and dash-dotted lines.
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7 Weighing simulated galaxy clusters

follows the pathway of photons and evaluates transformations in position and intensity of
light rays through the different layers, is presented in more detail in Meneghetti et al. (2008)
and Melchior (2010).

The most distant layer consists of a population of realistic background galaxies, as we will
describe in Sec. 7.2.1. The second layer is the deflector itself, bending the light rays according
to Eq. 2.7 and we will explain in Sec. 7.2.2 how to derive the necessary deflection-angle field
from the numerical simulations of Sec. 7.1. The last and presumably most interesting layer,
at least while developing a lensing simulator, is the plane of the observer, involving the
characteristics of the telescope and its detector, in addition to seeing and background light
in the sky. The influence of these effects on the actual image, from which we try to derive
the properties of the deflector, are explained in Sec. 7.2.3.

7.2.1 The background population

To ensure a realistic simulation, SkyLens offers two different possibilities to populate the
source layer with galaxies. The analytic Sérsic profile provides a well-fitting description of
the surface-brightness distribution of observed galaxies. This profile, together with a realistic
spectral energy distribution (SED) can be used to create synthetic galaxies.

To provide a selection of galaxies based on real observations, SkyLens is connected to
a large database, containing different information of the galaxies in the GOODS1 (Giavalisco
et al., 2004) and the HUDF2 (Beckwith et al., 2006) surveys. The original images of these
galaxies are decomposed into shapelets (see Sec. 2.2.3) to reproduce their morphology
within the simulation and their SED’s are derived from photometric and spectroscopic anal-
ysis, available for the surveys (Coe et al., 2006; Grazian et al., 2006; Vanzella et al., 2008;
Popesso et al., 2009). In total, this provides SkyLens ∼ 10000 galaxies, which can be varied
and reused by rotations and parity flips, to guarantee realistic sources in the lensing simu-
lation, observable in different wave bands. An example of a shapelet decomposition of an
HUDF galaxy in different bands is shown in Fig. 7.2. For the future, it is planned to extend this
database by incorporating galaxies from the much wider surveys like GEMS3 (Rix et al., 2004)
or from the COSMOS field (Koekemoer et al., 2007). Another way to obtain a larger number of
realistic galaxies is provided by slightly varying the shapelet coefficients of existing galaxy
models, as shown by Massey et al. (2004). Ideas to perform this variation in a meaningful
manner, involve the help of existing shapelet-based galaxy-morphology classifiers as e.g.
presented in Andrae et al. (2010).

7.2.2 The deflector

The deflector in the ray-tracing process of SkyLens can be given by an analytic profile (e.g.
SIS, NFW or Einasto), but this does not coincide with our intention to create realistic lensing
scenarios. More complicated is our case, where we want to use a numerical simulation of
a cluster as gravitational lens. The snapshot of a numerical simulation at a given redshift
provides particle positions and velocities within the simulated box. From this data, we have
to derive deflection-angle maps for each line-of-sight projection of the simulated clusters. We
perform this task in the following way:

1Great Observatories Origins Deep Survey
2Hubble Ultra Deep Field
3Galaxy Evolution from Morphologies and SEDs
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7.2 The SkyLens lensing simulator

Figure 7.2: From Melchior (2010). Multi-colour images (top row) and shapelet models (bottom
row) of a galaxy in the HUDF. These images are taken in the ACS filters F435W, F606W,
F775W, and F850LP (from left to right).

The particles projected on each lens plane are used to calculate the deflection angles of
light ray bundles. The light rays are traced from the observer position towards the back-
ground sources through two regular grids with different spatial resolutions. The inner 1.5 ×
1.5h−2 Mpc2 region around the cluster centre is sampled with 2048 × 2048 light rays. This
guarantees sufficient spatial resolution for reproducing accurately the positions of multiple
images in the strong-lensing regime (Meneghetti et al., 2007a). For the weak-lensing regime,
we need to sample a much wider area, while the spatial resolution is less important. Thus,
we cover the whole lens plane with a grid of 4096× 4096 light rays. The deflection angles are
computed using a tree-based code, which works as follows. First, it ranks the particles based
on their distances from the light ray positions, building a Barnes & Hut tree in 2D (Barnes
and Hut, 1986). The contributions to the deflection angles from nearby and distant particles
are calculated separately using direct summation or higher-order Taylor expansions of the
deflection potential around the light ray positions. Precisely, given a light ray at position R
in physical units, which corresponds to an angular position θ = R/Dl, the contribution to its
deflection angle by a system of mass elements, ma at positions Ra (a = 1, 2, ..., N − 1, N ),
with centre of mass RCM, and with |R−RCM| � |Ra −RCM| for all the mass elements a, is

αi(R) =
4GM
c2

[
F1(R′)δij + F2(R′)Qij +

1
2
F3(R′)(R′kQknR′n)δi,j

+
1
2
F4(R′)P ij

]
R′j (7.1)

where M is the total mass of the system, R′ = R − RCM, δij is the Kroneker function, and
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the tensors P and Q are defined as

Qij =
1
M

a=N∑
a=1

maR
′a
i R
′a
j , (7.2)

Pij =
1
M

a=N∑
a=1

ma|R′a|2δij . (7.3)

Assuming a Plummer softening to avoid the deflection angles diverging, the Fk(R′) functions
are defined as

F1(R′) =
1

(R′2 + s2)
(7.4)

F2(R′) =
−2

(R′2 + s2)2
(7.5)

F3(R′) =
8

(R′2 + s2)3
(7.6)

F4(R′) =
−2

(R′2 + s2)2
. (7.7)

Nearby particles are treated as point lenses and Eq. 7.1 reduces to

αi(R) =
4GM
c2

R′iF1(R′) . (7.8)

The fraction of particles that are evaluated with Eqs. 7.1 or 7.8 is set by the Barnes-Hut
opening criterion, θBH (see e.g Springel, 2005), which we fix at θBH = 0.4. As shown by Aubert
et al. (2007), the optimal softening length s depends on the resolution of the simulation. We
performed several tests to determine which values to use. Doing ray-tracing through NFW
halos, sampled with a similar number of particles as our simulated clusters, we verified that
a softening scale of 5h−1 kpc is appropriate for reliably reproducing the deflection angle field
of the input models over the range of scales relevant for both strong and weak lensing.

7.2.3 Observational effects

The main motivation for the development of SkyLens was to produce realistic, but simu-
lated astronomical CCD images in several wave bands. To those images established lensing-
analysis pipelines can be directly applied. So far, we described the extraterrestrial ingredi-
ents for such a simulation, but not the observational process. In order to do so, we start at
the very end of this process, being the CCD camera of a telescope. Following the derivation
in Grazian et al. (2004), we can calculate the actual CCD measurement value (ADU) for one
specific pixel with index i as

ADUi =
1
g

∫
Apix

d2x nγ(x), (7.9)

where nγ(x) is the number of photons passing through the observational plane at position x,
Apix the area of one pixel and g is the detector gain. The last two numbers define the first
parameters that we have to fix in order to simulate the observation.

The number of photons, reaching the detector, depends mainly on the SEDs of our sources,
given by the galaxy models of Sec. 7.2.1, and several other parameters in

nγ(x) d2x =
πD2texp

4h

∫
dλ
T (λ)SED(λ,xs)

λ
d2xs, (7.10)
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7.2 The SkyLens lensing simulator

where xs denotes coordinates in the source plane, D is the telescope’s aperture diameter,
texp the exposure time, h Planck’s constant and T (λ) the transmissivity of the telescope for a
certain wavelength λ. We have neglected extinction in our considerations, but an according
term is easily added to the equation above.

Name Description
D aperture diameter
g detector gain
Apix pixel area
F (λ) used filter
M(λ) mirror filter curve
O(λ) optics filter curve
C(λ) CCD filter curve
FoV total field-of-view
RON detector readout-noise
f flat-field accuracy
a residual flat-field error
PSF PSF model
texp exposure time
A(λ) atmospheric extinction
ma airmass
SEDsky sky-background emission
SEDgal background population
α deflection angle map

Table 7.2: SkyLens parameters. The
first group defines the telescope
characteristics, the second group
environmental conditions and the
last group the extraterrestrial com-
ponents.

The total transmissivity of the telescope is given by

T (λ) = 10−0.4maA(λ)M(λ)O(λ)F (λ)C(λ). (7.11)

In this equation, ma is the optical path length through
the atmosphere called airmass and depends on the
zenith angle of the observation. A(λ) is the atmo-
sphere’s extinction at the telescope site and M , O, F
and C are optical quantities, given by the telescope
design, describing the transmissivity of the mirrors,
the optics, the filter and the CCD, respectively.

One should not forget the photons coming from un-
wanted sources in the sky like scattered light from the
ground or from the moon. Ideally, a full spectrum of
the sky is taken before an observation and the derived
SEDsky is directly added to Eq. 7.10, but the following
approximation from Grazian et al. (2004), using only
the measured sky magnitude Msky (in the AB system)
of some empty patch in the sky, may also be useful

ADUsky =
πD2A2

pixtexp

4πg
10−0.4(Msky+48.6)

∫
dλ
T (λ)
λ

.

Noise shall be added to the ADU counts, consider-
ing the read-out noise of the CCD, hereafter RON and
an imperfect flat-fielding, described by the flat field
accuracy a and the residual-flat field error f . The to-
tal variance in one pixel with index i is then given by
(Grazian et al., 2004)

σ2
i =

ADUi + ADUsky

g
+ n

(
RON

g

)2

+
(
f +

a2

n2

)
(ADUi + ADUsky)2 , (7.12)

where n denotes the number of exposures. Additionally, SkyLens is also able to deal with
shifts in the coordinate postions, due to dithering patterns of the observations and to mask
areas of the CCD, due to gaps in the detector and CCD boundaries.

The last thing, that we have to take into account for a realistic observation, is the PSF .
We already explained this point in Sec. 2.2.3 and our simulator is able to convolve the lensed
images of the background sources with any given PSF model. In order to obtain the PSF model
from the observation in a realistic way, stars can be added to the simulated observation.

All the parameters, defining a simulated observation with SkyLens are summarised in
Tab. 7.2 and a simulated multi band observation, resulting in realistic CCD images is shown
in Fig. 7.3.
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7 Weighing simulated galaxy clusters

Figure 7.3: The left panel shows a colour-composite image of a simulated galaxy cluster,
obtained by combining three SUBARU exposures of 2500s each in the B, V, I bands. The
field-of-view corresponds to ∼ 450′′ × 450′′. The right panel shows an HST/ACS composite
image of the central ∼ 100′′×100′′ area in the same cluster. The image has been produced
by combining mock observations with the filters F475W, F555W and F775W.

7.3 Different analysis techniques

We tried to find out, how well different reconstruction techniques perform on the realistic
lensing scenarios, especially with respect to their ability to recover the mass profiles of the
different cluster projections. We applied strong and weak-lensing reconstruction techniques
and simulated two types of CCD images for each cluster projection. The first type is adapted
to the need of a strong-lensing analysis and mimicked the characteristics of the Advanced

camera for surveys (ACS) on board the HST. Sky background and detector noise were added,
the exposure time was set to 7500 sec and the field-of-view for the F775W filter was limited
to 120′′ × 120′′. This is smaller than the original ACS field-of-view, but sufficient to cover the
full Einstein radii of the lenses.

To simulate a typical instrument used for a weak-lensing analysis, we chose the Suprime-CAM

mounted on the SUBARU telescope. An exposure of 6000 sec in the I band was convolved with
an isotropic, Gaussian PSF, reflecting a seeing of 0.′′6. The fields-of-view were chosen such,
that significant substructure in all projections was included in the simulation. This led to
slightly larger or smaller fields-of-view than in the case of a real Subaru exposure.

7.3.1 Strong-lensing analysis

The strong-lensing analysis is performed with LensTool, as described in Sec. 4.4. We used
an NFW profile to model the main cluster halo. Moreover, we added several subcomponents,
representing the contribution from the most massive galaxies in the cluster, since, as shown
in some previous studies, it is important to include the cluster members in the model be-
cause they can affect the positions and the magnifications of the strong lensing features
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(Meneghetti et al., 2003a). These are considered using pseudo-isothermal-elliptical-mass-
distributions (PIEMD) , described by the following density profile

ρPIEMD(r) =
ρ0

(1 + r2/r2
core)(1 + r2/r2

cut)
. (7.13)

We chose the PIEMD model because this is widely used for modelling the lensing properties
of cluster galaxies in observations (see e.g. Limousin et al., 2007; Riemer-Sørensen et al.,
2009; Donnarumma et al., 2009, for some recent references).

Observationally, the galaxies to be included in the model should be selected as those
lying in the cluster red sequence and being brighter than a given apparent luminosity (e.g.
Limousin et al., 2007). Of course what matters for lensing is not the luminosity but the
mass, which is assumed to be traced by the light. Indeed, the minimal luminosity should be
interpreted as a minimal mass. Working with simulations, we identify the cluster galaxies
using the SUBFIND code (Springel et al., 2001) and then apply a selection based directly on
the stellar mass. SUBFIND decomposes the cluster halo into a set of disjoint substructures
and then identifies each of them as a locally overdense region in the density field of the
background halo. In our reconstructions, we include those galaxies that have stellar mass
Mstars ≥ 109 h−1M� and that are contained in a region of 500 h−1 kpc around the cluster
centre. This is typically more than three times the size of the Einstein rings of the clusters
in our sample. The orientation and the ellipticity of each galaxy are measured from the
distribution of the star particles belonging to it. Following this procedure, we typically end up
with catalogues of several tenth of cluster members.

The Brightest-Central-Galaxy (BCG) is included in the lens model by optimising its param-
eters individually, rather than scaling them with the luminosity/mass. Since the BCG forms in
the simulations in a strong cooling region, we assumed it might have significantly different
properties compared to the other cluster members. Thus, we prefer to treat it individually.
Analogously, we use individual optimisation with some other cluster members which lay par-
ticularly close to some multiple image systems. Indeed, their influence on the local lensing
properties of the cluster requires to be modelled carefully.

The total number of free parameters in the model depends on the complexity of the lens.
Usually, we consider a cluster-scale mass component, a galaxy-scale component to describe
the BCG, and other galaxy-scale terms to incorporate the relevant cluster members.

We distribute the sources behind the clusters such as to have ∼ 3 − 7 strong lensing sys-
tems available for the optimization. For this condition to be satisfied, we randomly distribute
few sources in a shell surrounding the lens caustics, enhancing the chances that they are
strongly lensed. Then, we visually check whether the multiple images belonging to each
source are detectable in the simulation and then retain those systems that are useful for the
strong lensing analysis. The optimisation is done, using the Bayesian method implemented
in LensTool with an optimisation rate of δλ = 0.1. We assume the uncertainty in the lensed
image positions to be σI = 0.3′′.

To give a specific example, we describe in the following the strong-lensing reconstruction
of g1-y.
Among the sources, which were distributed along the caustics of the input cluster lens, seven
produced multiple-image systems detectable in this deep exposure (7500s) in the F775W fil-
ter. More precisely, two sources produced five images, while the other sources are imaged
into triplets. Using these observables, the reconstruction converges, finding a good fit to the
lensing features (χ2 = 18 for 21 degrees of freedom). The best-fit model consists of an NFW
halo with concentration c = 10.57+2.82

−1.81 and scale radius rs = 29.07+20.68
−1.85 arcsec (correspond-
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7 Weighing simulated galaxy clusters

ing to 90+64
−6 h−1 kpc). Two separately modelled galaxies, including the BCG, have velocity

dispersions of 340+21
−30 km s−1 and 269+12

−17 km s−1, respectively.

The inner projected mass profile, derived from the model, M(< R), is shown in Fig. 7.4,
where we also show the true profile of the cluster acting as lens in this simulation. Since the
model reproduces the lens’ tangential critical line well, it is not surprising that the model is
very reliable at estimating the mass enclosed in the strong lensing region. The shaded area
in the figure indicates the radial range of the multiple images, excluding the central images,
which are located at R . 10 h−1 kpc. The reconstruction reproduces the true mass profile
well up to ∼ 150 h−1 kpc from the centre, where the deviation from the true mass profile is
. 10%. At larger radii, the differences become significant. Thus, extrapolating the strong
lensing model to distances where no strong lensing features are observed may result in very
incorrect mass estimates. This issue is discussed in more detail in Sec. 7.4.1.

To evaluate how the reliability of the model degrades by reducing the number of con-
straints, we performed another reconstruction using only one system with five images and
two triplets. The final reconstruction did not differ significantly from the previous one. The
projected mass profile for this new lens model is also given in Fig. 7.4. This result shows that
reliable reconstructions can be achieved even with a limited number of lensing constraints,
if they are widely spread across the cluster. This finding coincides with the results of Merten
et al. (2009) and supports the approach of incorporating the strong-lensing constraints in the
combined lensing analysis of Sec. 7.3.3. We also attempted a reconstruction by neglecting
the central images (and using all the seven lensed systems). This is likely to be a realistic
situation, since the central images are generally demagnified and hidden behind the BCG,
hence difficult to detect. In this case, the mass enclosed by the strong lensing region is again
correctly estimated, but the reconstructed profile deviates more from the true one at small
radii.

7.3.2 Weak-lensing analysis

The weak-lensing ellipticity measurements were obtained, using the KSB+ method presented
in Sec. 2.2.3. This method is internally implemented in SkyLens4. Even though our lensing
scenarios are very realistic, we employ some simplification that should be noted.

By selecting the galaxies with S/N > 10, we end up with catalogues of galaxy ellipticities
with a source density of ∼ 30 arcmin−2. The median redshift of these sources is zs,true ∼
1.05. In the following analysis we assume that all sources have the same redshift of zs =
1. Furthermore, we assume that we can separate the population of background galaxies
perfectly from the foreground cluster members. This is intentionally very optimistic, since we
aim at verifying the capabilities of several lensing methods to retrieve the cluster mass in the
best possible conditions. The misidentification of cluster members as background galaxies
leads to a dilution of the lensing signal, which leads to erroneous mass estimates (see e.g.
Medezinski et al., 2007, 2009). When increasing the distance from the cluster centre, the
probability that nearby substructures or additional mass clumps affect the mass estimates
becomes higher. In this work, we have not included the effects of uncorrelated large-scale-
structures (LSS) on the weak-lensing signal. The effects of the LSS on the weak lensing mass
estimates have been discussed in detail in several other works (Cen, 1997; Reblinsky and
Bartelmann, 1999; Metzler et al., 1999; Hoekstra, 2001, 2003; White and Vale, 2004; Clowe
et al., 2004a).

4Following the approach of Hoekstra et al. (1998)
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Figure 7.4: The total projected mass profile of the inner region of cluster g1-y, as recovered
from the strong-lensing mass reconstruction using LensTool. The dashed line shows the
result obtained by using seven multiple-image systems. The red three-dot-dashed line
shows the mass profile if only three multiple-image systems are used. The blue dot-dashed
line indicates the mass profile recovered by fitting all the 7 multiple-image systems, but
assuming that all the central images are not detectable. Finally, the true mass profile, as
drawn from the particle distribution in the input cluster, is given by the solid line. The
shaded region shows the radial range of the tangential strong lensing constraints. The
bottom panel shows the ratios between the recovered mass profiles and the true mass
profile.
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7 Weighing simulated galaxy clusters

Figure 7.5: Radial 2D-mass profiles of the cluster g1-y, as obtained from three different meth-
ods, namely the NFW fit to the shear profile (diamonds), the aperture-mass densitometry
(triangles) (Fahlman et al., 1994; Clowe et al., 1998; Bartelmann and Schneider, 2001),
and the 2D mass reconstruction combining weak and strong lensing (dotted line). The
solid line shows the true mass profile. The vertical lines indicate the positions of R2500,
R500, and R2500 as derived from the NFW fit. The bottom panel shows the ratios between
the mass profiles recovered from the lensing analysis and the true mass profile. The dotted
line refers again to the joint method, while the red and blue solid lines indicate the results
for the NFW fit and for the aperture mass, respectively.

The cluster masses are derived with the following approach:
Assuming that the cluster is described well by an NFW density profile, we use the correspond-
ing formula for the reduced shear to fit the azimuthally averaged profile of the tangential
component of the reduced shear. For the NFW profile, the formulas for the radial profiles of
the shear and of the convergence can be found in Bartelmann (1996) and in Meneghetti et al.
(2003b). The tangential component of the reduced shear is given by

g+ = −<[g e−2iφ] , (7.14)

where the angle φ specifies the direction from the galaxy centroid towards the centre of the
cluster, which we identify with the position of the BCG. The cross component of the reduced
shear is given by

g× = −=[g e−2iφ] . (7.15)

If the distortion is caused by lensing, this component of the shear should be zero.
To give an example, the tangential shear component of g1-y is well-fitted by an NFW profile

with c = 4.82 ± 0.64 and rs = 0.307 ± 0.048 h−1 Mpc, where the errors are provided by the
model-selection technique. As expected in the absence of systematics, the cross component
of the shear is consistent with zero. The according mass profile of the same cluster, as
obtained with weak-lensing methods and compared with the method, that will be presented
in the next section is shown in Fig. 7.5.
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7.3.3 Combining weak and strong lensing

Figure 7.6: This figure illustrates how the
critical curve estimators are obtained from
given multiple lensed images of the simula-
tion. In the bottom-right corner of the plot
we show the pixel size, resolving the cluster
core.

For the final lensing analysis, we did a joint
reconstruction, combining weak and strong
lensing, with the method that we have de-
scribed in the preceding three chapters. We
performed the reconstruction on an initial
grid of 10 × 10 pixels and steadily increased
the resolution, until we reached a final grid
of 60 × 60 pixels, according to refinement
level 0. The innermost core of the clus-
ter was resolved with a finer grid, refering
to 120 × 1205 pixels on refinement level 0.
We used the weak-lensing catalogues, de-
scribed in Sec. 7.3.2 and set the parameters
of the adaptive-averaging procedure such,
that at least twelve galaxies were contained
in the sample to estimate the reduced shear
value within one cell of the reconstruction
grid. We used the multiple-image systems,
described in Sec. 7.3.1 to estimate the po-
sition of the critical line, as it visualised in
Fig. 7.6 for one cluster projection. By esti-
mating the geometry of the lens system, the central coordinate of the connecting line be-
tween two multiple images is a good prior of the critical line of a lens. We showed in Merten
et al. (2009) that such an estimate of the critical curve leads to practically identical recon-
structions, compared to results using the full information on the position of the critical line.
We decided not to incorporate any flexion constraints, since we have not a reliable pipeline
available yet, which guarantees an accurate measurement of the flexion signal. This pipeline
is in the process of development and will be used for further analysis, but at the present stage
we did not want to compromise the reconstruction with a not completely trustable input con-
straint, even if the reconstruction method itself is fully capable of incorporating flexion.

As the final result, we obtained the discretised lensing potential on a grid with different
refinement levels. From the lensing potential, we derived a convergence map, by applying
the Laplacian and the results, compared with the real density maps of the simulations, are
shown in Figs. 7.7 - 7.15. Those figures already indicate, that the individual morphologies of
the clusters are reproduced very accurately with the nonparametric method and that sub-
structure is recovered in some detail. This feature cannot be achieved with the other two
methods, since they rely on a parametrised mass model.

We accounted for the mass-sheet degeneracy by normalising the average convergence at
the boundaries of the reconstructed field, defined as the outmost two pixel rows respectively
columns), to zero and translated the convergence maps into physical surface-mass density
maps by using the average source redshift of the background sources and of the strong-
lensing features.

5At this stage of the code development only two refinement levels were implemented.
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Figure 7.7: The projection along the z-axis of the cluster g1. The side length of the square
field is 1280′′, refering to ∼ 4 h−1 Mpc at the cluster’s redshift. The left panel shows the
original density map of the simulation. The right panel shows the according convergence
map as it is obtained by the nonparametric reconstruction method, combining weak and
strong lensing. The contours start at κ = 0.09 with a linear spacing of ∆κ = 0.17.

Error bars were attached to the measurements by sampling the weak-lensing catalogues
with 24 bootstrap realisations. Since the reconstructions have to be rerun for each boot-
strap, we performed the reconstructions on a lower resolutions of 32 × 32 pixels, refering to
refinement level 0. The errors were obtained from the scatter in the resulting convergence
maps.

7.4 Comparing the results

In the last section, we introduced three different lensing methods to recover the mass profiles
from the simulations and we saw how the different approaches make use of the input data.
As an example, the recovered mass profiles for one cluster projection were given in Figs. 7.4,
7.5. What we are now interested in, is how the different methods perform on average, while
reconstructing the complete cluster sample.

One should never forget, that lensing probes the projected 2D surface-mass density along
the line-of-sight. In order to obtain the full 3D mass-profile, like e.g. X-ray techniques do,
one has to make e.g. the assumption of a spherically symmetric lens and deproject the lens-
ing profiles accordingly. To compare the lensing results with realistic X-ray simulations, per-
formed in Meneghetti et al. (2009), we follow this idea. We used the X-ray MAp Simulator

(XMAS) (Gardini et al., 2004; Rasia et al., 2008) to produce for all clusters realistic X-ray images
as they would be seen with the Chandra X-ray satellite. This provides the basis to compare
deprojected lensing and X-ray results on the grounds of realistic simulations .
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Figure 7.8: As Fig. 7.7 but for the y-axis projection of g1.

Figure 7.9: As Fig. 7.7 but for the x-axis projection of g1.
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Figure 7.10: The projection along the z-axis of the cluster g51. The side length of the square
field is 1900′′, refering to ∼ 4.9 h−1 Mpc at the cluster’s redshift. The left panel shows the
original density map of the simulation. The right panel shows the according convergence
map as it is obtained by the nonparametric reconstruction method, combining weak and
strong lensing. The contours start at κ = 0.09 with a linear spacing of ∆κ = 0.17.

Figure 7.11: As Fig. 7.10 but for the y-axis projection of g51.
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Figure 7.12: As Fig. 7.10 but for the x-axis projection of g51.

Figure 7.13: The projection along the z-axis of the cluster g72. The side length of the square
field is 1520′′, refering to ∼ 4.65 h−1 Mpc at the cluster’s redshift. The left panel shows the
original density map of the simulation. The right panel shows the according convergence
map as it is obtained by the nonparametric reconstruction method, combining weak and
strong lensing. The contours start at κ = 0.09 with a linear spacing of ∆κ = 0.17.
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Figure 7.14: As Fig. 7.13 but for the y-axis projection of g72.

Figure 7.15: As Fig. 7.13 but for the x-axis projection of g72.
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7.4.1 Strong lensing: good news and a big problem

In Fig. 7.16 we report the strong-lensing results as obtained by LensTool . It can be seen, that
the reconstructions perform very well and recover the projected real masses for all clusters
with an accuracy of ∼ 10% or better.

The big problem with the strong lensing results is the fact, that they are only accurate
within a radius around the cluster centre, where the strong-lensing constraints are actually
observed. While going to larger distances than the Einstein radius of the cluster, the differ-
ences between real, projected mass and the reconstructed mass become more and more
prominent, leading to an underestimation of the mass up to 30% even when averaging over
the whole cluster sample. This is a clear bias in the strong-lensing reconstructions, as stated
in Fig. 7.17.

To investigate the reason for this behaviour, we produced a new set of simulations, which
only considered the dark-matter component of the cluster. As can be seen from the flat curve
in Fig. 7.17 the bias disappears, indicating that the problem arises from the stellar component
of the lens-modelling in LensTool. Indeed, it has been shown in previous works on real
clusters, like MS2137 or Abell611 (Donnarumma et al., 2009, 2010; Comerford et al., 2006),
that different models for the cluster’s BCG lead to significant differences in the recovered
mass profile, especially when extrapolated to radii larger than the distance of the strong-
lensing constraints from the cluster centre.

Nevertheless, the good results of the strong-lensing modelling in the innermost region
of the clusters are remarkable. The only cases where the cluster core’s mass distribution
is not modelled accurately are g51-z (Fig. 7.10) and g72-z (Fig. 7.13). Those two cases are
characterised by a complicated double-core structure where, in this particular projection, the
companion is not well-separated from the main halo. As a consequence, the multicomponent
mass modelling becomes more complicated.

7.4.2 Comparing weak lensing results

In Fig. 7.18 we show the recovered projected mass by the NFW-fit method, whereMx denotes
the mass within a radius, within which the average density is x-times the critical density. The
errors reflect the uncertainty in the best-fit parameters of the NFW-profile. Three trends are
noticeable:

1. The deviation between real and recovered mass increases with distance from the clus-
ter centre, as it is expected and in agreement with Okabe et al. (2009).

2. While considering the whole sample of all nine projections, the NFW-fit method under-
estimates the mass.

3. The largest errors appear for the projections with asymmetrical profiles and compli-
cated substructure like g51-y (Fig. 7.11), g72-y (Fig. 7.14) and g72-x (Fig. 7.15).

Before we explain those findings, we shall look at the same plot for the nonparametric
method in Fig. 7.19. The result is remarkable for several reasons and highlights the per-
formance of our nonparametric approach:

1. The bias has almost disappeared completely6.

2. Also the masses of the highly substructured lenses are recovered well.

6The slight trend to underestimate the mass was already discussed in Sec. 6.3
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Figure 7.16: The projected masses estimated through the strong-lensing analysis vs. the
corresponding true masses of the lenses. The dotted lines correspond to M2D,SL = Mtrue

and to M2D,SL = Mtrue± 10%. The masses are measured within a circle centred on the BCG
and having a radius equal to the mean distance of the lensing constraints from the cluster
centre.

Figure 7.17: The relative difference between true and estimated projected masses as a func-
tion of the distance from the cluster centres. The results are obtained by averaging over
all the clusters in the sample. The diamonds and the triangles refer to the simulations
including and excluding the contribution of the BCG to the lensing signal (see text for
more details). The error bars show the scatter among all the reconstructions. The regions
probed by strong lensing are typically smaller than ∼ 30–40 arcsec, thus the mass esti-
mates at larger radii are extrapolations of the strong-lensing mass model to distances that
are unconstrained by the data.
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Figure 7.18: Comparison between the NFW-fit and the true 2D-masses of all the simulated
clusters. Shown are the ratios between the estimated and the true masses measured
at three characteristic radii, namely r2500 (diamonds), r500 (triangles), and r200 (squares),
versus the cluster names.

Regarding the basic principles of the two methods, the differences in the mass estimates
are not surprising. The NFW-fit method assumes a specific, regular form of the dark-matter
halo, which might be a good description for dark-matter halos on average, but not neces-
sarily for individual systems. If a system contains significant amounts of substructure, it is
likely that the mass will be underestimated by a profile, which is not able to resolve these
additional sub-halos. The nonparametric, joint method does not suffer from this problem by
construction and can additionally constrain the profile to much smaller radii, where usually
no weak-lensing data are available (compare Sec. 4.5). The radii, within which the differ-
ent methods deliver reliable mass-profiles when compared to the real profiles, is shown in
Tab. 7.3.

7.4.3 Deprojecting the lensing profiles

For a comparison with X-ray results, we need to deproject the lensing profiles. Therefore,
we assume spherical symmetry and an underlying NFW-profile to describe the dark-matter
halo. The considered fitting radii are given in Tab. 7.3 and their range is based on the ability
of the different methods to provide reliable results, as discussed above. One should notice
the restriction to the innermost core for strong lensing and the wide range of available scales
while combining weak and strong lensing.

Deprojection is done differently for the three methods investigated here. For the strong
lensing profiles and the weak-lensing NFW-fit method, we use the fit parameters to calcu-
late the 3D-mass profile of the lenses. For the nonparametric method, we fit the 2D-mass
profiles with a projected NFW profile and use the best fit parameters to derive the 3D-mass
profiles. Fig. 7.20 shows the 3D profiles for several methods, including two X-ray techniques
as described in Meneghetti et al. (2009).
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Figure 7.19: As Fig. 7.18 but for the nonparametric method, combining weak and strong
lensing.

cluster min-max SL min-max WL min-max SL+WL min-max X-ray
g1 - x 0.002-0.08 0.16-1.00 0.03-1.00 0.45-0.90
g1 - y 0.002-0.09 0.16-1.00 0.03-1.00 0.45-0.90
g1 - z 0.002-0.06 0.16-1.00 0.03-1.00 0.45-0.90
g51 - x 0.003-0.07 0.20-1.00 0.05-1.00 0.50-1.00
g51 - y 0.002-0.05 0.20-1.00 0.05-1.00 0.50-1.00
g51 - z 0.002-0.12 0.20-1.00 0.05-1.00 0.50-1.00
g72 - x 0.006-0.05 0.20-1.00 0.05-1.00 0.54-1.08
g72 - y 0.006-0.05 0.20-1.00 0.05-1.00 0.54-1.08
g72 - z 0.002-0.05 0.20-1.00 0.05-1.00 0.54-1.08

Table 7.3: Radial ranges, used for fitting NFW profiles to the lensing and X-ray data. All radii
are expressed in units of r200 reported in Tab. 7.1
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Figure 7.20: Ratios between the mass profiles recovered from the lensing and the X-ray anal-
yses and the true 3D mass profiles of each cluster. The vertical dashed lines in each panel
mark the positions of r2500, r500, and r200, as derived from the lensing analysis.
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Figure 7.21: The left panel shows the same plot as Fig. 7.19 but for the 3D masses. The
right panel shows the ratio between estimated and true lensing masses as a function of
the angle between the major axis of the cluster inertia ellipsoid and the axis along which
the mass distribution is projected.

Similarly to Fig. 7.19, we show in Fig. 7.21 the ratios between estimated and true 3D-
masses at three over-density radii. It is clear that in 3D the scatter between the estimates
and the input masses is significantly larger than in 2D for two main reasons. First, lenses are
triaxial, while we are assuming spherical symmetry during the deprojection. The impact of
triaxiality on lensing mass estimates was already highlighted by several authors in the past
(e.g Gavazzi, 2005; Oguri et al., 2005). Depending on the degree of triaxiality and on the
orientation of the clusters with respect to the line-of-sight, 3D-masses may result to be over-
or under-estimated. In particular, we find that, in the cases of good alignment (i.e. small
angles) between the major axis of the cluster and the projection axis, the lensing masses
tend to be systematically larger than the true masses, while the opposite occurs in those
cases where the major axis is nearly perpendicular to the line of sight. This is also shown
in Fig. 7.21, where the lensing masses are derived with the nonparametric method, which
even in 3D seems to provide the most accurate mass estimates. Given that the masses of
ellipsoids and spheres with the same azimuthal density profile tend to converge at large dis-
tances from their centres, the effect is strongest for M2500 and for M500, and mildest for M200.
However, even at r200, the analysis of our sample shows that the scatter due to triaxiality is
of the order of ∼ 20%. Similar results are found by Corless and King (2007).

The second factor, which makes the 3D lensing mass estimates so noisy, is the presence
of substructures along the line of sight. Since their distance from the lens plane is unknown,
the 3D-mass estimates can be severely affected by these mass clumps, especially if they
are located close to the cluster core in projection. The high ratio between the estimated and
the true mass of g72-z is in large part due to the presence of the massive sub-clump. This
accounts for∼ 15% of the total cluster mass, but its erroneous inclusion in the central 300h−1

kpc significantly affects the mass estimates at small radii. This peculiar feature of the g72-z

projection has been mentioned already several times and can be followed by comparing the
three different projections of g72 in Figs. 7.13 - 7.15, while focussing on the appearance of
the massive companion.

7.4.4 Comparison between X-ray and lensing

We have deprojected all reconstructions by assuming an NFW-profile. Therefore, we can
now compare the best-fits for the concentration and the scale radius between the different
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methods. This includes a forward and a backward X-ray method (see Sec. 3.2.2) an the
results are shown in Tab. 7.4.

In column 4 of the table, we report the best fit concentrations and scale radii obtained
for the main cluster halo using the strong-lensing constraints. These results are obtained by
including also the central images in the strong lensing modelling. As discussed in Sec. 7.4.1,
this leads to systematically overestimate the concentration and underestimate the scale ra-
dius, being the PIEMD model used in the strong-lensing modelling inadequate to describe the
distribution of the stars in the simulations. In particular we note that, in some cases, the con-
centrations are off by a factor of ∼ 3 with respect to the true values reported in the second
column. On average, the concentrations derived from strong lensing alone are almost 85%
larger than the true concentrations of the dark-matter-only profiles. Conversely, the scale
radii are almost ∼ 50% smaller. We remind that the strong-lensing fits refer to the cluster ha-
los, while the stars are modelled apart. Such a bias is not present in the simulations without
stars, where the average ratio between estimated and true concentrations is around unity.

The weak lensing best fit parameters, obtained from the fit of the shear profiles, are given
in column 5. The concentrations tend to be slightly larger than those of the dark-matter
distributions in the input models (〈cWL/cDM only

true 〉 = 1.17) and the scale radii are on aver-

age ∼ 10% smaller that the input values (〈rWL
s /rDM only

s,true 〉 = 0.93). Similar results are found
combining strong and weak lensing (columns 6). In this case the average ratio between es-
timated and true concentrations is 〈cSL+WL/cDM only

true 〉 = 1.15 (for the scale radius we find

〈rSL+WL
s /rDM only

s,true 〉 = 0.93). The tendency to over-estimate more the concentration when
adding the strong-lensing constraints is caused by the large contribution of the stellar and
gas masses within the inner 100 h−1 kpc, as shown in Fig. 7.1. We remind that in the cases
of the weak-lensing and combined lensing methods the fits are done over the total projected
mass profiles, thus without distinguishing the dark-matter component from the stellar and
gas masses. To support this interpretation, we note that the largest discrepancies with the
true concentrations arise for the cluster g51, which is characterised by an extended strong
over-cooling region in the centre, where the total density profile steepens, compared to the
dark-matter-only profile. This mimicks a larger concentration, being the mass profile still
compatible with an NFW model. Fitting the total density profiles of the inputs clusters indeed
leads to higher concentrations and smaller scale radii, as reported in column 3, which are
in a much better agreement with the results of the lensing fits. As highlighted in the previ-
ous sections, the weak-lensing fits of some systems, like the three projections of g72, can be
strongly biased assuming a single mass component. Indeed, their substructures need to be
properly modelled when deriving the cluster mass from the shear signal. The nonparametric
method provides a better chance to measure the density profile.

Comparable estimates of c and rs are obtained with the two X–ray techniques. Even the
X-ray analysis probes the total mass distribution, including the gas and the stars. Overall,
the deviations from the true estimates go in the same direction: in g1, c is underestimated
consistently by a factor 0.7− 0.8, with a corresponding overestimate of rs up to a factor 1.45,
if compared with the true concentrations, obtained by fitting the input total mass distribu-
tions of the clusters; the same considerations apply to g72, apart from g72-z, where the
concentration (scale radius) is estimated higher (lower) than ctotal

true (rtotal
s,true) by about 15 % as

a consequence of the alignment along the line of sight of the two main clumps. More critical
is the case of g51, where both the X–ray methods provide a measure of the concentration
that is twice ctotal

true , due again to the large contribution of the cool substructures in the central
regions.

An interesting aspect, while comparing lensing masses with masses derived from X-ray
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Figure 7.22: Ratio between X-ray and lensing masses as a function of the overdensity ∆
(squares). The results are shown for the X-ray masses obtained with the forward (red) and
with the backward (blue) methods and for the lensing masses obtained with the nonpara-
metric method. For comparison, we also show the ratios between the X-ray masses and the
true masses of the clusters (asterisks) and the ratios between the masses determined via
the hydrostatic equilibrium equation using the true gas density and temperature profiles
and the true masses (dashed line). The diamonds and the triangles show the results pub-
lished by Mahdavi et al. (2008) (M08) and Zhang et al. (2010) (Z09), based on the analysis
of a sample of 18 and 12 galaxy clusters, respectively. The data-points are slightly shifted
along the ∆-axis at each over-density, in order to avoid overlapping and facilitating the
comparisons.

methods, is the possibility to trace the lack of hydrostatic equilibrium in a cluster. This has
also been discussed from an observational point of view in Mahdavi et al. (2008) and Zhang
et al. (2010). Since we deal with simulations, where particle positions and velocities are
exactly known in every snapshot, we can analytically calculate the total mass of the cluster
under the assumption of hydrostatic equilibrium (Eq. 3.43). We denote this mass with MHEQ.
Deviations from hydrostatic equilibrium are therefore traced by the ratio MHEQ/Mtrue. We
compare this ratio with the ratios between X-ray and lensing masses in Fig. 7.22 and indeed
identify some weak correlations between the two quantities. A careful analysis is performed
in Meneghetti et al. (2009), indicating that lensing masses may indeed be used to calibrate
the X-ray mass-observable relations, by correcting for the lack of hydrostatic equilibrium, as
it has to be assumed in X-ray mass estimates.
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cluster cDM only
true ctotal

true cSL cWL cSL+WL cX,forw cX,back

g1 - x 4.62 5.38 11.310.19
−0.59 6.21± 0.87 6.59± 0.32 3.580.06

−0.06 3.590.32
−0.28

g1 - y 4.62 5.38 10.572.82
−1.81 4.82± 0.64 5.39± 0.23 4.510.08

−0.08 4.050.40
−0.25

g1 - z 4.62 5.38 6.922.25
−1.12 4.44± 0.62 4.54± 0.23 4.060.07

−0.07 3.620.22
−0.31

g51 - x 5.37 7.20 3.360.46
−0.11 5.83± 0.96 6.10± 0.29 11.150.19

−0.20 10.760.47
−0.65

g51 - y 5.37 7.20 9.720.68
−0.61 5.13± 1.05 6.35± 0.42 12.390.22

−0.22 10.800.56
−0.56

g51 - z 5.37 7.20 8.780.19
−0.46 6.06± 0.93 7.41± 0.32 11.040.21

−0.22 11.300.65
−0.62

g72 - x 3.99 4.22 6.460.99
−2.54 4.17± 1.54 3.88± 0.30 3.310.05

−0.05 3.220.06
−0.02

g72 - y 3.99 4.22 7.261.47
−0.14 7.91± 2.86 4.17± 0.31 3.480.05

−0.05 3.290.06
−0.02

g72 - z 3.99 4.22 11.390.42
−0.85 4.19± 0.62 4.50± 0.24 4.920.08

−0.08 4.490.38
−0.29

c/cDM only
true 1.84 (0.60) 1.17 (0.30) 1.15 (0.15) 1.33 (0.59) 1.25 (0.56)

c/ctotal
true 1.59 (0.59) 1.01 (0.33) 0.98 (0.11) 1.09 (0.38) 1.03 (0.36)

c/cDM only
true no g51 2.09 (0.48) 1.23 (0.35) 1.12 (0.15) 0.92 (0.15) 0.86 (0.12)

c/ctotal
true no g51 1.88 (0.45) 1.12 (0.35) 1.00 (0.12) 0.83 (0.15) 0.78 (0.13)

rDM only
s,true rtotal

s,true rSL
s rWL

s rSL+WL
s rX,forw

s rX,back
s

g1 - x 0.310 0.278 0.0970.007
−0.002 0.229± 0.037 0.221± 0.012 0.4080.007

−0.007 0.4090.038
−0.037

g1 - y 0.310 0.278 0.0900.064
−0.006 0.307± 0.048 0.276± 0.013 0.3150.006

−0.006 0.3600.026
−0.036

g1 - z 0.310 0.278 0.1520.029
−0.031 0.317± 0.053 0.320± 0.017 0.3510.007

−0.007 0.4030.043
−0.027

g51 - x 0.241 0.189 0.3850.072
−0.053 0.242± 0.045 0.235± 0.012 0.1200.002

−0.002 0.1240.009
−0.006

g51 - y 0.241 0.189 0.0990.008
−0.012 0.246± 0.057 0.206± 0.014 0.1070.002

−0.002 0.1240.008
−0.007

g51 - z 0.241 0.189 0.1410.002
−0.003 0.244± 0.043 0.204± 0.010 0.1200.003

−0.003 0.1160.008
−0.007

g72 - x 0.299 0.299 0.0870.032
−0.009 0.262± 0.105 0.306± 0.025 0.3660.006

−0.006 0.3860.001
−0.007

g72 - y 0.299 0.299 0.0940.029
−0.027 0.135± 0.053 0.287± 0.023 0.3550.005

−0.006 0.3860.002
−0.008

g72 - z 0.299 0.299 0.0590.008
−0.004 0.367± 0.062 0.324± 0.018 0.2230.004

−0.004 0.2510.019
−0.022

rs/r
DM only
s,true 0.49 (0.40) 0.93 (0.20) 0.93 (0.11) 0.89 (0.33) 0.97 (0.36)

rs/r
total
s,true 0.59 (0.53) 1.05 (0.27) 1.04 (0.12) 0.98 (0.32) 1.06 (0.34)

rs/r
DM only
s,true no g51 0.31 (0.09) 0.88 (0.24) 0.95 (0.12) 1.10 (0.18) 1.20 (0.17)

rs/r
total
s,true no g51 0.34 (0.11) 0.94 (0.26) 1.001 (0.11) 1.17 (0.22) 1.27 (0.21)

Table 7.4: The NFW concentrations and scale radii (upper and lower part of the Table, respec-
tively) resulting from the strong-lensing (column 4), weak-lensing (column 5), strong+weak
lensing (column 6), and X-ray analyses (column 7-8 for the forward and for the backward
methods) of the clusters in our sample. The weak-lensing estimates are obtained by fitting
the shear profile with an NFW model. In columns 2 and 3, we quote the true concentrations
obtained by fitting the DM-only and the total density profiles of the three clusters in the
radial range between 10h−1 kpc and r200.
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8 Weighing real galaxy clusters

After the extensive tests with simulated, but realistic lensing scenarios, we prove the abilities
of our method with real observations of galaxy clusters. The two clusters that we consider in
our subsequent analysis are very different in their dynamical state and should be considered
very interesting test cases for our reconstruction algorithm.

MS2137.3-2353 is a rather relaxed system and is therefore an ideal laboratory for a com-
parison between X-ray and lensing-mass estimates. This picture changes in the case of
CL0024+1654, which is very interesting from a dynamical point of view, but also a mysteri-
ous object as we will see in the course of this chapter.

Our main intention in the analysis of those two objects is not primarily to obtain new in-
sights into the physics of these clusters, since they were already in the focus of several
decent analyses, but more to show that our method is not only able to recover the results
of previous analyses, but moreover to recover the mass distribution on an unequalled range
of length scales, where other methods need to artificially combine separate analysis tech-
niques. Furthermore, we will reveal some interesting trends in our reconstructions of real
clusters, that were already present in the reconstructions of the simulated clusters in the
last chapter. Since in the reconstructions of the simulated data our method performed best,
those trends should be considered substantial.

In Sec. 8.1 we will give an overview over the cluster MS2137 (short for MS2137.3-2353),
describe the input data for our method and compare our reconstruction with previous studies.
In Sec. 8.2 we will follow the same outline for CL0024 (short for CL0024+1654).

8.1 MS2137.3-2353

MS2137 is a rich cluster, dominated by a bright, central cD galaxy at a redshift of zc = 0.313
Stocke et al. (1991). It was the subject of several X-ray studies and appears as a rather
spherically symmetric and relaxed system (Gioia et al., 1990; Schmidt and Allen, 2007; Don-
narumma et al., 2009), indicating that X-ray masses should be quite reliable in the case of
this system.

Apart from its dynamical state, MS2137 shows a particular interesting strong-lensing con-
figuration, consisting of two multiple-image systems. The first system contains a giant, tan-
gential arc, composed of two merging images with opposite parity. Following Donnarumma
et al. (2009), we denote these images as A01 and A02 and show their position in the cluster’s
field in Fig. 8.1. The underlying source produces two additional images, which are confirmed
observationally and denoted as A3 and A4. The existence of a demagnified fifth image is of
course expected, but its identification is rather difficult due to the luminous foreground light
of the BCG. The possible detection of the fifth image is discussed in Gavazzi et al. (2003).
The second image system contains a radial arc, in fact the first ever-detected (Fort et al.,
1992), denoted as B1 and an additional counter image B2. This configuration marks MS2137

as a textbook example of a strong-lensing system, which becomes pretty obvious if one com-
pares the described configuration with the example in the upper panel of Fig. 2.6.
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Figure 8.1: 22.2 ksec exposure of the central part of MS2137.3-2353. The image is taken in the
F702W filter band of the WFPC2 on board HST. The strong lensing features are accompanied
by labels, following the notation of Donnarumma et al. (2009). The side length refers to
∼ 113′′ or 360 h−1 kpc at the cluster’s redshift of zc = 0.313.

The beautiful lensing configuration was capitalised in several, early reconstructions of the
underlying lens model (e.g. Mellier et al., 1993; Miralda-Escude, 1995), which incorporated
deep HST imaging later on (Hammer et al., 1997), thereby resolving nicely the structure of the
giant arc with its two-fold image configuration. Spectroscopic redshifts of the two multiple-
image systems were provided by Sand et al. (2002), finding that the tangential system arises
from a source at ztang = 1.501 and the radial system represents the images of a distant
background galaxy at zrad = 1.502.

The HST images, of which we show an example in Fig. 8.1, also gave rise to more re-
cent strong and weak-lensing studies (Gavazzi et al., 2003; Gavazzi, 2005; Comerford et al.,
2006) (hereafter G03, G05 and C06), where some also incorporated dynamical constraints
on the BCG (Sand et al., 2002, 2008) or X-ray observations (Donnarumma et al., 2009) (here-
after D09). In our analysis, we apply the nonparametric method to study the mass profile of
MS2137, while combining weak and strong lensing.

8.1.1 Input data

We used the same ellipticity catalogue as in G03 and G05, which was kindly provided by
Raphael Gavazzi (IAP Paris). The catalogue is based on an observation of MS2137 with the FORS

and ISAAC instruments at the Very Large Telescope (VLT). With exposure times between 5.28
and 12.0 ksec, the cluster was observed in the optical U, V and I bands and in the infrared J
and K bands. The number of available optical and infrared wave bands allowed an accurate
photometric analysis, including redshift estimations for the background galaxies using the
hyperz package (Bolzonella et al., 2000). For the photo-z estimation, additional B and R
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band observations were used and a complete description of the observational data and its
reduction can be found in Gavazzi et al. (2003).

The shear estimation was performed with a KSB+ variant, described in Gavazzi et al. (2004)
and Gavazzi (2005). In total, the shape analysis provided a catalogue of 1500 ellipticity
measurements, in a field of ∼ 400′′ × 400′′ centred on the BCG of MS2137. The distribution of
galaxies with shear estimate is shown in Fig. 8.2, corresponding to an average weak-lensing
galaxy density of 33.75 arcmin−2.

The strong-lensing constraints were obtained by a deep HST/WFPC2 programme, consisting
of 10 exposures in the F702W filter and a stacked exposure time of 22.0 ksec. We used the
images A01, A02, A3 and A4, indicated in Fig. 8.1 to obtain constraints on the critical curve
of the system at a redshift of ztang = 1.501. We decided to exclude the assumed position
of the fifth image, which cannot be clearly identified. The opposite-parity images A01 and
A02 allow already for reliable position estimate of the critical line, especially while taking into
account the fact, that the redshift of the radial system zrad = 1.502 is practically identical to
the tangential system and including the images B1 and B2 in the critical curve estimate. The
final position estimators of the radial and tangential critical line, based on a few points near
the position of the multiple images, were obtained as described in Sec. 7.3.3 and Merten et al.
(2009). The exact positions of these estimates with respect to the weak-lensing galaxies can
be seen in Fig. 8.2. The exact coordinates of the strong-lensing features are given by Tab. 3
in D09 or Tab. A.1 in G03.

8.1.2 Reconstruction

We performed the combined analysis with the two catalogues, described above. It should be
noted, that the field-of-view of our catalogues is relatively small, compared to the reconstruc-
tions of Sec. 7.3.3. This is the reason why the following numbers appear somewhat smaller
than in the reconstructions that we have described before and will describe later on.

The outer-level iteration was started on an initial resolution of 10× 10 reconstruction pixels
and steadily increased until a final resolution of 25×25 pixels was reached, refering to refine-
ment level 0. The adaptively refined resolution in the innermost core of our reconstruction
refered to 40 × 40 pixels on a refinement level of 0. For the adaptive-averaging scheme, we
used a minimum of 15 backgrounds galaxies, to be included in the shear estimate of a single
reconstruction cell. The final convergence map, as derived from the reconstructed lensing
potential, is shown in Fig. 8.2.

A peculiar problem with the small field-of-view is that the assumption of a convergence
tending to zero at the boundaries of the observed field is not necessarily valid. We therefore
mass-sheet normalised our convergence map with the help of the former reconstruction by
D09, which agrees nicely with G03, G05 and C06 at the field boundaries.

An eye-catching feature of the convergence map in Fig. 8.2 is the flattening of the con-
vergence contours in the upper-left area near the cluster core. While comparing the galaxy
density, shown in the left panel of the same figure, the reason for this feature becomes clear.
Due to a lack of background galaxies, the algorithm was not able to put any reliable con-
straints on those areas, dominated by extended voids in the background-galaxy distribution.
An exception is of course the cluster core itself, since it is reliably constrained by a large
number of strong-lensing features.

To obtain a physical surface-mass density out of the convergence map, we used the median
redshift of the background sources, being 〈zs〉 = 0.9, as derived from the photo-z analysis,
and the spectroscopic redshifts for the two arcs, together with the redshift of the cluster.
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Figure 8.2: The left panel shows the constraints used to obtain the convergence map of
MS2137, shown in the right panel. Red data points indicate the positions of background
galaxies and blue data points show the positions of the strong-lensing constraints. It can
be seen, that an under-dense region in the upper-left part of the reconstruction coincides
with an empty patch in the background-galaxy field. The contours of the convergence
map start at κ = 0.1 with a linear spacing of ∆κ = 0.1. The field size in both panels is
∼ 400′′ × 400′′, refering to a physical side length of ∼ 1.3 h−1 Mpc at the cluster’s redshift
of zc = 0.313.

8.1.3 Comparison with previous results and conclusions

In Fig. 8.3, we show the projected mass profile that we obtained from the convergence map in
Fig. 8.2. The fact that we mass-sheet normalised our reconstruction according to the profile
of D09, is reflected by the perfect match between the two reconstructions at the outer-most
radius. This obviously does not hamper the possibility for our reconstruction to differ from
this result towards the centre of the cluster.

We compare our mass profile with the weak and strong-lensing results of three former
studies. In G05, the ζ-statistics approach (Fahlman et al., 1994; Clowe et al., 1998, 2000;
Bartelmann and Schneider, 2001) was used to convert the measured, tangential shear pro-
file into a mass profile, marked by the blue area in Fig. 8.3. As one can see, our result is in
perfect agreement with the weak-lensing study of G05, which is reassuring since we use the
same ellipticity catalogue and at radii far from the centre, our reconstruction should not be
affected by the additional strong-lensing constraints. Strong deviations appear, while com-
paring the parametric strong-lensing results of G05 with the other parametric strong-lensing
reconstructions of C06 and D09. The same is true for the comparison with our nonparamet-
ric result at small radii. This issue is also addressed in D09, but no convincing explanation
was found. Nevertheless, agreement exists between the other methods in the strong-lensing
area of the cluster, including our result. The trend of a shallower mass profile towards the
centre of D09 compared to C06, is pursued by our result, while compared to D09. An expla-
nation for the difference in the two parametric strong-lensing methods was given in D09. In
the reconstruction by C06, the stellar component was not modelled separately, but was in-
cluded in the general NFW-profile, modelling the whole dark-matter halo. While choosing the
same approach and neglecting their stellar PIEMD-component, D09 found the same model
parameters as C06. Interestingly, our method seems to predict an even lower central mass,
especially when regarding that we do not have to rely on any model assumptions. We have
already seen in Sec. 7.4.1, that modelling the stellar component is difficult and can lead to
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Figure 8.3: The figure shows our reconstructed mass profile of MS2137, as it is published in
Merten et al. (2009), in comparison with other reconstructed mass profiles from Gavazzi
(2005); Comerford et al. (2006) and Donnarumma et al. (2009). The red line shows the
the position of the most distant strong-lensing feature with respect to the zero point of the
radial coordinate frame, being the BCG of the cluster.

erroneous results in the strong-lensing analysis. This might explain the slight difference be-
tween our profile and the other strong-lensing reconstructions. This explanation is supported
by the mass profile of the X-ray reconstruction in D09, based on Chandra data. Since MS2137

is regarded as a relaxed system, X-ray mass estimates should be particularly accurate and
indeed, we see exactly the same trends when comparing the lensing result of D09 with our
result in Fig. 8.3 and when comparing the X-ray with the lensing result in Fig. 8.4.

8.2 CL0024+1654

The last reconstructed cluster in this work is CL0024, a rich cluster at redshift zc = 0.395.
CL0024 is one of the most distant clusters discovered by Zwicky (1959) and, unlike MS2137, it
shows a very interesting and irregular dynamical state. A wide-field spectroscopic analysis
by Czoske et al. (2001, 2002) unravelled a bimodal redshift distribution in the cluster mem-
ber galaxies peaked at z1 = 0.395 and z2 = 0.381. Furthermore, the redshift distribution in
the central region of the cluster is strongly skewed towards negative velocities. A not less
interesting feature is the unusually low X-ray luminosity and gas temperature in the centre
of the cluster (Ota et al., 2004; Zhang et al., 2005), regarding the large projected mass of
Mproj ≈ 1015 M�, derived from gravitational lensing (Hoekstra, 2007; Jee et al., 2007; Zitrin
et al., 2009; Umetsu et al., 2009b).

A possible explanation for these observations can be found in Ricker and Sarazin (2001),
where numerical simulations indicated, that an incomplete merging event between two mas-
sive subcomponents, leads to a substantial expansion of the gas component and therefore
to the low X-ray emissivity, 1–3 Gyrs after the first encounter. This post-merging scenario
was also consulted by Jee et al. (2007), to interpret a ring-like dark matter structure in their
weak-lensing analysis. This led to new hydrodynamical simulations, mimicking the suggested
line-of-sight merger of CL0024 1–3 Gyrs ago (Zu Hone et al., 2009b,a), without any evidence
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Figure 8.4: From Donnarumma et al. (2009). Projected total mass enclosed in cylinders of
radius R. The solid blue line represents the projected total mass profile derived through the
X-ray analysis, the red line shows the result of the strong lensing analysis. The blue (red)
dashed horizontal line indicates the spatial range over which the X-ray (strong-lensing)
analysis has been performed.

for the appearance of such a dark matter ring. An alternative explanation for a sighting
like in Jee et al. (2007) was given by Liesenborgs et al. (2008), who showed that a gen-
eralisation of the mass-sheet degeneracy in lensing reconstructions, called the monopole
degeneracy, can produce reconstruction artefacts of this kind. The new hydro-simulations
of this particular candidate merging event in CL0024 predicted quite accurately the observed
gas temperature and suggested a head-on collision along the line-of-sight between two mass
clumps according to a mass ratio of 2:1.

The interesting dynamical state of CL0024 marks it well-suited and interesting for recon-
structions based on gravitational lensing, since, unlike X-ray mass estimates, lensing does
not rely on the assumption of hydrostatic equilibrium, which is obviously not guaranteed in
a system like CL0024. Indeed, the cluster shows a complete multiple-image system, consist-
ing of a full set of five images. A giant arc, identified by Koo (1988), splits into a triplet of
three images when observed with the high angular resolution of the HST. The redshift of this
system was determined spectroscopically by Broadhurst et al. (2000) to be z5 = 1.625. Many
strong-lensing studies of CL0024 made use of only this single multiple-image system (Kas-
siola et al., 1992; Smail et al., 1996; Broadhurst et al., 2000), until a recent study by Zitrin
et al. (2009) revealed a total number of eleven multiple-image systems, producing a total
number of 33 images, as it is expected for a massive lens like CL0024. This work made use
of the superior image quality, provided by HST/ACS multi-colour observations and used an
iterative modelling technique. Starting from the original system of five images, a lens model
is created and additional systems are predicted by this model. If such a system is confirmed
photometrically, it is included as constraint to model the lens and the procedure starts again.

Recent weak-lensing studies were performed by Kneib et al. (2003) and Umetsu et al.
(2009b) based on HST/WFPC2 and SUBARU imaging, respectively.
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8.2 CL0024+1654

Figure 8.5: This RGB false-colour image shows the central region of CL0024+1654. The R(G,B)-
channel refers to the F775W (F555W,F475W) filter band of the HST/ACS. The field size is
185′′ × 116′′, meaning 687 × 431 h−2 kpc2 at the cluster’s redshift of zc = 0.395. Marked in
white is the original multiple-image system at a redshift of z5 = 1.695 and in blue the ten
additional systems, predicted by the model of Zitrin et al. (2009).

8.2.1 Input data

For our reconstruction we used the weak-lensing catalogue, kindly provided by Keiichi Umetsu
(IAA, Taipei). Based on B, Rc and z′-band observations with the SuprimeCam at the SUBARU tele-
scope, a field of 34′ × 26′, centred on the core of CL0024 was analysed. Using the three-band
photometry, the selection technique of Medezinski et al. (2007, 2009) was applied to avoid
dilution of the shear signal by foreground and cluster member galaxies. The shear measure-
ment was performed with a KSB+ variant, described in Umetsu et al. (2009a) and Umetsu
and Broadhurst (2008). In total, we received a sample of 13680 background galaxies with
ellipticity measurement , summing to a total weak-lensing galaxy density of 17.2 arcmin−2.
The mean redshift of the background population was found to be 〈zs〉 = 1.31 ± 0.06 by the
photo-z analysis.

As strong-lensing input, we used the 33 multiple images found by Zitrin et al. (2009) and
the respective redshift prediction of their model. All image positions are marked in Fig. 8.5
and, as usual, we used the approach of Merten et al. (2009) to estimate the position of the
critical line for different source redshifts from the positions of the multiple images. The exact
positions of the multiple-image systems are provided in Tab. 1 of Zitrin et al. (2009) (hereafter
Z09).

8.2.2 Reconstruction

We started our nonparametric reconstruction on an initial resolution of 10 × 9 pixels and
refined it in the outer-level iterations until a final resolution of 75 × 61 pixels, refering to
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refinement level 0, was reached. The resolution of the refined grid, covering the central area
of the cluster, refered to a resolution of 150 × 121 pixels on refinement level 0. We used
a minimum number of at least 10 galaxies to be included in the grid cell samples of the
adaptive-averaging process. The convergence map, as it is obtained from the reconstructed
lensing potential, is shown in Fig. 8.6, together with the convergence maps obtained by the
analysis of Umetsu et al. (2009b) (hereafter U09) and Kneib et al. (2003) (hereafter K03).

8.2.3 Comparison with previous results and conclusions

The contours of our convergence map (Fig. 8.6) within the innermost region of the cluster are
shown in Fig. 8.7, together with the critical curve, predicted by our nonparametric method. As
one can see, the contours are nicely centred on the light-distribution as it is expected. More
interesting is the critical line, especially when compared to the reconstructed line of Z09,
shown in Fig. 4.10 and obtained from a parametric strong-lensing model. The agreement on
the general shape of the critical line is remarkable. Even without any model assumptions, our
nonparametric approach is able to resolve not only the tangential outer critical line, but also
the radial inner one. Strong deviations are noticeable only in those areas, where no input
constraints are available and our method has no chance to constrain the critical curve. This
can be seen in the central right region of Fig. 8.7, where we also indicate the pixel size of our
refined reconstruction grid in the cluster centre. Despite these unconstrained regions, the
reconstructed critical line follows the positions of the strong-lensing features. We would like
to highlight, that Fig. 8.7 just shows the zoom into the reconstruction of the innermost cluster
core. Indeed, we reconstructed CL0024, in one single reconstruction step, on the field shown
by Fig. 8.6. As a result, our reconstructed convergence profile is directly comparable with
the weak-lensing analysis of U09, determining reliably the cluster in a radius range between
∼ 1′ distance from the cluster centre until its outskirts and with the strong-lensing analysis
of Z09, determining the density profile on a scale < 1′. We show this comparison in Fig. 8.8,
finding that our reconstructed profile is in good agreement with the other two methods in
their respective regimes, but interestingly deviations appear within the error bars exactly at
the nexus, where strong-lensing constraints become important and in the innermost core of
the cluster. The latter trend is well-known, regarding the findings of the former chapters.
The former trend should be investigated carefully, since it might indicate, that combining
separate weak and strong-lensing analysis to deliver a combined mass profile (e.g. Oguri
et al., 2009; Umetsu et al., 2009b) is not as unproblematic as it is usually assumed.

Since our result seems to be comparable with former weak and strong-lensing reconstruc-
tions, we think that it will be interesting in the future to compare our analysis also with mass
reconstructions based on dynamical constraints (Diaferio, 1999) and compare the mass pro-
file of CL0024, based on cluster member dynamics (Diaferio et al., 2005) with our analysis.
Such a comparison is not trivial since the lensing masses have to be deprojected for compar-
ison. Interestingly, the comparison of the combined weak and strong-lensing analysis in U09
shows deviations between lensing and dynamical mass profiles. Therefore, we would like to
deproject our profiles for a comparison, to shed light on the question if CL0024, in its actual
appearance, really emerged from a head-on collision along the line-of-sight.
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8.2 CL0024+1654

Figure 8.6: This figure compares the reconstructed convergence maps of Kneib et al. (2003)
(top left panel) and Umetsu et al. (2009b) (top right panel) with our reconstruction (bottom
panel). The general shapes of the maps agree very well, but one should note the different
field sizes, directly indicated in the upper two panels and being 1860′′×1500′′ for our recon-
struction. At a redshift of zc = 0.395 our reconstructed field refers to ∼ 6.9× 5.6 h−2 Mpc2.
The contours in the bottom panel start at κ = 0.13 with a linear spacing of ∆κ = 0.15. The
largest and the smallest pixel size used in the AMR grid are shown in the top right corner
of the convergence map.
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Figure 8.7: HST exposures, showing a slightly larger field than Fig. 8.5. The left panel shows
the inner contours from the bottom panel of Fig. 8.6 in the F775W filter of the ACS to high-
light the cluster members. The central contours coincides nicely with the centre of light.
Overlaid on the F475W exposure to highlight the multiple-image systems, the right panel
shows the reconstructed critical line in blue and multiple-image positions in red. The cuspy
shape of the critical line is caused by the still relatively large, refined pixel size, as also
indicated by the figure in black.

Figure 8.8: The radial convergence profile of CL0024, scaled to a source redshift of zs = 1.0.
The red data points show our reconstruction, where the horizontal error bars are derived
from the pixel size of the reconstruction grid and the vertical error bars represent the scat-
ter in each radial bin. The blue data points are derived from the parametric reconstruction
of Zitrin et al. (2009) and the black data points show the ζ-statistics profile of Umetsu et al.
(2009b).
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We tried to summarise in this work, why the technique of gravitational lensing is particularly
powerful to determine the main properties of galaxy clusters. While in other techniques,
like e.g. in X-ray observations, it might be easier to establish a mass-observable relation,
they also rely on particular assumptions on the dynamical state of the system. In this sense,
gravitational lensing can be assumed to be the more direct method for the determination of
essential cluster properties like e.g. the mass profile.

Clusters of galaxies turn out to be interesting objects in a cosmological context not only
because they represent the high-mass tail of the mass function, but surprisingly because they
still provide a number of unsolved puzzles within the framework of the widely-accepted ΛCDM
cosmological model. Several observations do not seem to agree with the results of numerical
simulations, like the observed cool cores of clusters, the abundance and strength of the
phenomena in the strong-lensing regime or the existence of particular interesting, mostly
merging, systems like the Bullet Cluster. At the moment it is not clear if this mismatch
is due to the wrong interpretations of the observations or to the incomplete treatment of
physical processes within the numerical simulations. Most likely the problem arises from the
combination of both aspects. Therefore, the observational and the numerical techniques
have to calibrated and tested properly, before it can be assumed that there is indeed a
problem within our cosmological picture.

In this context we developed and extensively tested a new numerical algorithm, which
consistently combines two, usually distinct, aspects of gravitational lensing, being the strong
and the weak-lensing regime. Sophisticated numerical strategies have to be applied to im-
plement such a method including the fact that it is fully nonparametric. While not assuming
any underlying model for e.g. the global dark-matter density profile or the stellar component
of a galaxy cluster, our method is not biased by any flaws in those particular models as they
e.g. appeared in our tests when extrapolating the results from strong-lensing analysis to
large radii, compared to the Einstein radius of the analysed system.

The tremendous computational power of massively parallel systems helped us to keep the
runtime of our computationally extremely demanding method on a very low level. Indeed,
the runtime can easily compete with other well-established methods in the weak or in the
strong-lensing regime and we have shown, that our method performs better than any of
those methods, while reconstructing simulated clusters.

We have proven this, not only with the extensive tests using numerical simulations of clus-
ters and realistic lensing scenarios, but also with the reconstructions of the two well-known
strong-lensing clusters MS2137 and CL0024. In the latter case, we showed that our result
agrees with the density profiles, obtained from former weak and strong-lensing reconstruc-
tions and we would like to use our result for a careful comparison with reconstructions based
on dynamical constraints, to find out if this particular cluster is really a relic of a head-on-
collision between two massive objects along the line-of-sight.
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To summarise the achievements of this work, we would like to explicitly mention the fol-
lowing points, concerning the performance of our method:

1. The comparisons between different methods using extremely realistic lensing scenar-
ios1 show, that our method is able to recover the mass profiles of simulated clusters
with an accuracy of . 10% compared to the real profiles of the clusters. Thereby it
plays no role if the clusters show complicated, substructured morphologies or if they
are rather regular in shape. No other method in the comparison was able to produce
results of this quality.

2. While making use of massive parallelisation, we reduced the runtime of our method
by a factor of ∼ 100. Moreover, while applying efficient, but conceptually simple nu-
merical schemes, we achieved speed-up factors of ∼ 1000. Both aspects combine to
a runtime improvement expressed by a factor ∼ 105, reducing the time needed for a
reconstruction of this kind from the order of years to the order of minutes.

3. To be able to combine different constraints, confined to very different length scales, we
successfully implemented the concept of adaptive-mesh-refinement into our algorithm.
With this technique, our reconstruction covers a wide range of scales within which the
mass profile can be recovered in one singe reconstruction step. In our last reconstruc-
tion, using the most recent implementation of our code, we recovered the mass profile
of CL0024 in a radial range between 0.1′ – 12′, thereby covering more than two orders
of magnitude in radius. In fact, regarding the upper bound, we are only limited by the
field size of the observation2.

But the case of CL0024 shows us also the limitations in our method, that are still present.
Our numerical tests have shown, that even when they should not be extrapolated to large
radii, parametric strong-lensing reconstruction of the density of the cluster’s core deliver ex-
cellent results. And also the critical curve of CL0024, as it is obtained with such a method,
shows more details than our own reconstruction, especially in areas which are poorly re-
solved by the observational constraints. We therefore plan to at least partly drop the fully
nonparametric nature of our method, while incorporating the full critical line of a cluster, as
it is obtained with a parametric method, into our joint reconstruction. This has the additional
advantage that parity information on the reconstructed area can be used, meaning that the
sign of the Jacobian determinant of the lens mapping can be added as an additional term in
our total χ2-function.

This is not the only additional term which could be added. We have already mentioned
that we want to compare our results with reconstructions based on the dynamics of cluster
member galaxies. Indeed, we could not only compare to such methods, but we should add
the observations constraining them to our own reconstruction. These additional constraints,
not based on the shape of background sources, but coming directly from cluster member
galaxies, could help to improve the reconstruction of the innermost cluster core of the cluster.
In the transient regime between this core and the outskirts of the cluster, we believe that
gravitational flexion will play an important role, hence a reliable measurement is at hand.
In this work we did not perform a reconstruction which made use of flexion, even if our
method is fully able to incorporate such a constraint. We are planning to change this in future
reconstructions and we are working hard on improved shape-measurement pipelines. Finally,

1In fact we also developed the tools to produce them.
2A preliminary result, reconstructing the mass distribution within the full COSMOS field shows already promising

results.
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in the long run, not only optical but also the tracers of the ICM, so X-ray and SZ observations
should contribute to a joint reconstruction, which combines many observational aspects of
galaxy clusters in several wave bands.

With such a combined method, most of the shortcomings when connecting observables to
cluster properties should be removed. The goal then is to apply this method to a large sam-
ple of galaxy clusters, where the observational data should be of outstanding quality. That
will deliver the basis for an extensive comparison between the properties of such a sample
with numerical simulations. Thereby it is important not only to compare highly-resolved sim-
ulations of single objects, but also to compare with large cosmological volumes, including
millions of cluster-sized halos, to have good statistics at hand to fix the question of e.g. the
preferred dark-matter density profile.

We are sure, that our advanced method to recover the mass-distribution of galaxy clus-
ters will play an important role in such an upcoming project, which will be a big step to-
wards understanding the physical processes in galaxy clusters and thereby testing the ΛCDM
paradigm. This will be one particular step in the quest of shedding some light on the dark
components of the Universe.
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