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The final orientation that a protein assumes in the membrane of the 
endoplasmic reticulum is determined by a few types of signal sequences 
and their respective interactions with the membrane insertion complex. 
Membrane insertion occurs via a series of discrete steps, some of which 
are regulated by CTP- and ATP-binding proteins. Analysis of the protein 
components in proximity to nascent secretory and membrane proteins has 
revealed novel proteins in the endoplasmic reticulum that may form part 

of the membrane insertion complex. 
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Introduction 

The endoplasmic reticulum ( ER) is a major site of men- 

brane biogenesis in eukaTotic cells. A key feature of this 
biogenesis is the vectorial insertion of proteins into the 
lipid bilayer of the ER. After their synthesis, membrane 
proteins either remain in the ER or are transported to 

subcellular destinations throughout the ttxocytic and en- 
docytic pathways, such as the Golgi complex and lyso- 
somes, as well as the plasma membrane. 

Different proteins assume different orientations within 
the membrane. Integral membrane proteins that span the 

membrane once can expose either the amino (type I) or 
carboxyl (type 11) terminus on the exoplasmic side of 
the membrane. Proteins that span the membrane several 
times are referred to as multiple-spannilig. 

The orientation of a membrane protein is defined during 
its insertion into the ER membrane, and is maintained, 
whatever the destination of the protein. The orientation 
that a protein assumes depends on the type of signal se- 
quence that it bears [ 1 ]. ER-specitic signal sequences can 
be either cleaved or uncleaved, and are responsible for 
targeting proteins to the ER; they either initiate their 
membrane insertion, or, in the case of secreted pro- 

teins, their translocation across the membrane into the 
ER lumen 121. All ER-targeting signal sequences contain 
a stretch of apolar amino acid residues. The signals are 
recognized by the signal recognition particle ( SRP ) [ 3.1, 

which targets the nascent chain-ribosome-SW complex 
to the ER membrane and initiates membrane insertion 

L&4,5]. 

Membrane orientation 

Single-spanning membrane proteins that have a cleav- 
able amino-terminal signal sequence always have type 
I orientation (Fig. 1 ). A stop-transfer sequence [6] on 
the carbo.xy-terminal side of the signal sequence aborts 

translocation of the nascent chain before it is complete 
and functions as a membrane anchor. In the absence of 
a stop-transfer sequence, the nascent chain is completely 
translocated across the membrane and enters the ER lu- 
men (Fig. 1 ). 

Membrane proteins with uncleaved ‘signal-anchor’ se- 
quences of both type 1 and type II orientation (Fig. 1) 
have been identified [ 11. The signal-anchor sequence 

mediates the ER targeting and insertion of the protein, 
and acts as the anchor sequence to retain the protein 
in the lipid bilayer. The final orientation that a signal- 

anchor protein assumes in the membrane depends on 
the nature of the hydrophilic amino acid residues that 
flank the hydrophobic core of the signal-anchor se- 
quence [ 7 1. 

The properties of signal-anchor sequences that deter- 
mine topology have been determined by analyzing mu- 
tant proteins either expressed in cells or inserted into 
microsomal membranes in I&-O. From such studies it 
has been deduced that the number and type of charged 
amino acid residues in the regions flanking the hydropho- 
bic core of the signal-anchor sequence determine mem- 
brane orientation [S*,9*,10]. The more charged residues 
that a flanking segment contains, the more likely it is to 

be retained on the cytoplasmic side of the membrane. 

Abbreviations 
ER-endoplasmic reticulum; SRP-signal recognition partvzle; TRAM-translocating chain associating membrane protein. 
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Fig. 1. Types of signal sequences. Membrane insertion in opposite orientations is mediated by (a) type I and fb) type II signal-anchor 
sequences (SAL Cleavable signal sequences (5) mediate fc) the membrane translocation of secretory proteins using signal peptidase 
(SPase) and fd) the membrane insertion in a type I orientation, which requires a stop-transfer sequence (ST). Hydrophobic membrane- 
spanning regions are indicated by helices. 0, Clusters of charged amino acid residues that often flank signal-anchor and stop-transfer 
sequences on the cytoplasmic side of the membrane-spanning domain. Broken lines indicate parts of the mature protein. 

The correlation between the charge distribution of the 
regions proximal to the hydrophobic core of a signal- 
anchor sequence and the final orientation that the protein 
assumes in the membrane is strong enough to be used 
as the basis for predicting the membrane orientation of 
a protein from its amino acid sequence [ 11,121. 

In addition to the effect of charge there is also, as 
might be expected, a minimum length required for the 
hydrophobic region of a signal-anchor sequence to re- 
main functional [lo]. It has been suggested that the 
balance between the length of the hydrophobic seg- 
ment and the number of flanking charged amino acid 
residues determine whether a sequence functions as a 
signal-anchor sequence or a cleaved signal sequence 
[ 13*]. Introducing charged amino acids into a signal- 
anchor protein does not always result in it adopting 
only one orientation in the membrane. Often the same 
protein can be found in both orientations, and the addi- 
tion or removal of charged residues alters the type I : type 
II ratio that the protein displays [8-,9.,14]. 

Membrane insertion as a loop 

Following proposals that the initial insertion of secre- 
tory proteins into the membrane occurs as a loop, sup- 
porting experimental evidence has been obtained [ 151. 
The topologies observed with mutated type I and type 
II signal-anchor proteins [9*,10,13-l are also consistent 

with this model (Fig. 2). The membrane insertion of 
signal-anchor proteins is predicted to occur via loops 
fomled between the hydrophobic core of the signal- 
anchor sequence and the flanking hydrophilic region 
on its amino- (type I> or carboxyl-terminal (type II) side 
(Fig. 2). Upon membrane insertion the final orientation 
is determined by which of the two regions flanking the 
hydrophobic core of the signal-anchor sequence is re- 
tained on the cytoplasmic side of the membrane. The 
difference between a secreted protein and a type II 
signal-anchor protein is the presence of a suitable sig- 
nal peptidase cleavage site exposed on the lumenal side 
of the ER membrane [15]. 

Multiple-spanning membrane proteins 

It has been proposed that multiple-spanning membrane 
proteins achieve their Iinal orientation by using SUC- 

cessive signal-anchor and stop-transfer sequences [ 161. 
There are good experimental data to support such a 
mechanism [17,18] and it still seems the most likely 
possibility [ 191. Experiments with artificial chimeric pro- 
teins have shown that the hydrophilic regions between 
the signal-anchor and stop-transfer sequences can affect 
the final membrane topology of multiple-spanning mem- 
brane proteins [ 181. This means that predictions of the 
orientation of multiple-spanning membrane proteins are 
always susceptible to errors and must be confirmed by 
suitable experimental approaches. 
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Fig. 2. Model of intermediate steps during the membrane insertion of signal-anchor proteins. The hydrophobic core of the signal-anchor 
sequence of a nascent protein (a) interacts with the endoplasmic reticulum (ER) membrane and (b) inserts into the membrane forming 
a loop with either the amino-terminal (type I) or the carboxyl-terminal (type II) flanking region of the protein. (c) The amino or carboxyl 
terminus of the protein is translocated into the ER lumen. 0, Clusters of charged amino acid residues that often flank signal-anchor 
and stop-transfer sequences on the cytoplasmic side of the membrane-spanning domain. 

Targeting of nascent membrane proteins to the or 8-&do-ATP [25*,26*], which is thought to block the 
endoplasmic reticulum function of ATP-binding proteins. 
The targeting of type 1 and type 11 signal-anchor pro- 
teins is, like secreted proteins, mediated by SRP. These 
ER-targeting signals all interact with the 54 kD subunit of 
SRP (SRP54) [3*]. Release of the signal sequence from 
the SRP54 protein requires the presence of microsomal 
membranes and GTP, although GTP hydrolysis is not re- 
quired in z&-o [2Ck22,23-] 

Nascent secretory proteins appear to be in a protein- 
aceous environment in the membrane since they are 
released from the membrane by agents thdt disrupt 
protein-protein interactions [ 271. 

It is likely that the interaction of the nascent chain with 
these membrane components is also responsible for de- 
termining the final orientation of a membrane protein. 
The different orientations of membrane proteins could 
arise in at least two ways: different proteins may mediate 
the insertion of type I and type II signal-anchor proteins 
and proteins with cleaved signal sequences; or the same 
proteins mediate all membrane insertion and transloca- 
tion events, and the details of the molecular interactions 
are influenced by the properties of the nascent chain. 

Membrane insertion 

While it is now well established that signal-anchor se- 
quences consist of a hydrophobic core and flanking 
hydrophilic regions, little is known about the mecha- 

nism by which they insert into the ER membrane and 
attain a particular orientation across it. There is good evi- 
dence that protein components of the ER membrane are 
directly involved in mediating the insertion of proteins 
into the membrane. Thus, the translocation of secre- 
tory proteins across the ER membrane is prevented by 
pre-treatment of the membranes with N-ethylmaleimide 
[ 241, which modifies the cysteine residues of proteins, 

Proteins that may mediate membrane insertion 

To determine which ER proteins make up the mem- 
brane insertion machinery, cross-linking experiments 
have been used to define the nearest neighbours of dif- 
ferent types of proteins during their membrane insertion. 
A ribosome-nascent chain-SRP complex is formed in 
zlitro and allowed to interact with the ER membrane 



584 Membranes 

to generate a stable translocation intermediate [ 2.281. 
After activation of a photocross-linking reagent incorpo- 
rated into the nascent chain, or cross-linking with homo- 
bifunctional reagents, the nearest neighbours can be de- 
termined. The results from a number of different laborrl- 
tories [29**-31**] show that only a few ER proteins are 
close to the nascent chain during membrane insertion. 
The proteins identified by cross-linking approaches can 
be divided into two groups (281: non-glycoproteins (34 
to 37 kD) and glycoproteins (35 to 39 kD). At least one 
of these components, a 37 kD non-glycoprotein (P37). 
is next to nascent chains with type I and type II signal- 
anchor sequences as well as those with cleaved signal 
sequences ([300*]; S High, I3 Dobberstein, unpublished 
data). The glycoproteins consist of at least two distinct 
proteins: the so-called signal sequence receptor (SSRor ) 
and the translocating chain associating membrane pro- 
tein (TRAM; [32*-l. 

Membrane insertion complex 

The fact that at least three ER proteins (TRAM, P37 
and SSRa) are in close proximity to membrane-inserting 
nascent chains suggests that a protein complex may me- 

diate membrane insertion. In yeast, three proteins that 
are involved in the translocation of secreted proteins 
across the ER, Secbl p, Sec62p and Sec63p [ 33-351, form 
part of a complex in the ER membrane [ 3G*]_ Mutations 
in the SK61, SEC62 and SECG-? genes also affect the in- 
sertion of some membrane proteins [ 37’,38*] I suggesting 
that the same complex is involved in membrane protein 
insertion. Although no homologues of Secblp, Sec62p or 
Sec63p have yet been identified in mammalian ER, it is 
tempting to speculate that the non-glycoproteins identi- 
fied by cross-linking are the mammalian counterparts of 
at least some of these proteins [4], 

Mechanisms 

While it remains to be established that the proteins identi- 
fied by cross-linking are involved in the insertion of mem- 
brane proteins into the ER, the results described above 
suggest that a common machinery mediates membrane 
insertion. How could such a membrane insertion com- 
plex facilitate insertion in a type I or type II orientation? 
A charged region of the membrane insertion complex, 
present at the cytoplasmic face, could retain a charged 
region of the nascent chain adjacent to the hydropho- 
bic core of the signal-anchor sequence (Fig. 2). The 
other end of the nascent chain would then be translo- 
cated across the membrane and the orientation of the 
nascent chain established. Thus, a protein-mediated se- 
lective retention of one of the two hydrophilic regions 
flanking the hydrophobic core of the signal-anchor se- 
quence may determine the membrane orientation. 

The observation that one signal-anchor protein can as- 
sume two orientations in the membrane [8*,9*,14] sug- 
gests that kinetic or thermodynamic competition occurs 
between the translocation of the amino and carboxyl 
termini. This is consistent with the suggestion that the 

same machinery is responsible for the membrane inser- 
tion of ripe I and type II sign&n&or proteins, and that 
the way in which a nascent chain interacts with compo- 
nents of this machinery determines its final orientation in 
the membrane. 

An interaction between a charged region of the meni- 
brane insertion complex and the cluster of charged 
residues that normally follows the apolar region of a 
stop-transfer sequence woi~lcl also account for the abil- 
ity of a stop-transfer sequence to integrate into the lipid 
hilayer in a stable fashion [ 191. Thus, one translocation 
site woulcl mediate the insertion of all types of membrane 
proteins in a manner determined by the properties of the 
nascent chain itself. 

Conclusion 

The principal features of sign:+anchor sequences, cleav- 
ed signal sequences and stop- transfer sequences have 
been elucidated recently. In each case it has been found 
that a h~~drophobic core region combined with Hanking 
hydrophilic sequences is important for function. Han 
these direrent sccpmc~s function in the ~~rocess of 
membrane insertion is not known. An attractive possi- 
bility is that their interaction with components of the 
membrane insertion complex determines the tinal OI-~ 
entation that a protein assu~iies in the mtmbrane. With 
the prospect that the components of this complex will 
be identified in the near future we can look forward to 
understanding the molecular interactions that determine 
membrane protein orienWon in the ER. 

References and recommended reading 

\‘ON t-le~~ive G: Transcending the Impenetnble: How Pro- 
teins Come to Terms with IMembranes. lWd~i~ Hw/&I” 
AClU 1988. 974:307-333. 

HIG~I S. ~I3IC3L~TEIN U. Membrane Protein Insertion into 
the Endoplasmic Reticulum - Signals. Machinery and 
Mechanisms. In .llrt~rhrrr~re Nivgetresis rrucl Protein Thp4 
iug. E&d by Nqxrt W, bill H. Amsterclm~: Elstrxier. 1992. 
in press. 

l.l’TCKE tl. HIGtI S. ~~hllXlI K. A~llFOKIl /‘.J, DCM3lX~Tl:IN D: 
The Methionine-rich Domain of the 54 kDa Subunit of 
Signal Recognition Particle is Suflicient for the Interaction 
with Signal Sequences. /WHO J 1002. 11:15~~~l551. 



Determination of the transmembrane disposition of proteins High and Dobberstein 585 

The methionine rich carhoxyl-terminal domain of the 54 kD subunit of 
SKI’ is both necessary and suRicient for recognizing ER-specilic signal 
sequrncc>. This shows that the amino-terminal GTP-binding domain 01 
SRP5-1 ib not rcilulred for signal sequence binding and must play some 
other role. for example, in the targeting process. 

GIIXIOIU: R: The Protein Translocation Apparatus of the 
Rough Endoplasmic Reticulum. Its Associated Proteins, and 
the Mechanism of Translocation. Crw~ Opifr Cc,// Hid 1991, 
j:iXO-5X4. 

RAI~~)I~OIU’ TA: Protein Transport Across the ER Memhrane. 
7Ycwrls Hirhhnt Sci 1990. 15:3ii-35X. 

MUWWA 7‘. SAKALJ’(:IU iM, IC\‘nl?‘oslil M. O~IIIIW T: sys- 
temdtic Analysis of Stop-transfer Sequence for Microsomal 
Membrane. J Hid ~%JCWI 1991, 266:925lL9255. 

I IAlil’lYU M T. FI~NT N. GOI I&I I NM, DOHI~HS~I~IN 1% A Tri- 
partite Structure of the Signals that Determine Protein In- 
sertion into the Endoplasmic Reticulum Membrane. ./ Gel/ 
Hid 19x9, 108: l727- 1236. 

Blil I%IIR JP, I’llil,lliH K. I’I’IIKI:H C. Gl~l+liS I. I lhSlw:lll\; C. 
\YI<~I<I.\ I II’. WIF.~ M: Charged Residues are Major Determi- 
nants of the Transmemhrane Orientation of a Signal-anchor 
Domain. J Hwl Clwt~r I99 I. 266:9”+97X 

The mtr(Kluction 01 charged amino acid residues adjacent to the 
h~~drophobic ccw (j(_ the signal anchor sc’quc’ncc’ can revcrsc the oricn 
tation of lhc ahi;Il~)gt~c[)I,rc)tcin reccplclr I I I 4,unit. 1vhic.h 1s n~m~:tll! 
a l?pc’ II mc’mbrane protein. 

9. I’:wti~ (;I). liw~ RA: Topology of Eukaryotic Type II 
. Membrane Proteins: Importance of N-terminal Positivel) 

Charged Residues Flanking the Hydrophobic Domain. CeN 
, ‘)‘)I <-.--- -‘XT 

A positive charge in a protcm segment next to the hydn)phr)blc ccjre [,f 
a signaI anchor sequence acts to retain that .\cgnicnt on the c)loplasmic 
hide 0I the nirmbranc 

IO. SA’I’O 7‘. SAM~CHI M. MIIWA K. Oht~ln~ T: The Arnino-Ter- 
minal Structures that Determine Topological Orientation of 
Cytochromc P-450 in Microsomal Memhrdne. /::I//%~,/ 1990. 
‘).,‘)I ~2.w- 

II V( )\ tlliljul. G. G,\\‘I:I 1’: Topugenic Signals in Integral iMem- 
hrdne Proteins. I:‘u~ ./ /Cn’hwr I9X4, l7+:6’14’X 

I’ IlhKrwss II. R~r~cwow TA. Ir)l)lsll 111:. Predicting the Ori- 
entation of Eukaryotic Membrane-spanning Proteins. /+w 
‘Vhf/ .-ktrt/ .sc./ 1’5.4 19x9. H(>:i’Xh-5’90 

1. S>\K,\;\(;~‘(‘III Xl. TO~IIYO~III R. KI~oIU’.\ ‘I’. MIIIAU K;, O~II’IU 7‘: 
. Functions of Signal and Signal-anchor Sequences are Deter- 

mined hy the Balance between the Hydrophobic Segment 
and the N-terminal Charge. /‘UK Ncrtl ;lirrt/ Sci 1 ‘SA 1992. 
89. I b- I9 

A cletail~d analyhih of the eHect of adjacent charged amin<) acid residues 
and Icngth 01 Ihc’ hydrophob~c~ region upon the function of a signal 
anchor sequc’ncc’ Both properties arc sho\vn lo intlucnw whether the 
I’R-spccitic scquenw hmc%on.s ;L% a npc I signal-anchor sequence or as 
a cleaved signal sequence. 

l-l 

IS. 

16. 

I’. 

IX. 

t’;wli\ GD. Iliw JD. I..u~H RA. Transposition of Domains he- 
wren the M2 and HN Viral Membrane Proteins Results in 
Polypeptides which Can Adopt more than One Membrane 
Orientation. .I Ccl/ N/o/ 19X9, 109:2023-2032. 

SII.~U AE. R(vriii% PJM. Row JK: Evidence for the Loop 
Model of Signal-sequence Insertion into the Endoplasmic 
Reticulum. I’roc Nrrll rlurrl Sci (‘5.4 19W 85:T597m’596. 

BI.oHI;I. G Intracellular Protein Topogenesis. /‘rf~ Nrrl/ Ac& 
Sci P.S.4 19X0. 77~l49GliOO. 

Wtil\wa tlf’. Sw~s M: Insertion of a Multispanning Mem- 
brane Protein Occurs Sequentially and Requires only One 
Signal Sequence. C4l 1%X, 55:61-70. 

1.11’1’ J, 1:w-r N. 1 I,uuitw’r~~i M T. Dorme~s-r’e~~ B: strut. 
tural Requirements for Membrane Assembly of Proteins 

19. 

20. 

21. 

22. 

23. 
. . 

Spanning the Membrane Several Times. J Cell Biol 1989. 
109:2013-2022. 

SINGER SJ: The Structure and Insertion of Integral Proteins 
into Membranes. A~INII &I* Cell Biol 1990, 61247-296. 

WIISOS C, CONNOI.I.Y T, MORRISON T. GIIMORE R: Integration 
of Membrane Proteins into the Endoplasmic Reticulum Re- 
quires GTP. J Cell Rid 1988. 107:69-77. 

I IICH 5. FIKW N. DOHIV%TEIN B: Requirements for the Mem- 
brane Insertion of Signal-anchor Type Proteins. / Cell Biol 
1991, 113:25-3-1. 

CONNOII.~ T, CILWXE R: The Signal-recognition Particle Re- 
ceptor Mediates the GTP-dependent Displacement of SRP 
from the Signal Sequence of the Nascent Polypeptide. Cell 
19X9. 57:59%610. 

Cmsm.y T. RAI~~KO PJ. Gllnro~ R: Requirement of GTP 
Hydrolysis for Dissociation of the Signal Recognition Par- 
ticle from Its Receptor. Science 1991. 252:1171-1173. 

The hydrolysis of GTP is required to allow the dissociation of SRP 
from it5 receptor the docking protein (SRP receptor). While nowhydro. 
lysable analogues of GTP are sufficient to mediate membrane insertion 
itr r*i/ro, these results suggest that GTP hydrolysis is necessary to drive 
protein trdnslwation itI c*itn 

2-t NICCHITTA C\‘, BI.OI~I. G: Nascent Secretory Chain Binding 
and Translocation are Distinct Processes: Differentiation by 
Chemical Alkylation. .I Cell Rid 19X9, 308:7X9-795. 

‘5 filAI’I’A I’. I\L\YINCI:R P. PIPKOK~ R. ZI%IXIERhtANN M, ZIXIXIEKhWNN 
. R: A Microsomal Protein is Involved in ATP-dependent 

Transport of Presecretoty Proteins into Mammalian Micro- 
somes. /!.l/HO ./ 1991. 10:2795-2803. 

Treatment of microsomal membranes with azido-ATP inhibits the trans- 
k)cation of secretoF proteins into the lumen. This is true both for pro. 
wins that show SRPdependent transport and for small proteins that are 
transported independendy of SRP. The resuln suggest an ATP.binding 
protein ma!’ be required for translocation. 

26. %IUXWIU~AY DI.. WAI~~ER P: An ATP-binding Protein is Re- 
. quired for Protein Translocation Across the Endoplasmic 

Reticulum. Cell Keg!)/ 1991. 2:851-X59. 
Trc~ummt of microsomal membnnm nith azido-ATP inhibits the SRP 
mediated translocation of secretog proteins. Approximately 20 proteins 
are moditied with azido-ATP. of which two are identified: the 35 kD sig- 
nal sequence receptor a-subunit and a I80 kD protein previously shown 
to pcwess ribosome binding acthiv. 

)-. Gi~niow R. BLOHEL G: Translocation of Secretory Proteins 
Across the Microsomal Membrane Occurs Through an En- 
vironment Accessible to Aqueous Perturbants. Cell 1985. 
42:4-505. 

2X. H&I! S: Membrane Protein Insertion into the Endoplasmic 
Reticulum - Another Channel Tunnel? Hiomqs 1992. in 
press. 

29. THIUFI’ RN. Awwa’~ DW. WALTER P, JOHNSON AE: A Nascent 
. . Membrane Protein is Located Adjacent to ER Membrane 

Proteins throughout Its Integration and Translation. / Cell 
H/O/ 1991, 112:X0%321. 

A 39 klil) glycoprotein ( mp39-like glycoprotein ). as well as unidentilied 
non-gl~coprot~ins. are adjacent to a membrane protein with a &wed 
signal sequence and to a [)pe II signal-anchor protein during mem- 
brane insertion These results provide evidence that the association 
of nascent chains Rith the membrane insertion complex is transient, 
and that the exit of the twcent chain is coupled to the completion of 
protein s+mthesi.\. 

30. IilCl-I 5. ~~u.ICH D. WIEI~NN M. RAI’OPOIU’ TA, DO~~EFSTEIN 
. . B: The Identification of Proteins in the Proximity of Signal- 

Anchor Sequences during Their Targeting to and Insertion 
into the hlembrane of the ER. / Cell Eiol 1991, 113:3544. 

A novel 37kD non-glycosylated protein (P37) is identiiied as a prob- 
able component of the membrdne insertion complex. P37 interacts 
with the nascent chain of a type I signal-anchor protein at the cyto. 
plasmic side of the membrane. The results suggest that the membrane 
insertion complex may be composed of heterologous protein subunits. 



586 Membranes 

31. KE~AIU~ KV, BOWEN S, GILWORE R: ER Translocacion Inter- 
. . mediates are Adjacent to a Nonglycosylated 34.kD Integral 

Membrane Protein. / Cell Biol 1991. 114:21-33. 
A novel 34 kD non-glycosylated protein (imp34) is found adjacent to 
proteins that bear a &amble signal sequence. This component is 
probably the same as the P37 component, and. if so, this protein is 
expected to be a general component of the ER translocation complex 
and not restricted to interacting with some signal-anchor r)pe mem- 
brane proteins. 

32. CiORUCH D, tiARThbwN E, PREHN S. bPOPORT TA: A protein 
of the endoplasmic reticulum involved early in polypeptide 
translocation. &Wrtre 1992, 357:-1?-52. 

A mammalian cell free protein .synthesizing s\stem and reconstitution 
into proteoliposomes aas used to identie and chancterize TRAM. This 
protein is the first multispanning memhrdne glycoprotein that is shown 
to stimulate or to be involved in memhrdne translocation of secretor? 
proteins. 

33. DESHAW RJ, SCHElihbw R: A Yeast Mutant Defective at an 
Early Stage in Import of Secretory Protein Precursors into 
the Endoplasmic Reticulum. J Cell Rio/ 1987. 105:633+5. 

34. ROTHB~A~T J4 DESHAKS RJ. SANDERS SL. DALI&! G, Sctwihtm 
RZ Multiple Genes are Required for Proper Insertion of Se- 
cretory Proteins into the Endoplasmic Reticulum in Yeast. 
J Cell Biol 1989, 109:2&I-2652. 

35. DEWA~ES RJ. SCHEWW R: SEC62 Encodes a Putative 
Membrane Protein Required for Protein Translocation 
into the Yeast Endoplasmic Reticulum. ./ Cell Rio/ 1989, 
109:265326&L 

36. DEWUES RJ. SANDEW SL, FEU)HEIDI DA SCHEKXWN R: Assembl) 
. . of Yeast SEC Proteins Involved in Translocation into the 

Endoplasmic Reticulum into a Membrane-bound Complex. 
Nature 1991, 349:SW08. 

Sec6lp. Sec62p and Sec63p are shown to he lyart of a multisubunit 
protein complex present in the ER. helimed to he part of the trans- 

location complex. The results confirm genetic evidence for an interdc- 
tion between the products of these SECgenes. and demonstrdte that 
the tnnslocation complex of the ER membrane is a complicated multi. 
subunit structure. 

3’. SntwNC CJ. ROTHWUT J. I-Io~~H~KHI M. DESHAIES R. SCHEKhtAN 
. R: Protein Translocation Mutants Defective in the Insertion 

of Integral Membrane Proteins into the Endoplasmic Retic- 
ulum. .llol 13iol Cdl 1992. 3:12Fl-i2. 

The Sec61p, SecG& and Sec6;3p gene products. previously shown to 
he necessnv for the trmslocation of secreted proteins, are shomn to 
be required for the insertion of some memhnne proteins. This sug- 
gests that ;I common machiney is at least in part responsible for the 
translocation of sc~rett~l proteins across the ER membrane and the in- 
sertion of mrmbnne proteins into it. The SEC61 gene is shonn to he 
essential for cell gronTh and encoding a hydrophobic ER membrane 
protein of 3X kD (apparent molecular weight ). The protein bears some 
resemblance to the .Edwrid~irr co/i Secl. protein. which forms :I part 
of the putative secretor? protein trznslocation complex of the bacterial 
inner membrane. 

38. Gtws N, F.\sc, II. Wf\t.nift P: Mutants in Three Novel Com- 
. plementation Groups Inhibit Membrane Protein Insertion 

into and Soluble Protein Translocation across the Endoplas- 
mic Reticulum Membrane of Saccharomyces cerevisiae. ./ 
Cell Hiol 1992. 116:i97~O-1. 

Mutants of the SEC61 and .SEC6.? genes alTect the insertion of mem- 
bnne proteins, consistent nith a common machineg for the complete 
transltmtion of secreted proteins across the ER and the insertion of 
membrane protems into it. In addition. three nm mutants that inhihit 
rnemhranc protein insertion nrre identified; SXCX, XC?1 and SEC72. 
It is not yet knonn whether these mutations affect the targeting or the 
memhr.me insertion process. 
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