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Wechselwirkung zwischen Geometrie und Temperatur

im Casimir Effekt

Zusammenfassung

In dieser Arbeit untersuchen wir die Wechselwirkung zwischen Geometrie und Tem-

peratur im Casimir-Effekt. Dabei betrachten wir insbesondere die Konfigurationen

der geneigten Platten und einer Kugel, bzw. eines Zylinders über einer Platte. Wir

verwenden den Weltlinienzugang, welcher einen stringinspirierten quantenfeldtheoretis-

chen Formalismus mit Monte Carlo-Techniken vereint. Der Weltlinienformalismus er-

möglicht eine präzise Berechnung der Casimir-Energien in beliebigen Geometrien. Wir

analysieren die Abhängigkeit der Casimir-Energie, der Kraft und des Drehmoments vom

Abstandsparameter und von der Temperatur und finden Casimir Phänomene, welche

von langreichweitigen Fluktuationen dominiert werden. Es zeigt sich, dass in so genan-

nten offenen Geometrien thermische Energie-Dichten typischerweise über Bereiche von

Größenordnungen thermischer Wellenlängen verteilt sind. Als Folge dessen werden

Näherungsverfahren für die thermischen Korrekturen, die auf lokalen Abschätzungen

der Energie-Dichte basieren, als unzuverlässig erkannt – sogar im Grenzwert kleiner

Abstände. Wärend sich Casimir-Energie, Kraft und Drehmoment bei hohen Tempera-

turen immer proportional zur Temperatur verhalten, findet sich bei tiefen Temperaturen

ein vielfältigeres Bild. Als Spezialfall zeigen wir thermische Kräfte auf, die ein nicht-

monotones Verhalten entwickeln. Es werden viele neue numerische und analytische

Ergebnisse präsentiert.

Interplay between geometry and temperature in the Casimir effect

Abstract

In this thesis, we investigate the interplay between geometry and temperature in the

Casimir effect for the inclined-plates, sphere-plate and cylinder-plate configurations. We

use the worldline approach, which combines the string-inspired quantum field theoretical

formalism with Monte Carlo techniques. The approach allows the precise computation of

Casimir energies in arbitrary geometries. We analyze the dependence of the Casimir en-

ergy, force and torque on the separation parameter and temperature T , and find Casimir

phenomena which are dominated by long-range fluctuations. We demonstrate that for

open geometries, thermal energy densities are typically distributed on scales of thermal

wavelengths. As an important consequence, approximation methods for thermal correc-

tions based on local energy-density estimates, such as the proximity-force approximation,

are found to become unreliable even at small surface-separations. Whereas the high-

temperature behavior is always found to be linear in T , richer power-law behaviors at

small temperatures emerge. In particular, thermal forces can develop a non-monotonic

behavior. Many novel numerical as well as analytical results are presented.
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1 Introduction

1.1 Casimir effect and its applications

The subject of this thesis is the physical phenomenon which is named after the

Dutch physicist Hendrik B. G. Casimir. In his seminal paper from 1948 [1],

Casimir predicted an attractive force between a pair of neutral parallel conducting

plates placed in empty space. For such parallel plates made of an ideal metal, the

attractive force per unit area, i.e. the pressure, is given by

Pc(a) = − π2

240

~c

a4
. (1.1)

Here, ~ is the Planck constant, c the velocity of light and a the distance between

the plates. As an example, for a = 1µm, the Casimir pressure is Pc ≈ 1.3 mPa.

According to Casimir’s prediction, the force results from the modification of the

electromagnetic vacuum by the presence of the plates. The attraction between

neutral metallic plates was first observed experimentally in [2]; for a discussion of

this and other recent experimental developments, see for example [3–5]. Today,

the Casimir effect, being a purely quantum effect, is commonly understood as a

direct physical manifestation of the vacuum energy and vacuum fluctuations [4, 6].

In the last fifteen years, the Casimir effect has become a field witnessing rapid

experimental as well as theoretical progress. Originally closely related to the

phenomenon of van der Waals attraction, the Casimir effect has developed into a

broad interdisciplinary subject being relevant on all physical scales. It plays an

important role in virtually all fields of modern theoretical and applied physics such

as nanotechnology, condensed matter physics, quantum field theory, chemistry

and molecular physics, gravitation and cosmology, see [3, 4, 6–18]. It continues

to stimulate mathematical physics and string theory, and has been applied in

1



1 Introduction

unification theories beyond the Standard Model, see [3, 4, 6, 19, 20] for further

details and references.

Measurements of the Casimir force lead to strong constraints on long-range in-

teractions between neutral macrobodies in addition to Newtonian gravity which

many extensions to the Standard Model predict, see [21–32]. These extensions are

for example approaches which exploit the Kaluza-Klein unification, where in ad-

dition to four spacetime dimension, compactified extra dimensions are believed to

exist. The Casimir effect also provides a possible mechanism for compactification

of these extra dimensions and may give rise to the cosmological constant [6].

Exploring the Casimir and van der Waals forces is essential for the understand-

ing of atom-atom and atom-wall interactions [33]. Both of these closely related

forces play an important role in the absorption of atoms by various microstruc-

tures as for example carbon nanotubes [34]. A promising application of carbon

nanotubes is the proposed possibility of storage of great amounts of hydrogen [35].

A profound knowledge of the interaction details between graphite and hydrogen

is indispensable for the solution of this problem and requires extensive theoretical

as well as experimental investigation.

In condensed matter physics, the Casimir effect gives rise to forces in layered

systems, has implications on properties of thin films and plays a role in surface

critical phenomena. Measurements of the Casimir force use test bodies composed

of real materials and bounded by rough surfaces. To compare a real experiment

with theory, a number of material properties have to be taken into account. In

general, the resulting corrections to an idealized situation are far from trivial.

New theoretical concepts have been developed in recent years – in many respects

especially because of the experimental advances. Fortunately, theory and experi-

ment go hand in hand here and are mutually influencing each other.

The Casimir force is strongly distance-dependent and is increasingly more rel-

evant at smaller separations. Advances in modern technology steadily allow

to shrink dimensions of mechanical and electromechanical devices. Thus, the

Casimir effect is becoming more important also in nanoscience and nanotechnol-

ogy.

2



1.2 Geometry-temperature interplay

1.2 Geometry-temperature interplay

The Casimir effect features a decisive geometry dependence: the fluctuation-

induced interaction between test bodies or surfaces depends on their shape and

orientation. This is because the Casimir effect arises from the fluctuation spec-

trum in presence of the surfaces relative to the vacuum fluctuations. The spectral

properties in turn are a direct consequence of the geometry.

The geometry dependence becomes even more pronounced at finite tempera-

ture T : thermal fluctuations can be predominantly associated with a character-

istic length scale, the thermal wavelength λT ∼ ~c/(kBT ). Thermal fluctuations

contribute to the Casimir force, whenever the scale set by the thermal wavelength

is commensurate with a mode of the fluctuation spectrum as defined by the ge-

ometry. Therefore, thermal corrections to the zero-temperature Casimir effect

generally cannot be described by universal additive terms or other simple recipes

but require a careful analysis of the interplay between geometry and temperature

(the so called geothermal interplay), as first anticipated in [36].

The purpose of the present thesis is to develop the general physics picture un-

derlying the geothermal Casimir phenomena. The origin of a nontrivial interplay

between geometry and temperature in the Casimir effect can be understood in

simple terms. Consider the classic parallel plate case: as the wavelengths of the

fluctuations orthogonal to the plates have to be commensurate with the distance

a between the plates, this corresponding relevant part of the spectrum (we use

natural units from now on, meaning ~ = c = kB = 1)

ωp
2(a) = p2

‖ + (πm/a)2

has a gap of wave number kgap = π/a. As is obvious, for example, from the

partition function (for one mode p)

Zp =

∞∑

n=1

exp

(
−ωp(a)(n+ 1/2)

T

)
,

the gapped modes are exponentially suppressed at small temperatures T ≪ kgap.

In D = 4 spacetime dimensions, the integration over the parallel modes p‖ and

summation over m converts this exponential dependence into the low-temperature

power law T 4 for the parallel-plate Casimir force. The corresponding thermal

contribution to the free interaction energy (apart from a distance-independent

term) is

∆E‖(T ) =
π2

90
AaT 4, aT ≪ 1, (1.2)

3



1 Introduction

where A denotes the plate’s area. The argument for a suppression of thermal

contributions given above applies to all geometries with a gap in the relevant part

of the spectrum – for example concentric cylinders or spheres, Casimir pistons

and so forth. These geometries are called closed.

By contrast, open geometries with a gapless relevant part of the spectrum have

no such suppression of thermal contributions. Any small value of the temperature

can always excite the low-lying modes in the spectrum. Therefore, we expect a

generically stronger thermal contribution ∼ (aT )α with 0 < α < 4.

Another argument for the fundamental difference between open and closed

geometries and thermal corrections is the following: Eq. (1.2) can also be written

as

∆E‖(T ) = V ǫSB,

where V = aA is the volume between the parallel plates, and ǫSB is the Stefan-

Boltzmann free energy density of the radiation field. Hence, we can understand

the low-temperature correction in the parallel-plate case as an excluded volume

effect: the thermal modes of the radiation field at low temperatures do not fit in

between the plates, and therefore the corresponding volume does not contribute

to the total thermal free energy. By contrast, open geometries by construction

cannot be associated with any unambiguously defined excluded volume, such that

significant deviations from a T 4 behavior can be expected.

These considerations immediately point to the possibility that the thermal part

of the low-temperature Casimir effect can be dominated by long-range fluctu-

ations. This is because a temperature much lower than the inverse distance,

aT ≪ 1, sets a new length scale which can be much larger than the plate distance

as well as any other length scale of the geometry (such as a sphere radius).

In closed geometries, this length scale is effectively cut off by the gap in the

spectrum, implying the parametric suppression of thermal effects. In open geome-

tries, this length scale sets a relevant scale that can, for instance, reflect the spatial

extent of the distribution of the thermal energy density. The total thermal energy

thus can receive dominant contributions from long-range modes corresponding to

significantly extended thermal energy distributions.

The considerations have so far concentrated on the low-temperature limit.

In fact, the high-temperature limit exhibits a universal linear dependence on

the temperature for the following reason: At high temperature in the imaginary-

time formalism, only the zeroth Matsubara mode can contribute as all higher

modes acquire thermal masses ∼ πT and hence are largely suppressed. The ze-

roth Matsubara mode has no temperature dependence at all, such that the only

temperature dependence arises from the measure of the fluctuation trace, which

4



1.3 Field theoretical approach

is linear in T . A less technical argument with the same result can be based on the

underlying Bose-Einstein distribution governing the bosonic thermal fluctuations

of the radiation field. This distribution increases as ∼ T in the high-temperature

limit, inducing this linear temperature dependence directly in the free energy.

The properties of the geometry only enter the prefactor in the high-temperature

limit.

1.3 Field theoretical approach

The investigation of geothermal phenomena demands methods which can tackle

arbitrary geometries. The calculation of Casimir energies for more involved ge-

ometries is a complicated task. It should be clear that for more complex con-

figurations, the Casimir energy can only be evaluated numerically. However, the

general expressions for the Casimir energy contain infinite sums and integrals,

from which ultraviolet divergences have to be separated first before a numerical

evaluation even becomes possible. Finding and separating these divergences is a

delicate business, such that in almost all cases a direct numerical treatment is

next to impossible.

A powerful numerical method which does not contain any divergences at in-

termediate steps is worldline numerics [37–40]. Worldline numerics originates

in the string-inspired approach to quantum field theory [41–44] and is based on

a mapping of field-theoretic fluctuation averages onto quantum-mechanical path

integrals [45–50]. It is independent of the Casimir geometry and can easily deal

with finite temperature. The problem of determining the fluctuation spectrum

with the followed summation is elegantly circumvented and substituted by one

single step. In this thesis, we choose worldline numerics for the investigation of

geothermal phenomena. Surprisingly, it turns out that wordline numercis can also

be used to find novel analytical results.

In addition to the worldline methods [37–40, 51–61] used in this work, a variety

of approaches has been developed in recent years, such as a functional integral

approach [62–64] and scattering theory [65–82]. An extension of these methods

to finite temperature is usually straightforward and highly worthwhile in view of

the geometry-temperature interplay.

As we pointed out in the previous section, geothermal phenomena can be dom-

inated by long-range fluctuations in open geometries. An important consequence

can already be anticipated at this point: approximation methods that are based

on local considerations will generically fail to predict the correct low-temperature

correction in open geometries. An example is given by the proximity force ap-

5



1 Introduction

proximation (PFA) which is based on the assumption that the Casimir energy

can be estimated by integrating over local parallel-plates energy densities [83, 84].

Whereas this approximation may or may not work at zero temperature depending

on the geometric details of the configuration, it is even conceptually questionable

at finite temperature, as open geometries should not be approximated by closed-

geometry building blocks. Quantitatively, such a procedure is expected to fail, as

local energy-density approximations will not be able to capture the contributions

from larger length scales induced by long-range modes.

The temperature-geometry interplay is not an academic problem: experimen-

tally important configurations such as the sphere-plate or the cylinder-plate ge-

ometry belong to this class of open geometries, but thermal corrections have so far

been approximated by the PFA. Whether or not a potentially significant geother-

mal interplay may exist in the relevant parameter range aT ∼ 0.01 . . . 0.1 is a

technically challenging problem, which will be addressed in this thesis.

1.4 Organization of the thesis

The present thesis is organized as follows: In chapter 2, we review the classic

Casimir configuration of two ideal parallel plates and relate the Casimir effect to

van der Waals forces.

Chapter 3 presents the worldline approach to the Casimir effect.

Chapter 4 is devoted to a study of the zero-temperature Casimir effect for the

inclined plates configuration. We extend the analysis of inclined plates to finite

temperatures in chapter 5.

The sphere-plate and cylinder-plate configurations at zero temperature are

studied in chapter 6. We develop an approach to direct force computation, rather

than calculating the interaction energy. This leads to enormous simplifications in

the numerics and enables us to extend the parameter range studied so far.

We show the great advantage of the algorithm for the direct force calculation

in chapter 7. Here, the sphere-plate and cylinder-plate configurations are studied

at finite temperature.

In chapter 8, we deduce the PFA from the worldline path integral. This helps

to understand the differences between the exact and approximate treatments.

For comparison, we also work out the PFA estimates for the sphere-plate and

cylinder-plate configurations in great detail.

For the sake of completeness, we present and prove the Poisson summation in

appendix A.

The conclusions of the thesis are provided in chapter 9.

6



2 Essentials of the Casimir effect

2.1 Connection with the van der Waals-London

forces

Let us consider the classical Casimir configuration consisting of two parallel, un-

charged and perfectly conducting plates at a distance a. Nowadays, it is common

to emphasize the spectacularity and the mystery of the fact that the two neutral

plates do indeed exhibit a force in the vacuum. Intuitively, it should be no sur-

prise that an attractive force between the plates arises. Long range forces, other

than gravity but acting between neutral atoms, are well-known. These are the

dispersion forces, also called van der Waals-London forces [85, 86]. Van der Waals

forces play an important role in biology and are particularly significant for surface

phenomena.

The origin of the dispersion force can be understood in simple terms. For a

non polar atom, the expectation value of the dipole moment in the ground state

is zero. Due to its quantum mechanical nature, however, the mean value of the

dipole moment squared is different from zero, such that the interaction between

fluctuating dipoles gives rise to a weak attractive force.

The quantum theory of the van der Waals interaction was presented by London

in 1930 [86]. The London theory was entirely quantum mechanical (since it con-

tained ~) but it was not relativistic (since c was absent). London considered only

dipole moments induced instantaneously and the theory was therefore valid for

relatively small separations. The force between two neutral atom at the distance

a was found to be ∼ 1/a7.

The relativistic theory of the van der Waals attraction was considered for the

first time by Casimir and Polder in 1948 [33]. They considered retarded inter-

actions and were able to show that the van der Waals force between two atoms

changed from ∼ 1/a7 to ∼ 1/a8 as the separation a increased.

Of course, the generators of the van der Waals attraction, the fluctuating

dipoles, generate fluctuating electromagnetic fields, and they themselves induce

fluctuating moments. In principle, the dispersion force can then be attributed to

7



2 Essentials of the Casimir effect

the fluctuating electro-magnetic field alone, without a reference to the atoms as

the generators of fields.

In 1948 Casimir calculated an attractive force between two idealized parallel

plates by considering only the fluctuating fields in the vacuum. He used a novel

technique and derived the attraction between the plates from the zero point en-

ergy of the fluctuating electromagnetic field. This, indeed, was an equivalent

description of the same physical effect.

One should not forget that the force was derived for an ideal metal, thus leading

to an universal result. Dealing with realistic materials, the Casimir force should

transform to the van der Waals-London force at short separations, and above all,

the force will disappear if the plates were made transparent for the fluctuating

field.

2.2 The mystery of the Casimir effect

Note that the apparently trivial shift of emphasis from fluctuating dipoles to

fluctuating fields not only facilitates the calculation of forces by allowing the use

of quantum field theoretic techniques, it also leads to new theoretical predictions

which by no means can be related to van der Waals forces. This is the mystery of

the Casimir effect [20]. The prominent example is the Casimir effect for a single

spherical shell. The interest in this boundary is enormous for a number of reasons.

One application was given by Casimir himself. In 1953, he proposed a model for

the electron. The charge of the electron was assumed to be uniformly distributed

over a conductive spherical shell. Since the Casimir force between two parallel

plates was attractive, Casimir hoped that the resulting electrostatic self-repulsion

of the charge could be balanced by the Casimir force arising from the conductive

shell. Unfortunately, the Casimir force for a conducting shell turned out to be

repulsive. This was shown first by Boyer 1968 [87]. The result has since been

independently confirmed [88–91].

The Casimir effect for spherical shells also appears in Kaluza-Klein theories in

4+N dimensions, where the extra dimensions are compactified into a sphere. For

a fluctuating scalar field and a single sphere SN , the Casimir energy is divergent

for even N , negative for N = 1 and positive for odd N up to N = 19. For N ≥ 21

the energy becomes increasingly negative [6, 92].

In particle physics, the Casimir effect for a sphere is used in the phenomenologi-

cal bag model of hadrons [6, 93–99]. In this model, a hadron is modeled as quarks

confined to the interior of a spherical cavity. The interior of the cavity is assumed

8



2.3 Basic recipe for the Casimir calculations

to be a chromomagnetic vacuum, while the exterior is a perfect chromomagnetic

conductor. Given Boyer’s repulsive result for the spherical shell, this model seems

to be physically unsatisfactory, however, the repulsive result in this situation is

less clear since there are no exterior modes.

Another reason for the interest in repulsive spherical geometries is the hope of

finding a repulsive Casimir force between real bodies. If found, it would provide

a mechanism to reduce stiction in nanomechanical systems [4].

In the course of time the Casimir effect also developed from being an alternative

explanation for the retarded van der Waals force to being evidence of the reality of

the quantum fluctuations and the quantum vacuum [4, 6, 100–104]. The question

of whether zero point fluctuations are real, or of whether the Casimir effect can

be used as evidence for their reality, is beyond the scope of this thesis, see for

example [100, 105–107]. We will, however, make use of the modern definition

of the Casimir effect as the dependence of the vacuum energy of a field on the

boundary [6].

In our case, the boundaries are represented by rigid bodies. The boundaries

restrict the modes of the fluctuating field and give rise to a measurable force

between the bodies. This force then depends on the nature of the field, on the

geometry of the boundary and on the dimension of spacetime.

2.3 Basic recipe for the Casimir calculations

The roots of the Casimir effect trace back to the most fundamental principles of

quantum mechanics. According to quantum mechanics, a harmonic oscillator has

discrete energy levels

En = ~ω

(
n+

1

2

)
, (2.1)

where n = 0, 1, 2, . . . and ω is the angular frequency of the oscillator. The

ground (vacuum) state energy of the oscillator is

E0 =
1

2
~ω, (2.2)

which, escpecially, is not equal to zero.

In the quantum field theory, any quantized field is considered as a set of oscil-

lators of all frequencies. Then, using Eq. (2.2), the vacuum energy of a field is

given by

E =
~

2

∑

J

ωJ , (2.3)

9



2 Essentials of the Casimir effect

which is the sum over all ground state energies, or zero point oscillations. The

index J in Eq. (2.3) labels the quantum numbers of the field modes. For in-

stance, for the electromagnetic field in free space, the index J contains a contin-

uous component k (the wave vector) and a two-valued discrete component which

characterizes the polarization state.

Introducing rigid bodies into the free space, we impose boundary conditions

on the field, thus restricting the possible field modes ω. For two parallel plates,

for example, one component of the wave vector k becomes discrete. The basic

procedure to calculating the Casimir energy E for two ideal parallel plates is

similar for many different approaches. The recipe can be formulated in two steps:

1. find the mode spectrum of the fluctuating field;

2. sum up the mode spectrum to obtain the Casimir energy.

Obviously, the two steps can be performed for a few highly symmetric configura-

tions only. The parallel plates configuration is one of them. In general, however,

the mode spectrum cannot be found analytically, and if found, the summation

itself would be far from obvious. One therefore has to retreat to approximate and

numerical methods.

In the next section, we perform the calculation for Casimir’s parallel plates.

The final result turns out to be of key importance for worldline numerics, as

will become clear in Sect. 4.4. At the end of this chapter, we then present the

proximity force approximation (PFA), which, using the analytic result for two

parallel plates, approximates a given geometry by infinitesimal parallel plates.

2.4 Casimir’s parallel plates

Let us consider two idealized perfectly conducting parallel plates in D = d +

1 dimensions. The surface area of the plates is then d − 1 dimensional. The

separation between the plates is a. For simplicity, let us take a massless scalar field

to be the fluctuating field. We assume that the field satisfies Dirichlet boundary

conditions on the plates, and therefore vanishes there. We set ~ = c = 1 and

label the modes of the field by the integer n > 0 and the transverse momentum

k. The Casimir energy per unit transverse area is obtained by summing over the

zero-point energies of all modes,

E(a)

A
=

1

2

∑∫
ω =

1

2

∞∑

n=1

∫
dD−2k

(2π)D−2

√
k2 +

n2π2

a2
. (2.4)

10



2.4 Casimir’s parallel plates

The integral is terribly divergent for large k. Introducing a cutoff Λ and using

dDk =
2πD/2

Γ(D/2)
kD−1dk, (2.5)

we can express the integral in terms of hypergeometric functions.

A finite Casimir energy can then be obtained by expanding the result around

Λ = ∞ and taking the Λ independent contribution only. This contribution can

then be summed up to produce the correct result.

In order to get rid of the Λ divergent terms, we subtract from Eq. (2.4) the free

value E(a → ∞). Let us take an arbitrary b > a, and subtract E(b) from E(a).

The value of b will be sent to infinity at the end. Using Eq. (2.4) and (2.5), this

gives

E(a) −E(b)

A
=

∞∑

n=1

∫ ∞

0

dk kD−3 22−D π1−D/2

Γ(−1 +D/2)

(√
k2 +

n2π2

a2
−
√
k2 +

n2π2

b2

)

(2.6)

=
π(D−1)/2Γ

(
D−1

2

)
ζ(1 −D)

2D

(
1

bD−1
− 1

aD−1

)
. (2.7)

Actually, the integral in Eq. (2.6) converges for 2 < D < 3 only, but we use

analytical continuation in D and treat Eq. (2.7) as a formal answer for all D.

For D > 1, we can safely perform the b → ∞ limit. Using the reflection

property of the ζ function,

ζ(1 −D) Γ

(
1 −D

2

)
π(D−1)/2 = ζ(D) Γ

(
D

2

)
π−D/2, (2.8)

we finally get

E(a) − E(b→ ∞)

A
= −Γ(D/2) ζ(D)

(4π)D/2aD−1
, (2.9)

in agreement with [108, 109]. The force per unit area, F/A, is obtained by taking

the negative derivative with respect to a. Especially for D = 4, the force per unit

area becomes

F (a)

A
= − π2

480 a4
. (2.10)

This result represents the Casimir force for a fluctuating scalar field. The cor-

responding result due to an electromagnetic field is obtained by multiplying the

11



2 Essentials of the Casimir effect

scalar case result by a factor of 2, which accounts for the two polarization states

of the photon.

It is tempting to try to approximate an arbitrary Casimir configuration by

small parallel plates. Then, using Eq. (2.8) and (wrongly) assuming additivity

of the Casimir force, one would have a simple approximate method. This widely

used technique, the proximity force approximation (PFA), is subject of the next

section.

2.5 The proximity force approximation

The standard and the most simple approximation method for estimating Casimir

energies between separated rigid bodies is the proximity force approximation

(PFA) [83, 84]. The PFA is still widely used for comparison of experiment and

theory, since the resulting estimates can easily be generalized to the case of bodies

made of real materials. In this thesis, we will compare our most important results

with the PFA estimates as well.

The PFA treats the Casimir configuration as a superposition of infinitesimal

parallel plates and then integrates them up

EPFA(a) =

∫

Σ

εPP(h) dσ. (2.11)

Here, one integrates over an auxiliary surface Σ, which should be chosen appro-

priately. We have introduced εPP(h) which denotes the energy per unit area of

two parallel plates at a distance h apart, see Eq. (2.9). At zero temperature and

for D = 4, this quantity reads

εPP(h) = −cPP

h3
, (2.12)

where cPP = π2/1440 for the Dirichlet scalar case. Of course, by definition,

EPFA(a) is ambiguous since there is no prescription on how to choose the auxiliary

surface Σ. There is also no reference to boundary conditions, therefore, all PFA

formulae are analogously valid for the electromagnetic case as well, with the

restriction that all force or energy formulae must be multiplied by a factor of

two accounting for two polarization modes.

The distance is conventionally measured along the normal to Σ. The two ex-

treme cases in which Σ coincides with one of the two bodies provide us with a

region spanning the inherently ambiguous estimates of the PFA.

Strictly speaking, the PFA contradicts the Heisenberg’s uncertainty princi-

ple [52]. The quantum fluctuations, acting via the parallel plates prescription,

12



2.5 The proximity force approximation

are supposed to probe the configuration pointwise, thereby neglecting the whole

neighborhood. However, the fluctuations should not be localizable.

As we will see in the next chapter, the worldline approach respects this quantum

mechanism: the sum over modes of a field is represented by a sum over non

local space-time trajectories (worldlines) of quantum fluctuations, which directly

sample the geometric properties of the surfaces. The PFA then turns out to be

the one-dimensional version of worldline numerics, where instead of complicated

multi-dimensional worldlines one uses simple straight lines.
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3 Casimir effect in the worldline

formalism

This chapter provides an introduction into the worldline approach to the Casimir

effect. For simplicity and clarity, we study the Casimir effect induced by a fluctu-

ating real scalar field obeying Dirichlet boundary conditions (“Dirichlet scalar”).

We start with the field theoretic framework and show how the problem of com-

puting the Casimir energy can efficiently be treated numerically.

These concepts have been originally presented by Gies et al. (2003) in [37] and

are based on the “string-inspired” worldline formalism, in which field-theoretic

fluctuation averages are mapped onto quantum-mechanical path integrals [41–

48]. For arbitrary backgrounds, this worldline integral representing the spacetime

trajectories of the quantum fluctuations can straightforwardly be computed by

Monte Carlo methods [39]. As the computational algorithm is generally indepen-

dent of the background, i.e., the Casimir geometry, Casimir problems for arbitrary

configurations can straightforwardly be tackled with this method.

In contrast to the worldline approach, standard strategies perform the Casimir

calculations in two separate steps, namely by identifying the mode spectrum of

the quantum fluctuations in a given geometry and then by summing it up. In

the worldline approach, these two steps are combined and are performed not sep-

arately but simultaneously. This is particularly advantageous, since both steps,

being highly non trivial and increasingly difficult for more involved Casimir con-

figurations, combined become geometry independent and quite easy to perform

in the worldline approach.

The worldline approach can also be straightforwardly extended to non zero

temperature by the Matsubara formalism. As it will become clear in this chapter,

the geometry-dependent part of the calculation remains the same for zero and

finite temperature. Thus, the modifications to the technical realization of the

numerical algorithms are rather minor compared with other methods.

In the worldline picture, quantum fluctuations are represented by closed trajec-

tories of virtual particles allowing for an intuitive approach to the Casimir effect

and quantum phenomena in general. Computing the Casimir force between two
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3 Casimir effect in the worldline formalism

rigid bodies for a Dirichlet scalar, we will see that only trajectories intersecting

both bodies contribute to the Casimir force. With this in mind, many geometry

specific features of the Casimir force, such as the dependence on the separation

and the sign of the interaction, the role of curvature and of the edges, and es-

pecially the geometry-temperature interplay can be understood in the worldline

picture.

The worldline approach has proven to be very successful yielding many surpris-

ing predictions for various Casimir geometries [37, 51–60].

3.1 Field theoretic framework

Let us consider a real scalar quantum field φ. The field φ is coupled to a back-

ground potential V (x). The Casimir effect is then defined as the dependence of

the vacuum energy of the field φ on the potential V (x). In this work we focus

on the Casimir forces between disconnected rigid bodies Σ1, Σ2, . . . which can be

represented by the background potential V . The functional form of V in general

allows modeling many physical properties of real materials and types of boundary

conditions. For instance, the Dirichlet boundary conditions imply that all modes

of the field φ are suppressed on V and thus can be modeled by idealized delta

potentials in space as a special case, see Fig. 3.1 for an illustrative example. For

now, let us take V as general as possible and postpone the discussion of its specific

form.

Coupling the fluctuating field φ to the background potential according to ∼
V (x)φ2, we can write the field theoretic Lagrangian as

L =
1

2
φ
(
−∂2 +m2 + V (x)

)
φ. (3.1)

This implies that the potential V (x) has mass dimension 2 and can therefore be

considered to form a spacetime dependent contribution to mass squared. As we

work in D = d+ 1 dimensional Euclidean spacetime, we use

∂2 = ∂2
x1

+ · · ·+ ∂2
xd

+ ∂2
xD
. (3.2)

Not considering further fields or couplings, the classical action becomes

S =

∫
dDxL. (3.3)

The complete unrenormalized quantum effective action Γ is then given by the

relation

exp(−Γ) =

∫
Dφ exp(−S). (3.4)
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3.1 Field theoretic framework

V

φ

Figure 3.1: A schematic illustration of the Dirichlet boundary conditions in d = 1. The delta

potentials V , shown as narrow peaks, live on the boundaries and cause the fluctuating quantum

field φ (dotted line) to vanish there. In between the field propagates freely.

The path integral in Eq. (3.4) states that to obtain the effective action Γ, we

have to sum over all field configurations, where the statistical weight of a given

configuration is exp(−S). The (unimportant) normalization constant in front of

the path integral has been omitted for clarity.1

For time-independent Casimir configurations, the Casimir energy E is related

to the effective action via

E =
Γ∫
dxD

, (3.5)

so that our main aim in this section is to compute Γ.

Since the path integral in Eq. (3.4) is Gaußian, we obtain for Γ

Γ[V ] = − ln

(∫
Dφ exp(−S)

)
= − ln

(
det

(−∂2 +m2 + V (x)

2π

)− 1
2

)
, (3.6)

where we used the familiar formula for Gaußian integrals. Using the relation

ln det = Tr ln (3.7)

and normalizing Γ to satisfy

Γ[V = 0] = 0, (3.8)

1Both Γ and S have of course the same dimension of an action, (energy × time), such that

the exponents in (3.4) shall be divided by Planck’s constant ~, which we, however, have set

to 1. Also Eq. (3.2) is in agreement with the dimensional analysis as c = 1 has been used.
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3 Casimir effect in the worldline formalism

gives the complete unrenormalized quantum effective action:

Γ[V ] =
1

2
Tr ln

[−∂2 +m2 + V (x)

−∂2 +m2

]
. (3.9)

Next, we want to rewrite Eq. (3.9) using the propertime representation of the

logarithm. To derive this representation, we observe that for a positive number

A we have

d

dA
ln(A) =

1

A
, (3.10)

and also

− d

dA

∫ ∞

0

dT exp(−A T )

T =

∫ ∞

0

dT exp(−A T ) =
1

A
, (3.11)

where we have interchanged differentiation and integration. Thus, formally, for

positive A and B we can write

ln

(
A

B

)
= −

∫ ∞

0

dT
T (exp(−AT ) − exp(−BT )) . (3.12)

Eq. (3.12) is a special case of a Frullani’s integral, see [110].

We can generalize Eq. (3.12) to positive definite operatorsA, B. The parameter

T is then usually called Fock-Schwinger propertime.

Let us return to Eq. (3.9). Performing the trace in x space,

Tr[. . . ] =

∫
dDx 〈x| . . . |x〉, (3.13)

and using Eq. (3.12), we get

Γ[V ] = −1

2

∫ ∞

1/Λ2

dT
T

∫
dDx

[
〈x|e−T (−∂2+m2+V (x))|x〉 − 〈x|e−T (−∂2+m2)|x〉

]

= −1

2

∫ ∞

1/Λ2

dT
T

∫
dDx

[
〈x|e−T (−∂2+m2+V (x))|x〉 − e−m2T

(4πT )D/2

]
. (3.14)

Here we have taken into account the UV cutoff Λ at the lower bound of the T
integral for the sake of definiteness only. It will not be present in the end formula

for the Casimir interaction energy.

Now, let us compare the matrix element 〈x| . . . |x〉 with the quantum mechanical

transition amplitude in propertime T , which can be written in terms of path

integrals.
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3.1 Field theoretic framework

For a particle of mass m̃ in a time-independent potential Ṽ , this transition

amplitude reads [44, 111, 112]

〈x′| exp(−itH)|x〉 = N
∫ x(t)=x′

x(0)=x

Dx exp

(
i

∫ t

0

dt̃ L

)
, (3.15)

where

H =
p2

2m̃
+ Ṽ (x) (3.16)

and

L =
m̃ ẋ2

2
− Ṽ (x). (3.17)

Using in (3.15)

Ṽ (x) = m2 + V (x), m̃ =
1

2
, it = T , (3.18)

we conclude that the matrix element 〈x| . . . |x〉 in Eq. (3.14) can be written as

〈x|e−T (−∂2+m2+V )|x〉 = N
∫ x(T /i)=x

x(0)=x

Dx exp

(
i

∫ T /i

0

dt̃

[
1

4
ẋ2 −m2 − V (x(t̃))

])

= N
∫ x(T )=x

x(0)=x

Dx exp

(
−
∫ T

0

dτ

[
1

4
ẋ2 +m2 + V (x(τ))

])
.

(3.19)

This is a path integral over all closed paths, or worldlines, starting and ending at

x(0) = x(T ) = x fixed. In Eq. (3.14), the trace operation induces an integration

over all possible x representing an integration over all starting (and end) points

of worldlines. Thereby, everywhere in spacetime closed worldlines are generated.

For practical purposes, it is useful to shift x,

x→ xCM + x, (3.20)

and not to integrate over the initial points x but over the centers of mass xCM.

This shift implies

∫ T

0

dτxµ(τ) = 0. (3.21)
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3 Casimir effect in the worldline formalism

The normalization constant N in Eq. (3.19) can be found by taking the limit

V → 0 since for zero potential the matrix element can be evaluated analytically:

〈x|eT ∂2 |x〉 =
1

(4πT )D/2
= N

∫

x(0)=x(T )

Dx exp

(
−
∫ T

0

dτ
1

4
ẋ2

)
. (3.22)

This form of N allows us to interpret the path integral in simple terms, namely

as an expectation value of exp(−
∫ T
0

dτ(m2 + V ) with respect to an ensemble of

worldlines with Gaußian velocity distribution,

N
∫

x(0)=x(T )

Dx exp

(
−
∫ T

0

dτ

[
1

4
ẋ2 +m2 + V (xCM + x(τ))

])

=
exp (−m2T )

(4πT )D/2

〈
exp

(
−
∫ T

0

dτ V (xCM + x(τ))

)〉

x

. (3.23)

The quantum effective action (3.14) then eventually reads

Γ[V ] = − 1

2(4π)D/2

∫ ∞

1/Λ2

dT
T 1+D/2

exp
(
−m2T

)

×
∫

dDxCM

〈
exp

(
−
∫ T

0

dτ V (xCM + x(τ))

)
− 1

〉

x

, (3.24)

where the expectation value is given by
〈

exp

(
−
∫ T

0

dτ V (xCM + x(τ))

)〉

x

=

∫
x(0)=x(T )

Dx exp
(
−
∫ T
0

dτ
[

1
4
ẋ2 + V (xCM + x(τ))

])

∫
x(0)=x(T )

Dx exp
(
−
∫ T
0

dτ 1
4
ẋ2
) . (3.25)

3.2 The Casimir interaction energy

As we have stated above, in this work we are merely interested in calculating

Casimir forces between disconnected rigid bodies Σ1,Σ2, . . . Furthermore, we

want to consider only static configurations. A configuration Σ consisting of such

static disconnected bodies may be written in the form

Σ = Σ1 + Σ2 + . . . (3.26)

and can be represented by a time-independent background potential VΣ(x) as

VΣ(x) = VΣ1(x) + VΣ2(x) + . . . (3.27)
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3.2 The Casimir interaction energy

The potentials VΣi
(x) for the single bodies shall not overlap, meaning that at each

point x we have

VΣi
(x)VΣj

(x) = 0, for i 6= j. (3.28)

The Casimir energy is then obtained from the effective action by dividing the

latter by the time integration, see Eq. (3.5).2 This Casimir energy may be

infinite due to self energies of the single bodies. However, these self energies do

not contribute to the Casimir force between the bodies, such that it suffices to

study the interaction Casimir energy Ec, defined by subtracting the self energies

EΣi
of the single bodies from the total Casimir energy EΣ:

Ec =
Γ[VΣ] − Γ[VΣ1] − Γ[VΣ1 ] − . . .∫

dxCM,D

= EΣ − EΣ1 − EΣ2 − . . . (3.29)

The Casimir interaction energy Ec then only depends on the relative positions of

the objects. The Casimir forces Fc or torques Dc are obtained by differentiating

the (negative) interaction energy with respect to parameters characterizing the

separation or orientation of the bodies. These are, e.g., distances a or angles

ϕ. As the subtractions drop out by taking the derivative, the Casimir force and

torque can also be obtained from the total interaction energy

Fc = − d

da
Ec = − d

da
EΣ, Dc = − d

dϕ
Ec = − d

dϕ
EΣ. (3.30)

Subtracting the self energies also removes the field theoretic UV divergences in

Eq. (3.24) since any divergence induced locally by the potentials is canceled. We

can therefore take the limit Λ → ∞. Also from the numerical point of view, the

interaction energy Ec is favorable as it allows us to deal with comparably “small”

numbers.

The definition of the interaction energy in Eq. (3.29) shall not be confused

with renormalization. The interaction energy can be well defined even if the

self energies might be ill-defined in the ideal boundary-condition limit, where the

examples are the perfect conductivity or infinitely thin surfaces [114–118].

2This can be seen by remembering how the vacuum-persistence amplitude 〈0| exp(−iHT )|0〉 =

exp(−iE0T ) is related to the path integral
∫
Dφ e−S . In absence of external sources, one

finds [113] the relation limt→∞〈0| exp(−iHt)|0〉|t→−it
= limt→∞ exp(−E0t) =

∫
Dφ e−S =

exp(−Γ), and thereby E0 = Γ/(
∫

(time)). Here, H denotes the quantum mechanical Hamil-

tonian and E0 the ground-state energy.
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3 Casimir effect in the worldline formalism

Eq. (3.29) is a procedure to find the exact Casimir force between rigid bodies.

The question as to whether the local Casimir energy densities are well defined

is circumvented and remains unanswered. Therefore the computation of Casimir

stresses of single bodies, as e.g. a sphere, can not be tackled by the concept of in-

teraction energy and the renormalization procedure has to be carefully performed,

see [13, 87, 119–125].

Let us return to the form of the background potential VΣ in Eq. (3.27) and con-

fine ourselves to an idealized situation where the boundary conditions are realized

on infinitely thin surfaces. A simple way to model the Casimir configuration Σ

would then be to choose the following background potential

VΣ(x) = λ

∫

Σ

dσ δ(d)(x − xσ). (3.31)

Here, the Casimir configuration Σ is taken to be a d − 1 dimensional surface,

dσ denotes the integration measure, and is assumed to be re-parametrization

invariant, and xσ shall point onto the surface. The positive coupling constant λ

has mass dimension 1.

Eq. (3.31) merely says that if x is on Σ, the value of the potential is λ. For all

other x the potential is zero. Sending λ to infinity, λ → ∞, causes all modes of

the field φ to vanish on Σ. In this limit the potential implies Dirichlet boundary

conditions on Σ [126, 127]. The coupling constant can therefore be considered as a

kind of plasma frequency of the boundary material: if λ is infinite, all fluctuation

frequencies are perfectly reflected. For finite λ on the other hand, the Casimir

boundaries become transparent for frequencies w ≫ λ [37].

At first sight, the realization of Neumann boundary conditions shall be similar.

One would follow the approach for the Dirichlet case and to impose the Neumann

boundary conditions, one would include terms which are proportional to the nor-

mal derivative of the δ function. However, due to these highly singular objects,

the numerical realization becomes very expensive, and also non local terms have

to be taken into account. No simple form for the Casimir energy (similar to the

one which will be given in Eq. (3.34)), suitable for the fast numerical evalua-

tion, has been found so far to our best knowledge. We will not pursue Neumann

boundary conditions in this work, for further details, see [128, 129].
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3.3 The worldline functional

3.3 The worldline functional

Let us now insert the potential (3.31) into Eq. (3.24) and evaluate the τ integral.

Using the familiar rule for the integral with a δ function, we find

IΣ[x(τ)] ≡
∫ T

0

dτ V (x(τ)) = λ
∑

{τσ ; x(τσ)∈Σ}

1

|ẋ⊥(τσ)| , (3.32)

where ẋ⊥(τσ) denotes the component of the τ derivative perpendicular to the

surface at an intersection point and we sum over all intersection points x(τσ) of

the worldline with the surface. If a worldline does not pierce the surface, then

IΣ[x(τ)] is zero. There are also worldlines which merely touch Σ. In this case,

the inverse velocity 1/|ẋ⊥(τσ)| diverges on the surface. The value of IΣ then also

diverges, but since it occurs in the argument of an exponential function, the latter

becomes zero. These worldlines, however, form a null set and can be neglected

anyway.

Let the Casimir configuration Σ now consist of two disconnected bodies, Σ =

Σ1+Σ2. Then the potential is VΣ = VΣ1+VΣ2 and the argument of the expectation

value 〈. . . 〉x in Eq. (3.24) for the interaction energy (3.29) becomes

(
e−IΣ1+Σ2

[x(τ)] − 1
)
−
(
e−IΣ1

[x(τ)] − 1
)
−
(
e−IΣ2

[x(τ)] − 1
)
∈ [0, 1]. (3.33)

Eq. (3.33) is only non zero if the worldline x(τ) does intersect both bodies Σ =

Σ1 + Σ2. Indeed, if x(τ) does not intersect Σ, then we have

(1 − 1) − (1 − 1) − (1 − 1) = 0

since all I’s are zero, IΣ1+Σ2 = IΣ1 = IΣ2 = 0. If only one body is intersected by

x(τ), say Σ1, then

IΣ1+Σ2[x(τ)] = IΣ1 [x(τ)] and IΣ2 [x(τ)] = 0,

and the sum in Eq. (3.33) again becomes zero. Thus, we learn that only those

worldlines which intersect both surfaces contribute to the interaction energy, see

Fig. 3.2.

In the Dirichlet limit λ→ ∞, Eq. (3.33) becomes exactly 1 if both Σ1 and Σ2

are intersected. Introducing the worldline functional ΘΣ[x(τ)] allows us to write

the interaction energy in a compact form [37, 51]

Ec = − 1

2 (4π)D/2

∫ ∞

0

dT exp (−m2T )

T 1+D/2

∫
ddxCM〈ΘΣ[x(τ)]〉x. (3.34)
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3 Casimir effect in the worldline formalism

(b)

(a)

(c)

Σ1

Σ2

Figure 3.2: Worldline contribution to the Casimir interaction energy between a plate (dashed

blue line), denoted by Σ1, and a sphere (dashed blue circle), denoted by Σ2. A worldline which

does not intersect any surface, case (a), does not contribute to the Casimir energy at all, it is an

ordinary vacuum fluctuation. If a worldline intersects only one surface, case (b), it contributes

only to the local energy density, but not to the interaction energy. Only wordlines which see

both surfaces, case (c), contribute to the interaction energy, and thereby to the Casimir force.

The worldline functional then has the following property

ΘΣ[x(τ)] =





1 if the worldline x(τ) intersects both boundaries

0 otherwise
(3.35)

One realizes that the worldline functional ΘΣ is analogous to the standard step

function.

The expectation value in Eq. (3.34) is taken with respect to an ensemble of d-

dimensional closed worldlines with a common center of mass xCM and a Gaußian

velocity distribution, see Eq. (3.25),

〈. . . 〉 =

∫
xCM

Dx . . . e−
1
4

R

T

0
dτ ẋ

2(τ)

∫
xCM

Dx e−
1
4

R

T

0
dτ ẋ

2(τ)
. (3.36)

Eq. (3.34) has an intuitive interpretation: All worldlines intersecting both sur-

faces do not satisfy Dirichlet boundary conditions on both surfaces. They are

24



3.4 Temperature in the worldline formalism

removed from the ensemble of allowed fluctuations by the ΘΣ functional and thus

contribute to the negative Casimir interaction energy.

The auxiliary parameter T , the so-called propertime, effectively governs the

size of a worldline: In the process of the T integration, the propertime parameter

T scales the extent of a worldline by a factor of
√
T . Large T correspond to long-

wavelength or IR fluctuations, small T to short-wavelength or UV fluctuations.

Within the worldline picture, it becomes intuitively evident that for a Dirichlet

scalar the Casimir interaction energy is negative. The interaction energy then

monotonously increases with the (suitably defined) distance a between the sur-

faces, meaning that the resulting force is always attractive. This is in agreement

with a theorem stated in [70].

3.4 Temperature in the worldline formalism

Finite temperature can be implemented with the aid of the Matsubara formalism

[130], which is equivalent to compactifying Euclidean time on the interval [0, β].

For bosonic fields, as in the present case, we furthermore have to impose periodic

boundary conditions. As a consequence, the closed worldlines now live on a

cylindrical surface S1 × Rd and can carry a winding number. The worldlines

x
(n)(τ) winding n times around the cylinder can be decomposed into a worldline

x̃(τ) with no winding number and a winding motion at constant speed,

x
(n)
i (τ) = x̃i(τ) +

nβτ

T δiD, (3.37)

where theDth component corresponds to Euclidean time. Let us confine ourselves

to a massless scalar field. The Casimir interaction energy (3.34) now becomes

Ec = − 1

2(4π)D/2

∫ ∞

0

dT
T 1+D/2

∞∑

n=−∞
e−

n2β2

4T

∫
ddxCM 〈ΘΣ[x(τ)]〉 . (3.38)

The finite-temperature worldline formalism for static configurations thus boils

down to a winding-number prefactor in front of the worldline expectation value

together with a sum over winding numbers:

〈. . . 〉 →
(

1 + 2

∞∑

n=1

e−
n2β2

4T

)
〈. . . 〉. (3.39)

The winding-number sum is directly related to the standard Matsubara sum by

a Poisson resummation,
(

1 + 2

∞∑

n=1

e−
n2β2

4T

)
=

√
4πT
β

∞∑

m=−∞
e−( 2πm

β )
2T . (3.40)
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3 Casimir effect in the worldline formalism

The Poisson ressumation turns out to be a crucial tool for studies of high temper-

ature effects, see Appendix A. The winding-number sum converges rapidly in the

low- and intermediate temperature range, where this range depends on the config-

uration parameters. At high temperatures on the other hand, the Matsubara sum

converges rapidly, such that fast convergence is provided for all temperatures.

This is already sufficient to understand the high-temperature limit of generic

Casimir configurations: at high temperatures β → 0, only the zeroth Matsubara

frequency survives as higher modes receive thermal masses of order ∼ 2π/β = 2πT

and decouple. All remaining temperature dependence arises from the dimensional

prefactor 1/β = T , and the dependence on the Casimir geometry only enters the

prefactor. The calculation of the latter is a dimensionally reduced problem in

D − 1 dimensions. This is a general mechanism of dimensional reduction in

high-temperature field theories. The linear high-temperature asymptotics is also

clear from the fact that the Bose-Einstein distribution governing the distribution

of bosonic thermal fluctuations increases as ∼ T in the high-temperature limit.

Universal features of thermal Casimir energies with an emphasis on the high-

temperature limit have been systematically studied in [131–134].

3.5 Worldline numerics

For numerical as well as analytical calculations, it is advantageous to rescale the

worldlines such that the velocity distribution becomes independent of T ,

γ(t) :=
1√
T

x(T t) → exp

(
−1

4

∫ T

0

ẋ
2dτ

)
= exp

(
−1

4

∫ 1

0

γ̇
2dt

)
, (3.41)

where the dot always denotes a derivative with respect to the argument, e.g.,

γ̇ = dγ(t)/dt. In terms of these normalized worldlines γ and the center-of-mass

coordinate xCM, the ΘΣ functional reads more explicitly

ΘΣ[x] ≡ ΘΣ[xCM +
√
T γ(t)]. (3.42)

The involved worldline integrals can be evaluated numerically by Monte Carlo

methods in a straightforward manner. For this, the path integral over an operator

O is approximated by a sum over a finite ensemble of nL loops,

〈O[γ]〉 → 1

nL

nL∑

ℓ=1

O[γℓ], (3.43)

where ℓ counts the worldlines in the ensemble. Each worldline γ(t) is furthermore

discretized by a finite set of N points per loop (ppl),

γ(t) → γi = γ(ti), ti =
i

N
, i = 0, . . . , N, (3.44)
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3.5 Worldline numerics

where γ0 = γN are identified as the worldlines are closed. Various efficient ab

initio algorithms for generating discretized worldlines with Gaußian velocity dis-

tribution have been developed, see, e.g., [37, 135]. In this work, the worldlines

were generated using the “v-loop” algorithm [37], which we present in Sec. 3.6.

We conclude that for the numerical evaluation of the Casimir energy (3.38),

two discretizations have to be performed: The path integral is approximated by a

finite sum over an ensemble of nL worldlines, where each path is discretized, i.e. is

represented byN points. The discretization error then depends on two parameters

nL and N . The number of worldlines in the ensemble determines the statistical

error of the arithmetic mean. The statistical error is therefore ∼ 1/
√
nL as the

worldlines do not depend on each other. The systematic error is related to the

number of points per worldline N . The generated worldlines are systematically

too small, where the systematic error is ∼ 1/
√
N , see next section.

The number of points N has to be chosen appropriately, such that the system-

atic error is less than the statistical one. Depending on the configuration, N can

be much smaller, equal or much larger than nL. For instance, in some cases, the

systematic error can be partially canceled by an appropriate normalization of the

Casimir force to a result which can also be calculated analytically. For example,

the Casimir force for a sphere above a plate at small separations is related to the

worldline extent λ as

Fc(a) ∼
〈λ4〉
a3

.

As we will see in chapter 4, 〈λ4〉 can be evaluated fully analytically, such that

normalizing Fc to 〈λ〉 allows us to use large nL along with comparable small N

for high precision calculations. A counter-example to this case is a sphere above

a plate, where the separation a is much larger than the radius. In order to resolve

the sphere, “high” values for N have to be chosen, such that for the case where

the systematic error is equal to the statistical one, we nevertheless have N ≫ nL.

In this work we have used ensembles with up to nL = 1.5 ·106 and N = 60 ·106.

The computational effort scales only linearly with N and nL.

Notice that despite the described discretization, spacetime is still treated as a

continuum. In this sense worldline numerics is superior to conventional lattice

computations. Indeed, using a discrete spacetime lattice for resolving a smoothly

curved or sharp edged boundary, necessarily a tiny lattice spacing is required,

resulting in a huge numerical effort.

Although, intrinsically, worldline numerics is completely independent of the

background geometry, the computational time can be considerably reduced by

adapting the algorithms to a given configuration. We will present such algorithms
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3 Casimir effect in the worldline formalism

for various non-trivial Casimir configurations in the chapters to follow. In many

cases, we even obtain novel analytical results using, actually, a numerical method.

In the remainder of this chapter we describe an efficient method for the gener-

ation of worldline ensembles, the “v-loop” algorithm [37].

3.6 The “v-loop” algorithm

In this section, we give a possible numerical realization of the worldline integrals in

Eq. (3.25), the “v-loop” algorithm, as it was originally proposed in [37]. Our aim

is to approximate the analytical integrals over infinitely many closed worldlines by

an ensemble average over finitely many closed loops obeying a Gaußian velocity

distribution P [γ(t)],

P [γ(t)] = δ

(∫ 1

0

dtγ(t)

)
exp

(
−1

4

∫ 1

0

dt γ̇2

)
, with γ(0) = γ(1). (3.45)

The condition γ(0) = γ(1) ensures that the worldlines are closed. Due to the

δ constraint, the worldlines are centered upon a common center of mass. Here,

we work with rescaled worldlines γ(t), as introduced in Eq. (3.41), such that the

velocity distribution becomes independent of T . We also have dropped the nor-

malization of the distribution since it becomes irrelevant when taking expectation

values.

As stated in Eq. (3.44), we discretize the propertime parameter t and thereby

the wordline γ(t) as,

γ(t) → {γi} ∈ R
D, t → i

N
, dt → 1

N
, i = 0, . . . , N, (3.46)

where γ0 = γN and N is the number of points per worldlines.

By discretizing γ̇ in the exponent of Eq. (3.45),

γ̇ → N(γi − γi−1),

the probability distribution P [γ(t)] becomes

P [γ(t)] → P [{γi}] = δ (γ1 + . . .+ γN) exp

(
−N

4

N∑

i=1

(γi − γi−1)
2

)
. (3.47)

Now, we want to perform a linear variable transformation

{γk} → {vk},
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3.6 The “v-loop” algorithm

such that the discretized distribution (3.47) becomes purely Gaußian. This is at

heart of the “v-loop” algorithm: The purely Gaußian numbers can be straight-

forwardly generated by standard methods, as e.g. with the Box-Mueller method;

the {γk} can then be obtained by the inverse transformation.

Let us now perform this linear transformation. Because of the δ function, we

may express for example γN as

γN = −γ1 − . . .− γN−1. (3.48)

This gives

P [{γi}] = exp
(
− N

4

(
(2γ1 + γ2 + . . .+ yN−1)

2 + (γ1 + γ2 + . . .+ 2γN−1)
2
)

− N

4

N−1∑

i=2

(γi − γi−1)
2
)

= exp
(
− N

4
Γ
)

(3.49)

In order to diagonalize the quadratic form Γ in the exponent, let us define

v1 ≡
3

2
γ1 + γ2 + γ3 + . . .+ γN−2 +

3

2
γN−1,

vi ≡ γi − γi−1, i = 2, 3, . . . , N − 1. (3.50)

It is also useful to introduce

vi,j ≡ vi + vi−1 + . . .+ vj+1 ≡ γi − γj, for i ≥ j = 1, 2, . . . , N − 1. (3.51)

The quadratic form Γ now takes the form

(
v1 −

1

2
vN−1,1

)2

+

(
v1 +

1

2
vN−1,1

)2

+

N−1∑

i=2

v2
i = 2v2

1 +
1

2
v2

N−1,1 +

N−1∑

i=2

v2
i . (3.52)

We shall denote variables appearing purely quadratically, as it is the case here

for v1, by an overline. From the last two terms of Eq. (3.52), we can construct

another purely quadratic variable. Using the definition (3.51), we note

vN−1,1 = vN−1 + vN−2,1.

From the last two terms of Eq. (3.52) we then obtain

1

2
v2

N−1,1 +
N−1∑

i=2

v2
i =

1

2
(vN−1 + vN−2,1)

2 + v2
N−1 +

N−2∑

i=2

v2
i (3.53)

=
3

2
v2

N−1 +
1

2
v2

N−2,1 +

N−2∑

i=2

v2
i , (3.54)
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3 Casimir effect in the worldline formalism

where the purely quadratic vN−1 has been defined as

vN−1 ≡ vN−1 +
1

3
vN−2,1. (3.55)

The same form can be achieved for the remaining v2 . . . vN−2 by the following

prescription

vN−i ≡ vN−i +
1

i+ 2
vN−i−1,1, i = 1, . . . , N − 2. (3.56)

The quadratic form Γ then becomes purely Gaußian, and one finds

Γ = 2v2
1 +

3

2
v2

N−1 +
4

3
v2

N−2 + . . .+
i+ 2

i+ 1
v2

N−i + . . .+
N

N − 1
v2

2. (3.57)

Of course, the variable transformation will generate a Jacobian, however, this

(non zero) Jacobian will only modify the normalization of the distribution, being

irrelevant for the expectation values. Thus, we will not discuss this issue.

For the construction of a {γi}, all steps have to be performed backwards. The

“v-loop” algorithm consists of four steps:

1. generate N − 1 numbers wi, i = 1, . . . , N − 1, distributed according to

exp(−w2
i );

2. compute the vi, i = 1, . . . , N − 1, by normalizing the wi:

v1 =

√
2

N
w1,

vi =

√
4(N + 1 − i)

N(N + 2 − i)
wi, i = 2, . . . , N − 1;

3. compute the vi, i = 2, . . . , N − 1 according to

vi = vi −
vi−1,1

N + 2 − i
, where vi−1,1 =

i−1∑

j=2

vj ;

4. construct the γi, i = 1, . . . , N via

γ1 =
1

N

(
v1 −

N−1∑

i=2

(
N − i+

1

2

)
vi

)
,

γi = γi−1 + vi, i = 2, . . . , N − 1,

γN = −
N−1∑

i=1

yi .
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A d-dimensional worldline can be build up using one-dimensional worldlines for

each of the d components. Of course, repeating the algorithm d times, one has to

use each time new random numbers. For the generation of an ensemble consisting

of nL (d-dimensional) worldlines, the algorithm has to be repeated (d×nL) times.

The complexity of the “v-loop” algorithm is O(N), such that the numerical

effort scales linearly with d, N and nL. The systematic error for the maximal

extent of a worldline is aboout the average spacing 〈|γi −γi−1|〉, which is roughly

〈|v2|〉 = 〈|w2|〉
√

4/N ≈
√

1/N , and therefore O(1/
√
N).
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4 Inclined plates at zero

temperature

In this chapter, we investigate the Casimir effect for inclined Casimir plates in

D dimensions using the worldline formalism. We start with a detailed analysis

at zero temperature, which will be extended to finite temperature in the next

chapter.

We compute the Casimir energy, force and torque for the case of a fluctuating

scalar field obeying Dirichlet boundary conditions on the plates and compare our

results with two other established approximate schemes, the proximity force ap-

proximation and the optical approximation. These alternative schemes are found

to be applicable for very small angles of inclination only. For larger inclinations,

the PFA and optical estimates totally disagree with worldline numerical results.

Only recently, results for the inclined plate configuration have been obtained at

zero temperature using scattering theory [136]. This recent solution nicely agrees

with our studies for all angles and therefore confirms worldline numerics.

In the sections to follow, we present many numerical as well as analytical world-

line results, which were published in [57, 58]. We also provide more details of the

calculations.

4.1 Introduction

The dependence of the Casimir force on the separation a between two infinitely

extended parallel plates can be determined by dimensional analysis alone, as long

as the plates are considered as ideal metals and no other dimensionful quantities

are taken into account, as for example temperature or surface roughness. However,

the prediction of the sign of the force (the exact prefactor let alone) is impossible

without a detailed calculation. Since the dimension of ~ c is that of (energy ×
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4 Inclined plates at zero temperature

length) we conclude that the force per unit area in four spacetime dimensions

takes the form

Fc

A
= − d

da

Ec

A
∼ ~ c

a4
, (4.1)

where A is the plates’ area and a the separation distance. The constant of propor-

tionality is a dimensionless number, which does not depend on the microscopic

details of the interaction since ideal metals are characterized by the vanishing

absorption wave length. Therefore, the force law (4.1) is universal and should

apparently be valid for arbitrary separation a.

However, at “small” separations, the Casimir force becomes a van der Waals-

London force which depends differently on a, see Sec. 2.1. This seeming contra-

diction has a simple explanation. Since no microscopic details were considered by

deriving Eq. (4.1), the transition to the non relativistic London-van der Waals

forces at small separations cannot be obtained from the idealistic force law (4.1).

A unified theory of both the van der Waals-London and Casimir forces for a con-

figuration of two parallel plates was developed by Lifshitz (1956) [137], which,

however, is not subject of the present thesis.

In this chapter we will determine the correct universal prefactors for the Casimir

force Fc and the Casimir torque Dc for two ideal inclined plates. Unlike the case of

two parallel plates, the force for inclined plates is proportional to the plate’s length

Ly. The dependence of Fc and Dc on the separation a can again be obtained from

dimensional analysis:

Fc

Ly
∼ ~ c

a3
, (4.2)

Dc

Ly
=

d

dϕ

Ec

Ly
∼ ~ c

a2
, (4.3)

where ϕ is the angle of inclination. For the idealized Casimir configuration, the

prefactors then only depend on the configuration itself, i.e. the angle of inclination

ϕ, the nature of the fluctuating field, and the boundary conditions imposed. For

instance, the coefficient in (4.1) is twice as large for a fluctuating electromagnetic

field, if compared with the corresponding coefficient for a fluctuating real scalar

field. Of course, we keep in mind that the obtained results lose their validity at

very small separations when dealing with real materials.

For simplicity, we restrict ourselves to the Casimir effect induced by a fluctuat-

ing scalar field obeying Dirichlet boundary conditions. Therefore, our results do

not directly predict the Casimir force induced by the fluctuating electromagnetic

field, the universal coefficients will differ quantitatively. However, the qualitative
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4.2 PFA for inclined plates

behavior is expected to be similar. Examples are the edge effect and the transition

from finite to vanishing angles of inclination, see following sections.

Very recently, results for inclined plates have been obtained for the electromag-

netic case at zero temperature within scattering theory [136]. The coefficient for

two perpendicular plates was found to be nearly the same as in the Dirichlet-

scalar case, whereas in the limit of two parallel plates the result is, as expected,

exactly twice as large to the leading order.

The two limiting cases of the inclined plates configuration, namely perpendic-

ular plates and a semi-infinite plate parallel to an infinite one, were studied in

[54, 56] at zero temperature using worldline numerics. We review and generalize

those known results and exemplify how the Casimir effect can be understood in

terms of simple geometric properties of the worldlines.

Before we start with worldline analysis, let us consider a much simpler approx-

imate method, the proximity force approximation (PFA). This simple method is

widely used for comparison. We have already made contact with the PFA in the

introductory chapter.

4.2 PFA for inclined plates

Here we restrict ourselves to four-dimensional spacetime and give the PFA esti-

mates for the configuration of inclined plates, which is studied in the following

sections using worldline numerics. The configuration is shown in Fig. 4.1: the

upper semi-infinite plate is above an infinite plate at an angle ϕ. The minimal

distance between the plates is a = h(r = 0). Both plates are assumed to be

perfectly thin. The semi-infinite plate has an edge with a length Ly.

As we have seen in Sec. 2.5, the proximity force approximation is directly

related to the parallel plates result. In the PFA scheme, the inclined plates

geometry is approximated by infinitesimal parallel plates. However, the PFA is

ambiguous. We can either take the lower plate as a “basis” and approximate the

upper plate by parallel plates as illustrated in Fig. 4.1, or we approximate the

lower plate as in Fig. 4.2.

Both cases are not identical and indeed, the Casimir force depends differently

on ϕ. On the other hand, the dependence on the minimal distance a between the

plates is universal and is determined by dimensional analysis alone.

The Casimir energy per unit area for two parallel plates, according to the
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4 Inclined plates at zero temperature

Eq. (4.1) is

E
‖
c

A
= − c‖

a3
, c‖ =

π2

1440
(4.4)

for a fluctuating real scalar field.

In the first case, we use the lower plate as a basis and obtain for the height

hLP(r) = a+ r tan(ϕ). (4.5)

Integrating with this height over the lower plate we find

Ei.p.−PFA−LP
c

Ly
= c‖

∫ ∞

0

dr

h3
LP(r)

=
c‖
2

cos(ϕ)

sin(ϕ) a2
. (4.6)

On the other hand, using the upper plate for the determination of the height we

get

Ei.p.−PFA−UP
c

Ly

= c‖

∫ ∞

0

dr

h3
UP(r)

=
c‖
2

cos3(ϕ)

sin(ϕ) a2
. (4.7)

Eq. (4.7) can be deduced from Eq. (4.6) by replacing in Eq. (4.6) a by a/ cos(ϕ).

According to the PFA, the true behavior shall lie somewhere in between these

two results. We will compare these two estimates with the worldline result in

Fig. 4.8. There, we will see that the PFA and worldline results only agree to

leading order in ϕ. However, the force per unit length diverges for vanishing ϕ.

Replacing the divergent energy per unit length by finite energy per unit area, we

will obtain a contribution arising from the the edge of the upper plate in the

worldline approach. This so called edge effect is missing in the PFA results.

For two perpendicular plates, ϕ = π/2, the PFA predicts no force at all, whereas

the worldline result remains finite. A systematic treatment of the PFA, specializ-

ing to sphere-cylinder configurations, is given in chapter 8, where we also compare

the PFA with the worldline approach. Let us now return to worldline numerics.
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ϕ

h(r)

r

Figure 4.1: The inclined plates and the proximity force approximation. The lower plate is taken

to be infinite and the upper plate semi-infinite. The upper plate is inclined at an angle ϕ.

The plates’ depth Ly (out of page) is assumed to be infinite. The minimal distance between

the plates is a = h(r = 0). In this figure, the PFA scheme replaces the upper plate by a

superposition of infinitesimal parallel plates.

ϕ

h(r)

r

Figure 4.2: In this figure, the PFA sees the lower plate as a superposition of parallel plates
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4 Inclined plates at zero temperature

4.3 Worldline numerics

In the following, we will thoroughly use the worldline representation of the Casimir

interaction energy, which we derived in the previous chapter. For a configuration

Σ consisting of two rigid bodies with surfaces Σ1 and Σ2, this representation in

D = d+ 1 dimensional spacetime reads

Ec = − 1

2(4π)D/2

∫ ∞

0

dT
T 1+D/2

∫
ddxCM 〈ΘΣ[x(τ)]〉 . (4.8)

Here, the generalized step functional obeys ΘΣ[x] = 1 if a worldline

x(τ) = xCM +
√
T γ(τ)

intersects both surfaces Σ = Σ1∪Σ2, and is zero otherwise. The expectation value

in Eq. (4.8) is taken with respect to an ensemble of d-dimensional closed worldlines

with a common center of mass xCM and a Gaußian velocity distribution.

4.4 Parallel plates

We start with Casimir’s classic configuration of two infinitely extended parallel

plates. Let the lower and upper plate lie in the z = −a and z = 0 planes,

respectively, see Fig. 4.3. In d space dimensions the surface area A of the plates

is then d−1 dimensional. The worldline functional Θ for this configuration reads

Θ‖

[
zCM +

√
T γz,ℓ

]
= θ
(
zCM +

√
T γzmax,ℓ

)
θ
(
−zCM −

√
T γzmin,ℓ − a

)
, (4.9)

where γz,ℓ is the z coordinate of the ℓ’th worldline (measured with respect to the

center of mass). The quantities γzmax,ℓ, γzmin,ℓ denote the worldline’s maximal and

minimal extent in the z direction, respectively, see Fig. 4.3. The total maximal

extent λℓ of the ℓ’th worldline then is

λℓ = γzmax,ℓ − γzmin,ℓ. (4.10)

In order to obtain Eq. (4.9), we note that the worldline functional for two parallel

plates Θ‖ is only non zero if both plates are intersected by the inserted worldline.

This clearly is the case when zCM +
√
T γzmax,ℓ is above the upper plate,

zCM +
√
T γzmax,ℓ

!
> 0, (4.11)
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x

z

a

b

xCM

γzmax

|γzmin
|

Figure 4.3: Sketch of the parallel-plates configuration. A worldline only contributes to the

Casimir energy if it itersects both plates. All information needed for the evaluation of the

Casimir energy is then contained in its extent λ = γzmax
+ |γzmin

| along the z direction, see Eq.

(4.15).

and zCM +
√
T γzmin,ℓ below the lower plate,

zCM +
√
T γzmin,ℓ

!
< −a. (4.12)

The conditions (4.11) and (4.12) are formulated in terms of the two θ functions

in (4.9).

Now, we can do the integral in Eq. (4.8),

E‖
c = − 1

2(4π)D/2

∫ ∞

0

dT
T 1+D/2

∫
ddxCM

〈
Θ‖[x(τ)]

〉
. (4.13)

All spatial integrals apart from the zCM one are trivial and result in the plates’

d− 1 dimensional area A. For the zCM integral one obtains
∫ ∞

−∞
dzCM θ

(
zCM +

√
T γzmax,ℓ

)
θ
(
−zCM −

√
T γzmin,ℓ − a

)

=
(√

T λℓ − a
)
θ
(√

T λℓ − a
)
. (4.14)

With this result we can evaluate the remaining propertime integral analytically,

E
‖
c

A
= − 1

2(4π)D/2

〈∫ ∞

a2/λ2
ℓ

dT
(√

T λℓ − a
)

T 1+D/2

〉
, (4.15)
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4 Inclined plates at zero temperature
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Figure 4.4: Dth moment of the maximum spatial extent λ of a worldline as a function of D.

This geometric object (which is the same in any target dimension of the worldline) is related

to the Casimir energy of the parallel-plates configuration in D spacetime dimensions by Eqs.

(4.17) and 4.18. The plot compares the exact analytical result with the worldline numerical

computation based on 1000 worldlines with 2 × 106 ppl (points per loop) each.

and obtain the Casimir energy density (suppressing the index ℓ from now on)

E
‖
c

A
= − 〈λD〉

D(D − 1)(4π)D/2 aD−1
. (4.16)

We observe that the D-dimensional parallel-plate Casimir energy is related to the

Dth cumulant of the extent of the worldlines [53]. This is a first example for

a relation between Casimir energies and geometric properties of the worldlines.

Instead of computing these cumulants directly, let us simply compare Eq. (4.16)

with the well-known analytic result [108, 109], which was derived in Sec. 2.4,

E
‖
c

A
= − Γ(D/2)ζ(D)

(4π)D/2 aD−1
, (4.17)

yielding

〈λD〉 = D(D − 1)Γ(D/2)ζ(D). (4.18)

A comparison of the analytical result to a numerical evaluation of the cumulants

is displayed in Fig. 4.4. Also, the Casimir force density can straightforwardly

be obtained as the derivative of Eq. (4.16) with respect to a. Incidentally, the

connection between Casimir energies and worldline properties also induces a rela-

tion between Casimir energies and questions in polymer physics, as first observed

in [53].
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4.5 Perpendicular plates
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Figure 4.5: Sketch of the perpendicular-plates configuration. The upper semi-infinite plate,

lying in the x = 0 plane, is perpendicular to an infinite plate (blue lines). The minimal distance

between the plates is a.

4.5 Perpendicular plates

Let us now shortly review the perpendicular plates’ configuration, as studied at

zero temperature in [54, 56]. Both plates are again assumed to be perfectly thin.

The perpendicular-plates configuration consists of a semi-infinite plate perpen-

dicular to an infinite plate, see Fig. 4.5. The semi-infinite plate has an edge with

a (d − 2 dimensional) length Ly. The infinite plate has a (d − 1) dimensional

area A.1 Let a be the minimal distance between the plates. The lower plate

shall lie in the z = −a plane. The upper plate shall cover the x = 0 plane for

positive z values. In the following, we omit the center-of-mass subscript CM and

the index ℓ.

The full worldline functional for this configuration reads

Θ⊥ = θ
(
−z −

√
T γzmin

− a
)

× θ

(
z +

√
T γzmax

(
− x√

T

))
θ
(
−x−

√
T γxmin

)
θ
(
x+

√
T γxmax

)
. (4.19)

1Of course, the labels “semi-infinite” and “infinite” imply that both Ly and A are considered

in the limit Ly, A → ∞.
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4 Inclined plates at zero temperature

The Θ⊥ functional is non zero if both plates are intersected by a worldline. This

happens if, first, the the lower end of the worldline zCM +
√
T γzmin

is below the

lower plate,

zCM +
√
T γzmin

!
< −a. (4.20)

The condition (4.20) agrees, of course, with the condition (4.12) for two parallel

plates and corresponds to the first θ function in Eq. (4.19). The lower plate

is then automatically intersected if the upper plate is also intersected, which is

ensured by the last three θ functions.

These θ functions are non zero if the worldline crosses the x = 0 plane (last

two θ functions), and if at x = 0 its z coordinate is positive.

Now, we can do the integral in Eq. (4.8) for the Casimir energy,

E⊥
c = − 1

2(4π)D/2

∫ ∞

0

dT
T 1+D/2

∫
ddx 〈Θ⊥[x(τ)]〉 . (4.21)

All spatial integrals apart from the x and z integrals are trivial. They result in

the upper plates’ d− 2 dimensional edge, which we denote by Ly.

We can rescale x as x→ −
√
Tx, then the last two θ functions become the upper

and lower bounds of the x integral and the z integral can be done analytically:
∫ ∞

−∞
dz θ

(
−z −

√
T γzmin

− a
)
θ
(
z +

√
T γzmax (x)

)

=

∫ √
T γzmax(x)

√
T γzmin+a

dz θ
(√

T (γzmax(x) − γzmin
) − a

)

=
(√

T (γzmax(x) − γzmin
) − a

)
θ
(√

T (γzmax(x) − γzmin
) − a

)
. (4.22)

The θ function in Eq. (4.22) bounds the propertime integral from below.

Rescaling T as

T → a2

(γzmax(x) − γzmin
)2

T ,

we eventually obtain

E⊥
c

Ly

= − 1

2(4π)D/2aD−2

∫ ∞

1

√
T − 1

T (D+1)/2
dT
〈∫

γxmax

γxmin

dx (γzmax(x) − γzmin
)D−1

〉

= − 1

(4π)D/2(D − 1)(D − 2)aD−2

〈∫
γxmax

γxmin

dx (γzmax(x) − γzmin
)D−1

〉
. (4.23)
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4.5 Perpendicular plates

Note that all relevant information needed for the evaluation of the Casimir energy

is contained in the function γzmax(x) − γzmin
, see Fig. 4.7, where

γzmin
= γzmin

(ϕ = π/2).

For D = 4, the Eq. (4.23) reads

E⊥
c

Ly
= −c⊥

a2
. (4.24)

For the universal coefficient c⊥, we obtain

c⊥ = 6.03(2) · 10−3, (4.25)

in agreement with the value

c⊥ = 6.00(2) · 10−3

from previous worldline studies [54, 56] and a recent result obtained using scat-

tering theory [136], where

c⊥ = 6.0484 · 10−3.

The statistical error in (4.25) is about 0.33%. We used 50 000 worldlines with

2.5 · 106 ppl each.

The computational time for determining the function γzmax(x) − γzmin
is rela-

tively short. For example, a modern desktop PC needs roughly 0.6 seconds per

loop with 2.5 · 106 ppl. The time for the numerical integration is then negligible.

As a comparison, for the corresponding evaluation of the Casimir energy of two

parallel plates, the determination of the maximal extent λ in z direction requires

roughly 0.2 seconds for the same loop.

Since for a given worldline (γx(t),γz(t)) there exists a corresponding worldline

in the ensemble with (γx(t),−γz(t)), it is advantageous to reflect a worldline on

its z axis, i.e. to evaluate the γzmin
(x)− γzmax function as well. This results in an

effective doubling of the worldline ensemble.

The Casimir force can easily be obtained from (4.23) upon differentiation with

respect to a.
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4 Inclined plates at zero temperature

4.6 Inclined plates

The inclined-plates (i.p.) configuration consists of a perfectly thin semi-infinite

plate above an infinite plate at an angle ϕ, see Fig. 4.6. As in the perpendicular

plates configuration, the semi-infinite plate has an edge with a (d−2 dimensional)

length Ly and the infinite plate’s area A is (d− 1) dimensional. Again, the labels

“semi-infinite” and “infinite” imply the limit Ly, A → ∞. The minimal distance

between the plates is a.

This configuration can be obtained from the setup of perpendicular plates by

rotating the infinite plate in the x, z plane. We note that the conditions for the

intersection with the semi-infinite plate are identical for both configurations. The

corresponding condition for the intersection with the infinite plate can be obtained

by a coordinate transformation. Therefore, to obtain the worldline functional

Θi.p.,ϕ, we can use Eq. (4.19), where only the first θ function (belonging to the

infinite plate) has to be modified. The Θi.p.,ϕ functional for the inclined plates

configuration then reads

Θi.p.,ϕ = θ
(
−x cos(ϕ) − z sin(ϕ) −

√
T γxmin

(ϕ) − a
)

× θ

(
z +

√
T γzmax

(
− x√

T

))
θ
(
−x−

√
T γxmin

)
θ
(
x+

√
T γxmax

)
,

(4.26)

where the first θ function ensures the intersection of the worldline with the infinite

plate. The remaining three ones account for the intersection with the semi-infinite

plate and are the same as in (4.19 ). In Eq. (4.26), we have used

γxmin
(ϕ) ≡ min

t
(γx(t) cos(ϕ) + γz(t) sin(ϕ)) , (4.27)

where t parameterizes the worldline; i.e., in the discretized version, we have t =

1 . . .N with N being the number of points per worldline loop (ppl). Trivially, it

holds that

γxmin
(0) = γxmin

and γxmin
(π/2) = γzmin

. (4.28)

In other words, γxmin
(ϕ) measures the minimal extent of the worldline in the x

direction of a coordinate system rotated by the angle ϕ. In Eq. (4.26), we also

encounter γzmax
(x), denoting the x-dependent envelope of the worldline in positive

z direction. All these geometric properties of a worldline are displayed in Fig. 4.7.

The Θi.p.,ϕ functional in Eq. (4.26) generalizes the case of perpendicular plates (⊥)

for ϕ = π/2 and the case of one semi-infinite plate parallel to a infinite one (1si)

for ϕ→ 0; both edge configurations were studied in detail in [54, 56].
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4.6 Inclined plates
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Figure 4.6: Sketch of the inclined-plates configuration. The infinite plate (dashed line) is rotated

in the x, z plane by an angle ϕ. As special cases, ϕ = 0 corresponds to the configuration of one

semi-infinite plate parallel to an infinite plate (1si configuration), whereas ϕ = π/2 yields the

perpendicular-plates configuration.

Inserting Θi.p.,ϕ for ϕ 6= 0 into Eq. (6.1) leads to the Casimir energy density of

the inclined plates

Ei.p.,ϕ
c

Ly
= − 1

2(4π)D/2

〈∫ ∞

0

dT
√
T

T 1+D/2

∫ ∞

−
√

Tγzmax(x)

dz

×
∫

γxmax

γxmin

dx θ
(
−a−

√
T γxmin

(ϕ) +
√
T x cos(ϕ) − z sin(ϕ)

)〉
, (4.29)

where x was rescaled as x→ −x/
√
T .

For sin(ϕ) 6= 0 the θ function translates to an upper bound on the z integral.

Doing the z integral for sin(ϕ) 6= 0 results in,
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4 Inclined plates at zero temperature
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Figure 4.7: All relevant information for the evaluation of the Casimir energy of the inclined

plates, (4.32), is encoded in the function γm(x), which has to be integrated from γxmin
to γxmax

.

Ei.p.,ϕ
c

Ly
= − 1

2(4π)D/2

〈∫ ∞

0

dT
T (1+D)/2

∫
γxmax

γxmin

dx

×
(√

T (x cos(ϕ) − γxmin
(ϕ)) − a

sin(ϕ)
+
√
T γzmax(x)

)

× θ

(√
T (x cos(ϕ) − γxmin

(ϕ)) − a

sin(ϕ)
+
√
T γzmax(x)

)〉
. (4.30)

Let us define

γm(x) ≡ x cos(ϕ) + sin(ϕ)γzmax(x) − γxmin
(ϕ). (4.31)

The function γm(x) is shown in Fig. 4.7.

The θ function in Eq. (4.30) imposes a lower bound a2/γ2
m(x) on the T integral.

With T → T a2/γ2
m(x) we eventually obtain
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4.6 Inclined plates

Ei.p.,ϕ
c

Ly
= − csc(ϕ)

(4π)D/2(D − 1)(D − 2) aD−2

〈∫
γxmax

γxmin

dx γ
D−1
m (x)

〉
. (4.32)

Actually, the integrand in Eq. (4.32) should be multiplied by θ(γm(x)). As γm(x)

is never negative, see Fig. 4.7, this θ function can be omitted.

We can write Eq. (4.32) as

Ei.p.,ϕ
c

Ly

= − c(D,ϕ)

sin(ϕ) aD−2
, (4.33)

where the function c(D,ϕ) depends only on D and ϕ.

For ϕ = π/2 and D = 4, we rediscover the perpendicular plates result [54, 56]

as a special case. Incidentally, the integral in Eq. (4.32) can be done analytically

for ϕ = 0 resulting in
〈
λD
〉

D
= (D − 1)Γ(D/2)ζ(D). (4.34)

We therefore find an analytical expression for c(D,ϕ = 0)

c(D,ϕ = 0) =
Γ(D/2)ζ(D)

(4π)D/2(D − 2)
=
c‖(D)

D − 2
, (4.35)

where c‖(D) is the parallel plates coefficient, see Eq. (4.17).

The function c(D,ϕ) , normalized to its value at ϕ = 0, is shown as a function

of ϕ in Fig. 4.8 for D = 4. In Fig. 4.8 we also plot the naive PFA estimate,

a result from optical approximation [36, 138] (see appendix B) and a solution

found recently for inclined plates at zero temperature by Graham et al. using

scattering theory [136]. In all these cases the Casimir energy can be written as in

Eq. (4.33), where only the coefficient c(D,ϕ) is characteristic for a case chosen.

Our data nicely agrees with the latter solution [136]. On the other hand, the PFA

and the optical approximation fail to predict even the correct sign of the small ϕ

correction. .

Note that together with the ϕ-dependent prefactor, Eq. (4.32) diverges as ϕ→ 0

as it should, see Eq. (4.35) This is because Eq. (4.32) corresponds to the energy

per unit edge length, whereas for ϕ→ 0 the Casimir energy becomes proportional

to the area of the semi-infinite plate. At first glance, at least the divergent ϕ = 0

behavior is described correctly by the PFA. We devote the whole next section to

analyzing how the limit ϕ → 0 yielding the 1si configuration can be obtained.

In this 1si configuration configuration, a subleading contribution arising from the

edge emerges, which is not seen by the PFA, even in the limit ϕ→ 0.
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4 Inclined plates at zero temperature
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Figure 4.8: Normalized inclined plates coefficient c(D, ϕ) for D = 4 versus the angle of inclination

for different approximation schemes. Our worldline data nicely agrees with the Graham et al.

solution [136] (double dashed black line). The blue area corresponds to the PFA prediction: for

the upper bound, we have used the infinite plate as a basis, for the lower bound the semi infinite

plate, yielding cos(ϕ) and cos3(ϕ) as bounding curves, respectively (see Sec. 4.2). For the optical

approximation (pink circles), we have plotted the first four terms of the full result, which can be

found in appendix B. We expect the full result to be slightly greater, such that the normalized

coefficient becomes 1 for all curves at ϕ = 0. Surprisingly, in the optical approximation, the

coefficient c(4, ϕ) diverges for ϕ → π/2, resulting in a vanishing coefficient for ϕ ≈ 1.15 and an

attractive Casimir force for ϕ & 1.15. Around ϕ = 0, the optical approximation is very well

described by the upper PFA bound. For the worldline points, we have used 50000 worldlines

with 2.5 · 106 ppl each and have plotted the errorbars five times larger.

4.7 Inclined plates, ϕ→ 0 limit

It is instructive to study the limit of a semi-infinite plate parallel to an infinite

plate (1si), ϕ → 0, as it involves a subtle limiting process. Recalling the general

considerations of [54, 56] for the 1si case, the total Casimir interaction energy

decomposes into

E1si
c = E1si,‖

c + E1si,edge
c , (4.36)

where E
1si,‖
c /A is the usual Casimir energy per unit area of two parallel plates

Eq. (4.17), with A now being the area of the semi infinite plate. The so called edge

energy E1si,edge
c measures the contribution that arises solely due to the presence

of the edge.
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4.7 Inclined plates, ϕ→ 0 limit

In the limit ϕ → 0, this decomposition is naturally achieved by inserting

Θi.p.,ϕ=0 of Eq. (4.26) into Eq. (6.1) and performing the z integral first. This

leads to

E1si,edge
c

Ly
= − 1

(4π)D/2(D − 2)aD−2

〈∫
γxmax

γxmin

dx γzmax(x)(x− γxmin
)D−2

〉
. (4.37)

This representation can straightforwardly be computed numerically. For D = 4,

we find with 50 000 worldlines and 2.5 · 106 ppl

E1si,edge
c

Ly
= − cedge(D = 4)

a2
(4.38)

= − 2.63(1) · 10−3

a2
, (4.39)

in agreement with 0.00262(1) in [54]. Within the scattering approach [136], the

authors obtain 0.0025. However, their data suggests that the result should be

rather greater and agree with Eq. (4.39), see Fig. 4.9.

Of course, for truly infinite plates, the edge effect being proportional to the

length of the edge is completely negligible in comparison with E
1si,‖
c , the latter

being proportional to the area of the plates. However, dealing with finite plates,

the edge effect contributes to the Casimir force, effectively increasing the plate’s

area [54].

Of course, the same result has to arise from the general inclined-plates formula

Eq. (4.32) in the limit ϕ → 0. However, this representation naively exhibits

a divergence in this limit. To find the origin of the divergence, we decompose

Eq. (4.32) into the parts corresponding to the edge effect Eedge,ϕ
c and the semi-

infinite-plates energy E
‖,ϕ
c , characterized by the integrals

∫ 0

−γzmax(x)

. . . dz and

∫ Lz/2

0

. . . dz,

respectively . Here Lz/2 denotes the (infinite) length of the semi-infinite plate in

z direction. The result for Eedge,ϕ
c reads

Eedge,ϕ
c = − Ly

(4π)D/2(D − 2)aD−2

〈∫
γxmax

γxmin

γzmax(x)γ
D−2
m (x)dx

〉
, (4.40)

which becomes Eedge
c in Eq. (4.37) as ϕ → 0; Eq. (4.40) is therefore valid for

ϕ = 0.
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4 Inclined plates at zero temperature

On the other hand, if we naively expand the result for E
‖,ϕ
c for small ϕ, we

obtain

E‖
c

?
= − 〈λD〉Ly

(4π)D/2(D − 2)(D − 1)DaD−2ϕ

+
〈λD−1

x γ
′
xmin

(ϕ = 0)〉Ly

(4π)D/2(D − 2)(D − 1)aD−2
+ O(ϕ), (4.41)

which is only valid for ϕ 6= 0 and does not reproduce Eq. (4.16) in the limit

ϕ→ 0. (We argue in the end of this subsection that the second term is zero.)

Instead of the energy per area, we have obtained the energy per length, which

of course diverges in this limit. In order to rediscover the Casimir energy for the

1si configuration, the limits ϕ → 0 and the implicit limit Lz → ∞ have to be

taken in the right order. In Eq. (4.41), the limit Lz → ∞ has implicitly been

performed first, which precisely leads to the divergence of the energy per edge

length. Therefore, we need to first perform the limit ϕ → 0 at finite Lz in order

to obtain the desired energy per area. Starting from E
‖,ϕ
c at small ϕ,

E‖,ϕ→0
c = − Ly

2(4π)D/2

〈∫ ∞

0

dT
T (D+1)/2

∫ Lz/2

0

dz

×
∫

γxmax

γxmin

dx θ
(
−a+

√
T x− zϕ−

√
T γxmin

)〉
, (4.42)

we do the T integral first and obtain

E‖,ϕ→0
c = −Ly〈λD〉(a2−D − (a + Lzϕ/2)2−D)

(4π)D/2(D − 2)(D − 1)Dϕ
. (4.43)

For small (Lzϕ), i.e., finite Lz and ϕ→ 0, we can expand the last factor in ϕ,

E‖,ϕ→0
c

∼= − Ly〈λD〉
(4π)D/2(D − 1)D

(
1

2
a1−DLz −

1

8
a−D(D − 1)L2

zϕ

)
, (4.44)

which for ϕ ≡ 0 corresponds exactly to the parallel-plates contribution E
1si,‖
c

in Eq. (4.16). From Eq. (4.43), we also observe that the other order of limits,

taking first Lz → ∞ while keeping ϕ finite, reproduces the divergent behavior

of the energy per edge length in Eq. (4.41) (as long as Re[D] > 2). The proper

order of limits is similarly important at finite temperature with the additional

complication that another dimensionful parameter occurs.
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4.7 Inclined plates, ϕ→ 0 limit
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Figure 4.9: Normalized inclined plates coefficient c(D, ϕ) for D = 4 versus the angle of inclination

in the vicinity of ϕ = 0. The small ϕ limit (dashed green line) was calculated using the Eq.

(4.48), resulting in 1 + 2 (cedge(4)/c‖(4))ϕ ≈ 1 + 0.767 ϕ. This limit agrees with the Graham et

al. solution [136] (double dashed black line) and our worldline data, which verifies Eq. (4.48).

We have used 50000 worldlines with 2.5 · 106 ppl each and have plotted the errorbars two times

larger.

Let us return to Eq. (4.41). In the following, we argue that its second term

vanishes. Note that

γ
′
xmin

(ϕ = 0) = γzmin
(γxmin

). (4.45)

As γzmin
(γxmin

) is the z coordinate of the worldline at the very left end, its average

is zero by symmetry arguments,

〈γzmin
(γxmin

)〉 = 0. (4.46)

Since the extent in x-direction λx of a worldline and its z coordinate at the left

end, γzmin
(γxmin

), are uncorrelated, it follows that

〈λD−1
x γzmin

(γxmin
)〉 = 〈λD−1

x 〉〈γzmin
(γxmin

)〉 = 0, (4.47)

such that the O(ϕ) correction to Eq. (4.35) consists only of the edge effect. We

conclude that for small ϕ, the coefficient c(D,ϕ) in (4.33) can be written as

c(D,ϕ) =
c‖(D)

D − 2
+ cedge(D)ϕ+ O(ϕ2). (4.48)

The coefficient c(D,ϕ) and the expansion (4.48) are shown for small ϕ and D = 4

in Fig. 4.9 together with the Graham et al. solution [136].
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Figure 4.10: Normalized Casimir torque per edge length
Di.p.,ϕ

c

Ly
× aD−2 of the inclined-plates

configuration in D = 4 and its expansion around ϕ = π/2 (Eq. (4.50)) and ϕ = 0 (Eq. (4.51)),

respectively, versus the angle of inclination ϕ. We have used 10000 worldlines with 106 ppl each.

4.8 Casimir torque of inclined plates

The Casimir torque Di.p.,ϕ
c , referring to rotations of one of the plates about the

edge axis, can easily be obtained by taking the derivative of the Casimir energy

(4.32), (or Eq. (4.43) for small ϕ), with respect to the angle of inclination:

Di.p.,ϕ
c =

dEi.p.,ϕ
c

dϕ
. (4.49)

For ϕ near π/2, we can even set dγxmin
(ϕ)/dϕ = 0 before taking the average

with respect to the loop ensemble, simplifying the calculations. This is, because

the derivative dγxmin
(ϕ)/dϕ changes its sign for perpendicular plates ϕ = π/2 if

the worldline is rotated by an angle π about the normal axis of the lower plate,

see Fig. 4.6. Therefore, the sign correlates with the position of the minimum

on the x axis of the lower plate. But the position x of the minimum γxmin
(ϕ)

does not correlate with the value of the integral in Eq. (4.32) leading to a mutual

cancellation of terms involving dγxmin
(ϕ)/dϕ.

For ϕ < π/2, we have to rotate the worldline about the normal axis of the

inclined lower plate. Then, the correlation between the position of the minimum
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4.8 Casimir torque of inclined plates

and the involved integrals does not vanish any more since the original and rotated

worldline contribute differently to the integral.

In general, expressions containing derivatives of γxmin
(ϕ) cannot be neglected

even at ϕ = π/2. Since the worldlines are not smooth, the convergence of av-

erages of such expressions will be very slow. This is the case when calculating

the coefficients of an expansion of Eq. (4.49) near ϕ = π/2. Since the second

derivative already appears in the first expansion coefficient, more confident val-

ues are obtained by a numerical fit to Eq. (4.49). There, only the first derivative

is present.

For D = 4, we obtain (see Fig. 4.10)

D
i.p.,ϕ→π/2
c a2

Ly
≈ 0.00329(5)

(π
2
− ϕ

)
+ 0.0038(5)

(π
2
− ϕ

)3

. (4.50)

This should be compared to the worldline average based on the expansion of

Eq. (4.49) around π/2: the linear coefficient in Eq. (4.50) then yields 0.003 ±
0.0002. If we neglect all derivatives of γxmin

(ϕ) the worldline result reads 0.00285

± 0.00003. In all three cases 10000 worldlines with 106 ppl were used.

For ϕ→ 0, the Casimir torque diverges. The expansion about ϕ = 0 can easily

be obtained analytically from (4.43)

Di.p.,ϕ→0
c

∼= LyΓ(D/2)ζ(D)

(4π)D/2(D − 2)aD−2ϕ2
, (4.51)

where we have used Eq. (4.18). For D = 4, Eq. (4.51) yields

π2Ly

2880 a2ϕ2
≈ 0.00343

Ly

a2ϕ2
,

being excellent approximation to Eq. (4.49) for ϕ not too close to π/2.

The divergent Casimir torque per length can be converted into finite torque

per unit area by means of Eq. (4.43). Note that Eq. (4.43) leads to the classical

result for the torque,

D‖,ϕ→0
c =

ALzΓ(D/2)ζ(D)(D− 1)

2(4π)D/2aD
, (4.52)

where A and Lz denote the semi-infinite plate’s area and extent in z direction,

respectively.

For D = 4, Eq. (4.52) becomes

ALzπ
2

960 a4
≈ 0.0103

ALz

a4
.
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4 Inclined plates at zero temperature
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Figure 4.11: Normalized edge energy per edge length
Eedge,ϕ

c

Ly
× aD−2 of the inclined-plates con-

figuration in D = 4 and its expansion around ϕ = 0 versus the angle of inclination ϕ. We have

used 10000 worldlines with 106 ppl each.

A new characteristic contribution emerges from the edge effect Eq. (4.40). Unlike

the total inclined-plate Casimir energy

Ei.p.,ϕ
c = E‖,ϕ

c + Eedge,ϕ
c ,

the edge energy (4.40) decreases with the angle of inclination ϕ, see Fig. 4.11.

This leads to a contribution which works against the standard torque (4.52).

For D = 4, the correction to Eq. (4.52) emerging from the edge effect reads

Dedge,ϕ→0
c = −3.66(4) · 10−3 Ly

a2
, (4.53)

where we have used 10000 worldlines with 106 ppl each. The coefficient in

Eq. (4.53) was calculated by expanding Eq. (4.40) around ϕ = 0. Equation

(4.53) is shown in Fig. 4.11. We will see a similar subleading repulsive torque

effect in the next section, where we investigate finite-temperature contributions.
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4.9 Conclusions and summary of results in D = 4

4.9 Conclusions and summary of results in D = 4

In this chapter, we have presented a systematic treatment of the Casimir effect for

the inclined plates geometry in D dimensions and at zero temperature. We have

developed efficient worldline numerical algorithms that allow a fast calculation of

all relevant physical quantities. We have also related the Casimir effect to simple

geometric properties of worldlines.

Our worldline results nicely agree with a recent solution using scattering theory

[136]. Also the special case of perpendicular plates and of semi-parallel plates

confirms previous worldline studies [54, 56]. On the other hand, the widely used

proximity force approximation is found to be valid to leading order in ϕ only.

The other approximate scheme, the optical approximation, is very much similar

to the PFA at small ϕ and becomes invalid for larger inclinations.

We will study the Casimir effect at finite temperature for the inclined plates

configuration in the next chapter.

Let us summarize our most important results, specializing to 3+1 dimensional

spacetime and concentrating on the Casimir interaction energy; the corresponding

force can straightforwardly be derived by differentiation. At zero temperature,

the classical Casimir energy of two parallel Dirichlet plates at a distance a reads

E
‖
c

A
= −c‖~c

a3
, c‖ =

π2

1440
≈ 0.00685, (4.54)

where A is the area of the plates. We use natural units, setting ~ = c = 1.

The Casimir energy of inclined plates (i.p.) can be parameterized as

Ei.p.,ϕ
c

Ly
= − c(D = 4, ϕ)

sin(ϕ) a2
, (4.55)

where the coefficient c(4, ϕ) is shown in Fig. 4.8 as a function of ϕ. The extent

of the inclined plate in y direction along the edge is Ly.

For small ϕ, the coefficient c(4, ϕ) can be written as

c(4, ϕ) =
c‖(4)

2
+ cedge ϕ+ O(ϕ2). (4.56)

For all ϕ the coefficient c(D = 4, ϕ) nicely agrees with the the Graham et al.

solution [136].

At ϕ = 0, the energy per edge length (4.55) diverges and has to be replaced by

E1si
c = E1si,‖

c + E1si,edge
c = −A

1sic‖
a3

− Lycedge

a2
, (4.57)
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4 Inclined plates at zero temperature

where E
1si,‖
c is the Casimir Energy (4.54) with A1si being the semi-infinite plate’s

area and E1si,edge
c the so-called edge energy. The numerical value of cedge is

0.00263(1) in agreement with [54, 56, 136].

The Casimir torque is obtained from Eq. (4.55) by

Di.p.,ϕ
c =

dEi.p.,ϕ
c

dϕ
. (4.58)

For D = 4, the torque Di.p.,ϕ
c as a function of ϕ is shown in Fig. 4.10. At ϕ = 0,

the Casimir torque per unit length diverges as well but can be converted into

finite torque per unit area. Remarkably, for ϕ = 0 the standard torque obtained

from the Casimir energy of parallel plates (4.54)

D‖
c =

ALzπ
2

960a4
≈ 0.0103

ALz

a4
(4.59)

is reduced by a repulsive contribution ≈ −0.003660Ly/a
2 arising from the edge

effect.
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5 Inclined plates at finite

temperature

In this chapter, we continue our analysis of the Casimir effect for the inclined

plates induced by a fluctuating real scalar field obeying Dirichlet boundary con-

ditions (“Dirichlet scalar”) by extending the formalism to finite temperatures.

Whereas the high-temperature behavior is always found to be linear in T in ac-

cordance with dimensional-reduction arguments, different power-law behaviors at

small temperatures emerge due to the geometry-temperature interplay. We refer

to this interplay as geothermal phenomena. Unlike the case of infinite parallel

plates, which shows the well-known TD behavior of the force, we find a TD−1

behavior for inclined plates. In the limit where the plates become parallel, the

behavior of the edge effect is found to be in between TD−1 and TD. The strongest

temperature dependence ∼ TD−2 occurs for the Casimir torque of inclined plates.

Numerical as well as analytical worldline results are presented. The results of this

chapter were published in [57, 58].

5.1 Introduction

A distinctive feature of Casimir forces between test bodies is the dependence on

the geometry, i.e., the shape and orientation of these bodies. For a comparison

between theory and a real Casimir experiment, a number of properties such as

finite conductivity, surface roughness and finite temperature have to be taken

into account in addition. Generically, these latter corrections do not factorize but

influence each other.

For instance, the interplay between dielectric material properties and finite

temperature [139] is still a subject of intense theoretical investigations and has

created a long-standing controversy [140–143]. Also the role of electrostatic patch

potentials has been suggested as a potentially problematic issue [144, 145], which

has become a matter of severe debate [146, 147].

57



5 Inclined plates at finite temperature

Here, we do not mean to resolve these controversies. On the contrary, this work

intends to draw attention to another highly nontrivial interplay which on the one

hand needs to be accounted for when comparing theory and a real experiment

and on the other hand is another characteristic feature of the Casimir effect: the

interplay between geometry and temperature.

As first conjectured by Jaffe and Scardicchio [36], the temperature dependence

of the Casimir effect can be qualitatively different for different geometries, as both

the pure Casimir effect as well as its thermal corrections arise from the underlying

spectral properties of the fluctuations. First analytical as well as numerical ev-

idence of this “geothermal” interplay in a perpendicular-plates configuration has

been found in [55] using the worldline formalism.

The physical reason for this interplay can be understood in simple terms (also

see Sec. 1.2): for the classical parallel-plate case, the nontrivial part of the fluc-

tuation spectrum is given by the modes orthogonal to the plates. This relevant

part of the spectrum has a gap of wave number kgap = π/a, where a is the plate

separation. For small temperatures T ≪ kgap, the higher-lying relevant modes

can hardly be excited, such that their thermal contribution to the Casimir force

remains suppressed: the resulting force law for the parallel-plates case scales like

(aT )4. This argument for a suppression of thermal contributions applies to all ge-

ometries with a gap in the relevant part of the spectrum (e.g. concentric cylinders

or spheres, Casimir pistons, etc.). These geometries are called closed.1

This reason for a suppression of thermal contributions is clearly absent for open

geometries with a relevant gapless part of the spectrum. For these geometries,

relevant modes of the spectrum can always be excited at any small temperature

value. Therefore, a stronger thermal contribution ∼ (aT )α with α < 4 can be

expected.2 Since experimentally important configurations such as the sphere-

plate or the cylinder-plate geometry belong to this class of open geometries, a

potentially significant geometry-temperature interplay may exist in the relevant

parameter range aT ∼ 0.01 . . . 0.1.

An illustrative example for open geometries is also the inclined plates configu-

ration, which was studied in detail at zero temperature in the previous chapter.

1Of course, parallel plates as well as concentric cylinders are not closed in the sense of com-

pactness. Also, they have a gapless part of the spectrum along the symmetry axes. However,

this part of the spectrum does not give rise to the Casimir force and hence is not a relevant

part.
2Since the thermal correction has to disappear for T → 0, the exponent α must be positive,

α > 0. A better lower bound for α can be found using our general argument presented in

Sec. 7.3, where we show that the thermal correction remains finite at finite temperatures.

From this, we find α ≥ D − 1 for inclined plates using dimensional analysis.
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5.2 Worldline numerics for finite temperatures

This configuration turns out to be an ideal scenario for the investigation of the

nontrivial geothermal interplay since the transition from open to closed geometries

and the role of long-range fluctuations become particularly transparent.

A reliable study of “geothermal” Casimir phenomena requires a method that is

capable of dealing with very general Casimir geometries. The worldline approach

to the Casimir effect [37] is splendidly suitable for such investigations.

In order to overcome standard approximative tools based, e.g., on the proximity-

force theorem [83], a variety of new field-theoretical methods for Casimir phenom-

ena have been developed in recent years, ranging from improved approximation

methods [36, 131, 138, 148, 149] to exact methods mainly based on scattering

theory [65–82] or a functional integral approach [62–64]. It will certainly be

worthwhile to generalize these methods to finite temperature for a study of the

geometry-temperature interplay.

In this chapter, we extend our investigation of the Casimir effect for the inclined

plates to finite temperatures. We work in D = d + 1 dimensional spacetime,

yielding many analytical as well as numerical results for the Casimir force and

energy as well as for the torque. We demonstrate that the worldline approach

can also be used to obtain novel analytical results (see also [61] for an analytical

worldline approximation technique).

5.2 Worldline numerics for finite temperatures

Let us briefly review the worldline approach [37] to the Casimir effect as it is

needed for the present line of argument; for details of the formalism, see chap-

ter 3. We consider a fluctuating massless scalar field satisfying Dirichlet boundary

conditions on the Casimir surfaces. For a configuration Σ consisting of two static

surfaces Σ1 and Σ2, the worldline representation of the Casimir interaction energy

reads

Ec = − 1

2(4π)D/2

∫ ∞

0

dT
T 1+D/2

∫
ddxCM 〈ΘΣ[x(τ)]〉 , (5.1)

where D = d + 1 denotes the spacetime dimensions. The worldline functional

obeys ΘΣ[x] = 1 if a worldline x(τ) intersects both surfaces Σ = Σ1 ∪ Σ2, and is

zero otherwise.

The expectation value in Eq. (5.1) is taken with respect to an ensemble of d-

dimensional closed Gaußian worldlines with center of mass xCM. In Eq. (5.1),

the Θ functional removes from the ensemble of allowed fluctuations all worldlines

intersecting both surfaces. These fluctuations do not satisfy Dirichlet boundary
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5 Inclined plates at finite temperature

conditions on both surfaces and thus contribute to the negative Casimir interac-

tion energy.

The worldlines in Eq. (5.1) are already rescaled such that the velocity distri-

bution is independent of T . We then have

x(τ) = xCM +
√
T γ(τ).

The auxiliary propertime parameter T scales the extent of a worldline by a factor

of
√
T . Large T correspond to long-range, small T to short-range fluctuations.

Finite temperature

T =
1

β

in the Matsubara formalism is equivalent to a compactified Euclidean time on the

interval [0, β]. The worldlines now live on S1×Rd and can carry a winding number.

Summing over all winding numbers, the Casimir free energy (5.1) becomes

Ec = − 1

2(4π)D/2

∫ ∞

0

dT
T 1+D/2

(
1 + 2

∞∑

n=1

e−
n2β2

4T

)∫
ddxCM 〈ΘΣ[x(τ)]〉 . (5.2)

Dealing with finite temperature, therefore, leads to an additional winding-number

prefactor in front of the worldline expectation value for static configurations.

Decomposing the Casimir energy at finite temperature T = 1/β into its zero-

temperature part Ec(0) and finite-temperature correction ∆Ec(T ),

Ec(T ) = Ec(0) + ∆Ec(T ), (5.3)

is straightforward in the worldline picture by using the relation (5.2). The finite-

temperature correction is purely driven by the worldlines with nonzero winding

number.

As the winding-number sum does not take direct influence on the worldline av-

eraging, the complicated geometry-dependent part of the calculation remains the

same for zero or finite temperature. This disentangles the technical complications

arising from geometry on the one hand and temperature on the other hand in a

convenient fashion. The same statement holds for the Casimir force

Fc(T ) = Fc(0) + ∆Fc(T ).

For convenience, we show the inclined-plates (i.p.) configuration again in Fig. 5.1.

We recall that it consists of a perfectly thin semi-infinite plate above an infinite

plate at an angle ϕ. The infinite plate has a (d− 1) dimensional area A and the
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Figure 5.1: Left panel: sketch of the inclined-plates configuration. The infinite plate (dashed

line) is rotated in the x, z plane by an angle ϕ. As special cases, ϕ = 0 corresponds to the

configuration of one semi-infinite plate parallel to an infinite plate (1si configuration), whereas

ϕ = π/2 yields the perpendicular-plates configuration. Right panel: all relevant information for

the evaluation of the Casimir energy (4.32) of inclined plates is encoded in the function γm(x),

which has to be integrated from γxmin
to γxmax

.

semi-infinite plate a (d − 2) dimensional edge with a length Ly. The minimal

separation between the plates is a.

As we have found in the last chapter, the Casimir effect for this configuration

can be understood in terms of simple geometric properties of the worldlines. All

relevant information of a worldline needed for the evaluation of the Casimir energy

is also shown in Fig. 5.1.

5.3 Parallel plates

In order to demonstrate the simplicity of the worldline method, let us calculate the

well-known thermal contribution to the Casimir effect for parallel plates. In the

following, we use the dimensionless parameter

ξ ≡ aT, (5.4)

which distinguishes between the high-temperature ξ ≫ 1 and low-temperature

ξ ≪ 1 parameter region.

Evaluating the general worldline formula for the Casimir energy Eq. (5.2) using

the parallel-plates Θ functional of Eq. (4.9) results in

∆E
‖
c (T )

A
= − 1

(4π)D/2aD−1

∞∑

n=1

〈
λD

∫ ∞

1

dT
√
T − 1

T 1+D/2
exp

(−n2λ2

4ξ2T

)〉
, (5.5)
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5 Inclined plates at finite temperature

where and λ again denotes the maximum extent of the worldline in the direction

orthogonal to the plates. Doing the propertime integral, we obtain

∫ ∞

1

dT
√
T − 1

T 1+D/2
exp

(
− n2λ2

4ξ2T

)
=

(
2ξ

λn

)D−1

Γ

(
D − 1

2

)
−
(

2ξ

λn

)D

Γ

(
D

2

)

+ E1−D
2

(
λ2n2

4ξ2

)
−E 3

2
−D

2

(
λ2n2

4ξ2

)
, (5.6)

where the exponential integral function En(z) is given by

En (z) ≡
∫ ∞

1

e−zt

tn
dt. (5.7)

For D > 2 the sums over n converge. Normalizing the thermal correction to the

zero temperature result yields

∆E
‖
c (ξ)

E
‖
c (0)

=
Γ
(

D−1
2

)√
πζ(D − 1) (2ξ)D−1

Γ(D/2)ζ(D)
− (2ξ)D

+

〈 ∞∑

n=1

λD

Γ(D/2)ζ(D)

[
E1−D

2

(
λ2n2

4ξ2

)
− E 3

2
−D

2

(
λ2n2

4ξ2

)]〉
. (5.8)

In the low-temperature limit,

2ξ ≪
√

〈λ2〉 = π/
√

3 ≈ 1.8, (5.9)

the exponential integral functions vanish exponentially and can be neglected.3

We then obtain the small-temperature correction to E
‖
c (T =0) in D dimensions

fully analytically:

∆E
‖
c (ξ → 0)

E
‖
c (0)

=
Γ
(

D−1
2

)√
πζ(D − 1) (2ξ)D−1

Γ(D/2)ζ(D)
− (2ξ)D . (5.10)

The term (2ξ)D agrees with the standard textbook result [6]. It dominates the

thermal correction to the Casimir force, yielding a comparatively suppressed

power law dependence on the temperature for small T

∆F ‖
c (T ) ∼ TD.

This is an immediate consequence of the gap in the relevant part of the fluctua-

tion spectrum in this closed geometry. This term can also be understood as an
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0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

∆
E

‖ c
(ξ

)/
E

‖ c
(0

)

ξ ≡ aT

worldline result
analytic result

low temperature limit
high temperature limit

Figure 5.2: Parallel plates: temperature dependence of the thermal contribution to the Casimir

energy ∆E
‖
c (ξ)/E

‖
c (0) normalized to the zero-temperature result in D = 4-dimensional space-

time versus the dimensionless temperature variable ξ = aT . The worldline result for 1000

worldlines with 2 × 106 points each is plotted together with the analytic expressions (5.10)-

(5.12).

excluded-volume effect: the volume in between the plates cannot be thermally

populated by photons at low temperature due to the spectral gap.

Incidentally, the leading contribution to the energy ∼ ξD−1 is much less known.

It does not contribute to the Casimir force, since it is independent of a when

multiplied by the normalization prefactor E
‖
c (0). As we will see in section 5.4,

a-independent terms in the energy should not be viewed as mere calculational

artefacts but can also contribute to observables such as the Casimir torque. To the

best of our knowledge, Eq. (5.10) represents the first exact analytic formula for

this leading small temperature correction to the free energy.

The high-temperature limit of (5.8) can be obtained by a Poisson resumma-

tion of the winding-number sum (which is identical to returning to Matsubara

3Actually, the low temperature limit is already obtained for ξ / 0.5, see Fig. 5.8. Above

ξ ≈ 0.5, the behavior is given by the high temperature limit.
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5 Inclined plates at finite temperature

frequency space). Our result agrees with [6] and reads:

∆E
‖
c (ξ → ∞)

E
‖
c (0)

= −1 +
2Γ
(

D−1
2

)
ζ(D − 1)

√
π

Γ(D/2)ζ(D)
ξ. (5.11)

For arbitrary ξ and D > 2, Eq. (5.8) can be evaluated numerically. Figure 5.2

shows the worldline result together with the analytic asymptotics (5.10), (5.11)

and the known exact analytic formula for D = 4, see e.g. [150]:

∆E
‖
c (ξ)

E
‖
c (0)

= −1 +
90ξ

π3

∞∑

n=1

coth(2nπξ) + 2nπξ csch2(2nπξ)

n3
. (5.12)

Note that the result obtained in [150] for the electromagnetic field is twice as

large as the result for the scalar field (5.12).

Of course, taking the derivative of (5.8), (5.10) or (5.11) with respect to a also

gives immediate access to the thermal corrections ∆F
‖
c (T ) to the Casimir force

∆F
‖
c (ξ)

A
= −ζ(D)Γ(D/2)

πD/2
TD +

1

(4π)D/2aD

〈
λD

∞∑

n=1

E1−D/2

(
λ2n2

4ξ2

)〉
, (5.13)

such that for instance the low-temperature limit results in

∆Fc(aT ≪ 1) = −Γ(D/2)ζ(D)A

πD/2
TD, (5.14)

again revealing the power-law suppressed temperature dependence which is char-

acteristic for a closed geometry. Both magnitude and sign of the thermal force

correction can be understood as an excluded-volume effect: as the temperature

is small compared to the spectral gap, thermal modes in-between the plates can-

not be excited. Hence, the thermal Stefan-Boltzmann energy density outside the

plates is not balanced by a thermal contribution inside. Thermal effects therefore

enhance the attractive force between the plates.

Let us finally remark that the comparison between the small-temperature limit

of (5.12) (calculated with the help of the Poisson summation) and our analytic

formula (5.10) closes a gap in the literature. With this comparison, we can find

the exact value of the integral occurring in the prefactor of the leading low-

temperature term in the energy,
∫ ∞

0

dx
1

2x4

[
−2 + x(coth x+ x csch2x)

]
=
ζ(3)

2π2
, (5.15)

numerically corresponding to ≈ 0.060897. This result has been observed numer-

ically in the sum over odd reflection contributions to the parallel-plates Casimir

energy in the optical approach to the Casimir effect [36].
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5.4 Inclined plates

5.4 Inclined plates

5.4.1 Casimir energy and force

Whereas the inclined-plate geometry is much more difficult to deal with than

the parallel-plate case when using standard methods, there is comparatively little

difference in the worldline language. Inserting the inclined-plates Θ functional

(4.26) with

γm(x) ≡ x cos(ϕ) + sin(ϕ)γzmax(x) − γxmin
(ϕ)

as in Eq. (4.31) into the general worldline formula (5.2) yields

Ei.p.,ϕ
c (ξ) = Ei.p.,ϕ

c + ∆Ei.p.,ϕ
c (ξ), (5.16)

where ∆Ei.p.,ϕ
c (ξ) is the thermal contribution to the energy. In order to calculate

∆Ei.p.,ϕ
c (ξ), we proceed as in the last section. Doing the z integral as in (4.30)

results in

∆Ei.p.,ϕ
c

Ly
= − csc(ϕ)

(4π)D/2aD−2

〈∫
γxmax

γxmin

dxγ
D−1
m (x)

×
∞∑

n=1

∫ ∞

1

dT (
√
T − 1)

T (1+D)/2
exp

(
−n

2
γ

2
m(x)

4ξ2T

)〉
. (5.17)

The propertime integral can be done analytically,

∫ ∞

1

dT (
√
T − 1)

T (1+D)/2
exp

(
−n

2
γ

2
m(x)

4ξ2T

)
=

(
2ξ

γm(x)n

)D−2

Γ

(
D − 2

2

)
−
(

2ξ

γm(x)n

)D−1

Γ

(
D − 1

2

)

+ E 3
2
−D

2

(
γ

2
m(x)n2

4ξ2

)
− E2−D

2

(
γ

2
m(x)n2

4ξ2

)
, (5.18)

such that the thermal contribution to the energy, ∆Ei.p.,ϕ
c (ξ), can be written as
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5 Inclined plates at finite temperature

∆Ei.p.,ϕ
c (ξ) = − Ly csc(ϕ)

(4π)D/2aD−2

{
(5.19)

(2ξ)D−2 ζ(D − 2)Γ

(
D − 2

2

)〈∫
γxmax

γxmin

dx γm(x)

〉

− ζ(D − 1) (2ξ)D−1 Γ

(
D − 1

2

)√
π

+
〈 ∞∑

n=1

∫
γxmax

γxmin

dx γ
D−1
m (x)

[
E 3

2
−D

2

(
γ

2
m(x)n2

4ξ2

)
− E2−D

2

(
γ

2
m(x)n2

4ξ2

)]〉}
.

Here and in the following, we confine ourselves to spacetime dimensions D > 3,

where all expressions exhibit well-controlled convergence.

In the low-temperature limit, the exponential integral functions can be ne-

glected as long as γm(x) 6= 0 for all x. This is certainly the case for ϕ 6= 0, but

not necessarily for ϕ = 0. The latter case is again identical to the semi-infinite

plate parallel to an infinite one, and is being considered separately in the next

sections.

For ϕ 6= 0, the low-temperature limit is then given by the first two terms

(second and third line) of Eq. (5.19). Note that the first ξD−2 term does not

contribute to the Casimir force, since it is an a-independent contribution to Ec if

read together with the normalization prefactor. This term is shown in Fig. 5.3.

From the second term, we obtain the low-temperature thermal correction to the

Casimir force upon differentiation with respect to a,

∆F i.p.,ϕ 6=0 = −Ly csc(ϕ)
Γ
(

D−1
2

)
ζ(D − 1)

2π(D−1)/2
TD−1. (5.20)

The temperature dependence differs from the parallel-plates case by one power

of T , implying a significantly stronger temperature dependence at small temper-

atures. This is a direct consequence of the fact that we are dealing with an open

geometry. We emphasize that the result has been obtained fully analytically. In

D = 4 and ϕ = π/2, our result agrees with the perpendicular-plates study of

[55] where this nontrivial interplay between temperature and geometry has been

demonstrated for the first time. As shown therein, the thermal correction for this

open geometry at experimentally-relevant large separations can be an order of

magnitude larger than for a closed geometry.

For the sake of completeness we also give the full expression for the thermal
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Figure 5.3: Integrals appearing in Eqs. (5.19) and (5.22) for D = 4. We have defined cϕ,T0
≡〈∫

γxmax

γxmin

dx γm(x)
〉

and cϕ,T∞
≡
〈∫

γxmax

γxmin

dx γ
2
m(x)

〉
; see also Eqs. (5.70), (5.71) and (5.75).

Employing Eq. (4.18), we can evaluate cϕ=0,T0
= ζ(2) ≈ 1.645 and cϕ=0,T∞

=
√

πζ(3) ≈ 2.131

analytically. We have used 104 worldlines with 106 ppl each.

correction to the Casimir force:

∆F i.p.,ϕ 6=0(T ) = − Ly csc(ϕ)
Γ
(

D−1
2

)
ζ(D − 1)

2π(D−1)/2
TD−1

+
Ly csc(ϕ)

(4π)D/2aD−1

∞∑

n=1

〈∫
γxmax

γxmin

dx γ
D−1
m (x)E 3

2
−D

2

(
γ

2
m(x)n2

4ξ2

)〉
. (5.21)

The high-temperature limit of Eq. (5.19) can again be obtained by Poisson sum-

mation. The result is:

∆Ei.p.,ϕ
c (ξ → ∞) = −Ei.p.,ϕ

c (0) −
Ly2

√
π
〈∫

γxmax

γxmin
γ

D−2
m (x)dx

〉

(4π)D/2aD−2(D − 3)(D − 2) sin(ϕ)
ξ. (5.22)

The remaining worldline average in this expression yields some positive finite num-

ber. Irrespective of its precise value for a given angle ϕ and spacetime dimension

D (the precise value of the integral for a specific ϕ can be read off, for instance,

from Fig. 5.3 for either D = 3 or D = 4 and Fig. 4.8 for D = 5), we stress that
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5 Inclined plates at finite temperature

we observe the same linear dependence on temperature ξ = aT as in the parallel

plate case. This is nothing but the familiar phenomenon of the dominance of the

zeroth Matsubara mode at high temperatures, implying dimensional reduction,

as discussed above. This mechanism is obviously geometry independent. Also the

Casimir force remains attractive for high temperatures.

5.4.2 Casimir torque

Whereas the a-independent first term of Eq. (5.19) does not contribute to the

force, both terms in the first line of Eq. (5.19) contribute to the low-temperature

limit of the Casimir torque. The thermal contribution to the torque is

∆Di.p.,ϕ
c (ξ) =

d∆Ei.p.,ϕ
c (ξ)

dϕ
, (5.23)

which at low temperature reads

∆Di.p.,ϕ
c (ξ → 0) = − Ly cos(ϕ)

(4π)D/2 sin2(ϕ)

(
(2T )D−2 ζ(D − 2)Γ

(
D − 2

2

)

×
(
〈γxmin

(ϕ)λx〉 − tan(ϕ)〈γ ′
xmin

(ϕ)λx〉
)

+aζ(D − 1) (2T )D−1 Γ

(
D − 1

2

)√
π

)
, (5.24)

where
〈∫

γxmax

γxmin

x dx

〉
= 0 (5.25)

has been used, and we have introduced

λx = γxmax − γxmin
. (5.26)

The expression (5.24) depends on only one nontrivial worldline average. In

limiting cases, this average can be given analytically, as it reduces to the case

described by Eq. (4.18): we find

−〈γxmin
(ϕ→ 0)λx〉 =

〈λ2
x〉
2

=
π2

6
(5.27)

and

−〈γxmin
(ϕ→ π/2)λx〉 =

〈λx〉2
2

=
π

2
. (5.28)
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5.4 Inclined plates

For arbitrary ϕ, this average can be well approximated by

〈γxmin
(ϕ)λx〉 ≈ −π

2
sin2(ϕ) − π2

6
cos2(ϕ), (5.29)

as we will explain in the following. With Eq. (4.27), we can write

γxmin
(ϕ) ≡ γx(t̂) cos(ϕ) + γz(t̂) sin(ϕ), (5.30)

where t̂ denotes the value of t that satisfies the minimum condition in Eq. (4.27).

Together with

γzmin
(ϕ) ≡ −γx(t̂) sin(ϕ) + γz(t̂) cos(ϕ), (5.31)

we can interpret (γxmin
(ϕ),γzmin

(ϕ)) as the coordinates of the point (γx(t̂),γz(t̂))

in the ϕ-rotated system.

Since the γx and γz coordinates of each loop are generated independently of

each other, γz(t̂) and λx are not correlated. We therefore obtain

〈λxγxmin
(ϕ)〉 = 〈λxγx(t̂)〉 cos(ϕ) + 〈λx〉〈γz(t̂)〉 sin(ϕ). (5.32)

By symmetry, the average 〈γzmin
(ϕ)〉 vanishes, and we get from Eq. (5.31)

〈γx(t̂)〉 sin(ϕ) = 〈γz(t̂)〉 cos(ϕ). (5.33)

On the other hand,

〈γxmin
(ϕ)〉 = −〈λx〉

2
. (5.34)

Substituting Eq. (5.33) into the average of Eq. (5.30) leads to

〈γz(t̂)〉 = −sin(ϕ)〈λx〉
2

and 〈γx(t̂)〉 = −cos(ϕ)〈λx〉
2

, (5.35)

such that the desired Eq. (5.29) can be motivated by Eq. (5.32). We would like

to stress that only the second term in Eq. (5.29) has been estimated with the

constraint imposed by the exactly known result for ϕ → 0, see above. The first

term is exact and dictates the behavior of the perpendicular-plates limit. This

result is compared to the numerically obtained data in Fig. 5.4.

For the v-loop algorithm [53] used here to generate the loops, the expectation

value of the maximal extent λx is systematically smaller. This error is about the

average spacing

〈|γx(ti+1) − γx(ti)|〉 ≈
1√
N
, (5.36)

69



5 Inclined plates at finite temperature

1.56

1.58

1.6

1.62

1.64

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−
〈γ

x
m

in
(ϕ

)λ
x
〉

ϕ

worldline result
Eq. (5.29)

modification of (5.29)

Figure 5.4: Angle dependence of the worldline average occurring in the Casimir torque (5.24):

〈γxmin
(ϕ)λx〉. The numerical result is compared to the estimate (5.29) (dashed line). The

worldline result shows a small systematic error due to the finite discretization. We can include

the systematic error into (5.29) by taking worldline estimates for the boundary values at ϕ = 0

and ϕ = π/2 (i.e. 1.567 sin2(ϕ) + 1.641 cos2(ϕ)), respectively, which are smaller than π/2 and

π2/6. This yields the dot-dashed curve. The worldline result has been obtained from 5 × 104

loops with 106 ppl each.

see Eq. (3.44) and Sec. 3.6. As a consequence, the systematic error of 〈λ2
x〉/2 and

〈λx〉2/2 is about

〈λx〉√
N

≈ 1.84 · 10−3 (5.37)

atN = 106. We observe a good agreement of the data with Eq.(5.29) at ϕ = 0 and

ϕ = π/2 if the systematic error is taken into account. However, the agreement

is actually perfect for all ϕ when using worldline estimates for the prefactors in

Eq. (5.29) instead of π/2 and π2/6, see the modified curve in Fig. 5.4. This shows

that Eq. (5.29) will well fit the data in the continuum limit N → ∞.

Let us return to the calculation of the Casimir torque. In the vicinity of the

perpendicular-plates configuration, ϕ = π/2−δϕ, we can now obtain an expres-

sion to first order in δϕ:
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5.4 Inclined plates

∆Di.p.,ϕ=π/2−δϕ
c (ξ → 0) =− Lyδϕ

(4π)D/2
(2T )D−2

×
(
− ζ(D − 2)Γ

(
D − 2

2

)[π
2
−
〈
γ
′′
xmin

(π
2

)
λx

〉]

+ 2 aT ζ(D − 1)Γ

(
D − 1

2

)√
π
)
. (5.38)

Here, we have used

〈γ ′
xmin

(π/2)λx〉 = 0.

Apart from 〈γ ′′
xmin

(π/2)λx〉, Eq. (5.38) is an analytical expression. Using (5.29),

we obtain

−〈γ ′′
xmin

(π
2

)
λx〉 ≈

π2

3
− π ≈ 0.148, (5.39)

which is about ten percent of the dominating analytical term in square brackets

∼ π/2. We observe that the first term, which dominates in the limit aT → 0, gives

a contribution to the torque which drives the system away from the perpendicular-

plates case ϕ = π/2. Zero- and finite-temperature contributions thus have the

same sign. The fact that ϕ = π/2 is a repulsive fixed point is also in agreement

with naive expectations.

For D = 4, Eq. (5.38) reads

∆D
i.p.,ϕ=π/2−δϕ
c (ξ → 0)

Ly
= T 2 (0.0716 − 0.0957ξ) δϕ, (5.40)

which should be compared with the first-order term arising from the T = 0

contribution Eq. (4.50), which reads

D
i.p.,ϕ=π/2−δϕ
c

Ly

≈ 0.00329
δϕ

a2
. (5.41)

Thus, for D = 4 we obtain to first order in δϕ

∆D
i.p.,ϕ=π/2−δϕ
c (ξ → 0)

D
i.p.,ϕ=π/2−δϕ
c (0)

≈ ξ2 (21.8 − 29.1ξ) . (5.42)

In the validity regime of the low-temperature expansion, ξ = aT ≪ 1, the positive

first term is always dominant, hence the perpendicular-plates case remains a re-

pulsive fixed point. Most importantly, we would like to stress that the quadratic

dependence of the torque on the temperature ∼ T 2 (∼ TD−2 in the general case)

for the inclined-plates configuration represents the strongest temperature depen-

dence of all observables discussed in this thesis.
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5 Inclined plates at finite temperature

5.5 Semi-infinite plate parallel to an infinite plate

A particularly interesting example for the geometry-temperature interplay is given

by the semi-infinite plate parallel to the infinite plate (1si configuration). In this

case, the angle of inclination ϕ in Fig. 4.6 is zero. Analogously to Eq. (4.36), the

finite-temperature Casimir energy can be decomposed as

E1si
c (ξ) = E1si,edge

c (ξ) + E1si,‖
c (ξ), (5.43)

where

E1si,‖
c (T ) = E1si,‖

c (0) + ∆E1si,‖
c (T )

corresponds to the standard parallel-plate formula as given in Eqs. (4.17) and

(5.8), with A now being the surface of the semi-infinite plate. Approaching the

1si limit of ∆E
1si,‖
c (T ) from the inclined-plates configuration in the limit ϕ → 0

is again a delicate issue, as the proper order of limits ϕ → 0 and Lz → ∞ has

to be accounted for, see Sect. 4.7. Since the analysis is technically involved, we

defer it to Sec. 5.6. Let us here concentrate on the temperature-dependent edge

contribution

∆E1si,edge
c (T ) = E1si,edge

c (T ) − E1si,edge
c (0).

We set ϕ = 0 in Eq. (4.26) and evaluate Eq. (5.2). The result is (here and in the

following, we confine ourselves to D > 3):

∆E1si,edge
c (ξ) = − Ly

(4π)D/2aD−2

{
(5.44)

(2ξ)D−2 ζ(D − 2)Γ

(
D − 2

2

)〈∫
γxmax

γxmin

dx γzmax(x)

〉

−
∞∑

n=1

〈∫
γxmax

γxmin

dx (x− γxmin
)D−2

γzmax(x)E2−D
2

(
(x− γxmin

)2n2

4ξ2

)〉}
.

Note that the first term (second line), being the main contribution to the Casimir

energy at small T , does not contribute to the Casimir force since it is a indepen-

dent. Contrary to the case with ϕ 6= 0, the exponential integral functions cannot

be neglected in the low-temperature limit, since the argument of En(z) becomes

zero at the lower bound of the integral for any ξ > 0. This results in a correction

∼ ξD−1+α, with α > 0, to the low-temperature limit of the first term.

Here, however, we concentrate on the last term, as it gives rise to the thermal
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Figure 5.5: Numerical result of the worldline average 〈γzmax
(γxmin

+ x)〉 obtained by 5 × 104

worldlines with 106 points each compared to the fit function of Eq. (5.49) obtained on the

interval x = [0, 0.7]. The error bars have been plotted ten times larger. The observed small-x

power law xα1 with α1 ≃ 0.74 directly translates into a non-integer small-temperature behavior

of the thermal edge contribution to the force, ∆F 1si,edge
c ∼ T D−1+α1 .

correction of the Casimir force. In the low-temperature limit, we find

∆F 1si,edge
c (ξ) = − 2Ly

(4π)D/2aD−1
(5.45)

×
∞∑

n=1

〈∫ λx

0

dx xD−2
γzmax(γxmin

+ x) exp

(
−x

2n2

4ξ2

)〉
.

For small ξ, the main contribution to the integral comes from its lower bound

as the exponential function rapidly decreases for large arguments. At the lower

bound, we can take the worldline average 〈γzmax(γxmin
+x)〉 first, yielding a smooth

function. We assume that we can expand the latter in a power series,

〈γzmax(γxmin
+ x)〉 =

∞∑

n=0

cnx
αn , (5.46)

where the exponents αn do not necessarily have to be integers. Inserting (5.46)
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5 Inclined plates at finite temperature

into (5.45) leads to

∆F 1si,edge
c (ξ → 0) = − Ly

(4π)D/2aD−1
(5.47)

×
∞∑

n=0

cn (2ξ)D+αn−1 Γ

(
D + αn − 1

2

)
ζ(D + αn − 1),

where we have neglected exponentially suppressed contributions. For the lowest-

order term, we obtain

〈γzmax(γxmin
)〉 ≡ c0 = 0, (5.48)

since for a given worldline (γx(t),γz(t)) there exists a corresponding worldline in

the ensemble with (γx(t),−γz(t)). This allows the conclusion that the coefficient

of the TD−1 term vanishes.

We determine the higher coefficients cn from computing 〈γzmax(γxmin
+ x)〉 in

the vicinity of x = 0 by worldline numerics. Figure 5.5 depicts the form of

〈γzmax(γxmin
+ x)〉 near the lower bound x = 0. A global fit to this function

including two coefficients c1, c2 is given by

〈γzmax(γxmin
+ x)〉 ≈ 0.9132 (x(1.500 − x))0.7423

≈ 1.234x0.7423 − 0.6106x1.7423, (5.49)

where we have kept α2 − α1 = 1 fixed. The resulting thermal correction to the

force is shown in Fig. (5.6) for D = 4, where we compare the full numerical

solution with different orders of the expansion (5.49) and the high-temperature

asymptotics, see below.

As the low-temperature asymptotics is directly related to the lowest nonvanish-

ing coefficient α1, we have also performed local fits to the function 〈γzmax(γxmin
+

x)〉 in the vicinity of x = 0. Depending on the fit window, the leading exponent

can grow up to α1 ≈ 0.8. (Of course, the fit window must be large enough to avoid

that the worldline discretization becomes visible; otherwise, the exponent trivially

but artificially approaches α1 → 1 as the discretized worldline is a polygon on a

microscopic scale).

In any case, we conclude that if we assume the expansion (5.46), the low-

temperature regime of the 1si edge effect is well described by a non-integer power

law,

∆F 1si,edge
c ∼ TD−1+α1 ≃ TD−0.3, (5.50)
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Figure 5.6: Thermal contribution to the Casimir edge force in the 1si configuration,

−∆F 1si,edge
c (ξ), plotted for a = 1 and D = 4. WL: worldline result Eq. (5.45) obtained using

1000 loops with 106 ppl each. LT1, LT2: leading and next-to-leading low-temperature correc-

tions 0.1098ξ3.7423 and 0.1098ξ3.7423 − 0.131881ξ4.7423, respectively, obtained from Eqs. (5.47)

and (5.49), using 5 × 104 loops 106 ppl each. HT: high temperature limit obtained from

Eq. (5.58), using 5 × 104 loops 106 ppl each; a fit to the HT curve is provided by

−5.24062(±0.0222)10−3 + 1.591(±0.004138)10−2ξ. The inlay displays a magnified interval

ξ = [0, 0.2].

where the fractional exponent arises from the geometry-temperature interplay

in this open geometry. Of course, our numerical analysis cannot guarantee to

yield the true asymptotic behavior in the limit ξ → 0, but our data in the low-

temperature domain 0.01 . ξ . 0.4 is well described by the non-integer scaling

at next-to-leading order.

Our analysis so far has been based on the expansion (5.46) for 〈γzmax(γxmin
+x)〉.

However, for small x, the form of 〈γzmax(γxmin
+ x)〉 could also be for instance

〈γzmax(γxmin
+ x)〉 ∼ x ln(x). (5.51)

Eq. (5.51) can not be expanded in a power series at x = 0. Nevertheless, like our

approximation (5.49), the form (5.51) also leads to 〈γzmax(γxmin
)〉 = 0 and

〈γzmax(γxmin
+ x)〉

x
→ ∞, (5.52)
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5 Inclined plates at finite temperature

for x→ 0.

Assuming

〈γzmax(γxmin
+ x)〉 ≈ c̃1 x ln (c̃2 x) , (5.53)

and inserting Eq. (5.53) into Eq. (5.45) leads to

∆F 1si,edge
c (ξ → 0) = − Ly c̃1a T

D

πD/2

{
Γ

(
D

2

)
ln(c̃2)ζ(D) (5.54)

+
1

2
Γ

(
D

2

)((
ln
(
4ξ2
)

+ ψ

(
D

2

))
ζ(D) + 2ζ ′(D)

)}
,

where ψ is the digamma function. We again have neglected exponentially sup-

pressed contributions. The leading correction to ∆F 1si,edge
c is then given by

∆F 1si,edge
c (a T → 0) ≃− Ly c̃1a T

D

πD/2
Γ

(
D

2

)
ζ(D) ln (a T ) . (5.55)

For the constants c̃1, c̃2, we find

c̃1 = −0.62(1), (5.56)

c̃2 = 0.32(5). (5.57)

Let us finally turn to the high-temperature limit of Eq. (5.44) which can again be

obtained by Poisson summation. The result for the edge energy reads

∆E1si,edge
c (ξ → ∞) = − E1si,edge

c (0) (5.58)

−
2
√
πLy

〈∫ λx

0
dx xD−3

γzmax(x+ γxmin
)
〉

(4π)D/2aD−2(D − 3)
ξ,

where the worldline average is subject to numerical evaluation. The resulting high-

temperature limit of the Casimir force is shown in Fig. (5.6) for D = 4. The high-

temperature limit is again linear in T in accordance with general dimensional-

reduction arguments.
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5.6 The ϕ→ 0 limit for inclined plates

We have analyzed the ϕ → 0 behavior of inclined plates at zero temperature

in Sect. 4.7. Here, we consider the same limit for the thermal correction to

the energy. The decomposition of the 1si Casimir energy into bulk and edge

contributions can also be performed for the thermal corrections,

∆E1si,ϕ
c (ξ) = ∆Eedge,ϕ

c (ξ) + ∆E‖,ϕ
c (ξ),

where

∆E‖,ϕ
c (ξ) = − Ly csc(ϕ)

(4π)D/2aD−2

〈[
−Γ

(
D − 2

2

)
ζ(D − 2)(2ξ)D−2λxγxmin

(ϕ)

−ζ(D − 1)Γ

(
D − 1

2

)
(2ξ)D−1

√
π

−
∞∑

n=1

∫
γxmax

γxmin

dx
{
γ

D−2
m (x)E2−D

2

(
n2

γ
2
m(x)

4ξ2

)
(x cos(ϕ) − γxmin

(ϕ))

−γ
D−1
m (x)E 3−D

2

(
n2

γ
2
m(x)

4ξ2

)}]〉
, (5.59)

with

γm(x) = x cos(ϕ) + sin(ϕ)γzmax(x) − γxmin
(ϕ)

and

∆Eedge,ϕ
c (ξ) = − Ly

(4π)D/2aD−2

[
Γ

(
D − 2

2

)
ζ(D − 2)(2ξ)D−2

〈∫
γxmax

γxmin

dxγzmax(x)

〉

−
∞∑

n=1

〈∫
γxmax

γxmin

dxγ
D−2
m (x)E2−D

2

(
n2

γ
2
m(x)

4ξ2

)
γzmax(x)

〉]
. (5.60)

Whereas ∆Eedge,ϕ
c (ξ) remains finite, ∆E

‖,ϕ
c (ξ) shows a divergent behavior as ϕ→

0. Let us therefore concentrate on ∆E
‖,ϕ
c (ξ), in order to isolate the source of the

apparent divergence which is related to the order of limits of Lz → ∞ and ϕ→ 0.

In the case of inclined plates, (Lzϕ) is infinite for all ϕ 6= 0, resulting in a 1/ϕ

divergent energy density (energy per length) for ϕ → 0. Parallel plates, on the

other hand have a finite energy density (energy per area) and (Lzϕ) = 0.

In the following, we show how to obtain an analytic transition from (Lzϕ) → ∞
to (Lzϕ) → 0 for small ϕ by working with large but finite Lz, and taking Lz → ∞
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5 Inclined plates at finite temperature

at the end of the calculation. The first limit results in a divergent energy density

per unit edge length of the inclined plates as ϕ→ 0,

∆E‖,ϕ→0
c (ξ) = − Ly

2aD−2ϕ(4π)D/2

[
〈λ2〉Γ

(
D − 2

2

)
ζ(D − 2)(2ξ)D−2

− 2(2ξ)D−1ζ(D − 1)Γ

(
D − 1

2

)√
π + Γ

(
D

2

)
ζ(D)(2ξ)D

−
〈
λD

∞∑

n=1

(
E1−D

2

(
λ2n2

4ξ2

)
+ E2−D

2

(
λ2n2

4ξ2

)
− 2E 3

2
−D

2

(
λ2n2

4ξ2

))〉]

+ O (1) . (5.61)

The second limit corresponds to the finite energy density of exact parallel plates (5.8).

In Eqs. (5.59-5.61), the z integration was performed first. Let us now do the

proper time integration first. The θ function (4.42), valid for small ϕ, provides

the lower bound of the proper time integral:

∆E‖,ϕ→0
c (a, β) = − Ly

(4π)D/2

〈 ∞∑

n=1

∫ ∞

1

exp
(
− β2x2n2

4T (a+zϕ)2

)
dT

T D+1
2

×
∫ Lz/2

0

dz

(a + zϕ)D−1

∫ λx

0

xD−1dx
]〉

. (5.62)

For Re[D] > 1, the proper time integration yields

∫ ∞

1

exp
(
− β2x2n2

4T (a+zϕ)2

)
dT

T D+1
2

=

(
2(a+ zϕ)

xnβ

)D−1

Γ

(
D − 1

2

)
− E 3−D

2

(
x2β2n2

4(a+ zϕ)2

)
. (5.63)
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5.6 The ϕ→ 0 limit for inclined plates

Inserting Eq. (5.63) into Eq. (5.62) leads to

π
D
2 ∆E

‖,ϕ→0
c (a, β)

A
=

∞∑

n=1

〈
a2
(
Γ
(

D
2
, λ2

xn2β2

4a2

)
− Γ

(
D
2
, λ2

xn2β2

(2a+φ)2

))

φ(nβ)D

+
λ2

x

(
Γ
(

D−2
2
, λ2

xn2β2

4a2

)
− Γ

(
D−2

2
, λ2

xn2β2

(2a+φ)2

))

4φ(nβ)D−2

−
aλx

(
Γ
(

D−1
2
, λ2

xn2β2

4a2

)
− Γ

(
D−1

2
, λ2

xn2β2

(2a+φ)2

))

φ(nβ)D−1

+
φ
(
Γ
(

D
2

)
− Γ

(
D
2
, λ2

xn2β2

(2a+φ)2

))

4(nβ)D

+
λxΓ

(
D−1

2
, λ2

xn2β2

(2a+φ)2

)

2(nβ)D−1
−
aΓ
(

D
2
, λ2

xn2β2

(2a+φ)2

)

(nβ)D

〉

−
√
πΓ
(

D−1
2

)
ζ(D − 1)

2βD−1
+
aΓ
(

D
2

)
ζ(D)

βD
, (5.64)

where

φ ≡ Lzϕ and A =
LyLz

2
.

One can show that the first three terms of Eq. (5.64) are of order O(φ2). The forth

term is clearly O(φ). The last four terms can be converted into the parallel-plates

energy density (5.8) by neglecting φ with respect to a and using the identity

zαE1−α(z) = Γ(α, z);

the error is of order O(φ2). The first-order correction to the parallel-plates case is

therefore encoded in the fourth term. The second-order correction is in the first

three terms since the φ2 terms cancel each other in the remainder. In this limit

(|φ| ≪ 1), all sums converge for Re[D] > 2.

Let us rearrange (5.64) so as to investigate the φ→ ∞ case with ϕ being small

but finite:

79



5 Inclined plates at finite temperature

π
D
2 ∆E

‖,ϕ
c (a, β)

A
=

∞∑
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〈
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− Γ
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(
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2
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4φ(nβ)D−2
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aλxΓ
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D−1

2
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xn2β2

(2a+φ)2

)

φ(nβ)D−1

−
a2Γ

(
D
2
, λ2

xn2β2

(2a+φ)2

)

φ(nβ)D
+
λ2

xΓ
(

D−2
2
, λ2

xn2β2

4a2

)

4φ(nβ)D−2

−
aλxΓ

(
D−1

2
, λ2

xn2β2

4a2

)

φ(nβ)D−1
+
a2Γ

(
D
2
, λ2

xn2β2

4a2

)

φ(nβ)D

〉
. (5.65)

A sketch of this formula for D = 4 and a = β = λx = 1 ignoring the worldline

average is shown in Fig. 5.7. The large-φ behavior of the first two terms can be

obtained through Poisson summation4 and reads

(4a+ φ)(c1 + c2(2a+ φ))

(2a+ φ)D
+

(c3 + c4(2a+ φ))

(2a+ φ)D−1
, (5.66)

where c1, . . . , c4 are constants, the values of which are of no importance. We see

that (5.66) vanishes for D > 2. For D > 3 the terms vanish even if multiplied

by the infinite length Lz. Remember that the inclined-plates formulae at finite

temperature are valid for D > 3 as well.

In order to keep the remaining terms of Eq. (5.65) finite, we multiply both

sides with the infinite length Lz converting the vanishing Casimir energy per area

into the finite energy per length. The Poisson summation of the second line of

4The large-x limit of
∑∞

n=1 f(n/x) yields (−f(0) +
√

2πf̂(0)x)/2 where f̂ is the Fouriertrans-

form of f .
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Figure 5.7: Qualitative behavior of the thermal Casimir contribution of the bulk in the inclined-

plates case Eq. (5.65) (red line) and its small-φ (dashed blue line) and large-φ (dot-dashed

magenta line) limit, respectively. Note the divergent 1/φ behavior of the large-φ limit which

corresponds to the divergent (as ϕ → 0) energy per edge length in the inclined-plates formulae.

For this illustration, we have chosen D = 4, a = β = λx = 1, ignoring the worldline average in

Eq. (5.65) for simplicity.

Eq. (5.65) results in

lim
φ→∞

∞∑

n=1


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2
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xn2β2

(2a+φ)2

)
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+
aλxΓ
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2
, λ2

xn2β2

(2a+φ)2

)

ϕ(nβ)D−1
−
a2Γ
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)

ϕ(nβ)D


 =

− λ2
xΓ
(

D−2
2

)
ζ(D − 2)

4ϕβD−2
+
aλxΓ

(
D−1

2

)
ζ(D − 1)

ϕβD−1
− a2Γ

(
D
2

)
ζ(D)

ϕβD

+
d1 + d2(2a+ φ)

ϕ(2a+ φ)D−2
+
d3 + d4(2a+ φ)

ϕ(2a+ φ)D−1
+
d5 + d6(2a+ φ)

ϕ(2a+ φ)D
, (5.67)

where d1, . . . , d6 are constants. These terms containing di’s vanish for D > 3 and

φ→ ∞. Applying the identity

zaE1−a(z) = Γ(a, z)

to the last three terms in Eq. (5.65), we rediscover the inclined-plates formula

(5.61) from Eqs. (5.65), (5.67) valid for small angles ϕ. From Eqs. (5.66) and

(5.67), one can infer that the first correction to Eq. (5.61) is of order O(1/φD−3).
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5 Inclined plates at finite temperature

5.7 Summary of results in D = 4

Let us summarize our most important results. We confine ourselves to 3 + 1

dimensional spacetime. We give the results for the Casimir interaction energy

– the corresponding force can be easily obtained by differentiation. As we have

seen, thermal fluctuations modify the Casimir energy, yielding the free energy

Ec(T ) = Ec(0) + ∆Ec(T ), (5.68)

where ∆Ec(T ) is the temperature correction. For (aT ) → 0, the correction

∆E
‖
c (aT → 0) to the well-known parallel-plates energy reads

∆E
‖
c (aT → 0)

A
= −ζ(3)T 3

4π
+
π2aT 4

90
, (5.69)

which is ≈ −0.0957T 3 + 0.110 aT 4. Note that only the T 4 term contributes to

the force as the first term vanishes upon differentiation.

For (aT ) → 0, our result for the thermal correction ∆Ei.p.,ϕ
c (T ) to the inclined-

plates energy reads

∆Ei.p.,ϕ
c (aT → 0)

Ly

= − cϕ,T0T
2

24 sin(ϕ)
+

ζ(3)aT 3

4π sin(ϕ)
, (5.70)

where cϕ,T0 is shown in Fig. 5.3 as a function of ϕ. The second term which is a

purely analytical result is the generalization of a result for perpendicular plates,

ϕ = π/2, found in [55]; numerically, this term evaluates to ≈ 0.0957aT 3/ sin(ϕ).

Again, Eq. (5.70) denotes an energy per edge length and diverges as ϕ→ 0. It

has to be replaced by the formula for the energy of a semi-infinite plate above a

parallel one,

E1si
c (T ) = E1si,edge

c (T ) + E1si,‖
c (T ).

The thermal part of E
1si,‖
c (T ) is as in (5.69), where A is the area of the semi-infinite

plate. The leading thermal correction to the edge effect’s energy ∆E1si,edge
c (T ) is

∆E1si,edge
c (T )

Ly
= −cϕ,T0T

2

24
. (5.71)

However, this leading correction is independent of a and therefore does not con-

tribute to the force. The leading correction to the force arising from the edge

effect is numerically consistent with both

∆F 1si,edge
c (T )

Ly
= −0.11a0.74T 3.74 (5.72)
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and

∆F 1si,edge
c (T )

Ly
= 0.068aT 4 ln(a T ). (5.73)

We prefer the second solution since it is more stable for (aT ) → 0.

For (aT ) → ∞, all thermal Casimir energies increase linearly in T due to

dimensional reduction. For instance, the Casimir energy E
‖
c (T ) for parallel plates

becomes

E‖
c (aT → ∞) = −Aζ(3)T

8πa2
, (5.74)

which is ≈ −0.0478AT/a2. Note that E
‖
c (aT → ∞) is independent of ~c as the

dimensional analysis easily shows. The energy at large (aT ) can therefore be

interpreted as a classical effect.

The same holds for the large (aT ) behavior of the inclined-plates case as well

as for semi-infinite plates. For inclined plates, we get

Ei.p.,ϕ
c (aT → ∞) = − Ly

√
πcϕ,T∞

T

(4π)2a sin(ϕ)
, (5.75)

where cϕ,T∞
is shown in Fig. 5.3 as a function of ϕ.

The edge effect at large (aT ) reads

E1si,edge
c (aT → ∞) = −0.016LyT

a
. (5.76)

The long-range nature of Casimir phenomena also becomes visible at the ther-

mal correction to the torque. This is immediately transparent from Eq. (5.70).

Whereas the a-independent first term of Eq. (5.70) does not contribute to the

force, both terms in Eq. (5.70) contribute to the low-temperature limit of the

Casimir torque, the thermal contribution being d∆Ei.p.,ϕ
c (T )/dϕ. Concentrating

on the limit aT → 0 for small deviations from the perpendicular-plates case,

ϕ = π/2−δϕ, an expansion to first order in δϕ yields:

∆D
i.p.,ϕ=π/2−δϕ
c (aT → 0)

Ly
= (0.0716 − 0.0957aT )T 2δϕ. (5.77)

In the validity regime of the low-temperature expansion, aT ≪ 1, the positive first

term is always dominant, hence the perpendicular-plates case remains a repulsive

fixed point. Most importantly, we would like to stress that the quadratic depen-

dence of the torque on the temperature ∼ T 2 (∼ TD−2 in the general case) for the

inclined-plates configuration represents the strongest temperature dependence of

all observables discussed here.
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5 Inclined plates at finite temperature

5.8 Conclusions

In this chapter, we have provided further numerical as well as analytical evidence

for the nontrivial interplay between geometry and temperature in the Casimir

effect. Whereas closed geometries such as the parallel-plates case exhibit a com-

paratively strong suppression of thermal corrections at low temperatures, open

geometries such as the general inclined-plates geometry reveal a more pronounced

temperature dependence in this regime. The terminology open and closed corre-

sponds to the absence or presence of a gap in the relevant part of the spectrum

of fluctuations which gives rise to the Casimir effect. In closed geometries, the

spectral gap inhibits sizable fluctuations at temperatures below the scale set by

the gap. By contrast, open geometries allow for sizable thermal fluctuations at

any value of the temperature.

Concentrating on the inclined-plates geometry in D dimensions, the tempera-

ture dependence of the Casimir force can become stronger by one power in the

temperature parameter (implying thermal corrections which can be an order of

magnitude larger than for a closed geometry). The inclined-plates geometry is

particularly interesting as the limit of a semi-infinite plate parallel to an infinite

plate (1si configuration) is somewhat in-between open and closed geometries: the

open part of the spectrum only arises due to the edge of the semi-infinite plate. In-

terestingly, the resulting thermal correction numerically shows a low temperature

behavior which lies in-between TD−1 and TD as well.

The strongest temperature dependence ∼ TD−2 in the low-temperature limit

occurs for the Casimir torque of the inclined-plates configuration. This is, because

it arises from the leading thermal correction of the interaction energy which con-

tributes to the torque but not to the Casimir force.

Our results have been derived for the case of a fluctuating scalar field obey-

ing Dirichlet boundary conditions on the surfaces. Whereas this model system

should not be considered as a quantitatively appropriate model for the real electro-

magnetic Casimir effect, our general conclusions about the geometry-temperature

interplay are not restricted to the Dirichlet scalar case. On the contrary, all our

arguments based on the presence or absence of a spectral gap will also be valid for

the electromagnetic case. Whether or not the case of Neumann or electromagnetic

boundary conditions leads to different power-law exponents for the temperature

dependence of the “geothermal” phenomena remains an interesting question for

future research.

In view of the fact that most (strictly speaking all) experiments are performed

in open geometries, e.g., the sphere-plate geometry, at room temperature, an
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5.8 Conclusions

analysis of the geometry-temperature interplay of these experimentally relevant

configurations is most pressing.

We will therefore adress the sphere-plate and cylinder-plate geometries in the

next two chapters.
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6 Sphere-plate and cylinder-plate

at zero temperature

In this chapter, we compute Casimir forces at zero temperature for the idealized

sphere-plate and cylinder-plate configuration induced by scalar-field fluctuations

obeying Dirichlet boundary conditions. We make contact with earlier results for

the Casimir effect of a cylinder and sphere above a plate [39, 52, 53, 56, 65,

67, 68]. The main purpose of this chapter is to develop powerful algorithms to

directly compute the Casimir force instead of the interaction energy. This leads

to significant simplifications compared to previous energy calculations and allows

us to calculate the Casimir force with high precision for a wide parameter range.

Our procedure for the direct calculation of the Casimir force will be generalized to

finite temperature in the next section. The content of this chapter was published

in [59, 60].

6.1 Introduction

Although the configuration of two parallel plates is more accessible theoretically,

high-precision measurements of the Casimir force rather prefer the configuration

of a curved surface, such as a lens, sphere or cylinder, in front of the plate. For

an extensive reference list, see [3–5].

As we have seen in chapter 4, the power law for the Casimir force of inclined

plates is different from the corresponding law of two parallel plates. Precise

measurements of the Casimir force between two parallel plates are very difficult

since it is an enormous challenge to maintain the plates perfectly parallel on the

nanometer scale.
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6 Sphere-plate and cylinder-plate at zero temperature

Clearly, the use of curved surfaces elegantly avoids this problem. It spares

investigators the difficult task to preserve parallelity and allows close approach

of the surfaces. At the same time, however, this setup suffers from insufficient

theoretical understanding. In order to compare theory and experiment, power-

ful theoretical methods are required which are capable of dealing with general

geometries.

In recent years, a better understanding of the dependence of the Casimir force

on the separation for the idealized sphere-plate and cylinder-plate configurations

was achieved for the case of zero temperature [39, 52, 53, 56, 65, 67, 68, 72–

74, 151]. We note that the limit of small separations between a sphere and a

plate is the most important from the experimental point of view.

Our results agree excellently with the recently obtained analytic solutions for

different limiting cases [65, 67, 68], from which Casimir force for the whole param-

eter range can be reconstructed at zero temperature. We also compare our results

with the proximity force approximation, which is still widely used for comparison

between theory and experiment.

6.2 Worldline numerics

We start with a short reminder of the worldline approach to the Casimir effect

for a massless Dirichlet scalar, confining ourselves to 4 dimensions; for details, see

chapter 3. For a configuration Σ consisting of two rigid objects with surfaces Σ1

and Σ2, the worldline representation of the Casimir interaction energy in D = 4

dimensional spacetime reads

Ec = − 1

32π2

∫ ∞

0

dT
T 3

∫
d3xCM 〈ΘΣ[x(t)]〉 . (6.1)

The worldline functional ΘΣ[x(τ)] reads more explicitly

Θ[x(t)] ≡ Θ[xCM +
√
T γ(t)]. (6.2)

It is 1 if the worldline x(τ) intersects both objects Σ = Σ1∪Σ2, and is zero other-

wise. The expectation value in Eq. (6.1) is taken with respect to an ensemble of

3-dimensional closed worldlines with a common center of mass xCM and obeying a

Gaußian velocity distribution. During the T integration, the extent of a worldline

is scaled by
√
T . Large propertimes T correspond to IR fluctuations, small T to

UV fluctuations.
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x

z

R

x̃

a

b xCM

b

b

r

Figure 6.1: Sketch of the sphere-plate configuration. The infinite plate (blue line) is in the

z = −(R + a) plane. The sphere of radius R is in the origin. The center of mass xCM of the

worldline is in (r, 0,−a−R−
√
T γzmin

). During the propertime integration the worldline always

touches the plate, while all its points move on rays passing through (r, 0,−a−R). Only points

lying inside the cone will pass through the sphere.

6.3 Sphere above a plate

We begin with the configuration of a sphere above a plate. The sphere of radius

R is centered around the origin x = 0. The infinitely extended plate lies in the

z = −(a + R) plane, where a is the minimal distance between both objects, see

Fig. 6.1.

Since the configuration has a rotational symmetry with respect to the z axis, the

three-dimensional xCM integration reduces to a two-dimensional one. The Casimir

energy (6.1) reads

Ec = − 1

16π

∫ ∞

0

dT
T 3

∫
dr dzCM r 〈ΘΣ[x(t)]〉 , (6.3)

where we have switched to cylindrical coordinates (r, zCM) with

r2 = x2
CM + y2

CM.
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6 Sphere-plate and cylinder-plate at zero temperature

The ΘΣ[x(t)] functional factorizes,

ΘΣ[x(t)] = ΘS[xCM +
√
T γ] ΘP[xCM +

√
T γ]. (6.4)

Here ΘS and ΘP account for the intersection of a worldline xCM +
√
T γ with the

sphere and the plate, respectively. Notice that ΘS is independent of a, whereas

ΘP reads

ΘP = θ(−(a +R + zCM +
√
T γzmin

)), (6.5)

where γzmin
denotes the worldline’s extremal extent into the negative z direction.

As we are interested in calculating the Casimir force,

Fc = −dEc

da
,

the derivative acting only on ΘP produces a δ function which eliminates the zCM

integral. The Casimir force thus simplifies to

Fc = − 1

16π

〈∫ ∞

0

dT
T 3

∫ ∞

0

dr rΘS[x̃ +
√
T γ̃]

〉
. (6.6)

Here, we have introduced

x̃ =




r

0

−a− R



 (6.7)

and

γ̃ =




γx

γy

γz − γzmin


 . (6.8)

The transition from worldline calculations of the force does not only lead to

technical simplifications. The classification of relevant worldlines also changes

slightly: for the Casimir energy in Eq. (6.1) the worldlines are scaled by the

propertime
√
T with respect to their center of mass which is finally integrated

over. For a given center of mass, all points on a worldline xCM +
√
T γ(ti) lie

on rays originating from the center of mass. These rays are traced out by the T
integral running from T = 0 to T = ∞.

By contrast, the Casimir force in Eq. (6.6) results from worldlines which are

attached to the point x̃ on the plate. For a given point x̃, all points on a worldline
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6.3 Sphere above a plate

x̃+
√
T γ̃(ti) lie on rays which now originate from x̃. Again, these rays are traced

out by the T integral.

Now, the plate is always touched by construction for all values of T , the remain-

ing problem being the detection of intersection events with the sphere. Adapting

methods from [53], it is clear that only those points of a worldline lying on the

rays intersecting the sphere eventually pass through the sphere for some values of

T . Let {γ̃(tk)} denote the set of points on such rays intersecting the sphere, with

k labeling these rays for a discretized worldline. Those values of propertime T
for which this point lies exactly on the sphere can be obtained from the equation

(x̃ +
√
T γ̃(tk))

2 = R2. (6.9)

Equation (6.9) has two solutions,

T ±
k =


 x̃ · γ̃(tk)

|γ̃(tk)|2
∓
√(

x̃ · γ̃(tk)

|γ̃(tk)|2
)2

− |x̃|2 −R2

|γ̃(tk)|2




2

. (6.10)

For T ∈ (T −
k , T +

k ) the point x̃ +
√
T γ̃(tk) lies inside the sphere. The point x̃

can be viewed as a tip of a cone that wraps around the sphere with the opening

angle 2α, with sin(α) = R/|x̃|. The value of the square root in Eq. (6.10) varies

between zero and R. The square root is zero if the ray merely touches the sphere,

and R if the ray lies on the cone’s axis, i.e., if it coincides with the direction

spanned by x̃, see Fig. 6.1.

For a given r, the worldline intersects the sphere if the propertime T is in one

of the intervals bounded by Eq. (6.10) for all possible values of k. Let us denote

these intervals by

T k := [T −
k , T +

k ]. (6.11)

The total support of the propertime integral then is

S(r) =
⋃

k

T k. (6.12)

The r dependence of this support arises from the fact that the set of k rays lying

inside the cone depends on the position r where the worldline is attached to the

plate. The Casimir force (6.4) now reads

Fc = − 1

16π

〈∫ ∞

0

dr r

∫ ∞

S(r)

dT
T 3

〉
. (6.13)
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Figure 6.2: The (negative) radial force density fc(a, r) for a sphere above a plate for various

separations a in units of R = 1, see Eq.(6.14). For small a and r the radial force density

is well approximated by by 2π × π2 r/480 a4 ≈ 0.13/a4 (dotted-dashed cyan line). The slope

corresponds to the parallel plates’ force density times 2π. The statistical error is below one

percent.

The (negative) radial force density fc(a, r),

fc(a, r) =
1

16π
r

〈∫ ∞

S(r)

dT
T 3

〉
, (6.14)

is shown in Fig. 6.2. We observe that for small a and r, the slope of fc(a, r)

corresponds to the parallel plates’ force density times 2π. For small a, the force

density is very sharp and the peak position is underneath the sphere. With

increasing a, the peak moves outward, such that the force density spreads out

over large regions.

The most time-consuming part of the algorithm is the process of determining

S(r). To reduce the computational time, it is advisable to reduce the N points per

worldline to the subset of k < N points on the above mentioned rays intersecting

the sphere. For a given r, all points on rays outside the cone can immediately be
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6.4 Cylinder above a plate

dropped. Furthermore in the process of taking the r integral from zero to infinity,

the opening angle of the cone shrinks. All points on rays which leave the cone

through its upper half can then be dropped completely from the calculation, as

they will never enter the cone again. Only rays below the cone, i.e., between the

cone and the plate, can enter the cone for larger values of r.

With these optimizations and with one integral less, the computational time

for Casimir force calculations is significantly reduced compared with those of the

Casimir energies studied in previous worldline investigations. These simplification

facilitate to extend the previously studied parameter range to even larger a/R

ratios with higher statistics.

6.4 Cylinder above a plate

In many respects, the cylinder-plate configuration is “in between” the sphere-

plate configuration and the classic parallel-plates case. This also holds for the

experimental realization: the effort of keeping the cylinder parallel to the plate

is less than it is the case for two parallel plates [152]; for the sphere-plate case,

this issue is simply absent. As a clear benefit, the force can, in principle, be made

arbitrarily large, since it is proportional to the length of the cylinder.

The geometry of the cylinder-plate configuration can be parameterized anal-

ogously to the preceding sphere-plate case: we consider the symmetry axis of a

cylinder of an (infinite) length Ly and radius R to coincide with the y axis. The

infinite plate lies in the z = −(R + a) plane, with a being the distance between

the cylinder and the plate.

The Casimir force can be obtained directly from Eq. (6.1), where we use the

fact that the ΘΣ functional factorizes (cf. Eq. (6.4))

ΘΣ[x(t)] = ΘCyl[xCM +
√
T γ] ΘP[xCM +

√
T γ]. (6.15)

Here ΘCyl and ΘP account for the intersection of a worldline xCM +
√
T γ with the

cylinder and the plate, respectively. Again, only ΘP depends on a and is given in

Eq. (6.5).

The y integral in the Casimir energy (6.1) is now trivial due to translational

symmetry. The Casimir force can then be obtained directly from Eq. (6.6) and

reads

Fc =
Ly

16π2

〈∫ ∞

0

dT
T 3

∫ ∞

0

dr ΘCyl

[
x̃ +

√
T γ̃

]〉
, (6.16)
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Figure 6.3: Force density fc(a, r) for a cylinder above a plate for various separations a in units

of R = 1, see Eq. (6.14). In the limit a → 0, the force density becomes π2/480 a4 ≈ 0.021/a4

(dotted-dashed cyan line) around r = 0. This value corresponds to the parallel plates’ force

density. Note that for larger separation a, the force density first stays nearly constant, and

surprisingly, increases slightly with r, such that for r = 0 a local minimum is formed. The

statistical error is below one percent.

where r = |xCM| and

x̃ =

(
r

−a− R

)
, γ̃ =

(
γx

γz − γzzmin

)
. (6.17)

As in the case of the sphere, the worldlines x̃ +
√
T γ̃ are attached to the plate

at the point x̃. The only difference is that the worldlines are now 2-dimensional

– a fact which reduces the computational cost. Only those points of a worldline

lying on the rays intersecting the cylinder pass through the latter for some values

of T . The construction of the support of the T integral is identical to that for

the sphere-plate case, such that the total Casimir force on the cylinder can be
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6.5 Proximity force approximation

written as in Eq. (6.13)

Fc = − Ly

16π2

∫ ∞

0

dr

〈∫

S(r)

dT
T 3

〉
. (6.18)

The (negative) force density fc(a, r) per unit Ly then reads

fc(a, r) =
1

16π2

〈∫

S(r)

dT
T 3

〉
. (6.19)

The force density is shown in Fig. 6.3 for various a as a function of r. Notice that

for small a, the force density has a sharp peak at r = 0. In the limit a → 0, the

maximum becomes π2/480 a4 ≈ 0.021/a4, which corresponds to the force density

of two parallel plates. Surprisingly, for larger a, the force density develops a

local minimum at r = 0. We therefore conclude that on average, the cylinder

is intersected by worldlines earlier at some r 6= 0 rather than at r = 0. The

force density becomes broader with increasing a, and remains nearly constant to

eventually disappear for large r.

6.5 Proximity force approximation

It is instructive to compare our results not only with analytic estimates, but

also with the much simpler proximity force approximation (PFA). The latter is

used by default for the data analysis of geometry corrections in most experiments.

It derives from a classical reasoning for generalizing the parallel-plate case; thus,

deviations of the exact result from the PFA estimate also parameterize genuine

geometry-induced quantum behavior.

Roughly speaking, the PFA subdivides the surfaces into small surface elements.

It then applies the parallel-plate force or energy law to pairs of surface elements

and integrates the resulting force density. The PFA is inherently ambiguous as

the measure for this final integration is not unique: possible alternatives are the

surface measures of one of the involved surfaces or any intermediate auxiliary

surface. Later on, we will refer to the “sphere-based” or “plate-based” PFA as two

generic options for the integration measure. The PFA for the present configuration

is discussed in detail in Sec. 8.1.

The concept of the PFA can also be translated into the worldline picture: as

an approximation to the ensemble of complicated multi-dimensional worldlines,

we may reduce the worldlines to one-dimensional straight lines. The length of a

line then corresponds to the average extent of a worldline into a certain relevant

direction in a given geometry.
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6 Sphere-plate and cylinder-plate at zero temperature

This picture also explains the occurrence of deviations from the PFA as well

as the sign of these deviations in the Dirichlet case. Indeed, due to their spatial

extent, the worldlines generically intersect both boundaries for smaller values of

T than simple straight lines would. As small propertimes yield quantitatively

larger contributions, this then results in a greater force.

More precisely, the size squared of a worldline is proportional to the propertime

parameter which is in the denominator of the worldline formula, see Eq. (6.1).

This explains why worldline results are typically underestimated by the PFA for

small separations of the objects. For very small separations, the upper bound

of the propertime integration can effectively be set to infinity, whereas the lower

bound is a measure for the first (proper-)time, when a worldline intersects both

objects.

For large separations, the PFA breaks down dramatically. Using for example

the “plate-based” PFA, we have to stop the integration at the end of the sphere

or cylinder. However, the real force density is spread out over regions which can

exceed r ∼ R by many times, as is shown in Fig. 6.2 and 6.3. The “plate-based”

PFA will therefore predict the Casimir force to be much smaller for larger sepa-

rations, compared with worldline numerics. A systematic study of the PFA, also

from the worldline point of view, is given in chapter 8. Let us now move on to

the worldline results for the Casimir force.

6.6 Zero-temperature results for the Casimir

force

The Casimir force for the sphere and cylinder is compared to the PFA estimates

in Fig. 6.4 and 6.5 respectively. For similar comparisons for the Casimir energy,

see [53]. We have normalized the force to the leading-order PFA, which is exact

in the limit of vanishing separation a.

We observe that the normalized force obtained with worldline numerics does

not lie inside the range spanned by the ambiguity of the PFA estimates. Most

prominently, the sign of the deviations from the a → 0 limit is different in the

Dirichlet scalar case, as can be understood in the worldline picture described

above. These observations have been frequently made in the literature before

[37, 52, 65, 67, 138].

In the remainder of this section, we discuss both configurations separately.
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Figure 6.4: Casimir Force of a sphere of radius R = 1 above an infinite plate vs. the distance a.

The force is normalized to the leading-order PFA formula. We observe an excellent agreement

with the exact asymptotic solutions for small a [68] and for large a [65] up to a = 100. For larger

a, the number of N points per loop has to be increased far beyond N = 2 ·107 used for this plot;

otherwise, the sphere falls through the rough mesh provided by the insufficiently discretized

worldline, leading to a systematically underestimated force as is visible here for a > 100 (pink

triangles).

6.6.1 Sphere above a plate

Figure 6.4 shows the Casimir force for a wide range of the distance parameter a.

The force is normalized to the leading order of the PFA prediction

FPFA
LO (a) = − π3R

720 a3
. (6.20)

At small separations, the leading order PFA and the worldline result show reason-

able agreement. The same can be said for the full sphere- and plate-based PFA

estimates, which bound the blue area. However, this agreement holds for the

leading order only: with increasing a, the full normalized PFA result decreases,

whereas the corresponding worldline result increases. Using the analytical result

for the next-to-leading order [68], the Casimir force at small separation can then
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6 Sphere-plate and cylinder-plate at zero temperature

be written as

Fc(a→ 0) = − π3R

720 a3

(
1 +

a

6R
+ . . .

)
. (6.21)

The corresponding results for the full “plate-based” and “sphere-based” PFA esti-

mates on the other hand read

FPFA
PB (a→ 0) = − π3R

720 a3

(
1 − 1

2

a

R
+ . . .

)
(6.22)

and

FPFA
SB (a→ 0) = − π3R

720 a3

(
1 − 3

2

a

R
+ . . .

)
. (6.23)

We see a more drastic difference in the large distance limit. The Casimir force

behaves as ∼ R/a3, whereas the full PFA predicts a different power law decay,

namely ∼ R2/a4. The large a limit can be calculated analytically [66] and reads

Fc(a→ ∞) = −180

π4

π3R

720 a3
(6.24)

≈ 1.85FPFA
LO (a→ ∞). (6.25)

We observe an excellent agreement with the exact asymptotic solution for small

a [68] and for larger a [65] up to a = 100.

In order to obtain Fig. 6.4 we have used ensembles with up to nL = 1.6 · 106

and N = 2 · 107. At very small distances a the number of points per loop is not

very important, since part of the systematic error is reduced by normalizing to the

leading order result; thus, even N = 5000 is sufficient for example for a = 0.0333

at a precision level of 0.1%. On the other hand at a = 100 the number of points

per loop used was 1.5 · 107. For larger distances the number of points per loop

has to be increased far beyond 2 · 107, otherwise the systematic error from the

discretized worldlines becomes large, leading to smaller results for the force, see

Fig. 6.4 for a > 100 (pink triangles). It turns out that even such high resolution

is not sufficient to resolve the small sphere for larger distances.

Already anticipating our results for finite temperature, this observation gives

us a rough estimate for the validity limits at small temperatures. In the next

chapter, we observe that for a/R ≪ 1, the maximum of the thermal contribution

to the force density at low temperatures T < 1/R lies outside the sphere, and

that the position of the maximum increases with decreasing temperature. From

the fact that ensembles with N = 1.5 · 107 are reliable for those cases where the

dominant contribution to the force density lies within r . 100, we conclude that
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Figure 6.5: Casimir Force of a cylinder of radius R = 1 above an infinite plate vs. the distance a.

The force is normalized to the leading-order PFA formula. We observe an excellent agreement

with the exact asymptotic solutions for small a [68] and for large a [67] up to a = 1000.

temperatures above Tmin ≈ 0.01/R are accessible also in the limit a → 0. For

smaller values of N , the corresponding value of Tmin is larger.

6.6.2 Cylinder above a plate

From an algorithmic point of view, the sphere-plate and cylinder-plate config-

urations differ with respect to computational efficiency also beyond the trivial

dimensional factors: for a sphere at large separations, a large fraction of points

of a worldline can be dropped right from the beginning, as they never “see” the

sphere, i.e, they never lie on a ray inside the cone. The situation is different

for a cylinder. Dealing with a two-dimensional problem, we use two-dimensional

worldlines and the number of points per worldline, which now have to lie in a

wedge, is higher than those lying in a cone for the sphere-plate case.

Using comparable worldlines with a large number of points per loop, we thus

expect the worldline numerics to break down at far larger distances a than in the

case of a sphere. This is indeed the case as is visible in Fig. 6.5.

Figure 6.5 also compares the Casimir force for a cylinder above a plate with the
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6 Sphere-plate and cylinder-plate at zero temperature

PFA estimates. As for the case of a sphere, it is convenient to normalize the result

to the leading order PFA estimate, which for the present configuration reads (see

chapter 8)

FPFA
LO (a)

Ly
= − π3

√
aR

768
√

2 a4
. (6.26)

Comparing Eq. (6.26) with the full PFA formulae, we again observe that they

all agree to the leading order only. There also exists an analytic result for the

next-to-leading order [68], such that for small a we have

Fc(a→ 0)

Ly

= − π3
√
aR

768
√

2 a4

(
1 +

7

60

a

R
+ . . .

)
. (6.27)

The corresponding results for the full “plate-based” and “cylinder-based” PFA

estimates on the other hand read

FPFA
PB (a→ 0)

Ly
= − π3

√
aR

768
√

2 a4

(
1 − 3

20

a

R
+ . . .

)
(6.28)

and

FPFA
CB (a→ 0)

Ly

= − π3
√
aR

768
√

2 a4

(
1 − 11

20

a

R
+ . . .

)
. (6.29)

Again, the full PFA estimates predict the wrong sign of the next-to-leading order

correction. Comparing these results with the corresponding ones for the sphere,

we notice that the next-to-leading order correction is much smaller for the cylinder

than for the sphere, meaning that the cylinder configuration is better approxi-

mated by the PFA than the one for a sphere.

This can be explained by recalling that the cylinder-plate geometry is effec-

tively a two-dimensional problem since the y integration is trivial. Thus, two-

dimensional worldlines were used for the calculation of the Casimir force. The

sphere above a plate, on the other hand, despite the rotational symmetry, remains

a three-dimensional problem and also requires three-dimensional wordlines. To

obtain the PFA result we can use worldline numerics with one-dimensional straight

lines. Therefore, the configuration for the cylinder is approximated better by the

PFA in the small a limit, where the force density is concentrated underneath the

compact object.

The force law in the large a limit differs qualitatively from the one of the

sphere-plate configuration. For the cylinder, the behavior of the force changes
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6.6 Zero-temperature results for the Casimir force

from ∼
√
Ra/a4 at small a to ∼ 1/a3 ln(a/R) at large a. The exact asymptotic

form can be calculated analytically [67] and reads

Fc(a→ ∞)

Ly

= − 1

8π(a+R)3 ln
(

a+R
R

) , (6.30)

whereas the full PFA predicts
Fc

Ly
∼ R

a4
.

Comparing our worldline results with known exact asymptotic solutions, we ob-

serve an excellent agreement for small a [68] and for larger a [67] up to a = 1000,

see Fig. 6.5.

For the Fig. 6.5 we have also used ensembles with up to nL = 1.1 · 106 and

N = 2 · 107. At a = 100, the number of points per loop used was 3 · 106, and

increased to N = 1 · 107 for a = 333 and up to N = 2 · 107 for a = 1000. As

expected, the required number of points per loop for a certain a is less here than

in the case of a sphere. Even at such large separations as a = 1000, our results

agree nicely with [67].

The corresponding estimate for the validity limits at small temperatures for

N = 2 · 107 then is T > 0.001/R.
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7 Sphere-plate and cylinder-plate

at finite temperature

In this chapter, we investigate the nontrivial interplay between geometry and

temperature in the Casimir effect for the sphere-plate and cylinder-plate con-

figurations. At low temperature, thermal fluctuations on scales of the thermal

wavelength lead to a delocalization of the thermal force density, implying that

standard approximation techniques such as the PFA are inapplicable even in the

limit of small surface separation. As a consequence, the temperature dependence

strongly differs from naive expectations. We perform a comprehensive study of

the geothermal phenomena for sphere-plate and cylinder-plate configurations us-

ing analytical and numerical worldline techniques for Dirichlet scalar fluctuations.

The results of this chapter were published in [58–60].

7.1 Introduction

Investigating finite temperature effects for inclined plates, we observed that the

free energy contains temperature dependent terms which, however, do not depend

on the separation of the plates and thus do not lead to a force. Moreover, at

low temperature, these distance independent terms form a leading contribution

to the thermal part of the free energy. Fortunately, the configuration of the

inclined plates allows us to identify these terms analytically, without the need

of performing this task numerically, such that distance dependent and distance

independent contributions can be evaluated independently.

For the configurations studied in the present chapter, this separation is ana-

lytically not possible within worldline numerics. The dependence of the force on

temperature is then to be found by numerical differentiation of the thermal free

energy with respect to the distance parameter. Given that the distance dependent

contribution may be only subleading, this procedure leads to a loss of precision

for the numerical results for the thermal force.
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7 Sphere-plate and cylinder-plate at finite temperature

Fortunately, we found a method of direct calculation of the Casimir force in the

previous chapter. In the following sections, we generalize this method to finite

temperature and then perform investigations for the Casimir force rather than

for the free energy.

The use of the worldline approach to the Casimir effect on the one hand provides

for a highly intuitive picture of the fluctuations, and on the other hand facilitates

analytical as well as numerical computations from first principles [37–47].

For instance, the failure of local or additive approximation techniques can di-

rectly be inferred from the temperature dependence of the force density: the

latter tends to delocalize for decreasing temperatures on scales of the thermal

wavelength [58–60]. Local approximation techniques may only be useful at fi-

nite temperature if the strict weak-coupling limit is taken [164], or in the high-

temperature limit.

We analyze the thermal force density distributions, compute thermal forces for a

wide nonperturbative range of parameters, and determine asymptotic limits. This

facilitates a careful comparison with local approximation techniques, and, most

importantly, yields new and unexpected results for the geometry dependence of

thermal forces. For instance, the pure thermal force, i.e., the thermal contribution

to the Casimir force, reveals a non-monotonic behavior below a critical temper-

ature for the sphere-plate and cylinder-plate case [59]: the attractive thermal

force can increase for increasing distances. This anomalous feature is triggered

by a reweighting of relevant fluctuations on the scale of the thermal wavelength

– a phenomenon which becomes transparent within the worldline picture of the

Casimir effect. Whereas these non-monotonic features already occur for a simple

Dirichlet scalar model, non-monotonicities can also arise from a competition be-

tween TE and TM modes of electromagnetic fluctuations in configurations with

side walls [153, 154].

While there are a number of impressive verifications of the zero-temperature

Casimir force [27, 28, 155–157], a comparison between theory and thermal force

measurements suffers from the interplay between dielectric material properties

and finite temperature [139], still being a subject of intense theoretical investi-

gations [140–143, 158, 159]. In view of the geothermal interplay, we expect that

the full resolution of this issue requires the comprehensive treatment of geom-

etry, temperature and material properties, possibly also including edge effects

[54, 57, 136, 160, 161]. First results on the sphere-plate configuration using scat-

tering theory and specific dielectric models demonstrate this nontrivial interplay

[82, 162, 163].
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7.2 Worldline approach to the Casimir effect

Let us shortly review our approach to the direct calculation of the Casimir force

as presented in the previous chapter and generalize the approach to finite tem-

peratures.

Introducing finite temperature T = 1/β by the Matsubara formalism is equiva-

lent to compactifying Euclidean time on the interval [0, β]. At finite temperature

and four-dimensional spacetime, the Casimir free energy induced by a fluctuating

Dirichlet scalar reads for any configuration

Ec = − 1

32π2

∫ ∞

0

dT
T 3

∞∑

n=−∞
exp

(
−n

2β2

4T

)∫
d3xCM 〈ΘΣ[x(t)]〉 . (7.1)

Here, 〈. . . 〉 denotes an average over an ensemble of worldlines γ with Gaußian

velocity distribution and with a common center of mass xCM. The auxiliary prop-

ertime parameter T acts as a spatial scaling factor and governs the size of the

worldlines. The sum over winding number n counting the round trips of a world-

line around the finite-temperature torus takes care of thermal fluctuations, with

the n = 0 term corresponding to the zero-temperature T = 1/β → 0 result. The

Θ functional obeys ΘΣ = 1 if a given worldline intersects two or more interacting

surfaces, and ΘΣ = 0 otherwise.

In the following, we are exclusively interested in the thermal contribution n 6= 0,

serving as the interaction potential for the thermal force,

∆Fc(T ) = − d

da
Ec

∣∣∣
n 6=0

. (7.2)

Here, a is a distance parameter between disjoint bodies. For instance, for a

sphere above a plate, a configuration that allows to cancel the zero-temperature

forces is sketched in Fig. 7.1 [165]. Alternatively, the zero-temperature force

could be balanced by applying suitable electrostatic potentials to a single-sphere

setup. We stress that the thermal-force phenomena discussed in the following are

dominated by the corresponding zero-temperature forces in the standard setups

where a ≪ R. After removing the zero-T contribution, the thermal force for the

sphere-plate configuration reads

∆Fc = − 1

8π

∞∑

n=1

∫ ∞

0

dT
exp

(
−n2β2

4T

)

T 3

∫ ∞

0

dr r 〈ΘS〉 , (7.3)

where r is the polar center-of-mass coordinate on the plate.
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T1 T2
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Figure 7.1: Setup for a measurement of the thermal force for the sphere-plane configuration: by

tuning the sphere positions to identical distances a1 = a2, the zero-temperature force on the

tightly connected pair of plates cancels. Placing the two sphere-plate subsystems into two heat

baths at different temperatures T1 and T2, the different thermal forces induce a net force on the

pair of plates. We assume that all distances between the (blue) Casimir surfaces and the (black)

heat-bath boundaries are large, e.g., d1,2 ≫ a1,2, such that corresponding Casimir interactions

can be neglected.

As we have found in the previous chapter, for the calculation of the Casimir

force, ΘS measures whether a worldline which is attached to the plate also inter-

sects with the sphere for certain scaling sizes ∼ T , see Fig. 7.2. Therefore, the

classification of relevant worldlines has changed now. They are scaled not with

respect to the center of mass (as it was the case in Eq. (7.1)), but with respect

to the tip of the cone, which lies on the plate, see Fig. 7.2. Also, the spatial inte-

gration does not run over all space. For example, worldlines whose lowest point

is underneath the infinite plate are not taken into account at all. The details can

be found in the previous chapter.

For the cylinder-plate case, the factor of r has to be replaced by the (infinite)

length Ly of the cylinder divided by π, leading to

∆Fc = − Ly

8π2

∞∑

n=1

∫ ∞

0

dT
exp

(
−n2β2

4T

)

T 3

∫ ∞

0

dr 〈ΘC〉 . (7.4)
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Figure 7.2: Sketch of the sphere-plate configuration. During the propertime integration, the

worldline is always attached to the plate, while all its points move on rays originating from

the projection of its center of mass xCM on the plate at polar coordinate r. Only points lying

inside a cone wrapping around the sphere with the tip of the cone at r (thick dashed lines) pass

through the sphere for increasing T and thus contribute to the Casimir force. In general, for

every r ≫ R there exists a maximal separation a, such that the sphere can be intersected by

the worldline. If the sphere separation is reduced (dotted red circle), it can become invisible for

a given worldline, such that the worldline stops contributing to the Casimir force. This induces

the phenomenon that the thermal force can increase for increasing separation.

For the sphere, the expectation value in Eq. (7.3) is taken with respect to an

ensemble of 3-dimensional closed worldlines. For the cylinder, it is sufficient to

use 2-dimensional worldlines, due to the trivial y coordinate.

Here, we use the same set up as in the previous chapter: the infinite plate

lies in the z = −(R + a) plane, the minimal distance between the objects is a.

The sphere of radius R is placed in the origin, see Fig. 7.2. The cylinder-plate

configuration is analogous: the symmetry axis of a cylinder of an infinite length

Ly and radius R coincides with the y axis.
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7 Sphere-plate and cylinder-plate at finite temperature

7.3 General considerations

7.3.1 The a→ 0 limit

At finite temperature T = 1/β, the Casimir free energy can be decomposed into

its zero-temperature part Ec(0) and finite-temperature correction ∆Ec(T ),

Ec(T ) = Ec(0) + ∆Ec(T ). (7.5)

The same relation holds for the Casimir force

Fc(T ) = Fc(0) + ∆Fc(T ).

Within the worldline representation of the free energy (7.1), the finite-temperature

correction is purely driven by the worldlines with nonzero winding number n.

Most importantly, the complicated geometry-dependent part of the calculation

remains the same for zero or finite temperature.

Let us first perform a general analysis of the thermal correction for a generic

Casimir configuration following our argument given in [58]. We start from the

assumption that the Casimir free energy can be expanded in terms of the dimen-

sionless product aT ,

Ec(T )

Ec(0)
= 1 + c1aT + c2(aT )2 + c3(aT )3 + . . . (7.6)

No negative exponents should be present in Eq. (7.6), since the thermal part of

the energy disappears as T → 0.

Generically, the T = 0 Casimir energy Ec(0) diverges for surfaces approaching

contact a→ 0. From Eq. (7.6), we would naively expect the same for the thermal

correction. If, however, sufficiently many of the first ci’s in Eq. (7.6) vanish, then

the thermal part of the Casimir energy is well behaved and without any divergence

for a→ 0.

This indeed turns out to be the case for two parallel plates, where

c1 = c2 = 0 and Ec(0) ∼ 1

a3
, (7.7)

and for inclined plates, where

c1 = 0 and Ec(0) ∼ 1

a2
, (7.8)

as we have seen in chapter 4.
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7.3 General considerations

Consequently, an extreme simplification arises: the low-temperature limit of

the thermal correction can be obtained by first taking the formal limit a = 0.

This was first observed in [58] and then successfully applied in [167].

In the following, we argue that there is no divergence in the local thermal force

density in the limit a → 0 for general geometries. For a generic geometry, the

a-divergent part can only arise from the regions of contact as a → 0. The diver-

gence for these regions at T = 0 is due to the diverging propertime integral over

1/T 1+D/2 which is bounded from below by ∼ a2. This is because for worldlines

smaller than a the worldline functional is always zero. At finite temperature the

divergence in the thermal correction for a → 0 is removed since one now inte-

grates over exp(−n2β2/4T )/T 1+D/2, which is zero for every n > 0 in the limit

T → 0. The only nonanalyticity could arise from the infinite sum. That this is

not the case can directly be verified: instead of integrating over the support S,

we integrate over T from zero to infinity, yielding

∞∑

n=1

∫ ∞

0

exp
(

−n2β2

4T

)

T 1+D/2
dT = (2T )D Γ(D/2) ζ(D). (7.9)

For finite temperature T > 0, Eq. (7.9) is a finite upper bound for the original

local thermal force density.

This procedure corresponds to substituting the critical regions of contact by

broader (and infinitely extended) parallel plates, see [58]. The thermal contri-

bution is estimated from above by flattening the surfaces in the contact region.

The local thermal contribution to the Casimir force of the original configuration

is clearly smaller than the finite thermal contribution of parallel plates. As the

latter does not lead to divergences for a→ 0, there can also be no divergence for

the general curved case arising from the contact regions.

Of course, infinite geometries may still experience an infinite thermal force,

as it is the case for two infinitely extended parallel plates, but the local thermal

contribution to the force density will be finite. From a practical viewpoint, taking

the limit a→ 0 first simplifies the calculations considerably.
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7 Sphere-plate and cylinder-plate at finite temperature

7.3.2 Delocalization of the thermal force density

Another important feature of low-temperature contributions to the Casimir effect

is the spread of the thermal force density over regions of size ∼ 1/T even for

very small separations a. This phenomenon has first been demonstrated for the

configuration of two perpendicular plates at a distance a [58].1

The thermal force density

∆fc(r, T ) = fc(r, T ) − fc(r, 0)

for this case as a function of the coordinate r on the infinite surface measuring the

distance from the edge (i.e., the contact point at a = 0) can indeed be obtained

analytically on the worldline from the thermal force,

∆Fc(β) = − Ly

16π2

∞∑

n=1

〈∫
dr

∫ ∞

r2/λ2
1

exp
(
−n2β2

4T

)

T 3
dT
〉
. (7.10)

Here, λ1 is a worldline parameter measuring the extent of half a unit worldline,

i.e., the distance measured in x direction from the left end to the center of mass.

It is clear from Fig. 7.2 that the lower bound in the T integral in Eq. (7.10) is

given by r2/λ2
1: this is the minimal scaling value for which the worldline intersects

the semi-infinite vertical plate. From Eq. (7.10), we read off the following force

density:

∆fc(r, T )

Ly
= − π2 T 4

90
+

1

π2

∞∑

n=1

〈
exp

(
− n2λ2

1

4r2T 2

)(
T 4

n4
+
T 2λ2

1

4n2r2

)〉
. (7.11)

Analytic results for the thermal force can be obtained by rescaling the radial

coordinate

r → λ1 r

per worldline and using

〈λ1〉 =

√
π

2
.

The force density in Eq. (7.11) then becomes2

∆f̃c(r, T )

Ly
= − π5/2 T 4

180
+

1

2π3/2

∞∑

n=1

〈
exp

(
− n2

4r2T 2

)(
T 4

n4
+

T 2

4n2r2

)〉
. (7.12)

1In this configuration, the sphere in Fig. 7.2 is replaced by a vertical semi-infinite plate ex-

tending along the positive z axis and an edge at z = 0.
2Equations (7.11) and (7.12) possibly differ by a total derivative, but both provide for a

reasonable thermal force density.
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7.3 General considerations

The thermal force between the perpendicular plates in the limit a → 0 upon

integration then yields

∆Fc(T ) = −ζ(3)LyT
3

4π

in agreement with [55].

The thermal force density of two perpendicular plates at a = 0 can also be

calculated for arbitrary spacetime dimension D. All we have to do is to replace

the prefactor in Eq. (7.10) by 1/(4π)D/2 and the propertime exponent in the

denominator by 1 +D/2. This gives

∆fc(r, T,D)

Ly

= − ζ(D)Γ

(
D

2

)
π−D/2 TD + π−D/2 TD

〈 ∞∑

n=1

Γ
(

D
2
,

λ2
1n2

4r2T 2

)

nD

〉
.

(7.13)

This force density can also be made independent of λ1 by rescaling r → λ1 r.

Integrating Eq. (7.13) and using 〈λ1〉 =
√
π/2 we obtain

∆Fc

Ly
= −1

2
π(1−D)/2 ζ(D − 1) Γ

(
D − 1

2

)
TD−1, (7.14)

in agreement with our result for perpendiculat plates inD dimensions, see Eq. (5.20).

The perpendicular-plates configuration is special as it features a scale invariance

in the a→ 0 limit: Eq. (7.11) remains invariant under

T → Tα, r → r/α, ∆fc → ∆fc/α
4 (7.15)

for arbitrary α. As a consequence, knowing (7.11) for a single temperature value,

say T = 1, is sufficient to infer its form for all other T . Equation (7.11) is shown

for T = 1/R, R = 1 in Fig. 7.3. For r < 1/T , the force density stays nearly

constant, corresponding to the first term in (7.11). It rapidly approaches zero

for r > 1/T . From this, we draw the important conclusion that the region of

constant force density in r direction can be made arbitrarily large by choosing

sufficiently low T .

Similar consequences arise for temperature effects in other geometries. We plot

the thermal force densities for the sphere-plate and cylinder-plate configuration

in Fig. 7.3. The thermal force density for a cylinder above a plate at a = 0

has a shape similar to the one of two perpendicular plates, whereas the radial

force density of a sphere above a plate exhibits a maximum due to the cylindric

measure factor r, see Fig. 7.3.

Although these force densities are not scale invariant due to the additional

dimensionful scale R (sphere radius), its maximum nevertheless moves away from
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Figure 7.3: The (negative) thermal force density Eq. (7.11) for perpendicular plates (dashed

blue line), cylinder above plate (dotted dashed line) and sphere above plate (solid red line)

both of radius R = 1 in the zero-distance limit a → 0 for T = 1. The sphere-plate curve

represents the radial density including the radial measure factor ∼ 2πr. The thermal force

densities of cylinder and perpendicular plates at r = 0 are equal to the force density of two

parallel plates, π2/90 ≈ 0.1097. The thermal force density in the sphere-plate case has a

maximum of ≈ 2π × π2/90, where the factor 2π arises from the cylindrical measure. Note that

a considerable fraction of the force density lies outside the sphere which only extends to r = 1.

As the temperature drops, the maximum moves monotonously to the right.

the sphere as the temperature drops. We conclude that no local approximate tools

such as the PFA will be able to predict the correct thermal force in particular

at low temperatures. The fact that the force densities for sphere and cylinder

are not scale invariant leads to different temperature behaviors for T < 1/R and

T > 1/R, even in the limit a→ 0.

The spread of thermal force density can be easily understood in the worldline

picture: at zero temperature, the Casimir force is generically dominated by small

propertimes, i.e., small worldlines with a minimal extent such that the worldlines

can intersect with both surfaces. As a consequence, the energy density is typically

peaked in the region near minimal separation. By contrast, the peak of the finite-

temperature propertime factor ∼ e−n2β2/(4T )/T 3 moves to larger T values for

decreasing temperature. Therefore, as larger worldlines can contribute, the free-
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Figure 7.4: Radial (negative) thermal force density ∆fc(r, T, a) for a sphere above a plate for

different temperatures T in units of R = 1. The peak position as a function of r increases with

decreasing temperature. Notice also that the thermal force density corresponding to T = 0.1

and a = 3 lies clearly above the one corresponding to T = 0.1 and a = 0 for sufficiently large r,

resulting in a stronger thermal force for a = 3. The statistical error is below one percent.

energy density is potentially distributed over a larger region of space. Whether or

not this broadening occurs depends on the details of the geometry, as worldlines

at larger distances still have to intersect the Casimir surfaces.

In Fig. 7.4, we plot the radial distribution of the thermal force density of a

sphere above a plate for various temperature values. Its peak position increases

with decreasing temperature. This corresponds to the fact that low temperatures

can still excite long-wavelength modes if the spectrum is not gapped. Figure

7.4 also demonstrates that any local approximation of the Casimir force such

as the proximity force approximation (PFA) is generically bound to fail for a

proper description of the geometry-temperature interplay; see, however, [164]

for semitransparent surfaces. For experiments at low temperature, our results

indicate that the idealized sphere-plate configuration requires the plate to be much

larger than the sphere. Otherwise thermal edge effects have to be accounted for,

being more severe than edge effects at T = 0.
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7 Sphere-plate and cylinder-plate at finite temperature

7.3.3 Non-monotonic thermal forces

For standard materials, the Casimir force is generally attractive [70] and decreases

monotonically with distance. The latter seems intuitively clear from spectral

properties of the fluctuations: in this picture, the Casimir effect arises from the

difference between the fluctuation spectrum in the presence of the surfaces and

that of the trivial vacuum (at infinite surface separation). For increasing separa-

tion, the spectrum is expected to monotonically approach the vacuum spectrum,

implying a monotonic force depletion.

A first non-monotonic behavior has been observed in a more involved piston-like

geometry of two squares moving between metal walls [153]; similar observations

hold for two cylinders near a sidewall [154]. Here, the non-monotonic behavior

arises from a competition between the TE and TM modes of the electromagnetic

fluctuations. Its strength is governed by the dependence of the force on a lateral

geometry parameter. The example demonstrates that an unexpected behavior of

the Casimir force may occur in the presence of competing scales (in this case:

normal and lateral distances).

Here, we show that a non-monotonic behavior already exists for a single fluc-

tuating scalar obeying Dirichlet boundary conditions on the surfaces (similar to

a TM mode in a cavity-like configuration). This anomalous phenomenon requires

a nonzero temperature and occurs for the thermal contribution to the Casimir

force. This phenomenon is a prime example of the geothermal interplay.

Typical configurations used in experiments involve spheres or cylinders above

a plate, which are open geometries without a spectral gap. Investigating the

geothermal interplay for these geometries therefore is an urgent problem. For the

fluctuating electromagnetic field, first results for the thermal Casimir force in the

sphere-plate configuration have recently been obtained [82, 167] using scattering

techniques.

In the limit of temperature being smaller than both the inverse sphere radius,

T ≪ 1/R, and the inverse sphere-plate distance, T ≪ 1/a, the thermal force in

[167] is always attractive for any value of a/R and monotonically decreasing with

increasing separation a. By contrast, the thermal force derived in [82] using a

truncated multipole summation shows a repulsive behavior for smaller distances

and becomes attractive at larger distances. From their data, a non-monotonic

behavior of the thermal force at larger distances a/R ≫ 1 and low temperatures

TR . 1 can be anticipated. Whereas both studies nicely agree in the limit of

low temperature and small spheres, the seeming disagreement beyond the strictly

asymptotic validity regimes of the two different expansions requires clarification.
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In this chapter, we demonstrate that non-monotonic thermal forces indeed oc-

cur unambiguously for the sphere-plate and cylinder-plate configuration in the

low-temperature region. Dealing with Dirichlet scalar fluctuations, we avoid ad-

ditional complications from competing polarization modes. Most importantly,

the occurrence of this anomalous behavior can be understood as a temperature-

induced reweighting of different relevant fluctuations in a given geometry. This is

at the heart of the geothermal interplay.

In the worldline picture, formalized by Eq. (7.3) and (7.4), the Casimir force

arises from all worldlines that are attached to the plate and intersect the sphere

(cylinder). Consider a worldline with center of mass polar coordinate r in the

sphere-plate geometry at separation a, see Fig. 7.2. Upon integrating over prop-

ertime T , the size of the worldlines is scaled but the center of mass projection

onto the sphere stays fixed at r. Therefore, the worldline points that eventually

intersect the sphere have to lie inside a cone with its tip attached to the plate

at r, wrapping around the sphere, see Fig. 7.2.

Let us now reduce the sphere-plate separation a for a given worldline. As this

moves the corresponding cone towards the plate (red dotted lines in Fig. 7.2), all

points of a given worldline may drop out of the cone such that this worldline no

longer contributes to the Casimir force. This is the mechanism that potentially

reduces the Casimir force for smaller separations. The same arguments apply to

the cylinder-plate configuration.

While this geometric argument is independent of any temperature, this loss

mechanism of relevant fluctuations is negligible at zero temperature: the effect is

outweighed by small worldlines intersecting sphere and plate near the point of clos-

est separation, which dominate the zero-temperature Casimir force. By contrast,

the finite-temperature propertime factor ∼ e−n2β2/(4T )/T 3 favors the contribution

of larger worldlines at low temperature and thus emphasizes the relevance of the

loss mechanism at larger separations. Compare, for example, the force density

for a = 0 and T = 0.1 with those for a = 3 and same temperature T = 0.1 in

Fig. 7.4.

Whether or not a non-monotonic thermal force law arises then is a competition

between small worldlines in the region of close separation and large worldlines

on the scale of the thermal wavelength. If the contribution of the latter to the

thermal force is dominant, the thermal force can increase for increasing distance

as more and more worldlines can contribute, i.e., become relevant fluctuations.

With this general considerations in mind, let us now turn to a detailed analysis

of the Casimir effect at finite temperature for the sphere-plate and cylinder-plate

configurations.

115



7 Sphere-plate and cylinder-plate at finite temperature

7.4 Sphere above a plate

7.4.1 Expansion of the thermal force for a≪ R and T ≪ 1/R

We start with the expansion of the thermal force for a ≪ R and for small tem-

perature T ≪ 1/R. Following our general argument given above, no singularities

in a appear in the limit a→ 0. Also, we expect that the thermal force decreases

with decreasing R. This motivates an expansion of the thermal force with only

positive exponents for a and R. Assuming integer exponents, dimensional analysis

permits

∆Fc(T ) = c0RT
3 + c1aT

3

+ c2R
2T 4 + c3aRT

4 + O
(
(a/R)2, (TR)5

)
. (7.16)

From our numerical results in the limit a → 0, we observe a T 4 behavior of the

thermal force, see Fig. 7.5. We conclude that c0 ≈ 0 is negligible with respect to

c2 in the regime T > 0.01, where numerical data is available.

In fact, we conjecture that c0 vanishes identically, c0 = 0; if so, also c1 vanishes,

since the configuration would otherwise be more sensitive to temperatures at small

a than at a = 0. Our conjecture is supported by the following argument based

on scaling properties: the dimensionless ratio of the thermal correction and the

zero-temperature force has to be invariant under the rescaling

a→ a/α, R → R/α, T → αT. (7.17)

The same holds for the ratio of ∆Fc(a, T ) at a = 0 and the zero-temperature force

at a 6= 0. For a ≪ R, we can use the PFA for the zero-temperature force, which

to leading order yields ∼ R/a3. If c0 6= 0, this leading ratio would be ∼ c0(aT )3

which is invariant under the rescaling (7.17); in addition, this ratio would be

invariant under (7.17) with R fixed. If c0 = 0, then this ratio is ∼ c2Ra
3T 4 which

is invariant only under the full transformation (7.17).

The result that for c0 6= 0 the thermal correction would exhibit the same R

dependence as the zero-temperature force for small distances a ≪ R is counter-

intuitive: whereas the radial force density in the small-distance limit at T = 0

is peaked right under the sphere near r ≃ 0, the thermal correction arises from

contributions at much larger r, cf. Fig. 7.4.

As a simple estimate, we expect that the thermal correction is proportional to

an effective area of the sphere,

Aeff ≈ (a+R)2R +
πR2

2
,
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Figure 7.5: Thermal Casimir force of a sphere above a plate in the limit a → 0 and for R = 1.

The worldline result and the PFA predictions are normalized to the leading-order PFA, cf.

Eq. (7.20). The leading-order PFA predicts a T 3 behavior of the thermal force for all T . On

the other hand, for small T the plate-based PFA and the worldline result see a T 4 behavior,

whereas the sphere-based PFA sees a T 4 ln(T ) one. For large T ≫ 1/R the behavior is T 3 for

all curves. All predictions agree in the large T limit. For very small T , the worldline result runs

into the blue area which spans the PFA predictions.

as seen by the worldlines. This estimate then is compatible with

c0 = c1 = 0

and
c2
c3

≈ 1.8.

The question arises why the leading-order PFA approximation yields a T 3 be-

havior despite the additional scale R. The reason is that R appears only in the

combination r2/R in the force density, such that

T → αT, r → r/α2

leaves the force density invariant up to a multiplicative constant.
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Figure 7.6: Low-temperature behavior of −∆Fc(T )/T 4 for the sphere-plate configuration in the

limit a → 0 for R = 1. For 0.03 < T < 0.1, we observe a linear behavior which can be fitted to

∆Fc(a = 0, T ) ≈ −3.96 R2T 4 + 11.66 R3T 5. We have used 40 000 loops with 2 · 106 ppl each.

For T < 0.03, the number of points per loop used is not sufficient to resolve the sphere properly,

inducing systematic errors (black triangles).
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Figure 7.7: Plot of the a-dependent part of the (negative) thermal Casimir force for a sphere at

a = 0.1 and R = 1 in the low-temperature regime. In the range 0.03 < T < 0.08, the worldline

data for −(∆Fc(0.1, T ) − ∆Fc(0, T )) is well approximated by 0.268 T 4 − 1.57 T 5 (dashed blue

curve), corresponding to a c3 coefficient in Eq. (7.16) c3 ≈ −2.7. Note that the absolute value

of the Casimir force has increased with a. We have used 40 000 loops with 2 · 106 ppl each.
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Let us return to Eq. (7.16). For c2 and c3, we obtain numerically (see Fig. 7.6

and Fig. 7.7)

c2 ≈ −3.96(5), c3 ≈ −2.7(2). (7.18)

These numbers can be confirmed by the exact T -matrix representation [166].

Note that both coefficients have the same sign, implying that the absolute

value of the thermal correction to the Casimir force increases with increasing

a for sufficiently small a and T . This apparently anomalous behavior can be

understood in geometric terms within the worldline picture [59], see also Sec.

7.3.3.

7.4.2 Critical temperature

The sphere-plate configuration has a critical temperature

Tcr ≃
0.34(1)

R
. (7.19)

For T > Tcr, the thermal force decreases monotonically for increasing sphere-plate

separation a in accordance with standard expectations. For smaller temperatures

T < Tcr, the thermal force first increases for increasing separation, develops a

maximum and then approaches zero as a → ∞. The peak position is shifted to

larger a values for increasing thermal wavelength, i.e., decreasing temperature.

In all cases, the force remains attractive, see Fig. 7.8.

As an example, room temperature T = 300K corresponds to the critical tem-

perature for spheres of radius R ≃ 2.6µm. For larger spheres, room temperature

is above the critical temperature such that the thermal force is monotonic. For

smaller spheres, the thermal force is non-monotonic at room temperature. If, for

instance, T = 70K and R = 1.6µm, the thermal force increases up to a ≃ 9µm.

7.4.3 Comparison with the PFA

The high-temperature limit T ≫ 1/R agrees with the PFA prediction for a → 0

and reads

∆Fc(T → ∞) = −ζ(3)R

2
T 3. (7.20)

In the limit a → 0, the leading-order PFA yields Eq. (7.20) for all T . This is

because geometrically the leading-order PFA corresponds to approximating the

sphere by a paraboloid, which is a scale-invariant configuration at a = 0. At
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Figure 7.8: Thermal correction to the Casimir force of a sphere for various temperatures T and

R = 1, normalized to the thermal force at a = 0. For sufficiently small temperatures, the

absolute value of the thermal force correction ∆F (T ) first increases with increasing a. For T ≤
0.05 the small a behavior is well described by 1 + a(2.68RT 4 −R215.7 T 5)/∆F (a = 0, T ). This

verifies the fit used in Fig. 7.7 with coefficient linear in ∼ a in front of T 5. From this prediction,

we would expect the curves to be monotonically decreasing for T > 2.7/15.7R ≈ 0.17/R in the

leading order. Due to higher-order terms, the T = 0.2 curve still increases slightly first. The

statistical errors of the worldline calculation are of the order of the thickness of the curves.

finite a, the scale invariance is broken and a term ∼ +Rπ3aT 4/45 appears on the

right-hand side of Eq. (7.20) at low temperature in the leading-order PFA.

By contrast, we observe that the true a → 0 limit is characterized by a T 4

behavior for small T and T 3 behavior for large T . Also, the sign of the correction

at finite a is different: the full worldline result predicts an increase whereas the

PFA correction reduces the absolute value of the force, see Fig. 7.7.

It is interesting to compare our results to another PFA scheme beyond the

leading-order PFA: the plate-based PFA. This scheme is not scale invariant at

a = 0, as the low-temperature limit for a≪ R is also quartic and given by

∆FPFA
PB (a≪ R, T → 0) = −π

2T 4

90
πR2. (7.21)

Equation (7.21), in fact, corresponds to the thermal force density of two parallel

plates integrated over the area of the region below the sphere, πR2. Numerically,
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7.4 Sphere above a plate

the corresponding worldline coefficient is more than ten times larger than the

PFA prefactor π3/90 ≈ 0.345.

In Eq. (7.21), the low-T behavior at finite a is exponentially suppressed, im-

plying that the plate-based PFA prediction for c3 is zero – which is again in

contradiction with our worldline analysis.

In the other PFA scheme, the sphere-based PFA, the coefficient in front of T 4

is T dependent itself,

∆FPFA
SB (a≪ R, T → 0) =

R2(2ζ ′(4) + ζ(4)(3 + 2 ln
(

RT
π

)
))

π
T 4. (7.22)

For very small temperatures, this becomes ∼ T 4 ln(T ), such that the absolute

value of the thermal force is larger than the worldline result as T → 0.

The formulae (7.20)-(7.22) are derived in the next chapter. The thermal force

at a = 0 is shown together with the PFA predictions in Fig. 7.5.

7.4.4 High temperature limit

We now turn to the high-temperature limit, in a strict sense corresponding to

T ≫ 1

a
and T ≫ 1

R
. (7.23)

The second requirement is automatically fulfilled in the small-distance limit a≪
R. Quantitatively, for large a, it turns out that the high-temperature regime is

already approached for

T ≫ 1

a
and T ≪ 1

R
. (7.24)

A special case arises for a→ 0, where the high-temperature limit agrees with the

PFA prediction Eq. (7.20) in the leading order. For a > 0, the high-temperature

limit is linear in T and the total force becomes classical, i.e., independent of

~c. This behavior is rather universal being a simple consequence of dimensional

reduction in high-temperature field theories, or equivalently, of the linear high-

temperature asymptotics of bosonic thermal fluctuations [57, 131–134, 150]. In

order to find the high-temperature limit, we perform the Poisson summation of

the winding sum. The Poisson summation for an appropriate function f reads

∞∑

n=−∞
f(n/T ) =

√
2π T

∞∑

k=−∞
f̂(2πkT ), (7.25)
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7 Sphere-plate and cylinder-plate at finite temperature

where f̂ is the Fourier transform (including a 1/
√

2π prefactor) of f , see ap-

pendix A. Applying Eq. (7.25) to the winding sum, we obtain

2
∞∑

n=1

exp

(
−n

2β2

4T

)
= − 1 + 2T

√
T π

+ 4T
√
T π

∞∑

k=1

exp
(
−T (2πkT )2

)
. (7.26)

For finite a, the propertime integral is bounded from below and the last term is

exponentially vanishing as T → ∞. Evaluating the worldline integrals for the

first two terms, we obtain

∆Fc(a, T ) = −Fc(a) + T F̃c(a). (7.27)

The evaluation of F̃ (a) is analogous to Eq. (6.12),

F̃c(a) = − 1

8
√
π

〈∫ ∞

0

dr r

∫ ∞

S(r)

dT
T 5/2

〉
, (7.28)

where the support S(r) is the same as in the T = 0 case, see Eqs. (6.10) and

(6.12).

The Casimir force remains attractive also for high temperatures. The function

F̃c(a), normalized to the leading-order PFA prediction

F̃PFA
LO (a) = −R ζ(3)

8a2
, (7.29)

is shown in Fig. 7.9. The function a2F̃c(a) is monotonically increasing on 0 < a <

100 (similar to a3Fc(a)). At small a, we obtain

F̃c(a)

F̃PFA
LO (a)

= 1 + (0.14 ± 0.015)a. (7.30)

In analogy to the zero-temperature force, we conjecture that also a2F̃c(a) remains

monotonically increasing and finally approaches a constant for a → ∞. A con-

sequence of this conjecture is that the high-temperature limit then has a simple

form, T ≫ 1/a, without any relation to R. Indeed, demanding

∆Fc(a, T ) = −Fc(a) + T F̃c(a, T ) < 0 (7.31)

for a fixed T , the limit a → ∞ corresponds immediately to T ≫ 1/a, since

a3Fc(a) itself approaches a constant. Our numerical data shown in Fig. 7.9 is

indeed compatible with this conjecture. However, the large-a limit is difficult to

assess due to the onset of systematic errors for a > 100.
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Figure 7.9: High-temperature coefficient F̃c(a) for the sphere-plate configuration normalized

to the corresponding PFA coefficient. At large a, the normalized coefficient is conjectured

to approach a constant. For small a, the behavior is well described by 1 + (0.14 ± 0.015) a.

For a > 100, systematic errors similar to those of Fig. 6.4 set in (black triangles); at finite

temperature, these errors are even more pronounced due to a softer propertime exponent 5/2.

7.4.5 Normalizing thermal force to zero temperature force

Comparing Fig. 6.4 and 7.9, we notice that the zero-temperature force Fc(a) and

the high temperature coefficient F̃c(a) behave similarly. This is not surprising

since F̃c(a) in D = 4 Minkowski space corresponds to Fc(a) in D = 3 Euclidean

space due to dimensional reduction in the high-temperature limit.

For finite a, the high-temperature limit is already well reached for T & 1/2a.

In the PFA approximation, the weaker thermal force at not too small tempera-

tures is normalized by the weaker zero-temperature force, leading to an accidental

cancellation, such that for T & 1/2a

∆F̃c(a)

Fc(a)
T ≈ 90 ζ(3)

π3
aT ≈ 3.49 aT, (7.32)

independently of R. A comparison between the full worldline result and the

leading-order PFA for the normalized force is shown in Fig. 7.10 for various a

and T . Since for small separations a < R, the leading-order PFA is a reasonable

approximation already at medium temperature

1/2a > T > 1/2R,

see Fig. 7.5, we observe that the ratio between the thermal Casimir force and the

zero-temperature result is surprisingly well described by the PFA for quite a wide

parameter range. We stress that the PFA is inapplicable for each quantity alone.
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Figure 7.10: Thermal correction to the Casimir force for a sphere with R = 1 normalized to the

zero temperature force for various temperatures and a < R. The worldline results (symbols)

should be compared with the leading-order PFA estimate (lines). We observe that this ratio of

thermal to zero-temperature force is surprisingly well described by the PFA for a wide parameter

range, especially in the high-temperature regime. This happens because both F̃c(a) and Fc(a)

increase with respect to the PFA with roughly the same rate, see Fig. 6.4 and Fig. 7.9.

7.5 Cylinder above a plate

The case of a cylinder above a plate is different from the sphere-plate case in two

respects: first, the missing polar measure factor r reduces the weight of distant

worldlines. Second, the probability for a given worldline to intersect the infinitely

long cylinder is larger than for a sphere. We observe that these two effects seem

to balance each other, leading again to a T 4 behavior at low T .

7.5.1 Expansion of the thermal force for a≪ R and T ≪ 1/R

In analogy to the sphere-plate case, we start with the expansion of the thermal

force at low temperature T and for a≪ R as in Eq. (7.17). Again, we allow only

for positive exponents for a and R. Even though
√
R terms appear in an a/R ≪ 1

expansion at zero temperature, our numerical results at small finite temperatures,
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Figure 7.11: Low-temperature behavior of −∆Fc(T )/T 4 for a cylinder above a plate for R = 1

in the limit a → 0. For 0.02 < T < 0.06, we observe a linear behavior. In the range 0.03 < T <

0.05, our data can be fitted to the form ∆Fc(a = 0, T )/Ly ≈ −1.0065 RT 4 + 3.163 R2T 5. For

T < 0.02, systematic errors due to worldline discretization artifacts lead to a fast decrease of

the data (black triangles). We have used 44 000 loops with 2 · 106 ppl each.
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Figure 7.12: Plot of the a-dependent part of the (negative) thermal contribution to the Casimir

force for the cylinder-plate configuration at a = 0.1 and R = 1 in the low-temperature regime.

In the range 0.025 < T < 0.05, the worldline data for −(∆Fc(0.1, T ) − ∆Fc(0, T )) is well

approximated by 0.04125 T 4−0.335187 T 5. We thus conclude that the c3 coefficient in Eq. (7.33)

is ≈ −0.4125. Note that the absolute value of the Casimir force has increased with a. We have

used 44 000 loops with 2 · 106 ppl each.
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7 Sphere-plate and cylinder-plate at finite temperature

somewhat surprisingly, are consistent with an expansion of the type

∆Fc(T )

Ly
= c2RT

4 + c3aT
4 + O

(
T 9/2

)
. (7.33)

The potential leading-order terms c0
√
RT 7/2 and c1

√
aT 7/2 are expected to be zero

similar to the sphere-plate case, see above, since the configuration of a cylinder

above a plate is not invariant unter

a→ a/α and T → αT.

We have no evidence for a term ∼
√
aRT 4, which would lead to a nonanalytic

increase of the force. Thus at small temperatures, the powers of T are found to

be integers in leading order. Similar to the sphere-plate case, we expect the low-

temperature contributions to the thermal force to be proportional to the effective

area

Aeff ≈ Ly(2R + a)

seen by the distant worldlines. This results in the rough estimate

c2
c3

≈ 2,

which also implies that both coefficients have the same sign.

In the limit a → 0, our data in the regime T > 0.01 is compatible with a T 4

behavior of the thermal force. For c2 and c3, we obtain (see Figs. 7.11 and 7.12)

c2 ≈ −1.007(7), c3 ≈ −0.41(4). (7.34)

As in the case of the sphere, both coefficients have the same sign, i.e., the absolute

value of the thermal Casimir force increases with increasing a for sufficiently small

a and T < Tcr.

For the critical temperature, we obtain

Tcr ≈
0.31(1)

R
. (7.35)

As in the case of a sphere, the thermal force decreases monotonically with increas-

ing a for T > Tcr; below the critical temperature, the thermal force first increases

up to a maximum and then decreases again approaching zero for a → ∞. The

position of the maximum depends on T and increases with inverse temperature,

see Fig. 7.13. In both cases, however, the thermal force remains attractive.
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Figure 7.13: Thermal correction to the Casimir force of a cylinder above a plate for various

temperatures T and R = 1 normalized to the thermal correction at a = 0. For sufficiently small

temperatures, the absolute value of the thermal force ∆F (T ) first increases with increasing a.

For T ≤ 0.05, the small-a behavior is well described by a(0.4125T 4 − 3.35187 RT 5)/∆F (a =

0, T ). This verifies the fit found for Fig. 7.12 with a coefficient linear in a in front of T 5. From

this form, we would expect the curves to be monotonically decreasing for T > 0.41/3.35R ≈
0.12/R to leading order. Due to higher-order terms the T = 0.2 curve still increases slightly at

the beginning.

7.5.2 Comparison with the PFA

The high-temperature limit T ≫ 1/R agrees with the PFA prediction in the limit

a→ 0 as expected,

∆Fc(T → ∞)

Ly

=
3 ζ(1/2)ζ(7/2)

√
R

4
√

2π
T

7
2 (7.36)

≈− 0.278
√
RT

7
2 .

As for the sphere, the leading-order PFA predicts the same force law (7.36) in

the limit a → 0 for all T . At finite a, the scale invariance is broken and a term

∼ +0.185a
√
RT 9/2 appears on the right-hand side of Eq. (7.36) in leading-order

PFA at low temperature.

By contrast, we observe different power laws for different temperatures in the

limit a → 0: a T 4 behavior for small T and T 7/2 behavior for large T . Also, the
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Figure 7.14: Normalized thermal contribution to the Casimir force of a cylinder above a plate

for R = 1 in the limit a → 0. The worldline result and the PFA predictions are normalized

to the leading-order PFA Eq. (7.36). The leading-order PFA predicts a T 7/2 behavior of the

thermal force for all T . On the other hand, worldline numerical data is compatible with a T 4

behavior for small T ≪ 1/R and a T 3 behavior for large T > 1/R. This is also observed in the

plate-based PFA, whereas the cylinder based PFA goes as T 4 ln(T ) for small T . All predictions

agree in the high-temperature limit. The worldline result enters the blue area for small T into,

which is the region spanned by the different PFA approximations.

sign of the finite-a correction of the full result is opposite to that of the PFA, see

Fig. 7.12, all of which is reminiscent to the sphere-plate case.

Incidentally, the beyond-leading-order PFA schemes reflect the correct behavior

much better. We observe that the cylinder-based PFA turns out to be the better

approximation (as for the sphere-based PFA in the preceding section). This is

different from the zero-temperature case.

For the plate-based and cylinder-based PFA, we obtain

∆FPFA
PB (0, T → 0)

Ly

= −π
2T 4

90
2R (7.37)

≈ −0.219RT 4,
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7.5 Cylinder above a plate

∆FPFA
CB (0, T → 0)

Ly
=
RT 4

(
3π4 + 2π4 ln

(
RT
2π

)
+ 180ζ ′(4)

)

90π2
(7.38)

≈ (0.22 ln(RT/2π) + 0.32)RT 4.

The plate-based result is equal to the thermal force of two parallel plates inte-

grated over an area 2RLy. The plate-based coefficient is more than four times

smaller than the worldline coefficient, whereas the leading coefficient of the cylinder-

based formula becomes arbitrarily large as T → 0. The formulae (7.37) and (7.38)

are derived in the next chapter. The thermal contribution to the force in the limit

a→ 0 is shown together with the PFA predictions in Fig. 7.14.

7.5.3 High temperature limit

Let us now investigate the high-temperature limit, which can be obtained by

Poisson summation of the winding-number sum as in Eq. (7.26). A special case

arises in the limit a → 0, where the high-temperature limit corresponds to the

PFA prediction Eq. (7.36) in leading order. For a > 0, the high-temperature limit

is again linear in T and the total force “classical”, i.e., independent of (~c),

∆Fc(a, T ) = −Fc(a) + T F̃c(a), (7.39)

as in Eq. (7.27). For F̃c(a), we obtain

F̃c(a) = − Ly

8π3/2

〈∫ ∞

0

dr

∫ ∞

S(r)

dT
T 5/2

〉
, (7.40)

where the support S(r) is the same as in the T = 0 case, see Eq. (6.18).

The Casimir force remains attractive also for high temperatures. The function

F̃c(a), normalized to the leading-order PFA prediction

F̃PFA
LO (a) = −3

√
Rζ(3)

32
√

2a5/2
, (7.41)

is shown in Fig. 7.15. The function a5/2F̃c(a) is monotonically increasing for

0 < a < 1000 and is reminiscent to a7/2Fc(a). At small a, we obtain

F̃c(a)

F̃PFA
LO (a)

= 1 + (0.125 ± 0.017)a. (7.42)

At large a, we find using Eq. (7.31) and the analytical zero-temperature law [67],

F̃c(a)

F̃PFA
LO (a)

≃ 1.46(2)
a5/2

(a+R)2 ln(a+R)
. (7.43)
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Figure 7.15: High-temperature coefficient F̃c(a) normalized to the corresponding leading-order

PFA coefficient for a cylinder above a plate. The large-a behavior is well described by Eq. (7.43).

At small a, we find a behavior ∼ 1 + (0.125 ± 0.017)a.

7.5.4 Normalizing thermal force to T = 0 force

Let us finally remark that also in the case of a cylinder the thermal Casimir

force normalized to the zero temperature result is well described by the PFA

for T & 1/2a. Analogously to Eq. (7.32), we conclude from the dimensional-

reduction argument, that the ratio of thermal to zero-temperature force in the

high-temperature limit T & 1/2a is approximately

∆F̃c(a)

Fc(a)
T ≈ 72 ζ(3)

π3
aT ≈ 2.79 aT. (7.44)

Also at medium temperatures this ratio is surprisingly well-described by the PFA,

even better than in the case of a sphere, see Fig. 7.10. The normalized thermal

force is shown in Fig. 7.16 for various a and T .
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Figure 7.16: Thermal correction to the Casimir force for a cylinder with R = 1 normalized to

the zero-temperature force for various temperatures and a < R. The worldline results (symbols)

are in a better agreement with the leading-order PFA estimates (lines) than in the case of a

sphere, see Fig. 7.10. The normalized PFA results agree with the worldline results for not too

low T because again both F̃c(a) and Fc(a) increase with respect to the PFA with roughly the

same rate, see Fig. 6.5 and Fig. 7.15.

7.5.5 Comparison with the result of Emig et al.

We can compare our results with those of an analytical result [67] in the limit

R ≪ H = R + a. (7.45)

The leading-order thermal contribution to the Casimir force in this computation

based on scattering theory reads

∆Fc(a, T ) = LyT

∫ ∞

0

qe−2q(R+a) st(q)

ln(qR)
dq, (7.46)

where the integrand has been approximated to leading order in ln−1(qR). Here,

st(q) is a 2πT periodic sawtooth function which in the range from 0 to 2πT is

given by

st(q) = − q

2πT
+

1

2
. (7.47)

131



7 Sphere-plate and cylinder-plate at finite temperature

The authors of [67] have given a simple estimate of the integral for the limit

R ≪ 1/2πT by replacing ln(qR) by ln(2πRT ) and carrying out the resulting

integral. We compare our worldline results with Eq. (7.46) as well as with the

simple estimate in Fig. 7.17 and 7.18.

Here, we propose another estimate which is valid for arbitrary T > 1/(R+a). In

this case, the sawtooth function is approximately constant for q < 1/(R+ a). We

approximate the logarithm by inserting the value q0 for which q exp(−2q(R+ a))

is maximal:

q0 =
1

2(R + a)
, for T >

1

R + a
. (7.48)

In turn for T < 1/(R+a), the logarithm can be approximated by insertion of the

value q0 where q exp(−2q(R + a))st(q) has its first maximum:

q0 =
πT

2
, for T <

1

R + a
. (7.49)

We choose the first maximum, as the integrand is oscillating for q > q0, such that

cancellation can be expected to occur. However, choosing q0 ∼ T always leads

to a regular T 4/ ln(T ) behavior for small T , whereas Eq. (7.46) changes sign at

very small T , see Figs. 7.17 and 7.18. We thus conclude that Eq. (7.46) is valid

for not too small T .

The thermal contribution to the Casimir force then reads

∆Fc(a, T )≈ −TLy

ln(q0R)

d

da

coth(2π(R + a)T ) − 1
2π(R+a)T

8(R + a)
, (7.50)

where

q0 = 2πT (7.51)

in the Emig et al. approximation [67], whereas

q0 =
1

2(a+R)
, for T > 1/(R + a) (7.52)

and

q0 =
πT

2
, for T < 1/(R+ a) (7.53)

in the approximation proposed here. See Figs. 7.17 and 7.18 for the results at

a = 10R and a = 100R respectively.

In the small T limit, Eq. (7.50) reads
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Figure 7.17: Thermal contribution to the Casimir force for a cylinder above a plate for a = 10 and

R = 1 compared with the analytic result (7.46) (“Emig et al.” [67]) and various approximations

as discussed in the text. Here, we use the abbreviation H = R + a. Remarkably, our proposed

estimates using q0 = πRT/2 and q0 = 1/2H , cf. Eq. (7.50), describe the actual behavior far

better than the analytic result (7.46), which changes sign as T → 0. Also the T > 1/(R + a)

approximation using q0 = 1/2H remains a reasonable estimate even for T < 1/(R + a). For the

worldline data, we have used 5000 loops with 2 · 107 ppl and 7000 loops with 2 · 106 ppl.

∆Fc(a, T ) = Ly
2π3(a+R)T 4

45ln(q0R)
. (7.54)

Writing this as

∆Fc(a, T )

Ly
= c(T, a, R)T 4, (7.55)

the T 4 coefficient c(T, a, R) always disappears for q0 ∼ T as T → 0. In our nu-

merical worldline analysis, the systematic discretization errors lead to a vanishing

of the corresponding coefficient as well, since the number of points per worldline

becomes insufficient for resolution of the cylinder at very small T . For an increas-

ing number of points per worldline, however, our data actually appears to point

to a non-vanishing coefficient, see Figs. 7.17 and 7.18. In any case, we expect the

leading-order multipole expansion which is behind the asymptotic result (7.46) to

break down at low temperatures due to the geothermal interplay.
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Figure 7.18: Thermal contribution to the Casimir force for a cylinder above a plate for a =

100 and R = 1 compared with the analytic result (7.46) (“Emig et al.” [67]) and various

approximations as discussed in the text. Even at such large separations, we observe that the

analytic result (7.46) becomes invalid and even changes sign as the temperature approaches

zero. Incidentally our simple T > 1/(R + a) approximation using q0 = 1/2H describes the

actual behavior rather well also for smaller temperatures. For the worldline data, we have used

2500 loops with 6 · 107, 5000 loops with 3 · 107 ppl and 14000 loops with 3 · 106 ppl.

For large T on the other hand, Eq. (7.50) becomes

∆Fc(a, T ) = −Ly (1 − Tπ(a+R))

8π ln(q0R)(R + a)3
. (7.56)

We observe that the negative of the T -independent part approaches the zero-

temperature limit of the Casimir force for large a/R faster if we choose

q0 =
1

R + a
(7.57)

rather than q0 = 1/2(R + a). This choice of q0 = 1/(R + a) then constitutes our

second estimate for T > 1/(R + a).

For not too small T , the analytic result and the various q0 approximations nicely

agree with our worldline data, see Figs. 7.17 and 7.18. For higher temperature,

the behavior becomes ∼ T and the different results acquire different slopes which

partly disagree for T → ∞.
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7.5 Cylinder above a plate

For a = 10 and high T , the analytic result (7.46) becomes

∆Fc(a, T ) ∼ 0.000424LyT, (7.58)

the q0 = 1/(R+ a) approximation yields

∆Fc(a, T ) ∼ 0.000431LyT, (7.59)

and the q0 = 1/2(R + a) approximation

∆Fc(a, T ) ∼ 0.000334LyT. (7.60)

The numerical worldline result is

∆Fc(a, T ) ∼ 0.00041(3)LyT. (7.61)

At a = 100 and high T , the analytic result is

∆Fc(a, T ) ∼ 2.57 · 10−6LyT, (7.62)

the q0 = 1/(R+ a) approximation yields

∆Fc(a, T ) ∼ 2.66 · 10−6LyT, (7.63)

and the q0 = 1/2(R + a) approximation

∆Fc(a, T ) ∼ 2.31 · 10−6LyT, (7.64)

The worldline result is

∆Fc(a, T ) ∼ 2.4(9) · 10−6LyT. (7.65)

For large a + R, the temperature coefficient becomes 0.125/(R + a)2 ln(R + a)

for both q0 = 1/(R + a) and 1/2(R + a). For the analytic result the correspond-

ing prefactor is greater than 0.123 and may become 0.125 for H → ∞. The

corresponding worldline prefactor is 0.116(2), see Eq. (7.43).
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7 Sphere-plate and cylinder-plate at finite temperature

7.6 Conclusions

In this chapter, we have analyzed the geometry-temperature interplay in the

Casimir effect for the case of a sphere or a cylinder above a plate. Since finite-

temperature contributions to the Casimir effect are induced by a thermal pop-

ulation of the fluctuation modes, the geometry has a decisive influence on the

thermal corrections as the mode spectrum follows directly from the geometry.

A strong geometry-temperature interplay can generically be expected whenever

the length scale set by the thermal wavelength is comparable to typical geometry

scales.

Within our comprehensive study of the Casimir effect induced by Dirichlet

scalar fluctuations for the sphere-plate and cylinder-plate geometry, we observe

several signatures of this geometry-temperature interplay: the thermal force den-

sity is delocalized at low temperatures. This is natural as only low-lying long-

wavelength modes in the spectrum can be thermally excited at low T . As a conse-

quence, the force density is spread over length scales set not only by the geometry

scales but also by the thermal wavelength. This implies that local approxima-

tion techniques such as the PFA are generically inapplicable at low temperatures.

Quantitatively, the low-temperature force follows a T 4 power law whereas the

leading-order PFA correction predicts a T 3 behavior. Only for ratios of thermal

to zero-temperature forces, we observe a potentially accidental agreement with

the PFA prediction for larger temperatures. Here, the errors introduced by the

PFA for the aspect of geometry appear to cancel, whereas the thermal aspects

might be included sufficiently accurately.

In the past, the analysis of experimental data has conventionally been based on

the T 3 behavior as predicted by the leading-order PFA. As typical experiments

operate in a parameter range of a/R = O(0.01 . . . 0.001) and TR = O(10 . . . 100),

our results suggest that the error on the thermal correction from PFA-estimates is

only on the percent level. Once, TR approaches TR ≃ 1, the difference between

PFA estimates in various forms and the full result of the thermal correction can

exceed the 10% level. In such a case, our results suggest that the influence of

the geometry can be estimated by using the PFA only for the ratio between the

thermal correction and the zero-temperature force, cf. Figs. 7.10 and 7.16.

Another signature of this geometry-temperature interplay is the occurrence of a

non-monotonic behavior of the thermal contribution to the Casimir force. Below

a critical temperature, this thermal force first grows for increasing distance and

then approaches zero only for larger distances. This phenomenon is not related

to a competition of polarization modes as in [153, 154], but exists already for the
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Dirichlet scalar case. The phenomenon can be understood within the worldline

picture of the Casimir effect [59, 60] being triggered by a reweighting of relevant

fluctuations on the scale of the thermal wavelength. From this picture, it is

clear that the phenomenon is not restricted to spheres or cylinders above a plate;

we expect it to occur for general compact or semi-compact objects in front of

surfaces, as long as the lateral surface extension is significantly larger than the

thermal wavelength. In fact, another consequence of the delocalized force density

is that edge effects due to finite plates or surfaces will be larger for the thermal

part than for the zero-temperature force.

Furthermore, we have presented a general argument that low-temperature cor-

rections to Casimir forces become much more easily accessible by taking the

(formal) contact limit a → 0 (only for the thermal contributions), as thermal

corrections remain well behaved in this limit. Whereas the existence of this limit

is well known for parallel plates, we have argued that the same result holds for

general geometries. The existence of this limit is also a reason why thermal

corrections, for instance in the perpendicular-plate case, can be determined ana-

lytically. We expect that this observation will be useful for many other geome-

tries as well. This should lead to practical simplifications also in other field the-

ory approaches, such as functional-integral approaches [62, 63], scattering theory

[67, 70, 72, 75, 79], and mode summation [77].

Our results have been derived for the case of a fluctuating scalar field obeying

Dirichlet boundary conditions on the surfaces. For different fields or boundary

conditions, the temperature dependence can significantly differ from the quan-

titative results found in this work. This is only natural as different boundary

conditions can strongly modify the fluctuation spectrum. For instance, the ther-

mal part of the free energy in the sphere-plate case exhibits different power laws

for Dirichlet or Neumann boundary conditions in the low-temperature and small-

distance limit [167]. For future realistic studies of thermal corrections, all aspects

of geometry, temperature, material properties, boundary conditions and edge ef-

fects will have to be taken into account simultaneously, as their mutual interplay

inhibits a naive factorization of these phenomena.
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8 PFA from the worldline

approach

For reasons of comparison, we work out in detail the proximity-force approxima-

tion (PFA) for the sphere-plate and cylinder-plate case in a self-consistent way.

In addition to explicit formulae, we relate the PFA to an approximate treatment

of the worldline path integral. This helps to understand the differences between

the exact and approximate treatments.

8.1 The proximity-force approximation (PFA)

The proximity force approximation is a scheme for estimating Casimir energies

between two objects. In this approach, the surfaces of the bodies are treated as

a superposition of infinitesimal parallel plates, and the Casimir energy is approx-

imated by

EPFA(a) =

∫

Σ

εPP(h) dσ. (8.1)

Here, one integrates over an auxiliary surface Σ, which should be chosen appro-

priately. The quantity εPP(h) denotes the energy per unit area of two parallel

plates at a distance h, which at zero temperature reads

εPP(h) = −cPP

h3
, (8.2)

where cPP = π2/1440 for the Dirichlet scalar case.

As the PFA does not make any reference to boundary conditions, all the for-

mulas in this chapter are analogously valid for the electromagnetic case; all force

formulae then have to be multiplied by a factor of two for the two polarization

modes.

At finite temperature, the corresponding expression is

∆εPP(h)

cPP

=
1

h3
− 90T

h2

∞∑

n=1

coth(2nπhT ) + 2nπhT csch2(2nπhT )

π3n3
. (8.3)
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8 PFA from the worldline approach

The distance has to be measured along the normal to Σ. The two extreme cases in

which Σ coincides with one of the two surfaces provides us with a region spanning

the inherently ambiguous estimates of the PFA.

For a sphere at a distance a above a plate, we thus integrate either over the

plate (“plate-based” PFA), or over the sphere (“sphere-based” PFA), see Fig. 8.1.

The Casimir force is then obtained by taking the derivative of (8.1) with respect

to a. However, for the “sphere-based” PFA, dh/da 6= 1 (see below). This implies

that deriving the force estimate from the PFA of the energy in general is not the

same as setting up the PFA directly for the force. The latter would correspond

to a surface integral over the parallel-plates force per unit area. In this work, we

use the derivation via the energy (8.1).

The dependence of the PFA prediction on the choice of Σ disappears in the

limit a → 0 at zero temperature to leading order. This result shall be called

“leading-order” PFA. It can also be obtained by expanding the surface of the

sphere/cylinder to second order from the point of minimal distance to the plate

and then using the “plate-based” PFA for this expansion.

The corresponding expressions for h read

hPB = a +R−
√
R2 − r2, (8.4)

hSB = hCB =
a +R

cos(θ)
− R, (8.5)

hLO = a +
r2

2R
. (8.6)

For hPB, we integrate over [−R,R], for hLO over all r and for hSB, hCB over

[−π/2, π/2] with an appropriate measure. Note that right underneath the sphere

(cylinder) all h are equal to a. Demanding dθ = dr for θ → 0 we can transform the

integration over θ into an integration over r in a simple way by the substituting

sin(θ) → r/R. The integral then goes from −R to R, and the corresponding h

reads

hSB = hCB = −R +R
a+R√
R2 − r2

. (8.7)

Also a measure factor resulting from Rdθ = R/
√
R2 − r2 and dh/da have to be

taken into account. At zero temperature, we can absorb these factors into the

new effective height

hSB−eff = hCB−eff =

√
R
(
a +R−

√
R2 − r2

)

(R2 − r2)1/4
. (8.8)
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8.1 The proximity-force approximation (PFA)

hPB hSB

Figure 8.1: The proximity force approximation (PFA) for a sphere above a plate. The distance

to be put into the parallel plates formula is conventionally measured along the normal to an

auxiliary surface. The two extreme choices for this surface are either the plate or the sphere.

Taking the lower plate as a “basis” (left panel) leads to the distance function hPB (“plate-based”

PFA). Taking the sphere as a basis (right panel) leads to a different distance function hSB

(“sphere-based” PFA). These two choices are not equivalent and result in different force laws.

With or without the prefactors, hSB/CB is always greater than hPB and hLO and

diverges for r → R. Since the factor approaches 1 for small r, all functions h

coincide in this limit.

The PFA can also be developed within worldline formalism. Calculating the

Casimir force density for two parallel plates, we have to determine that value

of propertimes T for which one-dimensional worldlines, attached to one of the

plates, touch the other plate for the first time. This event is encoded in the lower

bound of the proper time integral, whereas the upper bound is set to infinity.

Thus, we obtain

fPP
c (h, β) = − 1

32π2

〈∫ ∞

(h/λ)2

∞∑

n=−∞

e−
n2β2

4T

T 3
dT
〉
. (8.9)

The representation (8.9) is suitable for zero and low temperatures, whereas for

high temperatures one should use in (8.9) the Poisson resummed winding sum

(7.26). We encounter cumulants of worldline extents λ in low and high temper-

ature limits which can be determined via the analytic expression [53], also see

Eq. (4.18),
〈
λD
〉

= D(D − 1)Γ(D/2)ζ(D). (8.10)

Let us now point out the difference between the PFA and the worldline approach.

In the PFA, we always use one-dimensional worldlines to determine the distance,

whereas the worldline dimension in the full formalism corresponds to the dimen-

sion of the geometry. To obtain the Casimir force for configurations containing
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8 PFA from the worldline approach
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Figure 8.2: The effective heights predicted by the PFA for a = 0, R = 1 and T = 0 compared

with those of worldline numerics for a sphere and a cylinder, respectively, obtained from the

T = 0 force density. The PFA predictions lie in the blue area which is bounded by Eq. (8.4)

from below and by Eq. (8.8) from above. The effective heights seen by worldlines are well

approximated by the leading order PFA for r not too large. We conclude that for small a/R

the force is described best by the leading order order PFA, since for small a/R the force density

is concentrated around r = 0.

one infinite plate in the worldline formalism, we integrate over this infinite plate

as in the plate-based approach. However, the integration does not stop at the end

of the second body, which in the present case is a sphere or cylinder. At arbitrar-

ily large distances, there are still worldlines which see the sphere/cylinder, i.e., we

have to integrate to infinity. We therefore expect the leading-order PFA to reflect

best the exact force laws. However, the propertime support is not the same, and

thus worldlines see an effective height different from the one of the leading-order

PFA, see Fig. 8.2 and 8.3.

The shape of the effective worldline height is roughly the same for zero and

high temperatures. But at low temperature, the worldlines are reweighted. Only

worldlines for large propertimes contribute considerably and thus worldlines at

larger distances from the sphere become increasingly more important. Also their

inner structure comes into play. Using the “plate-based” PFA, we ignore these

effects and take into account only the region below the sphere/cylinder with the

same function hPB; hence, the result is expected to be too small.
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Figure 8.3: The effective heights predicted by the PFA for a = 10, R = 1 and T = 0 compared

with those of worldline numerics for a sphere and a cylinder, respectively, obtained from the

T = 0 force density. Note that the effective height for the cylinder is in a local maximum at

r = 0. At greater separations the heights seen by worldlines are on average lower than the PFA

predictions resulting in greater Casimir force. Also at larger separations the leading order PFA

reflects best the actual situation, while the “sphere/cylinder based” PFA turns out to be the

worst.

Incidentally, using instead of one-dimensional straight lines two-dimensional

circles improves the PFA predictions: the next-to-leading order correction to the

Casimir force at zero temperature obtains a correct sign, and also non monotonic

thermal Casimir force arises. The corresponding height is then given by the

diameter of the circle intersecting both surfaces. The predictions are improved

due to the fact that the two-dimensional circles reflect the spatial extent of the

worldlines, and d-dimensional worldlines are d-dimensional spheres on average.

However, whereas in general the full PFA underestimates the Casimir force at

zero temperature, the “circle-PFA” overestimates the worldline results for sphere-

and cylinder-plate configurations in the small distance limit. The “circle-PFA” is

illustrated in Fig. 8.4. We will not pursue the “circle-PFA” in the remainder of

this chapter.

In the following, we apply Eq. (8.9) (multiplied by dh/da if necessary) to find

the PFA expressions for the sphere and cylinder above an infinite plate, respec-

tively.
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8 PFA from the worldline approach

Figure 8.4: Sketch of the “circle-PFA” approximation for the sphere-plate configuration. The

worldlines are approximated by circles (dashed line). Only those worldlines intersecting both

boundaries contribute to the Casimir force. If the sphere-plate separation is reduced (blue

sphere), the sphere can become invisible for a given worldline. This is the underlying mechanism

for the non-monotonic thermal force, see Sec. 7.3.3. This mechanism remains valid if instead of

worldlines one uses circles.

8.2 Sphere above a plate

8.2.1 Leading-order PFA

For the sphere, the evaluation of the leading-order PFA results in an especially

simple expression,

− d

da
EPFA

LO = 2π cPP
d

da

∫ ∞

0

r dr

(a + r2/2R)3
(8.11)

= 2πR cPP
d

da

∫ ∞

a

dhLO

h3
LO

= 2πR εPP(a).

Obviously, the relation

FPFA
LO = 2πR εPP(a)
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8.2 Sphere above a plate

remains valid also at finite temperature. We thus obtain

FPFA
LO (a, T = 0) = −2πR cPP

a3
= − π3R

720a3
. (8.12)

At finite T and small aT (aT / 1/2), Eq. (8.9) yields

∆FPFA
LO (a, T ) = −R ζ(3)

2
T 3 +

aR π3

45
T 4. (8.13)

For large aT (aT ' 1/2), the expression (8.3) leads directly to

∆FPFA
LO (a, T ) =

π3R

720a3
− R ζ(3)

8a2
T (8.14)

= −FPFA
LO (a, 0) + T F̃PFA

LO (a). (8.15)

Note that at a = 0 the leading-order PFA predicts a T 3 behavior of the thermal

force for all T . At finite a, the validity of the low-temperature limit is indepen-

dent of R. With increasing a, the absolute value of the PFA thermal force is

always reduced, irrespective of T , quite the contrary to the full worldline results

as discussed in the main text.

8.2.2 Plate-based PFA

Using Eq. (8.9), we obtain

−∆FPFA
PB (a, T ) =

1

8π

∫ R

0

r dr

〈 ∞∑

n=1

∫ ∞

h2
PB/λ2

e−
β2n2

4T

T 3
dT
〉

=
ζ(4)R2

πβ4
+

1

π

∞∑

n=1

〈
ae−

n2β2λ2

4a2 (a+ 2R)

n4β4
− e

− n2β2λ2

4(a+R)2 (a+R)2

n4β4

−
√
π(a +R)λErfc

(
nβλ
2a

)

2n3β3
+

√
π(a+R)λErfc

(
nβλ

2(a+R)

)

2n3β3

〉
. (8.16)

Let us first analyze Eq. (8.16) for a = 0,

∆FPFA
PB (a = 0, T ) = −ζ(4)R2

π
T 4

+
1

π

∞∑

n=1

〈
e−

n2λ2

4T2R2R2

n4
T 4 −

√
πRλErfc

(
nλ

2TR

)

2n3
T 3

〉
. (8.17)
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8 PFA from the worldline approach

Equation (8.17) distinguishes low- (T≪1/R) and high-temperature (T≫1/R)

regimes. The low-temperature regime is already well approached for T / 1/2R.

For higher T , the thermal force is in the high-temperature regime, T ' 1/2R.

At low temperatures, we have a T 4 behavior which is given by the first term

in Eq. (8.17). For higher T , this T 4 term is canceled by the T 4 term with the

exponential function, such that the leading behavior is given by the T 3 term.

Then, expanding Eq. (8.17), we get a T 2 contribution:

∆FPFA
PB (a = 0, T ) = −ζ(3)R

2
T 3 +

ζ(2)

4π

〈
λ2
〉
T 2

= −ζ(3)R

2
T 3 +

ζ(2)ζ(2)

2π
T 2. (8.18)

Subtracting Eq. (8.18) from Eq. (8.17) and performing the Poisson resummation,

we obtain the full T'1/2R behavior at a = 0

∆FPFA
PB (0, T ) = −ζ(3)RT 3

2
+
π3T 2

72
− ζ(3)T

8R
+

π3

1440R2
. (8.19)

Thus, the leading large-T behavior at a = 0 is ∼ T 3.

Let us now consider the case a 6= 0. For a≪ R and low temperature

T /
1

2(R + a)
≈ 1

2R
,

we have a T 4 behavior given by the first term in Eq. (8.16). The dependence on

a is exponentially suppressed. This corresponds to the case of two parallel plates

with an area of πR2, where the dependence on a is suppressed exponentially as

well.

At medium temperature,

2(R + a) ≈ 2R '
1

T
' 2a,

only the second and fourth term in Eq. (8.16) are exponentially suppressed and

can be neglected. The leading order can be found by expanding the remainder

and considering only the converging sums.

To find the subleading terms, we again perform the Poisson resummation. For

medium temperature 2R ' 1/T ' 2a and a≪ R, we then obtain

∆FPFA
PB (a, T ) =

a(a + 2R)π3T 4

90
− (a+R)ζ(3)T 3

2
(8.20)

+
π3T 2

72
− ζ(3)

8(a+R)
T +

π3

1440(a+R)2
.
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8.2 Sphere above a plate

The high-temperature limit,
1

T
/ 2a,

can be performed irrespective of the actual value a/R by summing up the whole

Eq. (8.16). The result reads

∆FPFA
PB (a, T ) =

π3R2(3a+ 2R)

1440a3(a+R)2
− R2 ζ(3)

8a2(a +R)
T (8.21)

= −FPFA
PB (a, 0) + T F̃PFA

PB (a). (8.22)

Note that Eq. (8.21) reduces to Eq. (8.14) for a→ 0 as it should.

For a larger than a ≈ R, the following temperature behavior occurs. At

low temperature 1/T ' 2(R + a), a T 4 behavior arises from the first term in

Eq. (8.16). At higher temperatures, the behavior becomes rapidly linear as given

by Eq. (8.20), being valid for 1/T / 2a.

The plate-based force can be obtained in closed form from Eq. (8.3) also

without using the worldline language:

∆FPFA
PB (a, T ) =

π3R2(3a + 2R)

1440a3(a+R)2
− T

8

∞∑

n=1

[
coth(2nπ(a+R)T )

(a +R)n3

+
csch2(2anπT ) [2anπRT + (R− (a +R)/2) sinh(4anπT )]

a2n3

]
. (8.23)

8.2.3 Sphere-based PFA

For the sphere-based PFA, the thermal Casimir force is given by

∆FPFA
SB (a, T ) = −

〈
R2

8π

∫ π/2

0

sin(θ)h′SB(a)dθ

∫ ∞

h2
SB/λ2

∞∑

n=1

e−
n2β2

4T

T 3
dT
〉
, (8.24)

where hSB(a) is given by (8.5). For a = 0, we obtain the PFA approximation

using the worldline language

∆FPFA
SB (a = 0, T ) =

〈
2R2ln

(
2RT
nλ

)

n4π
T 4 − γR2ζ(4)

π
T 4 +

Rζ(3)

2
T 3

−
∞∑

n=1

R2T 4

4n4π

(
4 +

n2λ2

R2T 2

)
exp

(
− n2λ2

4T 2R2

)(
πErfi

(
nλ

2RT

)
− Ei

(
n2λ2

4R2T 2

))〉
,

(8.25)
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8 PFA from the worldline approach

where γ is Euler’s constant. The expansion in T does not terminate after a few

terms, so we concentrate on the two leading coefficients. The coefficient in front

of T 4 contains the worldline average 〈lnλ〉. For an analytical expression, we note

that

lnλ = m lnλ1/m.

For large m, we get λ1/m → 1, such that we can expand the logarithm,

〈lnλ〉 = 〈 lim
m→∞

m(λ1/m − 1)〉 = −1 − γ/2 + ln(2π), (8.26)

where we have used Eq. (8.10).

Thus, the small-T limit of Eq. (8.25) reads

∆FPFA
SB (0, T ) =

R2(2ζ ′(4) + ζ(4)(3 + 2 ln
(

RT
π

)
))

π
T 4 − R3ζ(5)T 5. (8.27)

At a = 0, the PFA estimate |∆FPFA
SB (a = 0, T )| lies above |∆FPFA

PB (a = 0, T )|,
see Fig. 7.5. For not too small T , the worldline result lies above both these PFA

predictions, but due to the logarithm in the T 4 coefficient, the sphere-based PFA

becomes larger at smaller T , such that the worldline force enters the area spanned

by the PFA prediction, see Fig. 7.5.

The high-temperature limit can be obtained by expanding Eq. (8.25) about

T = ∞. The converging terms give the leading-order behavior. For the sub-

leading orders, one has to perform the Poisson summation. However, the integral

involved is rather complicated and may still be inflicted with artificial convergence

problems. The leading-order behavior for a = 0 and large T reads

∆FPFA
SB (0, T ) = −Rζ(3)

2
T 3 +

π3

72
T 2 + O(T ), (8.28)

and corresponds to the leading behavior of the plate-based limit (8.19).

Let us turn to the case of finite a. Expanding Eq. (8.24), we obtain the a

dependent part of the thermal force,

∆FPFA
SB (a, T ) − ∆FPFA

SP (0, T ) =
2aRζ(4)T 4

π

×
(

1 − a

2R
+

a2

3R2
− a3

4R3
+ . . .

)
. (8.29)

The series in parentheses has a form of (R/a) ln(1 + a/R), which we verified

explicitly to 10th order. Assuming that this form holds to all orders, we get

∆FPFA
SB (a, T ) − ∆FPFA

SP (0, T ) =
R2π3T 4

45
ln
(
1 +

a

R

)
. (8.30)
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8.2 Sphere above a plate

Note that the first two terms in Eq. (8.29) agree with the T 4 coefficient of the

plate-based formula (8.20); we also see that the absolute value of the thermal

force decreases with increasing a. As Eq. (8.30) was obtained by interchanging

summation and integration, we cannot expect Eq. (8.30) to describe the full a

dependence for all a and T . Indeed at a fixed, the thermal correction ∆FPFA
SB (a, T )

becomes ∼ T as T → ∞, which is clearly not the case for Eq. (8.30).

We can estimate the range of applicability of Eq. (8.30) as follows. At high

temperature and a ≈ 0, all PFA estimates agree. For large T , the leading behavior

is ∼ T 3, see e.g. Eq. (8.28). With increasing a the force is still attractive.

Demanding ∆FPFA
SB (a, T ) < 0, we see that that Eq. (8.30) leads to a positive

thermal force for a & 1/T . On the other hand, in the low-temperature regime, the

a = 0 contribution is given by Eq. (8.27). Taking only the leading contribution

into account and demanding ∆FPFA
SB (a, T ) < 0, we again obtain that the force

becomes positive at a & 1/T . These rather rough estimates demonstrate that

the validity range for a becomes narrower with increasing temperature. For very

small a, however, the thermal correction is linear in a irrespectively of T , whereas

the dependence on a in the plate-based PFA is exponentially suppressed for small

T ≪ 1/(R + a).

At large temperatures T > 1/a, we have the familiar situation

∆FPFA
SB (a, T ) = −FPFA

SB (a, 0) + T F̃PFA
SB (a), (8.31)

where

FPFA
SB (a, 0) = −π

3 (6a2 − 3aR + 2R2)

1440a3R
−
π3 ln

(
a

a+R

)

240R2
, (8.32)

and

F̃PFA
SB (a) =

(R − 2a)ζ(3)

8a2
−

ln
(

a
a+R

)
ζ(3)

4R
. (8.33)
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8 PFA from the worldline approach

8.3 Cylinder above a plate

8.3.1 Leading-order PFA

Unfortunately, a simple relation similar to FPFA
LO = 2πR εPP(a) does not hold any

longer for the cylinder, such that the resulting formulae are not related to the

known results of parallel plates and are rather complicated. For arbitrary a and

T , we obtain

FPFA
LO (a, T )

Ly

=
∞∑

n=1

〈
λ2
√
aRT 2

4
√

2a2n2π

(
2F2

(
3

4
,
5

4
; 1,

3

2
;− λ2n2

4a2T 2

)

− 2F2

(
3

4
,
5

4
;
3

2
, 2;− λ2n2

4a2T 2

))〉
, (8.34)

where 2F2 is the hypergeometric function in the standard notation. Eq. (8.34)

does not distinguish between a < R and a > R, since the relevant parameter for

different temperature regions is aT . For small aT (aT / 1/2), we can expand

Eq. (8.34), resulting in

FPFA
LO (a, T )

Ly

=
3
√
Rζ(7/2)ζ(1/2)

4
√

2π
T 7/2

− 15a
√
Rζ(9/2)ζ(−1/2)

4
√

2π
T 9/2 + O(a2). (8.35)

For large aT , the Poisson resummation of Eq. (8.34) leads to

∆FPFA
LO (a, T ) =

π3
√
aR

768
√

2a4
− 3

√
aRζ(3)

32
√

2a3
T, (8.36)

which is, of course, −FPFA
LO (a, 0) + T F̃PFA

LO (a). Note that at a = 0 the leading-

order PFA predicts a T 7/2 behavior of the thermal force for all T . At finite a, the

validity of the low-temperature limit is independent of R. With increasing a, the

absolute value of the thermal force is always reduced, irrespective of T , quite the

contrary to the full worldline results.

150



8.3 Cylinder above a plate

8.3.2 Plate-based PFA

Here, we give only the analytic expressions for special limits, since no general

expression could be found in a closed form. At a = 0 and T ≪ 1/R, the thermal

force can be found from the result of two parallel plates with an area of A = 2RLy,

∆FPFA
PB (a = 0, T ) = −2RLy

π2

90
T 4. (8.37)

As temperature rises, the T behavior changes from T 4 to T 7/2. For T ≫ 1/R and

a = 0, the plate-based PFA agrees with the leading-order PFA, and the thermal

force is given by the first term in Eq. (8.35). At low temperatures and a≪ R, the

dependence on a is exponentially suppressed, just as in the case of the plate-based

PFA for the sphere.

Finally, at finite a and T ≫ 1/a, the force becomes classical

FPFA
PB = −FPFA

PB (a, 0) + T F̃PFA
PB (a),

with

FPFA
PB (a, 0)

Ly

= − (15 + 2a(2 + a)(11 + 3a(2 + a)))π2

1440a3(1 + a)2(2 + a)3

− (5 + 4a(2 + a))π3

960a7/2(2 + a)7/2
(8.38)

−
(5 + 4a(2 + a))π2ArcTan

[
1√

a(2+a)

]

480a7/2(2 + a)7/2
,

and

F̃PFA
PB (a)

Ly

= − 3(1 + a)ζ(3)

16a5/2(2 + a)5/2
− (3 + 4a+ 2a2) ζ(3)

8a2(1 + a)(2 + a)2π

−
3(1 + a)ArcTan

[
1√

a(2+a)

]
ζ(3)

8a5/2(2 + a)5/2π
. (8.39)

In Eqs. (8.38) and (8.39), we set R = 1; general expressions can be reconstructed

by simple dimensional analysis.
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8 PFA from the worldline approach

8.3.3 Cylinder-based PFA

For the cylinder-based PFA, the thermal Casimir force is given by

∆FPFA
CB (a, T ) = −RLy

8π2

∫ π/2

0

h′SB(a)dθ

∫ ∞

h2
CB/λ2

∞∑

n=1

e−
n2β2

4T

T 3
dT , (8.40)

where hCB(a) is given by Eq. (8.5). At a = 0, the thermal force can be found in

closed form,

∆FPFA
CB (a = 0, T )

Ly

=
〈 ∞∑

n=1

c

1680

√
x
[
35e−

x2

8 πx3/2

(
I−1/4

(
x2

8

)
+ 7I3/4

(
x2

8

))

− 1260
√

2Γ

(
3

4

)
1F1

(
3

4
;
1

2
;−x

2

4

)

− 16x3/2

(
−35 2F2

(
1,

3

2
;
5

4
,
7

4
;−x

2

4

)
+ 16 2F2

(
1,

3

2
;
9

4
,
11

4
;−x

2

4

)

+16 2F2

(
3

2
, 2;

9

4
,
11

4
;−x

2

4

)
+ 3 3F3

(
1, 1,

3

2
; 2,

9

4
,
11

4
;−x

2

4

))

− 504
√

2x2Γ

(
3

4

)
2F2

(
5

4
,
7

4
;
3

2
,
9

4
;−x

2

4

)

+ 5
√

2x3Γ

(
−3

4

)
2F2

(
5

4
,
7

4
;
5

2
,
11

4
;−x

2

4

)]〉
, (8.41)

where In is the modified Bessel function of the first kind, pFq the generalized

hypergeometric function, c = 2RT 4/n4π2 and x = nλ/2RT . At small T , the

expansion of Eq. (8.41) leads to

∆FPFA
CB (0, T )

Ly

=
RT 4

(
3π4 + 2π4 ln

(
RT
2π

)
+ 180ζ ′(4)

)

90π2
− R2T 5ζ(5)

π
+ O(T 6).

(8.42)

As temperature rises, the T behavior changes to T 7/2. For T ≫ 1/R and a = 0,

the cylinder-based PFA agrees with the leading-order PFA and the thermal force

is given by the first term in Eq. (8.35). For sufficiently small a, the difference to

the a = 0 result reads

∆FPFA
CB (a, T ) − ∆FPFA

CB (0, T )

Ly
=
aπ2

45
T 4 + O(T 6). (8.43)
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8.3 Cylinder above a plate

At finite a and T ≫ 1/a, the force becomes classical, −FPFA
CB (a, 0) +T F̃PFA

CB (a),

with

FPFA
CB (a, 0)

Ly
= − (15 + 8a + 4a2)π2

1440a3(2 + a)3
−
√
a(2 + a) (5 + 6a+ 3a2) π3

960a4(2 + a)4

−
(5 + 6a+ 3a2) π2ArcTan

[
1√

a(2+a)

]

480a7/2(2 + a)7/2
, (8.44)

and

F̃PFA
PB (a)

Ly
= − 3ζ(3)

8a2π(a+ 2)2
− (a2 + 2a + 3) ζ(3)

16(a(a+ 2))5/2

−
(a2 + 2a+ 3)ArcTan

[
1√

a(a+2)

]
ζ(3)

8a5/2π(a+ 2)5/2
. (8.45)

In Eqs. (8.44) and (8.45), we set R = 1, general expressions can be reconstructed

by dimensional analysis.
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8 PFA from the worldline approach
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9 Conclusions and outlook

In this thesis, we applied worldline numerics to obtain a general understanding

of geothermal Casimir phenomena. Worldline numerics [37–40] is a unique tool

for computing quantum energies. It originates in the string-inspired approach

to quantum field theory [41–44] and is based on a mapping of field-theoretic

fluctuation averages onto quantum-mechanical path integrals [45–50]. Worldline

numerics is independent of the Casimir geometry and is readily applied to systems

at a finite temperature. These are the main advantages over other approaches to

the Casimir effect.

We started our analysis with the classic configuration of two parallel plates.

Although this configuration is the most accessible theoretically, precise measure-

ments of the Casimir force turn out to be an enormous challenge for experimen-

talists since the plates must be maintained in perfect alignment on a nanometer

scale. The necessity to preserve parallelity of the plates is circumvented by using

a curved surface in front of the plate. In this context, the sphere-plate configu-

ration is most important for modern experiments measuring the Casimir force.

Another promising geometry is the cylinder-plate configuration. We therefore

performed a comprehensive analysis of both the sphere-plate and cylinder-plate

configurations.

A distinctive feature of Casimir forces is, however, the strong dependence on

the geometry – the shape and orientation – of the test bodies. For instance,

investigating the Casimir effect for two inclined plates, we observed that even at

zero temperature the dependence of the Casimir force on the separation exhibits

a different power law to the case of parallel plates. General setups nevertheless

suffer from insufficient theoretical understanding. For comparison between theory

and experiment, powerful theoretical methods are required which can deal with

arbitrary geometries. In addition to the worldline methods [37–40, 51–61] used in

this work, many approaches have been developed in recent years. Two prominent

examples are the functional integral approach [62–64] and scattering theory [65–

82].
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9 Conclusions and outlook

Moreover, for real materials, properties such as finite conductivity, surface

roughness and finite temperature have to be taken into account. Generically,

these corrections do not factorize but influence each other.

In this thesis, we drew attention to the highly nontrivial interplay between

geometry and temperature, which is at the same time a characteristic feature of

the Casimir effect. The geothermal interplay yields new and unexpected results for

the geometry dependence of thermal forces. For instance, the pure thermal force

reveals a non-monotonic behavior for the sphere-plate and cylinder-plate case,

and can increase for increasing distances. This anomalous behavior is caused by

a reweighting of relevant fluctuations, and has a transparent explanation within

the worldline picture of the Casimir effect. This phenomenon is not restricted to

spheres or cylinders above a plate and is expected to occur for general objects in

front of surfaces, as long as the lateral surface extent is sufficiently larger than

the thermal wavelength.

Another example is the delocalization of the thermal force density at low tem-

peratures. The width of the force density is dictated not only by the geometry

scales but also by the thermal wavelength. As a consequence, local approxima-

tion techniques such as the proximity force approximation (PFA) in general break

down at low temperatures. The thermal force for a sphere-plate configuration, for

example, follows a T 4 power law at low temperatures, whereas the leading-order

PFA correction predicts a T 3 behavior. Another consequence of this delocaliza-

tion is that edge effects emerging from surfaces will be larger for the thermal force

than for the zero-temperature force.

Geothermal phenomena become most pronounced in geometries where the rel-

evant part of the spectrum is gapless. In these so-called open geometries, any

small value of the temperature can excite low-lying thermal modes, giving rise

to thermal corrections. Open geometries, thus, support a stronger influence of

long-range fluctuations on thermal Casimir phenomena. By contrast, a gap in the

relevant part of the spectrum of closed geometries suppresses thermal excitations

at low temperature.

The transition from open to closed geometries and the role of long-range fluc-

tuations can be illustrated best by the inclined-plates configuration. Here, at low

temperature T the thermal corrections to the Casimir force at finite inclinations

become an order of magnitude larger, ∼ TD−1 in D spacetime dimensions. In a

closed geometry of two parallel plates, the thermal behavior is ∼ TD.

The limit of zero inclination is particularly interesting since here the configu-

ration is somewhat in-between open and closed geometries – the open part of the

spectrum only arises due to the edge of the semi-infinite plate. Numerical eval-
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uation of the thermal contribution resulting from the edge shows a temperature

dependence which also lies between ∼ TD−1 and ∼ TD. The strongest tempera-

ture dependence, ∼ TD−2 in the low-temperature limit, was found for the Casimir

torque of the inclined-plates configuration.

Incidentally, the Casimir effect for the inclined plates configuration can be

understood in terms of simple geometric properties of the worldlines. All relevant

information of a worldline needed for the evaluation of the Casimir energy is

encoded in the boundary curves of worldlines. For the special case of two parallel

plates, only the worldline extent is important. This connection between Casimir

energies and worldline properties also relates Casimir energies to questions in

polymer physics [53].

The observation that only the boundary of worldlines are relevant for the

Casimir effect in the inclined-plates configuration helped us to develop powerful

numerical algorithms for fast Casimir computations. Our investigation general-

ized earlier studies of edge-configurations [54, 56].

For the sphere-plate and cylinder-plate configurations, on the other hand, an

efficient approach to direct force computation was found. This lead to strong sim-

plifications compared to previous energy calculations [52] and allowed us to deter-

mine the Casimir force with high precision for a wide parameter range. At finite

temperature, our procedure automatically removes distance-independent terms

which build up the leading contribution to the thermal Casimir energy, eliminat-

ing the necessity of taking the derivative numerically. Thus, first unambiguous

and consistent predictions for the thermal Casimir forces in the sphere/cylinder-

plate configurations could be achieved.

Surprisingly, worldline numerics can also lead to novel analytical results. The

main examples are the exact temperature and separation exponents, and the

first exact low-temperature result of the thermal force for the inclined plates in

arbitrary spacetime dimensions. For arbitrary dimensions, we also obtained the

exact leading low-temperature correction to the thermal energy for parallel plates;

to the best of our knowledge this is the first such exact analytic formula.

Furthermore, we argued that for general geometries, low-temperature correc-

tions to Casimir forces are much more easily accessible in the (formal) contact

limit a→ 0, since in this limit thermal corrections do not exhibit any divergences

and remain well-behaved. The existence of this limit allows, for instance, the ana-

lytic calculation of the thermal correction for the inclined-plate case. It also helped

us devise the low temperature behavior of the Casimir force for sphere/cylinder-

plate configurations. This observation will be equally useful for many other ge-

ometries. We also expect the occurrence of similar strong simplifications in other
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9 Conclusions and outlook

field theoretical approaches, such as functional-integral approaches [62, 63], scat-

tering theory [67, 70, 72, 75, 79], and mode summation [77].

Our numerical and analytical results have been derived for the case of a fluctu-

ating scalar field obeying Dirichlet boundary conditions on the surfaces. Although

this model should not generally be considered as a quantitatively appropriate es-

timate for the real electromagnetic Casimir effect, our general conclusions about

the geothermal phenomena are not restricted to the Dirichlet-scalar case. On the

contrary, all our arguments, based on general considerations about the spectral

gap, will also be qualitatively valid for the electromagnetic case. Of course, for

a realistic description of the Casimir effect, all aspects of geometry, temperature,

material properties, boundary conditions and edge effects will have to be taken

into account simultaneously. Their mutual interplay inhibits a naive factorization

of these phenomena and is a challenge for future research.

In the present work, we have developed a general picture underlying geother-

mal Casimir phenomena. However, the particular geothermal interplay which we

have observed in the context of the Casimir effect is certainly not restricted to

Casimir physics. The crucial ingredients are a gapless fluctuation spectrum in a

spatially inhomogeneous background – though small gaps may not necessarily ex-

ert a strong quantitative influence. We expect that similar phenomena can occur

for the thermal response of a system with an inhomogeneous condensate and an

(almost) gapless fluctuation spectrum.

We conclude this thesis with the remark that the interplay between geome-

try and temperature is only one out of several highly nontrivial interferences

between deviations from the ideal Casimir limit. For instance, the interplay be-

tween dielectric material properties and finite temperature [139] is still a subject of

intense theoretical investigation and has created a long-standing controversy [140–

143, 158]. Additionally, the interplay between dielectric properties and geometry

has also shown to lead to significant deviations from ideal curvature effects [162].

Whereas we have concentrated on Casimir forces and interaction energies between

disconnected surfaces, also Casimir free energies of single bodies can exhibit a so-

phisticated temperature dependence, as has recently been analyzed for wedges

and cylindrical shells [168]. All of this exemplifies the beauty and richness of

Casimir phenomena.
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A The Poisson summation

formula

The Poisson summation formula is a powerful method to speed up the convergence

of certain slowly converging series.

Let f : R → C be a continuous function and c1, c2, ε1, ε2 > 0, such that

|f(x)| ≤ c1
|x|1+ε1

and |f̂(x)| ≤ c2
|x|1+ε2

(A.1)

for x 6= 0. Here, f̂ is the Fourier transform of f ,

f̂(k) ≡ 1√
2π

∫ ∞

−∞
f(x) e−ixk dx, (A.2)

which exists because of the condition on f . Then for T > 0 the Poisson summation

formula is stated as

T
∑

n∈Z

f(nT ) =
√

2π
∑

k∈Z

f̂

(
2πk

T

)
. (A.3)

In order to prove this formula, we construct a 2π periodic function ϕ as follows,

ϕ(x) =
∑

n∈Z

f

(
T

2π
(x+ 2nπ)

)
, (A.4)

and expand ϕ in a Fourier series. The corresponding Fourier coefficients then are

ck =
1

2π

∑

n∈Z

∫ 2π

0

f

(
T

2π
(x+ 2nπ)

)
e−ikx dx. (A.5)
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A The Poisson summation formula

We substitute x→ 2π t/T and Eq. (A.5) becomes

ck =
1

T

∑

n∈Z

∫ T

0

f (t+ nT ) e−ik 2π
T

t dt

=
1

T

∑

n∈Z

∫ (n+1)T

nT

f(t) e−ik 2π
T

t dt

=
1

T

∫ ∞

−∞
f(t) e−ik 2π

T
t dt

=

√
2π

T
f̂

(
2πk

T

)
. (A.6)

We thus obtain for all x

ϕ(x) =
∑

n∈Z

cke
ikx =

√
2π

T

∑

k∈Z

f̂

(
2πk

T

)
eikx. (A.7)

For x = 0, we find with (A.4) the Poisson summation formula (A.3). For mathe-

matical details and justifications of the steps (A.3)-(A.7), see [169].

The functions f and f̂ in (A.3) are vanishing as |x| → ∞. For small T the right

hand side of (A.3) converges very rapidly, for large T the left hand side does.

160



B Inclined plates in the optical

approximation

The inclined plates geometry studied in chapter 4 can be obtained from the ge-

ometry of the so called “Casimir torsion pendulum”, see Fig. B.1, if we substitute

h→ a +
1

2
w sin(ϕ) (B.1)

and then take the limit w → ∞. The Casimir torsion pendulum was studied in

[36, 138] using the optical approach. Here, we give the expressions from which

the function representing the result of the optical approximation in Fig. 4.8 can

be reconstructed. The following expressions can be found in [36]. However some

of them, unfortunately, are misprinted. We give here their, in our opinion, correct

version.

According to [36, 138], the Casimir force per unit length can be obtained from

the following fast convergent series

F opt
c

Ly

= F1u+3u + F2u+2d + F3d+5d + F4u+4d + · · · , (B.2)

where F1u+3u dominates for small ϕ. The contributions in B.2 (with the notation

defined in Fig. B.1 ) should read

F1u+3u = − cos(ϕ)

16π2 sin4(ϕ)

(
1

(h/ sin(ϕ) − w/2)3
− 1

(h/ sin(ϕ) + w/2)3

)
, (B.3)

F2u+2d = − cos3(ϕ)

48π2 sin2(ϕ)

(
1

(h/ sin(ϕ) − w/2)3
− 1

(h/ sin(ϕ) + w/2)3

)
, (B.4)

F3d+5d = − 1

16π2

cos5(2ϕ)

sin4(2ϕ)

(
1

(h/ sin(ϕ) − w/2)3
− 1

(h/ sin(ϕ) + w/2)3

)
, (B.5)

F4u+4d = − cos3(2ϕ)

48π2 sin2(2ϕ)

(
1

(h/ sin(ϕ) − w/2)3
− 1

(h/ sin(ϕ) + w/2)3

)
. (B.6)

Notice that the force per length diverges when the upper plate touches the lower

plate, i.e. if

w > 2h and h/ sin(ϕ) − w/2 = 0. (B.7)
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B Inclined plates in the optical approximation

ϕ
h

w

Figure B.1: The configuration for the Casimir pendulum. The lower plate is assumed to be

infinite. The upper plate is inclined at an angle ϕ and is held at its midpoint at a distance h

above the lower plate. The length of the upper plate is w. The plates’ depth Ly (out of page)

is taken to be infinite. This configuration becomes for h → a+ 1
2

w sin(ϕ) and then w → ∞ the

inclined plates configuration shown in Fig. 4.6 and studied in detail in chapter 4.

However, there is another source of divergence, independent of the upper plates

length w. The contributions F3d+5d and F4u+4d diverge at ϕ = π/2.

The reference [36] also gives the Casimir energy E1u+3u and torque T1u+3u, which

are misprinted as well. In [138] the authors notice that the optical approximation

predicts a non vanishing Casimir torque at ϕ = 0, which seems to be quite

counterintuitive. Here we would like to mention that the torque does vanish at

ϕ = 0 if calculated for the first four terms (Eq.(B.3)-(B.6)) of the expansion (B.2).

Let us now substitute

h→ a+
1

2
w sin(ϕ),

and then take the limit w → ∞ to obtain the expressions for the inclined plates

geometry. Eq. (B.3)-(B.6) become

F1u+3u = − cot(ϕ)

16π2a3
, (B.8)

F2u+2d = − cos3(ϕ) sin(ϕ)

48π2a3
, (B.9)

F3d+5d = − cos5(2ϕ) csc(ϕ) sec4(ϕ)

256π2a3
, (B.10)

F4u+4d = − cos3(2ϕ) sec(ϕ) tan(ϕ)

192π2a3
. (B.11)

At small ϕ, the Casimir force (B.2) per unit length diverges as it should, since

for ϕ → 0 the force becomes proportional to the area of the upper semi-infinite
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plate. For vanishing ϕ, the force should diverge like the worldline- and the PFA

result,

F opt
c (ϕ→ 0)

Ly
≃− π2

1440 a3 ϕ
. (B.12)

Indeed, expanding the force at small ϕ, we obtain

F opt
c (ϕ→ 0)

Ly

≃− 1

16π2 a3 ϕ

(
1 +

1

16
+ . . .

)
, (B.13)

where the series in round brackets becomes ζ(4) = π4/90.

Note that the leading force obtained from (B.8)-(B.11) also diverges (with a

change of sign) for ϕ = π/2. This divergence is not due to the infinite length of

the upper plate, as we have observed above.

The force calculated from (B.8)-(B.11) is shown in Fig. 4.8.
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