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Summary 
 
Stress-induced protein aggregation represents a major threat for cell survival and is also 

associated with various human disorders and cellular aging. The primary cellular response to 

aberrant protein conformations is the refolding of misfolded proteins by molecular chaperones 

or their elimination by AAA+ proteases. Once this first line of defense has been overrun, 

aggregated proteins are directed to specific compartments, thus protecting the cellular 

environment from potentially deleterious protein conformations. Organizing protein 

aggregates might also facilitate the recruitment of protein quality control components, thereby 

increasing the efficiency of aggregate removal in a subsequent phase. In Saccharomyces 

cerevisiae application of mild stress (37°C) results, upon inhibiting proteasomal degradation, 

in partitioning of misfolded proteins between two distinct compartments (Kaganovich, 2008). 

More mobile misfolded proteins, which are ubiquitylated and likely represent substrates for 

proteasomal degradation, are sequestered at the JUNQ (juxtanuclear quality control) 

compartment. Terminally aggregated, insoluble proteins are sorted to the peripheral IPOD 

(insoluble protein deposit) compartment that also harbors amyloidogenic proteins. 

To gain further insight into the spatio-temporal organization of misfolded proteins in 

Saccharomyces cerevisiae, I analyzed the localization of stress-induced protein aggregates by 

employing various fluorescent reporter proteins that either misfold upon stress application or 

bind to aggregated proteins. Since little is known about cellular factors involved in the sorting 

of misfolded proteins, I performed a candidate approach and focused on the Saccharomyces 

cerevisiae small heat shock proteins (sHsps), namely Hsp26 and Hsp42. I identified Hsp42 as 

an essential factor in the formation of IPOD-like inclusions. In hsp42∆ cells misfolded 

proteins do not accumulate in peripheral inclusions, but seem to be re-directed to the JUNQ. 

As Hsp42 localizes specifically to IPOD-like inclusions, but is absent from the JUNQ 

compartment, the lack of peripheral aggregation foci is a direct effect of missing Hsp42, thus 

illuminating a novel function of sHsps in controlling the cellular sorting of damaged proteins. 

In contrast, the second Saccharomyces cerevisiae sHsp, Hsp26, does not affect aggregate 

sorting and is present in both JUNQ and IPOD-like compartments. Transferring the elongated 

N-terminal domain (NTD) of Hsp42 to Hsp26 enables Hsp26 partially to replace Hsp42 

function in aggregate sorting. In contrast, Hsp42 deleted of its NTD is not able to restore the 

occurrence of peripheral inclusions in hsp42∆ cells. The NTD is thus a key determinant in 

contributing functional specificity to Hsp42. My data suggest that Hsp42 acts as an adaptor 

protein that co-aggregates efficiently with misfolded proteins. The sHsp might link such 
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complexes via its NTD to further, so far unknown, sorting factors. Thereby, protein inclusions 

might be directed to the actin cytoskeleton, which I demonstrate to be crucial for aggregate 

sorting to JUNQ and IPOD-like compartments. Nonetheless, Hsp42 function is restricted to 

amorphous aggregates, because the localization of amyloidogenic proteins to IPOD-like 

inclusions does not depend on Hsp42. Comparing the mobility and stability of aggregated 

proteins deposited at the JUNQ in wild-type and hsp42∆ cells revealed the JUNQ 

compartment of hsp42∆ cells to have a moderate increase in substrate mobility and be 

solubilized more rapidly by Hsp104. These findings suggest that the Hsp42-dependent sorting 

to IPOD-like compartments retards substrate resolubilization, thereby potentially reducing 

substrate load of the quality control system.  

I also analyzed the spatio-temporal organization of protein aggregates in cells with intact 

proteasomal degradation during sublethal heat-stress and a subsequent recovery phase 

allowing for aggregate solubilization. Heat shock generates multiple aggregation foci that are 

distributed throughout the cell. Sorting of aggregated proteins to JUNQ and IPOD-like 

deposition sites does not occur upon return to physiological growth conditions. Instead, 

protein disaggregation takes places in situ and does not require an intact actin cytoskeleton. 

My data thus demonstrate that the applied stress condition has a profound impact on the 

organization of misfolded proteins.  

Moreover, my findings disclose functional divergence of the Saccharomyces cerevisiae sHsps 

in the refolding and organization of heat shock-generated protein aggregates. Incorporation of 

Hsp26 facilitates the reactivation of aggregated proteins. In contrast, Hsp42 is not influencing 

protein refolding, but serves as a sorting factor essential for the persistence of protein 

inclusions in the cellular periphery. 
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Zusammenfassung 
 
Stress-induzierte Proteinaggregation stellt eine starke Gefährdung der Zellviabilität dar und ist 

mit verschiedenen menschlichen Krankheiten und Zellalterung assoziiert. Der erste zelluläre 

Schutzwall gegen anomale Proteinkonformationen besteht in der Rückfaltung der 

missgefalteten Proteine durch molekulare Chaperone und deren Elimination durch AAA+ 

Proteasen. Sobald der erste Schutzwall seine Funktion nicht mehr erfüllt, werden aggregierte 

Proteine zu bestimmten Orten im Zytosol geleitet. Dieser Prozess stellt den zweiten zellulären 

Schutzwall dar. Die Ablagerung von Proteinaggregaten in speziellen Kompartimenten schützt 

die zelluläre Umgebung vor potentiell gefährlichen Proteinstrukturen. Die Ablagerung könnte 

auch die Rekrutierung der Proteinqualitätskontrollmaschinerie erleichtern, wodurch ein 

späterer Aggregatabbau gefördert werden würde. In Saccharomyces cerevisiae führt die 

Applikation von mildem Hitzestress, bei gleichzeitiger Inhibition von proteasomalem 

Proteinabbau, zur Ablagerung von missgefalteten Proteinen in zwei unterschiedlichen 

Kompartimenten, einem juxtanuklearen JUNQ (juxtanuclear quality control) und einem 

perivakuolären IPOD (insoluble protein deposit) Kompartiment (Kaganovich et al., 2008). 

Der JUNQ enthält mobilere missgefaltete Proteine, die ubiquityliert sind und wahrscheinlich 

Substrate für proteasomalen Abbau darstellen. Der IPOD hingegen scheint terminal 

aggregierte, unlösliche Proteine zu beherbergen, einschließlich amyloidogener Proteine.  

Um ein besseres Verständnis der räumlich-zeitlichen Organisation von missgefalteten 

Proteinen in Saccharomyces cerevisiae zu erlangen, habe ich die Lokalisation von stress-

induzierten Proteinaggregaten verfolgt. Dafür habe ich von verschiedenen fluoreszenten 

Reportern Gebrauch gemacht, die entweder nach Stressapplikation selbst aggregieren oder an 

Proteinaggregate binden. Da wenig über zelluläre Faktoren bekannt ist, welche in der 

Ablagerung missgefalteter Proteine eine Rolle spielen, habe ich einen gerichteten Ansatz 

gewählt und mich auf die kleinen Hitzeschockproteine (sHsps) von Saccharomyces 

cerevisiae, Hsp26 und Hsp42, konzentriert. So habe ich Hsp42 als einen essentiellen Faktor 

für die Bildung IPOD-ähnlicher Strukturen identifiziert. In hsp42∆ Zellen akkumulieren 

missgefaltete Proteine nicht in peripheren Ablagerungen, sondern werden zum JUNQ 

dirigiert. Da Hsp42 ausschließlich in IPOD-ähnlichen Ablagerungen anzutreffen ist, nicht 

aber in JUNQ Kompartimenten, scheint das Fehlen peripherer Aggregatablagerungen in 

hsp42∆ Zellen eine direkte Konsequenz der Abwesenheit Hsp42s zu sein. Somit konnte eine 

neuartige Rolle der sHsps in der Aggregatablagerung aufgezeigt werden. Im Gegensatz dazu 

beeinflusst das zweite sHsp in Saccharomyces cerevisiae, Hsp26, die Aggregatablagerung 
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nicht. Hsp26 ist sowohl im JUNQ als auch in IPOD-ähnlichen Kompartimenten anzutreffen. 

Transferiert man die elongierte N-terminale Domäne (NTD) von Hsp42 auf Hsp26, so kann 

Hsp26 teilweise die Hsp42 Funktion in der peripheren Aggregatablagerung übernehmen. Im 

Gegensatz dazu kann eine NTD-deletierte Hsp42 Mutante nicht die periphere 

Aggregatablagerung in hsp42∆ Zellen wiederherstellen. Somit ist eine Schlüsselrolle der 

NTD in der Funktion von Hsp42 aufgezeigt. Man kann spekulieren, dass Hsp42 als 

Adaptorprotein fungiert, welches mit Substraten effizient coaggregiert. Die daraus 

resultierenden Komplexe könnten durch die Hsp42 NTD an bisweilen nicht identifizierte 

Sortierfaktoren gekoppelt werden. Dadurch könnten Proteinaggregate an das Aktinzytoskelet 

gebunden werden, welches ich als essentielle Komponente für die Aggregatablagerung in 

JUNQ und IPOD-ähnlichen Kompartimenten identifiziert habe.  

Vergleicht man die Mobilität und Stabilität missgefalteter Proteine im JUNQ von wildtyp und 

hsp42∆ Zellen, so wird für hsp42∆ JUNQ Kompartimente eine moderate Erhöhung der 

Substratmobilität und schnellere Auflösung durch Hsp104 ersichtlich. Somit scheinen die 

Hsp42-abhängigen IPOD-ähnlichen Ablagerungen zu einer verlangsamten Solubilisierung 

von Substraten zu führen, was eine verringerte Substratmenge für die 

Proteinqualitätskontrollmaschinerie nach sich ziehen könnte. Hsp42 spielt jedoch nur eine 

Rolle in der Organisation amorpher Aggregate, da die Ablagerung von amyloidogenen 

Aggregaten in IPOD-ähnlichen Kompartimenten nicht von Hsp42 abhängt. 

Des Weiteren habe ich die räumlich-zeitliche Organisation von Proteinaggregaten während 

eines subletalen Hitzeschocks und anschließender Erholungsphase, welche 

Aggregatsolubilisierung erlaubt, in Zellen mit intaktem proteasomalem Proteinabbau 

untersucht. Der Hitzeschock generiert multiple Aggregate, welche in der gesamten Zelle 

verteilt sind. Die Ablagerung missgefalteter Proteine in JUNQ und IPOD-ähnlichen 

Kompartimenten ist nach der Rückkehr zu physiologischen Temperaturen nicht zu 

beobachten. Stattdessen findet die Proteindisaggregation in situ statt, wofür kein intaktes 

Aktinzytoskelet vonnöten ist. Folgerichtig wird das Schicksal missgefalteter Proteine von der 

Stressart bestimmt.  

Darüber hinaus habe ich eine funktionale Divergenz der Saccharomyces cerevisiae sHsps in 

der Rückfaltung und Organisation Hitzeschock-generierter Proteinaggregate entdeckt. Die 

Integration von Hsp26 beschleunigt die Reaktivierung aggregierter Proteine nach 

Hitzeschock. Im Gegensatz dazu beeinflusst Hsp42 die Proteinrückfaltung nicht, dient aber 

als Sortierungsfaktor, welcher für den fortdauernden Aufenthalt von Proteinaggregaten in der 

zellulären Peripherie zuständig ist.  
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1. Introduction 

1.1 Protein aggregation 

Proteins depend entirely on their correct three-dimensional structure for proper function. 

Certain conditions however lead to misfolding and protein aggregation, causing cellular 

dysfunction. As a consequence aging and a wide range of deleterious human diseases, 

including neurodegeneration and cancer, are associated with aggregation. Understanding 

formation and processing of aggregates is therefore of primary importance. To counteract 

protein misfolding cells have developed a protein quality control network comprising 

molecular chaperones and proteases, which will be described later in paragraphs 1.3 and 1.4.  

 

1.1.1 Causes of protein aggregation 

The protein folding process starts once the nascent polypeptide chain emerges from the 

ribosomal exit tunnel. Since this channel can only accommodate extended chains or at most 

helical structures (Ban et al., 1999), the nascent chain reaches the cytoplasm in a linear 

conformation, exposing hydrophobic residues towards the aqueous environment of the cell. 

Folding of the nascent chain into its unique three-dimensional structure requires selection of a 

single structure out of a vast repertoire of constellations that are sterically available but 

incorrect. The permanent exposure of hydrophobic patches during the folding process can 

result in adopting aberrant conformations, which can complex to form aggregates. However, 

also correctly folded proteins are at constant risk of generating non-native conformations, 

because the energy barriers that separate native from aberrant folds are usually small. In this 

light it is not surprising that protein misfolding and aggregation have several causes. 

Mutations, for example, might disturb protein folding and, as a consequence, result in 

aggregation. Various diseases, including type II diabetes, Huntington’s disease, familial forms 

of Parkinson’s disease, and Alzheimer disease, are caused by mutations occurring in the 

aberrant proteins themselves (Powers et al., 2009; Chiti and Dobson, 2006). Also mutations in 

components of the protein quality control network can have devastating consequences. As an 

example, mutated human small heat shock protein α-crystallin induces cataract, which is 

caused by denaturing lens protein normally kept soluble by the chaperone.  Moreover, 

aggregation can be caused by the lack of oligomeric assembly partners, leading to the 

exposure of hydrophobic patches normally buried at the interface of the complexes. In 

addition, protein aggregation results from erroneous translation (e.g. premature termination) 
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and environmental stress conditions such as thermal or oxidative stress. Heat shock, for 

example, perturbs the tertiary structure of numerous polypeptides, causing quantitative 

aggregation of cellular proteins. While heat-induced unfolding processes are often reversible 

(Parsell et al., 1994), oxidative stress induces several irreversible reactions, including radical-

induced fragmentation of the polypeptide backbone or replacement of specific amino acid 

side chains by carbonyl groups (Nystrom, 2005), both leading to misfolding and aggregate 

formation. Also aging seems to promote protein aggregation by the accumulation of oxidized 

and nitrated intracellular proteins (Erjavec et al., 2007; Squier, 2001), which are 

thermodynamically unstable and assume partially unfolded tertiary structures that readily 

form aggregates. As a consequence cellular dysfunction occurs and senescent animals have a 

reduced ability to withstand physiological stresses (Squier, 2001).  

 

1.1.2 Identity of protein aggregates 

Characteristic of all the different causes of aggregation is the inappropriate exposure of 

hydrophobic patches, which are normally buried within the inner core of the folded protein or 

at the interface with other subunits (Wetzel, 1994). These patches pose a risk for the cell, 

because they can interact with and trap native proteins, thus disturbing specific cellular 

functions (Nucifora et al., 2001). When the exposed hydrophobic patches of monomeric 

proteins agglutinate, aggregates are formed, which are characterized by their poor solubility in 

aqueous or detergent solvents, aberrant localization, and non-native secondary structure 

(Kopito, 2000; Fink, 1998). Originally, the aggregation process was considered to be either 

unspecific, leading to the formation of amorphous structures, or, in case of amyloid fibrils, 

highly specific through the formation of cross ß-sheets in prefibrils (Figure 1.1). However, 

bacterial inclusion bodies have recently been demonstrated to contain amyloid-like structures 

(de Groot et al., 2009). Intermolecular ß-sheets were shown to be contained within both 

amorphous and amyloidogenic aggregates. Nonetheless, proportionally the highest ß-sheet 

content is found in amyloid fibrils, in which they run perpendicular to the fibril axis 

(Fandrich, 2007; Chiti and Dobson, 2006; Dobson, 2003). An important determinant of 

aggregate morphology is the cause of the unfolding process. Heat shock, for example, leads to 

co-aggregation of diverse protein species, thereby restricting specificity of the resulting 

inclusions. If aggregation is mainly driven by a single misfolded protein species, as would be 

the case during overproduction of recombinant proteins in bacteria, highly organized 

aggregates are generated in the form of inclusion bodies. Such divergent aggregation 

pathways could explain the finding that distinct proteins form discrete inclusions (Rajan et al., 
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2001). Moreover, a single protein species has been shown to form aggregates of different 

morphologies, depending on the type of denaturing condition (Ben-Zvi and Goloubinoff, 

2002).  

 

 
Figure 1.1. Protein aggregation.  
Nascent polypeptides as well as natively folded proteins can misfold. Non-native polypeptides might be (re-) 
folded to the native state by molecular chaperones. Otherwise, misfolded protein species might form prefibrillar 
structures, which ultimately form amyloid fibrils. Alternatively, misfolded monomeric proteins can complex to 
form disordered aggregates. All aberrant protein conformations except amyloid fibrils can be degraded. For 
details see text. (Tydmers et al., submitted for publication). 

1.2 Sequestration of aggregates 

Protein aggregates are formed when the first line of defense, the cell’s molecular chaperones 

and proteolytic systems, is overwhelmed by excessive production of unfolded polypeptides. 

As the second line of defense against protein damage, aggregated proteins are directed to 

specific compartments, which protects the cellular environment from potentially deleterious 

protein conformations. Organizing protein aggregates might also facilitate the recruitment of 

protein quality control components, thereby increasing the efficiency of aggregate removal in 

a subsequent phase (Kaganovich et al., 2008; Wigley et al., 1999). In agreement with such a 
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cytoprotective role of sequestering misfolded proteins into large, microscopically visible 

aggregates, there is now emerging evidence that conformational diseases result from 

intermediate oligomeric forms of misfolded proteins, but not from large aggregates (de Groot 

et al., 2009; Arrasate et al., 2004). The toxicity of these early aggregates seems to result from 

the perturbation of essential processes by co-aggregating with cellular components which 

eventually leads to apoptotic or necrotic cell death (Stefani and Dobson, 2003). The process 

of aggregate sequestration appears to be evolutionary ancient as it is observed from bacteria to 

mammals. 

 

1.2.1 Inclusion bodies in bacteria 

Heterologous protein expression in E. coli allows producing proteins of commercial interest 

in large quantities. However, many overproduced proteins form insoluble aggregates in 

inclusion bodies. Although efficient refolding protocols have been established, aggregation of 

a variety of target proteins constitutes a major bottleneck in the purification of heterologously 

produced proteins, because the recovery is usually low and the procedure requires adaptation 

for each target protein (de Groot et al., 2009). Protein aggregation thus narrows the spectrum 

of protein-based drugs that are available in the biotechnology market (Ventura and Villaverde, 

2006). Besides overproduction of heterologous proteins, inclusion bodies are formed from 

endogenous proteins, particularly under stress conditions (Laskowska et al., 2004; Gragerov 

et al., 1991). A recent report even monitored the existence of inclusion bodies in wild-type 

cells cultivated at physiological temperatures in the absence of protein overproduction 

(Lindner et al., 2008). Microscopically, inclusion bodies share a common amorphous 

appearance, regardless of the target protein (Carrio and Villaverde, 2005). They can be nearly 

1 µm in diameter and are very dense refractive particles that can be found in both the 

cytoplasmic and periplasmic space of bacteria. As mentioned earlier (Paragraph 1.1.2), the 

amorphous microscopic appearance is undermined by the discovery of extended, 

intermolecular ß-sheet conformations, which are very similar to the cross-ß sheets present in 

amyloids (Doglia et al., 2008; Morell et al., 2008). In many inclusion bodies, however, 

disordered conformations are detected and, in some cases, native-like secondary structure (de 

Groot et al., 2009; de Groot and Ventura, 2006; Garcia-Fruitos et al., 2005). Usually one to 

two copies of inclusion bodies are present per cell, which are located at the cellular poles, 

mid-, or quarter-cell positions (Lindner et al., 2008; Laskowska et al., 2004; Gragerov et al., 

1991). Interestingly, the pole-localized inclusions are preferentially found at the old cell pole. 

This particular localization suggests an active energy-driven transport process. However, a 
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recent report has shown nucleoid-exclusion as the main cause of polar localization, indicating 

a rather passive mechanism for aggregate sequestration (Figure 1.2, left) (Winkler et al., 

2010). The localization of inclusion bodies has consequences for their inheritance during cell 

division, as will be discussed later (Paragraph 1.5.1) 

 
Figure 1.2. Aggregate sequestration.  
(Left) Bacteria form inclusion bodies preferentially at the cellular poles. This might occur through an active 
transport or a passive nucleoide occlusion process. (Middle) In yeast, poly-ubiquitylated misfolded proteins are 
sequestered at the perinuclear JUNQ compartment, while insoluble protein inclusions are deposited at the 
perivacuolar IPOD compartment. (Right) Mammalian cells transport peripheral microaggregates along 
microtubules to the pericentriolar aggresome, which is ensheathed by the intermediate filament vimentin. For 
details see text (Tydmers et al., submitted for publication). 
 

1.2.2 Aggregate sequestration in yeast 

Exposing yeast to severe heat stress leads to the accumulation of multiple foci distributed 

throughout the cell. These aggregates are localizing randomly and can mostly be resolubilized 

with the help of molecular chaperones, once the stress conditions are removed (Parsell et al., 

1994). However, also terminally misfolded protein species form in yeast, including 

oxidatively damaged proteins (Nystrom, 2005), amyloidogenic proteins such as yeast prions 

(Edskes et al., 1999; Patino et al., 1996), or polyQ-rich model proteins (e.g. Htt103Q) (Meriin 

et al., 2002; Krobitsch and Lindquist, 2000). The aggregation behavior of these proteins is 

diverse. For example, oxidatively damaged proteins such as carbonylated species form visible 

aggregation foci in the cytoplasm only in aged yeast cells or after application of oxidative 

stress (Erjavec and Nystrom, 2007). It is unknown whether these foci form randomly or at 

distinct localizations. The observation that carbonylated proteins are inherited asymmetrically 

in an actin-dependent process suggests interplay between the actin cytoskeleton and the 

inclusions. When studying the localization of amorphous and amyloidogenic aggregates a 

recent study has described partitioning of misfolded proteins between two distinct 
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compartments (Figure 1.2, middle) (Kaganovich et al., 2008). Upon inhibition of proteasome-

mediated degradation, soluble misfolded proteins were partitioned to the JUNQ (juxtanuclear 

quality control) compartment, which localized to an indentation of the nucleus close to the 

endoplasmic reticulum. Ubiquitylation seemed to be a prerequisite for targeting to the JUNQ, 

where also proteasomes were concentrated. Non-diffusible, insoluble misfolded proteins were 

partitioned to the perivacuolar IPOD (insoluble protein deposit), which also harbored 

amyloidogenic proteins such as polyQ expanded Huntington (Htt103Q) or the yeast prion 

protein Rnq1. Interestingly, poly-ubiquitylation of Rnq1 re-targeted it to the JUNQ. In 

contrast, impairing ubiquitylation of misfolding substrates through deletion of the E2 pair 

ubc4/5 resulted in deposition at the IPOD. Use of a microtubule-depolymerizing drug 

inhibited aggregation sequestration at the two distinct compartments, suggesting a role for the 

microtubule cytoskeleton in this process. 

 

1.2.3 Aggresomes in mammalian cells 

In mammalian cells inhibition of proteasomal activity or overexpression of certain proteins 

such as misfolded cystic fibrosis transmembrane conductance regulator (CFTR) (Johnston et 

al., 1998), parkin (Junn et al., 2002), or huntingtin (Waelter et al., 2001) results in the 

formation of a single inclusion called the aggresome, which localizes to a pericentrosomal 

indentation of the nucleus. Preformed microaggregates from the cellular periphery are 

transported to the centrosome on the microtubule cytoskeleton in a process mediated by 

dynein/dynactin complexes (Figure 1.2, right) (Johnston et al., 2002). As a consequence, 

microtubule-depolymerizing drugs inhibit aggresome formation (Kopito, 2000). Although the 

aggresome is membrane-free, it might be stabilized by ensheathing in a cage of the 

intermediate filament vimentin. Poly-ubiquitylation is generally considered a prerequisite for 

substrate recognition and transport to aggresomes. However, some aggresomal substrates 

have been shown not to be ubiquitylated, leaving the possibility that other signals are 

responsible for transport to aggresomes (Garcia-Mata et al., 2002; Kopito, 2000). The 

microtubule-associated deacetylase HDAC6 has been demonstrated to be a major player in 

aggresome formation (Kawaguchi et al., 2003). It binds simultaneously to ubiquitylated 

misfolded protein and dynein motors, thereby enabling transport of misfolded cargo along 

microtubules. The E3 ubiquitin ligase parkin that promotes the proteasomal degradation of 

several substrates (Kahle and Haass, 2004), is believed to recognize and ubiquitylate non-

native proteins, herewith marking it for HDAC6-mediated transport to aggresomes. Moreover, 

HDAC6 binding of aberrant proteins promotes a protective cellular response mediated by 
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dissociation of a repressive HDAC6/HSF1 (heat-shock factor 1) / Hsp90 complex and 

subsequent HSF1 activation, thus upregulating the expression of molecular chaperones. 

Immunohistochemical analysis indicates that aggresomes are enriched in molecular 

chaperones, including Hsc70, the Hsp40 proteins Hdj1 and Hdj2, and the chaperonin 

TriC/TCP (Garcia-Mata et al., 1999; Wigley et al., 1999). Also the presence of both 19S and 

26S proteasome subunits in aggresomes has been reported (Anton et al., 1999; Wigley et al., 

1999; Wojcik et al., 1996). Thus, the refolding and degradative machineries are present at the 

aggresome. 
 

1.3 Protein refolding 

Maintaining the integrity of proteins is of fundamental importance for life. For that reason 

cells have developed a sophisticated machinery of folding helpers, the so-called molecular 

chaperones, which guide de novo protein folding and help sustaining the native fold. 

 

1.3.1 Molecular chaperones 

The observation that the level of many chaperones is elevated under heat shock conditions led 

to the term ‘heat shock protein’ (Hsp) (Ellis, 1987). This upregulation already suggested that 

they are required for the protection of proteins during severe stress conditions. The unfolding 

and subsequent exposure of hydrophobic stretches to the environment is acted against by 

Hsps, which have evolved to bind to these stretches and assist proteins to regain their native 

state. Hsps exist in several evolutionary conserved families, which are named according to the 

apparent molecular weight of a typical member, e.g. Hsp110, Hsp100, Hsp90, Hsp70, Hsp60, 

or Hsp40. The Hsps have diverse functions: i) they prevent unfolded proteins from interacting 

with each other by binding to them (e.g. small heat shock proteins and Hsp90 family 

members) (Haslbeck et al., 1999b); ii) Hsps assist folding processes (e.g. Hsp60 and Hsp70 

chaperones) (Weibezahn et al., 2004); iii) they have the remarkable ability to dissolve already 

formed protein aggregates to release polypeptide chains for refolding or degradation (Hsp100 

family members) (Sanchez and Lindquist, 1990). However, the Hsp100s require cooperation 

with the Hsp70 and Hsp40 chaperones to dissolve aggregates (Ben-Zvi and Goloubinoff, 

2002; Glover and Lindquist, 1998). 
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1.3.2 Hsp70-Hsp104/ClpB bichaperone system 

Aggregation has for a long time been seen as the dead-end state of proteins. In 1990, however, 

the group of Lindquist discovered the Hsp104 protein in yeast, which belongs to the Hsp100 

family of chaperones (Sanchez and Lindquist, 1990). Hsp104 (S. cerevisiae) / ClpB (E. coli) 

has the ability – together with the Hsp70 chaperone system – to solubilize even large protein 

aggregates. Notably, each chaperone component on its own has only limited (Hsp70) or no 

(Hsp104) disaggregation activity. Following a mild pre-heat treatment this bi-chaperone 

system enables organisms to survive a normally lethal heat shock, a phenomenon referred to 

as thermotolerance (Queitsch et al., 2000; Sanchez and Lindquist, 1990). The viability of cells 

under such severe stress conditions is threatened by the quantitative loss of proteins via 

aggregation and requires Hsp104/ClpB -dependent reactivation of lost protein material. The 

Hsp70–Hsp104/ClpB system is conserved in most eubacteria, parasitic protozoa, yeast, and 

plants, but only exists in the mitochondria of higher eukaryotes (Weibezahn et al., 2005). 

 

 
Figure 1.3. Protein disaggregation in the yeast cytosol by the sHsp – Hsp70 – Hsp104 system.  
sHsps co-aggregate with non-native polypeptides, thus facilitating access of the refolding machinery. Hsp70 
delivers, with help of its co-chaperones, individual polypeptide chains to the central pore of Hsp104, which 
threads them in a one-by-one fashion upon ATP consumption. The solubilized, but still non-native, polypeptide 
is taken over and folded to its native state by Hsp70. For details see text. Modified from (Weibezahn et al., 
2004). 
 

1.3.2.1 The Hsp70 chaperones 
Hsp70 family members participate under non-stress conditions in a number of cellular 

processes, as diverse as folding of newly synthesized proteins, assisting translocation through 

membranes, activity control of regulatory proteins, disassembly of protein complexes, and 

facilitating proteolytic degradation of certain substrate proteins (Dragovic et al., 2006; Cotto 
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and Morimoto, 1999). The Hsp70 proteins exist in two functional states: the ATP- and the 

ADP-state (Weibezahn et al., 2004). In the ATP-bound state substrates are bound with low 

affinity and dissociate rapidly. Once ATP is hydrolyzed, Hsp70 proteins bind substrate tightly 

(Pierpaoli et al., 1997; Theyssen et al., 1996; McCarty et al., 1995). Hsp70s assist folding of 

proteins by repeated cycles of binding and release of their substrates. In vivo Hsp70s interact 

with members of the Hsp40 protein family (e.g. S. cerevisiae Ydj1), which accelerate the 

speed of the hydrolysis reaction. The release of ADP and binding of ATP reverses Hsp70s to 

the low affinity state and, thus, completes the functional cycle of substrate binding and 

release. Therefore, a number of Hsp70 members interact with nucleotide exchange factors 

including bacterial GrpE or the yeast Fes1 and Sse1 (Dragovic et al., 2006; Raviol et al., 

2006; Kabani et al., 2002; Liberek et al., 1991) to accelerate the speed of substrate release. 

Hsp70s are thought to bind and release their substrates repeatedly, with each cycle inducing 

local conformational changes, ultimately resulting in a correctly folded protein (McCarty et 

al., 1995; Szabo et al., 1994; Schroder et al., 1993). 

 

1.3.2.2 The Hsp104/ClpB chaperones 

Hsp104/ClpB is a member of the superfamily of AAA+ (ATPase associated with various 

cellular activities) proteins that are responsible for a broad variety of cellular functions such 

as proteolysis and protein disaggregation (Ogura and Wilkinson, 2001). Aggregated proteins 

can be resolubilized by the Hsp70 chaperone system only in the presence of cognate 

Hsp104/ClpB (Glover and Lindquist, 1998; Parsell et al., 1994), as could be concluded from 

their species-specific cooperation (Weibezahn et al., 2004; Patino et al., 1996). The exact 

mode of interplay is however not well understood. Hsp70 is required for restricting access of 

degradative or non-processive systems to the aggregates and substrate transfer to the central 

pore of Hsp104/ClpB, which assembles into a hexameric ring (Haslberger et al., 2008). 

Disaggregation is achieved by continuous extraction of single unfolded polypeptide chains 

from an aggregate through pore-located aromatic residues, which thread substrate upon ATP 

consumption (Haslberger et al., 2008; Lum et al., 2004; Weibezahn et al., 2004). The 

shuffling of substrates involves the Hsp104/ClpB -specific M-domain that is lacking in other 

AAA+ family members (Haslberger et al., 2007). Hsp104/ClpB possesses remarkable 

flexibility during the threading process. Once folded domains are encountered, Hsp104/ClpB 

adopts a resting state and polypeptide is released (Haslberger et al., 2008). The partial 

threading is beneficial, because it results in higher refolding yields by preventing non-

productive interactions of different unfolded peptide segments that would otherwise be 
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produced upon complete substrate threading. Hsp70s are thought to take over translocated 

polypeptides, preventing reassociation of solubilized, but still non-native, proteins with 

aggregates, thereby efficiently promoting substrate refolding (Weibezahn et al., 2005). 

Alternatively, translocated polypeptide might be degraded by components of the protein 

quality network. 

 

1.3.3 Small heat shock proteins 

The Hsp70-Hsp104/ClpB bi-chaperone system is assisted by small heat shock proteins 

(sHsps) (Figure 1.3). sHsps constitute the most widespread type of molecular chaperones, but 

at the same time also the most poorly conserved family (Haslbeck et al., 2005a). They are 

found in all three kingdoms of life with prokaryotes and single-celled eukaryotes usually 

possessing one to two sHsps (Kappe et al., 2002). Higher eukaryotes in turn also have a 

higher number of genes encoding sHsp proteins (e.g. humans possess 10) (Figure 1.4). One 

hallmark of sHsps is a small monomer size ranging from 12 to 43 kDa. In their native state 

the majority of sHsps forms dynamic oligomers of 12 to >32 subunits (Cheng et al., 2008), 

which mainly form hollow spheres with openings (White et al., 2006; Haley et al., 1998; Kim 

et al., 1998) or cylindrical complexes (van Montfort et al., 2001b). Another hallmark of sHsps 

is the presence of a conserved, ~100 amino acids long α-crystallin domain, whose name 

derives from the most renowned member of the sHsp family, the vertebrate eye lens α-

crystallin (Horwitz, 1992). α-crystallin, in conjunction with human Hsp27, is associated with 

a variety of neurodegenerative disorders, including Alzheimer’s and Creutzfeldt-Jakob 

disease (Krueger-Naug et al., 2002; Lowe et al., 1992; Renkawek et al., 1992). Knock-out 

mice deficient in α-crystallin develop cataracts (Brady et al., 1997). The α-crystallin domain 

in sHsps is flanked by a short C-terminal extension and an N-terminal arm. While the α-

crystallin domain mediates dimerization of sHsp monomers, the C-terminal extension 

establishes oligomer formation through contacts with adjacent a-crystallin domains (Figure 

1.5) (van Montfort et al., 2001b; Kim et al., 1998). The N-terminal domain is both of 

divergent sequence and variable length (from 24 residues in C. elegans Hsp12.2 to 247 

residues in S. cerevisiae Hsp42) (Haslbeck et al., 2004a; Candido, 2002), and is also required 

for oligomerization (Haslbeck et al., 2004b). Recent data suggest that mainly the N-terminal 

domain is responsible for substrate binding by assuming different geometries that allow a 

broad range of substrates to interact (Jaya et al., 2009; Cheng et al., 2008). But also regions of 

the α-crystallin domain and C-terminal extension form contacts with misfolded proteins, such 

that there is no unique binding site in sHsps (Jaya et al., 2009).  
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Figure 1.4 Number of sHsp representatives in different organisms. 
sHsps are found in all three kingdoms of life. However, an increasing number of sHsp representatives is 
observed from prokaryotes to higher eukaryotes. Rhizobia are an exception to this trend (Haslbeck et al., 2005a). 
 

The expression of sHsps is induced by various stress types including high temperature, 

oxidative stress, heavy metals, and ischemic injury. Nonetheless, sHsps are constitutively 

expressed in specific tissues of many different organisms (Cheng et al., 2008). At 

physiological temperatures most sHsp molecules are only partially active while stress 

conditions, such as elevated temperature, activate them. Also post-translational modifications, 

in particular phosphorylation of mammalian sHsps, might be a trigger to switch on their 

activity according to cellular demands (Koteiche and McHaourab, 2003; Gaestel, 2002). 

Conditions favoring substrate denaturation shift an equilibrium of numerous sHsps between 
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high order quaternary structures and dimers towards the dimeric form, suggesting the latter as 

the substrate-binding conformation (Van Montfort et al., 2001a; van Montfort et al., 2001b; 

Haslbeck et al., 1999b). For other sHsps increased temperatures result in more rapid subunit 

exchange which also facilitates binding to sub-oligomeric species (Liu et al., 2006; Friedrich 

et al., 2004). Electron microscopic studies have identified sHsp/substrate complexes as having 

a large, regular, globular morphology (Stromer et al., 2003; Ehrnsperger et al., 1999; 

Haslbeck et al., 1999b; Ehrnsperger et al., 1997), which  is influenced by substrate and sHsp 

identities (Basha et al., 2004; Stromer et al., 2003). When non-native polypeptides exceed 

sHsp concentration, larger complexes form that are less well defined. Consequently, even 

oligomers that dissociate into dimers upon activation re-associate with substrate proteins to 

form large complexes.  

 
Figure 1.5 Functions of the sHsp domains. 
Sequence diagram and assigned functions of the sHsp domains are depicted. The length of the N-terminal 
domain (NTD) varies from 24 residues in C. elegans Hsp12.2 to 247 residues in S. cerevisiae Hsp42. The NTD 
is required for oligomerization and the main substrate binding site. Nonetheless, also regions of the α-crystallin 
domain (alpha) and C-terminal extension (CTE) form contacts with misfolded proteins, such that there is no 
unique binding site in sHsps. The α-crystallin domain moreover mediates dimerization of sHsp monomers, while 
the CTE establishes oligomer formation through contacts with adjacent a-crystallin domains. 
 

Under heat-shock conditions a substantial fraction of the cytosolic protein pool is maintained 

in a soluble state by sHsps (Basha et al., 2004; Haslbeck et al., 2004a). sHsps bind tightly to 

misfolded protein species, resulting in the formation of sHsp/substrate complexes that do not 

release bound proteins spontaneously, thereby creating a reservoir of misfolded proteins 

during stress conditions (Haslbeck et al., 2005a). sHsps thus separate binding of non-native 

proteins from the refolding process (Franzmann et al., 2008). Also in the presence of sHsps 

substrates form aggregates, which are of altered composition. Intercalation of sHsps decreases 

the number of hydrophobic contacts between substrate molecules and increases the 

accessibility of the protein refolding machinery. Consequently, substrates coupled to sHsps 

can be reactivated more easily by the Hsp70-Hsp104/ClpB bi-chaperone system, thereby 

enhancing protein disaggregation efficiency in vivo and development of thermotolerance 

(Figure 1.3) (Ratajczak et al., 2009; Mogk et al., 2003; Lee et al., 2000). 
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1.3.3.1 The S. cerevisiae small heat shock proteins 

Two distinct sHsps have been described in S. cerevisiae, namely Hsp26 and Hsp42. Both 

chaperones are thought to assemble into oligomers of 24 subunits (Figure 1.6) (Haslbeck et 

al., 2004a; Haslbeck et al., 1999b). Hsp26 dissociates into dimers at temperatures >40°C. 

This change in quaternary structure is accompanied by a change in activity, because Hsp26 is 

an efficient chaperone only at elevated temperatures. Interestingly, an Hsp26 mutant that does 

not dissociate into dimers at elevated temperatures and does not exchange subunits still 

exhibits chaperone activity identical to wild-type (WT) protein (Franzmann et al., 2005). This 

implies that oligomer dissociation and rate of subunit exchange cannot be a major determinant 

for chaperone activity of Hsp26.  

 
Figure 1.6 Structure and domain localizations of S. cerevisiae Hsp26. 
Structure of Hsp26 as revealed by cryo-electron microscopy. The 24 subunits of Hsp26 are arranged in a porous 
shell with tetrahedral symmetry. The subunits form elongated, asymmetric dimers. Each subunit contains an N-
terminal region (N), a globular middle domain (M), the a-crystallin domain (α), and a C-terminal extension (C). 
Twelve of the C-termini form contacts which are inserted into the interior of the shell, while the other 12 C-
termini form contacts on the surface. Hinge points between the domains allow a variety of assembly contacts, 
providing the flexibility required for formation of supercomplexes with nonnative proteins. For more 
information see text (White et al., 2006). 
 
The intrinsic capability of Hsp26 to sense heat stress is a feature of a distinct part of the N-

terminal region, the so-called middle domain. The temperature-dependent changes in the 

middle domain are only local and do not have major consequences for the overall Hsp26 

quaternary geometry, but allow for efficient substrate binding (Franzmann et al., 2008). In 

contrast to Hsp26, Hsp42 is constitutively active as a chaperone and does not undergo 

structural changes in response to heat shock. Hsp42 is 5–10 times more abundant than Hsp26 

in the yeast cytosol (Haslbeck et al., 2004a). Moreover, higher ratios, compared to Hsp42, 

between Hsp26 and substrate are needed to suppress the aggregation of substrate proteins 
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(Haslbeck et al., 2004a; Stromer et al., 2003). Nonetheless, previous studies have 

demonstrated that Hsp26 renders aggregates more accessible to the protein refolding 

machinery (Hsp104/ Ssa1/Ydj1) and cells lacking Hsp26 have been shown to be impaired in 

the disaggregation of heat-aggregated luciferase (Cashikar et al., 2005; Haslbeck et al., 

2005b). Hsp26 thus plays a vital role in the reactivation of non-native proteins. The spectrum 

of client proteins of Hsp26 and Hsp42 is 90 % identical. The substrates belong to a broad 

subset of biochemical pathways and cellular mechanisms, indicating a general protective 

function of sHsps for proteome stability in S. cerevisiae (Haslbeck et al., 2004a). hsp26,42∆ 

strains are viable, but display increased amounts of insoluble proteins. Elevated temperatures 

in the hsp26,42 deletion strain also induce a morphology that resembles cells undergoing 

dehydration, aging, or cytoskeleton and cell wall damages (Haslbeck et al., 2004a). 

 

1.4 Protein degradation 

Besides chaperone-mediated (re-)folding of non-native polypeptides, the cellular quality 

control machinery battles misfolded and aggregated protein species by removing them from 

the cytosol. In prokaryotes this occurs via AAA+ proteases, while in eukaryotes the 26S 

proteasome and autophagy clear aberrant proteins. 

 

1.4.1 Protein breakdown in prokaryotes 

In bacteria, general and regulated proteolysis is mainly carried out by ring-forming, ATP-

dependent members of the Hsp100/Clp family of proteins, a subfamily of the AAA+ proteins. 

In E. coli, these are ClpA and ClpX, which associate with the diffusible peptidase ClpP 

(ClpAP, ClpXP), HslU, which associates with HslV (HslUV), and the membrane anchored 

AAA+ protease FtsH. The peptidases of these systems are compartmentalized in stable 

oligomeric rings and, as a consequence, only unfolded polypeptides can be processed by this 

architecture (Figure 1.7). Therefore, the AAA+ partner has to bind to the protease subunit, 

provide substrate unfolding, and subsequent threading of the substrate protein into the 

catalytic center of the associated peptidase (Ishikawa et al., 2001; Ortega et al., 2000; Singh et 

al., 2000; Weber-Ban et al., 1999). Apart from the quality control functions of these 

proteolytic systems, they are also involved in regulatory pathways. Hence, they have to 

recognize folded proteins, a task accomplished by interacting with special adaptor proteins, 

which transfer their substrate specificity to the interacting AAA+ protein (Schmidt et al., 

2009; Mogk et al., 2007; Dougan et al., 2002). 
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1.4.2 The 26S proteasome in eukaryotes 

Protein degradation in eukaryotes is achieved by two major systems. It was long believed that 

the lysosomal apparatus was the only site of protein breakdown. Lysosomes / vacuoles (in 

yeast) contain multiple acidic proteases (cathepsins) and other hydrolases that digest proteins. 

It has now been established that the bulk of polypeptides in eukaryotic cells is hydrolyzed by 

the proteasome, which degrades cytosolic, nuclear, and ER-resident proteins (Goldberg, 

2003). Most substrates are first poly-ubiquitylated by a series of enzymes, which attach 

ubiquitin via an isopeptide bond, and then degraded by the 26S proteasome, a 2000 kDa ATP-

dependent proteolytic machinery (Goldberg, 1995; Ciechanover, 1994). This large structure is 

composed of the central 20S (700 kDa) proteasome, in which proteins are degraded, and two 

19S complexes, which provide substrate specificity and regulation (Lee and Goldberg, 1998). 

The 20S core particle, similar to bacterial proteases, is composed of four heptameric rings that 

form a hollow cylinder, in which proteolysis occurs (Figure 1.7). The two inner ß-rings form 

the central chamber containing the proteolytic sites facing the central cavity. Substrates 

processed by the 20S complex are completely degraded in a highly processive fashion into 

small peptides of 3–20 residues that are further hydrolyzed to amino acids by other peptidases 

(Kisselev et al., 1998). The interior chamber is enclosed on either end by narrow pores in the 

center of the outer α-rings. These pores are gated channels normally maintained in a closed 

state, and their access is controlled by the 19S particle, which locates at either end of the 20S 

complex (Benaroudj et al., 2003; Groll et al., 2000). This organization ensures that protein 

digestion is isolated from the surrounding cytosol (Goldberg, 2003). Before entering the 20S 

proteasome, substrates must be unfolded and translocated, a task carried out by the 19S 

particle. The base of each 19S complex contains six AAA+ proteins that promote the ATP-

dependent unfolding and threading of substrates into the proteolytic chamber of the 20S 

proteasome.  

26S proteasomes often co-localize with aggregates and inhibition of proteasomal activity can 

cause aggregate formation or a delay in the removal of preexisting aggregates (Bedford et al., 

2008; Martin-Aparicio et al., 2001; Johnston et al., 1998). However, in vitro proteasomes 

have failed to degrade amyloidogenic aggregates (Venkatraman et al., 2004; Verhoef et al., 

2002). Moreover, in vivo activity of the ubiquitin-proteasome system is impaired in the 

presence of such aggregates either via irreversible sequestration of proteasomes or other 

effects not understood yet (Bennett et al., 2005; Holmberg et al., 2004; Bence et al., 2001). 

These data point to a minor role of 26S proteasomes in removal of aggregated protein species. 

Effects of proteasomal inhibition on aggregate fate might thus be indirect by increasing the 
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amount of misfolded proteins and disturbing other components of the protein quality control 

network. 

 

 
Figure 1.7. Comparison between pro- and eukaryotic proteases.  
The upper panel shows the degradation path controlled by the bacterial AAA+ chaperone ClpA and its 
associated protease ClpP. The lower panel describes degradation mediated by the eukaryotic proteasome. For 
details see text. Adapted by Tessarz from (Wickner et al., 1999). 
 

1.4.3 Autophagy 

Macroautophagy is a mechanism by which cytosolic components are sequestered in 

autophagosomes and degraded when autophagosomes fuse with lysosomes. Recently, 

macroautophagy emerged to be involved in the elimination of misfolded and aggregated 

proteins from the mammalian cytosol (Kirkin et al., 2009a; Nakatogawa et al., 2009; 

Rubinsztein, 2006). While the proteasome protects cells against proteotoxicity by degrading 

soluble monomeric misfolded proteins, it is impaired by oligomers of non-native proteins 

(Iwata et al., 2005). Autophagy then serves as a backup-system when the ubiquitin 

proteasome system is overwhelmed or incapable of dealing with aggregated protein species. 

In agreement, alpha-synuclein is degraded by both the proteasome and autophagy (Webb et 

al., 2003), and aggregated Huntington is cleared by autophagy (Iwata et al., 2005). Moreover, 

autophagy is involved in the removal of aggresomes (Olzmann and Chin, 2008; Fortun et al., 

2003). Evidence for the importance of autophagy even under physiological conditions derived 

from experiments with deletion of Atg (autophagy-related) genes, which are essential for 

functional autophagy, but do not affect proteasomal degradation. Atg5 and Atg7 deficiency in 

mice causes neurodegeneration via accumulation of poly-ubiquitylated proteins in inclusion 

bodies, which increased in size and number with aging. Clearance of diffuse cytosolic 
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proteins through basal autophagy is thus important for preventing the accumulation of 

abnormal proteins, indicating an interconnection of autophagy and the ubiquitin proteasome 

system (Hara et al., 2006; Komatsu et al., 2006). This is further supported by the 

demonstration that proteasome impairment induces compensatory autophagy (Pandey et al., 

2007; Iwata et al., 2005) and autophagy suppression compromises proteasome-mediated 

protein degradation (Korolchuk et al., 2009). Recent data suggest that the topology of 

ubiquitin linkages and acetylation influence the route of substrate degradation. K63-linked 

ubiquitylation promotes targeting of cargo to the autophagic system (Tan et al., 2008; Wooten 

et al., 2008) and acetylation destines mutant huntingtin for degradation via the autophagic 

route (Jeong et al., 2009). p62 protein could be the adaptor that couples ubiquitylated proteins 

to autophagy because it contains a UBA (ubiquitin-associated) domain that interacts with 

ubiquitylated proteins and a LIR (LC3-interacting region) domain that binds ATG8, a 

component of autophagic vesicles (Pankiv et al., 2007; Bjorkoy et al., 2005). Nbr1 protein 

serves a similar function to p62, also binding poly-ubiquitin and Atg8 on autophagic vesicles, 

thereby targeting misfolded proteins to the autophagic machinery. Interestingly, recruitment 

of ubiquitin-positive cargo to the lysosome requires both p62 and Nbr1 (Kirkin et al., 2009b). 

The identification of receptors for selective autophagosomal degradation of ubiquitylated 

proteins points to a selective mechanism of macroautophagy rather than unspecifically 

digesting cytoplasmic components (Kirkin et al., 2009a; Iwata et al., 2005). 

 

1.5 Asymmetric inheritance of damaged proteins 

Sequestering misfolded proteins into larger aggregates lowers their toxicity. Still, protein 

aggregates are harmful to the cell by directly exerting a toxic effect or indirectly through 

trapping of essential proteins (Muchowski and Wacker, 2005). Recent data suggest that 

asymmetric distribution of protein inclusions between two dividing cells is employed to 

generate offspring free of aggregate load. This seems to be an evolutionary ancient principle, 

because all organisms use it as a protective mechanism.  

1.5.1 Unequal aggregate inheritance in bacteria 

Protein aggregates have recently been demonstrated to lead to bacterial aging and cell death 

(Maisonneuve et al., 2008). In E. coli, accumulation of protein damage and aggregation 

causes reduced cellular growth rates (Winkler et al., 2010; Lindner et al., 2008). However, the 

diminished growth rate can be reverted by positioning protein inclusions at the cell poles. 

Subsequent division dilutes the protein aggregates out, generating offspring not containing 
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inclusions. Thus, a bypass mechanism is created that allows eradicating protein aggregates 

under conditions continuously overwhelming the proteostasis network. If a single inclusion 

was positioned on the old cell pole, a single division would generate offspring devoid of 

parental aggregates. In contrast, the cell inheriting the old pole suffers from a reduced growth 

rate and slower division kinetics when compared to the inclusion-free sibling. Thus, the 

dividing cell partitions damaged proteins in a biased fashion, leading to differential growth 

potential distinguishing the old-pole aging cell and its young-pole counterpart. (Winkler et al., 

2010; Lindner et al., 2008). Recent experimental data generated in our laboratory 

demonstrates that abolishing the asymmetric distribution of protein aggregates diminishes 

growth rate and division speed differences between E. coli cells emerging from a cell division 

(Winkler et al., 2010).  

Bacteria entering stationary phase increase their expression of chaperone genes (Saint-Ruf et 

al., 2004). This suggests that bacteria could potentially invest more energy in protein 

maintenance under physiological growth conditions. Since evolution has selected against 

higher chaperone levels in logarithmic growth, it could be argued that this would not be as 

cost efficient as simply rejuvenating offspring by unequal aggregate partitioning (Lindner et 

al., 2008). Notably, under stress conditions a different picture emerges, because expression of 

chaperone genes is highly upregulated to counteract misfolding proteins. Taken together, 

asymmetric inheritance of protein inclusions plays a central role in improving the fitness of an 

entire E. coli population at the expense of aging individuals.  

 

1.5.2 Biased aggregate segregation in yeast 

Yeast cells can undergo only a limited number of replicative cycles before they die, which is 

known as their replicative life span. Mother yeast cells of advanced replicative age become 

enlarged and have wrinkled surfaces, and the time between cell divisions becomes greatly 

extended during their last few mitotic rounds (Mortimer and Johnston, 1959). Daughter cells 

possess in turn the full replicative potential. Thus, an age asymmetry exists between parent 

and offspring in S. cerevisiae. The closer a mother cell is to the end of her life, the shorter the 

life span of the daughter cells she produces. At the extreme, daughter cells produced by very 

old mother cells have life spans only 25 % the length of the mother cell’s life span (Kennedy 

et al., 1994). These findings led to the hypothesis that aging factors exist that invoke cellular 

senescence once accumulating beyond a certain concentration limit. Protein aggregates, and in 

particular carbonylated protein species, have been suggested to constitute such a senescence 

factor (Aguilaniu et al., 2003). The amount of carbonylated protein increases over time in 



Introduction 

 19

yeast and also in higher eukaryotes (Henderson and Gottschling, 2008; Nystrom, 2005). 

Furthermore, carbonylated proteins are preferentially retained in the mother cell during 

cytokinesis. This asymmetric distribution between mother and daughter is likely to have 

important implications in cellular deterioration and senescence (Erjavec and Nystrom, 2007; 

Aguilaniu et al., 2003). How damaged proteins are retained in the mother cell is not well 

understood. Hsp104, the conserved NAD-dependent histone deacetylase Sir2, the actin 

cytoskeleton, the polarisome, and myosin motor proteins seem to be major players in this 

process, as their distraction results in breakdown of damage asymmetry, preventing 

rejuvenation of daughter cells (Liu et al., 2010; Tessarz et al., 2009; Erjavec et al., 2007; 

Aguilaniu et al., 2003). It has furthermore been suggested that daughter cells can clear 

themselves of damaged proteins by a polarisome- and tropomyosin-dependent flow of 

aggregates into mother cells (Liu et al., 2010). As observed in prokaryotes, evolution has 

selected also in yeast for an asymmetric distribution of damage, which ‘wins’ over unbiased 

dilution of damage. It can thus be concluded that rejuvenation of progeny is not achieved by 

gain-of-function, but rather a loss of dysfunction (Lindner et al., 2008). 

 

1.5.3 Unequal partitioning of protein inclusions in mammalian cells 

Mammalian cells, like bacteria and yeast, inherit damaged proteins asymmetrically. 

Interestingly, the aggregate load is always segregated into the shorter-lived cell, indicative of 

a mechanism to preserve the long-lived progeny (Fuentealba et al., 2008; Rujano et al., 2006). 

In humans with a polyglutamine disease called ‘spinocerebellar ataxia type 3’, aggregated 

mutant ataxin-3 is absent in the long-lived stem cells of intestinal crypts, but present in the 

differentiated daughter cells that have a shorter life expectancy. Also in drosophila embryonic 

neuroblasts expressing heterologous polyglutamin-huntingtin fragment, which forms 

aggresomes, the aggregated protein was inherited by the short-lived neuroblast progenitor 

rather than the long-lived ganglion mother cell. As aggresomes colocalize with centrosomes, 

the unequal partitioning of damaged proteins could be inherent to the intrinsic differences 

between replicated centrosomes (Piel et al., 2000). Before division the centrosome consists of 

a centriole and the peri-centriolar matrix (Stearns, 2001). During mitosis the centriole 

duplicates and asymmetry is achieved by inheritance of the peri-centriolar material by the 

mother centriole. The daughter centriole that separates and migrates to the opposite cell pole 

lacks the matrix until it has reached its destination (Rebollo et al., 2007; Rusan and Peifer, 

2007; Yamashita et al., 2007). Since microaggregates in mammalian cells are actively 

transported to the centrosome, this spatial coupling could provide a mechanism by which cells 
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specifically retain aggregated proteins in one of the dividing cells. Indeed, poly-ubiquitylated 

proteins targeted for degradation were localized to centrosomes and shown to be inherited 

only by one mitotic daughter during somatic cell division (Fuentealba et al., 2008). The 

generality of aggregate localization to the centrosome is still in question, because the JUNQ 

and IPOD compartments in S. cerevisiae do not co-localize with the spindle pole body, the 

yeast counterpart to the mammalian centrosome (Kaganovich et al., 2008). Interestingly, 

some cells divide to produce a daughter that dies. In C. elegans, for example, the 

hermaphrodite produces 1090 cells and loses 131 to apoptosis. The dying cells might function 

as a repository for any misfolded protein aggresomes (Singhvi and Garriga, 2009). Therefore, 

asymmetric inheritance of aggregated proteins might not simply ensure the generation of fit 

offspring, but also might provide a physiological mechanism to dispose of aberrant protein 

species. If this were the case, non-dividing cells such as neurons would be at a disadvantage 

and more susceptible to protein misfolding diseases (Fuentealba et al., 2008). 
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2. Aims of the Thesis 

In S. cerevisiae two distinct compartments for accumulating misfolded proteins upon 

proteasomal inhibition have been described, a juxtanuclear compartment termed JUNQ 

(juxtanuclear quality control) and a perivacuolar compartment termed IPOD (insoluble 

protein deposit) (Kaganovich et al., 2008). The JUNQ accumulates more mobile misfolded 

proteins that are ubiquitylated and likely represent substrates for proteasomal degradation. In 

contrast, the IPOD compartment is suggested to harbor terminally aggregated, insoluble 

proteins, including amyloidogenic proteins such as yeast prions (Kaganovich et al., 2008). 

To get further insight into the spatio-temporal organization of misfolded proteins in S. 

cerevisiae, I utilized three different fluorescent reporter proteins (mCherry-VHL, mCitrine-

luciferase, and Hsp104-mCFP). Both mCherry-VHL and mCitrine-luciferase aggregate upon 

stress application. Measuring the enzymatic activity of luciferase allowed monitoring its 

folding status. Hsp104-mCFP in turn binds to protein aggregates and thus enabled me to 

follow the localization of yeast endogenous aggregated proteins. I used two different 

experimental setups to induce protein misfolding: (i) prolonged mild thermal stress (37°C) in 

cells with blocked proteasomal degradation and (ii) sublethal heat shock (45°C) followed by a 

recovery phase (30°C) in cells with intact proteasomal degradation.  

Little is known about cellular factors that control the deposition of protein aggregates at 

specific sites within S. cerevisiae cells. Frydman and colleagues could demonstrate that 

components of the quality control system (Sti1, Ubc4/5) affect the distribution of misfolded 

proteins between JUNQ and IPOD compartments (Kaganovich et al., 2008). Small heat shock 

proteins (sHsps) co-aggregate efficiently with misfolded proteins, thereby changing the 

properties of protein aggregates and facilitating protein disaggregation upon return to 

physiological growth conditions. In a candidate approach I therefore analyzed the impact of 

the S. cerevisiae sHsps, namely Hsp26 and Hsp42, on the refolding and localization of protein 

aggregates. 

The formation of both the JUNQ and IPOD compartments is suggested to rely on a functional 

microtubule cytoskeleton (Kaganovich et al., 2008). The microtubule-depolymerizing drug 

benomyl has been shown to reversibly inhibit the formation of JUNQ and IPOD 

compartments. To exclude microtubule-independent effects of the drug, I used a benomyl-

resistant yeast strain containing a mutation in tubulin-2, which prevents benomyl from 

depolymerizing microtubules. To further understand the role of the S. cerevisiae cytoskeleton, 

I also analyzed whether refolding and sorting of protein aggregates requires an intact actin 

cytoskeleton. 
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3. Materials 

3.1 General equipment 

Agarose gel chambers and trays   ZMBH workshop 

Äkta FPLC system     Amersham Pharmacia Biotech 

Äkta Purifier system     Amersham Pharmacia Biotech 

Analytical balance, AE100    Mettler 

Balances      Mettler 

Centrifuges      Sorvall, Eppendorf, Heraeus 

Columns      Amersham Pharmacia Biotech 

French Press       SLM Amin.co 

Glass ware      Schott 

Incubators      Heraeus 

Lumat, LB9501     Berthold 

PCR machine, T-Gradient    Biometra 

Photometer, Specord 205    Analytik Jena 

Power supply      Perkin-Elmer 

SDS gel chambers midi/maxi gels  ZMBH workshop 

   mini gels   BioRad 

Sonifier 450      Branson 

Thermocycler, T-Personal    Biometra 

Ultracentrifuges     Beckman 

Vortex mixer      Neolab 

Western blot apparatus, semi-dry or wet,  ZMBH workshop 

Yeast dissection microscope  Nikon Eclipse E400 equipped with a 

micromanipulator 

3.2 Microscopic equipment 

3.2.1 Confocal microscopy 

405 nm, 440 nm, 640 nm diode lasers  Zeiss 

488 nm, 514 nm Argon laser    Zeiss 

568 nm Krypton laser     Zeiss 

Camera EMCCD, C9100-50    Hamamatsu 
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Confocal scanner unit, CSU 22   Yokogawa  

Laser scanning confocal microscope, A1R  Nikon 

Inverted microscope, Axiovert 200M  Zeiss 

Objective Plan-APOCHROMAT 100x/1,4 Oil Zeiss 

Spinning disc microscope, UltraVIEW ERS  PerkinElmer 

 

3.2.2 Peltier element 

Aluminium objective slide    ZMBH workshop 

Aluminium spacer      ZMBH workshop 

Bench controller     Ovenindustries 

Insulation gasket, GSK-universal   Melcor 

Liquid heat exchanger, LI-201   Melcor 

Peltier element, CP1.4-127-045L, expoy sealed Melcor 

PVC body      ZMBH workshop 

 

3.3 Software 

Acrobat 7.0      Adobe 

Clone Manager 5     Scientific & Educational Software 

DNA Strider      (Marck, 1988) 

EndNote X1      ISI ResearchSoft 

Illustrator 10.0     Adobe 

ImageJ       NIH 

Image Gauge      Fujifilm 

Image Reader      Fujifilm 

IrfanView      Irfan Skiljan 

KaleidaGraph 4.0     Synergy Software 

Office XP      Microsoft Corp. 

Openlab      Improvision 

Photoshop 8.0.1     Adobe 

PyMol       Delano Scientific 

UltraVIEW ERS Imaging Suite   PerkinElmer 
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3.4 Expendable items 

Cell culture plasticware    Greiner/Sarstedt 

Cellulose acetate filters, pore size 0.2 µm  Sartorius 

Cuvettes      Sarstedt 

Dialysis tubing, SpectraPor    Spectrum 

Filter papers      Schleicher & Schuell 

Glass bottom culture dishes    MatTek 

Microcentrifuge tubes    Eppendorf 

PVDF membrane, Roti-PVDF   Roth 

Plastic tubes 1.5, 2 ml    Sarstedt 

  15, 50 ml    Greiner 

Scintillation vials     Zinsser 

Sterile filters      Millipore 

Vivaspin concentrator columns   Vivascience 

Whatman paper, 3 mm    Schleicher & Schuell 

 

3.5 Primers, plasmids, and strains 

3.5.1 Primers 

Table 1. Primers used in this study.  
Primer name and sequence in 5’-3’ orientation are given. Restriction sites are denoted in lower case letters. 
 

Primer name Sequence (5’-3’)/source 

F5-Abp140 AAAATGTACCGCTGCTGGGTACAAGCTGTGTTTGACGTTCCTCAAGGTGACGGTGCTGGTTT
A 

F5-Hsp104 GATGACGATAATGAGGACAGTATGGAAATTGATGATGACCTAGATGGTGACGGTGCTGGTT
TA 

Forw bamHI GSGG-linker 
eCFP,eYFP GGCCggatccGGAGGTGGAATGGTGAGCAAGGGCGAGGA 

Forw BamHI 
yEmCFP,Citrine GCGCggatccATGTCTAAAGGTGAAGAATTATTCACT 

Forw fus oh htb1-mCher TCTTCCTCTACTCAAGCAggatccATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATC 

Forw Gpd xhoI CCGGctcgagGAGCTCAGTTTATCATTATCAATACTCG 

Forw hsp26 up400bp GAACATCCACAACCAACG 

Forw hsp42 up 400bp GGTAATGCTTGGCTCTCG 

Forw hsp42 up500bp speI GGCCactagtGGTAACAAGTGAGCAAGGG 

Forw htb1 xmaI GCGCcccgggATGTCTGCTAAAGCCGAAAAG 

Forw o.h. pdr5-nat1 AGACCCTTTTAAGTTTTCGTATCCGCTCGTTCGAAAGACTTTAGACAAAAAGCTTGCCTTGT
CC 
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Primer name Sequence (5’-3’)/source 

Forw pACT1 xhoi CCGGctcgagCCTACATTCTTCCTTATCG 

Forw P-adh1 xhoI CCGGctcgagGACTACACCAATTACACTGC 

Forw up500 of pdr5 CTCTTTCCGCGGAATCG 

Forw ver end yEmGFPs CTGCTGCTGGTATTACCC 

Forw ver his3 300bp down GCAGAGGCTAGCAGAATTAC 

Forw ver nat1 300bp down CGAGCAGGCGCTCTAC 

Forw ver 30up nat1 stop CTGGTCGCTATACTGCTGTC 

Forw veri Abp140 CAAGCCATGGATAACCTTCAC 

Forw veri Hsp104 GATGATATGGGTGCACGTC 

Forw XmaI Cerulean CGCGcccgggATGAGTAAAGGAGAAGAACTTTTC 

Forw XmaI QP25,103 CGCGcccgggATGGCGACCCTGGAAAAGC 

Forw XmaI 
yEmCFP,Citrine CGCGcccgggATGTCTAAAGGTGAAGAATTATTCACT 

Fw BamHI Term_hsp42 GCAGggatccATATCGTATCTGTTTATACACACATAC 

Fw EcoRI HSP42 GCAGgaattcATGAGTTTTTATCAACCATCCC 

Fw EcoRI HSP42deltaN 
(+ATG) GCAGgaattcATGTCACCAGAAGTGAATGTC 

Fw_Hsp26_EcoRI GCAGgaattcATGTCATTTAACAGTCCATTT 

Fw_OH_hsp26crys_hsp42
Cext GTTCCAAAATTGAAGCCTCAGAAGCCGAAGCCAAAAAAGAGGAT 

Fw_OH_26deltaC_42delta
N TTCCCATCTGGTTTCGGTTTCCCTTCACCAGAAGTGAATGTCTATGAT 

Fw_OH42deltaC_26deltaN
_new AACGAGAATGGACTTACCATTTAGAAGTGTCGCAGTTCCAGTT 

Fw veri Hsp42(741up) CGGTTACTGTTTCTACGATTGATA 
 

R3-Abp140 GTTTTATGATGAGAGAGGAGGTGGTACTTGTCTCAGAACTTCCTATCGATGAATTCGAGCTC
G 

R3-Hsp104 TGATTCTTGTTCGAAAGTTTTTAAAAATCACACTATATTAAATTATCGATGAATTCGAGCTC
G 

Hsp26_A CCGGggtctcAGGTGGTATGTCATTTAACAGTCCATTTTTTG 

Hsp26_B CCGGctcgagTTAGTTACCCCACGATTCTTGAGA 

Hsp42_A CCGGcgtctcAGGTGGTATGAGTTTTTATCAACCATCCCTA 

Hsp42_B CCGGaagcttTCAATTTTCTACCGTAGGGTTGGG 

Rev 5’yEmGFPs GAATAATTCTTCACCTTTAGACAT 

Rev BamhI Cerulean CGCGggatccTTTGTATAGTTCATCCATGCCTAG 

Rev C-tag Cerulean Hsp42 TAAGAATAATATAATAGCATGACGCTGACGTGTGATTCTAATCGATGAATTCGAGCTCG 

Rev down500 of pdr5 CGTTGTACTTCCAGTCGTGATC 

Rev eYFP,eCFP until 
BsrGI GGCCtgtacaGCTCGTCCATGCC 

Rev fus oh mche-htb1 CTCGCCCTTGCTCACCATggatccTGCTTGAGTAGAGGAAGAGTACTTGGTAACAGCTCT 
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Primer name Sequence (5’-3’)/source 

Rev Gpd xmaI CGCGcccgggCGTCGAAACTAAGTTCTGGTG 

Rev hsp26 down450bp CGCTTATTACCGCCATTTC 

Rev hsp42 down 350bp GAGCAAGGTAAGAAGTGACAA 

Rev hsp42down500bp ClaI GGCCatcgatCCGAGCAAGTCGATGAAG 

Rev hsp42down500bp 
hindIII GGCCaagcttCCGAGCAAGTCGATGAAG 

Rev mcherry BamHI GCGCggatccCTTGTACAGCTCGTCCATGCC 

Rev mcherry SacII CGCGccgcggTTACTTGTACAGCTCGTCCAT 

Rev nat1-o.h. pdr5 AAAAAGTCCATCTTGGTAAGTTTCTTTTCTTAACCAAATTCAAAATTCTATCGACACTGGAT
GGC 

Rev pACT1 xmaI ohne 
ATG GCCGcccgggTGTTAATTCAGTAAATTTTCGATC 

Rev P-adh1 xmai CCGGcccgggTGTATATGAGATAGTTGATTGTATGC 

Rev SacII Cerulean CCGGccgcggTTTGTATAGTTCATCCATGCCTAG 

Rev SacII QP25,103 CCGGccgcggTTACTTGTACAGCTCGTCCATGCC 

Rev Tef-Promoter 100 bp GGATGTATGGGCTAAATGTACG 

Rev veri yEmGFPs bp90 GCATCACCTTCACCTTCAC 

Rev yEmCFP,Citrine SacII GCCGccgcggTTATTTGTACAATTCATCCATACCATG 

Rv_Hsp26FLAG_BamHI GCACggatccTTACTTGTCATCGTCGTCCTTGTAATCGTTACCCCACGATTCTTGAGA 

Rv HSP42 BamHI GCACggatccTCAATTTTCTACCGTAGGGTTG 

Rv_hsp42crystallineFLAG GCACggatccTCACTTGTCATCGTCGTCCTTGTAATCCTTTTCAGTGTCATTGACAATTTTAGG 

Rv HSP42FLAG BamHI GCACggatccTCACTTGTCATCGTCGTCCTTGTAATCATTTTCTACCGTAGGGTTGGGA 

Rv_OH26deltaN_42deltaC
_new TCAACTGGAACTGCGACACTTCTAAATGGTAAGTCCATTCTCGTT 

Rv_OH_hsp42Cext_hsp26
crys ATCCTCTTTTTTGGCTTCGGCTTCTGAGGCTTCAATTTTGGAAC 

Rv Prom_hsp42 EcoRI GCACgaattcTGCTTCGGCTTGGTATGATC 

Rv veri hsp26 CGTTGTTGATGTTGTCAAAGA 

Rv veri Hsp42deltaN ACGTAAGTGTCCTCGGTATCAT 

Rv veri Hsp42fullength TTCAAAACGTCATAAAGAGATAGG 

Seq forw end of Padh1 GTTTCTTTTTCTGCACAATATTTC 
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3.5.2 Plasmids 

3.5.2.1 Bacterial plasmids / Expression plasmids 

Table 2. Bacterial plasmids for protein expression.  
Plasmid name and source are given. Features of the plasmid can be found under “Description“. 
 

Plasmid Source Description 

pDS56-cHis lab collection ColE1-based; lac promoter; AmpR; encodes for His6 tag downstream 
of poly-linker 

pDS56-cHis-CFP-luciferase this study pDS56-cHis; CFP-luciferase 

pDS56-cHis-YFP-luciferase this study pDS56-cHis; YFP-luciferase 

pMDH-NHis Axel Mogk pDS56-nHis; MDH 

pSUMO Claes Andreasson T7-promoter; N-terminal His6-SUMO tag; KanR  

pSUMO-Hsp26 this study pSUMO; Hsp26 

pSUMO-Hsp42 this study pSUMO; Hsp42 

 

3.5.2.2  Yeast shuttle vectors 

Table 3. Yeast shuttle vectors used in this study. 
Features of the vector are given under „Description“. CEN = centromeric; YIP = yeast integration vector; 2µ = 
2µ origion of replication 
 

Plasmid Source Description 

p414-GPD-QP103 (Dehay & 
Bertolotti, 2006) 

P414; GPD promoter; N-terminal region of Huntingtin and a poly(Q) stretch 
with 103 glutamines fused to GFP 

pESC-mCherry-VHL (Kaganovich et al. 
2008) GAL1 promoter; mCherry-VHL; AmpR; URA3; 2µ 

pRS303 (Sikorski & 
Hieter, 1989) pBluescript based; AmpR; His3; YIP 

pRS303-ACT-Cerulean-
luciferase this study pRS303; ACT1 promoter; Cerulean-luciferase 

pRS303-ACT-yEmCitrine-
luciferase this study pRS303; ACT1 promoter; yEmCitrine-luciferase 

pRS303-ADH-HTB-Cerulean this study pRS305;  ADH1 promoter; HTB1-Cerulean 

pRS303-PHsp42 this study pRS303; HSP42 including promoter and terminator (500bp up- and 
downstream of HSP42) 

pRS305 (Sikorski & 
Hieter, 1989) pBluescript based; AmpR; LEU2; YIP 

pRS305-ADH-HTB-Cerulean this study pRS305;  ADH1 promoter; HTB1-Cerulean 

pRS305- ADH -HTB-
mCherry this study pRS305;  ADH1 promoter; HTB1-mCherry 

pRS305-GAL-RNQ1-YFP lab collection pRS305; Gal1, 10 promoter; RNQ1-YFP 

pRS306 (Sikorski & 
Hieter, 1989) pBluescript based; AmpR; URA3; YIP 
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Plasmid Source Description 

pRS306-ACT-yEmCitrine-
luciferase 

this study pRS306; ACT1 promoter; yEmCitrine-luciferase 

pRS313 (Sikorski & 
Hieter, 1989) pBluescript based; AmpR; HIS3; CEN 

pRS315 (Sikorski & 
Hieter, 1989) pBluescript based; AmpR; LEU2; CEN 

pRS315-PHsp42 this study pRS315; HSP42 including promoter and terminator (500bp up- and 
downstream of HSP42) 

pSM006 this study pRS303; HSP42 promoter and terminator (500bp up- and downstream of 
HSP42); Hsp42 

pSM012 this study pRS303; HSP42 promoter and terminator (500bp up- and downstream of 
HSP42); N42-Hsp26 

pSM013 
this study pRS303; HSP42 promoter and terminator (500bp up- and downstream of 

HSP42); Hsp42-FLAG 
pSM014 

this study pRS303; HSP42 promoter and terminator (500bp up- and downstream of 
HSP42); Hsp42∆N 

pSM015 
this study pRS303; HSP42 promoter and terminator (500bp up- and downstream of 

HSP42); Hsp42∆C 
pSM016 

this study pRS303; HSP42 promoter and terminator (500bp up- and downstream of 
HSP42); N26-Hsp42 

pSM017 
this study pRS303; HSP42 promoter and terminator (500bp up- and downstream of 

HSP42); Hsp26-C42 
pSM018 

this study pRS303; HSP42 promoter and terminator (500bp up- and downstream of 
HSP42); NC42-Hsp26 

pSM019 
this study pRS303; HSP42 promoter and terminator (500bp up- and downstream of 

HSP42); Hsp26-FLAG 

 

3.5.2.3 Yeast integration / knock-out vectors 

Table 4. Yeast integration / knock-out vectors used in this study.  
Original name and source are given, if generated during this study. 
 

Plasmid Source Integrated Cassette (Resistance/Auxotrophy) 

pBS10 NCRR Yeast Resource Center pFA6a-link-Cerulean-hphMX4 

pFA6-kanMX4 (Wach et al., 1994) kanMX4 (G418/Geneticin) 

pGA25 (Goldstein & McCusker, 1999) natMX4 (CloNat) 

pGA32 (Goldstein & McCusker, 1999) hphMX4 (Hygromycin B) 

pKT211 (Sheff & Thorn, 2004) pFA6a-link-yEmCFP-SpHIS5 

pKT212 (Sheff & Thorn, 2004) pFA6a-link-yEmCitrine-SpHIS5 

3.5.3 Bacterial strains 

Table 5. Bacterial strains used in this study.  
Strain nomenclature, source, and the genotype of the strains are given. 
 

Strain Source Genotype 

BL21* Novagen 
F- ompT hsdSB (rB-mB-) gal dcm rne131 (DE3) F- ompT hsdSB (rB-mB-) gal dcm rne131 

(DE3) pLysS (CamR) 

E. coli DH5 α 
pir 

(Hanahan, 1983) supE44, lacU169 (Φ80lacZ M15), hsdR17, recA1, endA1, gyrA96, thi-1, relA1 
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MC4100 lab collection araD139 D(argF-lac)205 flb-5301 pstF25 rpsL150 deoC1 relA1 

XL1 Blue lab collection recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F proAB lacI. q. Z∆M15 Tn10] 

 

3.5.4 S. cerevisiae strains 

Table 6. Yeast strains used in this study.  
It is indicated under “source“ if strain was received from a different lab. 
 

Name Genotype Source 

BY4741 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 EUROSCARF 

hsp26∆ BY4741 hsp42∆::kanMX4 EUROSCARF 

hsp42∆ BY4741 hsp42∆::kanMX4 EUROSCARF 

hsp104∆ BY4741 hsp104∆::kanMX4 EUROSCARF 

pdr5∆ BY4741 pdr5∆::natMX4 this study 

hsp26∆ pdr5∆ BY4741 hsp26∆::kanMX4 pdr5∆::natMX4 this study 

hsp42∆ pdr5∆ BY4741 hsp42∆::kanMX4 pdr5∆::natMX4 this study 

hsp104∆ pdr5∆ BY4741 hsp104∆::kanMX4 pdr5∆::natMX4 this study 

KAY0173 (LatA-Resistant) ura3-52 his3∆200 leu2-3,112 ade4 can1-1 tub2-201 Act1-117 Ayscough lab 

KAY0173 (LatA-Resistant) 
hsp42∆ 

KAY0173 hsp42∆::kanMX4 this study 

KAY0159 (Benomyl-
Resistant) 

ura3-52 his3∆200 leu2-3,112 cry1 tub2-201 Act1::His3 Ayscough lab 

WT (HSP104-mCFP) BY4741 HSP104-yEmCFP-spHIS5 this study 

hsp26∆ (HSP104-mCFP) BY4741 hsp26∆::kanMX4 HSP104-yEmCFP-spHIS5 this study 
hsp42∆ (HSP104-mCFP) BY4741 hsp42∆::kanMX4 HSP104-yEmCFP-spHIS5 this study 

WT pdr5∆ (HSP104-mCFP) BY4741 pdr5∆::natMX4 HSP104-yEmCFP-spHIS5 this study 

hsp26∆ pdr5∆ (HSP104-
mCFP) 

BY4741 hsp26∆::kanMX4 pdr5∆::natMX4 HSP104-yEmCFP-
spHIS5 

this study 
hsp42∆ pdr5∆ (HSP104-

mCFP) 
BY4741 hsp42∆::kanMX4 pdr5∆::natMX4 HSP104-yEmCFP-

spHIS5 
this study 

WT pdr5∆ (HSP26-mCitrine) BY4741 pdr5∆::natMX4 HSP26-yEmCitrine-spHis5 this study 
WT pdr5∆ (HSP42-mCitrine) BY4741 pdr5∆::natMX4 HSP42-yEmCitrine-spHis5 this study 
WT pdr5∆ (HSP42-Cerulean) BY4741 pdr5∆::natMX4 HSP42-Cerulean-hphMX4 this study 

W303 Mata; can1-100; his3-11,15; leu2-3,112; trp1-1; ura3-1; ade2-
1 

Lindquist lab 

W303 hsp42∆ W303 hsp42∆::hphMX4 this study 

WT (ABP140-yEmCitrine) BY4741 Abp140-yEmCitrine-URA3 this study 

WT pdr5∆ (ABP140-
yEmCitrine) 

BY4741 pdr5∆::natMX4 Abp140-yEmCitrine-URA3 this study 

hsp42∆ pdr5∆ (ABP140-
yEmCitrine) 

BY4741 hsp42∆::kanMX4 pdr5∆::natMX4 Abp140-yEmCitrine-
URA3 

this study 

 

Gene replacements were carried out using primers described in (3.5.1) by standard methods 

described in (4.1). 
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3.6 Chemicals 

3.6.1 General chemicals 

All used chemicals were analytical grad and purchased from Roth, Sigma, or Fluka. 

 

Luciferin (sodium salt)    AppliChem 

 

3.6.2 Column materials 

Ni-NT agarose     Qiagen 

Protino Ni-IDA     Machery-Nagel 

Sephacryl S-300 HR 16/60 column   GE Healthcare Life Sciences 

 

3.6.3 Inhibitors 

Benomyl      Sigma-Aldrich 

Latrunculin A      Biomol 

MG132 (Z-Leu-Leu-Leu-CHO)   Peptide Institute Inc. 

 

3.6.4 Media 

Amino acids (for drop out medium)   Sigma 

Bacto agar      Roth/Difco 

Bacto peptone      Roth/Difco 

Complete supplementary medium  

(CSM, for drop out medium)    QBiogene 

Glucose, monohydrate    Roth 

Nutrient broth      Difco 

Yeast extract      Roth/Difco 

Yeast nitrogen base  (YNB)    Difco 

 

3.6.5 DNA and protein size standards 

Gene ruler      Fermentas 

Kb-ladder      Roche 
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Prestained protein weight marker #441  Fermentas 

Prestained protein weight marker #671  Fermentas 

Protein weight marker #431    Fermentas 

 

3.7 Kits 

Gel extraction      Amersham Pharmacia 

MiniElute PCR Purification Kit   Qiagen 

QIAprep Spin Miniprep Kit    Qiagen 

QIAquick Gel Extraction Kit    Qiagen 

YeaStar Genomic DNA Kit    Zymoresearch 

YeaStar RNA kit     Zymoresearch 

Zyppy Plasmid Miniprep Kit    Zymoresearch 

 

3.8 Antibodies 

Goat α -luciferase     Abcam 

Goat α -mouse IgG (alkaline phosphatase)  Vector 

Goat α –rabbit, Alexa Fluor 488 F(ab')2 of IgG  Molecular Probes 

Goat α -rabbit IgG (alkaline phosphatase)  Vector  

Mouse α -actin     Sigma 

Mouse α -goat IgG (alkaline phosphatase)  Vector 

Rabbit α -glucose-6-phosphate-dehydrogenase Sigma 

Rabbit α -Hsp104     lab collection 

Rabbit α –Hsp26     Buchner lab 

Rabbit α –Hsp42     Buchner lab 

Rabbit α -YFP      lab collection 

 

3.9 Enzymes and miscellaneous proteins 

Bovine serum albumin (BSA) fraction V  Roth 

Concanavalin A     Sigma-Aldrich 

L-malate dehydrogenase (L-MDH)   Roche 

Opti Taq polymerase     Roboklon 

Phusion™ High Fidelity polymerase   NEB, lab collection 
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RNase A      Sigma 

Restriction enzymes     NEB, Fermentas 

T4-DNA ligase     Roche, lab collection 

T4-DNA polymerase     Roche 

Taq polymerase     lab collection 

 

3.10 Growth media and antibiotics 

3.10.1 Bacterial media 

LB-medium      1 % Bacto-peptone 

       0.5 % yeast extract 

       1 % NaCl 

       (1.5 % Bacto-agar) 

 

2xYT-medium     1.6 % Bacto-peptone 

       1 % yeast extract 

       0.5 % NaCl 

 

TB-medium      1.2 % tryptone 

       2.4 % yeast extract 

       0.4 % (w/v) glycerol 

       0.23 % KH2PO4 

       1.25 % K2HPO4 

 

3.10.2 Yeast media 

Rich medium (YPD)     2 % Bacto-peptone 

       1 % yeast extract 

       (2 % Bacto-agar) 

2 % glucose 

 

Synthetic complete yeast medium   0.67 % Bacto-yeast nitrogen base 

0.78 % CSM 

amino acids/bases 
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(2 % Bacto-agar) 

       2 % glucose 

 

3.11 Antibiotics 

Final concentrations are listed. 

 

Ampicillin (Na-salt)     100 µg/ml 

Chloramphenicol     25 µg/ml (in ethanol) 

CloNAT      100 µg/ml 

Cycloheximide     10-15 µg/ml 

G418 (Geneticin disulfate)    300 µg/ml 

Hygromycin B     200 µg/ml 

Kanamycin      20 µg/ml 

Tetracycline      10 µg/ml 

 

4. Methods 

4.1 Molecular biology methods 

4.1.1 Molecular cloning 

All molecular biology standard methods were carried out as described previously (Maniatis et 

al., 1989). Plasmid preparations and DNA extractions from agarose gel electrophoresis were 

performed using the aforementioned kits (3.7). 

 

4.1.2 Agarose gel electrophoresis 

Agarose flat-bed gels in various concentrations (0.6 – 2 % agarose in 0.5x TBE buffer) and 

sizes were run to separate DNA-fragments in an electrical field (10 – 20 V/cm) for analytical 

or preparative use. The desired amount of agarose was boiled in 0.5x TBE buffer until 

completely molten. After cooling down to ca. 60°C, ethidium bromide solution (2-3 µl per 

100 ml agarose) was mixed into the liquid agar, and then poured in a flat-bed tray with combs. 

As soon as the agarose solidified, the DNA in DNA-loading buffer was loaded into the slots 

and separated electrophoretically. The DNA was detected on a UV-light tray (265 nm). For 
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preparative gels, a less strong UV-light source was used (365 nm) to avoid irradiation damage 

to the DNA. 

5x TBE (1l)  54 g Tris base  

27.5 g Boric acid  

4.7 g Na4EDTA 

6x DNA loading buffer    40 % sucrose 

       0.25 % bromophenol blue 

 

4.1.3 Preparation of chemically competent cells and transformation 

Cells were made competent via the CaCl2 method by growing 50 ml of XL1 blue cells to mid-

logarithmic phase. Cells were subsequently chilled on ice and washed 1x with 20 ml 0.1 M 

MgCl2, 1x with 20 ml CaCl2, and finally cells were resuspended in 4 ml 0.1 M CaCl2 and 

incubated on ice for another 2 hr. 1 ml 50 % glycerol was added, cells were aliquoted and 

snap-frozen in liquid nitrogen for storage at -80°C. 

Cells were thawed on ice and transformed by addition of 1 µl plasmid DNA or 10 µl ligation 

reaction to 90 µl of cells, followed by an incubation of 10 min on ice. Cells were subsequently 

heat shocked for 75 sec at 42°C in a water bath and chilled for 2 min on ice. Finally, 500 ml 

LB were added and growth was allowed for 30 min to 1 hr for phenotypic expression before 

plating. 

 

4.1.4 Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) was used to clone genes from plasmids or genomic 

templates as well as to verify the correct insertion of C-terminal tagging and gene deletion 

cassettes. Generally, the reaction was performed in 50 µl total volume containing 50 pmol of 

each primer and 250 µM of a dNTP mix. Depending on the purpose, different DNA 

polymerases and their recommended buffer systems were used. The New England Biolab 

Phusion™ High Fidelity polymerase was utilized for cloning because of its high productivity 

and proof-reading capabilities, the Taq polymerase for analytical PCRs due to its robust 

amplification properties, and the Roboklon Opti Taq (Taq and Pfu polymerase mixture) for 

genomic DNA due to its combination of robust amplification and proofreading activity. The 

PCR reaction was performed in a cycler with the basic amplification protocols outlined 
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below. Annealing was performed at the primer melting temperature (Tm) – 5°C. The final 5-

10 min incubation period at 72°C was conducted to allow filling up of incomplete PCR 

fragments. The PCR products were analyzed by agarose gel electrophoresis and, if necessary, 

purified with the Qiagen MiniElute PCR purification kit. 

 
Table 7. Basic PCR amplification protocols 
 

 Phusion (Opti) Taq 

Initial denaturation 98°C, 30’’ 94°C, 4’ 

Denaturation 98°C, 15’’ 94°C, 1’ 

Annealing Tm – 5°C, 20’’ Tm – 5°C, 1’ 

Elongation 72°C, 15’’/ kb 72°C, 1’ / kb

Cycle number 28 – 30 28 – 30 

Final elongation 72°C, 2’ 72°C, 10’ 

 

4.1.4.1 Colony PCR 

In order to verify the correct integration of fluorescent C-terminal tagging or gene deletion 

cassettes, colony PCR was performed. Fluorescent tagging was confirmed by utilizing 

primers that annealed ca. 300 bp upstream of the stop codon of the gene of interest and 90 bp 

downstream of the start codon of the fluorescent protein. For verification of gene deletions, 

primers were used that annealed in the 5’ flanking region (ca. 300 bp upstream of the start 

codon) and 90 bp downstream of the start codon of the TEV-promoter, which is contained 

within the deletion cassette. Cells lysis was achieved by adding one pipette tip of cells from 

plate to the PCR mix and incubation at 98°C for 10 min. Subsequently, Taq polymerase was 

added and a normal PCR reaction (Table 7) was performed. 

 

4.2 Protein purification 

Protein expression was carried out in E. coli. All purification protocols yielded high amounts 

of pure protein of interest. 
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4.2.1 Purification of Hsp26 

• transform BL21 STAR [DE3] / pCodon Plus cmR with pSUMO-Hsp26 

• inoculate an overnight culture in 8 l of 2 xYT medium supplemented with 50 µg/ml 

kanamycin and 20 µg/ml chloramphenicol  

• grow cells at 30°C to an OD600 of 0.7 - 1.0 and induce expression with 0.5 mM IPTG 

• harvest cells after 3 hr 

• resuspend pellet in lysis buffer 

• French press 2 x at 1200 psi 

• centrifuge at 17000 rpm, rotor F21S, at 4°C for 30 min 

• remove supernatant, resolubilize pellet with denaturing buffer, and stir for 2 hr at 4°C 

• centrifuge at 17000 rpm, rotor F21S, at 4°C for 30 min to remove insoluble 

compounds 

• rotate supernatant with Protino matrix for 1 hr at 4°C  

• wash Protino matrix in batch 5 x with denaturing buffer (4°C) 

• wash 1 x with 2 M urea buffer to achieve partial refolding 

• elute with elution buffer (4°C) 

• add SUMO protease and dialyze overnight with dialysis buffer at 4°C 

• deplete His-tagged material by incubation with Protino matrix in a column 

• concentrate protein to a volume of approx. 800 µl 

• apply on a  Sephacryl S-300 HR 16/60 column equilibrated with dialysis buffer to 

purify Hsp26 oligomer 

• analyze fractions and pool 

• aliquot, snap freeze, and store at -80°C 

 

Lysis buffer      40 mM Hepes/KOH (pH 7.5) 

150 mM KCl 

5 % glycerol (v/v) 

30 mM 2-mercaptoethanol 

1 mM PMSF 

DNase 

 

Denaturing buffer     40 mM Hepes/KOH (pH 7.5) 

150 mM KCl 
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30 mM 2-mercaptoethanol 

1 mM PMSF 

8 M urea 

 

2 M urea buffer     40 mM Hepes/KOH (pH 7.5) 

150 mM KCl 

30 mM 2-mercaptoethanol 

1 mM PMSF 

2 M urea 

 

Elution buffer      40 mM Hepes/KOH (pH 7.5) 

150 mM KCl 

30 mM 2-mercaptoethanol 

1 mM PMSF 

250 mM imidazole 

2 M urea 

 

Dialysis buffer     40 mM Hepes/KOH (pH 7.5) 

150 mM KCl 

30 mM 2-mercaptoethanol 

 

4.2.2 Purification of Hsp42 

• transform BL21 STAR [DE3] / pCodon Plus cmR with pSUMO-Hsp42 

• inoculate overnight culture in 2 xYT medium supplemented with 50 µg/ml kanamycin 

and 20 µg/ml chloramphenicol  

• grow cells at 30°C to an OD600 of 0.7 - 1.0 and induce expression with 0.5 mM IPTG 

• harvest cells after 3 hr 

• resuspend pellet in buffer A 

• stir at room temperature for 1 hr; lysis is complete when the suspension is translucent 

• ultrasonicate to destroy slimy DNA 

• remove insoluble compounds by centrifugation at 17000 rpm, rotor F21S, at 4°C for 

30 min 

• rotate supernatant with Protino matrix for 1 hr at room temperature 
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• wash Protino matrix in batch 4 x with denaturing buffer (4°C) and subsequently 1 x 

with buffer B 

• elute with buffer C (4°C) 

• collect 10 x 2 ml 

• pool and determine protein concentration 

• add 4 mM EDTA to inhibit metalloproteases 

• incubate for 5-10 min with SUMO protease 

• latest after 10 min start overnight dialysis in buffer B 

• deplete His-tagged material by incubation with Protino matrix in a column 

• dialyze overnight with dialysis buffer at 4°C to induce refolding 

• concentrate protein to a volume of approx. 800 µl 

• apply on a Sephacryl S-300 HR 16/60 column equilibrated with buffer E to purify 

Hsp42 oligomer 

• analyze fractions and pool 

• aliquot, snap freeze, and store at -80°C 

 

Buffer A      40 mM Hepes/KOH (pH 8.0) 

150 mM KCl 

30 mM 2-mercaptoethanol 

1 mM PMSF 

DNase 

6 M guanidine hydrochloride 

 

Denaturing buffer     40 mM Hepes/KOH (pH 7.5) 

150 mM KCl 

30 mM 2-mercaptoethanol 

1 mM PMSF 

8 M urea 

 

Buffer B      40 mM Hepes/KOH (pH 7.5) 

150 mM KCl 

30 mM 2-mercaptoethanol 

1 mM PMSF 

4 M urea 
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Buffer C      40 mM Hepes/KOH (pH 7.5) 

150 mM KCl 

30 mM 2-mercaptoethanol 

1 mM PMSF 

250 mM imidazole 

4 M urea 

 

Buffer D      40 mM Hepes/KOH (pH 7.5) 

150 mM KCl 

30 mM 2-mercaptoethanol 

1 mM PMSF 

4 M urea 

 

Dialysis buffer     40 mM Hepes/KOH (pH 7.5) 

150 mM KCl 

30 mM 2-mercaptoethanol 

 

Buffer E      40 mM Hepes/KOH (pH 7.5) 

150 mM KCl 

2 mM DTT 

 

4.2.3 Purification of CFP- and YFP-luciferase 

• transform E. coli MC4100 cells with pDS56-nHis-CFP-luciferase or pDS56-nHis-

YFP-luciferase, respectively. 

• inoculate an overnight culture in 2 xYT medium supplemented with 100 µg/ml 

ampicillin 

• grow cells at 30°C to an OD600 of 0.7 and add benzyl alcohol (1:1000, v/v) 

• grow cells at 20°C for 30 min 

• induce expression with 100 µM IPTG 

• grow cells overnight  

• harvest cells by centrifugation at 4000 rpm, F7 rotor, for 30 min at 4°C 

• resuspend cells in lysis buffer 
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• French press 2 x at 1200 psi 

• centrifuge at 17000 rpm, rotor F21S, at 4°C for 30 min 

• incubate supernatant with Ni-NTA material for 1 hr at 4°C on a shaker (use less than 3 

ml Qiagen Ni-NT agarose slurry per 50 ml of lysate) 

• apply on a self-pack plastic column 

• collect flow-through and reload it 

• wash Ni-NTA agarose 2 x with 50 ml wash buffer  

• elute protein from the column in 6 fractions by applying 500 µl elution buffer per 

fraction 

• analyze fractions and pool 

• dialyze overnight in order to remove the imidazole  

• determine protein concentration 

• aliquot and snap freeze in liquid nitrogen 

 

Lysis buffer      50 mM NaH2PO4 

       300 mM NaCl 

       15 mM imidazole 

3 mM 2-mercaptoethanol 

       1 mM PMSF 

protease inhibitor cocktail  

trace amounts of DNase 

adjust pH to 8.0 using NaOH 

 

Wash buffer       50 mM NaH2PO4 

       300 mM NaCl 

       30 mM imidazole 

3 mM 2-mercaptoethanol 

adjust pH to 8.0 using NaOH 

 

Elution buffer       50 mM NaH2PO4 

       300 mM NaCl 

       250 mM imidazole 

3 mM 2-mercaptoethanol 

adjust pH to 8.0 using NaOH 
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Dialysis buffer     50 mM NaH2PO4 

       300 mM NaCl 

10 % glycerol 

3 mM 2-mercaptoethanol 

adjust pH to 8.0 using NaOH 

 

4.3 Protein analysis 

4.3.1 Bradford colorimetric protein quantification method 

The Bradford method for protein quantification is a colorimetric assay based on the shift of 

the coomassie brilliant blue absorption maximum from 465 to 595 nm upon interaction with 

basic or aromatic amino acid residues. By comparison to a BSA standard calibration curve (0, 

1, 2, 4 and 6 mg/ml BSA), the precise concentration of a protein in solution can be 

determined. The Bradford reagent was diluted 1:5 with water and 1 ml mixed with 1 – 5 µl of 

the protein solution. The absorption was measured at 595 nm in a photospectrometer. 

 

4.3.2 Gel-electrophoresis with SDS-PAGE 

Proteins of different sizes can be separated by discontinuous SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) under denaturing conditions. The gels used for this are bipartite: 

a lower separation gel, with polyacrylamide concentrations from 8 to 15 % depending on the 

size of the proteins to be separated, and a stacking gel with 4 % polyacrylamide to focus all 

proteins before they enter the lower part (Table 8, Table 9). 
 

Table 8. Composition of the separating SDS-gel.  
Amounts for 4 mini gels / one maxi gel are given. 
 
 8 % 10 % 12 % 14 % 15 % 

Acrylamide (30 %) in ml 8 10 12 14 15 

4x SDS separation buffer in ml 7.5 7.5 7.5 7.5 7.5 

Water in ml 14.5 12.5 10.5 8.5 7.5 

10 % APS in µl 240 240 240 240 240 

TEMED in µl 40 40 40 40 40 
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Table 9. Composition of the stacking SDS-gel. 

Acrylamide (30 %) in ml 3 

4x SDS stacking buffer in ml 5 

Water in ml 12 

10 % APS in µl 90 

TEMED in µl 40 

 

The samples were prepared by mixing with Laemmli protein loading buffer (Laemmli, 1970) 

and boiling for 5 min at 95°C. The samples were then loaded into the rinsed slots of the gel 

with a Hamilton syringe. All gels were run with 120 V in 1x SDS gel running buffer until the 

samples entered the separating gel. The current was then raised to 200-230 V, depending on 

the gel size. The gel run was continued until the bromophenol blue marker had reached the 

bottom of the gel to guarantee optimal partitioning of the proteins. 

 

1 x SDS gel running buffer    25 mM Tris, pH 8.0 

200 mM Glycine 

0.1 % (w/v) SDS 
 

4 x Laemmli buffer (SDS gel loading buffer)   500 mM Tris/HCl, pH 6.8 

8 % (w/v) SDS 

40 % (v/v) glycerol 

20 % (v/v) �-mercaptoethanol 

0.6 % (w/v) bromophenol blue 

 

4.3.2.1 Coomassie Blue staining of gels 

Proteins can be visualized in SDS gels by Coomassie Blue staining. The dye complexes with 

basic and aromatic side chains, resulting in a blue color of the protein bands. Before staining, 

the gel was fixed with destaining solution for 15 to 30 min to wash out the SDS, which results 

in less background staining. The gel was then incubated on a shaker in staining solution for at 

least 1 hr or at maximum overnight. Finally, the Coomassie solution was removed and the 

stained gel was again incubated in destaining solution until the background signal was low 

and the protein bands were clearly visible. 
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Staining solution 0.2 % (w/v) Coomassie Brilliant Blue 

R250 

       50 % (v/v) methanol 

       5 % (v/v) acetic acid 

       -> filter before use 

 

Fixing/Destaining solution    50 % (v/v) methanol 

       5 % (v/v) acetic acid 

 

4.3.2.2 Silver stain of protein bands in SDS-polyacrylamide gels 

The silver stain method is a sensitive staining method to visualize protein bands that cannot 

be detected with Coomassie staining. All steps are carried out at room temperature on a 

shaker. The SDS was washed out of the gel by incubation in an excess of fixing solution for at 

least 2 hr, or optimally, overnight. The gel should always be covered by the solutions added. 

After a wash step of 2x 25 min in washing solution, the prestaining solution was applied for 1 

min, followed by 20 min incubation in the silver nitrate staining solution. To wash away the 

remains of the staining solution, the gel was rinsed with deionized water 3 x. Immediately 

afterwards, the gel was incubated in developing solution until the bands became clearly 

visible. Depending on the amount of the protein, this step took from 10 to 30 min. The 

complete reaction was stopped with stop solution. 

 

Fixing solution     50 % (v/v) ethanol 

       10 % acetic acid 

       0.05 % formaldehyde (37 %) 

 

Washing solution     50 % ethanol 

 

Prestaining solution     0.02 % (w/v) Na2S2O3/5H2O 

 

Staining solution     0.2 % (w/v) AgNO3 

       0.075 % (v/v) formaldehyde (37 %) 

 

Developing solution     6 % (w/v) Na2CO3 

       0.0004 % (w/v) Na2S2O3/5H2O 
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       0.05 % (v/v) formaldehyde (37 %) 

 

Stop solution      44 % (v/v) ethanol 

       12 % acetic acid 

 

4.3.3 Western blotting of SDS-PAGE gels 

The Western blotting technique is used to transfer proteins from a SDS-polyacrylamide gel 

and immobilize them on a PVDF membrane. Both methods described here utilize the negative 

net charge of proteins in a SDS-polyacrylamide gel to transfer them onto a PVDF membrane 

by applying an electrical field. 

 

Ponceau S solution     0.1 % acetic acid 

0.2 % (w/v) Ponceau S 

 

Blocking solutions for Western blots   3 % (w/v) BSA in TBST 

       5 % milk powder in TBST 

 

1x TBST buffer     10 mM Tris/HCl, pH 8.0 

       150 mM NaCl 

       0.05 % (v/v) Tween 20 

 

1x TBS buffer      10 mM Tris/HCl, pH 8.0 

       150 mM NaCl 

4.3.3.1 Wet blotting technique 

The proteins are transferred to the PVDF membrane in a chamber completely filled with 1x 

blotting buffer. This method was used for blotting of maxi gels. The setup was assembled in 

the following order in a tray filled with blotting buffer to keep all components wet: 

- anode side (bottom) 

- plexiglass frame 

- foamed plastic (5 mm thick) 

- 3 layers Whatman 3 mm paper (wet with 1x blotting buffer before) 

- PVDF membrane (activated by incubation in methanol for 20 sec) 

- SDS-polyacrylamide gel 
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- 3 layers Whatman 3 mm paper (wet with 1x blotting buffer before) 

- foamed plastic (5 mm thick) 

- plexiglass frame 

- cathode side (top) 

 

All layers must be free of air bubbles to allow an even transfer. The complete stack was 

placed in the blotting tank, completely filled with 1 x blotting buffer, and blotted overnight 

with 15 V. 

 

1x Blotting buffer     25 mM Tris, pH 8.0 

       200 mM glycine 

       10 % (v/v) methanol 

 

4.3.3.2 Semi-dry blotting technique 

This technique requires only moistured membranes and papers between two graphite plates. 

Semi dry blotting was used to transfer proteins from mini or midi gels. The setup was 

assembled from bottom to top in the following order: 

 

- anode (bottom) 

- 6 layers Whatman 3 mm paper (wet with blotting buffer before) 

- PVDF membrane (activated by incubation in methanol for 20 sec) 

- SDS polyacrylamide gel 

- 6 layers Whatman 3 mm paper (wet with blotting buffer before) 

- cathode (top) 

 

All layers must be flattened to avoid air bubbles. The gels were blotted for 45 min with 15 V. 

 

1x Blotting buffer     25 mM Tris, pH 8.0 

       200 mM glycine 

       0.01 % (w/v) SDS 

       20 % (v/v) methanol 
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4.3.3.3 Immunodetection of immobilized proteins 

The proteins on the blotted membranes were detected with immunological methods. First, the 

membrane was stained with Ponceau S solution to visualize the size marker. The dye was 

washed away with water and the membrane was blocked with 3 % BSA in 1x TBST for at 

least 1 hr at room temperature or overnight at 4°C. Then, the blot was washed 4x for 5 min 

with an excess of 1x TBST. Next, the PVDF membrane was incubated with the first antibody, 

which was diluted 1:500 to 1:100’000 in 1x TBST for 1 hr at room temperature. After 

washing with 1x TBST, the secondary antibody (diluted 1:1000 to 1:10’000) was applied in 

1x TBST for 1 hr at room temperature. The secondary antibody was conjugated with either 

alkaline phosphatase, which releases a fluorophore from the synthetic ECF substrate in an 

enzymatic reaction, or horseradish peroxidase, which produces optically active hydroxyl 

peroxide. A final wash with 1x TBST for 5x 5 min was followed by incubation with the 

substrate. The ECF stock solution was diluted 1:10 in 1x TBST and evenly distributed onto 

the PVDF membrane. The membrane was placed on a clean glass surface and covered with an 

acetate sheet after applying the ECF substrate, avoiding air bubbles. Incubation time was 10 

to 15 min at room temperature. The signals were detected with a Fuji fluoroimage reader. The 

same procedure was followed using ECL developing, but for detection, a film was put onto 

the membrane for several time points (15 s – 30 min), depending on the signal, and 

subsequently developed. 

 

4.3.3.4 Quantification of Western blot signals 

The Image J software was used for quantification. To compare the expression and degradation 

levels of yEmCitrine-luciferase in wild-type, hsp26∆, hsp42∆, and hsp104∆ strains, luciferase 

protein amounts were determined by quantification of the Western blot bands after 

preconditioning (37°C, 45 min) and 120 min recovery (30°C) (see paragraph 4.5.9). 

Subsequently, the values were normalized to the loading control.  

 

4.3.4 Solubility assay of luciferase aggregates 

To compare the solubility of total protein aggregates induced by heat shock in wild-type and 

hsp42∆ cells, we conducted a protein solubility assay according to published protocols 

(Kaganovich et al., 2008) with minor modifications. Cells expressing yEmCitrine-luciferase 

were heat-shocked and recovered as described in paragraph 4.5.9. 
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• wash 1x with sterile double-distilled water 

• resuspend in native yeast lysis buffer 

o where indicated, lysis buffer also contained 0.5 % Triton 

• add 1 volume glass beads and lyse 6x 30 sec with 1 min breaks in ice slurry or use 

bead beater 

• remove beads by centrifugation for 5 min at 2000 rpm at 4°C 

• clarify by centrifugation for 3x 5 min at 4500 rpm at 4°C  

• set aside 50 µl of the supernatant as “total protein” 

• spin at full speed for 30 min at 4°C 

• remove supernatant as “soluble fraction”  

• resolubilize pellet by heating in 50 µl 1x SDS sample buffer 

• add 50 µl of 4x SDS sample buffer to the “total protein” and “soluble fraction” 

samples 

• resolve equal amounts of each fraction by SDS–PAGE followed by immunoblot 

analysis with anti-luciferase antisera. 

 

Native yeast lysis buffer    30 mM HEPES (pH 8.0) 

150 mM NaCl 

1 % glycerol 

1 mM DTT 

1 mM PMSF 

1 mg/ml pepstatin-A 

 

4.4 In vitro work 

4.4.1 Malate dehydrogenase (MDH) prevention of aggregation assay 

Heat-induced aggregation of MDH leads to the formation of inclusions that scatter light. The 

light scattering can be prevented by the addition of molecular chaperones. 

Preparation of MDH: 

• gently swirl ammonium sulfate stock of MDH and take out 500 µl 

• centrifuge at 13 000 rpm for 30 min at 4°C  

• discard supernatant 

• resuspend pellet in 1 ml MDH buffer 
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• centrifuge at 13 000 rpm for 15 min at 4°C  

• filter supernatant with 0.22 µm pore size 

 

Testing of MDH aggregation in a fluorimeter: 

• heat water bath of the fluorimeter to 47°C 

• centrifuge MDH buffer for 1 min at 13 000 rpm to remove air bubbles 

• incubate 400 µl MDH buffer at 47°C for 10 min 

• add 0.5 µM MDH final concentration and mix carefully 

• pipette 30 µl of the mix to a pre-warmed glass cuvette 

• measure aggregation at 600 nm excitation and emission wavelength for 30 min 

 

Prevention of aggregation by small heat shock proteins (sHsps): 

• follow the above protocol except pre-warming MDH buffer for 15 min at 47°C with 

the appropriate amount of sHsps (0.5 – 2 µM final concentration)  

 

MDH buffer:      50 mM Tris HCl pH 7.5 

150 mM KCl 

20 mM MgCl2 

2 mM DTT 

 

4.4.2 CFP-luciferase and YFP-luciferase prevention of aggregation assay 

The assay was performed as the MDH prevention of aggregation assay (4.4.1). 0.5 µM CFP-

luciferase and YFP-luciferase final concentration were used. 

 

4.4.3 Monitoring the aggregation rate of CFP-luciferase and YFP-luciferase by 

measuring the FRET signal 

The Fluorescence Resonance Energy Transfer (FRET) signal generated by co-aggregation of 

CFP-luciferase and YFP-luciferase was measured in a fluorimeter with an excitation 

wavelength of 435 nm and an emission wavelength of 530 nm. Measuring solely the CFP or 

YFP signal was performed at 435 nm or 515 nm excitation and 475 nm or 530 nm emission 

wavelength, respectively. 

• heat water bath of the fluorimeter to 47°C 
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• centrifuge MDH buffer for 1 min at 13 000 rpm to remove air bubbles 

• incubate 400 µl MDH buffer alone or with the respective amounts of sHsps at 45°C 

for 10 min 

• add each 0.5 µM CFP-luciferase and YFP-luciferase final concentration and mix 

carefully 

• pipette 300 µl of the mix to a pre-warmed glass cuvette 

• measure the FRET signal for a period of 15 min 

 

MDH buffer:      50 mM Tris HCl pH 7.5 

150 mM KCl 

20 mM MgCl2 

2 mM DTT 

4.5 Yeast work 

4.5.1 Transformation of S. cerevisiae cells 

• grow cells overnight in 2 x YPD. If complex medium cannot be used, utilize SC + 1 

mM glutamate to make SC a more robust medium. 

• dilute overnight culture in fresh medium to OD600 of 0.15 in 10 ml per transformation 

• grow cells three generations until the culture has reached OD600 of 1.0 - 1.2 

• harvest cells by brief centrifugation 

• resuspend cells in an equal volume of sterile water to wash away growth medium 

•  pellet the cells 

• resuspend in half a volume of 100 mM LiOAc and pellet again 

• resuspend in 100 mM LiOAc to a final volume of 25 µl 

• to 25 µl cell suspension in an Eppendorf tube add: 

o DNA to transform 

o 5 µl carrier DNA (2 mg/ml boiled salmon sperm DNA / calf thymus DNA) 

o 150 µl 39 % PEG 3350 100 mM LiOAc 

• vortex at full speed for 0.5 - 1 min 

• incubate at 42°C for 40 - 50 min 

• spin down cells and apply onto a selective plate 
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• allow phenotypic expression of strains supplemented with antibiotic resistance 

cassettes overnight on YPD plates before replication on selective plates 

 

4.5.2 Deletion of genes in the S. cerevisiae genome 

Since S. cerevisiae cells possess a very efficient DNA recombination system, about 50 base 

pairs of homologous sequence, flanking large non-homologous DNA stretches, are sufficient 

for targeted insertion into the yeast genome. Thus, genes can be deleted by replacing their 

coding sequence with selection markers. The knock-out cassettes were amplified by PCR, 

using specific primers with 50 - 75 bp homology to the genomic sequence flanking the target 

gene. The linear PCR product (at least 10 µg DNA) was transformed into the strain 

background of interest, and cells were kept on selective agar plates for multiple replica rounds 

to isolate single clones. Potential positive clones were tested for correct insertion of the gene 

deletion cassette by colony PCR (4.1.4.1).  

 

4.5.3 Isolation of genomic DNA from S. cerevisiae 

Genomic DNA was prepared from yeast using the YeaStar DNA prep kits (3.7) according to 

the manufacturer’s protocols. 

 

4.5.4 Chromosomal fluorescent protein tagging 

Chromosomal mCFP and mCitrine tagging was carried out using the optimized cassettes for 

fluorescent protein tagging in Saccharomyces cerevisiae (Sheff and Thorn, 2004). 

Chromosomal Cerulean tagging of Hsp42 was performed as described elsewhere (Rizzo et al., 

2004). 

4.5.5 MG132, latrunculin A, benomyl, and cycloheximide treatment 

Cells were grown until mid-log phase (OD600 = 0.5) at 30°C. For experiments using MG132, 

BY4741 strains lacking the Pdr5 transporter were used as wild type. Deletion of Pdr5 

sensitizes cells to the proteasome inhibitor. Before temperature shift to 37°C, MG132, 

dissolved in DMSO, was added to a final concentration of 80 µm. Where indicated, 

latrunculin A or benomyl, dissolved in DMSO, was added before temperature shift to 37°C or 

sublethal heat shock to a final concentration of 200 µM or 20 µg/ml, respectively. The same 

amount of DMSO was added to the control. In order to monitor the stability of JUNQ and 
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IPOD compartments, cells were incubated at 37°C for 180 min (+ MG132). Subsequently, 

cells were washed and the translation inhibitor cycloheximide, dissolved in ethanol, was 

added to final concentration 10 µg/ml before starting the recovery at 30°C. The same amount 

of ethanol was added to the control. For all experiments, VHL expression was shut off before 

temperature shift and microscopy by addition of 2 % glucose. 

 

4.5.6 Thermotolerance analysis 

Overnight cultures of yeast cells were diluted into fresh YPD medium and grown to mid-log 

phase. Cells were first shifted to 37°C for 60 min, and then incubated at 50°C for the 

indicated period of time. Samples were taken, serially diluted, spotted onto YPD  plates, and 

survival of cells was determined by calculating the plating efficiency after two days growth at 

30°C. 

 

4.5.7 Serial dilution spot tests 

Growth behavior under various conditions was tested by spotting dilution series on agar 

plates. The optical density of an overnight culture was measured at 600 nm and the cells were 

diluted to a final OD600 of 0.5, which is equivalent to approximately 107 yeast cells per ml. 

The cells were 5-fold diluted, spotted on the respective plates, and grown for two to three 

days, until the positive (wild type) control spots were clearly visible at the lowest dilution. 

 

4.5.8 Preparation of S. cerevisiae cell extracts for Western blotting 

Cells were grown to mid-log phase and ca. 1 OD600 unit was transferred to an Eppendorf tube. 

The yeast cells were pelleted, resuspended in 240 µl of 1.85 M NaOH and incubated on ice 

for 10 min. After the addition of an equal volume of 50 % TCA, the cells were placed on ice 

for an additional 10 min and pelleted by centrifugation (13 000 rpm, 4°C, 10 min in a table 

top centrifuge). The resulting pellet was washed with 1 M Tris base. 50 µl of sample buffer 

was added and 10 - 20 µl of this solution were loaded on a SDS-polyacrylamide gel. 
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4.5.9 In vivo luciferase assay with S. cerevisiae 

The standard luciferase assay was similarly performed as described previously (Schroder et 

al., 1993). Luciferase activities were measured from 100 µl cell suspensions in a 

luminometer.  

 

• grow cells to mid-log phase  

• shift cells to 37°C for 45 min 

• add cycloheximide (10 µg/ml) to stop translation 

• heat shock cells at 45°C for 20 min 

• allow recovery at 30°C for 120 min 
 

4.6 Microscopy 

Confocal micrographs were obtained from living yeast cells on a spinning disc microscope 

with a 100x oil lens (NA 1.4). Digital (12-bit) images were acquired with a cooled CCD 

camera and processed by using Image J and Adobe Photoshop software.  

 

4.6.1 Image acquisition 

For snapshot imaging, cells were recovered by centrifugation, washed in phosphate-buffered 

saline (PBS), and immobilized on agarose pads. To avoid dehydration, the agarose pads were 

sealed with Apiezon grease and covered with cover slips. For time-lapse imaging, cells were 

immobilized on concanavalin A coated cover slips, immersed in medium, and sealed in a 

custom-made aluminum slide using cover slips on each side. The slide was subsequently 

placed into a custom made metal holder that was connected to a peltier element, which 

allowed accurate temperature control. 

 

4.6.2 Image processing and data analysis 

Image processing was carried out using Image J and Adobe Photoshop software. Statistics of 

aggregation foci number and localization, and plotting of the data were performed with Excel 

and KaleidaGraph. At least 100 individual cells were analyzed. 
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4.6.3 Fluorescence Loss in Photobleaching (FLIP) 

In order to examine the diffusion properties of misfolded proteins in the distinct 

compartments, Fluorescence Loss in Photobleaching (FLIP) was performed. In brief, a small 

area of cytosol apart from the mCherry-VHL inclusions is repeatedly bleached with a laser 

pulse. The resulting fluorescence loss in the region of interest (ROI), as a function of time, 

provides a measure of the relative exchange rate with the bleached cytoplasmic fraction of 

molecules. Cells were grown to mid-log phase, immobilized on concanavalin A coated glass 

bottom culture dishes, and incubated at 37°C for 180 min (+MG132) before FLIP 

measurements were started. 25 individual cells for the wild-type and hsp42∆ strains were 

measured. A small section of cytosolic fluorescence outside of the inclusions was bleached in 

30 cycles of acquisition (0.5 sec, 1-2 % laser intensity) and bleach (0.49 sec, 100 % laser 

intensity). Measurements were performed at 37°C on a laser scanning confocal microscope 

(A1R; Nikon). 

 

4.6.4 Immunofluorescence 

Cells were fixed and stained as described previously (Gavin, 2009). Incubation with anti-

Hsp42 (1:400 dilution) and anti-Hsp26 (1:100 dilution) was carried out for 2 hr at room 

temperature. Secondary antibody (Alexa Fluor 488 F(ab')2 fragment of goat anti-rabbit IgG) 

was diluted 1:1000 and incubation was carried out for 1 hr at room temperature. 
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5. Results 

5.1 Monitoring the fate of protein aggregates in yeast cells using 

fluorescent reporters 

In order to analyze the spatio-temporal organization of protein aggregates in yeast cells, I 

employed various fluorescent reporter proteins. First, I used a previously characterized fusion 

construct of mCherry and von Hippel-Lindau (VHL) tumor suppressor. Unassembled VHL, 

when expressed at 37°C in absence of its cofactor elongin BC, cannot fold properly and is 

degraded rapidly (McClellan et al., 2005). Upon inhibition of proteasomal degradation, 

mCherry-VHL aggregates have been described to partition between two different intracellular 

sites, the juxtanuclear quality control (JUNQ) and insoluble protein deposit (IPOD) 

compartments (Kaganovich et al., 2008). As alternative fluorescent aggregation reporters, I 

generated a fully functional C-terminal fusion of monomeric CFP to the disaggregase Hsp104 

(Figure 5.1), which was expressed from the authentic promoter and served as an indirect 

marker by binding to aggregated proteins.  

 
 
Figure 5.1 Hsp104-mCFP provides wild-type like thermotolerance.  
S. cerevisiae wild-type (WT), Hsp104-mCFP expressing, and hsp104∆ cells were grown at 30°C and shifted to 
37°C for 60 min. Subsequently, the cells were incubated at 50°C for the indicated time period and spotted in a 
serial dilution onto YPD plates. Images were acquired after two days growth at 30°C. 
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In addition, I constructed an N-terminal fusion of monomeric Citrine with the thermolabile 

model protein Photinus pyralis luciferase. The construct was integrated into the yeast 

chromosome under control of the constitutive ACT1 promoter, yielding moderate production 

levels of mCitrine-luciferase (data not shown). Immunoblot analysis revealed only single 

protein bands corresponding to the proper size of the individual full-length fusion proteins 

(data not shown), allowing me to monitor protein aggregation by tracking the fluorescent 

signal of mCherry-VHL, Hsp104-mCFP and mCitrine-luciferase. In S. cerevisiae cells with 

blocked proteasomal activity I analyzed the localization of all fusion proteins at 30°C and 

various time points after shift to 37°C (Figure 5.2). At 30°C mCherry-VHL and mCitrine-

luciferase displayed a homogenous cytosolic distribution, whereas Hsp104-mCFP was 

enriched in the nucleus (Figure 5.3 A). 

 

 
 
Figure 5.2 Outline of the experimental setup.  
The localization of all fluorescent reporters was monitored at 30°C and various time points after shift to 37°C. 
The proteasome inhibitor MG132 was added before the temperature shift. 
 

Incubation at 37°C for 30 min induced the formation of more than three cytosolic mCherry-

VHL and Hsp104-mCFP punctae in most cells (60 %) in accordance with published data, 

while slightly less mCitrine-luciferase foci were detectable (Figure 5.3 A/B). After prolonged 

incubation at 37°C for 180 min, the number of inclusions was reduced and mCherry-VHL 

accumulated in one juxtanuclear and one peripheral inclusion in approx. 50 % of the cells. 

The remaining cells stored misfolded VHL in single or multiple juxtanuclear or peripheral 

inclusions, or a combination of both. Longer incubation at 37°C (up to 6 hours) did not result 

in a higher percentage of cells carrying one juxtanuclear and one peripheral aggregate (data 

not shown). Similar to mCherry-VHL, 180 min incubation at 37°C resulted in accumulation 

of Hsp104-mCFP and mCitrine-luciferase in one juxtanuclear and one peripheral inclusion in 

40-45 % of the cells. The remaining cells mainly possessed a single juxtanuclear inclusion. In 

conclusion, comparable numbers of inclusions were detectable at similar cellular locations, 

irrespective of the investigated aggregation reporter (VHL, Hsp104, luciferase). The overall 

reduced number of mCitrine-luciferase inclusions could be accounted to lower expression 

levels and only partial misfolding of the thermolabile reporter at 37°C. Simultaneous 

expression of mCherry-VHL and mCitrine-luciferase revealed perfect co-localization upon 
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stress treatment (37°C, + MG132) (Figure 5.4), underscoring that different substrates share 

the same fate and are recruited to the same compartments. Taken together, my observations 

are similar, but also distinct in parts, from the described partition of misfolded proteins 

between two distinct compartments, as half of the cells contained only one or more than two 

foci. Hereafter, I will adopt the terminology of Kaganovich et al., 2008, considering 

inclusions with juxtanuclear localization as JUNQ and those with peripheral localization as 

IPOD-like compartments. 
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Figure 5.3 Spatio temporal organization of protein aggregates.  
Time-dependent changes in the localization of mCherry-VHL, endogenous yeast aggregates stained by Hsp104-
mCFP, and mCitrine-luciferase (all green) at 30°C and after shift to 37°C for 30 and 180 min in wild-type (WT) 
cells. The proteasome inhibitor MG132 was added before the temperature shift. Nuclei were visualized by co-
expressing HTB1-Cerulean or HTB1-mCherry (red). (B) Number (dark grey columns) and localization (colored 
columns) of mCherry-VHL, Hsp104-mCFP, and mCitrine-luciferase inclusions in WT cells after incubation at 
37°C for 30 and 180 min. The proteasome inhibitor MG132 was added before the temperature shift. The color 
code deciphers the foci localization. Red corresponds to zero juxtanuclear inclusions, blue to one, green to two, 
and yellow to three. The total number of foci per cell is depicted in all diagrams on the x-axis. Quantifications 
are based on the analysis of n = 100 cells. 
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Figure 5.4 Different substrates are sorted to the same compartments.  
mCherry-VHL (red) and mCitrine-luciferase (green) were co-expressed in S. cerevisiae cells. Protein 
localizations were determined after temperature shift to 37°C for 180 min, revealing co-localization of mCherry-
VHL and mCitrine-luciferase. The proteasome inhibitor MG132 was added before the temperature shift. Nuclei 
were visualized by co-expressing HTB1-Cerulean (blue). 
 

5.2 The small heat shock protein Hsp42 affects the organization of protein 

aggregates 

Little is known about cellular factors that control the deposition of aggregates at specific sites 

within yeast cells. Frydman and colleagues could demonstrate that components of the quality 

control system (Sti1, Ubc4/5) affect the distribution of misfolded proteins between JUNQ and 

IPOD compartments (Kaganovich et al., 2008). Small heat shock proteins (sHsps) co-

aggregate efficiently with misfolded proteins, thereby changing the properties of protein 

aggregates and facilitating protein disaggregation upon return to physiological growth 

conditions (Ratajczak et al., 2009; Cashikar et al., 2005; Haslbeck et al., 2005b; Friedrich et 

al., 2004; Mogk et al., 2003). In a candidate approach I tested for a role of the S. cerevisiae 

sHsps, Hsp26 and Hsp42, in the cellular sorting of misfolded proteins by comparing the 

localization of mCherry-VHL and Hsp104-mCFP in hsp26∆ and hsp42∆ mutant cells (Figure 

5.5). The lack of Hsp26 had only a minor influence on stress-induced formation of mCherry-

VHL and Hsp104-mCFP inclusions. Numbers and localization of respective foci were largely 

similar to those observed for wild-type (WT) cells after incubation at 37°C for 30 min and 

180 min (Figure 5.6). On the contrary, in the vast majority of hsp42∆ cells only one 

juxtanuclear mCherry-VHL inclusion was detected, whereas peripheral inclusions were 

virtually absent 30 min and 180 min after stress application (Figure 5.5 and Figure 5.6). 
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Figure 5.5 Hsp42 is essential for the targeting of misfolded proteins to peripheral compartments.  
Time-dependent changes in the localization of mCherry-VHL (A) and Hsp104-mCFP (B) (both green) at 30°C 
and after shift to 37°C for 30 and 180 min in the isogenic wild-type (WT), hsp26∆, and hsp42∆ strains. The 
proteasome inhibitor MG132 was added before the temperature shift. Nuclei were visualized by co-expressing 
HTB1-Cerulean or HTB1-mCherry (red). 
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Figure 5.6 Hsp42 is essential for the targeting of misfolded proteins to peripheral compartments. 
Number (dark grey columns) and localization (colored columns) of mCherry-VHL (A) and Hsp104-mCFP (B) 
inclusions in hsp26∆ and hsp42∆ cells after incubation at 37°C for 30 and 180 min . The proteasome inhibitor 
MG132 was added before the temperature shift. The color code deciphers the foci localization. Red corresponds 
to zero juxtanuclear inclusions, blue to one, green to two, and yellow to three. The total number of foci per cell is 
depicted in all diagrams on the x-axis. Quantifications are based on the analysis of n = 100 cells. 
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Figure 5.7 The lack of peripheral inclusions in hsp42∆ cells is directly caused by missing Hsp42.  
Complementing the hsp42∆ strain with Hsp42 expressed from its native promoter induces reappearance of 
peripheral aggregation foci. Image of an hsp42∆ cell expressing both mCherry-VHL (green) and Hsp42 is shown 
after incubation at 37°C for 180 min in the presence of the proteasome inhibitor MG132. Nuclei were visualized 
by co-expressing HTB1-mCherry (red). 
 

The remaining juxtanuclear foci exhibited an increased fluorescent intensity, suggesting that 

the pool of misfolded mCherry-VHL is entirely directed to the JUNQ compartment. Also 

endogenous yeast aggregates stained by Hsp104-mCFP localized mostly at the nucleus in 

hsp42∆ cells (Figure 5.5 and Figure 5.6). Complementing the hsp42∆ cells with Hsp42 

expressed from its native promoter restored the occurrence of peripheral aggregation foci 

(Figure 5.7). Performing single cell time-lapse microscopy, I observed in WT cells that visible 

inclusions of mCherry-VHL appeared at the nucleus and in the periphery after 15 min at 37°C 

(Figure 5.8). On the contrary, in the hsp42∆ strain aggregation foci became apparent 

exclusively at the nucleus, indicating that visible peripheral inclusions are not formed at all. In 

conclusion, the sorting of misfolded proteins to peripheral deposition sites seems to rely on 

Hsp42.  

 
 
Figure 5.8 In hsp42∆ cells mCherry-VHL foci form exclusively at the nucleus.  
Time-lapse microscopy pictures are shown of single wild-type (WT) and hsp42∆ cells expressing mCherry-VHL 
(green) after shift to 37°C for the indicated time period. The proteasome inhibitor MG132 was added before the 
temperature shift. Nuclei were visualized by co-expressing HTB1-Cerulean (red). 
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5.3 Hsp42 localizes exclusively in IPOD-like compartments 

To determine whether the absence of peripheral aggregation foci is a direct effect of lacking 

Hsp42, I constructed chromosomal Hsp26 and Hsp42 C-terminal fusions with mCitrine to 

monitor their cellular localization (Figure 5.9). The Hsp26-mCitrine fusion exhibits WT-like 

luciferase reactivation after heat shock, unlike hsp26∆ cells, which display a delay in 

reactivation (Figure 5.10, also see paragraph 5.11). Complementation of hsp42∆ cells with 

Hsp42-mCitrine led to reappearance of peripheral aggregation foci, demonstrating that both 

fusion proteins possess WT-like activity at least partly. At 30°C both sHsp fusion proteins 

showed a homogenous cytosolic staining. Incubation at 37°C (+MG132) for 30 min resulted 

in co-localization of Hsp26-mCitrine with all mCherry-VHL inclusions (Figure 5.9 A). At the 

same time point Hsp42-mCitrine stained peripheral mCherry-VHL punctae uniformly, while 

displaying strongly diminished co-localization with one juxtanuclear focus (Figure 5.9 A). 

Thus, Hsp26 seems to be present in all compartments of misfolded proteins, while Hsp42 is 

almost absent from the JUNQ. To corroborate these findings I performed 

immunoflourescence analysis. Here, only analysis of Hsp42 localization was possible, since 

the utilized Hsp26 antibody proved not suitable for immunofluorescence (data not shown). 30 

min after stress application Hsp42 co-localized perfectly with all mCherry-VHL inclusions 

except for one juxtanuclear focus, which completely lacked staining by the sHsp (Figure 5.9 

B). Prolonged incubation (180 min) at 37°C resulted in Hsp42 staining of peripheral 

mCherry-VHL foci, while the juxtanuclear inclusion still displayed no co-localization (Figure 

5.9 B). Taken together, Hsp26 is uniformly distributed among the distinct aggregate 

compartments, while Hsp42 localizes exclusively to IPOD-like compartments. This 

observation suggests a direct role of Hsp42 in controlling the flux of misfolded proteins to 

IPOD-like compartments.  
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Figure 5.9 Hsp42 localizes exclusively to IPOD-like compartments.  
(A) S. cerevisiae cells co-expressing mCherry-VHL and Hsp26-mCitrine (top) or Hsp42-mCitrine (bottom) were 
grown at 30°C and shifted to 37°C (+ MG132) for 30 min. mCherry-VHL is depicted in green and sHsp-
mCitrine fusions are shown in red. Nuclei were visualized by co-expressing HTB1-Cerulean (blue). Hsp26-
mCitrine is uniformly distributed among the different mCherry-VHL compartments, whereas Hsp42-mCitrine is 
almost absent from one juxtanuclear inclusion. (B) S. cerevisiae cells expressing mCherry-VHL were grown at 
30°C and shifted to 37°C (+ MG132). The cellular localizations of mCherry-VHL (green) and Hsp42 (red) were 
determined at the indicated time points. Hsp42 localization was determined by immunofluorescence using 
specific Hsp42 antibodies. Nuclei were visualized by co-expressing HTB1-Cerulean (blue). 
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Figure 5.10 Hsp26-mCitrine exhibits WT-like luciferase refolding after heat shock. 
Cells expressing mCFP-luciferase were preconditioned at 37°C for 45 min, subjected to sublethal heat shock at 
45°C for 20 min, and allowed to recover at 30°C. Luciferase activity during recovery at 30°C is depicted in the 
isogenic wild-type (WT) (blue) and hsp26∆ (pink) strains, and cells expressing a genomic C-terminal fusion of 
Hsp26 with mCitrine (yellow). The luciferase activity before heat shock was set as 100 %. De novo synthesis of 
mCitrine-luciferase was inhibited by addition of 10 µg/ml cycloheximide before heat shock. 



Results 

 65

5.4 The N-terminal domain of Hsp42 is crucial for aggregate sorting 

What is the molecular basis for the specific role of Hsp42 in controlling the sorting of 

misfolded proteins to IPOD-like compartments? sHsps are composed of a conserved α-

crystallin domain and N- and C-terminal flanking regions. N-terminal domains (NTDs) are 

highly variable in both sequence and length with S. cerevisiae Hsp42 possessing a remarkably 

elongated NTD (243 residues). The large NTD of Hsp42 is therefore a prime candidate for 

mediating functional specificity. To investigate the role of the different Hsp42 domains, I 

generated Hsp42 domain deletion and Hsp26 - Hsp42 domain swap constructs as follows 

(Figure 5.11). I deleted Hsp42 of its NTD (Hsp42∆N) or C-terminal extension (CTE) 

(Hsp42∆C). I furthermore replaced the NTD, CTE, or both domains of Hsp26 with the 

corresponding domain of Hsp42 (N42-Hsp26, Hsp26-C42, or NC42-Hsp26, respectively). 

Moreover, I substituted the NTD of Hsp42 with the respective domain of Hsp26 (N26-

Hsp42). All constructs harbored in addition a C-terminal Flag-tag to control construct 

expression and were genomically integrated at the hsp42 locus in hsp42∆ cells. Hsp42-Flag 

and Hsp26-Flag that were expressed from the same site served as controls. The various sHsps 

constructs were expressed to similar levels (data not shown) and tested for their activity to 

restore the formation of peripheral mCherry-VHL foci. An inclusion pattern similar to WT 

cells was observed upon expression of Hsp42-Flag (Figure 5.12 and Figure 5.13). In cells 

expressing Hsp26-Flag, Hsp42∆N, Hsp26-C42, or N26-Hsp42 very few or no IPOD-like 

mCherry-VHL inclusions were observed (Figure 5.12, Figure 5.13, and Figure 5.14). 

Remarkably, Hsp42∆C and N42-Hsp26 restored the occurrence of peripheral fluorescent foci. 

Here, the number of cells carrying more than two inclusions after 30 min incubation at 37°C 

(+ MG132) was reduced compared to WT cells, suggesting that both variants exhibit partial 

activity. Expression of NC42-Hsp26 also restored occurrence of IPOD-like foci. However, the 

number of cells carrying more than three inclusions was increased, implying slightly 

enhanced aggregate formation. Taken together, these findings indicate that the Hsp42 NTD 

directly mediates the sorting of misfolded proteins to peripheral deposition sites. 
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Figure 5.11 Hsp42 domain deletion and Hsp26 – Hsp42 domain swap constructs. 
Domain organization of Hsp26, Hsp42, and their variants. Both sHsps consist of an N-terminal domain (NTD), a 
conserved α-crystallin domain (alpha), and a C-terminal extension (CTE). All constructs were C-terminally 
fused to a FLAG-tag (F). Domain boundaries are indicated by residue numbers. All constructs were under 
control of the native HSP42 promoter and integrated at the Hsp42 locus in hsp42∆ cells. 
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Figure 5.12 The N-terminal domain of Hsp42 mediates sorting of misfolded proteins to peripheral 
inclusions.  
S. cerevisiae hsp42∆ cells expressing mCherry-VHL and the indicated sHsp constructs (see Figure 5.11) were 
grown at 30°C and shifted to 37°C (+ MG132). mCherry-VHL localization (green) was determined at the 
indicated time points. Nuclei were visualized by co-expressing HTB1-Cerulean (red). 
 

 

 

 

 
 
Figure 5.13 The N-terminal domain of Hsp42 mediates sorting of misfolded proteins to peripheral 
inclusions. 
Number (dark grey columns) and localization (colored columns) of mCherry-VHL inclusions in hsp42∆ cells 
expressing the indicated sHsp construct after incubation at 37°C for 30 and 180 min . The proteasome inhibitor 
MG132 was added before the temperature shift. The color code deciphers the foci localization. Red corresponds 
to zero juxtanuclear inclusions, blue to one, green to two, and yellow to three. The total number of foci per cell is 
depicted in all diagrams on the x-axis. Quantifications are based on the analysis of n = 100 cells. 
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Figure 5.14 The N-terminal domain of Hsp42 mediates sorting of misfolded proteins to peripheral 
inclusions. 
Number (dark grey columns) and localization (colored columns) of mCherry-VHL inclusions in hsp42∆ cells 
expressing the indicated sHsp construct after incubation at 37°C for 30 and 180 min . The proteasome inhibitor 
MG132 was added before the temperature shift. The color code deciphers the foci localization. Red corresponds 
to zero juxtanuclear inclusions, blue to one, green to two, and yellow to three. The total number of foci per cell is 
depicted in all diagrams on the x-axis. Quantifications are based on the analysis of n = 100 cells. 
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5.5 Localization of amorphous but not of amyloidogenic aggregates to the 

IPOD depends on Hsp42 

The IPOD has been shown to be composed of both amyloidogenic as well as misfolded 

proteins (Kaganovich et al., 2008). I therefore analyzed whether amyloidogenic aggregates 

are still present at the IPOD in hsp42∆ cells. For that purpose I expressed in S. cerevisiae WT 

and hsp42∆ mutant cells the yeast prion protein RNQ1, which had been C-terminally fused to 

YFP. In both strains peripheral RNQ1-YFP foci were detectable, demonstrating that RNQ1-

YFP deposition at IPOD-like compartments is not affected in hsp42∆ cells (Figure 5.15 A). 

Next, I compared the relative spatial localization of Hsp42-mCitrine and RNQ1-YFP. After 

incubation for 30 min at 37°C one of the Hsp42-stained inclusions was in close proximity to 

RNQ1-YFP, however, no overlapping fluorescence was detected (Figure 5.15 B). Since 

Hsp42-mCitrine acts as a marker for rather amorphous aggregates, misfolded and 

amyloidogenic proteins might be targeted to the same cellular sites, but no mixing of the 

distinct aggregate types occurs. In conclusion, Hsp42 is essential for the localization of 

thermally induced amorphous, but not amyloidogenic aggregates to IPOD-like compartments. 
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Figure 5.15 Hsp42 does not affect the localization of amyloidogenic aggregates.  
(A) RNQ1-YFP (green) was expressed in S. cerevisiae wild-type (WT) and hsp42∆ cells. Nuclei were visualized 
by co-expressing HTB1-mCherry (red). (B) S. cerevisiae cells co-expressing RNQ1-YFP and Hsp42-Cerulean 
were incubated at 30°C and shifted to 37°C for 30 min (+ MG132). RNQ1-YFP (green) is localizing in close 
proximity to one Hsp42-Cerulean foci (red) after temperature shift, however, no overlapping fluorescence is 
detectable. 
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5.6 The JUNQ compartment of hsp42∆ cells exhibits moderate changes in 

dynamics and stability 

What are the consequences of directing the pool of misfolded proteins exclusively to the 

JUNQ compartment in hsp42∆ cells? I compared the mobility and stability of mCherry-VHL 

deposited at the JUNQ in WT and hsp42∆ cells. First, I examined the diffusion properties of 

misfolded proteins in the distinct compartments utilizing Fluorescence Loss in 

Photobleaching (FLIP). Briefly, a small area of cytosol apart from the mCherry-VHL 

inclusions is repeatedly bleached with a laser pulse. The resulting fluorescence loss in the 

inclusions, as a function of time, provides a measure of their relative exchange rate with 

bleached cytoplasmic mCherry-VHL molecules. Cytosolic fluorescence, which corresponds 

to soluble mCherry-VHL, vanished rapidly upon laser bleaching (data not shown). In S. 

cerevisiae WT cells the JUNQ displayed a more rapid and pronounced loss of fluorescence in 

comparison to the IPOD compartment in agreement with previous findings (Kaganovich et 

al., 2008) (Figure 5.16). Consequently, misfolded mCherry-VHL in the JUNQ exchanges 

more frequently with the cytosolic pool and is thus more soluble, in accordance with 

published data (Kaganovich et al., 2008). In hsp42∆ cells bleaching caused, in comparison to 

WT cells, a more rapid fluorescent loss in juxtanuclear inclusions. The JUNQ therefore 

displays an overall increased exchange rate with the cytosolic mCherry-VHL pool in hsp42∆ 

cells.  

 
 
Figure 5.16 The JUNQ compartment of hsp42∆ cells exhibits an increased exchange rate with the cytosolic 
mCherry-VHL pool.  
FLIP measurements of mCherry-VHL were carried out in wild-type (WT) and hsp42∆ cells after incubation at 
37°C for 180 min (+ MG132). Bleaching curves were calculated based on the analysis of 25 cells. 
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I next studied the stability of the individual compartments by monitoring their fate upon 

return to physiological conditions (30°C, - MG132). After one hour recovery 1-2 mCherry-

VHL inclusions were still detectable in WT cells (80 %), whereas the majority (60 %) of 

hsp42∆ cells were free of aggregates (Figure 5.17 and Figure 5.18 A/B). After two hours 50 

% of WT cells still harbored one focus, which predominantly (63 %) exhibited a peripheral 

localization (Figure 5.17 and Figure 5.18 A). While this finding implies that IPOD 

compartments are more stable compared to the JUNQ, I observed that peripheral foci were 

significantly reduced in size, indicating that misfolded proteins in IPOD-like compartments 

are also subject to protein disaggregation. At the same time point hsp42∆ cells were almost 

completely devoid of mCherry-VHL foci, suggesting more rapid disaggregation (Figure 5.17 

and Figure 5.18 B). Similar findings were obtained when Hsp104-mCFP foci were followed 

in S. cerevisiae WT and hsp42∆ cells upon return to physiological growth conditions, 

indicating that a more rapid disintegration of endogenous yeast aggregates occurs in hsp42∆ 

cells (data not shown). Foci disintegration could be linked to Hsp104-mediated protein 

disaggregation since clearance of juxtanuclear and peripheral mCherry-VHL foci was no 

longer observed in hsp104∆ cells (Figure 5.19). 

 

 
 
Figure 5.17 mCherry-VHL aggregation foci are more rapidly resolved in the hsp42∆ strain.  
Wild-type (WT) and hsp42∆ cells expressing mCherry-VHL (green) were grown at 30°C and shifted to 37°C for 
180 min (+ MG132). MG132 was washed out and cells were shifted to 30°C for 120 min. De novo synthesis of 
mCherry-VHL was inhibited by addition of 10 µg/ml cycloheximide. Nuclei were visualized by co-expressing 
HTB1-Cerulean (red). 
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Figure 5.18 mCherry-VHL aggregation foci are more rapidly resolved in the hsp42∆ strain.  
Wild type (WT) and hsp42∆ cells expressing mCherry-VHL were grown at 30°C and shifted to 37°C  for 180 
min (+ MG132). MG132 was washed out and cells were shifted to 30°C for 120 min. De novo synthesis of 
mCherry-VHL was inhibited by addition of 10 µg/ml cycloheximide. Number (dark grey columns) and 
localization (colored columns) of mCherry-VHL inclusions are shown in the respective strain at the indicated 
time point. The color code deciphers the foci localization. Red corresponds to zero juxtanuclear inclusions, blue 
to one, green to two, and yellow to three. The total number of foci per cell is depicted in all diagrams on the x-
axis. Quantifications are based on the analysis of n = 100 cells. 
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Figure 5.19 Disintegration of protein inclusions requires Hsp104-mediated protein disaggregation.  
hsp104∆ cells expressing mCherry-VHL (green) were grown at 30°C and shifted to 37°C for 180 min (+ 
MG132) (left image). MG132 was washed out and cells were shifted to 30°C for 120 min. De novo synthesis of 
mCherry-VHL was inhibited by addition of 10 µg/ml cycloheximide. After 120 min (right images) incubation at 
30°C, the inclusions were not cleared. Nuclei were visualized by co-expressing HTB1-Cerulean (red) 
 

5.7 Aggregate sequestration depends on the actin cytoskeleton 

I next sought to determine whether the S. cerevisiae cytoskeleton is required for distributing 

misfolded mCherry-VHL to the JUNQ and IPOD-like compartments. The microtubule-

depolymerizing drug benomyl has been shown to reversibly inhibit the formation of JUNQ 

and IPOD compartments, implying a crucial role of the microtubule cytoskeleton in aggregate 

sorting (Kaganovich et al., 2008). I here confirmed this observation, but used in addition a 

benomyl-resistant yeast strain containing a mutation in tubulin-2, which prevents benomyl 

from depolymerizing microtubules, to exclude secondary effects of the drug (Figure 5.20 

A/B). Similar to WT cells, the benomyl-resistant cells did not exhibit JUNQ and IPOD-like 

compartments. Instead, they contained multiple dispersed mCherry-VHL foci in the presence 

of benomyl after 30 and 180 min incubation at 37°C, demonstrating that the inhibitory effect 

of benomyl is microtubule-independent, thereby questioning the role of microtubules in 

aggregate sorting.  

I therefore determined whether partitioning of misfolded mCherry-VHL into distinct 

compartments requires an intact actin cytoskeleton. For this purpose I monitored mCherry-

VHL misfolding in the presence of the actin-depolymerizing drug latrunculin A (LatA), which 

causes complete disruption of the yeast actin cytoskeleton (Ayscough et al., 1997). After 30 

min incubation at 37°C the LatA-treated cells displayed a vastly increased number of 

inclusions in comparison to the DMSO-treated control cells (Figure 5.21 A). Prolonged 

incubation (180 min) at 37°C did not result in a reduction of foci number as LatA-treated cells 

still displayed multiple punctae dispersed throughout the cytosol, in contrast to DMSO-treated 

control cells. Since LatA could possibly have actin-independent secondary effects, I employed 
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a yeast strain containing a mutation in actin-1, which prevents LatA-mediated disassembly of 

the actin cytoskeleton (Ayscough et al., 1997). The LatA-resistant strain partitioned misfolded 

mCherry-VHL efficiently into JUNQ and IPOD-like compartments in the presence of LatA, 

reminiscent of untreated WT cells. Since LatA treatment did not reduce cell viability (Figure 

5.22), the inhibitory effect of LatA can be directly linked to a non-functional actin 

cytoskeleton. The exclusive formation of juxtanuclear inclusions in hsp42∆ cells also strictly 

depended on an intact actin cytoskeleton, since addition of LatA prevented juxtanuclear 

accumulation of mCherry-VHL inclusions, whereas LatA-resistant hsp42∆ cells displayed a 

single focus in the presence of LatA (Figure 5.21 B). Notably, the deletion of HSP42 did not 

affect the organization of the actin cytoskeleton at both physiological and folding stress 

conditions (Figure 5.23), thus ruling out the possibility that the hsp42∆ phenotype is directly 

caused by an alteration of the actin cytoskeleton. Taken together, the actin cytoskeleton is of 

crucial importance for aggregate partitioning to both JUNQ and IPOD-like compartments.  
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Figure 5.20 Microtubule-independent effects of benomyl prevent aggregate sorting of misfolded mCherry-
VHL into JUNQ and IPOD-like compartments.  
mCherry-VHL (green) localization was analyzed after stress application in the presence of the microtubule-
depolymerizing drug benomyl in wild-type (WT) cells (A) and a yeast strain containing a mutation in tubulin-2, 
which renders the microtubule cytoskeleton resistant to benomyl (B). After 30 and 180 min incubation at 37°C 
(+ MG132) in the presence of benomyl, both WT and benomyl-resistant cells contained multiple dispersed 
mCherry-VHL foci and did not exhibit JUNQ and IPOD-like compartments. Instead of benomyl, control cells 
were treated with the same amount of DMSO. 
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Figure 5.21 The actin cytoskeleton is required for aggregate compartmentalization.  
Reduction of mCherry-VHL (green) foci numbers during prolonged folding stress requires actin polymerization. 
S. cerevisiae cells expressing mCherry-VHL were grown at 30°C and shifted to 37°C (+ MG132). The actin-
depolymerizing drug latrunculin A (LatA) was added prior to temperature shift. Instead of LatA, control cells 
were treated with the same volume of DMSO. (A) mCherry-VHL localization was monitored in wild-type (WT) 
cells and a yeast strain containing a mutation in actin-1, rendering the actin cytoskeleton resistant to LatA. LatA 
treatment prevented reduction of mCherry-VHL foci numbers in WT but not in LatA-resistant cells during 180 
min incubation at 37°C. Nuclei were visualized by co-expressing HTB1-Cerulean (red) (B) hsp42∆ cells 
expressing VHL-mCherry were treated as described above. The juxtanuclear accumulation of mCherry-VHL 
foci in hsp42∆ cells also requires a functional actin cytoskeleton. 
 

 

 

 

 

 

 

 

 

 
 
Figure 5.22 Latrunculin A treatment does not reduce cell viability  
Wild-type (WT) cells were incubated for 180 min at 37°C in the presence of the actin-depolymerizing drug LatA 
and proteasome inhibitor MG132. Instead of LatA, control cells were treated with same amount of DMSO. 
Subsequently, the cells were washed and spotted in a serial dilution onto an agar plate. The image was acquired 
after two days growth at 30°. 
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Figure 5.23 Actin cytoskeleton is not altered in hsp42∆ cells at both physiological and folding stress 
conditions.  
S. cerevisiae wild-type (WT) and hsp42∆ cells were incubated at 30°C (top) and shifted to 37°C (+ MG132) for 
30 min (middle) and 180 min (bottom). The actin cytoskeleton was visualized via a genomic C-terminal fusion 
of mCitrine to the actin binding protein 140 (Abp140). 
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5.8 Monitoring organization of misfolded proteins upon severe heat stress 

using fluorescent reporters 

Misfolded proteins, which are generated in yeast cells during mild thermal stress (37°C) and 

inhibited proteasomal degradation, are partitioning between specific deposition sites, namely 

the JUNQ and IPOD-like compartments. In order to address the question whether the spatio-

temporal organization of misfolded proteins is altered in cells subjected to sublethal heat 

shock, I analyzed the localization of mCitrine-luciferase and endogenous yeast aggregates 

stained by Hsp104-mCFP in cells with intact proteasomal degradation at physiological 

temperature (30°C), after a preconditioning period (37°C, 45 min) that was followed by 

sublethal heat shock (45°C, 20 min), and various time points of recovery (30°C) (Figure 

5.24).  

 
 
Figure 5.24 Outline of the experimental setup for heat shock treatment followed by a recovery period.  
The localization of the fluorescent reporters was monitored in cells with intact proteasomal degradation at 30°, 
after a preconditioning period (37°C, 45 min), sublethal heat shock (45°C, 20 min), and various time points of 
recovery at 30°C. When the reactivation of aggregated luciferase was assessed by measuring its enzymatic 
activity, de novo synthesis of mCitrine-luciferase was inhibited by addition of 10 µg/ml cycloheximide before 
heat shock. 
 

Concomitantly, the folding status of mCitrine-luciferase was monitored by measuring its 

enzymatic activity. The preconditioning period is required for efficient reactivation of 

luciferase during the recovery phase (data not shown). At physiological temperature (30°C) 

mCitrine-luciferase displayed a homogenous cytosolic distribution, whereas Hsp104-mCFP 

was enriched in the nucleus (Figure 5.25). Preconditioning at 37°C resulted in the formation 

of heterogeneous numbers of fluorescent foci, mainly zero to three for mCitrine-luciferase, 

while Hsp104-mCFP displayed even higher inclusion numbers (Figure 5.25 and Figure 5.26 

A/B). Cells harboring such foci localized one inclusion preferentially in close proximity to the 

nucleus. It should be noted that foci formation of mCitrine-luciferase was neither 

accompanied by a significant loss of cytosolic mCitrine-luciferase fluorescence nor by a 

decrease of luciferase activity, indicating that only a minor fraction of mCitrine-luciferase 

aggregates at 37°C. Heat shock at 45°C caused the loss of a homogenous cytosolic staining 

and induced the formation of numerous inclusions that were distributed throughout the 

cytosol (Figure 5.25). mCitrine or mCFP alone did not form inclusions in response to heat 
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shock, demonstrating that foci formation is driven either by aggregation of the fusion partner 

luciferase or the binding of Hsp104 to generated aggregates (data not shown). After recovery 

at 30°C for 60 min, cytosolic mCitrine-luciferase and Hsp104-mCFP fluorescence was 

regained and most inclusions were cleared, leaving cells with zero to three mCitrine-luciferase 

and even more Hsp104-mCFP aggregation foci. Concordant with mild thermal stress during 

preconditioning, cells preferred to localize one aggregate juxtanuclear (Figure 5.25 and Figure 

5.26). 120 min recovery were sufficient for most cells to eliminate mCitrine-luciferase 

inclusions, while half of the Hsp104-mCFP expressing cells still possessed mainly one or two 

inclusions, of which one was often found close to the nucleus (Figure 5.25 and Figure 5.26).  

 

 
 
Figure 5.25 Spatio-temporal organization of heat shock-induced protein aggregates.  
Time-dependent changes in the localization of mCitrine-luciferase and endogenous yeast aggregates stained by 
Hsp104-mCFP (bottom) (both green) in wild-type (WT) cells at 30°C, after preconditioning at 37°C for 45 min, 
heat shock at 45°C for 20 min, and recovery at 30°C for 60 min and 120 min. Nuclei were visualized by co-
expressing HTB1-mCherry (red). 
 

Summarized, I observed similar numbers and localization of fluorescent foci of mCitrine-

luciferase and Hsp104-mCFP at the various time points. Hsp104-mCFP stained more 

inclusions than visualized with mCitrine-luciferase, demonstrating that the use of the 

thermolabile luciferase reporter does not lead to artificial results, and indicating the existence 

of highly heat-labile proteins in S. cerevisiae. Simultaneous expression of Hsp104-mCFP and 

mCitrine-luciferase revealed perfect co-localization upon heat stress, underscoring the 

recruitment of Hsp104 to heat-induced aggregates and demonstrating that both fluorescent 

fusion proteins are valuable tools to study protein aggregation (Figure 5.27). The aggregation 

pattern of mCitrine-luciferase was also analyzed in the presence of the translation inhibitor 

cycloheximide that was added after preconditioning. Cycloheximide treatment did not reduce 

cell viability (data not shown) and resulted in the same numbers and localizations of 

fluorescent foci as compared to non-treated cells (Figure 5.28). Consequently, the observed  



Results 

 83

 
 
 
 
 

 
 
Figure 5.26 Spatio-temporal organization of heat shock-induced protein aggregates.  
Number (dark grey columns) and localization (colored columns) of mCitrine-luciferase (A) and Hsp104-mCFP 
(B) inclusions after the preconditioning period (37°C, 45 min) and recovery at 30°C for 60 min and 120 min in 
wild-type (WT) cells. The color code deciphers foci localization. Red corresponds to zero juxtanuclear 
inclusions, blue to one, green to two, and yellow to three. The total number of foci per cell is depicted in all 
diagrams on the x-axis. Quantifications are based on the analysis of n = 100 cells. 



Results 

 84

 
 
Figure 5.27 Hsp104-mCFP co-localizes with mCitrine-luciferase.  
Hsp104-mCFP (red) and mCitrine-luciferase (green) were co-expressed in wild-type (WT) cells. Protein 
localizations were determined after heat shock (45°C, 20 min), revealing co-localization of Hsp104-mCFP and 
mCitrine-luciferase inclusions. 
 

differences in cellular localization reflect an active redistribution of the preexisting fusion 

protein. Cycloheximide treatment also allowed clarifying to which extent mCitrine-luciferase 

is refolded during the recovery phase. The majority (60-70 %) of mCitrine-luciferase was 

reactivated upon solubilization within 30 min recovery at 30°C (Figure 5.29). To assess the 

dependence of mCitrine-luciferase solubilization and reactivation on Hsp104, I monitored 

localization of mCitrine-luciferase in the isogenic hsp104∆ strain. Preconditioning at 37°C 

resulted in the formation of higher numbers of fluorescent foci in approx. 20 % of cells in 

comparison to WT, implying a minor role for Hsp104 during mild thermal stress (Figure 5.30 

A/B). Heat shock induced numerous aggregates that were dispersed throughout the cytosol, 

reminiscent of WT cells. During the recovery phase the hsp104∆ strain did not clear the 

fluorescent inclusions, which remained distributed throughout the cytosol. In agreement with 

the persistence of aggregation foci, mCitrine-luciferase enzymatic activity was barely 

reactivated (Figure 5.29). Notably, Hsp104-mCFP expressing cells provided WT-like 

mCitrine-luciferase reactivation, indicating full functionality of the fusion construct (Figure 

5.29). 

 

 
 
Figure 5.28 A translation inhibitor does not change the spatio-temporal organization of mCitrine-
luciferase aggregates. 
Time-dependent changes in the localization of mCitrine-luciferase (green) in wild-type (WT) cells at 30°C, after 
preconditioning at 37°C for 45 min, heat shock at 45°C for 20 min, and recovery at 30°C for 60 and 120 min. De 
novo synthesis of mCitrine-luciferase was inhibited by addition of 10 µg/ml cycloheximide (CHX) before the 
heat shock. Nuclei were visualized by co-expressing HTB1-mCherry (red). 
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Figure 5.29 Reactivation of aggregated mCitrine-luciferase is completed within 30 min and dependent on 
the presence of Hsp104. 
Reactivation of aggregated mCitrine-luciferase is shown in the isogenic wild-type (WT) (blue) and hsp104∆ 
(red) strains, and cells expressing Hsp104 C-terminally tagged in the genome with mCFP (green). Luciferase 
activity during the recovery phase at 30°C is displayed. The luciferase activity before heat shock was set as 100 
%. De novo synthesis of mCitrine-luciferase was inhibited by addition of 10 µg/ml cycloheximide before heat 
shock. Within 30 min recovery at 30°C, luciferase reactivation is completed in the WT strain. Hsp104-mCFP 
exhibits WT-like luciferase refolding after heat shock 
 
 
 
 

 
 
Figure 5.30 Spatio-temporal organization of heat shock-induced protein aggregates in hsp104∆ cells. 
(A) Time-dependent changes in the localization of mCitrine-luciferase (green) in hsp104∆ cells at 30°C, after 
preconditioning at 37°C for 45 min, heat shock at 45°C for 20 min, and recovery at 30°C for 60 and 120 min. 
Nuclei were visualized by co-expressing HTB1-mCherry (red). (B) Number (dark grey columns) and 
localization (colored columns) of mCitrine-luciferase inclusions after the preconditioning period (37°C, 45 min). 
The color code deciphers foci localization. Red corresponds to zero juxtanuclear inclusions, blue to one, green to 
two, and yellow to three. The total number of foci per cell is depicted in all diagrams on the x-axis. 
Quantifications are based on the analysis of n = 100 cells. 
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5.9 Following severe heat stress mCherry-VHL is not sorted to specific 

compartments 

Our observation that protein aggregates generated upon heat stress are rather randomly 

distributed throughout the yeast cell during both formation and disaggregation, appears at first 

glance to conflict the identification of specific deposition sites of misfolded proteins (JUNQ, 

IPOD) (Kaganovic et al., 2008). I here sought to compare the organization of mCherry-VHL 

during prolonged mild thermal stress and recovery from sublethal heat shock. At 30°C 

mCherry-VHL displayed a diffuse staining (Figure 5.31). In the presence of the proteasome 

inhibitor MG132 incubation at 37°C for 30 min induced formation of multiple cytosolic 

punctae (Figure 5.31 top). Prolonged incubation at 37°C (180 min) resulted in reduction of 

foci numbers, leaving cells with JUNQ and IPOD-like inclusions. In order to address 

mCherry-VHL localization in response to more severe thermal stress, I subjected proteasome-

inhibited cells (+MG132) to sublethal heat shock (45°C, 20 min) and allowed recovery either 

at 30°C or 37°C for 180 min. Heat shock induced the formation of multiple mCherry-VHL 

foci distributed throughout the cytosol (Figure 5.31 bottom), reminiscent of mCitrine-

luciferase and Hsp104-mCFP. Subsequent incubation at 30°C or 37°C for 180 min increased 

the juxtanuclear fraction of aggregates, but numerous inclusions remained dispersed in the 

cellular periphery, implying that distinct mCherry-VHL aggregation compartments do not 

form after heat shock. Taken together, these observations indicate that the applied stress 

condition has a profound impact on aggregate organization, since a simple sorting of 

mCherry-VHL, mCitrine-luciferase, and Hsp104-mCFP to JUNQ or IPOD-like deposition 

sites was no longer observed upon heat shock to 45°C. 
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Figure 5.31 Following heat shock mCherry-VHL is not sorted to distinct compartments.  
Time-dependent changes in the localization of mCherry-VHL (green) at 30°C, after shift to 37°C for 30 and 180 
min (top), or after heat shock (45°C, 20) and subsequent recovery at 30°C for 120 min or 37°C for 180 min 
(bottom). Before temperature shift, proteasomal degradation was blocked by addition of MG132. Nuclei were 
visualized by co-expressing HTB1-Cerulean (red). 
 

5.10 Protein disaggregation does not rely on specific deposition sites 

In order to gain insight into the dynamics of aggregate formation and solubilization, I 

performed time-lapse microscopy of single yeast cells expressing either mCitrine-luciferase or 

Hsp104-mCFP. Here, I had a major emphasis on the organization of aggregates during heat 

shock and the recovery phase at 30°C. Between 10 min and 20 min heat shock only minor 

movements of inclusions were monitored (Figure 5.32 A/B). During the first 30 min of 

recovery I observed a reduction of total foci numbers that was accompanied by an increase in 

fluorescent intensity of both remaining foci and background. Subsequently, the residual 

inclusions were progressively vanishing.  Since reactivation of luciferase is largely completed 

within 30 min (Figure 5.29), I sought to obtain more detailed insight into the inclusion 

dynamics of this time interval. I performed single cell microscopy with 1 min time resolution, 

starting at 10 min recovery (Figure 5.33). Earlier time points could not be monitored due to an 
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unstable focus caused by the temperature shift from 45°C to 30°C. The higher time resolution 

revealed mobility of both juxtanuclear and peripheral inclusions. Since the aggregates were 

mostly randomly distributed throughout the reactivation phase, I conclude that sorting of 

aggregates to specific sites is not a prerequisite for Hsp104-mediated solubilization. 

Moreover, the intensity gain of inclusions during the reactivation interval indicates 

agglutination of aggregated proteins to form foci of greater size.  

 

 

 

 
 
Figure 5.32 Reactivation of protein aggregates does not require sorting to specific deposition sites.  
Time-lapse microscopy of single wild-type (WT) cells expressing mCitrine-luciferase (A) or Hsp104-mCFP (B) 
(both green) at the indicated time points. Nuclei were visualized by co-expressing HTB1-mCherry (red). 



Results 

 89

 
 
Figure 5.33 Reactivation of protein aggregates does not require sorting to specific deposition sites.  
Protein aggregates are mostly randomly distributed throughout the luciferase reactivation phase, which is 
completed within 30 min recovery (see Figure 5.29). Time-lapse microscopy pictures with 1 min time resolution, 
starting at 10 min recovery at 30°C, are displayed of a single wild-type (WT) cell expressing mCitrine-luciferase 
(green). Nuclei were visualized by co-expressing HTB1-mCherry (red). 
 

5.11  sHsps  affect the refolding and organization of heat shock-induced 

aggregated proteins 

The S. cerevisiae sHsps have been shown to be involved in protein disaggregation (Hsp26) 

(Cashikar et al., 2005; Haslbeck et al., 2005b) and sequestering misfolded proteins in IPOD-

like compartments (Hsp42) (this study). I therefore sought to gain insight into the role of 

Hsp26 and Hsp42 in the spatio-temporal organization of heat shock-induced protein 

aggregates. First, I compared the misfolding of mCitrine-luciferase in WT, hsp26∆, and 

hsp42∆ cells. When following the refolding of aggregated mCitrine-luciferase during the 

recovery phase by measuring luciferase activity, I observed that an isogenic hsp26∆ strain 

displayed slower refolding kinetics than WT cells, while hsp42∆ showed normal refolding 

(Figure 5.34 A). This cannot be accounted to increased protein degradation, because hsp26∆ 

cells displayed even slightly higher mCitrine-luciferase levels compared to WT cells at the 

end of the recovery period (Figure 5.34 B/C). Congruent to the slower luciferase refolding, 

hsp26∆ cells, in comparison to WT, showed an increased number of remaining mCitrine-

luciferase and Hsp104-mCFP foci after 60 min and 120 min recovery at 30°C (Figure 5.35,  
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Figure 5.34 Small heat shock proteins influence refolding, but not degradation, of heat shock-induced 
protein aggregates.  
(A) The hsp26∆ strain displays slower luciferase refolding kinetics than wild-type (WT) cells, while the hsp42∆ 
strain shows normal refolding. Luciferase activity during the recovery period at 30°C is depicted in the isogenic 
WT (blue), hsp26∆ (pink), and hsp42∆ (green) strains. The luciferase activity before heat shock was set as 100 
%. De novo synthesis of mCitrine-luciferase was inhibited by addition of 10 µg/ml cycloheximide before heat 
shock. (B) mCitrine-luciferase levels are similar in the WT, hsp26∆, and hsp42∆ strains after the preconditioning 
period (37°C, 45 min) and recovery at 30°C for 120 min, as monitored by western blot analysis. (C) 
Quantification of mCitrine-luciferase levels is depicted in WT (blue), hsp26∆ (orange), and hsp42∆ (yellow) 
cells after recovery at 30°C for 120 min. Luciferase levels after the preconditioning period (37°C, 45 min) were 
set as 100 %. 
 

Figure 5.36 A and Figure 5.37 A). Notably, in hsp42∆ cells no mCitrine-luciferase inclusions 

were found neither after preconditioning (37°C, 45 min) nor after 60 and 120 min recovery 

(30°C) (Figure 5.35 A and Figure 5.36 B). While heat shock induced the formation of 

multiple cytosolic mCitrine-luciferase inclusions in hsp42∆ cells, the foci appeared less 

condensed and intense. Heat shock still caused complete inactivation of luciferase in the 

hsp42∆ strain and resulted in the formation of pelletable mCitrine-luciferase aggregates 

(Figure 5.38 A), demonstrating that luciferase forms aggregates in hsp42∆ cells, which are, 

however, differently organized. After 60 and 120 min recovery, a minor fraction of luciferase 

was yet pelletable, similar to WT cells. However, in the WT strain aggregation foci were still 

detectable. I conclude that the mCitrine-luciferase aggregates in hsp42∆ cells, which remain 

throughout the recovery phase, are of smaller, sub-microscopic size. Alternatively, the 

detectable foci in WT cells could constitute only a minor fraction of total luciferase, such that 
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differences in pelletable luciferase were not detectable via Western blotting. The lack of 

detectable foci cannot be accounted to upregulated protein degradation, because hsp42∆ and 

WT cells displayed similar amounts of mCitrine-luciferase degradation (Figure 5.34 B/C). 

Neither can it be accounted to upregulation of the heat shock response, because WT and 

hsp42∆ cells expressed similar amounts of Hsp104 (Figure 5.38 B). In hsp42∆ cells 

complemented with Hsp42 expressed from its native promoter, peripheral mCitrine-luciferase 

aggregation foci were detectable after recovery at 30°C for 60 min (Figure 5.39 A). 

Moreover, knocking out HSP42 in a different yeast strain (W303) resulted in disappearance of 

inclusions (Figure 5.39 B), demonstrating that the altered distribution of protein aggregates is 

directly caused by missing Hsp42. 

To generalize my finding, I next monitored the generation and solubilization of heat stress-

induced endogenous yeast aggregates stained by Hsp104-mCFP in hsp42∆ cells. After the 

preconditioning period, strongly reduced numbers of endogenous yeast aggregation foci were 

detectable in hsp42∆ cells in comparison to WT (Figure 5.35 B and Figure 5.37 B). 

Moreover, the foci localized almost exclusively juxtanuclear. Heat shock induced the 

formation of multiple cytosolic Hsp104-mCFP stained inclusions, the foci however appeared 

less condensed and intense. During recovery at 30°C, peripheral inclusions were more rapidly 

cleared in hsp42∆ cells than WT. Juxtanuclear inclusions were still detectable in roughly one 

third of the cells after 120 min recovery (30°C). Hsp42∆ cells therefore do not possess 

detectable inclusions that remain in the cellular periphery.  

In order to gain insight into the organization dynamics of endogenous yeast aggregates in the 

WT and hsp42∆ strains, I performed time-lapse microscopy of single yeast cells expressing 

Hsp104-mCFP with 2 min time resolution. Since Hsp42 had no influence on the reactivation 

of luciferase, I here had a major emphasis on the organization of aggregates remaining after 

30 min recovery at 30°C. In WT cells the agglutination of diverse inclusions into foci with 

increased fluorescent intensity was monitored, indicating fusion of smaller aggregates to 

larger ones (Figure 5.40 A), corroborating my earlier finding (Figure 5.32 and Figure 5.33). In 

hsp42∆ cells juxtanuclear accumulation of aggregates was accompanied by vanishing of 

peripheral foci (Figure 5.40 B), substantiating that Hsp42 is essential for the residence of 

protein inclusions in the cellular periphery.  
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Figure 5.35 Small heat shock proteins influence the organization of heat shock-induced protein 
aggregates.  
Time-dependent changes in the localization of mCitrine-luciferase (A) or endogenous yeast aggregates stained 
by Hsp104-mCFP (B) (both green) in wild-type (WT), hsp26∆, and hsp42∆ cells at 30°C, after preconditioning 
at 37°C for 45 min, heat shock at 45°C for 20 min, and recovery at 30°C for 60 and 120 min. Nuclei were 
visualized by co-expressing HTB1-mCherry (red). 
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Figure 5.36 Small heat shock proteins influence the organization of mCitrine-luciferase aggregates. 
Number (dark grey columns) and localization (colored columns) of mCitrine-luciferase inclusions in hsp26∆ (A) 
and hsp42∆ (B) cells after the preconditioning period (37°C, 45 min) and recovery at 30°C for 60 and 120 min. 
The color code deciphers foci localization. Red corresponds to zero juxtanuclear inclusions, blue to one, green to 
two, and yellow to three. The total number of foci per cell is depicted in all diagrams on the x-axis. 
Quantifications are based on the analysis of n = 100 cells. 
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Figure 5.37 Small heat shock proteins influence the organization of endogenous yeast aggregates stained 
by Hsp104-mCFP.  
Number (dark grey columns) and localization (colored columns) of Hsp104-mCFP stained inclusions in hsp26∆ 
(A) and hsp42∆ (B) cells after the preconditioning period (37°C, 45 min) and recovery at 30°C for 60 and 120 
min. The color code deciphers foci localization. Red corresponds to zero juxtanuclear inclusions, blue to one, 
green to two, and yellow to three. The total number of foci per cell is depicted in all diagrams on the x-axis. 
Quantifications are based on the analysis of n = 100 cells. 
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Figure 5.38 mCitrine-luciferase solubility as well as Hsp104 expression levels are not altered in hsp42∆ 
cells.  
(A) mCitrine-luciferase solubility is similar in the WT and hsp42∆ strains. Solubility was assessed in wild-type 
(WT), hsp42∆, and hsp104∆ cells at 30°C, after preconditioning at 37°C for 45 min, heat shock at 45°C for 20 
min, and recovery at 30°C for 60 and 120 min. The solubility was determined by a supernatant-pellet assay 
described in materials and methods (paragraph 4.3.4). T = total lysate, S = supernatant, P = pellet. (B) Hsp104 
expression levels are similar in WT and hsp42∆ cells at 30°C and after the preconditioning period (37°C, 45 
min). 
 
 
 

 
 
Figure 5.39 The altered distribution of protein aggregates in hsp42∆ cells is directly caused by missing 
Hsp42. 
(A) Complementing the hsp42∆ strain with Hsp42 expressed from its native promoter induces reappearance of 
peripheral aggregation foci. Image of hsp42∆ cells expressing both mCitrine-luciferase (green) and Hsp42 is 
shown after recovery at 30°C for 60 min. Nuclei were visualized by co-expressing HTB1-mCherry (red). (B) 
Knocking out HSP42 in a different yeast strain (W303) results in disappearance of peripheral inclusions. W303 
WT and hsp42∆ cells expressing mCitrine-luciferase are depicted after the preconditioning period (37°C, 45 
min) and recovery at 30°C for 60 min. 
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Figure 5.40 Hsp42 is essential for the persistence of protein inclusions in the cellular periphery.  
Time-lapse microscopy pictures with 2 min time resolution, starting at 28 min recovery at 30°C, are shown of 
wild-type (WT) (A) and hsp42∆ (B) cells expressing Hsp104-mCFP (green). Nuclei were visualized by co-
expressing HTB1-mCherry (red). In WT cells the agglutination of diverse foci into inclusions with increased 
fluorescent intensity (red circle) was monitored. In hsp42∆ cells juxtanuclear accumulation of aggregates was 
accompanied by vanishing of peripheral foci. 
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5.12  Misfolded proteins accumulate at the nucleus in hsp42∆ cells 

irrespective of the aggregate load 

I next monitored the organization of aggregates in the presence of an inhibitor of proteasomal 

degradation (MG132). Blocking the proteasome greatly increased the number of Hsp104-

mCFP foci in WT cells. After the preconditioning period and 120 min recovery, almost all 

WT cells carried aggregation foci (Figure 5.41 A/B). This is in contrast to cells with intact 

proteasomal degradation, where protein inclusions are cleared in more than 80 % of cells 

within 120 min recovery, indicating that proteasome inhibition increases the substrate load for 

the quality control system. To further challenge the hsp42∆ phenotype, I also applied heat 

stress in the hsp42∆ strain in the presence of MG132. Even the enhanced aggregate load did 

not result in the formation of stable peripheral inclusions in hsp42∆ cells and aggregates were 

exclusively observed as juxtanuclear foci after preconditioning and 120 min recovery (Figure 

5.41 A/B). Notably, the juxtanuclear foci were maintained in 70 % of cells within 120 min 

recovery. 

I also performed time-lapse microscopy of single cells expressing Hsp104-mCFP under such 

conditions (+ MG132) and followed the spatio-temporal organization of endogenous yeast 

aggregates during heat shock and subsequent recovery. In the WT strain aggregation foci 

were formed and pertained juxtanuclear and in the periphery (Figure 5.42 A). In the hsp42∆ 

strain aggregation foci were exclusively localizing to the nucleus within 30 min recovery 

(Figure 5.42 B). Remarkably, the intensity of the juxtanuclear-localized foci was greatly 

increased in comparison to hsp42∆ cells with intact proteasomal degradation. Taken together, 

misfolded proteins accumulate at the nucleus in the hsp42∆ strain irrespective of the 

aggregate load. 
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Figure 5.41 Juxtanuclear accumulation of protein inclusions in hsp42∆ cells occurs irrespective of the 
aggregate load.  
(A) Number (dark grey columns) and localization (colored columns) of endogenous yeast aggregates stained by 
Hsp104-mCFP were monitored in wild-type (WT) and hsp42∆ cells after the preconditioning period (37°C, 45 
min) and recovery at 30°C for 120 min. The proteasomal inhibitor MG132 was added before preconditioning. 
The color code deciphers foci localization. Red corresponds to zero juxtanuclear inclusions, blue to one, green to 
two, and yellow to three. The total number of foci per cell is depicted in all diagrams on the x-axis. 
Quantifications are based on the analysis of n = 100 cells. 
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Figure 5.42 Aggregation foci accumulate rapidly at the nucleus in hsp42∆ cells during blocked 
proteasomal degradation.  
Time-lapse microscopy pictures are shown of single wild-type (WT) (A) and hsp42∆ (B) cells expressing 
Hsp104-mCFP (green) at the indicated time period during heat shock and the recovery phase at 30°C. The 
proteasome inhibitor MG132 was added before preconditioning. Nuclei were visualized by co-expressing HTB1-
mCherry (red). 
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5.13 The actin cytoskeleton does not play a role in protein disaggregation 

The actin cytoskeleton is of crucial importance for aggregate partitioning to both the JUNQ 

and IPOD compartment (Figure 5.21). I therefore sought to determine whether it is also 

required for the resolubilization of heat-shock induced protein aggregates. For this purpose I 

followed Cerulean-luciferase and Hsp104-mCFP localization during heat shock and the 

subsequent recovery phase at 30°C in the presence of the actin-depolymerizing drug 

latrunculin A (LatA), which causes complete disruption of the yeast actin cytoskeleton 

(Ayscough et al., 1997). The actin cytoskeleton was visualized via a genomic C-terminal 

fusion of mCitrine to Abp140 in Cerulean-luciferase expressing cells (Yang and Pon, 2002). 

While actin cables were present after heat shock and throughout the recovery phase in the 

DMSO-treated control cells, the LatA-treated cells displayed a completely disassembled actin 

cytoskeleton (Figure 5.43 A). Heat shock-induced Cerulean-luciferase and yeast endogenous 

aggregates stained via Hsp104-mCFP were however similar efficiently resolubilized in the 

presence and absence of LatA (Figure 5.43 A/B). The juxtanuclear persistence of Hsp104-

stained aggregates in hsp42∆ cells was also independent of an intact actin cytoskeleton, 

because the presence of LatA did not influence the localization of misfolded proteins in the 

hsp42∆ strain (Figure 5.43 C). Therefore, the actin cytoskeleton seems of no importance for 

the disaggregation of protein inclusions.  
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Figure 5.43 The actin cytoskeleton is not required for protein disaggregation.  
(A) The clearance of heat shock-generated Cerulean-luciferase inclusions does not require actin polymerization. 
S. cerevisiae cells co-expressing Cerulean-luciferase (green) and Abp140-mCitrine (red), which binds actin 
cables and patches, were preconditioned at 37°C for 45 min, heat shocked at 45°C for 20 min, and allowed to 
recover at 30°C for 120 min. The actin-depolymerizing drug latrunculin A (LatA) was added prior to heat shock. 
Instead of LatA, control cells were treated with the same volume of DMSO. Nuclei were visualized by co-
expressing HTB1-mCherry (blue). (B+C) The juxtanuclear persistence of Hsp104-mCFP foci in hsp42∆ cells 
does not require a functional actin cytoskeleton. Wild-type (WT) (B) and hsp42∆ (C) cells expressing Hsp104-
mCFP (green) were treated as described in (A). Nuclei were visualized by co-expressing HTB1-mCherry (red). 
 

5.14  Protein inclusions are inherited asymmetrically 

Protein aggregates have been shown to be unequally partitioned between dividing cells 

(Fuentealba et al., 2008; Lindner et al., 2008; Aguilaniu et al., 2003). We therefore sought to 

determine whether protein inclusions are segregated into daughters in S. cerevisiae. For that 

purpose time lapse microscopy of single cells was performed during the recovery period from 

heat shock. Interestingly, no novel buds were formed in cells until 45-60 min recovery 

(30°C), when most aggregation foci had successfully been cleared. Neither were pre-existing 

buds enlarged during this time interval. Once mitosis was started, the mCitrine–luciferase 

(data not shown) or Hsp104-mCFP stained foci, which were still remaining, were not 

segregated into daughters in all cells observed (Figure 5.44 A). Thus, WT cells keep their 

offspring devoid of visible protein inclusions. In order to monitor cells with a higher content 

of inclusions, we studied aggregate inheritance in hsp26∆ cells and could not observe 

aggregate partitioning into buds (Figure 5.44 B).  

Aggregate clearance is nonetheless not a prerequisite for cell division, because the isogenic 

hsp104∆ strain, which had been heat shocked, still displayed mitosis. In contrast to WT cells, 

the cluttered protein aggregates in heat-shocked hsp104∆ cells entered the buds (Figure 5.44 

C). However, if hsp104∆ cells were exposed to mild thermal stress (37°C, +MG132), the 

inclusions were not entering daughter cells (Figure 5.44 D). We conclude that sequestration of 

aggregated proteinacious material into larger foci might ensure retention of protein aggregates 

in the mother cell and thus might contribute to rejuvenation of the progeny. 
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Figure 5.44 Aggregation foci are inherited asymmetrically. 
S. cerevisiae wild-type (WT) cells expressing Hsp104-mCFP (A), and hsp26∆ (B) and hsp104∆ (C) cells 
expressing mCitrine-luciferase (green) were preconditioned at 37°C for 45 min, heat shocked at 45°C for 20 min, 
and allowed to recover at 30°C. Alternatively, hsp104∆ cells expressing mCitrine-luciferase were incubated at 
37°C for 120 min and subsequently shifted to 30°C (D). Time-lapse microscopy pictures with 15 min time 
resolution, starting at the indicated time point of recovery at 30°C, are displayed. The proteasomal inhibitor 
MG132 was added before preconditioning (A-C) or shift to 37°C (D). Nuclei were visualized by co-expressing 
HTB1-mCherry (red). 
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5.15 sHsps do not accelerate the velocity of thermal  luciferase aggregation in 

vitro  

The results of the current study demonstrate an effect of S. cerevisiae sHsps on protein 

aggregate reactivation and localization. sHsps might therefore seed aggregation of their 

substrates. Since sHsps co-aggregate efficiently with non-native polypeptides, they could 

have a higher affinity for unfolded protein segments than other non-native polypeptides, 

which compete for binding to exposed hydrophobic regions. In order to determine whether 

sHsps actually accelerate the aggregation process of their substrates, I followed in vitro the 

aggregation kinetics of CFP- and YFP-luciferase in the presence and absence of sHsps. First, I 

established high-yield expression and purification protocols for Hsp26 and Hsp42 in E. coli. 

Both chaperones were N-terminally fused to a His6-SUMO tag. The His6 tag facilitates 

purification with Ni–NTA chromatography and SUMO fusion leads to enhanced expression 

and solubility (Koken et al., 1993). However, the high-yield protocol in E. coli that I 

established for Hsp42 did not generate functional chaperone (data not shown). On the other 

hand, testing Hsp26 chaperone activity in preventing the formation of light-scattering 

aggregates of malate dehydrogenase (MDH), I monitored an Hsp26 concentration dependent 

suppression of aggregation. Four times molar excess of Hsp26 prevented almost completely 

the formation of light scattering inclusions during MDH denaturation (Figure 5.45). The 

subsequent experiments were therefore carried out only with Hsp26. 

Small protein inclusions formed at the beginning of the aggregation process do not contribute 

to light scattering at 600 nm. To establish a more sensitive assay for assessing protein 

aggregation, I cloned and purified CFP-luciferase and YFP-luciferase. Since the thermostable 

CFP and YFP moieties constitute an efficient FRET pair, the heat-induced aggregation 

kinetics of thermolabile luciferase could be monitored by following the FRET signal. 

Incubating an equimolar mix of the fusion proteins at 45°C generated upon CFP excitation a 

FRET signal, while, as expected, the CFP fluorescence was quenched (Figure 5.46 A). 

Surprisingly, carrying out the experiment in the presence of up to eight times molar excess of 

Hsp26 did not affect the FRET measurement (Figure 5.46 C). For that reason I monitored 

CFP-luciferase and YFP-luciferase prevention of aggregation in the presence of Hsp26, and 

did not find any effect of the chaperone on the formation of light scattering inclusions during 

heat denaturation of the luciferase fusion proteins (Figure 5.46 B). Consequently, in vitro 

luciferase constitutes a poor substrate for Hsp26. When testing a different sHsp, Hsp16.6 from 

the cyanobacterium Synechocystis, I observed an efficient prevention of light scattering 
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inclusion formation of the luciferase hybrid proteins (Figure 5.46 D). Hsp16.6 can thus 

modulate the aggregation process of the luciferase fusion proteins efficiently. However, no 

acceleration of the FRET process was examined in the presence of Hsp16.6 (Figure 5.46 E/F). 

Consequently, in vitro sHsps do not increase aggregation velocity in my technical setup. 

 

 

 

 

 

 

 

 

 
 
Figure 5.45 Hsp26 influences the thermal aggregation of malate dehydrogenase. 
Influence of Hsp26 on the thermal aggregation of malate dehydrogenase (MDH). MDH (final concentration 0.5 
µM) was diluted into a thermostatted solution (47°C) of 0.5 µM (purple), 1 µM (dark green), and 2 µM (light 
blue) Hsp26. Spontaneous aggregation of MDH at 47°C in the absence of Hsp 26 is depicted in yellow. The 
signal of solely buffer is shown in dark blue. The kinetics of aggregation were determined by measuring the light 
scattering of the sample at 600 nm. 
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Figure 5.46 sHsps do not accelerate the velocity of luciferase aggregation. 
(A) CFP- and YFP-luciferase fusion proteins constitute an efficient FRET pair. Equimolar amounts of CFP- and 
YFP-luciferase (final concentration each 0.5 µM) were diluted into thermostatted buffer (45°C). CFP- and YFP-
luciferase fluorescence was monitored upon CFP excitation. Spontaneous aggregation of luciferase generates a 
FRET signal, i.e. an increase in YFP fluorescence and quenching of CFP fluorescence. (B+C) Hsp26 does not 
influence the thermal aggregation of CFP- and YFP-luciferase in vitro. CFP- and YFP-luciferase (final 
concentration each 0.5 µM) were diluted into a thermostatted solution (45°C) of molar 4 x (2 µM, pink) and 8 x 
(4 µM, blue) Hsp26. Spontaneous aggregation of CFP- and YFP-luciferase at 45°C in the absence of Hsp26 is 
depicted in green. The kinetics of aggregation were determined by measuring (B) the light scattering of the 
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sample at 600 nm and (C) the FRET signal (excitation of CFP and monitoring of YFP fluorescence). (D-F) 
Synechocystis Hsp16.6 prevents light scattering inclusion formation of CFP- and YFP-luciferase, but does not 
increase aggregation velocity. CFP- and YFP-luciferase (final concentration each 0.5 µM) were diluted into a 
thermostatted solution (45°C) of molar 0.5 x (0.5 µM, dark blue), 1 x (1 µM, red), 2 x (2 µM, dark green), 4 x (4 
µM, light green), 8 x (8 µM, blue), and 16 x (16 µM, light blue) Hsp16.6. Spontaneous aggregation of CFP- and 
YFP-luciferase at 45°C in the absence of Hsp 16.6 is depicted in purple. The kinetics of aggregation were 
determined by measuring (D) the light scattering of the sample at 600 nm and (E+F) the FRET signal (excitation 
of CFP and monitoring of YFP fluorescence). (F) Enlargement of the first 2 min of the FRET measurement.  
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6. Discussion 

6.1 The small heat shock protein Hsp42 controls the spatio-temporal 

organization of misfolded proteins in S. cerevisiae 

I here analyzed the sorting of misfolded proteins in yeast cells during prolonged folding 

stress. In accordance with previous findings (Kaganovich et al., 2008), I observed partitioning 

of different fluorescent aggregation reporters between juxtanuclear (JUNQ) and peripheral 

(IPOD) compartments in most cells. These compartments are suggested to fulfill different 

cellular functions. The JUNQ seems to predominantly harbor ubiquitylated substrates, 

potentially allowing for their rapid elimination by increasing the concentration of proteasomes 

at this site (Kaganovich et al., 2008). In contrast, IPOD-like compartments are proposed to 

accumulate terminally misfolded and aggregated proteins, potentially protecting the cell from 

toxic protein species or facilitating aggregate clearance by either autophagy or dilution via 

cell division. Accordingly, mCherry-VHL molecules present in the JUNQ appear to be more 

mobile compared to those sequestered at IPOD-like compartments, in agreement with 

previous findings (Kaganovich et al., 2008). On the other hand, return of yeast cells to 

physiological growth conditions allowed for Hsp104-dependent disintegration of the 

compartments (Figure 5.17, Figure 5.18 and Figure 5.19), indicating that the deposition of 

misfolded proteins at IPOD-like inclusions is not an irreversible event. This observation is 

consistent with the finding that the disaggregase Hsp104 binds to JUNQ and IPOD-like 

compartments (Kaganovich et al., 2008). 

Which cellular factors regulate the distribution of a misfolded substrate pool to the JUNQ and 

IPOD-like compartments? I performed a candidate approach and focused on the S. cerevisiae 

sHsps, namely Hsp26 and Hsp42, as they interact efficiently with aggregation-prone protein 

species (Haslbeck et al., 2004a; Haslbeck et al., 1999a). I speculated that their efficient 

coaggregation might additionally enable sHsps to function as sorting factors for protein 

aggregates. Indeed, I identified Hsp42 as an essential factor in the formation of IPOD-like 

inclusions (Figure 5.5). Misfolded proteins do not accumulate in peripheral inclusions in 

hsp42∆ cells, but seem to be re-directed to the JUNQ, as revealed by increased fluorescent 

intensity of juxtanuclear mCherry-VHL foci. Hsp42 exerts a specific function, because the 

second S. cerevisiae sHsp, Hsp26, did not affect aggregate sorting (Figure 5.5). Consistent 

with this observation Hsp26 was present in all visible inclusions whereas Hsp42 was only 

found in peripheral foci, but was absent from one juxtanuclear focus, suggesting that Hsp42 is 
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directly involved in targeting aggregation-prone proteins to peripheral sites (Figure 5.9). It is 

currently not evident which parameters prevent Hsp42 from association with JUNQ 

compartments. Substrate ubiquitylation has been previously shown to play a crucial role in 

targeting misfolded protein species to the JUNQ and might interfere with Hsp42 binding.  

 
Figure 6.1 Model of the Hsp42-dependent sorting of misfolded proteins during prolonged stress 
conditions.  
Hsp42 co-aggregates with misfolded proteins. The resulting complexes are sorted in an actin-dependent process 
to peripheral inclusions. Protein aggregates not harboring Hsp42 accumulate at the nucleus in a process that also 
requires the actin cytoskeleton. 
 

The consequences of re-directing misfolded proteins exclusively to the juxtanuclear 

deposition sites in hsp42∆ cells are not evident. I noticed surprisingly that the JUNQ 

compartment of hsp42∆ cells showed a moderate increase in substrate mobility and was 

slightly more rapidly solubilized by Hsp104 (Figure 5.16 and Figure 5.17). These findings 

might suggest that the Hsp42-dependent sorting to peripheral compartments retards substrate 

resolubilization, thereby potentially reducing substrate load for the quality control system. 



Discussion 

 110

Since hsp42∆ cells do not exhibit a reported growth or viability phenotype, the consequences 

of controlling substrate flux into distinct compartments remain to be revealed.  

Why does Hsp42, but not Hsp26, control aggregate sorting? Hsp26 represents a temperature-

controlled chaperone that requires increased temperatures for activation, restricting its 

chaperone activity to particular stress conditions (Franzmann et al., 2008; Haslbeck et al., 

1999a). In contrast, Hsp42 appears to be constitutively active, allowing it to associate with 

misfolded proteins generated upon folding stress conditions distinct from heat hock (Haslbeck 

et al., 2004a). Furthermore, I identified the large NTD of Hsp42 as a key determinant in 

contributing functional specificity to the sHsp (Figure 5.12). The Hsp42∆N deletion variant 

did not allow for the formation of IPOD-like inclusions. Since NTDs of sHsps also contribute 

to sHsp oligomerization and thus general functionality, I additionally transferred the Hsp42 

NTD to Hsp26. This N42-Hsp26 chimera exhibited a gain-of-function phenotype, as it could 

partially restore the occurrence of IPOD-like inclusions. According to a key function of the 

Hsp42 NTD in aggregate sorting, Hsp42 deleted of its CTE (Hsp42∆C) could restore 

occurrence of peripheral inclusions, in contrast to Hsp26, Hsp26 with the CTE of Hsp42 

(Hsp26-C42), and Hsp42 possessing the Hsp26 NTD (N26-Hsp42). NTDs of sHsps have been 

demonstrated to mediate substrate interaction and sHsp oligomerization (Jaya et al., 2009; 

Basha et al., 2006; Stromer et al., 2004). Interestingly, a role of NTDs beyond their 

contribution to the chaperone activity of sHsps has been noticed for Synechocystis Hsp16.6, 

which seems to exert an additional, yet unknown activity (Friedrich et al., 2004). My findings 

illuminate a novel function of the Hsp42 NTD in controlling the distribution of aggregated 

proteins between distinct deposition sites. I speculate that at least parts of the elongated 

Hsp42 NTD are exposed at the surface of Hsp42/substrate complexes, even upon co-

aggregation of Hsp42 with misfolded proteins. Such a scenario implies the existence of 

further, so far unknown, sorting factors that might bind to the Hsp42 NTD, thereby potentially 

linking protein inclusions to the actin cytoskeleton, which I have shown to be required for 

aggregate sorting (Figure 5.21). I also considered the possibility that Hsp42 might exert an 

indirect effect by stabilizing the actin cytoskeleton during stress conditions (Gu et al., 1997). I 

did, however, not observe differences in the organization of the actin cytoskeleton in hsp42∆ 

cells when compared to WT cells at both physiological and folding stress conditions (Figure 

5.23). Along the same line, formation of the juxtanuclear deposition sites was still possible in 

hsp42∆ cells, but not upon disruption of the actin cytoskeleton via addition of LatA (Figure 

5.21), largely excluding that Hsp42 exerts its role by simply stabilizing the actin cytoskeleton.  
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Summarized, I unraveled a novel function of the sHsp family in controlling the cellular 

sorting of damaged proteins. In mammalian cells K63-linked polyubiquitylation of substrates 

is suggested to serve as a signal for aggregate sorting by mediating the binding of the adaptor 

protein HDAC6, which links the ubiquitylated substrate to the microtubule motor protein 

dynein (Olzmann and Chin, 2008; Kawaguchi et al., 2003). The use of an incorporated sHsp 

as a specific sorting label for protein inclusions represents a novel strategy. Is this novel role 

of sHsps in controlling the cellular localization of aggregated proteins evolutionary 

conserved? In plant cells the formation of heat stress granules (HSG) depends on sHsp 

activity, supporting such conserved function (Miroshnichenko et al., 2005). Mammalian cells 

have been reported to sequester misfolded proteins into two distinct compartments like yeast 

cells (Kaganovich et al., 2008). Hsp42 homologs are, however, only present in closely related 

fungi, suggesting that Hsp42 function has been taken over by other family members. 

Intriguingly, the number of sHsp family members is strongly increased in higher eukaryotes 

(Haslbeck et al., 2005a) and sHsp function is no longer restricted to protein folding stress, but 

is also linked to e.g. developmental processes and regulation of apoptosis (Heikkila, 2004; 

Arrigo, 2000). The evolutionary variability of N- and C-terminal extensions might enable 

sHsps to adopt novel functions, including the cellular sorting of aggregated proteins, thereby 

potentially taking over the function of S. cerevisiae Hsp42. 

 

6.2 Stress conditions determine the organization of aggregated proteins 

Besides studying the fate of protein aggregates during prolonged thermal stress (37°C) in cells 

with blocked proteasomal protein degradation, I analyzed the spatio-temporal organization of 

aggregates during and after application of sublethal heat shock (45°C, 20 min). I focused on 

establishing an authentic experimental setup, utilizing physiological expression levels of 

reporter constructs and intact proteasomal degradation. Heat shock induced the formation of 

multiple aggregation foci that were distributed throughout the cell (Figure 5.25). No specific 

pattern of aggregate positioning was detected, suggesting that inclusion formation occurs at 

random localization. This agrees with electron microscopic studies, which have observed the 

appearance of large electron dense particles in the cytosol and nucleus after heat shock 

(Parsell et al., 1994). The aggregation of proteins at random localization is likely explained by 

the severity of the heat shock, resulting in the massive generation of misfolded protein 

species, thus temporarily overwhelming the cellular protein quality control and sorting 
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machinery. As soon as stress is removed, proteins are started to be refolded in a process 

requiring Hsp104-dependent protein disaggregation (Figure 5.25 and Figure 5.30). 

Is protein disaggregation coupled to specific localizations? Since aggregation foci remain 

distributed throughout the cytoplasm of the cell during the refolding phase (Figure 5.32 and 

Figure 5.33), protein disaggregation seems to occur in situ. This is further substantiated by the 

observation that a polymerized actin cytoskeleton is not required for the disaggregation 

process (Figure 5.43). These results appear to contrast previous findings showing prolonged 

mild thermal stress (37°C) to result in sorting of misfolded proteins to JUNQ and IPOD-like 

compartments in an actin cytoskeleton dependent manner (Figure 5.21) (Kaganovich et al., 

2008). When the JUNQ/IPOD substrate VHL is subjected to sublethal heat shock (45°C), it is 

no longer sorted to the distinct compartments, but rather forms multiple foci in the cytosol, 

which largely persist throughout the recovery phase (30°C) (Figure 5.31). I suggest that heat 

shock-induced protein misfolding exceeds the functional capacity of the cellular system for 

sorting misfolded proteins to JUNQ/IPOD-like compartments, resulting in protein aggregation 

at random position throughout the yeast cytosol. In consequence, the nature of applied stress 

determines the deposition sites of misfolded proteins. 

Interestingly, disappearance of luciferase and Hsp104-stained aggregation foci during the 

recovery phase is accompanied by an increase in fluorescence intensity of remaining 

inclusions (Figure 5.32, Figure 5.33, and Figure 5.40), suggesting agglutination of protein 

aggregates. The agglutination process might be facilitated by the observed mobility of 

inclusions. Different mobility patterns between peripheral and juxtanuclear aggregates were 

monitored. While peripheral foci were able to move through the cell, juxtanuclear foci 

generally stayed at the nucleus. The cause of juxtanuclear inclusion immobility remains to be 

revealed. 

In search of factors regulating protein aggregation and reactivation, I performed a candidate 

approach and focused on the S. cerevisiae sHsps, namely Hsp26 and Hsp42, which interact 

efficiently with aggregation-prone protein species and function as sorting factors for 

misfolded proteins. Indeed, I observed Hsp26 to be required for rapid reactivation of 

aggregated luciferase (Figure 5.34). In hsp26∆ cells the kinetics of luciferase enzymatic 

activity regain were slower during recovery from heat shock. Congruent to the slower 

luciferase refolding, a delayed disintegration of aggregation foci was detectable in hsp26∆ 

cells (Figure 5.35). These results agree with previous findings showing that Hsp26 renders 

aggregates more accessible to the disaggregation machinery (Hsp104/ Ssa1/Ydj1) (Cashikar 

et al., 2005; Haslbeck et al., 2005b).  
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In contrast to Hsp26, the absence of Hsp42 had no effect on the reactivation of aggregated 

luciferase (Figure 5.34). However, after the preconditioning period and 60 min recovery 

peripheral foci were virtually absent in hsp42∆ cells, while juxtanuclear inclusions were still 

detectable (Figure 5.35). This compares favorably to the observation that Hsp42 is essential 

for the formation of peripheral IPOD-like compartments (Figure 5.5). Notably, sublethal heat 

shock induced the formation of peripheral aggregation foci in hsp42∆ cells (Figure 5.35). The 

inclusions appeared, however, less condensed and intense, indicating that Hsp42 is co-

aggregating with substrates and alters their morphology. During mild thermal stress 

conditions (37°C) protein inclusions form exclusively at the nucleus in hsp42∆ cells (Figure 

5.8). The appearance of peripheral aggregation foci in the hsp42∆ strain points to temporal 

substrate overload of the cellular sorting system, thereby also resulting in protein aggregation 

at random positions in hsp42∆ cells. 

Taken together, I here demonstrate that the actual stress condition has a profound influence on 

the deposition site of protein aggregates in yeast cells. Severe heat shock seems to overwhelm 

the cellular sorting system, which otherwise targets misfolded proteins to JUNQ/IPOD-like 

compartments, resulting in the deposition of protein aggregates at random localizations. 

Subsequent Hsp104-dependent solubilization of aggregates does not require an initial sorting 

of aggregates to distinct sites and, accordingly, takes place in the absence of a functional 

cytoskeleton. I also demonstrate a functional divergence between the S. cerevisiae sHsps 

during the aggregation and disaggregation process. While being not involved in the sorting of 

aggregated proteins, Hsp26 facilitates solubilization of aggregated proteins. In contrast, 

Hsp42 serves strictly as a sorting factor, but does not influence protein disaggregation. The 

cellular protein quality control machinery thus uses specialized sHsp types in the defense 

against misfolded protein species. 
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8. Abbreviations 
 
AAA+ ATPases associated with a variety of cellular activites 

ADP     adenosine diphosphate 

ATP      adenosine triphosphate 

bp      base-pair 

C. elegans     Caenorhabditis elegans 

CHX      cycloheximide 

CFP     cyan fluorescent protein 

CTE     C-terminal extension 

dd      double-distilled 

DMSO     dimethylsulfoxide 

DNA      deoxyribonucleic acid 

dNTPs     deoxyribonucelic triphosphate 

DTT      dithiothreitol 

E. coli      Escherichia coli 

EDTA      ethylenediaminetetraacetic acid 

EtOH      ethanol 

FLIP     Fluorescence Loss in Photobleaching 

FRET     Fluorescence Energy Transfer 

hr     hour 

Hsp     heat shock protein 

IPOD     insoluble protein deposit 

JUNQ     juxtanuclear quality control 

kDa      kilo Dalton 

LatA     latrunculin A 

M      molar 

MDH     malate dehydrogenase 

min     minutes 

µM      micromolar 

mM      millimolar 

nm     nanometer 

nt      nucleotides 

NTD     N-terminal domain 
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PAGE      polyacrylamide gel electrophoresis 

PBS     phosphate-buffered saline 

PCR      polymerase chain reaction 

psi     pounds per square inch 

PVDF      polyvinylidene fluoride 

RNA      ribonucleic acid 

rpm      revolutions per minute 

S      Svedberg unit 

sec     seconds 

S. cerevisiae    Saccharomyces cerevisiae 

SDS     sodium dodecyl sulfate 

sHsp     small heat shock protein 

UV      ultraviolet 

v/v      volume (of solute) per volume (of solvent) 

WT      wild type 

w/v      weight (of solute) per volume (of solvent) 

YFP     yellow fluorescent protein 
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