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Abstract          Florentine Wahl, Diplom-Chemikerin 
 
Modified Oligonucleotides: Investigations and Applications of the Diels-Alderase 
Ribozyme. 
 
1st Referee: Prof. Dr. Andres Jäschke 
2nd Referee: Prof. Dr. Stefan Wölfl 
 
The hypothesis of the origin of life was fundamentally changed by the discovery of catalytic 
RNA. The fascinating fact that RNA can function as a catalyst in the formation of carbon-
carbon bonds, thereby creating enantiomeric centers and thus potential building blocks for 
life-sustaining structures, is of great importance to those who wish to understand biocatalytic 
processes. Ribozymes are generally identified by in vitro selection. Such an artificial 
ribozyme was utilized for the work presented in this dissertation; specifically, the Diels-
Alderase ribozyme was the focus of the investigation. This ribozyme catalyzes a Diels-Alder 
reaction between anthracene and maleimide. The work presented herein revolved around 
modifications of oligonucleotides on different levels. Modification of RNA with organic 
moieties is indispensable for effective in vitro selection of such ribozymes.  
This thesis consists of three parts. In the first, new pathways were established for the synthesis 
of modified guanosine monophosphates (GMPs). The ability of the enzyme T7 RNA 
polymerase to incorporate these modified GMPs during transcription priming coined the term 
initiator nucleotides. The syntheses of a substituted anthracene and aldehyde-modified 
initiator nucleotides connected with a flexible polyethylene glycol linker were realized in just 
three synthetic steps. The incorporation of the initiator nucleotides into short RNA transcripts 
was investigated, as well as their incorporation into an RNA library with a randomized region 
eligible for in vitro selection. Excellent incorporation rates up to 77% were obtained for the 
transcription into the RNA library. The reactivity of thereby modified RNA molecules was 
subsequently studied in chemical reactions. Whereas the anthracene derivative could be 
reacted in a Diels-Alder reaction, the aldehyde led to full conversion in the reaction with 
hydrazides. 
In the second part of this thesis, the effect of divalent metal ions on the folding and stability of 
the Diels-Alderase ribozyme was studied in UV thermal denaturation experiments. Low 
concentrations of Mg2+ cations led to secondary structure stabilization of up to 85°C. Thermal 
denaturation studies of the wild-type ribozyme and comparison to mutants complement other 
ongoing investigations of the complex interplay of non-standard base pairs and triples in the 
ribozyme structure. While the wild-type ribozyme exhibited a significant stabilization in the 
presence of Mg2+ cations, a comparable stabilization of the mutants could not be observed. In 
accordance with the findings in other studies, the best interpretation of this effect on stability 
was that the mutants, despite their ability to form a pseudoknot structure, could not undergo 
further compaction. 
In the third part of this thesis, the Diels-Alderase ribozyme, which causes a remarkable 
acceleration of the Diels-Alder reaction rate, was successfully used as a catalyst for 
fluorescently labeling oligonucleotides in cis and in trans. Investigations of the substrate 
specificity of the ribozyme revealed that only fluorescent maleimide dyes with five carbon 
atoms next to the dye were accepted as substrates. This distinct feature was utilized as a 
bioorthogonal labeling strategy for the Diels-Alder bioconjugation of anthracene-modified 
oligonucleotides with equimolar proportions of fluorescent dyes. A new dual orthogonal 
labeling strategy was achieved by using an iodoacetamide dye for the thiol modification and a 
maleimide dye for the anthracene modification within the same DNA strand. For the 
anthracene modification, the Diels-Alderase ribozyme was employed as a catalyst. 



 



Zusammenfassung                    Florentine Wahl, Diplom-Chemikerin 
 
Modifizierung von Oligonukleotiden: Untersuchungen und Anwendungen des Diels-
Alderase Ribozyms. 
 
1. Gutachter: Prof. Dr. Andres Jäschke 
2. Gutachter: Prof. Dr. Stefan Wölfl 
 
Die Entdeckung, dass RNA katalytische Eigenschaften aufweist, beeinflusste die Hypothese 
über den Ursprung des Lebens fundamental.  Für das Verständnis biokatalytischer Prozesse ist 
die faszinierende Tatsache, dass RNA die Bildung neuer Kohlenstoff-Kohlenstoff Bindungen 
katalysieren und dabei Stereozentren generieren kann von entscheidender Bedeutung. Die 
vorliegende Arbeit basiert auf der Erforschung und Anwendung eines solchen Ribozyms - des 
Diels-Alderase Ribozyms. Dieses Ribozym katalysiert die Diels-Alder Reaktion zwischen 
Anthracen und Maleimid. Ribozyme werden grundsätzlich durch in vitro Selektion 
identifiziert. Ein wichtiges, zentrales Thema dieser Arbeit ist die Modifikation und 
Funktionalisierung von Oligonukleotiden. Die Modifikation von RNA durch funktionelle 
Gruppen ist für die in vitro Selektion derartiger Ribozyme unverzichtbar. 
Im ersten Teil der Arbeit wurden neue Synthesewege chemisch modifizierter 
Guanosinmonophosphate (GMP) untersucht. Die Fähigkeit des Enzyms T7 RNA-Polymerase 
während der Transkription GMP spezifisch als erste Base einzubauen, prägte dabei den 
Namen Initiatornukleotid. Die Darstellung eines Anthracen-Derivates und eines Aldehyds mit 
einem flexiblen Polyethylenglykol-Linker konnte in nur drei Syntheseschritten erreicht 
werden. Der Einbau der Initiatornukleotide in kurze RNA-Transkripte wurde ebenso wie der 
Einbau in eine für die in vitro Selektion geeignete RNA-Bibliothek mit randomisiertem 
Bereich untersucht und optimiert. Dabei konnten Inkorporationsraten bis zu 77% für den 
Einbau in die RNA Bibliothek erzielt werden. Anschließend wurde die Reaktivität der dabei 
modifizierten RNA Moleküle untersucht. Das Anthracen-Derivat konnte in einer Diels-Alder 
Reaktion umgesetzt werden, während der Aldehyd vollständig mit Hydraziden reagierte. 
Im zweiten Teil wurde der Einfluss zweiwertiger Metallionen auf die Faltung und Stabilität 
des Diels-Alderase Riboyzms in UV-Denaturierungsexperimenten untersucht. Dabei konnte 
gezeigt werden, dass bereits geringe Konzentrationen von Mg2+-Kationen in der Lage sind, 
die Sekundärstruktur bis 85°C zu stabilisieren. Studien zur thermischen Denaturierung des 
Wildtyps sowie Mutanten ergänzen andere laufende Studien zur Erforschung des komplexen 
Zusammenspiels ungewöhnlicher Basenpaarungen und Basentripel in der Ribozymstruktur. 
Obwohl beim Wildtyp eine signifikante Stabilisierung durch Mg2+ festgestellt wurde, konnte 
eine ebensolche Stabilisierung der Mutanten nicht nachgewiesen werden. In 
Übereinstimmung mit anderen Studien kann dies so interpretiert werden, dass die Mutanten, 
trotz ihrer Fähigkeit einen Pseudoknoten zu bilden, keine weiter Kompaktierung erfahren. 
Im dritten Teil der Arbeit wurde das Diels-Alderase Ribozym, welches eine bemerkenswerte 
Reaktionsbeschleunigung hervorruft, erfolgreich als Katalysator für die Markierung von 
Oligonukleotiden mit Fluoreszenzfarbstoffen sowohl in cis als auch in trans, eingesetzt. 
Untersuchungen zur Substratspezifität haben gezeigt, dass nur Maleimide-Derivate mit fünf 
Kohlenstoffatomen zwischen Maleimid und Fluoreszenzfarbstoff als Substrat erkannt werden 
konnten. Dieses distinktive Merkmal konnte genutzt werden, um eine neue bioortogonale 
Markierungsmethode für Anthracen-modifizierte Oligonukleotiden mit equimolaren Mengen 
an Fluoreszenzfarbstoffen zu schaffen. Eine neue zweifach orthogonale Markierungsmethode 
von Modifikationen im gleichen DNA-Strang konnte erzielt werden, indem für Thiol-
Modifikationen Iodoacetamid- und für die Anthracen-Modifikation Maleimid-
Fluoreszenzfarbstoffe verwendet wurden. Dabei wurde das Anthracen in einer Ribozym-
katalysierten Diels-Alder Reaktion umgesetzt. 



 



Table of contents 

 1

Table of contents 

Table of contents.................................................................................................. 1 

1 Introduction .................................................................................. 5 

1.1 The RNA world and ribozymes ...................................................................... 5 

1.2 In vitro Selection ............................................................................................. 6 

1.3 The Diels-Alder reaction................................................................................. 7 

1.4 Diels-Alder reactions in biocatalysis............................................................... 9 

1.5 The Diels-Alderase Ribozyme ...................................................................... 11 

2 Synthesis and applications of novel initiator nucleotides....... 13 

2.1 Scientific background.................................................................................... 13 

2.1.1 Incorporation of initiator nucleotides with T7RNA polymerase .................. 13 

2.1.2 Anthracene derivatives .................................................................................. 15 

2.1.3 Aldehydes in bioconjugation reactions ......................................................... 15 

2.1.4 Classic bioconjugation reactions ................................................................... 17 

2.1.5 Classic organic reactions ............................................................................... 18 

2.2 Objectives...................................................................................................... 20 

2.3 Results and Discussion.................................................................................. 21 

2.3.1 Synthesis of novel initiator nucleotides ........................................................ 21 

2.3.2 Towards the in vitro selection of a novel Diels-Alder ribozyme .................. 30 

2.3.3 Incorporation and application of aldehyde containing initiator nucleotides . 40 

2.4 Conclusion..................................................................................................... 42 

3 Thermal denaturation studies of the Diels-Alderase ribozyme
 45 

3.1 Scientific background.................................................................................... 45 

3.1.1 Metal ions in ribozyme folding and catalysis................................................ 45 

3.1.2 The Diels-Alderase ribozyme........................................................................ 47 

3.1.3 UV melting curves ........................................................................................ 49 

3.1.4 Practical considerations of determining UV denaturation ............................ 49 

3.2 UV denaturation of the Diels-Alderase ribozyme......................................... 50 



Table of contents 

 2

3.2.1 Comparison of the Diels-Alderase wild-type with two mutants: U17C and 

U17iC ............................................................................................................ 53 

3.3 Conclusion and Discussion ........................................................................... 55 

4 Bioorthogonal and orthogonal labeling of oligonucleotides... 57 

4.1 Scientific background.................................................................................... 57 

4.1.1 Bioorthogonal labeling.................................................................................. 57 

4.1.2 Fluorescent labeling of oligonucleotides....................................................... 58 

4.1.3 Thiol modification......................................................................................... 61 

4.1.4 Disulfide reducing reagents........................................................................... 61 

4.1.5 Maleimides .................................................................................................... 62 

4.1.6 α-Haloacetamides .......................................................................................... 63 

4.1.7 Diels-Alder reaction as tool for bioconjugation ............................................ 63 

4.1.8 The Diels-Alderase ribozyme........................................................................ 64 

4.1.9 Anthracene as substrate ................................................................................. 65 

4.2 Objectives...................................................................................................... 66 

4.3 Results and Discussion.................................................................................. 67 

4.3.1 Synthesis of anthracene modified oligonucleotides ...................................... 67 

4.3.2 Dipartite Diels-Alder ribozyme assay ........................................................... 68 

4.3.3 Synthesis of DY 649 C5-maleimidocaproic acid hydrazide.......................... 71 

4.3.4 Diels-Alderase ribozyme-catalyzed labeling in trans ................................... 73 

4.3.5 Dual orthogonal labeling of DNA with maleimides ..................................... 78 

4.3.6 Dual orthogonal functionalization of DNA with two different dyes............. 81 

4.3.7 Analytical data of post-synthetically modified oligonucleotides .................. 83 

4.3.8 Important aspects of the labeling conditions................................................. 84 

4.4 Conclusion..................................................................................................... 89 

5 Conclusion and Outlook ............................................................ 91 

5.1 Synthesis and applications of novel initiator nucleotides ............................. 91 

5.2 Thermal denaturation studies of the Diels-Alderase ribozyme..................... 93 

5.3 Bioorthogonal and orthogonal labeling of oligonucleotides ......................... 94 

6 Experimental section.................................................................. 97 

6.1 Molecular biological techniques ................................................................... 97 



Table of contents 

 3

6.1.1 General methods............................................................................................ 97 

6.1.2 Detection of nucleic acids ........................................................................... 100 

6.1.3 Determining the concentration of nucleic acids .......................................... 102 

6.1.4 Radioactive labeling with 32Phosphor ......................................................... 103 

6.1.5 PCR (Polymerase Chain Reaction) ............................................................. 104 

6.1.6 Primer extension.......................................................................................... 106 

6.1.7 In vitro T7 transcription .............................................................................. 107 

6.1.8 Diels-Alder reaction of the 2,3 dimethyl anthracene modified RNA.......... 108 

6.1.9 Deprotection of the aldehyde modified RNA and reaction with hydrazide 108 

6.1.10 Melting curves............................................................................................. 109 

6.1.11 Automated solid-phase synthesis of oligonucleotides................................. 110 

6.1.12 High-performance liquid chromatography of oligonucleotides .................. 112 

6.1.13 Mass spectrometry of oligonucleotides....................................................... 113 

6.1.14 Fluorescent dyes .......................................................................................... 114 

6.1.15 Flourescent labeling reactions of oligonucleotides ..................................... 117 

6.2 Synthetic procedures ................................................................................... 120 

6.2.1 General ........................................................................................................ 120 

6.3 Synthetic procedures for compounds of chapter 2 ...................................... 121 

6.3.1 Synthetic procedures of the initiator nucleotides ........................................ 121 

6.3.2 Analysis of the initiator nucleotides............................................................ 145 

6.3.3 Alternative procedures towards the synthesis of initiator nucleotides ........ 146 

6.4 Synthetic procedures for compounds chapter 4 .......................................... 161 

6.5 Oligonucleotides, buffers and material ....................................................... 168 

6.6 List of Abbreviations................................................................................... 173 

6.7 Appendix ..................................................................................................... 177 

7 Bibliography ............................................................................. 181 

 
 



     

 



Introduction 

 5

1 Introduction 
 

1.1 The RNA world and ribozymes 
 

The question of the origin of life is one of the oldest questions of mankind and one of the 

most difficult to address in biology. The term “RNA World” was first used by Gilbert in 

1986,[1] even though the idea of an RNA based world as a hypothetical origin in the evolution 

had been suggested long before by Sir Francis Crick. [2] When Gilbert established the term 

RNA word solely cleavage and ligation of phosphodiester bonds by RNA were known, but 

his hypothesis inspired and is still inspiring scientists all over the world to seek proof of an 

RNA world. 

In 1982 Cech et al.[3, 4] discovered RNA sequences that were able to cleave and rejoin the 

phosphate esters between their own nucleotides. This self-splicing RNA provided the first 

example of a catalytically active site formed by a ribonucleic acid.[5] Independently, Altmann 

and co-workers[6] found that RNase P is an RNA, processing endonuclease cleaving 

precursors of tRNA and releasing 5′-precursor sequences and mature tRNA.[7, 8] Since then a 

number of other natural ribozymes have been discovered. The most prominent ribozymes are 

group I and II self splicing introns,[9] encompassing the Tetrahymena ribozyme that was 

originally discovered by Cech, the hammerhead ribozymes,[10] the hairpin ribozyme,[11] the 

small self-cleaving Varkud satellite (VS)[12] or the hepatitis delta virus ribozyme (HDV).[13] 

Ribozymes can either catalyze a reaction in cis, meaning the ribozyme modifies itself, or in 

trans non-selfmodifying. These ribozymes, mostly discovered by the in vitro selection 

methodology, could turn out to be the missing link between a formerly RNA dominated world 

to todays protein-dominated world. 

In 1993 Crick wrote “It may turn out that we will eventually be able to see how this RNA 

world got started. At present, the gap from the primal 'soup' to the first RNA system capable 

of natural selection looks forbiddingly wide.”[14] Even though some years have passed and the 

discovery of new natural and artificial ribozymes has lead to a further understanding of this 

hypothesis, more fundamental research into the function and application of ribozymes may 

eventually lead to hints that may further support the hypothesis of an RNA world. 



Introduction 

 6

1.2 In vitro Selection 
 

The progress in the discovery of new ribozymes is mainly due to the technique of in vitro 

selection, independently developed by Joyce, Szostak and Gold in 1990. This technique 

enables to screen libraries of up to 1015 different nucleic acid molecules for a distinct 

functionality.[15] This method is known as in vitro selection,[16] in vitro evolution[17] or 

SELEX, an acronym standing for Systematic Evolution of Ligands by EXponential 

enrichment.[18] With this technique large libraries of randomized nucleic acids have been 

screened successfully for catalytic activity [19-26] and screened for binding to small molecules 

or proteins.[27-33] RNA and DNA molecules that can bind small molecules are called aptamers. 

After two decades of in vitro selection ribozymes have proven that they are indeed potent 

catalysts. Ribozymes are capable of catalyzing a broad spectrum of chemical reactions with 

good catalytic rate enhancement. An overview over some in vitro selected ribozymes are 

given in table 1. 

 
Table 1: Examples for artificial ribozymes obtained by in vitro selection. 

Reaction Reference  Reaction Reference 

RNA cleavage [34]  Aminoacylation [35, 36] 

RNA ligation [20, 37]  Aldol-reaction [38] 

Phosphoester cleavage [39, 40]  Diels-Alder reaction [41, 42] 

Phosphoester transfer [43, 44]  Michael addition [45] 

Phosphorylation [46]  Formation of an amide bond [47]a 

Peptide bond formation [26, 48]  Cleavage of an amide bond [49] 

Self-capping [50]  Formation of an urea bond [51] 

RNA polymerization [52]  Nitrogen alkylation [53] 

Aldehyde reduction [54]  Sulfur alkylation [55] 

Alcohol dehydrogenation [56]  Porphyrin metalation [57] 

Acyl transfer [58, 59]  Claisen condensation [60] 
a Contains 5´-substituted uridine analogs that are essential for catalysis. 

 

The general procedure of the in vitro selection methodology starts with a chemically 

synthesized DNA pool with a randomized region, flanked by two constant regions consistent 

of the primer binding sites and a T7 RNA polymerase promoter (figure 1). This DNA pool is 

to be amplified in a preparative scale PCR to gain several copies of each sequence. After T7 

RNA polymerase transcription the obtained RNA pool is employed in the reaction it should 

catalyze, or exposed to the molecule it should bind. Subsequently active or binding sequences 
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are separated by affinity chromatography. The obtained RNA sequences are reverse 

transcribed into DNA, amplified by PCR and again transcribed into RNA to re-enter the 

selection cycle. Generally 5 to 10 rounds of selection should suffice to enrich the reactive 

sequences.[15, 61] 

 

 
Figure 1: General selection scheme for the in vitro selection of reactive RNA sequences. 

 

1.3 The Diels-Alder reaction 
 

 
Scheme 1: The Diels-Alder reaction. 

 

The Diels-Alder reaction is one of the most important reactions in organic chemistry. It was 

named after Otto Diels and Kurt Alder, who first described the reaction in 1928[62] and were 

awarded the Nobel Prize in 1950 for their research on [4 + 2] cycloadditions. In one step two 

new carbon-carbon bonds are formed in a chemoselective manner and a six-membered ring is 

created (scheme 1). This cycloaddition between the diene and the dienophile is concerted, 

requiring the arrangement of the frontier orbitals.[63, 64] 
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The reactivity of the Diels-Alder reaction depends on the energy difference between the 

HOMO (highest occupied molecular orbital) and LUMO (lowest occupied molecular orbital). 

The lower the energy difference between the two molecular orbitals the lower is the energy of 

the transition state of the Diels-Alder reaction (figure 2). 
 

 
Figure 2: The Diels-Alder reaction. The dienophile reacts with a diene to form a six-membered cyclohexene. 

Three π-bonds in the substrates are converted into two σ-bonds and a new π-bond in the product. Molecular 

orbitals (S = symmetrical, A = asymmetrical) are shown according to the Woodward-Hoffmann rules. For clarity 

only the HOMO π-electrons are shown. Adapted from Tarasow et al..[65] 

 

Since the discovery of the Diels-Alder reaction studies using water as a solvent have been 

undergoing.[66] Woodward and co-workers reported a change in the endo-exo selectivity for 

the Diels-Alder reaction between furan and maleic acid in water.[67] Eggelte et al. reported the 

first reaction rate acceleration for Diels-Alder reactions in aqueous media.[68] However, it was 

not until the landmark paper by Breslow et al. in 1980[69] that the acceleration of the Diels-

Alder reaction in water had been recognized in the scientific society. Breslow and Rideout 

attributed the acceleration to an entropy-driven hydrophobic effect (scheme 2). [69] 

 

 
Scheme 2: Illustration of the hydrophobic hydration shells around the diene, dienophile and the Diels-Alder 

product. The red hydration shells are released into the solution during the reaction. Adopted from Otto et al.. [70] 
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1.4 Diels-Alder reactions in biocatalysis 
 

Following the fundamental principles of Pauling,[71] Jencks proposed in 1969 that 

complementarity between the active site and the transition state of an enzyme contributes 

significantly to enzymatic catalysis; therefore, the construction of an antibody to a hapten, 

resembling the transition state of a reaction should lead to such an enzyme. A transition state 

analogue provided by the antibody should stabilize the transition state and therefore cause an 

acceleration of the reaction.[72] The first proof of this principle was provided by Schulz and 

Lerner[73-75] studying esterase antibodies. The first catalytic Diels-Alder reaction had been 

demonstrated in 1989 by Hilvert et al. with the antibody 1E9.[76, 77] 
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Scheme 3: Antibody 1E9 catalyzes the Diels-Alder reaction between tetrachlorothiophen dioxide 1 and N-

ethylmaleimide 2. The reaction proceeds in two steps: the intermediate 3, which eliminates sulphur dioxide to 

give the product 4, undergoing air oxidation to form N-ethyl tetrachlorophthalimide 5. The Antibody 1E9 was 

raised against the hexachloronorbornene derivative 6 as structural analogue of the transition state.[78] 

 

The chemical structure of many natural products suggests an involvement of a Diels-Alder 

reaction, but so far in most of these pathways a Diels-Alderase was illusive. For a long time 

three enzymes were believed to act as Diels-Alderases.[79, 80] The solanapyrone synthase,[81] 

the lovastatin nonaketide synthase (LNKS), and the macrophomate synthase.[82] Studies of the 

macrophomat synthase suggested the involvement of a Diels-Alder reaction, but in fact the 

reaction seems to proceed via a sequential Michael-aldol pathway.[83-85] 

Computational studies have led to designed enzymes catalyzing a Diels-Alder reaction.[86, 87] 

Recently Baker and co-workers have indeed selected an enzyme catalyzing an intermolecular 

Diels-Alder reaction of the diene 4-carboxybenzyl trans-1,3-butadiene-1-carbamate and the 
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dienophile N,N-diemthylacrylamide (figure 3).[88] Employing an algorithm of the modelling 

program RosettaMatch[89] the transition state and its stabilization in the catalytic pocket was 

simulated and subsequently libraries of protein scaffolds were scanned to find applicable 

candidates. An initial scan of 1019 protein scaffolds identified about 106 possible active sites 

in proteins. By further optimizing this modelling approach the proteins were limited to a 

manageable number of 84 proteins. These 84 proteins were then expressed within E. coli. 

After engineering, 50 stable proteins remained and were then tested for catalytic activity in 

the Diels-Alder reaction. Only two of these enzymes actually showed catalytic activity. 

Further modified, these enzymes show strong selectivity for the substrates and compared with 

the metal catalyzed reaction the novel enzymes are only one magnitude slower. In principle, 8 

different isomers could result in this Diels-Alder reaction, out of which four are produced 

during the uncatalyzed reaction. Remarkably, the engineered enzyme only catalyzes the 

reaction of one specific isomer. 
 

 
Figure 3: The Diels-Alder reaction - diene and dienophile undergo a pericyclic [4 + 2] cycloaddition to form a 

chiral cyclohexene ring. The image also shows the designed target active site, with hydrogen bond acceptors and 

donors activating the diene and dienophile and a complementary binding pocket holding the two substrates in an 

orientation optimal for catalysis. Adapted from Siegel et al..[88] 

 

Not only antibodies and proteins are able to catalyze Diels-Alder reactions. Nucleic acids are 

also capable of accelerating Diels-Alder reactions. The first artificial ribozyme was published 

by Tarasow and Eaton, this ribozyme however is dependent on the presence of pyridine and 

copper ions.[42] This ribozyme was only active if covalently attached to one of the reactants 

and therefore is not really a true catalyst. The first true Diels-Alder ribozyme was selected by 

Jäschke and co-workers. This Diels-Alder ribozyme provides the basis for the present work 

and shall be elaborated further in the next chapter. 
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Not only ribozymes for the catalysis of Diels-Alder reactions have been selected, Silverman 

and co-workers reported a deoxyribozyme that can catalyze the Diels Alder reaction as 

efficiently as the reported ribozymes.[22, 90] 

 

1.5 The Diels-Alderase Ribozyme 
 

Seelig and Jäschke selected a Diels-Alderase ribozyme, catalyzing the carbon-carbon bond 

formation between an anthracene derivative and a maleimide.[91] This ribozyme is able to 

catalyze a multiple turnover reaction, with an acceleration of up to 20 000 fold with high 

enantio-selectivity. It is the first true Diels-Alderase ribozyme and capable of performing the 

Diels-Alder reaction between the free reactants (scheme 4). 

 

N
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O

OH
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O
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Scheme 4: Diels-Alderase ribozyme catalyzed reaction between 9-hyroxymethyl anthracene and N-

pentylmaleimide. 

 

Rational design and ribozyme engineering lead to the identification of a minimal motif 

consisting of 49 nucleotides.[41] The secondary structure motif consists of 3 helices (helix I-

III), and an asymmetric internal loop, composed of a pentanucleotide UGCCA, and a 

hexanucleotide AAUACU, and a formally single stranded 5´-end (figure 4). Mutation analysis 

identified highly conserved structural elements to be part of the formally single stranded 

regions. The nucleotides G1, G2, A3, G4, U8, U10, C11 and U20 are highly conserved while the 

sequence of the helices I and III are variable as long as the strands are complementary to each 

other. A strong conservation was found for helix II, both in length and purine/pyrimidine 

pattern. Mismatches in this region lead to a total loss of catalytic activity. [92] 
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Figure 4: a: Secondary structure of the Diels-Alderase ribozyme minimal motif. b: X-ray structure of the Diels-

Alder ribozyme with co-crystallized reaction product (blue) in the catalytic pocket. 

 

The complex three-dimensional structure of the Diels-Alderase ribozyme had been predicted 

by mutational analysis[92] and was later confirmed by crystal structures of the ribozyme.[93] 

The ribozyme adopts a λ-shaped fold of its three helices in which stems II and III stack 

coaxially, with stem I abutting the active site.[94] The 5′ end of the RNA bridges helical stems 

III and I, generating a complex nested pseudoknot topology. The pseudoknot architecture 

presents a preformed hydrophobic pocket, precisely complementary to the reaction 

product.[93] 

The minimal motif of the ribozyme could be converted into a two- and three-stranded system 

by formally cleaving the two tetraloops. The bipartite system consists of an unmodified 38mer 

and an anthracene-tethered 11mer, while the tripartite version consists of a 24mer an 18mer 

and the thethered 11mer.[92, 95] Both constructs show a similar catalytic activity to the 49mer 

minimal motif. All versions of the Diels-Alder ribozyme can catalyze the reaction in cis and 

in trans between the free ligands. The benefit of a reaction catalyzed in trans is that a huge 

variety of different substrates could be investigated as potential substrates. Stuhlmann et al. 

showed that the ribozyme tolerates several substitutions on both substrates, except in the 2- 

and 3-position of anthracene.[96] The significance of the above mentioned results will be 

explicitly discussed in chapter three and four. 
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2 Synthesis and applications of novel initiator nucleotides 
 

2.1 Scientific background 
 

2.1.1 Incorporation of initiator nucleotides with T7RNA polymerase 

 

The structural and mechanistic studies of RNA biochemistry greatly depend on the 

incorporation of modified nucleotides. Nucleotides that bear a modification at the phosphate 

backbone or at a base can either be introduced randomly or at a specific site. If the desired 

RNA sequence is short enough (max. 40 nt), chemical synthesis is the simplest solution. For 

long RNA sequences a combination of chemical synthesis and RNA ligation has to be 

employed.[97] 

An efficient possibility for site-specific 5´-modification of RNA is transcription initiation 

priming. Nucleotides lacking a 5´-triphosphate are unavailable for incorporation during 

elongation of the RNA molecule. Due to their ability to initiate transcription reactions they 

are named initiator nucleotides.[98] RNA polymerase binds specifically at the promoter 

sequence of the double stranded DNA and starts the transcription with the nucleoside 

triphosphates present in the reaction mixture. As the modified nucleoside monophosphate can 

only be incorporated at the 5´-end, each transcribed RNA sequence can only carry a single 

modification. Transcription priming naturally leads to mixed populations of modified and 

unmodified RNA sequences, because not every RNA strand is primed with a GMP. To 

produce as much modified RNA as possible the concentration of the modified nucleotide has 

to be high as compared to the unmodified nucleotide, albeit this usually has the effect of 

lower transcription efficiencies. Therefore the concentration of 5´-modified nucleotide over 

unmodified nucleoside triphosphate has to be optimized carefully. 

Modified nucleotides have been used as initiators to prime in vitro RNA transcription for 

quite a while.[99] Initiator nucleotides can be divided in dinucleotides and guanosine 

monophosphate (GMP) derivatives modified with an organic moiety. The transcription 

initiation with commercially available guanosine derivatives like adenylyl-(3'-5')-guanosine 

(ApG) and cytidylyl-(3'-5')-guanosine (CpG) has been utilized to create a free 5´-hydroxyl 

group, which is then available for subsequent RNA radioactive end-labeling with [γ-32P] ATP 

using T4 RNA polymerase or polynucleotide kinase.[100] Fluorescein, 

carboxytetramethylrhodamine (TAMRA) or biotin ApG are nowadays common modifications 
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in chemical oligonucleotide synthesis. Guanosine-5´-O-(1-thiomonophosphate) (GMPαS) is 

commercially available, and can e.g., be derivatized with photochemical groups such as p-

azidophenacyl bromide[101] and has been used to select ribozymes by Famulok or Suga and 

co-workers.[54, 59] 

Except of the above-mentioned, the variety of chemically modified initiator nucleotides that 

have been described in literature is limited. For the synthesis of 5´-amino and 5´-thiol 

modified initiator nucleotides a series of synthetic routes have been published earlier.[102-104]  

5´-Thiol modified RNA can be used for the selection of ribozymes catalyzing e.g. a Michael 

addition, while 5´-amino modified RNA may be used for the selection of an amide 

synthase.[102] Recently, Pfander and Jäschke developed an initiator nucleotide with an 

aldehyde modification which was then amino- or hydrazine-derivatized.[105] Furthermore, 

Famulok and co-workers introduced a photocleavable initiator nucleotide with a ketone 

functionality[106] and fumaramide-derivatized guanosines as Michael acceptors.[45] Tri-Link 

recently brought 5´-biotin and 5´-amino-GMP respectively AMP to the market.[107] All 

initiator nucleotides mentioned above have been synthesized by the modification of guanosine 

monophosphate. A slightly different approach has been pursued by Huang and co-workers 

who introduced modified adenosine monophosphates but the scope of modified AMPs for 

transcription priming is still less common, because it requires a different T7 promoter.[108-110] 

The research group of Prof. Jäschke has a long-standing interest in the in vitro selection of 

novel catalytic RNA sequences. For that purpose, initiator nucleotides with polydisperse 

polyethylene glycol linkers have been synthesized for the selection of a Diels-Alder 

ribozyme.[111] The anthracene tethered initiator nucleotide described by Seelig et al. is the 

only published example of a modified GMP with a polydisperse linker. Polydisperse linkers, 

in this context, have the advantage over monodisperse polyethylene glycol linkers that the 

same modification is at disposal with many different linker lengths creating a library of RNA 

molecules. This diversity increases the chances to successfully select a catalytically active 

sequence. Notwithstanding the fact, that due to their molecular-weight non-homogeneity, the 

synthesis of polydisperse initiator nucleotides is by far more demanding than the synthesis of 

monodisperse compounds. 
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2.1.2 Anthracene derivatives 

 

The usefulness of site-specific modifications with anthracene for oligonucleotide synthesis 

will elaborately be illustrated in chapter four. 

The main purpose of anthracene-modified initiator nucleotides has so far been the in vitro 

selection of Diels-Alderase ribozymes[41] or studies of folding, the reaction mode or allosteric 

activation of the same.[112]  

 

2.1.3 Aldehydes in bioconjugation reactions 

 

Aldehydes are highly reactive and therefore periodate oxidation has found widespread 

application, especially in carbohydrate and protein biochemistry. For RNA, this technique is 

less common,[113] but can be used in the same manner for cross-linking,[114] fluorescent 

labeling [115] and biotinylation.[116] In their native state, proteins, peptides and nucleic acids 

contain no naturally occurring aldehyde residues. On the other hand, aldehydes are one of the 

most reactive and most versatile functional groups known to chemists. Therefore establishing 

new and straightforward strategies to introduce aldehydes into oligonucleotides is of utmost 

interest. 

The most common method for introducing aldehydes and ketones into polysaccharides and 

glycoproteins is the oxidation of vicinal diols by periodate.[117] The vicinal diols of ribose in 

RNA nucleotides can also be cleaved with periodate,[118] allowing the addition of a 3′-end 

label to RNA.[119] DNA lacking a 2´-diol can not be oxidized with periodate (scheme 5). DNA 

however, can be partially depurinated to form aldehydes for further labeling or cross-

linking.[120] Silverman and co-workers identified a deoxyribozym, which can depurinate its 

5´-terminal guanosine nucleotide using periodate as a cofactor.[121] 
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Scheme 5: Periodate oxidation of a 3´-cytidine. 
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Back in 2003 Glen Research launched the first aldehyde modifier as a phosphoramidite for 

the 5´-end modification of DNA in automated oligonucleotide synthesis, but is yet far from 

being a standard modification in custom oligonucleotide synthesis. Three synthetic 

procedures for the synthesis of aldehyde-modified phosphoramidites for the 5´-end 

modification of DNA have been published so far.[122] The introduction of an aldehyde moiety 

by T7 RNA transcription and subsequent conjugation reactions have been described by 

Pfander et al..[105] 

Scheme 6 illustrates reactions that are possible with aldehydes in aqueous solution. An 

uncountable number of other reactions are possible with aldehydes and presumably many will 

sooner or later find their way into bioconjugation, protein and nucleic acid chemistry. 

 

 
Scheme 6: Reaction products of aldehydes that have been demonstrated in water with DNA, RNA, PNA or 

peptides. 
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2.1.4 Classic bioconjugation reactions 

 

The most important bioconjugation of aldehydes is the reaction with primary and secondary 

amines to form Schiff bases. The Schiff base formation is relatively labile, because it is a 

reversible reaction and can be hydrolyzed easily. Therefore a subsequent reduction stabilizes 

the conjugation product (scheme 7). This technique has recently been employed extensively 

in the pioneering work on DNA-templated organic synthesis and DNA-templated peptide 

nucleic acids (PNA) oligomerization by Liu and co-workers.[123-125] 
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Scheme 7: The aldehyde can be aminated with ammonia (a) or a diamine (b) to form a Schiff base in the 

presence of sodium cyanoborohydride as a reducing agent, to produce an amine modification. 

 

The second most important reaction is the modification of aldehydes with hydrazide or bis-

hydrazide compounds. Aldehydes spontaneously react with hydrazides to form a hydrazone 

linkage (scheme 8). The hydrazone bond is a type of Schiff base, but the linkage between a 

hydrazide and an aldehyde is more stable than the linkage between an aldehyde and an amine. 

Further stabilization can be achieved under reductive conditions. 
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Scheme 8: Aldehydes and hydrazides form a hydrazone linkage. 

 

The hydrazone linkage formed from a hydrazine and an aldehyde is much more stable than 

the bond formed between a hydrazide and an aldehyde.[126] Furthermore, the reactivity of 

hydrazines exceeds the reactivity of hydrazides by far, but up to today most commercially 

available tags and cross-linking reagents are only available as hydrazides. The selection of 
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commercially available hydrazides ranges from immobilization tags like biotin hydrazide, 

hydrazide activated streptavidin or hydrazide-terminated magnetic beads, to fluorescent dyes, 

and proteins. Containing a hydrazide group at both ends homo-bifunctional hydrazides can be 

used as cross-linking reagents (scheme 9). 
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Scheme 9: Bis-hydrazides can be used to transform an aldehyde into a terminal hydrazide group. 

 

Further reactions for bioconjugation with aldehydes are the formation of acetals, hydrazone 

formation with semicarbazides and thiosemicarbazides, thiazolindine or oxime linkage. 

 

2.1.5 Classic organic reactions 

 

Initiator nucleotides provide excellent tools for the in vitro selection of ribozymes. In the last 

couple of years many organic reactions have found their way into protein and nucleic acid 

chemistry. Herein, a short summary over a selection of possible organic reactions with 

aldehydes in biomolecules will be given. 

The aldol reaction has found widespread application in DNA-templated synthesis[127, 128] and 

Famulok and co-workers have reported the in vitro selection of an aldolase ribozyme. In their 

case the aldehyde moiety was the substrate while the RNA was modified by a photocleavable 

ketone initiator nucleotide.[106] Fan et al. reported that double-stranded DNA can be used as a 

catalyst to facilitate the Henry reaction (nitro-aldol reaction) of several different 

substrates.[129] 

The Wittig reaction is possibly the most popular method to create carbon–carbon double 

bonds. Recently it was found that the Wittig reaction is accelerated in water and that ylides 

and aldehydes can be stabilized in water. Water was found to enhance the reactivity in Wittig 

reactions due to its ability to stabilize the polar transition state, a phenomenon that a nonpolar 

medium is less capable of.[130] Liu and co-workers have implemented a DNA-templated 

Wittig reaction with excellent yields and short reaction times.[131] McKee et al. recently 

reported three sequential DNA-templated Wittig reactions.[132] 

Two multi-component reactions of which one of the components is an aldehyde have to be 

mentioned in this context. The Ugi condensation, also known as the Ugi four-component 

reaction, usually refers to the reaction between a carbonyl compound, an amine, an 
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isocyanide, and a carboxylic acid.[133, 134] The Ugi reaction is like the Wittig reaction 

accelerated in water[135] and has been applied in peptide synthesis[136] and labeling of PNA 

monomers.[137] 

The Mannich reaction, well known to organic chemists, is the condensation of an iminium 

ion, formed in situ from an aldehyde with an amine and an enolizable carbonyl. Almost one 

century after its discovery Francis and co-workers described the first bioconjugation 

application.[138] 
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2.2 Objectives 
 

From previous studies by Stuhlmann et al.[96] it is known that the Diels-Alder ribozyme 

selected for anthracene and maleimide has strict limitations to its tolerated substrates. We 

envisioned it should be possible to select a different ribozyme motif, able to form a bigger 

binding pocket and thus able to catalyze the Diels-Alder reaction between 2,3-

dimethylanthracene and maleimide derivatives. The original Diels-Alderase ribozyme does 

not tolerate any substituents in the 2 and 3 position of anthracene (scheme 10) 
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Scheme 10: IUPAC nomenclature for anthracene. 

 

The aim was to develop a synthetic approach for the synthesis of novel initiator nucleotides 

and implement it for the synthesis of 2,-3 dimethylanthracene, as well as for non-substituted 

anthracene, to make it easily accessible for studies of the existing Diels-Alderase ribozyme. 

Furthermore, the incorporation into RNA during T7 RNA polymerase transcription was to be 

studied with a short DNA template and a DNA pool with a randomized region to study the 

availability for a possible in vitro selection. 

 

Anthracene is mainly employed in Diels-Alder reactions. Aldehydes on the other hand are 

extremely reactive and versatile molecules that can be used for a countless number of organic 

reactions, respectively bioconjugations and therefore are extremely useful for the introduction 

of many functionalities into nucleic acids. In cases where the distance is critical polydisperse 

polyethylene glycol linkers are highly advantageous. Therefore, aldehyde modified initiator 

nucleotides with different linker lengths are attractive compounds. The synthesis of initiator 

nucleotides with aldehyde functionalities will be designed, realized and subsequently the 

incorporation into RNA will be studied. After incorporation studies the reactivity of the 

resulting modified RNA has to be determined. 
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2.3 Results and Discussion 
 

2.3.1 Synthesis of novel initiator nucleotides 

 

The initiator nucleotides 7a-d (scheme 11) were synthesized establishing new synthetic 

procedures. 
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Scheme 11: Initiator nucleotides 7 a-d. 

 

Even though the polydisperse polyethylene glycol compounds are here linguistically 

described as a single compound it has to be pointed out that each PEG compound consists of 

several compounds, identical in their functional groups or modifications, but different in the 

number of ethylene glycol units. 

 

2.3.1.1 Synthetic procedures to anthracenyl initiator nucleotides 
 

For the synthesis of the 9-(chloromethyl)-2,3-dimethyl anthracene bearing initiator 

nucleotides 7a-b a synthetic procedure to 9-(chloromethyl)-2,3-dimethyl anthracene had to be 

established 12 (scheme 12). 
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Scheme 12: Preparation of 9-(chloromethyl)-2,3-dimethyl anthracene. 

 

The synthesis of 9-(chloromethyl)-2,3-diemethylanthracene 12b starts from the commercially 

available 2,3-dimethylanthraquinone 8. 2,3-Dimethylanthraquinone was reduced with 

granular zinc and aqueous ammonia in an autoclave and later treated with hydrochloric acid. 

Purification turned out to be rather difficult and after flash chromatography on silica and 

displacement only 28% 2,3-dimethylanthracene 9 could be obtained. In a Vilsmeier-Haak 

reaction anthracene could exclusively be formylated at the 9-position with a yield of 95%, 

similar to a procedure described for non substituted anthracene.[139] 2,3-dimethylanthracene-9-

carbaldehyde 10 was reduced with sodium borohydrate to yield 92% of the corresponding 

alcohol 11 and was further reacted with thionyl chloride and without further purification 94% 

of 9-(chloromethyl)-2,3-dimethyl anthracene 12b was obtained. 
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Scheme 13: Synthesis of (anthracen- 9-yl-methoxy)-polyethylen glycol 16a and 2- ((2,3-dimethylanthracen- 9-

yl)- methoxy)-polyethylene glycol 16b. 

 

PEG 600 was selectively mono-protected with 4,4´-dimethoxytrityl (DMT) according to the 

procedure published by Fiammengo et al. for hexaethylene glycol.[140] PEG 600 was dissolved 

in acid free dichloromethane with 4-dimethylaminopyridin (DMAP) as activator and 

triethylamine to deprotonate the hydroxyl group. In a dichloromethane solution DMT-Cl was 

added very slowly during several hours via a syringe pump. An excess of PEG and the slow 

addition of DMT-Cl prevent a di-protection. Traces of di-protected product could be 

eliminated by purification over silica. Mono-protected PEG 600 14 was obtained in a yield of 

75%. In an SN2-reaction the free hydroxyl group of the DMT-protected polyethylene glycol 

was deprotonated with sodium hydride and either reacted with 9-(chloromethyl)anthracene to 

form the bifunctional PEG with DMT and anthracene 12a or reacted with 9-(chloromethyl)-

2,3-dimethylanthracene 12b to form the corresponding derivative. For anthracene a yield of 

46% was achieved while for 2,3-dimethylanthracene 75% of the pure product was obtained 

after flash chromatography. The DMT protecting group was removed by exposure to 3% 

trichloro acetic acid in DCM for five minutes. After purification over silica 82% of 

(anthracen-9-yl-methoxy)-polyethylene glycol 16a and 84% of 2-((2,3-dimethylanthracen-9-

yl)-methoxy)-polyethylene glycol 16b were obtained. 
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Scheme 14: Synthesis of initiator nucleotides 7a and b. 
 

2′,3′-bis TBDMS-protected guanosine was synthesized from unprotected guanosine according 

to literature.[141] The corresponding 5′-O-phosphoramidite was prepared in 88% yield using 2-

cyanoethyl-N,N-diisopropylchlorophosphoramidite for phosphitylation. This synthesis can be 

achieved without protection of the nucleobase.[142] As reported in literature no N-

phosphitylation during phosphoramidite coupling with imidazolium activators was 

observed.[143] The initiator nucleotides 7a and 7b were synthesized the anthracene modified 

polyethylene glycol compounds 16a and 16a and 2,3-bis-(t-butyldimethylsilyl) guanosin-5-O-

(β-cyanoethyl-N,N-diisopropylphosphor-amidite) 17 in the presence of 4,5-dicyanoimidazole 

(DCI). After 1 h the reaction was quenched by the addition of t-butylhydroperoxide. The 

solvent was removed and the guanosine intermediate directly deprotected from the TBDMS 

protection groups on the 2´-and 3´-hydroxyl and the β-cyanoethyl by the addition of tetra-n-

butylammonium fluoride (TBAF). Purification was carried out via reverse phase column 

chromatography, followed by ion exchange and a second reverse phase column 

chromatography. 



Synthesis and applications of novel initiator nucleotides 

 25

2.3.1.2 Novel aldehyde containing initiator nucleotides 
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Scheme 15: Protection of 4-hydroxybenzaldehyde. 

 

Commercially available 4-hydroxybenzaldehyde 18 was protected as an acetal in a p-

toluenesulfonic acid catalyzed reaction. General organic synthetic procedures for the acetal 

protection of aldehydes require the removal of the formed water to push the equilibrium to 

form more acetal. The azeotropic distillation with a water trap did not shift the equilibrium 

towards the desired product. When performed with one equivalent potassium carbonate the 

conversion observed by TLC was only 50%. In another approach, two equivalents of dry 

magnesium sulfate lead to a similar conversion. Notably, the performance of the reaction 

without any auxiliary agents made the workup easiest and after purification on silica 62% of 

the protected aldehyde 19 was obtained. 
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Scheme 16: First synthetic strategy to polyethylene glycol-p-toluolsulfonat. 

 

All compounds represented in scheme 16 were purified on silica by flash chromatography. 

Reaction conditions for tosylation are not compatible with DMT as a protecting group. DMT 

would be cleaved off during the tosylation and bis-tosylated PEG compounds would be the 

consequence. For that reason it was decided to use TBDMS as a protection group instead. To 

ensure that only mono-protected PEG was available for subsequent reactions, DMT-protected 

PEG was prepared as described earlier. 
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The remaining free hydroxyl group was then protected with TBDMS-Cl under standard 

conditions. After purification bis-protected PEG 600 21c was obtained with a yield of 76%, 

while the yield for PEG 1500 21d was 70%. The deprotection of DMT resulted in the mono 

TBDMS protected PEG compounds in a moderate yield of 50% for PEG 600 22c and 78% for 

PEG 1500 22d. Subsequent tosylation with p-toluenesulfonyl chloride in the presence of TEA 

as a base and 4-dimethylaminopyridine (DMAP) as a catalyst was successfully carried out to 

yield 87% clean product for PEG 600 23c and 75% for PEG 1500 23d. Nucleophilic 

substitution by the protected aldehyde 19 yielded 60% for PEG 600 24c and 99% for PEG 

1500 24d. 

Surprisingly, deprotection from the TMDMS protection group failed. Neither TBAF, nor 

hydrogen fluoride in triethylamine lead to the liberation of the aldehyde modified 

polyethylene glycol. An acid catalyzed deprotection was not possible because the acetal 

protected aldehyde is acid labile and the latter is only deprotected after incorporation into 

RNA via T7 transcription. This synthetic route was not persevered any further; however it 

could be useful for non acid labile modifications. 

Having experienced the above mentioned problems with protecting groups not being 

removable after a multistep synthesis, we were curious if we could accomplish a direct 

activation by mono-tosylation of the polydisperse polyethylene glycol substrates, PEG 600 

and PEG 1500. 
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Scheme 17: Second synthetic strategy to polyethylene glycol p-toluenesulfonate and subsequent substitution. 
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Mono-functionalization of symmetrical diols has been of high interest in organic synthesis, 

but the scope of selective reactions is still very limited. Mono-tosylation of polyethylene 

glycols is the key step to all kinds of hetero-bifunctional PEG derivatives. Synthetic 

procedures for the mono-tosylation of short monodisperse polyethylene glycol have been 

reported, but many of the approaches are rather exotic, like the montmorillonite catalyzed,[144] 

or silver (I) mediated combined with potassium iodine catalyzed mono-tosylation.[145-149] A 

more simple approach had been reported for di-, tetra- and hexaethylene glycol.[103, 150, 151] p-

Toluensulfonyl chloride was added to the polyethylene glycol with pyridine as base, the 

product had to be purified by column chromatography, in some cases even twice on normal 

silica and RP-C18 silica. 

The mono-tosylation was achieved by a slow addition of p-toluenesulfonyl chloride in DCM 

in the presence of the catalyst 4-dimethylaminopyridine and TEA. PEG is commercially 

available and relatively inexpensive and was therefore used in ten-fold excess over the p-

toluenesulfonyl chloride. After tosylation the mono-tosylated product was separated from the 

excess PEG simply by extraction. While PEG alone is extracted into the aqueous phase, the 

mono-tosylated PEG remains in the organic dichloromethane phase. Mono-tosylated PEG 600 

26c was obtained in a yield of 74% and PEG 1500 26d in a yield of 96%. The absence of bis-

tosylated or non-tosylated PEG could unambiguously be ensured by MALDI-TOF MS 

analysis. Commonly, the tosyl function is easily hydrolyzed in the presence of water. 

However, the tosylated polyethylene glycol could be stabilized over a long period of time if 

the residual water was removed directly after the synthesis by coevaporation with toluene. 

The activation of polyethylene glycol by tosylation allows their modification with basically 

all hard nucleophiles in an SN2 reaction. 

The aldehyde-functionalized PEGs were obtained from 4-(5,5-diethyl-1,3-dioxan-2-yl) phenol 

19, which was first deprotonated with sodium hydroxide in ACN and refluxed with the mono-

tosylated PEG for two days. After silica purification 47% of aldehyde mono-functionalized 

PEG 600 25c and 80% and of PEG 1500 25d were available for subsequent synthesis of the 

initiator nucleotide. 



Synthesis and applications of novel initiator nucleotides 

 29

NH

N

N
O

NH2N

O

OTBDMSTBDMSO

O

P
O N

CN

1)  DCI, THF  
      t-butylhydroperoxide 

2)  TBAF, THF

NH

N

N

O

NH2
N

O

OHOH

O
P

O
OO

O

O

O

n

OH
O

O

O

n

7 c    PEG 600
 

   d  PEG 1500

Na

1725 c
     d

 
Scheme 18: Synthesis of initiator nucleotides 7c and d. 
 

The initiator nucleotides 7c and d were synthesized from the aldehyde mono-functionalized 

polyethylene glycols and 2,3-bis-(t-butyldimethylsilyl)guanosin-5-O-(β-cyanoethyl-N,N-

diisopropylphosphoramidite) 17 in the presence of DCI. After the addition of t-butyl 

hydroperoxide the solvent was removed and the guanosine intermediate directly deprotected. 

While for the anthracene derivative initiator nucleotides a relatively small excess of TBAF 

was sufficient to deprotect the guanosine, for the aldehyde initiator nucleotides six 

equivalents TBAF and prolonged reaction times were necessary. Purification of the initiator 

nucleotides was carried out by reverse phase column chromatography, ion exchange and a 

second reverse phase column chromatography. 
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2.3.1.3 Analytics of polydisperse polyethylene glycols 
 

The easiest way to analyze polydisperse polyethylene glycols is MALDI-TOF MS analysis.  

In all cases, a Gaussian set of highly resolved peaks representing the distribution of PEG 

molar masses was produced. For PEG 600 chain lengths from 7 to 19 PEG units were 

observed and the highest intensity was assigned to n = 13, while for PEG 1500 the chain 

lengths varied from 17 to 40 with 27 giving the most intense signal. 

It is also generally known that the quantitativeness of MALDI-TOF MS strongly depends on 

the process of ionization.[152] However, the purity of the synthesized compound and the 

absence of side products can absolutely be proven, as no other masses have been observed. 

Synthetic polymers usually contain alkali metal cations as impurities from chemicals, solvents 

or glassware. Even during MS analysis alkali cation, impurities still remaining in the mass 

spectrometer, form adducts and the attachment of these cations, with Na+ being the most 

common one, are observed.[153] Modeling studies showed that alkali cations are coordinated to 

available oxygen sites along the backbone.[154] 

In the present work for polyethylene glycols with higher masses in MALDI-TOF MS analysis 

the main signal observed is not only just the adduct of one alkali cation, but combinations of 

either two alkali cations or mixtures of two different alkali cations. Shimada et al. had shown 

that additions of alkali cations mainly take place for the cation with the smallest ionic radius. 

During synthesis Li+ was never present in any of the reactions, but residual Li+ in the 

spectrometer from preceding samples was coordinated by the PEG compounds.[155] Alkali 

cation adducts were observed with a increasing length of the polyethylene glycol, especially 

for PEG 1500 adducts of different cation combinations were measured. To prove that indeed 

the described product had been obtained the initiator nucleotides were later analyzed by high 

resolution ESI mass spectrometry. The integrity of the product was evidenced with absolute 

accuracy. 

 

2.3.2 Towards the in vitro selection of a novel Diels-Alder ribozyme 

 

The so called direct in vitro selection of a Diels-Alderase ribozyme, was first described by 

Seelig and Jäschke.[41] For the selection of a true catalyst the substrate has to be tethered to the 

RNA library. The polymer linker attaches the anthracene substrate to the RNA, but after a 

Diels-Alder reaction with a maleimide derivative the RNA itself remains unaltered. After 

incubation, the RNA library is covalently attached to anthracene and therefore an anchoring 
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functionality has to be introduced during this reaction to allow for separation of the reactive 

from the uncreative species. Biotin maleimide is commercially available and thus the reactive 

species can easily be separated via biotin - streptavidin interaction on a solid support. 
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Scheme 19: Selection scheme for the in vitro selection of a Diels-Alderase ribozyme catalyzing a Diels-Alder 

reaction between 2,3-dimethylanthracene and biotin maleimide. 

 

The selection scheme for a possible in vitro selection of a Diels-Alderase ribozyme (scheme 

19) proceeds from the RNA library, created by T7 RNA polymerase (RNAP) transcription 

starting from a DNA pool. During the transcription 2,3-dimethylanthracene is incorporated 

into the RNA library by the enzyme T7 RNAP. The subsequent Diels-Alder reaction between 

2,3-dimethylanthracene and biotin maleimide creates two species. The desired sequences, 

which catalyze the Diels-Alder reaction and the ones where no reaction has taken place. The 

two species are partitioned on streptavidin agarose, while the RNA where no Diels-Alder 

reaction has taken place passes through the streptavidin agarose columns, the species now 

carrying biotin remain on the column. The retained RNA is eluted, reverse transcribed, 

amplified by PCR and again transcribed into RNA in the presence of an initiator nucleotide 

and re-introduced into the selection cycle. Noteworthy, other options than streptavidin for the 

separation of reacted and unreacted species e.g., separation on bead are available. 
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2.3.2.1 T7 RNA polymerase transcription 
 

During transcription initiation the 5´-modified guanosine monophosphate is selectively 

incorporated at the 5´-end of the transcript (scheme 20). 
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Scheme 20: 5´-Modification of RNA with 2,3-dimethylanthracene via initiator nucleotide priming during T7 

RNAP transcription. 

 

For the initial experiments on the incorporation and reactivity of the initiator nucleotide a 

dsDNA template was used that transcribes into a 25 nt long RNA. Polydisperse polyethylene 

glycol based initiator nucleotides consist of many compounds with a molecular weight 

difference of 44.03 g mol-1. This is naturally the case for the transcribed RNA, several 

different RNA molecules originate from one sequence, all set apart by the difference of one 

polyethylene glycol unit. These differences in molecular weight exceed the resolution of 

PAGE analysis and therefore the modified transcribed RNA does not appear like a sharp band 

but rather like a smear. For the 25mer the resolution was still acceptable if analysis was 

performed by 20% denaturing PAGE (figure 5).  

 

The reaction was carried out using 0.2 µM template, 4 mM ATP, CTP and UTP, 0.35 mM 

GTP and 4 mM initiator nucleotide 7a. For better visualization the transcription was 

performed with [α-32P]-CTP. 
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Figure 5: Transcription initiation of a 25-mer DNA template with the 2,3-dimethylanthracene initiator 

nucleotide 7a. 20% PAGE gel, autoradiography. 

 

T7 RNA polymerase in general suffers from 3´-end heterogeneity of the RNA transcripts, 

meaning it has the tendency to append one or two and sometimes even more non-templated 

nucleotides.[156, 157] For the 25mer these elongated sequences were observed, which in some 

cases resulted in a slight superimposition of the observed bands of the conjugate. 

The incorporation rate was determined by HPLC and autoradiography to be 71% and the mass 

was confirmed by MALDI-TOF MS analysis (figure 6). 
 

 
Figure 6: a: HPLC diagram at 260 nm of the polydisperse 2,3-dimethylanthracene initiator nucleotide after 

incorporation into the 25mer RNA transcript. b: MALDI–TOF MS analysis: here the signal also shows that the 

polydisperse initiator nucleotide was incorporated. For n = 11 a mass of 8794 m/z was observed, which confirms 

the calculated mass of 8792 m/z for [M+H]+. 
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2.3.2.2 Evaluation of the reaction conditions 
 

To evaluate the reaction conditions of the Diels-Alder reaction between RNA tethered 2,3-

dimethylanthracene and biotin maleimide (see scheme 19) the reaction was performed with 

the above described model-transcript. 

 

 
Figure 7: Diels-Alder reaction between RNA tethered 2,3-dimethylanthracene and biotin maleimide. While the 

transcript without initiator nucleotide showed no reactivity with biotin maleimide the transcript with 

incorporated 2,3-dimethylanthracene reacted with an 1000 fold excess of biotin maleimide. Analysis by 

autoradiography of a 20% PAGE.  

 

In the first cycles of an in vitro selection the biotin maleimide has to be present in excess to 

enrich all sequences, even those that show moderate or low catalytic activity. The 

determination of the background rate is important to distinguish catalysts with low to 

moderate efficiency from good catalysts. In an initial experiment the conversion of the 

transcript was compared to the conversion of the transcript with the incorporated 2,3-

dimethylanthracene initiator nucleotide. Only if incubated over night with a 1000 fold excess 

of biotin maleimide a reaction product could be observed. The unmodified transcript showed 

no reactivity with biotin maleimide even at a 1000 fold excess and incubation over night 

(figure 7). 

It was established that the new 2,3-dimethylanthracene initiator nucleotide can be 

incorporated into a short model transcript and subsequently reacted with biotin maleimide. As 

a next step the incorporation into an RNA library with a randomized region should be tested. 

To accomplish this task the library had to be generated as described in the following section. 
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2.3.2.3 Generation of an RNA library 
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Figure 8: Generation of an RNA library with randomized region. The promoter sequence is essential for the 

recognition of the DNA template by RNAP. A polymerase specific promoter sequence can be appended to the 

dsDNA template during PCR by application of a primer containing this sequence. The dsDNA template can then 

be transcribed into RNA. 

 

An RNA library was synthesized beginning from a DNA pool with a randomized region 

(figure 8). A DNA pool with a randomized region is the key feature to provide the huge 

complexity necessary to in vitro select catalytic species. Mathematically the limitation of this 

complexity is reached if the randomized region is only 25 base pairs long. If all four bases are 

randomly incorporated at all positions and every sequence is only represented once a 

complexity of 425 ~ 1015 would be reached.[15] 25 base pairs are too short to form the three-

dimensional structures that are necessary for binding or forming a catalytic pocket in an active 

RNA structure. Therefore longer randomized regions provide better exit criteria for a 

successful in vitro selection. A 70 nucleotide long randomized region was chosen, flanked by 

the conserved regions, thus the resulting ssDNA template was 109 nucleotides long. 

 

5'-GGA GCT CAG CCT TCA CTG C- N70-GGC ACC ACG GTC GGA TCC AC-3' 

 

From a 1 µmol scale DNA synthesis 16.70 nmol DNA were obtained, equating to a pool 

complexity of 1.01 x 1016. But even after purification not all templates can be amplified. To 

asses the complexity of the generated pool, primer extension with a radioactively labeled 

primer was performed. Only 24% of the pool could be amplified to full length product, 

resulting in an excellent pool complexity of 3.3 x 1015. 
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2.3.2.4 Optimization of the PCR reaction 
 

The two primers used for the PCR of this DNA pool are standard primers in our laboratory 

and have been named primer A and primer B. Primer A contains a promoter sequence which 

is added to the double stranded DNA during PCR (see figure 8). The addition of a promoter is 

indispensable for T7 polymerase recognition and thus transcription into RNA. In the case of 

the 109mer the addition of the promoter sequence leads to a 128 nucleotides long dsDNA 

template after PCR. For that reason primer A is 38 nt long while primer B only consists of 20 

nucleotides, resulting in different optima for hybridization during PCR. This problem could 

partially be overcome by the use of higher primer B concentrations during PCR. 

After several optimizations of the template concentration, annealing temperature, magnesium 

ion concentration and number of PCR cycles a preparative PCR was carried out with 

prolonged annealing and elongation steps in every cycle. In a pool with high complexity only 

one or very few copies of each sequence are represented and therefore long elongation steps 

are essential for the amplification of all sequences. Unspecific product formation could be 

avoided by performing only 6 PCR cycles. Repetitive cycles did not improve the product 

formation considerably, but two side product bands with a length of around 180 and 210 base 

pairs were formed. 

The optimal PCR conditions were determined to be a template concentration of 0.2 µM, 10 

µM primer A, 15 µM primer B, 0.2 mM concentration of all NTPs and the use of 4 mM 

magnesium chloride. For the preparative PCR a total volume of 55 mL was partitioned into 

several 96 well plates and after PCR combined again and purified by phenol extraction. 

 

2.3.2.5 Transcription initiation with the DNA library 
 

The transcription of the DNA library has first been studied without the initiator nucleotide. 

The highest yield in terms of oligonucleotide multiplication was obtained with 4 pmol dsDNA 

template. Several transcription buffer systems and MgCl2 concentrations were tested and 40 

mM Tris buffer at pH 8.1 containing 22 mM Mg2+, 0.1 mM spermidine and 0.01% Trition X-

100 were determined to be the best conditions for the transcription of the DNA pool. 

For the incorporation of the initiator nucleotide into the RNA library the concentration of the 

initiator nucleotide and of GTP was varied while the three other NTPs were kept constant at 4 

mM. The use of a high concentration of NTPs had been shown to yield the highest amount of 

RNA transcript.[158] 
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without

For the transcription of the DNA library with the 2,3-dimethylanthracene initiator nucleotide 

incorporation rates up to 77%, determined by HPLC (figure 9), could be achieved. 

Unfortunately the transcription was considerably inhibited by the initiator nucleotide. Low 

transcription yields were linked to the presence of the initiator nucleotide. The transcription 

was carried out with 0.35 mM GTP and 4 mM initiator nucleotide. In the reference reaction 

no initiator nucleotide was present. If the initiator nucleotide would not cause inhibition of the 

T7 RNAP similar yields for the transcription with and without initiator nucleotide would be 

the case. However a decupled RNA yield was observed in the absence of the initiator 

nucleotide (figure 9). 

 

 
Figure 9: Transcription initiation without and with 2,3-dimethylanthracene initiator nucleotide, using 0.35 mM 

GTP and 4 mM initiator nucleotide. Analysis by autoradiography of 12% denaturing PAGE and incorporation 

rate determination via HPLC detection of the 32P signal. 

 

The overall yield could be improved by inverting the ratio between GTP and initiator 

nucleotide, using 4 mM GTP and 1 mM initiator nucleotide. However, the incorporation rate 

dropped below 10%, which resulted in less conjugation product than using 0.35 mM GTP and 

4 mM initiator nucleotide. Furthermore this experiment (figure 10) again showed that the 2,3-

dimethylanthracene initiator nucleotide has an inhibiting effect on the T7 RNAP enzyme. 

 

 
Figure 10: Transcription initiation without and with 2,3-dimethylanthracene initiator nucleotide, using 4 mM 

GTP and 1 mM initiator nucleotide. Analysis by autoradiography of 8% PAGE. 
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Anthracene derivatives are known to readily react with oxygen upon exposure to light to form 

the corresponding epidioxyanthracenes, or sometimes described as photoperoxides.[159, 160] 

Therefore elevated temperatures and exposure to light have to be avoided, because loss of the 

aromaticity of the anthracene would make a Diels-Alder reaction impossible. 

The enzyme T7 RNAP is usually used at 37°C or higher temperatures. The stability of the 

initiator nucleotide and the anthracene derivative were investigated under conditions 

analogous to the conditions of the transcription. The initiator nucleotide was incubated in 

transcription buffer for four hours and the integrity of the initiator nucleotide was confirmed 

by HPLC analysis before incubation, after two and four hours at 37°C (figure 11). The 

initiator nucleotide remained unaltered and no epoxide formation was observed. Furthermore, 

this experiment allowed the conclusion that for the initiator nucleotide no decomposition 

accured over the period of four hours at a temperature of 37°C. Low incorporation yields can 

therefore not be linked to decomposition of the initiator nucleotide. 

 

 
Figure 11: HPLC at 260 nm at different time points after incubation of the initiator nucleotide in transcription 

buffer at 37°C. 

 

Further approaches to improve the yield of the conjugated RNA library were investigated. 

These approaches included elongated reaction times, the use of commercially available 

transcription kits or the addition of a so called booster mix, containing NTPs and additional 
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initiator nucleotide in buffer supplemented with T7 RNAP, after two hours, followed by 

continuous transcription for another two hours. T7 RNAP has a DNase and RNase function, 

which can be inhibited by an excess of NTPs during the transcription, the addition of a 

booster mix thus does not only provide more material for the transcription, but also inhibits 

the nuclease function of the RNAP.[161] Commonly, residual salt from the preparation of the 

DNA template can be responsible for low transcription yields.[113] To eliminate this aspect the 

template was desalted before transcription and the initiator nucleotide was purified via a 

second ion exchange and a third reverse phase column chromatography. But the inhibition of 

the transcription of the DNA library in the presence of the initiator nucleotide bearing 2,3-

dimethylanthracene could not be overcome. 

However, the fact that an incorporation rate of 77% could be achieved during RNAP 

transcription with a DNA library with a 109 nucleotide long sequence is quite noteworthy. 

 

 
Figure 12: Enzymatic incorporation of the initiator nucleotide (1 mM) via T7 RNA polymerase transcription (2 

h reaction time) of the 109 nt dsDNA library, varying the GMP concentration. 
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2.3.3 Incorporation and application of aldehyde containing initiator nucleotides 

 

In section 2.3.1.4 a short and efficient synthetic approach to the synthesis of polydisperse 

aldehyde-modified initiator nucleotides was developed (scheme 21). The incorporation and 

reactivity of the aldehyde-modified initiator nucleotides will be tested and is described herein. 
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Scheme 21: Aldehyde modified initiator nucleotides. 

 

Initiator nucleotide 7c with nPEG varying from 7–19 was synthesized from PEG 600, while the 

initiator nucleotide with PEG 1500 7d resulted in a distribution of nPEG ~ 17–41 (figure 13). 

 

 
Figure 13: Illustration of the differences between the initiator nucleotide with PEG 600 7c and PEG 1500 7d. a: 

MALDI TOF MS of initiator nucleotide 7c; b: MALDI TOF MS of initiator nucleotide 7d; c: HPLC detection at 

260 nm of initiator nucleotide 7c; d: HPLC detection at 260 nm of initiator nucleotide 7d. 
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Incorporation of the aldehyde initiator nucleotides was tested by T7 RNAP transcription with 

the 25mer model-transcript. The transcription was carried out with the optimized protocol 

employing 4 mM of the initiator nucleotides over 0.35 mM GTP. Figure 14 shows an 

autoradiograph of the enzymatic incorporation of the initiator nucleotides 7c and 7d. For 

initiator nucleotide 7c an incorporation rate of 52% could be determined while for initiator 

nucleotide 7d no incorporation could be observed (figure 14). 

 

 
Figure 14: Left: transcript (25mer) with the PEG 600 linked aldehyde initiator nucleotide 7c; right: with the 

PEG 1500 linked aldehyde initiator nucleotide 7d. -: reference without initiator nucleotide, +: with initiator 

nucleotide. 20% PAGE, autoradiography scan. 

 

To confirm the presence and reactivity of the terminal aldehyde group at the 5´-end of the 

transcript by incorporation of the initiator nucleotide the conjugate was eluted and 

precipitated. As a model reaction the hydrazone bond formation between biotin-hydrazide and 

the deprotected aldehyde was chosen (scheme 22). 
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Scheme 22: Biotin-hydrazide was used to label the aldehyde, creating a hydrazone bond. 

 

The aldehyde initiator nucleotide could be deprotected by treatment with 2% trifluroacetic 

acid for 10 minutes and the reaction was quenched by the addition of sodium bicarbonate. 

Hydrazone bond formation is favored at a slightly acidic pH, therefore the pH was adjusted to 

5.5 and a 1000 fold excess of biotin hydrazide was added. After incubation for four hours at 
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room temperature the reaction was analyzed via PAGE and a gel shift for the biotinylated 

conjugate was observed. Notably, full conversion could be observed for the reaction between 

the aldehyde-modified initiator nucleotide and the hydrazide (figure 15). 

 

 
Figure 15: Lane 1: conjugate protected aldehyde. Lane 2: conjugate deprotected aldehyde. Lane 3: conjugate 

aldehyde deprotected and reacted with biotin hydrazide. 12% PAGE, autoradiography scan. 

 

 

2.4 Conclusion 
 

The 5´-end modification of RNA could be achieved co-transcriptionally by transcription 

priming using T7 RNAP and initiator nucleotides with either a benzaldehyde organic moiety 

or 2,3-dimethylanthracene. For the transcription of short oligonucleotides no inhibition of the 

enzyme T7 RNAP was observed. The initiator nucleotide bearing 2,3-dimethylanthracene 

could be incorporated into a 109 nucleotide long RNA library with a randomized region with 

an incorporation rate of 77% although diminished total yields were observed. For the 

aldehyde modified initiator nucleotide an incorporation rate of 52% could be observed. 

Hydrophilic moieties are known to result in lower incorporation efficiencies than hydrophobic 

moieties.[140] 

The reactivity of the incorporated initiator nucleotides was confirmed. After transcription the 

anthracene modified RNA was biotinylated in a Diels-Alder reaction with biotinmaleimide, 

while the aldehyde-modified RNA was biotinylated employing a biotin-hydrazide. Full 

conversion for the formation of the hydrazone was observed. 

 

The synthesis of polydisperse initiator nucleotides could considerably be improved. For the 

synthesis of polydisperse initiator nucleotides with an anthracene moiety a very clean and 

rather short synthetic route could be established. Originating from the anthracene derivative 
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and the TBDMS protected guanosine monophosphate the synthesis could be achieved in only 

five steps. Furthermore, a novel synthetic pathway, via a mono-tosylated polyethylene glycol 

compound, was established and demonstrated for the aldehyde modified initiator nucleotide 

presenting a superior synthetic strategy for the incorporation of many highly functional 

organic modifications into RNA. The mono-tosylated polyethylene glycol represents the key 

step to a vast variety of organic modifications in RNA. The tosyl-activated PEG can be 

reacted in an SN2 reaction with a multitude of nucleophiles. Furthermore, the synthesis of 

such initiator nucleotides can be achieved in only three synthetic steps. 
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3 Thermal denaturation studies of the Diels-Alderase ribozyme 
 

3.1 Scientific background 
 

3.1.1 Metal ions in ribozyme folding and catalysis 

 

The discovery that RNA molecules do not only carry genetic information, but can also have 

catalytic activity and thus require a defined structure, has lead to a new understanding of the 

structures and mechanisms of folding. Like proteins, RNA adopts complex three-dimensional 

structures for the precise presentation of chemical moieties that are essential for its function as 

biological catalyst, translator of genetic information and structural scaffold.[162] The most 

important parameter in folding and shape of single-stranded nucleic acids is complementary 

Watson-Crick base pairing via hydrogen bonding. Even though RNA molecules usually 

consist of single strands, RNA molecules contain linear runs that are complementary to other 

runs elsewhere in the molecule. This way RNA can form double-stranded regions. Further 

important nucleotide interactions as part of tertiary interactions are intra- or intermolecular 

interactions based on canonical and non-canonical base pairs, pseudoknots, water bridges, and 

interactions with metal ions.[113] 

The structure of oligonucleotides, either free or in complex with metal ions or specific 

ligands, can be analyzed using various experimental methods, like X-ray crystallography, 

cryo-electron microscopy, NMR, structure-specific probes, RNA engineering, mass 

spectrometry and thermal denaturation. A good explanation on structure, folding and function 

of an oligonucleotide is generally obtained from a combination of experimental setups. 

Using UV spectroscopy, thermal denaturation experiments can be utilized to determine the 

stability of RNA secondary and tertiary structures and are informative about the hierarchy and 

dynamics of RNA folding. Thermal denaturation of RNA complements other techniques, such 

as crystallography, NMR, CD spectroscopy or probing experiments.[163] 

Two distinct functions of metal ions are essential for ribozymes. Divalent cations provide 

stabilization for the structural folding of RNA and can be required for chemical reactions. 

Pyle described the RNA molecule as an extended polyanion that is not easily packed into its 

catalytically active form without substantial charge neutralization between the interacting 

strands.[164] Cations therefore neutralize the charge in folded RNA molecules. It was 

suggested that divalent cations bind to specific sites, and thus form a metal ion core in RNA 
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equivalent to the hydrophobic core in proteins. This way the core folds the secondary 

structure into the required tertiary structure.[165, 166] The tertiary structure is the three-

dimensional organization, which is relevant for the biological function of RNA molecules. 

RNA contains a number of ligands for metal coordination, mainly due to the phosphate 

oxygens, 2´-hydroxyls, base carbonyls and transition-state oxyanions, which preferentially 

coordinate hard alkaline earth metals ions such as Mg2+. Magnesium ions are generally hexa-

hydrated and are coordinated in an octahedral geometry, whereas coordination numbers 

greater than six are common for Ca2+. The Mg2+ cation has a low affinity to nitrogen ligands 

and basically now affinity for sulphur. Transition metals such as Mn2+ can be coordinated by 

ribonucleic oxygens as well as the nitrogens in the ring of the bases.[167] Other common 

transition metals like Zn2+ and Cd2+ exhibit a similar behaviour as Mn2+.[168] 

With one negative charge per nucleotide (located at every phosphate of the phosphodiester 

back bone) the negative charge density of RNA is extremely high. These negative charges 

would repel each other, but that repulsion is greatly diminished when each phosphate is 

surrounded by a cloud of small cations. Due to their high charge density and their negative 

electrostatic potential all nucleic acids accumulate concentrated cation atmospheres, which 

extend over a distance of several Ångström.[169] Simplified, the interaction of RNA with 

cations can be divided into two major categories. One interaction is diffuse, meaning that the 

ions remain entirely hydrated and are only affected by the electrostatic potential of the RNA. 

The other is chelating and characterized by direct contacts between the RNA and the metal 

ions.[170] Chelating metal ion binding sites have been identified for a number of RNA 

molecules in X-ray crystal structures. 

For a long time it was believed that ribozymes only fold and catalyze reactions in the presence 

of divalent metal ions. The hammerhead, the hairpin and the VS ribozyme were the first 

ribozymes reported to have catalytic activity in the absence of divalent metal ions.[171] 

However, monovalent metal ions have to be applied at molar concentrations (non-

physiological) for folding, activity, and stabilization of the structure. Nevertheless, they can 

not compete with the catalytic activity observed in the presence of divalent metal ions.[172] 

As for structural concerns, the pseudoknot RNA from Beet Western Yellow Virus (BWYV) is 

possibly the most prominent example of a pseudoknot structure stabilized by monovalent 

cations. The crystal structure revealed four putative coordination sites for alkali metal 

cations.[173] UV denaturation experiments showed that the RNA could entirely be stabilized 

up to high temperatures by sodium cations alone.[174] 
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3.1.2 The Diels-Alderase ribozyme 

 

Various analytical techniques have been employed to study the structural and mechanistic 

properties of the Diels-Alderase ribozyme.[92, 93, 175, 176] 

The Diels-Alderase ribozyme was found to require divalent metal ions such as Mg2+, Mn2+or 

Ca2+ for folding into its three-dimensional structure, but it has to be pointed out that, unlike 

many other ribozymes the Diels-Alder ribozyme does not involve metal ions in the catalytic 

process. 

 
Figure 16: Crystal structure of the Diels-Alderase ribozyme. Mg stands for magnesium ions indicated in green. 

Latin numbers indicate the helices I-III. Figure adapted from Berezniak et al.[177] 

 

The Diels-Alderase ribozyme is stabilized by eight Mg2+ cations (figure 16). Mg1 and Mg2 

contribute most to the structural scaffold of the catalytic pocket, while Mg3-Mg6 stabilize the 

λ-shaped RNA structure. Mg7 and Mg8 mediate contacts between RNA molecules in the 

crystal lattice, but these magnesium ions are not coordinated to the ribozyme in solution.[177] 
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Figure 17: Two and three dimensional structure of the Diels-Alderase ribozyme; the three bases involved in this 

triple are indicated. 
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In the following, light will be shed on a particular structural element of the Diels-Alderase 

ribozyme. A tertiary interaction of three bases in the heart of the binding pocket: the tertiary 

interaction of the U17 base with the pseudoknot base-pair C10-G2 was first identified in the 

X-ray crystallographic structure and has proven to be absolutely essential. These triple 

bridging bases facilitate the cross-strand junction of the pseudoknot, stacking interaction with 

the neighbouring bases and one magnesium ion number five (figure 17) which stabilizes this 

junction point. Furthermore these bases are part of the central H-bonding network forming the 

binding pocket of the ribozyme. 
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Scheme 23: a: the base triple G2 – C10 – U17 (wild-type) b and c: mutants (C10 – C17 and C10 – iC17). 

Hydrogen bonding disrupted. 

 

Atomic mutagenesis has been utilized to selectively perturb these bonds and illustrate the 

functional relevance of the interaction between U17-O2 and C10-HN4. To gain further insight 

into this triple base pair an U17C and an U17iC mutant (scheme 23) ribozyme have been 

compared to the wild type. 

A comparison in reactivity between the wild-type ribozyme and these mutants showed that 

both mutants fold into a pseudoknot structure, but can not undergo further compactation. 

While the U17C mutant shows a factor three decreased activity, the U17iC mutant is entirely 

inactive.[178] Furthermore the dienophile is activated by two weak H-bonds related to that 

triple (U17-2’OH and G9-HN2 vs. dienophile-O). This H-bonding network contributes to the 

stabilization of the transition state and is therefore crucial for the catalytic activity. Lead 

(Pb2+) probing also showed that the U17iC mutant has no affinity to the Diels-Alder 

product.[179]  
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3.1.3 UV melting curves 

 

The temperature induced transition between the native and denatured state of nucleic acids 

can conveniently be observed by UV absorbance. The absorbance versus the temperature 

profile is referred to as a UV absorbance melting curve and the midpoint of this transition is 

called the melting temperature (Tm) of the analyzed nucleic acid. Tm corresponds to the 

temperature at which half of the sample is folded and half is unfolded.[180] As the temperature 

increases the ratio of molecules in a denatured state increases. The native state and the 

denatured state of the nucleic acid exhibit different absorptivities,[181] enabling to monitor this 

chance in absorption as the process of melting and the disruption of the structural elements of 

the nucleic acid.[182] 

 

3.1.4 Practical considerations of determining UV denaturation 

 

The choice of buffer is an extremely important aspect when it comes to performing reliable 

UV thermal denaturation studies. Among the most important considerations are the pKa and 

its temperature dependency, the buffer capacity, and the compatibility with divalent 

metals.[183] Table 2 lists some of the most common buffers for UV denaturation experiments. 

 
Table 2: Buffers used for UV thermal denaturation studies. 

Buffer pKa (25°C, I = 0.1 M) ΔpKa/ΔT (°C-1) 
Compatible with 

divalent ions 
Reference 

Sodium cacodylate 6.27 -0.0015 Yes a 

Sodium phosphate 7.20 -0.0028 No a 

Tris.HCl 8.06 -0.0280 No a 

MOPS 7.20 -0.0150 Yes b, c 

HEPES 7.55 -0.0140 Yes a 

a [183], b [184], c [185] 

 

The optimized buffer for the Diels-Alderase ribozyme consists of 30 mM Tris.HCl (pH 7.4), 

300 mM NaCl and 80 mM MgCl2.[111] Unfortunately Tris.HCl buffer has a huge temperature 

dependency of the pKa. The most commonly used phosphate buffer, consists of a mixture of 

monobasic dihydrogen phosphate and dibasic monohydrogen phosphate,[186] but can not be 

used, because it sequesters divalent ions such as Mg2+, Mn2+, Cd2+ or Ca2+. The MOPS buffer 

is often used for thermal denaturation studies, even though its pKa is known to be temperature 
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dependent.[182, 187] Initial experiments considering different buffers showed that MOPS has a 

high temperature dependency and pH changes from 7.0 to 6.2 if heated from 25°C to 80°C 

were observed. While sodium cacodylate showed best results and was therefore used 

throughout all melting experiments. One has to keep in mind that all buffers contain cations, 

e.g. a 25 mM sodium cacodylate buffer contains 25 mM Na+ cations, which naturally 

contribute to the stability of the RNA. 

 

 

3.2 UV denaturation of the Diels-Alderase ribozyme 
 

The aim was to study secondary and tertiary interactions of the Diels-Alderase ribozyme 

wild-type as well as the two mutants U17C and U17iC. In previous studies the mutant 17iC 

mutant, in which the H-bonding network is disrupted, was entirely inactive, while the C17 

mutant, that is still capable to form an H-bond, only showed a catalytic activity of 30% as 

compared to the wild-type.[178] The magnesium ion Mg5 is in close proximity to this base-

triple (figure 17) and therefore studies of the thermal stability in dependency on the Mg2+ ion 

concentration may lead to further insight on this interaction. 

 

A UV/Vis spectrophotometer equipped with a Peltier block temperature-controller was 

utilized to determine the melting curves at 260 nm. Heating and cooling cycles in the 

temperature range of 15-90°C were measured in 25 mM sodium cacodylate buffer with a 

temperature gradient of 0.5°C/min. The melting curves itself were obtained from plotting the 

normalized melting temperatures vs. the absorbance at 260 nm. The interesting structural 

information however, was extracted from a plot of the first derivative of the absorbance vs. 

the temperature. 
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Figure 18: Absorption of the wild-type at different MgCl2 concentrations in the presence of 300 mM NaCl. 

 

Figure 18 presents the melting curve of the wild-type ribozyme in the presence of 300 mM 

NaCl as present in the commonly used buffer for the Diels-Alderase ribozyme. A good 

stabilization of the structure can already be extracted from this plot. 

Looking at the first derivative of UV denaturation curves the first peak in the low temperature 

range can be attributed to the opening of the tertiary structure. For the opening of the 

secondary structure much higher temperatures are required (figure 19).[113] Each 

independently folding element therefore has its own Tm. Thermal denaturation studies of the 

Diels-Alderase ribozyme (wild-type) in the presence of 300 mM NaCl (99.999% pure NaCl) 

showed that the structure is entirely stabilized. The melting temperature of the Diels-Alderase 

ribozyme in the presence of high concentrations of Na+ was found to be at 86°C (± 0.2°C) and 

independent from the Mg2+ concentration. The opening of the tertiary structure was observed 

at 65°C (± 0.2°C). 

 

 
Figure 19: UV denaturation curves of the Diels-Alderase ribozyme in the presence of 300 mM NaCl. First 

derivative of the absorption plotted vs. the temperature. 
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In the presence of 300 mM NaCl (figure 19) the entire structure was stabilized and additional 

stabilization with divalent metal cations could not be monitored with thermal denaturation 

experiments. If further stabilization would be possible, e.g. with higher concentrations of 

monovalent or divalent metal cations it can not be monitored by thermal denaturation 

experiments. Therefore, further thermal denaturation experiments were carried out in the 

absence of Na+ cations to study denaturation behaviour in dependency on the presence of 

EDTA and divalent metal ions, respectively Mg2+ cations. 

 

 
Figure 20: Absorption of the wild-type at different MgCl2 concentrations respectively with EDTA. 

 

If EDTA was added to trap traces of divalent ions (figure 21), the structure of the Diels-

Alderase ribozyme was found to be destabilized and the melting temperature was shifted by 

26°C from 83°C (± 0.2°C) to 57°C (± 0.2°C). 

 

 
Figure 21: Absorption of the wild-type at different MgCl2 concentrations. Tm1 indicates the opening of the 

tertiary structure and Tm2 the opening of the secondary structure. 
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The addition of 5 mM MgCl2 was already sufficient to fully stabilize the Diels-Alderase 

ribozyme (figure 21). 

 

 
Figure 22: Absorption of the wild-type at different MgCl2 concentrations respectively with EDTA. 

 

In dependency of the EDTA concentration, the opening of the tertiary structure (Tm1) was 

observed at different temperatures, while the addition of Mg2+ significantly stabilized the 

tertiary structure (figure 22, table 3). Buffer solutions generally contain impurities of divalent 

metal ions, the difference in the melting temperature between 1.0 and 0.1 mM EDTA can be 

seen as a reflection of the divalent metal ions present in the buffer solution. 

 
Table 3: Tm values of the Diels-Alderase ribozyme in the presence of different MgCl2 and EDTA 

concentrations. Tm1 opening of the tertiary structure; Tm2 opening of the secondary structure. 

MgCl2 / EDTA Tm1 [°C] Tm2 [°C] 

1 mM EDTA 33 57 

0.1 mM EDTA 44 74 

0.5 mM MgCl2 - 80 

2 mM MgCl2 - 80 

5 mM MgCl2 - 83 

 

3.2.1 Comparison of the Diels-Alderase wild-type with two mutants: U17C and U17iC 

 

In a series of measurements the wild-type, the U17C mutant and the U17iC mutant have been 

compared at different magnesium chloride concentrations. 

Initial experiments showed that the opening of the secondary structure for the mutants occurs 

at similar temperatures of the wild-type. For further experiments the mutants were 
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investigated at temperatures up to 60°C. The interesting transition observed in UV 

denaturation experiments is Tm1, the opening of the tertiary structure and this transition occurs 

below 60°C. 

 

Mg2+ ion concentrations between 0.1 mM EDTA and 2 mM showed no considerable 

difference between the wild-type and the mutants. As an example the comparison between the 

wild-type and the mutants at 0.2 mM MgCl2 is shown (figure 23, for details see appendix). At 

an Mg2+ concentration of 5 mM a significant difference between the mutants was monitored, 

the stabilization of the wild-type lead to a lower absorption (figure 24 and 25). 

 

 
Figure 23: Comparison between the wild-type and the U17C and C17iC mutant at 0.2 mM MgCl2, plotted as a 

function of the normalized absorption vs. the temperature. 

 

 
Figure 24: Comparison between the wild-type and the U17C and C17iC mutant at 5 mM MgCl2, plotted as a 

function of the normalized absorption vs. the temperature. 
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Figure 25: Stabilization of the tertiary structure; Comparison between the wild-type and the U17C and C17iC 

mutant at 5 mM MgCl2; first derivative of the absorption vs. the temperature. 

 

 

3.3 Conclusion and Discussion 
 

In a single-molecule fluorescence resonance energy transfer study Kobitski et al. found three 

different states in the Mg2+ dependent folding of the (wild type) Diels-Alderase ribozyme. 

These states were assigned as the unfolded, the intermediate and the folded state. The 

intermediate state shows a very strong Mg2+ dependency on the compaction of the ribozyme 

structure. These single-molecule studies further showed that in the absence of MgCl2 the 

unfolded state has the highest population and with an increasing Mg2+ concentration the 

transition from the intermediate state to the folded state is clearly evident. The Mg2+ 

dependent midpoint transition to reach the fully folded structure occurs around 5 mM 

MgCl2.[175] 

These results are in accordance with our UV denaturation experiments. No significant 

difference could be observed between the wild-type and the two mutants U17C and U17iC at 

concentrations below 5 mM MgCl2. With increasing Mg2+ concentration an increase in 

stabilization of the ribozymes could be observed. Both the wild-type and the mutants were 

equally stabilized, while at an Mg2+ ion concentration of 5 mM a significant increase in 

stabilization of the wild-type could be observed, while the mutants were not further stabilized. 

Other experiments have shown that the mutants can form the pseudoknotted structure but can 

not undergo further compaction.[175] The missing H-bond provides a good explanation why 

the U17iC mutant can not undergo this compaction. The U17C mutant on the other hand can 
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participate in the H-bonding network. However, it is yet not entirely understood why this 

mutant only shows 30% catalytic activity.[178] The assumptionis that the U17C mutant can not 

bind the Mg2+ ion number five as tightly as the wild-type is substantiated by the finding in the 

here presented thermal denaturation experiments. The fact that mutant U17C, can form a 

pseudoknot, but can not be further compacted by the association of the magnesium ion 

number five would explain why it only shows a catalytic activity of 30%. 

 

The G-C rich structure of the helix I and III of the Diels-Alderase ribozyme suggested a high 

melting temperature. With these thermal denaturation studies it could be shown that it is 

indeed extremely stable at temperatures up to 85°C. The secondary structure is stabilized by 

the addition of relatively low amounts of divalent metal ions. The good stabilization observed 

for the Diels-Alderase ribozyme is in conformity with thermal data observed for other RNA 

molecules forming pseudoknot structures.[163, 188] 
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4 Bioorthogonal and orthogonal labeling of oligonucleotides 
 

4.1 Scientific background 
 

4.1.1 Bioorthogonal labeling 

 

The possibility to use covalent chemistry to label biomolecules has become an essential tool 

and has significantly contributed to a greater understanding of chemical and biological 

systems. These labels serve for visualization, for studying the nature, structure or behavior of 

the biomolecule, for diagnostic analytics, for identification or quantification, for purification 

or for conjugation of the biomolecule to a surface or other biomolecules. 

A bioorthogonal reaction can be defined as a chemical transformation between two functional 

groups that takes place selectively within complex biological samples.[189] Bioorthogonal 

functionalities are incorporated into biological molecules like proteins, amino acids, or 

nucleic acids. After the integration of these tags into a biomolecule the desired label or 

biophysical probe is attached in a bioorthogonal reaction. In contrast to the number of 

chemical modifications in biomolecules the scope of bioorthogonal labels is still limited, 

because not many chemical reactions fulfill the requirements of bioorthogonal strategies. 

Bertozzi et al. characterized the challenges an organic chemist has to face when designing a 

bioorthogonal labeling strategy. A bioorthogonal reaction can be identified from the repertoire 

of a chemical text book, by first removing all reactions that are sensitive to water; second, 

removing all the reactions that are redox sensitive; third, reactions that require temperatures 

above 37°C, pressure or high concentrations. Further limitations are functionalities that can be 

digested by cellular enzymes and all reagents that are cytotoxic. The remaining reactions are 

potential bioorthogonal reactions.[190] 

Bioorthogonal reactions for the modification of biomolecules with two different labels are of 

paramount interest. The applications mentioned above for labeled biomolecules can thereby 

be combined. In nucleic acid chemistry dual fluorescently labeled probes have found 

particular recognition. They provide access to diagnostic detection[191, 192] or structural 

investigations especially employing FRET (Förster resonance energy transfer) techniques.[193, 

194] 
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In an ideal case of bioorthogonal labeling of biomolecules the tags and the labels are so 

specific that the labeling can be performed in a “one-pot reaction” (scheme 24a). If the 

specifity and selectivity of either the tags or the labels is not high enough, the labeling has to 

be performed in two subsequent steps (scheme 24b). In this case the single-labeled 

biomolecule has to be purified after the first step to ensure selectivity for the second label. 

 

a b

 
Scheme 24: Cartoon representation of the technique of dual bioorthogonal labeling of oligonucleotides with 

fluorescent dyes, a: ideal scenario: a “one-pot-reaction” b: two step labeling reaction. 

 

 

4.1.2 Fluorescent labeling of oligonucleotides 

 

In the following, some important achievements in fluorescent labeling of oligonucleotides 

will be discussed, with focus on 5´-end modifications. 

While enzymatic DNA and RNA synthesis is carried out from the 5´- to the 3´-end, chemical 

synthesis of oligonucleotides follows the 3´- to 5´-direction. Therefore, modification of 

chemically synthesized oligonucleotides at the 5´-end is accomplished making use of 

chemically modified phosphoramidites. However, modification at the 5´-end is in general 

limited to the selection of available phosphoramidites. Some fluorescent dyes are 

commercially available as phosphoramidites for automated DNA synthesis, but these dyes are 

basically limited to fluorescein derivatives. Fluorescein was the first fluorescent dye 

discovered,[195] and is therefore well studied and many derivatives are known, but fluorescein 

dyes also suffer from the effect of photo-bleaching.[196] Recently, phosphoramidites with 

rhodamine, Cy3 and Cy5 dyes, as well as phosphoramidites with Cy-dye-like structures have 

become commercially available, but many of these dyes are sensitive to the conditions 

required for the removal of the base protecting groups during chemical oligonucleotide 

synthesis. To combine high yield automated synthesis and fluorescent labeling for many dyes 

special base-labile phosphoramidite monomers are required.[197] Even though this method is 
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the easiest way to large amounts of fluorescently labeled oligonucleotides the limitations in 

the use of fluorescent dye phosphoramidites are obvious and undeniable. When it comes to 

chemical synthesis of modified RNA molecules the limitations are even considerably 

larger.[198] A post-synthetic approach can overcome most of these limitations. Small reactive 

groups are introduced into DNA or RNA during oligonucleotide synthesis, which can then be 

conjugated to the desired functional molecule in a bioorthogonal manner after oligonucleotide 

synthesis and deprotection.[199] These chemical modifications are introduced into the desired 

oligonucleotide in the form of phosphoramidites, but in general these molecules are small and 

much more stable as compared to the direct introduction of fluorescent dyes. Furthermore, 

these small molecules are non reactive with nucleic acids but are highly reactive organic 

molecules. The beauty of this approach is that, depending on the modification, several 

different types of functional tags can be conjugated to the oligonucleotide. Table 4 provides 

an overview over common post-synthetic modifications of oligonucleotides.[113, 200] 



Bioorthogonal and orthogonal labeling of oligonucleotides 

 60

Table 4: Common post-synthetic labeling reactions. 
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4.1.3 Thiol modification 

 

The variety of natural thiol-containing biomolecules ranges from cysteine, gluthathione, to 

coenzyme A to peptides, enzymes, and membranes. Therefore, thiol-modifications have a 

longstanding history in biochemistry.[201] An SH functional group is generally referred to as 

either a thiol group or a sulfhydryl group. 

Aliphatic thiols are easy to alkylate and are the most active group found in cells. This is 

caused by the large dipole moment, nucleophilicity, and the vacancy in the d orbital of the 

thiol group.[202] Because of this reactivity thiol-containing phosphoramidites, for 

oligonucleotide synthesis (so called thiol-modifiers) are commercially available and have 

found widespread application.[203, 204] Consequently, a large number of reagents are available 

for the bioconjugation to sulfhydryl groups, of which the most common ones are maleimides, 

haloacetyl and halide derivatives, aziridines, acryloyl derivatives, thiol-disulfide exchange 

reagents, and dative bond-formation reagents with metal surfaces. For this thesis, only 

maleimides and α-haloacetamides are of greater importance and shall be discussed in detail in 

chapter 4.1.5 and 4.1.6. 

 

4.1.4 Disulfide reducing reagents 

 

Thiol modified oligonucleotides can form inter- or intramolecular disulfide bonds and are 

often still protected by disulfide bonds after synthesis. Therefore, prior to any site-specific 

reaction the disulfides need to be reduced. For this purpose commonly used reductants are β-

mercaptoethanol (ME), dithiothreitol (DTT), and tris(2-carboxyethyl)phosphine (TCEP). ME 

cleaves disulfides in a reaction that proceeds via a mixed disulfide, meaning that two 

molecules of reducing reagent are necessary to reduce one disulfide bond. DTT itself has two 

free thiol groups and forms a very stable cyclic disulfide as oxidation product and therefore 

can be used in lower concentrations. 

TCEP was first synthesized by Levinson et al. in 1969[205] and employed for the reduction of 

disulfide bonds in proteins by Rüegg et al. in 1977.[206] As compared to other phosphines 

TCEP is resistant to oxidation, non-volatile, odorless, and exhibits a much higher reactivity 

and stability than DTT or ME. Despite these seemingly excellent properties this phosphine 

fell into oblivion until 1991 when Burns et al.[207] found a way to synthesize large quantities 

of TCEP. Only after that Pierce Chemical Co started to market the product in 1992.[208] The 

reduction of a disulfide bond with TCEP is shown in scheme 25.  
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Scheme 25: Reduction of a disulfide bond with TCEP. 

 

TCEP has an outstanding stability in water and shows no reactivity towards other functional 

groups present in proteins or nucleic acids. The advantage of TCEP over DTT is clearly that 

excess TCEP does not have to be removed by dialysis prior to the actual reaction. Standard 

labeling protocols do not include the removal of excess TCEP before the reaction. However, a 

few publications report that TECP does, against common belief, react with molecules used for 

bioconjugation.[209-211] 

 

4.1.5 Maleimides 

 

Maleimides are derivatives of the maleic anhydride and an amine derivative. The double bond 

of the maleimide undergoes alkylation with thiol groups to form stable thioether bonds 

(scheme 26) or can serve as a dienophile in the Diels-Alder reaction. The Diels-Alder reaction 

will be further discussed in chapter 4.1.7. 
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Scheme 26: Reaction of a sulfhydryl compound with a maleimide. 

 

Maleimides are widely used in bioconjugation especially in the bioconjugation of proteins. 

Therefore, almost any desirable label is available as maleimide. The scope of commercially 

available maleimides ranges from fluorescent dyes, to proteins, and antibodies to hetero-

bifunctional cross-linkers. 
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4.1.6 α-Haloacetamides 

 

α-Haloacetamides are reactive towards several functional groups present in biomolecules, 

amine groups being the least, and thiols the most reactive. α-Haloacetamides are known for all 

halogens. Iodine presents the most reactive α-haloacetamide, followed by bromine, chlorine, 

and fluorine, which is almost unreactive towards all functional groups. Iodoacetamides are 

typically used as blocking reagents for thiol groups in protein chemistry.[126] Commercially 

available dyes are almost exclusively synthesized as the iodoacetamide. For that the term 

iodoacetamide will be used equivalent with the term α-haloacetamide. The reaction between 

an iodoacetamide and a thiol group forms a stable thioether bond (scheme 27). 
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Scheme 27: Reaction of a sulfhydryl compound with iodoacetamide. 

 

4.1.7 Diels-Alder reaction as tool for bioconjugation 

 

The Diels-Alder reaction between a diene and a dienophile reacting in a [4+2] cycloaddition 

is a powerful tool for post-synthetic bioconjugation. The fact that the Diels-Alder reaction is 

accelerated in water makes the Diels-Alder reaction a perfect fit for bioconjugation.[212-214] 

Maleimides are widely used in many types of bioconjugation reactions and therefore are the 

most popular dienophiles for Diels-Alder reactions. A huge variety of maleimide derivatives 

is commercially available: virtually any fluorescent dye, biotin maleimides, antibody 

maleimide conjugates, surface immobilized maleimides, proteins e.g. maleimide-HRP 

(horseradish peroxidase), or maleimide-alkaline phosphatase. 

 

The first bioconjugation via Diels-Alder reaction had been described by Seelig and Jäschke, 

who selected a ribozyme for the Diels-Alder cycloaddition between anthracene and a 

maleimide.[41] 

A number of Diels-Alder reactions for the modification of proteins and peptides[215, 216] have 

been reported in the recent years among others e.g., conjugations of oligonucleotides to 
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peptides[217-219] or the ligation of oligonucleotides via Diels-Alder reaction.[220] A rather 

limited number of oligonucleotide modifications with small tags have been reported so 

far.[221] Up to today fluorescent labeling of oligonucleotides via Diels-Alder reaction has so 

far only been reported by very few authors. Hill et al. reported the 5´-end modification of 

oligonucleotides with cyclic and acyclic hexadienes and the subsequent Diels-Alder reaction 

with maleimides.[221] While most maleimides used by Hill et al. reacted easily with the diene 

within 30 min, and not more than two equivalents of functionalized maleimide were required, 

the modification with fluorescent dyes appeared much more demanding. After 20 h reaction 

time and by the use of twelve equivalents of fluorescein maleimide a labeled product could be 

detected. Graham et al. reported the labeling reaction of an internally diene modified 20mer 

with fluorescent dyes. Apart from difficulties in distinguishing the products from each other, 

their approach seems to be more efficient than the above mentioned, but still requires 30% v/v 

acetonitrile and elevated temperatures for four hours.[222] The use of organic solvents and 

elevated temperatures during labeling reaction prevents the use of this strategy for sensitive 

biomolecules. 

In summary, a number of examples for the Diels-Alder reaction mediated bioconjugation 

have been reported in the last couple of years. However, so far only very few authors have 

described an efficient Diels-Alder bioconjugation of fluorescent dyes to oligonucleotides. The 

general picture that can be drawn from these reports shows that labeling of oligonucleotides 

by Diels-Alder reaction can be very efficient, but is extremely dependent on the type of label. 

Dyes seem to be the least efficient labels. The Diels-Alder reaction is a promising tool for 

bioconjugation of small molecules to nucleic acids and the addition of a suitable catalyst 

could be a way to overcome the abovementioned problems.[200] 

 

4.1.8 The Diels-Alderase ribozyme 

 

A ribozyme that catalyzes the Diels-Alder reaction between tethered anthracene and biotin 

maleimide was selected by Jäschke and co-workers.[41] In the selection the anthracene-

modified RNA acted as a ribozyme and substrate at the same time, thus modifying itself in a 

reaction catalyzed in cis. Furthermore, this ribozyme was also found to accelerate the Diels-

Alder reaction of the free reactants in a true catalytic manner in trans (scheme 28). 
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Scheme 28: Ribozyme-catalyzed reaction between 9-hyroxymethyl anthracene and N-pentylmaleimide. 

 

4.1.9 Anthracene as substrate 

 

In the landmark paper by Sauer et al. the reactivity of dienes towards maleic anhydride in 

Diels-Alder reactions was investigated and two major findings support the choice of 

anthracene as a diene.[223] 

I. The reactivities of cyclic and quasi-cyclic dienes considerably exceed the reactivities of 

acyclic dienes. Electron-donating substituents on the diene usually accelerate the 

reaction. 

II. The k2 values of anthracene derivatives are influenced to a high degree by substituents 

in the 9- and 10 position. 

Even though these experiments were carried out in dioxane the results are comparable to 

water as solvent, as the influence of the substituents on the energetic properties of the π-

system is independent from the solvent. 

 

However, previously published results on modification of biomolecules via Diels-Alder 

reaction have, with two exceptions have not employed anthracene as a diene. So far the first 

and only successful description of a Diels-Alder bioconjugation with anthracene as a substrate 

was described be Seelig and Jäschke in 1999.[41] 

Recently, Overkleeft and co-workers reported the labeling of endogenously expressed 

enzymes based on the Diels-Alder ligation and reported that among the investigated dienes 

the anthracenyl modified biomolecule was unable to undergo Diels-Alder ligation.[189] 
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4.2 Objectives 
 

The ever-expanding demand for new and better fluorescent labeling techniques for 

biomolecules, and the broad but still limited scope of labeling methods for oligonucleotides, 

has prompted an interest in an investigation into the Diels-Alder bioconjugation of 

oligonucleotides. Knowing that the Diels-Alderase ribozyme is able to accelerate the 

cycloaddition between an anthracene and maleimide in a true biomolecular fashion the aim 

was to investigate whether the Diels-Alderase ribozyme could be utilized as “machinery” for 

fluorescent labeling reactions of oligonucleotides. 

 

Investigating the following steps one after another the idea was to find a bioorthogonal 

method to fluorescently label oligonucleotides with the Diels-Alderase ribozyme. Since dual 

labeled fluorescent probes are of paramount interest it will also be investigated if a dual 

orthogonal labeling strategy can be developed. 

 

The objectives for this investigation are: 

 

I. Can the Diels-Alderase ribozyme catalyze the fluorescent labeling of oligonucleotides 

in cis? 

II. Can the Diels-Alderase ribozyme catalyze the post-synthetic fluorescent labeling of a 

functionalized DNA in trans? 

III. Is it possible to develop a bioorthogonal labeling strategy exploiting the substrate 

specificity that has been reported for the Diels-Alderase ribozyme earlier? 

IV. How can a dual orthogonal labeling strategy employing the Diels-Alderase ribozyme 

be developed and implemented? 
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4.3 Results and Discussion 
 

4.3.1 Synthesis of anthracene modified oligonucleotides 
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     b  n = 6 (AHEG)

 
Scheme 29: 9-Anthracenylmethyl tetraethylene glycol (ATEG) phosphoramidite 27a and 9-anthracenylmethyl 

hexaethylene glycol (AHEG) phosphoramidite 27b. 

 

An efficient way to synthesize short oligonucleotides bearing an anthracene modification is 

the coupling of 2-(anthracen-9-ylmethoxy)ethyl 2-cyanoethyl diisopropylphosphoramidite 

(scheme 29) with different PEG linkers at the 5´-end, as a last coupling step in automated 

oligonucleotide synthesis. For this purpose two of these molecules 27a and b have been 

synthesized, differing in the length of the glycol linker, according to published procedures.[95] 

This approach has been utilized to synthesize oligonucleotides ORN1, ODN2, ODN5, ODN6 

and ODN8. The oligonucleotides were purified by preparative HPLC and integrity was 

determined by mass spectrometry (table 4). 

 
Table 4: Oligonucleotides, HPLC and mass analysis. 

ODN Type Sequence  
tR 

[min] 

[M+H] 

calculated 

[M+H] 

observed 

ORN1 RNA 5´- AHEG GGA GCU CGC CC - 3’ 23.4 c 4019.59 4018.5 b 

ODN2 DNA 5´ - AHEG GGA GCT CAG CCT TCA CTG C-3’ 37.7 6300.27 6300.4 a 

ODN3 DNA 5´ - GTA CAG TCT GAA GTG - 3’ 18.8 4630.81 4630.5 a 

ODN4 DNA 5´ - CAC TTC AGA CTG TAC - 3’ 19.1 4511.96 4511.8 b 

ODN5 DNA 5´ - ATEG GTA CAG TCT GAA GTG - 3’ 36.3 5079.46 5079.7 a 

ODN6 DNA 5´ - AHEG GTA CAG TCT GAA GTG - 3’ 37.3 5165.02 5166.1207 b 

ODN7 DNA 5´ - SH C6 GTA CAG TCT GAA GTG - 3’ 24.0 4830.09 4832.0 a 

ODN8 DNA 5´ - AHEG GTA CAG TCT GAA GTG C3 SH -3’ 37.3 5335.14 5336.0263 b 
a MALDI-TOF MS – measured in the positive mode, b high resolution ESI MS – measured in the negative mode. 

Unless indicated otherwise HPLC gradient O1 was used; c gradient O2 (chapter 6.1.12). 
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4.3.2 Dipartite Diels-Alder ribozyme assay 

 

The dipartite Diels-Alderase ribozyme construct consists of two hybridized RNA strands. A 

38mer forming the catalytic pocket and an 11mer (figure 26). The 11mer can be modified 

with anthracene polyethylene glycol and serves as substrate. In this case the catalytic reaction 

will proceed in cis. 
 

38mer

11mer-AHEG
O O O O O

N
O

O

11mer-AHEG
O O O O O O

N O
O

38mer

fluorophore

fluorophore

O Diels-Alderase
catalyzed

 
Figure 26: Dipartite Diels-Alderase ribozyme assay; b: Diels-Alder reaction catalyzed by the dipartite Diels-

Alderase ribozyme. 

 

The Diels-Alderase ribozyme has rather strict requirements regarding the structure of the 

diene and the dienophile. The main restriction of the Diels-Alderase ribozyme is that it only 

catalyzes the Diels-Alder reaction between the original substrates it was selected with: 

anthracene and maleimide derivatives. During the selection of the Diels-Alderase ribozyme 

biotin maleimide 28 (scheme 30) has been used and indeed maleimidocaproic acid and N-

pentylmaleimide are among the best substrates for the ribozyme.[41, 96] 
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Scheme 30: Chemical structure of biotin maleimide; in blue maleimidocaproic acid hydrazide. 

 

Now, the challenge was to find out if these restrictions in substrate specificity could be 

extended to fluorescent maleimide dyes. It was expected that the Diels-Alderase ribozyme 

would catalyze the reaction with maleimides connected with five carbon atoms long linkers, 
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while maleimides with shorter linkers should be less efficient substrates for the Diels-

Alderase ribozyme. 

Most commercially available fluorescent maleimides have a linker length of two carbon 

atoms (C2-maleimide) next to the amide bond connecting the dye to the maleimide. Very few 

maleimide dyes with a linker of five carbon atoms (C5-maleimide) are available. Scheme 31 

gives a schematic overview of all the dyes, which were used for this work. Detailed 

information and chemical structures of the dyes are given in the experimental section. 
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Scheme 31: Maleimide dyes with C2- and C5-linkers. All maleimides with five carbon atoms next to the amide 

bond are subsumed as C5-maleimides (A-C). The linkers of the commercially available C5-maleimides Alexa 

Fluor 532 (A) and BODIPY (B) are different from the self synthesized hydrazide C5-maleimide (C), which will 

be introduced in chapter 4.3.3. All C2-maleimides (D-F) are commercially available. 
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For the catalyzed Diels-Alder reaction in cis, the 38mer and the 11mer RNA anthracene-

conjugate (ORN1) were hybridized in a ratio of 1:2. The 11mer-AHEG (ORN1) was doped 

with [32P]-pCp labeled 11mer-AHEG to visualize the difference between modified and 

unmodified 11mer in a gel shift assay. 

The ribozyme clearly showed the expected selectivity towards the C5-maleimide. For the C2-

maleimide dyes, no conversion was observed (figure 27). However, the reactivity of the C5-

maleimide dye is also dependent on the nature of the dye. For the C5-maleimide Alexa Fluor 

532 dye 20% product formation was observed, while only 12% Diels-Alder product was 

formed with the C5-maleimide BODIPY dye. This is possibly due to its chemical structure 

and solubility. The Alexa Fluor 532 dye bears two sulfonate groups and has a good solubility 

in water, whereas the BODIPY dye is poorly soluble in water. 

 

 
Figure 27: Comparison of C2- and C5-maleimide. Conjugation of ORN1 in the dipartite Diels-Alderase 

ribozyme assay. Reaction time 30 min. 38mer (0.2 µM) and ORN1 (0.1 µM), doped with α32-pCp labeled 

ODN2, all dyes 50µM. The gel shift assay with autoradiography showed that for C5-maleimide dyes (a) a 

labeling reaction took place, while with C2-maleimide dyes (b) no Diels-Alder product formation was observed. 

For each dye the controls were performed without dye (middle) and without 38mer = uncatalyzed (right). 
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With this experiment it was demonstrated that the Diels-Alderase ribozyme only tolerates C5-

maleimide as substrates. No conversion was observed for maleimides with a C2-linker. 

Against the backdrop of the results by Stuhlmann et al.[96] and the selectivity observed in the 

dipartite Diels-Alder assay (figure 27) a fluorescent dye with a C5-maleimidocaproic acid 

hydrazide was synthesized. 

 

4.3.3 Synthesis of DY 649 C5-maleimidocaproic acid hydrazide 
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30 a  R = COOH
     b  R = CH3

31 a  R = COOH
     b  R = CH3  

Scheme 32: Synthesis strategy for maleimide derivatives. 

 

The general way how maleimide derivatives are obtained is the simple addition of the desired 

amine to maleic anhydride in acetonitrile. An attempt to synthesize maleimidocaproic acid via 

this route failed, because too many side products were formed. Based on the initial work of 

Vorbrueggen[224] the use of hexamethyldisilazane (HMDS) and zinc bromide as Lewis acid 

(scheme 32) to initiate the reaction provides a superior route to synthesize maleimide 

derivatives in good yield and purity.[225] Maleimidocaproic acid 31a was obtained from 

maleic anhydride 29 and 6-aminocaproic acid 30a by initiation of the reaction with HMDS/ 

ZnBr2 under reflux for three hours and subsequent stirring over night.[226] The product could 

be purified by column chromatography to result in a clean product in 74% yield. 

N-Pentylmaleimide 31b is used in all kinds of Diels-Alderase ribozyme assays, thus the above 

described synthetic procedure was extended to the synthesis of N-pentylmaleimide. The 

synthesis and quality of the product could be improved significantly as compared to common 

procedures. For reaching a purity that is compatible with biological assays purification by 

flash chromatography was carried out and yellow crystals (82%) were obtained. For 

biological assays the purity is extremely important. HPLC analysis confirmed a purity of 

99.8%. 
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Scheme 33: Synthesis of 6-maleimidocaproic acid hydrazide. 
 

6-Maleimidocaproic acid 31a was stirred with tert-butyl carbazate in the presence of N-ethyl-

N′-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC-HCl) in acetonitrile at room 

temperature for 17 h. The product was further purified by silica chromatography and pure 

Boc-protected 6-maleimidocaproic acid hydrazide 32 was obtained in a yield of 61%. 

Deprotection was carried out with 10% trifluoroacetic acid (TFA) in dichloromethane, to 

yield 93% 6-maleimidocaproic acid hydrazide 33. DY 649 NHS ester was purchased from 

Dyomics and incubated with 6-maleimidocaproic acid hydrazide 33 in DMF in the presence 

of Hünig's base (N,N-diisopropylethylamine (DIPEA)) as a proton scavenger for 36 hours at 

25°C. DY 649 C5-maleimidocaproic acid hydrazide 34 was obtained in good yield and was 

purified by semi-preparative HPLC. 
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Scheme 34: Synthesis of DY 649 C5-maleimidocaproic acid hydrazide. 

 

The use of DY 649 C5-maleimidocaproic acid hydrazide for labeling of oligonucleotides will 

be introduced in chapter 4.3.4.1. 
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4.3.4 Diels-Alderase ribozyme-catalyzed labeling in trans 

 

In contrast to the Diels-Alderase ribozyme catalyzed reaction in cis that has been discussed so 

far, the aim of this thesis was to employ the Diels-Alderase ribozyme as a catalyst for post-

synthetic modification of various oligonucleotides. For the reaction in trans, the reaction 

partners are free in the solution. The maleimide is connected to the fluorescent dye and the 

anthracene is tethered to the target oligonucleotide. Figure 28 explains how the 

functionalization of oligonucleotides is accomplished catalyzed by the Diels-Alder ribozyme. 
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Figure 28: Schematic model of a Diels-Alder reaction between anthracene and maleimide catalyzed by the 

Diels-Alderase ribozyme in trans in the catalytic pocket of the 49 nucleotide long minimal motive of the Diels-

Alder ribozyme. 

 

For fluorescently labeling oligonucleotides in trans with the Diels-Alderase ribozyme DNA 

sequences were synthesized as introduced in chapter 4.3.1. An important technique for the 

introduction of small molecules into DNA, which has not been mentioned yet, is the extension 

of modified primers. This technique facilitates the chemical synthesis of long modified DNA 

strands. For that reason a DNA 19mer-AHEG sequence was synthesized, which had earlier 

been utilized to serve as a forward primer in PCR, where it is extended to yield long DNA 

products. The first seven bases of this DNA 19mer-AHEG (ODN2) can be aligned with the 

first seven bases of the Diels-Alder ribozyme. 

Notably, the radioactive 3´-end labeling of DNA (ODN2) with [32P]-pCp could be 

accomplished with T4 RNA ligase. 

For the reaction with Alexa Fluor 532 no gel shift could be observed. It was therefore 

concluded that the labeling reaction was not successful (figure 29). The reason is probably 

that interactions like base pairing of ODN2 with the Diels-Alderase ribozyme prevent the 

anthracene from entering the catalytic pocket. 
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Figure 29: Labeling reaction of ODN2 (AHEG 19mer) with Alexa Fluor 532 C5-maleimide. Conjugation of 

ODN2 in trans Diels-Alder assay. Reaction time 30 min, autoradiograph. Lane 1: ODN2 reaction with Alexa 

Fluor 532 C5-maleimide catalyzed by the 49mer Diels-Alderase ribozyme. Lane 2: ODN2 without Alexa Fluor 

532 C5-maleimide. Lane 3: uncatalyzed background reaction of ODN2 with Alexa Fluor 532 C5-maleimide. 

 

Consequentially, an oligonucleotide that cannot hybridize with the Diels-Alderase ribozyme 

in any way and could not form any hairpins was designed. Oligonucleotides ODN8 and 

ODN9 were synthesized. Both share the same sequence but differ in the number of ethylene 

glycol units in the spacer between the anthracene and the 5´-end of the oligonucleotide. 

ODN5 was modified with anthracene tetraethylene glycol (ATEG), while ODN6 was 

modified with anthracene hexaethylene glycol (AHEG). 

It was also decided to desist from further labeling the oligonucleotides with [32P]-pCp, 

because the 3´-labeling reaction with [32P]-pCp is not very efficient, neither for RNA nor 

DNA. Therefore, only doping of the oligonucleotides during the reaction is possible and not 

very practical, because the radioactively labeled oligonucleotide and the non-radioactive 

oligonucleotide have a different mobility in PAGE. For further experiments, visualization by 

fluorescent imaging and SYBR Gold staining was considered sufficient, as the amount of 

DNA in the assays was high enough for detection by staining. 

 

ODN5 and the Alexa Fluor 532 C5-maleimide were mixed in a 1:1 ratio and the Diels-

Alderase ribozyme added as a catalyst. Even though the reaction was performed at high 

concentrations no significant labeling was observed even after reaction times up to two hours 

(figure 30). Thermal denaturation studies (appendix) showed that ODN5 and ODN6 have 

exactly the same melting temperature. The best interpretation of this effect is that the short 

linker hinders the anthracene to enter the catalytic pocket. 
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Figure 30: Labeling reaction of ODN5 (ATEG 15mer (tetraethylene glycol)) with Alexa Fluor 532 C5-

maleimide. Reaction time 2 h. Fluorescent imaging 532 nm. Lane 1: ODN5 reaction with Alexa Fluor 532 C5-

maleimide catalyzed by the 49mer Diels-Alderase ribozyme. Lane 2: ODN5 without Alexa Fluor 532 C5-

maleimide. Lane 3: uncatalyzed background reaction between ODN5 and Alexa Fluor 532 C5-maleimide. 

 

The oligonucleotide synthetically modified with anthracene hexaethylene glycol (AHEG) was 

first tested with Alexa Fluor 532 C5-maleimide and a clear difference between the ribozyme-

catalyzed and uncatalyzed Diels-Alder bioconjugation was detected (figure 31). 

 

 
Figure 31: Labeling reaction of ODN6 (AHEG 15mer (hexaethylene glycol)) with Alexa Fluor 532 C5-

maleimide. Conjugation of ODN6 in trans Diels-Alder assay. Reaction time 30 min. Left: SYBR Gold stained; 

right: fluorescent scan 532 nm. Lane 1: ODN6. Lane 2: ODN6 reaction with Alexa Fluor 532 C5-maleimide 

catalyzed by the 49mer Diels-Alderase ribozyme. Lane 3: ODN6 without Alexa Fluor 532 C5-maleimide. Lane 

4: uncatalyzed background reaction of ODN6 with Alexa Fluor 532 C5-maleimide. 

 

The data show that in the presence of the Diels-Alderase ribozyme the labeling reaction is 

significantly improved. The most important result is that no notable difference was observed 

if the dye was used in a five-fold excess as compared to a 1:1 ratio. The determinator in this 

reaction is the presence of the Diels-Alderase ribozyme. This finding is promising, because 

fluorescent dyes are expensive and the ability of catalyzing the reaction while keeping the 

amount of dye as low as possible is of great interest. 
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Optimization of the labeling efficiency was carried out using Alexa Fluor 532 C5-maleimide. 

An extensive set of different concentrations and different excess ratios of dye over the 

oligonucleotide were tested. A well detectable labeling reaction took place if 7 mol% Diels-

Alderase ribozyme was used. Best results were observed if the labeling took place in a 1:1 

ratio of oligonucleotide and dye in the presence of 14 mol% Diels-Alderase ribozyme as a 

catalyst. Labeled oligonucleotides were observed after 10 min reaction time and a moderate 

yield of fluorescently labeled oligonucleotides was obtained after 30 min. Best results were 

achieved after 2 h reaction time. A prolongation of the reaction time over night did not 

improve the yield significantly. However, the labeling efficiency could not be improved 

above 20% as determined by SYBR Gold staining, followed by analysis with the software 

Image Quant.  

 

4.3.4.1 Direct comparison of C2-maleimide versus C5-maleimide for Diels-Alder 
labeling reaction 

 

Earlier studies have shown that biotin maleimide, the original substrate, the Diels-Alderase 

ribozyme was selected with, and malemidocaproic acid are among the best substrates for the 

Diels-Alderase ribozyme.[41, 96] To investigate the influence not only of the linker length but 

also the heteroatoms in the linker a dye with maleimidocaproic acid hydrazide 34 was 

synthesized (chapter 4.3.3). 
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Scheme 35: DY 649 C5-maleimidocaproic acid hydrazide and DY 649 C2-maleimide. 

 

Fluorescent dyes are rather big molecules and their character and behavior in solubility is very 

much dependent on their structure and charge, thus reactivities of different dyes can not be 

compared directly.  

Having synthesized the DY 649 as C5-maleimidocaproic acid hydrazide a direct comparison 

to the commercially available DY 649 C2-maleimide could be investigated (scheme 35). The 
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reactions were performed in parallel and additionally the influence of the Diels-Alderase 

ribozyme as catalyst was investigated (figure 32). 

The reaction was performed in a 1:1 dye to oligonucleotide ratio, in the concentrations that 

had earlier been determined to be optimal for the labeling reaction catalyzed by the Diels-

Alder ribozyme. The progression of the reaction was investigated after 30 min and after two 

hours and is shown in figure 32. An overview over the labeling yields obtained by analysis 

with Image Quant from figure 32 is given in table 5. 

 

 
Figure 32: Direct comparison of C2- and C5-maleimide. Conjugation of ODN6 (AHEG 15mer) with DY 649 C2-

maleimide and DY 649 C5-maleimidocaproic acid hydrazide. Reaction time 30 min and 2 h. Fluorescent imaging 

at 610 nm. Lane 1: Diels-Alder ribozyme-catalyzed reaction with C2-maleimide. Lane 2: Diels-Alder ribozyme-

catalyzed reaction with C5-maleimide. Lane 3: uncatalyzed reaction with C2-maleimide. Lane 4: uncatalyzed 

reaction with C5-maleimide. Table 5 summarizes the results of gel analysis with ImageQuant. 

 
Table 5: Direct comparison of reaction yields achieved with C2- and C5-maleimide. 

  30 min 2 h

C2-maleimide 1.8% 3.6%
catalyzed 

C5-maleimide 13.2% 24.0%

C2-maleimide 1.7% 2.5%
uncatalyzed 

C5-maleimide 2.1% 4.6%

 

For the C2-maleimide dye only a slight background reaction was observed and even the 

addition of the Diels-Alder ribozyme did not constitute a difference. In contrast, for the C5-

maleimide hydrazide a significant difference between the catalyzed and uncatalyzed reaction 

was observed. Without the addition of the Diels-Alder ribozyme the labeling efficiency does 

not differ much form the labeling efficiency with the C2-maleimide. If the reaction was 

catalyzed with the ribozyme a five-fold increase in labeling efficiency could be observed as 

compared to the uncatalyzed reaction. This experiment demonstrates the catalytic selectivity 

of the Diels-Alder ribozyme. Having demonstrated that the Diels-Alderase ribozyme only 



Bioorthogonal and orthogonal labeling of oligonucleotides 

 78

catalyzes the labeling reaction with C5-maleimide fluorescent dyes originated in the idea to 

exploit this finding for a novel dual-bioorthogonal labeling strategy and shall be discussed in 

the following. 

 

4.3.5 Dual orthogonal labeling of DNA with maleimides 

 

Inspired by the selectivity observed for labeling of a DNA strand tethered to 

anthracenylmethyl hexaethylene glycol (ODN6) with C5-maleimide fluorescent dyes via a 

ribozyme-catalyzed Diels-Alder reaction, it was conceived that this selectivity could be 

exploited for a novel dual, orthogonal labeling strategy. It was demonstrated that the Diels-

Alderase ribozyme provides a possibility for selective labeling of oligonucleotides with C5-

maleimides but not C2-maleimides. Thiolated biomolecules are typically appropriate for the 

modification with maleimides and since most maleimide dyes are commercially available as 

C2-maleimides this approach was the corollary. 

An oligonucleotide was therefore modified with anthracene hexaethylene glycol at the 5´-end 

and a sulfhydryl moiety at the 3´-end (ODN8), which should then be labeled with two 

maleimide fluorescent dyes with different linker lengths. 

Conception was that the thiol modification could first be labeled with a C2-maleimide, 

whereas the anthracene remains unmodified until a C5-maleimide is added along with the 

Diels-Alder ribozyme as a catalyst (scheme 36). Even in the presence of the Diels-Alderase 

ribozyme no significant Diels-Alder reaction of C2-maleimide dyes with the anthracene was 

observed as shown in the previous chapter. Therefore no removal of the C2-maleimide dye 

should be necessary for the second labeling step, the ribozyme-catalyzed Diels-Alder reaction 

with the C5-maleimide dye. 
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Scheme 36: Proposed dual orthogonal labeling strategy exploiting the selectivity of the Diels-Alderase ribozyme 

for C5-maleimides over C2-maleimides. In a first step the sulfhydryl group is selectively labeled with a C2-

maleimide carrying fluorophore 1 (magenta) and subsequently, without removal of the dye, anthracene is 

selectively labeled with C5-maleimide fluorophore 2 (green) catalyzed by the Diels-Alder ribozyme. 

 

4.3.5.1 Investigations on fluorescent labeling of thiolated oligonucleotides with 
maleimides 

 

For the optimization of the thiol labeling reaction with C2-maleimide fluorescent dyes the 

same 15mer sequence with a thiol-modification was synthesized. For practical reasons (easier 

to synthesize) a thiol modification at the 5´-end, containing a C6 spacer between the last base 

and the sulfur atom, was chosen (ODN7). 

All reactions were carried out with 10 pmol of thiolated oligonucleotide. Standard protocols 

for the labeling of thiol modifications in biomolecules recommend a 20 to 40 fold excess of 

the maleimide dye over the biomolecule to ensure maximal yields for the labeling reaction. 

The influence of different dye excesses were tested. The anthracene modified oligonucleotide 

(ODN6) was always investigated in parallel under the same conditions to determine if a 



Bioorthogonal and orthogonal labeling of oligonucleotides 

 80

labeling with a C2-maleimide could be accomplished selectively only for the thiol modified 

oligonucleotide ODN7. 

If less than a 10 fold excess of dye was used no significant labeling of the sulfhydryl group 

was observed and with an excesses of 10 and above the Diels-Alder reaction was as fast as the 

thioether bond formation between the maleimide and the thiol (figure 33). Selectivity could 

not be achieved adequately, because the maleimide dye had to be used in excess for thiol 

alkylation with maleimides. Under these conditions, the background reaction between the free 

anthracene-modified oligonucleotide and the C2-maleimide dye in solution was too high. 

Kinetic measurements showed that the Diels-Alder reaction is already too prominent after five 

minutes. Typically modification of thiolated probes is achieved either during 2 h at 25°C or 

over night at 4°C. Performance of the labeling reaction at 4°C could also not decrease the rate 

of the Diels-Alder reaction to achieve a selective labeling reaction on the thiol modification 

without modifying the anthracene as well. 

 
Figure 33: Thiol labeling compared with the reactivity of the anthracene towards maleimides. ODN8 (SH 

15mer) and ODN7 (AHEG 15mer) reactes with Atto 532 C2-maleimide (20 fold excess), reaction time 2 h at 

25°C. a: SYBR Gold stained: the lower bands represent the unreacted product, the upper bands the fluorescently 

labeled oligonucleotides. Labeling efficiency was estimated with ImageQuant to be ~ 10%. B: fluorescent scan 

(532 nm).  

 

A problem that has to be addressed, arises from the preceding disulfide cleavage with TCEP. 

It was observed that TCEP does react with maleimides, and if no excess of maleimide was 

used, the side reaction between maleimide and TCPE had a significant influence on the 

labeling efficiency. This will be discussed in detail in chapter 4.3.10.2. 
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It was concluded that the orthogonal labeling of the thiol modification could not be 

accomplished in the presence of an anthracene. Therefore, a different labeling strategy to 

perform a dual, orthogonal labeling of the bi-functional oligonucleotide had to be developed. 

 

4.3.6 Dual orthogonal functionalization of DNA with two different dyes 

 

As mentioned in the introduction, a less common, but still very efficient method to modify 

thiol-containing biomolecules is the use of α-haloacetamides. Unfortunately the variety of 

iodoacetamides, being the most common α-haloacetamide, commercially available is nowhere 

near the variety of commercial maleimide dyes. Additionally, iodoacetamides are much more 

demanding in synthesis, extremely apolar and less stable than maleimides. Apart from that no 

reactivity towards anthracene was expected and therefore they were chosen to be used in a 

dual, orthogonal labeling of the oligonucleotide ODN8 (scheme 37). 
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Scheme 37: Dual, orthogonal labeling of ODN8. In a first step the sulfhydryl group is selectively labeled with 

fluorophore 1 (purple). Anthracene is labeled with C5-maleimide fluorophore 2 (green) catalyzed by the Diels-

Alder ribozyme. As fluorophore 1 Atto 590 iodoacetamide was employed and fluorophore 2 Alexa Fluor 532.  
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The reactivity of the iodoacetamide dye towards the mono-functionalized oligonucleotides 

ODN7 and ODN6 was again investigated in parallel. Labeling of the thiol-modification of 

ODN7 with Atto 590 iodoacetamide was performed according to standard protocols with a 

20-fold excess of the iodoacetamide dye. Figure 34 shows that the thiolated oligonucleotide 

(ODN7) was fluorescently labeled with iodoacetamide while the anthracene modified 

oligonucleotide (ODN6) stayed entirely unaltered even incubated with a 20-fold excess of 

iodoacetamide dye. 

 

 
Figure 34: Thiol labeling with Atto 590 iodoacetamide, compared with the reactivity of the anthracene. SH 

15mer (ODN8) and AHEG 15mer (ODN7) Atto 590 iodoacetamide (1mM), Reaction time 2 h. SYBR Gold 

stained. 

 

Iodoacetamide dyes are poorly soluble in aqueous buffer. While the Atto 590 dye is known to 

be well soluble in water the iodoacetamide derivative is absolutely insoluble in water. In a 

heterogeneous solution no labeling reaction could be detected. Therefore, 20% ethanol had to 

be added to solubilize of the dye and thereby facilitate the desired labeling reaction. From 

previous studies it is known that the Diels-Alder ribozyme has no significant activity at 

ethanol concentrations above 10%.[95] For that reason the dual orthogonal labeling had to be 

performed in two consecutive steps. After evaporation of the ethanol, removal of excess dye 

and unlabeled oligonucleotide was carried out by gel purification. A purification step in-

between the two labeling steps is also advantageous due to the fact that the disulfide reducing 

agent TCEP is removed and will not compete with the anthracene for the maleimide in the 

second labeling step. 

The dual orthogonal labeling of ODN8 was carried out in two steps. Labeling of the 3´-thiol 

modification was carried out as described above and the Diels-Alderase ribozyme catalyzed 

labeling was performed as described in chapter 4.3.4. Figure 35 shows the PAGE of the dual 

orthogonal labeled oligonucleotide. 
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Figure 35: Dual orthogonal labeling of ODN8. For the Atto 590 dye the best wavelength for imaging is 610 nm 

(red), while the Alexa Fluor dye is imaged at 532 nm (green). The fluorescent scan in the middle shows the 

overlaid images of the scans at 610 nm and 532 nm (left). On the right the SYBR Gold scan of the same PAGE 

is shown. I: ODN8 labeled with Iodoacetamide. II: ODN8 labeled with iodoacetamide and maleimide. III: 

ODN8 unmodified (in the SYBR Gold stain over stained, therefore the band appears white).  

 

4.3.7 Analytical data of post-synthetically modified oligonucleotides 

 

Here analytical data of selected modified oligonucleotides are presented. 

 
Table 6: Selective analytical data of labeled oligonucleotides. MALDI-TOF mass analysis 

ODN Modified ODNs  
[M+H]+ 

calculated 

[M+H]+ 

observed 

ODN9 ODN6 Alexa Fluor 532 C5 maleimide  5956.20 5957.8 
ODN11 ODN7 Atto 590 Iodoacetamide 5560.44 5558.1 
ODN12a ODN8 Atto 590 Iodoacetamide 6088.38 6086.0a 
ODN12 ODN8 Atto 590 Iodoacetamide and Alexa Flour 532 C5 maleimide 6856.28 6857.8 

a calculated for [M+Na]+ 
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4.3.8 Important aspects of the labeling conditions 

 

4.3.8.1 Purification after bioconjugation 
 

For labeling reactions of biomolecules the dye is usually used in a 20 to 40 fold excess. The 

purification of the labeled molecules from the dye excess is in general dependent on the 

nature of the dye. In protein biochemistry and also for larger oligonucleotides size exclusion 

techniques or dialysis provide an efficient way to remove excess dye. For short 

oligonucleotides there are no such standard protocols. Several different approaches to remove 

the excess dye and purify the labeled oligonucleotide were investigated. Phenol extraction or 

chloroform extraction and isopropanol or lithium perchlorate precipitation were not 

satisfactory, because the dye was not removed entirely. Direct injection of the reaction 

mixtures to HPLC was not sufficient. Even low amounts of unreacted dye caused high 

background fluorescence and, depending on the dye and the emission spectra, clear 

interpretation of the labeling was not possible. A similar problem was observed if the reaction 

mixture was directly loaded on a preparative denaturing PAGE, where the free dye masked all 

other signals. 

Another possibility is the use of commercial dye removal kits. These kits are usually used to 

remove excess dye in sequencing reactions and therefore it has to be pointed out that dye 

terminator kits are designed for longer oligonucleotide sequences. The DyeEx 2.0 Spin Kit 

from Qiagen provides separation via gel filtration according to molecular weight. The 

drawback of this kit is that a maximum volume of 20 µL can be loaded and therefore larger 

sample volumes had to be evaporated or lyophilized and adjusted to the required volume. 

With the radioactively labeled 11mer the elution efficiency and the reproducibility of this 

system was investigated. The amount of RNA was determined via Cherenkov counting before 

and after DyeEx application (table 6). Additionally, the samples were analyzed by denaturing 

PAGE and the loss of labeled and unlabeled oligonucleotide visualized by autoradiography 

(as example figure 36 is shown for Alexa Fluor 532 C5-maleimide) and analyzed with 

ImageQuant. 
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Figure 36: Elution efficiency of labeled and unlabeled oligonucleotides by autoradiography.  

 

As shown in figure 36 and the actual loss of short oligonucleotides is rather high. However, 

the fact that the same amount of labeled and unlabeled RNA stays on the gel-filter material 

made DyeEx a valuable tool for the removal of unreacted dye. If handled correctly, the 

reproducibility of dye removal with this particular kit is very high and the elution efficiency is 

~30% for short oligonucleotides. 

Another advantage of DyeEx purification after labeling is that the reducing reagent TCEP is 

also removed from the reaction mixture. If the dye and the excess of TCEP was not removed 

from the reaction solution prior to PAGE analysis, higher background fluorescence was 

observed, along with as well as an abnormal shape of the bands. Abnormal elution behavior 

of TCEP containing probes has been reported previously.[209] For all reaction mixtures except 

the labeling with iodoacetamide DyeEx was used. 

The benefit of the Atto 590 iodoacetamide being entirely insoluble in aqueous solutions is that 

there is no need to remove the excess dye through DyeEx. As the insoluble dye does not 

penetrate the polyacrylamide matrix, it can easily be removed from the loading pockets after 

the PAGE. It can even be recovered by organic extraction, followed by HPLC purification.  

 

4.3.8.2 TCEP as reducing reagent 
 

As introduced earlier, TCEP is marked as the ideal reagent for the reduction of disulfide 

bonds prior to any labeling reaction.[227] The advantages of TCEP over other reducing 

reagents are not only that, in contrast to ME and DTT just a single molecule TCEP is required 

to reduce one disulfide bond, but also that the molecule does not have any thiol functionality 

and therefore does not compete with the thiol group of the oligonucleotide during the labeling 

reaction. Supposedly it has no reactivity toward other molecules. For that reason, common 

knowledge is that there is no need to remove TCEP from the reaction mixture before labeling. 

In contradiction to this belief a few authors observed a competitive reaction between the 
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TCEP and the maleimide. The reactivity of TCEP towards these molecules is usually masked 

by the huge excess of dye over the reducing agent.[228] In protein biochemistry common 

protocols recommend a 10-fold excess of reducing reagent over the thiol and a 20 to 40 fold 

excess of dye over the thiol. 

In this study, the thiolated oligonucleotides could not be detected if they were not reduced 

prior to analytical measurements like HPLC and mass spectroscopy. In gel electrophoretic 

analysis, if not treated with a reducing reagent, the main band was associated with the dimers 

linked via disulfide. Apart from the disulfide linked dimer many bands were visible (figure 

37) if the oligonucleotide was not treated with TCEP. Figure 37 shows that if the dye is used 

in a 1:1 ratio with TCEP no labeling could be observed, while for the reaction mixture 

without TCEP a faint band was observed corresponding to the fluorescently labeled 

oligonucleotide. These findings are in agreement with Getz et al.. Labeling myosine with a 

fluorescent maleimide they found that a labeling reaction took place in the presence of TCEP, 

albeit with a lower efficiency than if no reductant was added at all.[211] For proteins, reducing 

reagents can be removed via dialysis or gel filtration, even though Shafer et al. found that 

TCEP elutes, despite its low molecular weight together with small proteins and can therefore 

not be removed entirely.[209] For short oligonucleotides like the 15mer it is exceptionally 

difficult to remove TCEP before labeling. Gel elution of short oligonucleotides is demanding 

and precipitation is not very efficient. Common protocols for disulfide cleavage of 

oligonucleotides recommend bulk reduction in 1 mg scale. For optimization of the labeling 

reactions only 10 pmol or even smaller amounts of oligonucleotide were used, which made it 

impossible to remove reducing agent prior to the labeling reaction. Da Pieve et al. recently 

reported similar problems for the reduction of thiol modified short aptamers. They observed 

very low conjugation efficiencies in the presence of TCEP.[229] For future labeling reactions of 

thiols with maleimides options like immobilized TCEP should be investigated in order to 

improve the labeling procedure. 
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Figure 37: Reduction of ODN7 with TCEP. SYBR Gold stained. Left: ODN7 without TCEP treatment many 

bands are visible. Middle: No TCEP treatment, but after the addition of Atto 532 maleimide in a 1:1 ratio 

fluorescently labeled ODN7 was observed. Right: ODN7, TCEP and Atto 532 maleimide were used in a 1:1:1 

ratio, no labeling reaction could be observed. 

 

4.3.8.3 Investigation of the reaction between maleimides and TCEP 
 

As discussed in the previous paragraph, there are hardly any reports about the reactivity of 

TCEP with maleimides and common labeling protocols state that TCEP shows no reactivity 

towards maleimides. Hence, no investigation about the mechanism or the undesired products 

has been reported, so far. To confirm that there is indeed a competitive reaction taking place 

between the maleimide dyes and TCEP a set of experiments was designed. Equimolar 

amounts of TCEP and a maleimide derivative were mixed in water and the resulting product 

was analyzed by NMR and mass spectrometry. To keep the reaction conditions as close as 

possible to the actual reaction, N-pentylmaleimide was chosen as maleimide. The 1H-NMR 

spectrum of the reaction product was compared with the spectra of the pure reactants in the 

same solvent. 
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Figure 38: 1H NMR spectrum of N-pentylmaleimide before and after the reaction with TCEP in water. The 

signal for the vinylic protons of N-pentylmaleimide disappears during the reaction. The blue arrow indicates the 

signal generated for the newly incorporated protons. 

 

Before the reaction the vinylic protons of N-pentylmaleimide showed a chemical shift of 6.84 

ppm. After the reaction the signal for the vinylic protons could not be observed any more. 

This experiment shows that double bond had been reduced to a single bond. 

To examine whether the protons come from the solvent water, the same reaction was again 

performed in D2O. The chemical shift of 2.64 ppm (figure 35) indicated with a blue arrow 

could be assigned to the protons of the reduced double bond. If the reaction was performed in 

D2O, this signal was not visible, because deuterium does not give a signal in 1H NMR, 

proving that the protons originate from the solvent water. 

In the phosphorus NMR a shift of the signal was observed. This shows that TCEP (15.8 ppm) 

was bound to the former vinylic bond of the maleimide (39.12 ppm) after the reaction. To 

prove that the shift is not just due to oxidation of the phosphine, the phosphine was oxidized 

with hydrogen peroxide and analyzed (56.64 ppm). 

After the reaction between TCEP and maleimide a stable product was isolated. High 

resolution mass analysis was performed and the proposed reaction products and observed 

masses are illustrated in scheme 38. 
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Scheme 38: Reaction performed in H2O results in product 35, if performed in D2O the mass observed (a HR-ESI 

MS) is exactly associated with one deuterium incorporated at the reduced vinylic bond. 

 

As shown above TCEP does, against common belief, react with maleimides in a 1:1 ratio. For 

the modification of thiolated oligonucleotides with maleimides, TCEP should be removed 

from the reaction before addition of the maleimide or an excess of the dye over TCEP has to 

be applied. 

 

 

4.4 Conclusion 
 

The site-specific covalent labeling of oligonucleotides catalyzed by the Diels-Alderase 

ribozyme was demonstrated successfully in cis and in trans, showing high substrate 

specificity. Only maleimides with a C5-linkage between the maleimide and the fluorescent 

dye were tolerated as substrates, while for fluorescent maleimide dyes with a C2-linkage next 

to the dye no acceleration by the Diels-Alderase ribozyme was observed. Labeling with 

decent efficiencies was observed after 10 min with equimoar amounts of fluorescent dye. The 

synthesis of a C5-maleimidocaproic acid hydrazide dye could be accomplished. With this 

maleimide dye a decent labeling efficiency of 24% could be obtained. 

 

A dual orthogonal labeling strategy exploiting the substrate specificity of the Diels-Alderase 

ribozyme could not be achieved by employing two maleimide dyes with different linker 

lengths between the dye and the maleimide. For the modification of oligonucleotides with 

fluorescent dyes an excess of dye was required and thus the Diels-Alder background reaction 

of the anthracene with the C2-maleimide dye was too prominent. 
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Iodoacetamide showed no reactivity towards anthracene and could therefore be utilized to 

fluorescently label the thiolated functionality. In a second step anthracene could be labeled 

with a maleimide fluorescent dye to provide a bis-fluorescently labeled oligonucleotide. 

 

Notably, the labeling strategy employing the Diels-Alderase ribozyme is truely bioorthogonal. 

The modification of the thiolated oligonucleotide is basically also bioorthogonal, as long as it 

is studied with oligonucleotides. As mentioned earlier in the cell many thiol modifications are 

present. More importantly, in the labeling reaction providing the bis-fluorescently labeled 

oligonucleotide both reactions are orthogonal to each other, meaning that both reactions are 

independent. 

 

Valuable insight into the labeling of thiol modified oligonucleotides was gained investigating 

the reactivity of TCEP with maleimides. It was demonstrated that the reaction between TCEP 

and a maleimide leads to a stable product. This finding is important to improve post-synthetic 

modification of thiolated oligonucleotides as well as for other biomolecules. 

 



Conclusion and Outlook 

 91

5 Conclusion and Outlook 
 

The center piece of the presented work is a small ribozyme which catalyzes the Diels-Alder 

reaction between an anthracene and a maleimide with multiple turnover and high 

enantioselectivity.[93] In the course of this work, different approaches have been pursued 

successfully to explore and understand the complex mechanisms of function and action of the 

Diels-Alderase ribozyme. Furthermore, novel approaches for the enzymatic and chemical 

modification of oligonucleotides were developed. 

 

5.1 Synthesis and applications of novel initiator nucleotides 
 

The ability of the DNA-dependent T7 RNA polymerase to selectively incorporate modified 

guanosine monophosphates at the 5´-end can be used for the introduction of organic moieties 

into RNA during transcription. For the in vitro selection of ribozymes this technique is of 

utmost interest. The use of polydisperse polyethylene glycol linkers for the synthesis of 

modified guanosine monophosphates is more demanding than the synthesis of initiator 

nucleotides with monodisperse polyethylene glycol, but creates a library of different 

molecules. This is especially important for applications where the distance is critical.[230] 

In the work presented here, the routes and methods of polydisperse initiator nucleotide 

synthesis were considerably improved. A very clean and short synthetic route was established 

for the synthesis of polydisperse initiator nucleotides that contain an anthracene moiety. The 

synthesis could be achieved in only five steps by starting from the anthracene derivative and 

the TBDMS-protected guanosine monophosphate. Furthermore, the novel synthetic 

procedures established for the aldehyde modified initiator nucleotide present a superior 

synthetic strategy, only requiring three synthetic steps. 

Two key intermediates establish a vast variety of possibilities (scheme 39). One intermediate 

is the TBDMS-protected guanosine phosphoramidite. The other and even more relevant 

intermediate is the mono-tosylated polyethylene glycol, which may be used in a multitude of 

reactions that involve modified initiator nucleotides. It is reasonable to assume that the 

activation of such alcohols with tosyl enables the modification with virtually any organic 

moiety, because it can be reacted with any hard nucleophile in an SN2 reaction. 
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Scheme 39: Synthetic strategy for the preparation of a variety of initiator nucleotides. Tosylated polyethylene 

glycol represents the key intermediate to a vast number of possible organic modifications. 

 

The modification of RNA with an aldehyde is enormously versatile and can be used for 

simple post-synthetic modifications such as the reductive amination with a fluorophore or an 

anchoring group for the immobilization of RNA. Reductive amination can also provide a 

convenient method to introduce small molecules for the selection of aptamers.[231] In the past 

this approach has been utilized with amine modified oligonucleotides, possibly due to the lack 

of direct aldehyde modifications on RNA. The number and stability of small molecules 

bearing amino modifications available, further increases the versatility of the described 

aldehyde modifications. Furthermore, the initiator nucleotide presented here can be used as 

the basis for in vitro selections of many different ribozymes catalyzing diverse chemical 

reactions, for instance an aldol reaction or a Wittig reaction. 

The 5´-end modification of RNA was achieved co-transcriptionally by transcription priming 

using the enzyme T7 RNAP with initiator nucleotides containing a 2,3-dimethylanthracene or 

a benzaldehyde modification. For the transcription of a short DNA template full activity of T7 
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RNAP was observed in the presence of the initiator nucleotides. The initiator nucleotide 

bearing a 2,3-dimethylanthracene moiety was incorporated into a 109 nucleotide long RNA 

library that contained a randomized region, at a respectable incorporation rate of 77%, 

although diminished total yields were observed. The aldehyde modified initiator nucleotide 

was incorporated at a rate of 52%. Hydrophilic moieties are known to result in lower 

incorporation efficiencies than hydrophobic moieties,[140] which coincides with the results 

presented here, the anthracene-modification being more hydrophobic than the benzaldeyhde 

modification. 

The reactivity of the modified RNA molecules was subsequently studied in chemical 

reactions. While the anthracene derivative could be reacted in a Diels-Alder reaction, the 

aldehyde was fully converted in the reaction with biotinhydrazide. 

 

 

5.2 Thermal denaturation studies of the Diels-Alderase ribozyme 
 

Due to its complexity, it is necessary to utilize a combination of experimental methods to 

elucidate structure, folding and function of catalytic RNA. Thermal denaturation experiments 

were employed to determine the stability of secondary and tertiary structures. The wild-type 

as well as mutants of the Diels-Alderase ribozyme were investigated in thermal denaturation 

studies to complement other approaches such as X-ray crystallographic studies,[93] lead-

probing,[179] or smFRET.[175] The G-C rich structure of the Diels-Alderase ribozyme 

suggested a high melting temperature and indeed, it was not surprising that even low 

concentrations of divalent metal ions lead to a stabilization of the secondary structure up to 

85°C. 

G2

U17

C10

Mg5

 
Figure 39: Three dimensional structure of the Diels-Alderase ribozyme; the base triple. 
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Further insight into one of the complex interaction characteristic of the Diels-Alderase 

ribozyme was gained by investigating the thermal denaturation behaviour of two mutants 

when compared with the wild-type. The base triple G2–C10–U17 (figure 39) has been shown 

previously to be relevant for catalysis. A mutant 17UiC in which the H-bonding network is 

disrupted, was entirely inactive, while the 17UC mutant, that is still capable of forming the H-

bond, only showed a catalytic activity of 30% as compared to the wild-type.[178] In the thermal 

denaturation experiments, both the wild-type and the mutants were equally stabilized at a 

Mg2+ ion concentration up to 5 mM. At 5 mM ion concentration, a significant increase in 

stabilization of the wild-type was observed, while the mutants were not further stabilized. 

These results are in good agreement with previous studies and indicate that the mutants can 

fold and form the pseudoknotted structure but cannot undergo further compaction. In 

agreement with this, smFRET measurements had also shown that at an Mg2+ ion 

concentration of 5 mM the Diels-Alderase ribozyme molecule had adopted its fully folded 

structure.[175] 

 

 

5.3 Bioorthogonal and orthogonal labeling of oligonucleotides 
 

In the third part of this thesis, a novel application of the Diels-Alderase ribozyme is described 

in which the ribozyme is utilized as a catalyst for fluorescent labeling of oligonucleotides. 

In summary, the site-specific covalent labeling of oligonucleotides catalyzed by the Diels-

Alderase ribozyme was achieved and high substrate specificity was demonstrated. The 

structure of the active site of ribozyme allowed only for maleimides with a C5-linkage 

between the maleimide and the fluorescent dye to be used as substrates. Fluorescent 

maleimide dyes with a C2-linkage next to the dye were not recognized as substrates.  
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Scheme 40: C5-maleimidocaproic acid hydrazide and commercially available C2-maleimide. 

 

A strategy for the synthesis of fluorescent dyes with a C5-maleimidocaproic acid hydrazide 

linkage (scheme 40) was established that provides a route to better substrates than the 
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commercially available C5-maleimide dyes. An acceptable labeling efficiency of 24% could 

be achieved with this maleimide. It is noteworthy that so far only one attempt to utilize an 

anthracene as a diene for the Diels-Alder bioconjugation with fluorescent dyes has been 

reported and no conversion had been observed.[189] Moreover, it was reported that the Diels-

Alder bioconjugation can be very efficient, but is extremely dependent on the type of label 

and fluorescent dyes seemed to be the least efficient labels.[221, 222] 

Weisbrot and Marx recently expressed the need for a catalyst to improve the Diels-Alder 

cycloaddition as a tool for DNA bioconjugation.[200] Having demonstrated that the Diels-

Alderase ribozyme is able to catalyze the reaction between an anthracene tethered 

oligonucleotide and a fluorescent maleimide dye in trans, it would be an interesting task to 

extend this approach and conjugate anthracene-modified oligonucleotides to other labels, as 

well as other biomolecules, such as proteins and peptides. 
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Scheme 41: Illustration of the orthogonal labeling strategy for dual fluorescently labeled probes. 

 

In addition, a new method for labeling one DNA probe with two different fluorescent dyes 

was developed. An anthracene modification and a thiol modification within the same DNA 

strand were selectively labeled with two different fluorescent dyes (scheme 41). 
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It was demonstrated that an anthracene modified oligonucleotide does not react with 

iodoacetamide. However, the thiol group could selectively be modified and labeled with an 

iodoacetamide dye. In a second step the novel method to fluorescently label anthracene in a 

Diels-Alderase catalyzed reaction with fluorescent maleimide dyes was employed to provide a 

unique labeling strategy to dual fluorescent labeled probes. In conclusion, the two reactions 

are orthogonal to each other and provide a strategy for dual labeling of oligonucleotides with 

florescent probes. 
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6 Experimental section 
 

6.1 Molecular biological techniques 
 

6.1.1 General methods 

 

Fine chemicals for molecular biology and spectroscopic experiments were purchased in the 

highest commercially available purity. Water was purified by Mill-Q Synthesis A10 

(Millipore, Billerica, Massachusets, USA). All buffers and solutions were sterilized via 

steriflip® Milipore 22 μm filters. 

 

Gel electrophoretic methods 

 

Separation of nucleic acids via gel electrophoretic methods is based on the different migration 

of molecules with different charges and masses in an electrical field. The migration depends 

on the electric field and the connectivity of the gel matrix. As gel matrix commonly agarose 

and polyacrylamide is used. 

 

Agarose gels 

 

Agarose gel electrophoresis is a standard method for separation, identification and isolation of 

nucleic acids. By varying agarose concentration, gel pore size can be controlled to separate 

nucleic acids in a wide range of sizes. For special applications high resolution agarose, an 

intermediate melting agarose, is available for nucleic acids up to 1000 nt but with a resolution 

in the range of single base pairs. As DNA ladder GeneRuler™ Ultra Low Range and 100 bp 

DNA Ladder (Fermentas, St. Leon-Rot) were used. Nucleic acids have been separated on 2-

3% agarose gels, 1 x TBE buffer, during 25 min, with 120 V. For staining Ethidium bromide 

was added to the agarose gel during preparation, documentation was carried out on a 

AlphaImager (Alpha Innotech Corporation, San Leonardo). 
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Denaturing polyacrylamide gel electrophoresis (PAGE) 

 

PAGE has been used for detection and purification of nucleic acids. The denaturing 

conditions of PAGE analysis are mild and conserve secondary and tertiary structures of 

nucleic acids.  

Oligonucleotides have been separated on 8- 20% polyacrylamide gels. The gel solution has 

been prepared with Rotiphorese® Ready-to-Use Gel Solutions containing sequencing gel 

concentrate, sequencing gel diluent and sequencing gel buffer). After the addition of 

ammonium persulfate (APS (1% (w/v)), as a radical donator and N,N,N',N'-

tetramethylethylenediamine (TEMED (0.1% (v/v)) as catalyst for the formation of free 

radicals in the presence of ammonium persulfate and is thus used as an enhancer for the 

polymerisation. Vertical gels have been produced between two glass plates silanized with 2% 

dichlorodimethylsilane in chloroform. The layer thickness was 0.4 mm for analytical gels and 

1.0 mm for preparative gels. 

The conditions for the separation on PAGE gels varied depending on the percentage of the gel 

and the length of the oligonucleotides to be separated. Loading buffer (1 x TBE-buffer, 90% 

formamide) containing the two dyes xylenecyanol and bromphenol blue help monitoring the 

migration behavior of nucleic acids. Visualization of PAGE analysis was done by phosphor 

imaging (GE Healthcare, Munich), staining with SYBRGold or ethidium bromide and 

imaging with Typhoon (GE Healthcare, Munich) and UV shadowing and imaging by an 

AlphaImager (Alpha Innotech Corporation, San Leandro). 

For the analysis of fluorescent labeled oligonucleotides a loading buffer without xylenecyanol 

was used to reduce the background. Xylenecyanol has UV absorption of λmax 615 nm. 

Bromphenol blue was allowed to run out of the gel or cut off in the scan.  

 

Elution of nucleic acids from electrophoretic gels 

 

Elution of nucleic acids form either PAGE or agarose gels are based on diffusion. The desired 

nucleic acids had been excised from the gel, cut into as small pieces as possible. 500 µL 

ammonium acetate 0.5 M were added, mixed at 20°C and 650 rpm over night on a benchtop 

thermo shaker. The solutions were filtered over 45 µm Spin columns (Nanaosep® MF, PALL® 

Life Science, Darmstadt) to remove small gel pieces and the nucleic acids precipitated as 

described below. Alternatives are elution kits, e.g. MinElute PCR Purification Kit or RNeasy 
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MinElute Cleanup Kit (Qiagen, Hilden). Best elution efficiencies were achieved by elution 

with ammonium acetate. 

 

Precipitation of nucleic acids 

 

The method of choice for precipitation of nucleic acids depends on the size and the desired 

purity of the nucleic acids. 

 

Precipitation with ethanol or isopropanol 

After elution from the gel the nucleic acids in ammonium acetate (0.5 M) have been vortexed 

with a 2 fold excess of ice-cold ethanol or isopropanol and stored at -80°C for at least 30 min, 

or -20°C over night. The cold samples were centrifuged at -5°C, 13 000 rpm for at least 45 

min. E . coli tRNA (10 µg/µl) was used as a precipitation aid for very short oligonucleotides. 

The supernatant was removed and the pellet dried in a centrifugal vacuum concentrator.  

 

Precipitation with lithium perchlorate 

 

For short nucleic acids (10 to 25 nt) best yields have been observed by precipitation with 

lithium perchlorate. 

After elution from the gel the nucleic acids in ammonium acetate (0.5 M) have been vortexed 

with a 10 fold excess of a lithium 2% lithium perchlorate in acetone and centrifuged at r.t., 

10000 rpm for 40 min. The residual acetone was evaporated, the pellet dissolved in 20 µL 

water followed by desalinization on a NAP-5 column and removal of the water in a 

centrifugal vacuum concentrator. 

 

Purification of nucleic acids with organic solvents 

 

Separation of nucleic acids between organic solvents is an easy way to remove proteins from 

the reaction mixture. While nucleic acids remain in the water phase proteins separate into the 

organic phase. Phenol has a denaturing effect on the proteins while chloroform mostly helps 

to separate the organic phase from the aqueous phase. An equivalent volume 

phenol/chloroform (1:1) was added to the reaction mixture and votexed well. Separation of 

the two phases was accelerated by centrifugation at rt, 15000 rpm for 5 min (for Eppendorf 

tubes MIKRO 120, Hettich. Separation in Falcon or Greiner tubes in an Eppendorf centrifuge 
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5804 R at rt, 9000 rpm for 5 min). The organic layer was removed and the procedure repeated 

as described above. The aqueous layer was then transferred to a clean tube and the remaining 

phenol removed by diethyl ether extraction (centrifugation r.t., 15000 rpm for 5 min for 

Eppendorf tubes MIKRO 120, Hettich. Separation in Falcon or Greiner tubes in an Eppendorf 

centrifuge 5804 R at rt, 9000 rpm for 5 min). The organic layer was removed and the nucleic 

acids precipitated from the aqueous solution as described above. 

 

6.1.2 Detection of nucleic acids 

 

Autoradiography 

 

For detection and evaluation of radio labeled nucleic acids phosphor image screens (Imaging 

Screens, GE Healthcare, Munich) were used. The gels were wrapped into plastic foil, 

radioactive paper, used as markers and the imaging screens exposed in a X-ray cassette. 

Exposure time was dependent on the amount of radioactivity of the sample. For read out of 

the screens Typhoon 9400 (GE Healthcare, Munich) was used. The data was edited and 

quantified with ImageQuant 5.2 (GE Healthcare, Munich) and IQ Tools (GE Healthcare, 

Munich). 

 

Fluorescence detection 

 

Fluorescent labelled nucleic acids were analyzed with Typhoon 9400 (GE Healthcare, Munich). 

Typhoon 9400 provides 457/488/532/633 nm excitation, the different lasers are given in table 

7. The wavelength for imaging was tailored to the fluorescence spectra (excitation and 

emission) of the dyes. The data was edited and quantified with ImageQuant 5.2 (GE 

Healthcare, Munich), IQ Tools (GE Healthcare, Munich) or ImageJ 1.42q (National Institutes 

of Health, USA). 

 
Table 7: Lasers in Typhoon 9400.[232] 

Light Laser type Wavelength 

red 10 mW Helium neon laser 632.8 nm 

green 20 mW solid state doubled frequency SYAG laser 532 nm 

blue 30 mW argon ion laser 488 (20 mW), 547 nm (4 mW) 
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Staining 

 

Ethidium bromide staining was mostly used for detection of nucleic acids on agarose gels 

while for PAGE gel analysis SYBRGold staining was the method of choice. 

 

Ethidium bromide 

 

Ethidium bromide is an intercalating fluorescent reagent which changes its emission spectra 

after binding to nucleic acids and can easily be detected with UV light. Ethidium bromide was 

added to the agarose solution before casting the gels, 5 µL bromide solution (1%) per 100 mL 

2% agarose solution. Readout on AlphaImager (Alpha Innotech Corporation, San Leandro). 

 

SYBR®Gold 

 

SYBR®Gold nucleic acid gel stain is an unsymmetrical cyanine dye that exhibits fluorescence 

enhancement upon binding to nucleic acids. PAGE gels were stained by agitating in 1 x TBE 

buffer with 10-20 µL SYBR®Gold stock solution for 30 min. The fact that excitation maxima 

for the dye-nucleic acid complex is around 495 nm and the emission maxima at ~537 nm 

makes the Typhoon 9400 (GE Healthcare, Munich) the perfect readout. Images were recorded 

at 488 nm. 

 

UV-shadowing 

 

UV-shadowing allows the detection of nucleic acids without any treatment; however large 

amounts (> 1.0 nmol) of nucleic acids are necessary as compared to above mentioned 

methods. The gels were covered in plastic and placed on fluorescent TLC plates. Exposed to 

UV light (254 nm) the oligonucleotides quench the fluorescence and are visible as dark 

shadows. Documentation of the readout can be carried out with the AlphaImager (Alpha 

Innotech Corporation, San Leandro). 



Experimental section 

 102

6.1.3 Determining the concentration of nucleic acids 

 

Photometric determination 

 

Concentrations of oligonucleotides were determined by UV measurements on a Nanodrop 

ND-1000 (PeqLab, Erlangen). For nucleic acid quantification, the Beer-Lambert equation is 

modified to use an extinction coefficient with units of ng-cm/ml. Using this extinction 

coefficient gives a manipulated equation:  c = (A * e)/b 

c: (nucleic acid concentration [ng/µL]), A: (absorbance in AU), e (wavelength-dependent 

extinction coefficient in [ng-cm/µL]), b: (path length [cm]).  

The generally accepted extinction coefficients for nucleic acids are: 

dsDNA: 50 ng-cm/ul 

ssDNA: 33 ng-cm/ul 

RNA: 40 ng-cm/ul  

To asses the purity of DNA and RNA the ratio of absorbance at 260 nm (λmax nucleic acids) 

and 280 nm (λmax proteins) is used. A ratio of ~1.8 is generally accepted as “pure” for DNA; a 

ratio of ~2.0 is generally accepted as pure for RNA. If the ratio is appreciably lower in either 

case, it may indicate the presence of protein, phenol or other contaminants that absorb 

strongly at or near 280 nm.[233] 

 

Amount radio labeled nucleic acids 

 

The amount of RNA transcribed via T7 RNAP with [α -32P] could be determined after PAGE 

purification and precipitation. An aliquot typically of 1 µL was taken from the reaction 

mixture and the radioactivity determined by Cerenkov-counting (LS 6500, Beckman Coulter, 

Krefeld). The concentration could be determined by the following equation. 
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6.1.4 Radioactive labeling with 32Phosphor 

 

5´-labeling via kinase reaction 

 

The enzyme T4 Polynucleotide kinase, short T4 PNK, catalyzes the transfer of the γ-

phosphate from ATP to the 5’-OH group of oligonucleotides or nucleoside 3’-

monophosphates.[234] The reaction was incubated on a thermo shaker at 37°C for 30 min. 

PAGE purified, eluted and precipitated as described. 

 
Table 8: 5´-Labeling of oligonucleotides with [γ-32P]-ATP. 

Chemicals Volume [µL] Final

Oligonucleotide  1 0.1 nmol

Buffer A 10x  2 1 x

[γ-32P]-ATP  3

T4 PNK 10 U/µL  1 10 U

H2O 13

Σ 20

 

Radioactive labeling via ligation 

 

The enzyme T4-RNA-ligase catalyzes the esterification of a RNA 3´-hydroxyl group with a 

5´-phosphate group of another molecule (RNA or ribonucleotide) in the presence of ATP.[235] 

The 3´-prime end of RNA was labeled with Cytidin-3´-(5´-32P)-bis-phosphat [32P]-pCp.[236] 

The reaction was incubated in a thermo mixer at 16°C for 20 h, purified on a 20% PAGE as 

described. After elution the labeled RNA was precipitated with 100 µL E. coli tRNA (10 

µg/µl) as a precipitation aid and centrifuged over night (13000 rpm, -5°C). Interestingly DNA 

could also be labeled according to the same protocol. 
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Table 9: 3´-Labeling of RNA with [32P]-pCp. 

Substance Volume [µL] Final

Oligonucleotide 10 µM  2 20 pmol

Ligation buffer for T4 RNA ligase  2 yx

ATP 10 mM  1 0.5 mM

[32P]-pCp 10 100 µCi

T4 RNA ligase 10 U/µL  2 20 U

DMSO  2 10% (v/v)

H2O  1

Σ 20  

 

6.1.5 PCR (Polymerase Chain Reaction) 

 

PCR is an in vitro method for the exponential amplification of DNA sequences. 

GenTherm Taq Polymerase, buffer (10x, without MgCl2), MgCl2 and dNTP solutions (100 

mM) were purchased from Rapidozym (Rapidozym, Berlin, Germany). GenTherm DNA-

Polymerase, is an recombinant 5‘-3‘-DNA-polymerase, originally from Thermus acquaticus, 

expressed in E. coli without 3‘-, 5‘-exonuklease activity. Primer A and primer B were 

synthesized by IBA (Göttingen, Germany). 

 
Table 10: Protocol for analytical PCR. 

Chemicals Volume [µL]  Final  Step Temperature [°C] Time [min:sec]

PCR buffer (10x) 20 1x 1 94 5:00

dsDNA pool (10 µM) 0.4 0.02 µM 2 92 1:00

MgCl2 (50 mM) 16.0 4 mM 3 54 1:00

dNTP Mix (25 mM) 1.6 0.2 mM 4 72 1:30

Primer B (100 µM) 3.0 1.5 µM 5 5 times to step 2   

Pimer A (100 µM) 3.0 1.5 µM 6 72 8:30

Taq polymerase 4 0.1 U/µL 7 End 

H2O 152 -    

Σ 200      

 

Analysis of analytical PCR reaction products was performed on agarose gels, purification 

either with QIAquick PCR Purification Kit (Quiagen, Hilden) or via preparative PAGE. 
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Preparative scale PCR 

 
Table 11: Protocol fro preparative PCR. Volumes for a master mix. 

Chemicals Volume [mL]  Final  Step Temperature [°C] Time [min:sec]

PCR buffer (10x) 1.920 1x 1 92 03:00

ssDNA pool (14.2 µM) 0.261 0.2 µM 2 92 02:00

MgCl2 (50 mM) 1.536 4 mM 3 54 06:00

dNTP Mix (25 mM) 0.150 0.2 mM 4 72 10:00

Primer B (100 µM) 2.88 15 µM 5 5 times to step 2  

Pimer A (100 µM) 1.920 10 µM 6 End 

Taq polymerase 10.159 0.1 U/µL  

H2O 8.0832 -       

Σ 19.200       

 

The master mix for the preparative PCR was prepared in three 50 µL Falcon tubes each 

containing 19.2 mL master mix. All compounds were added, except the Taq polymerase and 

the DNA template, and the master mix was kept on ice. Taq polymerase and the template 

were added right before partitioning the reaction into 200 µL batches in a 96 well plate. The 

master mix was transferred into reservoirs and with a multi channel pipette transferred into a 

96 well plate. Purification of the PCR products from the preparative scale reaction were 

purified by phenol extraction. 
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6.1.6 Primer extension 

 

Primer extension is used to asses how much of an ssDNA pool is amplified to full length 

product. The primer B was labeled with [γ-32P] ATP at its 5' end. The reaction was analyzed 

on a 12% PAGE. 

 
Table 12: Protocol for primer extension. 

Chemicals Volume [µL] Final

PCR buffer 10x 10.0 1x
32P labeled primer B (31 µM) 1.0 0.25 µM

primer B (100 µM) 1.0 0.6 µM

ssDNA template (76.9 µM) 1.0 1 µM

MgCl2 (50 mM) 8.0 4 mM

dNTPs (each 100 mM) 1.0 of each dNTP 10 µM

Taq DNA polymerase (0.1 U/µL) 2.0

H2O 73.0

Σ 100

 
Table 13: Temperature protocol for primer extension in a single PCR cycle. 

Temperature [°C] Time [min] 

94 4:00 

50 60:00 

End  
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6.1.7 In vitro T7 transcription 

 

T7 RNA polymerase utilizes the transcription of dsDNA templates into the complementary 

RNA sequence. The enzyme was isolated from E. coli BL21 (DE3) cells with a cloned gene 

encoding T7 RNA polymerase.[156] 

 
Table 14: Standard protocol T7 transcription. 

Chemicals Volume [µL] Final 

Transcription buffer (10x) 5.0 1x

GTP (25 mM) 0.7 0.35 mM

ATP (100 µM) 2.0 4 mM

CTP (100 µM) 2.0 4 mM

UTP (100 µM) 2.0 4 mM

Template (2 µM) 5.0 0.2 µM  

Initiator nucleotide (17.2 mM) 11.8 4 mM

DTT (100 mM) 5.0 10 mM

BSA (1 mg/ml) 2.0 50 µg/mL 

[α -32P] CTP (10 µCi/µL) 2.0

T7 RNA polymerase 1.25

H2O 11.25

Σ 50

 

After preparing the reaction mixture an aliquot of 1 µL was taken and stored aside to later be 

able to determine the concentration of the transcript. The transcription was incubated at 37°C 

for 2-4 h in a water bath. After 2 h more enzyme was added and incubated for another 2 h at 

37°C. The transcription was stopped by the addition of loading dye (1 x TBE-buffer, 90% 

formamide, xylenecyanol and bromphenol blue) and either directly loaded on a gel or stored 

at -80°C. 

During the optimization of the T7 transcription all substances were varied, except the buffer, 

BSA and DTT. Additionally in some cases a so called booster mix was added after 2 h and 

incubated for other 2 h. 
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Table 15: Booster mix for a T7 transcription of 50 µL. 

Chemicals Volume [µL] 

Transcription buffer (10x) 4.0

GTP (25 mM) 0.35

ATP (100 µM) 1.0

CTP (100 µM) 1.0

UTP (100 µM) 1.0

Initiator nucleotide (17.2 mM) 5.9

T7 RNA polymerase 1.25

 

 
Table 16: MALDI-TOF mass analysis for transcribed RNA with initiator nucleotide. 

 nPEG Calculated [M+H]+ Found 

Transcript = 5’-GG AGC UCA 

GCC UAC GAG CCU GAG CC-3’ 8249 8254 

    

Conjugate  9 8704 8706 

10 8748 8750 

11 8792 8794 

12 8836 8839 

13 8880 8883 

O
O

nPEG

RNA

 14 8924 8931 

 

6.1.8 Diels-Alder reaction of the 2,3 dimethyl anthracene modified RNA 

 

Initiator nucleotide 7b was incorporated during T7 RNAP transcription. The purified 

conjugate (20 pmol) was dissolved in water and PBS buffer and biotin maleimide was added 

in a 10 respectively 1000 fold excess. The reaction was incubated in a thermo shaker over 

night at 25°C and 650 rpm and directly loaded on a 20% PAGE. 

 

6.1.9 Deprotection of the aldehyde modified RNA and reaction with hydrazide 

 

Initiator nucleotide 7c was incorporated during T7 RNAP transcription. The purified 

conjugate (20 pmol) was dissolved in water and the aldehyde functionality deprotected by 

treatment with 2% trifluroacetic acid in water for 10 min at r.t., leaving the RNA entirely 

intact. The reaction was quenched by the addition of 3.6 µL 1 M NaHCO3 solution. 2.67 µL 
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0.4 M sodium acetate buffer were added to adjust the pH to 5.5. Biotin hydrazide was added 

in a 1000 fold excess and the reaction incubated for 4 h at r.t on a thermo shaker at 750 rpm. 

The RNA was precipitated to remove the biotin hydrazide excess by lithium perchlorate 

precipitation and analyzed on a 12% PAGE. 

 

6.1.10 Melting curves 

 

Thermal denaturation experiments of nucleic acids are an important method to observe 

temperature dependent conformational changes. Heating of and molecule leads to a change in 

absorbance and therefore reflects the conformational change. 

Melting experiments are used to determine the hybridization between oligonucleotides or 

different regions within an oligonucleotide and are therefore valuable in primer design. 

Further secondary and even tertiary structure of DNA and RNA molecules and it may also be 

used to study the binding of specific targets to oligonucleotides. 

 

RNA solutions were prepared by mixing the RNA stock solution in buffer and the addition of 

magnesium chloride and/ or sodium chloride solutions respectively EDTA was added. The 

concentration of the RNA was adjusted to an OD of 0.5. In general the OD range should be 

between 0.3 and 0.6. For the Diels-Alderase ribozyme this is equivalent to ~ 10 µg of RNA. 

After addition of all components the solutions were degassed in an ultrasonic bath for 10 

minutes. The samples were transferred into Teflon-stoppered quartz cuvettes and dependent 

on the attempted maximum temperature sealed with additional Teflon tape. All samples were 

overlaid with 2-3 mm silicon oil to prevent evaporation of the buffer. 

As a buffers sodium cacodylate 25 mM (magnesium phosphate 25 mM or MOPS 25 mM) 

adjusted to a pH of 7.0 were used. 

Melting curves were recorded at 260 nm with a Cary 100 Bio-UV7Vis Spectrometer (Varian, 

Darmstadt) and cuvettes (Cary UV MICRO CELL 0.9 mL, Varian, Darmstadt (cuvettes 

produced by Starna) with a path length of 10 mm. UV absorption was recorded as a function 

of the temperature. First the samples were heated with a heating rate of 5°C/min and kept at 

maximum and minimum temperature for 5 minutes to ensure proper folding with the present 

cations. For the analysis the RNA samples were then heated at a rate of 0.5°C/min from 15-

95°C (or 15-65°C) and absorbance readings were collected every 0.1°C. The data for 

denaturation (15-95°C) were collected as well as the data for renaturation (95-15°C). This 
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process was repeated twice. If no degradation of the oligonucleotides takes place the first and 

second recording can exactly be overlaid.  

 

The data was analyzed with MS Excel according to the following procedure 

I. The ordinate scales of the curves were normalized to concentrations of 1 A260 unit 

 at 15°C. 

II. The normalized absorbance data was smoothed using the moving average over 10 data 

 points. 

III. First derivative of the absorbance versus temperature data (dA/dT) were obtained and 

 Tm was determined as the maximum of the first derivative. 

 

During the entire measurement the sample changer was purged with nitrogen gas to avoid 

water condensation in the machine or on the cuvettes. 

Optical density (OD) = log10 (Ii / It) where Ii = Intensity of incident light, It = Intensity of 

transmitted light. One OD unit (ODU) (sometimes also called AU (absorption unit)) is 

defined as the amount of sample that gives an UV absorbance at 260 nm of 1, if the sample is 

dissolved in 1 mL volume and measured in a cuvette with a path length of 1 cm.  

 

6.1.11 Automated solid-phase synthesis of oligonucleotides 

 

Solid phase DNA and RNA synthesis was performed on an Expedite 8909 automated 

synthesizer by Applied Biosystems. The synthesis was performed using standard 

phosphoramidite chemistry.[237, 238] 

 

As a solid support dC CPG (t-butylphenoxyacetyl, TAC controlled pore glass) (40 μmol/g, 

500 Å) and β-cyanoethyl-phosphoramidites containing base-labile TAC-protecting groups 

were purchased from Proligo. For modification at the 5´-end modified polyenglykol-β-

cyanoethylphosphoramidites were prepared (see synthetic procedures).  

The 2’-hydroxyl group was protected as a t-butyldimethylsilylether. Standard reagents 

employed in DNA solid-phase synthesis (deblocking reagent - dichloroacetic acid in DCM, 

activator - dicyanoimidazole, oxidizing reagent - iodine in THF/H2O, and capping reagent t-

butyl-phenoxyacetanhydride in acetonitrile), as well as acetonitrile (water content ≤10 ppm) 

were purchased from Proligo and Sigma Aldrich Fine Chemicals. 
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Solid-phase synthesis of ODNs was performed on 1 μmol scale synthesis, usually leaving the 

terminal 4,4’-dimethoxytrityl (DMT) group on. The phosphoramidites were used prepared as 

0.067 M (DNA monomers), and 0.1 M (RNA monomer) acetonitrile solutions over activated 

molecular sieve. The standard protocols provided by Applied Biosystems were optimized to 

reduce the consumption of the amidites and reduce the time fort he coupling. 

 

The Oligonucleotides were cleaved of the solid support by incubation in ammonia at 55°C 

over night. The solid support was washed with EtOH (3x500 µL), the combined aqueous and 

ethanol containing solution was extracted with chloroform (3x1 mL) and evaporated on the 

lyophilizer. Oligonucleotides were dissolved in 1 mL Millipore water and the modification 

rate was determined by integration of the HPLC spectra. For purification the oligonucleotides 

were filtered through a 0.22 µM membrane filter, purified by preparative HPLC, collected, 

lyophilized and diluted again in water. The integrity of the oligonucleotides was determined 

by analytical HPLC and mass spectrometry. 
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Table 17: Protocol for 1 µmol scale solid-phase DNA/ RNA synthesis (Adenosine (dA/ rA) cycle).[a] 

step Function mode[b] amount [puls] time [s] description 

Deblocking 144 /*Index Fract. Coll NA 1 0 "Event out ON“ 
 0 /*Default WAIT 0 1.5 "Wait“ 
 38 /*Diverted Wsh A PULSE 15 0 "Flush system with Wsh A“ 
 141 /*Trityl Mon. On/Off NA 1 1 "START data collection” 
 16 /*Dblk PULSE 20 0 "Dblk to column” 
 0 /*Default WAIT 0 20 "Default” 
 16 /*Dblk PULSE 40 40 "Deblock” 
 38 /*Diverted Wsh A PULSE 60 0 "Flush system with Wsh A“ 
 141 /*Trityl Mon. On/Off NA 0 1 "STOP data collection” 
 38 /*Diverted Wsh A PULSE 20 0 "Flush system with Wsh A“ 
 144 /*Index Fract. Coll. NA 2 0 "Event out OFF” 
Coupling 1 /*Wsh PULSE 8 0 "Flush system with Wsh A“ 
 2 /*Act PULSE 5 0 " Flush system with Act“ 
 19 /*C + Act PULSE 5 0 "Monomer + Act to column” 
 19 /*C + Act PULSE 3 24 "Couple monomer” 
 2 /*Act PULSE 3 24 "Couple monomer” 
 19 /*C + Act PULSE 2 16 "Couple monomer” 
 2 /*Act PULSE 3 24 "Couple monomer” 
 0 /*Default WAIT 0 20 "Default” 
 1 /*Wsh PULSE 7 56 "Couple monomer” 
 1 /*Wsh PULSE 21 0 "Flush system with Wsh A“ 
Capping 12 /*Wsh A PULSE 20 0 "Flush system with Wsh A“ 
 13 /*Caps PULSE 8 0 "Caps to column” 
 12 /*Wsh A PULSE 9 23 "Cap” 
 12 /*Wsh A PULSE 21 0 "Flush system with Wsh A“ 
Oxidizing 15 /*Ox PULSE 35 0 "Ox to column” 
 0 /*Default WAIT 0 20 "Default” 
 12 /*Wsh A PULSE 60 0 "Flush system with Wsh A“ 
Capping 13 /*Caps PULSE 7 0 "Caps to column” 
 12 /*Wsh A PULSE 45 0 "End of cycle Wash” 

[a] Debloking reagent = dblk, acetonitrile = Wsh, WshA, activator = Act, capping regents = Caps, oxidizer = Ox. 
[b] 1 PULSE = 16 µL. 

 

6.1.12 High-performance liquid chromatography of oligonucleotides 

 

HPLC analyses were performed on an Agilent 1100 Series HPLC system equipped with an 

diode array detector using a Phenomenex® Luna 5 μm C18 column (4.6 × 250 mm) and 

eluting with a gradient of buffer A and buffer B at 1 mL/min flow-rate. Preparative HPLC 

was performed using Phenomenex® Luna 5 μm C18 column (15.0 × 250 mm) and eluting 

with a gradient of buffer A and buffer B at 5 mL/min flow-rate. 

The following gradient was used: 
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Gradient O1:      Gradient O2: 

 

 

 

 

 

 

 

6.1.13 Mass spectrometry of oligonucleotides 

 

Sample preparation 
 

Oligonucleotides were either dissolved in 10 µM water or in 0.1 M TEAA pH 7.0 to a final 

concentration of 10 µM (100 pmol) and desalted using Millipore C18 ZipTips. The C18 resin 

was first wetted by using 50% aqueous acetonitrile solution (2 x 10 μL) and then equilibrated 

with 0.1 M TEAA pH 7.0 (3 x 10 μL). The oligonucleotide was bound to the resin letting the 

entire 10 µL sample solution pass through the resin in the filter tip (10 x). The salts were 

removed by washing the resin first with water (3 x 10 μL) and 0.1 M TEAA pH 7.0 (3 x 10 

μL). A clean vial with 4 µL of 50% acetonitrile/water was used to elute the oligonucleotides 

by aspirating and dispensing the solution (5-10 x). 

 

 

MALDI TOF mass analysis 
 

The samples for analysis were prepared using the dried droplet method with the following 

matrix solutions: 1) 6-aza-2-thiothymine/ diammonium hydrogen citrate in 1:2 v/v water/ 

acetonitrile (detection in negative mode); 2) 3-hydroxy-picolinic acid/ diammonium hydrogen 

citrate in 2:1 v/v water/ acetonitrile (detection in positive mode). 

 

HR-ESI MS analysis 
 

HR-ESI mass spectra were recorded in the negative mode on a Bruker MicroTOF-QII. The 

samples were diluted 1:5 in 25mM piperidine/ imidazole (25% Water / 75% ACN). The 

oligonucleotide solutions were introduced into the ion source with a syringe pump at flow 

rates of 3 to 4 μL/min. For each measurement, up to 128 scans were averaged to improve the 

Time [min] Buffer B [%]  Time [min] Buffer B [%] 

0 10  0 0 

10 10  15 30 

30 30  30 100 

45 100  35 100 

50 100  40 0 
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signal-to-noise ratio. Data processing was performed using the software DataAnalysis 4.0 

SP1. 

 

6.1.14 Fluorescent dyes 

 

All dyes have been purchased from Invitrogen Life Technologies (Carlsbad, California, 

USA), Atto-Tec (Siegen, Germany) or Dyomics (Jena, Germany). DY 649 Hydrazide 

maleimide has been synthesized from the commercially available Dyomics DY 649 NHS 

ester and maleimido caproic acid hydrazide, after HPLC purification a stock solution was 

prepared in EtOH and stored at -20°C. Commercially available dyes have been used without 

further purification. All dyes were diluted in DMSO and the stock solution was always stored 

at -20°C in their original vial but protected from light with aluminium or optically opaque 

boxes. Dilutions were always stored in dark brown reaction vials. For iodoaetamides DMSO 

should be avoided, because iodoacetamides might get oxidized in DMSO. Therefore the Atto 

590 iodoacetamide stock solution was dissolved in anhydrous DMF. 

BODIPY TMR C5-maleimide and Atto 532 maleimide are poorly soluble in water, while Atto 

590 iodoacetamide is absolutely insoluble in water or any type of buffer. Alexa Fluor® 532 

C5-maleimide and all applied Dyomics dyes are extremely well soluble in water respectively 

aqueous buffer systems. 

Absorption and emission maxima were determined in either ethanol or methanol and are 

consistent with the data provided by the supplier. Concentrations were determined by the 

dilution in a defined volume and validated via dilution in ethanol and UV-measurement. The 

concentrations were then calculated via the Lambert-Beer law 

 
A: absorption; c: concentration; d: thickness of the measuring cell; ε: extinction coefficient. 
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Table 18: Data of all flourescent dyes. 

Name Structure λabs 

[nm]

λem 

[nm] 

ε 

[M-1cm-1]

FW 

[g mol-1] 

 

invitrogen 

Alexa Fluor® 

532 C5-

maleimide 

 

 
 

 

528 

 

552 

 

78000 

812.88 

 

found: 

791.18 

 

invitrogen 

BODIPY® TMR 

C5-maleimide 
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60000 

 

562.42 

 

Dy-649 hydrazide 

maleimide 
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found 

1049.25 

 

ATTO-TEC 

Atto 532 

maleimide 

 

Exact structure not revealed due to a pending patent. 
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115000 

 

1063 

 

found 

768.14 
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Name Structure λabs 

[nm]

λem 

[nm] 

ε 

[M-1cm-1]

FW 

[g mol-1] 

 

Dyomics 

Dy-547 

maleimide 

 

 
 

 

557 

 

574 

 

150000 

 

761.23 

 

Dyomics 

Dy-649 

maleimide 
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ATTO-TEC 

Atto 590 

iodoacetamide 
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N
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624 

 

120000 

 

970 

 

found 

857.25 
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6.1.15 Flourescent labeling reactions of oligonucleotides 

 

All labeling reactions were performed in Eppendorf tubes. Before starting the reaction the 

solution was vortexed and started by the addition of the respective dye and incubated on a 

thermo shaker at 650 rpm. The excess of dye was removed with DyeEx™ (Qiagen) according 

to the provided protocol. If the reactions were not directly purified by DyeEx the reaction was 

stopped by the addition of stop-mix. All reactions were analyzed on an 18% PAGE, using a 

loading buffer without xylencyanol to lower the fluorescent background signal. The gels were 

analyzed by scanning for autoradiography and fluorescence at the corresponding wavelength 

and subsequently stained with SYBR Gold and scanned again. Data was processed with 

ImageQuant or ImageJ. 

 

Labeling protocol in the dipartite Diels-Alderase assay 

 

For the Diels-Alder reaction catalyzed in cis the 38mer and the 11mer RNA anthracene-

conjugate were hybridized in a ratio of 1:2. The strands were heated at 65°C in buffer without 

MgCl2 for 2 min, MgCl2 was added and slowly cooled to r.t. to ensure hybridization and 

folding of the two strands. The reaction was incubated at 25°C for 30 min.  

 
Table 19: Protocol for fluorescent labeling of oligonucleotides via the dipartite Diels-Alderase assay. 

Chemicals Volume [µL] Final

Diels-Alder buffer (5 x) 2.0 1 x

38mer (2.5 µM) 0.8 0.2 µM

11mer AHEG (1 µM) 1.0 0.1 µM

11mer AHEG α32-pCp labeled 1.0 doped

Dye (500 µM) 1.0 50 µM

MgCl2 (800 mM) 1.0 80 mM

H2O 3.2

Σ 10

 

Labeling protocol monopartite Diels-Alderase assay 

 

For the catalyzed Diels-Alder reaction in trans the Diels-Alderase ribozyme was heated at 

65°C in buffer without MgCl2 for 2 min, MgCl2 was added and slowly cooled to r.t.. The 

reaction was incubated at 25°C for 30 min up to 2 h. 
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Table 20: Protocol for fluorescent labeling of oligonucleotides via monopartite Diels-Alderase assay. 

Chemicals Volume [µL] Final

Diels-Alder buffer (5 x) 4.0 1 x

ODN (100 µM) 10.0 50 µM

Diels-Alderase (70 µM) 2.0 7 µM

Dye (2 mM) 0.5 50 µM

MgCl2 (800 mM) 2.0 80 mM

H2O 1.5

Σ 20

 

Labeling of thiol modified oligonucleotides with maleimide dyes or iodoacetamide dyes 

 

Thiol modified oligonucleotides have to be treated with a reduction reagent beforehand the 

actual labeling reaction. The reaction mixture was incubated with TCEP for 30 min to 1 h at 

25°C and 650 rpm on a thermo shaker. After addition of the dye the reaction was incubated at 

25°C for 2 h or at 4°C over night. 

Atto 580 iodoacetamide is insoluble in water and therefore 20% EtOH had to be added during 

the reaction. 

 
Table 21: Protocol for fluorescent labeling of thiolated oligonucleotides. 

Chemicals Volume [µL] Final

Tris buffer pH 7.2 (5x) or  
Diels-Alder buffer (5x) 4.0 1 x

ODN (100 µM) 10.0 50 µM

TECP (2 mM) 1.0 100 µM

Dye (20 mM) 1.0 1 mM

H2O 4.0

Σ 20
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Bioorthogonal bi-functionalization of oligonucleotides with two fluorescent dyes 

 

The oligonucleotide was incubated with TCEP for 30 min to 1 h at 25°C and 650 rpm on a 

thermo shaker. After addition of the iodoacetamide dye the reaction was incubated at 25°C for 

2 h or at 4°C over night. Due to the insolubility of the iodoacetamide dye EtOH was added 

but evaporated before Diels-Alderase ribozyme catalyzed labeling with the maleimide dye. 

 
Table 22: Protocol for the bis-functionalization of oligonucleotides with two different fluorescent dyes. 

Chemicals Volume [µL] Final

Tris buffer pH 7.2 (5x) or  
Diels-Alder buffer (5x) 4.0 1 x

ODN (100 µM) 10.0 50 µM

TECP (2 mM) 1.0 100 µM

Iodoacetamide dye (20 mM) 1.0 1 mM

Maleimide dye (2 mM) 0.5 50 µM

Diels-Alderase (140 µM) 1.0 7 µM

MgCl2 (800 mM) 2.0 80 mM

H2O 0.5

Σ 20
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6.2 Synthetic procedures 
 

6.2.1 General 

 

All reagents were purchased from Sigma-Aldrich, Acros, AlfaAesar, ABCR and AppliChem 

and were, unless indicated otherwise, used without further purification. 

Acid free dichloromethane was obtained by storing the solvent on K2CO3 for at least one 

night. Reactions with air-sensitive compounds were performed under argon atmosphere using 

standard Schlenk techniques. 

TLC was carried out on silica gel plates Polygram Sil G/UV254 (40 × 80 mm) from Macherey-

Nagel, Düren. Compounds were made visible by using UV light at 254 nm, or staining 

reagents a) blue shift (0.1 g Ce(SO4), 2.1 g phosphomolybdic acid, 50 mL H2O, 3.1 mL conc. 

H2SO4), b) Potassium Permanganate (1 g KMnO4, 2.5 g K2CO3 in 50 mL H2O), c) DNPH (1 

g 1-(2,4-dinitrophenyl)hydrazine, 25 mL ethanol, 8 mL H2O, 5 mL conc. H2SO4) d) ninhydrin 

(15 g ninhydrin, 0.15 mL acetic acid, 50 mL ethanol), e) vanillin (3 g vanillin, 0.75 mL conc. 

H2SO4, 50 mL ethanol). 

Flash chromatography was carried out on silica gel 40-63 μm from J.T. Baker. Preperative 

reverse phase colum chromatography was carried out on LiChroprep RP – 18 (40–63 µm) 

columns using a mechanical pump. Alternatively an IntelliFlash 310 chromatography system 

from Varian, Darmstadt was used with columns from Varian: SuperFlash C18, 18% carbon, 

end capped on 50 μm particles,  

NMR spectra were recorded on a Varian Mercury Plus 300 MHz spectrometer. 1H and 
13C{1H} NMR spectra were calibrated to TMS on the basis of the relative chemical shift of 

the solvent as an internal standard. 31P{1H} NMR spectra were calibrated to an external 

standard (85% H3PO4). Abbreviations used are as follows: s = singlet, d = doublet, t = triplet, 

m= multiplet. 

Infrared spectroscopy was carried out a Bruker EQUINOX 55, the absorption is measured in 

cm-1 and the intensities indicated as follows: s = strong, m = medium, b = broad. 

FAB and EI mass spectra were recorded on a JEOL JMS-700 sector field mass spectrometer. 

MALDI-TOF mass spectra were recorded on a Bruker BIFLEX III spectrometer. 

HR-ESI mass spectra were recorded on a Bruker MicroTOF-Q II spectrometer. 

Melting points, if determined, were measured on a Reichert Jung Model No. 561C-H1. 
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6.3 Synthetic procedures for compounds of chapter 2 
 

6.3.1 Synthetic procedures of the initiator nucleotides 

 

2,3-Dimethylanthracen (9) 

 

 
 

2,3-Dimethyl-9,10-anthraquinone (502 mg, 2.12 mmol) was suspended in 7 mL H2O and 10 

mL 25% NH3 (aq.) in an 150 mL autoclave. The suspension was cooled down in an ice/water 

bath and granular zinc (4.0 g, 61.2 mmol, 28.9 eq.) was added slowly. The autoclave was 

closed and the reaction was slowly allowed to warm up and later heated at 75°C for 23 h. The 

reaction was followed by TLC, turning from yellow to red and was then diluted with DCM 

(50 mL) and water (50 mL). The organic layer was decanted from the solid zinc. The aqueous 

layer was extracted with DCM (2 x 30 mL) and the combined organic layers were dried over 

MgSO4. The solvent was removed under reduced pressure to yield a yellow solid. The product 

was diluted in isopropanol (20 mL), conc. HCl (2.0 mL) was added and heated at 95°C for 4 

h. The reaction mixture was cooled to r.t. and stored at -20°C to crystallize the crude product. 

The product was purified by column chromatography (Hex : EtOAc 98 : 2, Rf = 0.37) on 

silica and again recrystallized from n-hexane to afford a yellow solid (120.3 mg, 28%). 

 

C16H14 (206.28 g mol-1). 

m.p. 202-210 °C. 
1H NMR (300 MHz, CDCl3, 295 K): δ = 8.28 (s, 2H, Ar-H), 7.96 (dd, 2H, J (H,H) = 3.17 Hz, 

J (H,H)= 3.39 Hz, Ar-H), 7.65 (s, 2H, Ar-H), 7.37 (dd, 2H, J (H,H), 3.29 J (H,H)= 3.20 Hz, 

Ar-H), 2.29 (s, 6H, CH3). 
13C{1H} NMR (75 MHz, CDCl3, 295 K): δ = 135.55 (2C, Ar-CH3), 131.33 (2C, Ar-H), 

131.13 (2C, Ar-H), 128.06 (2C, Ar-C), 126.91 (2C, Ar-C), 124.76 (4C, Ar-H), 20.42 (2C, 

CH3). 

IR (KBr): ( = 2932 (s), 1629 (s), 1456 (s), 899 (s). 

MS (FAB) m/z (rel. Int. %): 207 (M+1) (5), 206 (15), 154 (100), 138 (30), 136 (74), 120 (12), 

107 (26), 102 (22), 89 (24), 77 (26). 
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2,3-dimethylanthracene-9-carbaldehyde (10) 

 

 
 

In a Schlenk flask under argon were dissolved 2,3-dimethylanthracen 9 (488.5 mg, 2.7 mmol) 

in 10 mL dry DMF. The solution was cooled to 0ºC with an ice/water bath, and 

phosphorus(V) oxychloride (2.2 mL, 23.4 mmol) added dropwise to give a yellow suspension. 

The reaction mixture was allowed to warm up and heated at 95°C for 20 h. The mixture was 

basified by the addition of NH3 (aq.) and DCM was added (400 mL). The aqueous layer was 

extracted with DCM (2 x 30 mL) and the organic layer was washed with brine (2 x 30 mL) 

and H2O (2 x 50 mL). The organic extracts were combined, dried over MgSO4 and the solvent 

was removed under reduced pressure. The crude product was purified by column 

chromatography (DCM : Hex 9 : 1, Rf = 0.55) over silica gel to afford a yellow solid 513.7 

mg (93%). 

 

C17H14O (234.29 g mol-1). 

m.p. 116-117 °C. 
1H NMR (300 mHz, CDCl3, 295 K): δ = 11.50 (s, 1H, COH), 8.98 (dd, 1H, J (H,H) = 0.9 Hz, 

J (H,H) = 9.0 Hz, Ar-H), 8.79 (s, 1H, Ar-H), 8.57 (s, 1H, Ar-H), 8.03 (dt, 1H, J (H,H) = 0.7 

Hz, J (H,H) = 8.4 Hz, Ar-H), 7.80 (d, 1H, J (H,H) = 0.5 Hz, Ar-H), 7.64 (dt, 1H, J (H,H) = 

1.5 Hz, J (H,H) = 7.8 Hz, Ar-H), 7.51 (dt, 1H, J (H,H) = 1.1 Hz, J (H,H) = 6.6 Hz, Ar-H), 

2.54 (d, 3H, J (H,H) = 0.7 Hz, CH3), 2.49 (d, 3H, J (H,H) = 0.9 Hz, CH3). 
13C{1H} NMR (75 MHz, CDCl3, 295 K): δ = 193.01 (1C, CHO), 140.18 (2C, Ar-H), 134.07 

(1C, Ar-C), 131.92 (1C, Ar-CH3), 131.71 (1C, Ar-CH3), 130.68 (1C, Ar-C), 129.21 (1C, Ar-

COH), 128.62 (1C, Ar-C), 128.01 (1C, Ar-H), 125.17 (2C, Ar-H), 123.42 (2C, Ar-H), 

122.51 (1C, Ar-H), 21.25 (1C, CH3), 20.13 (1C, CH3). 

IR (KBr): ( = 2911 (s), 1675 (m), 1552 (s), 1450 (s), 1384 (s), 1257 (s). 

MS (FAB) m/z (rel. Int. %): 235, 1 (M+1) (27), 234 (26), 167 (14), 154 (100), 149 (55), 136 

(71), 107 (25), 89 (24), 71 (26), 57 (42). 
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(2,3-dimethylanthracen-9-yl)methanol (11) 

 

HO

 
 

Sodium borohydride (105 mg, 2.76 mmol, 1.25 eq.) were added to a solution of the 2,3-

dimethylanthracene-9-carbaldehyde 10 (513,7 mg, 2,19 mmol) in 30 mL abs. THF and stirred 

overnight at room temperature. The solution was filtered to remove the excess of sodium 

borohydride and the solvent was removed under reduced pressure. The crude product was 

purified by dissolving it in DCM and recrystallizing the impurities by adding ice cold n-

hexane. The impurities could be removed by filtration to afford a yellow solid 472.8 mg 

(92%). 

 

C17H16O (236.32 g mol-1) 

m.p. 158-159 °C. 

Rf: 0.30 (CH2Cl2). 
1H-NMR (300 mHz, CDCl3, 295 K): δ = 8.36 (dd, 1H, J (H,H) = 0.8 Hz, J (H,H) = 8.70 Hz, 

Ar-H), 8.32 (s, 1H, Ar-H), 8.14 (s, 1H, Ar-H), 7.98 (dt, 1H, J (H,H) = 8.8 Hz, J (H,H) = 0.7 

Hz, Ar-H), 7.76 (s, 1H, Ar-H), 7.52 (dt, 1H, J (H,H) = 1.4 Hz, J (H,H) = 7.6 Hz, Ar-H), 7.44 

(dt, 1H, J (H,H) = 1.2 Hz, J (H,H) = 7.4 Hz, Ar-H), 5.63 (d, 2H, J (H,H) = 5.6 Hz, CH2), 2.52 

(d, 3H, J (H,H) = 3.8 Hz, CH3), 2.48 (d, 3H, J (H,H) = 0.8 Hz, CH3), 1.73 (t, 1H, J (H,H) = 

5.6 Hz, OH). 
13C{1H} NMR (75 MHz, CDCl3, 295 K): δ = 136.79 (1C, Ar-CH2), 135.28 (1C, Ar-C), 

131.01 (2C, Ar-CH3), 129.64 (2C, Ar-C), 129.60 (1C, Ar-C), 129.03 (1C, Ar-H), 127.87 

(1C, Ar-H), 126.95 (1C, Ar-H), 125.91 (1C, Ar-H), 124.52 (1C, Ar-H), 123.69 (1C, Ar-H), 

122.75 (1C, Ar-H), 57.45 (1C, CH2), 20.98 (1C, CH3), 20.16 (1C, CH3). 

IR (KBr): ν = 3400 (b), 2912 (s), 1630 (b), 1451 (b), 1039 (s), 985 (s). 

MS (FAB) m/z (rel. Int. %): 237,1 (M+1) (11), 236 (34), 219 (26), 181 (22), 165 (28), 154 

(100), 137 (53), 136 (70), 107 (26), 89 (26), 77 (29), 57 (23). 
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9-(Chloromethyl)-2,3-dimethlanthracen (12b) 

 

 
 

To (2,3-dimethylanthracen-9-yl)methanol 11 (472.8 mg, 2.0 mmol) was added 20 mL abs. 

toluene and to the resulting suspension thionyl chloride (0.19 mL, 2.5 mmol, 1.25 eq.) 

dropwise. The reaction was heated to 90°C for 20 h. The solvent was removed under reduced 

pressure to yield a brown solid 471.0 mg (93%). The product could be used for synthesis 

without further purification. 

 

C17H15Cl (254.75 g mol-1) 

Rf: 0 – 0.7 (CH2Cl2).  
1H-NMR (300 MHz, CDCl3, 295 K): δ = 8.36 (s, 1H, Ar-H), 8.28 (dd, 1H, J (H,H) = 0.9 Hz, 

J (H,H) = 8.9 Hz, Ar-H), 8.04 (s, 1H, Ar-H), 7.99 (d, 1H, J (H,H) = 8.4 Hz, Ar-H), 7.77 (s, 

1H, Ar-H), 7.57 (dt, 1H, J (H,H) = 1.4 Hz, J (H,H) = 7.7 Hz, Ar-H), 7.46 (dt, 1H, J (H,H) = 

1.1 Hz, J (H,H) = 7.5 Hz, Ar-H), 5.60 (s, 2H, CH2), 2.55 (s, 3H, CH3), 2,48 (s, 3H, CH3). 
13C{1H} NMR (75 MHz, CDCl3, 295 K): δ = 137.40 (1C, Ar-CH2), 135.45 (1C, Ar-C), 

131.10 (1C, Ar-CH3), 130.93 (1C, Ar-CH3), 129.69 (1C, Ar-C), 129.19 (1C, Ar-C), 129.02 

(1C, Ar-C), 128.04 (1C, Ar-H), 127.86 (1C, Ar-H), 126.36 (1C, Ar-H), 126.24 (1C, Ar-H), 

124.67 (1C, Ar-H), 123.29 (1C, Ar-H), 122.34 (1C, Ar-H), 39.27 (1C, CH2), 21.12 (1C, 

CH3), 20.15 (1C, CH3). 

MS (EI) m/z (rel. Int. %): 254 (M) (30), 219 (100), 202 (13), 189 (7), 178 (4). 

IR (KBr): ν = 2916 (s), 1447 (s), 1244 (s), 1025 (s). 
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(4,4´-Dimethoxytrityl)-polyethylene glycol (13) 

 

O

O
O

H

O

n

 
 

 

PEG 600 (8.93 mL, 16.7 mmol) was dried by coevaporation with toluene (3 x 25 mL) and 

suspended in acid free DCM (stored over K2CO3). TEA (0.86 mL, 6.18 mmol, 0.37 eq.) and 

4-dimethylaminopyridine (DMAP) (20 mg, 0.17 mmol, 0.01 eq.) were added. A solution of 

4,4´-dimethoxytriphenylmethylchloride (454 mg, 1.34 mmol, 0.08 eq.) in 13 mL acid free 

DCM was slowly added by a syringe pump over 5 hours 10 min at r.t.. The solution was than 

diluted with DCM and washed with 5% NaHCO3 (50 mL), water (50 mL), and brine (50 mL), 

dried over Na2SO4 and the solvent removed under reduced pressure. The crude PEG protected 

PEG was purified by column chromatography (EtOAc : EtOH 9 : 1, preconditioned with the 

eluent containing 1% Et3N, Rf = 0-0.2) on silica to afford a yellow oil (893.7 mg, 75%). 

 
1H-NMR (300 MHz, (CD3)2CO, 295 K): δ = 7.51-6.6 (m, 13H, Ar-H), 5.62 (s, 1H, OH), 3.79 

(s, 6H, CH3), 3.76-3.52 (m, CH2). 
13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 160.51 (2C, Ar-OCH3), 147.40 (1C, Ar-C), 

138.18 (2C, Ar-C), 131.91 (4C, Ar-H), 130.02 (2C, Ar-H), 129.50 (2C, Ar-H), 128.41 (1C, 

Ar-H), 114.81 (4C, Ar-H), 87.60 (1C, Ar3CO), 74.54 (1C, CH2OH), 65.11 (CH2), 65.11 (3C, 

CH3), 63.00 (3C, CH3). 

MALDI MS: m/z 915 [M+Na]+ (calculated for [C47H72O16+Na]+ 915.47), m/z 931 [M+K]+ 

(calculated for [C47H72O16+K]+ 931.45). 
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n 
Calculated 

[M+Na]+ 

Found 

[M+Na]+ 

Calculated 

[M+K]+ 

Found 

[M+K]+ 
Formula 

8 695.34 695.2 711.31 - C37H52O11 

9 739.37 739.2 755.34 - C39H56O12 

10 783.39 783.3 799.37 799.2 C41H60O13 

11 827.42 827.3 843.39 843.2 C43H64O14 

12 871.45 871.2 887.42 887.2 C45H68O15 

13 915.47 915.3 931.45 931.2 C47H72O16 

14 959.50 959.3 975.47 975.2 C49H76O17 

15 1003.52 1003.3 1019.50 1019.2 C51H80O18 

16 1048.55 1047.3 1063.52 - C53H84O19 

17 1091.58 1091.3 1107.55 - C55H88O20 

18 1135.60 1135.3 1151.58 - C57H92O21 

 

(Anthracen-9-yl-methoxy)-polyethylene glycol-DMT (15a) 

 

DMTO
O n

 
 

General procedure I 

 

The DMT-protected polyethylene glycol 13 (1.3 g, 1.46 mmol) was dried by coevaporation 

with toluene (3x25 mL) and dissolved in 8 mL dry ACN under argon. Sodium hydride (93 mg 

60% in oil, 2.33 mmol, 1.6 equiv.) was added. The reaction mixture was stirred for 5 min at 

r.t. before the addition of 9-(chloromethyl)anthracene (362 mg, 1.6 mmol, 1.1 equiv.) and NaI 

(262 mg, 1.75 mmol, 1.2 equiv.). The reaction mixture was stirred for another 40 min at 40°C. 

The reaction was closely followed by TLC. The reaction mixture was quenched with 9 mL of 

water and extracted with EtOAc (80 mL) and additional water (40 mL). The organic layer was 

then washed with water (2 x 40 mL) and brine (2 x 40 mL), dried over Na2SO4 and the 

solvent removed under reduced pressure. The crude product was purified by column 

chromatography (gradient EtOAc : MeOH 98 : 2 to 8 : 2, column preconditioned with the 

eluent containing 1% Et3N) over silica gel to afford a pale yellow oil (700 mg, 46%). 
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Rf = 0.2 (EtOAc : MeOH 98:2). 
1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 8.57 (s, 1H, Ar-H), 8.52 (d, J(H,H) = 8.4 Hz, 

2H, Ar-H), 8.09 (d, J(H,H) = 8.4 Hz, 2H, Ar-H), 7.60-7.48 (m, 6H, Ar-H), 7.36 (d, J(H,H) = 

9.0 Hz, 5H, Ar-H), 7.30-7.23 (m, 2H, Ar-H), 6.88 (d, J(H,H) = 8.7 Hz, 4H,Ar-H), 5.56 (s, 

2H, OCH2ArA), 3.86 (t, J(H,H) = 5.1 Hz, 2H, PEG CH2OCH2), 3.77 (s, 6H, DMT-CH3), 

3.70-3.52 (m, PEG CH2), 3.17 (11) (t, J(H,H) = 5.1 Hz, 2H, DMTOCH2). 
13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 160.51, 147.40, 138.18, 133.43-126.67, 

114.81, 87.60, 72.24, 56.50. 

MALDI MS: m/z 1105.7 [M+Na]+ (calculated for [C62H84O16+Na]+ 1105.58), m/z 1121.7 

[M+K]+ (calculated for [C62 H84O166+K]+ 1121.69). 

 

n 
Calculated 

[M+Na]+ 

Found 

[M+Na]+ 

Calculated 

[M+K]+ 

Found 

[M+K]+ Formula 

8 885.43 885.6 901.54 - C52H62O11 

9 929.46 929.6 945.57 - C54H66O12 

10 973.49 973.6 989.60 989.6 C56H70O13 

11 1017.52 1017.7 1033.63 1033.6 C58H74O14 

12 1061.55 1061.7 1077.66 1077.6 C60H80O15 

13 1105.58 1105.7 1121.69 1121.7 C62H84O16 

14 1149.61 1149.7 1165.72 1165.7 C64H88O17 

15 1193.64 1193.7 1209.75 1209.7 C66H92O18 

16 1237.67 1237.8 1253.78 1253.8 C68H96O19 

17 1281.7 1281.8 1297.81 1297.8 C70H100O20 

18 1325.73 1325.9 1341.84 - C72H104O21 

 

2-((2,3-Dimethylanthracen-9-yl)-methoxy)-polyethylene glycol-DMT (15b) 

 

DMTO
O n

 
 

Product 15b was prepared according to general procedure I from DMT-protected 

polyethylene glycol 13 (2.05 g, 2.30 mmol), 9-(chloromethyl)-2,3-dimethlanthracen 12b (645 

mg, 2.53 mmol), sodium hydride (160.4 mg 60% in oil, 2.33 mmol, 1.6 equiv.) and NaI 
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(421.2 mg, 2.81 mmol). The crude product was purified by column chromatography (gradient 

EtOAc : MeOH 98 : 2 to 8 : 2, column preconditioned with the eluent containing 1% Et3N) 

over silica gel to afford a yellow oil (1.83 g, 75%). 

 

Rf = 0.2 (EtOAc : MeOH 98:2). 
1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 8.57 (s, 1H, Ar-H), 8.52 (d, J(H,H) = 8.4 Hz, 

2H, Ar-H), 8.09 (d, J(H,H) = 8.4 Hz, 2H, Ar-H), 7.60-7.48 (m, 6H, Ar-H), 7.36 (d, J(H,H) = 

9.0 Hz, 5H, Ar-H), 7.30-7.23 (m, 2H, Ar-H), 6.88 (d, J(H,H) = 8.7 Hz, 4H,Ar-H), 5.56 (s, 

2H, OCH2ArA), 3.86 (t, J(H,H) = 5.1 Hz, 2H, PEG CH2OCH2), 3.77 (s, 6H, DMT-CH3), 

3.70-3.52 (m, PEG CH2), 3.17 (11) (t, J(H,H) = 5.1 Hz, 2H, DMTOCH2). 
13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 160.51, 147.40, 138.18, 133.43-126.67, 

114.81, 87.60, 72.24, 56.50. 

MALDI MS: m/z 1105.7 [M+Na]+ (calculated for [C62H84O16+Na]+ 1105.58), m/z 1121.7 

[M+K]+ (calculated for [C62H84O166+K]+ 1121.69). 

 

n 
Calculated 

[M+Na]+ 

Found 

[M+Na]+ 

Calculated 

[M+K]+ 

Found 

[M+K]+ Formula 

8 913.45 913.4 929.42 - C54H66O11 

9 957.47 957.5 973.44 973.5 C56H70O12 

10 1001.49 1001.5 1017.46 1017.5 C58H74O13 

11 1045.51 1045.5 1061.48 1061.5 C60H78O14 

12 1089.53 1089.5 1105.50 1105.5 C62H82O15 

13 1133.55 1133.6 1149.52 1149.6 C64H86O16 

14 1177.57 1177.6 1193.54 1193.6 C66H90O17 

15 1221.59 1221.7 1237.56 1237.6 C68H94O18 

16 1265.61 1265.7 1281.58 1281.6 C70H98O19 

17 1309.63 1309.8 1325.60 1325.6 C72H102O20 

18 1353.65 1354.8 1369.62 - C74H106O21 
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(Anthracen-9-yl-methoxy)-polyethylene glycol (16a) 

 

HO
O n

 
 

General procedure II 

 

1-(4,4´-Dimethoxytrityl) (9-anthracenemethoxy) polyethylene glycol 15a (700 mg, 0.67 

mmol) was dissolved in 16.8 mL solution of a 3% trifluoro acetic acid in dichloroethane at r.t. 

After 5 min stirring, the reaction mixture was quenched by pouring it in 25 mL NaHCO3 and 

extracted with 30 mL of CH2Cl2. The organic layer was washed with 25 mL brine, dried over 

Na2SO4 and the solvent removed under reduced pressure. The crude product was purified by 

column chromatography (2 x 20, EtOAc : EtOH 9 : 1, Rf = 0-0.2) on silica gel to afford a pale 

yellow oil 380 mg (82%). 

 
1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 8.56 (s, 1H, Ar-H), 8.52 (d, J(H,H) = 8.7 Hz, 

2H, Ar-H), 8.09 (d, J(H,H) = 7.8 Hz, 2H, Ar-H), 7.61-7.49 (m, 4H, Ar-H), 5.57 (s, 2H, Ar-

CH2), 3.85 (t, J(H,H) = 4.8 Hz, 2H, PEG CH2OH), 3.69 (t, J(H,H) = 5.1 Hz, 2H, PEG 

CH2OCH2), 3.60-3.52 (m, PEG CH2), 2.81 (s, 1H, OH). 
13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 133.42 (1C, Ar-H), 132.85 (1C, Ar-CH2), 

131.53 (1C, Ar-C), 130.68 (1C, Ar-H), 129.84 (1C, Ar-C), 127.89 (1C, Ar-H), 126.88 (1C, 

Ar-H), 126.67 (1C, Ar-H), 74.52 (Ar-CH2), 72.22 (CH2O PEG CH2), 71.58 (PEG CH2OH), 

66.71 (PEG CH2O CH2). 

MALDI MS: m/z 759.7 [M+Na]+ (calculated for [C39H60O13+Na]+ 759.44), m/z 775.7 

[M+K]+ (calculated for [C39H60O13+K]+ 775.55). 
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n 
Calculated 

[M+Na]+ 

Found 

[M+Na]+ 

Calculated 

[M+K]+ 

Found 

[M+K]+ Formula 

8 583.32 583.5 599.43 - C31H44O9 

9 627.35 627.6 643.46 643.6 C33H48O10 

10 671.38 671.6 687.49 687.6 C35H52O11 

11 715.41 715.6 731.52 731.7 C37H56O12 

12 759.44 759.7 775.55 775.7 C39H60O13 

13 803.47 803.8 819.58 819.7 C41H64O14 

14 847.50 847.8 863.61 863.8 C43H68O15 

15 891.53 891.8 907.64 907.8 C45H72O16 

16 935.56 935.8 951.67 - C47H76O17 

 

2-((2,3-Dimethylanthracen-9-yl)-methoxy)-polyethylene glycol (16b) 
 

HO
O n

 
 

Product 16a was prepared according to general procedure II from 2-((2,3-dimethylanthracen-

9-yl)-methoxy)-polyethylene glycol-DMT 15b (1.83 g, 1.12 mmol) and 50 mL solution of a 

3% trifluoro acetic acid in dichloroethane. The crude product was purified by column 

chromatography (gradient EtOAc : MeOH 100 : 0 to 98 : 2 to 8 : 2, preconditioned with the 

eluent containing 1% Et3N) over silica gel to afford a yellow oil (719 mg, 84%). 

 

1H-NMR: (300 MHz, (CD3)2CO, 295 K): δ = 8.45 (d, 1H, J (H,H) = 8.4 Hz, Ar-H), 8.42 (s, 

1H, Ar-H), 8.26 (s, 1H, Ar-H), 8.03 (dd, 1H, J (H,H) = 1.5 Hz, J (H,H) = 9.1 Hz, Ar-H), 7,82 

(s, 1H, Ar-H), 7.55-7.30 (m, 2H, Ar-H), 5.53 (s, 2H, Ar-CH2), 3.50-3.70 (m, PEG CH2), 2.53 

(s, 3H, CH3), 2,47 (s, 3H, CH3). 

MALDI MS: m/z 655 [M+Na]+ (calculated for [C35H52O10+Na]+ 655.35), m/z 671 [M+K]+ 

(calculated [C35H52O10+K]+ 671.32). 
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n 
Calculated 

[M+Na]+ 

Found 

[M+Na]+ 

Calculated 

[M+K]+ 

Found 

[M+K]+ Formula 

8 611.33 - 627.30 - C33H48O9 

9 655.35 655.5 671.32 671.5 C35H52O10 

10 699.37 699.5 715.34 715.5 C37H56O11 

11 743.39 743.6 759.36 759.5 C39H60O12 

12 787.41 787.6 803.38 803.6 C41H64O13 

13 831.43 831.6 847.40 847.6 C41H68O14 

14 875.45 875.6 891.42 891.6 C43H72O15 

15 919.47 919.7 935.44 935.6 C45H76O16 

16 963.49 963.7 979.46 979.7 C47H80O17 

17 1007.51 1007.7 1023.48 1023.7 C49H84O18 

18 1051.53 1051.7 1067.50 - C51H88O19 

 

Polyethylene glycol-p- toluenesulfonate PEG 600 (26c)  
 

HO
O

SO2

PEG 600

n

 
 

General procedure III 

 

160 g PEG 600 (266.66 mmol, 10 eq.) was dried by coevaporation with toluene (3 x 25 mL) 

and dissolved in 50 mL dry DCM and DMAP (25.2 mg, 0.21 mmol, 0.05 eq.) and TEA (13.8 

mL, 98.19 mmol, 0.37 eq.) were added. TsCl (5.1 g, 26.69 mmol) was dissolved in 200 mL 

dry DCM and added via a dropping funnel. The reaction was complete after 13.5 h. The 

solution was washed with 5% NaHCO3 (3 x 200 mL), water (6 x 150 mL), and brine (3 x 300 

mL), dried over Na2SO4 and the solvent removed under reduced pressure. The obtained 

yellow oil presented itself as pure product (13.9 g, 74%). 

 

Rf: 0.15 (EtOH : MeOH 9 : 1). 
1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 7.82 (d, J(H,H) = 7.2 Hz, 2H, Ar-H), 7.49 (d, 

J(H,H) = 7.5 Hz, 2H, Ar-H), 4.18-3.57 (m, PEG CH2), 2.79 (s,1H, OH), 2.46 (s, 3H, CH3). 
13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 146.74 (1C, Ar-CH3), 135.35 (1C, Ar-SO2), 

131.82 (2C, Ar-H), 129.72 (2C, Ar-H), 74.54-63.00 (PEG CH2), 22.53 1(C, CH3). 
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MALDI MS: m/z 723.4 [M+Na]+ (calculated for [C31H56O15S]+ 723.37), m/z not observed for 

[M+K]+ (calculated [C31H56O15S +Na]+ 739.48). 

 

n 
Calculated 

[M+Na]+ 

Found 

[M+Na]+ Formula 

8 547.59 547.3 C23H40O11S 

9 591.64 591.3 C25H44O12S 

10 635.69 635.3 C27H48O13S 

11 679.74 679.4 C29H52O14S 

12 723.79 723.5 C31H56O15S 

13 767.84 767.5 C33H60O16S 

14 811.89 811.5 C35H64O17S 

15 855.94 855.6 C37H68O18S 

16 899.99 899.6 C39H72O19S 

17 944.04 943.6 C41H76O20S 

18 988.09 987.7 C43H80O21S 

 

Polyethylene glycol p-toluenesulfonate PEG 1500 (26d)  

 

HO
O

SO2

PEG 1500

n

 
 

Product 26d was prepared according to general procedure III from PEG 1500 (100 g, 66.67 

mmol, 10 eq.) dried by coevaporation (2 x 200 mL) in 95 mL dry DC, DMAP (6.3 mg, 0.052 

mmol) and TEA (3.45 mL, 25 mmol). p-TsOCl (1.27 g, 6.67 mmol) in 18 mL dry DCM were 

added via a syringe pump over 7 h and 10 min and stirred over night. The reaction mixture 

was washed with 5% NaHCO3 (3 x 50 mL), H2O (6 x 250 mL) and brine (3 x 250 mL), dried 

over Na2SO4 and the solvent removed under reduced pressure to afford a white solid. As 

compared to PEG 600 the tosylated product of PEG 1500 was solid (10.5 g, 96%). 

 

1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 8.01 (d, J(H,H) = 8.5 Hz, 2 H, Ar-H), 7.61 (d, 

J(H,H) = 8.0 Hz, 2 H, Ar-H), 3.58 (m, PEG CH2), 2.53 (s, 3 H, CH3). 
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13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 147.94 (1C, Ar-CH3), 141.69 (1C, Ar-SO2), 

130.90 (2C, Ar-H), 129.09 (2C, Ar-H), 72.88 00 (PEG CH2), 70.62 (PEG CH2), 61.23 (PEG 

CH2OH), 21.06 (1C, CH3). 

MALDI MS: m/z 1581.8 [M+1]+ (calculated for [C71H136O35S+1]+ 1581.98), m/z not 

observed for [M+Na]+ (calculated [C33 H60O16S +Na]+ 1605.97). 

 

n 
Calculated 

[M]+ 

Found 

[M]+ 
Formula 

23 1184.71 1185.6 C53H100O26S 

24 1228.74 1229.6 C55H104O27S 

25 1272.77 1273.7 C57H108O28S 

26 1316.8 1317.7 C59H112O29S 

27 1360.83 1361.7 C61H116O30S 

28 1404.86 1405.7 C63H120O31S 

29 1448.89 1449.8 C65H124O32S 

30 1492.92 1493.8 C67H128O33S 

31 1536.95 1537.8 C69H132O34S 

32 1580.98 1581.8 C71H136O35S 

33 1625.01 1625.8 C73H140O36S 

34 1669.04 1669.8 C75H144O37S 

35 1713.07 1713.8 C77H148O38S 

36 1757.10 1757.9 C79H152O39S 

37 1801.13 1801.9 C81H156O40S 

38 1845.16 1845.9 C83H160O41S 

39 1889.19 1889.9 C85H164O42S 

40 1933.22 1933.9 C87H168O43S 

41 1977.25 1978.9 C89H172O44S 

42 2021.28 2021.9 C91H176O45S 

43 2065.31 2066.9 C93H180O46S 

44 2109.34 2109.9 C95H184O47S 

45 2153.37 2154.9 C97H188O48S 

46 2197.40 2198.8 C98H192O49S 
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4-(5,5-diethyl-1,3-dioxan-2-yl)phenol (19) 

 

 
 

4-Hydroxybenzaldehyde (10 g, 81.89 mmol), 2,2-diethyl-1,3-propandiol (12.8 g, 103.90 

mmol, 1.27 eq.) and p-toluenesulfonic acid (0.78 g, 4.10 mmol, 0.05 eq.) as catalyst were 

suspended in 40 mL toluene and heated to reflux at 85°C for 3.5 h. The reaction mixture was 

extracted with diethyl ether (2 x 50 mL) and washed with H2O (3 x 50 mL) and brine (3 x 30 

mL), the combined organic layers were dried over Na2SO4 and the organic solvents removed 

under reduced pressure. The crude product was purified with column chromatography (Hex : 

EA 8 : 2, Rf = 0.15) on silica to afford a white solid (11.7 g, 61%). 

 

C14H20O3 (236.31 g mol-1). 
m.p. 56 °C. 
1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 7.28 (d, J(H,H) = 8.3 Hz, 2H, Ar-H), 6.80 (d, 

J(H,H) = 8.7 Hz, 2H, Ar-H), 5.32 (s, 1H, Ar-CH), 3.87 (d, J(H,H) = 11.4 Hz, 2H, OCH2a), 

3.58 (d, J(H,H) = 11.4 Hz, 2H, OCH2b), 1.80 (q, J(H,H) = 7.6 Hz, 2H, CH2 a), 1.14 (q, 

J(H,H) = 7.4 Hz, 2H, CH2b), 0.87 (t, J(H,H) = 7.6 Hz, 4H, CH3a), 0.80 (t, J(H,H) = 7.6 Hz, 

3H, CH3b). 
13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 159.31 (1C, Ar-OH), 132.28 (1C, Ar-CH), 

129.28 (2C, Ar-H), 116.24 (2C, Ar-H), 103.54 (1C, Ar-CH), 75.98 (2C, OCH2), 36.16 (1C, 

CH), 25.79 (1C, CH2a), 24.19 (1C, CH2b), 8.77 (1C, CH3a), 7.85 (1C, CH3b). 

MS (FAB) m/z (rel. Int. %): 237 (M+1) (60), 236 (M) (11), 35 (M-1) (24), 154 (18), 143 (12), 

137 (10), 136 (17), 124 (10), 123 (100), 121 (29), 107 (13), 97 (19), 77 (13), 69 (17), 57 (16), 

43 (18), 41 (23), 39 (12), 29 (11). 

IR (KCl): ν =3339 (s), 2969 (s), 2870 (m), 2360 (w), 1615 (m), 1523 (m), 1456 (w), 1398 (s), 

1270 (m), 1213 (m), 1167 (m), 1097 (s), 1057(m), 1000 (m), 955 (s), 917 (m).  
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2-(4-(5,5-Diethyl-1,3-dioxan-2-yl)phenoxy) polyethylene glycol PEG 600 (25c) 

 

O

O

O
O

Hn

PEG 600  
 

General procedure IV 

 

Under argon the protected aldehyde 4-(5,5-Diethyl-1,3-dioxan-2-yl)phenol 19 (6.97 g, 29.52 

mmol, 1.3 eq.) was dissolved in 35 mL dry ACN, cooled down in an ice /water bath to 0°C 

and NaH (1.29 g, 29.52 mmol 1.3 eq.) was added and stirred for 10 min before allowing the 

reaction mixture to warm up to r.t.. Polyethylene glycol p-toluenesulfonate PEG 600 26c 

(13.9 g, 22.71 mmol) was coevaporated with toluene (3 x 50 mL) and dissolved in 160 mL 

dry acetonitrile was and the reaction mixture was heated to reflux at 95°C for 3 days. TLC 

analysis showed that the reaction was not complete and the reaction mixture was heated to 

95°C for 2 d. The reaction mixture was diluted with 100 mL DCM, washed with 5% NaHCO3 

(3 x 150 mL), H2O (6 x 200 mL), brine (3 x 200 mL), dried over Na2SO4 and the solvent 

removed under reduced pressure. The crude product was purified with column 

chromatography (gradient: EA : Hex 9 : 1, EtOAc : EtOH 1 : 1, Rf = 0.42) on silica to afford a 

colorless yellow oil (8.3 g, 44%). 

 
1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 7.38 (d, J(H,H) = 8.7 Hz, 2H, Ar-H), 6.92 (d, 

J(H,H) = 8.7 Hz, 2H, Ar-H), 5.36 (s, 1H, Ar-CH), 4.13 (t, J(H,H) = 5.1, 2H, OCH2a), 3.81 (t, 

J(H,H) = 4.8, 2H, OCH2b), 3.67-3.57 (m, PEGCH2), 2.79 (s, 1H, OH), 1.81 (q, J(H,H) = 7.5 

Hz, 2H, CH2a), 1.17 (q, J(H,H) = 7.8 Hz, 2H, CH2b), 0.88 (t, J(H,H) = 7.5 Hz, 3H, CH3a), 

0.81 (t, J(H,H) = 7.5 Hz, 3H, CH3b). 
13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 161.06 (1C, Ar-O), 133.80 (1C, Ar-CH), 

129.38 (2C, Ar-H), 115.70 (2C, Ar-H), 103.45 (1C, Ar-CH), 76.13-69.36 (PEGCH2+CH2O), 

36.35 (1C, CH), 25.94 (1C, CH2CH3a), 24.36 (1C, CH2CH3b), 8.83 (1C, CH3a), 7.90 (1C, 

CH3b). 

MALDI MS: m/z 743.7 [M+Na]+ (calculated for [C36H64O16+Na]+ 743.85). 
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n 
Calculated 

[M+Na]+ 

Found 

[M+Na]+ Formula 

7 567.65 567.4 C28H48O12 

8 611.70 611.5 C30H52O13 

9 655.75 655.6 C32H56O14 

10 699.80 699.6 C34H60O15 

11 743.85 743.7 C36H64O16 

12 787.90 787.7 C38H68O15 

13 831.95 831.8 C40H72O16 

14 876.00 875.8 C42H76O17 

15 920.05 919.8 C44H80O18 

16 964.10 963.9 C46H84O19 

17 1008.15 1007.9 C48H88O20 

18 1052.20 1052.0 C50H92O21 

19 1096.25 1096.0 C52H96O22 

20 1140.30 1138.0 C54H100O23 

 

2-(4-(5,5-Diethyl-1,3-dioxan-2-yl)phenoxy)polyethylene glycol PEG 1500 (25d) 

 

O

O

O
O

H
n

PEG 1500  
 

According to general procedure IV 4-(5,5-Diethyl-1,3-dioxan-2-yl)phenol 19 (2.38 g, 10.07 

mmol, 1.1 eq.) was dissolved in 15 mL dry ACN, and deprotonated with NaH (241.77 mg, 

10.07 mmol, 1.1 eq.). Polyethylene glycol p-toluenesulfonate PEG 1500 25d (14.5 g, 9.16 

mmol) in 80 mL dry acetonitrile were added and refluxed for 2 days. The reaction mixture 

was diluted with 150 mL DCM, washed with H2O (3 x 200 mL), 5% NaHCO3 (3 x 150 mL), 

brine (3 x 200 mL). Purification on silica (gradient: DCM : Hex 6 : 4, DCM : Hex 8 : 2, EA : 

Hex 1 : 1, DCM : EtOH 1 : 1) on silica to afford a colorless oil 4 g, 27%). 
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1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 7.39 (d, J(H,H) = 8.7 Hz, 2H, Ar-H), 6.94 (d, 

J(H,H) = 8.7 Hz, 2H, Ar-H), 5.36 (s, 1H, Ar-CH), 4.14 (t, J(H,H) = 5.1, 2H, OCH2a), 3.82 (t, 

J(H,H) = 4.8, 2H, OCH2b), 3.59 (m, PEGCH2), 3.28 (s, 1H, OH), 1.80 (q, J(H,H) = 7.5 Hz, 

2H, CH2a), 1.17 (q, J(H,H) = 7.8 Hz, 2H, CH2b), 0.88 (t, J(H,H) = 7.5 Hz, 3H, CH3a), 0.81 

(t, J(H,H) = 7.5 Hz, 3H, CH3b). 
13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 159.98 (1C, Ar-O), 134.13 (1C, Ar-CH), 

129.71 (2C, Ar-H), 116.62 (2C, Ar-H), 108.18 (1C, Ar-CH), 67.68 (PEGCH2+CH2O), 31.60 

(1C, CH), 26.57 (1C, CH2CH3), 10.65 (1C, CH3). 

MALDI MS: m/z 1623.9 [M+Na]+ (calculated for [C48H82O20+Na]+ 1624.10), 1639.8 

[M+K]+ (calculated for [C48H 82O20+K]+ 1640.03). 

 

n 
Calculated 

[M+Na]+ 

Found 

[M+Na]+ 

Calculated 

[M+K]+ 

Found 

[M+K]+ Formula 

22 1227.79 1227.5 1243.76 1245.6 C58H108O25 

23 1271.82 1271.6 1287.79 1289.6 C30H50O12 

24 1315.85 1315.6 1331.82 1333.6 C32H54O13 

25 1389.88 1359.6 1375.85 1377.6 C34H58O14 

26 1403.91 1403.7 1419.88 1421.7 C36H62O15 

27 1447.96 1447.7 1463.91 1465.7 C38H66O16 

28 1492.01 1791.8 1507.94 1509.7 C40H70O17 

29 1536.04 1535.8 1551.97 1553.8 C42H 74O 18 

30 1580.07 1579.8 1596.00 1597.8 C44H 78O 19 

31 1624.10 1623.9 1640.03 1639.8 C48H 82O20 

32 1668.13 1667.9 1684.06 1683.9 C50H86O21 

33 1712.16 1711.9 1728.09 1727.9 C52H90O22 

34 1756.19 1756.0 1772.12 1772.0 C54H94O23 

35 1800.22 1800.0 1816.15 1816.0 C28H46O11 

36 1844.25 1844.1 1860.18 1860.0 C30H50O12 

37 1888.28 1888.1 1904.21 1904.0 C32H54O13 

38 1932.31 1932.1 1948.24 1948.0 C34H58O14 

39 1976.34 1976.1 1992.27 1992.1 C36H62O15 

40 2020.37 2020.2 2036.3 2036.1 C38H66O16 

41 2064.4 2064.2 2080.33 2080.2 C40H70O17 

 



Experimental section 

 138

Initiator nucleotides 

 

Initiator nucleotide (7a) 

 

O
O

n
P

O

OO

NH

N

N

O

NH2N
O

OHHO

HH
HH

Na
 

 

General procedure V 

 

(Anthracen-9-yl-methoxy)-polyethylene glycol 16a (380 mg, 0.55 mmol) was dried by 

coevaporation with toluene (3 × 5 mL). A solution of 8 mL 0.1 M of phosphoramidite 17 (470 

mg, 0.66 mmol, 1.2 eq.) in dry THF were added under argon and 4,5-dicyanoimidazole was 

added as activator (65 mg, 0.55 mmol, 1.0 eq.) and the reaction was stirred at r.t. for 1 h. The 

coupling reaction was then stopped by addition of 0.55 mL t-butyl hydroperoxide (3.3 mmol, 

10 eq.). The reaction mixture was stirred for 30 min at r.t and all volatiles were removed 

under vacuum using Schlenk technique. To remove the TBDMS protection groups of the 

guanosine the residue was taken up in 3.3 mL 1 M TBAF in THF (3.3 mmol, 6 equiv) under 

argon and stirred for 3 h at r.t.. Reaction control was performed on TLC RP-18 plates (ACN : 

H2O 1 : 1). The THF was removed under vacuum and the residue was taken up in water, 

filtered over a 0.22 μM membrane filter, and purified by preparative reverse phase 

chromatography using a chromatography pump (gradient ACN : H2O 2 : 8 to 1 : 1) the 

product was collected and lyophilized. Tetra butylammonium cations were exchanged for 

sodium ions on a DOWEX® 50WX8-200 resin (sodium form) according to standard protocol 

with water as eluent. The aqueous solution could then be directly submitted again to the 

preparative reverse phase as described above. The product was collected and lyophilized to 

afford a yellow solid. 

 
1H-NMR (500 MHz, CD3OH, 295 K): δ = 8.58 (s, 1H), 8.40 (m, 2H), 8.10 (m, 3H), 7.68 (m, 

4H), 5.88 (m, 2H), 4.49 (m, 2H), 3.96-3.88 (m, 3H), 3.74-3.37 (m, nH, PEGCH2). 
31P-NMR (500 MHz, D2O, 295 K): δ = 0.23 (s). 
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MALDI MS: m/z 1038.5 [M]+ (calculated for [C47H67N5O19P]+ 1036.46), m/z 1060.5 

[M+Na]+ (calculated for [C47H67N5O19P +Na]+ 1059.45). 
 

n 
Calculated 

[M]+ 

Found 

[M]+ 

Calculated 

[M+Na]+ 

Found 

[M+Na] Formula 

8 904.37 903.5 927.36 - C41H55N5O16P- 

9 948.40 950.5 971.39 972.5 C43H59N5O17P- 

10 992.43 994.5 1015.42 1016.5 C45H63N5O18P- 

11 1036.46 1038.5 1059.45 1060.5 C47H67N5O19P- 

12 1080.49 1082.5 1103.48 1104.5 C49H71N5O20P- 

13 1124.52 1126.5 1147.51 1148.5 C51H75N5O21P- 

14 1168.55 1170.6 1191.54 1192.5 C53H79N5O22P- 

15 1212.56 1214.6 1235.57 1238.6 C55H83N5O23P- 

16 1256.61 1258.6 1279.60 1282.5 C57H87N5O24P- 

17 1300.64 1302.6 1323.63 - C59H91N5O25P- 

 

Initiator nucleotide (7b) 

 

O
O

n
P

O

OO

NH

N

N

O

NH2N
O

OHHO

HH
HH

Na

 
 

Initiator nucleotide 7b was synthesized according to general procedure V from 2-((2,3-

Dimethylanthracen-9-yl)-methoxy)-polyethylene glycol 16b (710.7 mg 0.93 mmol), 14.1 mL 

0.1 M of phosphoramidite 17 (470 mg, 0.66 mmol, 1.2 eq.) in dry THF, 4,5-dicyanoimidazole 

(125 mg, 1.06 mmol, 1.0 eq.). The coupling reaction was stopped with 1.18 mL t-

butylhydroperoxide (9.4 mmol, 10 eq.), after evaporation of the reaction mixture the residue 

was taken up in TBAF in THF (5.7 mL, 5.58 mmol, 6 eq.). Half of the crude product was 

purified by preparative reverse phase chromatography using a chromatography pump 

(gradient: 1) ACN: H2O 2:8 400 mL, 2) ACN: H2O 3:7 200 mL, 3) ACN: H2O 4:6 200 mL, 4) 

ACN: H2O 1:1 600 mL) to yield a yellow solid (125.2 mg, 24%). 
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1H-NMR (500 MHz, D2O, 295 K): δ = 8.09 (d, 1H, J (H,H) = 4.2 Hz), 8.04 (s, 1H), 7.75 (s, 

1H), 7.44 (s, 1H), 7.38 (d, 1H, J (H,H) = 7.8 Hz), 7.33 (d, 1H, J (H,H) = 0.4 Hz), 7.17 (s, 1H), 

6,88 (s, 1H), 5.86 – 5.79 (12 x s, 12 x 2H), 5.07 (s, 2H), 4.75 (m), 4.49 (d, 1H, J (H,H) = 1 

Hz), 4.31 (s, 1H), 4.12 (d, 2H, J (H,H) = 3.5 Hz), 3.93 (dd, 2H, J (H,H) = 1.8 Hz, J (H,H) = 

2.9 Hz), 3.70 – 3.30 (m, nH, PEGCH2), 2.14 (s, 3H), 1.96 (s, 3H).  
31P-NMR (500 MHz, D2O, 295 K): δ = 0,231 (s). 
13C{1H} NMR (75 MHz, D2O, 295 K) δ = 159.74, 138.33, 136.92, 132.26, 132.09, 132.07, 

131.69, 131.68, 131.47, 131.46, 130.08, 128.75, 128.31, 127.27, 127.26, 125.98, 125.98, 

125.96, 125.26, 125.24, 124.09, 124.07, 117.58, 117.57, 114.33, 104.99, 88.47, 85.34, 85.23, 

85.20, 85.18, 85.17, 85.15, 75.02, 75.01, 74.99, 72.01, 71.97, 71.47, 71.46, 71.43, 71.03, 

70.43, 66.02, 65.95, 21.36, 20.50. 

MALDI MS: m/z 1154.5 [M+Na]+ (calculated for [C53H79N5O21P-+Na]+ 1154.47), m/z 

1176.5 [M+K]+ (calculated for [C53H79N5O21P-+K]+ 1176.45). 

 

n 
Calculated 

[M+Na]+ 

Found 

[M+Na]+ 

Calculated 

[M+K]+ 

Found 

[M+K]+ Formula 

8 934.37 - 956.35 - C43H59N5O16P- 

9 978.39 978.3 1000.37 1000.3 C45H63N5O17P- 

10 1022.41 1022.4 1044.39 1044.4 C47H67N5O18P- 

11 1066.43 1066.4 1088.41 1088.4 C49H71N5O19P- 

12 1110.45 1110.4 1132.43 1132.4 C51H75N5O20P- 

13 1154.47 1154.5 1176.45 1176.5 C53H79N5O21P- 

14 1198.49 1198.5 1220.47 1220.5 C55H83N5O22P- 

15 1242.51 1242.6 1264.49 1264.6 C57H87N5O23P- 

16 1286.53 1286.6 1308.51 1308.7 C59H91N5O24P- 

17 1330.55 1330.7 1352.53 1354.7 C61H95N5O25P- 

18 1374.57 1374.7 1396.55 - C63H99N5O26P- 
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Initiator nucleotide (7c) 

 

NH

N

N

O

NH2N

O

OHOH

HH
HH

O
P

O
OO

O

O

O

n

PEG 600

Na

 
 

Initiator nucleotide 7c was synthesized according to general procedure V from 2-(4-(5,5-

diethyl-1,3-dioxan-2-yl)phenoxy)polyethylene glycol PEG 600 25c (960 mg, 2.61 mmol), 

14.1 mL 0.1 M of phosphoramidite 17 (990 mg, 3.13 mmol, 1.2 eq.) in dry THF, 4,5-

dicyanoimidazole (140 g, 2.61 mmol, 1.0 eq.). The coupling reaction was stopped after 50 

min with 1.17 mL t-butyl hydroperoxide (26.10 mmol, 10 eq.), after evaporation of the 

reaction mixture the residue was taken up in TBAF in THF (5.7 mL, 5.58 mmol, 6 eq.) and 

stirred for 16h at r.t.. 246.46 mg of the crude product was purified with reversed phase 

chromatography system with two pumps, using the following gradient with acetonitrile and 

water. 

 
Time [min] ACN [%] 

0 15 

15 40 

50 60 

65 80 

70 100 

75 50 

80 50 

 

After ion exchange and reverse phase chromatography was carried out as described above 

26.7 mg (20%) clean product could be obtained out of the initially loaded 246.46 mg. 

 
1H NMR (500 MHz, D2O, 295 K): δ = 8.10 (s, 1H), 7.43 (s, 2H), 7.03 (s, 2H), 5.92 (d, J(H,H) 

= 5.5 Hz, 1H), 5.50 (m, 1H), 4.51 (t, J(H,H) = 5 Hz, 1H), 4.32 (s, 1H), 4.13 (t, J(H,H) = 4.5 

Hz, 2H), 3.96 (d, J(H,H) = 11 Hz, 2H), 3.92 (m, 4H), 3.78-3.61 (m, nH, PEGCH2), 1.79 (q, 
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J(H,H) = 7.5 Hz, 2H), 1.17 (q, J(H,H) = 7.5 Hz, 2H), 0.89 (t, J(H,H) = 7.5 Hz, 3H), 0.80 (t, 

J(H,H) = 7.5 Hz, 3H). 
13C{1H} NMR (75 MHz, D2O, 295 K): δ = 163.22, 156.15, 151.78, 147.32, 137.40, 130.39, 

127.71, 114.64, 104.64, 101.66, 86.82, 74.50, 73.38, 70.37, 69.69, 69.50, 68.98, 34.46, 23.41, 

22.10, 6.65, 5.79. 
31P-NMR (121.5 MHz, D2O, 295K): δ = 0.25 (s). 

MS HR-ESI: m/z 1064.47 (calculated for [C46H75O21N5P]+ 1064.51). 

MALDI MS: m/z 1067.3 [M]+ (calculated for [C46H75O21N5P]+ 1064.51), m/z 1089.4 

[M+Na]+ (calculated for [C46H75O21N5P +Na]+ 1087.50). 

 

n 
Calculated 

[M]+ 

Found 

[M]+ 

Calculated 

[M+Na]+ 

Found 

[M+Na]+ Formula 

7 888.39 891.2 911.38 - C38H59O17N5P- 

8 932.42 935.2 955.41 - C40H63O18N5P- 

9 976.45 979.2 999.44 1001.4 C42H67O19N5P- 

10 1020.48 1023.3 1043.47 1045.4 C44H71O20N5P- 

11 1064.51 1067.3 1087.50 1089.4 C46H75O21N5P- 

12 1108.54 1111.4 1131.53 1133.5 C48H79O22N5P- 

13 1152.57 1155.5 1175.56 1177.5 C50H83O23N5P- 

14 1196.6 1199.6 1219.59 1221.6 C52H87O24N5P- 

15 1240.63 1243.6 1263.62 1265.6 C54H91O25N5P- 

16 1284.66 1287.7 1307.65 1309.6 C56H95O26N5P- 

17 1328.69 1331.8 1351.68 1353.7 C58H99O27N5P- 

18 1372.72 1375.9 1395.71 - C60H103O28N5P- 

19 1416.75 1419.9 1439.74 - C62H107O29N5P- 

 

Initiator nucleotide (7d) 

 

NH

N

N

O

NH2N

O

OHOH

HH
HH

O
P

O
OO

O

O

O

n

PEG 1500

Na
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Initiator nucleotide 7d was synthesized according to general procedure V from 2-(4-(5,5-

diethyl-1,3-dioxan-2-yl)phenoxy)polyethylene glycol PEG 1500 25d (1 g 0.58 mmol), 8 mL 

0.1 M of phosphoramidite 17 (493 mg, 0.69 mmol, 1.2 eq.) in dry THF, 4,5-dicyanoimidazole 

(69 mg, 0.58 mmol, 1.0 eq.). The coupling reaction was stopped with 0.58 mL t-butyl 

hydroperoxide (5.8 mmol, 10 eq.), after evaporation of the reaction mixture the residue was 

taken up in TBAF in THF (3.48 mL, 3.48 mmol, 6 eq.). The solvent was removed under 

reduced pressure and HPLC followed by MALDI MS analysis revealed that only one 

TBDMS protection group had been removed. Another 3.48 mL TBAF was added and stirred 

over night. The product was purified on a reverse phase LC chromatography system 

IntelliFlash gradient with acetonitrile and water. The product was eluted between 14-16 min. 

 
Time [min] ACN [%] 

0 10 

10 20 

25 65 

30 70 

 

After ion exchange and chromatography as described 16 mg clean product could be obtained 

out of the initially loaded 150 mg. 

 
1H NMR (500 MHz, D2O, 295 K): δ = 8.11 (s, 1H), 7.48 (s, 2H), 7.08 (s, 2H), 5.93 (d, J(H,H) 

= 5.5 Hz, 1H), 5.55 (d, J(H,H) = 5.0 Hz, 1H), 4.52 (t, J(H,H) = 4.5 Hz, 1H), 4.25 (s, 1H), 4.11 

(t, J(H,H) = 4.5 Hz, 2H), 3.97 (d, J(H,H) = 11 Hz, 2H), 3.93 (m, 4H), 3.77-3.62 (m, nH, 

PEGCH2), 1.81 (m, 2H), 1.18 (m, 2H), 0.91 (t, J(H,H) = 7.5 Hz, 3H), 0.81 (t, J(H,H) = 7.5 

Hz, 3H). 
13C{1H} NMR (75 MHz, D2O, 295 K): δ = 158.83, 151.83, 146.94, 138.20, 127.78, 114.72, 

109.99, 101.66, 86.79, 83.66, 74.53, 69.71, 69.53, 69.48, 67.17, 34.49, 23.43. 
31P NMR (121.5 MHz, D2O, 295K): δ = 0.25 (s). 

MS HR-ESI: m/z 1856.97 (calculated for [C82H147O39N5P] 1857.05). 

MALDI MS: m/z 1771.6 [M+Na]+ (calculated for [C78H139O37N5P+Na]+ 1768.99). 
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n 
Calculated 

[M+Na]+ 

Found 

[M+Na]+ Formula 

17 1328.06 1330.2 C58H89O27N5P 

18 1372.09 1374.2 C60H93O28N5P 

19 1416.12 1418.3 C62H97O29N5P 

20 1460.15 1462.3 C64H111O30N5P 

21 1504.81 1506.4 C66H115O31N5P 

22 1548.84 1550.4 C68H119O32N5P-
 

23 1592.87 1594.4 C70H123O33N5P 

24 1636.90 1638.5 C72H127O34N5P 

25 1680.93 1683.5 C74H131O35N5P 

26 1724.96 1727.5 C76H135O36N5P 

27 1768.99 1771.6 C78H139O37N5P 

28 1813.02 1815.9 C80H143O38N5P 

29 1857.05 1859.9 C82H147O39N5P 

30 1901.08 1904.0 C84H151O40N5P 

31 1945.11 1948.1 C86H155O41N5P 

32 1989.14 1992.1 C88H159O42N5P 

33 2033.17 2036.3 C90H163O43N5P 

34 2077.20 2080.4 C92H167O44N5P 

35 2121.23 2124.5 C94H171O45N5P 

36 2165.26 2168.6 C96H175O46N5P 

37 2209.29 2212.7 C98H179O47N5P 

38 2253.32 2256.7 C100H183O48N5P 

39 2297.35 2230.7 C102H187O49N5P 
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6.3.2 Analysis of the initiator nucleotides 

 

High-performance liquid chromatography of the initiator nucleotides 

 

The purity of the initiator nucleotides A-D was confirmed by analytical HPLC. For initiator 

nucleotide 7a and b gradient I1 was used, initiator nucleotides 7c and d were analysed using 

gradient I2. 

 
  Gradient I1     Gradient I2 

 

 

 

 

 

 

 
Table 23 : Retention time of the initiator nucleotides 7a-d. 

 
 
 
 
 
 
 

 

 

MALDI TOF Mass spectrometry of the initiator nucleotides 

 

The samples for analysis were prepared using the dried droplet method with dithranol in 1:10 

v/v water/ acetone as matrix solutions; detection in the positive mode. 

Time [min] Buffer B [%]  Time [min] Buffer B [%] 

0 5  0 15 

25 40  15 40 

40 80  50 60 

45 100  55 100 

60 100  60 100 

65 5  65 15 

Initiator nucleotide Gradient Retention time Rt [min]  

a I1 32.7-35.4 

b I1 36.0-37.7 

c I2 26.7-33.4 

d I2 39.6-44.4 
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6.3.3 Alternative procedures towards the synthesis of initiator nucleotides 

 

(4,4´-Dimethoxytrityl)-polyethylene glycol PEG 1500 (13d) 

 
DMTO

O
H
n

PEG 1500  
 

PEG 1500 (50 g, 33 mmol) was dried by coevaporation with toluene (3 x 100 mL) and 

suspended in 25 mL acid free CH2Cl2 (stored over K2CO3). Triethylamine (1.7 mL, 12.33 

mmol, 0.37 eq.) and 4-dimethylaminopyridine (DMAP) (40 mg, 0.33 mmol, 0.01 eq.) were 

added. A solution of 4,4´-dimethoxytriphenylmethylchloride (902 mg, 2.66 mmol, 0.08 eq.) in 

9 mL acid free CH2Cl2 was slowly added by a syringe pump over 3 h 35 min at r.t.. The 

solution was than diluted with 75 mL CH2Cl2 and washed with 5% NaHCO3 (2 x 75 mL), 

water (3 x 75 mL), and brine (2 x 75 mL), dried over Na2SO4 and the solvent removed under 

reduced pressure. The crude PEG protected polyethylene glycol was purified by column 

chromatography (gradient pure EtOH, EtOH : DCM 1 : 1, preconditioned with EtOH 

containing 1% Et3N, Rf = 0.2 (EtOH)) on silica to afford a yellow oil (3.6 g, 75%). 

 
1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 7.44 (m, 1H, Ar-H), 7.33 (m, 2H, Ar-H), 7.26 

(m, 4H, Ar-H), 7.16 (m, 2H, Ar-H), 6.08 (m, 4H, Ar-H), 3.79 (t, J(H,H) = 4.2 Hz, 6H, CH3), 

3.63 (m, PEG CH2). 
13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 158.8 (2C, Ar-O), 139.7 (2C, Ar-H), 136.5 

(2C, Ar-C), 130.4 (2C, Ar-H), 129.1 (2C, Ar-H), 128.3 (1C, Ar-H), 128.0 (2C, Ar-H), 113.4 

(2C, Ar-H), 86.1 (1C, Ar3CO), 70.8 (PEG CH2), 62.0 (PEG CH2), 55.5 (CH3). 

MALDI MS: m/z 1884.8 [M+Na]+ (calculated for [C91 H160O38+Na]+ 1884.18). 
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n 
Calculated 

[M+Na]+ 

Found 

[M+Na]+ 
Formula 

19 1179.7 1180.1 C59H96 O22 

20 1223.73 1224.1 C61H100O23 

21 1267.76 1268.1 C63H104O24 

22 1311.79 1312.2 C65H108O25 

23 1355.82 1356.2 C67H112O26 

24 1399.85 1400.3 C69H116O27 

25 1443.88 1444.3 C71H120O28 

26 1487.91 1488.4 C73H124O29 

27 1531.94 1532.5 C75H128O30 

28 1575.97 1576.5 C77H132O31 

29 1620.00 1620.6 C79H136O32 

30 1664.03 1664.6 C81H140O33 

31 1707.06 1708.7 C83H144O34 

32 1752.09 1752.7 C85H148O35 

33 1796.12 1797.7 C87H152O36 

34 1840.15 1840.8 C89H156O37 

35 1884.18 1884.8 C91H160O38 

36 1928.21 1928.8 C93H164O39 

37 1972.24 1973.9 C95H170O40 

38 2016.27 2017.9 C97H174O41 

39 2060.30 2063.0 C99H178O42 

40 2104.33 2106.0 C101H182O43 

41 2148.36 2150.0 C103H186O44 

 



Experimental section 

 148

DMT and TBDMS protected PEG 600 (20c) 

 

O
SiO

O

O

n

PEG 600  
 

General procedure VI 

 

Mono DMT protected polyethylene glycol PEG 600 13a (7.34 g, 8.23 mmol) was dissolved in 

60 mL dry DMF under argon and TBDMS-Cl (1.5 g, 9.9 mmol, 1.2 eq.) and imidazole (1.68 

g, 24.7 mmol, 3 eq.) were added and stirred over night. The reaction mixture was diluted with 

60 mL DCM and 100 mL H2O. The aqueous solution was extracted with DCM (2 x 50 mL) 

and the combined organic layers were washed with 5% NaHCO3 (50 mL), H2O (4 x 50 mL) 

and brine (60 mL), dried over Na2SO4 and the solvent removed under reduced pressure. The 

crude product was purified by column chromatography (pure EtOH, preconditioned with the 

EtOH containing 1% Et3N, Rf = 0.93 -0.51, (EA : EtOH 7 : 3) on silica to afford a yellow oil 

(6.3 g, 76%). 

 
1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 7.50 (d, J(H,H) = 7.1 Hz, 2H, Ar-H), 7.36 (d, 

J(H,H) = 9.0 Hz, 4H, Ar-H), 7.30 (d, J(H,H) = 7.8 Hz, 2H, Ar-H), 7.21 (t, J(H,H) = 7.2 Hz, 

1H, Ar-H), 6.88 (d, J(H,H) = 8.9 Hz, 4H, Ar-H), 3.79 (s, 6H, OCH3), 3.57 (m, PEG CH2), 

0.90 (s, 9H, C(CH3)3), 0.07 (s, 6H, Si(CH3)2). 
13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 160.49 (2C, Ar-O), 147.40 (1C, Ar-C), 

138.16 (1C, Ar-C), 131.91 (4C, Ar-H), 130.00 (2C, Ar-H), 129.50 (2C, Ar-H), 128.40 (1C, 

Ar-H), 114.79 (4C, Ar-H), 87.57 (1C, Ar3CO), 72.23 (PEG CH2), 63.08 (2C, OCH3), 27.28 

(3C, C(CH3)3), 19.85 (1C, C(CH3)3), -4.07 (2C, Si(CH3)2). 

MALDI MS: m/z 1030.0 [M+Na]+ (calculated for [C53H86O16Si +Na]+ 1029.56), m/z 1046.0 

[M+K]+ (calculated for [C53H86O16Si +K]+ 1045.67). 
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n 
Calculated 

[M+Na]+ 

Found 

[M+Na]+ 

Calculated 

[M+K]+ 

Found 

[M+K]+ Formula 

10 897.47 898.0 913.58 914.0 C47H74O13Si 

11 941.50 942.0 957.61 958.0 C49H78O14Si 

12 985.53 986.0 1001.64 1002.1 C51H82O15Si 

13 1029.56 1030.0 1045.67 1046.0 C53H86O16Si 

14 1073.59 1074.1 1089.70 1090.0 C55H90O17Si 

15 1117.62 1118.1 1133.73 1134.1 C57H94O18Si 

16 1161.65 1162.1 1177.76 1178.1 C59H98O19Si 

17 1205.68 1206.2 - - C61H102O20Si 

18 1249.71 1250.3 - - C63H104O21Si 

19 1293.74 1295.1 - - C65H108O22Si 

 

DMT and TBDMS protected PEG 1500 (20d) 

 

 
 

Compound 20dwas synthesized from polyethylene glycol PEG 1500 13d (3.6 g, 2.0 mmol), 

TBDMS-Cl (0.38 g, 2.5 mmol, 1.25 eq.) and imidazole (0.41 g, 6.0 mmol, 3 eq.) in 45 mL dry 

DMF. For workup the reaction mixture was diluted with DCM (200 mL) and washed with 5% 

NaHCO3 (3 x 50 mL), H2O (4 x 75 mL) and brine (3 x 75 mL), dried over Na2SO4 and the 

solvent removed under reduced pressure. The crude product was purified by column 

chromatography (EtOH : DCM 1 : 1, preconditioned with the EtOH containing 1% Et3N, Rf = 

0.8 DCM : EtOH 1 : 1) on silica to afford a yellow oil (2.7 g, 70%). 

 
1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 7.33 (m, 9 H, Ar-H), 6.87 (d, J(H,H) = 8.9 Hz, 4 

H, Ar-H), 3.62 (m, PEG CH2), 1.1 (t, J(H,H) = 7.0 Hz, 9 H, m, PEG CH2), 0.07 (s, 4 H). 
13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 160.3, 147.2, 137.9, 129.8, 129.4, 128.3, 

114.7, 87.4, 72.1, 64.9, 56.4, 27.4, 19.7. 

MALDI MS: m/z 1664.01 [M+Na]+ (calculated for [C81H142O35Si+K+2H]+ 1665.1). 
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n 
Calculated 

[M+K+2H]+ 

Found 

[M+K+2H]+

Calculated

[M+K+Li]+

Found 

[M+K+Li]+ Formula 

14 1091.62 1097.6 1096.62 1097.6 C55H90 O17Si 

15 1135.65 1335.7 1140.65 1141.7 C57H94 O24Si 

16 1179.68 1185.7 1184.68 1185.7 C59H98 O25Si 

17 1223.71 1223.7 1228.71 1229.7 C61H102O26Si 

18 1267.74 1273.8 1272.74 1273.8 C63H106O26Si 

19 1311.77 1311.8 1316.77 1317.8 C65H110O27Si 

20 1355.80 1361.8 1360.80 1361.8 C67H114O28Si 

21 1399.83 1405.9 1404.83 1405.9 C69H118O29Si 

22 1443.86 1449.9 1448.86 1449.9 C71H122O30Si 

23 1487.89 1494.0 1492.89 1494.0 C73H126O31Si 

24 1531.92 1532.0 1536.92 1538.0 C75H130O32Si 

25 1575.95 1576.0 1580.95 1582.1 C77H134O33Si 

26 1619.98 1620.0 1624.98 1626.1 C79H138O34Si 

27 1664.01 1665.1 1669.01 1670.1 C81H142O35Si 

28 1708.04 1708.1 1713.04 1714.2 C83H146O36Si 

29 1752.07 1752.2 1757.07 1758.2 C85H150O37Si 

30 1796.10 1796.2 1801.10 1803.3 C87H154O38Si 

31 1840.13 1841.2 1845.13 1846.3 C89H158O39Si 

32 1884.16 1884.3 1889.16 1890.3 C91H162O40Si 

33 1928.19 1929.3 1933.19 1935.3 C93H166O41Si 

34 1972.22 1972.3 1977.22 1978.4 C95H170O42Si 

35 2016.25 2017.4 2021.25 2022.4 C97H174O43Si 

36 2060.28 2061.4 2065.28 2067.4 C99H178O44Si 

37 2104.31 2105.4 2109.31 - C101H182O45Si 

38 2148.34 2149.4 2153.34 - C103H186O46Si 

39 2192.37 2193.5 2197.37 - C105H190O47Si 

40 2236.40 2237.5 2241.40 - C107H194O48Si 

41 2280.43 2281.6 2285.43 - C109H198O49Si 
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t-Butyl dimethylsilyl polyethylene glycol PEG 600 (22c) 

 

O
SiHO
n

PEG 600  
 

General procedure VII 

 

DMT and TBDMS protected PEG 600 21c (6.3 g, 6.26 mmol) were dissolved in 143.3 mL 

3% TCA in DCE. The reaction mixture was stirred for 5 min at r.t. before it was quenched by 

200 mL saturated NaHCO3 solution and extracted with 250 mL DCM. The combined organic 

layers were washed with brine (2 x 120 mL), dried over Na2SO4 and the solvent removed 

under reduced pressure. The crude product was purified by column chromatography (gradient 

EtOAc : MeOH 98 : 2, EtOAc : MeOH : CH2Cl2 77 : 15 : 8) on silica to afford a pale yellow 

oil (2.2 g, 50%). 

 
1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 3.58 (m, PEG CH2), 2.82 (s, 1H, OH), 0.90 (s, 

9H, C(CH3)3), 0.07 (s, 6H, Si(CH3)2). 
13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 72.26 (PEG CH2), 64.54 (PEG CH2), 27.30 

(3C, C(CH3)3), 19.87 (1C, C(CH3)3), -4.06 (2C, Si(CH3)2). 

MALDI MS: m/z 683.5 [M+Na]+ (calculated for C30H64O13Si+Na]+ 683.40), m/z 699.5 

[M+K]+ (calculated for [C30H64O13Si+K]+ 699.51). 

 

n 
Calculated 

[M+Na]+ 

Found 

[M+Na]+ 

Calculated 

[M+K]+ 

Found 

[M+K]+ Formula 

8 507.28 507.3 523.39 523.3 C22H46O9Si 

9 551.31 551.3 567.42 567.3 C24H50O10Si 

10 595.34 595.4 611.45 611.4 C26H54O11Si 

11 639.37 639.5 655.48 655.4 C28H60O12Si 

12 683.40 683.5 699.51 699.5 C30H64O13Si 

13 727.43 727.5 743.54 743.5 C32H68O14Si 

14 771.46 771.6 787.57 787.5 C34H72O15Si 

15 815.49 815.6 - - C36H76O16Si 
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t-Butyl dimethylsilyl polyethylene glycol PEG 600 (22d) 

 

 
 

Compound 22d was synthesized by deprotecting DMT and TBDMS protected PEG 600 21d 

(2.6 g, 1.5 mmol) with 34 mL 3% TCA in DCE for 7.5 min and quenched by 45 mL saturated 

NaHCO3 solution and extracted with 55 mL DCM. The combined organic layers were washed 

with brine (45 mL), dried over Na2SO4 and the solvent removed under reduced pressure. The 

crude product was purified by column chromatography (gradient EtOAc : MeOH 98 : 2, 

EtOH : CH2Cl2 1 : 1) on silica to afford a white solid (1.7 g, 78 %). 

 
1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 3.58 (m, PEG CH2), 2.80 (s, 1H, OH), 0.90 (s, 

9H, C(CH3)3), 0.07 (s, 6H, Si(CH3)2). 
13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 70.6 (PEG CH2), 61.3 (PEG CH2), 25.7 

(3C, C(CH3)3), 20.7 (1C, C(CH3)3), -4.07 (2C, Si(CH3)2). 

MALDI MS: m/z not observed [M+Na]+ (calculated for C70H144O32Si+Na]+ 1547.93), m/z 

1582.3 [M+ K+2H]+ (calculated for [C70H144O32S+ K+2H]+ 1582.03). 
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n 
Calculated 

[M+K+2H]+ 

Found 

[M+K+2H]+ Formula 

20 1053.67 1053.8 C46H86 O20Si 

21 1097.7 1097.8 C48H100O21Si 

22 1141.73 1141.9 C50H104O22Si 

23 1185.76 1185.9 C52H108O23Si 

24 1229.79 1229.9 C54H112O24Si 

25 1273.82 1274.0 C56H116O25Si 

26 1317.85 1318.0 C58H120O26Si 

27 1361.88 1362.1 C60H124O27Si 

28 1405.91 1406.1 C62H128O28Si 

29 1449.94 1450.1 C64H132O29Si 

30 1493.97 1494.2 C66H136O30Si 

31 1538.00 1538.2 C68H140O31Si 

32 1582.03 1582.3 C70H144O32Si 

33 1626.06 1626.3 C72H148O33Si 

34 1670.09 1670.3 C74H152O34Si 

35 1714.12 1714.3 C76H156O35Si 

36 1758.15 1758.4 C78H160O36Si 

37 1802.18 1802.4 C80H164O37Si 

38 1846.21 1847.4 C82H170O38Si 

39 1890.24 1891.4 C84H174O39Si 

40 1934.27 1935.4 C86H178O40Si 

41 1978.30 1979.4 C88H182O41Si 

42 2022.33 2023.4 C90H186O42Si 

43 2066.36 2067.5 C92H190O43Si 

44 2110.39 2111.5 C94H194O44Si 

45 2154.42 2154.5 C96H198O45Si 
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t-Butyldimethylsilyl polyethylen glycol p-toluolsulfonat PEG 600 (23c) 

 

O
SiO
n

PEG 600

S
O

O

 
 

General procedure VIII 

 

TBDMS protected PEG 600 22c (1.7 g, 2.41 mmol) was coevaporated with toluene (3 x 50 

mL), dissolved under argon in 15 mL dry DCM. DMAP (14.7 mg, 0.12 mmol, 0.05 eq.) and 

trietylamine (1.2 mL, 7.23 mmol, 3 eq) were added, cooled down to 0°C in an ice/ water bath 

to add TsCl (0.51 g, 2.65 mmol, 1.1 eq.). The reaction mixture was allowed to warm up and 

stirred for 12 h at r.t.. The reaction mixture was diluted with 50 mL EtOAc, washed with 5% 

NaHCO3 (2 x 75 mL), H2O (2 x 50 mL) and brine (2 x 50 mL), dried over Na2SO4 and the 

solvent removed under reduced pressure to yield an pale yellow oil (1.8 g, 87%). 

 
1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 7.82 (d, J(H,H) = 8.4 Hz, 2H, Ar-H), 7.49 (d, 

J(H,H) = 8.0 Hz, 2H, Ar-H), 3.58 (m, PEG CH2), 2.46 (s, 3H, Ar-CH3), 0.89 (s, 9H, 

C(CH3)3), 0.07 (s, 6H, Si(CH3)2). 
13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 146.75 (1C, Ar-CH3), 135.34 (1C, Ar-SO2), 

131.82 (2C, Ar-H), 129.71 (2C, Ar-H), 72.23 (PEG CH2), 27.28 (3C, C(CH3)3), 22.53 (1C, 

Ar-CH3), 19.85 (1C, C(CH3)3), -4.07 (2C, Si(CH3)2). 

MALDI MS: m/z 837.4 [M+Na]+ (calculated for C37H70O15SSi+Na]+ 837.41), m/z 853.4 

[M+K]+ (calculated for [C37H70O15SSi+K]+ 853.52). 

 

n 
Calculated 

[M+Na]+ 

Found 

[M+Na]+ 

Calculated 

[M+K]+ 

Found 

[M+K]+ Formula 

9 705.32 705.3 721.43 721.3 C31H58O12SSi 

10 749.35 749.3 765.46 765.3 C33H62O13SSi 

11 793.38 793.4 809.49 809.3 C35H66O14SSi 

12 837.41 837.4 853.52 853.4 C37H70O15SSi 

13 881.44 881.4 897.55 897.4 C39H74O16SSi 

14 925.47 925.4 941.58 941.4 C41H78O17SSi 

15 969.50 969.4 - - C43H82O18SSi 
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t-Butyl dimethylsilyl polyethylene glycol p-toluenesulfonate PEG 1500 (23d) 

 

O
SiO
n

PEG 1500

Ts

 
 

Compound 23d was synthesized according to general procedure VIII from t-butyl 

dimethylsilyl polyethylene glycol PEG 1500 22d (1.7 g, 1.04 mmol) in 5.5 mL dry DCM, 

DMAP (6.3 mg, 0.052 mmol, 0.05 eq.) and TEA (0.44 mL, 3.12 mmol, 3 eq.). For the work 

up the reaction was diluted with EtOAc (25 mL) and washed with 5% NaHCO3 (2 x 35 mL), 

H2O (2 x 25 mL) and brine (2 x 25 mL) to yield a white solid (1.4 g, 75%). 

 
1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 7.82 (d, J(H,H) = 8.4 Hz, 2H, Ar-H), 7.49 (d, 

J(H,H) = 8.0 Hz, 2H, Ar-H), 3.59 (m, PEG CH2), 2.47 (s, 3H, Ar-CH3), 0.90 (s, 9H, 

C(CH3)3), 0.07 (s, 6H, Si(CH3)2). 
13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 146.7 (1C, Ar-CH3), 136.2 (1C, Ar-SO2), 

131.82 (2C, Ar-H), 129.71 (2C, Ar-H), 72.3 (PEG CH2), 70.3 (PEG CH2), 22.5 (3C, 

C(CH3)3), 22.50 (1C, Ar-CH3), 15.5 (1C, C(CH3)3), -4.07 (2C, Si(CH3)2). 

MALDI MS: m/z not observed [M+Na]+ (calculated for C77H150O35SSi+Na]+ 1695.06), m/z 

1709.2 [M+K]+ (calculated for [C37H70O15SSi+2 Li]+ 1709.09). 
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n 
Calculated 

[M+2Li]+ 

Found 

[M+2Li]+ Formula 

22 1268.79 1268.8 C57H110O25SSi 

23 1312.82 1312.8 C59H114O26SSi 

24 1356.85 1356.8 C61H118O27SSi 

25 1400.88 1400.9 C63H122O28SSi 

26 1444.91 1444.9 C65H126O29SSi 

27 1488.94 1489.0 C67H130O30SSi 

28 1532.97 1533.0 C69H134O31SSi 

29 1577.00 1577.1 C71H138O32SSi 

30 1621.03 1621.1 C73H142O33SSi 

31 1665.06 1665.1 C75H146O34SSi 

32 1709.09 1709.2 C77H150O35SSi 

33 1753.12 1753.2 C79 H154O36SSi 

34 1797.15 1797.3 C81H158O37SSi 

35 1841.18 1841.3 C83H162O38SSi 

36 1885.21 1885.3 C85H166O39SSi 

37 1929.24 1930.4 C87H170O40SSi 

38 1973.27 1973.4 C89H174O41SSi 

39 2017.30 2017.4 C91H178O42SSi 

40 2061.33 2067.3 C93H182O43SSi 

41 2105.36 2105.3 C95H186O44SSi 

42 2149.39 2155.3 C97H190O45SSi 

43 2193.42 2193.4 C99H194O46SSi 

44 2237.45 2243.4 C101H198O47SSi 
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TBDMS protected 2-(4-(5, 5-Diethyl-1, 3-dioxan-2-yl)phenoxy) polyethylene glycol PEG 

600 (24c) 

 

 

SiO

O

O
O

n

PEG 600  
 

General procedure IX 

 

Under argon 4-(5,5-diethyl-1,3-dioxan-2-yl)phenol 19 (0.68 g, 2.88 mmol, 1.8 eq.) were 

dissolved in 25 mL dry ACN and cooled in an ice/ water bath to 0°C. NaH (128 mg 60% in 

oil, 3.2 mmol, 2 eq.) were added and the reaction stirred for  10 min at 0 °C before allowing it 

to warm up to r.t. The reaction mixture was stirred for another 15 min at r.t. before t-butyl 

dimethylsilyl polyethylene glycol p-toluenesulfonate PEG 600 23d (1.4 g, 1.6 mmol), which 

had been coevaporated with toluene (3 x 20 mL) was added dropwise via a dropping funnel in 

50 mL dry ACN. The reaction mixture was stirred for 90 h and diluted with 100 mL DCM, 

washed with H2O (3 x 150 mL), 5% NaHCO3 (3 x 150 mL) and brine (3 x 150 mL), dried 

over Na2SO4 and the solvent removed under reduced pressure. The curd product was purified 

by column chromatography (gradient EtOAc : EtOH 8 : 2, DCM : EtOH 1 : 1, Rf = 0.48 

(Hexan : EtOH 8 : 2)) on silica to afford a pale yellow oil (0.9 g, 61%). 

 
1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 7.37 (d, J(H,H) = 8.7 Hz, 2H, Ar-H), 6.92 (d, 

J(H,H) = 8.8 Hz, 2H, Ar-H), 5.36 (s, 1H, CH), 3.57 (m, (PEGCH2+CH2O)), 1.80 (q, J(H,H) = 

7.6 Hz, 2H, CH2a), 1.15 (q, J(H,H) = 7.5 Hz, 2H, CH2b), 0.90 (s, 9H, C(CH3)3), 0.88 (t, 

J(H,H) = 7.6 Hz, 3H, CH3a), 0.81 (t, J(H,H) = 7.6 Hz, 3H, CH3b), 0.07 (s, 6H, Si(CH3)2). 
13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 161.08 (1C, Ar-O), 129.73 (1C, Ar-CH), 

129.39 (2C, Ar-H), 115.71 (2C, Ar-H), 103.45 (1C, Ar-CH), 76.14 (PEGCH2), 74.34 (11), 

72.26 (PEGCH2),  36.35 (1C, C), 27.30 (3C, C(CH3)3), 25.94 (2C, CH2O), 24.37 (1C, 

C(CH3)3), 7.91 (2C, CH3) -4.05 (2C, Si(CH3)2). 

MALDI MS: m/z 901.5 [M+Na]+ (calculated for C44H82O15Si+Na]+ 901.53), m/z 917.4 

[M+K]+ (calculated for [C44H82O15Si+K]+ 917.64). 
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n 
Calculated 

[M+Na]+ 

Found 

[M+Na]+ 

Calculate 

[M+K]+ 

Found 

[M+K]+ Formula 

9 769.44 769.4 - - C38H70O12Si 

10 813.47 813.4 - - C40H74O13Si 

11 857.50 857.5 873.61 873.4 C42H78O14Si 

12 901.53 901.5 917.64 917.4 C44H82O15Si 

13 945.56 945.5 961.67 961.5 C46H86O16Si 

14 989.59 989.5 - - C48H90O17Si 

15 1033.62 1033.5 - - C50H94O18Si 

 

TBDMS protected 2-(4-(5, 5-Diethyl-1, 3-dioxan-2-yl)phenoxy) polyethylene glycol PEG 

1500 (24d) 

 

TBDMSO

O

O
O

n

PEG 1500  
 

Compound 24d was synthesized according to general procedure IX from 4-(5,5-diethyl-1,3-

dioxan-2-yl)phenol 19 (130 mg, 0.55 mmol, 1.8 eq.) in 25 mL dry ACN, NaH (13 mg 60% in 

oil, 0.55 mmol, 1.1 eq.), t-butyl dimethylsilyl polyethylene glycol p-toluenesulfonate PEG 

1500 23d (1.4 g, 0.50 mmol)) in 12 mL dry ACN. The reaction mixture was stirred for 48 min 

and diluted with 50 mL DCM, washed with H2O (3 x 75 mL), 5% NaHCO3 (3 x 75 mL) and 

brine (3 x 75 mL), dried over Na2SO4 and the solvent removed under reduced pressure. The 

curd product was purified by column chromatography (gradient EtOAc : EtOH 8 : 2, DCM . 

EtOH 1 : 1) on silica to afford a white solid (0.9 g, 99%). 

 
1H NMR (300 MHz, (CD3)2CO, 295 K): δ = 7.28 (d, J(H,H) = 8.5 Hz, 2H, Ar-H), 6.81 (d, 

J(H,H) = 8.5 Hz, 2H, Ar-H), 5.62 (s, 1H, CH), (s, 1H), 3.59 (m, (PEGCH2+CH2O)), 1.80 (q, 

J(H,H) = 7.6 Hz, 2H, CH2a), 1.15 (q, J(H,H) = 7.6 Hz, 2H, CH2b), ), 0.90 (s, 9H, C(CH3)3), 

0.88 (t, J(H,H) = 7.6 Hz, 3 H, CH3a), 0.81 (t, J(H,H) = 7.6 Hz, 3 H CH3b), 0.07 (s, 6H, 

Si(CH3)2). 
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13C{1H} NMR (75 MHz, (CD3)2CO, 295 K): δ = 159.4 (1C, Ar-O), 131.7 (1C, Ar-CH), 

129.3 (2C, Ar-H), 116.3 (2C, Ar-H), 103.5 (1C, Ar-CH), 75.9 (PEGCH2), 72.1 (PEGCH2), 

36.2 (1C, C), 25.8 (3C, C(CH3)3), 24.2 (2C, CH2O), 22.4 (1C, C(CH3)3), 8.7 (2C, CH3) -4.05 

(2C, Si(CH3)2). 

MALDI MS: m/z 1758.1 [M]+ (calculated for C84H162O35Si]+ 1759.18), m/z 1774.4 [M+2Li]+ 

(calculated for [C84H82O15Si+2Li]+ 1773.22), m/z 1780.5 [M+Na]+ (calculated for 

[C44H82O15Si+Na]+ 1782.18). 

 

n 
Calculated 

[M]+ 

Found 

[M]+ 

Calculated

[M+2Li]+ 

Found 

[M+2Li]+ 

Calculated

[M+Na]+ 

Found 

[M+Na]+ Formula 

20 1230.82 1229.9 1244.86 - 1253.82 1251.9 C60H114O23Si 

21 1274.85 1273.9 1288.89 - 1297.85 1295.9 C62H118O24Si 

22 1318.88 1317.9 1332.92 - 1341.88 1339.9 C64H122O25Si 

23 1362.91 1362.0 1376.95 - 1385.91 1384.0 C66H126O26Si 

24 1406.94 1406.0 1420.98 - 1429.94 1428.0 C68H130O27Si 

25 1450.97 1450.1 1465.01 - 1473.97 1472.1 C70H134O28Si 

26 1495.00 1494.1 1509.04 1510.1 1518.00 1516.2 C72H138O29Si 

27 1539.03 1538.1 1553.07 1554.1 1562.03 1560.3 C74H142O30Si 

28 1583.06 1582.2 1597.10 1599.2 1606.06 1604.3 C76H146O31Si 

29 1627.09 1626.3 1641.13 1642.3 1650.09 1648.3 C78H150O32Si 

30 1671.12 1670.3 1685.16 1686.3 1694.12 1692.4 C80H154O33Si 

31 1715.15 1714.3 1729.19 1730.4 1738.15 1736.4 C82H158O34Si 

32 1759.18 1758.1 1773.22 1774.4 1782.18 1780.5 C84H162O35Si 

33 1803.21 1802.4 1817.25 1819.4 1826.21 1824.5 C86H166O36Si 

34 1847.24 1846.5 1861.28 1868.5 1870.24 1868.5 C88H170O37Si 

35 1891.27 1890.5 1905.31 1906.6 1914.27 1912.6 C90H174O38Si 

36 1935.30 1934.6 1949.34 1951.6 1958.30 1956.6 C92H178O39Si 

37 1979.33 1978.6 1993.37 1995.6 2002.33 1998.6 C94H182O40Si 

38 2023.36 2022.7 2037.40 2039.7 2046.36 2043.7 C96H186O41Si 

39 2067.39 2066.7 2081.43 2083.7 2090.39 2087.2 C98H190O42Si 

40 2111.42 2107.8 2125.46 2127.7 2134.42 2130.7 C100H194O43Si 

41 2155.45 2151.8 2169.49 2171.7 2178.45 2175.8 C102H198O44Si 

42 2199.48 2195.8 2213.52 2215.7 2222.48 - C104H202O45Si 

43 2243.51 2239.9 2257.55 2259.8 2266.51 - C106H206O46Si 

44 2287.54 2283.9 2301.58 2303.8 2310.54 - C108H210O47Si 
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Deprotection of 2-(4-(5, 5-Diethyl-1, 3-dioxan-2-yl)phenoxy) polyethylene glycol (25c / d) 

 

Procedure A 

 

2-(4-(5, 5-Diethyl-1, 3-dioxan-2-yl)phenoxy) polyethylene glycol 25c/d (0.9g, 0.59 mmol) 

was stirred in 1 M TBAF in THF (1.18 mL, 1.18 mmol, 2 eq.) for 1 h at r.t. and evaporated to 

dryness. The crude product was purified with column chromatography (gradient EtOAc : 

EtOH 8 : 2, DCM : EtOH 1 : 1) on silica followed by ion exchange column to exchange TBA+ 

against Na+ ions, followed by an other column chromatography (gradient EtOAc : Hex : DCM 

7 : 2 : 1, DCM : EtOH 1 : 1). MALDI-TOF analysis revealed that the product had only 

partially been deprotected. 

 

Procedure B 

 

2-(4-(5, 5-Diethyl-1, 3-dioxan-2-yl)phenoxy) polyethylene glycol 25c/d (20 mg, 0.013 mmol) 

was stirred with 3 HF x TEA (32 μL, 0.320 mmol), 0.6 mL THF and 0.1 mL TEA for 24 h. 

The reaction mixture was diluted with 15 mL EtOAc (15 ml) washed with saturated NaHCO3-

solution (3 x 25 mL) dried over Na2SO4 and the solvent removed under reduced pressure. 

MALDI-TOF MS analysis confirmed that the product had only partially been deprotected. 



Experimental section 

 161

6.4 Synthetic procedures for compounds chapter 4 
 

N-Pentylmaleimide (31b) 

 

 
 

General procedure X 

 

N-Pentylamine 30b (6.7 mL, 57.48 mmol) and maleic anhydride 29 (6.2 g, 63.23 mmol 1.1 

eq.) were suspended in 320 mL toluene and stirred at 30°C for 1h. Hexamethyldisilazane 

(HMDS) (10.58 mL, 86.22 mmol, 1.5 eq.) in 35 mL toluene and ZnBr2 (14.24 g, 63.23 mmol, 

1.1eq.) were added and the reaction mixture refluxed for 3 h. The heating source was removed 

and the mixture stirred over night. The reaction mixture was poured into 150 mL 0.5 M HCl. 

The organic layer was separated and the aqueous phase was re-extracted with EtOAc ( 2x 170 

mL). The combined organic layers were washed with saturated NaHCO3 (2 x 170 mL) and 

brine (2 x 170 mL), dried over Na2SO4 and the solvent was removed under reduced pressure. 

The crude product was purified by column chromatography (DCM : MeOH 99 : 1, Rf = 0.68) 

on silica to afford a slightly brown crystalline solid (7.88 g, 82%). 

 

C9H13NO2 (167.09 g mol-1). 
1H NMR (300 MHz, CDCl3, 295 K): δ = 6.67 (s, 2 H, CH), 3.49 (t, J(H,H) = 7.5 Hz, 2H, 

NCH2), 1.58 (quint., J(H,H) = 7.5 Hz, 2H, CH2), 1.28 (m, 4H, CH2), 0.87 (t, J(H,H) = 7.2 Hz, 

2H, CH2). 
13C{1H} NMR (75 MHz, CDCl3, 295 K): δ = 170.85 (2C, CO), 134.08 (2C, CH), 37.86 (1C, 

CH2), 28.81 (1C, CH2), 28.17 (1C, CH2), 22.16 (1C, CH2), 13.88 (1C, CH3). 

HR-ESI MS: 168.1019 m/z [M]+ (calculated for [C9H13NO2]+ 167.09). 
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6-Maleimidocaproic acid (31c) 

 

N

O

O

OH

O

 
 

Analogue to general procedure X aminocaproic acid 31a (2.6 g, 20.4 mmol) and maleic 

anhydride 29 (2.2 g, 22.4 mmol 1.1 eq.), suspended in a mixture of 110 mL toluene and 60 

mL ACN were reacted with HMDS (3.75 mL, 30.6 mmol, 1.5 eq.) in 10 mL toluene and 

ZnBr2 (5 g, 22.4 mmol, 1.1eq.). Work up was carried out as described accept the aqueous 

phase was acidified with concentrated HCl before extraction. A white solid was obtained (3.5 

g, 74%). 

 

C10H13NO4 (211.08 g mol-1). 
1H NMR (300 MHz, CDCl3, 295 K): δ = 11.28 (s, 1H, OH), 6.67 (s, 2 H, CH), 3.49 (t, 

J(H,H) = 7.2 Hz, 2H, NCH2), 2.32 (t, J(H,H) = 7.5 Hz, 2H, CH2), 1.61 (m, 4H, CH2), 1.31 

(m, 2H, CH2). 
13C{1H} NMR (75 MHz, CDCl3, 295 K): δ = 179.33 (2C, COOH), 170.83 (2C, CO), 134.04 

(2C, CH), 37.56 (1C, CH2), 33.71 (1C, CH2), 28.13 (1C, CH2), 26.08 (1C, CH2), 24.06 (1C, 

CH3). 

HR-ESI MS: 210.0791 m/z [M] (calculated for [C10H13NO4] 211.08). 

 

Boc-protected 6-maleimidocaproic acid (32) 

 

 
 

6-Maleimidocaproic acid 31a (500 mg, 2.39 mmol) was dissolved in 30 mL acetonitrile and 

N-Ethyl-N′-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC-HCl) (504 mg, 2.63 

mmol, 1.1 eq.) and t-butyl carbazate (379 mg, 2.87 mmol, 1.2 eq.) were added and stirred 

over night. The reaction mixture was separated between EtOAc (25 mL) and 0.5 M HCl (25 

mL). The combined organic layers were washed with H2O (3 x 25 mL) and brine (3 x 25 mL), 

dried over Na2SO4 and the solvent removed under reduced pressure. The crude product was 
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purified by column chromatography (pure EtOAc, Rf = 0.7) on silica to afford a yellow oil 

(310 mg, 61%). 

 

C15H23N3O5 (325.16 g mol-1). 
1H NMR (300 MHz, CDCl3, 295 K): δ = 7.20 (s, 1H, NH), 6.67 (s, 2 H, CH), 6.46 (s, 1H, 

NH), 3.50 (t, J(H,H) = 7.2 Hz, 2H, NCH2), 2.21 (t, J(H,H) = 4.5 Hz, 2H, CH2), 1.79 (m, 2H, 

CH2), 1.60 (m, 2H, CH2), 1.47 (s, 9H, CH3), 1.35 (m, 2H, CH2). 
13C{1H} NMR (75 MHz, CDCl3, 295 K): δ = 172.14 (1C, CH2CONH), 170.84 (2C, CO), 

155.40 (1C, COC(CH3)3), 134.04 (2C, CH), 81.83 (1C, C(CH3)3), 37.50 (1C, CH2), 33.77 

(1C, CH2), 28.25 (1C, CH2), 28.14 (3C, CH3)3), 26.14 (1C, CH2), 24.51(1C, CH2). 

MALDI MS: m/z 348.0 [M]+ (calculated for [C15H23N3O5+Na]+ 348.15). 

 

6-Maleimidocaproic acid hydrazide (33) 

 

 
 

Boc-protected 6-maleimidocaproic acid hydrazide 32 (269 mg, 2.39 mmol) was dissolved in 

dichloromethane under semi dry conditions and cooled on an ice bath. TFA was added to a 

10% v/v and the reaction mixture was allowed to warm up to r.t., stirred for 17 h and 

evaporated to yield a yellow solid, the reaction could not be further purified and yielded the 

TFA salt, which has a molecular weight of 339.10 g mol-1 (395 mg, 93%). 

 

C10H15N3O3 (225.11 g mol-1). 
1H NMR (300 MHz, CDCl3, 295 K): δ = 9.18 (s, 1H, NH), 6.69 (s, 2 H, CH), 6.49 (s, 1H, 

NH), 3.51 (m, 2H, NCH2), 2.35 (m, 2H, CH2), 1.74 (m, 4H, CH2), 1.31 (m, 2H, CH2). 
13C{1H} NMR (75 MHz, CDCl3, 295 K): δ = 171.04 (1C, CH2CONH), 170.97 (2C, CO), 

134.09 (2C, CH), 37.32 (1C, CH2), 33.63 (1C, CH2), 27.83 (1C, CH2), 25.77 (1C, CH2), 

24.33(1C, CH2). 

MALDI MS: m/z 248.0 [M+Na]+ (calculated for [C15H23N3O5+Na]+ 248.10). 
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DY 649 as maleimidocaproic acid hydrazide (34) 

 

N
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O H
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A stock solution of 6-maleimidocaproic acid hydrazide was prepared in abs. DMF. 10 µL 6-

maleimidocaproic acid hydrazide (1.984 µmol, 2.0 eq.) of this solution were transferred into a 

solution of the DY 649 NHS ester (0.992 µmol) in 50 µL DMF. 1.38 µL trietylamine (9.92 

µmol, 10 eq.) were added and the reaction vial placed in a thermo shaker at 650 rpm at 25°C 

for 1 h. MALDI-TOF analysis showed that no reaction had taken place. 0.28 µL DIPEA (2.96 

µmol, 3 eq.) were added and the reaction incubated for additional 36 h at 25°C. The progress 

of the reaction was monitored by MALDI-TOF analysis. After 36 h most of the product had 

reacted but starting material could still be observed as well as some hydrolysis product of the 

dye. The reaction was evaporated and purified by semi-preparative HPLC chromatography. 

The integrity of the dye was only determined by HPLC and mass analysis, because the 

reaction was only performed in mg scale. 

 

C45H54N5O16S4
3- (1049.20 g mol-1). 

MS HR-ESI: m/z 1049.2528 [M]+ (calculated for [C45H54N5O16S4
3-]+ 1049.20), m/z 

1071.2352 [M+K]+ (calculated for [C45H54N5O16S4
3-+Na]+ 1072.19). 

HPLC: Phenomenex® Luna 5 μm C18 (4.6 × 250 mm), 1 mL/min, 25 °C, tR = 8 min, λ local 

max 256 nm. 

 

 

 

Time [min] Acetonitrile [%] 

0 5 

25 40 

30 100 

35 100 
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ATEG-(β-cyanoethyl-N, N-diisopropylphosphoramidite) (27a) 

 

O
O

4
P

O

N
NC

 
 

General procedure XI 

 

ATEG
 
(190 mg, 0.40 mmol) was suspended in 3 mL of dichloromethan

 
under argon and ethyl 

diisopropylamine (224 µL, 1.28 mmol, 3 eq.) were added. The mixture was cooled to 0ºC in 

an ice /water bath before addition of 2-cyanoethyl-N,N-diisopropylchlorophosphoramidite (93 

µL, 0.42 mmol, 1.04 eq.). The reaction mixture was stirred for 1 h, during which the 

temperature was slowly raised to r.t. and followed closely by TLC. After about 1 h the 

reaction mixture was directly submitted to column chromatography (pure EtOAc, Rf = 0.4) 

afford afforded the clean product as yellow oil (178 mg, 71%). 

 

C32H45N2O6P (584.31 g mol-1). 
1H NMR (500 MHz, CDCl3, 295 K): δ = 8.43 (m, 3H, Ar-H), 8.01 (m, 2H, Ar-H), 7.53 (m, 

2H, Ar-H), 7.47 (m, 2H, Ar-H), 5.55 (s, 2H, CH2Ar), 3.80-6.62 (m, 22H, PEG CH2, CH2 and 

CH), 1.16 (m, 12 H, CH3). 
31P NMR (500 MHz, CDCl3, 295 K): δ = 148.48 (s). 

MALDI MS: m/z 623.3 [M+K]+ (calculated for [C32H45N2O6P +K]+ 623.47). 
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AHEG-(β-cyanoethyl-N, N-diisopropylphosphoramidite)  

 

O
O

6
P

O

N
NC

 
Compound 27b was synthesize according to general procedure XI AHEG

 
(260 mg, 0.55 

mmol), ethyl diisopropylamine (290 µL, 1.65 mmol, 3 eq.) and 2-cyanoethyl-N,N-

diisopropylchlorophosphoramidite (150 µL, 0.66 mmol, 1.2 eq.) to yield a clean product after 

column chromatography (pure EtOAc, Rf = 0.7) as yellow oil (309 mg, 84%). 

 

C36H53N2O8P (672.47 g mol-1). 
1H NMR (500 MHz, CDCl3, 295 K): δ = 8.43 (t, J(H,H) = 6.6 Hz, 3H, Ar-H), 8.00 (d, J(H,H) 

= 5.6 Hz, 2H, Ar-H), 7.54 (m, 2H, Ar-H), 7.47 (m, 2H, Ar-H), 5.55 (s, 2H, CH2Ar), 3.80-

6.61 (m, 22H, PEG CH2, CH2 and CH), 1.17 (m, 12 H, CH3). 
13C{1H} NMR (75 MHz, CDCl3, 295 K): δ = 172.14 (1C, CH2CONH), 170.84 (2C, CO), 

155.40 (1C, COC(CH3)3), 134.04 (2C, CH), 81.83 (1C, C(CH3)3), 37.50 (1C, CH2), 33.77 

(1C, CH2), 28.25 (1C, CH2), 28.14 (3C, CH3)3), 26.14 (1C, CH2), 24.51(1C, CH2). 
31P NMR (500 MHz, CDCl3, 295 K): δ = 148.48 (s). 

MALDI MS: m/z 673.4 [M+1]+ (calculated for [C36H53N2O8P+1]+ 673.41), m/z 695.4 

[M+Na]+ (calculated for [C36H53N2O8P+Na]+ 695.41). 

 

Addition-product tris(2-carboxyethyl)phosphine  and N-pentylmaleimide (35a/b) 

 

P

OH

OH

HO

O

O

O N

O

O

D
H

H
P

OH

OH

HO

O

O

O N

O

O

HH

H

a b

Cl Cl
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Tris(2-carboxyethyl)phosphine hydrochloride (17.15 mg, 59.85 µmol) was dissolved in 1 mL 

water, respectively deuterium oxide and N-pentylmaleimide (10 mg, 59.85 µmol) was added, 

vortexed well and placed in a thermo shaker for 1 h at 25°C and 650 rpm, to best mimic the 

reaction conditions in the labeling reaction. The reaction in water was lyophilized and 

dissolved in deuterium oxide for NMR analysis, while from the reaction in D2O 700 µL were 

directly submitted to NMR analysis. The remaining reaction mixture was lyophilized and 

submitted to mass analysis.  

 

35a: 

C18H29NO8P (418.16 g mol-1). 
1H NMR (500 MHz, D2O, 295 K): δ = 3.55 (t, J(H,H) = 7.0 Hz, 3H, CH2N), 3.37 (m, 1H, 

CHP), 2.89 (m, 14H, CH2), 1.57 (quint., J(H,H) = 7.5 Hz, 2H, CH2), 1.29 (m, 4 H, CH2), 0.87 

(t, J(H,H) = 7.5 Hz, 3H, CH3). 
13C{1H} NMR (75 MHz, D2O, 295 K): δ = 176.17 (1C, COOH), 174.23 (1C, CO), 173.14 

(1C, CO), 39.96 (1C, CH2), 29.31 (1C, CH), 26.18 (1C, CH2), 25.93 (1C, CH2), 25.90 (1C, 

CH2), 21.44 (1C, CH2), 14.62 (1C, CH2), 14.22 (1C, CH2), 13.07 (1C, CH3). 
31P NMR (500 MHz, D2O, 295 K): δ = 39.12 (s). 

HR-ESI MS: 418.1550 m/z [M] (calculated for [C18H29NO8P] 418.1625). 

 

35b: 

C18H28DNO8P (419.17 g mol-1). 
1H NMR (500 MHz, D2O, 295 K): δ = 3.55 (t, J(H,H) = 7.0 Hz, 3H, CH2N), 3.37 (m, 1H, 

CHP), 2.87 (m, 14H, CH2), 1.57 (quint., J(H,H) = 7.5 Hz, 2H, CH2), 1.29 (m, 4 H, CH2), 0.87 

(t, J(H,H) = 7.5 Hz, 3H, CH3), 
13C{1H} NMR (75 MHz, D2O, 295 K): δ = 176.17 (1C, COOH), 174.21 (1C, CO), 173.15 

(1C, CO), 39.96 (1C, CH2), 28.25 (1C, CH), 26.19 (1C, CH2), 25.91 (1C, CH2), 25.88 (1C, 

CH2), 21.44 (1C, CH2), 14.61 (1C, CH2), 14.21 (1C, CH2), 13.07 (1C, CH3). 
31P NMR (500 MHz, D2O, 295 K): δ = 39.12 (s). 

HR-ESI MS: 419.1611 m/z [M] (calculated for [C18H28DNO8P] 419.1688). 
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6.5 Oligonucleotides, buffers and material 
 

Oligonucleotides 

 

Oligonucleotides were either synthesized by automated solid-phase synthesis on an Expedite 

8909 automated synthesizer by Applied Biosystems or ordered from IBA (Goettingen, 

Germany), NOXXON (Berlin, Germany), Eurofins MWG Operon (Ebersberg, Germany) or 

CSS – Chemical Synthesis Services (East Lothian, Scottland). 

Purchased oligonucleotides were HPLC purified and in case of the 49mer Diels-Alderase 

ribozyme desalted. 

 

49 nt Ribozyme: 

wt 
5’- GGA GCU CGC UUC GGC GAG GCC GUG CCA GCU CUU CGG AGC AAU ACU CGG C -3’ 

Mutants 
5’- GGA GCU CGC UUC GGC GAG GCC GUG CCA GCU CUU CGG AGC AAC ACU CGG C -3’ 

5’- GGA GCU CGC UUC GGC GAG GCC GUG CCA GCU CUU CGG AGC AAiC ACU CGG C -3’ 

 

49 nt Ribozym as bipartite system: 

38 nt: 5’- GGG CGA GGC CGU GCC AGC UCUUCGGAGCAAUACUCGGC -3’ 

11 nt: 5’- GGA GCU CGC CC -3’ 

11 nt modified: 
5’- AHEG-GGA GCU CGC CC -3’ 

 

Primers: 

Primer A 
5'-TCT AAT ACG ACT CAC TAT AGG AGC TCA GCC TTC ACT GC -3’ 

Primer B 
5'-GTG GAT CCG ACC GTG GTG CC -3’ 

 

109 nt ssDNA pool with randomized 70 nt region 
5'-GGA GCT CAG CCT TCA CTG C- N70-GGC ACC ACG GTC GGA TCC AC-3' 
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128 nt dsDNA pool with randomized 70 nt region and promoter region 
5'- TCT AAT ACG ACT CAC TAT AGG GGA GCT CAG CCT TCA CTG C- N70-GGC ACC ACG GTC 

GGA TCC AC-3' 

 

25 nt sense 
5’- TCT AAT ACG ACT CAC TAT AGG AGC TCA GCC TAC GAG CCT GAG CC-3’ 

25 nt antisense 
5’- GGC TCA GGC TCG TAG GCT GAG CTC CTA TAG TGA GTC GTA TTA GA-3’ 

Transcript 
5’-GG AGC UCA GCC UAC GAG CCU GAG CC-3’ 

 

19 nt sense 
5´ - GGA GCT CAG CCT TCA CTG C -3’ 

19 nt antisense 
5´ -GCA GTG AAG GCT GAG CTC C -3’ 

Modified 19 nt 
5´ AHEG-GGA GCT CAG CCT TCA CTG C-3’ 

5´ SH C6- GGA GCT CAG CCT TCA CTG C -3’ 

 

15 nt sense 
5´ -GTA CAG TCT GAA GTG-3’ 

15 nt antisense 
5´ -CAC TTC AGA CTG TAC-3’ 

Modified 15 nt 
5´ AHEG-GTA CAG TCT GAA GTG-3’ 

5´ ATEG-GTA CAG TCT GAA GTG-3’ 

5´ SH C6 -GTA CAG TCT GAA GTG-3’ 

5´ AHEG-GTA CAG TCT GAA GTG- SH C3 3’ 
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Standard buffers 

 
Diels-Alderase buffer 30 mM Tris HCl pH 7.4 

 300 mM NaCl 

 80 mM MgCl2 

  

Transcription buffer 40 mM Tris HCl pH 8.1 

 22 mM MgCl2 

 1 mM Spermidine 

  0.01 % Triton X-100 

  

Buffer A 0.1 M TEAA pH 7.0 

  

Buffer B 0.1 M TEAA pH 7.0 

 80% ACN 

  

Caccodylate buffer 50 mM Sodium Cacodylate pH 7.5 

  

Loading buffer denaturating standard 90% Formamide 

 9.8% TBE 

 0.1% Xylencyanol 

 0.1% Bromphenol blue 

  

Stopmix standard 100 mM β-Mercaptoethanol 

 20 mM EDTA 

 80% Formamide 

 

 

Enzymes 

 
T7 RNA polymerase  In-house 

T4 Polynucleotide Kinase (T4 PNK) Fermentas, St. Leon-Rot 

T4 RNA Ligase Fermentas, St. Leon-Rot 

BioTherm DNA-Polymeras, 5 u / µl Rapidozym, Berlin 

dNTPs Rapidozym, Berlin 

radioactive nucleotides Hartmann Analytic, Braunschweig 
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Standard reagents 

 
UltraPure™ Agarose Invitrogen, Karlsruhe 

High resolution Agarose Invitrogen, Karlsruhe 

Ethidium bromide solution  Carl-Roth, Karlsruhe 

SYBR®Gold  Molecular Probes®, Invitorgen,  

GeneRuler™ 100 bp DNA Ladder Fermentas, St. Leon-Rot 

GeneRuler™ Ultra Low Range DNA Ladder Fermentas, St. Leon-Rot 

Rotiphorese® Ready-to-Use Gel Solutions  Carl Roth, Karlsruhe 

 

 

Kits and devices 

 
DyeEx 2.0 Spin Kit 250  Qiagen, Hilden 

Eppendorf tubes siliconized Carl Roth, Karlsruhe 

Filtertips  Sarstedt, Nümbrecht 

Greiner tubes  Greiner Bio-One, Frickenhausen 

Nanaosep® MF Centrifugal Devices PALL® Life Science 

NAP columns Sephadex G-25 GE Healthcare 

PCR tubes  Thermo Scientific, Schwerte 

PCR wells Thermo Scientific, Schwerte 

QIAquick PCR Purification Kit  Qiagen, Hilden 

RNeasy MinElute Cleanup Kit Qiagen, Hilden 

TranscriptAid™ T7 High Yield Transcription Kit Fermentas, St. Leon-Rot 

ZipTip Millipore, Schwalbach 
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Instruments 

 
Analytical balance  AX 204 and B3001-S Mettler Toledo 

Centrifuges  Eppendorf 5804 R and Mikro 120 Hettich 

Electrophoresis chamber  GIBCO BRL Sequencing System  

Freeze dryer  BenchTop K Series,VirTis Ismatec 

Gel Documentation equipment  AlphaImagerTM 2200 Alpha Innotech 

Flourescence spectrometer Jasco 

HPLC  Agilent 1100 Series 

HPLC Columns Luna C18, 5 μm, 4.6 250 mm and 15.0×250 mm 

IntelliFlash 310 Varian 

Mass Spectrometer MALDI-TOF Bruker BIFLEX III 

 FAB and EI JEOL JMS-700 

 Bruker MicroTOF-QII 

 LIFDI JEOL JMS-700 magnectic sector 

Minicentrifuges Kiesker 

NMR Spectrometer  Mercury Plus 300, Varian VNMR S 500 

pH-Meter  MP 220 Mettler Toledo 

Phosphorimager  Typhoon 9400 Amersham Biosciences 

Pipettes Abimed  P2, P20, P200, P1000 

Scintillation counter  Beckman LS 6500 

Speed vac Univapo 100 ECH 

Syntheziser  Applied Biosystems ExpediteTM 8909 

Syringe filters PTFE 13 mm, 0.2 μm, Carl Roth 

Thermomixer  Eppendorf, Thermomixer 5436 

Ultrapure Water Purification System Milli-Q, Millipore 

UV Cuvettes Quarzglas  HELLMA 

UV-Lamp 254 nm  Benda NU-8 KL 

UV-Transilluminator  254 nm, 300 × 200 mm Carl Roth 

UV/VIS Spectrophotometer Ultrospac 2100 pro Amersham 

 NanoDrop ND-1000 Peqlab Biotechnologie 

 Cary 100 Bio Varian 
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6.6 List of Abbreviations 
 
A  Adenosine; Peak area 

Å  Ångström 

A260  Absorbance at 260 nm 

Ac  Acetyl 

ACN   Acetonitrile 

AHEG  9-anthracenylmethyl hexaethylene glycol 

APS  Ammonium persulfate 

ATEG  9-anthracenylmethyl tetraethylene glycol 

ATP   Adenosine-5'-triphosphate 

Boc  tert-butyloxycarbonyl 

br  Broad (IR) 

BSA  Bovine serum albumin 

Bu  Butyl 

c  Concentration 

C   Cytidine 

cDNA   Complementary DNA 

CEP-Cl   2-Cyanoethyl diisopropylphosphoramidochloridite 

Ci   Curie; 1Ci = 37 MBq 

CPG   Controlled pore glass 

cpm  Counts per minute (radioactive decay) 

CTP  Cytidine-5'-triphosphate 

Cy3/5  Cyanine 3/5 

d   Doublet (NMR) 

DAD  Diode array detector 

DCI  4,5-Dicyanoimidazole 

DCM   Dichloromethane 

DEA   Diethylamine 

DIPA  Diisopropylamine 

DMAP   4-(Dimethylamino)pyridine 

DMF   N,N’-Dimethylformamide 

DMSO   Dimethyl sulfoxide 

DMT   4,4’-Dimethoxytrytil 

DNA   Deoxyribonucleic acid 

dNTP  Deoxynucleoside 5'-triphosphate 

ds  Double stranded 

DTT  dithiothreitol 

EA   Ethyl acetate 

EDC-HCl  N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 
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EDTA   Ethylenediaminetetraacetic acid 

EI   Electron impact 

EPR  Electron paramagnetic resonance 

equiv   Equivalent 

ESI   Electro spray ionization 

EtBr  Ethidium bromide 

EtOH   Ethanol 

FAB   Fast atomic bombardment 

FAD  Fluorescence array detector 

FRET  Förster resonance energy transfer 

FT-ICR   Fourier-transform ion cyclotron resonance 

FW  Formula weight (Molecular weight) 

g   Gram 

G   Guanosine 

GMP  Guanosine-5'-monophosphate 

GTP  Guanosine-5'-triphosphate 

h  Hour 

HEPES  4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid 

Hex   Hexane 

HOMO  Highest-energy occupied molecular orbital 

HPLC   High Performance Liquid Chromatography 

Hz  Hertz 

i  iso 

I   Light intensity 

I   Spin quantum number 

IR  Infrared 

J   Coupling constant 

K  Reaction rate constant 

l   Length of the light path 

L   Liter 

LIFDI  liquid injection field desorption ionization  

LUMO  lowest-energy unoccupied molecular orbital 

m  Multiplet (NMR), medium (IR), meter 

M   Mol/L; Molar 

m.p.  melting point 

M+   molecular ion (MS) 

mA  Milli Ampere 

MALDI-TOF  Matrix assisted laser desorption ionization time-of-flight 

MBq  Mega Becquerel 

Me   Methyl 

MHz  Megahertz 
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min   Minute 

mol  Mol 

MOPS  3-morpholinopropane-1-sulfonic acid (buffer) 

MS   Mass spectrometry 

n  Polyethylene glycol units 

n  stretching vibration 

NHS   N-hydroxysuccinimide, N-hydroxysuccinimidyl 

nm   Nanometer 

NMR   Nuclear magnetic resonance 

nt  Nucleotide 

NTP  Nucleoside 5'-triphosphate 

OD  Optical density 

ORN   Oligoribonucleotide 

ODN   Oligodeoxynucleotide 

PAGE   Polyacrylamide gel electrophoresis 

PBS  Phosphate buffered saline 

PCR   Polymerase chain reaction 

pCp  Cytidine 3',5'-bisphosphate 

PEG  polyethylene glycole 

PNA  Peptide nucleic acid 

PNK  Polynucleotide kinase 

ppm   Parts per million 

q  Quartet (NMR) 

quint.  Quintet (NMR) 

rel int  Relative intensity 

Rf   Retention factor (TLC) 

RNA   Ribonucleic acid 

RNAP  RNA polymerase 

rpm   Rotations per minute 

RT   Reverse transcription 

rt   Room temperature 

s  Singlet (NMR); strong (IR) 

SDS   Sodiumdodecyl sulfate 

sec   Second 

SELEX   Systematic evolution of ligands by exponential enrichment 

ss  Single stranded 

t, t  Triplet, tert 

T   Thymidine; Temperature 

TBAF  Tetra-n-butylammonium fluoride 

TAMRA  Tetramethyl-6-Carboxyrhodamine 

TBDMS-Cl   tert-butyldimethylsilyl chloride 
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TBE   Tris-borate-EDTA buffer 

TCA   Trichloroacetic acid 

TCEP  Tris(2-carboxyethyl)phosphine  

TEA   Triethylamine 

TEAA   Triethylammonium acetate 

TEMED  Tetramethylethylenediamine 

TFA   Trifluoroacetic acid 

THF   Tetrahydrofuran 

TLC   Thin layer chromatography 

Tm   Melting temperature (nucleic acids) 

TOCSY   Total correlated spectroscopy (NMR) 

tR   Retention time (HPLC) 

Tris   Trishydroxymethylaminomethane; 2-amino-2-hydroxymethyl-1,3-propanediol 

U   Uridine; Unit 

UTP  Uridine 5′-triphosphate 

UV   Ultraviolet 

V  Volt 

W  Watt 

w  Weak (IR) 

wt  Wild type 

δ  Chemical shift (NMR), bending vibration (IR) 

ε   Molar extinction coefficient 

λ   Wavelength 

λabs  Absorption maximum 

λem  Emission maximum 

λmax  Maximum absorption 

   

   

f  femto 

p  pico 

n  nano 

µ  micro 

m  milli 
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6.7 Appendix 
 

Thermal denaturation studies of the Diels-Alderase ribozyme 

 

 
Figure 40: Absorption of the wild-type at different MgCl2 concentrations respectively with EDTA. 

 

 
Figure 41: First derivative absorbance at 260 nm of the wild-type at different MgCl2 concentrations respectively 

with EDTA. 
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Figure 42: Absorption of the mutant U17C at different MgCl2 concentrations respectively with EDTA. 

 

 
Figure 43: First derivative absorbance at 260 nm of the mutant U17C at different MgCl2 concentrations 

respectively with EDTA. 
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Figure 44: Absorption of the mutant U17iC at different MgCl2 concentrations respectively with EDTA. 

 

 
Figure 45: First derivative absorbance at 260 nm of the mutant U17iC at different MgCl2 concentrations 

respectively with EDTA. 
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Bioorthogonal and orthogonal labeling of oligonucleotides 

 

 
Figure: Determination of the melting temperature of the modified 15mer oligonucleotides. Tm was measured in 

25 mM sodium cacodylate buffer pH 7.5 with 7.5 mM MgCl2. 
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