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Deutsche Zusammenfassung:

Das zweidimensionale Hubbard-Modell für lokal wechselwirkende Fermionen
auf einem Quadratgitter gilt trotz seiner Einfachheit als vielversprechen-
der Ansatz zum Verständnis der Cooperpaarbildung in den Hochtempera-
tursupraleitung zeigenden quasi-zweidimensionalen Kupratmaterialien. In
der vorliegenden Arbeit wird dieses Modell mit Hilfe der auf einer exak-
ten Flussgleichung für die mittlere effektive Wirkung basierenden funk-
tionalen Renormierungsgruppe untersucht. Zusätzlich zu den fermionischen
Freiheitsgraden des Hubbard-Modells werden bosonische Felder eingeführt,
die möglichen kollektiven Ordnungen des Systems wie etwa Magnetismus
oder Supraleitung entsprechen. Die Wechselwirkungen zwischen Bosonen
und Fermionen werden mit Hilfe der Methode der “Rebosonisierung” be-
stimmt, die sich als kontinuierliche, skalenabhängige Hubbard-Stratonovich-
Transformation beschreiben lässt. Diese Methode erlaubt zum einen eine
effiziente Parametrisierung der impulsabhängigen effektiven fermionischen
Zwei-Teilchen-Wechselwirkung (Vierpunktvertex), zum anderen ermöglicht
sie es, den Fluss der laufenden Kopplungen in Phasen mit spontan ge-
brochener Symmetrie zu verfolgen, wo bosonische Fluktuationen darüber
entscheiden, welche Ordnungsphänomene auf großen Längenskalen anzu-
treffen sind. Die hier vorgestellten numerischen Resultate für das Phasen-
diagramm berücksichtigen insbesondere auch den wechselseitigen Einfluss
der verschiedenen, miteinander konkurrierenden Ordnungsparameter.

Summary in English:

Despite its apparent simplicity, the two-dimensional Hubbard model for
locally interacting fermions on a square lattice is widely considered as a
promising approach for the understanding of Cooper pair formation in the
quasi two-dimensional high-Tc cuprate materials. In the present work this
model is investigated by means of the functional renormalization group,
based on an exact flow equation for the effective average action. In addition
to the fermionic degrees of freedom of the Hubbard Hamiltonian, bosonic
fields are introduced which correspond to the different possible collective
orders of the system, for example magnetism and superconductivity. The
interactions between bosons and fermions are determined by means of the
method of “rebosonization” (or “flowing bosonization”), which can be de-
scribed as a continuous, scale-dependent Hubbard-Stratonovich transforma-
tion. This method allows an efficient parameterization of the momentum-
dependent effective two-particle interaction between fermions (four-point
vertex), and it makes it possible to follow the flow of the running couplings
into the regimes exhibiting spontaneous symmetry breaking, where bosonic
fluctuations determine the types of order which are present on large length
scales. Numerical results for the phase diagram are presented, which include
the mutual influence of different, competing types of order.
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Chapter 1

Introduction

The two-dimensional Hubbard model [1, 2, 3] on a square lattice has at-
tracted a lot of attention in the past 25 years because many researchers
hope that it may throw some light on the mechanism of superconductivity
in the high-Tc cuprates, which are the superconducting materials with the
highest known transition temperatures from the normal to the supercon-
ducting state. In analogy to the phase diagram of the cuprates, which are
antiferromagnetic at zero doping and superconducting at nonzero (either
electron or hole) doping, the Hubbard model shows antiferromagnetic order
at half filling and is believed to exhibit d-wave superconducting order away
from half filling. Today there are many studies which predict d-wave super-
conductivity in a certain range of parameters aside from half filling, see e.
g. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], for a systematic overview
see [18].

Among the studies which were first to confirm the appearance of d-
wave superconducting order in the two-dimensional Hubbard model there
are some strikingly simple scaling approaches [19, 20, 21]. On a higher level
of technical sophistication, the fermionic functional renormalization group
approach [22, 23, 24, 25, 26, 27, 28, 29] has been of great help to analyze
in detail the competition of different types of instabilities and collective
order. Most studies presented so far rely on the flow of the momentum-
dependent four-fermion vertex. They are performed in the so-called N -
patch scheme where the Fermi surface is discretized into N patches, and
the angular dependence of the four-fermion vertex is evaluated for only one
momentum in each directional patch.

The approach presented in this work brings together and continues ear-
lier attempts [30, 31, 32, 33, 34, 35, 36] to combine the advantages of the
fermionic functional renormalization group with those of partial bosoniza-
tion (or Hubbard-Stratonovich transformation) [37, 38]. It is based on the
same version of the renormalization group idea [39, 40, 41, 42], the Wet-
terich flow equation for the effective average action [43], that is used in most
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renormalization group studies operating within a purely fermionic frame-
work. Furthermore, it builds on the introduction of bosonic fields corre-
sponding to different types of possible collective order of the system. The
present approach is also inspired by the efficient parameterization method
for the fermionic four-point vertex proposed and developed in [44]. The
link between the two approaches is given by the fact that different chan-
nels of the fermionic four-point function, defined by their (almost) singular
momentum structure, correspond to different types of possible orders which
are described by different composite boson fields.

There are mainly two advantages of the method used in this thesis: The
first is that it allows to treat the complex momentum dependence of the
fermionic four-point function in an efficient, simplified way, involving only
a comparatively small number of coupled flow equations. The fermionic
four-point vertex, which is a scale-dependent function of three independent
momenta, is decomposed in terms of bosonic propagators and Yukawa cou-
plings, which are each functions of only one variable. A comparative dis-
advantage may be a better resolution of contributions from many channels
in the N -patch approach. In principle, however, this disadvantage can be
avoided by carefully making the choice of bosons taken into account and by
choosing an appropriate parameterization for the propagators and Yukawa
couplings.

The second advantage of the method used here is that it permits to fol-
low the renormalization group flow into the phases exhibiting spontaneous
symmetry breaking. (For renormalization group studies of symmetry broken
phases in similar models see [45, 46, 47].) At a certain scale of the renormal-
ization flow, the momentum-dependent fermionic four-point vertex usually
diverges, and this signals the onset of local collective order. In order to
extend the renormalization group treatment to the locally ordered regimes,
it is necessary to describe the system in terms of composite degrees of free-
dom such as magnons or Cooper pairs. These are composite bosons each
of which corresponds to some different type of collective order. A nonzero
expectation value of the magnon field, for instance, signals the presence of
some form of magnetic order, and a nonzero value of some Cooper pair field
signals superconducting order. Different Cooper pair fields are distinct due
to different symmetries of the order parameter they correspond to. The lan-
guage of partial bosonization, where the different types of bosons are taken
into account explicitly, is therefore the right tool to investigate the regimes
exhibiting different forms of collective order. A particular advantage of the
present approach, which combines functional renormalization and partial
bosonization, is that it allows to investigate the possible coexistence of dif-
ferent types of order in the same range of parameters.

This thesis is structured as follows: Chapter 2 gives a brief review of
superconductivity in the high-Tc cuprates and of the possible relevance of
the two-dimensional Hubbard model for these materials. Afterwards, the
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Hubbard model itself is reviewed and the language of partial bosonization
is introduced. Based on it, a short mean field analysis of the main fea-
tures of the antiferromagnetically ordered regime is given. In Chapter 3
the functional renormalization group setup is introduced on which the cal-
culations presented in later chapters are based. Particular focus lies on
the concept of the effective action Γ and on the exact flow equation for its
scale-dependent relative, the effective average action or flowing action Γk.
Chapter 4 presents the details of the renormalization group treatment for
the symmetric regime. In particular, it is explained in detail how contri-
butions to the momentum-dependent four-fermion vertex are taken into ac-
count in the partially bosonized language by means of the so-called “flowing
bosonization” scheme. Flow equations and numerical results for the symme-
try broken regimes are discussed in Chapter 5. In that chapter, special focus
lies on the mutual influence of antiferromagnetic and d-wave superconduct-
ing order and on their possible coexistence. In Chapter 6 a brief summary
of the preceding chapters is given, followed by an outlook on possible future
extensions.
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Chapter 2

The Hubbard Model and the

High-Tc Cuprates

The present chapter starts with a brief review of high temperature super-
conductivity in the cuprates. The two-dimensional Hubbard Hamiltonian
on a square lattice is motivated as an elementary description of the CuO2-
layers in the cuprate materials. The functional integral representation of the
grand canonical partition function at finite temperature is recapitulated and
the shape of the Fermi surface at small next-to-nearest neighbor hopping t′

is discussed. Subsequently, I introduce the idea of partial bosonization or
Hubbard-Stratonovich transformation. This designates the introduction of
bosonic fields corresponding to different types of fermionic bilinears in such
a manner that the four-fermion interaction is eliminated in favor of Yukawa-
type interactions between the fermions and bosons. As an application of this
concept, the deformation of the Fermi surface in the presence of a nonvan-
ishing antiferromagnetic gap is derived in a mean field analysis based on the
Hubbard-Stratonovich approach.

2.1 High Temperature Superconductivity

Superconductivity was discovered in 1911 by Kamerlingh Onnes in the form
of a vanishing (or at least immeasurably small) electrical resistance in mer-
cury at cryogenic temperatures. In 1933 a further fundamental characteristic
of superconducting materials was discovered: According to the Meissner ef-
fect, discovered by Meissner and Ochsenfeld, the magnetic field is completely
expelled from the interior of a material which undergoes a transition from the
normal to the superconducting state. Both fundamental aspects of super-
conductivity, the vanishing resistance and the Meissner effect, were finally
explained in 1957 by Bardeen, Cooper and Schrieffer (BCS) in their so-called
BCS-theory of superconductivity. In this theory the transition from the nor-
mal state to a state with vanishing resistance below some nonzero critical
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temperature Tc is explained in terms of the formation of pairs of electrons,
so-called Cooper pairs, which are the carriers of the superconducting cur-
rent. The origin of Cooper pair formation in conventional superconductors
is due to phonons (lattice vibrations), which explains why the critical tem-
peratures for the transition to superconductivity are distinct for materials
differing in the relative abundance of isotopes involved (isotope effect).

Estimates for the highest achievable transition temperatures from the
normal to the superconducting state on the basis of the BCS-theory pre-
dicted superconductivity to be impossible for temperatures above 30 K. In
April 1986, however, J. G. Bednorz and K. A. Müller discovered supercon-
ductivity in LaBaCuO, a ceramic copper oxide, with a transition tempera-
ture of approximately 30 K. Soon after, in January 1987, yttrium barium
copper oxide (YBCO), another material of the same class, was discovered to
have a critical temperature of 90K, and today the highest known transition
temperature of a copper oxide (at normal pressure) is as high as 135 K.

A common characteristic of all cuprate superconducting materials is their
quasi two-dimensional structure. Superconductivity seems to arise from
electrons moving within the weakly coupled CuO2 layers. Other atoms and
ions are confined to intermediate layers where they act as stabilizers of the
three-dimensional crystal structure and as sources of additional electrons or
holes: These are necessary to “dope” the copper oxide planes from the an-
tiferromagnetically ordered, Mott insulating state which they occupy in the
absence of doping into the superconducting state. The amount of (electron
or hole) doping at which the highest transition temperature occurs is called
“optimal doping”. Similarly, one speaks of an “underdoped” (“overdoped”)
regime at lower (higher) than optimal doping.

An especially intriguing feature of the cuprate phase diagram is the so-
called pseudogap phase, which extends above the antiferromagnetic and su-
perconducting critical temperatures up to at least optimal doping. (For an
introductory overview of the cuprate phase diagram with special emphasis
on the pseudogap phase see [48].) In this regime, the arcs of the Fermi
surface close to the (±π, 0)- and (0,±π)-points are destroyed so that a gap
is experienced by electrons moving along the copper-oxygen bonds whereas
there is no such gap for electrons moving at 45◦ to these bonds. The origin
and properties of this phase are perhaps the least understood aspect of the
cuprate phase diagram. For functional renormalization group approaches to
the pseudogap phase see [49, 50, 51].

Today, almost 25 years after the discovery of high temperature supercon-
ductivity, there is still no fully established consensus about the mechanism
which is responsible for it. One of the most promising approaches is the
spin fluctuation route to high-Tc in the cuprates, which attempts to explain
cuprate superconductivity as arising from antiferromagnetic spin fluctua-
tions in analogy to how conventional superconductivity arises from lattice
vibrations [4, 5, 6, 7, 8, 9, 10]. This approach is in a sense conservative,
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for it takes over many essential ideas from the BCS theory of conventional
superconductors, just replacing phonons by (antiferromagnetic) magnons as
the “pairing glue” which is supposedly responsible for Cooper pair forma-
tion. Despite this similarity, there is, however, one crucial difference between
the theory of conventional (phonon-induced) superconductivity and the spin
fluctuation route to high-Tc, namely that the latter predicts the supercon-
ducting order parameter to exhibit dx2−y2- rather than s-wave symmetry.
Experimental evidence for the cuprates seems to confirm this prediction
of the spin fluctuation approach. The relation between antiferromagnetic
spin fluctuations as a possible mechanism of Cooper pair formation and the
d-wave symmetry of the superconducting order parameter will be further
discussed in Chapter 4.

2.2 The Hubbard Hamiltonian

In 1963 the Hubbard Hamiltonian was introduced independently by Hub-
bard [1], Kanamori [2] and Gutzwiller [3]. It describes fermions (e. g.
electrons) on a lattice by means of a hopping term, which accounts for the
motion of the fermions between different lattice sites, and an “onsite” in-
teraction term, which accounts for the local Coulomb repulsion of fermions
having opposite spin on the same lattice site. In the language of second
quantization the Hamiltonian of the (one-band) Hubbard model reads

H =
∑

i,j,σ

ti,jc
†
i,σcj,σ + U

∑

i

ni,↑ni,↓ , (2.1)

where the numbers ti,j account for the hopping of electrons among different
lattice sites and the “Hubbard interaction” U measures the onsite repulsion.
The number operator ni,σ is defined in terms of creation and annihilation
operators as

ni,σ = c†i,σci,σ . (2.2)

The physical content of the model defined through the Hamiltonian (2.1)
depends on the dimensionality and topology of the underlying lattice as
well as on the dimensionless ratios between the onsite repulsion U and the
hopping parameters ti,j . In this work, I shall focus on the case of the two-
dimensional square lattice, which, as remarked above, is of special interest as
a candidate model for the physics of the CuO2-planes in the high-Tc suprates.
The entries of the hopping matrix ti,j are given by three different values,
namely ti,j = −t for neighboring lattice sites, ti,j = −t′ for next-to-nearest
neighboring lattice sites (connected by the diagonal of a square within the
two-dimensional square lattice) and ti,j = 0 for more distant lattice sites.
This is sometimes referred to as the t − t′ − U -Hubbard model.

Although the Hubbard Hamiltonian has a very simple structure, it is
nevertheless able to account for a rich class of phenomena of fundamental
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importance, especially in solid state physics. For instance, it successfully
describes the transition from a metal to a Mott insulating state and many
different magnetic ordering structures such as, depending on the topology
of the lattice and the choice of parameters, ferro- and antiferromagnetism.
Antiferromagnetism is the dominant instability at nonzero (positive) U , van-
ishing next-to-nearest neighbor hopping t′ and vanishing chemical potential
µ, which regulates the total number of particles on the lattice.

Ever since Anderson [52] proposed the t − t′ − U -Hubbard model on
the two-dimensional square lattice as a an elementary account of the CuO2-
planes in the high-Tc cuprates physicists have hoped that it may throw some
light on the mechanism of Cooper pairing in these materials. Anderson’s
proposal generated an enormous activity of trying to develop better and
better approximations for the two-dimensional Hubbard model in order to
improve our understanding of cuprate superconductivity. However, while
the one-dimensional Hubbard model has found an analytic solution due to
Lieb and Wu [53], the two-dimensional case has proved to be much less
tractable. Furthermore, as experience shows, one should not expect the
two-dimensional case have similar properties as the one-dimensional one.
Mean field solutions, which are often a good guide in higher dimensions
where each site has a sizeable number of direct neighbors, are also not very
reliable in the two-dimensional case.

Among the most promising approaches are, on the one hand, numeri-
cal methods such as Monte Carlo-type approaches and, on the other hand,
renormalization group accounts, for references see the Introduction (Chap-
ter 1). The renormalization group approach used in the present work builds
on the functional integral representation of the grand canonical partition
function. This will be briefly reviewed in the following section.

2.3 Functional Integral Representation

The grand canonical partition function of the Hubbard model can be written
as a functional integral where it reads

Z[η, η†] =

∫

ψ̂
(†)
i (β)=−ψ̂

(†)
i (0)

D(ψ̂, ψ̂†) exp
(

−SF [ψ̂, ψ̂†] + η†ψ̂ + ηT ψ̂∗
)

.

(2.3)
The fields ψ̂, ψ̂† and the source fields η, η† are Grassmann fields for which
the notation

ψ̂i(τ) =
(

ψ̂i,↑(τ), ψ̂i,↓(τ)
)T

, ψ̂†
i (τ) =

(

ψ̂†
i,↑(τ), ψ̂†

i,↓(τ)
)T

(2.4)

is adopted and where ψ̂∗
i denotes the transpose of ψ̂†

i . Furthermore, the

shorthand η†ψ̂ =
∫ β
0 τ

∑

i η
†
i (τ)ψ̂i(τ) is used in Eq. (2.3). (For further
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notational conventions see Appendix A.) Using a momentum space repre-
sentation, the Euclidean action SF for the Hubbard model is given by

SF =
∑

Q

ψ̂†(Q)[iωQ + ξQ]ψ̂(Q) (2.5)

+
U

2

∑

K1,K2,K3,K4

[

ψ̂†(K1)ψ̂(K2)
] [

ψ̂†(K3)ψ̂(K4)
]

δ (K1 − K2 + K3 − K4) ,

where

ξ(Q) = ξ(q) = −µ − 2t(cos qx + cos qy) − 4t′ cos qx cos qy (2.6)

is the dispersion relation for the free model on the two-dimensional square
lattice.

The Fermi surface is defined for a Fermi liquid as the set of wave vectors q

which at zero temperature separates wave vectors corresponding to occupied
states from wave vectors corresponding to unoccupied states. At U = 0 these
wave vectors are defined by the condition ξ(q) = 0 such that states with
momenta for which ξ(q) < 0 are occupied and states with momenta for
which ξ(q) > 0 are unoccupied. However, also at finite temperature and
for nonzero interactions the Fermi surface is relevant in that modes with
momenta close to it give the most important contributions to scattering
processes. Therefore, if contributions to scattering amplitudes have to be
evaluated at selected external momenta, one should use momenta at the
Fermi surface or at least close to it.

Figure 2.1: Fermi surfaces for the noninteracting Hubbard model at different
values of the chemical potential µ/t = −2, −1, 0, 1 and 2 (from the interior to the
exterior). Fig. (a) is for vanishing next-to-nearest neighbor t′ = 0, Fig. (b) is for
t′/t = −0.1.

The shape and topology of the Fermi surface is crucial for the physical
properties (e. g. ordering tendencies) of the system. For t′ = µ = 0, the



10 The Hubbard Model and the High-Tc Cuprates

Fermi surface is a square (see Fig. 2.1 (a)) whose opposite sides can be
linked through the vector π = (π, π). As will be discussed in Chapter 2.5,
this vector is characteristic of antiferromagnetic order, which is present in
the system for these values of parameters at nonzero interactions.

Insofar as the chemical potential µ1/2 where the lattice is half-filled
(which for t′ = 0 occurs at µ = 0) can be said to correspond to zero doping,
values µ > µ1/2 of the chemical potential correspond to electron and values
µ < µ1/2 to hole doping. In the results presented in Chapters 4 and 5 focus
lies on t′ < 0 and hole doping in analogy to most cuprate superconducting
materials, in particular those with the highest critical temperatures.

2.4 Partial Bosonization

Although the Hubbard model is defined as a purely fermionic model, it
is useful for many purposes to introduce composite boson fields associated
to certain fermion bilinears. The different types of bosons correspond to
different types of possible collective order that may be characteristic of the
long-range properties of the model. Formally, this idea can be spelled out
by means of a scheme called partial bosonization or Hubbard-Stratonovich
transformation, see Refs. [37, 38].

Figure 2.2: Schematic picture of bosonization of the four fermion vertex. Solid
lines correspond to fermions, the dashed line to a complex (Cooper pair) boson, the
wiggly line to a real boson representing a particle-hole state in the spin or charge
density wave channel.

In a Hubbard-Stratonovich transformation, a purely fermionic theory is
translated into a mixed theory of fermions and composite bosons, where the
couplings between fermions and bosons are described by Yukawa-type ver-
tices. The idea is graphically represented in Fig. 2.2. The first diagram on
the right hand side of the arrow corresponds to a composite boson consist-
ing of either two electrons or two holes, the second diagram to a composite
(Cooper pair) boson consisting of both an electron and a hole. The two
different types of bosons are used to absorb contributions to the fermionic
four-point vertex in the particle-particle and particle-hole channels, respec-
tively.
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The Hubbard interaction U can be written in terms of fermionic bilin-
ears associated to the charge density, magnetization, and s-wave Cooper
pair channels. Using a momentum space representation, the bilinears for
the charge density, magnetic, s- and d-wave superconducting channels are
defined by

ρ̃(Q) =
∑

P

ψ̂†(P )ψ̂(P + Q) ,

m̃(Q) =
∑

P

ψ̂†(P )σψ̂(P + Q) ,

s̃(Q) =
∑

P

ψ̂T (P )ǫψ̂(−P + Q) , (2.7)

s̃∗(Q) = −
∑

P

ψ̂†(P )ǫψ̂∗(−P + Q) ,

d̃(Q) =
∑

P

fd(P − Q/2)ψ̂T (P )ǫψ̂(−P + Q) ,

d̃∗(Q) = −
∑

P

fd(P − Q/2)ψ̂†(P )ǫψ̂∗(−P + Q) .

Here σ = (σ1, σ2, σ3)T denotes the vector of Pauli matrices and ǫ = iσ2 the
totally antisymmetric 2×2-tensor. The factor fd occurring in the definition
of the bilinear for the d-wave superconducting channel is the d-wave form
factor

fd(Q) = fd(q) =
1

2
(cos(qx) − cos(qy)) . (2.8)

The most important qualitative features of the dx2−y2-symmetry of this form
factor are that it changes sign under rotations by π/2 and that its modulus
is maximal at the points l = (π, 0) and l′ = (0, π).

In terms of the bilinears given in Eq. (2.7) the Hubbard interaction term
in Eq. (2.5) can be written in different ways, namely

U

2

∑

K1,K2,K3,K4

[

ψ̂†(K1)ψ̂(K2)
] [

ψ̂†(K3)ψ̂(K4)
]

δ (K1 − K2 + K3 − K4)

=
U

2

∑

Q

ρ̃(Q)ρ̃(−Q)

= −U

6

∑

Q

m̃(Q) · m̃(−Q)

=
U

4

∑

Q

s̃∗(Q)s(Q) . (2.9)

Now the basic idea of a Hubbard-Stratonovich transformation is to insert
a functional integral representation of the number 1 in form of a Gaussian
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integral over auxiliary bosonic fields into the functional integral (2.3). These
auxiliary fields are in direct correspondence to the bilinears defined in Eq.
(2.7),

1 = N
∫

DB̂ exp
(

−SHS [B̂]
)

= N
∫

DB̂ exp
(

−SHS [B̂ − B̃]
)

, (2.10)

where the collective boson field B̂ refers to the collection of fields ρ̂, m̂, ŝ
and ŝ∗ in a vector notation,

B̂(Q) =
(

ρ̂, m̂T , ŝ, ŝ∗
)

. (2.11)

A field associated to the d-wave Cooper pair boson is not needed for the
purposes of the present section, it is therefore omitted at this stage. The
Hubbard-Stratonovich action SHS can be chosen as

SHS [B̂] =
∑

Q

(

Uρ

2
ρ̂(Q)ρ̂(−Q) +

Um

2
m̂(Q) · m̂(−Q) + Usŝ

∗(Q)ŝ(Q)

)

,

(2.12)

with positive coefficients Uρ, Um and Us that will be specified later. Inserting
the representation of 1 defined through Eq. (2.10) in the partition function
Eq. (2.3) one obtains

Z[jB, η, η†] = N ′

∫

D(B̂, ψ̂, ψ̂†) (2.13)

× exp
(

−SF [ψ̂, ψ̂†] − SHS [B̂ − B̃] + jBB̂ + η†ψ̂ + ηT ψ̂∗
)

,

where N ′ is an irrelevant renormalization factor and the shorthands used
are the same as in Eq. (2.3).

At this stage, an appropriate choice of the couplings Uρ, Um and Us

allows one to eliminate the four-fermion interaction ∼ U , as it appears in SF

altogether and to replace it by Yukawa-type interactions between fermions
and bosons. In order to achieve this, the constraint

U = 3Um − Uρ − 4Us (2.14)

has to be fulfilled, as follows from Eqs. (2.9) and (2.12).
In this case, the complete action S[B̂, ψ̂, ψ̂†] = SF [ψ̂, ψ̂†] + SHS [B̂ − B̃]

consists of a kinetic part, including propagator terms for both bosons and
fermions, and an interaction part, which accounts for the coupling between
bosons and fermions.

Note that the expectation values of the fermionic bilinears and those the
corresponding bosons fields are equal in this setting:

〈B̂〉 =
δ

δjB
lnZ[jB, η, η†]

∣

∣

jb=0, η,η†=0
= 〈B̃〉 . (2.15)



2.5 Mean Field Theory Based on Partial Bosonization 13

The first equality follows directly from the definition of the expectation value
of B̂, the second one is obtained by first integrating out the bosons and then
differentiating with respect to the source term.

In an exact treatment of the Hubbard model, all decompositions of the
Hubbard interaction U that respect the constraint (2.14) would be equiva-
lent. In practice, however, approximations have to be made, and the results
obtained will in general depend on the precise choice of Uρ, Um and Us, even
if the choice is in accordance with Eq. (2.14). This issue, which is called
the “mean field ambiguity” [54] can either be regarded as a shortcoming of
the Hubbard-Stratonovich approach or as an advantage. It is a shortcoming
insofar as each specific choice of the couplings Uρ, Um and Us necessarily
involves some bias and has an element of arbitrariness which will also appear
in the results. It can be considered as advantageous, if one compares the re-
sults for different choices of the couplings and regards the robustness of the
results obtained upon varying the values of the couplings as an indication
of the reliability of the method one is using. The closer one gets to an exact
solution of the model, the less ones results should depend on the values of
the couplings Uρ, Um and Us (provided the constraint (2.14) is respected).

In later chapters of the present work, however, this route will not be
taken. The approach employed in the renormalization group analysis pre-
sented in Chapters 4 and 5 is not based on the elimination of the original
Hubbard interaction U in a Hubbard-Stratonovich transformation, as just
described. Instead, the Hubbard interaction U is kept as a four-fermion
interaction on the initial ultraviolet (UV) scale k = Λ of the renormaliza-
tion flow, and contributions to the fermionic four-point vertex that arise
during the flow are absorbed successively through the Yukawa couplings by
means of a scale-dependent variation of the Hubbard-Stratonovich scheme.
This approach, which is called rebosonization or flowing bosonization, will
be described in Chapter 3.3.

In the following section, however, the Hubbard-Stratonovich method in
the form just introduced is taken as the starting point for an elementary
mean field approach to antiferromagnetic order in the Hubbard model. To
this end, the choice Um/t = U/3 and Uρ = Us = 0 is adopted in the following
section.

2.5 Mean Field Theory Based on Partial Bosoniza-

tion

One of the most fundamental facts about the (repulsive) Hubbard model
on a square lattice is its antiferromagnetic ground state at small values of
the chemical potential µ for vanishing next-to-nearest neighbor hopping t′.
Later in this work (see Chapter 4.4.1) it will be explained why the tendency
towards antiferromagnetism is much more pronounced than the tendencies
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towards charge density and s-wave superconducting order. At the present
stage this is simply assumed as a known fact about the Hubbard model.

Choosing Um/t = U/3 together with Uρ = Us = 0, the action S after
Hubbard-Stratonovich transformation is given by

S[m̂, ψ̂, ψ̂†] = Skin[m̂, ψ̂, ψ̂†] + SY [m̂, ψ̂, ψ̂†] , (2.16)

where

Skin[m̂, ψ̂, ψ̂†] =
∑

Q

(

ψ̂†(Q)[iωQ + ξQ]ψ̂(Q) +
m̄2

m

2
m̂(Q) · m̂(−Q)

)

(2.17)

and

SY [m̂, ψ̂, ψ̂†] = −h̄m

∑

K,Q,Q′

δ(K − Q + Q′) m̂(K) · ψ̂†(Q)σψ̂(Q′) (2.18)

with the “magnetic” mass term m̄2
m and Yukawa coupling h̄m.

As the present study focuses on the parameter regimes of the Hubbard
model where antiferromagnetism rather than ferromagnetism is the domi-
nant magnetic instability, an “antiferromagnetic” boson field â is introduced
which differs from the “magnetic” boson field m̂ introduced in Chapter 2.3
through a shift in the momentum variable by the antiferromagnetic wave
vector Π = (0, π, π):

â(Q) = m̂(Q + Π) . (2.19)

A ferromagnetic phase does exist, but it occurs only for large values of −t′

requiring a different approach than the one given in this work. Together
with the substitution of the m-boson in favor of the a-boson the mass term
m̄2

m and the Yukawa coupling h̄m are replaced by m2
a and h̄a.

As a result of the Hubbard-Stratonovich transformation, the values of
the antiferromagnetic mass term and Yukawa coupling can be obtained from
Eqs. (2.12), (2.13), (2.17) and (2.18) as

m̄2
a = h̄a = Um , (2.20)

which has been set to Um = U/3.
In a mean field analysis of the Hubbard model after Hubbard-Stratono-

vich transformation the fermionic one-loop correction to the term in Skin

which is quadratic in the field m̂ (or, equivalently, the field â) depends on
momentum. The corresponding coefficient in Skin is the inverse antiferro-
magnetic propagator, which will be referred to as P̃a(Q) in what follows.
The mass term m̄2

a is defined as the minimal value of this inverse propa-
gator, and the difference between m̄2

a and P̃a(Q) is given by the (strictly
positive) so-called kinetic term Pa(Q):

P̃a(Q) = m̄2
a + Pa(Q) (2.21)
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As will be explained in detail in Chapter 4, a magnetic instability of the
system, corresponding to the emergence of some type of magnetic order,
occurs whenever the mass term m̄2

a is reduced below zero. In accordance
with Eq. (2.21), this is the case if there is some frequency-momentum Q for
which the momentum-dependent 1-loop correction ∆Pa(Q) to the inverse
propagator P̃a(Q) is more strongly negative than m̄2

a positive, i. e. if

m̄2
a + ∆Pa(Q) ≤ 0 (2.22)

for some value of Q.
As will be discussed in detail in Chapter 4.4.2, the one-loop correction

∆Pa(Q) to the inverse antiferromagnetic propagator is given by

∆Pa(Q) = h̄2
a

∑

P

1

PF (Q + P + Π)PF (P )
+ (Q → −Q) , (2.23)

where PF (Q) = iωQ+ξQ denotes the fermionic propagator and Π = (0, π, π)
is the antiferromagnetic wave vector. It is introduced in Eq. (2.23) in order
to ensure that the minimal value of P̃a(Q) occurs at Q = 0 if antiferro-
magnetism is the dominant instability. For the range of parameters where
ferromagnetism is the dominant instability the minimum of P̃a(Q) would be
situated at Q = Π.

Carrying out the Matsubara sum, which is implicit in Eq. (2.23), ∆Pa(Q)
can be written as

∆Pa(ωQ,q) = − h̄2
a

2

∫

[−π,π]2

dp2

(2π)2

tanh (ξp) − tanh
(

ξq+p−π +
iωQ

2T

)

ξp − ξq+p−π − iωQ

+(Q → −Q) (2.24)

The remaining integral over the Brillouin zone can easily be performed nu-
merically. It is found that the loop contribution ∆Pa(ωQ,q) is most impor-
tant at zero (bosonic) Matsubara frequency ωQ = 0, so it seems reasonable
to focus on the spatial momentum dependence of the ωQ = 0 - contributions.

As one expects from the known facts about antiferromagnetism in the
Hubbard model for t′ = 0, at half filling and for sufficiently high tempera-
tures also close to half filling the mean field formula Eq. (2.24) produces a
pronounced minimum of Pa(0,q) at q = 0, see Fig. 2.3 (a). However, away
from half filling the picture is different for sufficiently low temperatures, see
Fig. 2.3 (b). In the center at q = 0 there is a local maximum and there are
four minima at positions

q1,2 = (±q̂, 0) , q3,4 = (0,±q̂) , (2.25)

where q̂ is a function of T , µ, and t′. This is a manifestation of the dom-
inance of incommensurate antiferromagnetic fluctuations. Experimentally,
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Figure 2.3: Mean field kinetic term Pa(0,q)/t of the a-boson as a function of
space-like momenta for U/t = 3 and t′ = 0. In Figure (a) µ = 0 and T/t = 0.205,
in Figure (b) µ/t = −0.27 and T/t = 0.0435. Both temperatures are mean field
critical temperatures.

incommensurate antiferromagnetism manifests itself in the peak structure
of the magnetic structure factor which is accessible via neutron-scattering.
It has been observed for a variety of high-Tc-cuprates, for experimental and
numerical results see [55, 56, 57, 58, 59, 60, 61].

If Pa(0,q) has its minimal value at q = 0, the order parameter for an-
tiferromagnetism is given by 〈|a|〉 ∼ δ(q), which indicates (ordinary) com-
mensurate antiferromagnetism, exemplified by the Néel state, in which the
spin direction on a given lattice site is opposite to that of its neighbors. In
case, however, the minimum is located at q = qj 6= 0, incommensurate anti-
ferromagnetic fluctuations dominate over commensurate ones. If m̄2

a drops
to zero in this case, further lattice symmetries are broken. One of the pairs
of minima (2.25) is selected and the symmetry of rotations by π/2 around
q = 0 in momentum space is spontaneously broken. The spins change sign
between neighboring lattice sites only in one direction, the x-direction say,
whereas in the orthogonal direction the periodicity corresponds to some mo-
mentum π± q̂. Note that the system selects one of the pairs q1,2 or q3,4 since
â(Q) is a real field. Therefore the system remains symmetric with respect
to reflection about the axes.

An extensive mean field treatment of the phase with commensurate an-
tiferromagnetism, including the case of a nonzero next-to-nearest neighbor
hopping t′, is given in [63]. Here one has to take into account that the peri-
odicity of a system in the Néel state is changed resulting in a new “magnetic”
Brillouin zone whose boundaries are given by the lines between the (±π, 0)
and (0,±π) points. Correspondingly, the mean field dispersion relation for
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a nonzero gap parameter A = h̄a〈|a|〉 has two branches

E±(p) =
1

2

(

ξ(p) + ξ(p + π) ±
√

(ξ(p) − ξ(p + π))2 + 4A2
)

(2.26)

which, for finite t′, lead to an interestingly structured effective Fermi surface
enclosing hole pockets around (±π/2,±π/2) and electron pockets around
(±π, 0) and (0,±π), see the example drawn in Fig. 2.4 (a), for further
details see [63].

Figure 2.4: Mean field effective Fermi surfaces for µ/t = −0.6, t′/t = −0.2 and
gap parameter A/t = 0.1. Fig. (a) shows the commensurate case q̂ = 0 where the
Fermi surface exhibits hole- and particle pockets at the magnetic Brillouin zone
boundary. In Fig. (b), the remainders of the effective Fermi surface are shown for
a nonzero incommensurability q̂ = 0.3 along the x-axis.

In the presence of a nonzero expectation value 〈a(q̂)〉 with q̂ 6= 0, i. e.
in the presence of incommensurate order, the inverse of the fermionic mean
field propagator at zero frequency has contributions from ξ(q) but also from
the gap parameter A = h̄a〈a〉 and is given by

PF (q,q′) = ξ(q)δ(q − q′) (2.27)

−A · σ√
2

(

δ(q − q′ − π + q̂) + δ(q − q′ − π − q̂)
)

with q̂ = q1,2 or q̂ = q3,4 as defined in Eq. (2.25). The analog of the Fermi
surface corresponds to the zero eigenvalues of PF . However, the correspond-
ing eigenmodes are no longer momentum eigenstates. Nevertheless, if the
gap parameter A = |A| is nonzero but small, many eigenvalues of PF (q,q′)
have most of their support each at a single momentum p. This concerns all
those momenta p for which the condition

A ≪ |ξ(p + π + q̂)|, |ξ(p + π − q̂)| (2.28)
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is fulfilled. With respect to these momenta the equation

ξ(p) − A2

2

(

1

ξ(p + π + q̂)
+

1

ξ(p + π − q̂)

)

= 0 (2.29)

defines an effective Fermi surface which is obtained by (approximately) di-
agonalizing PF (q,q′) for small A. For large enough A the effective Fermi
surface vanishes completely because the number of solutions to Eq. (2.29)
that satisfy the condition (2.28) diminishes rapidly. In Fig. 2.4 (b) the ef-
fective Fermi surface is shown for the incommensurate case with an order
parameter 〈a(q̂)〉 where q̂ = q1,2, i. e. the incommensurability is along the
x-axis. The symmetry of rotations by π/2 is manifestly broken.

The dichotomy between commensurate and incommensurate antiferro-
magnetism will also be crucial for the renormalization group treatment given
in Chapters 4 and 5. For instance, the incommensurability may have an ef-
fect on whether there is a phase in which (global) antiferromagnetic and
d-wave superconducting order coexist.



Chapter 3

Functional Renormalization

Group Formalism

In this chapter the functional renormalization group (FRG) setup is intro-
duced on which the calculations presented in Chapters 4 and 5 of this thesis
are based. This formalism rests on an exact flow equation for the effective av-
erage action or “flowing action” Γk. The flowing action is a scale-dependent
relative of the effective action Γ, the generating functional of one-particle
irreducible (1PI) vertex functions.

In the first section of this chapter the effective action is introduced and
its relation to thermodynamical quantities is clarified. An introduction to
the exact flow equation for the flowing action is given in the second section.
The third section presents the “flowing bosonization” scheme, a continuous,
scale-dependent variation of the Hubbard-Stratonovich transformation.

3.1 Effective Action

Using the functional integral formulation of QFT, the grand-canonical par-
tition function

Z = Tr exp (−β(H − µN)) (3.1)

can be written as

Z[J ] =

∫

Dχ̂ exp

(

−S[χ̂] +

∫

X
J(X) · χ̂(X)

)

, (3.2)

where the chemical potential µ has been included in the source term for
which the shorthand J · χ̂ =

∫

X J(X) · χ̂(X) has been used.
In applications used in this work, the field χ̂ will be a multi-component

field with both bosonic and fermionic entries. Its precise form will be spec-
ified in the following chapter when the details of the approximation (“trun-
cation”) for the effective action are discussed. The multi-component field J
is defined as the current-field associated to χ̂.



20 Functional Renormalization Group Formalism

In terms of Z[J ] one defines

W [J ] = lnZ[J ] , (3.3)

the generating functional of the connected Green functions without external
lines. The classical fields χ associated to the quantum fields χ̂ are defined
as the expectation values of the quantum fields:

χ := 〈χ̂〉 =
1

Z[J ]

δZ[J ]

δJ
=

δW [J ]

δJ
. (3.4)

In terms of these quantities the effective action Γ is defined through a Leg-
endre transform from W [J ] as

Γ[χ] = sup
J

(J · χ − W [J ]) . (3.5)

The definition of Γ[χ] as a Legendre transform guarantees its convexity.
It generates all (amputated) Green functions that cannot be taken apart
by cutting just one internal line. In other words, Γ[χ] is the generating
functional of the one-particle irreducible (1PI) vertex functions.

In an implicit form the effective action is given through

exp(−Γ[χ]) =

∫

Dχ̂ exp

(

−S[χ + χ̂] +
δΓ

δχ
· χ̂

)

. (3.6)

Performing a saddle-point approximation of the classical action S[χ + χ̂]
with respect to the fluctuation field χ̂ around the background field χ one
obtains the one-loop equation

Γ[χ] = S[χ] +
1

2
STr ln S(2)[χ] + ... , (3.7)

where “S(2)[χ]” denotes the second functional derivative of S with respect
to the field χ and “STr” denotes the “supertrace”, where the trace is taken
over all indices (e. g. field, momentum and spin indices) with an additional
minus-sign for fermionic entries. The flow equation for the effective average
action that will be presented in the following section can be regarded as a
renormalization enhanced non-perturbative version of Eq. (3.7).

If both the current field J = j/T (where T is the temperature) and the
classical field χ are homogeneous in space and time, all thermodynamical
quantities can easily be expressed in terms of Γ. First, one defines the
effective potential U = TΓ/V , and from this one obtains, for instance, the
equations

ǫ = U − T
∂U

∂T
− µ

∂U

∂µ
, (3.8)

n = −∂U

∂µ
, p = −U
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for the energy density ǫ, particle density n and pressure p, see Chapter 2.1
in [65].

Having precise knowledge of Γ[χ] in a concrete case means having solved
the quantum many-body or field-theoretical problem at issue. In most cases,
however, an exact calculation of Γ[χ] is impossible. One has to resort to an
approximation scheme such as, for instance, the functional renormalization
group approach described in the next section.

3.2 Flow Equation for the Effective Average Ac-

tion

Renormalization group methods are a powerful non-perturbative tool in
quantum field theory and many-body statistical physics. The Wilsonian
renormalization group idea [39, 40, 41], is to integrate out quantum fluctu-
ations step by step instead of all at once. In this work, the renormalization
group idea is used within the framework of the so-called exact or functional
renormalization group, which is based on an exact flow equation for the ef-
fective average action or flowing action Γk, a scale-dependent relative of the
effective action Γ. Intuitively, Γk is obtained from Γ by starting from the mi-
croscopic “classical” action S and integrating out all quantum fluctuations
down to some finite momentum scale k.

The microphysical properties of the system, the Hamiltonian or La-
grangian which characterize the model one is interested in, are taken into
account by the condition

Γk=Λ = S , (3.9)

where Λ denotes some very large UV scale and S is the microscopic action.
In the infrared (IR) limit k → 0 the flowing action Γk equals the full effective
action

Γk=0 = Γ , (3.10)

which, as remarked above, is the generating functional of the 1PI vertex
functions.

In order to obtain the flow equation for the flowing action, one first
introduces a scale dependence in form of an IR regulator term ∆Sk in the
classical action S:

S[χ̂] → Sk[χ̂] = S[χ̂] + ∆Sk[χ̂] . (3.11)

The regulator term is quadratic in the fields. In terms of a regulator function
Rk, which is a matrix in field space, it can be written as

∆Sk[χ̂] =
1

2

∫

Q
χ̂T (−Q)Rk(Q)χ̂(Q) . (3.12)
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In order to function as an infrared cutoff, the regulator function Rk has to
obey the conditions

lim
Q2/k2→0

Rk(Q) > 0 ,

lim
k2/Q2→0

Rk(Q) = 0 , (3.13)

Rk(Q) → ∞ for k2 → Λ .

These conditions ensure that Γk has the appropriate limiting properties as
specified in Eqs. (3.9) and (3.10).

The scale dependence of the classical action introduced in Eq. (3.11)
induces a scale dependence in the generating functional Wk[J ],

Wk[J ] = lnZk[J ] = ln

∫

Dχ̂ exp (−Sk[χ̂] + J · χ̂) . (3.14)

In order for the flow equation for the flowing action Γk to take a simple
form, it is defined as a modified Legendre transform of Wk, namely

Γk[χ] = sup
J

(J · χ − Wk) − ∆Sk[χ] . (3.15)

The exact flow equation for Γk governs its scale dependence in terms of the
regulator Rk together with the inverse propagator, which is given by

Γ
(2)
k (Q, Q′) =

δ2Γk[χ]

δχ(−Q)δχ(Q′)
. (3.16)

The necessary ingredients for the formulation of the Wetterich flow equation
for the flowing action have now all been defined. It is given by

∂kΓk =
1

2
STr

(

Γ
(2)
k + Rk

)−1
∂kRk =

1

2
STr ∂̃k

(

ln(Γ
(2)
k + Rk)

)

. (3.17)

Here STr denotes a “supertrace” which sums over all quantum numbers in-
cluding the different field indices with an additional minus-sign for fermionic
entries. The operator ∂̃k = (∂kRk)

∂
∂Rk

can be described as the scale deriva-
tive acting only onto the infrared regulator Rk. Eq. (3.17) is derived by first
performing the derivative of Wk with respect to k and then using the prop-
erties of Wk and Γk as (modified) Legendre transforms of each other. For
the original version of the derivation see [43], for more recent presentations
see e. g. [64, 65, 66].

In the present work, a generalization of Eq. (3.17) will be used which
applies also to situations where the fields χ themselves depend on the renor-
malization scale k. For this purpose one has to take the generalized form

∂kΓk[χk]
∣

∣

k
= ∂kΓk[χk] −

∫
(

∂kχk,i
δΓk[χk]

δχk,i

)

, (3.18)

of Eq. (3.17), for a derivation and motivation see [67]. Eq. (3.18) includes
a summation over the doubly occurring index i. For a more recent general-
ization of Eq. (3.17) see [68].
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3.3 Flowing Bosonization

Flowing bosonization [66, 67, 68] can be described as a scale-dependent
Hubbard-Stratonovich transformation which is carried out continuously on
all scales of the renormalization flow. In the context of the present investi-
gation it is employed to describe all parts of the fermionic four-point vertex
which have a nontrivial momentum dependence in terms of effective inter-
actions between fermions and different types of bosons.

To illustrate how flowing bosonization works, consider, as an example,
a truncated theory in which the effective average action includes, besides
the fermions, only one type of boson, namely the antiferromagnetic boson a

that was introduced in Eq. (2.19). The result that will be obtained carries
over to other types of bosons and is in no way specific to the a-boson.

Consider an ansatz for the effective average action given by

Γa,k + ΓFa,k + Γa
F,k = (3.19)

1

2

∑

Q

aT (−Q)
(

Pa(Q) + m2
a

)

a(Q)

−
∑

K,Q,Q′

h̄a(K) a(K) · [ψ†(Q)σψ(Q′)] δ(K − Q + Q′ − Π)

−1

2

∑

K1,K2,K3,K4

λa
F (K1 − K2)δ (K1 − K2 + K3 − K4)

×
[

ψ†(K1)σψ(K2)
]

·
[

ψ†(K3)σψ(K4)
]

.

Now a scale dependence of the field a(Q) is introduced, writing it as ak(Q).
The change in ak(Q) between two scales k and k−∆k that are infinitesimally
close to each other can be represented as

ak(Q) − ak+∆k(Q) = ∆αk(Q)ãk(Q) , (3.20)

where the field ãk(Q) is given by the fermion bilinear

ãk(Q) =
∑

P

[ψ†(P )σψ(P + Q + Π)] , (3.21)

and αk(Q) is a function that can be chosen in such a way that λa
F cancels

to zero at all scales.

To achieve this, the generalized flow equation Eq. (3.18) in terms of scale-
dependent fields is taken, which yields in this case

∂kΓk = ∂kΓk

∣

∣

ak
+

∑

Q

(

∂kαk(Q)P̃a(Q)ak(−Q) · ãk(Q)

−∂kαk(Q)h̄a(Q)ãk(−Q) · ãk(Q)
)

. (3.22)
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One can read off the modified equations for λa
F and h̄a and set the scale-

dependence of λa
F to zero,

∂kh̄a(Q) = ∂kh̄a

∣

∣

ak
(Q) − P̃a(Q)∂kαk(Q) , (3.23)

∂kλ
a
F (Q) = ∂kλ

a
F

∣

∣

ak
(Q) + 2h̄a(Q)∂kαk(Q) ≡ 0 .

This allows one to eliminate the hitherto undetermined function αk(Q) and
to obtain the flow equation for the Yukawa coupling including contributions
from flowing bosonization,

∂kh̄a(Q) = ∂kh̄a

∣

∣

ak
(Q) +

P̃a,k(Q)

2h̄a(Q)
∂kλ

a
F

∣

∣

ak
(Q) . (3.24)

Analogous results can be obtained for the four-fermion couplings and Yukawa
couplings in other than the magnetic channel such as, for instance, the charge
density and superconducting channels, see Eq. (4.38). The result Eq. (3.24)
will be of crucial importance in the derivation of the flow equations for the
Yukawa couplings presented in the next section.



Chapter 4

Functional Renormalization

for the Symmetric Regime

Although the Wetterich flow equation Eq. (3.17) for the flowing action Γk is
an exact equation, it is in general not possible to use it for exact solutions to
difficult problems of physical interest. Since Γk is a functional of the (many-
component) field χ Eq. (3.17) implicitly contains differential equations for
an infinity of running couplings so that it can mostly be solved only in some
approximation. For practical purposes, an ansatz for the flowing action
in terms of a system of running parameters has to be specified and the
resulting (infinite) hierarchy of coupled flow equation has to be truncated

at some point. In other words, a finite number of well-chosen couplings has
to be selected so that the resulting system of coupled differential equation
can be solved either analytically or numerically. The truncation used in the
present work for the regime where no symmetry of the Hubbard Hamiltonian
is spontaneously broken is specified in the following section of the present
chapter.

Most functional renormalization group investigations of the Hubbard
model use the purely fermionic language, in which the Hubbard model it-
self is formulated [22, 23, 24, 25, 26, 27, 28, 29]. In this work, in contrast,
the partly bosonized language introduced in Chapter 2.3 is employed, which
greatly facilitates the treatment of phases exhibiting spontaneous symme-
try breaking. The Hubbard-Stratonovich transformation, however, is not
carried out for the original Hubbard action (2.5) but rather continuously
on all scales of the renormalization flow by using the method of flowing
bosonization described in Chapter 3.3.

Since the complicated spin and momentum dependence of the four-
fermion coupling which arises during the renormalization flow is captured in
the present approach in terms of bosonic propagators and Yukawa couplings,
the parameterizations for these have to be chosen with great care. How this
is done is described in the second section of this chapter. Having chosen a
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truncation and parameterization for the running couplings, regulator terms
for both fermions and bosons and initial conditions for the running cou-
plings have to be specified. This is done in the third section of this chapter.
The fourth section derives and discusses the flow equations for the running
couplings obtained in this setting, the fifth summarizes the most important
numerical results obtained for the symmetric regime.

4.1 Truncation

To begin with, an ansatz for the flowing action has to be specified. As argued
before, it should include terms for the electrons (fermions), for bosons in the
magnetic, charge density, s- and d-wave superconducting channels, and for
interactions between fermions and bosons. Such an ansatz may have the
form

Γk[χ] = ΓF,k + ΓFa,k + ΓFρ,k + ΓFs,k + ΓFd,k (4.1)

+Γa,k + Γρ,k + Γs,k + Γd,k +
∑

X

Uk(a, ρ, s, d) ,

where the meaning of the terms on the right hand side will be specified in
what follows. The collective field χ = (a, ρ, s, s∗, d, d∗, ψ, ψ∗) includes both
fermion fields ψ, ψ∗ and boson fields a, ρ, s, s∗, d, d∗.

The purely fermionic part ΓF (the dependence on the scale k is always
implicit in what follows) of the flowing action consists of a two-fermion
kinetic term ΓFkin, a momentum-independent four-fermion term ΓU

F , and
the momentum-dependent four-fermion terms Γm

F , Γρ
F , Γs

F , Γd
F :

ΓF = ΓFkin + ΓU
F + Γm

F + Γρ
F + Γs

F + Γd
F . (4.2)

The fermionic kinetic term is essentially left unchanged with respect to the
original (microscopic) action of the Hubbard model (2.5), apart from the fact
that a fermionic wave function renormalization is included, which depends
on the Matsubara frequency,

ΓFkin =
∑

Q

ψ†(Q)PF (Q)ψ(Q) , (4.3)

where as an ansatz for the inverse fermionic propagator

PF (Q) = ZF (ωQ) (iωQ + ξ(q)) (4.4)

is made with a frequency-dependent wave function renormalization factor
ZF (ωQ).

The flow of ZF (ωQ) is neglected for all frequencies except for the two low-
est Matsubara modes ωQ = ±πT . The computation of the scale-dependent
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quantity ZF (±πT ) ≡ ZF is described in Chapter 4.4. Self-energy corrections
to the dependence of PF (Q) on spatial momentum are omitted. According to
[69] their influence is small compared to that of corrections to the frequency
dependence of PF (Q) for the lowest modes.

The momentum-independent part of the four-fermion coupling, which at
k = Λ is identical to the Hubbard interaction U , remains unmodified during
the flow. The corresponding part of the effective action has the same form
as the interaction part of the original action S of the Hubbard model, so it
reads

ΓU
F =

1

2

∑

K1,K2,K3,K4

U δ (K1 − K2 + K3 − K4)

×
[

ψ†(K1)ψ(K2)
] [

ψ†(K3)ψ(K4)
]

. (4.5)

Most information about instabilities and ordering tendencies of the sys-
tem is contained in the complicated momentum and spin dependence of
the fermionic four-point function λF (K1, K2, K3, K4), which, due to energy-
momentum conservation, is a function of three independent momenta (e. g.
K4 = K1 − K2 + K3). In the truncation used here this vertex is decom-
posed into a sum of four functions λa

F (Q), λρ
F (Q), λs

F (Q) and λd
F (Q), each

depending on only one particular combination of the Ki. The chosen de-
composition of the fermionic four-point function is inspired by the singular
frequency and momentum structure of the leading contributions during the
renormalization flow. In the ansatz for the effective average action used here
these functions enter as

Γm
F = −1

2

∑

K1,K2,K3,K4

λa
F (K1 − K2) δ (K1 − K2 + K3 − K4)

×
[

ψ†(K1)σψ(K2)
]

·
[

ψ†(K3)σψ(K4)
]

, (4.6)

Γρ
F = −1

2

∑

K1,K2,K3,K4

λρ
F (K1 − K2) δ (K1 − K2 + K3 − K4)

×
[

ψ†(K1)ψ(K2)
] [

ψ†(K3)ψ(K4)
]

(4.7)

for the real bosons, and, for the superconducting bosons, as

Γs
F =

∑

K1,K2,K3,K4

λs
F (K1 + K3) δ (K1 − K2 + K3 − K4)

×
[

ψ†(K1)ǫψ
∗(K3)

] [

ψT (K2)ǫψ(K4)
]

, (4.8)

Γd
F =

∑

K1,K2,K3,K4

λd
F (K1 + K3) δ (K1 − K2 + K3 − K4)

× fd((K1 − K3)/2) fd((K2 − K4)/2)

×
[

ψ†(K1)ǫψ
∗(K3)

] [

ψT (K2)ǫψ(K4)
]

. (4.9)
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In the partially bosonized approach used here all information contained in
the momentum dependence of the couplings λa

F , λρ
F , λs

F and λd
F is expressed

in terms of Yukawa couplings and bosonic propagators. Practically, this is
achieved by the technique of flowing bosonization, which was adapted to the
purposes of the present investigation in [31, 34, 36]. As described in Chapter
3.3, the basic idea is to introduce scale-dependent bosonic fields in order to
reexpress all information contained in the fermionic four-point vertex in
terms of Yukawa-type interactions between fermions and bosons. In this
way all couplings λa

F , λρ
F , λs

F and λd
F are kept vanishing during the flow,

and their k-dependence is absorbed by that of the flowing Yukawa couplings
describing the interactions between fermions and bosons. The parts of the
truncation in which these couplings occur are given by

ΓFa = −
∑

K,Q,Q′

h̄a(K) a(K) · [ψ†(Q)σψ(Q′)] δ(K − Q + Q′ + Π) ,

ΓFρ = −
∑

K,Q,Q′

h̄ρ(K) ρ(K) [ψ†(Q)ψ(Q′)] δ(K − Q + Q′) ,

ΓFs = −
∑

K,Q,Q′

h̄s(K)
(

s∗(K) [ψT (Q)ǫψ(Q′)] (4.10)

−s(K) [ψ†(Q)ǫψ∗(Q′)]
)

δ(K − Q − Q′) ,

ΓFd = −
∑

K,Q,Q′

h̄d(K)fd

(

(Q − Q′)/2
) (

d∗(K) [ψT (Q)ǫψ(Q′)]

−d(K) [ψ†(Q)ǫψ∗(Q′)]
)

δ(K − Q − Q′) .

The purely bosonic part of the truncation for the effective average action
consists of the bosonic kinetic terms together with the bosonic effective po-
tential. As discussed for the inverse antiferromagnetic propagator in Chap-
ter 2.5, the inverse propagator of some boson i = a, ρ, s, d is given by
P̃i(Q) ≡ Pi(Q) + m̄2

i , where m̄2
i is its minimal value and Pi(Q) the (strictly

positive) kinetic term. The contributions to the effective average action
where the bosonic kinetic terms appear are

Γa =
1

2

∑

Q

aT (−Q)Pa(Q)a(Q) , (4.11)

Γρ =
1

2

∑

Q

ρ(−Q)Pρ(Q)ρ(Q) , (4.12)

Γs =
∑

Q

s∗(Q)Ps(Q)s(Q) , (4.13)

Γd =
∑

Q

d∗(Q)Pd(Q)d(Q) . (4.14)

The parameterization used for the frequency- and momentum-dependence
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of the inverse bosonic propagators P̃i(Q) and Yukawa couplings ĥi(Q) will
be specified in the following section.

One can reconstruct the momentum-dependent four-fermion interactions
Γi

F by solving the field equation for the bosons i as a functional of fermionic
variables (as derived by variation of Γk with respect to the field for the i-
boson) and reinserting this functional into Γk. So, the complicated spin
and momentum dependence of the fermionic four-point funcation which
emerges during the renormalization flow is completely expressed by the
bosonic propagators and Yukawa-couplings connecting the fermions to the
different bosons.

The truncation also includes a local effective potential U(a, ρ, s, d) (not
to be confused with the Hubbard interaction U , for which, due to convention,
the same letter ‘U ’ is also used). Here an expansion in powers of fields a,
ρ, s, and d is made up to second order in ρ and s and up to fourth order
in a and d. Spontaneous symmetry breaking in the antiferromagnetic or
d-wave superconducting channel can be described in terms of a minimum of
U the position of which does not coincide with the origin in a-d-space. A
sufficient condition for spontaneous symmetry breaking is that the terms in
the effective potential which are quadratic in a and d turn negative. In the
symmetric regime SYM, where one has positive mass terms m̄2

a and m̄2
d, the

effective potential can be expanded around the origin in a-ρ-s-d-space:

∑

X

U(a, ρ, s, d) =
∑

Q

{1

2

(

m̄2
a aT (−Q)a(Q) + m̄2

ρ ρ(−Q)ρ(Q)
)

+m̄2
s s∗(Q)s(Q) + m̄2

d d∗(Q)d(Q)
}

+
1

2

∑

Q1,Q2,Q3,Q4

δ (Q1 + Q2 + Q3 + Q4)

×
(

λ̄a α(Q1, Q2)α(Q3, Q4) + λ̄d δ(Q1, Q2)δ(Q3, Q4)

+2λ̄ad α(Q1, Q2)δ(Q3, Q4)
)

. (4.15)

Here the transformation-invariant quantities α(Q1, Q2) = 1
2a(Q1) · a(Q2)

and δ(Q1, Q2) = d∗(Q1)d(Q2) have been used. The symbol δ(Q1, Q2) is to
be distinguished from the Dirac delta-function by the number of arguments.

4.2 Parameterization of Bosonic Propagators and

Yukawa Couplings

In the language of partial bosonization the momentum-dependent parts λi
F

of the fermionic four-point vertex are set to zero at the expense of ad-
ditional contributions to the bosonic propagators and Yukawa couplings.
In principle, by slightly varying the flowing bosonization scheme presented
in Chapter 3.3, the momentum dependence of the λi

F could be absorbed
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by a momentum dependence in either the h̄i or the P̃i, leaving the other
momentum-independent. For instance, it may seem natural to keep the
Yukawa couplings momentum-independent while endowing the inverse prop-
agators P̃i with a momentum dependence. Computationally, however, it is
more convenient to treat both the P̃i and the h̄i as momentum-dependent
functions, in addition to their dependence on the scale k.

In a numerically more exact partially bosonized treatment of the fermi-
onic four-point vertex one would discretize the momentum dependence and
attempt a numerical solution of the partial differential equations for P̃i(Q)
and h̄i(Q) (see the numerical treatment of the “bosonic propagators” in [44]).
However, since the present approach aims at a computationally economical
approach that focuses on physical understanding rather than quantitative
accuracy, a parameterization of the Yukawa couplings and inverse propaga-
tors in terms of only a few running parameters is chosen. This is described
in what follows.

4.2.1 Bosonic Propagators

For the antiferromagnetic kinetic term Pa(Q) an ansatz is made in which
the dependences on frequency and spatial momentum decouple,

Pa(Q) = Zaω
2
Q + AaF (q) . (4.16)

The quadratic dependence on frequency is motivated by mean field results
for small |ωQ|. For larger values of |ωQ|, it mimics the decaying frequency-
dependence of the Yukawa couplings, which is not taken into account ex-
plicitly.

For the function F (q) in Eq. (4.16) the parameterization

Fc(q) =
D2

a · [q]2

D2
a + [q]2

(4.17)

is chosen, if commensurate antiferromagnetic fluctuations dominate, see the
Appendix to [34]. Here [q]2 is defined as [q]2 = q2

x + q2
y for qx,y ∈ [−π, π]

and continued periodically otherwise. If incommensurate antiferromagnetic
fluctuations dominate, the alternative ansatz

Fi(q, q̂) =
D2

aF̃ (q, q̂)

D2
a + F̃ (q, q̂)

(4.18)

is used where the function F̃ has a quartic momentum dependence and
explicitly includes the incommensurability q̂:

F̃ (q, q̂) =
1

4q̂2

(

(q̂2 − [q]2)2 + 4[qx]2[qy]
2
)

. (4.19)
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The first term in F̃ vanishes for [q]2 = q̂2 and suppresses the propagator for
[q]2 6= q̂2. The second term favors the minima at q1,2 and q3,4 as compared
to a situation where rotation-symmetry in the qx − qy-plane is preserved.

The shape coefficient Da used in Eqs. (4.17), (4.18) is computed as

D2
a =

1

Aa

(

Pa(0, π, π) − Pa(0, q̂, 0)
)

. (4.20)

The Za- and Aa-factors are computed from the differences of inverse prop-
agators at different frequencies and momenta around the minimal value of
Pa,

Za =
1

(2πT )2
(Pa(2πT, q̂, 0) − Pa(0, q̂, 0)) ,

Aa =
1

q2 (Pa(0, q̂ + q, 0) − Pa(0, q̂, 0)) , (4.21)

where q is a parameter which is fixed in such a way that results are practically
independent of it. For the numerical results displayed later, it is set to
q = 0.15π.

The propagator of the ρ-boson is treated in the same way as that of the
a-boson apart from the fact that a shift by the vector π is included in all
momentum dependences.

For the s-and d-bosons, the treatment is just as for the a- and ρ-bosons
in the commensurate case. Since the minima of the inverse propagator do
not occur at the wave vector π nor in the vicinity of it, no shift by this
vector is necessary,

Ps/d,k(Q) = Zs/dω
2 + As/dFs/d(q) (4.22)

with

Fs/d(q) =
D2

s/d · [q]2

D2
s/d + [q]2

. (4.23)

4.2.2 Yukawa Couplings

The Yukawa couplings h̄a(Q), h̄ρ(Q) and h̄s(Q) are parameterized by means
of a linear momentum dependence

h̄a/ρ/s(Q) =
|π − q|
|π| h̄a/ρ/s(0) +

|q|
|π| h̄a/ρ/s(Π) , (4.24)

The computation of the flows of h̄a/ρ/s(0) and h̄a/ρ/s(Π) will be discussed in
Chapter 4.4.1.

For the d-boson, as known from other studies (see, for example, Fig.
7 (b) of [44]), when the four-fermion coupling in the d-wave channel becomes



32 Functional Renormalization for the Symmetric Regime

critical it has a sharp peak around zero momentum. This is accounted for
by including a Gaussian function which is centered around zero momentum
in the definition of h̄d.

h̄d(Q) = h̄d(0) exp(−|q|2/w2
0) . (4.25)

It has been checked that the results are practically independent of the width
w2

0 of this Gaussian function, as long as it is reasonably peaked. In principle,
an ansatz of the form (4.24) might also be used.

4.3 Initial Conditions and Regulators

At the microscopic scale k = Λ the flowing action must be equivalent to
the microscopic action of the Hubbard model, so the initial value of the
four-fermion coupling must correspond to the Hubbard interaction U . The
bosonic fields decouple completely at this scale, so the initial values of the
Yukawa couplings are

h̄a|Λ = h̄ρ|Λ = h̄s|Λ = h̄d|Λ = 0 . (4.26)

For the bosonic mass terms one can take m̄2
i,Λ = t2 and then use units t = 1,

and Pi,Λ(Q) = 0 for the kinetic terms. The choice m̄2
i,Λ = t2 amounts to an

arbitrary choice for the normalization of the bosonic fields, which are intro-
duced as redundant auxiliary fields at the scale k = Λ, where they do not
couple to the electrons. Of course, this changes during the flow, where the
bosons are transformed into dynamical composite degrees of freedom, with
nonzero Yukawa couplings and a nontrivial momentum dependence of their
propagators. The quartic bosonic couplings λ̄a, λ̄d and λ̄ad vanish on initial
scale k = Λ, the fermionic wave function renormalization is ZF (ωQ)|Λ = 1
for all values of the Matsubara frequency ωQ.

In addition to the truncation for the effective average action, regulator
functions for the fermions and bosons have to be specified. Momentum space
“optimized” cutoffs [70, 71, 66] are used for both fermions and bosons. The
regulator function for fermions is given by

RF
k (Q) = sgn(ξ(q)) (k − |ξ(q)|)Θ(k − |ξ(q)|) . (4.27)

Its derivative with respect to the scale k, which will often be needed, is given
by

∂kR
F
k (Q) = sgn(ξ(q))Θ(k − |ξ(q)|) . (4.28)

Contributions to the flow equations of couplings in which this term occurs
are nonzero only for modes having no more than a certain nonzero distance
from the Fermi surface. This distance shrinks while k is decreasing, so
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one can describe the renormalization group flow as approaching the Fermi
surface step by step while taking into account fluctuations closer and closer
to it.

The regulator function for the antiferromagnetic boson is given by

Ra
k(Q) = Aa (k2 − Fa,c/i(q, q̂))Θ(k2 − Fa,c/i(q, q̂)) (4.29)

allowing for an incommensurability q̂ with Fa,c/i as defined in Chapter 4.2.
For the ρ-boson the same regulator is used, but with Fρ,c/i defined with a
shift by the vector π, as discussed in Chapter 4.2. Regulator functions for
the Cooper-pair bosons can be chosen of the same form, but no incommen-
surability needs to be accounted for in these cases, so one can set

R
s/d
k (Q) = As/d · (k2 − Fs/d(q))Θ(k2 − Fs/d(q)) (4.30)

for them.

The derivative of, for instance, the antiferromagnetic regulator with re-
spect to the scale k is given by

∂kR
a
k(Q) = k Aa

(

2 − ηa(1 − Fa,c/i(q, q̂)t2/k2)
)

Θ(k2 − Fa,c/i(q, q̂)) , (4.31)

where quantitatively irrelevant renormalization group improvements due to
the scale dependence of Fa,c/i have been neglected.

While in the case of fermions the last fluctuations taken into account are
associated to momenta in the vicinity of the Fermi surface, the last bosonic
fluctuations to be integrated out are those which are close to the minima of
the kinetic terms. If incommensurate (charge density or antiferromagnetic)
fluctuations dominate, there are four such minima, otherwise one. As will
become clear in Chapter 5 where phases exhibiting spontaneous breaking
are studied, this number has a considerable influence on the strength with
which bosonic fluctuation drive the system out of the spontaneously broken
regimes in the infrared limit k → 0.

4.4 Flow Equations for the Running Couplings

There exist different ways of extracting the flow equations for the running
couplings from the flow equation (3.17) for the flowing action. In this work,
two different methods to arrive at these flow equations are applied, the first
based on the one-loop corrections to the 1PI vertex functions, the second
based on the flow equation for the effective potential. In this section I
shall focus on the first of these two approaches, which is used to derive the
flow of the running couplings in the symmetric regime. Furthermore, since
it involves the computation of the one-loop corrections to the 1PI vertex
functions, it produces among others the one-loop correction to the inverse
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antiferromagnetic propagator Eq. (2.23), which was needed in the mean
field treatment of antiferromagnetism described in Chapter 2.5.

As a starting point, the flow equation for the flowing action is written
in the form

∂kΓk =
1

2
STr ∂̃k

(

ln(Γ
(2)
k + Rk)

)

(4.32)

where the shorthand ∂̃k = (∂kRk)
∂

∂Rk
has been used.

The basic idea for deriving from this equation the flow equations for
the 1PI vertex functions is to derive both sides an appropriate number
of times with respect to the fields collected in the collective field χ̂ =
(â, ρ̂, ŝ, ŝ∗, d̂, d̂∗, ψ̂, ψ̂∗) (the “hat” is just for notational convenience in what
follows). This is achieved by decomposing χ̂ into a spatially homogeneous
background field χ and a fluctuation-dependent part δχ̂(Q) such that

χ̂(Q) = χ · δ(Q) + δχ̂(Q) . (4.33)

The fermionic fields ψ† have vanishing expectation values, so one can set
ψ̂†(Q) = δψ†(Q) in this case. For the bosonic fields, however, the decompo-
sition Eq. (4.33) is nontrivial.

The matrix Γ2
k +Rk, which includes the inverse propagator together with

the infrared regulator terms, is now split up into a fluctuation-independent
part P, which includes the regulator terms Ri

k and a fluctuation-dependent
part F such that

Γ2
k + Rk = P + F . (4.34)

The matrix P includes the inverse propagators, background fields and cutoff
functions. In the symmetric regime it is diagonal in momentum space and
therefore easily invertible.

Inserting the decomposition Eq. (4.34) into the Wetterich flow equa-
tion (4.32) and expanding in the number of fields around zero fluctuation-
dependent part, one obtains

∂kΓk =
1

2
STr ∂̃k (ln(P + F))

=
1

2
STr ∂̃k (lnP) +

1

2
STr ∂̃k

(

P−1F
)

− 1

4
STr ∂̃k

(

(P−1F)2
)

+
1

6
STr ∂̃k

(

(P−1F)3
)

− 1

8
STr ∂̃k

(

(P−1F)4
)

+ ... (4.35)

Following [72], the fluctuation part F can be split up into parts containing
each only one specific combination of types of field,

F = Fa + Fρ + ... + Fψ + Fψ† + ... + Fad + ... . (4.36)
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This decomposition of F induces a decomposition of P−1F such that

P−1F = Na + Nρ + ... + Nψ + Nψ† + ... + Nad + ... , (4.37)

where Ni... = P−1Fi... for all field (multi-) indices i....
The flow equations for the 1PI vertex functions are obtained from Eq.

(4.34) by computing the terms on the right hand side up to a certain order
in the fields while at first omitting the scale derivative ∂̃k and the regulator
term Rk so that in accordance with Eq. (3.7) one computes the one-loop
correction of the effective action Γ, starting from the classical action S. One-
loop corrections to the 1PI vertex functions are obtained by differentiating
both sides of Eq. (4.34) (while still neglecting the scale derivative ∂̃k) with
respect to the fluctuation-dependent parts of the components of the field χ̂.
In other words, the matrices Ni, as introduced in Eq. (4.37), are compared to
those terms in the truncation for Γ which depend on the same types of field
i. As an example, the one-loop correction to the inverse antiferromagnetic
propagator P̃a(Q) is obtained from the term on the right hand side which is
quadratic in a and depends on no other field.

After having computed the one-loop corrections to the 1PI vertex func-
tions, one has to insert the derivative operator ∂̃k under the traces occurring
in Eq. (4.34), which means introducing it under the frequency, spin and mo-
mentum sums (or integrals) of these loop corrections. The flow equations
for the running couplings are thus obtained from the loop corrections to
the 1PI vertex functions by performing under the loop integral the deriva-
tive with respect to the regulator functions and afterwards multiplying with
their k-derivatives before carrying out the frequency, spin and momentum
summations.

4.4.1 Flow Equations for the Yukawa Couplings

In order to give a comprehensive overview of all one-loop corrections to the
1PI vertex functions, the language of Feynman diagrams is used in what
follows. As described in the last section, the flow equations for the running
couplings follow from the one-loop corrections to the 1PI vertex functions
having an appropriate number of external lines, if one inserts the derivative
∂̃k acting onto the IR regulator Rk under the loop integral. In this section
the resulting flow equations are discussed, first for the Yukawa couplings,
subsequently for the bosonic propagators, the quartic bosonic couplings, and
finally for the fermionic wave function renormalization.

Due to the contributions from flowing bosonization, as described in
Chapter 3.3, the derivation of the flow equations for the Yukawa couplings is
more involved than the derivation of those for the bosonic propagators and
quartic couplings. Nevertheless, the derivation of the flow equations for the
Yukawa couplings is discussed first because contributions to the flow equa-
tions of the bosonic propagators and quartic bosonic couplings are nonzero



36 Functional Renormalization for the Symmetric Regime

only if nonzero Yukawa couplings have been generated in the first place.
Since according to the choice of initial conditions specified in Chapter 4.2
all Yukawa couplings are equal to zero on initial scale k = Λ, the flow of
all other quantities starts only after nonzero Yukawa couplings have already
been generated during the flow.

The flow equations for the Yukawa couplings consist of a direct contribu-
tion and an “indirect” contribution resulting from flowing bosonization, see
Chapter 3.3. Applying the same line of argument which, for the coupling
in the magnetic channel, leads to Eq. (3.24), one obtains for the Yukawa
couplings in the four channels taken into account flow equations of the form

∂kh̄a(Q) = ∂kh̄a

∣

∣

ak
(Q) +

P̃a,k(Q)

2h̄a(Q)
∂kλ

a
F

∣

∣

ak
(Q) ,

∂kh̄ρ(Q) = ∂kh̄ρ

∣

∣

ρk
(Q) +

P̃ρ,k(Q)

2h̄ρ(Q)
∂kλ

ρ
F

∣

∣

ρk
(Q) ,

∂kh̄s(Q) = ∂kh̄s

∣

∣

sk,s∗
k

(Q) +
P̃s,k(Q)

2h̄s(Q)
∂kλ

s
F

∣

∣

sk,s∗
k

(Q) ,

∂kh̄d(Q) = ∂kh̄d

∣

∣

dk,d∗
k

(Q) +
P̃d,k(Q)

2h̄d(Q)
∂kλ

d
F

∣

∣

dk,d∗
k

(Q) . (4.38)

According to the parameterization for the Yukawa couplings specified in
Eqs. (4.24) and (4.25) these equations have to be evaluated at momentum
0 and, for the a-, ρ- and s-boson, also at momentum Π. In order to avoid
having to divide by the Yukawa couplings which are zero at the beginning
of the renormalization flow, it is more convenient to study the flow of their
squares. Consequently, the following equations are needed for the Yukawa
coupling in the antiferromagnetic channel

∂kh̄
2
a(0) = ∂kh̄

2
a

∣

∣

ak
(0) + P̃a(0)∂kλ

a
F

∣

∣

ak
(0) ,

∂kh̄
2
a(Π) = ∂kh̄

2
a

∣

∣

ak
(Π) + P̃a(Π)∂kλ

a
F

∣

∣

ak
(Π) , (4.39)

and analogously for ∂kh̄
2
ρ(0), ∂kh̄

2
ρ(Π), ∂kh̄

2
s(0), ∂kh̄

2
s(Π) and ∂kh̄

2
d(0).

The approximation made by computing h̄2
a(0) according to Eq. (4.39)

is most adequate when the loop contributions to λa
F (K1 − K2) are minimal

for K1 − K2 = 0 and maximal for K1 = K2 = Π or inversely. This is
the case whenever either ferromagnetic or commensurate antiferromagnetic
fluctuations dominate. When incommensurate antiferromagnetic fluctua-
tions dominate, the the flow equation for h̄2

a(0) is taken to be of the form

∂kh̄
2
a(0) = ∂kh̄

2
a

∣

∣

ak
(0) + m̄2

a ∂kλ
a
F

∣

∣

ak
(0) , (4.40)

where m̄2
a is the minimum of the inverse antiferromagnetic propagator which

coincides with its value at momenta ±Q̂x = ±(0, q̂, 0) and ±Q̂y = ±(0, 0, q̂).
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Figure 4.1: 1PI diagrams contributing to the flow of the Yukawa couplings via
flowing bosonization.

I shall first discuss those diagrams which contribute to the flow of the
Yukawa couplings via flowing bosonization and afterwards those that con-
tribute directly. Those that contribute via flowing bosonization are displayed
in Fig. 4.1. There are three types of such diagrams: two diagrams involving
only fermionic lines (first line of Fig 4.1), three diagrams having one inter-
nal bosonic line (second line of Fig 4.1), and five box diagrams having two
internal bosonic lines (third line of Fig 4.1). The first graph in each line
of Fig. 4.1 is a particle-particle graph, meaning that one cannot perform
a closed loop while following the direction of all arrows involved, all others
are particle-hole graphs. As will become clear in what follows, contribu-
tions from particle-particle graphs can be absorbed by Cooper pair bosons,
contributions from particle-hole graphs by real bosons.

Purely fermionic loops

In order to demonstrate how the contributions to the four-fermion vertex
are taken into account via flowing bosonization, I discuss in some detail the
case of the purely fermionic loop diagrams shown in the upper line of Fig.
4.1. Their contribution to the effective action is determined from

−1

4
STr

(

(P−1F)2
)

⊃ −1

4
STr

(

Nψψ + Nψψ† + Nψ†ψ†

)2

⊃ −1

4
STr

(

2NψψNψ†ψ† + Nψψ†Nψψ†

)

, (4.41)
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where the cyclicity property of the trace has been used and the sign ‘⊃’
denotes projection of the loop corrections on those parts which contain an
appropriate number of fields ψ and ψ†.

The resulting loop correction to the effective action is given by

∆ΓF
F = −U2

2

∑

K1,K2,K3,K4

∑

P

(4.42)

(

1

PF (P )PF (P + K2 − K3)
+

1

PF (P )PF (−P + K1 + K3)

)

×δ (K1 − K2 + K3 − K4)
[

ψ†(K1)ψ(K2)
]

·
[

ψ†(K3)ψ(K4)
]

.

In order to obtain the corresponding contribution to the fermionic four-point

vertex function ∆Γ
F (4)
F , one has to take the fourth functional derivative of

∆ΓF
F with respect to the fermionic fields. It is given by

∆Γ
F (4)
F (K1, K2, K3, K4) =

1

4

δ4

δψ∗
α(K1)δψβ(K2)δψ∗

γ(K3)δψδ(K4)
∆ΓF

F

= −U2

4

∑

P

(

4 Sαγ;βδ

PF (P )PF (−P + K1 + K3)

− δαδδγβ

PF (P )PF (P + K2 − K1)
+

δαβδγδ

PF (P )PF (P + K2 − K3)

)

, (4.43)

where Sαγ;βδ = 1
2 (δαβδγδ − δαδδγβ) denotes the singlet projection. In order

to read off from this expression the loop contributions to the four fermion
vertex in its different channels, one has to compare the two last lines of Eq.
(4.43) to the fourth derivative of the right hand sides of Eqs. (4.6) - (4.9)
with respect to the fields ψ, ψ†. This gives the loop corrections to the four-
fermion couplings λa

F , λρ
F , λs

F , λd
F introduced there. The second last line

of Eq. (4.43) can be absorbed by the s-boson, the last line by the a- and
ρ-bosons. Since all terms in Eq. (4.43) depend on only one combination of
momenta K1, K2 and K3, no contributions to the coupling in the d-wave
channel arise at this stage.

For the last line of Eq. (4.43) it is not immediately seen how it should
be distributed onto the a- and ρ-bosonic channels. In order to achieve this,
one can use the identity (B.11). All terms have now the same structures as
those appearing in the fourth functional derivatives of Eqs. (4.6), (4.7) and
(4.8). Consequently, one obtains from the purely fermionic loops (first line
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Figure 4.2: Schematic picture of the bosonization of loop contributions to the four-
fermion vertex. The terms indicated by the three dots correspond to loop diagrams
having internal bosonic lines.

of Fig. 4.1) the following contributions to λa
F , λρ

F and λs
F :

(∆λa
F )F (K1 − K2) = −U2

2

∑

P

1

PF (P )PF (P + K2 − K1)
,

(

∆λρ
F

)F
(K1 − K2) = −U2

2

∑

P

1

PF (P )PF (P + K2 − K1)
, (4.44)

(∆λs
F )F (K1 + K3) =

U2

2

∑

P

1

PF (P )PF (−P + K1 + K3)
.

As described above, one can now extract the flow equations for λa
F , λρ

F , λs
F

from the one-loop expressions (4.44) by replacing PF by P k
F (i. e. adding

the infrared cutoff RF
k to the inverse fermionic propagator) and by applying

the formal derivative ∂̃k = (∂kR
F
k )∂/∂RF

k under the summation. For λa
F ,

for example, one obtains

∂kλ
a
F (Q) = ∂̃k∆λa

F (Q) , (4.45)

where the formal derivative ∂̃k should be read as acting under the loop
summation of terms contained in ∆λa

F (Q). Of course (∆λa
F )F (Q) is only

part of the complete loop contribution ∆λa
F (Q), namely, the one which arises

from the two diagrams shown in the first line of Fig. 4.1. The complete
∆λa

F (Q) is obtained if the diagrams shown in Fig. 4.1 are all taken together.
In the partially bosonized approach used here, the fermionic loop con-

tributions to the momentum-dependent four-fermion vertex in Eq. (4.44)
are fully accounted for by the exchange of the bosons a, ρ and s. This is
shown schematically in Fig. 4.2. In the language of boson exchange, the mo-
mentum dependence of the coupling in, for instance, the antiferromagnetic
channel can be taken into account by the momentum dependence of the ex-
pression h̄2

a(K1 −K2)P̃
−1
a (K1 −K2). According to the flowing bosonization

scheme described in Chapter 3.3, the coupling λa
F is kept at zero during the

flow, and all contributions to it are taken into account by a corresponding
change in the Yukawa couplings h̄2

a. At momentum Q = 0, for example, the
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contribution to the flow of the momentum-dependent Yukawa couplings due
to the diagrams in the first line of Fig. 4.1, according to Eq. (4.39), is given
by

(

∂kh̄
2
a(0)

)F
= −U2

2
P̃a(0)

∑

P

∂̃k
1

P k
F (P )P k

F (P − Π)
, (4.46)

(

∂kh̄
2
ρ(0)

)F
= −U2

2
P̃ρ(0)

∑

P

∂̃k
1

P k
F (P )P k

F (P )
, (4.47)

(

∂kh̄
2
s(0)

)F
=

U2

2
P̃s(0)

∑

P

∂̃k
1

P k
F (P )P k

F (−P )
. (4.48)

For the s-boson P̃s(0) equals the mass term m̄2
s, for the a-boson P̃a(0) equals

the mass term m̄2
a if commensurate antiferromagnetic fluctuations dominate

over incommensurate ones.
At the level of Eqs. (4.46)-(4.48), the one-loop perturbative result for the

momentum-dependent four-fermion vertex is completely described in terms
of boson exchange. In the purely fermionic flows [22, 23, 24, 25, 26, 27, 28, 29]
the constant coupling U would be replaced by the full momentum- and k-
dependent four-fermion vertex. According to the partially bosonized ap-
proach used here, in contrast, where only a constant four-fermion coupling
U is kept, this renormalization group improvement is generated by the dia-
grams involving internal bosonic lines, shown in the second and third lines
of Fig. 4.1, and by the direct contributions shown in Fig. 4.3. It is at this
level where the parameterization of the Yukawa couplings and inverse boson
propagators specified in Chapter 4.2 as well as the restriction to a certain
number of bosons starts to matter.

Diagrams with one internal bosonic line

The momentum dependence of the four-fermion vertex arising from the dia-
grams involving boson exchange (those in the second and third lines of Fig.
4.1) is much more complicated than the simple form (4.44). The decision
of how to distribute these contributions onto the different boson exchange
channels is therefore nontrivial. Here an approximation is adopted in which
the momentum-dependence of the four-fermion couplings λa

F , λρ
F , λs

F , λd
F

is identified with the dependence of the diagrams in Figs. 4.1 and 4.3 on the
so-called transfer momentum. This momentum is defined as the difference
between the momenta attached to the two fermionic propagators in each di-
agram. According to this prescription particle-hole diagrams are absorbed
by the real bosons and particle-particle diagrams by the complex Cooper
pair bosons.

All diagrams are evaluated at external momenta L = (πT, π, 0) and
L′ = (πT, 0, π) so that, in accordance with Eqs. (4.39) and (4.40), flow equa-
tions for the Yukawa couplings are obtained at transfer momenta 0 = (0, 0, 0)
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and Π = (0, π, π). For small values of |µ| and |t′|, the spatial components
l and l′ of the momenta L and L′ are close to the Fermi surface. Since for
not so large values of |µ| and |t′| the density of states is comparatively large
at l and l′ and sometimes even divergent, this choice of external momenta
for the evaluation of diagrams is likely to be adequate for the most impor-
tant scattering processes. Where more than one combination of external
momenta ±L and ±L′ is compatible with the condition that the transfer
momentum is either 0 or Π, the average over these is taken.

While the contributions to the Yukawa couplings in Eqs. (4.46) and
(4.48) are proportional to U2 (and not to any Yukawa coupling) and there-
fore present already for large k, the diagrams shown in Fig. 4.3 and in the
second and third lines of Fig. 4.1 start to have an influence on the flow of
the Yukawa couplings only after nonzero Yukawa couplings have been gen-
erated from Eqs. (4.46) - (4.48) in the first place. In perturbation theory,
they would correspond to higher order effects ∼ U3 and U4. (Perturbatively,
every Yukawa coupling counts as U .)

The corrections to the effective action due to particle-particle diagrams
(“pp” denotes “particle-particle”) with one internal real bosonic line read

∆Γa,ρ
F,pp = −U

2

∑

K1,K2,K3,K4

∑

P
(

σj
αδσ

j
γβ

PF (P )PF (−P + K1 + K3)

(

h̄2
a(P + K1 − Π)

P̃a(P + K1 − Π)
+

h̄2
a(P + K2 − Π)

P̃a(P + K2 − Π)

)

+
δαδδγβ

PF (P )PF (−P + K1 + K3)

(

h̄2
ρ(P + K1)

P̃ρ(P + K1)
+

h̄2
ρ(P + K2)

P̃ρ(P + K2)

))

× δ (K1 − K2 + K3 − K4) ψ†
α(K1)ψβ(K2)ψ

†
γ(K3)ψδ(K4) . (4.49)

Using the identities (B.10) and (B.11), the projection of the fourth derivative
with respect to the fermionic fields onto the singlet channel (hence the index
“s”) is computed to be

∆Γ
(4),a,ρ
F,pp,s (K1, K2, K3, K4) = −U

4

∑

P
(

3

PF (P )PF (−P + K1 + K3)

(

h̄2
a(P + K1 − Π)

P̃a(P + K1 − Π)
+

h̄2
a(P + K2 − Π)

P̃a(P + K2 − Π)

+
h̄2

a(P + K3 − Π)

P̃a(P + K3 − Π)
+

h̄2
a(P + K4 − Π)

P̃a(P + K4 − Π)

)

− 1

PF (P )PF (−P + K1 + K3)

(

h̄2
ρ(P + K1)

P̃ρ(P + K1)
+

h̄2
ρ(P + K2)

P̃ρ(P + K2)

+
h̄2

ρ(P + K3)

P̃ρ(P + K3)
+

h̄2
ρ(P + K4)

P̃ρ(P + K4)

))

. (4.50)
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Evaluated at external momenta Ki = ±L(′) so that K1 +K3 = K2 +K4 = 0,
this yields the following contribution to the flow of h̄2

s(0),

(

∂kh̄
2
s(0)2

)a,ρ
= m̄2

s

U

2

∑

P

∂̃k

(

3h̄2
a(P − L)

P k
F (P )P k

F (−P )P̃ k
a (P − L)

−
h̄2

ρ(P − L)

P k
F (P )P k

F (−P )P̃ k
ρ (P − L)

)

, (4.51)

where it has been used that it is irrelevant whether L or L′ occurs in the
summation over P . In the analogous expression for h̄2

s(Π) an additional shift
by the vector Π has to be introduced in the argument of one in each pair of
fermionic propagators P k

F in the denominators of Eq. (4.51).
Particle-hole graphs (index “ph”) with one internal bosonic line can have

either a real or a Cooper pair boson internal line. Those with a real boson
internal line are given by

∆ΓF,a
F,ph =

U

4

∑

K1,K2,K3,K4

∑

P

1

PF (P )PF (P − K1 + K2)
(

h̄2
a(P + K1 − Π)

P̃a(P + K1 − Π)
+

h̄2
a(P + K2 − Π)

P̃a(P + K2 − Π)

)

(

3δαβδγδ + σj
αβσj

γδ

)

,

× δ (K1 − K2 + K3 − K4)ψ†
α(K1)ψβ(K2)ψ

†
γ(K3)ψδ(K4) , (4.52)

∆ΓF,ρ
F,ph =

U

4

∑

K1,K2,K3,K4

∑

P

1

PF (P )PF (P − K1 + K2)
(

h̄2
ρ(P + K1)

P̃ρ(P + K1)
+

h̄2
ρ(P + K2)

P̃ρ(P + K2)

)

(

δαβδγδ − σj
αβσj

γδ

)

× δ (K1 − K2 + K3 − K4)ψ†
α(K1)ψβ(K2)ψ

†
γ(K3)ψδ(K4) , (4.53)

those with a Cooper pair boson internal line by

∆ΓF,s
F,ph = −U

∑

K1,K2,K3,K4

∑

P

1

PF (P )PF (P − K1 + K2)
(

h̄2
s(P + K1)

P̃s(P + K1)
+

h̄2
s(P + K2)

P̃s(P + K2)

)

(

δαβδγδ + σj
αβσj

γδ

)

× δ (K1 − K2 + K3 − K4) ψ†
α(K1)ψβ(K2)ψ

†
γ(K3)ψδ(K4) , (4.54)

∆ΓF,d
F,ph = −U

∑

K1,K2,K3,K4

∑

P

fd(P/2 − K1)fd(P/2 + K2)

PF (P )PF (P − K1 + K2)

(

h̄2
d(P + K1)

P̃d(P + K1)
+

h̄2
d(P + K2)

P̃d(P + K2)

)

(

δαβδγδ + σj
αβσj

γδ

)

× δ (K1 − K2 + K3 − K4) ψ†
α(K1)ψβ(K2)ψ

†
γ(K3)ψδ(K4) . (4.55)
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Performing the derivative with respect to the fermionic fields, evaluating at
external momenta Ki = ±L(′), and inserting the scale derivative ∂̃k, the
corresponding contributions to h̄2

a(0) and h̄2
ρ(0) are given by

(

∂kh̄
2
a(0)

)aρsd
= −m̄2

a

U

2

∑

P

∂̃k
1

P k
F (P )P k

F (P + Π)
(

h̄2
a(P + L)

P̃ k
a (P + L)

−
h̄2

ρ(P + L)

P̃ k
ρ (P + L)

(4.56)

−4
h̄2

s(P + L)

P̃ k
s (P + L)

− 4
h̄2

d(P + L)

P̃ k
d (P + L)

fd((P − L)/2)fd((P + Π + L′)/2)

)

and

(

∂kh̄
2
ρ(0)

)aρsd
= −P̃ρ(0)

U

2

∑

P

∂̃k
1

P k
F (P )P k

F (P )
(

3
h̄2

a(P + L)

P̃ k
a (P + L)

+
h̄2

ρ(P + L)

P̃ k
ρ (P + L)

(4.57)

−4
h̄2

s(P + L)

P̃ k
s (P + L)

− 4
h̄2

d(P + L)

P̃ k
d (P + L)

fd((P − L)/2)fd((P + L′)/2)

)

.

The analogous contributions to the flows of h̄2
a(Π) and h̄2

ρ(Π) have the same
form. The single refinement is that there is no “+Π” in the argument of the
second fermionic propagator and in the second d-wave form factor in the
equation for h̄2

a(Π) and an additional “+Π” in the argument of the second
fermionic propagator and in the second d-wave form factor in the equation
for h̄2

ρ(Π).

Box diagrams: Generation of a coupling in the d-wave channel

The detailed evaluation of the box diagram contributions to the four-fermion
vertex, which are given in the third line of Fig. 4.1, can be found in Appendix
C of the present work. Here I focus on the generation of a coupling in the d-
wave channel through the particle-particle box graph with antiferromagnetic
internal lines.

Since the direct contribution to the d-wave Yukawa coupling h̄d is pro-
portional to this coupling itself, it is nonzero only if h̄d is nonzero in the
first place. As the initial value of h̄d at the scale k = Λ is zero, h̄d has to
grow from zero due to other contributions, namely the first diagram in the
lower line of Fig. 4.1, which is the only particle-particle box graph. The
contribution to the four-fermion vertex in this channel from this graph is
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extracted by means of the prescription

∆λd
F (0) =

1

2

{

∆Γ
(4),pp
F,s (L, L,−L,−L) − ∆Γ

(4),pp
F,s (L, L′,−L,−L′)

}

,

(4.58)

where the subscript “s” denotes the singlet and the superscript “pp” the
particle-particle part of the four-point vertex. The momentum vectors L
and L′ are defined as in Appendix A. For a motivation of this prescription
as a way of extracting the d-wave coupling see [34], for further details see
Appendix C, in particular Eqs. (C.3) and (C.4). The resulting contribution
to the flow of the d-wave Yukawa coupling from the particle-particle box
diagram with two internal antiferromagnetic lines is given by

(

∂kh̄d(0)2
)aa

= m̄2
d

9

16

∑

ǫ=±1

∑

P

∂̃k (4.59)

(

h̄2
a(P + L)

P k
F (P )P k

F (−P )P̃ k
a (P + L)

(

h̄2
a(P + ǫL)

P̃ k
a (P + ǫL)

− h̄2
a(P + ǫL′)

P̃ k
a (P + ǫL′)

)

)

.

The contribution from the same diagram to the s-wave superconducting
channel is obtained by adding, instead of subtracting, the two terms on
the right-hand side of Eq. (4.58) (and analogously in Eq. (4.59)). The s-
and d-wave superconducting channels of the four-fermion coupling can be
described as those parts of its singlet particle-particle contribution which are
symmetric (s-wave) and antisymmetric (d-wave) with respect to rotations
by 90◦ of the outgoing electrons while keeping the incoming electrons fixed.

After a Yukawa coupling in the d-wave channel has been generated in
accordance with Eq. (4.59) it is further enhanced through its direct contri-
butions. The discussion now turns to these.

Direct contributions

Having discussed the contributions to the flow of the Yukawa couplings which
arise from the flowing bosonization of contributions to the four-fermion ver-
tex, I now come to the direct contributions, which are shown graphically in
Fig. 4.3.

The corrections to the effective action corresponding to the diagrams
without an internal bosonic line, shown in the first line of Fig. 4.3, are given
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Figure 4.3: 1PI diagrams which directly contribute to the flow of the Yukawa
couplings.

by

∆ΓY
a,F = U

∑

K,Q1,Q2

∑

P

h̄a(K)

PF (P )PF (P − K − Π)
(4.60)

× δa(K) ·
[

ψ†(Q1)σψ(Q2)
]

δ(K − Q1 + Q2 − Π) ,

∆ΓY
ρ,F = −U

∑

K,Q1,Q2

∑

P

h̄ρ(K)

PF (P )PF (P − K)
(4.61)

× δρ(K) ·
[

ψ†(Q1)ψ(Q2)
]

δ(K − Q1 + Q2) ,

for the real and

∆ΓY
s,F = U

∑

K,Q1,Q2

∑

P

h̄s(K)

PF (P )PF (−P + K)
(4.62)

(

δs∗(K) ·
[

ψT (Q1)ǫψ(Q2)
]

− δs(K) ·
[

ψ†(Q1)ǫψ
∗(Q2)

]

)

δ(K − Q1 − Q2) ,

∆ΓY
d,F = U

∑

K,Q1,Q2

∑

P

h̄d(K) fd(P + (Q1 − Q2)/2)

PF (P )PF (−P + K)
(4.63)

(

δd∗(K) ·
[

ψT (Q1)ǫψ(Q2)
]

− δd(K) ·
[

ψ†(Q1)ǫψ
∗(Q2)

]

)

δ(K − Q1 − Q2)

for the complex bosons.

Deriving with respect to the fields, evaluating at external boson momen-
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tum K = 0, the insertion of ∂̃k yields the contributions

(

h̄a(0)
)F,dir

= −h̄a(0)U
∑

P

∂̃k
1

P k
F (P )P k

F (P + Π)
, (4.64)

(

h̄ρ(0)
)F,dir

= h̄ρ(0)U
∑

P

∂̃k
1

P k
F (P )P k

F (P )
, (4.65)

(

h̄s(0)
)F,dir

= −h̄s(0)U
∑

P

∂̃k
1

P k
F (P )P k

F (−P )
, (4.66)

(

h̄d(0)
)F,dir

= 0 . (4.67)

For bosonic momentum K = Π one proceeds in exactly the same way, which
has the consequence that the “+Π” in one of the inverse fermionic propa-
gators vanishes in the first and is additionally introduced in the other lines.
The contribution to h̄d is zero since the integration over spatial momenta
vanishes due to the dx2−y2-symmetry of the d-wave form factor.

At the beginning of the renormalization flow the growth of the Yukawa
couplings in the antiferromagnetic and charge density channels according to
Eqs. (4.46) and (4.47) is the same. They start to differ, however, as soon as
the direct contributions to the Yukawa couplings shown in the first line of
Fig. 4.3 become important. They contribute positively to the coupling in
the magnetic channel but negatively to the couplings in the charge density
and superconducting s-wave channels. This explains why in the parame-
ter regimes investigated among the three Yukawa couplings h̄a , h̄ρ , h̄s the
dominating one is h̄a, although in accordance with Eqs. (4.46) - (4.48) all
three are generated equally at early stages of the flow. Due to the compar-
atively large Yukawa coupling h̄a the mass term m̄2

a is driven fastest toward
zero. It thus becomes understandable why the charge density and s-wave
superconducting channels do not become critical in the range of parameters
investigated.

Further direct contributions to the Yukawa-couplings, shown in the sec-
ond line of Fig. 4.3, have an internal bosonic line. The associated one-loop
corrections to the effective action read as follows:

∆ΓY
a,F =

∑

K,Q1,Q2

∑

P

(4.68)

(

h̄a(K)

PF (Q1 − K + P )PF (Q1 + P − Π)
·
(

h̄2
a(P )

P̃a(P )
−

h̄2
ρ(P )

P̃ρ(P )

−4h̄2
s(P )

P̃s(P )
− 4h̄2

d(P )fd(Q1 − Π + P/2)fd(Q1 − K + P/2)

P̃d(P )

))

×δa(K)
[

ψ†(Q1)σψ(Q2)
]

δ(K − Q1 + Q2 − Π) ,
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∆ΓY
ρ,F =

∑

K,Q1,Q2

∑

P

(4.69)

(

h̄ρ(K)

PF (Q1 − K + P )PF (Q1 + P )
·
(

−3h̄2
a(P )

P̃a(P )
−

h̄2
ρ(P )

P̃ρ(P )

+
4h̄2

s(P )

P̃s(P )
+

4h̄2
d(P )fd(Q1 − Π + P/2)fd(Q1 − K + P/2)

P̃d(P )

))

×δρ(K)
[

ψ†(Q1)σψ(Q2)
]

δ(K − Q1 + Q2 − Π) ,

and

∆ΓY
s,F =

∑

K,Q1,Q2

∑

P

(4.70)

(

h̄s(K))

PF (Q1 − K + P )PF (Q1 + P )

(

−3
h̄2

a(P )

P̃a(P )
+

h̄2
ρ

P̃ρ(P )

))

(

δs∗(K) ·
[

ψT (Q1)ǫψ(Q2)
]

− δs(K) ·
[

ψ†(Q1)ǫψ
∗(Q2)

]

)

δ(K − Q1 − Q2) ,

∆ΓY
d,F =

∑

K,Q1,Q2

∑

P

(4.71)

(

h̄d(K)fd(P + Q1 − K/2)

PF (Q1 − K + P )PF (Q1 + P )

(

−3
h̄2

a(P )

P̃a(P )
+

h̄2
ρ

P̃ρ(P )

))

(

δd∗(K) ·
[

ψT (Q1)ǫψ(Q2)
]

− δd(K) ·
[

ψ†(Q1)ǫψ
∗(Q2)

]

)

δ(K − Q1 − Q2) .

To extract from these loop corrections to the effective action the corre-
sponding contributions to the flow equations of the Yukawa couplings, the
derivative with respect to the fields is taken and evaluated at external boson
momentum K = 0 and fermionic momenta ±L(′). Inserting ∂̃k under the
loop integral one obtains

(

∂kh̄a

)aρsd,dir
(0) = h̄a(0)

∑

P

∂̃k
1

P k
F (P )P k

F (P + Π)
(4.72)

×
(

− h̄2
a(P + L)

P̃ k
a (P + L)

+
h̄2

ρ(P + L)

P̃ k
ρ (P + L)

+ 4
h̄2

s(P + L)

P̃ k
s (P + L)

+4
h̄2

d(P + L)fd((P − L)/2)fd((P + Π + L′)/2)

P̃ k
d (P + L)

)
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and, for h̄ρ(0),

(

∂kh̄ρ

)aρsd,dir
(0) = h̄ρ(0)

∑

P

∂̃k
1

P k
F (P )P k

F (P + L)
(4.73)

×
(

3
h̄2

a(P + L)

P̃ k
a (P + L)

+
h̄2

ρ(P + L)

P̃ k
ρ (P + L)

− 4
h̄2

s(P + L)

P̃ k
s (P + L)

−4
h̄2

d(P + L)fd((P − L)/2)fd((P + L′)/2)

P̃ k
d (P + L)

)

.

In the parameter regimes studied, those contributions in Eqs. (4.72) and
(4.73) that have a minus sign tend to contribute positively to the growth
of the Yukawa couplings, the others negatively. This means that growing
h̄a enhances its own growth, whereas growing h̄ρ blocks its own growth.
On the other hand, the growth of h̄a is slowed down by contributions from
the s-wave superconducting channel (see both Eq. (4.56) and Eq. (4.72)).
Intuitively, the superconducting channels describe an effective attraction
between fermions that has a tendency to attenuate the dominant repulsion
which in turn may lead to antiferromagnetic order. Taking into account
the s-wave superconducting boson is crucial in order not to obtain critical
temperatures that are too large by a factor of approximately 2.1

For the direct contributions to the flow of h̄s(0) and h̄d(0) involving a
bosonic propagator one obtains:

(

∂kh̄s(0)
)aρ,dir

= h̄s(0)
∑

P

∂̃k
1

PF (P )PF (−P )
(4.74)

×
(

−3h̄2
a(P + L

P̃a(P + L)
+

h̄2
ρ(P + L)

P̃ρ(P + L)

)

(

∂kh̄d(0)
)aρ,dir

= h̄d(0)
∑

P

∂̃k
fd(P )

PF (P )PF (−P )
(4.75)

×
(

−3h̄2
a(P + L)

P̃a(P + L)
+

h̄2
ρ(P + L)

P̃ρ(P + L)

)

The presence of the d-wave form factor fd(P ) in the contribution to ∂kh̄d(0)
is crucial. Once a coupling in the d-wave channel has been generated through

1Earlier studies using the framework employed in this work (for instance [31, 34, 35])
did not obtain (pseudo-) critical temperatures too large by a factor of approximately 2
even though no s-wave superconducting boson was taken into account there. The main
reason why the (pseudo-) critical temperatures for antiferromagnetism were not grossly
overestimated in these works is that the momenta chosen for the evaluation of diagrams
contributing to h̄a were not close to the Fermi surface, which led to an inadequate estimate
of these contributions. This second inadequacy essentially compensated for the neglect of
the s-boson, so that plausible-looking results for the antiferromagnetic (pseudo-) critical
temperatures were obtained.
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the particle-particle box diagram (first in the third line of Fig 4.1), it is fur-
ther enhanced due to the direct contribution computed in Eq. (4.75). Since
this expression, which is itself proportional to the Yukawa coupling h̄d(0),
contributes positively to the flow of h̄d due to the d-wave form factor, it can
lead to a growth of this coupling without bounds, i.e. lead to an an insta-
bility in the d-wave channel. This instability will be the result of antiferro-
magnetic spin fluctuations so that the results of the present work, finding a
d-wave instability due to this contribution, support the idea, proposed and
defended in [4, 5, 6, 7, 8, 9, 10], that antiferromagnetic spin fluctuations are
responsible for d-wave superconductivity in the two-dimensional Hubbard
model (and maybe also in the cuprates insofar as the Hubbard model serves
as a guide to the relevant cuprate physics).

That the particle-particle graph in the second line of Fig. 4.3 holds a
key role in the emergence of the d-wave superconducting instability arising
from antiferromagnetic fluctuations is mirrored by the fact that this dia-
gram has the same momentum structure as right hand side of the BCS gap
equation. In the presence of an interaction which in momentum space is
maximal around the (π, π)-points—a condition which is fulfilled when an-
tiferromagnetic spin fluctuations dominate—the gap solving this equation
exhibits d-wave symmetry.

4.4.2 Bosonic Propagators

The derivation of the flow equations for the momentum-dependent bosonic
propagators starts from the projection of the one-loop corrections to the
effective action onto the parts which are quadratic in the bosonic fields. For
the antiferromagnetic boson, for instance, one has to project onto the part
which is quadratic in the field a such that

∆Γ ⊃ −1

4
STr

(

N2
a

)

=
∑

Q

∆Γ(2)
aa (Q) · 1

2
a(−Q)a(Q) , (4.76)

where ∆Γ
(2)
aa (Q) is to be identified with the one-loop correction to the in-

verse antiferromagnetic propagator ∆Pa(Q). It is obtained from ∆Γ by
performing the second derivative with respect to a,

∆Pa(Q) =

−→
δ

δaT (−Q)
∆Γ

←−
δ

δa(Q)

∣

∣

∣

a=0
. (4.77)

If the Yukawa coupling h̄a were assumed to be independent of frequency
and momentum, the fermionic loop contribution ∆ (Pa(Q))F would give the
result presented in the mean field analysis of Chapter 2.5, see Eq. (2.23).
According to the parameterization of the Yukawa couplings introduced in
Chapter 4.2, however, h̄a depends on spatial momenta so that

∆ (Pa(Q))F = 2h̄2
a(Q)

∑

P

1

PF (Q + P + Π)PF (P )
. (4.78)
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��
Figure 4.4: Fermionic loop diagrams contributing to the flow of bosonic propaga-
tors. Wiggly lines denote real bosons (particle-hole channels), dashed lines complex
bosons (Cooper pair channels).

Diagrammatically, this expression is presented as the first graph in Fig. 4.4 .
For the ρ-boson one obtains an analogous result, simply replacing the index
a by ρ and omitting the vector Π in the first inverse fermionic propagator,
whereas for the d-boson one gets

∆ (Pd(Q))F = −4h̄2
d(Q)

∑

P

fd(P )2

PF (Q + P )PF (−P )
(4.79)

and analogously for the s-boson after replacing the index d by s and the
d-wave form factor fd by 1. The diagrammatic representation of Eq. (4.78)
is the second graph in Fig.4.4.

Inserting the derivative ∂̃k, one obtains from Eqs. (4.78) and (4.79)
the following fermionic contributions to the flow equations for the inverse
bosonic propagators,

(

∂kP̃a(Q)
)F

= 2h̄2
a(Q)

∑

P

∂̃k
1

P k
F (P )P k

F (P + Π + Q)
(4.80)

(

∂kP̃ρ(Q)
)F

= 2h̄2
ρ(Q̂)

∑

P

∂̃k
1

P k
F (P )P k

F (P + Q)
(

∂kP̃s(Q)
)F

= −4h̄2
s(0)

∑

P

∂̃k
1

P k
F (−P )P k

F (P + Q)

(∂kPd(Q))F = −4h̄2
d(Q)

∑

P

∂̃k
fd(p)2

P k
F (−P )P k

F (P + Q)
.

For the a-and d-boson further contributions to the inverse propagators
are taken into account. They are proportional to the quartic bosonic cou-
plings λ̄a, λ̄d and λ̄ad and independent of the external momentum Q:

∆ (Pa(Q))B =
5

2
λ̄a

∑

P

1

P̃a(P )
+ λ̄ad

∑

P

1

P̃d(P )
(4.81)

and

∆ (Pd(Q))B = −2λ̄d

∑

P

1

P̃d(P )
+

3

2
λ̄ad

∑

P

1

P̃a(P )
. (4.82)
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Figure 4.5: Diagrams involving the quartic bosonic couplings λ̄a, λ̄d and λ̄ad

whose the scale derivatives contribute to the flow of the antiferromagnetic and d-
wave superconducting propagators. Scale derivatives of the diagrams in the first
line contribute to the flow of the antiferromagnetic, those in the second line to that
of the d-wave superconducting propagator. Wiggly lines denote antiferromagnetic,
dashed lines superconducting propagators.

The bosonic mass terms are defined as the minima of the inverse propagators
P̃i(Q). Taking into account both the fermionic contributions Eqs. (4.78)
and (4.79) and the bosonic contributions (4.81) and (4.82), the flow of the
antiferromagnetic and d-wave superconducting mass terms is given by

∂km̄
2
a = 2h̄2

a

∑

P

∂̃k
1

P k
F (P )P k

F (P + Π + Q̂)
(4.83)

−
∑

P

∂̃k

(

5

2

λ̄a

P̃ k
a (P )

+
λ̄ad

P̃ k
d (P )

)

and

∂km̄
2
d = −4h̄2

d

∑

P

∂̃k
fd(p)2

P k
F (P )P k

F (−P )
(4.84)

−
∑

P

∂̃k

(

2
λ̄d

P k
d (P ) + m̄2

d

+
3

2

λ̄ad

P k
a (P ) + m̄2

a

)

.

The vector Q̂ = Q̂x = (0, q̂, 0) (or Q̂ = Q̂y = (0, 0, q̂)) occurring in the
second fermionic propagator in Eq. (4.83) contains the incommensurability
which, as explained in Chapter 2.5, characterizes the magnetic and charge
density fluctuations in a certain range of parameters.
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Figure 4.6: Flow of the antiferromagnetic mass term m̄2

a for U/t = 3, t′/t = −0.l,
µ/t = −0.77 and T/t = 0.0185. The inset shows a detail of the flow, namely the
point where m̄2

a reaches its minimum, followed by an increase, which is caused by
to the bosonic contributions in the second line of Eq. (4.83).

In order to determine the value of the incommensurability q̂, the right
hand side of Eq. (4.83) is computed for a large number of vectors Q̂ corre-
sponding to different values of q̂. The value of q̂ for which, at a given scale
k, the mass term m̄2

a is minimal is accepted as the true value of the incom-
mensurability and the associated value of m̄2

a as the true antiferromagnetic
mass term.

In the symmetric regime, the fermionic contributions involving the Yu-
kawa couplings decrease the mass terms during the renormalization flow
whereas the bosonic contributions, proportional to the quartic couplings λ̄a,
λ̄d and λ̄ad (if it is positive), tend to increase them. The closer the mass
terms approach zero, the more important the bosonic fluctuations become.
As the charge density and s-wave superconducting channels never become
critical in the range of parameters investigated, the contributions to their
mass terms are assumed to be small and therefore neglected. Once either
the a- or d- boson mass term becomes close to zero, bosonic fluctuations
become more important, and the terms in the second lines of Eqs. (4.83)
and (4.84) may prevent the mass term from actually reaching zero. Fig. 4.6
shows this in an example where the bosonic contribution proportional to
λ̄a inverts the direction of the flow of the mass term m̄2

a so that it remains
nonzero for k → 0.

Whenever some bosonic mass term m̄2
i becomes zero during the flow—

despite the influence of bosonic fluctuations—the truncation for the effective
potential is changed from the form of Eq. (4.15) to one which is appropriate
for the phases with broken symmetry, see Eq. (5.1) in Chapter 5.1. A
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negative quadratic term in the effective potential indicates local order, since
at a given coarse graining scale k the effective average action evaluated at
constant field has a minimum for a nonzero value of the boson field. The
largest temperature where at fixed values of U, t′, µ a given mass term m̄2

i

vanishes during the flow is called the pseudocritical temperature Tpc for this
type of order. It can also be described as the largest temperature where
short-range order sets in. At this temperature the effective momentum-
dependent four-fermion coupling h̄2

i (Q)/m̄2
i diverges in the channel where

m̄2
i hits zero. If the order persists for k reaching a macroscopic scale, the

model exhibits effectively spontaneous symmetry breaking, associated in the
Hubbard model in the parameter regimes studied to (either commensurate
or incommensurate) antiferromagnetism or d-wave superconductivity. The
true critical temperature Tc is defined as the largest temperature for which
local order persists up to some physical scale kph corresponding to the inverse
size of a macroscopic sample, see [31, 33]. In order to determine the true
critical temperature for either a- or d-type of order, it is therefore necessary
to switch to the truncation in which either α0 or δ0 (or both) are nonzero.
How this is done will be discussed in Chapter 5.

The flows of the factors Zi and Ai (with i = a, ρ, s, d) which occur in
the parameterization of the bosonic propagators are obtained as difference
quotients from the flows of P̃i(Q), evaluated at appropriate values of Q. The
flows of Za and Aa, for instance, are computed from the difference quotients
displayed in Eq. (4.21) and analogously for the other bosons.

It is convenient to introduce the anomalous dimensions ηi, which are
defined through

ηi = −k∂k lnAi . (4.85)

They are a measure of how quickly the gradient coefficients Ai change with
the scale k, so they can be determined from the flows of these.

4.4.3 Quartic Bosonic Couplings

The flow of the quartic bosonic couplings λ̄a, λ̄d, and λ̄ad is crucial for the
long-range physics of the system in the symmetry-broken regimes, which
is dominated by bosonic fluctuations. In order to obtain the appropriate
starting values for these couplings in the symmetry-broken regimes, it is
necessary to consider their flows already in the symmetric regime. If com-
mensurate antiferromagnetic fluctuations dominate, the flow equation for
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Figure 4.7: Diagrams involving the quartic bosonic couplings λ̄a, λ̄d and λ̄ad

whose the scale derivatives contribute to the flow of these couplings themselves.
Scale derivatives of the first two diagrams in the first line contribute to the flow of
λ̄a, those of the third and fourth diagram in the first line to the flow of λ̄d, and
those in the second line to the flow of λ̄ad. Wiggly lines denote antiferromagnetic,
dashed lines superconducting propagators.

the antiferromagnetic quartic coupling λ̄a is given by

∂kλ̄a = ∆Γ̇(4)
a (0, 0, 0, 0)

= 4h̄4
a(0)

∑

P

∂̃k
1

(

P k
F (P )P k

F (P + Π)
)2 (4.86)

−
∑

P

∂̃k

(

11

2

λ̄2
a

(P k
a (P ) + m̄2

a)
2 +

λ̄2
ad

(

P k
d (P ) + m̄2

d

)2

)

,

where ∆Γ
(4)
a denotes the one-loop contribution to the bosonic four-point

function, obtained as the fourth functional derivative of the flowing action
with respect to the field a, and the dot · indicates the insertion of ∂̃k under

the measure of the loop integral implicit in ∆Γ
(4)
a . Where incommensurate

fluctuations dominate over commensurate ones the flow equation (4.86) for
λ̄a has to be modified yielding

∂kλ̄a =
1

2

(

∆Γ̇(4)
a (Q̂x,−Q̂x, Q̂x,−Q̂x)

+∆Γ̇(4)
a (Q̂x,−Q̂x, Q̂y,−Q̂y)

)

. (4.87)

For the quartic coupling λ̄d of the d-boson one has the flow equation

∂kλ̄d(0) = 16h̄4
d

∑

P

∂̃k
fd(p)4

(

P k
F (P )P k

F (−P )
)2 (4.88)

−
∑

P

∂̃k

(

5
λ̄2

d
(

P k
d (P ) + m̄2

d

)2 +
3

2

λ̄2
ad

(P k
a (P ) + m̄2

a)
2

)

,
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which leads to very large values of λ̄d during the flow.

The flow equation for the quartic coupling λ̄ad describing the mutual
interaction between the a- and d-boson is given by

∂kλ̄ad = 8h̄2
a(0)h̄2

d(0)
∑

P

∂̃k

(

−2fd(p)2
(

P k
F (P )

)2
P k

F (−P )P k
F (P + Π)

+
fd(p)fd(p + π)

P k
F (P )P k

F (−P )P k
F (P + Π)P k

F (−P + Π)

)

−
∑

P

∂̃k

(

5

2

λ̄aλ̄ad

(P k
a (P ) + m̄2

a)
2 + 2

λ̄dλ̄ad
(

P k
d (P ) + m̄2

d

)2

+2
λ̄2

ad

(P k
a (P ) + m̄2

a)
(

P k
d (P ) + m̄2

d

)

)

. (4.89)

Graphical representations of the diagrams from which the bosonic contribu-
tions to the flow of λ̄a, λ̄d and λ̄ad are obtained as scale derivatives are given
in Fig. 4.7.

4.4.4 Fermionic Wave Function Renormalization

The flow equation for the fermionic wave function renormalization factor
ZF = ZF (±π) is obtained from the one-loop correction to the fermionic
propagator at the lowest two Matsubara modes ±πT . Here the formula

∂kZF =
1

2πi

(

∆Γ̇
(2)
F (πT,qF ) − ∆Γ̇

(2)
F (−πT,qF )

)

(4.90)

is used where the subscript “F” and the superscript “(2)” in ∆Γ̇
(2)
F indicate

that the derivative with respect to the fermionic fields ψ and ψ† has to be
taken. The dot · again indicates the insertion of ∂̃k under the measure of

the loop integral implicit in ∆Γ
(2)
F . Due to the ansatz (4.4) for the fermionic

propagator, where ZF is approximated by a single constant, some choice has
to be made for the Fermi momentum qF appearing on the right hand side
of Eq. (4.90). As has been checked, the increase of ZF during the flow is
generally stronger for qF close to the points (0,±π) and (±π, 0) than for
qF close to the axes where qx = ±qy, but the precise choice does not matter
for the semi-quantitative features of the phase diagram. For the results
displayed in the figures qF has been set to (0, π).

4.5 Numerical Results

In this section numerical results for the renormalization group analysis of
the symmetric regime are presented and discussed.
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Figure 4.8: Pseudocritical temperatures for antiferromagnetism (green) and d-
wave superconductivity (red) at t′/t = −0.1 and U/t = 3.

Fig. 4.8 shows the pseudocritical temperatures for antiferromagnetic and
d-wave superconducting order as a function of the chemical potential µ at
t′/t = −0.1 and U/t = 3, i. e. the highest temperature, depending on µ, for
which a given mass term reaches zero during the flow. Antiferromagnetic
order is always incommensurate in the range of parameters depicted in Fig.
5.4. Superconducting order sets in only at rather large values of −µ and only
at rather low temperatures compared to the results presented in [36]. The
main reason for this seems to be the quartic coupling λ̄d, which was not taken
into account in [36] but becomes very large during the flow and has a strong
tendency to prevent the d-wave superconducting mass term from reaching
zero. In order to obtain the true critical temperatures, where magnetic or
superconducting order persists up to some macroscopic scale kph, one has
to employ a truncation which allows for nonzero order parameters, i. e.
spontaneous symmetry breaking. An analysis of the spontaneously broken
regimes will be presented in the following chapter.2

In the remaining part of this chapter the qualitative features of the flow
of the running couplings in the symmetric regime are discussed, where either
antiferromagnetism or d-wave superconductivity is the dominant instability.

The flow of the bosonic mass terms and Yukawa couplings is shown in the
upper panels of Fig. 4.9 in the regime where antiferromagnetism is the dom-

2A nonzero antiferromagnetic order parameter must already be be taken into account
to compute the pseudocritical temperatures for d-wave superconductivity where the d-
wave pseudocritical curve lies below that for antiferromagnetism in Fig. 4.8. For the
truncation used see also Chapter 5.1.
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Figure 4.9: Flow of the bosonic mass terms m̄2

a (green), m̄2

ρ (blue), m̄2

s (ma-

genta) and m̄2

d (red) (upper left panel), the Yukawa couplings h̄a(0) (green),
h̄ρ(Π) (blue), h̄s(0) (magenta) and h̄d(0) (red) (upper right panel). The lower
panel shows a logarithmic plot of the effective fermionic four-point couplings, i. e.
ln

(

(h̄2

a(0)/m̄2

a)/t
)

(green), ln
(

(h̄2

ρ(Π)/m̄2

ρ)/t
)

(blue), ln
(

(h̄2

s(0)/m̄2

s)/t
)

(magenta)

and ln
(

(h̄2

d(0)/m̄2

d)/t
)

(red). All curves are in SYM for U/t = 3, t′ = −0.1,
µ/t = −0.6 and T/t = 0.07.

inant instability. Since the s-wave superconducting mass term falls slightly
below the antiferromagnetic mass term and the Yukawa coupling in the d-
wave channel h̄d rises above the Yukawa coupling in the antiferromagnetic
channel, one has to look at the ratios h̄2

i /m̄2
i in order to see that the cou-

pling in the antiferromagnetic channel is actually the dominant one. This is
shown in Fig. 4.9, lower panel, where one can see that for the given choice of
parameters the antiferromagnetic coupling is more strongly enhanced than
the couplings in the s- and d-wave superconducting channels. The coupling
in the charge density channel grows least of all four.

In Fig. 4.10 the flow of the bosonic mass terms, Yukawa couplings and
effective fermionic four-point couplings is displayed for a combination of
parameters where the coupling in the d-wave superconducting channel is
the dominant one. Although this coupling is smallest on high scales of the
flow by several orders of magnitude, it is strongly enhanced during the flow
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Figure 4.10: Flow of the bosonic mass terms m̄2

a (green), m̄2

ρ (blue), m̄2

s (ma-

genta) and m̄2

d (red) (upper left panel), the Yukawa couplings h̄a(0) (green),
h̄ρ(Π) (blue), h̄s(0) (magenta) and h̄d(0) (red) (upper right panel). The lower
panel shows a logarithmic plot of the effective fermionic four-point couplings, i. e.
ln

(

(h̄2

a(0)/m̄2

a)/t
)

(green), ln
(

(h̄2

ρ(Π)/m̄2

ρ)/t
)

(blue), ln
(

(h̄2

s(0)/m̄2

s)/t
)

(magenta)

and ln
(

(h̄2

d(0)/m̄2

d)/t
)

(red). All curves are in SYM for U/t = 3, t′ = −0.1,
µ/t = −0.83 and T/t = 0.011.

due to antiferromagnetic fluctuations, as discussed in connection with Eq.
(4.75). At temperatures slightly lower than in Fig. 4.10 the mass term m̄2

d

reaches zero and the d-wave coupling diverges at a nonzero renormalization
scale k = kSSB.

The flow of the Z- and A-factors used in the parameterization of the
a- and d-boson propagators is displayed in the upper panels of Fig. 4.11.
The lower panel shows the fermionic wave function renormalization factor
ZF (πT ), which start its flow from 1 and grows by some fraction for which
the increase by 20% in Fig. 4.11 is representative.

The left panel of Fig. 4.12 shows the flow of the quartic bosonic couplings
λ̄a, λ̄d and λ̄ad for the set of parameters also used in Fig. 4.9. Although
antiferromagnetism is the dominant instability for this choice of parameters,
the quartic coupling λ̄a (green curve) is only comparatively weakly enhanced
during the flow. For smaller values of −t′ and not so close to half filling
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Figure 4.11: Upper left panel: Flow of the bosonic wave function renormalization
factors Za (green) and Zd (red). Upper right panel: Flow of the gradient coeffi-
cients Aa (green) and Ad (red). Lower panel: Flow of the fermionic wave function
renormalization factor ZF (πT ). All curves are for the symmetric regime at U/t = 3,
t′ = −0.1, µ/t = −0.6 and T/t = 0.07.

it may even turn negative during the flow so that the effective potential,
according to the truncation (4.15), is no longer bounded from below so
that the truncation is no longer adequate and has to be replaced by a more
extended one. A negative value of λ̄a may either indicate a tendency towards
a first order antiferromagnetic phase transition, but it may also result from
a more general inadequacy of the parameterization of the effective potential
as a polynomial in the fields in the given range of parameters. To avoid
these difficulties, which do not arise at larger values of −µ (see the green
curve in the right panel of Fig. 4.12), in this work the focus lies on values
of the parameters t′ and µ for which λ̄a is non-negative on all scales.

While the coupling λ̄a stays rather small during the flow and mostly
has only a mild influence on the flow of the antiferromagnetic mass term in
SYM, the quartic coupling λ̄d can grow very large. Already for the parame-
ters used in the left panel of Fig. 4.12 where the d-wave channel is far from
critical λ̄d (red curve) is substantially more enhanced than the quartic cou-
pling λ̄a, and even much more so in the range of parameters where d-wave
superconductivity is the dominant instability, see the right panel of Fig.
4.12 where λ̄d is displayed after division by ten. As already remarked, the
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Figure 4.12: Left panel: Flow of the (unrenormalized) quartic bosonic couplings
λ̄a (green), λ̄d (red) and λ̄ad (blue) in SYM for U/t = 3, t′ = −0.1, µ/t = −0.6 and
T/t = 0.07. Right panel: The same for µ/t = −0.83 and T/t = 0.011, but with λ̄d

multiplied by 0.1.

eminent growth of λ̄d during the renormalization flow is chiefly responsible
for the fact that the transition to d-wave superconductivity occurs only at
rather large values of −µ as compared to the results in [36] where no quartic
bosonic couplings were taken into account.

The quartic coupling λ̄ad, which describes the direct interaction between
the a- and d- boson can change its sign from positive to negative, or inversely,
during the renormalization flow, see Fig. 4.12 (blue curves). If it is positive,
it enhances the mass terms m̄2

a and m̄2
d, otherwise it decreases them like the

fermionic contributions to their flow.



Chapter 5

Functional Renormalization

for the Spontaneously

Broken Regimes

In the present chapter the renormalization group analysis started in the pre-
vious chapter is extended to the regimes with spontaneously broken sym-
metries where either one or both of the field expectation values α0 and δ0

are nonzero. The regime where only α0 is nonzero is denoted by “SSBa”,
the regime where only δ0 is nonzero is denoted by “SSBd”, and the regime
where both are nonzero is denoted by “SSBad”. The fact that one finds
a regime where at a certain scale k of the renormalization flow both order
parameters are nonzero does not imply that there is a coexistence phase in
which both antiferromagnetic and d-wave superconducting order are present
on a scale kph corresponding to the (inverse) size of a realistic sample. One
result from the present investigation is that the region of coexistence of an-
tiferromagnetism and d-wave superconductivity in µ - T -space, if it exists at
all, is much less extended than one might have expected from the results for
the symmetric regime (see Fig. 4.8).
In Chapter 5.1, the truncation for the symmetry broken regimes is presented.
Afterwards, in Chapter 5.2, the flow equations for the running couplings are
derived from the flow equation for the local effective potential. The con-
nection to the O(2)- and O(3)-symmetric linear σ-models and the influence
of the incommensurability which is characteristic of the antiferromagnetism
that one finds is discussed. Chapter 5.3 turns to the results obtained for the
phase diagram and for the flow of the running couplings in the symmetry
broken regimes.
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5.1 Truncation and Approximations

In the spontaneously broken regimes the ρ- and s-bosons are dropped from
the truncation since they are expected to have only a very small influence
on the running of the field expectation values α0 and δ0. In SSBad the
minimum of the effective potential occurs at nonzero values of the fields a

and d. In this case, the effective potential is expanded around its minimum
located at (α0, δ0):

∑

X

U(a, d) =
1

2

∑

Q1,Q2,Q3,Q4

δ (Q1 + Q2 + Q3 + Q4)

(

λ̄a(α(Q1, Q2) − α0δ(Q1 − Q̂)δ(Q2 + Q̂))

×(α(Q3, Q4) − α0δ(Q3 − Q̂)δ(Q4 + Q̂))

+λ̄d(δ(Q1, Q2) − δ0δ(Q1)δ(Q2)) (5.1)

(δ(Q3, Q4) − δ0δ(Q3)δ(Q4))

+2λ̄ad(α(Q1, Q2) − α0δ(Q1 − Q̂)δ(Q2 + Q̂))

(δ(Q3, Q4) − δ0δ(Q3)δ(Q4))
)

.

In the regimes SSBa and SSBd, where only either α0 or δ0 is nonzero, the
order parameter corresponding to the symmetry which is unbroken remains
zero and the corresponding mass term is kept in the truncation for the
effective potential.

As a further simplification in the spontaneously broken regimes, the
scale-dependences of the Yukawa couplings h̄a and h̄d are neglected, keep-
ing their values fixed at the scale kSSB where the first mass term becomes
zero: h̄a(Q)|k ≡ h̄a(Q)|kSSB

and h̄d(Q)|k ≡ h̄d(Q)|kSSB
for k < kSSB. This

approximation is expected to have only a minor impact on the flow of the
field expectation values in the SSB-regimes, which is dominated by long-
range bosonic fluctuations more than by interactions between fermions and
bosons.

The renormalization flow enters the spontaneously broken regimes only
at rather low scales, so in all nonzero contributions to the flow of the run-
ning couplings the inverse propagators are evaluated close to their minima.
Consequently, the spatial momentum part of Pa,d(Q) can be expanded to
quadratic order around its minima q̂1,2 = ±(q̂, 0) and q̂3,4 = ±(0, q̂), yield-
ing

Pa,d(Q) = Za,dω
2
Q + Aa,d[q − q̂1,2,3,4]

2 (5.2)

for the regions close to the minima.

Furthermore, since in the spontaneously broken regimes one normally
has k ≪ T , only the lowest bosonic Matsubara mode contributes and the
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dimensionality of the problem is effectively reduced from 2+1 to 2, a mech-
anism which is known as “dimensional reduction”. The values of Za and Zd

are no longer important and need not be considered any more.

To study the universal properties of the flow of the running couplings
in the infrared it is convenient to introduce dimensionless (renormalized)
quantities α̃, δ̃, κa, κd, m2

a, m2
d, λa, λd and λad defined by

α̃ =
t2Aa

T
α, δ̃ =

t2Ad

T
δ,

κa =
t2Aa

T
α0, κd =

t2Ad

T
δ0,

m2
a =

1

k2Aa
m̄2

a, m2
d =

1

k2Ad
m̄2

d,

λa =
T

t2k2A2
a

λ̄a, λd =
T

t2k2A2
d

λ̄d,

λad =
T

t2k2AaAd
λ̄ad . (5.3)

5.2 Flow of the Effective Potential

In order to obtain the flow equations for the field expectation values and
quartic couplings in the SSB-phases, one can derive them from the flow
equation for the local effective potential U(α, δ) which is given by

∂kU(α, δ) =
1

2
STr∂̃k lnP[α, δ] . (5.4)

Here P[α, δ] is the fluctuation-independent part of the cutoff-dependent full

inverse propagator Γ
(2)
k [α, δ] + Rk including the regulator term, see Eq.

(4.34). Within the present truncation, the right hand side of the flow equa-
tion for the effective potential (5.4) can be decomposed into a fermionic and
a bosonic contribution.

∂kU(α, δ) = ∂kUF (α, δ) + ∂kUB(α, δ) . (5.5)

The bosonic part can be written as

∂kUB[α, δ] =
1

2

∑

P,i,j

∂̃k ln
[

Pi(P )δi,j + M̂2
i,j(α, δ) + Rk

i (P )δi,j

]

, (5.6)

where Pi(P ) = Pa(P ) and Rk
i (P ) = Rk

a(P ) for i = 1, 2, 3, and Pi(P ) = Pd(P )
and Rk

i (P ) = Rk
d(P ) for i = 4, 5, respectively. The matrix M̂2

i,j(α, δ), which
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has to be diagonalized, has entries

M̂2
i,j(α, δ) =



















































λ̄a(3α − α0) + λ̄ad(δ − δ0) if i = j = 1 ,

λ̄a(α − α0) + λ̄ad(δ − δ0) if i = j = 2, 3 ,

λ̄d(3δ − δ0) + λ̄ad(α − α0) if i = j = 4 ,

λ̄d(δ − δ0) + λ̄ad(α − α0) if i = j = 5 ,
1
2 λ̄ad

√
αδ if i = 1 and j = 4 ,

1
2 λ̄ad

√
αδ if i = 4 and j = 1 ,

0 otherwise .

(5.7)

The first and fourth lines and columns of the matrix M̂2
i,j(α, δ) are associated

to the radial, the others to the Goldstone modes. The radial modes of the
two bosons are coupled to each other through the coupling λ̄ad whereas the
Goldstone modes remain uncoupled. The form Eq. (5.7) for the matrix
M̂2

i,j(α, δ) is adequate only in SSBad where the minimum of the effective
potential U(α, δ) occurs at nonzero values α0, δ0 of both field expectation
values α and δ. If one of the symmetries associated to the a- or d-boson
remains unbroken, the entries associated to this boson have to be replaced
by contributions including its mass term. In the presence of an unbroken a-
symmetry, the first three diagonal entries of M̂2

i,j(α, δ) have to be replaced

by m̄2
a + 3λ̄aα (for i = 1) and m̄2

a + λ̄aα (for i = 2, 3). If the d-wave
superconducting symmetry remains unbroken, the fourth and fifth diagonal
entries of M̂2

i,j(α, δ) have to be replaced by m̄2
d + 3λ̄dδ and m̄2

d + λ̄dδ.
The fermionic contribution ∂kUF (α, δ) to the flow of the effective poten-

tial is obtained from the one-loop correction to the effective potential given
by

∆UF = −1

2
Tr lnPF , (5.8)

where the sum in the trace is over fermionic indices only. If the antiferromag-
netism is commensurate, one can carry out the Matsubara sum analytically,
obtaining (see Section VI in [31])

∆UF = −T

∫

p

d2p

(2π)2

∑

ǫ={±1}

ln cosh

(

Θǫ

2T

)

(5.9)

where

Θǫ =

[ (

1

2
(ξp + ξp+π) + ǫ

√

1

4
(ξp − ξp+π)2 + 2h̄2

aα0

)2

+4h̄2
dfd(p)2δ0

]1/2

. (5.10)
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In order to be able to use this formula, the incommensurability q̂ is ne-
glected in the fermionic contribution to the flow of the effective potential
in the symmetry broken regimes. While the approximation involved in ne-
glecting the incommensurability in the fermionic contribution to ∂kU(α, δ)
is expected to involve only a limited quantitative inaccuracy, the effect of the
incommensurability on the bosonic contribution to the flow of the effective
potential is important, as will be discussed below.

By the help of Eqs. (5.6) and (5.8) the flow equations for the quartic
couplings λ̄a, λ̄d and λ̄ad are obtained by appropriate derivatives with respect
to the fields α and δ on both sides of Eq. (5.4),

∂kλ̄a =
d2

dα2
(∂kU(α, δ))

∣

∣

α=α0, δ=δ0

∂kλ̄d =
d2

dδ2
(∂kU(α, δ))

∣

∣

α=α0, δ=δ0
(5.11)

∂kλ̄ad =
d2

dαdδ
(∂kU(α, δ))

∣

∣

α=α0, δ=δ0
.

These formulas are also valid if one of the symmetries remains unbroken in
which case one has to set either α0 or δ0 to zero. As long as a one of the
symmetries is unbroken, a nonvanishing mass term is associated to it whose
flow equation is given by

∂km̄
2
a =

d

dα
(∂kU(α, δ))

∣

∣

α=0, δ=δ0
(5.12)

or

∂km̄
2
d =

d

dδ
(∂kU(α, δ))

∣

∣

α=α0, δ=0
, (5.13)

depending on which of the mass terms remains nonzero.
While in the symmetric regime the fermionic contributions to the flow

of the mass terms are always negative and drive the mass terms towards
zero, in the regimes SSBa and SSBd the mass term of the boson whose
symmetry remains unbroken is often increased rather than decreased by the
fermionic contribution to its flow. If, for instance, the antiferromagnetic
order parameter acquires a nonzero value, this may change the sign of the
fermionic contribution to the flow of the superconducting mass term m̄2

d

and prevent it from becoming zero, an effect which is shown in Fig. 5.1. In
that sense the presence of one type of order in the system has a tendency
to inhibit the other type of order on lower scales of the renormalization
flow. Similarly, in the regime SSBad where α0 and δ0 are nonzero each field
expectation value grows less or approaches zero more quickly for k → 0 as
long as the other one is substantially different from zero. This explains why
the region of coexistence of antiferromagnetic and d-wave superconducting
order shown in the phase diagram Fig. 5.4 is much smaller than one might
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Figure 5.1: Flow of the d-wave superconducting mass term m̄2

d (red) and (renor-
malized) antiferromagnetic field expectation value κa multiplied by a factor of 10
(green). Where κa starts to become nonzero, it inverts the sign of the fermionic
contribution to the flow of m̄2

d so that m̄2

d no longer decreases but rather increases
during the flow. Parameters chosen are U/t = 3, t′ = −0.1, µ/t = −0.65 and
T/t = 0.04.

have expected from the flow of the masses and Yukawa couplings in the
symmetric regime alone.

To derive the flow equations for the field expectation values α0 and δ0 one
can use the condition that U(α0, δ0) is a minimum of the effective potential
U(α, δ). From the fact that the necessary condition

∂αU(α0, δ0) = ∂δU(α0, δ0) = 0 , (5.14)

has to hold on all scales k of the renormalization flow, one obtains the
prescription

d

dk
∂αU(α0, δ0) =

d

dk
∂δU(α0, δ0) = 0 . (5.15)

Together with Eq. (5.11) the flow equations for the field expectation values
follow:

∂kα0 = − λ̄d

λ̄aλ̄d − λ̄2
ad

∂α∂kUk(α, δ)
∣

∣

α=α0, δ=δ0

+
λ̄ad

λ̄aλ̄d − λ̄2
ad

∂δ∂kUk(α, δ)
∣

∣

α=α0, δ=δ0
,

∂kδ0 = − λ̄a

λ̄aλ̄d − λ̄2
ad

∂δ∂kUk(α, δ)
∣

∣

α=α0, δ=δ0

+
λ̄ad

λ̄aλ̄d − λ̄2
ad

∂α∂kUk(α, δ)
∣

∣

α=α0, δ=δ0
. (5.16)
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Whenever only one of the field expectation values α0 and δ0 is nonzero, the
long-range behavior of the system can in some cases be described by the
O(3)-symmetric or O(2)-symmetric linear σ-model at finite temperature,
depending on whether α0 or δ0 is nonzero. The properties of these models
are well-known and well understood. Since after dimensional reduction, one
is dealing with an effectively two-dimensional problem, the unrenormalized
field expectation values α0 and δ0 have to vanish in the infrared limit k → 0
in accordance with the Mermin-Wagner theorem. For the O(2)-symmetric

model, however, the renormalized field expectation value κd = t2Ad

T δ0 may
remain nonzero even if δ0 drops to zero as the gradient coefficient Ad may
diverge in this case. This behavior is characteristic of a Kosterlitz-Thouless
phase transition [74], for functional renormalization group treatments see
[33, 75, 76]. Although the polynomial expansion of the effective potential in
Eq. (5.1) is not sufficient to account for the finiteness of κd down to k = 0, it
is sufficiently accurate to describe its being nonzero down to scales k ≪ kph

much smaller than any realistic inverse probe size l−1.
Once fermionic fluctuations are suppressed by temperature and dimen-

sional reduction is efficient, the flow equations for the renormalized field
expectation values and quartic couplings at vanishing λ̄ad = 0 reduce to
those familiar from the O(2)- and O(3)-symmetric linear σ-models, namely

∂kκa =
(4 − ηa)t

2

16π

(

3

(1 + 2λaκa)
2 + 2

)

− ηaκa , (5.17)

∂kλa = λ2
a

(4 − ηa)t
2

8π

(

9

(1 + 2λaκa)
3 + 2

)

−2(1 − ηa)λa (5.18)

for the a-boson (but only if commensurate antiferromagnetism dominates,
see below), and

∂kκd =
(4 − ηd)t

2

16π

(

3

(1 + 2λdκd)
2 + 1

)

− ηdκd , (5.19)

∂kλd = λ2
d

(4 − ηd)t
2

8π

(

9

(1 + 2λdκd)
3 + 1

)

−2(1 − ηd)λd (5.20)

for the d-boson. Since in the regime with two nonzero order parameters the
absolute value of λad is normally driven to zero much faster than the two
other quartic couplings λa and λd, the flow of κa, κd, λa, λd is frequently
well described by Eqs. (5.17)-(5.20). If, however, |λad| is larger than the
geometric mean of λa and λd, i. e. if |λad| >

√
λa · λd, the effective po-

tential U(α, δ) no longer has a minimum at (α0, δ0) even though it is still
stationary there. This signals the breakdown of the truncation (5.1), which
relies on a polynomial expansion of U(α, δ) around (α0, δ0), assumed to be
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the location of a minimum. Fortunately, however, the numerical results
obtained by means of the truncation Eq. (5.1) yield a violation of the con-
dition |λad| <

√
λa · λd only in regions where antiferromagnetism strongly

dominates over d-wave superconductivity. In this regime, the effect of d-
wave superconducting fluctuations on antiferromagnetic order can arguably
be neglected. Consequently, if in this regime |λad| rises above

√
λa · λd,

the coupling λad is set to zero on all scales whereby the expansion for the
effective potential becomes again well-defined.

The main difference between the flow equations for κa and λa on the
one hand and κd and λd on the other concerns the “+2” in Eqs. (5.17) and
(5.18) as opposed to the “+1” in Eqs. (5.19) and (5.20). This corresponds to
the different numbers 2 and 1 of Goldstone bosons in the symmetry broken
phases of the O(3)- and O(2)-symmetric linear σ-models, respectively. Since
in the presence of a non-negligible order parameter the Goldstone modes
have a much stronger influence than the radial modes in driving the order
parameter to zero, their number is crucial for how long (in terms of the
renormalization group flow) the system remains in the symmetry broken
regime.

The description of long-range antiferromagnetic fluctuations in terms of
the O(3)-symmetric linear σ-model is possible only if commensurate antifer-
romagnetic fluctuations dominate over incommensurate ones. As explained
in Chapter 2.5, this is the case as long as the antiferromagnetic kinetic term
Pa(Q) has only one minimum in the Brillouin zone, situated at q = 0.
Nonvanishing contributions to the flow of the running couplings involving
the bosonic scale derivative operator ∂̃a

k = ∂kR
a
k

∂
∂Ra

k
, which includes the

θ-function θ(k2 − [q]2), arise only from a small circle with radius k around
q = 0 in momentum space. In this case the bosonic contributions to the flow
of α0 are those familiar from the O(3)-symmetric model in two dimensions.

If, in contrast, incommensurate antiferromagnetic fluctuations dominate
over commensurate ones, Pa(Q) has four distinct minima in the space of
spatial momenta at q1,2 = (±q̂, 0) and q3,4 = (0,±q̂). In this case the
behavior of the flow of κa and λa is no longer correctly described by the
O(3)-symmetric linear σ-model. However, for k → 0, the renormalization
scale k at some point becomes small as compared to the incommensurability
q̂. If this is the case, nonvanishing contributions to the flow of the running
couplings arise only from the four distinct regions in momentum space which
are centered around the points (±q̂, 0) and (0,±q̂). The four regions can be
approximated by circles of radius k around these points so that the number
of modes contributing to the flow of κa and λa is effectively multiplied by a
factor of four. Since this effectively increases also the number of Goldstone
modes by a factor of four, which tend to destroy local order, this means that
only at rather low temperatures, compared to the pseudocritical tempera-
tures, incommensurate antiferromagnetic order persists up to the scale kph
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corresponding to a realistic inverse macroscopic probe size l−1 ≈ 1 cm−1.
In order to obtain the anomalous dimensions, one has to determine the

flow equations for Aa and Ad in the presence of nonzero κa and/or κd.
Taking into account the antiferromagnetic incommensurability q̂, the loop
contributions to Pa(Q) and Pd(Q) are derived two times with respect to
spatial momentum and once with respect to the scale k:

∂kAa = ∂k

(

lim
l→0

1

2

∂2

∂l2
∆Pa(0, q̂ + l, 0)

)

, (5.21)

∂kAd = ∂k

(

lim
l→0

1

2

∂2

∂l2
∆Pd(0, l, 0)

)

. (5.22)

In the regimes exhibiting spontaneous symmetry breaking, the fermionic
contributions to ηa and ηd quickly become negligible as soon as the scale
drops below temperature, and it suffices to consider the bosonic contri-
butions. In case the two bosons can independently be described by the
two-dimensional O(3)- and O(2)-symmetric models these contributions are,
assuming dimensional reduction,

ηa,d =
1

π

λa,dκa,d

(1 + 2λa,dκa,d)
2 . (5.23)

In the presence of nonzero λad, this formula has to be generalized, yielding

ηa =
1

π

(

λ2
ad

κd(1 − 4κa(λa − κdλ
2
ad + 2κdλaλd))

(

1 + 2κdλd + 2κa(λa − 2κdλ
2
ad + 2κdλaλd)

)2

+
κaλ

2
a(1 + 2κdλd)

2

(

1 + 2κdλd + 2κa(λa − 2κdλ
2
ad + 2κdλaλd)

)2

)

(5.24)

ηd =
1

π

(

λ2
ad

κa(1 − 4κd(λd − κaλ
2
ad + 2κaλaλd))

(

1 + 2κdλd + 2κa(λa − 2κdλ
2
ad + 2κdλaλd)

)2

+
κdλ

2
d(1 + 2κaλa)

2

(

1 + 2κdλd + 2κa(λa − 2κdλ
2
ad + 2κdλaλd)

)2

)

. (5.25)

For λad = 0, the first lines of both equations, which are proportional to λad,
become zero and the second lines reduce to Eq. (5.23). For incommensu-
rate antiferromagnetic order the equations for ηa and ηd have to be slightly
modified, including a factor of four in all contributions in which the scale
derivative of the antiferromagnetic regulator occurs.

5.3 Numerical Results

This section turns to the numerical results obtained for the running cou-
plings (Figs. 5.2 and 5.3) and the phase diagram (Fig. 5.4) in the symmetry
broken regimes SSBa, SSBd and SSBad.
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Figure 5.2: Left panel: Flow of the (renormalized) field expectation value κa

(green) at U/t = 3, t′ = −0.1, µ/t = −0.63 and T/t = 0.02. The magenta
curve shows the d-wave superconducting mass term m̄2

d, the red curve the field
expectation value κd where it is nonzero, both multiplied by a factor of 10. The
inset shows in detail the leftmost part of the main figure. Right panel: Flow of the
renormalized field expectation value κd (red) at U/t = 3, t′ = −0.1, µ/t = −0.78
and T/t = 0.015. The inset shows the leftmost part of the main figure, where also
the antiferromagnetic field expectation value κa (green) is nonzero.

The left panel in Fig. 5.2 shows the flow of the renormalized antifer-
romagnetic field expectation value κa together with the d-wave supercon-
ducting mass term m̄2

d and the renormalized d-wave field expectation value
κd in the region where κa is nonzero. For the combination of parameters
used the antiferromagnetic order parameter is nonzero during a much longer
period of the renormalization flow than the d-wave superconducting order
parameter. The (unrenormalized) mass term m̄2

d remains unchanged after
both the fermionic and the bosonic contribution to its flow have become
negligible. The fermionic contribution vanishes as a finite temperature ef-
fect, the bosonic contribution is effectively zero due to the finite mass term
in the d-boson propagator and the smallness of the quartic coupling λad,
which occurs in all terms involving the a-boson propagator.

The right panel in Fig. 5.3 shows a situation where, in contrast, the
d-wave superconducting order parameter remains nonzero down to scales k
much below any realistic inverse sample size. Both mass terms m̄2

a and m̄2
d

become zero at the same scale k = kSSB of the renormalization flow, and
therefore the field expectation values κa and κd “synchronously” start from
zero at the same scale. As can be seen from the inset, however, the antifer-
romagnetic field expectation value almost immediately drops to zero again
whereas the superconducting field expectation value still grows substantially.

In Fig. 5.3 the flow of the field expectation values and quartic bosonic
couplings is shown for the choice of parameters U/t = 3, t′ = −0.1, µ/t =
−0.74 and T/t = 0.013. In this case both order parameters are nonzero for
an important interval of the flow, but d-wave superconducting order persists
down to much lower scales k of the renormalization flow. Although at an
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Figure 5.3: Left panel: Flow of the (renormalized) field expectation values κa

(green) and κd (red) where both are nonzero. Right panel: Flow of the quartic
couplings λa (green), λd (red) and λad (blue), the latter two multiplied by a factor
of 0.1. The parameters chosen for U/t = 3, t′ = −0.1, µ/t = −0.74 and T/t = 0.013.

intermediate stage of the flow κa is considerably larger than κd, it vanishes
earlier during the flow due to the large number of effective antiferromagnetic
Goldstone modes. When comparing the flows of the quartic couplings λa,
λd and λad in Fig. 5.3 note that both λd and λad are multiplied by a factor
of 0.1 in order better to fit into the same window.

Fig. 5.4 shows the phase diagram for intermediate coupling strength
U/t = 3 and small but non-negligible next-to nearest neighbor hopping
t′ = −0.1 in the region in the µ −T -plane where one has the strongest com-
petition between antiferromagnetism and d-wave superconductivity. The
value of U has been chosen neither so large that a strong coupling method
would be preferable nor so small that the numerical effort for computing
the then very low critical temperatures is exorbitantly large. For values of
−t′ which are much smaller than −t′/t = 0.1 the quartic coupling λ̄a has an
unwanted tendency to become negative during the flow, whereas for values
of −t′ which are considerably larger the system exhibits an important ten-
dency towards ferromagnetism that cannot be captured using the truncation
for the effective action and parameterization of the bosonic propagators and
Yukawa couplings specified in Chapters 4.1 and 4.2. Upon small variations
of t′ the qualitative picture of the phase diagram remains essentially un-
changed. If −t′ is reduced, all phase boundaries are shifted towards smaller
values of −µ, if −t′ is increased, they move in the other direction. For
smaller values of the Hubbard interaction U , critical temperatures are lower
and the phase boundaries are shifted in the direction of the van Hove filling
chemical potential µ = 4t′.

In Fig. 5.4 focus lies on the region where the tendencies towards (in-
commensurate) antiferromagnetism and d-wave superconductivity are both
strong. For smaller values of −µ the antiferromagnetic instability prevails
and the value of the incommensurability shrinks to zero. Local antiferro-
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Figure 5.4: Phase diagram for U/t = 3 and t′ = −0.1. The blue region denotes
the (incommensurate) antiferromagnetic phase, the red region the d-wave super-
conducting phase, the small magenta region between the two denotes a coexistence
region. The green and turquoise lines indicate the pseudocritical temperatures for
antiferromagnetism and d-wave superconductivity already displayed in Fig. 4.8.

magnetic order sets in at rather high temperatures, but due to the large
number of effective Goldstone modes in the presence of incommensurate an-
tiferromagnetic order critical temperatures are considerably smaller. While
there is a sizeable difference between the pseudocritical temperature Tpc and
the true critical temperature Tc for antiferromagnetism, the two almost co-
incide in the case of d-wave superconductivity at least for larger values of
−µ/t > 0.75. The non-negligible difference between Tpc and Tc for super-
conductivity in the region between −µ/t = 0.6 and −µ/t = 0.75 in Fig. 5.4
is not so much an effect of Goldstone fluctuations. Instead, it is related to
the antiferromagnetic gap, which exerts an influence on the fermionic con-
tributions to m̄2

d in SSBa that may prevent it from becoming zero and a
decreasing influence on κd in SSBad.

One of the most intriguing questions about the phase diagram of the
two-dimensional Hubbard model on a square lattice is whether there is a
region in parameter space where antiferromagnetic and d-wave supercon-
ducting order coexist. The approach used in the present work allows to
give a tentative answer to this question. The results obtained by means
of the truncation described before suggest that although there might be a
coexistence region of antiferromagnetism and d-wave superconductivity it is
likely, if it exists at all, to cover only a very small region in µ − T -space.
For the results displayed in Fig. 5.4 the physical scale kph has been set to
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kph = 1 cm−1 ≈ 10−9t. At this scale the renormalization flow is stopped and
one registers whether one or two of the order parameters are still nonzero.
With respect to the result from Fig 5.4 that there is a small region of coex-
istence between antiferromagnetism and d-wave superconductivity there is
no guarantee that it is robust under changes in the truncation. Self-energy
contributions, for instance, which are expected to have an influence on the
details of the occurrence of incommensurate antiferromagnetic order, may
have an effect on the shape and (non-) existence of this coexistence region.
The present result, in any case, suggests that if there is a region in µ − T -
space where antiferromagnetism and d-wave superconductivity coexist, this
region is probably not very extended.
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Chapter 6

Summary and Outlook

The two-dimensional Hubbard model on a square lattice is widely accepted
as a basic description of the CuO2-planes in the high-Tc cuprates. In par-
ticular, it is hoped by many that the model might throw some light on the
mechanism of Cooper pair formation in these materials. Although the Hub-
bard Hamiltonian is extraordinarily simple, containing besides the kinetic
(hopping) term only a local onsite repulsion U , to solve the model exactly
is probably impossible and to establish the most important features of its
phase diagram is already very difficult. Renormalization group techniques
are among the most promising tools for detecting the leading instabilities of
the model in different parameter regimes. In the past decade, the so-called
functional renormalization group approach has proved to be a very flexible
way of spelling out this idea. In the present work the functional renormaliza-
tion group scheme has been used in combination with the concept of partial
bosonization.

In order to avoid the so-called mean field ambiguity, which arises from
the fact that a four-fermion interaction term can be decomposed into dif-
ferent bosonic channels, the concept of partial bosonization is set up in the
present work in the form of flowing bosonization, a scale-dependent variation
of the concept of a Hubbard-Stratonovich transformation which distributes
contributions to the four-fermion vertex onto the Yukawa couplings between
fermions on bosons, depending on their momentum and spin dependence.
Taking into account bosonic fields which correspond to the magnetic and
charge density as well as s- and d-wave superconducting channels, this pro-
cedure allows for an efficient parameterization of the four-fermion vertex
that is exact up to one-loop perturbative order. The same setting can also
be used to describe the generation of a coupling in the d-wave supercon-
ducting channel, technically arising from the scale derivative of the particle-
particle box diagram with internal antiferromagnetic propagator lines. The
“direct” contribution to the flow of the d-wave Yukawa coupling which has
an internal antiferromagnetic line is characterized by a similar momentum
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structure as the right hand side of the BCS-gap equation. The enhancement
of the d-wave Yukawa coupling resulting from this contribution confirms the
scenario of d-wave superconductivity as arising from antiferromagnetic spin
fluctuations, which successfully predicts the d-wave symmetry of the super-
conducting order parameter for the cuprates.

Partial bosonization not only allows for an efficient parameterization of
the fermionic four-point vertex but it also enables one to follow the renor-
malization flow of the running couplings into the regimes where one or more
symmetries of the Hamiltonian are spontaneously broken. Entering these
regimes is a necessary prerequisite if one wants to compute directly the crit-
ical temperatures where (e. g. magnetic or superconducting) order emerges
at length scales corresponding to realistic sample sizes. The existence of
global order is chiefly determined by fluctuations stemming from the Gold-
stone modes whose number depends on the order parameter in question. The
effective number of antiferromagnetic Goldstone modes is enhanced when in-
commensurate antiferromagnetic fluctuations dominate over commensurate
ones. This is the case in the regime where the antiferromagnetic and d-wave
superconducting phases border each other, which has the consequence that
there is only a much smaller region of coexistence between the two types
of order than one might have expected from the results in the symmetric
regime.

Although the method employed in the present work leads to qualitatively
and arguably also semiquantitatively plausible results for the phase diagram
of the two-dimensional Hubbard model, there is room for improving the
approximations made. In order to obtain a more rigorous treatment of the
fermionic-four point-vertex the virtues of the partially bosonized approach
used here may be combined with those of the N -patch scheme in the efficient
parameterization method developed in [44]. (For an alternative approach
using the language of Nambu vertices see [77].) In other regions of the
parameter space, for instance at larger values of −t′, other bosonic fields
would have to be taken into account. These may include a (triplet) p-
wave superconducting boson field or a d-wave charge density boson field,
corresponding to the so-called Pomeranchuk instability. In a next step,
self-energy corrections could be taken into account in a more extensive and
systematic manner. For recent work in this direction, based on the efficient
parameterization method of [44], see [69].

The truncation for the symmetry broken phases might also fruitfully be
extended. Besides taking into account an additional number of bosons, it
might be rewarding to go beyond the polynomial approximation for the ef-
fective potential made in this work, for instance by discretizing the space of
field expectation values and solving the flow equation for the effective po-
tential on a lattice. This would enable an investigation of possible first order
phase transitions of the system and of the influence of bosonic fluctuations
on these, where the expectation would be that first order phase transition



77

may be turned into second order transitions by bosonic fluctuations [78].
As a starting point, one might consider the bosonic O(N)×O(M)-linear σ-
models in which either one or two symmetries can be spontaneously broken
so that more than one order parameter can acquire a nonzero value. As an
additional complication in the application of these models to the long-range
bosonic fluctuations in the Hubbard model one has to take care of the fact
that one of the symmetries, namely the one corresponding to antiferromag-
netic order, is frequently broken in an incommensurate way.
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Appendix A

Notational Conventions

In this thesis natural units are adopted, i. e. ~ = c = kB = 1 .
A compact notation is employed in which for n ∈ Z one has Q = (ωn =

2πnT,q) for bosonic and Q = (ωn = (2n + 1)πT,q) for fermionic fields and

∑

X

=

β
∫

0

dτ
∑

x

,
∑

Q

= T
∞

∑

n=−∞

π
∫

−π

d2q

(2π)2
, (A.1)

δ(X − X ′) = δ(τ − τ ′)δx,x′ , δ(Q − Q′) = T−1δn,n′(2π)2δ(2)(q − q′) .

The components of the momentum q are measured in units of the inverse
lattice distance a−1, which is set to one. The discreteness of the lattice is
reflected by the 2π-periodicity of the momenta q.
Fourier transforms are defined through the convention

ψ̂(X) =
∑

Q

ψ̂(Q)eiQX , ψ̂(X)† =
∑

Q

ψ̂†(Q)e−iQX , (A.2)

for fermionic, and analogously for bosonic, fields.
Vectors in frequency-momentum space that are frequently used in the eval-
uation of vertex functions are given by

0 = (0, 0, 0) , 0+ = (2πT, 0, 0) ,

Π = (0, π, π) , Π+ = (2πT, π, π) , (A.3)

L = (πT, π, 0) , L′ = (πT, 0, π) .

Other frequently used vectors involve the antiferromagnetic incommensura-
bility q̂,

Q̂x = (0,q1) = −(0,q2) = (0, q̂, 0)

Q̂y = (0,q3) = −(0,q4) = (0, 0, q̂) . (A.4)
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Appendix B

Pauli Matrices and Spin

Projections

In order to compute the flow equations for the individual running couplings
from the flow equation for the flowing action, relations between several ten-
sors and matrices are needed. Some are given in this appendix to facilitate
the understanding of the calculations which lead to the flow equations given
in the text.
The Pauli matrices form a basis of space of Hermitean traceless 2 × 2-
matrices. They are given by

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

, (B.1)

the vector of the three Pauli matrices is denoted by σ.

The Pauli matrices obey σi =
(

σi
)†

=
(

σi
)−1

for i = 1, 2, 3, and they obey
the (anti-) commutation relations

{σi, σj} = 2δij , [σi, σj ] = 2iǫijkσk , (B.2)

where ǫijk is the totally antisymmetric 3 × 3-tensor.
The singlet and triplet projectors Sαγ;βδ and Tαγ;βδ are defined as

Sαγ;βδ =
1

2
(δαβδγδ − δαδδγβ) , (B.3)

Tαγ;βδ =
1

2
(δαβδγδ + δαδδγβ) . (B.4)

(B.5)

For the computation of one-loop diagrams the following identities are useful:

(σiσj)αβ(σiσj)γδ = 9Sαγ;βδ + Tαγ;βδ , (B.6)

σj
αβσj

γδ = −3Sαγ;βδ + Tαγ;βδ , (B.7)

δαβδγδ = Sαγ;βδ + Tαγ;βδ , (B.8)



82 Pauli Matrices and Spin Projections

(σiσj)αδ(σ
jσj)γβ =

9

2
δαβδγδ +

1

2
σj

αβσj
γδ , (B.9)

σj
αδσ

j
γβ =

3

2
δαβδγδ −

1

2
σj

αβσj
γδ , (B.10)

δαδδγβ =
1

2
δαβδγδ +

1

2
σj

αβσj
γδ . (B.11)



Appendix C

Box diagrams

C.1 Particle-particle Diagrams

The contributions to ∂kh̄
2
s and ∂kh̄d that arise from box diagrams having

two real boson internal lines (see the first diagram in the last line of Fig.
4.1) are given by:

∆ΓF,pp = −1

2

∑

K1,K2,K3,K4

∑

P

(C.1)

(

h̄2
a(P )h̄2

a(K1 − K2 + P )(σiσj)αβ(σiσj)γδ

PF (K1 − P − Π)P̃a(P )P̃a(K1 − K2 + P )PF (K3 + P − Π)

+
2h̄2

a(P )h̄2
ρ(K1 − K2 + P )σj

αβσj
γδ

PF (K1 − P − Π)P̃a(P )P̃ρ(K1 − K2 + P )PF (K3 + P − Π)

+
h̄2

ρ(P )h̄2
ρ(K1 − K2 + P )δαβδγδ

PF (K1 − P − Π)P̃ρ(P )P̃ρ(K1 − K2 + P )PF (K3 + P − Π)

)

× δ (K1 − K2 + K3 − K4)ψ†
α(K1)ψβ(K2)ψ

†
γ(K3)ψδ(K4).

The triplet part is neglected, and the projection onto the singlet part is
taken using the identities (B.6), (B.7) and (B.8).

Focusing on the first line of Eq. (C.1) (the others are treated analo-
gously), the resulting loop-correction to the four-point vertex reads (for the
singlet part)

∆Γ
(4),aa
F,pp,s(K1, K2, K3, K4) = −9

4

∑

P

((

h̄2
a(P − K2)

P̃a(P − K2)
+

h̄2
a(P − K4)

P̃a(P − K4)

)

×
(

h̄2
a(P + K1)

PF (P − Π)PF (−P + K1 + K3 − Π)P̃a(P + K1)

))

(C.2)

At this point, an approximation is required for how this contribution can
be distributed onto the s- and d-wave superconducting channels. First it is
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rewritten by twice adding and subtracting the same term,

∆Γ
(4),aa
F,pp (K1, K2, K3, K4) = −9

4

∑

P

(

h̄2
a(P − K1)

P̃a(P − K1)
+

h̄2
a(P + K1)

P̃a(P + K1)

×
(

h̄2
a(P + K1)

PF (P − Π)PF (−P + K1 + K3 − Π)P̃a(P + K1)

))

+

((

h̄2
a(P − K2)

P̃a(P − K2)
− h̄2

a(P − K1)

P̃a(P − K1)

)

×
(

h̄2
a(P + K1)

PF (P − Π)PF (−P + K1 + K3 − Π)P̃a(P + K1)

))

+

((

h̄2
a(P − K4)

P̃a(P − K4)
− h̄2

a(P + K1)

P̃a(P + K1)

)

×
(

h̄2
a(P + K1)

PF (P − Π)PF (−P + K1 + K3 − Π)P̃a(P + K1)

))

.

(C.3)

If K1 = K2 and K1 = −K4 or K1 = −K2 and K1 = K4, only the first two
lines are nonzero. The contribution from the other lines is expected to be
most important, in contrast, if the spatial part of K1 is orthogonal to that
of K2 and K4, particularly for K1, K2, K3, K4 taken from the vectors l and
l′. A natural approximation, for instance for the third line of (C.3), which
allows to bring into play the d-wave form factor fd is

(

h̄2
a(P − K2)

P̃a(P − K2)
− h̄2

a(P − K1)

P̃a(P − K1)

)

(C.4)

≈ 1

2

(

f2
d (K1) − fd(K1) fd(K2)

)

(

h̄2
a(P − Dπ/2(K1))

P̃a(P − Dπ/2(K1))
− h̄a(P − K1)

P̃a(P − K1)

)

,

where Dϕ(Q) denotes the vector Q after rotation of its spatial momentum
part by the angle ϕ. The fifth line in (C.3) is treated analogously.
For K1 = K2 and for K1 ⊥ K2 (where the sign ⊥ concerns spatial momen-
tum) the approximation (C.4) is exact. As it smoothly interpolates between
these two cases, it can be expected to give a good approximation.
Using that for L = (πT, π, 0) and L′ = (πT, 0, π) = Dπ/2(L), where the

diagram is eventually evaluated, one has f2
d (L(′)) = 1, the contribution to



C.1 Particle-particle Diagrams 85

the effective action can be approximated by

∆Γ
(4),aa
F,pp (K1, K2, K3, K4) ≈ −9

8

∑

ǫ=±1

∑

P

(C.5)

(

h̄2
a(P + K1)

PF (P − Π)PF (−P + K1 + K3 − Π)P̃a(P + K1)

×
(

h̄2
a(P + ǫK1)

P̃a(P + ǫK1)
+

h̄2
a(P + ǫDπ/2(K1))

P̃a(P + ǫDπ/2(K1))

)

+
h̄2

a(P + K1) fd(
1
2(K1 − K3)) fd(

1
2(K2 − K4))

PF (P − Π)PF (−P + K1 + K3 − Π)P̃a(P + K1)

×
(

h̄2
a(P + ǫK1)

P̃a(P + ǫK1)
−

h̄2
a(P + ǫDπ/2(K1))

P̃a(P + ǫDπ/2(K1))

))

.

Comparison with Eqs. (4.8) and (4.9) suggests that the part not involving the
d-wave form factors can be absorbed by the s-boson and the part involving
the d-wave form factors by the d-boson.

Evaluating at external momenta L(′) and inserting the scale derivative
operator ∂̃k one obtains the contributions to ∂kh̄s and ∂kh̄d from the box
diagram with two internal antiferromagnetic lines as:

(

∂kh̄s,d(0)2
)aa

= m̄2
s,d

9

16

∑

ǫ=±1

∑

P

∂̃k (C.6)

(

h̄2
a(P + L)

P k
F (P )P k

F (−P )P̃ k
a (P + L)

(

h̄2
a(P + ǫL)

P̃ k
a (P + ǫL)

± h̄2
a(P + ǫL′)

P̃ k
a (P + ǫL′)

)

)

,

where the +-sign pertains to the flow of the s-wave and the −-sign to the
flow of the d-wave Yukawa coupling.

In complete analogy, one obtains the contributions to ∂kh̄s,d(0)2 resulting
from the box diagram with one antiferromagnetic and one charge density
internal line as

(

∂kh̄s,d(0)2
)aρ

= m̄2
s,d

3

8

∑

ǫ=±1

∑

P

∂̃k (C.7)

(

h̄2
ρ(P + L)

P k
F (P )P k

F (−P )P̃ k
ρ (P + L)

(

h̄2
a(P + ǫL)

P̃ k
a (P + ǫL)

± h̄2
a(P + ǫL′)

P̃ k
a (P + ǫL′)

)

)

.

Similarly, from the box diagram with two internal charge density lines one
obtains

(

∂kh̄s,d(0)2
)ρρ

= m̄2
s,d

1

16

∑

ǫ=±1

∑

P

∂̃k (C.8)

(

h̄2
ρ(P + L)

P k
F (P )P k

F (−P )P̃ k
ρ (P + L)

(

h̄2
ρ(P + ǫL)

P̃ k
ρ (P + ǫL)

±
h̄2

ρ(P + ǫL′)

P̃ k
ρ (P + ǫL′)

))

.
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C.2 Particle-hole Diagrams

I now come to the particle-hole box diagrams, starting with those having
only real internal bosonic lines. Their correction to the effective action is
given by

∆Γaρ
F,ph =

1

2

∑

K1,K2,K3,K4

∑

P

(C.9)

(

h̄2
a(P )h̄2

a(K3 − K2 + P ) (σiσj)αδ(σ
jσi)γβ

PF (K1 − P − Π)P̃a(P )P̃a(K3 − K2 + P )PF (K2 − P − Π)

+2
h̄2

a(P )h̄2
ρ(K3 − K2 + P )σj

αδσ
j
γβ

PF (K1 − P − Π)P̃a(P )P̃ρ(K3 − K2 + P )PF (K2 − P − Π)

+
h̄2

ρ(P )h̄2
ρ(K3 − K2 + P ) δαδδγβ

PF (K1 − P − Π)P̃ρ(P )P̃ρ(K3 − K2 + P )PF (K2 − P − Π)

)

× δ (K1 − K2 + K3 − K4) ψ†
α(K1)ψβ(K2)ψ

†
γ(K3)ψδ(K4).

In order to obtain the resulting contributions to the flow equations, one has
to derive with respect to the fermionic fields and to evaluate these at external
momenta L(′). An average is taken over all contribution for which, in the case
of h̄2

a(0) for example, the condition K1 − K2 = Π is fulfilled. Furthermore
the identities (B.9) - (B.11) are employed and the derivative operator ∂̃k is
inserted. One obtains for the contribution to the flow equation of h̄2

a(0)

(

∂kh̄
2
a(0)

)aρ
/m̄2

a = −1

4

∑

P

∂̃k
h̄2

a(P )

P k
F (P + L)P̃ k

a (P )P k
F (P + L′)

×
(

h̄2
a(P )

P̃ k
a (P )

+
h̄2

a(P )

P̃ k
a (P + 0+)

+
h̄2

a(P + Π)

P̃ k
a (P + Π)

+
h̄2

a(P + Π)

P̃ k
a (P + Π+)

)

+
1

2

∑

P

∂̃k

h̄2
ρ(P )

P k
F (P + L)P̃ k

ρ (P )P k
F (P + L′)

×
(

h̄2
a(P )

P̃ k
a (P )

+
h̄2

a(P )

P̃ k
a (P + 0+)

+
h̄2

a(P + Π)

P̃ k
a (P + Π)

+
h̄2

a(P + Π)

P̃ k
a (P + Π+)

)

−1

4

∑

P

∂̃k

h̄2
ρ(P )

P k
F (P + L)P̃ k

ρ (P )P k
F (P + L′)

×
(

h̄2
ρ(P )

P̃ k
ρ (P )

+
h̄2

ρ(P )

P̃ k
ρ (P + 0+)

+
h̄2

ρ(P + Π)

P̃ k
ρ (P + Π)

+
h̄2

ρ(P + Π)

P̃ k
ρ (P + Π+)

)

(C.10)
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and for that of h̄2
ρ(Π)

(

∂kh̄
2
ρ(0)

)aρ
/m̄2

ρ = −9

4

∑

P

∂̃k
h̄2

a(P )

P k
F (P + L)P̃ k

a (P )P k
F (P + L′)

×
(

h̄2
a(P )

P̃ k
a (P )

+
h̄2

a(P )

P̃ k
a (P + 0+)

+
h̄2

a(P + Π)

P̃ k
a (P + Π)

+
h̄2

a(P + Π)

P̃ k
a (P + Π+)

)

−3

2

∑

P

∂̃k

h̄2
ρ(P )

P k
F (P + L)P̃ k

ρ (P )P k
F (P + L′)

×
(

h̄2
a(P )

P̃ k
a (P )

+
h̄2

a(P )

P̃ k
a (P + 0+)

+
h̄2

a(P + Π)

P̃ k
a (P + Π)

+
h̄2

a(P + Π)

P̃ k
a (P + Π+)

)

−1

4

∑

P

∂̃k

h̄2
ρ(P )

P k
F (P + L)P̃ k

ρ (P )P k
F (P + L′)

×
(

h̄2
ρ(P )

P̃ k
ρ (P )

+
h̄2

ρ(P )

P̃ k
ρ (P + 0+)

+
h̄2

ρ(P + Π)

P̃ k
ρ (P + Π)

+
h̄2

ρ(P + Π)

P̃ k
ρ (P + Π+)

)

.

(C.11)

For the definition of the vectors 0+ and Π+ see (A.3). The contributions to
∂kh̄a(Π) and ∂kh̄ρ(0) are obtained through replacing L′ by L.

Box diagrams with two internal Cooper pair lines are all of the particle-hole
type. Taken together, they are given by

∆Γsd
F = 4

∑

K1,K2,K3,K4

∑

P

(

δαβδγδ + σj
αβσj

γδ

)

(C.12)

(

h̄2
s(P )h̄2

s(K3 − K2 + P )

PF (P + K1)P̃s(P )PF (P + K2)P̃s(K3 − K2 + P )

+
2h̄2

s(K3 − K2 + P )h̄2
d(P )fd

(

1
2(P + 2K1)

)

fd

(

1
2(P + 2K2)

)

PF (P + K1)P̃s(K3 − K2 + P )PF (K1 − K2 + P )P̃d(P )

+
h̄2

d(P )h̄d(K3 − K2 + P )fd

(

1
2(P + 2K1)

)

fd

(

1
2(P + 2K2)

)

PF (P + K1)P̃d(K3 − K2 + P )PF (P + K2)P̃d(P )

× fd

(

1

2
(P + K2 + K3)

)

fd

(

1

2
(P + K1 + K4)

))

×δ (K1 − K2 + K3 − K4)ψ†
α(K1)ψβ(K2)ψ

†
γ(K3)ψδ(K4) .
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Using Eq. (B.11), the contributions from this to ∂kh̄
2
a(0) and ∂kh̄

2
ρ(Π) are

(

∂kh̄
2
a(0)

)sd
/m̄2

a =
(

∂kh̄
2
ρ(Π)

)sd
/m̄2

ρ =

−
∑

P

∂̃k
h̄2

s(P )

P k
F (P + L)P̃ k

s (P )P k
F (P + L′)

×
(

h̄2
s(P )

P̃ k
s (P )

+
h̄2

s(P )

P̃ k
s (P + 0+)

+
h̄2

s(P + Π)

P̃ k
s (P + Π)

+
h̄2

s(P + Π)

P̃ k
s (P + Π+)

)

−2
∑

P

∂̃k
h̄2

d(P )fd (P/2 + L)) fd (P/2 + L′)

P k
F (P + L)P̃ k

d (P )P k
F (P + L′)

×
(

h̄2
s(P )

P̃ k
s (P )

+
h̄2

s(P )

P̃ k
s (P + 0+)

+
h̄2

s(P + Π)

P̃ k
s (P + Π)

+
h̄2

s(P + Π)

P̃ k
s (P + Π+)

)

−
∑

P

∂̃k
h̄2

d(P )fd (P/2 + L)) fd (P/2 + L′)

P k
F (P + L)P̃ k

d (P )P k
F (P + L′)

×
(

h̄2
d(P ) fd(P/2 + L)fd(P/2 + L′)

(

1

P̃ k
d (P )

+
1

P̃ k
d (P + 0+)

)

+h̄2
d(P + Π) f2

d (P/2 + Π/2)

(

1

P̃ k
d (P + Π)

+
1

P̃ k
d (P + Π+)

))

(C.13)

The loop corrections to the effective action due to box diagrams with both
an internal Cooper pair boson line and an internal real boson line are given
by

∆Γ
as/d
F = −2

∑

K1,K2,K3,K4

∑

P

(

3δαβδγδ + σj
αβσj

γδ

)

(C.14)

(

h̄2
a(K3 − K2 + P )h̄2

s(P )

PF (P + K1)P̃s(P )PF (P + K2)P̃a(K3 − K2 + P )

+
h̄2

a(K3 − K2 + P )h̄2
d(P ) fd(P/2 + K1)fd(P/2 + K2)

PF (P + K1)P̃d(P )PF (P + K2)P̃a(K3 − K2 + P )

)

,

∆Γ
ρs/d
F = −2

∑

K1,K2,K3,K4

∑

P

(

δαβδγδ − σj
αβσj

γδ

)

(C.15)

(

h̄2
ρ(K3 − K2 + P )h̄2

s(P )

PF (P + K1)P̃s(P )PF (P + K2)P̃ρ(K3 − K2 + P )

+
h̄2

ρ(K3 − K2 + P )h̄2
d(P ) fd(P/2 + K1)fd(P/2 + K2)

PF (P + K1)P̃d(P )PF (P + K2)P̃ρ(K3 − K2 + P )

)
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The resulting contributions from this to ∂kh̄
2
a(0) and ∂kh̄

2
ρ(Π) are given by

(

∂kh̄
2
a(0)

)a/ρ,s/d
=

m̄2
a

2

∑

P

∂̃k (C.16)

(

h̄2
s(P )

P k
F (P + L)P̃ k

s (P )P k
F (P + L′)

×
(

h̄2
a(P )

P̃ k
a (P )

+
h̄2

a(P )

P̃ k
a (P + 0+)

+
h̄2

a(P + Π)

P̃ k
a (P + Π)

+
h̄2

a(P + Π)

P̃ k
a (P + Π+)

)

+
h̄2

d(P ) fd (P/2 + L)) fd (P/2 + L′)

P k
F (P + L)P̃ k

d (P )P k
F (P + L′)

×
(

h̄2
a(P )

P̃ k
a (P )

+
h̄2

a(P )

P̃ k
a (P + 0+)

+
h̄2

a(P + Π)

P̃ k
a (P + Π)

+
h̄2

a(P + Π)

P̃ k
a (P + Π+)

)

− h̄2
s(P )

P k
F (P + L)P̃ k

s (P )P k
F (P + L′)

×
(

h̄2
ρ(P )

P̃ k
ρ (P )

+
h̄2

ρ(P )

P̃ k
ρ (P + 0+)

+
h̄2

ρ(P + Π)

P̃ k
ρ (P + Π)

+
h̄2

ρ(P + Π)

P̃ k
ρ (P + Π+)

)

− h̄2
d(P ) fd (P/2 + L)) fd (P/2 + L′)

P k
F (P + L)P̃ k

d (P )P k
F (P + L′)

×
(

h̄2
ρ(P )

P̃ k
ρ (P )

+
h̄2

ρ(P )

P̃ k
ρ (P + 0+)

+
h̄2

ρ(P + Π)

P̃ k
ρ (P + Π)

+
h̄2

ρ(P + Π)

P̃ k
ρ (P + Π+)

))

,

(

∂kh̄
2
ρ(Π)

)a/ρ,s/d
=

m̄2
ρ

2

∑

P

∂̃k (C.17)

(

3
h̄2

s(P )

P k
F (P + L)P̃ k

s (P )P k
F (P + L′)

×
(

h̄2
a(P )

P̃ k
a (P )

+
h̄2

a(P )

P̃ k
a (P + 0+)

+
h̄2

a(P + Π)

P̃ k
a (P + Π)

+
h̄2

a(P + Π)

P̃ k
a (P + Π+)

)

+3
h̄2

d(P ) fd (P/2 + L)) fd (P/2 + L′)

P k
F (P + L)P̃ k

d (P )P k
F (P + L′)

×
(

h̄2
a(P )

P̃ k
a (P )

+
h̄2

a(P )

P̃ k
a (P + 0+)

+
h̄2

a(P + Π)

P̃ k
a (P + Π)

+
h̄2

a(P + Π)

P̃ k
a (P + Π+)

)

+
h̄2

s(P )

P k
F (P + L)P̃ k

s (P )P k
F (P + L′)

×
(

h̄2
ρ(P )

P̃ k
ρ (P )

+
h̄2

ρ(P )

P̃ k
ρ (P + 0+)

+
h̄2

ρ(P + Π)

P̃ k
ρ (P + Π)

+
h̄2

ρ(P + Π)

P̃ k
ρ (P + Π+)

)

+
h̄2

d(P ) fd (P/2 + L)) fd (P/2 + L′)

P k
F (P + L)P̃ k

d (P )P k
F (P + L′)

×
(

h̄2
ρ(P )

P̃ k
ρ (P )

+
h̄2

ρ(P )

P̃ k
ρ (P + 0+)

+
h̄2

ρ(P + Π)

P̃ k
ρ (P + Π)

+
h̄2

ρ(P + Π)

P̃ k
ρ (P + Π+)

))

.
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mich stets bei meiner Arbeit unterstützt und mir insbesondere immer wieder
dadurch geholfen, dass sie mir abverlangt hat, meine Überlegungen und
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