
INAUGURALDISSERTATION

zur

Erlangung der Doktorwürde

der

Naturwissenschaftlich-Mathematischen
Gesamtfakultät

der

Ruprecht-Karls-Universität Heidelberg

Vorgelegt von

Diplom-Mathematiker Rupert Hölzl

aus

München.

Tag der mündlichen Prüfung: 16. Dezember 2010

Thema

Kolmogorovkomplexität

Gutachter: Priv.-Doz. Dr. Wolfgang Merkle
Prof. Dr. Frank Stephan

Kolmogorov complexity

by Rupert Hölzl

English abstract: This dissertation discusses new results on Kolmogorov com-
plexity. Its first part focuses on the study of Kolmogorov complexity without time
bounds. Here we deal with the concept of non-monotonic randomness, that is
randomness characterized by martingales that bet non-monotonically. We will state
the definitions of several different randomness classes and then separate them from
each other. We also present a a systematic survey of a wide array of traceability
notions and characterize them through (auto)complexity notions. Traceabilities are
a group of notions that express that a set is not far away from being computable.

The second part of the document deals with the topic of time bounded Kol-
mogorov complexity. First we investigate the difference between two ways of
describing a word: the complexity of describing it well enough so that it can be
distinguished from other words; and the complexity of describing it well enough so
that the word can actually be produced from the description. While this difference
is unimportant in the case of Kolmogorov complexity without time bounds it plays
an essential role when time bounds are present. Next, we introduce the notion of
computational depth and prove a dichotomy result about it that is reminiscent of
Kummer’s well-known gap theorem. Lastly, we look at the important notion of
Solovay functions. Solovay functions are computable upper bounds of Kolmogorov
complexity that are actually sharp infinitely often. We will use them, first, to charac-
terize Martin-Löf randomness in a certain way and, second, to give a characterization
of being jump-traceable.

Deutsche Zusammenfassung: In dieser Dissertation werden neue Ergebnisse über
Kolmogorovkomplexität diskutiert. Ihr erster Teil konzentriert sich auf das Studium
von Kolmogorovkomplexität ohne Zeitschranken. Hier beschäftigen wir uns mit
dem Konzept nicht-monotoner Zufälligkeit, d.h. Zufälligkeit, die von Martingalen
charakterisiert wird, die in nicht-monotoner Reihenfolge wetten dürfen. Wir werden
in diesem Zusammenhang eine Reihe von Zufälligkeitsklassen einführen, und diese
dann von einander separieren. Wir präsentieren außerdem einen systematischen
Überblick über verschiedene Traceability-Begriffe und charakterisieren diese durch
(Auto-)Komplexitätsbegriffe. Traceabilities sind eine Gruppe von Begriffen, die
ausdrücken, dass eine Menge beinahe berechenbar ist.

Der zweite Teil dieses Dokuments beschäftigt sich mit dem Thema zeitbe-
schränkter Kolmogorovkomplexität. Zunächst untersuchen wir den Unterschied
zwischen zwei Arten, ein Wort zu beschreiben: Die Komplexität, es genau genug
zu beschreiben, damit es von anderen Wörter unterschieden werden kann; sowie
die Komplexität, es genau genug zu beschreiben, damit das Wort aus der Beschrei-
bung tatsächlich generiert werden kann. Diese Unterscheidung ist im Falle zeit-
unbeschränkter Kolmogorovkomplexität nicht von Bedeutung; sobald wir jedoch
Zeitschranken einführen, wird sie essentiell. Als nächstes führen wir den Begriff der
Tiefe ein und beweisen ein ihn betreffendes Dichotomieresultat, das in seiner Struk-
tur an Kummers bekanntes Gap-Theorem erinnert. Zu guter Letzt betrachten wir
den wichtigen Begriff der Solovayfunktionen. Hierbei handelt es sich um berechen-
bare obere Schranken der Kolmogorovkomplexität, die unendlich oft scharf sind.
Wir benutzen sie, um in einem gewissen Zusammenhang Martin-Löf-Zufälligkeit zu
charakterisieren, und um eine Charakterisierung von Jump-Traceability anzugeben.

Contents

Contents 7

1 Introduction 9
1.1 Summary . 10
1.2 Publications . 10
1.3 Thanks . 11

2 Preliminaries 13

I Kolmogorov complexity without time bounds 17

3 Non-monotonic Randomness 19
3.1 Permutation and injection randomness . 21
3.2 Randomness notions based on total computable strategies 23
3.3 Randomness notions based on partial computable strategies 31

4 Traceability and complexity 39
4.1 Traceability . 40
4.2 Autocomplex and complex sets . 44
4.3 Diagonally non-computable sets . 47
4.4 Equivalences of the almost everywhere notions 48
4.5 Equivalence of the infinitely often notions 50
4.6 Computable traces and total machines 52
4.7 Lower bounds on initial segments complexity 54
4.8 Tiny use and autocomplexity . 56
4.9 Time bounded traceability and complexity 58

II Kolmogorov complexity with time bounds 61

5 Distinction Complexity 63
5.1 Known results . 65
5.2 Tools . 67

7

CONTENTS

5.3 The linearly exponential case . 69
5.4 The polynomial case . 71
5.5 Space bounds . 75

6 Kolmogorov complexity and computational depth 77
6.1 Introduction . 78
6.2 Time bounded Kolmogorov complexity and strong depth 80

7 Time bounded complexity and Solovay functions 85
7.1 Solovay functions and Martin-Löf randomness 86
7.2 Solovay functions and jump-traceability 91

Bibliography 95

8

CHAPTER 1
Introduction

Since the 1930s, mathematicians such as Gödel, Church and Turing have considered
the notion of computable (or decidable) sets. That is, subsets of the natural numbers
N that can be described in an effective way using only a finite amount of information.
Trivially, every finite set is computable; but there are also many infinite sets that
can be described in such a way. Being computable then means that the set somehow
exhibits enough internal structure and regularity, that despite its infinite cardinality
a finite amount of information suffices to describe it.

Of course, the set of subsets of N in uncountable whereas a countable list of all
finite descriptions can be given. So it is obvious that all but countably many subsets
of N cannot be computable.

So how difficult is it to describe more sets? To investigate this the notion of
Kolmogorov complexity was introduced by R.J. Solomonoff, A.N. Kolmogorov
and G.J. Chaitin.1 Assume we want to describe some non-computable set A. If we
look at initial segments A � i , that is, the sets A∩ {0, . . . , i} for increasing i , how
much information do we need to describe those?

Of course, we can always describe such an initial segment of length i by giving a
sequence of i values in {0,1}. But for some sets A we can actually use fewer bits than
this trivial bound, namely for those sets that, while not exhibiting enough regularity
to be computable, still exhibit enough structure so that we can economise.

As it turned out, there are many non-computable sets exhibiting such regularity
and Kolmogorov complexity is a useful tool to investigate and describe them.

Sequences that do not exhibit such regularities are called random and have been
the central object of study in algorithmic randomness. Many interesting insights
in this area have resulted from trying to relate various notions of randomness with
various notions of computational power [DH10, LV08, Nie09].

In the last decades, a variant of Kolmogorov complexity came into focus: In
this variant, not all space-saving descriptions of sets A are eligible, but only those

1See [LV08] for a more detailed account of the history of the notion.

9

1. INTRODUCTION

that can be (in some sense) quickly executed to output A. This is know as time-
bounded Kolmogorov complexity. This notion can act as a liaison between the
investigation of Kolmogorov complexity and that of classical structural complexity
theory. The maybe most important difference between Kolmogorov complexity
with time bound and that without is that Kolmogorov complexity with time bound
is itself a computable function.

1.1 Summary

The purpose of this dissertation is to give some new results on Kolmogorov com-
plexity. It essentially consists of two parts.

Part I, with the exception of a short digression in chapter 4, focuses on the study
of Kolmogorov complexity without time bounds. The first chapter in this part
is chapter 3, which deals with the concept of non-monotonic randomness, that is
randomness characterized by martingales that bet non-monotonically. We will state
the definitions of several different randomness classes and then separate them from
each other.

In chapter 4 we present a systematic survey of a wide array of traceability notions
and characterize them through (auto)complexity notions. Traceabilities are a group
of notions that express that a set is not far away from being computable.

Part II deals with the topic of time bounded Kolmogorov complexity. Chapter
5 is concerned with the difference between two ways of describing a word: the
complexity of describing it well enough so that it can be distinguished from other
words; and the complexity of describing it well enough so that the word can actually
be produced from the description. While this difference is unimportant in the case
of Kolmogorov complexity without time bounds it plays an essential role when
time bounds are present.

The next chapter, chapter 6, introduces the notion of computational depth and
proves a dichotomy result about it that is reminiscent of Kummer’s well-known gap
theorem [DH10, Kum96].

The last chapter 7 deals with the important notion of Solovay functions. Solovay
functions are computable upper bounds of Kolmogorov complexity that are actually
sharp infinitely often (up to an additive constant). We will use them, first, to charac-
terize Martin-Löf randomness in a certain way and, second, to give a characterization
of being jump-traceable.

1.2 Publications

The work presented in chapter 3 has been published in the proceedings of the
6th International Conference on Computability and Complexity in Analysis in
Ljubljana in 2009 [BHKM09] and will soon appear in the Journal of Logic and
Computation [BHKM]. The largest part of chapter 4 has been published in the
proceedings of the IFIP Conference on Theoretical Computer Science in Brisbane

10

1.3. Thanks

in 2010 [HM10]. The work contained in chapter 5 has been published in the
proceedings of the 5th International Conference on the Theory and Applications
of Models of Computation in Xi’an in 2008 [HM08]. The work presented in
chapter 7 and parts of chapter 6 have been published in the proceedings of the 34th
International Symposium on Mathematical Foundations of Computer Science in
Nový Smokovec in 2009 [HKM09].

1.3 Thanks

This doctoral thesis would not have been possible without a whole list of people.
My special thanks go to my supervisor and co-author, Priv.-Doz. Dr. Wolfgang
Merkle, with whom most of the work in this document has been done and who has
supported me through the whole dissertation process. Another big thank you goes
to my other co-authors together with whom a significant part of the results in this
document were achieved; they are Dr. Laurent Bienvenu and Thorsten Kräling. I
am also grateful to Prof. Dr. Frank Stephan for being the second reviewer of this
document.

Furthermore, I want to thank Prof. Klaus Ambos-Spies, the head of the Heidel-
berg Logic Group. Finally I want to thank Felicitas Hirsch, who made our lives at
Heidelberg significantly easier, and my office mate Timur Bakibayev with whom
I had many interesting mathematical discussions and who helped me with many
things, not the least of which was with fixing my car.

I am very grateful for the funding for my dissertation which was provided by
the Deutsche Forschungsgemeinschaft grant ME 1806/3-1.

11

CHAPTER 2
Preliminaries

This chapter will provide some general background, essential definitions and nota-
tions. Readers well-acquainted with the definitions and conventions used in the field
of algorithmic randomness can skip this part.

For i ∈ {0,1}, define i := 1− i .
We look at finite strings and infinite sequences over the alphabet {0,1}, that is, at

elements of the sets {0,1}<∞ and {0,1}∞, respectively. For a string x let |x| denote
the length of x, that is, the number l such that x ∈ {0,1}l . Let ε denote the string of
length 0.

Depending on the situation it can simplify notations if we identify the finite
strings {0,1}<∞ with the natural numbers N. To achieve this, we order the finite
strings length-lexicographically, that is, we order them using the length of the string
as the primary and the lexicographical ordering as the secondary criterion. Thus we
arrive at the order ε, 0, 1,00,01,10,11,000, . . .

Given v ∈ {0,1}<∞ and w ∈ {0,1}<∞ ∪{0,1}∞, we write v v w if v is a prefix
of w. Let w(i) denote the i -th bit of w where by convention there is a 0-th bit and
w(i) is undefined if w is a word of length less than i + 1. For i < j we also write
w(i . . . j) for w(i) . . . w(j).

We will often identify a set A∈N with a sequence α ∈ {0,1}∞, where α(i) = 1
if and only if i ∈ A. If, for the purpose of the exposition, we want to insist more
on the set perspective we will prefer to denote these sets by upper case latin letters
A,B , . . .; if we want to insist more on the sequence perspective we may also use greek
letters α,β, . . .

If A∈ {0,1}∞ and X = {x0 < x1 < x2 < . . .} is a subset of N then A � X is the
finite or infinite binary sequence A(x0)A(x1) We abbreviate A � {0, . . . , n− 1} by
A � n (i.e., the prefix of A of length n).

Logarithms to base 2 are denoted by log, and often a term of the form log t will
indeed denote the least natural number s such that t ≤ 2s .

An order is a function h : N→N that is non-decreasing and unbounded.

13

2. PRELIMINARIES

For the definition of a Turing machine, an oracle Turing machine, a universal
Turing machine and an additively optimal Turing machine, as well as for existence
proofs for Turing machines conforming to the last two definitions, we refer the
reader to Li and Vitányi [LV08].

The e -th partially computable function according to some standard acceptable
numbering will be called ϕe . Partial functions map natural numbers to natural
numbers, unless explicitly specified differently. We let W0,W1, . . . be the numbering
of all computably enumerable (c.e.) sets, i.e., We is the domain of the e -th partial
computable function ϕe .

The computation of a machine M on input x does not necessarily terminate.
To express that it indeed does, we write M (x) ↓. To express that the computation
terminates and outputs y we write M (x) ↓= y. For a set A, the jump A′ is defined as
{e | ϕA

e (e) ↓}, the halting problem with oracle access to A. We write A′′ for (A′)′ etc.
Trivially, ;′ =H , where H denotes the halting problem.

A set D of strings is called prefix-free, if for any two strings x, y ∈ D, the
assumption x v y implies x = y. In order to define plain and prefix-free Kolmogorov
complexity, we fix additively optimal oracle Turing machines V and U, where U has
prefix-free domain. We let CA

M (x) denote the Kolmogorov complexity of x with
respect to a Turing machine M relative to oracle A, that is

CA
M (x) :=min{|σ | : M A(σ) ↓= x}.

We let CM (x) = C;M (x), CA(x) = CA
V(x), and C(x) = C;V(x). The prefix-free Kol-

mogorov complexities KA
N , KN , KA and K are defined likewise through a prefix-free

machine N or the universal prefix-free machine U, respectively.
Let Ω denote the probability that a random program halts when executed on U,

that is Ω :=
∑

U(x)↓ 2−|x|.
In connection with the definition of time-bounded Kolmogorov complexity, we

assume that V and U both are able to simulate any other Turing machine M running
for t steps in O(t · log t) steps for an arbitrary machine M and in O(t (n)) steps in
case M has only two work tapes. Again, for an existence proof, see the monograph
of Li and Vitányi [LV08].

For a computable function t : N→N and a machine M , the Kolmogorov com-
plexity relative to M with time bound t is

Ct
M (x) :=min{|σ | : M (σ) ↓= x in at most t (|x|) steps},

and we write Ct for Ct
V. The prefix-free Kolmogorov complexity with time bound t

denoted by Kt
M (n) and Kt (n) =Kt

U is defined likewise by considering only prefix-
free machines and the corresponding universal machine U in place of V.

Let ≤+ denote the relation less than or equal up to an additive constant. The
relations ≥+ and =+ are defined likewise. As usual, O(f) denotes a function that
grows at most as fast as f , up to a multiplicative constant, and we write Θ(f) for
a function g that grows equally fast as f , up to a multiplicative constant. That is,

14

g = Θ(f) is equivalent to g = O(f)∧ f = O(g). Depending on the context, we
sometimes also write O(f) for the set of all functions g such that g =O(f), and
analogously for Θ(f).

We say that a function g dominates another function f iff for almost all n we
have f (n)≤ g (n).

For a set of finite sequences W ⊆ {0,1}<∞, let the cylinder of W , denoted by
[W], be the set {α ∈ {0,1}∞ | ∃i : α � i ∈W }. For w ∈ {0,1}<∞ we write [w]
instead of [{w}].

A Martin-Löf test (or, for short, ML-test) is a sequence of uniformly c.e. sets
U0, U1, U2, . . . such that for all i , Ui ⊆ {0,1}<∞ and µ([Ui])≤ 2−i , where µ denotes
Lebesgue measure.

A sequence α ∈ {0,1}∞ is covered by an ML-test (Ui)i∈N iff α ∈
⋂

i∈N[Ui].
A sequence α (and, by identifying it with a sequence, a set) is called ML-random

if it is not covered by any ML-test. The set of all ML-random sequences is denoted
by MLR.

Theorem 2.1 (Schnorr [Sch73]). The following statements are equivalent for any
sequence α ∈ {0,1}∞.

1. α is ML-random.

2. There is a constant c such that for all n, K(α � n)≥ n− c.

15

Part I

Kolmogorov complexity without
time bounds

17

CHAPTER 3
Non-monotonic Randomness

Intuitively speaking, a binary sequence is random if the bits of the sequence do
not have effectively detectable regularities. This idea can be formalized in terms
of betting strategies, that is, a sequence will be called random in case the capital
gained by successive bets on the bits of the sequence according to a fixed betting
strategy must remain bounded, where we assume that the game is fair and a fixed set
of admissible betting strategies is understood.

The notions of random sequences that have received most attention are Martin-
Löf randomness and computable randomness. Here a sequence is called computably
random if no total computable betting strategy can achieve unbounded capital by
betting on the bits of the sequence in the natural order, a definition that indeed
is natural and suggests itself. However, computably random sequences may lack
certain properties associated with the intuitive understanding of randomness, for
example there are such sequences that are highly compressible, i.e., show a large
amount of redundancy, see Theorem 3.4 below. Martin-Löf randomness behaves
much better in this and other respects. Indeed, the Martin-Löf random sequences can
be characterized as the sequences that are incompressible in the sense that all their
initial segments have essentially maximal Kolmogorov complexity, and in fact this
holds for several versions of Kolmogorov complexity according to celebrated results
by Schnorr, by Levin and, recently, by Miller and Yu [DH10]. On the other hand,
it has been held against the concept of Martin-Löf randomness that its definition
involves effective approximations, i.e., a very powerful, hence rather unnatural
model of computation, and indeed the usual definition of Martin-Löf randomness in
terms of left-computable martingales, that is, in terms of betting strategies where the
gained capital can not be computed but only effectively approximated from below,
is not very intuitive.

It can be shown that Martin-Löf randomness strictly implies computable ran-
domness (see Schnorr [Sch71]). According to the preceding discussion the latter
notion is too inclusive while the former may be considered unnatural. Ideally, we

19

3. NON-MONOTONIC RANDOMNESS

would therefore like to find a more natural characterization of ML-randomness;
or, if that is impossible, we are alternatively interested in a notion that is close in
strength to ML-randomness, but has a more natural definition. One promising
way of achieving such a more natural characterization or definition could be to
use computable betting strategies that are more powerful than those used to define
computable randomness.

Muchnik [MSU98] proposed to consider computable betting strategies that
are non-monotonic in the sense that the bets on the bits need not be done in the
natural order, but such that the position of the bit to bet on next can be computed
from the already scanned bits. The corresponding notion of randomness is called
Kolmogorov-Loveland randomness because Kolmogorov and Loveland indepen-
dently had proposed concepts of randomness defined via non-monotonic selection
of bits.

Kolmogorov-Loveland randomness is implied by [Nie09, Proposition 7.6.20]
and in fact is quite close to Martin-Löf randomness, as we will see in connection
with Theorem 3.16, but whether the two notions are distinct is one of the major
open problems of algorithmic randomness. In order to get a better understanding
of this open problem and of non-monotonic randomness in general, Miller and
Nies [MN06] introduced restricted variants of Kolmogorov-Loveland randomness,
where the sequence of betting positions must be non-adaptive, i.e., can be computed
in advance without accessing the sequence on which one bets.

The randomness notions mentioned so far are determined by two parameters
that correspond to the columns and rows, respectively, of the table in Figure 3.1.
First, the sequence of places that are scanned and on which bets may be placed, while
always being given effectively, can just be monotonic, can be equal to π(0),π(1), . . .
for a permutation or an injection π from N to N, or can be adaptive, i.e., the next
bit depends on the bits already scanned. Second, once the sequence of scanned bits is
determined, betting on these bits can be done according to a betting strategy where
the corresponding martingale is total or partial computable, or is left-computable.
The inclusions known from existing literature between the corresponding classes of
random sequences are shown in Figure 3.1; see Section 3.1 for technical details and
for the definitions of the class acronyms that occur in the figure.

The classes in the last row of the table in Figure 3.1 all coincide with the class of
Martin-Löf random sequences by the folklore result that left-computable martingales
always yield the concept of Martin-Löf randomness, no matter whether the sequence
of bits to bet on is monotonic or is determined adaptively, because even in the latter,
less restrictive model one can uniformly in k enumerate an open cover of measure at
most 1/k that covers all the sequences on which some universal martingale exceeds k
— which easily yields an ML-test. Furthermore, the classes in the first and second row
of the last column both yield the class of Kolmogorov-Loveland random sequences,
because it can be shown that total and partial adaptive betting strategies yield the
same concept of random sequence [Mer03]. Finally, it follows easily from results of
Buhrman et al. [BvMR+00] that the class TMR of computably random sequences
coincides with the class TPR of sequences that are random with respect to total

20

3.1. Permutation and injection randomness

monotonic permutation injection adaptive

total TMR = TPR ⊇ TIR ⊇ KLR

⊆ ⊆ ⊆ =

partial PMR ⊇ PPR ⊇ PIR ⊇ KLR

⊆ ⊆ ⊆ ⊆

left-computable MLR = MLR = MLR = MLR

Figure 3.1: Known class inclusions

permutation martingales, i.e., the ability to scan the bits of a sequence according to
a computable permutation does not increase the power of total martingales.

Concerning non-inclusions, it is well-known [MSU98, AS98] that it holds that

KLR(PMR(TMR.

Furthermore, Kastermans and Lempp [KL10] have recently shown that the Martin-
Löf random sequences form a proper subclass of the class PIR of partial injective
random sequences, i.e., MLR(PIR.

In what follows, we investigate the six randomness notions that are shown
in Figure 3.1 in the range between PIR and TMR, i.e., between partial injective
randomness as introduced below and computable randomness. We obtain a complete
picture of the inclusion structure of these notions, more precisely we show that the
notions are mutually distinct and indeed are mutually incomparable with respect
to set theoretical inclusion, except for the inclusion relations that follow trivially
by definition and by the known relation TMR ⊆ TPR, see Figure 3.3 at the end
of this paper. Interestingly these separation results are obtained by investigating
the possible values of the Kolmogorov complexity of initial segments of random
sequences for the different strategy types, and for some randomness notions we
obtain essentially sharp bounds on how low these complexities can be.

3.1 Permutation and injection randomness

We now review the concept of martingale and betting strategy that are central for
the unpredictability approach to define notions of an infinite random sequence.

Definition 3.1. A martingale is a non-negative, possibly partial, function d from
{0,1}<∞ to Q such that for all w ∈ {0,1}<∞, d (w0) is defined if and only if d (w1)
is, and if these are defined, then so is d (w), and the relation 2d (w) = d (w0)+ d (w1)
holds. A martingale succeeds on a sequence A∈ {0,1}∞ if d (A � n) is defined for all n,
and limsup d (A � n) = +∞. We denote by Succ(d) the success set of d , i.e., the set of
sequences on which d succeeds.

21

3. NON-MONOTONIC RANDOMNESS

Intuitively, a martingale represents the capital of a player who bets on the bits
of a sequence A∈ {0,1}∞ in order, where at every round he bets some amount of
money on the value of the next bit of A. If his guess is correct, he doubles his stake.
If not, he loses his stake. The quantity d (w), with w a string of length n, represents
the capital of the player before the n-th round of the game (by convention there is a
0-th round) in case the first n bits revealed so far are those of w.

We say that a sequence A is computably random if no total computable mar-
tingale succeeds on it. One can extend this in a natural way to partial computable
martingales: a sequence A is partial computably random if no partial martingale
succeeds on it. No matter whether we consider partial or total computable martin-
gales, this game model can be seen as too restrictive as described at the beginning of
the chapter. Instead, one could allow the player to bet on bits in any order he likes
(as long as he can visit each bit at most once). This leads us to extend the notion of
martingale as follows.

Definition 3.2. A betting strategy is a pair b = (d ,σ) where d is a martingale and σ
is a function from {0,1}<∞ to N.

For a strategy b = (d ,σ), the term σ is called the scan rule. For a string w, σ(w)
represents the position of the next bit to be visited if the player has read the sequence
of bits w during the previous moves. And as before, d specifies how much money is
bet at each move. Formally, given a sequence A∈ {0,1}∞, we define by induction a
sequence of positions n0, n1, . . . by

n0 = σ(ε),
nk+1 = σ

�

A(n0)A(n1) . . .A(nk)
�

for all k ≥ 0

and we say that b = (d ,σ) succeeds on A if the ni are all defined and pairwise distinct
(i.e., no bit is visited twice) and

limsup
k→+∞

d
�

A(n0) . . .A(nk)
�

=+∞

Here again, a betting strategy b = (d ,σ) can be total or partial. In fact, its
partiality can be due either to the partiality of d or to the partiality of σ . We say
that a sequence is Kolmogorov-Loveland random if no total computable betting
strategy succeeds on it. As noted by Merkle [Mer03], the concept of Kolmogorov-
Loveland randomness remains the same if one replaces “total computable” by “partial
computable” in the definition.

Kolmogorov-Loveland randomness is implied by Martin-Löf randomness and
whether the two notions can be separated is one of the most important open prob-
lems in algorithmic randomness. As we discussed above, Miller and Nies [MN06]
proposed to look at intermediate notions of randomness, where the power of non-
monotonic betting strategies is limited. In the definition of a betting strategy, the
scan rule is adaptive, i.e., the position of the next visited bit depends on the bits
previously seen. It is interesting to look at non-adaptive games.

22

3.2. Randomness notions based on total computable strategies

Definition 3.3. In the above definition of a strategy, when σ(w) only depends on the
length of w for all w (i.e., the decision of which bit should be chosen at each move is
independent of the values of the bits seen in previous moves), we identify σ with the
(injective) function π : N→N, where, for all n, π(n) is the value of σ on all words of
length n (π(n) indicates the position of the bit visited during the n-th move), and we
say that b = (d ,π) is an injection strategy. If moreover π is bijective, we say that b
is a permutation strategy. If π is the identity, the strategy b = (d ,π) is said to be
monotonic, and can clearly be identified with the martingale d .

The preceeding discussion naturally leads to a number of randomness notions
with non-adaptive scan rules: one can consider either monotonic, permutation, or
injection strategies, and either total computable or partial computable ones. This
gives a total of six randomness classes, which we denote by

TMR, TPR, TIR, PMR, PPR, and PIR, (3.1)

where the first letter indicates whether we consider total (T) or partial (P) strategies,
and the second indicates whether we look at monotonic (M), permutation (P) or
injection (I) strategies. For example, the class TMR is the class of computably
random sequences, while the class PIR is the class of sequences A such that no
partial injection strategy succeeds on A. Recall in this connection that the previously
known inclusions between the six classes in (3.1) and the classes KLR and MLR of
Kolmogorov-Loveland random and Martin-Löf random sequences have been stated
in Figure 3.1 above.

3.2 Randomness notions based on total computable
strategies

We begin our study with the randomness notions arising from the game model where
strategies are total computable. As we will see in this section, in this model, it is
possible to construct sequences that are random and yet have very low Kolmogorov
complexity (i.e. all their initial segments are of low Kolmogorov complexity). We
will see in section 3.3 that this is no longer the case when we allow partial computable
strategies in the model.

Building a sequence in TMR of low complexity

The following theorem is a first illustration of the phenomenon we just described.

Theorem 3.4 (Lathrop and Lutz [LL99], Muchnik [MSU98]). For every computable
order h, there is a sequence A∈ TMR and a c ∈N such that for all n ∈N,

C (A � n|n)≤ h(n)+ c .

23

3. NON-MONOTONIC RANDOMNESS

Definition 3.5. For a function f from N to N that is unbounded and non-decreasing
let the discrete inverse f −1 be the function that maps k to the greatest n such that
f (n)≤ k.

Proof idea. Defeating one total computable martingale is easy and can be done com-
putably, i.e., for every total computable martingale d there exists a sequence A,
uniformly computable in d , such that A /∈ Succ(d). Indeed, fix a martingale d .
For any given w, one has either d (w0) ≤ d (w) or d (w1) ≤ d (w). Thus, one can
easily construct a computable sequence A by setting A � 0 = ε and by induction,
having defined A � n, we choose A � n+ 1 = (A � n)i where i ∈ {0,1} is such
that d ((A � n)i)≤ d (A � n). This can of course be done computably since d is total
computable, and by construction of A, the values d (A � n) form a non-increasing
sequence, meaning in particular that d does not succeed against A.

Defeating a finite number of total computable martingales is equally easy. Indeed,
given a finite number d1, . . . , dk of such martingales, their sum D = d1+ . . .+ dk
is itself a total computable martingale (this follows directly from the definition).
Thus, we can construct as above a computable sequence A that defeats D. And
since D ≥ di for all 1 ≤ i ≤ k, this implies that A defeats all the di . Note that
this argument would work just as well if we had taken D to be any weighted sum
α1d1+ . . .+αk dk , with positive rational constants αi .

We now need to deal with the general case where we have to defeat all total
computable martingales simultaneously. We will again proceed using a diagonaliza-
tion technique. Of course, this diagonalization cannot be carried out effectively,
since there are infinitely many such martingales and since we do not even know
whether any one given partial computable martingale is total. The first problem can
easily be overcome by introducing the martingales to diagonalize against one by one
instead of all at the beginning. So at first, for a number of stages we will only take
into account the first computable martingale d1. Then (maybe after a long time)
we may introduce the second martingale d2, with a small coefficient α2 and then
consider the martingale d1+ α2d2 (α2 is chosen to be sufficiently small to ensure
that the difference in capital between d1 and d1+α2d2 is small at the time when d2
is added). Much later we can introduce the third martingale d3 with an even smaller
coefficient α3, and diagonalize against d1+α2d2+α3d3, and so on. So in each step
of the construction we have to consider just a finite number of martingales.

The non-effectivity of the construction arises from the second problem, deciding
which of our partial computable martingales are total. However, once we are sup-
plied with this additional information, we can effectively carry out the construction
of A. And since for each step we need to consider only finitely many potentially

24

3.2. Randomness notions based on total computable strategies

total martingales, the information we need to construct the first n bits of A for some
fixed n is finite, too. Say, for example, that for the first n stages of the construction —
i.e., to define A � n — we decided on only considering k martingales d0, . . . , dk . Then
we need no more than k bits, carrying the information which martingales among
d0, . . . , dk are total, to describe A � n. That way, we get C (A � n|n)≤ k +O(1).

As can be seen from the above example, the complexity of descriptions of
prefixes of A depends on how fast we introduce the martingales. This is where our
orders come into play. Fix a fast-growing computable function f with f (0) = 0, to
be specified later. We will introduce a new martingale at every position of type f (k),
that is, between positions [f (k), f (k + 1)), we will only diagonalize against k + 1
martingales, hence by the above discussion, for every n ∈ [f (k), f (k + 1)), we have

C (A � n|n)≤ k +O(1)

Thus, if the function f grows faster than the discrete inverse h−1 of a given order h,
we get

C (A � n|n)≤ h(n)+O(1)

for all n.

The theorem also holds in a slightly stronger form which states that there is a
set A such that the inequality holds for any computable order h and for almost all n.
See Merkle [Mer08].

TMR= TPR: the averaging technique

It turns out that, perhaps surprisingly, the classes TMR and TPR coincide. This fact
was stated explicitly in Merkle et al. [MMN+06], but is easily derived from the ideas
introduced in Buhrman et al. [BvMR+00]. We present the main ideas of their proof
as we will later need them.

Theorem 3.6. Let b = (d ,π) be a total computable permutation strategy. There exists
a total computable martingale d such that Succ(b)⊆ Succ(d).

This theorem states that total permutation strategies are no more powerful than
total monotonic strategies, which obviously entails TMR = TPR. Before we can
prove this, we first need a definition.

Definition 3.7. Let b = (d ,π) be a total injective strategy. Let w ∈ {0,1}<∞. We can
run the strategy b on w as if it were an element of {0,1}∞, stopping the game when b
asks to bet on a bit on position outside w. This game is of course finite (for a given w)
since at most |w| bets can be made. We define b̂ (w) to be the capital of b at the end of
this game. Formally: b̂ (w) = d

�

wπ(0) . . . wπ(N−1)

�

where N is the least integer such
that π(N)≥ |w|.

25

3. NON-MONOTONIC RANDOMNESS

Note that despite the notation, b̂ is a single function, not a pair of functions like
b . Also note that if b = (d ,π) is a total computable injection martingale, b̂ is total
computable.

If b̂ was itself a monotonic martingale, assuming the “savings property” de-
scribed below would be enough to prove Theorem 3.6. In general however, b̂ is not
even a martingale, as can be seen from the following example: Suppose the starting
capital is d (ε) = 1, the scan rule is π(0) = 1, π(1) = 0 and the betting strategy is
described by d (0) = 2, d (00) = 4, d (01) = 0 and by d (1) = 0, d (10) = d (11) = 0 —
that is, d first visits the bit in position 1, betting everything on the value 0, then
visits the bit in position 0, again betting everything on the value 0. We then have

b̂ (00)+ b̂ (01)

2
=

4+ 0

2
= 2 6= 1= b̂ (0),

which shows that b̂ is not a martingale.

The trick is, given a betting strategy b and a word w, to look at the expected
value of b on w, i.e., look at the mathematical expectation of b (w ′) for large enough
extensions w ′ of w. Specifically, given a total betting strategy b = (d ,π) and a
word w of length n, we take an integer M large enough to have

π ([0, . . . , M − 1])∩ [0, . . . , n− 1] =π(N)∩ [0, . . . , n− 1]

(i.e. the strategy b will never bet on a bit on position less than n after the M -th
move), and define:

Avb (w) =
1

2M

∑

wvw ′

|w ′|=M

b̂ (w ′)

Proposition 3.8 (Buhrman et al. [BvMR+00], Kastermans-Lempp [KL10]). The
following statements hold.

(i) The quantity Avb (w) (defined above) is well-defined i.e. does not depend on M as
long as it satisfies the required condition.

(ii) For a total injective strategy b , Avb is a martingale.

(iii) For a given injective strategy b and a given word w of length n, Avb (w) can be
computed if we know the set π(N)∩ [0, . . . , n− 1]. In particular, if b is a total
computable permutation strategy, then Avb is total computable.

As Buhrman et al. [BvMR+00] explained, it is not true in general that if a to-
tal computable injective strategy b succeeds against a sequence A, then Avb also
succeeds on A. However, this can be dealt with using the well-known “savings
trick”. Suppose we are given a martingale d with initial capital, say, 1. Consider the

26

3.2. Randomness notions based on total computable strategies

variant d ′ of d that does the following: when run on a given sequence A, d ′ initially
plays exactly as d . If at some stage of the game d ′ reaches a capital of 2 or more, it
then puts half of its capital on a “bank account”, which will never be used again.
From that point on, d ′ bets half of what d does, i.e. start behaving like d/2 (plus
the saved capital). If later in the game the “non-saved” part of its capital reaches 2
or more, then half of it is placed on the bank account and then d ′ starts behaving
like d/4, and so on.

For every martingale d ′ that behaves as above (i.e. saves half of its capital as soon
as it exceeds twice its starting capital), we say that d ′ has the “savings property”. It
is clear from the definition that if d is computable, then so is d ′, and moreover d ′

can be uniformly computed given an index for d . Moreover, if for some sequence A
one has

limsup
n→+∞

d (A � n) = +∞

then
lim

n→+∞
d ′(A � n) = +∞

which in particular implies Succ(d)⊆ Succ(d ′) (it is easy to see that in fact equality
holds). Thus, whenever one considers a martingale d , one can assume without loss
of generality that it has the savings property (as long as we are only interested in the
success set of martingales, not in the growth rate of their capital). The key property
(for our purposes) of savings martingales is the following.

Lemma 3.9. Let b = (d ,π) be a total injective strategy such that d has the savings
property. Let d ′ =Avb . Then Succ(b)⊆ Succ(d ′).

Proof. Suppose that b = (d ,π) succeeds on a sequence A. Since d has the savings
property, for arbitrarily large k there exists a finite prefix A � n of A such that a
capital of at least k is saved during the finite game of b against A. We then have
b̂ (w ′) ≥ k for all extensions w ′ of A � n (as a saved capital is never used), which
by definition of Avb implies Avb (A � m)≥ k for all m ≥ n. Since k can be chosen
arbitrarily large, this finishes the proof.

Now the proof of Theorem 3.6 is as follows. Let b = (d ,π) be a total computable
permutation strategy. By the above discussion, let d ′ be the savings version of d ,
so that Succ(d) ⊆ Succ(d ′). Setting b ′ = (d ′,π), we have Succ(b) ⊆ Succ(b ′). By
Proposition 3.8 and Lemma 3.9, d ′′ =Avb ′ is a total computable martingale, and

Succ(b)⊆ Succ(b ′)⊆ Succ(d ′′)

as wanted.

27

3. NON-MONOTONIC RANDOMNESS

The strength of injective strategies: the class TIR

Theorem 3.6 implies in particular that the class of computably random sequences
(i.e. the class TMR) is closed under computable permutations of the bits. We now
see that this result does not extend to computable injections.

Theorem 3.10. Let A ∈ {0,1}∞. Let {nk}k∈N be a computable sequence of integers
such that nk+1 ≥ 2nk for all k. Suppose that A is such that

C
�

A � nk |k
�

≤ log nk − 3 log log nk

for infinitely many k. Then A /∈ TIR.

Proof. Let A be a sequence satisfying the hypothesis of the theorem. Assuming,
without loss of generality, that n0 = 0, we partition N into a sequence of intervals
I0, I1, I2, . . . where Ik = [nk , nk+1). Notice that we have for all k:

C(A � Ik |k)≤C(A � nk+1|k + 1)+O(1)

By the assumption of the theorem, the right-hand side of the above inequality is
bounded by log nk+1− 3 log log nk+1 for infinitely many k.

Additionally, we have |Ik |= nk+1− nk which by assumption on the sequence
nk implies |Ik | ≥ nk+1/2, and hence log |Ik | ≥ log nk+1 +O(1) and log log |Ik | ≥
log log nk+1+O(1). It follows that

C
�

A � Ik |k
�

≤ log |Ik | − 3 log log |Ik | −O(1)

for infinitely many k, hence

C
�

A � Ik |k
�

< log |Ik | − 2 log log |Ik |

for infinitely many k.
Let us call Sk the set of strings w of length |Ik | such that

C
�

w||Ik |
�

< log |Ik | − 2 log log |Ik |,

which implies that A � Ik ∈ Sk for infinitely many k. By the standard counting
argument, there are at most

sk =
�

2log |Ik |−2 log log |Ik |
�

=

&

|Ik |

log2(|Ik |)

'

strings in Sk . For every k, we split Ik into sk consecutive disjoint intervals of equal
length, see Figure 3.2 (if sk does not exactly divide |Ik |, then put the excess bits at

28

3.2. Randomness notions based on total computable strategies

0

· · ·

N
Ik Ik+1

J 0
k

J 1
k

J sk−1
k

J 0
k+1

Figure 3.2: The partition into intervals.

the end of Ik into a “garbage set”, which we will ignore from now on except for the
fact that we account for it in the calculations in the next paragraph).

Ik = J 0
k ∪ J 1

k ∪ . . .∪ J sk−1
k

We design a betting strategy as follows. We start with a capital of 2. We then
reserve for each k an amount of 1/(k + 1)2 to be bet on the bits in positions in
Ik (this way, the total amount we distribute is smaller than 2), and we split this
evenly between the J i

k
, i.e. we reserve an amount of 1

(sk+1)·(k+1)2
for every J i

k
. We

then enumerate the sets Sk in parallel. Whenever the e -th element w e
k

of some Sk is
enumerated, we see w e

k
as a possible candidate to be equal to A � Ik , and we bet the

reserved amount 1
(sk+1)·(k+1)2

on the fact that A � Ik coincides with w e
k

on the bits

whose positions are in J e
k
. If we are successful (this in particular happens whenever

w e
k
=A � Ik), our reserved capital for this J e

k
is multiplied by 2|J

e
k
|, i.e. we now have

for this J e
k
, a capital of

1

(sk + 1) · (k + 1)2
· 2|Ik |/(sk+1)

Replacing sk by its value (and remembering that |Ik | ≥ 2k−O(1)), an elementary
calculation shows that this quantity is greater than 1 for almost all k. Thus, our
betting strategy succeeds on A. Indeed, for infinitely many k, A � Ik is an element
of Sk , hence for some e we will be successful in the above sub-strategy, making an
amount of money greater than 1 for infinitely many k, hence our capital tends to
infinity throughout the game. Finally, it is easy to see that this betting strategy is
total: it simply is a succession of doubling strategies on an infinite c.e. set of words,
and it is injective as the J e

k
form a partition of N, and the order of the bits we bet

on is independent of A (in fact, we see our betting strategy succeeds on all sets A
satisfying the hypothesis of the theorem).

As an immediate corollary, we get the following.

Corollary 3.11. If for a sequence A there is a constant c such that we have for all n
that C (A � n|n)≤ log n− 4 log log n+ c, then A 6∈ TIR.

29

3. NON-MONOTONIC RANDOMNESS

Another interesting corollary of our construction is that the class of all com-
putable sequences can be covered by a single total computable injective strategy.

Corollary 3.12. There exists a single total computable injective strategy which succeeds
against all computable elements of {0,1}∞.

Proof. This is because, as we explained above, the strategy we construct in the
proof of Theorem 3.10 succeeds against every sequence A such that C

�

A � nk |k
�

≤
log nk−3 log log nk for infinitely many k. This in particular includes all computable
sequences A, for which C

�

A � nk |k
�

=O(1).

The lower bound on Kolmogorov complexity given in Theorem 3.10 is quite
tight, as witnessed by the following theorem.

Theorem 3.13. For every computable order h there is a sequence A ∈ TIR such that
C(A � n | n)≤ log n+ h(n)+O(1). In particular, we have

C(A � n)≤ 2 log n+ h(n)+O(1).

Proof. The proof is a modification of the proof of Theorem 3.4. This time, we
want to diagonalize against all non-monotonic total computable injective betting
strategies. Like in the proof of Theorem 3.4, we add them one by one, discarding
the partial strategies. However, to achieve the construction of A by diagonalization,
we will diagonalize against the average martingales of the strategies we consider. As
explained on page 27, it suffices to diagonalize against all total computable injective
strategies that have the savings property, hence defeating Avb is enough to defeat b
(by Lemma 3.9). The proof thus goes as follows:

Fix a fast growing computable function f , to be specified later. We start with
a martingale D0 = 1 (the constant martingale equal to 1) and w0 = ε. For all k we
do the following. Assume we have constructed a prefix wk of A of length f (k), and
that we are currently diagonalizing against a martingale Dk , so that Dk (wk)< 2. We
then enumerate a new partial computable injective betting strategy b .

The strategy b could be total or not, and this information must later be available
if we want to reproduce the contructed sequence A. Therefore this one extra bit of
information must be encoded in the programs describing A, and so increases the
Kolmogorov complexity of A.

If b is not total we set Dk+1 =Dk . Otherwise, we set edk+1 =Avb and let dk+1

be a modified version of edk+1 that doesn’t bet before the next position |wk |. We then
compute a positive rational αk+1 such that (Dk +αk+1dk+1)(wk)< 2, and finally set
Dk+1 =Dk +αk+1dk+1.

Then, we define wk+1 to be the extension of wk of length f (k + 1) by the
usual diagonalization against Dk+1, maintaining the inequality Dk+1(u) < 2 for

30

3.3. Randomness notions based on partial computable strategies

all prefixes u of wk+1. The infinite sequence A obtained this way defeats all the
average martingales of all total computable injective strategies, hence by Lemma 3.9,
A∈ TIR.

It remains to show that A has low Kolmogorov complexity. Suppose we want
to describe A � n for some n ∈ [f (k), f (k + 1)). This can be done by giving n, the
subset of {0, . . . , k} (of complexity at most k+O(1)) corresponding to the indices of
the total computable injective strategies among the first k partial computable ones,
and by giving the restriction of Dk+1 to words of length at most n. From all this,
A � n can be reconstructed following the above construction. It remains to evaluate
the complexity of the restriction of Dk+1 to words of length at most n. We already
know the total computable injective strategies b0, . . . , bk that are being considered
in the definition of Dk+1. For all i , let πi be the injection associated with bi . We
need to compute, for all 0≤ i ≤ k, the martingale di =Avbi

on words of length at
most n. By Proposition 3.8, this can be done knowing πi (N)∩ [0, . . . , n − 1] for
all 0≤ i ≤ k. But if the πi are known, this set is uniformly c.e. in i and n. Hence,
we can enumerate all the sets πi (N)∩ [0, . . . , n− 1] (for 0≤ i ≤ k) in parallel, and
simply give the last pair (i , l) such that l is enumerated into πi (N)∩ [0, . . . , n− 1].
Since 0≤ i ≤ k and 0≤ l < n, this requires O(log k)+ log n bits of of information.
To sum up, we get

C (A � n|n)≤ k +O(log k)+ log n

Thus, it suffices to take f growing fast enough to ensure that the term k +O(log k)
is smaller than h(n)+O(1).

3.3 Randomness notions based on partial computable
strategies

We now turn our attention to the second row of the table in Figure 3.1, i.e., to those
randomness notions that are based on partial computable betting strategies.

The class PMR: partial computable martingales are stronger than total
ones

We have seen in the previous section that some sequences in TIR (and a fortiori TPR
and TMR) may be of very low complexity, namely logarithmic. This is not the case
anymore when one allows partial computable strategies, even monotonic ones.

Theorem 3.14 (Merkle [Mer08]). If C(A � n) =O(log n) then A 6∈ PMR.

31

3. NON-MONOTONIC RANDOMNESS

However, the next theorem, proven by Muchnik, shows that allowing slightly
super-logarithmic growth of the Kolmogorov complexity is enough to construct a
sequence in PMR.

Theorem 3.15 (Muchnik et al. [MSU98]). For every computable order h there is a
sequence A∈ PMR such that, for all n ∈N,

C (A � n|n)≤ h(n) log n+O(1).

Proof. The proof is almost identical to the proof of Theorem 3.4. The only differ-
ence is that we insert all partial computable martingales one by one, and diagonalize
against their weighted sum as before.

It may happen however, that at some stage of the construction, one of the
martingales becomes undefined. We will then ignore this particular martingale
from that point on. Again, as in the proof of Theorem 3.13, we will later need this
information if we want to reproduce the contructed sequence A. So, as before, this
information must be encoded in the programs describing A, and so increases the
Kolmogorov complexity of A.

Call A the sequence we obtain by this construction. We want to describe A � n.
To do so, we need to specify n, and, out of the k partial computable martingales that
are inserted before stage n, which ones have diverged, and at what stage, hence an
information of O(k log n) (giving the position where a particular martingale diverges
costs O(log n) bits, and there are k martingales). Since we can insert martingales
as slowly as we like (following some computable order), the complexity of A � n
given n can be taken to be smaller than h(n) log n+O(1) (where h is a computable
order, fixed before the construction of A).

Again, the theorem also holds in the slightly stronger form where the inequality
is true for all computable orders, see Merkle [Mer08].

The class PPR

In the case of total strategies, allowing permutation gives no real additional power,
as TMR = TPR. Very surprisingly, Muchnik showed that in the case of partial
computable strategies, permutation strategies are a considerable improvement over
monotonic ones, as witnessed by the following theorem (quite a contrast to Theo-
rem 3.15!).

Theorem 3.16 (Muchnik [MSU98]). If there is a computable order h such that for
all n we have K(A � n)≤ n− h(n)−O(1), then A 6∈ PPR.

The theorem by Muchnik [MSU98] actually deals with “a priori entropy” but
easily implies the above statement.

32

3.3. Randomness notions based on partial computable strategies

We can now see that Kolmogorov-Loveland randomness is quite close to Martin-
Löf randomness: Comparing Theorem 2.1 with Theorem 3.16 shows that PPR is
not far away from MLR. Since KLR lies between MLR and PPR, it has to be close to
MLR as well.

Theorem 3.17. For every computable order h there is a sequence A∈ PPR, such that
there are infinitely many n where C (A � n|n)< h(n).

Furthermore, if we have an infinite computable set S ⊆ N, we can choose the
infinitely many lengths n such that they all are contained in S.

Before we can prove the theorem we need the following lemma and corollary.

Lemma 3.18. Let d be a partial computable martingale. LetC be an effectively closed
subset of {0,1}∞ (where “effectively closed” is another expression for being a Π0

1 class).
Suppose that d is total on every element of C . Then there exists a total computable
martingale d ′ such that Succ(d)∩C = Succ(d ′)∩C .

Proof. The idea of the proof is simple: the martingale d ′ will try to mimic d while
enumerating the complementU of C . If at some stage a cylinder [w] is covered
byU , then d will be passive (i.e. defined but constant) on the sequences extending w.
As we do not care about the behavior of d ′ onU (as long as it is defined), this will
be enough to get the conclusion.

Let d ,C be as above. We build the martingale d ′ on words by induction. De-
fine d ′(ε) = d (ε) (here we assume without loss of generality that d (ε) is defined,
otherwise there is nothing to prove). During the construction, some words will be
marked as inactive, on which the martingale will be passive; initially, there is no
inactive word. On active words w, we will have d (w) = d ′(w).

Suppose for the sake of the induction that d ′(w) is already defined. If w is
marked as inactive, we mark w0 and w1 as inactive, and set d (w0) = d (w1) = d (w).
Otherwise, by the induction hypothesis, we have d (w) = d ′(w). We then run in
parallel the computation of d (w0) and d (w1), and enumerate the complementU
of C until one of the two above events happens:

(a) d (w0) and d (w1) become defined. Then set d ′(w0) = d (w0) and d ′(w1) =
d (w1)

(b) The cylinder [w] gets covered byU . In that case, mark w0 and w1 as inactive
and set d ′(w0) = d ′(w1) = d ′(w)

Note that one of these two events must happen: indeed, if d (w0) and d (w1) are
undefined (remember that by the definition of a martingale, Definition 3.1, that

33

3. NON-MONOTONIC RANDOMNESS

they are either both defined or both undefined), then this means that d diverges
on any element of [w0]∪ [w1] = [w]. Hence, by assumption, [w]∩C = ;, i.e.
[w] ⊆ U and we will see this after finitely many steps. It remains to verify that
Succ(d) ∩C = Succ(d ′) ∩C . Let A ∈ C . This implies that for all w v A, we
never have [w] ⊆ U . So during the construction of d ′ on A, we will always be
in case (a), hence we will have for all n, d (A � n) = d ′(A � n). The result follows
immediately.

Corollary 3.19. Let b = (d ,π) be a partial computable permutation strategy (resp.
injective strategy). Let C be an effectively closed subset of {0,1}∞. Suppose that b is
total on every element of C . Then there exists a total computable permutation strategy
(resp. injective strategy) b ′ such that Succ(b)∩C = Succ(b ′)∩C .

Proof. This follows from the fact that the image or pre-image of an effectively closed
set under a computable permutation (resp. computable injection) of the bits is itself
a closed set: take b = (d ,π) and C as above. Let π′ be the map induced on {0,1}∞

by π, i.e. the map defined for all A∈ {0,1}∞ by

π′(A) =A(π(0))A(π(1))A(π(2)) . . .

For any given sequence A∈C , b succeeds on A if and only if d succeeds on π′(A).
As π′(A) ∈ π′(C), and π′(C) is an effectively closed set, by Lemma 3.18, there
exists a total martingale d ′ such that Succ(d)∩π′(C) = Succ(d ′)∩π′(C). Thus,
d ′ succeeds on π′(A), or equivalently, b ′ = (d ′,π) succeeds on A. Thus b ′ is as
desired.

Proof of Theorem 3.17. Again, this proof is a variant of the proof of Theorem 3.4:
we add strategies one by one, diagonalizing, at each stage, against a finite weighted
sum of total monotonic strategies (i.e. martingales). Of course, not all strategies have
this property, but we can reduce to this case using the techniques we presented above.
Suppose that in the construction of our sequence A, we have already constructed an
initial segment wk , and that up to this stage we played against a weighted sum of k
total martingales

Dk =
k
∑

i=1

αi di

where the di are total computable martingales, ensuring that Dk(u) < 2 for all
prefix u of w. Suppose we want to introduce a new strategy b = (d ,π). There are
three cases:

Case 0: the new strategy is not valid, i.e. π is not a permutation. In this case, we
ignore b from now on, i.e. we set wk+1 = wk , dk+1 = 0 (the zero martingale), and

34

3.3. Randomness notions based on partial computable strategies

Dk+1 = Dk + dk+1 = Dk . As in the proofs of Theorems 3.13 and 3.15, this piece
of information will be needed to reproduce the contructed sequence A later, and
therefore increases the Kolmogorov complexity of A accordingly.

Case 1: the strategy b is indeed a partial computable permutation strategy, and
there exists an extension w ′ of w such that Dk(u)< 2 for all prefixes u of w ′, and
b diverges on w ′. In this case, we simply take w ′ as our new prefix of A, as it both
diagonalizes against D , and defeats b (since b diverges on w ′, it will not win against
any possible extension of w ′). We can thus ignore b from that point on, so we set
wk+1 = w ′, dk+1 = 0 and Dk+1 =Dk + dk+1 =Dk .

Case 2: if we are not in one of the two previous cases, this means that our
strategy b = (d ,π) is a partial computable permutation strategy, and that b is total
on the whole Π0

1 class

Ck = [wk]∩{X ∈ {0,1}∞ | ∀n Dk (X � n)< 2}

Thus, by Lemma 3.19, there exists a total computable permutation strategy b ′

such that Succ(b)∩Ck = Succ(b ′)∩Ck . And by Theorem 3.6, there exists a total
computable martingale d ′′ such that Succ(b ′)⊆ Succ(d ′′). Thus, we can replace b by
d ′′, and defeating d ′′ will be enough to defeat b as long as the sequence we construct
is in Ck . We thus set dk+1 = d ′′, wk+1 = wk and

Dk+1 =
k+1
∑

i=1

αi di

where αk+1 is sufficiently small to have Dk+1(wk+1)< 2.

Once we have added a new monotonic martingale, we (as usual) computably
find an extension w ′′ of wk+1, ensuring that Dk+1(u) < 2 for all prefix u of w ′′,
taking w ′′ long enough to have C

�

w ′′
�

�|w ′′|
�

≤ h(|w ′′|). We then set wk+1 = w ′′,
then add a k + 2-th strategy and so on.

Note that since w ′′ can be chosen arbitrarily large, if we have fixed a computable
subset S of N, we can also ensure that |w ′′| belong to S if we like.

It is clear that the infinite sequence A constructed via this process satisfies

C (A � n|n)≤ h(n)

for infinitely many n (and, since Case 2 happens infinitely often, if we fix a given
computable set S , we can ensure that infinitely many of such n belong to S). To see
that it belongs to PPR, we notice that since for all k, Dk+1 ≥Dk and wk v wk+1, we
haveCk+1 ⊆Ck and thus A∈

⋂

kCk . Now, given a partial computable permutation

35

3. NON-MONOTONIC RANDOMNESS

monotonic permutation injection

total TMR = TPR) TIR

(((

partial PMR) PPR) PIR

Figure 3.3: Assembled class inclusion results

strategy b = (d ,π), let k be the stage where b was considered, and replaced by
the martingale dk (according to the applicable case among the three given cases).
Since by construction of A, dk+1 does not win against A and by definition of dk ,
Succ(b)∩Ck ⊆ Succ(dk)∩Ck , it follows that A /∈ Succ(b).

Now that we have assembled all our tools, we can easily prove the desired results.

Theorem 3.20. The following statements hold.

(i) PPR 6⊆ TIR

(ii) TIR 6⊆ PMR

(iii) PMR 6⊆ PPR

In particular, the following statements follow.

(iv) TPR 6⊆ TIR

(v) PPR 6⊆ PIR

(vi) TIR 6⊆ PPR

(vii) TIR 6⊆ PIR

(viii) TPR 6⊆ PPR

(ix) TMR 6⊆ PMR

From these results it easily follows that in Figure 3.3 no inclusion holds except those
indicated and those implied by transitivity.

Proof. (i): Choose a computable sequence {nk}k fulfilling the requirements of The-
orem 3.10 such that C(k) ≤ log log nk for all k. Then the set S := {n0, n1, . . .}
is computable. Use Theorem 3.17 to construct a sequence A ∈ PPR such that

36

3.3. Randomness notions based on partial computable strategies

C(A � n | n)< log log n at infinitely many places in S. We then have for infinitely
many k

C(A � nk | k)≤C(A � nk)≤C(A � nk | nk)+ 2 log log nk ≤ 3 log log nk ,

where the factor 2 is caused by overhead for coding pairs. It then follows from
Theorem 3.10 that A cannot be in TIR.
(ii): Follows immediately from Theorems 3.13 and 3.14.
(iii): Follows immediately from Theorems 3.15 and 3.16.
(iv)–(ix): These statements follow from the previous three statements using a com-
mon pattern: If in any of the statements (i) to (iii) we replace the first set with a
superset or the second set with a subset then the resulting non-inclusion statement
is obviously still true.

As an example of this common pattern we prove (viii): By (iii) we have that
PMR 6⊆ PPR, which together with the fact that TPR ⊇ PMR implies the desired
result that TPR 6⊆ PPR.

37

CHAPTER 4
Traceability and complexity

The notion of traceability was first introduced by Terwijn and Zambella [TZ01]
and has received a significant amount of attention in the last years. The general idea
is to look at sets that are nearly but not quite computable. More explicitly, if a set
is computable, obviously all functions computable in that set are computable, too.
Similarly, a set is nearly computable, or traceable, if all functions computable in
the set are nearly computable; where nearly computable means that for every input
provided to the function we can in some sense effectively generate a list of candidate
values for the image of that input under the function, where the list of candidates is
in some sense small.

The various notions of a traceable set have received a significant amount of
attention in the area of algorithmic randomness. On the one hand, traceabil-
ity naturally comes up in connection with lowness notions, as is exemplified in
the work of Terwijn and Zambella [TZ01] on Schnorr randomness and, more
recently, the attempts to characterize lowness for Martin-Löf randomness and
the equivalent notion of K-triviality by an appropriate version of jump trace-
ability [BDG09, CDG08, HKM09]. On the other hand, traceability has been
shown [KHMS, HM10] to interact informatively with classical notions from com-
putability theory such as diagonally non-computable sets and with notions such as
autocomplex that are defined in terms of Kolmogorov complexity of initial segments
of sets.

In this chapter, we systematically investigate several variations of notions of
traceability. We review standard notions of traceability and some basic results on
them, giving simplified or at least more direct proofs than in the current literature,
which in particular are meant to provide an intuitive picture of why the stated
relations hold. One of our aims is to give a unified view of notions and results that
appear in the literature, and for example we argue that a recent result on anticomplex
sets by Franklin et al. [FGSW] can be seen as a variant of results on the relations
between notions of complexity and i.o. traceability [KHMS].

39

4. TRACEABILITY AND COMPLEXITY

We also introduce new notions of traceability such as infinitely often versions
of jump traceability and derive an interesting collapse result. Finally, we give a
result about polynomial-time bounded notions of traceability and complexity that
shows that in principle the equivalences derived so far can be transferred to the
time-bounded setting.

4.1 Traceability

The various traceability notions considered in the sequel are either well-known or
have at least been considered implicitly in the literature, except for, to the best of
our knowledge, the infinitely often versions of jump traceable and strongly jump
traceable introduced in Definition 4.11 below.

Definition 4.1. A trace is a sequence (Tn)n of sets. A trace (Tn)n is a trace for a partial
function f , if f (n) ∈ Tn holds for all n such that f (n) is defined. A trace (Tn)n is an
i.o. trace for a partial function f , if there are infinitely many n such that f (n) ∈ Tn .

We will also say, for short, that a trace traces or i.o. traces a partial function f ,
in case the trace is a trace or an i.o. trace, respectively, for f . For the traces (Tn)n
considered in the sequel, the sets Tn will always be finite.

Recall that W0,W1, . . . is the standard acceptable numbering of all computably
enumerable (c.e.) sets, i.e., We is the domain of the e -th partial computable func-
tion ϕe .

Definition 4.2. For a function h, a trace (Tn)n is h-bounded, if #Tn ≤ h(n) holds for
all n.

A trace (Tn)n is computably enumerable (c.e.) if there is a computable function g
such that Tn is equal to Wg (n) for all n. A trace (Tn)n is computable if there is a
computable function g such that Tn is equal to Dg (n) for all n, where De is the finite set
with canonical index e.

Definition 4.3. A set A is c.e. traceable iff there is a computable order h such that
all functions f ≤T A are traced by an h-bounded c.e. trace (Tn)n . A set A is c.e. i.o.
traceable iff there is a computable order h such that all functions f ≤T A are i.o. traced
by an h-bounded c.e. trace (Tn)n .

The concepts of computably traceable and of computably i.o. traceable are defined
similarly where in addition the traces are required to be computable instead of being
merely c.e.

For all the concepts introduced above, there are variants where Turing reducibility
is replaced by weak truth-table or truth-table reducibility, e.g., we say a set A is c.e. i.o.
wtt-traceable iff there is a computable order h such that all functions f ≤wtt A are i.o.
traced by an h-bounded c.e. trace (Tn)n .

40

4.1. Traceability

Remark 4.4. Stephan [Ste10] observed that a set is c.e. traceable if and only if there is
a computable function h such that every f ≤T A satisfies C(f (n))< h(n) for almost all
n. A similar remark holds for partial functions that can be computed with oracle A.

This characterization has the advantage that it works without defining traces and
just uses classical concepts. The disadvantage of this style of characterization is that for
other traceability concepts it yields more complicated equivalences; for example the case
of computable traceability would require the use of Kolmogorov complexity defined over
total machines.

Terwijn and Zambella [TZ01] observed that the notions of computable and
c.e. traceability remain the same if one requires in their respective definitions the
existence of h-bounded traces not just for a single but for all computable orders h.
The corresponding argument extends directly to the notions c.e. and computably
wtt-traceable, as well as c.e. and computably tt-traceable, but also to the infinitely
often versions of these notions, as is shown in the following remark. For the notion
of i.o. c.e. traceable this also follows by Theorem 4.12 below, and, what is more, by
Corollaries 4.23 and 4.25 for some notions even the existence of 1-bounded traces of
the considered type is equivalent.

Remark 4.5. A set A is c.e. i.o. traceable if and only if for all computable orders h
all functions f ≤T A are i.o. traced by an h-bounded c.e. trace (Tn)n , and a similar
statement holds for the notion computably i.o. traceable, as well as for variants of these
notions defined in terms of weak truth-table or truth-table reducibility in place of Turing
reducibility.

The proof uses the same technique as the proof of the analogous everywhere version
of the statement [TZ01]. Let us assume we have c.e. i.o. traces bounded by a computable
order g and let us construct a c.e. i.o. trace (Sn)n for some function f ≤T A bounded by
some given computable order h.

Let ĝ (i) be the least number n such that h(n)≥ g (i), so ĝ is a computable order.
Thus, the mapping f̂ defined by i 7→ (f (0), . . . , f (ĝ (i + 1))) is Turing-reducible to A
and therefore has a trace (Ti)i with bound g .

Recall that ĝ−1 denotes the discrete inverse of ĝ , which here implies that for given
n, ĝ−1(n) is the largest number i such that g (i)≤ h(n) (so, typically, it will be a slow
growing function). Define (Sn)n by

Sn := {πn(x) : x ∈ T ĝ−1(n)}

where πn is the projection to the n-th coordinate.
T ĝ−1(n), and then also Sn , has at most g (ĝ−1(n))≤ h(n) members. For infinitely

many i , Ti is right; that is, it contains the correct ĝ (i + 1)-tuple (f (0), . . . , f (ĝ (i + 1))).
For all such i , let us look at the set Pi of all n such that ĝ−1(n) = i . For all these n the set
T ĝ−1(n) = Ti will be the same and contains the described correct ĝ (i + 1)-tuple, which,
in turn, contains the correct information about the values of all f (n) with n ∈ Pi .

41

4. TRACEABILITY AND COMPLEXITY

By the projection πn this correct information will be put into the set Sn , so Sn will
be a correct trace for f (n) for all such n.

To see that overall infinitely many such n exist, we still need to argue that the
Pi ’s cannot be empty. But this is clear since for every i and for n = ĝ (i) we have
ĝ−1(n) = i .

The following theorem is attributed to Kjos-Hanssen et al. [KHMS] by Downey
and Hirschfeldt [DH10], however, the assertion of the theorem does not even
implicitly appear in the published versions of the corresponding article [KHMS],
nor does its proof. Since the proof presented by Downey and Hirschfeldt is via a
chain of equivalent statements, we consider it useful and instructive to give a direct
argument here. Among the various equivalent definitions for the notion high, we
will work with the one according to which a set A is high iff A computes a function
that dominates every computable function.

Definition 4.6. A set A is called high iff A′ ≥T ;′′.

Proposition 4.7 (Martin [Mar66]). A set A is high if and only if it computes a function
that dominates every computable function.

Theorem 4.8. The following statements are equivalent.

(i) The set A is computably i.o. traceable.

(ii) The set A is c.e. i.o. traceable and non-high.

Proof. (i) implies (ii): Any computably i.o. traceable set A is a fortiori c.e. i.o.
traceable, and is also non-high because given an A-computable function g we obtain
a computable function f such that g (n) ≤ f (n) for infinitely many n by letting
f (n) = 1+maxTn where (Tn)n is a computable trace for g .

(ii) implies (i): Let us assume we have a c.e. i.o. trace (Tn)n of a function `≤T A.
Define the function g such that on argument n one starts to enumerate in parallel
the traces Tm for all m ≥ n and A-computably recognizes when for the first time
for some mn the correct value `(mn) is enumerated into Tmn

, then letting g (n) be
the number of computational steps of the enumeration of Tmn

that are required
to enumerate `(mn). In this situation, let us say that n has found mn . Since g
is computable in A and A is non-high, there is a computable function f that at
infinitely many places is larger than g , where in addition we can assume that f is
non-decreasing.

We can now get a computable trace (eTn)n for ` that is correct at infinitely many
places as follows: simply let eTn contain all elements that are enumerated into Tn in
at most f (n) steps.

42

4.1. Traceability

This trace is correct infinitely often. Indeed, any n finds some mn , and among
the corresponding pairs (n, mn) there are infinitely many where we have

g (n)≤ f (n)≤ f (mn),

where the second inequality uses the assumption that f is non-decreasing. For these
pairs, f (mn) exceeds the number of steps needed to enumerate `(mn) into Tmn

, so

for these pairs the correct value `(mn) will be a member of eTmn
.

Finally observe that in the construction the set eTn is always contained in Tn ,
hence any uniform bound h for the trace (Tn)n is also a uniform bound for the trace
(eTn)n

We review the concepts of jump traceable and strongly jump traceable, which
can be seen as stricter versions of the notion of c.e. traceable where not only the
total but also all partial functions computable in a given set must be traced.

Definition 4.9. If we say that there is a trace (Tn)n for a partial function Φ we mean
that Φ(n) ∈ Tn for all n such that Φ(n) is defined.

A set A set is jump traceable iff there is a computable order h such that for all
functions partially computable in A there is an h-bounded c.e. trace.

A set A is strongly jump-traceable iff for all computable orders h it holds that for
all functions partially computable in A there is an h-bounded c.e. trace.

Remark 4.10. It is easier for our purposes to work with the given definition. Alter-
natively, (strong) jump traceability can be defined by requiring that the diagonal jump
function is traceable. For more details, see Downey and Hirschfeldt [DH10].

It is well-known that the class of strongly jump-traceable sets is a proper subclass
of the jump-traceable sets, in fact, the two classes are proper sub- and superclasses,
respectively, of the class of K-trivial sets [BDG09, CDG08]. However, for the
infinitely often versions of these two notions we get an interesting collapse of
traceability notions.

Definition 4.11. A set A is i.o. jump-traceable iff there is a computable order h such
that for all functions partially computable in A that have an infinite domain there is an
h-bounded c.e. i.o. trace.

A set A is strongly i.o. jump-traceable iff for all computable orders h it holds that
for all functions partially computable in A that have an infinite domain there is an
h-bounded c.e. i.o. trace.

Theorem 4.12. The following statements are equivalent.

(i) The set A is strongly i.o. jump-traceable.

43

4. TRACEABILITY AND COMPLEXITY

(ii) The set A is i.o. jump-traceable.

(iii) The set A is c.e. i.o. traceable.

Proof. By definition, (i) implies (ii) and (ii) implies (iii), so it suffices to show that
not strongly i.o. jump traceable implies not c.e. i.o. traceable. So let A be a set that
computes a partial function f that for some computable order h0 cannot be i.o.
traced by any h0-bounded c.e. trace. We show that for any given computable order h
there is an A-computable function that cannot be i.o. traced by any h-bounded
c.e. trace. Fix an appropriate effective enumeration (T 0

n)n∈N, (T 1
n)n∈N, . . . of all h-

bounded c.e. traces, e.g., let T e
n be the subset of the n-th row of We that contains the

first h(n) elements that are enumerated into this row. Furthermore, let Sn be the
union of all T e

i where i < n and e < n and observe that this way the cardinality of Sn
is at most c(n) = n2h(n). For all n, let Tn be equal to Sm where m is maximum such
that c(m)≤ h0(n) and call the trace (Tn)n the universal h0-bounded trace, which by
construction is indeed h0-bounded, hence does not i.o. trace f . Hence for almost
all m such that f (m) is defined, we have f (m) /∈ Tm . So we obtain an A-computable
function as required by mapping n to a value of the form f (m) where m is chosen
large enough to ensure c(n) ≤ h0(m) and such that f (m) is defined. Such a value
can be found by dovetailing.

In order to render the statement of results in Section 4.4 and 4.5 more intuitive,
we introduce the following alternate notation for notions of not being traceable.

Definition 4.13. A set avoids c.e. traces if the set is not c.e. i.o. traceable and the set
i.o. avoids c.e. traces if it is not c.e. traceable. Similarly, a set tt-avoids c.e. traces if the
set is not c.e. i.o. tt-traceable, and further notions such as i.o. wtt-avoiding computable
traces are defined in the same manner.

4.2 Autocomplex and complex sets

The notions of complexity and autocomplexity were first defined in an article by
Kanovich [Kan70], where he showed that autocomplex sets are Turing complete
and complex sets are wtt-complete for the class of c.e. sets.

Definition 4.14. A set A is complex if there is a computable order h such that for all
n, it holds that C(A � n)≥ h(n).

A set A is called autocomplex, if there is an A-computable order h such that for all
n, it holds that C(A � n)≥ h(n).

We omit the straightforward proof of the following known fact [DH10, KHMS].
Note that by the standard proof of Proposition 4.15 it is immediate that all the
functions g that occur in the proposition can be assumed to be orders.

44

4.2. Autocomplex and complex sets

Proposition 4.15. The following statements are equivalent for a set A.

(i) A is complex.

(ii) There is a computable function g such that for all n, C(A � g (n))≥ n.

(iii) There is a function g ≤tt A such that for all n, C(g (n))≥ n.

(iv) There is a function g ≤wtt A such that for all n, C(g (n))≥ n.

Similarly, the following statements are equivalent for A.

(i) A is autocomplex.

(i) There is an A-computable function g such that for all n, C(A � g (n))≥ n.

(i) There is an A-computable function g such that for all n, C(g (n))≥ n.

In Section 4.5, we will see that it is interesting to consider variants of the notions
autocomplex and complex where the condition C(A � g (n)) ≥ n is not required
for all but just for infinitely many n. In connection with the following definition,
note that the notion of not being i.o. complex has been introduced by Franklin et
al. [FGSW] under the name of anticomplex.

Definition 4.16. A set A is i.o. complex iff there is a computable order g such that for
infinitely many n, we have C(A � g (n))≥ n.

A set A is i.o. autocomplex iff there is an A-computable order g such that for
infinitely many n, we have C(A � g (n))≥ n.

The equivalent characterizations of complex suggest different ways to define
i.o. complex (and similar remarks can be made for the notion i.o. autocomplex).
However, it would neither be equivalent nor even make sense to define i.o. com-
plexity by requiring that there is some computable order h such that for infinitely
many n it holds that C(A � n)≥ h(n), because for slowly growing h (e.g., the map
n 7→ log log n) this inequality is satisfied for infinitely many initial segments of any
set A, simply because a code for A � n is always also a code for n. In Section 4.7,
we will see that equivalent definitions in this style are still possible by considering
specific variants of Kolmogorov complexity. Furthermore, the two following propo-
sitions show that in the defining condition C(A � g (n))≥ n of i.o. autocomplexity
and i.o. complexity the lower bound n can equivalently be replaced by a wide range
of lower bounds in case g may depend on this bound.

Proposition 4.17. The following assertions are equivalent.

(i) The set A is i.o. autocomplex.

(ii) There is a computable order h and an A-computable function g such that there
are infinitely many n where C(A � g (n))≥C(n)+ h(n).

45

4. TRACEABILITY AND COMPLEXITY

(iii) For every A-computable order h there is an A-computable function g such that
there are infinitely many n where C(A � g (n))≥ h(n).

Proof. It is immediate that (i) implies (ii) and that (iii) implies (i). For a proof of the
remaining implication from (ii) to (iii), fix h and g that satisfy (ii), and let hA be any
A-computable order. Let m0 = 0 and for all n > 0 let

mn =min{m : mn−1 < m and 3hA(n)≤ h(m)} and In = [mn , mn+1).

For all n, let eg (n) be an appropriate representation of the pair of the restriction
of g to In and of the string A �max j∈In

g (j), and observe that the function eg is A-
computable. We now have that there are infinitely many j such that for the index n
where j ∈ In , we have

C(A � g (j))≥C(j)+ h(j)≥C(j)+ h(mn)≥C(j)+ 3hA(n), (4.1)

where the first inequality is due to (ii), the second is implied by j ∈ In , and the third
is by definition of mn .

For each such j and n, assuming we would have access to j , we could extract
A � g (j) from eg (n). This is because the latter is defined to contain an initial segment
of A longer than A � g (j).

This implies that, for each such j and n, it holds that C(eg (n)) ≥ hA(n). To
see this, assume otherwise. Then A � g (j) could be coded by giving a code for
eg (n) and one for j , which, together with some overhead for coding, would imply
C(A � g (j))≤C(j)+ 2hA(n)+O(1), contradicting (4.1).

To finalize the proof, observe that it always holds that C(A � eg (n))≥C(eg (n)),
so for infinitely many n we have C(A � eg (n))≥ hA(n).

The following variant of Proposition 4.17 can be shown by almost literally the
same proof, which we omit.

Proposition 4.18. The following assertions are equivalent.

(i) The set A is i.o. complex.

(ii) There is a computable order h and a computable function g such that there are
infinitely many n where C(A � g (n))≥C(n)+ h(n).

(iii) For every computable order h there is a computable function g such that there
are infinitely many n where C(A � g (n))≥ h(n).

46

4.3. Diagonally non-computable sets

4.3 Diagonally non-computable sets

Definition 4.19. A set A is diagonally non-computable (DNC) if there is a func-
tion f ≤T A such that f (n) differs from ϕn(n) whenever the latter value is defined.
With an appropriate coding scheme for finite sequences of natural numbers understood, a
set A is strongly diagonally non-computable (SDNC) if there is a function f ≤T A such
that when z is a code for the sequence e1, x1, . . . , em , xm , then f (z) differs for i = 1, . . . , m
from ϕei

(xi) whenever this value is defined.
The notions of wtt-DNC, wtt-SDNC, tt-DNC, and tt-SDNC are defined likewise,

where in the above definitions f ≤T A is replaced by f ≤wtt A and f ≤tt A, respectively.

Note that if we can compute a function f such that for given n the value f (n)
differs from ϕn(n), we can also compute a function g such that for given e , x the
value g (e , x) differs from ϕe (x), because by the s-m-n Theorem one can effectively
find an index i such that ϕe (x) and ϕi (i) are either both undefined or both defined
and have the same value. By a result of Jokusch [Joc89], indeed even the notions of
DNC and SDNC coincide.

Theorem 4.20. A set A is DNC if and only if A is SDNC.

Proof. By definition, it suffices to show that DNC implies SDNC. If A is DNC,
one obtains an A-computable function f as required as follows. Given a natural
number m we fix uniformly effective and uniformly effectively invertible bijections
between N and Nm . This allows us to interpret any natural number as an m-
tuple of natural numbers. Then given a sequence e1, x1, . . . , em , xm with code z,
let f (z) be equal to the m-tuple (y1, . . . , ym), where yi differs from (ϕei

(xi))i , the i -
th component of ϕei

(xi), whenever this value is defined. This implies that for any i ,
f (z) differs in at least one component from ϕei

(xi), so that f (z) 6= ϕei
(xi) for all i .

Also, it is obvious that for all i , given ei and xi , the value yi is A-computable using
the fact that A is DNC. It follows that f (z) is A-computable.

The following infinitely often versions of the notion DNC is due to Kjos-
Hanssen et al. [KHMS]. Note that there are computable functions g such that g (e)
differs from ϕe (e) for infinitely many e , hence in order to get interesting infinitely
often versions of the various variants of the concept of DNC, one has to require
more than just to be able to compute a function that differs from the partial diagonal
function at infinitely many places.

Definition 4.21. For a function g , let Eg = {e : g (e) = ϕe (e)} be the (diagonal)
equality set of g . A set A is i.o. DNC if for all computable functions z there is a
function g ≤T A such that there are infinitely many n where

�

�

�Eg ∩{0, . . . , z(n)− 1}
�

�

�≤ n.

47

4. TRACEABILITY AND COMPLEXITY

The concepts of i.o. tt-DNC and i.o. wtt-DNC are defined likewise, where in the
definition g ≤T A is replaced by g ≤tt A and g ≤wtt A, respectively.

By definition, a set A is DNC if and only if there is an A-computable function
g such that Eg is empty, and consequently any set that is DNC is also i.o. DNC.
More precisely, if a set A is DNC, then it satisfies the definition of i.o. DNC by a
function g ≤T A that does not depend on z.

4.4 Equivalences of the almost everywhere notions

The following theorem is due to Kjos-Hanssen, Merkle and Stephan [KHMS, The-
orems 2.3 and 2.7]. The proof of their result given here is somewhat more direct,
furthermore, their short but slightly technical proof of the implication from DNC
to autocomplex is replaced by a simplified argument due to Khodyrev and Shen
[She10], who rediscovered the known equivalence of DNC and SDNC and observed
that SDNC easily implies autocomplex. The subsequent equivalence results are
formulated in terms of avoidance as introduced in Definition 4.13 in order to render
these results more intuitive.

Theorem 4.22. The following assertions are equivalent.

(i) The set A is autocomplex.

(ii) The set A is DNC.

(iii) The set A avoids c.e. traces.

Proof. To see that (i) implies (ii), assume that A is autocomplex. Then there is an
A-computable function g such that for all n, we have C(g (n))≥ n. So g (n) differs
from ϕn(n) for almost all n, because the latter value, if defined, has plain complexity
of log n up to an additive constant, and consequently, A is DNC.

That (i) implies (iii) is shown by a similar argument: The set A can not be c.e.
i.o. traceable, i.e., A must avoid c.e. traces, because otherwise by Remark 4.5 the
function g would have an n-bounded c.e. trace, which would imply C(g (n)) ≤+

2 log n for infinitely many n.
Next, to see that (ii) implies (i), assume that A is DNC and hence SDNC.

Then A is autocomplex because in order to obtain for given n a value g (n) where
C(g (n))≥ n, it suffices to obtain a value that differs from all the values ϕe (p) where
the latter value is defined, p has length at most n, and e is an index for the universal
machine used in the definition of the plain complexity C.

Finally, to prove that (iii) implies (ii), assume that the set A avoids c.e. traces, i.e.,
is not c.e. i.o. traceable. In order to see that A is DNC, let the diagonal trace (Tn)n
be defined by T (n) = {ϕe (e)} if ϕe (e) converges and by T (n) = ; otherwise. By

48

4.4. Equivalences of the almost everywhere notions

assumption, there is an A-computable function g that is not i.o. traced by the
diagonal trace, hence g (e) differs from ϕe (e), whenever the latter value is defined.

Corollary 4.23. A set A is c.e. i.o. traceable if and only if every A-computable function
has a 1-bounded c.e. i.o. trace.

Proof. It suffices to show the implication from left to right. By the proof of the
implication from (iii) to (ii) in Theorem 4.22, if there is an A-computable function
that has no 1-bounded c.e. i.o. trace, then this function witnesses that A is DNC,
hence, by the same theorem, A is not i.o. c.e. traceable.

The following variant of Theorem 4.22 is once more due to Kjos-Hanssen et
al. [KHMS]. The proofs of Theorem 4.24 and its corollary are omitted because they
are almost literally the same as for Theorem 4.22 and Corollary 4.23 when using
the characterizations of the notion complex from Proposition 4.15 and showing
separately the equivalences for truth-table and weak truth-table reducibility.

Theorem 4.24. The following assertions are equivalent.

(i) The set A is complex.

(ii) The set A is tt-DNC.

(iii) The set A tt-avoids c.e. traces.

The three assertions remain equivalent if one replaces in the two last assertions truth-table
reducibility by weak truth-table reducibility.

Corollary 4.25. The following assertions are equivalent.

(i) A is not complex.

(ii) The set A is c.e. i.o. tt-traceable.

(iii) Every function f ≤tt A has a 1-bounded c.e. i.o. trace.

(iv) The set A is c.e. i.o. wtt-traceable.

(v) Every function f ≤wtt A has a 1-bounded c.e. i.o. trace.

49

4. TRACEABILITY AND COMPLEXITY

4.5 Equivalence of the infinitely often notions

In Section 4.4 we have seen equivalences between first, notions of complexity and
autocomplexity, second, computing diagonally non-computable functions, and third,
notions of avoiding c.e. traces. The corresponding proofs were rather direct and
functions g as required in the definitions of these three notions where obtained
place by place in the sense that, for example, a function value g (n) that has a
certain complexity is obtained by considering a value g (n) that is not contained in a
component Tn of an appropriate trace and vice versa. Accordingly, by identical or
similar arguments, we obtain infinitely often versions of these equivalence results
where now, for example, for all n such that the value g (n) has high complexity the
value g (n) avoids a corresponding set Tn and vice versa.

The two following theorems are infinitely often versions of Theorems 4.22
and 4.24. The equivalence of assertions (i) and (iii) in Theorem 4.27 for the case of
weak truth-table reducibility is due to Franklin et al. [FGSW].

Theorem 4.26. The following assertions are equivalent.

(i) The set A is i.o. autocomplex.

(ii) The set A is i.o. DNC.

(iii) The set A i.o. avoids c.e. traces.

Proof. We first show that (i) and (iii) are equivalent, which follows by essentially
the same arguments as the equivalence of being autocomplex and being DNC
stated in Theorem 4.22. If A is i.o. autocomplex, then there is an A-computable
function g such that for infinitely many n it holds that C(g (n)) ≥ n, and such
a function g cannot have a c.e. trace that, e.g., is n-bounded, hence A is not c.e.
traceable, i.e., A i.o. avoids c.e. traces. Conversely, if A i.o. avoids c.e. traces, there is
an A-computable function g that has no 2n -bounded c.e. trace, hence in particular,
there are infinitely many n such that there is no word w of length strictly less than n
such that g (n) =U(w), and consequently A is i.o. autocomplex.

In order to show that (i) implies (ii), assume that A is i.o. autocomplex. Fix
any computable function z and let m0, m1, . . . be a strictly increasing computable
sequence of natural numbers such that for all i , we have z(mi)< mi+1. This way
the natural numbers are partitioned into consecutive intervals Ii = [mi , mi+1).
By Proposition 4.17, choose some A-computable function g0 such that there are
infinitely many n such that C(g0(n)) ≥ max In . For all n and all j in In , let
g (j) = g0(n). Then g is A-computable and there are infinitely many n where for
all j in In we have

C(ϕ j (j))≤
+ log j < j ≤max In ≤C(g0(n)) =C(g (j)),

50

4.5. Equivalence of the infinitely often notions

i.e., the set Eg has empty intersection with In and thus contains at most mn =min In
numbers that are less than or equal to z(mn)≤max In .

In order to demonstrate that (ii) implies (iii), we show the contrapositive, so
assume that A does not i.o. avoid c.e. traces, i.e., that A is c.e. traceable. Fix some
appropriate effective way of coding finite sequences of natural numbers of arbitrary
length by single natural numbers. Let (T 0

`
)`∈N, (T 1

`
)`∈N, . . . be an appropriate effec-

tive enumeration of all c.e. traces. Let s be a computable function such that for all i
and j the partial computable function ϕs(i , j) on input y is computed by enumerating
the numbers c0, c1, . . . in T i

y until c j is reached, where c j is then considered as a
code for a finite sequence of the form g (0)g (1) . . . g (`) and in case y ≤ ` the output
is g (y).

Next define a computable function z where for all n the value z(n) is chosen
so large that for all i < n and j < n there are at least n + 1 mutually distinct
indices e ≤ z(n) such that the partial function ϕe is the same as ϕs(i , j). Then given
any function g ≤T A, let eg (n) be a code for the finite sequence g (0), . . . g (z(n)). By
assumption on A, for h : n 7→ n there is an index i such that the c.e. trace (T i

`
)`∈N

is h-bounded and traces the function eg . For given n, let j be minimum such
that eg (n) = c j , where c0, c1, . . . are the numbers that are enumerated into T i

n . Then
for all sufficiently large n, there are at least n+ 1 places e ≤ z(n) such that

ϕe (e) = ϕs(i , j)(e) = g (e) ,

and since g was an arbitrary A-computable function and z does not depend on g ,
the set A is not i.o. DNC.

Theorem 4.27. The following assertions are equivalent.

(i) The set A is i.o. complex.

(ii) The set A is i.o. tt-DNC.

(iii) The set A i.o. tt-avoids c.e. traces.

The three assertions remain equivalent if one replaces in the two last assertions truth-table
reducibility by weak truth-table reducibility.

To prove the next theorem about high i.o. DNC sets, we first need the following
proposition.

Proposition 4.28. A set A is not i.o. autocomplex iff for all f ≤T A and n,

C(f (n))≤+ n.

51

4. TRACEABILITY AND COMPLEXITY

Proof. Assume that A is not i.o. autocomplex, let f ≤T A, and let g be the A-
computable bound for the use function of the reduction Φ of f to A. We can w.l.o.g.
assume that g (n) also encodes n; if it does not replace it by 〈g (n), n〉, where 〈., .〉
is an appropriate computable pairing function. Using the reduction Φ we see that
C(f (n))≤+ C(A � g (n)). By the definition of being not i.o. autocomplex we have
C(f (n))≤+ n, then.

For the converse direction, let f be an A-computable order, and let g (n) be a
code for A � f (n). Then g ≤T A; by assumption C(g (n))≤+ n, and so A is not i.o.
autocomplex.

Theorem 4.29. For a set A that is i.o. DNC and high, there is a single function g ≤T A
such that for all computable orders z there exist infinitely many numbers n such that

�

�

�Eg ∩{0, . . . , z(n)− 1}
�

�

�≤ n.

Proof. Since A is high, there is an A-computable h such that h dominates all com-
putable functions z. Let m be the A-computable function defined for all i by
m(i + 1) = h(m(i)) and set Ii = [m(i), m(i + 1)) for all i . Then m dominates all
computable functions, including z as in the statement of the theorem.

In case A is i.o. DNC, by Theorem 4.26, it is also i.o. autocomplex. By Proposi-
tion 4.17 this implies that there is an A-computable function k such that there are
infinitely many n such that C(A � k(n))≥+ h(m(n)). Call the set of these n’s P and
let f be the function n 7→A � k(n). Define g by setting g (k) := f (n) for all k ∈ In ,
that is, g is constant on each interval. It is obvious that g is A-computable.

For the infinitely many n ∈ P we now have the following situation: On the one
hand, for all k ∈ In , C(g (k))≥+ h(m(n)). On the other hand, for `≤ h(m(n)) we
have C(ϕ`(`))≤+ log`≤ log h(m(n)).

This implies that for all sufficiently large n ∈ P and all k ∈ In , g (k) 6= ϕ`(`) for
any `≤ h(m(n)), so In does not intersect Eg . Thus, it holds that for all sufficiently
large n ∈ P ,

�

�

�Eg ∩{0, . . . , z(m(n))− 1}
�

�

�≤
�

�

�Eg ∩{0, . . . , h(m(n))− 1}
�

�

�≤ m(n),

where m(n) is equal to
∑n−1

i=1 |Ii |.

4.6 Computable traces and total machines

We have seen above that traceability notions defined in terms of c.e. traces can
be characterized by concepts such as autocomplexity that relate to the plain Kol-
mogorov complexity of the initial segments of a set. We will see now that these
characterizations can be extended to traceability notions defined in terms of com-
putable traces if one considers the complexity of initial segments with respect to
total machines.

52

4.6. Computable traces and total machines

Remark 4.30. Bienvenu and Merkle [BM07] have defined the notion of decidable
machines, that is, machines whose domain is decidable. Obviously, every total machine
is decidable, and every decidable machine can be easily converted into a total machine
by first deciding whether a string is in the domain and then executing the machine as
normal if that is the case, and outputting a constant otherwise.

Definition 4.31. A set A is totally complex iff there is a computable function g such
that for all total machines M and almost all n, we have CM (A � g (n))≥ n. A set A is
totally i.o. complex iff there is a computable function g such that for all total machines
M there are infinitely many n where CM (A � g (n))≥ n.

Theorem 4.32 can be obtained from a result of Kjos-Hanssen et al. [KHMS, The-
orem 5.1] and Theorem 4.8. We omit the proof of Theorem 4.32 and give instead the
very similar proof of its infinitely often version Theorem 4.33. In connection with
the latter theorem, note that Franklin and Stephan [FS10] considered computably
tt-traceable sets, that is, sets that do not i.o. tt-avoid computable traces, and showed
that these sets are exactly the Schnorr-trivial sets.

Theorem 4.32. A set A is totally complex if and only if A tt-avoids computable traces.

Theorem 4.33. A set A is totally i.o. complex if and only if A i.o. tt-avoids computable
traces.

Proof. First assume that A is not totally i.o. complex, i.e., for any computable
function g there exists a total machine M such that for almost all n, we have
CM (A � g (n))≤ n. Fix any function f ≤tt A and some tt-reduction witnessing this
fact, which has use bound u(n). By assumption on A, there is a total machine
M such that for almost all n, we have CM (A � u(n)) ≤ n. In order to obtain a
computable trace (Tn)n for f that is bounded by the function n 7→ 2n+1, execute all
codes of length up to n on M , view the outputs as initial segments of oracles, and
let Tn contain all values that one obtains by simulating the fixed tt-reduction for
computing f at place n with any of these oracles. Then f (n) is contained in Tn for
almost all n. Since the bound 2n+1 on the size of the sets Tn does not depend on f ,
the set A is computably tt-traceable.

Next assume that A does not i.o. tt-avoid computable traces, i.e., that A is
computably tt-traceable, and recall that by the discussion preceding Remark 4.5
we can assume that any function wtt-reducible to A has a computable trace that is
n-bounded. Given a computable function g , we need to show that there is a total
machine M such that for almost all n, we have CM (A � g (n))≤ n. We can assume
that the function n 7→ A � g (n) has a computable trace (Tn)n where Tn has size at
most n. Let M be the machine, which on input (n, i) outputs the i -th element of Tn ,
if this element exists, and outputs some constant otherwise. Since the set Tn has size

53

4. TRACEABILITY AND COMPLEXITY

at most n and its canonical index can be computed from n, M is total and satisfies
CM (A � g (n))≤ 2 log n ≤ n for almost all n.

4.7 Lower bounds on initial segments complexity

When introducing the notions of i.o. complex and i.o. autocomplex, we have argued
that it does not make sense to define these notions by requiring for the set A under
consideration that for a computable or A-computable order, respectively, infinitely
often the order provides a lower bound for the plain Kolmogorov complexity of
an initial segment of A, and the reason for this was simply that by choosing a small
enough order this condition would be trivially satisfied by all sets. We will argue in
this section, however, that equivalent definitions in terms of lower bounds for the
complexity of initial segments can be given, if plain Kolmogorov complexity C is
replaced by appropriate variants, e.g., by uniform or monotonic complexity (see Li
and Vitányi [LV08] for a more detailed account of these notions). We will restrict
our attention to the concept of i.o. autocomplex.

Definition 4.34. The length-conditioned complexity C (w|n) of w is the length of
the shortest program p such that U on input (p, |w|) will output w.

The uniform complexity C(w; n) of w is the length of the shortest program p such
that for all i ≤ |w|, U on input (p, i) will output the first i bits of w, while Umay do
anything on inputs (p, i) with i > |w|.

The monotonic complexity Cmon(w) is the length of the shortest program p such
that U on input p will output some extension of w.

From these definitions, the following chain of inequalities is immediate.

C (w|n)≤+ C(w; n)≤+ Cmon(w)≤
+ C(w) (4.2)

Definition 4.35. A set A is length-conditionedly i.o. autocomplex iff there is an
A-computable order h such that for infinitely many n, we have h(n)≤C (A � n|n).

A set A is uniformly i.o. autocomplex iff there is an A-computable order h such
that for infinitely many n, we have h(n)≤C(A � n; n).

A set A is monotonically i.o. autocomplex iff there is an A-computable order h
such that for infinitely many n, we have h(n)≤Cmon(A � n).

In connection with the following theorem, recall that the first, and hence also
the second and third assertion are equivalent to A not being c.e. traceable.

Theorem 4.36. The following assertions are equivalent.

(i) The set A is i.o. autocomplex.

(ii) The set A is monotonically i.o. autocomplex.

54

4.7. Lower bounds on initial segments complexity

(iii) The set A is uniformly i.o. autocomplex.

These three equivalent assertions are all implied by

(iv) The set A is length-conditionedly i.o. autocomplex.

Proof. By the chain of inequalities (4.2), it is immediate that (iv) implies (iii) and
that (iii) implies (ii).

In order to see that (ii) implies (i), it suffices to show that c.e. traceable implies
not monotonically i.o. autocomplex. So let an A-computable order h be given,
where we can w.l.o.g. assume that range(h) =N. We want to show that for (almost)
all n it holds that Cmon(A � n)≤ h(n).

Let h−1 be the discrete inverse of h and look at the A-computable function
f : m 7→A � h−1(m+ 1). Then this function has a c.e. trace (Tm)m with bound m.

This implies that for all m we have

Cmon(A � h−1(m+ 1))≤+ log m+ log m ≤+ m,

by coding the index m of Tm and a description inside Tm . In other words we have
that for n in the range of h−1 we have Cmon(A � n)≤ h(n− 1).

It now remains to look at n not in the range of h−1. For these, define

n> =min{` ∈ range(h−1) | ` > n}.

Then, due to the properties of monotone complexity, we have

Cmon(A � n)≤Cmon(A � n
>)≤ h(n>− 1) = h(n),

so the bound holds everywhere.
In order to see that (i) implies (iii), it suffices to show that any set that is not

uniformly i.o. autocomplex is c.e. traceable. Given such a set A and an A-computable
function f , it suffices to construct a c.e. trace for f that is bounded by the fixed
function h(n) = 2n .

Let u be the use function of some oracle Turing machine computing f from
A, where we can assume that u is strictly increasing. Let g be a sufficiently slowly
growing A-computable order such that g (u(n))< n = log h(n). Such an order exists
because u is A-computable. Since A is not i.o. uniformly autocomplex, for this g
and for almost all n we have that C(A � n; n)≤ g (n), hence

C(A � u(n); u(n))≤ g (u(n))< log h(n)

holds for almost all n. Consequently, some program of length strictly less than
log h(n), say p, is the correct uniform description of an initial segment of A that is
long enough to compute f (n).

55

4. TRACEABILITY AND COMPLEXITY

One problem that we still need to address is that, when executing p in order
to compute the first i bits of A, we need to provide to the universal machine not
only p but also i . The work-around is to take advantage of the uniform nature of
the complexity notion present here. We start the computation of f (n) and as soon
as we query the i -th bit of the oracle, we execute p with additional input i in order
to obtain the first i bits of A. Since the program p is correct and uniform, we will
indeed get the initial segment of A of length i . Should we later query the oracle
again at a position j > i , we execute p again with additional input j etc. A set Tn of
size at most h(n) that contains f (n) can then be enumerated by processing as just
described and in parallel all programs of length strictly less than log h(n).

Together with Theorem 4.26 we get the following easy corollary.

Corollary 4.37. No c.e. traceable set can be length-conditionedly i.o. autocomplex.

Similarly, one can introduce notions such as uniformly or monotonically i.o.
complex and can derive the equivalence with the notion i.o. complex.

4.8 Tiny use and autocomplexity

Franklin et al. [FGSW] characterized being not i.o. complex in terms of so-called
reductions with tiny use, as can be seen in the following definitions and theorem. To
keep consistency with their notation, in this section we identify binary words with
natural numbers as described in the introduction — so Turing machines operate on
natural numbers etc. The Kolmogorov complexity will still be defined as the length
of a shortest binary description.

Definition 4.38 (Franklin et al. [FGSW]). For sets A and B say that A is reducible
to B with tiny use (A ≤T(tu) B), iff for every computable order h, A≤T B with use
function bounded by h.

Definition 4.39 (Franklin et al. [FGSW]). For sets A and B say that A is uniformly
reducible to B with tiny use (A≤uT(tu) B), iff there is a single Turing reduction Φ where
ΦB =A whose use function is dominated by every computable order.

Definition 4.40 (Franklin et al. [FGSW]). For a set A we define the function gA to
map k to the smallest number n such that for all m ≥ n we have C(A � m) > k. In
other words, gA is the point from which on we always need more than k bits to describe
an initial segment of A.

For a string x let x∗ denotes the smallest number with the propertyU(x∗) = x. Then
define A∗ := {(A � gA(k))

∗ | k ∈N} as the set that contains for all k a shortest code for
the longest initial segment of A that is describable with k bits.

Theorem 4.41 (Franklin et al. [FGSW]). The following are equivalent for a set A.

56

4.8. Tiny use and autocomplexity

(i) There exists a set B with A≤T(tu) B.

(ii) A is not i.o. complex.

(iii) gA dominates every computable function.

(iv) A≤uT(tu) A∗.

We now transform this result into a result characterizing being not i.o. autocom-
plex using a notion of tiny use relative to an oracle, while adapting the proof of
Franklin et al. in a straight-forward way.

Definition 4.42. For sets A, B and C say that A is reducible to B with C -tiny use
(A≤T(C -tu) B), iff for every C -computable order h, A≤T B with use function bounded
by h.

Definition 4.43. For sets A, B and C say that A is uniformly reducible to B with
C -tiny use (A≤uT(C -tu) B), iff there is a single Turing reduction Φ where ΦB =A whose
use function is dominated by every C -computable order.

Definition 4.44. A function f is called A-dominant iff it dominates every A-computable
function.

For a reduction Φ that reduces A to B , denote by Φ(B � n) the longest initial
segment of A such that the initial segment B � n of B is long enough to answer all
oracle queries that occur during the computation of the reduction.

The following proposition is straight-forward to prove.

Proposition 4.45. (i) A≤T(C -tu) B if and only if for every C -computable order g ,
there is a Turing reduction ΦB =A such that the map n 7→ |Φ(B � n)| dominates
g .

(ii) A≤uT(C -tu) B if and only if there is a Turing reduction ΦB =A such that the map
n 7→ |Φ(B � n)| dominates every C -computable order g .

It was shown in [FGSW] that gA and A∗ are A⊕;′-computable.

Theorem 4.46. The following are equivalent for any set A.

(i) There exists a set B with A≤T(A-tu) B.

(ii) A is not i.o. autocomplex.

(iii) gA is A-dominant.

(iv) A≤uT(A-tu) A∗.

57

4. TRACEABILITY AND COMPLEXITY

Proof. That (iv) implies (i) is immediate.
(i) implies (ii): Let’s assume A≤T(A-tu) B and suppose that f ≤T A. Then there

exists a reduction Γwith ΓA= f whose use is bounded by an A-computable function
g . From Proposition 4.45 it follows that there is a reduction Φ with ΦB = A such
that n 7→ |Φ(B � n)| dominates g . So Φ(B � n) is a long enough segment of the oracle
B for the computation of f (n). So C(f (n))≤+ C(Φ(B � n), n)≤+ C(B � n)≤+ n.
Then it follows from Proposition 4.28 that A cannot be i.o. autocomplex.

(ii) implies (iii): Assume that A is not i.o. autocomplex and let f be an increasing
A-computable function. By definition, for almost all n, C(A � f (n)) ≤ n. By
definition of gA, for almost all n, gA(n)> f (n).

(iii) implies (iv): For all sets A we have A≤T A∗, because in order to decide x ∈A
we just have to look for a word in A∗ describing a long enough initial segment of A.
Such a word will always be found eventually.

Let Φ be the described reduction. We now show that under the assumption
that gA is A-dominant this reduction already witnesses that A ≤uT(A-tu) A∗. To
prove that statement, we need to show that n 7→ |Φ(A∗ � n)| dominates every
increasing A-computable function f . W.l.o.g. assume that f is non-decreasing. Fix c
to be largest number with the property that there are infinitely many k such that
gA(k) = gA(k + 1) = . . .= gA(k + c − 1).

Let g denote the computable function k 7→ 2k+1, which dominates the map
k 7→ (A � gA(k))

∗. Since gA is A-dominant, for almost all k, f (g (k + c)) < gA(k)
holds. Suppose that k is large enough and that it satisfies

(A � gA(k))
∗ < n ≤ (A � gA(k + c))∗. (4.3)

This implies n ≤ g (k + c) and so f (n) < gA(k). Because of the first inequality in
(4.3), |Φ(A∗ � n)| ≥ gA(k) and so |Φ(A∗ � n)| ≥ f (n) as required.

4.9 Time bounded traceability and complexity

In this section we will make a short digression into the realm of time bounded
Kolmogorov complexity while staying in the traceability context. We will return to
the topic of time bounded Kolmogorov complexity in Part II. Here, we will show
that for appropriately chosen notions of complexity and traceability, the relations
between these two notions can be transferred to the time-bounded setting, more
precisely, to a setting of polynomial time bounds. Recall that for t : N→N, time
bounded Kolmogorov complexity is defined by

Ct (x) :=min{|σ | : U(σ) = x in at most t (|x|) steps}.

Consider a coding of finite sets of natural numbers where the code of a set D
consists of the concatenation of the binary expansion of elements of D in the

58

4.9. Time bounded traceability and complexity

natural order, where all the bits in the binary expansions are doubled and the
binary expansions are separated from each other by the word 01. In the sequel,
we will identify a finite set D with its code. Instead of looking at the Kolmogorov
complexity of initial segments we will examine the Kolmogorov complexity of
strings A �D where D is a finite subset of N.

Definition 4.47. A set A is i.o. poly-complex iff there is a computable order h
such that for all polynomials p there are infinitely many sets D where we have for
t = p(|D |+ |max D |) that Ct (A �D |D)≥ h(max D).

Definition 4.48. A set A is polynomial-time tt-traceable iff for all computable orders h,
we have that for every function f ≤P

tt A there is an h-bounded trace (Tn)n such that for
given n, the list of elements of Tn can be computed (or, say, printed) in time polynomial
in the length of n.

Theorem 4.49. The following statements are equivalent.

(i) A is not i.o. poly-complex.

(ii) A is polynomial-time tt-traceable.

Proof. (i) implies (ii): Let h be the desired trace bound, where we can assume
that h(n) ≤ n and that h can be computed in polynomial time by switching to a
delayed version of h, and let f ≤P

tt A be the function to be traced. Let q be the
polynomial time bound of some fixed tt-reduction from f to A, and let D(n) be
the query set of this reduction at place n, where we can assume that D(n) always
contains n.

Now the mapping g : n 7→ blog h(n)c is surely a computable order, so by as-
sumption for some p and almost all n we have for t = p(|D(n)|+ |max D(n)|)
that Ct (A � D(n) | D(n)) < g (n). Since t and g (n) are both polynomial in the
length of n, polynomial time in the length of n suffices to run the universal machine
on all programs p of length strictly less than g (n) with conditioning D(n) for at
most t steps each, interpreting the outputs obtained this way as oracles and to
simulate the given reduction at place n with all of these oracles in order to obtain at
most 2g (n)− 1≤ h(n) values that are put into the set Tn .

(ii) implies (i): We have to show for a given computable order h that there is a
polynomial p such that for almost all finite sets D it holds for t = p(|D |+ |max D |)
that Ct (A � D | D) < h(max D). Let f be the function which, for all n that are a
code for some finite set D , maps n to A �D , where f (n) = 0 in case n is not such a
code. By definition of the coding, computing f (n) from A requires at most log n
queries to A of length at most log n. So f ≤P

tt A, say with polynomial time bound q .
Since the length of the code for a finite set D is effectively bounded in max D,

we can fix a computable order h ′ such that for any finite set D with code n, we

59

4. TRACEABILITY AND COMPLEXITY

have h ′(n) ≤ h(max D). By assumption on A, let (Tn)n be an h ′-bounded trace
for f with polynomial time bound, i.e., for any finite set D with code n the
value f (n) =A �D occurs among the at most h ′(n)≤ h(max D) elements of Tn and
Ct (A �D |D)≤ h(max D) with t polynomial in |n|. With

|n| ≤ |D | · |max D | ≤ (|D |+ |max D |)2

it follows that t is polynomial in |D |+ |max D |, as desired.

60

Part II

Kolmogorov complexity with
time bounds

61

CHAPTER 5
Distinction Complexity

In general, the Kolmogorov complexity of a word w is the length |d | of a shortest
program d such that d determines w effectively. In a setting of unbounded compu-
tations, this approach leads canonically to the usual notion of plain Kolmogorov
complexity and its prefix-free variant. In a setting of resource-bounded computations
though, there are several notions of Kolmogorov complexity that are in some sense
natural — and none of them is considered canonical.

A straight-forward approach is to cap the execution time and/or used space by
simply not allowing descriptions that take too long or too much space for producing
the word we want to describe. This notion has the disadvantage that for a fixed
resource-bound there is no canonical notion of universal machine.

Another approach, which has received considerable attention in the literature,
was introduced by Levin [Lev84], where, in contrast to the notion just mentioned,
arbitrarily long computations are allowed, but a large running time increases the
complexity value. More precisely, with some appropriate universal machine U
understood, in Levin’s model the Kolmogorov complexity of a word d is the mini-
mum of |d |+ log t over all pairs of a word d and a natural number t such that U
takes time t to check that w is the word determined by d . As for other notions
of resource-bounded Kolmogorov complexity, here one can differentiate between
generation complexity and distinction complexity [AKRR03, Sip83], where the
former asks for a program d such that w can actually be computed from d , whereas
the latter asks for a program d that distinguishes w from other words in the sense
that given d and any word u, one can effectively check whether u is equal to w.

The question of how generation and distinction complexity relate to each other
in the setting of Levin’s notion of resource-bounded Kolmogorov complexity has
been investigated by Allender et al. [AKRR03]. A relevant notion in this context
is that of the degree of ambiguity of a language in a non-deterministic complexity
class, where we consider a language more ambiguous if for the machines recognizing
it there are inputs on which the machines have a larger number of accepting paths.

63

5. DISTINCTION COMPLEXITY

More explicitly, Allender et al. consider a notion of solvability for non-determi-
nistic computations that — for a given resource-bounded model of computation —
amounts to require that for any non-deterministic machine N there is a deterministic
machine that exhibits the same acceptance behavior as N on all inputs for which the
number of accepting paths of N is not too large, e.g., is at most logarithmic in the
number of all possible paths. They demonstrate that for any word the generation
complexity is at most polynomial in the distinction complexity if and only if all
computations in exponential time, whose ambiguity is limited, can be done determi-
nistically in exponential time. We extend their work to two similar equivalences.
First, generation complexity is at most linear in distinction complexity if and only if
all unambiguous computations in linearly exponential time can be done deterministi-
cally in linearly exponential time. Second, the conditional generation complexity of
a word w given a word y is at most linear in the conditional distinction complexity
of w given y if and only if all unambiguous computations in polynomial time can
be done deterministically in polynomial time. This implies that if the mentioned
relation between conditional generation complexity and conditional distinction
complexity holds P is equal to UP, where the latter is the class of problems L ∈NP

for which there is a machine that accepts the problem with exactly one accepting path
for every input in L. Both equivalences remain valid if one replaces unambiguity
with limited ambiguity in an appropriate sense to be defined. Combining this
result with a result by Fortnow and Kummer [FK96] about the promise problem
(1SAT,SAT), one obtains that conditional generation and distinction complexity
for the classical definitions of time bounded Kolmogorov complexity are close if
and only if they are close in Levin’s model just described.

Finally, we prove unconditionally that in the setting of space-bounded complex-
ity — that is for complexity measures Ks and KDs that logarithmically count the
used space instead of the running time of a description — generation complexity is
at most linear in distinction complexity.

The notion of generation complexity considered below differs from Levin’s
original notion insofar as one has to generate only single bits of the word to be
generated but not the word as a whole. This variant has already been used by
Allender et al. [AKRR03]; their results mentioned above, as well as the results
demonstrated below extend to Levin’s original model by almost identical proofs.

For a complexity class C, we will refer by C-machine to any machine M that uses
a model of computation and obeys a time- or space-bound such that M witnesses
L(M) ∈C with respect to the standard definition of C. For example, an NE-machine
is a non-deterministic machine that runs in linearly exponential time.

In this chapter we don’t use the standard universal Turing machine V, but fix
a special universal machine U that receives as input encoded tuples of words. For
example, (x, y, z) will be encoded by ex01ey01ez where the word eu is obtained by
doubling every symbol in u, i.e., eu = u(0)u(0)u(1)u(1) . . . u(|u| − 1)u(|u| − 1).

64

5.1. Known results

5.1 Known results

Definition 5.1 (Levin [Lev84], Allender et al. [AKRR03]). Time-bounded genera-
tion complexity Kt and distinction complexity KDt are defined by

Kt(x) =min







|d |+ log t

�

�

�

�

�

�

�

∀b ∈ {0,1,∗} : ∀i ≤ |x| : U (d , i , b)
runs for t steps and accepts
iff the i -th bit of (x∗) is b .







,

KDt(x) =min

¨

|d |+ log t

�

�

�

�

�

∀y ∈ {0,1}|x| : U (d , y) runs for
t steps and accepts iff x = y

«

.

Observe that in the definition of Kt-complexity the symbol ∗ has to be generated
as an end marker for the word x.

Remark 5.2. The notion of Kt-complexity introduced in Definition 5.1 was proposed
by Allender et al. in [AKRR03] as a variation of Levin’s original definition, where
the latter requires to generate whole words instead of individual bits. Levin’s original
definition has the advantage of assuring that for all x, it holds that

KDt(x)≤Kt(x)+ log |x|.

In connection with Theorem 5.16 we also use the following conditional com-
plexity notions.

Definition 5.3. The conditional time-bounded distinction complexity Kt and con-
ditional generation complexity KDt are defined by

Kt(x|y) =min







|d |+ log t

�

�

�

�

�

�

�

∀b ∈ {0,1,∗} : ∀i ≤ |x| : U (d , i , b , y)
runs for t steps and accepts
iff the i -th bit of (x∗) is b .







,

KDt(x|y) =min

¨

|d |+ log t

�

�

�

�

�

∀z ∈ {0,1}|x| : U (d , z, y) runs for
t steps and accepts iff z = x

«

.

We will shortly review Theorem 17 from Allender et al. [AKRR03] before we
will state our extensions.

Definition 5.4. We say that a machine M recognizes a set L with polynomial advice iff
there is a polynomial p and an advice function a : N→{0,1}<∞ such that a(n)≤ p(n)
and that M recognizes the set

{(x,a(|x|)) | x ∈ L}.

65

5. DISTINCTION COMPLEXITY

Note that a(|x|) provides M with information that is “helpful” in determining the
answer to the question whether x is in L, but that this helpful information may only
depend on |x|, not on the content of x — otherwise it could simply be the value of L(x)
and the notion would become trivial. Recognition with access to linear advice is
defined similarly, where the length of the advice is bounded by a linear function.

Definition 5.5 (Allender et al. [AKRR03]). We say that FewEXP search instances
are EXP-solvable if, for every NEXP-machine N and every k, there is an EXP-machine
M with the property that if N has fewer than 2|x|

k
accepting paths on input x, then M

produces on input x some accepting path as output if there is one.
We say that FewEXP decision instances are EXP-solvable if, for every NEXP-

machine N and every k, there is an EXP-machine M with the property that if N has
fewer than 2|x|

k
accepting paths on input x, then M accepts x if and only if N accepts x.

We say that FewEXP decision instances are EXP/poly-solvable if, for every NEXP-
machine N and every k, there is an EXP-machine M having access to advice of poly-
nomial length, such that if N has fewer than 2|x|

k
accepting paths on input x, then M

accepts x if and only if N accepts x.

The notion of solvability can be equivalently characterized in terms of promise
problems [CHV93, FK96]. This will be discussed further in connection with
Theorem 5.19 by Fortnow and Kummer.

Remark 5.6. Note that by definition EXP solvability of FewEXP decision instances im-
plies FewEXP= EXP, where FewEXP is the the class of problems L ∈NEXP recognized
by a non-deterministic Turing machine that has at most 2|x|

k
many accepting paths on

every input.
It is unknown whether the reverse implication holds as well. This is because the defi-

nition of EXP solvability of FewEXP decision instances does not require the considered
machines to have a limited number of accepting paths on all inputs.

Theorem 5.7 (Allender et al. [AKRR03]). The following statements are equivalent:

(i) For all x, Kt(x) ∈ (KDt(x))O(1).

(ii) FewEXP search instances are EXP-solvable.

(iii) FewEXP decision instances are EXP-solvable.

(iii’) FewEXP decision instances are EXP/poly-solvable.

(iv) For all A∈ P and for all y ∈A=l it holds that

Kt(y) ∈ (log |A=l |+ log l)O(1).

66

5.2. Tools

In words this means, that if generating words does not require “much larger”
descriptions than distinguishing them from other words, then witnesses for certain
non-deterministic computations with few witnesses can be found deterministically,
and vice versa.

5.2 Tools

In what follows we will use a corollary of the following two results by Buhrman et
al., which have also been used in [AKRR03]. They allow us to build distinguishing
descriptions for numbers from division residues of those numbers.

Lemma 5.8 (Buhrman et al. [BFL01]). Let n ∈N be large enough and let

A := {x1, x2, . . . , x|A|} ⊆ {l , l + 1, . . . , l + n− 1},

where the x1, . . . , x|A| are pairwise different. Then for all sufficiently large n and all
xi ∈ A and at least half of the prime numbers p ≤ 4 · |A| · log2 n it holds for all j 6= i
that xi 6≡ x j (mod p).

Proof. Assume that there are log n primes pk in the specified range, such that for
some pair of indices i and j with i 6= j (w.l.o.g. with xi < x j) we have for all
k ≤ log n that xi ≡ x j (mod pk).

Then according to the uniqueness property (modulo
∏

pk) in the Chinese
Remainder Theorem we would have

x j ≥ xi +
log n
∏

k=1

pk ≥ xi + 2log n ≥ xi + n

This implies x j 6∈ S , a contradiction. Therefore, for all pairs i and j with i 6= j there
are less than log n prime numbers with the specified property.

It follows that for every xi there are less than |A| · log n primes, such that for any
other x j there occurs equality of the residue. The prime number theorem implies
that (asymptotically) there are

4 · |A| · log2 n

ln(4 · |A| · log2 n)
=

2 · |A| · log2 n

ln(2
p

|A| log n)
= 2 · |A| · log n ·

log n

ln(2
p

|A| log n)

prime numbers in the specified range, which is asymptotically larger than 2·|A|·log n.
Therefore, for all sufficiently large n, at least half of the prime numbers in the

specified range are fit to provide a xi -residue that can serve as a unique description
for xi .

67

5. DISTINCTION COMPLEXITY

Lemma 5.9 (Buhrman et al. [BFL01]). Let A ⊆ {sl , sl+1, . . . , sl+n−1} ⊆ {0,1}≤k .
Then for all x in A,

KDtA(x)≤ 2 log |A|+O(log log n)+O(log k)

where KDtA(x) denotes the KDt-complexity of x relative to oracle A.
In particular, if A∈ P, then for all x in A,

KDt(x)≤ 2 log |A|+O(log log n)+O(log k).

Proof. A KDt-program for x using oracle A and hard-coded px and x mod px from
Lemma 5.8 might look like this:

1. input y;

2. if (A(y) = 0) reject

else if (y mod px = x mod px) accept

else reject.

The length of this program is

|px |+ |x mod px |+O(1) = 2 log(4 · |A| · log2 n)+O(1)
= 2 log |A|+ 4 log(2 log n)+O(1)
= 2 log |A|+O(log log n)

using the fact that |x mod px | ≤ |px |.
The running time for words y of length |x| (and those are the ones we have

to consider according to the definition of KDt) is essentially determined by the
polynomial running time for the modulo operation. Since running time counts
logarithmically this results in O(log k).

If A∈ P, then we can check whether y ∈ A directly instead of using an oracle.
Since running time counts logarithmically, the polynomial running time for this
operation does not introduce any further terms into the upper bound on KDt(x).

We will use a special case of this statement for our purpose.

Corollary 5.10. Let A⊆ {0,1}<∞, y ∈ {0,1}<∞ and l ∈N. Let

Ay,l :=A∩{x | y v x ∧ |x|= l}.

Then it holds that for all x in Ay,l ,

KDtAy,l (x)≤ 2 log |Ay,l |+O(log l)

68

5.3. The linearly exponential case

In particular, if there is a machine that on input y, l and x decides in polynomial time
whether x is in the set Ay,l , then for all x in Ay,l ,

KDt(x|y)≤ 2 log |Ay,l |+O(log l).

Proof. With the notation of Lemma 5.9 we have n ≤ 2l and k = l . The claim
follows using the lemma.

5.3 The linearly exponential case

We will now state our variants of Theorem 5.7, which are proven in a similar way as
the original statements by Allender et al.

Definition 5.11. We say that FewE search instances are E-solvable if, for every NE-
machine N and every k, there is an E-machine M with the property that if N has fewer
than 2k·|x| accepting paths on input x, then M produces on input x some accepting path
as output if there is one.

We say that FewE decision instances are E-solvable if, for every NE-machine N
and every k, there is an E-machine M with the property that if N has fewer than 2k·|x|

accepting paths on input x, then M accepts x if and only if N accepts x.
We say that FewE decision instances are E/lin-solvable if, for every NE-machine

N and every k, there is an E-machine M having access to advice of linear length, such
that if N has fewer than 2k·|x| accepting paths on input x, then M accepts x if and only
if N accepts x.

We say that UE decision instances are E-solvable if, for every NE-machine N and
every k, there is an E-machine M with the property that if N has at most one accepting
path on input x, then M accepts x if and only if N accepts x.

Theorem 5.12. The following statements are equivalent:

(i) For all words x, Kt(x) ∈O(KDt(x)).

(ii) FewE search instances are E-solvable.

(iii) FewE decision instances are E-solvable.

(iii’) UE decision instances are E-solvable.

(iii”) FewE decision instances are E/lin-solvable.

(iv) For all A∈ P, for all words y and for all l ∈N it holds that for

Ay,l :=A∩{x | y v x ∧ |x|= l}

and for all x ∈Ay,l ,

Kt(x) ∈O(log |Ay,l |+ log l + |y|).

69

5. DISTINCTION COMPLEXITY

Proof. (i) implies (iv): Given y and l , we can decide membership of x in Ay,l in time
polynomial in |x|. To do this, we first check whether y v x and whether x has the
correct length l . If yes, calculate A(x) =Ay,l (x) using the fact that A∈ P.

Therefore we can apply Corollary 5.10 to see that

KDt(x)≤ 2 log |Ay,l |+O(log l)+O(|y|)

where the last term accounts for supplying y as part of the program. Using assump-
tion 1 the claim follows.

(iv) implies (ii): Fix a non-deterministic Turing machine N running in linearly
exponential time 2kn , where we can assume that N branches binarily. Let

D := {y x | x ∈ {0,1}2
k·|y|

codes an accepting computation of N on y}.

Obviously, D ∈ P.
Now fix any y such that M on input y has at most 2k·|y| accepting paths. Then

the set Dy :=D ∩{y x | |x|= 2k·|y|} contains at most 2k·|y| words and by assumption
(iv) it follows that for all x in Dy ,

Kt(y x) ∈O(log |Dy |+ log(|y|+ 2k·|y|)+ |y|)=O(|y|)

So, in order to find an accepting path of M on input y, if there is one, it suffices
to search through all words y x with Kt(y x)≤O(|y|). This can be done in linearly
exponential time, as required.

The implications from (ii) to (iii), from (iii) to (iii’), and from (iii) to (iii”) are
trivial.

(iii”) implies (i): Let N be an NE-machine which on input (d , 1t , i , b , n) guesses a
word x ∈ {0,1}n , simulates 2t steps of the computation of U (d , x) and then accepts
iff U (d , x) accepts and x(i) = b .

If d is a distinguishing description for a word x ∈ {0,1}n , then for all sufficiently
large t there is exactly one accepting path of N on input (d , 1t , i , x(i), |x|) and none
for (d , 1t , i , x(i), |x|) for any i . By assumption (iii”), there is an E-machine M , which
computes N ((d , 1t , i , x(i), |x|)) deterministically for such d and t given some advice
h of linear length.

The specification of t and |x| (both encoded in binary), M , d , and h therefore
constitutes a Kt-program for x. Since d was a KDt-program, we can assume that
|d | ≤ KDt(x). Since 2t was the time bound for this program, we can assume that
t ≤KDt(x). Since the Kt-program’s running time depends linearly exponentially
on t , and running time is counted logarithmically, the Kt-program’s running time
increases Kt(x) by a value that is linear in KDt(x). KDt(x) is always greater than
log |x|, because otherwise x could not even be read completely, and therefore x

70

5.4. The polynomial case

could not be correctly distinguished. Also, by definition of linear advice, we have
|h| ∈O(|d |+ |1t |+ log |x|).

All this, together with the fact that running time counts logarithmically, results
in

Kt(x)≤O(KDt(x)).

(iii’) implies (i): Identical, except that we don’t consider FewE decision instances but
UE decision instances (but the construction still works) and that we don’t have to
worry about h.

Remark 5.13. Theorem 5.12 remains valid by essentially the same proof when formu-
lated for Levin’s original notion of Kt instead of the variant of Allender et al. In the
proofs that (iii’) or (iii”) imply (i) we would have had to generate all bits of x instead
of just one bit. This would increase the running time by factor |x|, which, due to the
logarithmic counting of running time, would result only in an additional additive term
log |x| ≤KDt(x) for the Kt-complexity.

Let UE denote the class of problems L ∈NE recognized by a non-deterministic
Turing machine that has at most one accepting path on any input.

Corollary 5.14. If for all x, Kt(x) ∈O(KDt(x)), then UE= E.

Proof. According to the theorem, the assumption implies that UE decision instances
are E-solvable. Since a language in UE contains only such instances, the claim
follows.

5.4 The polynomial case

Of course, a more interesting result than the one given in the last section would
be a similar result for the polynomial time case. That is, an equivalence between
the statement that distinction complexity and generation complexity are close to
each other and the statement that non-deterministic polynomial time recognizing
of a set with few accepting paths can be done deterministically. Such a result would
concern the relation between the complexity classes P and UP, and knowing more
about this relation might be interesting in connection with the important P versus
NP question.

The following result is an analogon of the equivalence stated in Theorem 5.12
for polynomial time. To achieve this result we need to consider conditional com-
plexities.

Definition 5.15. We say that FewP search instances are P-solvable if, for every NP

machine N and every k there is a P machine M with the property that if N has fewer
than |x|k accepting paths on input x, then M produces on input x some accepting path
as output if there is one.

71

5. DISTINCTION COMPLEXITY

We say that FewP decision instances are P-solvable if, for every NP machine N
and every k there is a P machine M with the property that if N has fewer than |x|k

accepting paths on input x, then M accepts x if and only if N accepts x.
We say that UP decision instances are P-solvable if, for every NP-machine N and

every k, there is a P-machine M with the property that if N has at most one accepting
path on input x, then M accepts x if and only if N accepts x.

Theorem 5.16. The following statements are equivalent:

(i) For all words x and y, Kt(x|y) ∈O(KDt(x|y)).

(ii) FewP search instances are P-solvable.

(iii) FewP decision instances are P-solvable.

(iii’) UP decision instances are P-solvable.

(iv) For all A∈ P it holds that for Ay,l :=A∩{x | y v x∧|x|= l} and for all x ∈Ay,l

Kt(x|y) ∈O(log |Ay,l |+ log l).

Proof. (i) implies (iv): We have access to y through the conditioning. If we also have
access to l , we can decide membership of x in Ay,l in polynomial time. To do this,
we first check whether y v x and whether y has the correct length l . If yes, compute
the value A(x) =Ay,l (x) using the fact that A∈ P. Corollary 5.10 then yields

KDt(x|y)≤ 2 log |Ay,l |+O(log l).

Using assumption 1 the claim follows.
(iv) implies (ii): Let N be any non-deterministic machine running in polynomial

time nk , where we can assume that N branches binarily. Let L denote L(N). Let

D := {y x | x ∈ {0,1}|y|
k
codes an accepting computation of N on y}.

Obviously, D ∈ P. Now fix any y such that M on input y has at most |y|k accepting
paths. Then the set Dy :=D ∩{y x | |x|= |y|k} contains at most |y|k words and by
assumption (iv) it follows that for all y x in Dy ,

Kt(y x|y) ∈ O(log |Dy |+ log(|y|+ |y|k))
= O(log |y|)

So, in order to find an accepting path of M on input y, if there is one, it suffices
to search through all words x with Kt(x|y) ≤ O(log |y|). This can be done in
polynomial time, so that L ∈ P as was to be shown. Note that it causes no problems

72

5.4. The polynomial case

that we have to deal with conditional complexity here. This is because when we are
searching for an accepting path x for a word y we obviously have access to y.

(ii) implies (iii): This is trivial.
(iii) implies (iii’): This is trivial.
(iii’) implies (i): Let us assume that we have a shortest KDt-description d , finite

conditioning information y and a described word x such that the universal machine
U accepts the triple (d , x, y) in tKDt steps.

Consider a variant UUP of the universal machine U , where we assume that UUP

can simulate steps of U without time overhead, that is, every step of U can also be
simulated by UUP in a single step. The machine UUP will be given inputs of the form
(d̂ , 1 t̂ , î , b̂ , n̂, ŷ). On any such input, if n̂ > t̂ , then reject. Otherwise guess a word
x̂ ∈ {0,1}n̂ and check whether x̂(i) = b̂ . If yes, UUP behaves for t̂ steps like U on
input (d̂ , x̂, ŷ), that is UUP accepts iff U (d̂ , x̂, ŷ) accepts in these t̂ steps.

Since d is a distinguishing description for the word x ∈ {0,1}n , for all i on input
(d , 1tKDt , i , x(i), |x|, y) there is a unique accepting path of UUP and none on input
(d , 1tKDt , i , x(i), |x|, y). By assumption (iii’) there is a deterministic machine M that
for all such inputs has the same acceptance and rejection behaviour as N and works
in some fixed polynomial time bound.

The input for M together with an encoding of M is a generating program for
x. It only remains to prove that this program is small enough and computes fast
enough, compared to the KDt-program.

1. The program consists of tKDt, |x| (both encoded in binary), M , d . Since tKDt
counted logarithmically for KDt we have log tKDt ≤ KDt(x|y). KDt(x|y) is
always greater than log |x|, because to be able to distinguish x from other
words we need at least the time to read x completely. One fixed M works
for all appropriate inputs and its encoding therefore has constant length.
Obviously, d ≤ KDt(x|y). Furthermore, y is given as part of the input to
M , but does not add to Kt(x|y). In total, all the components together have a
length bounded by O(KDt(x|y)).

2. By the above construction the running time tUP of the non-deterministic
machine UUP on input T := (d , 1tKDt , i , x(i), |x|, y) will be |T |+ |x|+ tKDt.

It holds that |T |=Θ(tKDt):

– Since we can in tKDt steps only access the first tKDt bits of y we can
w.l.o.g. assume |y|< tKDt.

– For the same reason as above, the execution of a distinguishing descrip-
tion for x on U takes at least |x| steps, so a binary encoding of |x| takes
less than tKDt bits.

73

5. DISTINCTION COMPLEXITY

– By a similar argument we can assume |d |< tKDt.

So the length of T must always be between tKDt and 6 · tKDt. As before,
|x| ≤ tKDt. In summary, tUP = |T |+ |x|+ tKDt ∈Θ(tKDt) =Θ(|T |).

If we now replace the non-deterministic machine UUP with the deterministic
machine M , a polynomial overhead might be introduced. Therefore we have

tM ∈ (O(1) · |T |)
O(1) = (O(1) · tKDt)

O(1) = t O(1)
KDt

,

hence log tM ∈O(log tKDt).

All this, together with the fact that running time counts logarithmically, results in
the required inequality Kt(x|y)≤O(KDt(x|y)).

Remark 5.17. For the same reason as in Remark 5.13, this proof would also work if
we considered Levin’s original definition of Kt.

Corollary 5.18. If for all x and y, Kt(x|y) ∈O(KDt(x|y)), then UP= P.

Proof. According to the theorem, the assumption implies that UP decision instances
are P-solvable. Since a language in UP contains only such instances, the claim
follows.

Fortnow and Kummer [FK96, Theorem 24] proved an equivalence related
to Theorem 5.16 in the setting of the “traditional” polynomially time-bounded
Kolmogorov complexities Ct and CDt [LV08, Chapter 7] where for example

Ct (x|y) :=min{|σ | : V((σ , y)) ↓= x in at most t (|x|) steps}.

Theorem 5.19 (Fortnow, Kummer). The following two statements are equivalent:

(i) UP decision instances are P-solvable.

(ii) For any polynomial t there are a polynomial t ′ and a constant c ∈N such that
for all x and y it holds that Ct ′(x|y)≤CDt (x|y)+ c.

Remark 5.20. Even, Selman and Yacobi [ESY84] defined promise problems. The
idea is that a computational problem can be solved if a certain promise is held. In our
case, the promise is that the non-deterministic computation has at most few (or one)
accepting path. UP is the class of promise problems (Q, R) such that there exists a
non-deterministic polynomial time Turing machine N such that N accepts all words in
R and such that N has at most one accepting path on the words in Q (this is the promise).

Fortnow and Kummer formulated their above equivalence in terms of promise
problems. Instead of the first statement in the theorem they used the assertion that the
promise problem (1SAT,SAT) is in P. Here 1SAT contains exactly those instances

74

5.5. Space bounds

of SAT that are satisfiable by exactly one assignment; and for the promise problem
(1SAT,SAT) to be in P means that there is a P-machine that accepts all x ∈ 1SAT∩SAT
and rejects all x ∈ {0,1}<∞− SAT.

Their formulation of the first statement is indeed equivalent to the one used above,
because (1SAT,SAT) is complete forUP , as witnessed by a parsimonious version of
Cook’s Theorem due to Simon [Sim75, Theorem 4.1]. Here parsimonious means that
the number of witnesses is preserved during the polynomial time Turing reduction, or,
in other words, the number of accepting paths of the original instance is the same as the
number of satisfying assignments for the Boolean formula to which we reduce.

The following corollary is immediate from Theorems 5.16 and 5.19.

Corollary 5.21. The following two statements are equivalent.

(i) For all x and y, Kt(x|y) ∈O(KDt(x|y)).

(ii) For any polynomial t there is a polynomial t ′ and a constant c ∈N such that for
all x and y it holds that Ct ′(x|y)≤CDt (x|y)+ c.

5.5 Space bounds

In analogy to the time-bounded case one can define the following two notions of
space-bounded Kolmogorov complexity.

Definition 5.22. The space-bounded distinction complexity Ks and generation
complexity KDs are defined by

Ks(x) =min







|d |+ log s

�

�

�

�

�

�

�

∀b ∈ {0,1,∗} : ∀i ≤ |x| : U (d , i , b)
runs in space s and accepts
iff the i -th bit of (x∗) is b







,

KDs(x) =min

¨

|d |+ logmax(s , |x|)

�

�

�

�

�

∀y ∈ {0,1}|x| : U (d , y) runs in
space s and accepts iff x = y

«

.

Here U is a machine with a two-way read-only input tape, where only the space on the
work tapes is counted.

Remark 5.23. For the definition of KDs it is relevant how the candidate y is provided
to U and if the space for y is counted. Here we chose to do count the space for y which
accounts for the term max |x| in the definition of KDs. This then implies the inequality
log |x| ≤KDs(x), which is analogous to the corresponding statement for KDt and will
be used in the proof of Theorem 5.24.

Theorem 5.24. For almost all x, it holds that Ks(x)≤ 5 ·KDs(x).

75

5. DISTINCTION COMPLEXITY

Proof. Let N be a non-deterministic machine which on input (d , s , i , b , n) guesses
a word y ∈ {0,1}n , simulates the computation of U (d , y) while limiting the used
space to s , and then accepts iff yi = b and U (d , y) accepts. In particular, if d is a
distinguishing description for a word x ∈ {0,1}n , then for all sufficiently large s and
for all i ≤ n there is an accepting path of N on input (d , s , i , x(i), |x|) but none on
(d , s , i , ¯x(i), |x|).

By the Theorem of Savitch there is a deterministic machine M that has the same
acceptance behavior as N and uses space at most s2; observe in this connection that s
is specified in the input of N and M , hence doesn’t have to be computed by M .

Given a word x, fix a pair d and s such that d is a distinguishing program for x,
it holds that |d |+ log s ≤KDs(x), and U uses space at most s on input (d , x). The
specification of d , s , |x| and M therefore constitutes a Ks-program for x which runs
in space s2. By choice of d and s we have

|d |+ log s + log |x| ≤ 2KDs(x).

Furthermore, the space s2 used in the computation of M counts only logarithmically,
where 2 · log s ≤ 2 ·KDs(x). Taking into account that M has to be specified and
that some additional information is needed to separate the components of the
Ks-program for x, we obtain Ks(x)≤ 5 ·KDs(x) for all sufficiently large x.

Remark 5.25. The exact multiplicative constant in the theorem also depends on how
the used space is counted. Here we count all used tape cells. If, e.g., we would instead
supply to the Turing machine every one of its arguments on its own tape and would only
count the maximum number of used tape cells on any tape, a smaller constant than 5
would result.

For the same reason as in Remark 5.13, the proof of Theorem 5.24 would also work
if — in analogy to Levin’s original definition of Kt — we would demand generating the
whole word instead of just one bit, even when counting the space used on the output tape.
Due to the additional additive term log |x| we would get the slightly weaker conclusion
Ks(x)≤ 6 ·KDs(x).

76

CHAPTER 6
Kolmogorov complexity and

computational depth

The original notion of depth was introduced by Bennett [Ben95], offering the
following argument to explain the necessity of such a notion: Imagine we make a
measurement in a scientific experiment and wonder about the cause for the specific
pattern we observe. There are some patterns, such as “111 . . .”, that point to a
systematic cause, but to one that is rather simple. There are other patterns, like a
random sequence, that make it plausible to assume that the measurement is just the
result of background noise.

But there are also objects that display a large degree of organization or struc-
ture, e.g., a life-form or a literary work. Bennett argues that this large degree of
organization is caused by a “nontrivial causal history” that was involved in creating
the object. We want to be able to characterize formally such objects in the real
world; that is, objects whose internal complexity evidences a complex generation
process. Random sequences do not evidence this kind of causal history, nor do easy
sequences like “111 . . .”.

In this chapter we first review the definitions and then state the most important
known theorems about depth. We will then proof a dichotomy about time bounded
Kolmogorov complexity that is closely related to the notion of depth. To do this
we will consider the time-bounded and unbounded Kolmogorov complexity of the
initial segments of sets that are computably enumerable.

The initial segments of a c.e. set A have small Kolmogorov complexity, more
precisely, by Barzdins’ lemma it holds that C(A � m) ≤+ 2 log m. Kummer’s cel-
ebrated gap theorem [DH10, Kum96] states that any array non-computable c.e.
Turing degree contains a c.e. set B such that there are infinitely many m such that
C(B � m) ≥ 2 log m, whereas all c.e. sets in an array computable Turing degree
satisfy C(A � m)≤ (1+ ε) log m for all ε > 0 and almost all m.

77

6. KOLMOGOROV COMPLEXITY AND COMPUTATIONAL DEPTH

Theorem 6.13, our main result in this chapter, has a structure similar to Kum-
mer’s gap theorem in so far as it asserts a dichotomy in the complexity of initial
segments between high and non-high c.e. sets. More precisely, every high c.e. Tur-
ing degree contains a c.e. set B such that for any computable function t there is a
constant ct > 0 such that for all m it holds that Ct (B � m)≥ ct ·m, whereas for any
non-high c.e. set A there is a computable time bound t and a constant c such that for
infinitely many m it holds that Ct (A � m)≤ log m+ c . By similar methods it can
be shown that any high degree contains a set B such that Ct (B � m)≥+ m/4 for all
computable t . The constructed sets B have low unbounded but high time-bounded
Kolmogorov complexity, and accordingly we obtain an alternative proof of the
result due to Juedes, Lathrop, and Lutz [JLL94] that every high degree contains a
strongly deep set.

6.1 Introduction

We first give Bennett’s original definition of depth.

Definition 6.1 (Bennett [Ben95]). Let x and w be strings and s a significance pa-
rameter. A string’s depth at significance level s , denoted by Ds (x), will be defined as
min{T (p) : (|p| − |p∗|< s)∧ (U(p) = x)}, where p∗ is the shortest possible prefix-free
program for p and T (p) is the running time of U on input p. At any given level s , a
string is called t -deep if its depth exceeds t , and t -shallow otherwise.

To define strong depth for infinite sequences, Bennett’s original definition re-
quires that for all t and all computable functions f , all but finitely many initial
segments of the sequence have t -depth exceeding f (n). As an example that illustrates
the difference between incompressibility and depth look at the sets Ω, the halting
probability for a random program, and H , the halting problem. While they are
Turing-reducible to each other, the information in H is arranged in a compression-
wise exponentially less efficient way than in Ω. On the other hand, the information
in H is accessible in linear time, while there is no computable time bound that
allows to extract the same information from Ω.

An important result about depth is the Slow Growth Law, that expresses that
high depth can only be generated by the investment of correspondingly large running
times.

Theorem 6.2 (Slow Growth Law [Ben95]). Given any data string x and two signifi-
cance parameters s2 > s1, a random program generated by coin tossing has probability
less than 2−(s2−s1)+O(1) of transforming x into an excessively deep output, i.e. one whose
s2-significant depth exceeds the s1-significant depth of x plus the run time of the trans-
forming program plus O(1). More precisely, there exist positive constants c1, c2 such
that for all strings x, and all pairs of significance parameters s2 > s1, the prefix set
{q : Ds2

(U(q , x))>Ds1
(x)+T (q , x)+ c1} has measure less than 2−(s2−s1)+c2 .

78

6.1. Introduction

Bennett also suggests another approach for modelling depth, namely through
“usefulness” of a sequence for other computations, but conjectures that this is too
anthropocentric a concept to formalize. In fact though, later authors have shown
that his definition of depth models usefulness quite well (see below).

Definition 6.3 (Bennett [Ben95]; Juedes, Lathrop, Lutz [JLL94]). For functions
t , g : N→N, n ∈N and x ∈ {0,1}<∞ let

PROGt (x) := {p |U(p) = x in time at most t (|x|)},

Dt
g (n) := {α ∈ {0,1}∞ | ∀p ∈ PROGt (α � n) : K(p)≤ |p| − g (n)},

Dt
g := {α ∈ {0,1}∞ | For nearly all n : α ∈Dt

g (n)},

A sequence α ∈ {0,1}∞ is called strongly deep if for every computable time bound t
and every constant c ∈N we have α ∈Dt

c .

It may be surprising in the definitions of Dt
g and strong depth we are comparing

|p| and K(p) instead of K(α � n) with Kt (α � n). This is resolved by the following
lemma.

Definition 6.4 (Bennett [Ben95]; Juedes, Lathrop, Lutz [JLL94]). Define the follow-
ing sets.

bDt
g (n) := {α ∈ {0,1}∞ |K(α � n)≤Kt (α � n)− g (n)},

bDt
g := {α ∈ {0,1}∞ | For almost all n : α ∈ bDt

g (n)}.

Lemma 6.5 (Bennett [Ben95], Juedes, Lathrop, Lutz [JLL94]). For a computable
time bound t there are constants c , d and a computable time bound t ′ such that for all
g and n,

– Dt
g+c (n)⊆

bD
t

g (n),

– Dt
g+c ⊆ bD

t
g ,

– bDt ′
g+d
(n)⊆Dt

g (n),

– bDt ′
g+d
⊆Dt

g .

Juedes et al. proved another version of the slow growth law that shows that
strong depth is inherited upward under tt-reducibility.

Theorem 6.6 (Juedes, Lathrop, Lutz [JLL94]). Let α,β ∈ {0,1}∞. Then, if β≤tt α
and β is strongly deep, α is also strongly deep.

79

6. KOLMOGOROV COMPLEXITY AND COMPUTATIONAL DEPTH

The most interesting result in [JLL94] is probably the following relation be-
tween depth and usefulness.

Definition 6.7. We say that a class C ⊆ {0,1}∞ has rec-measure 0 iff there is a
computable martingale d that succeeds on all α ∈ C ∩ REC, that is, if it holds that
limsupn d (α � n) =∞.

Definition 6.8. A sequence α ∈ {0,1}∞ is weakly useful if there is a computable time
bound t : N → N such that DTIMEα(t) does not have rec-measure 0 in REC, where
DTIMEα(t) designates the sets recognizable with time bound t and oracle access to α.

In other words a weakly useful set is useful in the sense that it allows to compute
a non-negligible part of REC within a fixed time bound. The following theorem
shows that for a set to be able to do that, it has to be deep.

Theorem 6.9 (Juedes, Lathrop, Lutz [JLL94]). Every weakly useful sequence is
strongly deep.

This proves in a sense that Bennett’s idea of depth modelling the computational
usefulness of a sequence was correct.

6.2 Time bounded Kolmogorov complexity and strong
depth

The main result of this chapter is a dichotomy for the time-bounded Kolmogorov
complexity of the prefixes of high and non-high c.e. sets. For a start, we discuss the
Kolmogorov complexity of initial segments of c.e. sets in general.

The initial segments of a c.e. set A have small Kolmogorov complexity; by
Barzdins’ lemma [DH10] it holds for all m that

C(A � m | m)≤+ log m and C(A � m)≤+ 2 log m.

Furthermore, there are infinitely many initial segments that have considerably
smaller complexity. The corresponding observation in the following remark is
extremely easy, but was only noted recently [HKM09] and, in particular, improves
on corresponding statements in the literature [DH10, Lemma attributed to Solovay
in Chapter 14].

Remark 6.10. Let A be a c.e. set. Then there is a constant c such that for infinitely
many m it holds that

C(A � m | m)≤ c , C(A � m)≤+ C(m)+ c , and C(A � m)≤ log m+ c .

For a proof, it suffices to fix an effective enumeration of A and to observe that there
are infinitely many m ∈ A such that m is enumerated after all numbers n ≤ m that

80

6.2. Time bounded Kolmogorov complexity and strong depth

are in A, i.e., when knowing m one can simulate the enumeration until m appears, at
which point one then knows A � m.

Barzdins [Bar68] states that there are c.e. sets with high time-bounded Kol-
mogorov complexity, and the following lemma generalizes this in so far as such sets
can be found in every high Turing degree.

Lemma 6.11. For any high set A there is a set B where A =T B such that for every
computable time bound t there is a constant ct > 0 where

Ct (B � m)≥+ ct ·m and C(B � m)≤+ 2 log m.

Moreover, if A is c.e., B can be chosen to be c.e. as well.

Proof. Let A be any high set. We will construct a Turing-equivalent set B as required.
Since A is high there is a function g computable in A that dominates any computable
function f , i.e., f (n)≤ g (n) for almost all n. Fix such a function g , and observe
that in case A is c.e., we can assume that g can be effectively approximated from
below. This is because otherwise we may replace g with the function g ′ defined
as follows. Let M g be an oracle Turing machine that computes g if supplied with
oracle A. For all n, let

eg (n, s) :=max({M Ai
g (n) | i ≤ s} ∪ {0}),

where Ai is the approximation to A after i steps of enumeration, and let

g ′(n) := lim
s→∞

eg (n, s).

We have g (n)≤ g ′(n) for all n and by construction, g ′ can be effectively approxi-
mated from below.

Partition N into consecutive intervals I0, I1, . . . where interval I j has length 2 j

and let m j =max I j . By abuse of notation, let t0, t1, . . . be an effective enumeration
of all partial computable functions. Observe that it is sufficient to ensure that
the assertion in the theorem is true for all t = ti such that ti is computable, non-
decreasing and unbounded. Assign the (potential) time bounds to the intervals
I0, I1, . . . such that t0 will be assigned to every second interval including the first one,
t1 to every second interval including the first one of the remaining intervals, and so
on for t2, t3, . . ., and note that this way ti will be assigned to every 2i+1-th interval.

We construct a set B as required. To code A into B , for all j let B(m j) = A(j),
while the remaining bits of B are specified as follows. Fix any interval I j and assume
that this interval is assigned to t = ti . Let B have empty intersection with I j \ {m j }
in case the computation of t (m j) requires more than g (m j) steps. Otherwise, run
all codes of length at most |I j | − 2 on the universal machine V for 2t (m j) steps each,

81

6. KOLMOGOROV COMPLEXITY AND COMPUTATIONAL DEPTH

and let w j be the least word of length |I j | − 1 that is not output by any of these
computations, hence C2t (w j) ≥ |w j | − 1. Let the restriction of B to the first |w j |
places in I j be equal to w j .

Now let v j be the initial segment of B of length m j + 1, i.e., up to and in-
cluding I j . In case t = ti is computable, non-decreasing and unbounded, for al-
most all intervals I j assigned to t , we have Ct (v j)> |v j |/3, because otherwise, for
some appropriate constant c , the corresponding codes would yield for almost all j
that C2t (w j)≤ |v j |/3+ c ≤ |I j | − 2. Furthermore, by construction for every such t
there is a constant ct > 0 such that for almost all m, there is some interval I j assigned
to t such that m j ≤ m and ct m ≤ m j/4. To see this, fix a t that is computable,
non-decreasing and unbounded and an I j assigned to t . Assume m could be arbitrar-
ily large compared to m j . If m became too large, due to the regular appearance of
intervals assigned to t , this would imply that m is larger than the next mk assigned
to t — so replace m j by mk .

Hence for almost all m the initial segment of B up to m cannot have Kolmogorov
complexity of less than ct m.

By construction it is clear that if A was c.e., B is c.e. as well.
To see that B ≤T A, let’s compute any fixed interval I j using A: We compute

g (m j) using A and try to compute the assigned time bound ti (m j). If this computa-
tion does not halt in at most g (m j) steps, then we know that during the construction
of B no diagonalization has occurred on this interval, so we output all 0’s on the
positions in (m j−1, m j − 1]. If on the other hand the computation of ti (m j) halts
within the given number of steps, we can retrace the diagonalization done in the
construction of B . In both cases we let B(m j) =A(j) in addition.

Finally, to see that C(B � m) ≤+ 2 log m, notice that, in order to determine
B � m without time bounds, it is enough to know for all intervals Ii up to the
interval that contains m whether the time bound ti assigned to Ii terminates before
its computation is canceled by g . Encoding this information requires one bit per
interval, plus another one describing the bit of A coded into B at the end of each
interval.

Lemma 6.12. Every high degree contains for every computable, non-decreasing and
unbounded function h a set B such that for every computable time bound t and almost
all m,

Ct (B � m)≥+
1

4
m and C(B � m)≤ h(m) · log m.

Proof. The argument is similar to the proof of Lemma 6.11, but now, when consid-
ering interval I j , we diagonalize against the largest running time among

t0(m j), . . . , th(j)−2(m j)

82

6.2. Time bounded Kolmogorov complexity and strong depth

such that the computation of this value requires not more than g (j) steps. This
way we ensure — for any computable time bound t — that at the end of almost
all intervals I j compression by a factor of at most 1/2 is possible, and that within
interval I j , we have compressibility to a factor of at most 1/4, up to a constant
additive term, because B � m j−1 was compressible by a factor of at most 1/2 and
m j−1 = |I j |.

Kummer’s gap theorem [DH10, Kum96] asserts that any array non-compu-
table c.e. Turing degree contains a c.e. set A such that there are infinitely many m
such that C(A � m)≥ 2 log m, whereas all c.e. sets in an array computable Turing
degree satisfy C(A � m) ≤ (1+ ε) log m for all ε > 0 and almost all m. Similarly,
Theorem 6.13, the main result of this section, asserts a dichotomy for the time-
bounded complexity of initial segments between high and non-high sets.

Theorem 6.13. Let A be any c.e. set.

(i) If A is high, then there exists a c.e. set B with B =T A such that for every com-
putable time bound t there is a constant ct > 0 such that for all m, it holds that
Ct (B � m)≥ ct ·m.

(ii) If A is not high, then there is a computable time bound t such that for infinitely
many n, Ct (A � m)≤+ log m .

Proof. The first assertion is immediate from Lemma 6.11. In order to demonstrate
the second assertion, let mA be a modulus of convergence of the set A, i.e.,

mA(n) =min{s ≥ m |As � m =A � m},

where As is the finite set of numbers that have been enumerated by a fixed enu-
meration of A after s steps. The modulus mA is obviously computable in A, and
since A is not high there is a computable function f such that for infinitely many m
it holds that mA(m)≤ f (m). That means that there are infinitely many lengths m
where A � m can be computed by enumerating A for f (m) steps. For these lengths,
A � m can be coded by providing the number m (code length log m) and a constant-
size code for f . Because f is computable, the time needed for the computation of
f (m) and for simulating the enumeration of A is computable itself, hence there is a
computable time bound t as required.

Remark 6.14. The second assertion in Theorem 6.13 does not extend in general to sets
that are not c.e., since for example there are low ML-random sets. This can be seen by
using the characterization of ML-random sets from Theorem 2.1, fixing one value for c
to get a Π0

1 class, and then applying the Low Basis Theorem [DH10].

83

6. KOLMOGOROV COMPLEXITY AND COMPUTATIONAL DEPTH

As another easy consequence of Lemma 6.11, we get an alternative proof of the
result due to Juedes, Lathrop and Lutz [JLL94] that every high degree contains a
strongly deep set.

Corollary 6.15. Every high degree contains a strongly deep set.

Proof. We use the set B constructed in Lemma 6.11. We know that for every
computable time bound t there is a constant ct such that for all n:

Ct (B � n)≥ ct · n and C(B � n)≤ 2 log n.

Since Kt (x)≥Ct (x) and 2C(x)≥K(x) for all words x, it follows that B is in bDt
c

for all c and t . Using Lemma 6.5 it follows that B is strongly deep.

84

CHAPTER 7
Time bounded complexity and

Solovay functions

Prefix-free Kolmogorov complexity K is not computable and in fact does not even
allow for unbounded computable lower bounds. The argument may be considered
a version of the Berry Paradox: Assume the function f is unbounded, computable
and a lower bound for Kolmogorov complexity. Look for the smallest n ∈N, such
that f (n) > k for some fixed k. By definition, n’s complexity is at least k. But
on the other hand it can be described as “the smallest natural number n such that
f (n)> k”; and since f is computable this description is of size log k +O(1), which
is a contradiction for large enough k.

However, there are computable upper bounds for K and, by a construction that
goes back to Solovay [BD09, Sol75], there are even computable upper bounds that
are non-trivial in the sense that g agrees with K, up to some additive constant, on
infinitely many places n. Such upper bounds are called Solovay functions.

For the considerations in this chapter, it makes sense to identify words with natu-
ral numbers as described in the introduction and to look at Kolmogorov complexity
as a function from N to N instead of from {0,1}<∞ to N.

For any computable time-bound t , the time-bounded version Kt of K is obvi-
ously a computable upper bound for K, and we show that Kt is indeed a computable
Solovay function in case c0n ≤ t (n) for some appropriate constant c0. As a corollary,
we obtain that the Martin-Löf randomness of the various variants of Chaitin’s Ω
extends to the time-bounded case in so far as for any t as above, the real number

ΩKt =
∑

n∈N

1

2Kt (n)

is Martin-Löf random. The corresponding proof exploits the result by Bienvenu and
Downey [BD09] that a computable function g such thatΩg =

∑

2−g (n) converges is

85

7. TIME BOUNDED COMPLEXITY AND SOLOVAY FUNCTIONS

a Solovay function if and only if Ωg is Martin-Löf random. In fact, this equivalence
extends by an even simpler proof to the case of functions g that are just right-
computable, i.e., effectively approximable from above, and one then obtains as
special cases the result of Bienvenu and Downey and a related result of Miller where
the role of g is played by the fixed right-computable but non-computable function K.

An open problem that received some attention recently [GBG09, DH10, Nie09]
is whether the class of K-trivial sets coincides with the class of sets that are g (n)-jump-
traceable for all computable functions g such that

∑

2−g (n) converges. As a step
in the direction of a characterization of K-triviality in terms of jump-traceability,
we demonstrate that a set A is K-trivial if and only if A is O(g (n)−K(n))-jump
traceable for all computable Solovay functions g , where the equivalence remains
true when we restrict attention to functions g of the form Kt , either for a single or
all functions t as above.

7.1 Solovay functions and Martin-Löf randomness

Definition 7.1 (Li, Vitányi [LV08]). A function f : N→ N is called an A-Solovay
function if KA(n) ≤+ f (n) for all n and KA(n) =+ f (n) for infinitely many n. If
A= ;, we say that f is a Solovay function.

Solovay [Sol75, BD09] had already constructed computable Solovay functions
and by slightly varying the standard construction, next we observe that time-
bounded prefix-free Kolmogorov complexity indeed provides natural examples
of computable Solovay functions.

Theorem 7.2. There is a constant c0 such that time-bounded prefix-free Kolmogorov
complexity Kt is a computable Solovay function for any computable function t : N→N
such that c0n ≤ t (n) holds for almost all n.

Proof. Fix a standard effective and effectively invertible pairing function 〈., .〉 from
N2 to N and define a tripling function [., ., .] from N3 to N by letting

[s ,σ , n] = 1s 0〈σ , n〉.

Let M be a Turing machine with two tapes that on input σ uses its first tape to simu-
late the universal machine U on input σ and, in case U(σ) = n, to compute 〈σ , n〉,
while maintaining on the second tape a unary counter for the number of steps of M
required for these computations. In case eventually 〈σ , n〉 has been computed with
final counter value s , the output of M is z = [s ,σ , n], where by construction in this
case the total running time of M is in O(s).

Call z of the form [s ,σ , n] a Solovay triple in case M (σ) = z, σ is an optimal
code for n, i.e., K(n) = |σ | and s is the number of steps it takes until the computation
of M on input σ stops. For some appropriate constant c0 and any computable

86

7.1. Solovay functions and Martin-Löf randomness

function t that eventually is at least c0n, for almost all such triples z it then holds
that

K(z) =+ Kt (z),

because given a code for M and σ , by assumption the universal machine U can
simulate the computation of the two-tape machine M with input σ with linear
overhead, hence U uses time O(s) plus the constant time required for decoding M ,
i.e., time at most c0|z |.

Next we derive a unified form of a characterization of Solovay functions in
terms of Martin-Löf randomness of the corresponding Ω-number due to Bienvenu
and Downey [BD09] and a result of Miller [Mil10] that asserts that the notions of
weakly low and low for Ω coincide. Before, we review some standard notation and
facts relating to Ω-numbers.

Definition 7.3. For a function f : N→N, the Ω-number of f is

Ω f :=
∑

n∈N
2− f (n).

We write ΩA
K for

∑

n∈N 2−KA(n).

Definition 7.4. A function f : N→ N is an information content measure relative
to a set A in case f is right-computable with access to the oracle A and Ω f converges;
furthermore, the function f is an information content measure if it is an information
content measure relative to the empty set.

The following remark describes for a given information content measure f an
approximation from below to Ω f that has certain special properties. For the sake
of simplicity, in the remark only the oracle-free case is considered and the virtually
identical considerations for the general case are omitted.

Remark 7.5. For a given information content measure f , we fix as follows a non-
decreasing computable sequence a0,a1, . . . that converges to Ω f and call this sequence the
canonical approximation of Ω f .

First, we fix some standard approximation to the given information content mea-
sure f from above, i.e., a computable function (n, s) 7→ fs (n) such that for all n the
sequence f0(n), f1(n), ... is a non-ascending sequence of natural numbers that converges
to f (n), where we assume in addition that fs (n)− fs+1(n) ∈ {0,1}. Then in order to
obtain the ai , let a0 = 0 and given ai , define ai+1 by searching for the next pair of the
form (n, 0) or the form (n, s + 1) where in addition it holds that fs (n)− fs+1(n) = 1
(with some ordering of pairs understood), let

di = 2− f0(n) or di = 2− fs+1(n)− 2− fs (n) = 2− fs (n),

87

7. TIME BOUNDED COMPLEXITY AND SOLOVAY FUNCTIONS

respectively, and let ai+1 = ai + di . Furthermore, in this situation, say that the increase
by di from ai to ai+1 occurs due to n.

It is well-known [DH10] that among all right-computable functions exactly the
information content measures are, up to an additive constant, upper bounds for the
prefix-free Kolmogorov complexity K. The same applies relative to a set A.

Theorem 7.6 unifies two results by Bienvenu and Downey [BD09] and by
Miller [Mil10], which are stated below as Corollaries 7.7 and 7.10. The proof of
the backward direction of the equivalence stated in Theorem 7.6 is somewhat more
direct and uses different methods when compared to the proof of Bienvenu and
Downey, and is quite a bit shorter than Miller’s proof, though the main trick of
delaying the enumeration via the notion of a matched increase is already implicit
there [DH10, Mil10]. Note in this connection that Bienvenu has independently
shown that Miller’s result can be obtained as a corollary to the result of Bienvenu
and Downey [DH10].

Theorem 7.6. Let f be an information content measure relative to a set A. Then f is
an A-Solovay function if and only if Ω f is Martin-Löf random relative to A.

In the proof we will use the classic Kraft-Chaitin Theorem (see Theorem 2.2.17
in Nies [Nie09]). A bounded request set is a computably enumerable list of pairs
(li , wi) for i ∈ N such that

∑

i 2−li ≤ 1. A bounded request set is a “wish list” on
which we can place requests such as “Ensure that word w has a short description
of length l .” The Kraft-Chaitin Theorem now states that this list can be effectively
converted into a description of a prefix-free machine M such that for every word wi
there is a description di with |di |= li such that M (di) = wi . In other words, if our
wish list is not too demanding, the theorem guarantees that there exists a machine
that meets our demands.

Moreover, the theorem guarantees that if we even have
∑

i 2−li ≤ 2−k for some
k, then M only terminates on a set of inputs of measure 2−k . We can use this
to economize on description lengths: Simply modify the bounded request set by
replacing each li by li − k. We then still have

∑

i 2−(li−k) ≤ 1, which means we can
apply the theorem also to the new bounded requested set. That way, we will get a
new valid prefix-free machine M ′ that still generates the same words wi , but from
descriptions that are even k bits shorter than before. We will use this trick in the
following proof.

Proof of Theorem 7.6. We first show the backwards direction of the equivalence
asserted in the theorem, where the construction and its verification bear some
similarities to Kučera and Slaman’s [KS01] proof that left-computable sets that are
not Solovay complete cannot be Martin-Löf random. We assume that f is not an A-
Solovay function and construct a sequence U0, U1, . . . of sets that is a Martin-Löf test
relative to A and covers Ω f . In order to obtain the component Uc , let a0,a1, . . . be
the canonical approximation toΩ f where in particular ai+1 = ai+di for increases di

88

7.1. Solovay functions and Martin-Löf randomness

that occur due to some n. Let bi ,n be the sum of the first i increases d j that are due
to n. Say that bi ,n is c -matched if it holds that

bi ,n ≤
2−KA(n)

2c+1
. (7.1)

For every bi ,n for which it could be verified that it is c -matched, let j be largest
index such that d j contributes to bi ,n . Now add an interval of size 2d j to Uc , where
this interval either starts at the maximum place that is already covered by Uc or
at a`, whichever is larger. Here ` is the number of steps in the approximation of Ω f
that we have made, where we need to make sure that ` is at least j (if it is not we can
just approximate Ω f further until it is).

By construction, for all bi ,n that are c -matched, (7.1) together with the trivial
bound

∑

n∈N 2−KA(n) ≤ 1 implies the measure bound 2−c for Uc . Also, the sets Uc
are uniformly c.e. relative to A, hence U0, U1, . . . is a Martin-Löf test relative to A.
Furthermore, this test covers Ω f because by the assumption that f is not an A-
Solovay function, and by the fact stated above that information content measures
relative to A are upper bounds for KA (up to a constant), it holds that

lim
n→∞
(f (n)−KA(n)) =∞.

Hence for any fixed c , for any j large enough the bi ,n ’s to which d j contributes will
eventually become c -matched, resulting in the addition of an interval to Uc . This
makes sure that almost every a` is contained in one of the intervals from which Uc
is built. At any moment the sum of the still missing increases is obviously equal
to the difference between the current value a` of the approximation to Ω f and Ω f
itself. Since we always add intervals twice as long as the increase, this ensures that
Ω f is contained in Uc .

For ease of reference, we review the proof of the forward direction of the
equivalence asserted in the theorem, which follows by the same line of standard
argument that has already been used by Bienvenu and Downey and by Miller. For a
proof by contraposition, assume thatΩ f is not Martin-Löf random relative to A, that
is, for every constant c there is a prefix σc of Ω f such that KA(σc)≤ |σc |−2c . Again
consider the canonical approximation a0,a1, . . . to Ω f where f (n, 0), f (n, 1), . . . is
the corresponding effective approximation from above to f (n) as in Remark 7.5.
Moreover, for σc as above we let sc be the least index s such that as exceeds σc . Since
σc vΩ f this implies σc ≤ asc

≤Ω f ; so the sum over all values 2− f (n), where the n
are such that none of the increases d0 through dsc

was due to n, is at most 2−|σc |.
Hence all pairs of the form (f (n, s)−|σc |+1, n) for such n and s where either s = 0
or f (n, s) differs from f (n, s−1) form a sequence of Kraft-Chaitin axioms, which is
uniformly effective in c and σc relative to oracle A. Observe that the approximation

89

7. TIME BOUNDED COMPLEXITY AND SOLOVAY FUNCTIONS

f (n, s) will eventually reach the correct value f (n); so for each n, there is an axiom
of the form (f (n)− |σc |+ 1, n). Also, since we only add axioms to the KC set when
the approximation of f (n) has actually changed, the sum of all terms 2−k over all
axioms of the form (k , n) is less than 2− f (n)−|σc |.

Now consider a prefix-free Turing machine M with oracle A that given codes
for c and σc and some other word p as input, first computes c and σc , then searches
for sc , and finally outputs the word that is coded by p according to the Kraft-Chaitin
axioms for c , if such a word exists. If we let d be the coding constant for M , we have
for all sufficiently large c and n that

KA(n)≤ 2 log c +KA(σc)+ f (n)− |σc |+ 1+ d ≤ f (n)− c .

As special cases of Theorem 7.6 we obtain the following results by Bienvenu and
Downey [BD09] and by Miller [Mil10], where the former one is immediate and for
the latter one it suffices to observe that the definition of the notion low for Ω in
terms of Chaitin’s Ω number

Ω :=
∑

{x : U(x)↓}
2−|x|.

is equivalent to a definition in terms of ΩK.

Corollary 7.7 (Bienvenu and Downey). A computable information content measure f
is a Solovay function if and only if Ω f is Martin-Löf random.

Definition 7.8. A set A is called low for Ω if Ω is Martin-Löf random relative to A. A
is low for Ω f if Ω f is Martin-Löf random relative to A.

Definition 7.9. A set A is called weakly low for K iff there are infinitely many n such
that K(n)≤+ KA(n).

Corollary 7.10 (Miller). A set A is weakly low for K if and only if A is low for Ω.

Proof. In order to see the latter result, it suffices to let f =K and to recall that for
this choice of f the properties of A that occur in the two equivalent assertions in the
conclusion of Theorem 7.6 coincide with the concepts weakly low and low for ΩK.
But the latter property is equivalent to being low for Ω, because of Remark 7.11
below.

Remark 7.11. Because all left-computable Martin-Löf random sets are mutually Solovay
equivalent, it follows that a set A is low for Ω if and only if any left-computable random
set is Martin-Löf random relative to A if and only if all left-computable random sets are
Martin-Löf random relative to A [Nie09, Theorem 3.2.29].

90

7.2. Solovay functions and jump-traceability

By Corollary 7.7 and Theorem 7.2 it is immediate that the known Martin-Löf
randomness of ΩK extends to the time-bounded case.

Corollary 7.12. There is a constant c0 such that ΩKt :=
∑

x∈N 2−Kt (x)is Martin-Löf
random for any computable function t where c0n ≤ t (n) for almost all n.

7.2 Solovay functions and jump-traceability

In an attempt to define K-triviality without resorting to effective randomness or
measure, Barmpalias, Downey and Greenberg [GBG09] searched for characteri-
zations of K-triviality via jump-traceability. They demonstrated that K-triviality
is not implied by being h-jump-traceable for all computable functions h such that
∑

n 1/h(n) converges. Subsequently, the following question received some atten-
tion: Can K-triviality be characterized by being g -jump traceable for all computable
functions g such that

∑

2−g (n) converges, that is, for all computable functions g
that, up to an additive constant term, are upper bounds for K?

We will now argue that Solovay functions can be used for a characterization of K-
triviality in terms of jump traceability. However, we will not be able to completely
avoid the notion of Kolmogorov complexity.

Definition 7.13. A set A is K-trivial if K(A � n)≤+ K(n) for all n.

Recall the definition of a trace from section 4.1.

Definition 7.14. Let h : N→N be a computable function. A set A is O(h(n))-jump-
traceable if there is a function h ′ ∈O(h(n)) such that for every Φ partially computable
in A there is an h ′-bounded c.e. trace for Φ.

Theorem 7.15. There is a constant c0 such that the following assertions are equivalent
for any set A.

(i) A is K-trivial.

(ii) A is O(g (n)−K(n))-jump-traceable for every computable Solovay function g .

(iii) A is O(Kt (n)−K(n))-jump-traceable for all computable functions t where for
almost all n, c0n ≤ t (n) .

(iv) A is O(Kt (n)−K(n))-jump-traceable for some computable function t where for
almost all n, c0n ≤ t (n) .

Proof. That (ii) implies (iii) is immediate by Theorem 7.2, and the implication
from (iii) to (iv) is trivially true.

91

7. TIME BOUNDED COMPLEXITY AND SOLOVAY FUNCTIONS

(i) implies (ii): First, let A be K-trivial and let ΦA be any partially A-computable
function. Let 〈., .〉 be some standard effective pairing function. Since A is K-trivial
and hence low for K, we have

K(〈n,ΦA(n)〉=+ KA(〈n,ΦA(n)〉=+ KA(n) =+ K(n), (7.2)

whenever ΦA(n) is defined. Observe that the constant that is implicit in the re-
lation =+ depends only on A in the case of the first and last relation symbol,
but depends also on Φ in case of the middle one. Let d be a constant such that
K(〈n,ΦA(n)〉)≤K(n)+ d for all n as above.

By the coding theorem there can be at most constantly many pairs of the
form (n, y) such that K(n, y) and K(n) differ at most by a constant, and given n,
K(n) and the constant, we can enumerate all such pairs.

So let c be a constant such that for all n,

#{σ : |σ | ≤K(n)+ d and U(σ) = 〈n, y〉 for some y} ≤ c . (7.3)

If we knew K(n), we could build a trace Tn for ΦA(n) by simply trying to compute
U(σ) for all strings σ of length at most K(n)+ d and, whenever one such computa-
tion converges and outputs some string of the form 〈n, y〉, putting y in Tn . Then all
Tn would have size at most c by (7.3) and ΦA(n) ∈ Tn would follow by (7.2).

Since K(n) is not computable, this strategy will not work. Instead, we com-
putably approximate K(n) from above by a decreasing sequence Ks (n). Here, as we
know that K(n)≤ g (n)+O(1), and since this upper bound is computable, we may
as well assume that K0(n)≤ g (n)+O(1). As soon as a value Ks (n) is reached in the
approximation, we apply the strategy for enumerating Tn as described, but with
Ks (n) in place of K(n). We can stop the enumeration for the current Ks as soon as c
elements have been enumerated into Tn . As soon as a new value Ks+1(n)<Ks (n)
is reached, we start the strategy anew, again enumerating up to c elements etc.
Eventually, Ks (n) will drop to the true value K(n) and by (7.2) we can be sure
that ΦA(n) will be enumerated if it is defined. Since the value of Ks drops at most
g (n)−K(n)+O(1) times and for each change we enumerate at most c elements, the
size of the trace thus enumerated can be at most c · (g (n)−K(n)+O(1)).

(iv) implies (i): Let c0 be the constant from Theorem 7.2 and let t be a computable
time bound such that (iv) is true for this value of c0. Then Kt is a computable Solovay
function by choice of c0.

Recall the tripling function [., ., .] and the concept of a Solovay triple [s ,σ , n]
from the proof of Theorem 7.2, and define a partial A-computable function Φ that
maps any Solovay triple [s ,σ , n] to A � n. Then given an optimal code σ for n,
one can compute the corresponding Solovay triple z = [s ,σ , n], where then Kt (z)
and K(z) differ only by a constant, hence, by O(Kt (n)−K(n))-traceability, the trace

92

7.2. Solovay functions and jump-traceability

of ΦA at z has constant size and contains the value A � n, that is, we have

K(A � n)≤+ |σ |=K(n),

hence A is K-trivial.

93

Bibliography

[AKRR03] Eric Allender, Michal Koucky, Detlef Ronneburger, and Sambuddha
Roy. Derandomization and distinguishing complexity. In Annual
IEEE Conference on Computational Complexity, pages 209–220, Los
Alamitos, CA, USA, 2003.

[AS98] Klaus Ambos-Spies. Algorithmic randomness revisited. In Language,
Logic and Formalization of Knowledge. Coimbra Lecture and Proceed-
ings of a Symposium held in Siena in September 1997, pages 33–52,
1998.

[Bar68] Janis Barzdin. Complexity of programs to determine whether natural
numbers not greater than n belong to a recursively enumerable set.
Soviet Math. Dokl., 9:1251–1254, 1968.

[BD09] Laurent Bienvenu and Rod Downey. Kolmogorov complexity and
solovay functions. In Proceedings of the 26th International Symposium
on Theoretical Aspects of Computer Science (STACS), pages 147–158,
2009.

[BDG09] George Barmpalias, Rod Downey, and Noam Greenberg. K -trivial
degrees and the jump-traceability hierarchy. Proc. Amer. Math. Soc.,
137(6):2099–2109, 2009.

[Ben95] Charles H. Bennett. Logical depth and physical complexity. In The
universal Turing machine (2nd ed.): a half-century survey, pages 207–235.
Springer, 1995.

[BFL01] Harry Buhrman, Lance Fortnow, and Sophie Laplante. Resource-
bounded Kolmogorov complexity revisited. SIAM J. Comput.,
31(3):887–905, 2001.

[BHKM] Laurent Bienvenu, Rupert Hölzl, Thorsten Kräling, and Wolfgang
Merkle. Separations of non-monotonic randomness notions. Journal
of Logic and Computation. 22 pages. In print.

95

BIBLIOGRAPHY

[BHKM09] Laurent Bienvenu, Rupert Hölzl, Thorsten Kräling, and Wolfgang
Merkle. Separations of non-monotonic randomness notions. In Pro-
ceedings of the Sixth International Conference on Computability and
Complexity in Analysis, Dagstuhl Seminar Proceedings, 2009. 12 pages
(electronic).

[BM07] Laurent Bienvenu and Wolfgang Merkle. Reconciling data compres-
sion and Kolmogorov complexity. In Proceedings of the 34th Interna-
tional Conference on Automata, Languages and Programming (ICALP),
pages 643–654, Springer, Berlin, 2007.

[BvMR+00] Harry Buhrman, Dieter van Melkebeek, Kenneth Regan, D. Sivaku-
mar, and Martin Strauss. A generalization of resource-bounded mea-
sure, with application to the BPP vs. EXP problem. SIAM Journal on
Computing, 30(2):576–601, 2000.

[CDG08] Peter Cholak, Rod Downey, and Noam Greenberg. Strong jump-
traceability I: The computably enumerable case. Advances in Mathe-
matics, 217(5):2045–2074, 2008.

[CHV93] Jin-Yi Cai, Lane A. Hemachandra, and Jozef Vyskoč. Promises and
fault-tolerant database access. In Complexity Theory: Current Research,
pages 101–146. Cambridge University Press, 1993.

[DH10] Rod Downey and Denis Hirschfeldt. Algorithmic Randomness and
Complexity. Springer, 2010.

[ESY84] Shimon Even, Alan L. Selman, and Yacov Yacobi. The complexity
of promise problems with applications to public-key cryptography.
Inform. and Control, 61(2):159–173, 1984.

[FGSW] Johanna Franklin, Noam Greenberg, Frank Stephan, and Guohua
Wu. Anti-complexity, lowness and highness notions, and reducibilities
with tiny use. Manuscript, 2009.

[FK96] Lance Fortnow and Martin Kummer. On resource-bounded instance
complexity. Theor. Comput. Sci., 161(1-2):123–140, 1996.

[FS10] Johanna Franklin and Frank Stephan. Schnorr trivial sets and truth-
table reducibility. Journal of Symbolic Logic, 75:501–521, 2010.

[GBG09] R. Downey G. Barmpalias and N. Greenberg. K-trivial degrees and
the jump-traceability hierarchy. Proc. Amer. Math. Soc., 2009.

[HKM09] Rupert Hölzl, Thorsten Kräling, and Wolfgang Merkle. Time-
bounded Kolmogorov complexity and Solovay functions. In Proceed-
ings of the 34th International Symposium on Mathematical Foundations
of Computer Science, pages 392–402, August 2009.

96

Bibliography

[HM08] Rupert Hölzl and Wolfgang Merkle. Generation complexity versus
distinction complexity. In Proceedings of the 5th International Con-
ference on Theory and Applications of Models of Computation, pages
457–466, April 2008.

[HM10] Rupert Hölzl and Wolfgang Merkle. Traceable sets. In Proceedings of
the World Computer Congress: Theoretical Computer Science, September
2010. 15 pages. Accepted for publication.

[JLL94] David W. Juedes, James I. Lathrop, and Jack H. Lutz. Computational
depth and reducibility. Theor. Comput. Sci., 132(1-2):37–70, 1994.

[Joc89] Carl G. Jockusch, Jr. Degrees of functions with no fixed points. In
Proceedings of the Eighth International Congress of Logic, Methodology
and Philosophy of Science (Moscow 1987), pages 191–201. 1989.

[Kan70] Max I. Kanovich. On the complexity of enumeration and decision of
predicates. Soviet Math. Dokl., 11:17–20, 1970.

[KHMS] Bjørn Kjos-Hanssen, Wolfgang Merkle, and Frank Stephan. Kol-
mogorov complexity and the recursion theorem. Trans. Amer. Math.
Soc. In print.

[KL10] Bart Kastermans and Steffen Lempp. Comparing notions of random-
ness. Theor. Comput. Sci., 411:602–616, 2010.

[KS01] Antonín Kucera and T. Slaman. Randomness and recursive enumer-
ability. SIAM J. Comput., 31(1):199–211, 2001.

[Kum96] Martin Kummer. Kolmogorov complexity and instance complexity of
recursively enumerable sets. SIAM J. Comput., 25(6):1123–1143, 1996.

[Lev84] Leonid A. Levin. Randomness conservation inequalities; information
and independence in mathematical theories. Inf. Control, 61(1):15–37,
1984.

[LL99] James I. Lathrop and Jack H. Lutz. Recursive computational depth.
Inf. Comput., 153(2):139–172, 1999.

[LV08] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity
and Its Applications. Springer, 2008.

[Mar66] Donald A. Martin. Classes of recursively enumerable sets and degrees
of unsolvability. Z. Math. Logik Grundlagen Math., 12:295–310, 1966.

[Mer03] Wolfgang Merkle. The Kolmogorov-Loveland stochastic sequences
are not closed under selecting subsequences. Journal of Symbolic Logic,
68:1362–1376, 2003.

97

BIBLIOGRAPHY

[Mer08] Wolfgang Merkle. The complexity of stochastic sequences. Journal of
Computer and System Sciences, 74(3):350–357, 2008.

[Mil10] Joseph S. Miller. The K-degrees, low for K-degrees and weakly low
for K-degrees. Notre Dame Journal of Formal Logic, 50(4)(4):381–391,
2010.

[MMN+06] Wolfgang Merkle, Joseph S. Miller, André Nies, Jan Reimann, and
Frank Stephan. Kolmogorov-Loveland randomness and stochasticity.
Annals of Pure and Applied Logic, 138(1-3):183–210, 2006.

[MN06] Joseph Miller and André Nies. Randomness and computability: open
questions. Bulletin of Symbolic Logic, 12(3):390–410, 2006.

[MSU98] Andrei A. Muchnik, Alexei Semenov, and Vladimir Uspensky. Math-
ematical metaphysics of randomness. Theoretical Computer Science,
207(2):263–317, 1998.

[Nie09] André Nies. Computability and Randomness. Oxford University Press,
2009.

[Sch71] Claus Schnorr. Zufälligkeit und Wahrscheinlichkeit, volume 218 of
Lecture Notes in Mathematics. Springer-Verlag, 1971.

[Sch73] Claus P. Schnorr. Process complexity and effective random tests. J.
Comput. System Sci., 7:376–388, 1973.

[She10] Alexander Shen. Private communication. February 2010.

[Sim75] Janos Simon. On some central problems in computational complexity.
Technical report, Cornell University, Ithaca, NY, USA, 1975.

[Sip83] Michael Sipser. A complexity theoretic approach to randomness.
In Proceedings of the Fifteenth Annual ACM Symposium on Theory of
Computing (STOC), pages 330–335, New York, NY, USA, 1983. ACM.

[Sol75] Robert M. Solovay. Draft of paper (or series of papers) on Chaitin’s
work. 1975. Unpublished notes.

[Ste10] Frank Stephan. Private communication. April 2010.

[TZ01] Sebastiaan A. Terwijn and Domenico Zambella. Computational ran-
domness and lowness. Journal of Symbolic Logic, 66(3):1199–1205,
2001.

98

	Contents
	Introduction
	Summary
	Publications
	Thanks

	Preliminaries
	Kolmogorov complexity without time bounds
	Non-monotonic Randomness
	Permutation and injection randomness
	Randomness notions based on total computable strategies
	Randomness notions based on partial computable strategies

	Traceability and complexity
	Traceability
	Autocomplex and complex sets
	Diagonally non-computable sets
	Equivalences of the almost everywhere notions
	Equivalence of the infinitely often notions
	Computable traces and total machines
	Lower bounds on initial segments complexity
	Tiny use and autocomplexity
	Time bounded traceability and complexity

	Kolmogorov complexity with time bounds
	Distinction Complexity
	Known results
	Tools
	The linearly exponential case
	The polynomial case
	Space bounds

	Kolmogorov complexity and computational depth
	Introduction
	Time bounded Kolmogorov complexity and strong depth

	Time bounded complexity and Solovay functions
	Solovay functions and Martin-Löf randomness
	Solovay functions and jump-traceability

	Bibliography

