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Summary 

Recent ev idence from both biochemical and genetic 
studies indicates that protein targeting to the pro-
karyotic cytoplasmic membrane and the eukaryotic 
endoplasmic reticulum membrane may have more in 
c o m m o n than previously thought. A ribonucleo-
protein particle w a s identified in Escherichia coli that 
cons is t s of at least one protein (P48 or Ffh) and one 
RNA molecule (4.5S RNA), both of which exhibit 
strong s e q u e n c e similarity with constituents of the 
mammalian signal recognition particle (SRP). Like the 
mammalian S R P , the E. coli S R P binds specifically to 
the signal s e q u e n c e of presecretory proteins. Deple­
tion of either P48 or 4.5S RNA affects translation and 
results in the accumulation of precursors of several 
secreted proteins. This review d i scusses t h e s e recent 
studies and speculates on the position of the S R P in 
the complex network of protein interactions involved 
in translation and membrane targeting in £ . coli. 

Introduction 

In both prokaryotic and eukaryotic cells, m a n y proteins are 
targeted to, inserted into and translocated across biologi­
cal m e m b r a n e s . T h e cytoplasmic m e m b r a n e (CM) of 
Escherichia coli and the endop lasmic reticulum ( E R ) m e m ­
brane of the can ine pancreas h a v e been especia l ly popu ­
lar for studies of protein targeting and translocation. In both 
s y s t e m s the secretory proteins face the s a m e problems. 
T h e y h a v e to maintain a translocat ion-competent confor­
mation in the cytosol , contact the m e m b r a n e , traverse 
the m e m b r a n e and then b e released at the trans s ide of 
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the membrane . Most proteins dest ined to insert into or 
traverse the C M and ER carry part of their targeting infor­
mation in an /v-terminal signal s e q u e n c e of 1 5 - 3 0 amino 
acid residues, which contains an essent ia l hydrophobic 
core region of approximately 10 res idues (von Heijne, 
1988). T h e s e signal s e q u e n c e s are structurally similar 
and often functionally interchangeable between pro-
karyotes and eukaryotes , implying c o n s e r v e d underlying 
m e c h a n i s m s of signal sequence -med ia ted targeting and 
translocation (von Heijne, 1988). However , until recently, 
little homology has been observed between c o m p o n e n t s 
of both export sys tems . 

E. coli: the general secretory pathway 

In E. coli several soluble and m e m b r a n e proteins have 
been identified (inititially in genetic studies) that are 
required at different s t a g e s of the general secretory path­
w a y (for an excel lent recent review, s e e Pugs ley , 1993). 
Pre-proteins interact with molecular c h a p e r o n e s like 
S e c B , D n a K / D n a J and G r o E L / G r o E S to maintain their 
translocat ion-competent conformation in the cytosol 
(Kumamoto , 1991). Little is known about the molecular 
bas is of the pre -pro te in - chaperone interaction. Recent 
ev idence indicates that S e c B binds cotranslationally to 
only a limited subse t of presecretory proteins (Kumamoto 
and Francetic, 1993). Determination of SecB-b ind ing sites 
in precursor molecu les h a s met with conflicting results, but 
most of the available data indicate that S e c B binds to mul­
tiple sites in the mature portion of the pre-protein (for dis­
cus s i ons on this i s sue , s e e Pugs ley , 1993; Kumamoto , 
1991). G r o E L w a s shown to interact with comple ted pre-p-
l ac tamase by photocross- l inking (Bochkareva era/. , 1988). 
Different pre-proteins s e e m to prefer different chaperones 
but they can b e quite promiscuous w h e n c ircumstances 
change . For instance, increased levels of G r o E L and 
D n a J / D n a K can c o m p e n s a t e for the loss of S e c B (Altman 
et al., 1991; Wild era/ . , 1992). A m o n g these chaperones , 
S e c B s e e m s the most specif ic for exported proteins. This 
conclus ion is supported by the fact that S e c B a l so fulfils 
a 'pilot' function by binding to the membrane -assoc ia ted 
S e c A protein (Haiti ef al., 1990). S e c A has binding affinity 
not only for S e c B but a l so for the signal s e q u e n c e and 
mature domain of the pre-protein (Akita ef al., 1990; Jo ly 
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and Wickner, 1993). It a lso binds A T P (Lill etai, 1989) and 
has been implicated in the generation of energy for the trans­
location process (Schiebel etai, 1991). S e c A interacts with 
the membrane -embedded S e c Y / S e c E complex (Hartl et 
ai, 1990) which is a constituent of the so-cal led translo-
con, the putative protein pore in the CM. T h e eukaryotic 
homologue of S e c Y is the S e c 6 1 protein identified first 
by a genetic screen in yeas t (Desha ies and Schekman, 
1987) and most recently by a biochemical approach in 
mammal ian cells (Gorlich etai, 1992). 

Mammalian cells: SRP-medlated transport 

In eukaryotic cells, the signal recognition particle (SRP ) 
recognizes the signal peptide w h e n it protrudes from the 
ribosome in the cytosol (at 6 0 - 9 0 total amino acid chain 
length). S R P may be prebound to the ribosome allowing 
pass ing s e q u e n c e s to be screened (Siegel and Walter, 
1988) . T h e S R P is a large ribonucleoprotein complex con ­
sisting of a 7 S R N A and six different polypeptides of 9 , 1 4 , 
19, 54, 68 a n d 72 kDa. T h e associat ion between the S R P 
and the signal peptide lowers the rate of protein synthesis 
and thereby increases the time span in which the complex 
can contact the membrane with the nascent chain in a 
translocation competent conformation (Siegel and Waiter, 
1988) . The r ibosome/nascent cha in /SRP complex then 
binds to the ER membrane via an interaction between 
S R P and S R P receptor (also called the 'docking pro­
tein'). Upon binding to the S R P receptor, the signal pep­
tide is displaced from the S R P in a GTP -dependent 
process and b e c o m e s available for interactions with com­
ponents of the putative translocon (Rapoport, 1992). 
Translation resumes and the nascent chain inserts 
co-translationally into the E R membrane . Finally, the S R P 
is released from the membrane -bound complex in a step 
that requires G T P hydrolysis (Connolly and Gilmore, 
1989) . Thus , the S R P is a versatile adaptor which func­
tions a s a 'pilot' and a s a molecular chaperone to guide 
the nascent secretory protein to the membrane in a trans-
location-competent form. T h e different functions have 
been ascribed to the individual protein components in the 
S R P in which the 7 S RNA probably p lays a scaffolding 
role. S R P 9 and S R P 1 4 form a heterodimer which is neces ­
sary for the translation arrest function. S R P 6 8 and S R P 7 2 
a lso form a heterodimer which has been implicated in the 
mechanism of 'docking' to the E R membrane (Siegel and 
Walter, 1988). S R P 1 9 assists in the binding of S R P 5 4 to 
the 7 S R N A whereas S R P 5 4 is responsible for binding to 
the signal sequence (Romisch etai., 1990; Zopf etai, 1990). 

S R P 5 4 has a modular structure consisting of an /^term­
inal G-domain , which contains a conserved GTP-binding 
motif, and a C-terminal M-domain, which is rich in 
methionine residues. Several independent studies have 
shown that the M-domain is responsible for both binding 

to the 7S RNA and to the signal s e q u e n c e of the nascent 
presecretory protein (Zopf et ai, 1990; High and 
Dobberstein, 1991). Reconstituted S R P containing only 
the M-domain of S R P 5 4 w a s shown to be able to recog­
nize the signal sequence albeit with lower efficiency than 
intact S R P , but it was unable to target the ribosome/ 
nascent chain complex to the E R membrane (Zopf et ai, 
1993). The M-domain contains four predicted amphipathic 
a-hel ices (Bernstein etai, 1989). T h e methionine residues 
are found at evolutionary conserved positions and thought 
to line one side of each a-helix. A n attractive model has 
been put forward in which the helices are juxtaposed 
with the flexible methionine s ide chains forming a groove 
which accommodates the large variety of hydrophobic sig­
nal s e q u e n c e s (Bernstein et ai, 1989). T h e G-domain 
increases the efficiency of signal sequence binding and 
is probably also involved in the binding of the S R P to the 
a-subunit of the S R P receptor (Zopf et ai, 1993). 

A peptide-binding motif similar to the o n e suggested for 
the interaction between signal s e q u e n c e s and the S R P 5 4 
protein has been identified for the major histocompatibility 
complex (MHC) c lass I and II molecules (Bjorkman et ai, 
1987; Brown et ai, 1993). In this case , peptides of nine 
amino acid residues were found to bind in a groove 
formed by two a-helices. The oc-helices are arranged s ide 
by s ide on a platform built by p-pleated sheets . In the 
c a s e of the signal sequence-binding domain of S R P 5 4 
the platform would be formed by the 7S RNA. 

Evidence for an E. coli SRP 

T h e search for an SRP- l ike particle in E. coli has long been 
discouraged by the inability to identify SRP- l ike compo­
nents in genetic screenings for export mutants. These 
screens identified very successful ly several of the sec 
genes described above. Recently, this search gained 
n e w impetus when sequence compar isons revealed the 
existence of E. coli homologues of S R P 5 4 and S R P 7 S 
RNA, P48 (also called Ffh for fifty-four homologue) and 
4 .5S RNA, respectively (Romisch etai, 1989; Bernstein 
etai, 1989; Poritz etai, 1988). 

T h e P48 gene was initially identified a s an open reading 
frame upstream of the trmD operon at 56 min of the E. coli 
chromosome (Bystrom et ai, 1983). P48 is very similar 
over its entire length to S R P 5 4 and s e e m s to have the 
s a m e modular structure (Romisch etai, 1989; Bernstein 
etai, 1989). T h e M-domain of P48 lacks one of the pre­
dicted C-terminal amphipathic hel ices of S R P 5 4 . This 
could explain s o m e of the differences between the pro-
karyotic and eukaryotic membrane targeting system. 

E coli 4 .5S RNA is o n e of the smallest members of the 
family of SRP7S- l ike R N A s found in mammal ian cells, 
plants, yeast , archaebacteria and eubacteria (Larsen and 
Zwieb, 1991). It forms an extended stem-loop structure, 
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