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Abstract

Classification problems involving high numbers of inputs and classes play an
important role in the field of machine learning. Image classification, in partic-
ular, is a very active field of research with numerous applications. In addition
to their high number, inputs of image classification problems often show sig-
nificant correlation. Also, in proportion to the number of inputs, the number
of available training samples is usually low. Therefore techniques combining
low susceptibility to overfitting with good classification performance have to
be found. Since for many tasks data has to be processed in real time, computa-
tional efficiency is crucial as well.
Boosting is amachine learning technique, which is used successfully in a num-

ber of application areas, in particular in the field of machine vision. Due to it’s
modular design and flexibility, Boosting can be adapted to new problems easily.
In addition, techniques for optimizing classifiers produced by Boosting with
respect to computational efficiency exist. Boosting builds linear ensembles of
base classifiers in a stage-wise fashion. Sample-weights reflect whether training
samples are hard-to-classify or not. Therefore Boosting is able to adapt to the
given classification problem over the course of training.
The present work deals with the design of techniques for adapting Boosting

to problems involving high numbers of inputs and classes. In the first part,
application of Boosting to multi-class problems is analyzed. After giving an
overview of existing approaches, a new formulation for base-classifiers solv-
ing multi-class problems by splitting them into pair-wise binary subproblems
is presented. Experimental evaluation shows the good performance and compu-
tational efficiency of the proposed technique compared to state-of-the-art tech-
niques.
In the second part of the work, techniques that use Boosting for feature gen-

eration are presented. These techniques use the distribution of sample weights,
produced by Boosting, to learn features that are adapted to the problems solved
in each Boosting stage. By using smoothing-spline base classifiers, gradient de-
scent schemes can be incorporated to find features that minimize the cost func-
tion of the current base classifier. Experimental evaluation shows, that Boost-
ing with linear projective features significantly outperforms state-of-the-art ap-
proaches like e.g. SVM and Random Forests.
In order to be applicable to image classification problems, the presented fea-

ture generation scheme is extended to produce shift-invariant features. The
utilized features are inspired by the features used in Convolutional Neural Net-
works and perform a combination of convolution and subsampling. Experimen-
tal evaluation for classification of handwritten digits and car side-views shows
that the proposed system is competitive to the best published results. The pre-
sented scheme has the advantages of being very simple and involving a low
number of design parameters only.





Zusammenfassung

Klassifikationsprobleme, welche hohe Anzahlen von Eingangsmerkmalen und
Klassen aufweisen spielen eine wichtige Rolle auf dem Gebiet des Maschi-
nenlernens. Besonders Bildverarbeitung stellt ein sehr aktives Forschungsfeld
mit unzähligen Anwendungen dar. Häufig sind im Verhältnis zur Anzahl der
Eingangsmerkmale nur wenig Trainingsbeispiele verfügbar. Deswegen müssen
Techniken gefunden werden, die sich nicht zu stark an die Trainingsdaten an-
passen. Aufgrund von Echtzeit-Anforderungen vieler Anwendungen, ist ef-
fiziente Implementierbarkeit ebenso von großer Bedeutung.

Boosting ist ein Lernverfahren, das insbesondere im Gebiet der Bildverar-
beitung erfolgreich eingesetzt wird. Boosting konstruiert lineare Ensembles
von Basis-Klassifikatoren in einer rundenbasierten Vorgehensweise. Modulares
Design und hohe Flexibilität ermöglichen einfache Anpassung an neue Prob-
lemstellungen. Durch entsprechende Techniken kann der Rechenaufwand von
Boosting-Klassifikatoren optimiert werden. Mit den Trainingsbeispielen assozi-
ierte Gewichte weisen auf schwer zu klassifizierende Beispiele hin, was ein An-
passung an ein gegebenes Problem während des Trainings ermöglicht.
Die vorliegende Arbeit befasst sich mit dem Entwurf von Techniken welche

Boosting besser an Klassifikationsprobleme mit vielen Eingangsmerkmalen
und Klassen anpassen. Im ersten Teil wird die Anwendung von Boosting
für Multiklassenprobleme analysiert. Nach einem Überblick über existierende
Verfahren wird eine neue Formulierung für Basis-Klassifikatoren vorgestellt,
welche auf einer Zerlegung des Multiklassenproblems in binäre Teilprobleme
basieren. Experimente zeigen die gute Klassifikationsleistung und Rechenef-
fizienz im Vergleich zum Stand der Technik.
Im zweiten Teil der Arbeit werden Techniken, welche Boosting zum Ler-

nen von Merkmalskombinationen verwenden, vorgestellt. Dabei werden die
Gewichte der Trainingsbeispiele herangezogen um an das aktuelle Train-
ingsproblem angepasste Merkmale zu lernen. Durch die Verwendung geglät-
teter Splines als Basisklassifikatoren, könnenGradienten-Abstiegsverfahren ver-
wendet werden um gute Merkmale zu finden. Experimente zeigen, dass Boost-
ing mit linearen projektiven Merkmalen signifikant bessere Klassifikationsleis-
tung als andere populäre Verfahrenwie beispielsweise SVM und Random Forests
erreichen.
Das vorgestellte Verfahren wird für die Anwendung auf Bilddaten erweitert,

indem verschiebungsinvariante Merkmale trainiert werden. Diese sind inspiri-
ert von Merkmalen welche in Convolutional Neural Networks eingesetzt werden
und eine Kombination aus Faltung und Unterabtastung durchführen. Experi-
mente an den Beispielen Klassifikation von Ziffern und von Seitenansichten
von PKWs zeigen, dass das vorgestellte System Klassifikationsleistung vergle-
ichbar zu den besten veröffentlichen Ergebnissen erreicht. Vorteile liegen in der
einfachen Struktur und geringen Anzahl einstellbarer Trainingsparameter.
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1. Introduction

1.1. Motivation and Background

Classification problems occur in a wide range of applications. Due to the ever
growing amount of recorded data and the resulting need for automation, the de-
mand for systems performing automatic data interpretation is high. An impor-
tant field of automated data interpretation is machine vision. Machine vision
helps to solve a range of problem which would otherwise have to be solved
using human interaction. Some examples of application problems, that can be
solved using image processing are the following:

• Recognition of handwritten postal codes on envelopes. The digits are
recorded using digital cameras. The resulting intensity values are quan-
tized into gray scales. The output is then processed to classify the depicted
digits.

• Detection of humans in surveillance scenes. The recorded image streams
are analyzed in order to find patterns of appearance andmotion indicating
presence of persons in the observed scene.

• Driver assistance systems: data from different sensors (radar, video) are
used to assess the situation a vehicle is in, recognize traffic signs or lane
markings, etc.

• Identification of skin cancer. Images of moles are analyzed for specifics of
malignant melanoma. The system helps to achieve earlier diagnosis and
therefore improves the probability of successful treatment.

A wide range of sensors for collecting visual data is available. Over recent
years, the density of cameras grew dramatically. Reasons for that are, for ex-
ample, the high number of surveillance cameras or the integration of cameras
into mobile devices. For digital signal processing, the image data captured by
the cameras is transformed into a matrix of numbers (image pixels), using for
example CMOS technology. Data processing can be performed on standard dig-
ital computer hardware, for example multi purpose processors, GPUs (graph-
ics processing units), FPGAs (field programmable gate arrays) or DSPs (digi-
tal signal processors). The hardware used for a particular application heavily

1



1. Introduction

depends on the requirements and constraints of that application. Parallel to
the improvement of performances of both cameras and processing units, their
prices reduced due to their introduction into the mass market. The presence of
cheap and powerful hardware for image processing tasks is another key factor
for it’s increasing commercial success. However, though the increase of process-
ing power of the utilized devices is dramatic, processing time is still often a
limiting factor for practical applicability of machine vision techniques.

Vision is the dominant sense for humans and the majority of higher animals.
Visual information are interpreted to build a model of the scene, in which an
organism resides. The visual system solves very complex tasks, including local-
ization, estimation of distances and distance ratios, as well as identification and
categorization of objects. For the human observer it is very simple to solve im-
age classification tasks. In particular, humans show astonishing generalization
abilities and are able to learn new categories of objects using only a low num-
ber of examples. In addition the visual system is able to perform it’s tasks under
difficult conditions, including poor image quality and various environment con-
ditions. These skills can, at least partially, be explained by the large amount of
prior knowledge, that humans collect during the course of their lives. The vi-
sual cortex of humans and other organisms use massive parallel processing to
achieve the stated capabilities. How the image processing in the visual cortex
works is not fully understood and subject to ongoing research.

Compared to the capabilities of the human visual cortex, machine vision still
has a long way to go. The problems that can be solved satisfactory using ma-
chine vision often have strong limitations, for example putting constraints on
illumination, object appearance and number of object categories. On the other
hand, large improvements have been achieved in recent years leading to algo-
rithms that solve complex problems under “real world” conditions. In some
aspects machine vision already has advantages over biological systems. For ex-
ample, humans grow tired when performing monotonous activities over a long
period of time. Machine vision algorithms can help to relieve the human oper-
ator and thereby reduce the risk of mistakes. Also, machine vision systems are
very good in performing exact measurements.

Different philosophies for solving image classification problems exist. The
most successful approaches are based on learning the solution for the given
problem from examples-in contrast to handcrafted expert systems. One group
of approaches attempts to model the functionality of the human visual cortex.
Though the potential of this approach is indisputably, in many cases it fails
produce results feasible for practical applications. This is mainly due to the un-
avoidable simplifications in themodeling process and the lack of understanding
of the processes in the visual cortex.

2



1.2. Objectives

Another group of approaches interprets the image processing task from a
more mathematical point of view. The training samples are interpreted as a
number of points in a high dimensional feature-space, spanned by the input
pixels. The task to be solved is to approximate the distribution of the object
categories in the feature-space. These approaches have the advantage that the
underlying mechanisms are - in general - well understood. In addition, the
resulting models tend to be less complex and therefore are more feasible for
implementation in practical systems. One example of techniques that approxi-
mate class distributions in feature space is Boosting. It was successfully applied
in a range of image processing tasks over the last few years. One reason of
it’s success is the availability of techniques for building very efficient classifiers,
namely the use of classifier cascades. This work deals with extensions for Boost-
ing, which help to improve it’s performance for image classification problems
and extend it’s range of possible applications.

1.2. Objectives

The main objective of this work is to study the use of Boosting for solving com-
plex image classification problems. In particular, problems involving high num-
bers of inputs or classes are of interest. In order to improve the Performance of
Boosting for these scenarios, techniques for solving multi-class problems and
feature-generation techniques are analyzed.
Image classification problems have a special character, when compared to

other classification problems. In general, the number of input features, corre-
sponding to the input pixels of the image, are very high. In relation to the
high number of inputs, the number of samples is usually rather small. In addi-
tion, many applications require the input data to be processed in real time. To
achieve good performance under these conditions, algorithms have to be found,
that take into account the characteristics of image classification problems and,
at the same time, can be implemented flexibly and make efficient use of com-
putational resources. According to the high number of object categories found
in real world scenarios and the particular application, approaches are needed,
that are able to discriminate a high number of classes efficiently. This is in par-
ticular important, since human visual object categorization heavily depends on
using context information. Utilizing context information to solve image classi-
fication tasks has been shown to improve performance [Lampert and Blaschko,
2008]. Generating context information, however, requires the ability to solve
multi-class problems.
To solve these problems, the proposed techniques should be designed with a

focus on achieving good performance and at the same time having low compu-

3



1. Introduction

tational requirements. In order to achieve good performance, the information
of the inputs features needs to be utilized efficiently. In many cases using the
input features directly doesn’t lead to the aspired results. In the present work,
feature generation techniques are presented, that help to use the information
more efficiently. In addition, techniques for using features more efficiently in
multi-class context are discussed.
Another important aspect of the proposed classification techniques are tech-

niques for regularization of the trained classifiers. Regularization is necessary
to prevent the classifier from fitting to the training data too closely, which is
known to increase error rates on unseen data. Therefore flexibility of the trained
models needs to be adjustable in order to prevent overfitting to the training data.
Regularization is even more important, when the number of training samples
is small compared to the number of input features.
Also, the proposed system should be able to adapt to new problems flexibly.

The system should allow additional constraints and information about the prob-
lem at hand to be incorporated easily. The resulting techniques should not be
restricted to be used for image classification problems.
Finally, the proposed techniques should be compared to other state-of-the-art

approaches in order to judge the performances. Empirical evaluation of the
techniques is especially important, since theoretical results for performances of
classifiers can’t be used to assess performances quantitatively. Statistical tests
will be used to assess significance of results where possible.

1.3. Contribution

The present work deals with design and evaluation of techniques for extending
Boosting [Freund and Schapire, 1995]. The goal is to improve the performance
and applicability of Boosting for image classification problems. Boosting is a
technique that combines a number of simple rules (weak- or base classifiers)
to form a “strong” rule, which solves the given classification problem. In or-
der to compose the decision of the ensemble, the outputs of the simple rules
are combined by performing a majority vote. The generation of the simple
classification rules is controlled by assigning weights to each training sample.
Sample weights are initialized with a uniform distribution over the training
samples. After each stage of training, weights of samples - that were assigned
wrong outputs by the new simple rule - are increased. Generation of simple
rules puts more emphasis on samples with high weights. Therefore, boosted
classifiers adapt to the training problem in each round. Note that boosting is a
meta-technique that can be used to combine arbitrary base classifiers.
Numerous flavors of Boosting can be found in the literature. While there are

4



1.3. Contribution

goodmotivations for use of each of the flavors, the observed performance differ-
ences between them are often marginal. Accordingly, this work doesn’t propose
new Boosting flavors. Instead a standard Boosting approach (GentleBoost, see
Friedman et al. [1998]) is used for all experiments. GentleBoost has been shown
to achieve competitive performance to other Boosting techniques. In addition, it
is very simple to implement and numerically stable. Instead of proposing new
Boosting flavors, this work focuses on the design of new techniques for training
base classifiers, that help to improve the performance of the boosted ensemble.
Optimizing the performance of boosted ensembles by improving base classi-
fiers has not yet achieved much attention in the literature and therefore hold
potential for further performance improvements.

Boosting is well suited for solving image classification problems with real
time requirements. One advantage of Boosting over other techniques is that
special techniques (e.g. cascades) can be used to dramatically reduce compu-
tational load, while preserving classification performance. Another advantage
is that Boosting can be used for feature selection. That is, given a large set of
candidate features, Boosting can select a subset of features that solves a classi-
fication problem. Due to it’s stage-wise function, Boosting scales well with the
complexity of the problem at hand. Only few base classifiers are needed to solve
simple classification problems, while the number increases as the complexity of
the problem grows. Boosting has a low number of adjustable parameters, so
effort for parameter selection is manageable.

On the other hand, Boosting has a number of disadvantages too. For exam-
ple, it is almost always used with decision tree base classifiers. Decision trees,
however, are known to be susceptible to overfitting. When used for feature se-
lection, the initial feature set has to contain good features that are feasible to
solve the given classification problem. In order to provide such a set of features,
one has to have profound knowledge about the classification problem at hand.
That degree of knowledge is not always available.

There is only a limited amount of comparative studies on Boosting for multi-
class problems. The existing studies focus on classification performance and
don’t examine optimization with respect to computational efficiency. One con-
tribution of this work is an experimental comparison of Boosting for multi-class
problems. For this, standard wrapper approaches, as well as techniques specific
to Boosting are analyzed. The utilized cost functions of multi-class Boosting ap-
proaches are compared. The results are used to design a new base-classifier
scheme, based on pairwise class comparisons, which achieves good classifica-
tion performance and is computational efficient.

In order to improve the generalization performance of Boosting, the use of
base classifiers returning smooth output functions in feature-space are analyzed.

5
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Smoothing splines, as an example of these class of base classifiers, are discussed.
Classes probabilities are assumed to show smooth distribution in feature space
for real world problems. Therefore, by using smooth base classifiers, the sus-
ceptibility of Boosting to overfitting should be reduced. Smooth functions are
better suited to approximate the class distributions usually need less degrees of
freedom to achieve the same quality of approximation. Another advantage is
the differentiability of smooth base classifiers. Based on this, a scheme for train-
ing linear features is designed. The trained features optimize the cost functions
of the base classifiers trained in each stage of Boosting and therefore improve
convergence. By using the ability of Boosting to adjust to the problem at hand,
features can be calculated during the course of training. Training of features
“on the fly” alleviates the need for providing a suitable feature set.

The proposed scheme for generating linear features for general classification
problems is extended for application to image classification problems. Linear
features don’t achieve performance competitive to other specialized techniques,
adapted to image classification tasks. Therefore a scheme for training shift-
invariant features, based on boosting smooth functions, is proposed. Backprop-
agation training is used to train the shift-invariant features. Extensions to other
feature types is straightforward. Since the sample weights returned by boosting
are used, the shift-invariant features too adapt to the given problem and remove
the need for providing an initial feature-set.

1.4. Outline of the Thesis.

Since the techniques presented in this work are based on Boosting, an intro-
duction to Boosting is presented in Chap. 2. The base classifiers used most
frequently with Boosting are discussed. In particular, base-classifiers returning
smooth output functions are discussed (Sect. 2.4.3). In order to achieve good
generalization performance, the capacity of a classifier needs to be adjusted to
the given classification problem. Section 2.5.4 discusses, how the outputs of the
base-classifiers and thereby the output of the boosted ensemble can be regular-
ized. Penalization of roughness of the output-function in feature space delivers
an appropriate measure, which can be used with arbitrary base-classifiers. In
addition to the discussions on Boosting, a range of state-of-the-art classification
approaches are introduced, e.g. Support Vector Machines and Random Forests.
These are used for reference in the following chapters. Also the understand-
ing of other classification approaches compared to Boosting helps to show the
particular properties of Boosting that make it well suited for the problems dis-
cussed in this work.
For many image processing problems the number of classes involved is
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1.4. Outline of the Thesis.

higher than two. Efficient algorithms to solve multi-class problems using Boost-
ing are discussed in Chap. 3. After describing the problem formulation, stan-
dard approaches for solving multi-class problems are discussed. These ap-
proaches construct multi-class classifiers by combining a number of binary clas-
sifiers (multi-class wrappers, Sect. 3.4). Multi-class wrappers can be used with
arbitrary classifiers. On the other hand, they don’t incorporate prior knowl-
edge about the particulars of the used classifiers. Section 3.5 introduces special-
ized techniques that extend Boosting to multi-class problems. They are based
on the multi-class wrappers discussed previously. However, they are tailored
to take into account the specifics of Boosting, for example the stage-wise con-
struction of the final classifier. Out of the numerous approaches proposed in
the literature, the fundamental approaches are presented. The cost functions
of the approaches are compared in order to better understand their function.
Approaches using base classifiers building pairwise classifiers provide the best
qualitative approximation of the empirical error function. Their drawback is
that the number of pairwise classifiers grows quadratically with the number of
classes involved in the classification problem. In Sect. 3.5.5 a new formulation
for training of base-classifiers with pairwise class comparisons is proposed. The
new formulation is computational efficient and scales linearly with number of
classes. The discussed approaches for multi-class Boosting are compared empir-
ically in Sect. 3.6.

For many classification problems, the provided features are not optimal for
class separation. In addition, whether features are suitable to solve a given
problem or not strongly depends on the incorporated classifiers. In Chap. 4 a
technique for training augmented features in Boosting context is presented. The
new features are linear combinations of the input features. Using these features,
problems - where the classes are non separable using the input features - can
be solved. By using differentiable base classifiers, namely smoothing splines,
gradient descent schemes can be used to learn features optimizing base classi-
fier costs in each stage of Boosting. Since each base classifiers works on a one-
dimensional projection of the data, the added features do not lead to overfitting
of the classifier. In experimental section (Sect. 4.4), the performance of the pro-
posed classification scheme is compared to state-of-the-art classifiers. Statistical
evaluation on a set of 30 publicly available data sets is conducted to show the
significance of the results.

Using the scheme for training linear features, presented in Chap. 4, will not
yield satisfactory performance for image classification problems. The reason
is that the input features are treated as independent in feature construction.
This assumption is, however, not true for image classification problems, where
neighboring pixels usually show strong correlation. Chapter 5 discusses, how
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1. Introduction

prior knowledge about the nature of image processing problems can be incor-
porated in order to improve the classification performance. In a first step, local
features are constructed. For local features the support on the input image is
limited to a small neighborhood of pixels. This already significantly improves
the resulting classification performance. In cases, where overfitting is critical, a
roughness penalty can be applied to the trained features. For many image clas-
sification problems, small local shifts of the features on the input patch should
not affect the output of the classifier, that is: features should be shift-invariant.
Consequently, many techniques for image processing utilize shift-invariance
to optimize classification performance. One possibility for incorporating shift-
invariance into the proposed feature generation scheme is using features per-
forming convolution followed by subsampling. In order to be able to learn
these features, the feature generation scheme from Chap. 4 is extended to be
able to train non-linear features. To achieve this, backpropagation training is
used. With that shift-invariant features for image classification in Boosting con-
text is straightforward. The performance of the proposed approach is evaluated
on two image processing problems: USPS handwritten zip digits and UIUC car
side views database. The results are compared to published performances of
state-of-the-art classifiers.
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2. Classification

This chapter introduces classification techniques used through the following
chapters. Boosting classifiers introduced by Friedman et al. [1998] are introduced
in more depth than the others, since they represent the basis for the techniques
introduced in this work. Boosting is a technique, used to combine weak classi-
fiers to form strong ensemble-classifiers. Examples of this “weak” classifiers -
e.g. neural networks, decision trees and smoothing splines - are introduced. In
addition, state-of-the art classification techniques that are used as references in
the following chapters are introduced. Compared to these other classifiers, the
specifics of Boosting are pointed out.

2.1. Basic Concepts

A classification problem is given as a collection of N samples (xi, yi), i =
1, . . . , N . Each sample is described by a feature vector xi ∈ IRF and a class-
label yi ∈ Y , where F is the number of input dimensions and Y is the set of
possible labels. The task of a learning algorithm is to induce a rule H(x) for
predicting the label of unseen instances, such that the probability of predicting
the wrong label is minimized:

ŷ ← H(x) so that ǫ = E
[

I(y 6=ŷ)

]

is minimized . (2.1)

If not stated otherwise, formulations for binary classification are presented.
Classification problems involving more than two classes are discussed in Chap.
3.
Two main principles for building classifiers may be followed. Generative

models estimate class probabilities in whole feature space. Discriminative mod-
els focus on approximation of decision surfaces. Most of this work will focus on
discriminative models only, due to their stronger performance for classification
tasks.

Generative Models. Generative Models perform regression in order to esti-
mate the distribution p(y = k,x) for all classes k = 1, . . . , C. Estimation can
be performed, for example, by fitting a Gaussian mixture model to the data us-
ing the expectation maximization algorithm. The posterior probabilities can be
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2. Classification

induced using Bayesian inference:

p(y = k|x) = p(y = k)p(y = k,x)

p(x)
. (2.2)

The decision of the classifier is then

ŷ ← argmax
k

(p(y = k|x)) . (2.3)

The problem of using generative models for classification, is that class proba-
bilities are estimated for the whole feature space. However, in order to build
a good classifier, accurate decision boundaries are essential. Generative ap-
proaches don’t especially account for decision surfaces. Therefore good global
approximation might be achieved at the cost of increasing error rate. Conse-
quently, benchmark experiments show that generative models are regularly out-
performed by discriminative models, in the field of classification. On the other
hand generativemodels are very flexible. For example, class-dependentmisclas-
sification costs can easily be incorporated without having to retrain the model -
as it would be necessary for discriminative models.

Discriminative Models. Discriminative models don’t attempt to model class
probabilities globally. Instead they focus on modelling decision surfaces. Since
there are less free parameters needed to fit only decision surfaces, the resulting
models are simpler and can be fitted more easily. This leads, in general, to im-
proved results for classification tasks. On the other hand, the trainedmodels are
more restricted than models produced by generative approaches. For example,
if the relative misclassification costs of classes change, a new model has to be
trained. Also, models are hard to interpret.

2.1.1. Assessing Performance

Generalization error of a classifier H(x) is defined as:

ǫ = E[I(H(xj) 6=yj)] , (2.4)

where the samples xj,yj are drawn from the generating distribution indepen-
dently of the training samples. The generalization error ǫ can’t be optimized
directly. Therefore the performance of the classification rule has to be assessed
using the available data, namely the training samples. The concepts needed for
this are discussed briefly in this section.
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Cost Functions

Numeruous cost functions for assessing results of classification and regression
exist. The target of model fitting, for both settings, is to minimize the error on
unseen data.
In classification settings, the objective is to minimize the generalization error.

Since the generalization error is not accessible, the empirical error is often used
as an approximation1 of the generalization error that can be calculated on the
training samples:

ǫ̂ =
1

N

N
∑

i=1

I(H(xi) 6=yi) . (2.5)

In cases, where the set of training samples is small or the classifier is very flexi-
ble, the empiric error may underestimate the generalization error dramatically.
Also, optimizing the empirical error directly is hard, since it is not differentiable.
For these reasons, other - more practical - cost functions are incorporated to
solve classification problems. These cost functions give an approximation of
the empirical error, but are differentiable. Also some cost functions allow for
a more realistic assessment of generalization than empirical error. The specific
choice of cost function depends on the classification scheme used.
In regression settings, an unknown function f(x) needs to be estimated using

a model h(.). For most problems, measurements y is assumed to be corrupted
by gaussian noise:

y = f(x) + ε . (2.6)

The task is to estimate f(.) as tightly as possible, without adapting to noise. In
case of gaussian noise, the most-likelihood estimation can be found by minimiz-
ing the squared error of the fit:

ǫ =
1

N

N
∑

i=1

(h(x)− y)2 . (2.7)

In practice, using squared error is the standard choice even if the actual distri-
bution of errors is not known. There are, however, cases where squared error
is not the most appropriate choice, e.g. when errors are known to have another
distribution than gaussian. Another problem of the squared error is it’s high
sensibility to outliers. So, if outliers may be an issue, other cost functions may
be more appropriate.

1More general, class-dependent misclassification costs may be used. Using misclassification
costs enables prioritization of the classes. If costs are equal for all samples, this is equivalent
to minimizing the empirical error.
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Table 2.1 shows a number of cost functions used for regression and classifi-
cation problems. The classification costs are tailored to binary problems with
y ∈ {−1, 1}. Figure 2.1 depicts some of the cost functions. While cost functions
used with regression problems are symmetrical, cost functions for classification
are not. This reflects that for classification the qualitative result is important.
Therefore, the output can’t be too high, as long as the sign is correct. Note, that
all cost functions introduced in this section assess performance on training data
only.

name equation optimal output

quadratic error ǫ =
∑

i ci (ŷ − yi)
2 Ec[y|x]

linear error ǫ =
∑

i ci|ŷ − yi| solution of constrained linear
optimization problem

linear classification costs ǫ =
∑

i ci max((1− ŷyi), 0) a sgn (Ec[yi|x])

exponential costs ǫ =
∑

i e
−ŷyi 1

2
log

Ec[I(yi=1)]

Ec[I(yi=−1)

empirical error ǫ =
∑

i ci(I(yi 6=ŷi)
) sgn (Ec[yi|x])

Table 2.1.: Cost functions for regression (upper) and binary classification (y ∈
±1). The constant a for linear classification error depends on regular-
ization and is equal to∞without regularization.

Adjusting Generalization

Finding a good trade-off between quality of model fit on training data, assessed
by the cost functions introduced above, and complexity of the model is essen-
tial for finding models with good generalization capabilities. A good example,
showing that performance on training data is not sufficient for assessing perfor-
mance of a classifier is the 1-Nearest-Neighbor classifier. It will always represent
training data perfectly, resulting in perfect training error. However, Voronoi re-
gions are generated for each training sample assigning the respective class in
it’s neighborhood, even if the posterior probability of that class is very low at
that specific location in feature space. Therefore no good generalization can be
expected for arbitrary problems2.
In order to asses the generalization capabilities of a model, the performance

on the training data, as well as the flexibility of the model needs to be taken into
account. Examples of general measures for model flexibility are VC-dimension

2An example of a problem, that leads to poor performance for 1-Nearest-Neighbor classifiers
is a superposition of two classes with uniform distribution over the same region of feature-
space, where one class has higher a-priori probability. A Bayesian classifier should always
vote for the class with higher probability. A One-Nearest-Neighbor classifier will generate
voronoi regions for each sample of the “weaker” class - thereby deteriorating performance.
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Name Definition

Akaike Information Criterion (AIC) AIC = 2d+N [ln(RSS/N)]
Bayessian Information Criterion (BIC) BIC = d ln(N) +N [ln(RSS/N)]
Generalized Cross Validation (GCV) GCV = RSS

N−d

Table 2.2.: Information criteria for assessing model performance. RSS =
∑

ǫ2i
is the residual sum of squares, N is the number of samples and d
are the effective degrees of freedom, approximated in an appropriate
way. For all given formulas, unknown and equally distributed errors
are assumed.

[Vapnik and Chervonenkis, 1971] for classifiers and effective number of degrees
of freedom for linear models in regression settings. The principle of finding a
trade off between quality of model fit and model complexity is coined Occam’s
Razor. It states, that when choosing from models with equal training error, the
simplest model should be selected. The practical application, however, is more
complicated. For example when comparing two models with approximately
equal training errors and complexities, it is not straightforward how to decide
which model to prefer. For regression problems using linear models, the infor-
mation criteria shown in Tab. 2.2 can be used to find a decision. Unfortunately,
no equivalent criteria exist for the cost functions typically used with classifica-
tion. For many classification approaches theoretical bounds for generalization
errors exist. However, most of these are so pessimistic, that they largely overes-
timate generalization error and are only of limited practical use.
An approach which leads to very good practical results is cross-validation

(see Appendix B). This approach repeatedly excludes samples from the train-
ing set and uses them to estimate generalization error of the trained classifiers.
While this approach is very general and quite accurate, it leads to a significant in-
crease in computational load, since classifiers need to be trained multiple times
(typically 5 to 10). Nevertheless, cross validation is a very powerful tool and
will be used in the experiments presented in this work.

Bias-vs-Variance

The terms bias and variance are related to the flexibility and robustness of a
classifier. They can be used to asses the complexity of models built by a given
classifier.
A model’s bias measures, how well it can adapt to a given problem. Higher

bias corresponds to less flexibility. For examples models based on linear deci-
sion thresholds in feature space: ŷ = wTx + b (w is the normal of the decision
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2.2. Support Vector Machines

surface and b an offset) are biased for models that are not linearly separable.
However, the optimal model can have a certain bias, preventing it from overfit-
ting the data.
The variance of a model measures how it reacts to small changes of the train-

ing data. Since these small changes should not alter the overall statistical dis-
tribution of the data, the model should remain stable. If the model changes
significantly, it can’t be trusted.
A good model should exhibit small variance and small bias. These goals are

conflicting, since reducing bias increases variance and vice versa. Quality of a
model will depend on how good the tradeoff is.

2.2. Support Vector Machines

Support Vector Machines (SVM, Boser et al. [1992]) are used to construct binary
classifiers. In derivation of SVM’s the samples are viewed as points in an F -
dimensional feature space. The points shall then be separated using a hyper-
plane which leads to the following model:

H(x) = sign
(

wTx+ b
)

(2.8)

If the points are linearly separable, in general a set of feasible separating hyper-
planes exist. The selection problem is solved by choosing the hyperplane giving
the largest margin. Vapnik [1982] shows that this, under very mild assumptions
on the underlying data distribution, minimizes the expected generalization er-
ror. This means that the hyperplane is optimized to maximize the minimal dis-
tance of points from the hyperplane. For the problem to be feasible, perfect
separation of the samples using a hyperplane has to be possible. That means
a hyperplane exists such that all sample of the first class lie on one side of the
hyperplane and all samples of the second class on the other. The optimization
can then be expressed as a quadratic program:

min
w

1

2
‖w‖2

s.t. wTxi ≥ 1 ∀i ,
(2.9)

which can be solved efficiently. The solution of the quadratic program is guar-
anteed to be globally optimal.
For general classification problems the classes will not be linearly separable.

Also, using Eq. (2.9), the classifier might concentrate too much on outliers, lead-
ing to overfitting. This problems led to the design of SVM’s with soft margins
[Cortes and Vapnik, 1995]. With this extension the samples are no longer re-
quired to be linearly separable. Instead costs are assigned to samples which are
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classified wrong. The costs depend on the distance of the samples from the de-
cision boundary. These weighted costs are then added to the SVM optimization
problem. The weight of the misclassification costs with respect to the margin
width is adjusted using the slack penalty C. Therefore the classifier implements
a trade-off between achieved margin and costs produced by samples which are
on the wrong side of the decision boundary. This leads to the primal objective
of soft margin SVMs:

min
w

1

2
‖w‖2 + C

N
∑

i=1

ξi

s.t. wTxi ≥ 1− ξi and ξi ≥ 0 ∀i;
(2.10)

Using the Lagrangian polynomial, this can be transfered into the dual objective
of soft margin Support Vector Machines:

max
α

∑

i

αi −
1

2

∑

i,j

αiαjyiyjx
T

i xj

s.t.
∑

i

αiyi = 0 and 0 ≤ αi ≤ C ∀i .
(2.11)

If the Lagrangian multiplier αi of an sample is zero, it has no influence on clas-
sification at all. This illustrates, how SVMs find the minimal set of samples
defining the hyperplane that minimizes the given cost function. All other sam-
ples could be removed from the training set without changing the result. Often
the samples irrelevant for construction of the decision surface will make up a
significant part of training samples.
For many classification tasks, separation in input space is not possible (e.g.

XOR problem). By using the so called kernel trick, it is possible to build non-
linear classifier using the SVM framework. Equation (2.11) shows that classifi-
cation results depend on the inner product of samples only. Using this finding,
samples can be transformed into a virtual feature space Φ(x)3. As long as it is
possible to calculate the inner product of two samples in the virtual space ef-
ficiently, the dimensionality of the space is irrelevant. This has the advantage,
that the feature space doesn’t need to be defined explicitly. The SVM optimiza-
tion will produce a linear hyperplane in the virtual feature space. Transforming
back into the input space leads to nonlinear decision surfaces. Thus, by using
kernels SVMs can be applied to a much wider range of problems.
While theoretical bounds for generalization errors of SVMs exist, these are in

general too loose to be used in for parameter selection. Therefore, in practice,

3ByMercer’s theorem, Φ(x) needs to be a symmetric, continuous, positive semi-definite kernel
function (Mercer Kernel).
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the optimal parameters (slack penalty C and kernel parameters) are adjusted
using cross validation. Advantages of SVMs include its sound theoretical foun-
dation, as well as the use of quadratic programming to solve the optimization
problem. SVMs define state-of-the art performance for a wide range of classi-
fication problems. Therefore they are an important benchmark for newly pro-
posed classifiers. Disadvantages include expensive training and evaluation for
training problems involving many training samples.

2.3. Artificial Neural Networks

Artificial Neural Networks (ANN, e.g. Rosenblatt [1958]) are motivated by two
very different approaches. The first views ANNs as simple models of the func-
tion of biological neural networks - this more classical view was the original
motivation for designing ANNs. The second line [e.g. Hornik et al., 1989] views
ANNs as general function approximator and focusses on practical applicability
instead of modelling the complex operation of biological neural networks. This
work will not deal with biological interpretations of ANNs.

Neural networks are constructed from simple processing units (neurons) and
the connections between these units. The processing units calculate the sum
of their weighted inputs, which are either input features or outputs of preced-
ing processing units, and apply a transfer function to the result. Despite the
simple nature of the processing units, complex global behavior of the network
is possible, depending on the connections of the network. Figure 2.2 shows a
feed-forward neural network with one hidden layer. This work will only dis-
cuss simple neural networks with feed-forward architecture (no loops, delays
or memory). Neural networks are trained by repeatedly presenting the training
patterns and adjusting the connection weights in order to produce the desired
output values.
Popularity of neural networks received a dent upon the introduction of Sup-

port Vector Machines. The reason for that is the firmer theoretical foundation
of SVMs along with their better usability. While high numbers of design param-
eters need to be set for neural networks, good results are achieved by SVMs
adjusting only two parameters (kernel properties and slack penalty). On the
other hand ANNs still are benchmark for some machine learning problems and
are more flexibly applicable than SVMs.
In order to model non-linear functions in feature space, neural networks with

hidden layers are needed. The flexibility of a neural network depends on the
number of neurons used and the number of hidden layers. For many problems,
one hidden layer will be sufficient. For some cases using more than one hidden
layer is advantageous. Neural Networks with more than two layers are not
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Figure 2.2.: Feed forward neural network with one hidden layer. Left: architec-
ture, right: mathematical structure. Biases are realized using addi-
tional inputs units with constant input. In regression settings the
output transfer functions will be removed.

used frequently for general problems. However - they are useful together with
special network architectures tailored to solve certain classification tasks (e.g.
the networks used for recognition of handwritten digits used in LeCun et al.
[1990]).
The prediction of a feed forward network with T − 1 hidden layers can be

calculated in iterative manner as follows:

zt = σt

(

WT
t

[

zt−1
1

])

(2.12)

With the layer numbers t = 1, . . . , T , inputs z0 = x, outputs y = zT and transfer
function of the t-th layer σt. The Matrices Wt represent the connection weights
which are tuned during training.

To train neural networks efficiently, backpropagation training is used [Rumel-
hart et al., 1986]. This technique allows to calculate desired output values of hid-
den units4. With error backpropagation training of multi-layer networks using
gradient descent algorithms becomes feasible. Backpropagation training works
in two steps. In the first step (forward propagation) the network is presented
with the inputs and the respective outputs of all layers are calculated. In the
second step (backward propagation) the outputs of the network are compared
to the desired outputs to calculate the errors and gradients of the output layer.
By using the chain rule, the errors and gradients of hidden layers can be derived

4Only the desired outputs of the output units are known directly.
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from the results of the output layer. Details are shown in Alg. 1. In contrast to
SVMs, in general only a local minimum of the network cost function is found.
A number of parameters need to be tuned to adjust the flexibility of ANNs

to the problem at hand: number of hidden neurons, number of hidden layers,
step width and associated parameters for gradient descent algorithm, number
of training epochs, et cetera. This high number of tunable parameters is a dis-
advantage of neural networks, since it is hard to find an optimal setting. Other
techniques as Support Vector Machines and Boosting typically have a lower
number of tunable parameters and their performance is less sensitive to the pa-
rameter settings.

Algorithm 1: Training of a neural network classifier using error back-
propagation
Input: Training samples xi, yi with i = 1, . . . , N

Network architecture (number of layers T , number of hidden units
in each layer)

Output: Neural network with trained weights
1 Initialize the weight matricesWt, t = 1, . . . , T with small random weights;
2 SetO0 = [x1, . . . ,xN ];
3 repeat
4 for t = 1, . . . , T do
5 Calculate outputs of current layerOt = Ot−1Wt;
6 end
7 Calculate errors δT = y − oT of output neurons;
8 for t← T − 1 downto 1 do
9 Error backprop: δt = Σt

′Wtδt+1;
10 Update weights: ∆Wt = Wt − γδtot−1;
11 end

12 until until stopping criterion is satisfied;

2.4. Partition Based Classifiers

Partition Based Classifiers divide the feature space into a number of regions.
Examples are decision trees, histograms and smoothing splines. Each region in
feature space is assigned a constant output value (trees, histograms) or a simple
local function (splines). Advantages of partition-based classifiers include sim-
ple implementation and cheap evaluation. The outputs are tuned to optimize a
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given cost criterion. In the case of constant outputs, the output of each region
can be optimized independently from other regions5.
This work only deals with classifiers using explicit partitioning. Classifiers

using implicit partitioning, e.g. by using neighborhood relationships as used
by k-Nearest-Neighbors are not considered. Also, only classifier dividing the
feature space using hyperplanes are discussed. The direction of the hyperplanes
are described by linear projections of the inputs: h(x) = f(wTx). Linear features
are the most common choice used with partition based classifiers. However,
other choices are possible as well.

2.4.1. Decision Stumps

Decision stumps split the feature space into two half-spaces. Each half-space is
then assigned an output value. The model of a decision stump is:

h(x) = a+ b sgn(wTx+ s) , (2.13)

where a and b are constants, that are optimize in order to minimize the given
cost function. The possible outputs of the model are therefore a− b, a+ b and a.
The projectionw and offset s describe the decision surface. An important special
case are projections vectorsw, where all but one element are zero - therefore one
input component is selected (component-wise projection). For a given decision
threshold the values of a and b can be calculated directly. Evaluation of decision
stumps can be performed in constant time O(1).
Often the projection w is given and only the threshold s needs to be deter-

mined in order to fit the stump to the data. This can be done very efficiently by
first sorting the samples along the projection direction. Then the best threshold
can be found in linear time. So the overall costs have complexity O(N log(N)).
The advantages of decision stumps are their cheap training (for givenw) and

evaluation. Also, decision stumps can be used to build decision trees, extending
their applicability. Regularization of decision stumps can be done by defining
a minimal number of samples allowed on either side of the decision surface. A
more powerful approach is regulating the output values defined by a and b.

2.4.2. Histograms

Histograms divide the feature space along a linear projection w by placing a
number of thresholds. Each region, limited by two thresholds, is assigned a

5This is not true, if regularization is used to smooth the outputs (see discussion in Sect. 2.4.3).
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constant output value. This leads to the following model of a histogram with T
regions

h(x) =
T

∑

t=1

atI(st−1<wTx<st) with s0 = −∞, sT =∞ . (2.14)

Similar to stumps, histograms often work on one input feature only. Output
values at can be calculated directly as soon as the samples are assigned to the
output regions.
The thresholds s1, . . . , sK−1 could be placed in order to minimize costs. How-

ever, finding optimal thresholds is impractical since the number of possible par-
titions grows exponential with the number of regions. So often the thresholds
are placed equidistant in feature space. This also has the advantage that eval-
uation can be performed using table lookups. Also, training using equidistant
thresholds is cheap. The effort is dominated by sorting the samples leading to
training complexity O(N log(N)).
If the problem can’t be modelled along one dimension efficiently, intersec-

tions of one-dimensional histograms can be used. However, this approach is
limited to low numbers of dimensions. For higher numbers of dimensions the
average number of samples in each partition approaches zeros fast.
Histograms can be trained and evaluated efficiently. Often, more than one

decision stump is needed to achieve the same performance as one histogram.
Therefore histograms may be the better classifier choice in cases where feature
calculation dominates the classifier costs.

2.4.3. Univariate Smoothing Splines

Instead of using constant outputs in each region - like histograms, smoothing
splines use a simple function to approximate the output function. This has the
advantage, that often less regions are needed to reach the same approximation
error. In addition, continuous outputs are expected to be a more realistic model
of real world class distributions.
Use of smoothing spline base classifiers for training of projective features is

discussed in Sect. 4. While smoothing splines can also be used to fit distribu-
tions in low dimensional feature spaces, this work deals with univariate smooth-
ing splines only.
Smoothing splines express functions as a weighted sum of spline base func-

tions:
h(z) = aTb(z) with z = wTx , (2.15)

where z is a scalar input value and b(z) return the vector containing the values
of the base functions evaluated at z. To construct a fit from scalar inputs zi to
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outputs yi, the weights a need to be calculated by solving a linear system of
equations. In order to prevent overfitting, a tradeoff between approximation er-
ror and complexity has to be found. P-Splines from Eilers and Marx [1996] are
used for fitting penalized splines: a fixed high number of equidistant support
points is used and a parameter λ is tuned to adjust the amount of smoothing.
P-Splines use finite differences of the weights a of the spline functions to ap-
proximate roughness. The weights a can then be calculated using

a =
(

B∆cB
T + λDDT

)−1
B∆cy , (2.16)

where B = [b(z1) . . .b(zN)]
T denotes the matrix of values of the spline basis-

functions evaluated at z1, . . . , zN , y = [y1 . . . yN ]
T contains the sample class and

∆c ∈ IRN×N is a diagonal matrix containing the sample weights c1, . . . , cN . The
expression aTD calculates finite differences of a given degree on a. The rough-
ness penalty can be chosen using cross validation. Note that the size of the linear
system of equations in (2.16) depends on the number of spline base functions
only.
The importance of regularization is visualized by Fig. 2.3. Without regulariza-

tion the spline approximation overshoots the true function and shows ringing
effects, which is clearly undesirable in a classification setting. Penalization of
first and second order finite differences is shown. First order penalties lead to
a more conservative approximation of the true function, tending towards a con-
stant output for high roughness penalties: h(x) = cTy = const for λ → ∞.
Second order penalties don’t prevent overshooting. Therefore first order finite
differences are the more appropriate choice for classification settings.

2.4.4. Decision Trees

For classification problems, where the separation of the classes along the feature
directions is poor, the partition-based classifiers discussed above will not yield
satisfactory results. Since they work in a component-wise fashion, they return
very weak hypotheses. In these cases, decision trees provide a simple scheme
to build hierarchical classifiers. They work by combining classifiers into a tree
structure. In most cases decision stumps are used to build the nodes of the tree.
Since attempting to build optimal trees is not practical, greedy approaches are
used, growing the tree starting with the root and sequentially adding the nodes
giving best cost improvement. Well-known approaches for constructing trees
are ID3 [Quinlan, 1986] and C4.5 [Quinlan, 1996]. In the experiments of this
work a very simple tree growing algorithm6 is used, as shown in Alg. 2.

6In particular no pruning is used.
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Algorithm 2: Decision tree growing algorithm. The node learning algorithm
will return a decision rule minimizing the given cost function. Note, that
this decision tree algorithm is very simple, but sufficient to achieve good
performance in cooperation with boosting schemes.
Input: samples xi, yi with i = 1, . . . , N

Node learner
Cost function
Stopping criterion

Output: decision tree
1 Create node with C outputs, where C is the number of possible outcomes;
2 Construct decision rule h

(

x(f)
)

by calling node learner on all input features;
3 Select decision rule h(x) = h

(

x(f∗)
)

of the feature f ∗ giving minimal costs
and assign it to current node;

4 Split samples into sets depending on the outcome of h(x);
5 for all possible outcomes do
6 Evaluate cost function on associated set;
7 if stopping condition is not satisfied then
8 Call tree growing algorithm with samples in set;
9 Replace output by returned subtree;

10 end

11 end

23



2. Classification

0

−1

0

1

0

−1

0

1

0

−1

0

1

0

−1

0

1

0

−1

0

1

0

−1

0

1

Figure 2.3.: spline approximations of the sign function. First and second deriva-
tive penalty in the respective rows. From left to right: no, medium
and high roughness penalty. The spline fits in each column have the
same squared fitting error

A tree defines a hierarchical partitioning of feature space. Even with very
simple node-function (e.g. decision stumps), arbitrary decision boundaries can
be approximated. However, using too weak node functions7 will lead to overly
complex decision rules and hurt generalization.
There are different approaches for adjusting model complexity of decision

trees. One possibility is limiting the number of nodes used to build the tree.
This limits the number of output regions and therefore increases the average
number of samples in each region. However, limiting the number of nodes will
not prevent the tree from generating regions with very few samples. Another
important factor for the generalization performance of trees is its depth. Higher
depths lead to poorer Generalization [Reyzin and Schapire, 2006]. This also
means that for a given number of nodes, more balanced trees will likely be less
susceptible to overfitting.
An important technique for building trees with better performance is prun-

ing. First a tree is built that perfectly separates all training samples – allowing
overfitting to the training data. In the second step, starting from the leaves,
nodes are removed from the tree. A node will only be left in the tree if it gives
a minimum improvement of a specific quality criterion. This corresponds to
Occam’s Razor – only nodes, that achieve a certain performance improvement
with respect to the increase in complexity they cause, are left in the tree.

7If the separation of classes is poor along the available projections z = w
T
x, it may still be

possible to separate the classes perfectly. But it is likely that node decisions represent ran-
dom perturbations of training data rather than the true class distribution. Therefore the
generalization performance is expected to be poor for these settings.
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2.5. Boosting Algorithms

2.5. Boosting Algorithms

Boosting is a technique to construct linear ensembles of weak “base classifiers”.
Base classifiers use simple models and give relatively poor individual perfor-
mance. By combining a number of base classifiers, ensembles with arbitrary
low training error can be built. The first practical boosting algorithm was in-
troduced in Freund and Schapire [1995]. Since then, numerous new Boosting
flavors have been proposed.
Boosting is the central classifier model, dealt with in this work. It is an exam-

ple of a family of classifier models that gained prominence in recent years8. All
of these algorithms have in common that they build a strong classifier by com-
bining a number of weak basic classifiers into a linear ensemble. The outputs of
the classifiers are combined in a voting scheme:

H(x) =
T

∑

t=1

αtht(x) . (2.17)

In the case of boosting, the training problem is relaxed so that the performance
requirements for each base classifier is low. The relaxed problems can then be
solved using very simple base classifier models. This simplicity in turn leads to
a small number of adjustable parameters and therefore good applicability.
Boosting achieves good results in many empirical studies. In comparison to

SVM classifiers, the theoretical foundation of Boosting’s good performance is
not so well understood. Consequentially, the theoretical bounds for generaliza-
tion performance of boosting classifiers are very loose. The lack of theoretical
foundations is also responsible for the high number of available boosting fla-
vors. Since the performance differences of the individual boosting flavors is, in
general, negligible - only the most popular boosting flavors are discussed in this
work.

Technically, Boosting algorithms work by holding a distribution of sample
weights ci, i = 1, . . . , N . Before start of training all samples have equal weights.
In each boosting stage a base classifier is fitted, taking the weights ci into ac-
count. Through the course of training, the weights are adjusted in order to put
more weight on samples that are classified wrong by the ensemble of already
trained base classifiers. After each round of boosting the weights of training
samples are increased or decreased, depending on whether they were correctly
classified by the new base classifier. In consequence, new base classifiers will
spendmore effort on getting samples right that were misclassified by preceding
stages.

8Another example: Bagging is discussed in Sect. 2.6.
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2.5.1. PAC Learning Theory

PAC stands for Probably Approximately Correct and provides a framework for
analysis of machine learning problems and was proposed in Valiant [1984]. The
PAC theory defines conditions under which a classification problem is consid-
ered to be learnable. Learnability of a problem is defined as the existence of an
algorithm which is able to find a solution with certain properties in polynomial
time.
A strong learner has to be able to build a model that exceeds an error rate ǫ

with probability of less than δ:

P [P [H(xi) 6= yi] > ǫ] < δ . (2.18)

The training complexity in memory space and time shall not be more expensive
than polynomial in 1/ǫ, 1/δ andN . PAC theory also defines the notion of a weak
learner9. A weak learner only needs to achieve error rates ǫ slightly better than
random guessing.
Boosting is a concrete rule for building a strong model satisfying Eq. 2.18 in

compliance with the requirements of PAC learning theory. In Schapire [1990] it
is shown that it is possible to construct arbitrary strong hypothesis from weak
hypothesis, thus laying the foundation for boosting algorithms.

2.5.2. Gradient Boosting

The first practically applicable boosting algorithm AdaBoost was proposed in
Freund and Schapire [1995]. AdaBoost, as well as a number of derived boosting
flavors are based on using a gradient descent on a given cost function [Friedman
et al., 1998]. A gradient step on a misclassification-cost function is performed
in each round of boosting. For this, in each boosting stage, the cost function
is evaluated for the results of the preceding classifiers. From the results the
gradient descent direction of the next boosting round is derived. The next base
classifier is then constructed to perform the gradient step. Alg. 3 shows the full
course of boosting training in a general formulation.
Though a large number of boosting flavors exists, here only the most fre-

quently used are discussed. All algorithms work as shown in Alg. 3. The
specifics of the different flavors are shown in Tab. 2.3. In the experiments pre-
sented in this work only GentleBoost is used. GentleBoost is very simple and at
the same time shows good resistance to overfitting [Friedman et al., 1998]10.

9The notions weak learner and base classifier are used interchangeable in this work.
10Note that AdaBoost and RealBoost are corrective Boosting Algorithms, this means that the

costs of the preceding base classifier with the updated weights are the same as for random
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Algorithm 3: Boosting - general boosting algorithm performing a gradient
descent on exponential cost function (binary problems)
Input: Training samples xi, yi, i = 1, . . . , N

Number of boosting rounds T
Base learner
Sample reweighting function f()

Output: Classifier: H(x) =
∑T

t=0 αtht(x)
1 Set h0(x) = y ;
2 Calculate α0;
3 for t = 1, . . . , T do

4 Calculate current hypotheses: ŷi =
∑t−1

s=0 αshs(xi) ;
5 Calculate sample weights using current hypotheses: ci = exp(−yiŷi);
6 Normalize sample weights so that

∑

i ci = 1 ;
7 Run base learner on weighted problem {xi, yi, ci} to generate new base

classifier ht(x);
8 Calculate base classifier weight αt ;
9 end

Name αt optimal output h∗

AdaBoost αt = log ((1− et)/et) sgn(Ec[y]|x)
with et = Ec[I(y 6=ht(x))]

Real AdaBoost 1 1
2
log( Ec[y=1|x]

Ec[y=−1|x]
)

GentleBoost 1 Ec[y|x]

Table 2.3.: Comparison of gradient-based boosting algorithms.
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The base classifiers are controlled using a weight distribution ci on the train-
ing samples. For GentleBoost the weights are calculated as:

ci,t ← exp

(

−yi
t−1
∑

s=1

αshs(xi)

)

with αs = 1 . (2.19)

The weights make sure new base classifiers focus on samples, classified incor-
rect by the ensemble of preceding classifiers. Samples that are classified cor-
rectly by the preceding classifiers will receive lower weights and therefore less
attention of the base classifiers. For GentleBoost the base classifiers minimize
the weighted squared error of the hypothesis:

ht+1 = argmin
h∈H

N
∑

i=1

ci (h(x)− yi)
2 . (2.20)

This is equivalent to performing Gauss-Newton steps in function space on the
cost function J [Friedman et al., 1998], which is defined by

Jt =
N
∑

i=1

ci,t . (2.21)

In order to minimize the classifiers costs, the weights of the samples have to be
minimized. It can be shown, that the costs J on the training samples asymp-
totically approach zero, as long as all base classifiers do better than random
guessing. Achieving performance slightly better than random guessing is sim-
ple. However, the slight advantage over random guessing might be modelling
random perturbations of training data and not represent the true distribution
of the classification problem. Therefore some mechanism to control significance
of the hypothesis should be used - for example by applying a threshold on the
base classifier costs.

2.5.3. Linear Programming Boosting

Another line of boosting schemes doesn’t use gradient descent, but instead
solves a linear program to construct an ensemble. Examples are LPBoost [Demi-
riz et al., 2002] and SoftBoost [Warmuth et al., 2008]. The routines for calculating
the sample weights can be derived from the linear program defining the boost-
ing scheme. The weights are calculated, such that every new base classifier is

guessing. GentleBoost doesn’t have this property—this, however, doesn’t result in poorer
performance in empirical studies.
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independent from all preceding base classifiers (total corrective property). Lin-
ear programming boosting scheme’s have a close connection to SVM [Warmuth
et al., 2008].
One advantage of linear programming boosting is faster convergence com-

pared to gradient based approaches. This can result in a reduced number of
base classifiers needed to solve a problem and therefore cheaper evaluation of
the boosted classifier. In addition the schemes have measures to regularize the
sample weights, which is expected to improve generalization. A disadvantage
is the increased number of adjustable parameters of the boosting scheme itself11.
Another disadvantage is the costly calculation of sample weights, that can easily
be more expensive than base classifier training itself.
This work doesn’t examine linear programming boosting schemes in more

detail, due to the limitations mentioned above. Nevertheless, it is emphasized
that utilization of linear programming boosting together with the feature gener-
ation schemes presented in Sect. 4 seems to be a promising path. It allows to
reach equivalent result with less base classifiers, which is interesting especially
in fields where evaluation costs of base classifiers are critical.

2.5.4. Regularization

In contrast to former belief Friedman et al. [1998], overfitting may be a prob-
lem for Boosting algorithms (see discussion in Buehlmann and Hothorn [2008]).
Therefore measures should be taken to prevent overfitting. One approach is to
restrict the amount of weight put on samples, preventing Boosting from focus-
ing too much on outliers. This is implemented for example in the linear pro-
gramming boosting algorithms, discussed in the preceding section. Another
way to prevent overfitting is limiting the number of boosting rounds.

Yet another technique to prevent overfitting is to adapt the flexibility of the
base classifiers to the problem at hand. If base classifiers are too weak, con-
vergence may be slow. On the other hand, if base classifiers are too flexible,
they will overfit instantly. Since Boosting is much more a bias-reducing, than a
variance-reducing technique, it will have difficulties to cope with overly flexible
base classifiers12.
For base classifiers working by partitioning feature space (Sect. 2.4), flexibil-

ity can be adjusted by setting the number of regions. A disadvantage is that

11For Boosting schemes based on gradient descent, in general the only parameter to be opti-
mized is the number of boosting rounds. For many classification problems, Boosting will
not overfit and therefore performance will saturate after a minimum number of rounds has
been reached. In contrast, additional parameters need to be set for LPBoost and SoftBoost .

12Other ensemble construction techniques, like e.g. Bagging (see below) are more appropriate
for reducing variance.
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the regularization has to be set in integer steps. Also, limiting the number of re-
gions may not be sufficient for regularization, since overfitting may also occur
if regions contain only few training samples. A more general applicable regular-
ization strategy for arbitrary base classifiers works by penalizing roughness of
the fitted functions. For base classifiers minimizing weighted quadratic fitting
error this leads to

h← min
h∈H

(

N
∑

i

ci(yi − h(xi))
2 + λP (h(x))

)

, (2.22)

were P (.) measures the roughness, for example

P =

∫ zmax

zmin

(

∂h(z)

∂z

)2

dz (2.23)

with h(.) being a univariate function of z = f(x) ∈ IR. The amount of smoothing
can be adjusted continuously by tuning the roughness penalty λ. Selection of λ
can be done using cross-validation.

2.5.5. Boosting for Feature Selection

An important application of boosting schemes is feature selection. For feature
selection, base classifiers working on one input feature only (component-wise
base classifiers) are used: h(x) = h(z) with z = x(j)13. Typical examples of clas-
sifiers working in a component-wise fashion are decision stumps, histograms
and smoothing splines.
Given a weighted training problem {xi, yi, ci}, i = 1, . . . , N the base learner

will fit F univariate base classifiers, one for each input. The base classifier with
minimal costs is added to the Boosting ensemble. Since the sample weights
ensure that base classifiers are independent and helpful for the classification
problem, the selected features will exhibit the same properties. For problems
with very high numbers of inputs features, performance often saturates long
before all features were selected. Therefore - often - boosted classifiers work on
a subset of the input features only. So, a part of the evaluation costs, associated
with feature calculation, can be saved during evaluation of the classifier.

Input feature sets used for feature selection with Boosting have to contain
a subset of features that models the classification problem well enough to be
solved by the given base classifiers. Often, component-wise base classifiers like

13It is assumed, that a fixed set of input features is available. However, these may include
features derived from the original inputs.
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decision stumps are used. Component-wise base classifiers may fail for compar-
atively simple problems. For example, the well known XOR problem can’t be
solved using component-wise models. Note that decision tree base classifiers
will also have difficulties with problems where class separation along the given
features is poor, since they too add features one-at-a-time. On the other hand,
boosting deals with redundant features very well. Therefore using extended
feature sets might be beneficial. Techniques for learning expressive features are
discussed in Chapt. 4.
A successful example of the use of boosting for feature selection is the use

of Haar-Features for classification of face and non-face patterns in Viola and
Jones [2001]. A relatively small number of features is drawn from a very large
set of haar-like features (F > 105). This leads to very cost-efficient and at the
same time accurate classifiers. In summary, boosting is one of the best and
most simple schemes for feature selection. It deals well with large feature sets,
containing many correlated features. Problems only occur, if features are not
strong enough to build a component-based model.

2.6. Bagging

This section briefly introduces Bagging (Bootstrap Aggregating). Bagging - like
Boosting - is also a technique for building linear ensembles of base classifiers.
With Bagging base classifiers with high variance can be combined to build a
classifier with low variance. Since the base classifiers are allowed to have high
variance, no regularization of the base classifiers is necessary.

In contrast to Boosting, Bagging doesn’t work by assigning sample weights
in each round of training. Instead for each base classifier a selection of samples
is drawn randomly from all training samples. Typically N samples are drawn
with replacement. The probability to be drawn is equal for all samples. Each
base classifier is then fitted to one random training set. For evaluation, all base
classifiers vote equally. The detailed algorithm is shown in Alg. 4. By using
random selections of samples for each base classifier, a certain degree of inde-
pendence of the base classifiers is achieved. If the assumption of independence
holds, using more base classifiers will result in a reduction of variance of the
ensemble.
Since each base classifier uses only a subset of the training samples, the re-

maining samples can be used to assess their performance. This is referred to
as out-of-bag error estimate. The resulting approximation of generalization is
somehow pessimistic, but still works much better than theoretic error bounds.
Qualitative comparison of out-of-bag error estimates for different parameter
sets are very useful for parameter selection.
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Advantages of bagging include the possibility to parallelize the training. Also,
since no sample no sample weights are used, bagging can be used with virtually
any out of the box classifier. Out-of-bag error estimates are helpful for tuning
parameters of the base classifier, without having to use costly cross-validation.
In addition bagging is not prune to overfitting. The main disadvantage of bag-
ging is that its performance is often poorer than the performance of boosting
classifiers or SVMs.

Algorithm 4: Bagging (binary problems)
Input: Training samples xi, yi, i = 1, . . . , N

Number of base classifiers to use T
Base learner

Output: Classifier: H(x) =
∑T

t=0 ht(x)
1 for t = 1, . . . , T do
2 Build random training set by drawing N samples from 1, . . . , N with

replacement;
3 Run base learner on random training set to generate new base classifier

ht(x);
4 end

2.6.1. Random Forests

Random Forests [Breiman, 2001] are an extension of the bagging scheme. A
“forest” of decision trees is constructed. Each tree is grown until it classifies all
of his training samples correctly. In addition to randomly selecting the samples
for each base classifier, the features used in each node of the decision tree are
randomly selected. So in each node not all features are evaluated, but only a
random subset. Typically ⌊

√
F ⌋ features are used, where F is the number of

available features. Algorithm 5 shows the training of a decision tree as part of
a random forest. Using decision trees with randomized features together with
Bagging results in Random Forests.
By randomizing the use of features, the independence of the base classifiers

increases. Randomized trees are an extreme case of a base classifier with no bias
but very high variance. Each individual tree will exhibit poor generalization.
However, combining a sufficiently high number of randomized trees using bag-
ging, results in competitive performance on a wide range of machine learning
problems.
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The most important advantage of Random Forests is the absence of tunable
parameters. In addition training of random forests is extremely efficient and
can be parallelized easily. In Sect. 4.4 random forests are used as a benchmark
algorithm.

Algorithm 5: Randomized tree growing algorithm used for Random Forests
Input: Samples xi, yi with i = 1, . . . , N

Node learner
Output: decision tree

1 Assign all samples to tree root;
2 while Any training sample is classified incorrectly do
3 for Each node with misclassified training samples do

4 Select random feature set F by drawing ⌊
√
F ⌋ features randomly

without replacement;
5 Construct decision rule h

(

x(f)
)

by calling node learner on the
samples of the current node with all features in F ;

6 Select decision rule h(x) = h
(

x(f∗)
)

of the feature f ∗ giving minimal
costs and assign it to current node;

7 Assign samples to the respective outputs of the current node,
according to the output of h(x);

8 end

9 end
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3. Efficient Multi-Class Boosting

3.1. Motivation

Numerous applications in machine learning and image classification involve
more than two output classes. A typical example from image processing is
cathegorization of objects or scenes depicted on photos. Another typical ex-
ample is classification of syllables for speech recognition problems. Multi-class
problems become more and more important as new applications of machine
learning emerge. Therefore approaches implementing efficient techniques for
solving multi-class problems are an important field of ongoing research. In
particular techniques scaling gracefully as number of samples and number of
classes grow are sought.
Some of the current benchmark classification techniques (e.g. Boosting and

SVMs) are not instantly applicable to multi-class problems. By design they are
tailored to binary problems. This limitation may be seen as a drawback. On the
other hand, powerful techniques for building multi-class classifiers by combin-
ing binary classifiers exist. Section 3.4 introduces these techniques briefly. Their
application to multi-class Boosting is discussed in Sect. 3.5. A new approach for
training base classifiers for multi-class boosting is introduced in Sect. 3.5.5. An
experimental section comparing the performance of the discussed techniques
concludes the chapter. The newly proposed scheme achieves good performance
compared to state-of-the-art techniques.

3.2. Problem formulation

A multi-class training problem is given as a collection of N training samples.
Each sample consists of a feature vector xi ∈ IRF and a Label yi ∈ Y . To improve
readability, without loss of generality, it is assumed that for a training problem
involving |Y| = C classes, the labels are Y = {1, . . . , C}.
The machine learning systems attempts to find a function H(x) inducing the

label yi for a given feature vector xi. For binary problems, the usual approach
is to train H(x) so that sign (H(x)) indicates the class of the hypothesis ŷi. For
problems involving more than two classes, often a more complex design of the
classifier is needed. Different routes may be taken to formulate a the problem
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in way compatible to the utilized training scheme. Some examples of these
approaches are introduced in the following sections. In general, a functionK(.)
is used to map the output of the classifier onto the labels: ŷ ← K(H(x)).
Solving multi-class problems is - in general - harder than solving binary clas-

sification problems. For example the classification error rate achieved by triv-
ial classifiers1 rises as entropy of the class labels increases. Constant classifiers
K(H(x)) = const = maxk p(k) for k ∈ Y attain empirical error rates of

ǫmin = 1− max
k∈{1,...,C}

(

1

N

N
∑

i=1

I(yi=k)

)

. (3.1)

Randomguessingwithout prior knowledge leads to empirical error rates of 1/C.
When using optimal Bayes classifiers, the absolute number of errors increases
continuously as new classes are added to the problem. Furthermore, complex-
ity of decision surfaces grows as number of classes increases. The number of
hyperplanes needed to separate C > 2 classes grows as C increases.

3.3. Multi-class Capable Classifiers

Many classification techniques can deal with multi-class problems directly. A
short introduction of frequently used examples is given here for a better un-
derstanding of the techniques introduced later in this chapter. In particular the
techniques used to solve multi-class problems utilized with neural networks are
closely related to the approaches of Sect. 3.5, where multi-class base classifiers
for Boosting are discussed.

Decision Trees The feature-space is divided into a number of regions. Each
region is assigned the label of the class most probable to be observed in
this region. In order to prevent masking effects, the number of regions has
to be chosen sufficiently high. This, on the other hand, increases the risk
of overfitting. For each region only the most probable class needs to be
stored. This gives a very compact representation. On the other hand, a lot
of information is lost by discarding the information regarding frequency
of all-but-one class.

Artificial Neural Networks One output neuron is used to indicate the activa-
tion for each class label. If the network is presented a sample of a certain
class, the corresponding output neuron should take on a high value, while
all remaining output neurons take low values. Depending on the specific

1Classifiers not using the feature vector x to compute their output (e.g. a-priori classifiers).
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transfer and error functions, this approach is very similar to the 1-vs-all
base classifiers discussed in Sect. 3.5.2.

Generative Models In generative models, multi-class decisions arise very nat-
urally. The class with the highest probability p(y = k|x) for the observed
feature vector x is chosen.

3.4. Multi-class Wrappers

Boosting and SVMs, amongst other classification approaches, don’t allow to
solve multi-class problems directly [Hsu and Lin, 2002]. Their original deriva-
tion was restricted to binary problems only. This section introduces multi-class
wrappers. They are used to construct multi-class classifiers using binary classi-
fiers. Therefore they can be used to adapt arbitrary classification approaches to
the multi-class case.
A multi-class problem is split into a number of binary problems:

y ∈ Y 7→ y ∈ Y . (3.2)

The Matrix Y = {y1, . . . ,yC} ∈ {−1, 1, d}M,C defines the binary problems to
be solved. Samples marked with d will be ignored for that binary problem.
The M Rows correspond to the derived binary problems, columns correspond
to input class labels. Each row defines a binary classification problem. The
original multi-class labels of the samples are replaced with the binary labels of
the respective columns. A column ofY reflects the assignment of one class over
all binary problems andwill be denoted as class prototype yk. A class prototype
may also be viewed as a coordinate in a M -dimensional label space. The class
prototype yyicorresponding to the class of the i-th sample with class label yi will
be abbreviated yi.
Each of the binary problems defined byY is solved by a binary classifier:

ŷ
(m)
i = H(m)(xi) withm = 1, . . . ,M , (3.3)

where M denotes the number of binary problems defined by Y. Again, to
shorten notation, vector notion will be used: ŷ = H(x). The dimension of h(.)
and H(.) respectively can be deduced from context.
Assignment to an input class label is achieved using the mapping function

K(.):
ŷ = K(H(1), . . . , H(M)) . (3.4)

The advantage of multi-class wrapper approaches is the use of “off-the-shelf”
standard binary classifiers for eachH(m). In addition, classifiers and multi-class
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extension are separated, allowing for a modular combination of techniques. A
possible drawback of multi-class wrappers is the potentially poorer efficiency
of the resulting classifiers, due to missing information exchange between binary
classifiers.
Multi-class wrapper techniques can be divided into three general approaches:

one-vs-all (1-vs-all), on-vs-on (1-vs-1) and Error Correcting Codes (ECC)2. These
approaches are introduced briefly in the following.

3.4.1. One vs all (1-vs-all)

One vs all proposed in Bottou et al. [1994] was the first approach for combining
binary classifiers to build multi-class classifiers. The multi-class problem is split
intoM = C binary problems. Each binary problem separates one class from the
remaining classes:

y
(m)
k = 2 · I(m=k) − 1 withm ∈ 1, . . . ,M . (3.5)

Since all input samples are used for each binary problem, the training as well as
evaluation effort grows linearly with the number of classes C3.
All classifiers are evaluated in order to induce a class hypothesis for a given

feature vector. A sample is assigned the label of the respective classifier giving
the highest output:

ŷ = K(H(1)(x), . . . , H(C)(x)) = argmax
k

(

H(k)(x)
)

. (3.6)

An extension of the 1-vs-all approach to improve its performance is proposed in
Garcia-Pedrajas and Ortiz-Boyer [2006]. By combining 1-vs-all and 1-vs-1 (see
next section) approaches, the performance can be improved slightly.

3.4.2. One vs one (1-vs-1)

The motivation behind the one vs one approach is that it is expected that pair-
wise sub-problems can be solved using less complex classifiers (see figure 3.1
for a visualization). Thus the overall classifier bias - compared to 1-vs-all classi-
fiers - is reduced using this technique. Because of that, less powerful classifiers
can be used to solve the binary problems generated by the 1-vs-1 technique.

2Also denoted as Error Correcting Output Codes (ECOC).
3This statement is valid for most, but not all types of classifiers. For example the evaluation
effort of SVM’s will, in most cases, scale more favorable than linear, since support vectors
may be shared between binary problems and thus expansive kernel-evaluations are reduced.
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Algorithm 6: Multi-class training using 1-vs-all wrapper.
Input: samples xi, yi with i = 1, . . . , N

binary classifier
number of columns of code matrix

Output: multi-class classifier H(x)← argmax
k∈Y

(

H(k)(x)
)

1 for for k in Y do
2 Assign binary labels: y′i = 2 · I(yi=k) − 1 ;
3 Train binary classifier H(k)(x) on binary problem;
4 end

�

�

�

Figure 3.1.: Motivation of 1-vs-1 approach in comparison to 1-vs-all for a 3-class
problem. The image shows possible data separations for the 1-vs-1
subproblems (broken lines) and one example of a 1-vs-all subprob-
lem (gray line). The binary sub-problems may be separated using
linear classifiers. This is not possible for the 1 vs all problems
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The 1-vs-1 techniquewas first proposed in Friedman [1996]. Each binary prob-
lem deals with two input classes. All possible combinations of two classes are
considered. Therefore a total of C(C − 1)/2 classifiers are built. The binary
problems can be written as:

y(k1k2) =











+1 fory = k1

−1 fory = k2

d (don’t care) otherwise

for k1 6= k2 , (3.7)

In the binary problems the samples labeled with “don’t care” are ignored. From
an evaluation of a binary classifier H(k1k2) it can be concluded which of the two
classes k1 and k2 is more probable. Through evaluation of one particular binary
classifier H(k1k2)(xi), however, no final conclusion on the label yi can be drawn.
To be able to determine the class label, all binary classifiers have to be taken into
consideration.
Since the overall number of necessary binary classifiers depends quadrati-

cally on the number of classes C, training seems to be prohibitively expensive.
On the other hand, each binary classifier needs to consider samples from two
classes only, involving on average 2/C samples for each binary problem. In
practice, training costs depend strongly on how the particular classifier scales
depending on the number of samples. For example, 1-vs-1 is especially well
suited to be used together with support machine classifiers. When training
SVM’s, the training effort depends quadratically on the number of samples in-
volved. In consequence, the higher number of classifiers and the lower effort to
train the separate classifiers cancel out one another. Thus, the training effort for
SVM’s with a fixed number of samples is approximately constant, independent
of the number of classes involved. In general, classifiers with poor scaling with
regard to the number of training samples, benefit from the splitting into smaller
subproblems as performed by the 1-vs-1 approach.
Determination of final class labels is not as straightforward as for the 1-vs-all

approach. A number of approaches, each with specific advantages have been
proposed. The two most common approaches are discussed briefly here. A
deeper discussion can be found for example in Phetkaew et al. [2003].

Voting scheme. In order to induce a decision, all binary classifiers are evalu-
ated. For each class, it’s number of wins for classifiers trained using this class
is accumulated. A sample is assigned the label of the class receiving the most
votes.

ŷ = argmax
k

(

∑

k′ 6=k

I(H(kk′)(x)>0)

)

. (3.8)
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Algorithm 7: Multi-class training using 1-vs-1 wrapper.
Input: Samples xi, yi with i = 1, . . . , N

Binary classifier
Number of columns of code matrix

Output: Multi-class classifier
Voting scheme: H(x)← argmax

k∈Y

∑

k′ 6=k

H(k,k′)(x)

Graph based: H(x)← K
(

H(1,2)(x), . . . , H(C−1,C)(x)
)

,
where K(.) represents a traversion of a directed graph

1 for i = 1, . . . , C − 1 do
2 for j = i+ 1, . . . , C do
3 Train binary classifier H(i,j)(x) using samples from classes i and j;
4 end

5 end

For confidence-rated classifiers, the respective confidences of the relevant classi-
fiers are accumulated and sample is assigned the label of the class with highest
accumulated confidences. Therefore, in contrast to the graph-based approaches
discussed below, the voting scheme is able to deal with confidence rated clas-
sifiers. When using the voting scheme, all binary classifiers have to be evalu-
ated in order to generate a hypothesis on the label of a sample x. Therefore
evaluation effort grows quadratically with the number of classes involved. For
classifiers, where the evaluation costs are not dominated by the actual classifier
evaluation, better scaling is achieved. For example the evaluation costs of SVMs
is dominated by the kernel calculations. If the same support vectors are used
in multiple binary problems, the kernel has to be evaluated only once. In conse-
quence, costs of SVM evaluation does not depend on the number of classes C,
as long as the complexity of the classification problems is comparable.

Graph-Based Schemes For this approach, the binary classifiers are arranged
in directed graphs. One example of the technique is DDAG (Directed Decision
Acyclic Graphs), proposed by Platt et al. [2000]. The C(C − 1)/2 classifiers are
arranged as depicted in Fig. 3.2. The number of levels of the graph depends lin-
early on the number of classes C. Thus evaluation of the graph is more efficient
than using a voting scheme. For evaluation of a sample, the tree is traversed
from root to terminal leave. In each level of the decision graph, one class is re-
moved from the set of possible output labels. Finally, samples are assigned the
label of the only remaining class. If one classifier in the path commits an incor-
rect decision, the sample can’t be assigned the true label. Depending on the ar-
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Figure 3.2.: Directed decision acyclic graph for multi-class decisions. At the root
node all outcomes are possible. In each layer one class is removed
from the set of possible outcomes until only the final output class re-
mains. The evaluations for one sample with final decision for class
3 is highlighted. Along the used connections the excluded classes
are shown. Note that samples of Class 2 need to win just one com-
parison in order to be chosen, while samples of class 1 or 4 need to
win 3 comparisons.
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rangement of the classes in the graph, the number of wins for a class to become
the output class differs. Class-labels with a lower number of comparisons have
an advantage over class-labels requiring a higher number of wins. Therefore
the scheme prefers some classes over others, depending on the arrangement of
classes in the graph. Derived techniques based on DDAG’s overcome this draw-
back at the cost of increased complexity (e.g. Phetkaew et al. [2003]). In contrast
to the voting scheme, the use of confidence-rated classifiers is not possible with
graph-based schemes.

3.4.3. Error correcting output codes (ECOC)

Error Correcting Output Codes represent a different approach for building
multi-class wrappers. The technique is motivated by channel coding used for
transmission of digital signals. For channel coding redundant binary codes are
assigned to each signal. The codes used differ in more than one digit. Therefore
separated mutations of the transmitted code can be detected and potentially
corrected. By increasing the redundancy of the codes, the signal can be made in-
sensitive to multiple mutations of the transmitted code. The technique assumes
that channel errors occur randomly and independent.
A similar approach can be taken to solve multi-class classification problems.

The technique was proposed in Dietterich and Bakiri [1995]. Each class k ∈ Y
is assigned a redundant binary class-prototype yk. The vectors together build
a coding matrix Y = {−1, 1}C×M . The coding matrix is chosen such that the
minimal distance between two rows of the coding matrix (representing class-
prototypes) is maximized. Each column of the coding matrix defines a binary
classification problem, similar to the coding matrix used in the 1-vs-all scheme.
One binary classifier is trained for each column. The assignment of the classifier
outputs to a class hypothesis is done as follows

ŷ = argmin
k

(‖H(x)− yk‖1) , (3.9)

where H(x) = [H(1)(x), . . . , H(M)(x)]T combines the output of all binary classi-
fiers. Utilization of other distance functions is possible.
A coding matrix withM columns is - with no redundancy - sufficient to sepa-

rate 2M − 1 classes. In order to achieve a fair level of redundancy and thus error
tolerance, typicallyM is chosen considerably higher than theminimal necessary
number of columns.
For suitable choice of coding matrix Y and cost function in Eq. (3.9), ECOC

is equivalent to the 1-vs-all approach. Extensions to formulate 1-vs-1 problems
through coding matrices are straightforward. Thus ECOC can be seen as a basic
principle for building multi-class classifier wrappers, where 1-vs-1 and 1-vs-all
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are special cases. For the sake of clarity, the approaches are treated indepen-
dently in this work.
A potential problem of using redundant codes for building multi-class wrap-

pers is that errors - in contrast to channel coding applications - can’t be assumed
to be independent for classification. Since some pairs of classes share more sim-
ilarity than others, binary classifiers will more likely produce errors in these
cases. When a pair of classes is very similar, the binary classifiers will tend to
assign the same binary labels to them. Adding more codes will not help to solve
this problem. Or put in another way: the separation of classes can’t be improved
arbitrarily by adding columns to the coding matrix. Thus, classification perfor-
mance is expected to saturate after a certain minimum number of columns in
the coding matrix is reached.

Algorithm 8: Multi-class training using error correcting codes.
Input: Samples xi, yi with i = 1, . . . , N

Binary classifier
Number of columns of code matrix

Output: Multi-class classifier H(x)← argmin
k∈Y

M
∑

m=1

|Y(k,m) − hm(x)|

1 Generate code matrixY ∈ {−1, 1}C×M ;
2 for for each column m of Y do
3 Assign binary labels to the input classes, depending on them-th column

ofY;
4 Call binary classifier to construct classification rule hm(x);
5 end

3.5. Multi-Class Boosting Techniques

Standard boosting techniques for binary problems require the base classifiers
to achieve empirical error rates of less than 50%. For binary problems, this
means that the classifier needs to be only slightly better than random guess-
ing. For multi-class problems, random guessing will result in error rates of
approximately 1− 1/C. Therefore base classifiers have to perform substantially
better than random guessing to achieve errors below 50%. Thus, applying stan-
dard Boosting formulations on multi-class problems puts higher demands on
the base classifiers. Using more powerful classifiers to achieve the required er-
ror rates is not desirable, since it will likely lead to overfitting problems. These
problems can be avoided by utilizing boosting techniques designed specifically
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for multi-class problems, which remove the hard requirement on the empirical
error rates achieved by the base classifiers. The techniques work by adapting
boosting cost functions and sample reweighting to the multi-class case and will
be discussed in the following.
Some multi-class boosting techniques only apply small adaptions to the orig-

inal boosting approaches. They merely adapt the cost functions in a way to
reduce demands on performance of the base classifiers and thus prevent early
stopping of the algorithms (e.g. Zhu et al. [2009]). For multi-class problems the
acceptable error rate of the base classifiers is raised to (C−1)/C. If the weighted
training error of each new base classifier is lower, the combined training error
of all base classifiers converges to zero.
The most direct approach to build multi-class boosting classifiers is to use

categorical base-classifiers that directly return multi-class labels. By design, it
is not possible to utilize confidences when using this technique. Therefore only
a part of the available information is used. Since only the label of the strongest
class is returned, no assumptions can be made about the relative frequency of
classes. The relative frequency of the strongest class may range between 1/C
and 1. Therefore the amount of information lost, by using categorical outputs,
increases as the number of classes C grows. On the other hand, by only storing
the strongest label, categorical base classifiers are very memory efficient.
Other approaches for solving multi-class problems using boosting techniques

are evaluated in more detail in the following sections. These approaches are
closely related to the multi-class wrapper approaches discussed in Sect. 3.4.
The difference is, that the multi-class wrappers are directly incorporated in the
multi-class boosting techniques. Binary base classifiers are sufficient, since the
boosting-algorithm itself deals with the multi-class specifics. Therefore out-
of-the-box classifiers can be used without adaption. In particular the use of
confidence-rated base classifiers is possible, which will - in general - lead to
improved efficiency of the boosted classifiers.
By merging multi-class wrappers with boosting algorithms, some shortcom-

ings of using boosting algorithms inside multi-class wrappers are avoided. For
example when using boosting for features selection in combination with multi-
class wrappers, features are selected independently for each binary classifica-
tion problem. Thus it is not possible to share features among different binary
classification problems, which could lead to performance improvement. Tor-
ralba et al. [2004] show that sharing features will not only improve computa-
tional efficiency, but also improve generalization performance by using inter-
class concepts4. Furthermoremulti-class wrappers assume each binary problem
to have equal complexity, e.g. same number of boosting rounds and same base

4For example the concept of wheels is shared between various vehicles, e.g. cars, bicycles.
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classifiers. Therefore every binary classifier will use approximately the same
model complexity. In general this assumption will not hold. Each individual
binary problem solved in order to build a multi-class classifier will pose differ-
ent requirements on the classifiers. Therefore the optimal parameter settings
will also differ. Tuning the parameters for each subproblem leads to increased
complexity and computational load. By directly incorporating multi-class ex-
tensions into boosting algorithms, this problem can be solved elegantly. The al-
gorithms will automatically focus on more complicated subproblems and thus
spent effort as needed. This, again, holds potential for building more efficient
classifiers.
The different wrapper approaches discussed in Sect. 3.4 lead to specific multi-

class boosting flavors. The following sections introduce these and also discuss
how base-classifiers need to be designed. A new multi-class boosting flavor
based on the 1-vs-1 approach is proposed in Sect. 3.5.5 and formulations for op-
timized base-classifiers are given. Section 3.6 shows a quantitative comparison
of the presented techniques.

3.5.1. Error Correcting Code Base Classifiers

Similar to the wrapper approach discussed in Sect. 3.4.3, a code matrix Y is
generated to define binary problems. But instead of building a full classifier for
each binary problem, one binary base classifier is generated for each column of
the code matrix. Since the columns of the code matrix can be generated dur-
ing training, it is possible to adapt the partitioning of the classes to the training
problem at hand. Examples of boosting flavors using error correcting codes are
AdaBoost.M2, AdaBoost.OC [Schapire, 1997] and AdaBoost.ECC [Guruswami
and Sahai, 1999] and derived techniques [Sun et al., 2007] - also gives a com-
parison of the existing approaches). Algorithm 9 shows Boosting with error
correcting codes. Individual boosting flavors using error correcting codes differ
mainly in how the weights are calculated and new columns of the code matrix
are generated. For simplicity, only GentleBoost.ECC5 is discussed in the follow-
ing and used for performance comparison in Sect. 3.6
Since in each round only one binary problem is solved, arbitrary base clas-

sifiers can be used without modifications. The weights of the samples for the
binary problems solved in each boosting round, depends on the partitioning of
the classes in the current boosting round and the outputs of the preceding base
classifiers. Lower weights are assigned to samples that are well separated from
the samples with opposite label. Samples with poor separation from the classes

5GentleBoost.ECC algorithm is similar to AdaBoost.ECC, but uses the same Gauss-Newton
updates as GentleBoost.
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Algorithm 9: GentleBoost.ECC
Input: Training samples {xi, yi}, i = 1, . . . , N

Number of boosting rounds T
base learner

Output: multi-class classifier H(x)← argmin
k∈Y

T
∑

t=1

|Y(k,m) − hm(x)|

1 Initialize sample weights: c(k)i =

{

1
N(C−1)

if k 6= yi

0 else
;

2 for t = 1, . . . , T do
3 Generate new column of coding matrix: Y(:,t) ∈ {+1,−1}C×1;
4 assign binary labels to the input classes, depending onY(:,t);
5 calculate sample weights for binary problem:

c′i =
∑

k∈†

c
(k)
i I(Y(yi,t) 6=Y(k,t));

6 Construct decision rule ht(x) by calling base learner for the current
binary problem;

7 Update sample weights: cki = cki exp
(

1
2
ht(xi)(Y

(k,t) −Y(yi,t))
)

;
8 end

with other label receive higher weights respectively. Therefore the algorithm
concentrates on discrimination from the critical classes for each sample. The
weight of a sample always depends on the combination of classes with oppo-
site label. Therefore the algorithm can’t enforce separation of one sample from
a particular class6.
An interesting issue for the training of boosting with error correcting codes

(discussed for example in Schapire [1997]), is the partitioning of the classes pre-
ceding each boosting round. The cost reduction achievable with the next base
classifier strongly depends on this partitioning. By advantageous partitioning
the task of the base-classifier can be simplified and thus the convergence of the
algorithm can be improved. The number of possible partitionings grows expo-
nentially, as the number of classes increases. Since the cost reduction depends
not only on the partitioning, but also actual base classifier, it is not suitable to
search for the optimal partitioning for problems involving more than 7 classes.
Techniques exist for finding good partitionings by solving optimization prob-

lems - but their application is complicated and performance of the base classi-
fiers is not taken into account. In Schapire [1997] these techniques are discussed.

6Partitioning so that one sample can be discriminated from a particular class is possible, but
since the same partitioning is used for all samples, it will not be optimal for all samples.
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It is however concluded, that their application will not lead to a substantial per-
formance improvement. Instead, it is proposed to use random code matrices7.
Since the approach is much simpler and effects on performance are reported to
be negligible, random code matrices are used in this work as well.

3.5.2. 1-vs-all Base Classifiers

In this setting boosting algorithms are combined with the 1-vs-all approach pre-
sented in Sect. 3.4.1. In contrast to boosting of error correcting codes, more than
one binary problem is solved in each round of boosting. For the final classifier
to predict the true output class, the following has to hold:

h(yi)(xi) > h(k)(xi) ∀k 6= yi . (3.10)

A solution can be found by maximizing yT

i h(xi) over all i. Boosting of 1-vs-all
base classifiers was proposed under the name of AdaBoost.MH in Schapire and
Singer [1999]. An adaption, using the same cost function as GentleBoost can be
found in Alg. 10.

Algorithm 10: GentleBoost.MH algorithm
Input: Training samples xi, yi, i = 1, . . . , N

Number of boosting rounds T
Base learner

Output: Multi-class classifier H(x) = argmax
k∈Y

T
∑

t=1

h
(k)
t (x)

1 Initialize sample weights: c(k)i = 1
N∗C

;
2 for t = 1, . . . , T do
3 for k = 1, . . . , C do

4 Assign binary labels to the input classes: y′i =

{

1 if yi = k

−1 else
;

5 Train binary classifier h(k)
t (x) using labels y′i and weights c(k)i ;

6 Tpdate weights: c(k)i = c
(k)
i exp

(

−y′ih
(k)
t (xi)

)

;

7 end

8 end

7Note that the random partitionings do not depend on the training performance of the prob-
lem and may be fixed before start of the actual training.
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The binary classification problems defined by the 1-vs-all scheme are solved
in each round of boosting.

y = k ∈ Y → y ∈ {−1, 1}C×1 with y(j) =

{

+1 for j = k

−1 otherwise
. (3.11)

When using confidence-rated base classifiers, each classifier may be viewed as
constructing a regression function to the weighted classification problem in the
label space spanned by the class prototypes yk.
The base classifiers h(x) 7→ IRC×1 minimize the respective cost function of the

used boosting scheme. For GentleBoost the costs are defined as

J =
N
∑

i=1

C
∑

k=1

c
(k)
i , (3.12)

with the sample weights

c
(k)
i = exp

(

−y
(k)
i H(k)(x)

)

(3.13)

and H(x) =
∑t

s=1 ht(x) in the t-th round of boosting. From the calculation
of the sample weights, it becomes clear, that no interaction between the base
classifiers takes place. Therefore optimization of the base classifiers ht(x) can be
performed for each component separately. The approach is therefore equivalent
to using GentleBoost in a 1-vs-all wrapper.
Boosting of 1-vs-all base classifiers can, however, be used to select features

that are shared across multiple binary subproblems. The optimization rule be-
comes

min
f()

J (h(f(x))) . (3.14)

The optimization problems of the base classifiers is now connected through the
feature selection process. Sharing of features leads to classifiers achieving equiv-
alent performance with a reduced number of features.

3.5.3. 1-vs-1 Base Classifiers

The base classifiers solve a number of 1-vs-1 binary classification problems. For
the base classifier to return the correct decision, the following must hold:

h(yi)(xi) > max
k 6=yi

h(k)(xi) . (3.15)

A solution can be found by maximizing h(yi)(xi) −max
k 6=yi

h(k)(xi). Note the slight

differences between the formulations for 1-vs-all and 1-vs-1 base classifiers. The
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1-vs-1 approach focusses on discrimination against the most critical class and
ignores all remaining classes. In Freund and Schapire [1995] a multi-class boost-
ing scheme based on the 1-vs-1 approach, named AdaBoost.M2, is proposed.
The cost function to be minimized for boosting of 1-vs-1 base classifiers in

boosting schemes using exponential costs is

J =
N
∑

i=1

exp (−h(y = yi|x) + h(y = ki|x))

with ki = argmax
k 6=yi

h(y = k|x) .

(3.16)

This leads to the following weights in boosting round t:

c
(k)
i =











exp
(
∑t

s=1(−hs(y = yi|x) + hs(y = k|x))
)

for k = argmaxk 6=yi

∑t

s=1 hs(y = k|x)

0 else

(3.17)

In order to minimize the cost function, base classifiers (for GentleBoost) are gen-
erated following:

h(x) = argmin
h∈H

(

N
∑

i=1

c
(ki)
i (h(y = yi|x)− h(y = ki|x))

2

)

with ki = argmax
k 6=yi

hk(x) .

(3.18)

The algorithm focuses on discrimination from the most critical false class. This
approach may be numerically unstable. For a more stable solution, equation
(3.16) can be transformed to factor in all binary comparisons:

J =
N
∑

i=1

∑

k 6=yi

exp (−h(y = yi|x) + h(y = k|x)) . (3.19)

This leads to the sample weights:

c
(k)
i = exp

t
∑

s=1

(−hs(y = yi|x) + hs(y = k|x)) (3.20)

and the following optimization rule for the base classifiers:

h(x) = argmin
h∈H

(

N
∑

i=1

∑

k 6=yi

c
(k)
i (h(y = yi|x)− h(y = k|x))2

)

(3.21)
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The cost function (Eq. (3.19)), as well as the optimization rule (Eq. (3.21)) are
approximations of the cost function (3.16) and optimization rule (3.18) respec-
tively. Instead of using the max-function a quadratic approximation is used.
This improves numerical stability of the optimization. As the difference in con-
fidence between the strongest false class and the remaining false classes grows,
the approximations approach the exact formulations. Both formulations aim
at maximizing the difference between the outputs for the true class yi and the
strongest remaining class.
In the literature [Freund and Schapire, 1995], the same approach for training

base classifiers as with 1-vs-all approach is used. This is, however, not optimal
in 1-vs-1 settings. One approach to directly optimize Eq. (3.21) is to build one
base classifier for each binary classification problem. In order to do so, the class
prototypes are defined to represent all binary 1-vs-1 subproblems:

y
(yi,k)
i = 2I(yi<k) − 1, ∀k 6= yi (3.22)

y
(k1,k2)
i = don’t care ∀k1 6= yi ∧ k2 6= k1 . (3.23)

With that, 3.18 can be rewritten as:

h(x) = argmin
h∈H

(

N
∑

i=1

C−1
∑

k1=1

C
∑

k2=k1+1

c
(k1k2)
i

(

y(k1k2) − h(k1k2)(x)
)2

)

with c
(k1k2)
i = 0 if yi 6= k1 ∧ yi 6= k2 .

(3.24)

Since the classification problems are split up into independent components, the
base classifiers may work on separated components. Evaluation can be per-
formed similar as in 1-vs-1 wrappers, for example by using the voting scheme.
A drawback of this direct approach is the quadratic dependency from the num-
ber of classes C of the number of components involved, leading to a high num-
ber of base classifiers to be evaluated. Also, when the technique is to be used
for feature selection, treating the components independently will prevent the
algorithm from sharing features across binary problems. In Sect. 3.5.5 a more
practical formulation for building base classifiers in 1-vs-1 boosting settings is
introduced. This formulation scales linearly with the number of classes C and
can be used for feature selection advantageously.

3.5.4. Cost Functions of Multi-Class Boosting Techniques

This section analyzes the differences between the multi-class boosting schemes
by analyzing the cost-functions for a three class problem. It is assumed, that
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3. Efficient Multi-Class Boosting

returned confidences for each of the possible output labels add up to one:

C
∑

k=1

H(k)(x) = 1 . (3.25)

All multi-class boosting classifiers discussed above can be adapted to fulfill this
condition. This scaling is loosely related to the condition

∑C

k=1 p(y = k|x) = 1
for probabilities. However, not the same constraints apply for the outputs of the
classifiers. The class prototypes span an equilateral simplex in label space. All
outputs of classifiers, normalized8 to fulfill Eq. (3.25) lie in a C − 1 dimensional
hyperplane, spanned by the class prototypes. Figure 3.3 shows the resulting
plane for the three class problem. Note, that the class prototypes can be con-
structed in an C − 1-dimensional subspace such that Eq. 3.25 holds automat-
ically. The measure to be minimized in classification problems is the number
of erroneous classification on unseen data (generalization error). Since calcu-
lation of generalization error on training samples is not possible, the empiri-
cal error is used to approximate the generalization error. For large numbers of
training samples:N →∞, the empirical error converges to the value of the gen-
eralization error. The costs of a misclassification doesn’t depend on whether it
occurred in proximity of the decision boundaries or not. Due to the discrete
nature of the empirical error, it is hard to optimize.
The practical multi-class boosting algorithms discussed above use continu-

ous approximations of the empirical error - that can be optimized easily. Also,
optimizing continuous cost functions leads to maximization of classifier margin
[Schapire et al., 1998] - which is known to help improving generalization perfor-
mance. In order to approximate the decision surface tightly, the cost functions
should closely resemble the qualitative characteristics of the empirical error.
The cost function for the different multi-class boosting schemes with expo-

nential cost function are shown in Fig. 3.49. The level-lines in the plots show,
that the 1-vs-1 approach with max-function gives the best qualitative approxi-
mation of the empirical error. The quadratic approximation of the 1-vs-1 costs
also gives a good approximation for high output confidences of H(k)(x). There-
fore for higher numbers of boosting rounds, the quadratic approximation will
converge towards the exact 1-vs-1 costs. The 1-vs-all costs are a poor approx-
imation of the empirical error. In particular, the gradient of the 1-vs-all cost
function doesn’t point towards the next relevant decision surface (as it is the

8For base classifiers returning a weighted mean of the class prototypes of the individual sam-
ples (e.g. decision stumps), the condition is always fulfilled.

9The cost function associated with error-correcting-codes is not depicted here, since it is iden-
tical to the cost function of the 1-vs-all approach.

52



3.5. Multi-Class Boosting Techniques
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Figure 3.3.: Normalized outputs of base classifiers for a three class problem. The
sum of the outputs is scaled such that the sum of the outputs over
all classes is one. Note that under the condition 0 ≤ hj ≤ 1, ∀j, the
outputs of the base classifiers can be interpreted as probabilities.
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Figure 3.4.: Multi class costs functions. For visuallization, the 2-dimensional
plane spanned by the class prototypes is shown. It is assumed that
all classifier outputs lie within this plan. Class boundaries are de-
picted by red lines. The region of the true class is pointing down-
wards (red line). Upper left: empirical error, upper right: 1-vs-all er-
ror (Eq. (3.12)), lower left: 1-vs-1 approximation (Eq. (3.19)) , lower
right 1-vs-1 max (Eq. (3.16)). The green triangles depict the area for
which the outputs of the classifier are smaller than one.
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case for the 1-vs-1 approach). Due to this, more effort than necessary is used to
move samples to the right side of the decision surface.
The analysis of the cost functions of the presented multi-class boosting

schemes shows, that the cost functions used with the 1-vs-1 approaches give
a closer approximation of the empirical error. Through this, the classification
problem can be solved more efficiently. On the other hand, training boosting
schemes using 1-vs-1 costs is more expensive. In which way the different cost
functions affect the classification performance quantitatively will be examined
in the experiments of Sect. 3.6.

3.5.5. Efficient 1-vs-1 Base Classifiers

Optimizing the 1-vs-1 base classifiers following the scheme presented in Sect.
3.5.3 (Eq. (3.18)) is not practically suitable due to the high number of base classi-
fiers to train and the bad scaling behavior. In addition, evaluation at runtime is
expensive. In AdaBoost.M2, proposed in Freund and Schapire [1995], the class
prototypes are build in the same manner as for 1-vs-all problems (Sect. 3.5.2)
and classifiers are optimized on a component-wise basis. This approach, how-
ever, is not optimal for building 1-vs-1 base classifiers, since the cost function
of the base classifiers doesn’t correspond to the cost function of the boosting
scheme.
In this section, another approach to constructing 1-vs-1 base classifiers is pro-

posed. Instead of training independent pairwise base classifiers, a system of
connected base classifiers is used. These can be used to reconstruct all pairwise
decisions. The number of components used in this system depends linearly on
the number of classes C.
Optimization takes part in a C − 1-dimensional label space. The class proto-

types are defined by the following properties:

• The class prototypes are defined in an minimal spanning label space: y ∈
IRC−1.

• All class prototypes have the same distance from the point of origin:
‖yk‖2 = 1 ∀k ∈ Y .

• The pairwise distance between the class prototypes are constant for all
class prototypes: ‖ym − yn‖2 = b fürm 6= n.

This construction defines an equilateral simplex with corners representing the
class prototypes. Therefore the technique will be refered to as Boosting.simplex
in the following. The class prototypes for the three class case are shown in Fig.
3.3. For problems involving only two classes the class prototypes reduce to the
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3. Efficient Multi-Class Boosting

standard formulation for binary problems with y1 = 1 and y2 = −1. Hence -
in contrast to the 1-vs-all formulation - binary problems are consistently within
this formulation.

C3 ≡ (0, 1)

C1 ≡ (−
√

3/4,−0.5) C2 ≡ (
√

3/4,−0.5)

Figure 3.5.: Class prototypes for three class problem. The bold dashed lines
mark the relevant class thresholds. The light dashed lines mark
binary thresholds that are irrelevant since they are masked by an-
other class. Only class surfaces marked by bold dashed lines are
relevant for classificationDerivation of class prototypes from class
probabilities.

The confidences of the classes can be calculated as:

h(y = k|x) = yT

k h(x) . (3.26)

By construction of the class prototypes, the following holds for the sum of con-
fidences:

C
∑

k=1

h(y = k|x) = 0 ∀x . (3.27)

With this, Eq. (3.19) can be reformulated as:

J =
N
∑

i=1

∑

k 6=yi

exp
(

(−yT

i + yT

k )h(x)
)

. (3.28)
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Analogous to the derivation of the optimization function for base classifiers
used with GentleBoost [Friedman et al., 1998] the following optimization rule
can be formed:

h(x) = argmin
h∈H

(

N
∑

i=1

∑

k 6=yi

c
(k)
i

(

(yi − yk)
T(h(x)− yi)

)2

)

. (3.29)

This rule can be used to derive optimal solutions for various base classifiers, as
shown below for partition based classifiers. The derivations for neural networks
and smoothing splines can be found in the appendix (Appendix D).

Algorithm 11: GentleBoost.simplex algorithm.

Input: Training samples xi, yi, i = 1, . . . , N
Number of boosting rounds T
Base learner

Output: Multi-class classifier H(x) = argmax
k∈Y

yT

k

(

T
∑

t=1

ht(x)

)

1 Transform labels into C − 1-dimensional label space: yi 7→ yi ∈ IR(C−1)×1 ;

2 Set initial hypothesis to h0(x) =
1

N

N
∑

i=1

yi;

3 Initialize sample weights: c
(k)
i = 1 ;

4 for t = 1, . . . , T do
5 Calculate sample weights:

c
(k)
i = c

(k)
i exp

(

hT

t (xi)(yi − yk)
)

for yi 6= yk

c
(k)
i = 0 else;

6 Train multi-class base classifier:

ht(x) =
Ec

[
∑

k c
(k)(yk − yi)

T(yk − yi)yi

]

Ec [
∑

k c
(k)(yk − yi)T(yk − yi)]

;

7 end

Optimal Output-Values for Partition based Base Classifiers

Partition-based base classifiers divide the feature space into regions. A set of
training samples Pm is located in each region. Each region is assigned a constant
output value hm, that minimizes equation (3.19), for the samples in Pm. Typical
examples for partition-based base classifiers are decision stumps, decision trees
and histograms.
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3. Efficient Multi-Class Boosting

The optimization routine for 1-vs-1 base classifiers is

ĥm = argmin
h∈H

(

∑

i∈Pm

∑

k 6=yi

c
(k)
i

(

(yi − yk)
T(h− yi)

)2

)

. (3.30)

To find the minimum, the derivative with respect to h is calculated and
component-wise set to zero:

∑

i∈Pk

∑

k 6=yi

c
(k)
i (yi − yk)(yi − yk)

T(h− yi) = 0 . (3.31)

Solving for h gives the result:

hT =

(

∑

i∈Pk

∑

k 6=yi

c
(k)
i yT

i (yi − yk)(yi − yk)
T

)

×

(

∑

i∈Pk

∑

k 6=yi

c
(k)
i (yi − yk)(yi − yk)

T

)−1 (3.32)

Derivation of optimal output values for Artificial Neural Networks,
smoothing-splines and SVMs can be found in Appendix D.

Comparison to other Multi-Class Boosting Schemes

By construction of the label space, the sum of the confidences of a sample over
all classes is constant. The exponential cost of a sample is as follows:

e−ŷ
T

i yi =

{

e−1 if ŷi = yi

e
1

C−1 else
. (3.33)

Before the training ŷT

i yi = 0 holds for all samples and therefore exponential
costs of 1 are produced by each sample. For binary problems, the classifier will
focus on not to have any false classification outputs with high confidences, since
the overall costs are dominated by false classifications10. For problems with
higher number of classes the overall costs will be more and more dominated by
the correct classifications11. This reflects the fact, that it is more difficult to find
the true class for high number of classes involved.

10Binary: A correct classification with confidence 1 leads to cost improvement by 1−1/e ≈ 0.63,
while a false classification with confidence 1 increases the costs by e− 1 ≈ 1.72.

11Three classes: A correct classification with confidence 1 leads to cost improvement by 1 −
1/e ≈ 0.63, while a false classification with confidence 1 increases the costs by e0.5−1 ≈ 0.64.
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Also, when measuring the performance of base classifiers using the linear
edge ŷT

i yi, an edge of 0 is achieved with random guessing. This is consistent
with the behavior in the binary case. In other work [e.g. Zhu et al., 2009] nor-
malization factors are used to adjust the edge of the base classifiers to prevent
the early stopping problems encountered with multi-class problems. Defining
class prototypes in an equilateral simplex is an elegant and consistent approach
to achieve the same results without altering the boosting algorithm itself.

3.6. Experimental Section

In order to analyze the performance of the multi-class classification approaches
discussed in this chapter, a number of experiments on the UCI machine learn-
ing data base12 was conducted. The 24 datasets utilized in the experiments were
chosen to represent a fair variety of multi-class classification problems. A de-
scritption of the datasets can be found in appendix C. All data bases provide an
appropriate set of input features, so that no feature selection or feature genera-
tion has to be performed. Due to the public availability of the datasets, a good
comparability of the results is given.
This chapter focussed on the construction of boosted classifiers for solving

multi-class problems. The optimization target was to find classifiers which
solve the given problems very efficiently and - at the same time - achieve com-
petitive performance. Therefore classifiers of similar computational complexity
are compared in the experiments. The computational complexity is measured
by the number of feature evaluations used by a given classification rule. The
motivation for this metric is that for image processing tasks, the computational
performance of the classifiers is often dominated by the costs associated with
feature evaluation. When Boosting is used as a feature selection scheme [e.g.
with Haar-like features in Viola and Jones, 2002b], efficient utilization of fea-
tures is crucial since often computational resources are limited.

3.6.1. Results

For all experiments the GentleBoost scheme was used as the foundation for
the derived multi-class classification scheme13. Thus, the base classifiers were
trained to minimize the weighted squared error, according to the optimization
rules introduced above. Also, for all experiments decision tree base classifiers
are used. The trees are constructed following Alg. 2. Three sets of experiments

12 http://archive.ics.uci.edu/ml/
13The only exception is the AdaBoost scheme used with boosting of error correcting codes (ecc-

ada).
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Abbreviation Algorithm

1-vs-1-voting Wrapper based on one-vs-one scheme (Sect. 3.4.2).
The voting scheme is used to calculate the output la-
bel of the classifier.

1-vs-1-ddag Wrapper based on one-vs-one scheme. The Directed
Decision Acyclic Graph scheme is used for evaluation.

1-vs-all Wrapper based on one-vs-all scheme (Sect. 3.4.1).
ecoc Wrapper using error correcting output codes (Sect.

3.4.3).
ecc-ada Boosting error correcting codes with AdaBoost as base

algorithm.
ecc-gentle Boosting error correcting codes with GentleBoost as

base algorithm (Sect. 3.5.1).
mh Boosting 1-vs-all base classifiers (Sect. 3.5.2).

simplex Boosting of 1-vs-1 base classifiers in the simplex (Sect.
3.5.5). Quadratic approximation of the max-function
is used.

Table 3.1.: Classifiers used for evaluation of multi-class boosting schemes.

are conducted. The complexity of the used decision trees differs between the
experiments. In the first experiment (Tab. 3.2) decision stumps are used. In the
second experiment, decision trees with a fixed capacity of five internal nodes
are used (Tab. 3.3). In the third experiment, the number of internal nodes of the
decision trees is tuned for optimal performance (Tab. 3.4). In all experiments
200 rounds of boosting are trained. The performance of the classifiers is evalu-
ated using tenfold cross validation (see Sect. B).
The multi-class boosting schemes used in the experiments are described in

Tab. 3.1. For all classifiers, but AdaBoost.ECC (ecc-ada), the GentleBoost
scheme is used. AdaBoost.ECC was included because it was the actual scheme
proposed in Guruswami and Sahai [1999] and also to compare the performance
of AdaBoost and GentleBoost.
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3.6. Experimental Section
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3. Efficient Multi-Class Boosting

Ecc-ada 1-vs-1-full 1-vs-1-ddag 1-vs-all ecoc mh simplex
ecc-gentle 6-15-3 7-16-1 6-17-1 7-15-2 5-17-2 8-12-4 16-6-2
ecc-ada 9-13-2 7-15-2 7-13-4 7-16-1 12-10-2 15-7-2

1-vs-1-voting 4-8-12 8-13-3 10-12-2 13-8-3 17-3-4
1-vs-1-ddag 10-11-3 11-11-2 16-5-3 20-1-3

1-vs-all 8-12-4 16-6-2 19-2-3
ecoc 15-6-3 18-4-2
mh 15-6-3

Table 3.5.: win-loss records for multi-class boosting algorithms with decision
trees (optimal number of internal nodes)

3.6.2. Discussion

Decision Stump Base Classifiers

The GentleBoost.simplex scheme proposed in Sect. 3.5.5 achieves the best per-
formance on 17 out of 22 datasets. GentleBoost.MH and the 1-vs-all wrap-
per approach, winning 6 and 5 datasets respectively are the best remaining
schemes. Boosting schemes with error correcting codes show relatively poor
performance.
In order to judge, whether the observed difference in the performances of

the different multi-class schemes are significant, a Friedman Test is conducted
(Demšar [2006] and Sect. B). The null-hypothesis states that all algorithms are
equivalent. The Friedman Statistic for the given average ranks of the classifiers
is χ2

F = 66.88. The null-hypothesis can be accepted at a confidence level of
α = 0.05 for χ2

F < 14.07. Therefore the null-hypothesis is rejected and significant
differences of the classifiers are evident.
A two-tailed Nemeny post-hoc test is used to find pairwise significant perfor-

mance differences. The null-hypothesis states that two classifiers have equiva-
lent performance. For the null-hypothesis to be accepted,

|Rm −Rn| < qα

√

nalgs(nalgs + 1)

6nsets

(3.34)

must hold, where Rm is the average rank of the m-th classifier, nalgs is the num-
ber of algorithms examined and nsets denotes the number on datasets used. The
values of qα are distributed according to the studentized range statistic. For a
confidence level of α = 0.05, a critical value of qα = 2.14 results. Therefore Gen-
tleBoost.simplex performs significantly better than all other algorithms, besides
from GentleBoost.MH and the 1-vs-all wrapper approach. Other significant dif-
ferences can be found in Tab. 3.2.
Decision stump base classifiers have high bias. Also in this experiment the

lowest number of feature evaluations was performed. The results show the
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3.7. Conclusions

Boosting.simplex is especially helpful for problems where base classifiers are
weak and the number of feature evaluations has to be minimized.

Decision Tree Base Classifiers with 5 Internal Nodes

GentleBoost.simplex again achieves the best performance of all algorithms.
Multi-class boosting schemes show better performance than wrapper ap-
proaches. The performance differences between the multi-class boosting
schemes with and without error correcting codes is relatively small. Gen-
tleBoost.MH and GentleBoost.simplex show better performance of datasets
with high numbers of features/samples, whereas GentleBoost.ECC and Ad-
aBoost.ECC seem to have advantages for datasets where overfitting is an issue.
Again, a Friedman Test is performed to asses the performance differences be-

tween the algorithms. The Friedman statistic takes a value of χF = 24.80. There-
fore the null-hypothesis is rejected. The Nemenyi post-hoc test indicates, that
for example GentleBoost.simplex performs significantly better than all multi-
class wrapper approaches. However, in total the differences of the perfor-
mances of the algorithms is smaller than in the preceding experiment.
For most of the utilized datasets, the number of boosting rounds used to-

gether with the base classifiers used, are sufficient for the algorithms to con-
verge. Therefore efficient utilization of base classifiers is not as important as for
decision stump base classifiers. Consequently the performance advantage of
the schemes using vector-valued base classifiers is low.

Decision Tree Base Classifier with optimal Number of Internal Nodes

When the number of internal nodes is optimized using cross-validation, Gentle-
Boost.simplex achieves the best performance. Again, the specializedmulti-class
Boosting approaches outperform the wrapper schemes. GentleBoost.simplex
and GentleBoost.ECC achieve approximately the same average ranks, while the
direct comparison is more clearly in favor of GentleBoost.simplex (see. Tab. 3.5).
The value of the Friedman statistic is χF = 30.14, leading to a rejection of the

null-hypothesis. The post-hoc Nemeny test indicates significant performance
differences between GentleBoost.simplex / GentleBoost.ECC and some wrap-
per approaches.

3.7. Conclusions

In this chapter multi-class boosting algorithms where examined. Numerous
approaches can be found in the literature. However, exhaustive comparisons
between different approaches are not presented frequently. In this chapter not
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3. Efficient Multi-Class Boosting

only a newmulti-class boosting algorithm was presented, but also a experimen-
tal performance evaluation of state-of-the art multi-class boosting schemes was
presented.

The first important result is that using multi-class wrappers together with
boosting will not give optimal performance. One factor for this is that features
are only used for binary subproblems. Also, schemes incorporating multi-class
boosting directly are more flexible in adapting the problem at hand: which bi-
nary problems are critical, which classes share features and so on. In order to
achieve better results with wrapper approaches, more knowledge of the classi-
fier used needs to be incorporated. This, however, leads directly to multi-class
boosting schemes.

Out of the direct multi-class boosting schemes, GentleBoost.simplex gives the
best performance. GentleBoost.ECC and GentleBoost.MH follow closely. The
differences between the two types of multi-class boosting approaches is only sig-
nificant in scenarios where the overall bias of the boosted ensemble is relatively
high, as in the experiments with decision stump base classifiers. In these cases
GentleBoost.simplex and GentleBoost.MH do a better job in using features and
base classifiers more efficiently. This property may help for feature selection
problems, where the number of features necessary to reach a certain level of
performance should be as low as possible14.

Since only the outputs of binary classifiers need to be stored for multi-class
boosting schemes based on error correcting codes, the memory requirements
for one base classifier are lower than for the multi-class boosting schemes based
on 1-vs-1 or 1-vs-all. It is not clear, whether this will lead to reduced memory
requirements of the trained ensemble, since boosting ensembles using error cor-
recting codes used a higher number of base classifiers in the experiments to
reach the same error rates.

Putting all together, the decision which multi-class boosting scheme to use
depends on a number of factors. The nature of the given classification prob-
lem (numbers of features, samples, classes) strongly affects the reachable per-
formance. Also the choice of base classifier influences performance. In order to
achieve good performance, the performances with GentleBoost.ECC and Gen-
tleBoost.simplex15 should be evaluated in cross validation and the algorithm
performing better for the given data should be chosen.

14Note, that the datasets used for performance evaluation did not include feature-selection
problems. It is - however - expected, that the number of base classifier evaluations for the
given scenarios correlates with the number of selected features in feature selection scenarios.

15GentleBoost.simplex and GentleBoost.MH can be used exchangeable, since their perfor-
mances are close. In practice, GentleBoost.MH can be implemented more easily and training
is cheaper.
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3.7. Conclusions

A promissing direction for future work is incorporation of hierarchical
schemes to improve scaling of the presented approaches with respect to the
number of classes. ThoughGentleBoost.simplex scales advantageous compared
to other multi-class boosting techniques, linear dependency on the number of
classes is likely to be prohibitive for problems involving very high number of
classes. Hierarchical schemes could be used to alleviate classification in these
cases. In order to reduce the number of classes that needs to be handled in par-
allel, the classes should be clustered into concepts first, such that classes that
are very similar will belong to the same concepts. The classification problem
can then be solved in a multistage fashion. Clusters of classes and the respec-
tive sub-clusters can be arranged in a tree structure. With each stage, number of
possible output classes is reduced, since all candidates belong to the succeeding
cluster of the preceeding stage. Since each multiclass classifier will have to deal
with a limited number of concepts only, the number of classes to handle in par-
allel is effectively reduced. In addition, the resulting classifiers can be expected
to achieve better generalization than classifiers dealing with the full multi-class
problem in parallel, since clusstering of the classes will increase the number of
samples available to the classifiers of the first stages. The biggest challenge is
to place classes into concept clusters. However, the weights returned by multi-
class boosting-schemes can be incorporated to find the clustering, since similar
classes will be linked by high weights.
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4. Boosted Projections

4.1. Motivation

Decision trees 2.4.4 are the most popular base classifiers used with Boosting.
They work by combining axis-parallel decisions to build a partitioning of fea-
ture space. The same principle is used for example in histogram and smoothing-
spline base classifiers. Section 2.5.5 deals with Boosting of base classifiers work-
ing directly on input features (component-wise base classifiers), that can be
used for feature selection, and discusses their properties. Given “rich” feature
sets, possibly including many features that share information, these base classi-
fiers are able to select a subset of features, sufficient to solve the given classifica-
tion task.
Component-wise base classifiers achieve good performance for many classifi-

cation problems. However, performance deteriorates if approximations of deci-
sion boundaries cannot be constructed efficiently using the given features. Also,
if input features are correlated or each input gives only little discriminative in-
formation, approximation of decision boundaries is either very coarse or de-
scription becomes very complex. A good example of classification problems in
which component-wise base classifiers give poor performance is classification
of image patches based on pixel values.
To achieve good performance using component-wise base classifiers in cases

where input features are weak, augmented features sets are commonly used.
By combining input features, new features with better class separation are built.
Providing an appropriate set of features is a challenging task, for which prior
knowledge of the nature of the classification problem is necessary.
A new approach for solving the problem of generating feature sets is intro-

duced in Sect. 4.2. By combining feature generation with Boosting, Features
are trained as necessary and only limited prior knowledge is needed. This re-
moves the need for designing feature sets before training starts. The features
used in the proposed system are linear projections. The utilized base classifiers
are smoothing splines. This simple scheme is able to model almost arbitrary
decision surfaces1. At the same time it can be regularized conveniently. The
number of design parameters of the system is low, making the adaption to new

1The actual surfaces that can be modeled are limited by the allowed complexity of the
smoothing-splines.
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4. Boosted Projections

problems easy. In Sect. 4.3 related work is presented and similarities and differ-
ences to our approach are discussed.
The performance of the presented approach is evaluated in Sect. 4.4. A set of

experiments on 30 datasets from UCI machine learning repository shows that
results of the new system are significantly better than the results of state-of-the-
art classifiers.

4.2. Training Boosted Projections

A disadvantage of component-wise base classifiers (Sect. 2.5.5) is that they can-
not model arbitrary decision surfaces. Also, component-wise base classifier will
learn too complex models when lacking good input features. To be able to ap-
proximate arbitrary decision surfaces, one could use multivariate base classi-
fiers. However, fitting these is difficult due to the “curse of dimensionality”. In
addition evaluation of multivariate base classifiers is often relatively expensive.
Another common approach is to use component-wise base classifiers on

augmented feature sets. By adding features the approximation of more com-
plex decision surfaces is possible. At the same time, favorable properties of
component-wise base classifiers are preserved. Figure 4.1 compares the output
of component-wise base classifiers on original inputs and an augmented feature
set for a two-dimensional problem. The decision surface cannot be modeled us-
ing component-wise functions. As expected, Boosting of component-wise base
classifiers gives poor performance. An augmented feature set is built using lin-
ear combinations of inputs, giving 8 feature directions evenly distributed in the
2D plane. Boosting component-wise base classifiers on this augmented feature
set significantly improves performance, since by using the new features, class
separation using component-wise base classifiers becomes possible. The output
of a classifier built by boosting decision trees is shown for comparison. Though
decision trees are able to separate the classes using input features only, the re-
sulting decision surface is very ragged.
As seen above, use of augmented feature sets can significantly improve per-

formance. The performance will, however, strongly depend on the given fea-
ture set. Boosting component-wise base classifiers is very useful in situations
where separation using the given features is possible but redundant features
need to be sorted out. On the other hand, modeling of feature interactions is not
possible. So, if discriminative information cannot be extracted from the given
features directly, there is no other way for the training system to do so. Pro-
viding a set of features that will work well in combination with all necessary
information is hard, since one cannot know beforehand which information will
become important during the course of Boosting training. Usually the strategy
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4.2. Training Boosted Projections

Figure 4.1.: Classification of 2D swirl distribution. Left: Boosted p-Splines work-
ing directly on the 2 input dimensions (error rate 23.6%). Center:
Boosted p-Splines operating on 8 augmented dimensions (error rate
0.7%). Right: Boosted Decision Trees working on input dimensions
(error rate 1.3%). The number of Boosting rounds was fixed to 50
for all classifiers, remaining parameters were tuned to give optimal
generalization.

is to provide a large set of features and assume that it will contain the features
necessary to give good performance. However, as the number of input dimen-
sions increases, the number of possible features grows exponentially. The size
of the augmented feature set is limited by computational resources. Thus, in or-
der to use a finite number of features, applicable feature sets become more and
more sparse with respect to all possible features. This, however, increases the
risk of missing important information. Prior information can be used to restrict
the set of possible features. However, prior information is not always available
and its incorporation is non-trivial.
The new approach presented in this work, coined Boosted Projections avoids

the problems associated with providing features by generating features in each
Boosting stage. The features are trained to minimize base classifier costs. This
approach is similar to feature selection using Boosting, but instead of providing
a set of features to choose from, all features of a givenmodel are considered. The
number of possible features is - in principle - infinite. An important assumption,
necessary for the approach to work, is that the cost function exhibits a certain
degree of smoothness with respect to the features. If this assumption holds,
given a starting point, a search for good features in its vicinity can be performed.
By using a feature generation scheme, no features - that might become useful
later - are ruled out in advance.

4.2.1. General Approach

Boosted Projections build an ensemble of ridge functions:

H(x) =
T

∑

t

ht(w
T

t x) , (4.1)
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4. Boosted Projections

where h(.) are arbitrary univariate functions. Ridge functions are constant on
planes perpendicular to a given projection direction in feature space. Since cal-
culation of projective features z = wTx involves only one scalar product, feature
evaluation is cheap2.
An ensemble of ridge functions can be seen as a special neural network with

one hidden layer, as depicted in Fig. 4.2. In contrast to other neural networks,
the transfer function of the hidden layer is adaptive. The connection weights of
the output layer depend on the boosting flavor, for GentleBoost they are fixed.
Hidden units are added in a stage-wise manner. Therefore only a small number
of parameters is trained in parallel. Due to the adaptive transfer functions, the

Figure 4.2.: Boosted Projections can be seen as neural networks with one hidden
layer. The transfer functions of the hidden units are adaptive. One
hidden unit is added in each Boosting stage.

system is very flexible - despite the simple architecture3. Building an ensem-
ble of nonlinear functions on linear mappings is a very powerful concept, see
discussion in Diaconis and Shahshahani [1984] for approximation properties in
regression settings. In principle, depending on the base functions used, arbi-
trary output functions can be modeled. Note that requirements in classification
setting are lower, since only the qualitative output of H(x) needs to be correct.
The base classifiers h(.) may be arbitrary univariate functions. While other

univariate smoothers might be used as well (e.g. Parzen windows), p-Splines
are very well suited and thus used in this work. Their main advantages are sim-
plicity and cheap evaluation. The use of component-wise smoothing splines
in Boosting schemes received a lot of attention recently [e.g. Buhlmann and Yu,
2003; Schmid and Hothorn, 2008; Buehlmann and Hothorn, 2008]4. Most work

2Note that linear scaling of inputs will not influence training. Therefore regularization of data
is not as critical as for example with systems based on radial basis functions.

3Neural networks with fixed tansig-like transfer functions need at least two hidden layers to
reach the same level of flexibility.

4An implementation for boosting smoothing spline base classifiers is available for the R-
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4.2. Training Boosted Projections

deals with regression settings. Fitting of smoothing splines is more expensive
than fitting of stumps or histograms, since a linear system of equation needs to
be solved. However, evaluation of smoothing splines is almost as fast as evalu-
ating other base classifiers, like decision stumps or histograms. In addition, the
flexibility of smoothing splines can be adapted continuously (see Sect. 2.4.3).
For GentleBoost, base classifier costs are minimized by a weighted least

squares fit to the data. For a given univariate base classifier model the costs
depend on the feature only. So in order to minimize the cost the best perform-
ing feature is sought:

wt ← min
w

(ǫ(w))
GB
= min

w

(

N
∑

i=1

ci(h(w
Txi)− yi)

2

)

. (4.2)

For feature selection it is possible to visit all features in order to find the one
giving best performance. The same is not possible for Boosted Projections since
the number of features is infinite. Therefore, in order to find good features, a
gradient descent scheme is used. For any given feature w0 the gradient of costs
with respect to the feature can be calculated as

∂ǫ

∂w

∣

∣

∣

∣

w=w0

= 2
N
∑

i=1

ci(h(w
T

0 xi)− yi)
∂h(wT

0 xi)

∂wT

0 xi

xi . (4.3)

Using this result, an iterative procedure can be set up. The starting point for fea-
ture search is initialized randomly. By using alternating steps of fitting and
weight update a minimum of the cost function is sought. The procedure is
shown in Alg. 12. Any gradient descent scheme may be used. For the exper-
iments presented in Sect. 4.4 Levenberg-Marquardt optimization was used to
train feature weights.
In general, the base classifier costs ǫ(w) cannot be assumed to be a convex

function of w. Therefore convergence to a global minimum of equation (4.2)
cannot be ensured. On the other hand, Boosting does not depend on finding
global minima - as long a the base classifiers do better than random guessing. A
possible approach for preventing too weak classifiers from being added to the
ensemble is training a number of candidate base classifiers. For each candidate
a feature is trained starting from a random initialization. The candidate giving
lowest costs is then added to the ensemble. This mainly helps to reduce the
number of base classifiers necessary to reach a certain performance level, while
the final performance is not affected much. No other measures for enforcing
global convergence were used. The richer set of possible features in Boosted

language (mboost - model base boosting)
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4. Boosted Projections

Algorithm 12: Boosted Projections (with GentleBoost)

Input: Training samples {x, y}i, i = 1, . . . , N
Number of boosting rounds T
Smoothing parameter λ
Number of Feature-Initializations: I

Output: Classifier: H(x) =
∑T

t=0 ht(w
T

t x)
1 h0(x) = y
2 for t = 1, . . . , T do

3 ci ← e−yiH(xi), ci ← ci/(
∑N

i=1 ci)
4 ǫmin ←∞
5 for i = 1 to I do
6 Randomly initialize w
7 repeat
8 Fit base-classifier h(wx) to {wTxi, yi, ci}

9 Calculate gradient ∂ǫ
∂w

using Eq. (4.3)
10 Update weights w (e.g. using Levenberg Marquardt)

11 until convergence or maximum number of rounds reached

12 ǫ←
∑N

i=1 ci
(

yi − h(wTx)
)2

13 if ǫ < ǫmin then
14 ǫmin ← ǫ, wt ← w

15 end

16 end
17 Fit base-classifier ht(z) to {zi = wT

t xi, yi, ci}
18 Add ht to ensemble

19 end

Projections is expected to outweigh possible problems associated with it’s local
convergence. The empirical results of Sect. 4.4 suggest that this assumption
is valid. It was not evaluated, whether performance would improve if more
sophisticated optimization schemes were used.
The parameters of Boosted Projections, namely the number of boosting

rounds T and the smoothness penalty λ need to be set to optimize performance.
In regression settings, criteria using training error and model complexity to pre-
dict generalization performance exist (e.g. Akaike Information Criterion). To
the best knowledge of the author, no equivalent criteria exist for classification
settings. Unfortunately, applying regression systems in classification settings
leads to poor performance or - at least - slow convergence. Therefore cross val-
idation was used to tune the parameters in the experiments reported in Sect.
4.4.
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4.2. Training Boosted Projections

4.2.2. Extensions

Random subspaces

In Ho [1998] it is proposed to use random subsets of inputs for training base clas-
sifiers in an ensemble. Each base classifier is trained in a subspace spanned by a
random selection of input features. By using this technique, the base classifiers
of an ensemble exhibit less interdependence. Reducing interdependence of base
classifiers has been shown to be critical for building strong ensembles[Murua,
2002]. Breiman [Breiman, 2001] combines the random subspace method used
on decision trees with bagging to form the popular random forest classifier (see
Sect. 2.6.1).
Using random subspaces with Boosted Projections has a number of motiva-

tions. The training and evaluation effort is reduced, since feature calculations
are performed on less dimensions. Also, by not using all input dimensions, in-
formation from features which are otherwise masked by stronger features can
be revealed.
Adapting Alg. 12 to use random subspaces can be achieved by selecting a

random subspace in line 6 and constraining projection weights of unselected
inputs to be zero. The precise number of inputs used to build the subspace
is not critical. For experiments with data sets from UCI repository, (Sect. 4.4)

the dimensionality of the random subspaces was set to ⌊
√
F ⌋, where F is the

number of input features.

Extension to Multi-Class Problems

Up till now only binary classification has been discussed. Many real-world prob-
lems involve more than two classes. Extensions of Boosting for multi-class prob-
lems are discussed in Sect. 3. In the following the GentleBoost.MH scheme (Alg.
10) is used to solve multi-class problems. This scheme uses a 1-vs-all approach
to build base classifiers. All binary base classifiers produced in one round of
boosting share the same feature. GentleBoost.MH combines simple and cheap
training with competitive performance. This helps to reduce the number of fea-
tures needed to achieve a certain performance.

4.2.3. Examples

Operation of Boosted Projections is visualized using two simple two-
dimensional classification problems5. Both problems cannot be solved using

5Note that feature generation is not crucial for final convergence in two-dimensional problems.
Random features would eventually converge to the same results. However, the examples
show that important directions are picked first in Boosted Projections and thus training con-
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4. Boosted Projections

component-wise base classifiers. The first problem is the well known XOR dis-
tribution (Fig. 4.3). The samples (200 per class) are drawn from a uniform ran-
dom distribution in [0, 1]2. Samples with (x(1) − 0.5)(x(2) − 0.5) > 0 form class 1
all other samples class -1. Boosted Projections find a satisfactory solution using
only two base classifiers. The result after ten rounds of boosting shows good
generalization, in particular when taking into account the low number of sam-
ples. The second problem (Fig. 4.4) is formed by two interleaving spirals. The
features added in the first two rounds are good choices for the problem. So
the scheme finds a coarse approximation of the class distribution quickly and
refines it as the training progresses. The result after 50 rounds visualizes the
margin maximization property of Boosting. Boosted Projections reached the op-
timal error rate of 0.6% after 26 rounds. For comparison: a optimally tuned
SVM using a gaussian kernel achieved the same final error rate using 378 sup-
port vectors.

1 round 2 rounds 10 rounds

Figure 4.3.: Illustration of Boosted Projection classification - XOR problem

4.2.4. Discussion

Boosted Projections combine a number of advantageous properties. The ap-
proach can model almost arbitrary decision surfaces. However, if distribution
of classes is simple, Boosted Projections will adapt and build simple models as
well. This makes the scheme applicable to a wide range of classification prob-
lems. Capacity of the final classifier can be tuned conveniently by adjusting the
roughness penalty. This makes the Boosted Projections easy to set up. Table 4.1
shows a summary of properties of the classifiers examined in the experiments
of Sect. 4.4. Though the featured properties are just some factors influencing
classification performance, they indicate some areas where Boosted Projections
have advantages over other classifiers.
The last row of table 4.1 shows a qualitative comparison of the classifiers

with respect to training time (including tuning of parameters as necessary).

verges quickly.
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1 round 2 rounds 5 rounds

10 rounds 20 rounds 50 rounds

Figure 4.4.: Illustration of Boosted Projection classification - Swirl problem

Property BP SVM BS BDT RF

Invulnerability to linear scaling
of inputs

+ - + + +

Smooth decision surfaces + + + - -

Smooth regularization + + + - o

Representation of arbitrary deci-
sion surfaces

+ + - + +

Training time (ranks) 5 4 3 2 1

Table 4.1.: Advantages/Disadvantages of classifiers

Random Forest can be trained most efficient, due to its simple tree base clas-
sifier and their absence of tunable parameters. Boosted Decision Trees also use
tree base classifiers and can thus be trained very fast. Boosted Projections and
component-wise smoothing splines both use straightforward MATLAB imple-
mentations6. For both approaches training time is dominated by spline fitting.
The number of iterations for training features in Boosted Projections is usually
higher than the number of Inputs for which component-wise splines need to
be fitted. Therefore component-wise smoothing splines are the faster of the
two. The average training times for Boosted Projections and kernel-SVM are in
the same order of magnitude. While the SVM is very fast for small data sets,

6Training time should be reduced significantly for an optimized implementation in a compiled
language.
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4. Boosted Projections

Boosted Projections have an advantage on larger data sets7.

Due to the random feature initialization in Boosted Projections, multiple train-
ing runs with same training data and parameters will not produce the same
classifiers. For higher numbers of boosting rounds (e.g. T > 100) the effect will
be negligible. However for ensembles of few base classifiers, random initializa-
tions will lead to increased variance of the boosted ensemble and may lead to a
deterioration of performance. In these cases, one has to take measures to reduce
the effect. One approach is to increase the number of random initializations in
Alg. 12. This can prevent overly weak classifiers (e.g. due to poor starting
points from random initialization) from being added to the ensemble. Another
approach is to use a boosting scheme that removes weak base classifiers auto-
matically (e.g. FloatBoost in Li et al. [2002]).

Boosted Projections, as presented in this work, don’t regularize projection
weights w. It will be an interesting direction for future research to see how
the roughness penalty used in Boosted Projections interacts with ridge or lasso
weight regularization.

4.3. Related Work

Models using nonlinear functions on linear projections, similar to (4.1), are used
in various application areas [see Pinkus, 1993, for a discussion]. In physics they
occur in solutions of special types of differential equations and are referred to as
planar waves. In computed tomography the base functions h(wTx) are called
ridge functions, they emerge naturally as description of the observed measure-
ments. In statistics the same models are used in regression settings under the
name of Projection Pursuit Regression. Projection Pursuit Regression was pro-
posed in Friedman and Stuetzle [1981] and was refined and extended in numer-
ous publications [e.g. Roosen and Hastie, 1994; Lingjærde and Liestøl, 1999].
The models ht(w

T

t x) are fitted in a stage-wise forward manner, adjusting ev-
ery next model to the residuals of preceding models. Various extensions have
been proposed mainly focusing on selection of the number of models T and
on automatically tuning the amount of smoothing. The main difference of Pro-
jection Pursuit Regression and Boosted Projections, is the cost function linking
the stages of model fitting. While Projection Pursuit Regression uses residual
errors directly, Boosted Projections use a Boosting reweighting scheme. In fact,
Boosted Projections scheme using the L2Boost cost function [Buhlmann and Yu,

7Training time of Boosted Projections is dominated by evaluation of spline bases, which scales
with O(N log(N)). Optimization to reach O(N) is possible by using quantized input values
together with a lookup table.
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2003] is very similar to projection pursuit regression8. By using Boosting cost
functions, Boosted Projections are better suited for classification settings.

The use of a boosting-like feature generation scheme is discussed in García-
Pedrajas et al. [2007]. Their method, coined Nonlinear Boosting Projections
(NLBP), provides augmented feature sets zt = σ(WT

t x) (Where σ(.) is a non-
linear tansig-like transfer function) in each stage. The feature sets are con-
structed using samples misclassified by preceding stages in order to alleviate
classification in the current stage. The resulting nonlinear projection features
are then fed into off-the-shelf classifiers to build an ensemble. So, in contrast to
Boosting, instead of adjusting weights to grow ensembles, each base-classifier
works on a different set of features. The performance of the approach is tested
on a wide range of data sets from UCI machine learning repository and is shown
to outperform classification ensembles build with other techniques. In contrast
to NLBP, the approach proposed in the present work puts emphasis on building
compact representations of decision surfaces. While NLBP uses rather complex
base classifiers (e.g. ANN or kernel SVM), the presented system goes in the
opposite direction. Also NLBP in most cases doesn’t tune design parameters
of base classifiers, while this is necessary to achieve good performance with
Boosted Projections.

Another scheme for feature generation in boosting context named Kullback-
Leibler-Boosting is proposed in Liu and Shum [2003]. They use histogram
base-classifiers evaluated on linear projective features zt = wT

t x. The fea-
tures are trained iteratively to maximize the Kullback-Leibler divergence of the
base-classifiers. Since their base-classifier is not differentiable, component-wise
line search is used to generate features. In high-dimensional feature spaces,
component-wise optimization of input features is not feasible. This problem is
solved by providing a set of intermediate features x∗ = f(x). These features are
selected in order to cover “interesting” directions in feature space. Component-
wise optimization is used to combine the intermediate features into the final
features. For image classification problems standard feature sets (Haar-, Gabor-
wavelets) are used as intermediate features. The approach is shown to achieve
good performance for face-detection. However, the performance depends on
the intermediate feature set, so prior knowledge of the problem domain is nec-
essary.

In Schwenk and Bengio [2000], neural network base classifiers are used in a
boosting procedure. The hidden layers of the neural networks act as feature gen-
erators, where each hidden unit builds a derived feature as a nonlinear function
of a linear combination of its inputs. The results show that boosting is successful

8Though in Projection Pursuit Regression the basis functions are trained to optimize a fitness
criterion, which is in general not equivalent to the squared error used in L2Boost.
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not only with decision tree base classifiers, but with “stronger” base-classifiers
as well. The performance of boosted neural networks is equivalent and in some
cases improves upon performance achieved with boosted decision-trees. The
numbers of hidden layers and hidden units need to be adjusted to the training
problem.

4.4. Experiments

In order to compare the performance of Boosted Projections with state-of-the-art
classifiers, classification performance on 30 datasets from UCI machine learning
repository [Asuncion and Newman, 2007]9 was evaluated. The 30 datasets were
chosen to represent of wide range of problems with numbers of features rang-
ing between 4 and 69 and numbers of samples between 148 and 20000. The
characteristics of the data sets are summarized in Tab. C.1.

To be able to use all classifiers on the same inputs, data sets were preprocessed
as follows: (1) categorical inputs with k levels were split into k binary variables
(2) Missing values in categorical data are treated as a separate level (3) Missing
values in continuous data are replaced by the mean value of the respective at-
tribute (4) Inputs are scaled, so that maximal and minimal values are 0 and 1
respectively. The performance figures were calculated using ten-fold cross vali-
dation (10×cv, see Sect. B). The same splits into training and test sets were used
for all algorithms. For classification problems with dedicated training- and test-
set, only the training set was used in cross validation.

Design parameters of algorithms are tuned to achieve optimal performance.
The maximal number of base classifiers was fixed to 1000 for all algorithms
building ensembles. However, performance was evaluated for number of base
classifiers in range 1, . . . , 1000 to find optimal ensemble size. For all boosted
classifiers, GentleBoost scheme [Friedman et al., 1998] was used. For multi-class
problems the GentleBoost.MH scheme (Alg. 10) was used.

Boosted projections vs. random projections.

To see how performance of Boosted Projections depends on training of pro-
jection weights, it is compared against Random Projections. Instead of training
projection weights, random weights are used with Random Projections. For
construction of the classifiers, Alg. 12 - with the maximal number of iterations
for feature training set to zero - is used.

Random Projections are used as a bottom-line comparison here, to see
whether Boosted Projections benefit from training of projection weights, it

9 http://archive.ics.uci.edu/ml/
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should be noted that random projections have some favorable properties. Ran-
dom projections can be used for subspace induction and theoretic limits for map-
ping error exist Hegde et al. [2008]. In Fradkin and Madigan [2003] random pro-
jections are used for subspace induction in machine learning. The results show
that random projections perform comparable to principal component analysis
for subspace induction.

Boosted Projections with and without training of projection weights were
trained to build an ensemble of 1000 base classifiers. The detailed results can
be found in Tab. 4.4. Table 4.3 gives a quick summary of qualitative results.
Boosted Projections with trained projective features wins 21 - 6. This result
clearly shows that performance is improved by training projection weights. On
the other hand, performance of Random Projections is still quite competitive10.
The datasets on which Random Projections did better have a low number of di-
mensions (≤ 16 for binary and ≤ 10 for continuous data). It seems that using
random projections for low dimensional problems can help to reduce the ten-
dency of overfitting, while feature-space is sampled densely enough to allow
for good class separation.

Effects of using random subspaces.

In order to evaluate influences on classification, performance results of Boost-
ing projections with and without utilization of random subspaces are compared.
The results are shown in Tab. 4.2. In ten, out of thirteen, experiments utilization
of random subspaces leads to the best results. Only on two datasets, the use of
random subspaces deteriorates classification performance. Both datasets have
a relatively low number of input features.

The results indicate, that utilization of random subspaces improves perfor-
mance of Boosted Projections. Most likely the reason for this behavior is im-
proved resistance to overfitting caused by using random projections. In addi-
tion, classifiers trained using random projections use less multiplications, since
each feature processes only a subset of the input features.

Boosted Projections vs. state-of-the-art Classifiers

This section compares Boosted Projections to a selection of state-of-the-art clas-
sifiers. Classifiers have been chosen to be a good representation for off-the-shelf
classification algorithms.

Boosted Projections The scheme is used directly as in Alg. 12. The number of

random initializations is fixed to 1. Random subspaces with
⌊√

F
⌋

inputs

are used. Roughness penalty λ is tuned in 11 logarithmic steps.

10They outperform all state-of-the-art classifiers in direct comparison.
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Dataset With RS Without RS

anneal 0.0011 0.0044
autos 0.1355 0.1798

balance-scale 0.0432 0.0112
dermatology 0.0135 0.0243

ecoli 0.1165 0.1225
glass 0.1829 0.2301

iris 0.0267 0.0267
led24 0.2510 0.2560

lymph 0.1010 0.1152
page-blocks 0.0259 0.0254

segmentation-train 0.0524 0.1095
vehicle 0.1724 0.1866
vowel 0.0071 0.0061

Table 4.2.: Performance of Boosted Projections with and without utilization of
random subspaces.

Gauss-kernel SVM The libSvm Chang and Lin [2001] support vector machine
library was used. The C-SVM version with linear slack penalties was used.
Kernel width γ and slack penalty C were tuned on a 19× 19 grid.

Boosted Component-wise P-Splines (BS) In each stage, P-Splines are fitted
to each input to minimize weighted least squares error. The base classifier
with lowest costs is added to the ensemble in each round of boosting. The
spline roughness penalty λ is adjusted is adjusted in 11 logarithmic steps
for regularization.

Boosted Decision Trees (BDT) Decision trees are the most commonly used
base classifiers for Boosting. Our implementation uses a greedy tree grow-
ing scheme. In each step the node giving best cost-improvement is added
to the tree. Leaves have continuous outputs. Nodes are added in a greedy
fashion until the specified maximal number is reached. No pruning is per-
formed. Number of nodes is tuned to regularize trees.

Random Forest (RF) The R-Language random forest library11 is used. The

number of features visited for training a node is set to be
⌊√

F
⌋

.

Table 4.4 shows the detailed results for all classifiers. Figure 4.5 shows error-
error plots of Boosted Projections vs the remaining classifiers to visualize perfor-

11http://cran.r-project.org/web/packages/randomForest/index.html
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SVM BS BDT RDF BPR

BP 23-6-1 27-3-0 23-4-3 28-2-0 21-6-3
SVM 16-14-0 15-13-2 18-12-0 11-17-2
BS 10-17-3 17-12-1 9-21-0
BDT 18-9-3 7-21-2
RDF 6-24-0

Table 4.3.: Qualitative comparison of classifier performance (row wins - column
wins - draw)

mance. Finally Tab. 4.3 gives a qualitative summary of results: for all combina-
tions of two classifiers, the numbers of wins, losses and draws of the respective
classifiers is presented. Note that the differences of performances on one data
set are not tested for significant - so even small differences will be counted as
wins/losses.

Boosted Projections show good performance in comparison to the state-of-the-
art classifiers, winning at least for 23 of 30 data sets. In order to judge overall
performance, average ranks of classifiers are calculated. For each data set the
classifiers are ranked according to their average error in 10 × cv. If classifiers
are tied, each of them is assigned the average rank of all classifiers with same
performance. The following table shows the average ranks r over all data sets
for each classifier.

BP SVM BS BDT RF

r 1.56 3.05 3.47 3.12 3.80
r − r

BP
1.49 1.91 1.56 2.24

The second line shows the difference of the classifiers average rank and
Boosted Projections average rank. The average rank of Boosted Projections is
much lower than average ranks of the compared classifiers. The differences of
pairs of the remaining classifiers are rather small.

To see whether the observed results are due to chance or if they represent sig-
nificant differences of performances, a significance test for comparing multiple
classifiers over multiple data sets [Demšar, 2006] is performed. Following the
discussion of Demšar no tests for significant performance differences on single
data sets are performed. The requirements for this type of tests, especially inde-
pendence of runs, are violated for the utilized 10×cv setup. Therefore results of
significance tests on single data sets are to be handled with care, if not meaning-
less. Furthermore, result of comparisons on one dataset can’t be used to predict
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Figure 4.5.: Comparison of classification error rates of Boosted Projections with
other state-of-the-art classifiers (o: Boosted Projections win, x:
Boosted Projections loose, ♦: draw).

performance on other datasets, unless the classification problems are very simi-
lar. For general problems, the best guess for the classifier to use is the classifier
giving best performance over a wide range of classification problems.

The null-hypothesis for the test is that all classifiers will perform equally.
Thus the average ranks of the classifiers should be roughly equal, which is
clearly not the case. To see if any differences are significant, a Friedman-test
is performed. The probability of the null-hypothesis to be true for the observed
results is 3.4×10−4, therefore it can be rejected with high confidence. Two tailed
Nemenyi-post-hoc tests are used to decide which classifiers differ significantly.
For the given number of algorithms the difference between two classifiers has to
be at least 0.91 for 95% confidence level and 1.53 for 99% confidence level. Thus
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Boosted projections is significantly better than SVM on 95% level and for all re-
maining classifiers on 99% level. No significant differences are found between
the SVM, RF, BS and BDT.

On average Boosted Projection needed a relatively low number of 285 Boost-
ing rounds to achieve good performance. SVM, which gave second best perfor-
mance, used on average 673 support vectors. Calculation of a projective feature
should not be more expensive then evaluating the gaussian kernel of the SVM.
This shows that Boosted Projections build effective classification ensembles. On
the other hand, memory requirements of Boosted Projections are relatively high,
since weights of spline bases need to be saved for each base classifier.

4.5. Conclusions

In this chapter the use of Boosted Projections for solving classification problems
was investigated. Boosted Projections construct and ensemble of ridge-function
base classifiers. For each base classifier, projection weights w are trained in
order to minimize it’s costs. Since each feature is trained separately to greedily
minimize costs of current base classifier, only a low number of parameters are
tuned in parallel. Boosting sample reweighting ensures the trained features to
be both descriptive and independent.

The experimental results indicate, that the presented stage-wise feature gener-
ation approach is preferable to other schemes, which generate the entire feature
set before training of the actual classifier starts. The performance of a classifier
depends on all given features. This makes the optimization of a feature set ex-
tremely hard. In addition, many schemes for generating feature sets asses the
fitness of features using measures only loosely related to the actual classifiers.
Finally, ensuring independence of features in a feature set is hard.

By using a stage wise approach, Boosted Projections have a very simple struc-
ture. This has a number of advantages. Only two parameters have to be tuned
to adjust Boosted Projections to the classification problem at hand. Therefore
application is easy. Furthermore, extensions - like e.g. the use of a classifier
cascade to improve efficiency- can be incorporated easily.

In the experimental section, Boosted Projections were compared to a set of
state-of-the-art classifiers: SVM, Random Forest, Boosted Decision Trees and
boosted Smoothing Splines. Performance was evaluated on a selection of 30
data sets from UCI machine learning repository. On average Boosted Projec-
tions achieved best performance of all analyzed classifiers. Statistical tests
showed that observed differences of classifier performance are, with high prob-
ability, significant.

For some classification tasks, the achieved results will crucially depend on the
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incorporation of prior knowledge of the problem domain. Though training of
features in Boosted Projections helps to minimize the need for prior knowledge,
incorporating prior knowledge leads to significant performance improvement
in some domains. One example is image classification, where general classifi-
cation techniques notoriously fail to achieve state-of-the-art performance. The
adaption of Boosted Projections to deal with image processing problems is dis-
cussed in the next chapter.

A promising path for future extensions is the incorporation of automatic pa-
rameter selection schemes. This would remove the computational burden of
performing cross validation in order to optimize generalization. In Boosted Pro-
jections, each base classifier solved a weighted least squares problem. For re-
gression setting, efficient schemes for parameter selection (e.g. AIC, Sect. 2.1.1)
exist. Application of these schemes is not straightforward and should be ana-
lyzed in future work.

Another direction of optimization of the Boosted Projections scheme is to re-
duce the amount of memory needed. For a naive implementation, depending
on the number of support points used with each base function, high numbers
of base function weights need to be stored. The property, that the number of
effective degrees of freedom is significantly lower than the number of support
points for penalized fits, can be used to find a more compact representation of
the classifier. A possible solution is to use PCA to approximate the outputs of
the base classifiers. Research on how this approximation influences the classifi-
cation performance of Boosted Projections needs to be conducted.
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4. Boosted Projections
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5. Boosted Projections for Image

Classification

5.1. Motivation

This chapter deals with classification of images of natural scenes. This problem
formulation occurs in numerous practical applications. Examples are character
recognition, face recognition, automatic detection of defects at production sites,
and many more. What makes classification of natural images so challenging is
the high number of inputs in relation with the relative low number of samples.

A large number of approaches to classification of image patches exist in the
literature. In this section, the extension of the general classification approach
Boosted Projections (Sect. 4) to image classification is discussed. Direct applica-
tion to image classification doesn’t give satisfying results. For the construction
of Boosted Projections, independency of inputs was assumed. For image classifi-
cation problems, the inputs usually exhibit significant spatial correlation. Also,
separated image pixels carry only a low amount of information. In addition,
the high number of inputs could lead to overfitting. Application of random
subspaces to reduce the number of features trained in parallel (Sect. 4.2.2) will
not improve performance since spatial relationships of inputs are not taken into
account.

In the last chapter, no assumptions about the nature of the inputs for a clas-
sification problem were made. In this chapter, prior knowledge about images
of natural scenes is used to help solving the classification problem and thus
get better performance. In Sect. 5.3 regularization of features that can be used
to prevent overfitting of trained features is discussed. Section 5.5 introduces a
technique for training shift-invariant features in a boosting framework. Utiliza-
tion of shift-invariance helps to reduce the number of samples needed to solve
a given training problem. Experimental performance evaluation is conducted
in Sect. 5.6 for the examples handwritten digit recognition and car side view
classification.
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5. Boosted Projections for Image Classification

5.2. Problem Formulation

The classifier is given the task to learn a decision rule H(x) from a set of train-
ing samples xi, yi with i = 1, . . . , N . For a given instance x the classification
rule H(x) utters a hypothesis about the corresponding class. The feature vector
x is a vector representation of the image patch X, such that x = vect(X). Di-
mensions of the input patch are denoted with W×H for patch width and height
respectively. Therefore the length of the feature vector x equals F = WH .

In general all features used in this chapter will be local. Local features are re-
stricted to have non-zero feature weights in a local neighborhood of the center
pixel of the feature only. For application the use of a rectangular neighborhood
of dimension w×h is common. Two types of image features are discussed in
more detail: features performing linear weighting of the input features and fea-
tures performing a convolution on the input patches. Restriction to local neigh-
borhoods can be done for both feature types.

Linear Features are calculated as a scalar product of the feature-weight vector
and the input vector: f = wTx.

Convolutional Features are denoted using matrix formulation f = Wx. The
Output f is a vector representation of the output of the convolution
F = X ∗W′. Wherein W′ is a convolution kernel with dimension w × h.
Matrix notation of the convolution is formed using convolution unrolling
as depicted in Fig. 5.1. By unrolling the convolution:

X ∗W′ = reshape(WTx) , (5.1)

notations are simplified. In particular the formulation for back propaga-
tion training in Sect. 5.5.1 becomes much clearer. Also parallel implemen-
tations of the convolution can be derived from matrix multiplication eas-
ily.
Many elements of the convolution matrix W are constrained to be zero.
Also, the weights of the convolution matrix representing a certain weight
of the convolution kernel share the same value. Therefore the number of
adjustable parameters for each formulation of the convolution is identical
to wh. Note that linear features can be seen as a special case of convolu-
tional features, where the input patch and the filter kernel have the same
size.

A feature patch X represents a two-dimensional mapping of a scene. The
feature values correspond to measurements on a discrete two-dimensional grid.
This grid defines neighborhood relationships between feature values. When the

90



5.2. Problem Formulation

Figure 5.1.: Unrolled convolution. The upper row displays application of a 3×3
filter on a 5×5 patch. Only positions where the filters have full over-
lap are evaluated. The lower row shows the unrolled convolution
in matrix notation.
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5. Boosted Projections for Image Classification

sampling theorem is respected, neighboring feature values will exhibit a certain
level of correlation. In contrast, correlation of feature values with high distance
on the grid is low.

In most image classification tasks, the global appearance of objects is subject
to strong variation. This may be caused by differing pose, illumination, intra
class variance or other factors. Therefore modelling the object appearance us-
ing global models is difficult. On the other hand, strong local features exist (e.g.
wheels for cars, busses, trucks, etc.). These local features have the advantage,
that only coherent informations are combined. Furthermore, the number of fea-
tures needed to describe a problem sufficiently is reduced by using local fea-
tures. For example, when there are nw variants of appearance of wheels in the
car class and nt variants of trunks, nwnt global features are needed to describe
all possible variants using univariate models1. In contrast, parts of objects can
be described independently. Therefore only nw + nt features are necessary to
describe all possible variations in an additive way. Local models also give more
flexibility for describing objects. For example, models can be made invariant
against small variations of appearance easily by allowing uncertainty in the lo-
cation of object parts. Local features are a widely adopted and used scheme
for building powerful image classification models [e.g. Viola and Jones, 2002b;
Hotta, 2002].

From a mathematical point of view, all measures for introducing prior knowl-
edge into image classification problems either help to reduce the effective num-
ber of adjustable parameters or reduce the number of training samples needed
to build a model. While using local features reduced the number of adjustable
parameters directly, regularization techniques reduce the effective number of
parameters. This is done by enforcing mathematical relations between feature
values. Examples for commonly utilized relations to measure flexibility are
smoothness, norm, symmetry of features and others.

5.3. Non Shift-Invariant Features

A very general approach for introducing prior knowledge into feature genera-
tion is to apply penalties to certain properties of the trained features. With this,
the feature training learns a tradeoff between good class separation and low

1It would also be possible to model the appearance using global features, like e.g. principal
component analysis (PCA). But with this type of models, all features need to be taken into
account together. This work is mainly interested in features that can be used in a stage-wise
manner in a boosting framework. Therefore each feature needs to be descriptive on it’s own.
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5.4. Shift-Invariant Features

feature penalty:

f ← argmin
f∈(F )

(ǫ(f) + λP (f)) , (5.2)

where λ adjust the influence of the feature penalization. By introducing the
penalty, the number of effective degrees of freedom is reduced. This is espe-
cially helpful for image classification tasks, where a high number of adjustable
parameters is combined with a relatively low number of samples.

In the following, the use of linear features f(x) = wTx is assumed. In re-
gression settings, often the norm of feature weights is penalized: P (w) = ‖w‖dd,
where d is the order of the utilized norm. Typical values of d are d = 1 (Lasso
penalty) and d = 2 (Ridge penalty). However, this approach can not be applied
directly to Boosted Projections, since the smoothing spline base classifiers are
invariant against scaling of their inputs. Therefore penalties of the feature norm
can be arbitrarily minimized by scaling the feature weights without altering the
output of the base classifier.

Another approach uses the smoothness observed in many images of natural
scenes [Hastie et al., 1995]. Therefore it is very likely that high-frequency parts
of trained features are due to overfitting instead of representing actual object
structure. In order to enforce training of features exhibiting low pass character,
roughness of the trained features is penalized:

P (w) = wTSSTw . (5.3)

The matrix S penalizes the roughness of the trained feature patch and represents
an unrolled convolution with Kernel S′. Typically finite differences of second
order are penalized using

S′ =
1

8





1 −2 1
−2 4 −2
1 −2 1



 . (5.4)

By penalizing second order derivatives, portions of the features up to first
derivative are not penalized. This ensures that feature training is still flexible
enough to find meaningful features for the problem at hand.

5.4. Shift-Invariant Features

As discussed above, natural images can be advantageously modeled as a com-
bination of object parts. This reduces the variance that needs to be modelled
by the individual features, since they only need to cope with local variations.
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5. Boosted Projections for Image Classification

Many instances of a given image classification problem differ only in small vari-
ations of pose ore alignment. Examples are digits, where elastic deformations
of examples of the same digit, written by the same subject, occur due to small
unconscious oscillations of the hand. Another example are pictures of the same
object taken under slightly different viewing angles, leading to affine transfor-
mations and occlusion in the produced images. Due to efficiency constraints
and overfitting issues, it is not feasible to cover all these variations by individ-
ual features.

Shift-invariant features are able to deal with this small variations efficiently.
Variations of the input features due to small local transformations will not al-
ter the output of shift-invariant features. Therefore the outputs of one training
sample will not only represent that particular instance—but also instances dif-
fering only in small local shifts of input features2. By that, the requirements to
the number of training samples are relaxed, since only coarse poses need to be
covered.

5.4.1. Key-Point Detector Based Approaches

These approaches are based on using keypoint detectors to find regions of inter-
est in the image (blob-detection). Examples of keypoint detectors are Difference
of Gaussians (DoG), Harris-Affine, Hessian and Maximally Stable Extremal Re-
gions (MSER, Matas et al. [2002]). The first three approaches are discussed in
Mikolajczyk and Schmid [2004]. A comparison of localization accuracy for all
approaches can be found in Haja et al. [2008].

Keypoint detectors - depending on which particular is used - are able to
identify keypoints independent of scale and affine transformations. Most ap-
proaches not only return the position of keypoints, but also their characteristic
scale and rotation. This information can be used to build invariant features,
representing the appearance of the objects at the keypoint locations.

To build classifiers, each keypoint is described by a feature descriptor. The
feature descriptors can be used to find point correspondences between two im-
ages of the same object thereby allowing to draw conclusions about the change
of pose of the depicted object. The feature descriptors can also be used to asses
similarity between two different objects. Using this technique, example based
classifiers can be build. The most popular feature descriptor is SIFT (Scale In-
variant Feature Transform, Lowe [1999]). It’s design together with the used
keypoint detector attains invariance against scaling, lighting and affine trans-

2With growing level of shift-invariance, spatial relations of features become less important. In
the extreme case, features are merely counted without taking their positions into account
(see bag of features approach in Sect. 5.4.1)
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5.4. Shift-Invariant Features

formations. Other feature descriptors exist (e.g. SURF-Bay et al. [2006], Spin
Images-Lazebnik et al. [2003]). Different approaches for combining the votes of
the individual matched features to form a class decision can be found in the
literature. Some examples are discussed briefly in the following.

Bags of Features

This approach [Dance et al., 2004] completely ignores information about the
spatial organization of the matched descriptors. Therefore it is intrinsically in-
variant against affine transformations. Descriptors found in the training set
are clustered to build a set of descriptor prototypes used to represent image
content. The feature vector used in this method is a histogram, representing
the number of successful matches of descriptors from the current image to
the trained descriptor prototypes. Classification can be performed by arbitrary
techniques. Bags of Features is in particular helpful for categorization of pho-
tographs, where no prior knowledge about position, scale and orientation of
object is available.

By completely ignoring spatial layout of features, a significant part of avail-
able information remains unused. Therefore hierarchical extensions to the Bags
of Features model exist, taking feature positions into account. In Lazebnik et
al. [2006], assignment of descriptors is done in a spatial pyramid structure. In
the lowest level, global matching of descriptors similar to traditional Bag of Fea-
tures is performed. Each higher level splits the image into smaller partitions.
Matching of descriptors is performed separately for each partition, thereby
achieving increasingly accurate localization.

Generalized Hough Transformation like Approaches

The approaches of this type [e.g. Mikolajczyk et al., 2006] learn the relative po-
sition of invariant descriptor with respect to the center of the corresponding
object. Similar to Bag of Features approaches, clustering of the descriptors is
performed to build a appropriate representation of object parts. The positions
of all descriptors, assigned to one cluster, are used to learn a probability distribu-
tion for the respective object part. In classification stage, a successfully mapped
descriptor creates a vote for the class of the corresponding cluster center. In
addition a spatial vote representing the location of object parts in the training
stage is produced. If the accumulated votes for a spatial position exceed a given
threshold, a object hypothesis is created for this position. Therefore simulta-
neous classification and localization is performed. Hierarchical models can be
used to represent more complex classes [e.g. Bouchard and Triggs, 2005]. For
these, each descriptor generates votes for object parts. By combining the object
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5. Boosted Projections for Image Classification

part hypotheses, object hypotheses are build. Extensions for performing seg-
mentation or depth reasoning using the trained models are available [e.g. Leibe
et al., 2008].

Drawbacks of keypoint-based approaches are the rather high demands they
put on the resolution of the depicted objects. For low resolutions keypoint de-
tectors have problems finding meaningful regions of interest. Sampling of de-
scriptors on a equidistant grid are a workaround for low resolution problems.
Typically used feature descriptors, however, are rather expensive for low reso-
lution problems, where more efficient representations exist.

5.4.2. Tangent Distance

Tangent distance [e.g. Simard et al., 1998] is an extension for introducing
invariance to neighborhood-based classification techniques (e.g. k-Nearest-
Neighbors, Radial Basis Networks). In order to achieve invariance against small
shifts and local deformations of the depicted objects, neighborhood functions
are adapted to the problem. These neighborhood functions are local in feature-
space. Transformations likely representing intra class variance are assigned
small distances. Transformations that are likely to be significant for class dis-
crimination are assigned high distances. In consequence, the feature space is
distorted, so that samples of the same class are mapped close to each other and
samples of different classes are mapped further apart. Tangent distance mod-
els achieve good results for recognition of handwritten digit. A drawback of
the approach is the need for large number of samples for training the neighbor-
hood functions. Alternatively prior knowledge can be incorporated to reduce
the required number of samples. While possible intra-class transformations for
handwritten digits are well understood, it is hard to find relationships for gen-
eral problems in cluttered background.

5.4.3. Deformable Models

Deformable models [e.g. Keysers and Gollan, 2007] use elastic transformations
to produce allocations between trained class prototypes and instances to be clas-
sified. The approach is based on the intuition that allocation between the pre-
sented instance and the class prototype of the corresponding class is better than
for arbitrary class combinations. The technique was successfully applied for ex-
ample in handwritten digit recognition or face recognition. In most applications
rather simple backgrounds are present and objects are well segmented.
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5.4. Shift-Invariant Features

5.4.4. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) where proposed in LeCun et al. [1990].
A number of extensions in comparison to standard MLPs (Sect. 2.3) where used
to adapt them to image processing tasks:

• Reduction of number of network weights by using local features.

• The same local features are used for the whole image (weight sharing). In
effect, the network performs a convolution.

• Subsampling layers achieve invariance against small deformations of the
depicted objects.

• Hierarchical structure: complex features are formed by consecutive layers
of convolution and subsampling. Lower convolution layers learn simple
features. These are combined in the higher layers to form more complex
features.

Figure 5.2 shows the structure of Convolutional Neural Networks. The first
layer constructs features maps by performing a convolution of the input image
patch with each trained convolution kernel. The feature maps are subsampled
in the following layer, thereby removing redundancy and achieving invariance
against small shifts. The resulting subsampled feature maps are combined addi-
tively using a fixed connection scheme, that has to be set manually before train-
ing. The resulting feature maps are used as input for another round of convolu-
tion and subsampling3. The outputs of the second layer of subsampling are fed
into a fully connected multi-layer neural network performing the actual classifi-
cation. Training of network weights (kernel weights and connections weights of
the MLP) can be done using the backpropagation algorithm LeCun et al. [1998].

The special network architecture of CNNs allows training kernel weights that
optimize class discrimination. The trained set of features adapts to the classifi-
cation problem at hand. In particular, manual selection of a feature set for a
given classification problem - which would require a high level of problem un-
derstanding - is not necessary. The convolution and subsampling layers can be
seen as feature generators. After the weights of the convolution kernels have
been trained, the fully connected MLP used for classification can be replaced
by other classifiers [e.g. with Support Vector Machines in Huang and LeCun,
2006].

3Two rounds of convolution and subsampling is the most common choice. Other numbers
could be used as well if suitable for the given image classification problem.
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Figure 5.2.: Convolutional Neural Network. For feature training a fully con-
nected MLP is used as output classifier. After features have been
learned, arbitrary classifiers can be trained using their outputs.

While CNNs reach good performance for a number of image classification
tasks, their design also results in a number of drawbacks. The complex archi-
tecture implies a large number of design parameters. Also, implementation of
training is non-trivial [Simard et al., 2003]. In Sect. 5.5 an algorithm for training
features involving convolution and subsampling is proposed. By using a Boost-
ing framework for training, the number of adjustable parameters can be greatly
reduced.

5.4.5. Other Approaches Using Convolutional Features

Features based on convolution and subsampling are used in a number of related
image classification approaches as well. While the network architectures are
rather similar, the individual approaches on feature training differ. Biologically
motivated systems [Serre et al., 2007] use preset features, selected to model the
primal visual cortex of mammals. Typically the convolution kernels of the input
layer recreate oriented Gabor filters. The following layers use subsampling and
radial basis functions to create an invariant representation of the input patches.
The output is classified using off-the-shelf linear classifiers. The technique im-
proves upon state of the art techniques on a wide range of image classification
problems. In particular the system applied to problems involving many output
classes and low numbers of samples. An advantage of the approach is the re-
duced number of kernel weights to be trained since the same fixed architecture
is used for arbitrary classification problems. Therefore only a low number of
design parameters need to be set. On the other hand, the architecture may be
oversized for simple classification tasks. High numbers of convolution kernels
are used in the input layer and a high number of examples need to be stored
for the radial basis functions. This makes classification using this technique
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computational expensive.
Another direction of using convolution and subsampling to build invariant

features are generative approaches. Instead of training the features to optimize
class discrimination, the features are trained to build models of the distribution
of input samples. The quadratical error between input patches and the repro-
duction generated by the network is optimized in Ranzato et al. [2007]. In Lee
et al. [2009], the likelihood of the trained model for the given input samples is
optimized. The advantage of generative models is their lower susceptibility to
overfitting. Also experimental results suggest that an universal set of features
for representing natural images exists. Therefore arbitrary input patches - pos-
sibly not related to the given problem - can be used for feature training. This
relaxes the need for labeled training samples for a given image classification
problem. When sparseness constraints are applied during training of the model,
the systems learn features representing object parts. The input layer typically
learns features representing local edges and corners. Higher layers train more
specialized features representing object parts and full objects. A drawback of
the approach is that typically features with rather big local support are trained,
resulting in expensive evaluation.

5.5. Boosting Shift-Invariant Features

The techniques proposed in this section is closely related to Convolutional Neu-
ral Networks. The goal is to keep the advantageous properties of CNNs like
shift invariance and good classification performance. On the other hand, by
using Boosting, the following improvements are achieved:

• Reduction of the number of design parameters. Most adjustable parame-
ters can be left fixed to default values.

• Improved scaling to suit the problem at hand.

• Simple training.

• Simple architecture.

The proposed approach uses Boosted Projections, discussed in Sect. 4, to train
local shift-invariant features. Shift-invariance is achieved using feature combin-
ing convolution and subsampling similar to CNNs. In each boosting stage only
one convolution kernel is trained. This reduces the number of weights to be
adjusted in parallel dramatically. In contrast, all weights in CNNs are trained
simultaneously.
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5. Boosted Projections for Image Classification

In CNNs the convolution operation is performed over the full input patch.
In order to reduce the number of computations per feature, only local convo-
lutions are used in the proposed approach4. Preliminary experiments suggest,
that efficiency with respect to the ratio between error rate and number of mul-
tiplications needed can be improved using local features. Local patches are de-
scribed by patch location p = [cp, rp, wp, hp], where cp and rp are the column and
row of the center of the local patch. The width and height of the local patch are
denoted with wp and hp respectively. The operator P(x,p) is defined to extract
patches of geometry p from feature vector x. To extract discriminative informa-
tion local-convolution features are used:

f(x) = sub(P(x,p) ∗K) , (5.5)

where K is the convolution kernel of size w × h. The subsampling operation
sub(.) makes the result invariant to small shifts. It returns high values if a
feature is present in a local neighborhood and low values if it isn’t. For the
experiments reported in Sec. 5.6 the subsampling operation sub(.) returns the
maximum absolute value of the filter response5.

Using separated shift-invariant features without feature-interactions6 leads to
a simple architecture. Thereby a number of parameters necessary with CNNs -
e.g. number of layers, number of neurons in each layer, etc. - can be dropped.
Only the dimensions filter kernels and subsampling areas needs to be fixed.
This corresponds to adjusting kernel size and subsampling step width necessary
also with CNNs.

By using Boosted Projections (Sect. 4) output classifiers, complex output func-
tions can be realized, despite the absence of hidden layers. Flexibility of the clas-
sifier ensemble can be adjusted conveniently by setting the roughness penalty
of the smoothing spline base classifiers. Since smoothing splines are differen-
tiable, gradient descent techniques can be used to train features. The specific
training procedure is discussed in the following.

4Low number of computations of single features are particularly useful together when using
boosted cascades of classifiers [Viola and Jones, 2002a].

5Note that this subsampling operator is non-differentiable. For the backpropagation training
used in Sect. 5.5.1 a differentiable approximation needs to be used.

6For an extension allowing for simple feature-interactions, see Sect. 20.
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Figure 5.3.: Architecture for boosting shift-invariant features. The convolution
kernels of the input layer have only local support on the input patch.
The subsampling operation returns one value for each kernel fea-
ture. For multi-class problems, GentleBoost.MH (Sect. 3.5.2) is ap-
plied. One smoothing-spline base-classifier is trained for each bi-
nary subproblem of the 1-vs-all approach.

5.5.1. Training Shift-Invariant Features using Boosted

Projections

In order to minimize the GentleBoost cost function, features are trained to opti-
mized weighted squared fitting error:

f(x)← min
f(x)

(ǫ(h(f(x)))
GB
= min

f(x)

(

N
∑

i=1

ci (h(f(xi))− yi)
2

)

, (5.6)

where h(f(x)) is the weighted least square fit to y over f(x) using a penalized
smoothing spline basis.

In order to improve clarity of notations, Eq. 5.5 for calculation of shift-
invariant features is reformulated. Convolutions are unrolled and expressed
as vector-matrix-multiplications. In addition, a differentiable approximation of
the max abs-subsampling operator is used. This leads to

f(x) = fsub(fconv(x))

fconv(x) = u = xTL

fsub(u) = v = ‖u‖2n ≈ max abs(u) with n ∈ IN ,

(5.7)

where u ∈ IRS is the output of the convolution operation in vector notation
7. The matrix L represents the unrolled convolution. For approximation of

7S can be computed from the size of the input patch wp × hp and the size of the convolution
kernel w × h: S = (wp − w + 1)(hp − h+ 1).
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max abs-sampling an even norm of the convolution result is calculated. For
n→∞ the output of the approximation tends towards the exact result.

Backpropagation Training of Kernel Weights

Calculation of kernel updates can be done comparable to training of neural net-
works. Backpropagation uses the errors of a layer to calculate the weight gra-
dients for the preceding layer. Starting from the output errors, update for all
network weights can be calculated. For the presented shift-invariant features
with smoothing spline base classifiers, only the kernel weights K′ need to be
trained. The errors of the individual layers are calculated as follows:

Output Layer The error of the output layer can be calculated directly using
the error function associated with the used boosting scheme. For GentleBoost
the base classifier error is calculated by

ǫi = (h(vi)− yi)
2 . (5.8)

The derivative of the error with respect to the outputs of the subsampling layer
is

∆hi =
∂ǫi
∂vi

= 2 (h(vi)− yi)
∂h(vi)

∂vi
. (5.9)

The derivative of the base classifier can readily be calculated by

∂h(vi)

∂vi
= aTB′(vi) , (5.10)

where B′ represents the derivative of the spline base B(v) with respect to v.

Subsampling Layer The derivative of the error in the subsampling layer with
respect to the subsampling function can be calculated using the backpropaga-
tion rule:

∆fsub(ui) = ∆hi

∂fsub(ui)

∂u
(j)
i

. (5.11)

The derivative of the subsampling function fsub(ui) = ‖ui‖2n is given by

∂vi

∂u
(j)
i

=
∂fsub(ui)

∂u
(j)
i

=
(

u
(1)
i + . . .+ u

(S)
i

)− 2n−1
2n

(u
(j)
i )2n−1 . (5.12)

This yields the delta-values ∆fsub,i for back propagation. Note that for high
values of n, all but the strongest feature position are ignored:

∂vi

∂u
(j)
i

→







1 if j = argmax
m=1,...,S

(u
(m)
i )

0 else
for n→∞ . (5.13)
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Convolutional Layer The convolution layers holds the kernel weights the are
to be updated. The unrolled convolution is split into the outputs associated
with each kernel element:

fconv(x) = xTL = xT (k11L11 + k12L12 + . . .+ khwLhw) . (5.14)

With the gradient of the individual kernel weights can be calculated by

∆kj1j2 = ∆fsub(ui)L
T

j1j2
x (5.15)

The update of kernel weights can be done for example using the Levenberg-
Marquardt technique. The complete scheme for building a classifier with local
convolution features is shown in Alg. 13. Training time may be reduced, with-
out deteriorating classification performance, by visiting only a limited number
of random positions (line 5). Figure 5.3 shows a trained feature kernel and the
associated output function for the example of digit recognition.

Combining Features.

In higher layers of hierarchical networks, basic features are combined to build
more complex features [Ranzato et al., 2007; Serre et al., 2007]. This type of fea-
ture interaction cannot be modeled by using Alg. 13 directly. It is proposed to,
rather than using hierarchical networks, build complex features as linear combi-
nations of local convolution features: z′i = vTzi, where zi = [f1(xi), f2(xi), . . .]

T

represents the values of all convolutional features learned so far and v are their
respective weights. While this approach may not be as powerful as using hier-
archical networks, it comes at almost no extra costs.

Algorithm 13 is adapted by feeding linear combinations of features into the
base classifier in line 18. The weights of the local convolution features v are
trained to optimize class separation. Typically, only a small number of features,
say two or three, need to be combined - depending on the problem at hand.
In cases where the maximum number of convolutional features to be used is
limited (e.g. due to computational resources), performance may be improved
by adding Boosting stages using combinations of the already learned features.
Calculation of local convolutional features is much more expensive than evalu-
ation of base classifiers, so costs are negligible. Figure 5.4 shows the adapted
architecture for combining filter outputs.

5.6. Experiments

In order to show the competitiveness of the presented approach, experiments
on two well-known image classification databases are conducted. The data sets
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Algorithm 13: Boosting of local convolution features

Input: Training samples {x, y}i, i = 1, . . . , N
Input: Number of boosting rounds T
Input: Smoothing parameter λ
Input: Feature-geometry

1 h0(x) = y
2 for t = 1, . . . , T do

3 ci ← e−yiH(xi), ci ← ci/(
∑N

i=1 ci)
4 ǫmin ←∞
5 for all positions p do
6 Initialize convolution kernel K← N (0, 1)
7 repeat
8 zi = sub(P(xi,p) ∗K)
9 Fit base-classifier h(z) to {zi, yi, ci}

10 Calculate kernel gradient ∆K using back-prop
11 Update kernel K (e.g. using Levenberg Marquardt)

12 until convergence or maximum number of rounds reached

13 ǫ←
∑N

i=1 ci (yi − h(sub(P(x,p) ∗K)))2

14 if ǫ < ǫmin then
15 ǫmin ← ǫ, pt ← p, Kt ← K

16 end

17 end
18 Fit base-classifier ht(z) to {zi, yi, ci}, zi = sub(P(xi,pt) ∗Kt)
19 Add ht to ensemble

20 end

Output: Classifier: H(x) =
∑T

t=0 ht(sub(P(x,pt) ∗Kt))

are selected to have very different properties to illustrate the flexibility of the
presented approach.

5.6.1. USPS Handwritten Digit Recognition

The first set of experiments was performed on the USPS handwritten digit recog-
nition corpus. The database contains gray scale images of handwritten digits,
normalized to have dimensions 16 × 16 leading to an input feature vector with
256 values. The training set includes 7, 291 samples, the test set 2, 007. Human
error rate on this data set is approximately 2.5% [Simard et al., 1998]. Classifiers
specialized to optical character recognition also reach error rates of 2.5% [Key-
sers et al., 2004]. These classifiers use two main techniques to take into account
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Figure 5.4.: Architecture of boosting shift-invariant features with linear feature
combinations.

the special nature of the problem: (1) measures to be invariant against small lo-
cal shifts are used (2) the training set is extended by distorted patterns in order
to increase its variety.

Visual results

Figure 5.5 shows the first 25 features trained for classification of digit five vs
digit eight from USPS zip corpus. Examples of the digits are depicted in Fig. 5.8.
Convolution kernels of size 5×5 were trained in a 9×9 neighborhood. Many of
the trained features correspond to line segments representing parts of the digits
in the training set. Figure 5.6 shows an example of a trained feature with the
corresponding smoothing spline base-classifier.

Figure 5.7 kernels corresponding to all positions of the 9×9 input patches for
classification of digits zero vs one. As expected, the filters corresponding to the
outer areas of the input patches focus on detecting properties of the digit zero.
Filters corresponding the inner areas of the input patches detect vertical lines
corresponding to the digit one. Note that filters differ significantly for different
subpatch locations P . Therefore using one kernel over the whole input patch,
as used by Convolutional Neural Networks, will not give optimal outputs for
all locations. This is one reason to use feature with local support.

Non Shift Invariant Features

In order to show that Boosted Projections (Chap. 4) can be adapted to specific
problem domains easily, experiments with USPS handwritten digit corpus are
conducted. The database contains images of handwritten digits at 16× 16 reso-
lution. Samples are split into a training set containing 7291 images and a test set
containing 2007 images. Figure 5.8 shows some examples of training patterns.
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Figure 5.5.: Convolution kernels trained for classification of digits 5 vs 8.

Classifiers strongly tuned to the task of handwritten digit recognition exist. The
goal is not to reach performance competitive to these specialized systems, but
to show how Boosted Projections compare to off-the-shelf systems. The same
classifiers as in the preceding experiments are examined. Classifiers building en-
sembles run for 500 rounds. Design parameters of classifiers were tuned using
cross-validation on training set.

Results can not be expected to be competitive to best specialized classifiers for
handwritten digits, since no special adaptions to take into account the specifics
of the data set were made.

For the first experiment (Inputs) the classifiers work in input pixels directly.
Spatial coherence of image pixel was ignored. Error rates are presented in Tab.
5.1. As expected, the achieved performances are relatively poor. SVM achieves
the lowest error rate. It should be noted, that SVM uses more than 2300 support
vectors and has thus much higher computational costs than the other classifiers.

For the second experiment (Gabor) an augmented feature set was generated
using the Gabor filters depicted in Fig. 5.9. Outputs of all filters were concate-
nated resulting in a total of 2048 input features. The features were again used
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Figure 5.6.: Example of trained pooling feature (for handwritten digits 5 vs 8)

features BP SVM BS BDT RF

Inputs 0.0583 0.0458 0.0802 0.0503 0.0606
Gabor 0.0379 0.0432 0.0700 0.0450 0.0541

Trained, local 0.0369 - - - -
Trained, local, smooth 0.0342 - - - -

Table 5.1.: Classification results on USPS data base: on input pixels, Gabor
wavelets and trained features

without taking care of spatial coherence. Performance of all classifiers improves.
Boosted Projections show the biggest improvement of performance.

Two more experiments were conducted using local, non shift-invariant fea-
tures produced using Boosted Projections. In the first (Trained, local) features of
size 5×5 were trained at random positions in the input patch. In the second
experiment (Trained, local, smooth), the same approach was used, but in addi-
tion a roughness penalty on the second derivative of the trained features was
used. The results are also shown in 5.1. The yielded performances indicate,
that performance is improved by taking into account spatial coherence. Also
the resulting classifiers of Boosted Projections are much more efficient than the
classifiers using Gabor-filters.

The experiments in this section show that Boosted Projections can be adapted
to specific problem domains very easily, since priors on the characteristics of the
data to be classified can be incorporated easily. In order to achieve state-of-the-
art error rates for handwritten digit recognition, more specific extensions - most
importantly local shift-invariance - have to be incorporated.

Shift Invariant Features

Penalized cubic smoothing spline base-classifiers with 100 support points are
used to approximate class distributions. Spline roughness penalty, as well as the
size of the convolution kernel were determined using cross validation. Kernels
of size 5× 5 with a subsampling area of 5× 5 gave best results - this means each
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Figure 5.7.: Convolution kernels for classification of digits zero vs one. Candi-
dates in first round of Boosting for all possible positions of the input
patches.

pooling feature operates on a 9 × 9 patch. Pairs of convolutional features are
combined to model feature-interactions. An ensemble of 1000 base classifiers
was build. Features were added in rounds 1 to 500. The remaining boosting
rounds combined already trained local convolutional features.

Experiments using an extended set of training patterns Keysers et al. [2004]
suggest the original training set is to small to achieve optimal performance. In
the literature different techniques are used to extend the training set. An ex-
tended training set is built by adding distorted versions of training patterns
[Simard et al., 2003], increasing the number of training samples by a factor of
five. Note that we did not extend the test set in any way.

Figure 5.10 shows test error with respect to the number of features used. Ex-
periments using the original training set yielded an error rate of 3.1%. On the
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Figure 5.8.: Examples of handwritten digits from USPS zip handwritten digit
corpus.

Figure 5.9.: Gabor filters and example of filter outputs.

extended training set an error rate of 2.6% was achieved. Note that the error
rate of the extended feature set drops from 3.0% to 2.6% between round 500 and
1000 without adding new convolutional features. Table 5.2 compares the perfor-
mance of the presented approach to other published results. The results of the
presented scheme are competitive to other state-of-the art algorithms.

method error [%] error ext. [%]

human [Bottou et al., 1994] 2.5 -
LeNet1 [Cun et al., 1990] 4.2 -
tangent distance [Bottou et al., 1994] - 2.5
kernel densities [Keysers et al., 2004] 3.3 2.4
this work 3.1 2.6

Table 5.2.: Test error rates on USPS database
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Figure 5.10.: Classification error on USPS depending on the number of boosting
rounds. Note that features were trained until round 500. The re-
maining Boosting rounds add base classifiers combining already
calculated features. The black curve shows the results when us-
ing the training samples directly, while the gray curve shows the
results when using a training set extented with distorted examples.

5.6.2. UIUC Car Classification

A second set of experiments was conducted using the UIUC car side view
database Agarwal et al. [2004]. The training set contains 550 images of cars and
500 images of background, each image of size 100× 40. Again, cross validation
was used to find good parameters. The best performance was achieved using
convolution kernels of size 5× 5 and a subsampling area of size 5× 5.

The UIUC car database contains two test sets, both consist of natural images
containing cars. The first set consists of 170 images containing 200 cars. The
cars in this set have the same scale as the cars in the training set. The second
test set consists of 107 images showing 139 cars. The dimensions of the cars
range between 89× 36 and 212× 85.

A sliding window approach was used to generate candidates for the clas-
sifier. For multi-scale test images the sliding window classifier was applied
to scaled versions of the images. The same scales as in Agarwal et al. [2004]
(s = 1.2−4,−3,...,1) were used. Figure 5.11 shows some classification results on the
single scale test set.

Performance evaluation was done in the same fashion as in the original paper
Agarwal et al. [2004]. Table 5.3 compares the results yielded by the presented ap-
proach to state-of-the-art8. Results for single and multi-scale test set are among
the best reported. In particular, the result produced by boosting shift-invariant
features on the multi-scale test set are the best reported results using a sliding

8To show the effect of the randomness of our approach the results are given for multiple runs
of the system.
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method error (single scale) [%] error (multi-scale) [%]

Lampert et al. [2008] 1.5 1.5
Agarwal et al. [2004] 23.5 60.4
Leibe et al. [2008] 2.5 5.0
Fritz et al. [2005] 11.4 12.2
Mutch and Lowe [2006] 0.04 9.4
this work (1.25) 1.55 (1.78) (2.9) 3.6 (4.0)

Table 5.3.: Test error rates on UIUC cars (this work: min, mean, max over ten
runs)

window approach.

The error rate with respect to the number of features on the single-scale test
set is shown in Fig. 5.12. Errors drop to a competitive level quickly. For an
average error of below 2% approximately 30 multiplications per pixel are used,
giving a very efficient classifier.

Figure 5.11.: Examples of classification on single-scale test set (ground truth:
blue, true positives green, false positives red).

5.7. Discussion

In this chapter a novel approach for generating shift-invariant features was pre-
sented. By using Boosting to find meaningful features, the scheme is very sim-
ple and scalable. Performance, evaluated on USPS handwritten digit recogni-
tion database and UIUC car side views database, is competitive to state-of-the-
art systems. The advantage of the presented method, when compared to other
systems using similar features, is the low number of design parameters and its
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Figure 5.12.: Left: recall-precision curve for UIUC cars (black: single scale, gray:
multi scale). Right: f-score on single scale test set (min, mean, max
over 10 runs)

modularity. Boosting techniques like the use of cascades, can easily be incorpo-
rated.

A possible extension to the proposed scheme is utilization of hierarchical fea-
ture structures. In the present work, only the use of one feature-generation
layer was discussed. It is, however, known that feature calculation in mammal’s
visual cortex uses hierarchical feature generation. Simple features are evalu-
ated in the input layers, these simple features are then combined to form more
complex features. Using hierarchical feature generation schemes is expected
to improve classification performance for some problems. Using hierarchical
schemes, however, contradicts the intention of designing a image classification
scheme that is simple and scalable. A way to avoid that problem is to use gen-
erative feature generation approaches [e.g. Lee et al., 2009] as input layers and
use Boosted Projections to build the final classifier.

Another promising extension is to use multiple feature-scales. In the present
work, features are generated on one fixed scale. While this is sufficient for clas-
sification of handwritten digits and related problems, for real world objects de-
scriptive features will likely appear on multiple scales. In addition to improv-
ing classification accuracy, use of multiple scales could also help to improve
efficiency by applying features on coarse scales first.

Finally, region-of-interest operators could be utilized to improve the effi-
ciency of the presented scheme. Since regions of interest already are invariant
against affine transformations, the costly convolution operation can be replaced
by a sampling operation at the given interest points.
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6.1. Contents

In the present work, new techniques for training base classifiers in Boosting con-
text, were proposed. Boosting is a classification approach that is particularly
successful in image processing. Reasons for it’s success are it’s high computa-
tional efficiency and good classification results.

The major part of the scientific discussion on the topic of Boosting deals with
the design of new Boosting “flavors”-that is, new ways for calculating of sample
weights and weights of base classifiers. In the present work another route was
taken. Instead of proposing new Boosting flavors, the emphasis was put on
designing techniques for optimizing performance of the base classifiers used
with Boosting.

The work consists of three main parts. The first part deals with multi-class
Boosting techniques. The second part deals with feature generation in Boost-
ing context. The final part discusses the extensions of the technique to image
processing problems. The most important contributions of this work are the
following:

Comparative Study on Multi-Class Boosting Techniques and Proposal of

a New Scheme for Construction of Multi-Class Base Classifiers

A large number of possible techniques for extending Boosting for application to
multi-class problems exists. However, many published studies are restricted to
comparison of a specific group of approaches [e.g. Sun et al., 2007]. Comparative
studies including fundamentally different approaches are rare. In the present
work, the following techniques for multi-class boosting were examined:

• Boosting of base classifiers using error-correcting-codes: One binary prob-
lem is solved in each stage of Boosting. The binary problems are defined
by a code matrix which may be adapted during the course of training.
Sample weights for the binary problems are derived from the multi-class
sample weights associated with each sample and depend on how the
classes are split up to form the binary problems.

• Boosting of base classifiers using one-vs-all approach: C binary problems
are solved in each stage of Boosting, where C is the number of classes
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involved in the classification problem. Each binary problem separates
one class from all other classes. Each sample is associated with C sample
weights corresponding to the possible outcomes.

• Boosting of base classifiers using one-vs-one approach: The number of
base classifiers in each stage of Boosting depends on how the 1-vs-1 prob-
lems are defined. Using the naive approach, 1/2·C ·(C − 1) base classifiers
are necessary, which is clearly prohibitive for large Cs. In the literature,
usually base classifiers are constructed using the same approach as for the
one-vs-all technique. This is, however, not optimal for solving one-vs-one
problems. In the present work, a new approach was proposed (Sect. 3.5.5),
where one-vs-one base classifiers are constructed by solving C−1 coupled
problems.

• In addition to dedicated multi-class Boosting schemes, a number of multi-
class wrapper approaches was used for reference:

– One-vs-All scheme.

– One-vs-One scheme. Voting and Directed Decision Acyclic Graphs
were used for generating the multi-class decision.

– Error Correcting Output Codes (ECOC).

The different approaches were compared on a selection of 24 datasets from
UCI machine learning repository using 10×cross-validation. The error rates
show that the proposed approach - based on one vs one base classifiers - gives
best performance of the examined techniques. However, the observed perfor-
mance differences are not significant in a statistical sense. The technique that
gave second best results is Boosting with base classifiers using error-correcting-
codes. One result of the experiments is that dedicated multi-class schemes for
Boosting outperform wrapper approaches. Another result is that performance
of an individual scheme is largely affected by the choice of base classifier. For
example, Boosting with error-correcting-codes gave good results for problems
where the base classifiers were very flexible. On the other hand, it performs
poorly using weak base classifiers like decision stumps. The conclusion that
can be drawn from the experiments is that the choice of multi-class scheme has
to be based on the problem at hand. Consequently, one should select between
Boosting with error-correcting-codes and Boosting with one-vs-one base classi-
fiers by using cross validation or similar techniques.

Possible extensions for the proposed multi-class scheme include, for example,
the use of hierarchical approaches to deal with problems involving very high
numbers of classes. For these problems even linear scaling of the complexity of
the classifier with respective to the number of classes may be prohibitive. The
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property, that confusion of some class combinations is very unlikely can be used
to build clusters of classes. Using a multi-stage approach, the final decision of
the classifier can be found by reducing the number of classes in the clusters in
each stage. Since the number of clusters to handle in parallel is lower than the
total number of involved classes, the complexity of the problem to be solved is
reduced.

Also, due to the limited availability of appropriate data sets, feature selection
was only simulated1 in the reported experiments. In future work, a wider range
of data sets should be used involving problems where the number of available
features is much lower than the number of selected features in order to judge fea-
sibility of the approaches for efficient feature selection. In particular, it should
be studied which multi-class Boosting approach generates more efficient classi-
fiers: the use of base classifiers utilizing error-correcting-codes [see. Torralba et
al., 2004] or one-vs-one comparisons (see Sect. 3.5.5).

Study of Utilization of Smoothing-Spline Base Classifiers

In most cases, Boosting is used together with decision tree base classifiers. These
have the disadvantage, to be susceptible to overfitting. In addition, they pro-
duce non-continuous outputs of the classifier confidences in feature-space. This
conflicts with the expectation that classes exhibit smooth distributions in fea-
ture space for real world problems. The present work uses smoothing spline
(p-Splines, see Eilers and Marx [1996]) base classifiers. In contrast to other pub-
lications [e.g. Buhlmann and Yu, 2003] , cost functions that are tailored to classi-
fication problems are used.

Direct comparison of component-wise base classifiers using decision trees
with base classifiers using smoothing splines show that performance of decision
trees is slightly better than performance of component-wise smoothing splines
(see Tab. 4.3). The observed performance differences are, however, not signifi-
cant. Smoothing spline base classifiers outperform decision trees for problems
where overfitting is an issue. Also the number of inputs for the problems needs
to be sufficiently high for smoothing splines to achieve good performance. On
datasets with very low numbers of inputs, performance of smoothing spline
base classifiers is not competitive to decision trees. An explanation for this re-
sult is that for some problems, class separation is not possible using component-
wise functions (e.g. XOR problem). In conclusion, component-wise smoothing
splines are suitable for problems, involving a rich feature set. That is, the fea-

1The used data sets in most cases have a lower number of samples than the number of boosting
rounds used in the experiments. Therefore the final classifier typically used all available
input features and therefore no true feature selection was performed. The number of base-
classifiers was used to estimate the complexity of the boosted ensemble.
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ture set should include redundant features combining information from other
features. For these problems, base classifiers using smoothing splines perform
feature selection efficiently and show good resistance to overfitting.

Training of Linear Features in Boosting Context

As discussed above, component-wise smoothing splines will not show good
performance for problems where class separation is not possible on the given
input features. In order to solve these problems while maintaining the advan-
tages, a scheme for training linear features, coined Boosted Projections was pro-
posed. Derivability of smoothing-spline base classifiers was used to generate
features optimizing the Boosting cost function. By using linear projections of
the input data, the number of possible features is - in principle - infinite. Apply-
ing nonlinear functions to the scalar projections of the data produced in each
stage of Boosting, allows for arbitrary class distributions to be modeled. Con-
sequentially, Boosted Projections are not as dependent on the provided set of
input features as other approaches2. Since only two parameters, namely the
roughness penalty of the spline fit and the number of boosting rounds, need to
be adjusted, adaption to a given problem is very simple.

Performance of Boosted Projections was evaluated empirically on a selection
of 30 data sets from UCI machine learning repository (Sect. 4.4). State-of-the-
art classifiers, namely SVM, boosted Decision Trees, boosted component-wise
smoothing splines and Random Forests, were used for comparison. Boosted
Projections achieved the best performance of the examined approaches. The
observed performance difference between Boosted Projections and the other ap-
proaches were shown to be significant with a confidence level of 95%. Therefore,
Boosted Projections represent a simple scheme fore building classifiers, giving
competitive or better performance compared to state-of-the-art classifiers.

Possible future extensions of Boosted Projections include utilization of sche-
mes for automatic selection of design parameters. Using these schemes would
remove the need for expensive cross validation for parameter selection. With
Boosted Projections, each base classifier solves a weighted least squares prob-
lem. For weighted least squares problems in regression settings, powerful
schemes for parameter selection exist (e.g. AIC, Sect. 2.1.1). Preliminary ex-
periments on using these approaches in classification settings did not lead to
satisfactory performance. In order to build schemes for parameter selection in
Boosting context, the interaction between automatic parameter selection and
calculation of sample weights needs to be investigated.

Another direction of optimization of the Boosted Projections scheme is to re-

2Arbitrary, non-singular, dimensionality preserving projections can be applied to the input
data without deteriorating classification performance.
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duce the amount of memory needed for storage of the base classifiers. Since
the number of effective degrees of freedom of the smoothing splines is lower
than the utilized number of base functions, compression schemes can be used
to build more compact representations. For example PCA could be used to re-
duce the number of weights needed to describe the base classifiers.

Training of Shift-Invariant Features in Boosting Context

Applying Boosted Projections to image processing problems directly, doesn’t
lead to competitive performance. The reasons are that the assumptions that
were made during the design of Boosted Projections don’t hold for image clas-
sification problems. For example, inputs of image classification problems, cor-
responding to neighboring pixels, show strong correlation, while Boosted Pro-
jections assumes the inputs to be independent. In addition, most image classifi-
cation schemes use specialized techniques, that take into account invariances of
natural images. By using these techniques, better utilization of available train-
ing data is possible.

In order to improve the applicability of Boosted Projections for image classifi-
cation problems, an extension for training shift-invariant features was proposed.
Shift-invariance is achieved by using features that perform a combination of
convolution and subsampling operations. To be able to train these features,
Boosted Projections were extended for training of non-linear features. Train-
ing of non-linear features is performed using the back-propagation algorithm.
Consequently, all features that can be described by artificial neural network-like
architectures can be used, leading to a very wide range of possible feature types.

In order to evaluate performance of the proposed system, experiments on
two publicly available image classification data sets, namely USPS zip digit
database and UIUC car side views, were conducted. Boosted Projections with
shift-invariant features achieves competitive performance on both data sets. Ad-
vantages of the proposed scheme are the low number of design parameters and
the flexibility to adjust to the problem at hand.

A possible extension to the proposed scheme is utilization of hierarchical fea-
ture structures. Biological evidence shows that hierarchical architectures are
used in mammal’s visual cortex. Using hierarchical feature generation schemes
is expected to improve classification performance for some problems. Using
hierarchical schemes, however, contradicts the intention of designing an image
classification scheme that is simple and scalable. Incorporation of generative
approaches could be used to resolve that problem.

More directions for extensions that were not covered in this work include
incorporation of region-of-interest operators, use of multiple feature scales and
incorporation of cascade structures to improve computational efficiency.
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6.2. Discussion

This work presented extensions for improving the performance of boosting for
image classification problems. Due to it’s properties, Boosting is a good choice
for wide range of classification problems. Most importantly, Boosting is efficient,
modular and easily extensible. These properties make it very useful for solving
image classification problems. The presented extensions for Boosting help to
deal with problems commonly experienced when solving image classification
tasks. By placing roughness constraints on the utilized base classifiers, the risk
of overfitting is reduced. The use of shift-invariant features helps to improve
generalization as well and reduces the amount of necessary training data. Fi-
nally, the proposed multi-class schemes reduce complexity by sharing features
over the subproblems of the multi-class problem. The proposed extensions are,
however, not limited to image classification problems, but may be used with
tasks with similar characteristics as well - for example analysis of voice signals.
More general, the proposed schemes are applicable to problems with number
of inputs in the order of few thousands, especially if the inputs show significant
correlation.

Boosted Projections are designed to be a general classification approach with-
out limitations regarding the characteristics of input features. The complexity
of the utilized smoothing spline base classifiers is significantly higher than the
complexity of decision stumps. On the other hand, complexity of the smoothing
splines is significantly lower than complexity of artificial neural networks [see
Schwenk and Bengio, 2000]. By adjusting the roughness penalty, flexibility can
be adjusted conveniently over a wide range. The good performance in the em-
pirical evaluations (Sect. 4.4) to some degree contradicts the former believe, that
Boosting will only produce good results when used with very weak base clas-
sifiers, like e.g. decision stumps. From the presented results, the conclusions
can be drawn, that Boosting works well with arbitrary base classifiers, as long
as they exhibit a certain level of variance and generalization can be adjusted
effectively.

The shift-invariant features for image processing, presented in this work, per-
forming a combination of convolution and subsampling should be viewed as
one possible choice. Arbitrary feature types may be trained, as long as they
can be modeled as neural network architectures. The particular type of feature
used strongly depends on the problem at hand and the invariances the features
should incorporate.
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6.3. Outlook

The techniques, presented in this work, were evaluated on a selection of pub-
licly available data sets and showed promising performance. The data sets were
selected to represent a wide range of applications. Anyhow, a more exhaustive
study of the presented techniques is necessary to assess the performance against
other popular techniques and better understand the reasons for the good perfor-
mance of the proposed techniques.

Naturally, not all aspects of the proposed technique could be covered by the
present work. Two more extensions to Boosted Projections are proposed and
briefly discussed here.

Training of Projective Subspaces.

Boosted Projections generate one direction of interest - or one-dimensional
projection of the data - per stage. Using the resulting projections to induce
reduced subspaces for classification is straightforward, since Boosted Pro-
jections focus on projections containing information important for classifi-
cation. In order to control the number of output dimensions, a penaliza-
tion scheme can be incorporated, that puts costs on the dimensionality of
the subspace spanned by the features learned by Boosted Projections.
Low-dimensional subspaces are used in certain fields of image processing
to reduce the requirements for number of training samples and reduce
computational requirements. One typical example is face recognition [He
et al., 2005] - where usually only few images per object are available.

Multistage Classifiers.

Using Boosting with Cascade structures is a very successful technique [see
Viola and Jones, 2002a]. Applying this technique for improving compu-
tational efficiency of the presented approaches was not discussed in the
present work. It is, however, very likely that this technique will reduce
computational costs significantly without deteriorating classification per-
formance.

The author expects Boosted Projections to have an impact in fields where high
precision of classification has to meet with high computational efficiency. Due
to the modular design, Boosted Projections can be adapted easily to new appli-
cation areas.
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A. Notations

A.1. Formula symbols

formula symbol description

N Number of samples
y Sample class
y Vector valued sample class in label space (Sect. 3)
Y Code matrix corresponding to set of vector valued

samples classes
yi Vector valued sample class of i-th instance
x Feature vector of a sample
F Number of input features: F = |x|
yi Class of i-th instance of a set of samples
xi Feature vector of i-th instance of a set of samples
Y Set of possible sample classes
ŷ Sample class hypothesis

E[expression] Expectation value of expression
I(condition) Indicator function. Evaluates to one if condition is true

and zero if otherwise.
H(x) Classification rule for inducing class hypothesis ŷ

from feature vector x.
h(x) Weak classification rule (base classifier) for inducing

class hypothesis ŷ from feature vector x.
p(expression) Probability of expression

λ Roughness penalty
IR Real numbers

W ×H Dimensions of an image patch in pixels (width ×
height).

w × h Dimensions of a filter kernel (width × height).
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A.2. Utilized syntax

syntax description

x(j) j-th element of vector x
X(j,k) Element at j-th row and k-th column of matrix X

X(j,:) Vector containing j-th row of X
⌊z⌋ Nearest integer with value smaller than z

n×cv Cross-validation with n data partitions. For example
10×cv: ten-fold cross validation. See Appendix B.

y(k1k2) Label vector associated with the pairwise binary clas-
sification problem involving classes k1 and k2.

H(k1k2) Pairwise classifier associated with the binary classifi-
cation problem involving classes k1 and k2.

vect(X) Transformation of Matrix to vector form by concatena-
tion of columns.

122



B. Performance Evaluation

For assessing quality of classification algorithms, evaluation of performances
plays the most important roll. Other aspects of the algorithms are very impor-
tant for the practical application of the algorithms as well, for example compu-
tational complexity, scalability, complexity of implementation, etc. However, if
a new classification algorithm fails to achieve competitive classification perfor-
mance, it will not be used.

The classification performance is measured by the expected error rate on data
that has not been used for training or tuning of the examined classifier, also
termed generalization error. The problem is that the generalization error can’t
be calculated directly. To get a good estimation of generalization error, a large
test set is necessary. However, for real-world problems usually the amount of
labeled data is limited1. Factors limiting the number of samples for a problem
are for example the costs associated with data markup or limited availability
of instances (e.g. for classification of rare diseases). Therefore the available
samples should be used as efficient as possible.

On the other hand, for many problems - e.g. tuning of parameters of a classi-
fier - estimation of quantitative values of generalization error are not necessary.
It is more important that qualitative comparison of classifiers is possible. In the
following techniques for estimating performance of classifiers on a given set of
samples are reviewed.

B.1. Error Estimation on Separated Test Set

One approach to estimation of generalization error splits the data into training
and test set. While the training set is used for training of the classifier, includ-
ing all parameter tuning, the test set is used to calculate the approximation of
generalization error. The number of samples in the test set should be as high as
possible in order to get a reliable estimation of generalization error. For a fixed
number of available samples, there is a trade-off between size of training set
and size of test set, since the two sets should not overlap. An advantage of us-
ing a separated test set is that training has to run only once. On the other hand,
disadvantages are the lack of a feedback about the reliability of the estimated

1Synthetical data sets are an exception, where samples can be generated at will.
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error rates and the poor utilization of training data. Examples, where separate
test sets should be used for estimation of generalization error are synthetic prob-
lems, where test data can be generated easily and benchmark experiments on
data bases that provide a dedicated test set.

B.2. Error Estimation on Training Data

There are different approaches for estimating generalization error on training
data.

Cross-validation. For cross validation the data set is split into a number s of
smaller sets of equal size. The performance is than calculated as the average
over s folds (s×cv). For each fold, one of the small sets is used to estimate the
generalization error, while the classifier is trained using the remaining data sets.
The variance of the estimated performance over the s runs can be used to asses
the reliability of the estimated generalization performance2. Cross validation
can be applied to arbitrary classifiers. The drawback is that the training effort is
increased by roughly the factor s.

Cross validation can be seen as a technique to improve reliability of error
estimation on an seperate test set. Note that techniques exist, where the test sets
used in each round of cross-validation may be overlapping [Dietterich, 1998]. In
this work, however, cross-validation always relates to using non-overlapping
test sets.

Out-of-bag errors. Another approach, that can be used together with Bagging
is out-of-bag error estimation. The property, that only a part of the samples3 is
used for training of each base classifier is used to estimate generalization error.
For each sample the outputs of the base classifiers that didn’t use that particular
sample for training are accumulated. The outputs for each sample are compared
to the true labels to estimate the performance of the samples. The estimated
performance is somewhat pessimistic, since only a part of the classifiers in the
ensemble is used to construct the outputs for each of the samples. The big ad-
vantage of out-of-bag error estimates is that they can be calculated in parallel
with the normal training without additional effort. Unfortunately, out-of-bag
error estimates are not available for general classifiers. While samples that are

2However, the results should be interpreted with caution, since the training sets are overlap-
ping.

3For construction of the base classifiers roughly 37% of samples are not used for training, if the
samples are drawn randomly with replacement and equal probability.
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not used for training of one base classifier have no results on it’s output, this
would not be true for example for boosting techniques.

Theoretical limits of generalization error. For many classification tech-
niques upper limits of the generalization error can be derived, using only mild
assumptions about the distribution of the data. Similar to out-of-bag error esti-
mates, no additional training effort is necessary. The training error and complex-
ity of the trained classifier are combined to calculate the error estimate. Calcula-
tion of the training error is straightforward. The problem lies in the assessment
of the complexity of a classifier. Different metrics are in use for that problem.
Examples are the VC-dimension [Vapnik and Chervonenkis, 1971] or the effec-
tive number of degrees of freedom. Since derivations of theoretical limits of
classification error for different classifiers use different assumptions about the
underlying data, results for different classifier usually can’t be compared.

In practice, theoretical limits of generalization error are utilized especially
for deriving classification techniques and to explain their effectiveness. On the
other side using these limit’s for comparing classifiers hardly ever makes sense.

B.3. Performance Metrics

Different metrics for assessing the performance of classifiers are in use. Here
only metrics for assessing the performance of the output classifier are discussed.
Note that many classification approaches use other (continuous) cost functions
internally. Due to better comparability, the focus here is on performance mea-
sures that return scalar values.

Error rate Fraction of samples that are assigned a wrong label by the classifier.

Misclassification costs The samples are assigned costs. The sum of the costs
of misclassified samples gives the misclassification costs of a classifier. The
utilized costs reflect that some misclassifications may lead to severe conse-
quences, while others will only have mild effects. A common special case
is that all samples of a class share the same costs.

Area under ROC curve The ROC (receiver operating characteristic) is used to
asses the performance for binary problems. The error rates for both classes
are plotted against each other for varying decision thresholds. By that, not
only the performance at the working point is shown, but for all possible
working points. The AUC (Area Under ROC Curve) summarizes of infor-
mation of the ROC into one value.
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F-score The F-Score is a statistical measure of a tests accuracy. It is defined
as the harmonic mean of precision (fraction of correct results with respect
to the number of all samples) and recall (fraction of returned samples of
the retrieved class with respect to all samples of the retrieved class). The
F-score is in particular useful for problem where the a-priori probability
of classes is very asymmetric.

In this work the default performance measure is the error rate.

B.4. Significance Tests between Algorithms

In order to compare algorithms, their performance is evaluated on a set of data
sets. There are different approaches to assessing whether an algorithm outper-
forms another.

Statistical Evaluation of Performance on One Dataset. The results of multi-
ple run of the classifiers on one dataset are evaluated [Alpaydin, 1999; Hothorn
et al., 2005]. The use of multiple partitions of the training data is highly recom-
mended in Hothorn et al. [2005]. Using one division into training and test set
may give unreliable results, for example by favoring an overfitted classifier due
to the particular selection of samples in the test set. Using multiple random di-
visions of the training samples, a permutation test can be constructed to test the
null hypothesis, that the performance of all algorithms is equivalent.

A problem of using multiple runs of classifiers on one dataset to induce statis-
tical results is that the training problems are not independent due to the overlap
of training sets. Therefore statistical results have to be handled with care. Also,
if the number of random divisions of the training data is high, the statistical tests
may indicate statistical significance of performances with high power, while the
average difference in performance is too small to be of practical relevance.

Usually the statistical significance of performance differences is tested on
each dataset. The performance of classifiers is than compiled as number of
significant win’s, loss’ and draw’s of one algorithm against another [e.g. García-
Pedrajas et al., 2007].

Statistical Evaluation of Performance over Multiple Data Sets. A way to
overcome the problem of statistical dependence of multiple divisions of the
same dataset is to compare performance of classifiers over multiple data sets
[Demšar, 2006]. A two stage test procedure is performed. The first stage per-
forms a Friedman rank sum test to check if there is evidence for statistically
significant difference of performances of the algorithms. If such evidence is
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found, a post-hoc test is used to evaluate between which algorithms statistical
significant differences can be proven. Demšar [2006] proposes to use a Nemeny
test to perform this second stage.

Note that no tests for significance of performance differences on single data
sets is performed. Statistical evaluation of performance over multiple data sets
may incorporate cross-validation, but this is not mandatory. Cross-validation or
related procedures can be used to get more reliable estimates of error rates. Also,
the magnitude of performance difference of two algorithms on one data set will
not be evaluated. Instead only the ranks of the algorithms are incorporated.

In performance evaluations conducted in this work, the test procedure pro-
posed by Demšar [2006] is followed, using a Friedman rank sum test followed
by a Nemenyi test. Tenfold cross validation is used for improved reliability and
also to prevent overfitting to the test set when performing parameter selection.
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C.1. Experiments with datasets from UCI

repository

The selected 30 datasets from UCI machine learning repository [Asuncion and
Newman, 2007] 1 were chosen to represent of wide range of problems with num-
ber of features between 4 and 69 and number of samples between 148 and 20000.
The characteristics of the data sets are summarized in table C.1.

To be able to use all classifiers on the same inputs, data sets were pre-
processed as follows: (1) categorical inputs with k levels were split into k binary
variables (2) Missing values in categorical data are treated as a separate level (3)
Missing values in continuous data are replaced by the mean value of the re-
spective attribute (4) Inputs are scaled, so that max and min values are 0 and
1 respectively. The performance figures were calculated using ten-fold cross
validation (10 × cv). The same splits into training and test sets were used for
all algorithms. For classification problems with dedicated training- and test-set,
only the training set was used in cross validation.

C.2. UIUC Car Sideviews Database

The database contains images of car side views and was introduced in Agarwal
et al. [2004]. The dataset contains:

• 1050 training images (550 cars, 500 non-cars). The training images all have
a resolution of 100×40 pixels.

• 170 single-scale test images. The set contains 200 individual cars. The
scale of the cars is approximately equal to the scale in the training images.

• 108 multi-scale test images. The set contains 139 cars at various scales.

Figure C.1 shows a selection of training and test images. Note that the negative
examples, in many cases, don’t resample typical background that is relevant for
car classification.

1 http://archive.ics.uci.edu/ml/
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C. Databases

Figure C.1.: Examples of training and test images from UIUC cars database.

C.3. USPS Zip Digit Database

The United States Postal Service handwritten digits database consists of hand-
written digits from mail envelopes. It contains 7291 samples for training and
2007 for testing. The individual digits are cropped and normalized to a size of
16× 16 pixels. The input patches have 1000 grayscale levels. Examples of digits
from the database are shown in Fig. 5.8.
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name # instances # classes attributes

cont cat

aneal 898 5 6 32
audiology 226 24 - 69
autos 205 6 15 10
balance-scale 625 3 4 -
breast-cancer 286 2 - 9
breast-w 699 2 9 -
dermatology 366 6 34 -
diabetes 768 2 8 -
ecoli 336 8 7 -
glass 214 6 9 -
heart-c 303 2 6 7
hepatitis 155 2 6 13
hypothyroid 3772 4 7 21
ionosphere 351 2 34 -
iris 150 3 4 -
led24 1000 10 24 -
letters 20000 26 16 -
lymph 148 4 3 15
optdigits 5620/3823 10 64 -
page-blocks 5473 5 10 -
pendigits 7494/3498 10 16 -
primary-tumor 339 21 0 17
satimage 6435 6 36 -
segmentation 231/2100 7 19 -
soybean 683 2 - 35
vehicle 846 4 18 -
vote 435 2 - 16
vowel 990 11 10 -
waveform-5000 5000 3 40 -
yeast 1484 10 8 -

Table C.1.: Databases from UCI machine learning repository
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D. Formulations of Additional Classifiers

for MC-Classification in Simplex

In Sect. 3.5.5 a new approach for solving multi-class classification problems
using boosted classifiers was derived. The technique is based on the 1-vs-1
approach, where pairwise comparisons of base classifiers are utilized. To opti-
mize these pairwise comparisons efficiently, C−1-dimensional class prototypes
yk, k = 1, . . . , C are used. The base classifiers are then optimized to minimize
weighted squared error (Eq. (3.21)). Here the optimal outputs for neural net-
works and smoothing splines are derived. Each sample is assigned a weight
vector ci ∈ IRC×1.

D.1. Feed-forward Neural Networks

When using neural networks to solve multi-class classification problems, usu-
ally the 1-vs-all scheme is incorporated. Each output unit of the network at-
tempts to solve one 1-vs-all problem. To apply the 1-vs-1 scheme from Sec. 3.5.5,
slight modifications to the weight update between the last hidden layer and the
outputs are necessary.

The squared error of the i-th sample can be calculated as follows:

ǫi =
∑

k

c
(k)
i

(

(yi − yk)
T(yi − ŷi)

)2
(D.1)

=(yi − ŷi)
TPi(yi − ŷi) (D.2)

with Pi =
∑

k

c
(k)
i (yi − yk)(yi − yk)

T (D.3)

The output of the neural network with respect to the outputs of the last hidden
layer zi is

h(zi) = ŷi = g(WTzi) , (D.4)

with the weight matrix W connecting the units of the last hidden layer with
the units of the output layer and the output transfer function g(.) ≡ σT (.). This
gives the following relationship of the output error:

ǫi = (yi − g(WTzi))
TPi(yi − g(WTzi)) (D.5)
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The derivative with respect to the element at row r and column c of the weight
matrix can be calculated as

∂ǫi
∂W(r,c)

=
∑

k∈Y

−2c
(k)
i

(

(yi − yk)
T(yi − g(WTzi))

)

×(yi − yk)
Tg′(WTzi))z

(q)
i .

(D.6)

This result can directly incorporated to update all network weights using the
backpropagation algorithm.

D.2. Smoothing splines

The output of a set of smoothing splines used to solve the multi-class problem
is expressed as a weighted sum of basis functions:

h(x) = AB(x) , (D.7)

with B(x) returning the values of the spline bases evaluated at x. The matrix
A ∈ IRC−1×b, with b being the number of spline bases, builds the output for each
dimension of label space. Therefore the objective to be minimized is

min
A

h(A) =
∑

i,k

c
(k)
i

(

(yi − yk)
Tyi − (yi − yk)

TAB(xi)
)2

+ P(A) . (D.8)

The function P(A) returns the value of the roughness penalty. This value is
added to the objective to enforce smoothness of the returned splines. The equa-
tion is rewritten using a = vect(A)

min
a

h(a) =
∑

i,k

c
(k)
i

(

(yi − yk)
Tyi − (B(xi)⊗ (yi − yk))

T
a
)2

+ P(a) (D.9)

For improved readability, the short notationβik = (B(xi)⊗(yi−yk) is used in the
following. Using quadratic penalties P = aTDa and calculating the derivative
with respect to a gives:

∂h(a)

∂a
= −2

∑

i,k

c
(k)
i

(

(yi − yk)
Tyi − βT

ika
)

βik +Da (D.10)

Setting to zero gives the optimal weighting of the spline bases:

a =

(

∑

i,k

c
(k)
i βikβ

T

ik +D

)−1 (
∑

i,k

c
(k)
i pT

kyiβik

)

(D.11)

Therefore the optimal smoothing spline is defined by

h(x) = reshape(a, C − 1× b)B(x) . (D.12)
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D.3. SVM

SVMs (Sect. 2.2) are not usually used as base-classifiers for Boosting. How-
ever, to show the flexibility of the proposed 1-vs-1 classification scheme, the
derivation of a formulation for a multi-class SVM, using the same approach is
sketched. The following notations are used:

W Projection matrix: W ∈ IRC−1×F . The class
hypotheses are calculated as ŷ = Wx.

pm Connection between pair of class proto-
types pm = (yk − yl) ∀k, l with k < l ≤ C.
The order of the index m is arbitrary. The
sum of the inner products of all vectors
with themselves is equal to the Identity ma-
trix: a ·

∑

k pkp
T

k = I , where a is an appro-
priate normalization factor.

C Slack weight. Note that slack weights may
be assigned on a per-sample base – with
that the SVM could be used in a boosting
scheme.

ξi Slack penalty associated with the i-th sam-
ple.

The primal objective of the new multi-class SVM formulation is:

min
w,b,ξ

1

2

∑

k

pT

kW
TWpk + C

∑

i

ξi (D.13a)

subject to pT

kyip
T

k

(

WTzi + b
)

≥ 1− ξi ∀ k, i (D.13b)

ξi ≥ 0 ∀ i (D.13c)

Where zi is the representation of xi in a kernel induced feature space. To find
the dual representation, the Lagrangian of the problem is formulated:

L(W,b, ξ, α) =
1

2

∑

k

pT

kW
TWpk + C

∑

i

ξi

−
∑

i,k

αik

(

yT

i pkp
T

k

(

WTzi + b
)

− 1 + ξi
)

(D.14)
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Calculating the derivatives with respect to W, ξi, b and setting to zero gives

∂L
∂W

=
∑

k

Wpkp
T

k −
∑

i,k

αi,kpkp
T

kyiz
T

i ≡ 0 (D.15a)

∂L
∂ξi

=C −
∑

k

αik ≡ 0 (D.15b)

∂L
∂b

=
∑

i,k

αikpkp
T

kyi ≡ 0 (D.15c)

Using the simplification
∑

k

Wpkp
T

k = dW , (D.16)

the weight matrix W is yielded:

W =
1

d

∑

i,k

αik(p
T

kyi)zip
T

k =
1

d

∑

i

zia
T

i (D.17)

with ai =
∑

k

αikp
T

kyipk

substitution into the first sum term of the primal objective gives

1

2

∑

k

pT

kW
TWpk

=
1

2d2

∑

i,j,k

pT

kaiz
T

i zja
T

j pk =
1

2d

∑

i,j

zTi zja
T

i a
T

j

(D.18)

substitution into the last term gives:

∑

i,k

αik

(

yT

i pkp
T

k

(

WTzi + b
)

− 1 + ξi
)

=
1

d

∑

i,j

aT

i ajz
T

i zj +
∑

i,k

αik (−1− ξi)
(D.19)

Putting everything together results in the dual Lagrangian:

L(W,b, ξ, α) =
∑

i,k

αik −
d

2

∑

i,j

aT

i ajz
T

i zj , (D.20)

136



D.3. SVM

which, together with the constraints from above, gives the dual optimization
problem:

min
α

1

2d

∑

i,j

aT

i ajz
T

i zj −
∑

i,k

αik (D.21a)

subject to
∑

i,k

αikpkp
T

kyi = 0 (D.21b)

∑

k

αik ≤ C ∀i (D.21c)

αik > 0 ∀i, k (D.21d)

ai =
∑

k

αikp
T

kyipk (D.21e)

By defining the projection matrix Pi for each sample as

Pi =
[

pT

i,1yipi,1 . . . pT

i,dyipi,d

]

(D.22)

with pi... being the relevant projections for the ith sample and using

ai = Pαi or αi = P−1i ai = Qiai (D.23)

the α can be removed from the optimization problem:

min
a

1

2d

∑

i,j

aT

i ajz
T

i zj −
∑

i

eTP−1ai (D.24a)

subject to
∑

i

ai = 0 (D.24b)

eTQiai ≤ C, Qiai > 0 ∀i (D.24c)

The output function of the multi-class SVM can now be rewritten in dual vari-
ables

f(z) =WTz+ b

=
1

d

∑

i

aiz
T

i z+ b
(D.25)

In Order to calculate the bias b the dual Lagrangian is used:

L(a) =
1

2d

∑

i,j

aT

i ajz
T

i zj −
∑

i

eTQiai + bT
∑

i

ai

−
∑

i

λT

i Qiai −
∑

i

µi

(

C − eTQiai

)

(D.26)
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The derivative with respect to ai is

∂L(a)

∂a
(k)
i

=
1

d

∑

j

a
(k)
j zTi zj − eTq

(:,k)
i + b(k)

− λT

i q
(:,k)
i + µie

Tqi
(:,k) ≡ 0

with λ
(k)
i ≥ 0, µi ≥ 0 ∀i, k

(D.27)

where a
(k)
i is the kth element of vector ai and q

(:,k)
i is the respective column of the

matrix Qi. The formulation for the upper and lower bounds of b
(k)
i is as follows:

b(k) ≥−
1

d

∑

j

a
(k)
j zTi zj + eTq

(:,k)
i − µie

Tq
(:,k)
i (D.28)

for q
(k,:)
i ai = 0

b(k) ≥−
1

d

∑

j

a
(k)
j zTi zj + eTq

(:,k)
i + λT

i q
(:,i)
i (D.29)

for eTQiai = C

With that the solution of the 1-vs-1 multi-class SVM is complete. In prelimi-
nary experiments, the formulation resulted in the same error rates as achieved
with state-of-the-art SVM formulations [Chang and Lin, 2001] using wrapper
approaches to build multi-class SVMs. The new formulation, however, has
the disadvantage that the training effort scales quadratical with the number of
classes C when using naive implementations. In comparison, the training effort
for SVMs using wrapper techniques does not depend on the number of classes
involved.
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