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The final orientation that a protein assumes in the membrane of the
endoplasmic reticulum is determined by a few types of signal sequences
and their respective interactions with the membrane insertion complex.
Membrane insertion occurs via a series of discrete steps, some of which
are regulated by GTP- and ATP-binding proteins. Analysis of the protein
components in proximity to nascent secretory and membrane proteins has
revealed novel proteins in the endoplasmic reticulum that may form part
of the membrane insertion complex.
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Introduction

Membrane orientation

The endoplasmic reticulum (ER) is a major site of mem-
brane biogenesis in eukaryotic cells. A key feature of this
biogenesis is the vectorial insertion of proteins into the
lipid bilayer of the ER. After their synthesis, membrane
proteins either remain in the ER or are transported to
subcellular destinations throughout the exocytic and en-
docytic pathways, such as the Golgi complex and lyso-
somes, as well as the plasma membrane.

Different proteins assume different orientations within
the membrane. Integral membrane proteins that span the
membrane once can expose either the amino (type I) or
carboxyl (type 1D terminus on the exoplasmic side of
the membrane. Proteins that span the membrane several
times are referred to as multiple-spanning,

The orientation of a membrane protein is defined during
its insertion into the ER membrane, and is maintained,
whatever the destination of the protein. The orientation
that a protein assumes depends on the type of signal se-
quence that it bears [1]. ER-specific signal sequences can
be either cleaved or uncleaved, and are responsible for
targeting proteins 1 the ER; they either initiate their
membrane insertion, or, in the case of secreted pro-
teins, their translocation across the membrane into the
ER lumen [2]. All ER-targeting signal sequences contain
a stretch of apolar amino acid residues. The signals are
recognized by the signal recognition particle (SRP) [3],
which targets the nascent chain-ribosome-SRP complex
to the ER membrane and initiates membrane insertion
[2,4,5].

Single-spanning membrane proteins that have a cleav-
able amino-terminal signal sequence always have type
1 orientation (Fig. 1). A stop-transfer sequence [6] on
the carboxyl-terminal side of the signal sequence aborts
translocation of the nascent chain before it is complete
and functions as a2 membrane anchor. In the absence of
a stop-transfer sequence, the nascent chain is completely
translocated across the membrane and enters the ER lu-
men (Fig. 1).

Membrane proteins with uncleaved ‘signal-anchor’ se-
quences of both type 1 and type II orientation (Fig. 1)
have been identified [1]. The signal-anchor sequence
mediates the ER targeting and insertion of the protein,
and acts as the anchor sequence to retain the protein
in the lipid bilayer. The final orientation that a signal-
anchor protein assumes in the membrane depends on
the nature of the hydrophilic amino acid residues that
flank the hydrophobic core of the signal-anchor se-
quence [7].

The properties of signal-anchor sequences that deter-
mine topology have been determined by analyzing mu-
tant proteins either expressed in cells or inserted into
microsomal membranes in vitro. From such studies it
has been deduced that the number and type of charged
amino acid residues in the regions flanking the hydropho-
bic core of the signal-anchor sequence determine mem-
brane orientation [8¢,9¢,10]. The more charged residues
that a flanking segment contains, the more likely it is to
be retained on the cytoplasmic side of the membrane.

Abbreviations
ER—endoplasmic reticulum; SRP—signal recognition particle; TRAM—translocating chain associating membrane protein.
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Fig. 1. Types of signal sequences. Membrane insertion in opposite orientations is mediated by (a) type | and (b) type Il signal-anchor
sequences (SA). Cleavable signal sequences (S) mediate (c) the membrane translocation of secretory proteins using signal peptidase
{SPase) and (d) the membrane insertion in a type | orientation, which requires a stop-transfer sequence (ST). Hydrophobic membrane-
spanning regions are indicated by helices. @, Clusters of charged amino acid residues that often flank signal-anchor and stop-transfer
sequences on the cytoplasmic side of the membrane-spanning domain. Broken lines indicate parts of the mature protein.

The correlation between the charge distribution of the
regions proximal to the hydrophobic core of a signal-
anchor sequence and the final orientation that the protein
assumes in the membrane is strong enough to be used
as the basis for predicting the membrane orientation of
a protein from its amino acid sequence [11,12].

In addition to the effect of charge there is also, as
might be expected, a minimum length required for the
hydrophobic region of a signal-anchor sequence to re-
main functional [10]. It has been suggested that the
balance between the length of the hydrophobic seg-
ment and the number of flanking charged amino acid
residues determine whether a sequence functions as a
signal-anchor sequence or a cleaved signal sequence
f13+]. Introducing charged amino acids into a signal-
anchor protein does not always result in it adopting
only one orentation in the membrane. Often the same
protein can be found in both orientations, and the addi-
tion or removal of charged residues alters the type I : type
II ratio that the protein displays [8%,9¢,14].

Membrane insertion as a loop

Following proposals that the initial insertion of secre-
tory proteins into the membrane occurs as a loop, sup-
porting experimental evidence has been obtined [15].
The topologies observed with mutated type I and type
II signal-anchor proteins [9°,10,13¢] are also consistent

with this model (Fig. 2). The membrane insertion of
signal-anchor proteins is predicted to occur via loops
formed between the hydrophobic core of the signal-
anchor sequence and the flanking hydrophilic region
on its amino- (type 1) or carboxyl-terminal (type II) side
(Fig. 2). Upon membrane insertion the final orientation
is determined by which of the two regions flanking the
hydrophobic core of the signal-anchor sequence is re-
tained on the cytoplasmic side of the membrane. The
difference between a secreted protein and a type II
signal-anchor protein is the presence of a suitable sig-
nal peptidase cleavage site exposed on the lumenal side
of the ER membrane [15].

Multiple-spanning membrane proteins

It has been proposed that multiple-spanning membrane
proteins achieve their final orientation by using suc-
cessive signal-anchor and stop-transfer sequences [16].
There are good experimental data to support such a
mechanism [17,18] and it still seems the most likely
possibility (19]. Experiments with artificial chimeric pro-
teins have shown that the hydrophilic regions between
the signal-anchor and stop-transfer sequences can affect
the final membrane topology of multiple-spanning mem-
brane proteins [18]. This means that predictions of the
orientation of multiple-spanning membrane proteins are
always susceptible to errors and must be confirmed by
suitable experimental approaches.
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Fig. 2. Model of intermediate steps during the membrane insertion of signal-anchor proteins. The hydrophobic core of the signal-anchor
sequence of a nascent protein (a) interacts with the endoplasmic reticulum (ER) membrane and (b} inserts into the membrane forming
a loop with either the amino-terminal {type ) or the carboxyl-terminal (type Il) flanking region of the protein. {c) The amino or carboxyl
terminus of the protein is translocated into the ER lumen. @, Clusters of charged amino acid residues that often flank signal-anchor
and stop-transfer sequences on the cytoplasmic side of the membrane-spanning domain.

Targeting of nascent membrane proteins to the
endoplasmic reticulum

The targeting of type 1 and type II signal-anchor pro-
teins is, like secreted proteins, mediated by SRP. These
ER-targeting signals all interact with the 54 kD subunit of
SRP (SRP54) [3¢]. Release of the signal sequence from
the SRP54 protein requires the presence of microsomal
membranes and GTP, although GTP hydrolysis is not re-
quired in vitro [20-22,23¢e].

Membrane insertion

While it is now well established that signal-anchor se-
quences consist of a hydrophobic core and flanking
hydrophilic regions, little is known about the mecha-
nism by which they insert into the ER membrane and
attain a particular orientation across it. There is good evi-
dence that protein components of the ER membrane are
directly involved in mediating the insertion of proteins
into the membrane. Thus, the translocation of secre-
tory proteins across the ER membrane is prevented by
pre-treatment of the membranes with N-ethylmaleimide
(24], which modifies the cysteine residues of proteins,

or 8-azido-ATP [25¢,26¢], which is thought to block the
function of ATP-binding proteins.

Nascent secretory proteins appear to be in a protein-
aceous environment in the membrane since they are
released from the membrane by agents that disrupt
protein—protein interactions [27].

It is likely that the interaction of the nascent chain with
these membrane components is also responsible for de-
termining the final orientation of a membrane protein.
The different orientations of membrane proteins could
arise in at least two ways: different proteins may mediate
the insertion of type I and type II signal-anchor proteins
and proteins with cleaved signal sequences; or the same
proteins mediate all membrane insertion and transloca-
tion events, and the details of the molecular interactions
are influenced by the properties of the nascent chain.

Proteins that may mediate membrane insertion

To determine which ER proteins make up the mem-
brane insertion machinery, cross-linking experiments
have been used to define the nearest neighbours of dif-
ferent types of proteins during their membrane insertion.
A ribosome—nascent chain-SRP complex is formed in
vitro and allowed to interact with the ER membrane
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to generate a stable translocation intermediate [2,28].
After activation of a photocross-linking reagent incorpo-
rated into the nascent chain, or cross-linking with homo-
bifunctional reagents, the nearest neighbours can he de-
termined. The results from a number of different labora-
tories [29¢*—31°¢] show that only a few ER proteins are
close to the nascent chain during membrane insertion.
The proteins identified by cross-linking approaches can
be divided into two groups [28]: non-glycoproteins (34
to 37kD) and glycoproteins (35 to 39kD). At least one
of these components, a 37kD non-glycoprotein (P37),
is next to nascent chains with type 1 and type 1I signal-
anchor sequences as well as those with cleaved signal
sequences ([30++]; S High, B Dobberstein, unpublished
data). The glycoproteins consist of at least two distinct
proteins: the so-called signal sequence receptor (SSRa)
and the translocating chain associating membrane pro-
tein (TRAM; [32°°].

Membrane insertion complex

The fact that at least three ER proteins (TRAM, P37
and SSRa) are in close proximity to membrane-inserting
nascent chains suggests that a protein complex may me-
diate membrane insertion. In yeast, three proteins that
are involved in the translocation of secreted proteins
across the ER, Sec61p, Sec62p and Sec63p [33-35], form
part of a complex in the ER membrane [36e¢]. Mutations
in the SECG1, SECG2 and SECG3 genes also affect the in-
sertion of some membrane proteins [37¢,38¢]. suggesting
that the same complex is involved in membrane protein
insertion. Although no homologues of Sec61p, Sec62p or
Sec63p have yet been identified in mammalian ER, it is
tempting to speculate that the non-glycoproteins identi-
fied by cross-linking are the mammalian counterparts of
at Jeast some of these proteins (4].

Mechanisms

While it remains to be established that the proteins identi-
fied by cross-linking are involved in the insertion of mem-
brane proteins into the ER, the results described above
suggest that a common machinery mediates membrane
insertion. How could such a membrane insertion com-
plex facilitate insertion in a type I or type II orientation?
A charged region of the membrane insertion complex,
present at the cytoplasmic face, could retain a charged
region of the nascent chain adjacent to the hydropho-
bic core of the signal-anchor sequence (Fig. 2). The

other end of the nascent chain would then be translo-
cntad oom~oo el sl i D Wl o et

lective retention of one of the two hydrophilic regions
flanking the hydrophobic core of the signal-anchor se-
quence may determine the membrane orentation.

The observation that one signal-anchor protein can as-
sume two orientations in the membrane [8°9¢,14] sug-
gests that kinetic or thermodynamic competition occurs
between the translocation of the amino and carboxyl
termini. This is consistent with the suggestion that the

same machinery is responsible for the membrane inser-
tion of tpe I and type 1I signal-anchor proteins, and that
the way in which a nascent chain interacts with compo-
nents of this machinery determines its final orientation in
the membrane.

An interaction between a charged region of the mem-
brane insertion complex and the cluster of charged
residues that normally follows the apolar region of a
stop-transfer sequence would also account for the abil-
ity of a stop-transfer sequence to integrate into the lipid
bilayer in a stable fashion [19]. Thus, one translocation
site would mediate the insertion of all types of membrane
proteins in a manner determined by the properties of the
nascent chain itself.

Conclusion

The principal features of signal-anchor sequences, cleav-
ed signal sequences and stop-transfer sequences have
been elucidated recently. In each case it has heen found
that a hydrophobic core region combined with tlanking
hvdrophilic sequences is important for function. How
these different sequences function in the process of
membrane insertion is not known. An attractive possi-
bility is that their interaction with components of the
membrane insertion complex determines the final ori-
entation that a protein assumes in the membrane. With
the prospect that the components of this complex will
be identified in the near future we can look forward to
understanding the molecular interactions that determine
membrane protein orientation in the ER.
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