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We briefly describe a setting of a non-linear fluid-structure interaction
problem and its solution in the finite element software package deal.II. The
fluid equations are transformed via the ALE map (Arbitrary Lagrangian Eu-
lerian framework) to a reference configuration. The mapping is constructed
using the biharmonic operator. The coupled problem is defined in a mono-
lithic framework and serves for unsteady (or quasi-stationary) configurations.
Different types of time stepping schemes are implemented. The non-linear
system is solved by a Newton method. Here, the Jacobian matrix is build
up by exact computation of the directional derivatives. The implementation
serves for the computation of the fluid-structure benchmark configurations
proposed by J. Hron and S. Turek.
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1 Introduction

Fluid-structure interactions are of great importance in many real-life applications, such
as industrial processes, aero-elasticity, and bio-mechanics. More specifically, fluid-structure
interactions are important to measuring the flow around elastic structures, the flutter
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analysis of airplanes [1], blood flow in the cardiovascular system, and the dynamics of
heart valves (hemodynamics) [2, 3].

Typically, fluid and structure are given in different coordinate systems making a com-
mon solution approach challenging. Fluid flows are given in Eulerian coordinates whereas
the structure is treated in a Lagrangian framework. We use a monolithic approach, where
all equations are solved simultaneously. Here, the interface conditions, the continuity
of velocity and the normal stresses, are automatically achieved. The coupling leads to
additional nonlinear behavior of the overall system.

Using a monolithic formulation is motivated by upcoming investigations of gradient
based optimization methods [4], and for rigorous goal oriented error estimation and
mesh adaptation [5], where a coupled monolithic variational formulation is an inevitable
prerequisite.
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Figure 1: The monolithic solution approach for fluid-structure interaction

For fluid-structure interaction based on the ‘arbitrary Lagrangian-Eulerian’ framework
(ALE), the choice of appropriate fluid mesh movement is important. In this work, we
use the biharmonic operator (in a mixed formulation) for the mesh motion. It has the
advantage to enable large deformations of the structure but has increased computational
cost [6, 7].

Temporal discretization is based on finite differences and a formulation as one step-
θ schemes [8], from which we can extract the implicit Euler, Crank-Nicolson, and the
shifted Crank-Nicolson scheme.

Space discretization is done by using a standard Galerkin finite element approach.
The solution of the discretized system can be achieved with a Newton method, which is
very attractive because it provides robust and rapid convergence. The Jacobian matrix
is derived by exact linearization which is demonstrated by an example. Because the
development of iterative linear solvers is difficult for fully coupled problems (however,
suggestions have been made [9, 10, 11]), we use a direct solver to solve the linear systems.

2 Equations in Variational Formulation

We denote by Ω ⊂ Rd, d = 2, 3, the domain of the fluid-structure interaction problem.
This domain is supposed to be time independent but consists of two time dependent
subdomains Ωf (t) and Ωs(t). The interface between both domain is denoted by Γi(t) =

∂Ωf (t) ∩ ∂Ωs(t). The initial (or later reference) domains are denoted by Ω̂f and Ω̂s,
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respectively, with the interface Γ̂i. Further, we denote the outer boundary with ∂Ω̂ =
Γ̂ = Γ̂D ∪ Γ̂N where Γ̂D and Γ̂N denote Dirichlet and Neumann boundaries, respectively.

We adopt standard notation for the usual Lebesgue and Sobolev spaces and their
extensions by means of the Bochner integral for time dependent problems [12]. We use
the notation (·, ·)X for a scalar product on a Hilbert space X and 〈·, ·〉∂X for the scalar
product on the boundary ∂X. For the time dependent functions on a time interval I,
the Sobolev spaces are defined by X := L2(I;X). Concretely, we use L := L2(I;L2(Ω))
and V := H1(I;H1(Ω)) = {v ∈ L2(I;H1(Ω)) : ∂tv ∈ L2(I;H1(Ω))}.

2.1 Continuous level

In this section, we state a monolithic description of the coupled problem [7]. A continuous
variable û in Ω̂, defining the deformation in Ω̂s, and supporting the transformation in
Ω̂f is defined. Then, we get the standard relations

Â := id + û, F̂ := I + ∇̂û, Ĵ := det(F̂ ). (1)

The ALE map is constructed by solving a mixed formulation of the biharmonic equation

∆̂2û = 0 in Ω̂, (2)

in the sense of Ciarlet [13]. We introduce an auxiliary variable ŵ = −∆̂û obtaining two
differential equations:

ŵ = − ∆̂û in Ω̂,

−∆̂ŵ = 0 in Ω̂, (3)

with boundary conditions

û = ∂̂nû = 0 on Γ̂, (4)

and the interface conditions:

û = ûs on Γ̂i. (5)

Moreover, in the case of the biharmonic mesh motion model, the first equation of (3)
is defined on all Ω̂, whereas the second equation is only given in the fluid domain Ω̂f .

Furthermore, the velocity v̂ is a common continuous function for both subproblems,
whereas the pressure p̂ is discontinuous. We state the monolithic setting for fluid-
structure interaction with a biharmonic mesh motion model:
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Problem 2.1 (Variational fluid-structure interaction, biharmonic mesh motion). Find
{v̂, û, ŵ, p̂} ∈ {v̂D + V̂0} × {ûD + V̂0} × V̂ × L̂, such that v̂(0) = v̂0 and û(0) = û0, for
almost all time steps t, and

(Ĵ ρ̂f∂tv̂, ψ̂
v)Ω̂f

+ (ρ̂f Ĵ(F̂−1(v̂ − ∂tû) · ∇̂)v̂), ψ̂v)Ω̂f

+(Ĵ σ̂f F̂
−T , ∇̂ψ̂v)Ω̂f

+ (ρ̂s∂tv̂, ψ̂
v)Ωs + (Ĵ σ̂sF̂

−T , ∇̂ψ̂v)Ω̂s

−〈ĝ, ψ̂v〉Γ̂N − (ρ̂f Ĵ f̂f , ψ̂
v)Ω̂f

− (ρ̂sf̂s, ψ̂
v)Ω̂s

= 0 ∀ψ̂v ∈ V̂ 0,

(α̂uŵ, ψ̂
w) + (α̂u∇̂û, ∇̂ψ̂w)Ω̂ − 〈α̂un̂f ∇̂û, ψ̂w〉Γ̂i = 0 ∀ψ̂w ∈ V̂ ,

(∂tû− v̂, ψ̂u)Ω̂s
+ (α̂w∇̂ŵ, ∇̂ψ̂u)Ω̂f

− 〈α̂wn̂f ∇̂ŵ, ψ̂u〉Γ̂i = 0 ∀ψ̂u ∈ V̂ 0,

(d̂iv (Ĵ F̂−1v̂f ), ψ̂p)Ω̂f
+ (p̂s, ψ̂

p)Ω̂s
= 0 ∀ψ̂p ∈ L̂,

with ρ̂f , ρ̂s, νf , µs, λs, F̂s, Ĵs, and positive diffusion parameters α̂u and α̂w. The stress
tensors, σ̂f and σ̂s, are defined as

σ̂f := −p̂fI + ρ̂fνf (∇̂v̂f F̂−1 + F̂−T ∇̂v̂Tf ), (6)

σ̂s := Ĵ−1F̂ (λs(trÊ)I + 2µsÊ)F̂ T . (7)

The viscosity and the density of the fluid are denoted by νf and ρ̂f , respectively. The
function ĝ represents Neumann boundary conditions for both physical boundaries (e.g.,
stress zero at outflow boundary), and normal stresses on Γ̂i. Later, this boundary repre-
sents the interface between the fluid and the structure. The structure is characterized by
the density ρ̂s, the Lamé coefficients µs, λs. For the STVK material, the compressibility
is related to the Poisson ratio νs (νs <

1
2). External volume forces are described by the

term f̂s.

The Problem 2.1 is completed by an appropriate choice of the two coupling conditions
on the interface. The continuity of velocity across Γ̂i is strongly enforced by requiring
one common continuous velocity field on the whole domain Ω̂. The continuity of normal
stresses is given by

(Ĵ σ̂sF̂
−T n̂s, ψ

v)Γ̂i
= (Ĵ σ̂f F̂

−T n̂f , ψ
v)Γ̂i

. (8)

By omitting this boundary integral jump over Γ̂i the weak continuity of the normal
stresses becomes an implicit condition of the fluid-structure interaction problem.

Remark 2.1. The boundary terms on Γ̂i in the Problem 2.1 are necessary to prevent
spurious feedback of the displacement variables û and ŵ. For more details on this, we
refer to [14]. However, we performed numerical experiments to study the influence of
these terms. It turned out that these terms can be neglected.

2.2 Discrete level

To compute a solution to Problem 2.1, we first define a semi-linear form Â(Ûm)(Ψ̂) and
corresponding right hand side F̂ (Ψ̂) [7]. The temporal discretization is based on finite
differences and the one step-θ schemes [8]. Spatial discretization is done by a standard
Galerkin finite element discretization. For more details on these aspects, we refer to [7].
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2.3 Linearization

Time and spatial discretization results for each single time step in a nonlinear quasi-
stationary problem

Â(Ûm)(Ψ̂) = F̂ (Ψ̂) ∀Ψ̂ ∈ X̂0
h,

which is solved by a Newton-like method. Given an initial guess U0
m, find for j =

0, 1, 2, . . . the update δ̂Ûm of the linear defect-correction problem

Â′(Û j
m)(δ̂Ûm, Ψ̂) = −Â(Û j

m)(Ψ̂) + F̂ (Ψ̂), (9)

U j+1
m = U j

m + λδ̂Ûm. (10)

Here, λ ∈ (0, 1] is used as damping parameter for line search techniques. The directional
derivative Â′(Û)(δ̂Û , Ψ̂) is defined by

Â′(Û)(δ̂Û , Ψ̂) := lim
ε→0

1

ε

{
Â(Û + εδ̂Û)(Ψ̂)− Â(Û)(Ψ̂)

}
(11)

=
d

dε
Âh(Û + εδ̂Û)(Ψ̂)

∣∣∣
ε=0

. (12)

Implementation aspects
In this section, we present an example of one specific directional derivative that in-

cludes all of the necessary steps. Derivation of the other expressions is straight forward,
but for the convenience of the reader, it is not shown here.

Let us consider a part of the fluid convection term in ALE coordinates. As part of a
semi-linear form, it holds

Âconv(Û)(Ψ̂) = (ρ̂f Ĵ(F̂−1∂̂tû · ∇̂)v̂), ψ̂v)Ω̂f
= (ρ̂f ∇̂v̂ Ĵ F̂−1 ∂̂tû, ψ̂

v)Ω̂f
.

In this case, the directional derivative Â′conv(Û)(δ̂Û , Ψ̂) in the direction δ̂Û = {δv̂, δû, δp̂}
is given by

Â′conv(Û)(δ̂Û , Ψ̂) =

(
∇̂δv̂ Ĵ F̂−1 û− ûm−1

k
, ψ̂v

)
(13)

+

(
∇̂v̂ (Ĵ F̂−1)′(δû)

û− ûm−1

k
, ψ̂v

)
(14)

+

(
∇̂v̂ Ĵ F̂−1 δû

k
, ψ̂v

)
. (15)

In two dimensions the deformation matrix reads in explicit form:

F̂ = I + ∇̂û =

(
1 + ∂̂1û1 ∂̂2û1

∂̂1û2 1 + ∂̂2û2

)
,

which brings us to

Ĵ F̂−1 =

(
1 + ∂̂2û2 −∂̂2û1

−∂̂1û2 1 + ∂̂2û2

)
,
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and its directional derivative in direction δû = (δû1, δû2):

(Ĵ F̂−1)′(δû) =

(
∂̂2δû2 −∂̂2δû1

−∂̂1δû2 ∂̂2δû2

)
.

This expression is part of the second term shown in Equation (15). The remaining
expressions for directional derivatives can be derived in an analogous way. For more
details on computation of the directional derivatives on the interface, please refer to
[15, 14].

3 Features of the Implementation in deal.II

The implementation is very similar to the construction of the tutorial steps in deal.II
[16]. First, we start by definition of the terms needed to build up the ALE map. Next,
the fluid terms are mapped to some arbitrary reference domain, so we define a namespace
to do that.

In the two main classes terms for the boundary and initial values are defined. Second,
the problem at hand itself is treated.

In the function

setup system ( )

we define fluid and structure parameters for a specific configuration [17], the number of
time steps and the time stepping scheme, and a routine to read the grid. Finally, we
define the system matrix and corresponding vectors to solve the system.

In the function

assemble system matr ix ( )

we perform the computation of the Jacobian matrix of the non-linear system.
In the function

assemble sys tem rhs ( )

we compute the residuum of the non-linear system, i.e., the right hand side.
Moreover, we set the initial boundary conditions for the problem at hand in

s e t i n i t i a l b c ( . . . )

In each Newton step, Dirichlet boundary conditions must be set to zero. Therefore, we
find a second function

set newton bc ( )

where we apply homogenous Dirichlet conditions to the Newton method.
In the next function,

s o l v e ( )

we solve the linear systems with a direct solver from UMFPACK.
The Newton iteration is performed in
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newt on i t e r a t i on ( . . . )

This method also includes some nice features, like a simple line search routine and a
condition that decides whether the matrix should be build or not.

The following function is similar to a lot of functions in the tutorial steps and manages
the output of our results:

o u t p u t r e s u l t s ( . . . )

We compute different quantities of interest (here, stresses acting on the interface between
fluid and structure) with the following function:

c o m p u t e d r a g l i f t f s i f l u i d t e n s o r ( )

Point values (deflections of the structure) are computed with

compute po int va lue ( . . . )

In the last function

run ( )

the time stepping scheme, and all remaining routines to solve the problem, are performed.
Summary
The implementation shows that fluid-structure interaction problems can (relatively)

easy derived with deal.II. We use a lot of tools provided by the package. Moreover,
we present a Newton method that can be used to solve any systems of equations (not
only FSI). In addition, the user may play around with three different time stepping
schemes. Finally, by omitting the structure terms (this can simply be realized by setting
all material ids equal to 0), the user gets immediately a pure fluid solver because the
transformation F̂ is the identity and Ĵ = 1. Then, all equations reduce to the well-known
Navier-Stokes equations.

4 Numerical results

We consider the numerical benchmark tests FSI 1, FSI 2 and FSI 3, which were proposed
in [17]. The configuration is sketched in Figure 2. New results can be found in [18, 19, 20].

The first test case results in a stationary regime but is computed within a pseudo time
stepping process with the implicit Euler scheme. The shifted Crank-Nicolson scheme
(FSI 3) and the Fractional-Step-θ scheme (FSI 2) were used for time discretization with
different time step sizes k. To keep the implementation easy, the latter time stepping
scheme is not provided in the source code available to this work.

Configuration
The computational domain has length L = 2.5m and height H = 0.41m. The circle

center is positioned at C = (0.2m, 0.2m) with radius r = 0.05m. The elastic beam
has length l = 0.35m and height h = 0.02m. The right lower end is positioned at
(0.6m, 0.19m), and the left end is attached to the circle.

Control points A(t) (with A(0) = (0.6, 0.2)) are fixed at the trailing edge of the
structure, measuring x- and y-deflections of the beam.
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Γ̂wall

Γ̂in Γ̂out

Figure 2: Flow around cylinder with elastic beam with circle-center C = (0.2, 0.2) and
radius r = 0.05.

Boundary conditions
A parabolic inflow velocity profile is given on Γ̂in by

vf (0, y) = 1.5Ū
4y(H − y)

H2
, Ū = 0.2ms−1 (FSI 1),

vf (0, y) = 1.5Ū
4y(H − y)

H2
, Ū = 1.0ms−1 (FSI 2),

vf (0, y) = 1.5Ū
4y(H − y)

H2
, Ū = 2.0ms−1 (FSI 3).

On the outlet Γ̂out the ‘do-nothing’ outflow condition is imposed which leads to zero mean
value of the pressure at this part of the boundary. The remaining boundary conditions
are chosen as in the CSM test cases.

Initial conditions
For the non-steady tests one should start with a smooth increase of the velocity profile

in time. We use

vf (t; 0, y) =

{
vf (0, y)

1−cos(π
2
t)

2 if t < 2.0s

vf (0, y) otherwise.

The term vf (0, y) is already explained above.

Figure 3: FSI 2 test case: mesh (left) and velocity profile in vertical direction (right) at
time t = 16.14s.

Quantities of comparison and their evaluation

1) x- and y-deflection of the beam at A(t).

8



2) The forces exerted by the fluid on the whole body, i.e., drag force FD and lift
force FL on the rigid cylinder and the elastic beam. They form a closed path in
which the forces can be computed with the help of line integration. The formula
is evaluated on the fixed reference domain Ω̂ and reads:

(FD, FL) =

∫
Ŝ
Ĵ σ̂allF̂

−T · n̂ dŝ (16)

=

∫
Ŝ(circle)

Ĵ σ̂f F̂
−T · n̂f dŝ+

∫
Ŝ(beam)

Ĵ σ̂f F̂
−T · n̂f dŝ. (17)

The quantities of interest for the time dependent test cases are represented by the mean
value, amplitudes, and frequency of x- and y-deflections of the beam in one time period
T of oscillations.

Parameters
We choose for our computation the following parameters. For the fluid we use %f =

103kgm−3, νf = 10−3m2s−1. The elastic structure is characterized by %s = 104kgm−3

(FSI 2) and %s = 103kgm−3 (FSI 1 and FSI 3), respectively, and νs = 0.4. Further, we
use for the FSI 1 and FSI 2 test cases µs = 0.5 ∗ 106kgm−1s−2 and for the FSI 3 test
case µs = 2.0 ∗ 106kgm−1s−2.

The computed values are summarized in Tables 1 and 2. The results of the FSI 2
test are displayed in 4. The reference values are taken from [19]. In general, to verify
convergence with respect to space and time, at least three different mesh levels and time
step sizes should be presented.

Table 1: Results for the FSI 1 benchmark with the biharmonic mesh motion model.
The mean value and amplitude are given for the four quantities of interest:
ux, uy[m], FD, FL[N ].

DoFs ux(A)[×10−5] uy(A)[×10−4] FD FL

1914 2.3125 8.3715 13.9973 0.72215
7176 2.2674 8.6502 14.1162 0.76644

27744 2.2840 8.1227 14.2382 0.76460
109056 2.2746 8.1477 14.2713 0.76537

(ref.) 2.2700 8.2090 14.2940 0.76370

We observe the same qualitative behavior in each of our approaches for the quantities
of interest (ux(A), uy(A), drag, and lift); these results are in agreement with [19].
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Figure 4: FSI 2. Top: deflections of the beam, ux(A) and uy(A). Bottom: drag and lift
computations over the path S of the cylinder and the interface between fluid
and structure.

5 How to Get the Source Code?

I am looking forward to sharing my source code with you. Please, feel free to write me
an email

thomas . wick@iwr . uni−h e i d e l b e r g . de

Because, I am really interested in new applications and results of fluid-structure inter-
action problems, I would like to ask you, to inform me when you create scientific papers
with computations based on this source code,

6 Conclusions

We presented a description of an implementation of a fluid-structure interaction solver
that is based on the deal.II library. In the future, we plan to add efficient mesh refine-
ment procedures and gradient based optimization routines. For this kind of problems a
closed monolithic formulation of the coupled problem, as presented in this work, is an
indispensable requirement.
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Table 2: Results for the FSI 3 benchmark with the biharmonic mesh motion model.
The mean value and amplitude are given for the four quantities of interest:
ux, uy[m], FD, FL[N ]. The frequencies f1[s−1] and f2[s−1] of ux and uy vary in
a range of 10.53− 10.84 (ref. 10.93) and 5.37− 5.44 (ref. 5.46), respectively.

DoF k[s] ux(A)[×10−3] uy(A)[×10−3] FD FL

7176 5.0e-3 −2.44± 2.32 1.02± 31.82 473.5± 56.97 8.08± 283.8
7176 2.0e-3 −2.48± 2.39 0.92± 32.81 471.3± 62.28 6.11± 298.6
7176 1.0e-3 −2.58± 2.49 0.94± 33.19 470.4± 64.02 4.65± 300.3

27744 5.0e-3 −2.43± 2.27 1.41± 31.73 483.7± 22.31 2.21± 149.0
27744 2.0e-3 −2.63± 2.61 1.46± 33.46 483.3± 24.48 2.08± 161.2
27744 1.0e-3 −2.80± 2.64 1.45± 34.12 483.0± 25.67 2.21± 165.3
42024 2.5e-3 −2.40± 2.26 1.39± 31.71 448.7± 21.16 1.84± 141.3
42024 1.0e-3 −2.53± 2.38 1.40± 32.49 449.7± 22.24 1.61± 142.8
42024 0.5e-3 −2.57± 2.42 1.42± 32.81 450.1± 22.49 1.49± 143.7
72696 2.5e-3 −2.64± 2.48 1.38± 33.25 451.1± 24.57 2.20± 150.4
72696 1.0e-3 −2.79± 2.62 1.28± 34.61 452.0± 25.78 1.91± 152.7
72696 0.5e-3 −2.84± 2.67 1.28± 34.61 452.4± 26.19 2.36± 152.7
(ref.) 0.25e-3 −2.88± 2.72 1.47± 34.99 460.5± 27.74 2.50± 153.91
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