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ABSTRACT 

Oncolytic adenoviruses are promising candidates for treatment of various cancer entities with a 

favorable safety profile and therapeutic efficacy in individual cases. However, it has been 

neglected so far to investigate whether the observed varying efficacy in clinical trials could be 

due to differences in the cellular environment, between tumor cells and the virus’s natural host 

cells, which may influences successful virus replication. My aim was to analyze wild type 

adenovirus 5 infections in primary human bronchial epithelial cells and various tumor cells by 

microarray analysis in order to reveal pathways that differentially affect oncolytic adenovirus 

replication. Kinetics of early viral gene expression and DNA replication together with cytotoxicity 

assays showed that primary bronchial epithelial cells optimally supported adenovirus infection. 

In contrast, infection of the two melanoma cell lines SK-MEL-28 and Mel624 revealed delayed 

early viral gene expression and slower DNA replication and decreased cytotoxicity. Microarray 

analysis of these melanoma cells versus primary bronchial epithelial cells led to the 

identification of differentially expressed genes and activated cellular pathways. The most 

prominent one, called the G1/S-phase transition pathway, was strongly activated in the primary 

bronchial epithelial cells but not in melanoma. The data helped to develop a strategy which 

enhanced viral replication in SK-MEL-28 cells by combining chemotherapy using temozolomide 

and viral oncolysis. 

Another aim of my work was to enhance therapeutic efficacy of oncolytic adenoviruses 

by combining viro- and antibody therapy. Therefore, I armed tumor-selective adenoviruses with 

a gene encoding a recombinant single-chain antibody directed against the well-established 

carcinoembryonic antigen. As effector domain the constant domain of immunoglobulin type G 

2a was selected which is able to mediate anti-tumor immune cell activation by antibody-

mediated cytotoxicity. First, different tools to facilitate efficient antibody production via the 

adenoviral major late promoter were compared, identifying an internal ribosomal entry site and 

a splice acceptor from the human adenovirus 40 as the most potent ones. Then, antibodies 

expressed after infection with recombinant adenoviruses were analyzed by Western Blot, ELISA, 

and flow cytometry. These assays demonstrated that the recombinantly produced antibodies 

were fully functional regarding their ability to bind the carcinoembryonic antigen in-vitro and on 

living tumor cells. 
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ZUSAMMENFASSUNG 

Die virale Onkolyse oder Virotherapie ist ein vielversprechender Ansatz zur Behandlung von 

Krebserkrankungen und wurde unter anderem klinisch getestet für onkolytische Adenoviren. 

Jedoch schwankt die therapeutische Wirksamkeit von Fall zu Fall, was daran liegen könnte, dass 

Krebszellen nicht die natürlichen Wirtszellen von Adenoviren sind. Ziel meiner Doktorarbeit war 

es Adenovirus 5 Infektionen in ihrem natürlichen Umfeld primärer Bronchialepithelzellen und 

verschiedener Krebszellen zu untersuchen, um Gene und zelluläre Signalwege zu finden, die 

einen Einfluss auf die adenovirale Replikation haben. Unter anderem konnte ich zeigen, dass in 

Bronchialepithelzellen die frühe virale Genexpression und DNA Replikation sehr schnell einsetzt, 

verbunden mit einer hohen Zytotoxizität. Dagegen war die frühe virale Genexpression als auch 

die DNA Replikation in zwei Melanomzelllinien stark verlangsamt, verbunden mit einer geringen 

Zytotoxizität. Genexpressionsanalysen mittels Microarray in infizierten Bronchialepithelzellen 

und jener Melanomzelllinien konnten zeigen, dass in den jeweiligen Zelltypen unterschiedliche 

Expressionsmuster einzelner Gene und zellulärer Signalwege vorlagen. Der am stärksten 

beeinflusste Signalweg reguliert den Eintritt in die S-Phase des Zellzyklus und war in den 

primären Bronchialepithelzellen aktiviert, aber nicht in den Melanomzelllinien. Anhand der 

Daten konnte eine Strategie zur verbesserten Onkolyse in einzelnen Melanomzelllinien 

entwickelt werden. Dafür wurden Adenovirus infizierte Melanomzellen zusätzlich mit dem 

Chemotherapeutikum Temozolomid behandelt. 

Ein weiteres Ziel meiner Arbeit war es, die Wirksamkeit onkolytischer Adenoviren durch 

die Expression von therapeutischen Antikörpern zu verbessern. Dafür habe ich tumor-

spezifische Adenoviren mit einem rekombinanten „single-chain“ Antikörper-Gen ausgerüstet. 

Die Antikörper erkennen das Tumor-assoziierte karzinoembryonale Antigen und verfügen 

außerdem über die Effektordomäne des Typ G Immunglobulins 2a, um eine Antikörper 

vermittelte Immunantwort gegen Krebszellen zu richten. Zuerst wurden verschiedene 

Expressionskonstrukte für eine optimale Antikörperproduktion mit dem adenoviralen „major 

late promoter“ getestet. Dabei wurden zwei effiziente Expressionskonstrukte identifziert, die 

sogenannte „internal ribosomal entry site“ und ein Spleiß-Akzeptor des humanen Adenovirus 

40. Anschließend wurden die rekombinant hergestellten Antikörper im Western Blot, ELISA und 

mittels Durchflusszytometrie auf ihre Funktionalität geprüft. Eine erfolgreiche Antikörper-

Antigen Reaktion konnte in-vitro als auch anhand lebender Tumorzellen gezeigt werden. 
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I INTRODUCTION 

1 History of cancer 

Cancer is a leading cause of death worldwide responsible for about eight million deaths in 2007 

according to the World Health Organization [1]. Furthermore, numbers are expected to rise to 

twelve million deaths by the year 2030, most of them occurring in countries with low or 

moderate income. The disease may affect any part of the human body and can be defined as 

abnormal growth of cells which eventually invade neighboring tissue or spread throughout the 

body, referred to as metastasis. Nevertheless, primary tumor sites are most frequently found in 

lung, stomach, liver, colon and breast depending on sex and age. 

Mankind has long been suffering from cancer which is evident in fossilized bone tumors, 

mummies, and ancient manuscripts. The oldest description of tumors dates back to about    

1550 B.C. and was discovered in an Egyptian papyrus believed to contain parts of a 3000 year 

old textbook on trauma surgery [2]. Despite the medical knowledge gained over centuries, it 

was not before the 19
th

 and early 20
th

 century that major breakthroughs in surgery were made 

allowing the resection of primary tumors. Along with the discovery of X-rays in 1895 and radium 

in 1898 [3], physicians experimented with radiation therapy which led to a cure for some 

inoperable cancers and established diagnostic imaging, additionally. Later during World War II, it 

was noted that soldiers exposed to mustard gas suffered from loss of white blood cells. Less 

toxic compounds like nitrogen mustard were discovered and found to be effective against lymph 

node cancers, which gradually led to the development of chemotherapy [4,5]. Over the 

following decades, considerable progress in cancer prevention and diagnosis has been made. 

Even so, the majority of malignancies nowadays remain refractory to current treatment 

regimens including various combinations of surgery, radiation, and chemotherapy. Moreover, 

established therapies often cause severe side-effects along with insufficient anti-tumor efficacy 

because they lack specificity for malignant cells. Especially disseminated tumors appear to be 

invincible due to incomplete eradication of the tumor burden and eventual re-growth resulting 

in unacceptable high mortality rates. Thus, there is a tremendous need for new, more effective 

but yet less toxic, treatment modalities to successfully fight cancer. 
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With the advent of molecular biology, our understanding of genes and proteins, as well 

as their regulation, synthesis, structure, and function within cellular networks has vastly 

improved. As a consequence, this knowledge helped scientists to identify and dissect molecular 

switches causative for diseases in humans, particularly for diseases with a complex etiology like 

cancer. Together with the rapidly developing fields of molecular techniques including 

recombinant DNA technology, therapeutic protein engineering, and pharmaceutical chemistry 

they often provide drug targets for novel, more specific and effective therapies. The last 

decades have witnessed several innovations which have found entry into clinical practice. 

Among them, therapeutic antibodies which bind to cell surface molecules aberrantly expressed 

on tumor cells, like the humanized monoclonal antibody Herceptin™ directed against the 

epithelial growth factor receptor 2 (HER2/neu) thereby mediating tumor cell death [6,7]. Lately, 

researchers and clinicians gained support from a yet unexpected side as several viruses, 

previously well known as causal agents for devastating diseases in humans, have emerged on 

the horizon as promising tools for cancer therapy. 

 

2 Gene therapy and viral oncolysis 

Upon the introduction of genetic engineering, scientists proposed a novel approach for the 

curative treatment of inherited genetic defects, which became known as gene therapy depicted 

in Figure 1. The idea is to replace a defective gene by implanting a functional one and thus 

correct mutations causing severe hereditary disorders. This requires the precise characterization 

of genetic malfunctions as well as the ability to engineer and introduce a correct gene copy into 

a target cell where it can be stably produced for an extended time. Regarding the gene transfer, 

several viruses are currently investigated as vectors. In general, viruses are intracellular 

parasites that depend on infection of a host cell to amplify and create progeny virions, referred 

to as the viral life cycle (see below). The viral particle basically consists of the viral genome, 

encoding regulatory and structural proteins, and an outer protein shell also known as capsid. 

This structure is typical for so-called naked viruses or enveloped viruses which have an 

additional lipid membrane surrounding the capsid. At the end of the viral life cycle, viral 

particles spontaneously assemble by packaging amplified viral genomes into newly synthesized 

capsids that are subsequently released from the infected cell. Since viruses have an inherent 
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ability to efficiently enter a cell and establish viral or, in case of gene therapy, therapeutic gene 

expression they are optimal tools for gene delivery [8]. Therefore, researchers usually engineer 

viruses devoid for their ability to replicate and cause toxic effects by replacing some essential or 

even all viral genes through a gene expression cassette containing the therapeutic gene of 

choice. Further, it is possible to exploit distinct properties of different viruses like adenoviruses 

that feature an episomal genome usually resulting in transient transgene expression or 

retroviruses that integrate their genome into the host cell's genome and provide long-term 

expression of a therapeutic gene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1|   comparison of gene- and virotherapy: in cancer gene therapy, replication-deficient viruses or 

non-viral tools are being exploited as vectors for transfer of therapeutic genes which replace essential 

viral genes (red, left panel). For virotherapy, viruses feature replication-competency that is restricted to 

tumor cells and allows virus replication and generation of progeny (green, right panel). Thus, the major 

difference between both approaches is that for cancer gene therapy either therapeutic proteins or RNAs 

have to be introduced in order to kill tumor cells whereas in virotherapy the oncolytic virus directly is the 

antitumoral agent. Modified from Dorer et al., Advanced Drug Delivery Reviews, 2009 [9]. 
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Such a gene correction approach, however, is probably not ideal for cancer therapy for 

two reasons. For one, cancer is a complex genetic disease resulting from the accumulation of 

multiple mutations and thus correction of single genes would most likely not provide a clinical 

benefit. Nevertheless, the Chinese Food and Drug administration approved Gendicine for the 

treatment of head and neck cancers in 2003 [10,11]. This drug represents a replication-deficient 

adenovirus containing the wild type tumor suppressor protein 53 (TP53) gene, one of the most 

frequently mutated genes in all cancers therefore known as the guardian of the genome [12,13]. 

A similar gene therapy approach from Introgen, called Advexin, was turned down by the United 

States Food and Drug administration in 2008 [14,15]. The second reason is that successful 

therapies need to eradicate all cancer cells in the patient’s body, but gene transfer into each 

cancer cell is technically extremely challenging if not impossible. In this regard, a promising 

approach is the transfer of genes encoding therapeutic proteins, which also affect the larger 

percentage of malignant cells that do not obtain the transgene, an activity called         

“bystander effect”. Ideally, this manifests in direct or indirect activation of a specific program 

which forces the cancer cell to commit suicide, known as programmed cell death or apoptosis. 

Examples are transgenes encoding secreted, apoptosis-inducing proteins such as human tumor 

necrosis factor related apoptosis-inducing ligand [16], stimulatory factors for systemic anti-

cancer immune activation such as granulocyte macrophage colony-stimulating factor [17], or 

genes encoding prodrug-activating enzymes like yeast cytosine deaminase able to convert a 

systemically applied non-hazardous drug precursor into its toxic form [18]. Genetic prodrug-

activation, if spatially restricted to tumors, should result in high local drug concentrations able 

to kill the tumor cells which otherwise cannot be reached by systemic application of the drug 

because of its limiting side-effects on healthy tissue. Since the mechanism of action for most of 

such therapeutic gene encoded proteins is not tumor-specific, targeted gene therapy must 

result from selective transfer/expression of the therapeutic gene [9]. Consequently, strategies 

to deliver the genetic payload to a target cell in a selective manner by a vector are pivotal for 

cancer gene therapy (refer to I, 3.3). 

Besides conventional gene therapy, recombinant viruses have been intensively 

investigated in the past two decades for yet another strategy of targeted cancer treatment, 

namely viral oncolysis (also termed virotherapy, Figure 1) [19]. Viral oncolysis can be defined as 

the killing of tumor cells by selective viral infection, replication, cell lysis, and spread of progeny 
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viruses in the tumor. Thus, as opposed to gene therapy where viruses are used as tools for gene 

transfer, the virus itself is the therapeutic agent. Anti-cancer activity of viruses has been 

investigated for almost 100 years [20]. The renaissance of this field in recent years resulted from 

advances in knowledge about the interplay between viruses and hosts on the molecular level, 

combined with the ability of genetic engineering in order to specifically tailor viruses for 

applications in viral oncolysis. A growing arsenal of different viruses, which feature differences 

in their natural tropism, lytic properties, pathogenicity, and opportunities for genetic 

engineering, has been investigated for this application [21-23]. 

 

3 Human adenoviruses and their application for cancer therapy 

Since the first isolation of more than 50 years ago by Rowe and Hilleman [24,25], many different 

variants of adenoviruses have been identified that are distinguished into four genera, of which 

the genus Mastadenovirus primarily infects mammals including humans. To date, more than    

50 serotypes of human adenoviruses (HAdV) have been identified and sub-grouped into species 

A to F based on their DNA sequence homology, serological profile, and hemagglutination 

properties [26]. Most of the HAdVs cause acute respiratory (species B1 and C), gastrointestinal 

(species A, F, and G), ocular (species D and E), or urinary tract (species B2) infections which 

usually are self-limiting [27]. However, they may also cause severe complications in 

immunocompromised individuals especially in patients receiving liver transplants [28]. During 

the 1960’s, researchers discovered that small DNA viruses including human adenoviruses can 

transform primary rodent cells in-vitro and induce tumors in rodents [29,30]. However, only 

cells that were transformed by species A or B adenoviruses were oncogenic in animals. In 

following studies, the event of transformation has been attributed to abortive infections of cells 

from non-host species and random genomic integration of viral DNA [31-33]. Moreover, the vast 

majority of primary human tumors lack any HAdV DNA suggesting that there is most likely no 

etiological link to cancer in humans [34]. In early stages of molecular biology research, 

adenoviruses have proven extremely useful as model system for revealing basic aspects of cell 

biology such as transcription initiation, messenger RNA (mRNA) splicing, and cell cycle 

regulation [35-37]. Overall, the HAdV serotypes 2 and 5 of the species C as well as oncolytic 

viruses derived from them are by far the most intensively characterized ones in terms of their 
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genome, structure, and biology and thus they serve as prototype for all other species. The 

following paragraphs focus on diverse aspects of their structure, life cycle, and use in cancer 

virotherapy. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2|   general structure & genome organization of human adenoviruses: A) electron micrograph 

(left) from a HAdV-5 capsid showing the triangular faces built of hexon trimers which constitute the 

icosahedral shell, antenna like fibers protrude from the vertices, bar = 50 nm. Diagram (right) shows the 

virus capsid composed by various major (hexon, penton and fiber) and minor structural proteins             

(VI and IX). Located inside is the viral DNA associated with the core proteins (V, VII, and µ) and the viral 

protease. The adenovirus genome is inside encapsidated by the core proteins. Modified from Flint’s 

“Principles of Virology”, second edition. B) schematic drawing of the linear HAdV-2 genome, which is 

identical to HAdV-5 regarding the genome organization. Black arrows depict conserved genes in all 

adenovirus genera, grey arrows show genes known to exist in more than one genus, and red arrows are 

unique for Mastadenoviruses. Modified from Harrach’s Encyclopedia of Virology, 2008. 
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3.1 Structure and genome organization 

Adenoviruses possess a double stranded, linear genome of about 36 kilo base pairs (kb) which is 

tightly associated with the core proteins V, VII and µ (see Figure 2) [38,39]. At each end of the 

viral genome inverted terminal repeats are located which are covalently joined to the terminal 

proteins. Furthermore, the viral genome is encased in an icosahedral protein capsid of about  

70-90 nm in diameter which is not covered by a lipid membrane. Hence, adenoviruses are 

classified as naked or non-enveloped viruses. The capsid consists of three major structural 

components, the hexon, penton, and fiber and some accessory minor capsid proteins [40]. The 

most abundant protein is the hexon forming 240 trimers that constitute twenty equilateral 

triangular faces converging into twelve vertices. At each vertex, a pentameric complex of 

penton base proteins is located. These complexes provide a scaffold for the antenna like fiber 

proteins which give adenoviruses their typical look. The fiber is a homotrimeric glycoprotein 

consisting of three domains, the tail which binds to the penton bases, a long flexible shaft and 

the knob domain. Both, penton and fiber proteins play important roles in cell binding and entry 

of the virus (refer to I, 3.2) [39]. 

The adenoviral genome is organized in several independent transcriptional units which 

are active in a timely defined cascade (see Figure 2). Upon infection the early genes (E1A, E1B, 

E2A, E2B, E3, and E4) are the first to be transcribed and expressed. Among them are several 

distinct E1A isoforms named 13S, 12S, 11S, 10S, and 9S according to their sedimentation 

coefficient measured by the Svedberg unit [41]. They mainly act as transcriptional activators on 

adenoviral and cellular genes but also fulfill various functions in repression of cellular genes, 

regulation of the cell cycle, and apoptosis [41-44]. The other early adenoviral genes encode 

mainly proteins needed for prevention of apoptosis (E1B), viral DNA replication (E2A, E2B, and 

E4), host cell protein synthesis shut off (E1B and E4), and suppression of the immune     

response (E3) as discussed in the next section. Moreover, four intermediate transcription units 

are known containing the IX gene, encoding a regulatory and minor capsid protein, as well as 

the IV2a gene which codes for an essential protein for packaging and capsid assembly [40,45]. 

Besides, two genes of the VA locus are transcribed into non-coding RNAs of approximately 200 

base pairs (bp) by the cellular RNA Polymerase III which act on mRNA translation and counteract 

the host defense [46,47]. With the onset of viral genome replication, the major late       
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promoter (MLP) drives expression of five late mRNA transcripts (L1, L2, L3, L4, and L5) 

resembling mostly diverse structural proteins like the penton, hexon, and fiber but also a few 

regulatory proteins like the L4-100k protein, all of which are alternatively spliced and 

polyadenylated [48,49]. 

 

3.2 Adenoviral life cycle 

The first step in adenovirus infection, schematically shown in Figure 3, is binding of the virus 

particle to its host cell. Therefore, the virus attaches to ubiquitously expressed cellular heparan 

sulfate proteoglycans (HSPG) which function as co-receptors [50,51]. Despite some controversy 

about the function, it was found that HAdV serotypes 2 and 5 possess a HSPG binding motif in 

the fiber shaft domain. Whereas many other serotypes, for example the HAdV-3 and HAdV-35, 

engage HSPGs either by the knob domain, the penton base, or a yet undefined binding            

site [52-54]. Subsequently, the virus keeps floating on the cellular surface until it comes in 

contact with its primary receptor. For most adenovirus serotypes including HAdV-5 this receptor 

is a transmembrane protein known as coxsackie adenovirus receptor (CAR), expressed in many 

human tissues including heart, lung, liver, and brain [55-57]. In contrast, species B adenoviruses 

lack a conserved CAR binding sequence in their fiber and were found to interact with the 

ubiquitously expressed cluster of differentiation (CD) molecule CD46 (species B1) or  

desmoglein-2 (species B2) [58,59]. Following interaction with CAR, cellular integrins bind to the 

penton base complex via an arginine-glycine-aspartate (RGD) motif found in all HAdV, except 

HAdV-40 and HAdV-41 [60,61]. This event triggers clathrin-dependent endocytosis of the 

adenovirus capsid and shedding of fiber proteins on the cell surface [62,63]. Inside the cell, the 

environment in early endosomes becomes acidic which leads to destabilization of the capsid 

structure and partial disassembly [62,64]. Thus, a predicted N-terminal amphipathic helix of the 

internal capsid protein VI is exposed and released, eventually, leading to membrane disruption 

and escape of the adenovirus capsid from the endosome [65]. Next, the metastable capsid is 

actively transported along microtubules towards the nuclear periphery where it docks onto the 

nuclear pore complex [66]. This event then leads to a complete disassembly of the capsid 

freeing the viral genome for import by the cellular machinery into the nucleus [67]. 
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Figure 3|   life cycle of human 

adenoviruses: upon binding of 

the HAdV-5 particle to the 

cellular CAR receptors (1), 

clathrin dependent endocytosis 

is triggered (2). Inside the cell, 

the capsid partially 

disassembles and escapes from 

acidic endosomes (3 and 4). 

Then, the viral genome is 

transported into the nucleus 

where the early gene E1A is 

transcribed (5). The E1A 

proteins in turn stimulate 

expression of further early 

genes and facility S-phase entry 

of the host cell (6-12). This 

leads to replication of the 

adenovirus DNA and expression 

of late structural genes (13 and 

15-18). Progeny virus particles 

spontaneously assemble inside 

the nucleus and are filled with 

virus genomes (19). Finally, 

mature progeny particles leave 

the nucleus via an unknown 

mechanism and are released 

from the cell through 

disruption of the outer cellular 

membrane, a process called 

lysis (20 and 21). Modified from 

Flint’s “Principles of Virology”, 

second edition. 

 

At this stage adenovirus infection is manifested through gradual expression and 

translation of the early genes. The most prominent one is the E1A gene which becomes 

differentially spliced to give rise to five distinct isoforms. The major variants 13S and 12S can be 

detected early on during infection and are the largest E1A proteins consisting of several 

conserved regions (CR) [41]. The smaller isoforms 11S, 10S, and 9S are expressed late during 

infection and their function is no fully understood yet. Whereas the 13S and 12S proteins share 

the CR1 and CR2 domain, they differ in the zinc finger containing CR3 domain required for 

transcriptional activation of adenoviral or cellular genes [42,43]. The latter is absent in the      
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12S isoform. Furthermore, the CR1 regions binds proteins involved in chromatin structure 

control like p300 or CREB binding protein (CBP) which are highly related and contain histone 

acetyl transferase activity. In uninfected cells, p300/CBP interact with several DNA-binding 

transcription factors and activate expression of cellular genes [68]. Thus, binding by E1A can 

either repress or redirect transcriptional activity of p300/CBP which is still a controversial     

topic [44,69]. However, it is clear that E1A/p300/CBP causes acetylation of retinoblastoma 

protein (pRB) and association with the murine double minute 2 (MDM2) protein homologue 

which consequently inhibits TP53 [70]. Most importantly, CR1 and CR2 fulfill essential functions 

in cell cycle stimulation and entry into the synthesis phase (S-phase) of infected cells where DNA 

replication occurs. This is a fundamental aspect as adenoviruses, like the majority of viruses, are 

obligate intracellular parasites and therefore they depend on the cellular replication machinery 

in order to amplify their genome and create infectious progeny virions. In quiescent cells, the 

hypophosphorylated retinoblastoma protein normally sequesters and keeps E2F transcription 

factors, bound to promoter sequences, inactive. Upon a mitogenic stimulus, like binding of 

growth factors to relevant cell surface receptors, cells start to express cyclins (overview              

in Figure 4) [71]. At the beginning of gap or growth phase 1 (G1-phase), the dominant family 

member is cyclin D (CCND) which binds to the cyclin dependent kinases (CDK) 4 and 6. In turn, 

the kinase activity leads to hyperphosphorylation of pRB. As a consequence, pRB undergoes a 

conformational change thereby E2F transcription factors, consisting of eight family members 

with activating and inhibiting properties, are released leading to expression of multiple cellular 

S-phase genes involved in cell cycle regulation, nucleotide metabolism, and DNA           

replication [37,72,73]. 

Two prominent examples are the cellular phosphatase cell division cycle 25 A  

homologue (CDC25A) and cyclin E (CCNE), which are necessary at late G1-phase to overcome a 

cellular restriction point and facilitate S-phase entry [74,75]. In S-phase, DNA replication occurs 

after which the cells reach the gap or growth phase 2 (G2-phase) and prepares to undergo cell 

division called mitosis (M-phase). During adenovirus infection, S-phase entry is triggered by 

binding of the 13S and 12S E1A proteins to hypophosphorylated pRB, mainly via the                 

CR2 domain, and subsequent displacement of E2F from the binding pocket through competition 

of CR1 [76,77]. In addition, the E2F transcription factors, first discovered as trans-activating 

factors for the adenoviral early gene E2 promoter, activate early viral gene expression [78]. The 
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latter is complemented through E4 open reading frame (ORF) 6/7-19k and E1A proteins [79-81]. 

Hence, due to the pleiotropic effects of the E1A proteins on cellular and viral promoters they are 

often referred to as master regulators of adenovirus infection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4|   interactions of viral early proteins with cellular host factors for cell cycle regulation: in 

quiescent cells, the retinoblastoma protein pRB is hypophosphorylated and sequesters E2F transcription 

factors. Upon a mitogenic stimulus, cyclins become expressed and associate with CDKs which in turn 

phosphorylate pRB. Consequently, E2F is released, stimulates expression of S-phase genes, and promotes 

G1/S-phase transition. Unscheduled S-phase entry normally triggers cell cycle arrest via the tumor TP53 

and p21
CIP/WAF

, activation of DNA repair, or apoptosis. During adenovirus infection, E1A disrupts pRB/E2F 

complexes leading to S-phase entry and viral DNA replication. The expression and catalytic activity of the 

phosphatase CDC25A is also enhanced. Further, E1A binds p300/CPB proteins leading to acetylation of 

pRB which inhibits TP53 through MDM2. Premature cell death is counteracted by the early E1B proteins 

either by direct degradation of TP53 (E1B together with E4-ORF6) or by inhibiting pro-apoptotic proteins 

and TP53 independent apoptotic signals (E1B-19k). Replication of linear viral DNA elicits a cellular DNA 

damage response. The relevant double strand repair complex MRN is destructed by concerted actions of 

the viral E4-ORF3, E4-ORF6 and E1B-55k proteins which prevent concatemeric ligation of viral DNA. 

Modified from Wong, Viruses, 2010 [71]. 
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Nevertheless, unscheduled S-phase entry would normally lead to accumulation of TP53 

and p21CIP/WAF, eventually resulting in cell cycle arrest and apoptosis (refer to Figure 4). 

Instead, expression of the adenoviral E1B and E4 genes prevents premature cell death by mainly 

two strategies. On the one hand the E1B-55k isoform and E4-ORF6 sequesters and degrades 

TP53 [82-84], thus repression of the cell cycle is relieved and transcription of pro-apoptotic 

genes is diminished. On the other hand the smaller E1B-19k isoform, a viral homologue to the 

cellular anti-apoptotic B cell lymphoma 2 protein (BCL2), is produced which additionally 

counteracts TP53 independent apoptotic signals [85,86]. Besides cell cycle regulation and 

prevention of apoptosis, HAdVs have evolved various countermeasures to divert the host anti-

viral immune response. Among them, two non-coding RNAs VAI and II are transcribed which 

form hairpin-loop like structures and inhibit the protein kinase R, a cellular sensor for viral 

infections [87]. In addition, the VAII RNA is required for efficient mRNA translation in late stages 

of adenovirus infection [46,47,88]. To counteract the innate and adaptive immune response, the 

early E3 genes are expressed. The glycoprotein E3-19k prevents viral antigen presentation via 

interaction with major histocompatibility complex I molecules [89]. This leads to endosomal 

retention of the complexes rather than transport to the cell surface where viral antigens would 

be accessible for natural killer cells and cytotoxic T cells [90]. Furthermore, E3 receptor 

internalization
 
and degradation proteins α and β form a complex to block extrinsic cellular death 

pathways triggered through the FAS ligand or tumor necrosis factor related apoptosis-inducing
 

ligand [91,92]. Both factors are readily expressed and/or secreted by cytotoxic T cells or 

monocytes, respectively [93]. While the cell cycle is progressing into S-phase, the linear viral 

genome is replicated by an adenovirus encoded polymerase and several other viral and cellular 

factors including the adenoviral DNA binding protein, nuclear factor I and III, as well as 

topoisomerase I [94]. First, the terminal proteins join through interaction of the adenoviral 

polymerase and nuclear factor III forming the circular pre-initiation complex. Then, protein 

priming by the terminal proteins and nuclear factor I enables DNA synthesis of the nascent 

strand. Thereby HAdVs solve the problem of replicating molecular ends found in linear 

genomes. Normally, linear DNA elicits a cellular DNA damage response which, if not inhibited by 

viral proteins, would lead to concatemeric ligation and inactivation of viral genomes by          

non-homologous end joining. Hence, the cellular MRN sensor complex consisting of 
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MRE11/RAD50/NBS1 proteins is relocalized to the cytosol by E4-ORF3 proteins where it is 

degraded through actions of E4-ORF6 and E1B-55k [95,96]. 

With initiation of viral genome replication, the major late promoter is strongly activated 

by increasing levels of the adenoviral IV2a protein and in turn drives expression of late genes 

through a yet unidentified cis-acting switch, presumably involving L4-22k and L4-33k proteins, 

meaning that late gene transcription takes place only from newly synthesized DNA [97,98]. At 

the same time, most gene expression from early promoters is diminishing. This results in 

accumulation of structural components within the cytoplasm and self-assembly of virus 

capsomers from individual hexons and penton proteins. These are eventually transported into 

the nucleus where replicated genomic DNA is condensed by viral core proteins and packaged 

into immature adenovirus capsids through the L1-52/55 kDa and IV2a proteins [99]. 

Accumulation of progeny virions gives rise to so-called inclusion bodies that can be visualized by 

histochemical staining in microscopy. Prolonged infection eventually leads to swelling and 

rounding up of the host cell due to virus mediated disruption of the cytoskeleton and 

subsequent cell lysis. This may be facilitated by the E3-11.6k adenovirus death protein capable 

of inducing apoptosis [100]. Finally, the adenovirus life cycle is completed with release of 

progeny virions from the infected cell and maturation of the capsid by the                                    

L3-23k protease [100,101]. 

 

3.3 Targeting human adenoviruses for cancer therapy 

As previously mentioned, viruses can be generally used to fight cancer by therapeutic gene 

transfer or viral oncolysis. Therefore, tumor targeting represents an inherent and fundamental 

requirement for both treatment modalities which makes it a key consideration for the 

development of therapeutic viruses. The following principles generally apply for cancer gene 

therapy and virotherapy but will be discussed with a special focus on oncolytic adenoviruses. 

Some of the viruses under investigation have been reported to be naturally oncotropic such as 

parvoviruses, Vesicular Stomatitis Virus, or Newcastle disease virus [21,23,102]. Other 

candidates like adenovirus, herpes simplex virus or measles virus require genetic modification to 

be truly cancer specific [22]. In theory, tumor selectivity of oncolytic viruses can be achieved at 

multiple levels. Therefore, researchers could interfere either during virus cell binding               
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and entry (entry targeting) or after virus uptake (post-entry targeting). Diverse strategies and a 

plethora of cell type specific markers have been exploited to achieve tissue- or even tumor-

specific viral transduction and infection, respectively. 

Initial clinical trials showed that the overall efficacy of oncolytic adenoviruses in patients 

remained limited despite an encouraging safety profile [103,104]. One possible explanation 

therefore was soon after proposed, namely the inability of the virus for widespread tumor 

transduction and destruction. Indeed, the results from independent studies have shown that 

freshly isolated tumor cells, unlike their in-vitro counterparts, are resistant to adenovirus 

infection due to absent CAR receptor expression [105-107]. Consequently, this finding propelled 

the field of cell entry targeting. Towards this goal, modifications of the capsid are necessary 

which ablate native receptor binding on the one hand, and confer binding to new cancer cell 

surface molecules on the other [8]. Ablation of the native tropism has been achieved by 

chemical modification of the virus, by mutating amino acid motifs, physical interaction with 

adaptor proteins, and by replacing domains of viral capsid proteins that interact with cellular 

virus receptors [108-110]. The same is true for interactions with blood factors that mediate 

indirect cell binding [111,112]. Subsequently, receptor blind adenoviruses have been retargeted 

to cells after complexing with adaptor proteins and by chemical or genetic insertion of ligands 

into the capsid [8,113]. Usually genetic insertion strategies exploit ligand incorporation into the 

protruding fiber knob domain although other capsid proteins like the penton can be used 

accordingly [114,115]. Prominent examples for fiber engineered oncolytic adenoviruses are the 

HAdV-5 RGD, carrying an arginine-glycine-aspartate motif [116], an poly-lysine bearing fiber 

mutant [117], and the HAdV-5/3 chimera where the fiber knob domain has been replaced by 

the serotype 3 knob [110]. The latter strategy where tropism of adenoviruses is altered by 

replacing the knob or even larger parts of the fiber domain with those from other serotypes is 

also referred to as pseudotyping of the virus. Further examples are chimeric HAdV-5/35 and 

HAdV-5/41 [51,118,119]. All of these recombinant adenoviruses show CAR independent cell 

entry, which is however not tumor-specific as the target receptors are ubiquitously expressed 

integrins, HSPGs, CD46, or the desmoglein-2 molecule [27,59]. Nevertheless, the transduction 

efficiency in case of HAdV-5 RGD or HAdV-5/3 infection of freshly isolated primary cancer cells, 

established cell lines, and tumor xenografts could be strongly enhanced depending on the 

relevant receptor expression profile [120-124]. Alternatively, tropism can be restored by 
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complexing virions with various adapter molecules like bi-specific antibodies [125,126]. 

Nonetheless regarding the approach of adaptor molecules, successful entry targeting of viruses 

for applications in oncolysis ultimately requires genetic strategies of virus modification to 

ensure that also the virus progeny generated in the patients’ tumors is targeted. As to date, 

entry targeting has been successfully implemented for enveloped viruses such as measles but 

remains the Holy Grail for the field of oncolytic adenovirus research [127,128]. This 

circumstance is owed to several obstacles. First, entry targeting requires a detailed 

understanding of the molecular interactions between the virus and its host. Second, for several 

tumor entities suitable cell surface targets are not known or suitable ligands for established 

targets are not available. Finally, the insertion of ligands into viral capsid proteins has been 

frequently shown to be difficult as recombinant proteins often fail to assemble into functional 

virions or because they lose their cell binding ability due to improper folding. Moreover, 

biosynthesis of ligands and virus capsid proteins is not always compatible. For example, 

recombinant antibodies representing targeting moieties of high interest are synthesized in the 

endoplasmatic reticulum whereas viral capsid proteins are synthesized in the cytosol. 

Post-entry targeting of therapeutic genes or infection to cancer can exploit a panel of 

cellular genetic control mechanisms [9,129]. The two most established strategies in this regard 

are transcriptional targeting of transgene or essential viral gene expression as well as mutation 

of regulatory viral genes. More recently, gene expression was further regulated through 

translation efficiency or mRNA stability by insertion of microRNA target sites [130-132]. 

Transcriptional targeting capitalizes on cellular regulatory DNA sequences that control 

transcription initiation and can be used to generate promoters which are specifically, or at least 

preferentially, active in a certain tissue or tumor cell type. These “cancer-selective promoters” 

can then be used to control expression of essential adenoviral genes such as the master 

regulator E1A. The first oncolytic HAdV that was targeted in such a way carries the prostate-

specific antigen promoter to restrict adenovirus replication to prostate cancer cells [133]. Many 

other examples followed thereafter using the alphafetoprotein promoter for hepatocellular 

carcinomas, the human tyrosinase promoter for malignant melanomas, or the mucin 1 (MUC1) 

promoter for breast and ovarian cancer [134-136]. Moreover, tumor selectivity of oncolytic 

adenoviruses could be dramatically increased by specifically expressing two rather than one 

early viral gene. Towards this end, researchers utilized either two specific promoters, a 
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bidirectional promoter or a bi-cistronic transcription unit expressed from a single specific 

promoter [135,137-140]. Nevertheless, it has been shown that cryptic transcription initiation 

sites or enhancers found in upstream adenoviral sequences of the left inverted terminal repeat 

or the adenoviral packaging sequence can interfere with cellular promoters [141-144]. As a 

consequence, promoter regulation becomes leaky allowing non-specific viral replication. To 

overcome this, various approaches have been pursued to shield the cancer-selective promoters 

from upstream elements such as polyadenylation transcription termination signals, insulator 

sequences, or inversion of the promoter/transgene cassette [145-149]. However, within a tumor 

mass, which is vastly inhomogeneous, it is unlikely that all cells express a specific tumor marker. 

Therefore, researchers had focused on identifying pan-cancer promoters that are ideally active 

in all tumor cell types. The human telomerase reverse transcriptase (hTERT) promoter is a 

widely used representative of such promoters and has been utilized to target oncolytic 

adenoviruses to various cancers [139,150]. Even before viruses could be restricted to cancer 

cells by transcriptional targeting, scientists engineered so-called conditionally replicating 

viruses. Studies in recent years created mutants with crippled replication potential in normal 

cells but not in cancer cells. For this approach gene mutations in key regulators of viral 

replication, like the E1 genes, are introduced and efficient replication is rescued in tumor cells 

through complementation by overactive growth factor signaling cascades, aberrant cell cycle 

control checkpoints, or absence of cellular antiviral factors [21-23]. One of the first and most 

prominent examples, was the development of an adenoviral deletion mutant dl1520 ONYX-015 

lacking the early E1B-55k gene, which binds and inactivates the tumor suppressor TP53 [151]. 

Therefore, adenoviral replication was thought to be restricted to cancer cells with a mutated 

TP53 pathway. Although later the precise mechanism of action was found to relate to altered 

mRNA export in tumor cells as opposed to normal cells [152,153]. Nevertheless, a genetically 

similar virus termed H101 became the first licensed oncolytic virus in China for treatment of 

recurrent head and neck cancers [10,11]. Other examples are adenoviruses bearing a 24 bp 

deletion in the CR2 domain of the E1A-13S and 12S isoforms (termed HAdV-5 Δ24) [154]. As a 

result, these proteins are no longer able to interact with the retinoblastoma protein in order to 

induce cell cycle entry via release of E2F transcription factors (see above). 

The major focus of targeting strategies for cancer therapy using oncolytic adenoviruses, 

however, lies on the HAdV-5 serotype which currently provides the scaffold for most adenovirus 
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based drugs in clinical trials. Although, they showed great promise several limitations to 

oncolytic virotherapy still remain. 

 

3.4 Limitations and implications for adenoviral oncolysis 

The last decade has witnessed considerable progress in the field of oncolytic adenovirus 

research resulting in numerous pre-clinical and clinical trials. Despite revealing clinical benefit in 

some patients combined with an outstanding safety profile and no dose limiting toxicity, the 

overall therapeutic efficacy in humans is generally insufficient [103,104]. However, animal 

models using human xenografts or tumor biopsies usually show up to complete eradication of 

the tumor mass. These converse observations can be attributed to several hurdles encountered 

in virotherapy and emphasize the need to optimize oncolytic adenoviruses. First, the primary 

tumor mass is usually highly heterogeneous containing cancer cells surrounded by stroma cells, 

vasculature, and extracellular matrix which can act as anatomical barriers to                             

virus spread [155,156]. This is combined with insufficient expression of viral receptors on target 

tumors as described previously. Furthermore, some tumor areas are necrotic or under a high 

interstitial pressure [157]. Taken together, these aspects severely affect the initial virus 

distribution and transduction efficacy. As a consequence, eradication of the whole tumor mass 

or distant metastases cannot be achieved due to scarce spread of progeny virions beyond these 

anatomical barriers. Second, there is a narrow time window for therapeutic viruses until the 

host immune response will start to counteract the infection [158-160]. On the one hand, viruses 

are rapidly inactivated by, mostly pre-existing but also newly formed, neutralizing antibodies 

and cytotoxic T cells that clear infected cells. On the other, healthy tissues such as the liver 

sequester therapeutic viruses resulting in loss of efficacy and toxicity [161,162]. The latter often 

caused by mounting of a strong cytokine mediated inflammatory response [163]. Third, the lytic 

efficacy of mutated or targeted viruses can be reduced compared to wild type viruses due to 

improved tumor specificity. Thus, viral replication may become restricted to fewer tumor cells, 

out of a heterogeneous tumor mass, which are capable to provide the necessary environment 

for virus growth [103,104]. In conclusion, some of these limitations constitute major hurdles 

whereas others can be overcome by further genetic engineering or modification of the virus. 
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The first limitation of insufficient virus infectivity and distribution in the tumor can be 

overcome by tropism modification of oncolytic adenoviruses as discussed for entry targeting 

above. In addition, the lytic effect can be increased by different administration routes and 

procedures currently evaluated. These include multiple intratumoral injections, pre-treatment 

with matrix-modifying agents like collagenase [164,165], or systemic injections combined with 

local application of vasoactive compounds such histamine as to increase the blood vessel 

permeability inside the tumor [166]. Several approaches to circumvent the second limitation, 

namely the immune system, have also been proposed. Therefore, researchers investigated 

plasmapheresis to remove neutralizing antibody from the blood or temporary 

immunosuppression by through short-term exposure to cyclophosphamide to inhibit their      

de-novo formation [167,168]. Alternatively, mutations or exchange of antigenic determinants in 

the hexon proteins with other less prevalent serotypes can hide the virus from pre-existing 

immunity [169,170]. In the same line, chemical modifications of the capsid have also proven to 

be successful [113]. Last but not least, the limiting lytic efficacy of adenoviruses for cancer 

therapy needs to be enhanced. To this end, mutations affecting adenovirus induced apoptosis 

showed increased antitumoral effects in some cancer entities. Examples are HAdVs bearing a 

deletion of the viral anti-apoptotic E1B-19k gene which did not reduce the infectious particle 

yield but increased oncolysis in some but not all cancer cells [171-174]. Alternatively, the 

adenoviral death protein can be overexpressed resulting in a similar phenotype [175,176]. Yet, a 

potentially far more powerful approach is the combination of viral tumor cell lysis with 

established treatment regimens like radiation and chemotherapy which can be amplified by 

concomitant delivery of therapeutic genes. These so-called “armed” oncolytic adenoviruses 

amplify and spread by replication and tumor cell lysis while the encoded therapeutic protein 

should exert a toxic effect on surrounding uninfected cancer cells, an activity called “bystander 

effect” (exemplified in Figure 5). The feasibility of this combination therapy approach was first 

demonstrated in 1998 when Chase and colleagues equipped an oncolytic human                 

herpes virus type-1 with a rat cytochrome P450 enzyme responsible for bioactivation of 

cyclophosphamide or ifosfamide into toxic compounds [177]. Later, similar strategies have been 

adopted for replication-competent oncolytic adenoviruses by deleting non-essential viral genes, 

like the E3 region, and incorporation of sequences encoding the thymidine kinase able to 

metabolize its respective prodrug ganciclovir [178]. Similarly, expression of the sodium iodide 
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symporter gene theoretically allows combination of virotherapy with local enrichment of toxic 

radioisotopes [179]. Importantly, the arming approach is not restricted to prodrug-activating 

enzymes as also other proteins can be exploited like the immunomodulatory granulocyte 

macrophage stimulating factor or interleukin-12/B-Lymphocyte Activation Antigen B7-1 

[180,181], the cell death inducing ligands such as the tumor necrosis factor related apoptosis-

inducing ligand [182], or the extracellular matrix degrading relaxin resulting in enhanced virus 

spread [183]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5|   arming of oncolytic adenoviruses: anatomical barriers including tumor stroma cells, 

vasculature, necrotic areas, and extracellular matrix (orange) inhibit virus spread throughout the tumor 

mass (dark blue). Thus, viral oncolysis (shown on the left side), leading to tumor cell killing and release of 

progeny virions, is spatially restricted. In addition, the immune system counteracts the viral infection 

eventually. Arming of viruses leads to production of therapeutic molecules (green orbs) from infected 

cells. In turn, the secreted or released molecules are able to penetrate anatomical barriers and 

subsequently kill uninfected tumor cells by various means (shown on the right side). This effect, called 

bystander effect, is a widely accepted strategy to enhance or combine virotherapy with established 

treatment regimens such as chemo-, radiation, and monoclonal antibody therapy. 
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Recently, an oncolytic Newcastle disease virus has been equipped with an antibody 

against a vascular tumor marker [184]. This intriguing approach combined virotherapy with the 

widely accepted concept of monoclonal antibody therapy. After establishment of the hybridoma 

technology, antibodies quickly emerged as priceless diagnostic tools and eventually found entry 

into the clinic for autoimmune disease and cancer treatment [185]. In general, antibody therapy 

combines several advantages over other treatment modalities as they can be virtually generated 

against every available cellular surface target with high specificity and affinity [186]. The most 

renowned example, is the humanized monoclonal antibody Herceptin™ directed to the 

HER2/neu receptor thereby mediating tumor cell death which was licensed in 1998 [6,7]. 

Herceptin™ similar to other G type immunoglobulins have the intrinsic ability of the 

crystallizable fragment (Fc) to activate the classical complement cascade resulting in formation 

of a membrane attack complex and cell killing as well as activation of antibody-dependent 

cellular cytotoxicity by natural killer cells after Fc receptor engagement [187]. Moreover, 

downstream signaling events are blocked by binding of the monoclonal antibody to the 

HER2/neu receptor leading to apoptosis [7]. In addition to these first generation antibodies, 

several studies showed the feasibility to couple antibodies to immunotoxins, radioisotopes, 

prodrug converting enzymes, or cytokines for targeted delivery and local accumulation at the 

tumor site (for a comprehensive review see [188,189]). In 2002, the Food and Drug 

administration of the United States licensed the immunoconjugate ibritumomab tiuxetan which 

can be coupled to the radioisotope yttrium-90 [190]. This recombinant antibody, like the 

unmodified rituximab antibody, confers toxicity towards CD20 positive cells in non-Hodgkin 

lymphoma but additionally features local toxicity due to radiation via the conjugated 

radioisotope. 

In conclusion, more potent but yet cancer-specific oncolytic adenovirus are urgently 

needed to provide a useful weapon in the battle against cancer. Therefore, the principles of 

entry and post entry targeting as well as efficacy enhancement provide different points of attack 

for recombinant adenoviruses. Towards the goal of therapeutically enhanced virus drugs, 

arming with therapeutic antibodies is attractive as viral-mediated delivery may lead to high local 

concentrations of the antibody in the tumor potentially achieving synergistic effects of tumor 

cell killing caused through virus and antibody-mediated cell lysis. 
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4 Gene expression profiling of adenovirus infections 

Over the past decade, microarrays have grown in popularity as they provide the tool for 

a comprehensive study of genome-wide gene expression in cells. Every cell type expresses a 

unique set of RNAs, also referred to as transcriptome, which determines the cells’ phenotype 

and function. In addition, the cellular transcriptome is able to respond to various intrinsic and 

extrinsic stimuli including changes in metabolite levels, signaling pathways, or bacterial and viral 

infections. Thus, microarray approaches offer an attractive tool to analyze genome-wide 

responses in gene expression under diverse experimental conditions. In contrast to most other 

established techniques, they enable specific detection and quantification of mRNA copies from 

all known genes in different species. Due to considerable progress in the technology, 

microarrays are now broadly utilized due a relatively low cost/benefit ratio and increasing 

development of sophisticated computational software which allow interpretation of the 

enormous amounts of generated data. 

Today, several miscellaneous array platforms with different advantages and drawbacks 

exist. The Illumina Sentrix-8 V2 technology, used in this study, enables researchers to analyze 

eight samples in parallel for the expression of over 24.000 genes derived from the RefSeq 

database. Besides, these arrays show a high-quality performance resulting in high 

reproducibility and strong correlation of the results with those obtained from routinely used 

approaches like quantitative polymerase chain reaction. This is largely owed to the array design 

which utilizes beads carrying several thousand copies of covalently attached oligonucleotides 

probes (see Figure 6). They bind labeled complementary RNA (cRNA) copies and facilitate 

identification as well as quantification of the respective transcripts. Moreover, they are 

assembled into over 1.6 million pits, each with a diameter of 3 µm, resulting in an average of 30-

fold redundancy for each represented transcript [192]. Thus, each reading for a certain 

transcript is taken multiple times over the array and measurement accuracy can be strongly 

increased. The microarray approach seems particularly useful to identify changes in single gene 

expression or even complete cellular pathways which are disturbed through adenovirus 

infection. 
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Figure 6|   Illumina Human Sentrix technology: small silica beads carry thousands of covalently attached 

oligonucleotides that can bind to fluorescently labeled RNAs (upper left panel). Each oligonucleotide 

consists of and address (red), allowing identification of the transcript, and a probe sequence (green) that 

specifically hybridizes to the cRNA. (upper right panel). Single beads are identified through sequential 

hybridization of sixteen fluorescently labeled decoder oligonucleotides (lower left panel). Scanning and 

read out of the array is performed in an Illumina BeadStation array scanner (lower right panel). Modified 

from the Illumina’s “Product Guide 2009” [191] and the Core Facility for Nucleic Acid Research, Alaska. 

 

Over the last decade, several microarray studies investigated the impact of adenovirus 

infection on cellular gene expression in human fibroblasts and different cancer cells. Amongst 

other things it has been shown what happens on a genome-wide level after adenovirus binding 

and entry and how numerous E2F responsive promoters of S-phase genes were activated during 

forced cell cycle progression [193-195]. Also the antiviral response was inhibited early on by 

downregulation of respective genes including pro-apoptotic proteins as well as pro-

inflammatory cytokines and chemokines [196]. At late stages, the cytopathic effect of 
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adenovirus on the cell was assisted by downregulation of various genes involved in controlling 

the cytoskeleton architecture such as filamentous actin and microtubule organizing         

proteins [197]. Regarding clinical applications, the impact on cancer cells by adenovirus 

mediated therapeutic gene transfer of TP53, E2F1, and others have been a focus of scientific 

research [198-200]. More recently this data was complemented by studies of oncolytic 

adenovirus infection of permissive and resistant cancer cells or after concomitant treatment 

with radiation therapy [201,202]. Therefore, insights gained from these and future 

comprehensive microarray data will help to identify genes and molecular pathways supporting 

or counteracting virotherapy. This seems an extremely appealing approach as oncolytic 

adenoviruses have not evolved to specifically replicate and kill cancer cells. Most importantly, all 

previous studies used cell types that do not appropriately reflect the natural host cell 

environment for HAdV-5. In addition, gene expression profiles of adenovirus infected normal 

cells have not been compared alongside with cancer cells 
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5 Objectives 

Recent clinical trials show that the overall antitumoral efficacy of oncolytic adenoviruses is 

insufficient indicating the need for new virus generations with improved potency. For most 

therapeutic applications the HAdV-5 serotype has been used which is evolutionary adapted to 

infect and replicate in native host cells of the respiratory epithelium. Nonetheless, the fact that 

the cellular environment in most tumor cells, especially in malignant melanoma, might be 

suboptimal for HAdV-5 replication has been neglected so far. However, efficient virus 

replication in cancer cells is crucial for successful virotherapy. Furthermore, tumor cell killing 

can be increased by arming oncolytic viruses, for example, with a therapeutic antibody gene. 

Consequently, this study aimed to identify how adenovirus replication, lysis, and antibody 

expression in tumor cells can be modulated in order to create more potent virotherapeutics. 

 

 

The main objectives are: 

 

(1) Comparison of HAdV-5 infection in various cell types 

Primary bronchial epithelial cells representing the native host cells for HAdV-5 will be 

compared versus various cancer cell lines. Kinetics of viral gene expression, replication, 

and cytotoxicity will be assessed in infected cell types. 

 

(2) Analysis of host cell gene expression after HAdV-5 infection 

Genes and cellular pathways that potentially influence adenovirus genome replication 

will be investigated by microarray as well as computational analyses and verified in 

further assays. 

 

(3) Identification of strategies to enhance HAdV-5 replication in cancer cells 

Knowledge gained from microarray analysis will be used as a rationale to engineer 

oncolytic adenoviruses with an increased replication potential. 

 

(4) Arming of oncolytic adenoviruses with therapeutic antibodies 

A recombinant single-chain antibody directed against the tumor-associated 

carcinoembryonic antigen will be used for proof of principle. This part includes analyses 

of the oncolytic capacity, antibody expression, as well as functional studies. 



 Comparison of HAdV-5 infection in various cell types | Results 

 

 

25  

 

 

II RESULTS 

1 Comparison of HAdV-5 infection in various cell types 

1.1 Analysis of lung cells as model system 

Currently the majority of oncolytic adenoviruses in use are derived from the wild type HAdV-5. 

This serotype is normally infecting epithelial cells lining the respiratory tract but it is also able to 

infect a wide range of cells in-vitro and in-vivo [27]. However, cancer cells are not target cells for 

natural adenovirus infections and might differ in several aspects of complex virus host 

interactions. Thus, the virus potentially encounters unappreciated obstacles that could be 

limiting in a virotherapy setting. To test this hypothesis, I investigated wild type HAdV-5 

infections in a panel of different target cell types including natural host cells and established 

cancer cell lines. 

For that reason my experiments were conducted with primary human bronchial 

epithelial cells (HBEC) representing a cell type of the most natural environment for HAdV-5. 

They are frequently isolated and purified from healthy human donors and can be purchased 

from Promocell, Heidelberg. Subsequently, HBEC were characterized by immunofluorescence 

staining for expression of epithelial markers in close collaboration with Werner Franke’s lab at 

the DKFZ, Research Program Cell Biology and Tumor Biology. The results were then compared to 

the closely related lung squamous carcinoma cell line SK-MES-1, which originated from an 

epithelial lesion in the respiratory tract. As summarized in Table 1, both the primary HBEC as 

well as the SK-MES-1 tumor cell line expressed a high degree of acidic and basic cytokeratins, 

especially cytokeratin 18. Further, vimentin which can be considered as a major subunit of 

intermediary filaments was also highly produced in both entities. Besides, HBEC and tumor cells 

were positive for desmoplakins that are usually found in tight junctions of epithelial tissues and 

they were negative for expression of synaptophysin, a transmembrane protein found in 

neuroendocrine cells. Last but not least, analysis of the glycoprotein MUC1 specific for glandular 

and ductal epithelial cells revealed a low grade expression in HBEC in contrast to high and 

uniform expression in tumor cells. 

These immunofluorescence data of HBEC as well as the closely related lung carcinoma 

cell line SK-MES-1 strongly favored an epithelial origin as they shared several characteristic 
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markers. First, they expressed typical cytokeratins and the tight junction proteins desmoplakin 

which differentiated them from mesenchymal cells, which give rise to the connective tissue, 

bones and cartilage. Both can be considered as key features of a functional epithelium. Second, 

they did not express synaptophysin, normally expressed by discrete non-epithelial 

neuroendocrine cells throughout different tissues, which therefore is typically associated with a 

different type of lung malignancy termed small cell lung carcinoma. Additionally, the vast 

majority of HBEC did not express MUC1 which is usually found only in secretory cell types. 

However, MUC1 can be strongly upregulated in a variety of tumors, typically in breast cancers, 

which I could also confirm in the lung squamous carcinoma cell line. Vimentin which is normally 

expressed only in mesenchymal cells but not epithelial cells was found in both primary as well as 

tumor cells. Yet, this protein is frequently produced in cultured cells and therefore could 

represent an artifact. Overall, I validated that HBEC provide a good in-vitro model for the study 

of HAdV-5 infections in native host cells. 

 

Table 1|   analyzed markers 

antibody description 
primary lung 

epithelial cells 
tumor cells 

pan-cytokeratin 

Lu-5 

specific for acidic (type 1) & basic (type 2) 

cytokeratins, found in epithelial & mesothelial cells 
100 % 80 % 

cytokeratin 18 
acidic keratin, expressed in simple epithelia lining 

the respiratory and gastrointestinal tract 
95 % 100 % 

desmoplakin 
obligate component required for functional 

desmosomes in epithelia 
positive positive 

vimentin 
major subunit protein of intermediate filaments, 

specific for mesenchymal cells 
90 % 100 % 

synaptophysin 
transmembrane glycoprotein found only in 

neuronal and neuroendocrine cells 
negative negative 

MUC1 

transmembrane glycoprotein expressed by most 

ductal and glandular epithelial cells, associated 

with various cancers 

5 % 100 % 
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1.2 Cytotoxicity assays of primary cells and established tumor cell lines 

The efficiency of HAdV-5 based oncolytic adenoviruses to successfully infect cells, produce 

progeny virions and trigger host cell lysis, and thereby spread to neighboring uninfected tumor 

cells is known to be cell type-dependent. For instance, epithelial cells including lung 

adenocarcinoma cells A549 or cervical cancer cells HeLa are usually highly permissive whereas 

cells of mesenchymal origin like fibroblasts prolong adenovirus infection [203]. In the latter, the 

adenovirus infection efficiency can be reduced and/or the time for completion of the lytic virus 

life cycle is significantly extended. Thus, some or the majority of cancers that do not originate 

from epithelial cells, like malignant melanoma for example, might be more resilient to HAdV-5 

based virotherapy. 

In initial experiments, I investigated the ability of wild type HAdV-5 to infect and cause 

cytotoxicity in a set of different human target cell types (Figure 7). To this end, primary HBEC 

were infected alongside with the two squamous lung cell carcinoma cell                                         

lines (SK-MES-1, SW900), and two malignant melanoma cells lines (SK-MEL-28, Mel624) using 

serially diluted HAdV-5. In addition, the highly permissive lung adenocarcinoma cell line A549 

served as positive control, as it is well characterized and routinely used in oncolytic adenovirus 

applications. Other primary cells including primary human keratinocytes (PHK) and foreskin 

fibroblasts (HFF) were also included. To rule out replication-independent cytotoxic effects from 

viral particles, cells were infected in parallel with a serially diluted replication-deficient       

HAdV-5 CMV-gfp variant. The assay was incubated for eight days and cells stained by a crystal 

violet solution which binds non-specifically to cellular proteins. After a gentle washing, the 

cytopathic effects of HAdV-5 infection became apparent as infected or lysed cells detach. 

Almost every cell line of lung origin (A549, SW900, and HBEC) allowed a rapidly progressing 

infection spreading throughout the monolayer as indicated by advanced cell lysis at a low tissue 

culture infectious dose 50 (TCID50) of 10
-3

 TCID50/cell. PHKs, isolated from the epidermis, 

matched this phenotype shown by similar adenovirus cytotoxicity and spread. The only 

exception was the lung squamous carcinoma cell line SK-MES-1, which was at least two orders 

of magnitude less susceptible indicated by an almost intact monolayer at 10
-1

 TCID50/cell. In 

strong contrast to this, the HFFs did not show cytopathic effects as the cell monolayer was not 

destroyed even at the highest adenovirus titer and both melanoma cell lines SK-MEL-28 and 
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Mel624 were only killed with a very high multiplicity of infection (MOI) between 1-10 TCID50/cell 

at this time. Finally, infection with the replication-deficient HAdV-5 CMV-gfp did not cause 

noticeable toxicity in any of the tested cell lines demonstrating that toxicity by wild type HAdV-5 

was truly replication-dependent. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7|   comparison of HAdV-5 cytotoxicity in primary cells and tumor cell lines: various cell types 

were infected at decreasing MOI of 10
1
 to 10

-4
 TCID50/cell with either the replication-deficient           

HAdV-5 CMV-gfp (gfp, left lane, negative control) or the wild type HAdV-5 (wt, right lane). After 

incubation for eight days, surviving cells were fixed and stained with crystal violet. Lung cells (left panels) 

showed overall stronger cytotoxicity compared to melanoma cells (middles panel) and primary HFFs. 

 

In line with other publications, the wild type HAdV-5 resulted in cell type-dependent cell 

killing which can be considered as direct consequence from adenovirus infection. So far, there is 

no available literature comparing adenovirus infection of tumor cells to primary HBEC. Hence, it 

was of interest to see that they sustained HAdV-5 infection to an at least equivalent extent as 

A549 cells, which usually serve as reference cell line. The presented data showed that most cells 

derived from an epithelium, especially from the respiratory tract, were highly permissive for 

adenovirus infection and lysis compared to both malignant melanoma cell lines and fibroblasts. 

However, crystal violet based cytotoxicity assays allow only comparison of virus dependent 

cytopathic effects and spread but not precise conclusions about the HAdV life cycle itself as 
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many critical steps, including virus binding and entry, DNA replication, and generation of 

progeny cannot be evaluated per se. Hence, I addressed these points in the following chapters. 

 

1.3 Transduction capacity of HAdV-5 

One reason for varying efficacy of adenovirus infection in-vitro as well as in-vivo is different 

expression levels of cell surface receptors such as CAR, HSPGs, and integrins which facilitate 

virus binding and cell entry. Afterwards, the virus has to overcome several intracellular hurdles, 

such as escape from early endosomes, cytoplasmatic trafficking, and nuclear import in order to 

establish an infection (see I, 3.2). Therefore, when comparing virus host cell interactions 

between different cell types it is essential to standardize the infection conditions and apply 

titers that result in a homogenous rate of adenovirus infected cells. This can be achieved by a 

virus carrying a reporter gene or by immunofluorescence staining of intracellular capsid 

proteins. 

Towards this goal, I first standardized cell culture conditions for all cell types including 

media formulations with low serum content and maintenance at similarly low passage numbers 

before freezing stocks for future experiments. Then, I established a cell seeding protocol using 

frozen aliquots to ensure higher reproducibility throughout my experiments and a similar cell 

density and state of proliferation between different cell types (data not shown). To determine 

adenovirus titers leading to high but comparable infection rates, I transduced different cell 

types with increasing MOI of HAdV-5 CMV-gfp. This virus is derived from wild type HAdV-5 but 

cannot replicate inside cells as the essential E1 genes have been replaced by the enhanced 

green fluorescent protein reporter gene (gfp). Therefore, gfp expression is a direct consequence 

of nuclear adenovirus genomes reaching the nucleus. After one hour, the inoculums were 

removed to enable a more synchronized infection. Following incubation for 48 hours, I 

quantified transduced cells by flow cytometry on the basis of gfp expression. In addition, dead 

cells were omitted by forward/side scatter gating and a viability staining through propidium 

iodide (PI, Figure 8A) as described in chapter V, 3.7.1. Representative histograms in Figure 8B 

show various cell lines at transduction levels of ≥ 80 % with HAdV-5 CMV-gfp indicated by 

similar proportions of green fluorescing cells. However, as summarized in Table 2, the initial 

adenovirus dose required to achieve this high level of transduction varied in a cell type-
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dependent manner. For example, both melanoma cell lines were readily transduced using lower 

virus inoculums (≥ 80 % at 300-400 TCID50/cell) than any cell line of lung origin (≥ 80 %                

at 700-1500 TCID50/cell). Notably, the relatively high virus titers did not result in significantly 

increased cytotoxicity as shown by constant, or only slightly increased, numbers of dead cells 

between 2-10 % (data not shown). Similar experiments were conducted for PHKs and HFFs using 

800 and 1500 TCID50/cell, respectively (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8|   flow cytometry analyses of transduction rates by HAdV-5 CMV-gfp: multiple cell lines were 

transduced with serial dilutions of HAdV-5 CMV-gfp for 48 hours and analyzed by FACS. A) forward/side 

scatter analysis distinguished intact cells from debris (left panel, green gate). Propidium iodide staining 

excluded dead cells, determined by FL2-H intensity, in mock infected samples (middle panel, red gate) as 

well as HAdV-5 CMV-gfp transduced samples (right panel, red gate). B) Cells expressing gfp were 

detected in channel FL1-H. Representative histograms show distributions of mock infected controls 

(black lines) versus gfp expressing populations (blue fills) at titers resulting in 80-90 % transduction 

(marker M1). Exact TCID50 titer values for ≥ 80 % average transduction rates are summarized in Table 2. 
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Table 2|   titers of HAdV-5 or HAdV-5 CMV-gfp used for microarrays and related experiments 

cell line origin TCID50 titer/cell average transduction rate 

HBEC, both donors lung epithelium 800 89 % 

HFF human foreskin fibroblasts 1500 84 % 

Mel624 melanoma 400 80 % 

PHK primary human keratinocytes 800 85 % 

SK-MEL-28 melanoma 300 85 % 

SK-MES-1 lung squamous cell carcinoma 700 86 % 

SW900 lung squamous cell carcinoma 1500 81 % 

 

In conclusion, my data demonstrated the feasibility of using standardized infection 

conditions together with varying adenovirus inoculums in order to achieve reproducible and 

comparable high level adenovirus infections in several cell types. An explanation for the cell 

type specific susceptibility to adenovirus transduction could most likely be found in differential 

expression of the CAR receptor on the cell surface. Moreover, the previously observed lower 

cytotoxicity of HAdV-5 in melanoma cells SK-MEL-28 and Mel624 cannot be due to lower virus 

cell entry. Both cell lines were more susceptible to adenovirus transduction at lower titers as 

opposed to the primary cells or the lung carcinoma cells. Although reporter gene expression 

served as an indirect marker here for adenovirus infection, correlating with numbers of 

infectious viral genomes inside the nucleus, it should be noted again that the HAdV-5 CMV-gfp is 

replication-deficient. Nevertheless, the wild type HAdV-5 is identical in terms of capsid structure 

and function to HAdV-5 CMV-gfp. Thus, the conditions established here can be used analogous 

for the study of wild type HAdV-5 infections in different cell types, including virus gene 

expression and DNA replication. 

 

1.4 Insights into the HAdV-5 life cycle 

After the adenovirus has entered the cell and reached the outer nuclear rim via microtubule-

dependent transport, the viral genome gets imported through the nuclear core complex thereby 

establishing infection of the host cell (see I, 3.2). One of the first adenoviral genes to be 

transcribed and expressed is the early gene E1A which acts as a master regulator in adenovirus 
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infection. As pointed out in the INTRODUCTION, a key feature of E1A is its ability to force the 

infected cell to enter the cell cycle. With beginning viral genome amplification, the major late 

promoter becomes active and leads to the transcription of several structural proteins such as 

the hexon, the fiber, the penton and others. These hallmarks are obligatory in permissive cells. 

However, the time to start and complete the different stages has been reported to be strongly 

cell type-dependent [203]. Thus my aim here was to measure the kinetics of adenovirus 

replication in native host cells versus tumor cells as determined by three hallmarks of 

adenovirus infection, namely early E1A gene expression, viral genome replication, and late fiber 

gene expression. 

To this end, HBEC along with different primary cells (PHK, HFF), lung carcinoma cell lines 

(SK-MES-1, SW900), and two melanoma cells lines (SK-MEL-28, Mel624) were infected with 

individual MOI of HAdV-5 resulting in 80-89 % infection of living cells (indicated in Table 2). After 

one hour, I removed the virus inoculums and harvested cells for isolation of total RNA and 

genomic DNA every four hours. Following sample purification, levels of E1A and fiber mRNA as 

well as copy numbers of viral genomes were determined by quantitative real time polymerase 

chain reaction (qPCR). Signals were normalized as stated in the METHODS section V, 1.9.2 to the 

cellular RNA or DNA input measured by the house keeping genes glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH, for RNA) and β-actin (ACTB, for viral genomes). The HBEC from two 

different donors, as well as the primary keratinocytes, showed a very markedly increase of     

E1A mRNA at the earliest time point after infection and reached a maximum between eight to 

twelve hours post infection (Figure 9A). However, with the exception of the lung squamous cell 

carcinoma cell line SW900, neither other cancer cell lines nor the human fibroblasts displayed a 

comparable phenotype. In these cells, the E1A mRNA levels were lower and kept gradually rising 

even after sixteen to twenty hours post infection. This differential kinetics was also reflected in 

the onset of adenoviral genome replication. As shown in Figure 9B, the HBEC, PHKs, and SW900 

began to replicate the HAdV-5 genome very early on between twelve to sixteen hours post 

infection. Moreover, in the second HBEC donor genome replication set in early at eight to 

twelve hours. This was unparalleled in any of the tested cell lines. On the contrary, the 

melanoma cells SK-MEL-28 and Mel624 eventually allowed HAdV-5 genome replication around 

sixteen to twenty and twenty to 24 hours after infection, respectively. My findings were further 
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supported by expression kinetics of the late fiber gene which mirrored the kinetics of               

viral DNA replication (Figure 9C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9|   viral gene expression and genome replication in different cell types: human primary cells 

(left panels) and tumor cell lines (right panels) were infected with individual titer of HAdV-5 resulting in 

an infection level of 80-89 %. Total RNA and DNA was harvested for every indicated time point post 

infection and analyzed for relative copy numbers of E1A and fiber mRNA as well as viral genomes by 

qPCR. Normalization of A) E1A mRNA, B) viral genomes, and C) fiber mRNA was done according to 

METHODS section V, 1.9.2. 

 

This was the first time that different tumor cells have been compared alongside with the 

primary lung epithelial cells HBEC in terms of HAdV-5 gene expression and replication. 

Surprisingly, HBEC allowed much faster early E1A gene expression and viral DNA synthesis than 
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most other cell types. Out of six cell lines tested, including other primary cells, only the lung 

squamous carcinoma cell line SW900 and primary human keratinocytes PHK displayed similar 

kinetics. Thus, cell lines that allowed rapid E1A gene expression also replicated the viral         

DNA early on. In strong contrast to this, both melanoma cell lines and the human foreskin 

fibroblasts HFF, the latter known to be only weakly permissive for HAdV-5, displayed only a 

gradual E1A mRNA expression which resulted in a delay of viral DNA synthesis. Hence, the onset 

of viral genome replication correlated very well with the E1A mRNA phenotype and was 

matched in expression of the late fiber gene that is controlled by the replication-dependent 

major late promoter. Importantly, the different kinetic profiles corresponded to those seen in 

the cytotoxicity assays of Figure 7. Therefore, my data is in line with previous publications that 

show varying permissivity of epithelial cells, such as HeLa or A549, and mesenchymal cell types, 

like fibroblasts, for infection with HAdV-5 and the closely related HAdV-2 [203]. This might 

indicate that less permissive tumor cells, including malignant melanoma, required a certain 

threshold of E1A mRNA or other downstream targets to sustain an efficient adenovirus 

infection. Hence, the immediate question arose if this reduced susceptibility could be explained 

by lower E1A promoter activity in these cells. 

 

1.5 E1A promoter assay 

The adenoviral master regulator E1A, the first gene to be expressed during infection, acts on a 

plethora of viral and cellular promoters. Additionally, E1A binds and disrupts the              

pRB/E2F regulatory pathway. As a consequence cells are prompted to enter the S-phase of the 

cell cycle where DNA synthesis occurs [37]. As previously shown, primary HBEC immediately 

expressed E1A mRNA to very high levels. In contrast, other infected tumor cells including 

melanoma cells SK-MEL-28 and Mel624 displayed a lower but gradually rising E1A mRNA 

amount. One explanation for this could be differences in the E1A promoter activity. In the same 

line, it would also provide a lever to potentially accelerate S-phase entry and hence DNA 

replication in melanoma cells by replacing the intrinsic viral promoter with a stronger 

recombinant promoter. Thus, this strategy might yield therapeutic HAdVs with increased 

oncolytic efficacy. 
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In order to investigate the activity of the adenoviral E1A promoter in different cell types, 

I cloned the left end of the wild type HAdV-5 genome encompassing the inverted terminal 

repeat and E1A promoter sequences (nucleotides 37935 to 557) into a promoterless luciferase 

reporter gene construct (pGL3-E1A, refer to MATERIALS IV, 5.4). This construct was compared 

with matching control plasmids that contained either the strong immediate early promoter from 

the cytomegalovirus (pGL3-CMV) or the moderately active human thymidine kinase promoter 

(hTK, pGL3-hTK). A promoterless luciferase plasmid (pGL3-basic) served as negative control for 

intrinsic background luciferase activity. Consequently, I transfected the primary HBEC, the two 

lung carcinoma cell lines SW900 and SK-MES-1, as well as the two melanoma cell lines              

SK-MEL-28 and Mel624 with the respective reporter gene constructs. Transfection efficacy was 

around 30 % for all cell lines as confirmed by transfection control plasmid encoding gfp (data 

not shown). After 48 hours, luciferase activity was quantified through conversion of luciferin 

into a luminescent substrate which can be detected by fluorometric measurement. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10|   reporter gene assay of E1A promoter activity: various human cell lines were transfected 

with luciferase reporter gene plasmids. Plasmids contained either no promoter (pGL3-basic, negative 

control, dark blue bars), the E1A promoter (pGL3-E1A, light blue bars), the CMV promoter (pGL3-CMV, 

striped bars), or the thymidine kinase promoter (pGL3-hTK, white bars). Luciferase activity was quantified 

48 hours post transfection and expressed as relative light units. Each bar represents mean values of 

triplicate transfections with standard deviation, p-values were calculated only between the E1A and  

CMV promoter and the E1A and hTK promoter using the Student’s t-test (* p ≤ 0.05, ** p ≤ 0.01). 
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As displayed in Figure 10, high luciferase values were measured in all cell lines containing either 

the CMV or the adenoviral E1A promoter/reporter gene constructs. The hTK promoter 

constructs showed varying activity in a cell type-dependent manner which ranged between 

almost background levels, in SW900 and SK-MES-1, and moderate levels in HBEC, SK-MEL-28, 

and Mel624. Interestingly, in HBEC E1A and CMV promoter activities reached almost similar 

levels whereas in the tumor cell lines the CMV promoter was generally between one       

(SW900, SK-MES-1) or two (SK-MEL-28, Mel624) orders of magnitude stronger. Nevertheless, all 

cell types allowed similar luciferase expression and activity after transfection of the                 

E1A promoter constructs. Background signals of cells transfected with the negative control were 

comparable among all cell types. 

Analyzing promoter activities in several cell types revealed that the adenoviral              

E1A promoter was strongly active in all tested tumor cell lines as well as in primary HBEC, where 

it was equally active than the CMV promoter. If considering the CMV reporter gene levels as 

maximum, this might indicate that the E1A promoter has adopted to efficiently function in cells 

of the respiratory epithelium. On the other hand, the moderately strong hTK promoter control is 

active to a comparable level in HBEC, SK-MEL-28, and Mel624 and weaker in both lung 

squamous cancer cell lines allowing no conclusive readout. In my previous experiment the HBEC 

displayed a rapid and strong increase of E1A mRNA after HAdV-5 infection, mirrored by the 

SW900 lung squamous carcinoma cell line. However, in both entities the E1A promoter activity 

was comparable to the other tumor cell lines SK-MES-1, SK-MEL-28, and Mel624 which allowed 

only gradual E1A mRNA expression. Therefore, I could not find a correlation between the 

promoter activity and the two E1A expression kinetic profiles. Intriguingly, my data implies that 

other mechanisms like posttranscriptional regulation or mRNA export might be responsible for 

the differences in E1A expression between infected tumor cell types. Yet another possibility 

could be that the E1A promoter activity is dependent on the DNA context which is far more 

complex in the whole adenoviral genome than in expression plasmids. Next, I wanted to assess 

if reduced E1A gene expression and delay of DNA synthesis in melanoma cells results in reduced 

production of virus particles. 
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1.6 Production of virus progeny 

A key determinant of adenoviral oncolysis is infectious viral particle production which is 

ultimately results from viral DNA replication, expression of structural genes, virus assembly, and 

cell lysis. Thus, they provide another critical parameter that can be assessed in-vitro by a          

so-called burst assay. This approach further allows me to determine if slower E1A expression 

and adenoviral genome replication in melanoma cells can be linked to reduced HAdV-5 particle 

production or release from infected cells which would explain reduced cytotoxicity. 

Therefore, the melanoma cells SK-MEL-28 alongside the primary lung epithelial cells 

HBEC were inoculated with 1 TCID50/cell wild type HAdV-5 for one hour. The low titer resulted in 

an equal transduction efficacy of virus particles in both cell lines as determined by               

HAdV-5 CMV-gfp (data not shown). A low titer was favored since it allowed a more precise 

quantification of newly synthesized progeny virions versus the initial virus input. Afterwards, I 

carefully washed the cells to remove any residual unbound virus and immediately collected 

separate samples from cell culture supernatants and cell pellets for background normalization. 

Over a period of three days, further samples were harvested and subsequently analyzed for 

infectious particle content by a limiting dilution assay (see Figure 11). As early as 36 hours post 

infection, pellets from HBEC contained significantly (over two orders of magnitude) more 

infectious virus particles as SK-MEL-28 cells. In the latter, amounts of progeny virions kept 

gradually rising and reached levels comparable to HBEC as late as 72 hours post infection. For 

both cell lines there were no or only statistical insignificant small amounts of virus detectable in 

culture supernatants until 72 hours post infection. Final virus titers in the supernatants and 

pellets were similar for both cell lines. 

Taken together, the results from the crystal violet assay as well as the burst assay 

demonstrated that HAdV-5 infection is more efficient in primary lung epithelial cells than in 

melanoma cells. Indeed, the premature DNA replication in HBEC reflected in considerable higher 

intracellular virus titers early during infection. However, this effect was diminishing over time 

and no further difference could be distinguished between HBEC and melanoma cells. 

Interestingly, I did not observe noticeable amounts of released viruses in the supernatants until 

72 hours post infection for both cell types. A possible explanation might be that the virus 

progeny was not released earlier or that the viruses were spreading directly from cell to cell and 
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therefore could not be detected in smaller quantities in the supernatants. Regardless of this, the 

observed differences in viral DNA replication, generation of progeny virions, and cytotoxicity 

between melanoma cells and primary HBEC provide a point of attack to unravel limiting cellular 

factors for HAdV-5 based virotherapy of malignant melanoma. This topic will be addressed in 

the following part of my study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11|   quantification of HAdV-5 progeny virions: primary lung epithelial cells HBEC (dark blue bars) 

or melanoma cells SK-MEL-28 (light blue bars) were infected with 1 TCID50/cell HAdV-5. After one hour 

incubation, inoculums were removed and cells washed three times. Supernatants (upper panel) and     

cell pellets (lower panel) were harvested at indicated time points and analyzed for infectious particle 

content in TCID50/ml. Bars represent mean values of triplicate infections with standard deviation,            

p-values were calculated between both cell types using the Student’s t-test (* p ≤ 0.05). 
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2 Analysis of host cell gene expression after HAdV-5 infection 

2.1 Microarray hybridization and analysis 

Viruses in general are obligate intracellular parasites since they depend on the cellular 

replication machinery and an environment that allows creation of infectious progeny virions. 

Thus, a common feature of viruses is reprogramming of the host cell by induction and 

repression of cellular genes and proteins in order to efficiently replicate. As shown in part one of 

my results, HAdV-5 displayed varying cell type-dependent replication abilities which may be 

indicative for differences in virus-induced cellular gene expression profiles. Therefore, I wanted 

to study adenovirus mediated changes in the host cell gene expression during infection by a 

microarray approach to identify genes and regulatory pathways that play an important role 

herein. A major focus of my work was put on differentially regulated genes between the native 

host cells HBEC and melanoma. 

Towards this goal, a set of five cell types including primary HBEC, the lung carcinoma cell 

lines SW900 and SK-MES-1 and two melanoma cell lines SK-MEL-28 and Mel624 were chosen 

and infected with established titers of HAdV-5 to achieve a level of approximately 80-90 % 

infection (see Table 2). Uninfected controls of each cell line were equivalently treated with 

medium only. As genome replication is the major aspect in viral oncolysis and potentially 

requires the most changes in host cell gene expression, I harvested and purified total RNA after 

viral DNA replication became apparent as determined by qPCR in Figure 9. This was the case at 

twelve hours for the HBEC donor 2, at sixteen hours for HBEC donor 1 and SW900, at twenty 

hours for SK-MEL-28, and 24 hours for Mel624. Consequently, three samples from                 

HBEC (donor 1 n =2, donor 2 n = 1) and SW900, four samples of SK-MES-1 and SK-MEL-28, and 

two samples of Mel624 were hybridized to human Illumina Sentrix-8 V2 microarrays. Efficiency 

of sample labeling and hybridization to the microarray, independent from the actual sample 

quality and preparation, was controlled by several positive and negative Illumina control 

oligonucleotides. Data derived from a typical experiment is depicted in Figure 12A-E on the next 

page. 
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Figure 12|   hybridization and 

labeling controls: sample 

quality was assured by using 

various Illumina spike-in 

control probes. As expected, 

successful sample labeling 

results in a dose-dependent 

hybridization signal intensity 

after addition of low, medium, 

or high amounts of spike-in 

labeling controls (panel A),   

low background of random 

non-target oligonucleotides, and noise levels (panel B). Hybridization of the housekeeping controls 

yielded higher signal intensities than expression of all genes as expected since they are ubiquitously 

expressed in all tissues (panel C). Hybridization conditions were checked by positive control biotin probes 

with average guanine/cytosine content versus probes containing high guanine/cytosine content which 

would only bind under highly stringent conditions (panel D). In addition, mismatched probes do not bind 

to their targets under optimal conditions as they require low stringency in contrast to perfectly matched 

probes (panel E). Shown data is representative for one microarray experiment including eight 

hybridizations. 

 

The sample signal intensity correlated in a dose-dependent way with the concentration 

(low, medium, and high) of spiked-in labeling control probes indicating high labeling                

efficiency (Figure 12A). Whereas the negative controls, 800-1600 random sequence probes 

without corresponding targets in the human genome, resulted in extremely low background 

signals that were only marginally above the overall noise signals (Figure 12B). The signals from 

housekeeping control probes corresponding to a set of ubiquitously expressed cellular genes 

were found to be higher than the signal intensity of all genes, which was to be expected 
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according to the manufacturer (Figure 12C). The hybridization stringency was controlled using a 

set of different probe/target sequences. One, the high stringency control has very high 

guanine/cytosine content and should bind to its target sequence if the hybridization 

temperature is too high, independently from the success of sample RNA purification and 

labeling. However, the high stringency controls should be lower than the positive biotin control 

oligonucleotides with average guanine/cytosine content if hybridization conditions are 

adequate (Figure 12D). The other, four low stringency controls yielding two mismatch bases in 

their sequence bind very weakly to the related target sequence if the conditions are adequate 

but would give high signals if the stringency is too low (Figure 12E). Under optimal hybridization 

conditions, I observed that only perfectly matched probes gave higher signal values than their 

respective controls. 

After hybridization and array readout, data was processed as described in chapter V, 1.8 

together with Frank Holtrup and Kurt Fellenberg from the division of Functional Genome 

Analysis, DKFZ. Using the Multi-Conditional Hybridization Intensity Processing                      

System (M-CHiPS; http://www.mchips.org), data was filtered according to signal intensity 

(minimum 100), p-value (maximum 0.05) and fold change (minimum 1.4) in at least one cell 

type. Initially, the variations between all cell types in context of their genetic background were 

found to be greater than the induced changes in gene expression after HAdV-5 infection of 

individual cell types. Therefore, the data of single hybridizations was uploaded into M-CHiPS as 

two-channel data, with the first channel containing expression data of uninfected and the 

second channel of infected samples of one cell line, respectively. Then gene expression in 

uninfected samples was defined as steady state and subsequently compared to gene expression 

levels in infected samples allowing identification of infection-specific expression changes within 

each cell type individually without creating a bias through inter-cell line variations by different 

genetic backgrounds. As a result, a list of approximately 950 genes that were significantly 

regulated after infection in at least one cell type, namely HBEC, was created (refer to           

Dorer, Holtrup et al. in preparation). Interestingly, HAdV-5 had the most dramatic impact on 

cellular gene expression in primary HBEC followed by both lung squamous carcinoma cell lines 

SW900 and SK-MES-1. However, this effect was drastically reduced in both melanoma cell lines 

SK-MEL-28 and Mel624 (overview in Table 3). 
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Table 3|   summary of gene regulation after infection of different cell lines 

cell line number of regulated genes upregulated downregulated 

HBEC 943 424 519 

SW900 772 326 446 

SK-MES-1 709 310 399 

SK-MEL-28 314 112 202 

Mel624 212 90 112 

 

A list of individual candidate genes showing the strongest and/or a reversed regulation in 

cells of lung origin, especially HBEC, versus melanoma cells was created (Table 4, see below). 

Next, I verified the microarray data by quantifying individual mRNA levels of seven 

representative genes by qPCR in unlabeled samples from the same experiment and associated 

the values with those obtained from the array. As shown in Figure 13 below, the linear 

relationship for both was usually over 80 to 90 % in infected and uninfected samples from 

different cell lines as determined by the coefficient of determination expressed as R
2
. Yet, the 

results gained from independent measurements of this gene panel in Mel624 samples showed a 

very poor correlation. 

To summarize this, sample hybridization to the microarray worked under optimal 

conditions as demonstrated by diverse control probes. This allowed reliable detection of signals, 

as demonstrated by the low background as well as dose-dependent linear correlation of sample 

input with obtained signal output. Further, I independently confirmed the gene expression 

microarray data by qPCR as demonstrated by linear relationship with significant coefficients of 

determination, with exception for Mel624 cells. The reasons for this could be found in the 

underlying weak and statistically insignificant changes in gene expression after HAdV-5 infection 

of Mel624 cells, including the selected panel of genes herein. Accordingly, a greater variance 

between qPCR and microarray values from Mel624 samples accounts for the lack of linear 

relationship. This could be overcome by either hybridizing more replicates or selecting another 

panel of significantly regulated genes in Mel624 for validation. Most importantly, an algorithm 

has been implemented to successfully filter the data from various cell lines with different 

genetic background using the virtual two-color gene expression approach. This enabled me to 
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identify genes that were regulated in a HAdV-5 infection specific manner. Surprisingly, virus 

infection had the most pronounced effect on a number of cellular genes in primary HBEC. This 

effect was severely diminished in melanoma cells. To gain a better overview, sophisticated 

computational tools were applied and will be discussed in the following paragraphs. 

 

Table 4|   list of candidate genes 

gene 

symbol 

regulation in fold change expression after infection
*
 Entrez Gene 

description HBEC SW900 / SK-MES-1 SK-MEL-28 / Mel624 

E2F2 11,5 1.9 / 1.7 -1.5 / (1.1) transcription factor 

HERC5 10,4 1.4 / 1.6 (-1.1) / (1.1) ubiquitin ligase 

H2BFS 9,3 -1.2 / -1.3 (-1.0) / (1.0) histone 

CD83 7,9 2.2 / 2.0 1.3 / (1.6) unknown 

HES4 5,2 2.2 / 2.5 2.3 / 4.0 transcription factor 

UNG 5,1 2.8 / 1.9 (-1.1) / (1.0) uracil-DNA glycosylase 

MGC13057 4,4 5.0 / 3.8 (1.1) / (-1.1) unknown 

CHAF1B 3,9 1.9 / 1.4 (-1.2) / (-1.1) chromatin assembly factor 

CDT1 3,7 1.4 / 1.4 (1.1) / (1.0) DNA replication factor 

CDC25A 3,5 1.5 / 1.7 1.3 / (1.3) phosphatase 

CCNE 3,2 2.6 / 1.8 -1.8 / (-1.1) cyclin 

CDC45L 3,2 1.3 / (1.0) -1.7 / -1.6 DNA replication factor 

MCM2 3 1.4 / (1.2) -1.5 / (-1.1) DNA replication factor 

PFS2 2,9 1.5 / (1.2) (1.4) / -1.2 DNA replication factor 

RFC3 2,8 (1.2) / 1.2 -1.3 / (-1.2) DNA replication factor 

BLM 2,7 (1.2) / 1.2 -1.6 / (-1.5) DNA helicase 

MCM7 2,6 1.4 / (1.1) (-1.4) / -1.1 DNA replication factor 

PKMYT1 2,2 1.6 / (-1.0) -1.5 /(-1.1) protein kinase 

TIPIN 2,2 1.3 / 1.6 (-1.1) / (-1.0) DNA damage signaling 

E2F5 2 1.4 / 1.6 1.3 / (1.0) transcription factor 

IRS2 -2 -1.5 / -1.6 1.7 / (1.0) signaling molecule 

EGR1 -3,1 (1.0) / 2.5 1.8 / 3.3 transcription factor 

FOS -4,7 (1.0) / 1.3 1.7 / 2.0 transcription factor 

* fold changes in brackets are statistically insignificant 
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Figure 13| correlation of the 

microarray and qPCR data: mRNA 

abundance of seven different genes 

was determined by microarray and 

qPCR in uninfected (upper panel) 

and infected samples (lower panel) 

of all analyzed cell lines. Scatter 

plots show correlation of log2 

transformed values from both 

experiments indicated by the 

coefficient of determination R
2
. 

They were calculated for each cell 

line based on a linear trend curve 

and are stated in percent with        

R
2
 = 1 equaling 100 %. 

 

 

2.2 Data interpretation by diverse computational tools 

As adenovirus infection affects the expression level of several hundred genes simultaneously, 

functional data interpretation of microarrays based on single gene analysis would be tedious 

and time consuming. Hence, sophisticated mathematical tools are required to elucidate cellular 

signaling pathways that are influenced during infection by upregulation or downregulation of 

single genes with critical functions for the virus. Therefore, the data was first pictured in a more 

comprehensive way and then analyzed by statistical approaches. As my previous data suggested 



 Analysis of host cell gene expression after HAdV-5 infection | Results 

 

 

45  

 

 

more efficient HAdV-5 replication in cells of lung origin than in melanoma cells, I particularly 

focused on opposing cellular gene regulation in these two moieties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14|   correspondence analysis of microarray data: multidimensional diagram shows expression of 

the 950 most significantly regulated genes (grey dots) and their regulation. Hybridized samples are 

represented by a colored box indicative for the cell type (black = steady state gene expression in 

uninfected cells from each cell type, orange = infected SK-MEL-28, green = infected Mel624,                   

pink = infected SK-MES-1, light blue = infected SW900, and dark blue = infected HBEC). All boxes from one 

cell type surrounded by an equally colored circle are referred to as “condition”. The position of single 

conditions relative to the uninfected controls correlates with the number and strength of regulated 

genes after infection with HAdV-5; that means a greater distance reflects more changes in gene 

expression after adenovirus infection. Data generated by the Multi-Conditional Hybridization Intensity 

Processing System, and filtered according to signal intensity ≥ 100, p-value ≤ 0.05, and                         

fold change ≥ 1.4 in HBEC. Number of hybridized samples: HBEC, two donors n = 2/1, SW900 n = 3,       

SK-MES-1 n = 4, SK-MEL-28 n = 4, Mel624 n = 2. 
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The correspondence analysis plot in Figure 14 was created by M-CHiPS using the list of 

approximately 950 significantly regulated genes in HBEC (generated as described in the previous 

paragraph) and visualizes all cell line samples and genes simultaneously in one                      

multi-dimensional diagram [204]. Each hybridized sample is represented by a colored box 

indicative for the cell type (see figure legend). All boxes from one cell type are surrounded 

within an equally colored circle and referred herein as “condition”. Thus, five conditions can be 

distinguished here: the steady state gene expression in uninfected controls and the infected 

condition from each cell type (HBEC, SW900, SK-MES-1, and SK-MEL-28). The position of single 

conditions relative to the uninfected controls correlates with the number and strength of 

regulated genes after infection with HAdV-5; that means a greater distance reflects more 

changes in gene expression after adenovirus infection. Individual genes are shown as grey dots 

in the diagram and their location within the correspondence analysis plot gives a rough 

overview of their regulation. For example, genes with high expression values in one or more 

conditions are located in the direction of the relevant condition(s). Hence, genes that are 

downregulated in the same condition are located in the opposite way. The majority of genes 

were upregulated in cells of lung origin, mostly HBEC and SW900 (see summary in Table 3). An 

almost equal number was downregulated in all these cell types. On the other hand, infection of 

both melanoma cells SK-MEL-28 and Mel624 did not result in dramatic changes of cellular gene 

expression, including the number as well as the strength of regulated genes, which is indicated 

by the close proximity of each condition to the uninfected controls. 

Another approach for interpretation of my microarray data is a so-called hierarchical 

clustering analysis of differentially expressed genes which was performed using the             

Multi-Experiment Viewer (MeV 4.5.1; http://www.tm4.org). Clustering is a mathematical way to 

associate different genes, and their expression values in single cell types, into sub-groups with 

higher similarity. In other words, clustering identifies groups of genes in a bigger data set that 

share similar functions. As a result, I obtained a color coded list of all regulated genes for my five 

analyzed cell types, also called “heat map” (Figure 15). In this heat map the respective color 

encodes how a single gene is expressed while the intensity reflects the strength of regulation, 

which means the brighter the color the stronger a gene is up- or downregulated. 
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Figure 15|   heat map and gene ontology analysis: Hierarchical clustering of microarray data with   

Multi-Experiment Viewer 4.5.1 based on the 950 most significantly regulated genes in HBEC. Color code 

resembles gene regulation with green for downregulation, black for no change in expression, or red for 

upregulation and the intensity correlates with fold change expression. Cluster borders were individually 

defined according to color patterns in lung versus melanoma cells. As a result, lists of genes for each 

cluster are obtained as demonstrated for the cluster eight containing the most conversely regulated 

genes between HBEC and melanoma cells (zoom-in). These were subjected to gene ontology analysis 

using the Database for Annotation, Visualization and Integrated Discovery to identify genes with similar 

functions (refer to Table 5). P-values of GO terms were corrected for multiple testing using the 

Benjamini-Hochberg algorithm. 
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Afterwards, I determined nine individual groups, also termed clusters, of genes that show either 

similar (genes in each cell type have the same color) or gradually contrasting regulation      

(colors are different in at least one cell type). Consequently, a smaller subset of genes within 

each cluster was defined and subjected to a gene ontology (GO) analysis using the Database for 

Annotation, Visualization and Integrated Discovery (DAVID; http://www.david.abcc.ncifcrf.gov) 

which is an expert-curated database assigning genes to various functions or functional 

categories (GO terms). 

Since my previous results demonstrated more efficient HAdV-5 replication in HBEC, I 

focused especially on a cluster containing genes that were strongly activated in HBEC and at the 

same time downregulated in melanoma cells as it was the case for cluster eight (zoom-in           

of Figure 15). Analysis of cluster eight revealed a number of genes involved in the GO terms cell 

cycle, DNA replication, nucleotide metabolism as well as the cellular DNA repair response 

(summarized in Table 5). The GO terms were statistically analyzed and p-values corrected for 

multiple testing using the Benjamini-Hochberg algorithm, which determines the false discovery 

rate in multiple comparisons [205]. Accumulation of single genes in cluster eight with these    

GO terms was highly significant according to the extremely low p-values of at least p ≤ 10
-7

 

which rules out random accumulation. Intriguingly, relevant genes within each GO term were 

induced in HBEC after wild type HAdV-5 infection but downregulated in both melanoma cell 

lines SK-MEL-28 and Mel624 (overview in Table 4). For the lung squamous carcinoma an 

intermediary phenotype was observed, however, most gene expression levels were either 

unchanged or slightly upregulated but not downregulated as in the melanoma cells. 

 

Table 5|   summary of gene ontology analysis of cluster eight 

GO term number of regulated genes p-value 

DNA replication 25 2.7 × 10
-28

 

DNA metabolic process 30 8.3 × 10
-23

 

response to DNA damage stimulus 15 1.8 × 10
-10

 

DNA repair 13 5.7 × 10
-9

 

cell cycle 17 7.9 × 10
-7
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As single genes and therefrom translated proteins interact in complex cellular signaling 

pathways, I uploaded the list of significantly regulated genes of HBEC and SK-MEL-28 to the 

Ingenuity Pathway Analysis software (IPA; http://www.ingenuity.com/). This allowed me, as 

opposed to the clustering analysis, an allocation of individual genes in regulatory networks. For 

most genes no direct connection within a common pathway could be found with exception of 

the canonical G1/S transition regulatory network of the cell cycle (see Figure 16). Again, it was 

striking to see that the adenovirus infected HBEC strongly expressed several important genes for 

S-phase entry including E2F2, CCNE, and the CDC25A homologue while other inhibitory genes 

like p21
WAF/CIP

 or typical G1-phase genes including CDK4/6 and CCND were downregulated.      

On the other hand HAdV-5 infection in SK-MEL-28 resulted in no detectable induction but rather 

downregulation of stimulatory genes and/or absent downregulation of inhibitors in this 

pathway. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16|   activation of the G1/S-phase transition pathway: expression values of the 950 most 

significantly regulated genes in HBEC were uploaded to the Ingenuity Pathway Analysis software and 

mapped onto diverse cellular pathways. This revealed a strong upregulation of several pro S-phase genes 

involved in the canonical G1/S-phase transition regulatory network of the cell cycle in                           

HBEC (left diagram) but not melanoma, represented by SK-MEL-28 (right diagram). Green and red nodes 

equal down- and upregulated genes, respectively. Grey nodes indicate no change in gene expression. The 

color intensity correlates with strength of fold change expression. 
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Concluding all computational results, different analysis tools showed a significantly 

stronger gene regulation in HBEC after HAdV-5 infection than in the other tumor cell lines. 

Moreover, in SK-MEL-28 and Mel624 melanoma cells only a few genes were induced after 

adenovirus infection and surprisingly often in an opposing manner as compared to infected 

HBEC, SW900, and SK-MES-1 cells. In cells of lung origin, wild type HAdV-5 induced several 

genes with important functions in cell cycle regulation, DNA replication, and nucleotide 

metabolism. A similar gene expression pattern could not be observed in either melanoma cell 

line. Quite the contrary, in SK-MEL-28 and Mel624 many of these genes were either not or only 

weakly induced or often also downregulated. Furthermore, the linear ends of adenoviral 

genomes are expected to trigger a cellular DNA damage response, supported by the induction of 

relevant DNA repair genes in cells of lung origin [95,96]. Although this circumstance is normally 

considered a cellular defense mechanism, it was again absent in melanoma cells.                  

Above all, I found that the signaling pathway responsible for G1/S-phase transition, a key 

pathway for adenoviral DNA synthesis, was strongly activated through upregulation of 

stimulatory genes in HBEC upon infection with HAdV-5, while inhibitory genes were 

downregulated at the same time. Among the activating genes in infected HBEC, the E2F2 gene 

presumably plays an outstanding role as E2F transcription factors induce the expression of 

several S-phase genes as mentioned in the INTRODUCTION. Strikingly, E2F2 and other activating S-

phase genes were again not induced or downregulated in SK-MEL28 and Mel624 melanoma 

cells. Hence the gene expression signature identified in infected melanoma cell lines, involving 

the key pathway for S-phase entry, might provide a molecular basis for the previously observed 

inefficient adenovirus DNA replication compared to cells of lung origin. Subsequently, I 

investigated S-phase entry by an independent biological assay using a modified luciferase 

reporter gene approach. 

 

2.3 S-phase reporter gene assay 

Induction of S-phase is a key feature of human adenoviruses enabled by the                               

E1A master regulator proteins. This is achieved through disruption of pRB/E2F regulatory 

network and release of E2F transcription factors. Eventually, they will bind and activate a 

plethora of cellular and adenoviral promoters bearing E2F responsive elements.                    
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These are usually found in genes involved in cell cycle regulation and DNA replication like those 

previously identified by my microarray approach. The computer assisted cluster gene ontology 

and ingenuity pathway analysis of the microarray data showed a significant induction of a panel 

of genes involved in the G1/S transition regulatory network after HAdV-5 infection in lung cells 

but no melanoma. To study this effect in infected cells more closely, I developed an 

independent biological assay for S-phase induction. The design capitalizes on a shortened       

E2F promoter element which can be activated in a positive feedback loop by transcription 

factors of the E2F family in order to drive luciferase expression and thus served as “sensor”     

for S-phase entry. 

First, I transfected this construct along with a similar construct containing the simian 

virus 40 (SV40) promoter into different tumor cell lines and in primary HBEC.                              

The SV40 promoter does not contain an E2F responsive element and served as constitutively 

active control. Second, I inoculated the cells with relevant TCID50 titers for 80 % transduction 

with wild type HAdV-5 or a replication-deficient HAdV-5 CMV-gfp variant on the next day. The 

latter encodes all adenoviral genes except the ones in the E1 and E3 region and provided a 

control for E1A/viral DNA replication-independent effects on the promoter activity.      

Luciferase expression was measured at or shortly before the estimated time of virus DNA 

replication. Thus, I chose a twenty hour time point post infection for every cell line which should 

be sufficient for prior or coinciding activation of the S-phase reporter construct even in the case 

of Mel624 where adenovirus DNA replication became apparent around 24 hours. In all cells of 

lung origin (upper panels, Figure 17A see next page) HAdV-5 was able to activate the                

E2F promoter constructs resulting in significant higher luciferase activity compared to the         

E1 region deleted HAdV-5 CMV-gfp negative control. A similar activation but to a severely 

reduced amount was observed in SK-MEL-28 after infection with HAdV-5 but not in Mel624. The 

stimulatory effect of wild type HAdV-5 was specific for the E2F promoter since there was no or 

only a minor luciferase increase from the SV40 promoter after infection with HAdV-5 or     

HAdV-5 CMV-gfp. Moreover, transduction with the HAdV-5 CMV-gfp did not significantly 

increase E2F or SV40 promoter activity in any of the cell types. For better comparison, I 

calculated the fold change increase of luciferase activity from both promoter constructs after 

infection with HAdV-5 and set the values from transduction with HAdV-5 CMV-gfp as one 

(Figure 17B, see next page). Again, the lung cells showed the highest fold induction of              
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the E2F promoter compared to the relevant SV40 control. The melanoma cells showed the 

lowest or no fold change increase. Nevertheless, both were considerably below the primary 

HBEC, A549, and SW900. 

 

 

 

Figure 17|    activation 

of the E2F promoter 

after HAdV-5 infection:         

A) luciferase reporter 

gene plasmids containing 

either an E2F (dark blue 

bars) or SV40 (light blue 

bars) promoter element 

were transfected into 

various cell lines. After 

24 hours, cells were 

infected with individual 

titers of HAdV-5 (left 

columns) or the E1 region deleted HAdV-5 CMV-gfp (negative control, right columns) resulting in 80-90 % 

infection. Luciferase activity was quantified twenty hours post infection. Each bar with standard 

deviation represents mean values of triplicate transfections and infections. P-values were calculated 

between HAdV-5 and HAdV-5 CMV-gfp of the same promoter construct using the                                            

Student’s t-test (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). B) Fold change induction of the E2F promoter 

compared to SV40 promoter after HAdV-5 infection. 
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Therefore, the S-phase reporter gene data related to the computational microarray 

analysis. Activation of the G1/S-phase transition pathway, involving the release of                     

E2F transcription factors from pRB by adenovirus E1A proteins, could be determined through 

induction of an E2F responsive promoter/reporter gene construct after infection with HAdV-5 

but not an E1 region deleted control virus. As before, HBEC followed by several lung carcinoma 

cells showed potent activation of this pathway after infection with HAdV-5 while melanoma 

cells were mostly refractory to the same stimulus. In conclusion, my microarray data together 

with the described assay might provide a rationale and tool to study the limited ability of   

HAdV-5 to efficiently replicate in malignant melanoma cells. Eventually, I wanted to analyze 

expression of single candidate genes in a wider melanoma cell panel. 

 

2.4 Candidate gene expression in a wider melanoma cell panel 

The adenovirus specific gene expression signatures identified in infected SK-MEL-28 and Mel624 

cells revealed that several genes with functions in cell cycle regulation and S-phase entry, 

nucleotide metabolism, and DNA replication were not or only weakly induced and sometimes 

even downregulated. My goal therefore was to look at mRNA expression levels of individual 

genes in a wider melanoma cell panel and investigate whether the inability of HAdV-5 to 

activate these genes in SK-MEL-28 or Mel624 is a more common phenomenon in other 

melanoma cells. In the end, certain gene expression signatures might be useful to predict 

adenovirus replication efficacy in other cell types. 

For this experiment I evaluated candidate mRNA abundance in a panel of infected 

established cell lines and low passage melanoma cells. This set included cells originally derived 

from pigmented (SK-MEL-28, Mel624, Mel888, Colo-829, pMel A, pMel A2, and pMel L) as well 

as amelanotic malignant melanomas (C8161 and A375M) to determine the impact of 

pigmentation on adenovirus replication. As reference, they were compared to relevant 

uninfected controls as well as primary HBEC, the lung squamous carcinoma cell lines SW900 and 

SK-MES-1, and the lung adenocarcinoma cell A549. Most of which showed good susceptibility 

for HAdV-5 infection and cell lysis demonstrated in earlier cytotoxicity assays (refer to II, 1.2). 
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Table 6|   HAdV-5, HAdV-5 CMV-gfp, or HAdV-5/3 titers for 80-90 % infection of other cancer cell lines 

cell line origin CAR expression virus type TCID50 titer/cell 

A375M amelanotic melanoma no HAdV-5/3 1000 

A549 lung adenocarcinoma yes HAdV-5 400 

C8161 amelanotic melanoma no HAdV-5/3 700 

Colo-829 melanoma yes HAdV-5 300 

Mel888 melanoma yes HAdV-5 400 

pMel A low passage melanoma no HAdV-5/3 500 

pMel A2 low passage melanoma no HAdV-5/3 1000 

pMel L low passage melanoma no HAdV-5/3 500 

 

Subsequently, cells were incubated with individual MOIs of wild type HAdV-5 or                   

HAdV-5/3 (depending on CAR expression, see Table 6) leading to 80-90 % infection rates. Total 

RNA was harvested at twenty hours post infection from infected and equivalently treated 

uninfected samples. After purification, I quantified mRNA expression of selected candidate 

genes involved in cell cycle regulation and DNA replication by qPCR and normalized the signals 

to the cellular RNA input determined by ACTB. These genes were previously found to be induced 

in infected HBEC but not or only weakly in SK-MEL-28 and Mel624 (also refer to Table 4). 

Relative mRNA levels were correlated to the level measured in uninfected HBEC cells and are 

depicted in Figure 18. For all genes, I did see a strong virus dependent increase of mRNA 

abundance in infected HBEC cells as expected. Disappointingly, there was no obvious general 

adenovirus mediated pattern of gene expression in any of the other cell lines. This observation 

was independent of the evaluated cell type and pigmentation status as discussed for the 

example of the E2F2 gene, the most strongly induced gene after HAdV-5 infection in HBEC. 

Whereas, E2F2 mRNA expression was stimulated during infection in HBEC, SW900, and several 

other cell lines including most melanomas, it was downregulated in SK-MEL-28 and A549. 

Regarding SK-MEL-28 this turned out to be as expected. However A549 cells, like HBEC and 

SW900, are known to optimally support HAdV-5 infection. Thus, downregulation of E2F2 in 

A549 was astonishing. Moreover, the steady state levels of mRNA in uninfected cell samples 

were commonly higher than in HBEC. This however did not limit the ability of HAdV-5 to further 

increase the mRNA abundance during infection as in case of SK-MES-1 or Mel888 cells. 
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Figure 18|   expression of selected cell cycle related genes in infected melanoma cells: various cells      

of lung origin (upper group in each diagram) and different pigmented and amelanotic                  

melanomas (lower group in each diagram) were infected with relevant titers of HAdV-5 or HAdV-5/3    

(as indicated in Table 6). Relative mRNA expression levels of single genes were normalized to ACTB 

signals using Q-Gene software (see paragraph V, 1.9.2). As a reference, mRNA abundance from 

uninfected primary HBEC was set as one. Respective diagrams show gene expression after infection (dark 

blue bars) compared to the relevant uninfected control sample (light blue bars). Bars and standard 

deviation represent triple measurements from the same sample. 
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As a general bottom line, a phenotype similar to infected SK-MEL-28 and Mel624 cells 

with unchanged gene expression or even downregulation of single genes could not be observed 

in a wider panel of melanoma cells. Indeed, almost all of the assessed candidate genes were 

induced in infected melanoma cells, which have been characterized by me and others and are 

usually modestly permissive for HAdV-5. At the same time they were differentially expressed in 

infected cells with high permissivity including HBEC (upregulated) and A549 (downregulated). 

Thus, a direct relationship of single gene expression and replication efficiency or cytotoxicity 

was only feasible for the set of cells investigated in our microarray study, but not in a wider 

panel of melanoma cells. Also, it might be possible that S-phase entry in the latter is affected by 

regulatory mechanisms other than upregulation of gene expression. One has to keep in mind 

that my experiments based on quantification of mRNA and therefore cannot account for 

changes in posttranscriptional regulation, de novo protein translation, protein-protein 

interactions, and interplay in regulatory networks. Hence, several aspects might explain why cell 

type-dependent replication efficacy could be linked to individual marker genes in a few cell lines 

as in case of SK-MEL-28 and Mel624 but not in others. This reasoning strengthens the 

importance of comprehensive analyses of complex cellular signal pathways rather than single 

factors in order to predict replication efficacy of HAdV-5 in other cell types. Nonetheless, the 

knowledge gained from my microarray data might help to engineer oncolytic adenoviruses with 

enhanced replication potential, at least for a subset of melanoma represented by SK-MEL-28 or 

Mel624 that were investigated here. In the following chapter different strategies are employed 

utilizing overexpression of regulatory transgenes, small inhibitory RNAs, or drugs that might lead 

to activation of relevant host genes or signaling pathways. 
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3 Identification of strategies to enhance HAdV-5 replication in cancer cells 

3.1 Overexpression of regulatory genes 

During the last two chapters of my study it became evident that viral DNA replication in infected 

melanoma cell lines SK-MEL-28 and Mel624 is lower compared to primary lung cells that 

resemble the natural host cell type of HAdV-5. This is accompanied by lacking or reduced           

S-phase induction and subsequent expression of cellular host genes involved in cell cycle 

regulation, nucleotide metabolism, and DNA metabolism. Both aspects could potentially limit 

the clinical benefit of HAdV-5 based virotherapeutics for malignant melanoma as virus 

amplification is the most important mechanism of action. Hence, one approach to overcome 

this utilizes mutation or engineering of adenoviruses to express additional genes that increase 

their lytic potency. For example, deletion of the E1B-19k gene, a cellular homologue of the anti-

apoptosis gene BCL2 resulted in increased cytotoxicity in several but not all cancer                  

cells [172-174]. Thus, the concept to enhance a naturally evolved virus for cancer therapy is in 

general feasible. 

In my case, I wanted to apply this concept by transfecting various genes characterized for 

their stimulatory effects on the cell cycle (summary and function given in Table 7) in adenovirus 

infected melanoma cells and thereby complement possible defects in S-phase activation of 

HAdV-5. Among them were human genes found in the microarray analysis comprising the       

E2F transcription factors but also different viral oncogenes from human papilloma viruses (HPV), 

the SV40; and the human herpes virus type 8 (HHV-8) that served as proof of principle controls. 

To determine their impact on adenovirus replication, I transfected the respective constructs 

along with an empty vector control in SK-MEL-28 melanoma cells. The transfection efficiency 

was controlled by a gfp tagged version of the CDC25A phosphatase to rule out that absent 

activation by any of the selected genes was due to insufficient transfection (data not shown). 

Following a short incubation time of sixteen to twenty hours, cells were infected with an MOI   

of 1 TCID50/cell HAdV-5. Thereby, I tried to mimic a situation where the oncolytic adenovirus is 

used as vector for de-novo expression of a relevant transgene synchronized with infection. As a 

read-out viral genome copy numbers were determined 24 hours post infection by qPCR since 

viral DNA replication is a direct consequence of S-phase induction. 
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Table 7|   genes with stimulatory effects on the cell cycle 

gene host function 

CCNE human cyclin associated with G1/S-phase transition 

CDC25A human 
phosphatase involved in G1/S-phase transition, gets 

degraded in response to DNA damage 

E2F1 human 
transcription factor of genes whose products are 

involved in S-phase entry or in DNA replication 

E2F2 human 
transcription factor of genes whose products are 

involved in S-phase entry or in DNA replication 

E2F5 human 
transcription factor of genes whose products are 

involved in S-phase entry or in DNA replication 

E7 human papilloma virus 16 
disrupts pRB/E2F complexes, interferes with histone 

deacetylation and activates transcription 

E7 human papilloma virus 18 
disrupts pRB/E2F complexes, interferes with histone 

deacetylation and activates transcription 

E7 human papilloma virus 31 
disrupts pRB/E2F complexes, interferes with histone 

deacetylation and activates transcription 

large T antigen simian virus 40 disrupts pRB/E2F complexes, possesses helicase activity 

small T antigen simian virus 40 
accelerates both G1- and S-phase progression, may 

inhibit cap dependent mRNA translation 

v-cyc human herpes virus type 8 
forms a complex with CDK6 that inactivates pRB, 

resistant to actions of p16
INK4a

 and p21
WAF/CIP

 

YB1 human 
transcription factor, interferes with TP53 induced 

apoptosis but not p21
WAF/CIP

 dependent cell cycle arrest 

 

As can be seen in Figure 19, the virus replicated to high amounts of around 4.5×10
6
 viral 

genome copies in cells containing the empty vector control. This was seen to a similar extend in 

presence of CCNE, the cellular phosphatase CDC25A, the Y-box binding protein 1 (YB1), and the 

viral SV40 large T antigen as well as the E7 genes from HPV-16 or HPV-31. Only after 

transfection of HPV-18 E7, I observed a strong and significant increase of adenoviral genomes. 

However, this effect could not be reproduced with statistical significance in further              

assays (data not shown). Interestingly, the SV40 small T antigen and the                                    

HHV-8 viral-cyclin (v-cyc) had reproducible inhibitory effects on adenovirus replication. Further, 

this was dominant for the small T antigen as implied by double transfections of both small and 

large T antigens. Similar experiments with the E2F transcription factors, based on double 
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infections with a replication-deficient HAdV-5 E2F1, HAdV-5 E2F2, or HAdV-5 E2F5 together with 

wild type HAdV-5, also yielded no enhancing effect (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19|   transfection of cell cycle related genes and their impact on adenovirus replication:           

SK-MEL-28 cells were transfected with relevant cellular and viral genes (Table 7). In addition, a negative 

control comprising an empty expression plasmid (pcDNA3.1) was included. Shortly afterwards, cells were 

inoculated with 1 TCID50/cell of HAdV-5. After 24 hours post infection, pellets were harvested for 

purification of total DNA. Means of viral genomes per ACTB were determined by qPCR and are shown as 

dark blue bars with standard deviation, resembling mean values of triplicate transfections/infections. 

Significance was calculated according to the Student’s t-test versus pcDNA (* p ≤ 0.05). 

 

To sum up, transfections of diverse genes with known inducing effects on S-phase entry 

of the cell cycle did not augment adenovirus replication in SK-MEL-28 cells. In some assays, a 

weak enhancing effect of HPV-18 E7 could be observed. However, statistical significance could 

not be reproduced. Besides, inhibition of adenovirus DNA replication by some transgenes was 

more pronounced than any potential benefits. Identical results were obtained when I repeated 
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these experiments using the HAdV-5/3 Δ24 T2A-luc which expresses the luciferase reporter 

gene in a DNA replication-dependent manner under control of the major late promoter. Despite 

several efforts to optimize my assay, major drawbacks remained as transgene expression was 

transient, inhomogeneous, and not in context of a replication-competent virus bearing the 

transgene. Nevertheless, even similar assays using double infections of wild type HAdV-5 

together with replication-deficient adenoviral vectors bearing E2F transcription factors did not 

show any promise. In the end, I did not succeed to enhance adenovirus replication by 

overexpression of single genes and therefore tried a knockdown approach of two cell cycle 

inhibitors. 

 

3.2 Knockdown of cell cycle inhibitors 

With the discovery of small interfering RNA (siRNA) it became possible to selectively 

knockdown particular target genes with limiting side effects on the residual cellular gene 

expression. This system has been frequently used to study regulation of signal transduction 

pathways for example by screening for unknown genes or by knocking down key                 

players [206-208]. In theory, it can be used likewise to induce a certain cellular state, in my case 

transition into S-phase, by eliminating relevant inhibitors. Prominent examples for negative 

regulators of the cell cycle are the p16
INK4a

 and p21
WAF/CIP

 proteins. Normally p16
INK4a

 inhibits the 

proliferation of normal cells by interacting strongly with the CDK4/6 which in turn inhibits their 

ability to destabilize pRB/E2F complexes (summarized in Figure 4). On the other hand, p21
WAF/CIP

 

binds and inactivates complexes of CDK2 and cyclin E or A which usually stimulate cell cycle 

progression through phosphorylation of diverse substrates. Hence, inhibition of            

CDK/cyclin complexes leads to a cell cycle arrest in G1-phase. In addition, a recent publication 

illustrated the viability of this approach by increased wild type adenovirus replication and 

formation of progeny virions in a p21
WAF/CIP

 deficient colorectal carcinoma cell line [209]. 

Therefore, I purchased verified and tested siRNAs against each inhibitor and utilized 

them for transfection of SK-MEL-28 and Mel624 cells accordingly. A randomized pool of four 

nonsense siRNAs without known cellular targets served as a negative control. The knockdown 

efficacy was determined by qPCR and generally ranged between 60-90 % compared to the 

control (refer to Figure 20A). 
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Figure 20| impact of p16
INK4a

 and p21
WAF/CIP

 mRNA knockdown on adenovirus replication:                      

A) after siRNA transfection GAPDH normalized mRNA levels of both inhibitors were determined by qPCR. 

Values from SK-MEL-28 and Mel624 cells containing a pool of nonsense control siRNAs (dark and        

light blue bars, respectively) were set as 100 % and compared to cells after transfection of gene specific 

siRNAs (striped and white bars, respectively). B) luciferase reporter gene assay of SK-MEL-28 (dark blue 

bars) as well as Mel624 (light blue bars) cells after transfection with indicated siRNAs and infection with 

1 TCID50/cell HAdV-5/3 Δ24 T2A-luc for 48 hours. Bars and standard deviation represent triplicate 

experiments normalized to the control siRNA, p-values were calculated according to the Student’s t-test 

compared to the control (* p ≤ 0.05). C) shown on the next page, relative mRNA expression of individual 

host cell candidate genes after nonsense siRNA (light blue bars) or p21
WAF/CIP 

specific siRNA transfection    

(dark blue bars). Bars and standard deviation are based on three measurements of the same sample; 

normalization was done using Q-Gene software. 

 

Following transfection, I incubated the cells with 1 TCID50 HAdV-5/3 Δ24 T2A-luc for 48 hours 

and harvested samples for subsequent luciferase assays and qPCR. Unfortunately, neither 

p16
INK4a

 nor p21
WAF/CIP

 knockdown resulted in an elevated luciferase activity after infection 

which is a direct consequence of virus genome amplification (Figure 20B). Quite the contrary, 

downregulation of each cell cycle inhibitor acted in a negative way on luciferase expression. In 
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addition, I investigated the relative mRNA expression levels of my candidate genes from Table 4 

in order to find evidence for an altered host cell environment after knockdown of both     

p16
INK4a

 (data not shown) and p21
WAF/CIP

 (Figure 20C). However, I did not find dramatic changes 

in mRNA abundance for most genes although CCNE or CDC25A seemed to be weakly 

upregulated whereas EGR1 and FOS were slightly downregulated in uninfected SK-MEL-28        

48 hours after siRNA transfection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In conclusion, knockdown of two different cell cycle inhibitors could not enhance 

adenovirus replication in melanoma cells. Although, the knockdown did weakly enhance 

expression for individual cell cycle related genes in one cell line. The greater majority of my 
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candidate gene expression, however, remained unaffected. Here, knockdown of p16
INK4a

 or 

p21
WAF/CIP

 seemed to moderately inhibit adenovirus replication as determined by indirect 

reporter gene assays. Although this approach has been published for a human colon carcinoma 

cell lines, it did not work in my hands for melanoma cells despite efforts to optimize the system. 

Especially detection of p16
INK4a

 and p21
WAF/CIP

 proteins proved to be impossible by Western Blot 

which could be due to their low abundance in these cells. However, the knockdown efficiency 

was high on mRNA level which should have depleted relevant protein levels, especially as they 

possess only a short half-time. Thus, from a technical point of view my approach worked but did 

not yield the desired increase in HAdV-5 replication. Combined with previous experiment, my 

data again strongly suggested that expression/inhibition of individual genes, rather than 

activation of a whole regulatory network, was insufficient to enhance adenoviral lysis. To 

address this point, a combinatorial treatment of chemotherapeutic drugs with HAdV-5 was 

applied. 

 

3.3 Impact of chemotherapeutics on adenovirus replication 

Combination therapies are a major focus in treatment of cancer as single based treatments 

often cannot achieve complete eradication of the tumor. So far, most studies involving 

therapeutic viruses showed no reciprocal interference or even a superior effect of chemo- and 

virotherapy regarding tumor destruction [210,211]. This aspect might be supported by the 

individual drug toxicity or by direct and indirect synergism, which has often been postulated to 

be dependent on a cell cycle arrest and activation of apoptosis which might help the virus to 

amplify and spread. Cell cycle arrest in S-phase might indeed support better virus growth as it 

sustains the S-phase environment over longer times. Hence, several stimulatory factors for   

DNA replication would become available in greater amounts. To investigate and potentially 

exploit that mechanism, I tested the impact of several chemotherapeutics on adenovirus 

replication. 
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Figure 21|   impact of chemotherapeutic drugs on the cell cycle of melanoma cells: cell lines were 

treated with either 25 nM camptothecin, 1.5 µM etoposide, 650 µM temozolomide, 10 nM rapamycin,  

or 4 µM 5-fluorouracil for 48 hours (concentrations according to [210,211]). Samples receiving medium 

containing only the relevant solvent served as mock control. Afterwards, cells were fixed and stained 

with propidium iodide for flow cytometry. Single cells were discriminated from doublets, clumps, and 

debris by fluorescence pulse area FL2-A versus fluorescence pulse width FL2-W gating to avoid false 

positive signals. Histograms show the relative DNA content measured in FL2-A (black lines). 
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Table 8|   chemotherapeutic drugs and their mechanism of action 

name cell cycle block mechanism 

5-fluorouracil G1/S-phase 
affects pyrimidine synthesis by inhibiting thymidylate synthetase; 

induces TP53 dependent apoptosis. 

camptothecin S-phase 
inhibitor of DNA-topoisomerase I; induces apoptosis by cell cycle-

dependent and cell cycle-independent processes. 

etoposide 
S-phase and 

G2/M-phase 

inhibitor of DNA topoisomerase II; induces apoptosis by cell cycle-

dependent and cell cycle-independent processes 

rapamycin G1-phase 
inhibits the molecular target of rapamycin that enhances cellular 

proliferation via the phosphoinositol 3-kinase/AKT pathway. 

temozolomide G2/M-phase 
DNA methylating agent; induces apoptosis through inactivation of 

the DNA repair base excision pathway. 

 

Towards this goal, various established drugs for cancer treatment featuring different 

mechanisms of action and impact on the cell cycle were evaluated (summarized in Table 8). 

First, I analyzed the cell cycle distribution of four melanoma cell lines in presence of particular 

chemotherapeutics (shown in Figure 21). SK-MEL-28, Mel624, Mel888, and C8161 cells treated 

with a vehicle control showed a normal unsynchronized DNA content reflecting cells in the 

different phases of the cell cycle. Here, quiescent cells contain a diploid set of chromosomes 

(2N) represented by a characteristic high G1-phase peak, a low proportion of cells have entered 

the S-phase (chromosome content > 2N but < 4N), and a moderate number of cells reached the 

G2/M-phase (end of DNA replication, chromosome amount doubled to 4N). After incubation 

with camptothecin or etoposide the proportion of cells in S-phase and G2/M-phase drastically 

increased. This effect albeit comparably weaker could also be seen after temozolomide 

treatment for all tested melanoma cell lines. Here, Mel888 cells showed the highest impact on 

the cell cycle arrest by temozolomide as previously shown by our lab [212]. In contrast, 

rapamycin led to a potent G1-phase arrest evident through a strong signal increase of              

the G1-phase peak. Incubation with 5-fluorouracil had a similar outcome although in Mel624 

and SK-MEL-28 an incomplete block was observed resembled by an increased proportion of cells 

in S-phase while the G2/M peak vanished compared to the vehicle control. 
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Second, I incubated freshly infected SK-MEL-28 melanoma cells with serial dilutions of 

each drug. The cells had been previously inoculated with 1 TCID50/cell of the replication-

competent HAdV-5/3 Δ24 T2A-luc expressing luciferase dependent on viral DNA replication. 

Following 48 hours incubation, I determined the luciferase activity in each sample.                      

As depicted in Figure 22, the drugs mostly had no enhancing effect or even lowered luciferase 

levels in case of 5-fluorouracil and rapamycin. 

 

Figure 22|   impact of chemotherapeutics on 

luciferase expression by HAdV-5/3 Δ24 T2A-luc: 

Melanoma cells SK-MEL-28 were infected with   

1 TCID50 of the replication-competent          

HAdV-5/3 Δ24 T2A-luc. After one hour, 

inoculants were replaced with medium 

containing serial dilutions of the indicated drugs 

or vehicle. Luciferase expression was 

determined in relative light units after 48 hours. 

Bars and standard deviation represent triplicate 

samples, p-values were calculated according to 

the Student’s t-test in relation to the mock 

control (* p ≤ 0.05). 
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However, this was not true for temozolomide which significantly increased luciferase activity of 

infected SK-MEL-28 cells in a dose-dependent way. Here, a temozolomide concentration of    

650 µM yielded the strongest increase. A similar but less prominent tendency could be seen in 

identical experiments using 312 µM temozolomide for Mel624 cells (data not shown). Further, I 

pre-treated the cells for 24 hours with TMZ prior to infection which also resulted in significantly 

enhanced luciferase expression for SK-MEL-28 cells but not Mel624 (data not shown). These 

experiments were repeated using wild type HAdV-5 and determination of genome copies or late 

structural mRNA content by qPCR and yielded identical results, that is a strong increase of 

genome copy numbers and fiber mRNA after treatment with TMZ (data not shown). 

 

 

Figure 23|   effect of 

temozolomide on virus 

particle production:   

SK-MEL-28 melanoma 

cells were infected with 

1 TCID50/cell of HAdV-5 

(dark blue bars). After 

one hour incubation, 

virus inoculums were 

removed and cells 

washed three times. 

Additionally, samples 

were incubated in      

650 µM temozolomide 

(light blue bars). Then, 

samples of supernatants 

(upper panel) and cell 

pellets (lower panel) 

were harvested at 

indicated time points 

and analyzed for 

infectious particle 

content stated in 

TCID50/ml. Bars and 

standard deviation were 

calculated from mean 

values of triplicate 

infections, p-values 

were calculated using 

the Student’s t-test       

(* p ≤ 0.05, ** p ≤ 0.01). 
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Next, I evaluated the impact of temozolomide on virus progeny formation as a more 

direct means to determine the benefit for adenovirus replication. Therefore, SK-MEL-28 cells 

were infected with 1 TCID50/cell HAdV-5 and incubated in 650 µM temozolomide over 72 hours. 

Separate samples of cell culture supernatants and cell pellets were harvested every twelve 

hours. Afterwards, I quantified infectious progeny virions by a TCID50 assay. The results shown in 

Figure 23, demonstrate an up to fivefold enhancing effect on virus production as more particles 

can be found early on inside the cells between 36 to 60 hours post infection and also in the 

supernatant at 60 hours post infection compared to vehicle treated control cells.                            

At 72 hours post infection, the titers of progeny viruses were similar in untreated and TMZ 

treated SK-MEL-28 cells. 

Taken together, various established anticancer drugs resulted in different cell cycle 

blocks in four tested melanoma cell lines. At the same time, most chemotherapeutics had no 

stimulatory effect on virus replication. On the other hand, 5-fluorouracil and rapamycin seemed 

to inhibit adenovirus replication either due to direct effects of the drug on the adenovirus 

genome or indirectly as a result of the G1-phase block. However, cell cycle arrest later then    

G1-phase was not deleterious for adenovirus replication. This is in line with most publications 

demonstrating the feasibility of combined chemo- and virotherapy. Here, temozolomide 

increased adenovirus replication and production of progeny virions in SK-MEL-28 cells at early 

time points. The prodrug is converted at physiological pH to the toxic form                                    

5-(3-methyltriazen-1-yl)imidazole-4-carboxamide which is an established front line therapeutic 

against gliomas and malignant melanomas. Interestingly, temozolomide enhanced adenovirus 

infection in some melanoma cell lines suggested by the replication-dependent increase in 

luciferase expression, viral DNA copy numbers, and virus progeny formation. Moreover, this 

drug had a considerably weaker impact on S-phase arrest than camptothecin or etoposide 

which were ineffective to achieve similar results even at lower concentrations. However, the 

enhancing effect on amplification of adenoviruses was temporary and could not be observed at 

72 hours post infection in SK-MEL-28. A possible explanation is that at late time points the active 

temozolomide concentration diminished and therefore could not sustain the enhancing effect 

on generation of infectious adenoviruses. Hence, a combination therapy seems to be 

advantageous but needs further investigation in animal studies or in cancer patients with focus 

on the drug’s direct and indirect mechanism of action. The last part of my work dealt with an 

alternative strategy to increase the cytotoxicity of single agents like an oncolytic virus, namely 

arming. 
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4 Arming of oncolytic adenoviruses with therapeutic antibodies 

4.1 Virus design 

A further facet of my work addressed the concept of arming oncolytic adenoviruses with 

therapeutic transgenes. This is a commonly used feature of virotherapy to increase the 

antitumoral efficacy by exerting a toxic effect on non-infected cancer cells, the so-called 

“bystander effect” (also see I, 3.4). Indeed, proof of principle studies with several different 

oncolytic viruses and diverse transgenes showed encouraging results. A prominent example is 

the first oncolytic human herpes virus expressing a rat cytochrome P450 enzyme responsible for 

bioactivation of cyclophosphamide or ifosfamide into toxic compounds [177]. The advent of the 

hybridoma technology together with identification of tumor-specific surface molecules resulted 

in use of monoclonal antibodies for clinical applications such as Trastuzumab against    

HER2/neu positive cancers or Rituximab for CD20 positive Non-Hodgkin lymphoma [6,190]. 

Consequently, I wanted to combine virotherapy with therapeutic antibody expression which has 

been successful for an oncolytic Newcastle disease virus, but so far has not been investigated 

for oncolytic adenoviruses [184]. In theory, this approach provides a flexible tool regarding 

different tumor antigens and effector domains that can be combined within recombinant 

antibodies. Moreover, the oncolytic virus delivered antibodies can be produced locally to high 

concentrations and thus synergize with the virus mediated tumor cell killing. This mode of 

delivery is potentially superior to systemic antibody injections. 

To this end, the fiber-chimeric oncolytic HAdV-5/3 Δ24 served as platform since it 

generally results in greater transduction rates of tumor cells due to the chimeric 5/3 fiber 

bearing the HAdV-3 knob domain. The latter has recently been shown to bind desmoglein-2 

which is expressed in epithelial cell types and therefrom derived tumors [59]. In addition,        

the 24 bp deletion in the E1A gene renders the virus conditionally replication-competent as it 

requires a deregulated pRB/E2F pathway, a hallmark of several malignancies. Regarding the 

therapeutic antibody, the carcinoembryonic antigen (CEA) was chosen as a model target 

because it is well characterized and frequently found in pancreatic, gastric, and lung cancers. In 

collaboration with Roland Kontermann from the University of Stuttgart, I received the coding 

sequence for a modified CEA single-chain antibody fused to the mouse heavy chain           

gamma 2 constant region (scFvCEA-Fc, Figure 24A). The Fc domain is recognized by serum 
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complement and various immune cells such as natural killer cells where it plays an important 

role in antibody-dependent cellular cytotoxicity [187]. Besides, the coding sequence is in frame 

with a secretion signal from mouse immunoglobulin κ that allows translation into and secretion 

from the endoplasmatic reticulum, the natural compartment of antibody production in B cells. 

Another key aspect is that the antibody can form dimers due to the constant regions. As a 

result, longer circulation times in blood and hence greater tumor uptake can be achieved [189]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24|   antibody and armed oncolytic virus design: A) schematic structures of different routinely 

used antibody formats including scFv (~25 kDa), diabody (~55 kDa), minibody (~80 kDa), scFv-Fc used 

herein (~105 kDa), and intact antibodies (~150 kDa). Modified according to Wu & Senter, Nature 

Biotechnology, 2005 [189]. B) overview of genetically engineered HAdV-5/3 virus variants. Linear 

genomes carry inverted terminal repeats (grey boxes) at each end. For cancer selective replication, the 

E1A gene bears a 24 bp deletion (dark blue box). The major late promoter (black box) transcribes late 

gene expression in dependency of virus DNA replication. Among them is the chimeric 5/3 fiber for 

enhanced infectivity (light blue box) but also the scFvCEA-Fc transgene (yellow box) under control of either 

the HAdV-40 long fiber gene splice acceptor (bright blue box), an IRES site (pink box), the HAdV-2            

L1 pIIIa splice acceptor (red box), or the human beta globin splice acceptor (green box). A replication-

deficient control virus carries a constitutively active CMV promoter/transgene cassette replacing the     

E1 genes (orange/yellow box). 

 

Shown in Figure 24B, are five HAdV-5/3 variants which I generated and utilized in the 

following experiments, refer to the MATERIALS section IV, 5.4 for cloning. Among them a 

replication-deficient control virus where the E1 genes have been replaced with a                     
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CMV promoter/scFvCEA-Fc transgene cassette. Furthermore, four replication-competent viruses 

expressed the antibody under control of the major late promoter via different splice acceptor 

sites or the well characterized internal ribosomal entry site (IRES) from the 

encephalomyocarditis virus [213,214]. To this end, I included the HAdV-40 long fiber gene   

splice acceptor (40SA), the HAdV-2 L1 pIIIa splice acceptor (pIIIaSA), and the human beta globin 

splice acceptor (BPSA) to express the antibody via alternative splicing. Last but not least, the 

IRES can be used for expression of two genes from one common bi-cistronic mRNA. In this virus, 

the scFvCEA-Fc was expressed together with the late fiber gene. Accordingly, all recombinant 

adenoviruses were propagated in cell culture and analyzed for their oncolytic potential and 

transgene expression. 

 

4.2 Antibody expression and cytotoxicity 

A critical issue of all arming approaches is interference of a heterologous transgene with virus 

amplification, and hence oncolytic activity in tumor cells. This might result in genomic instability, 

toxic effects of the transgene on the cell, or improper timely transgene expression which 

disturbs expression of viral genes. Further, the produced transgene amounts may be low due to 

inefficient virus replication which in turn limits the “bystander effect”. To investigate these 

issues, I first infected two highly permissive cell lines that either expressed CEA or were devoid 

for it. 

Therefore, serially diluted oncolytic HAdV-5/3 variants were added to the A549              

cells (CEA positive) or HeLa cells (CEA negative) and incubated for eight days. Controls included 

uninfected cells as well as a replication-deficient HAdV-5/3 CMV-scFv or HAdV-5/3 CMV-luc 

variant, where the luciferase transgene replaced the antibody. A similar but replication-

competent HAdV-5/3 IRES-luc served as control for optimal lysis after transgene insertion and 

was previously established in our laboratory [215]. After eight days, cytotoxicity visualized by 

crystal violet staining allowed assessment of my genetically engineered adenoviruses in terms of 

their ability to efficiently kill tumor cells and spread. As shown in Figure 25A, infection with any 

replication-competent HAdV-5/3 variant led to fairly similar cell killing at titers between 1 and 

0.1 TCID50/cell for HeLa cells and at even lower amounts of 0.1 to 0.01 TCID50/cell in A549. These 

effects correlated, or were slightly stronger, compared to the previously generated    
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replication-competent HAdV-5/3 IRES-luc. On the other hand, no cytotoxicity was visible after 

infection with any of the replication-deficient controls demonstrating that the observed 

cytotoxicity is replication-dependent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25|   oncolysis and antibody expression of scFvCEA-Fc carrying adenoviruses: A) CEA negative 

(HeLa, left panel) and positive (A549, right panel) cells were infected with different virus variants in serial 

dilutions containing 10
1
 to 10

-4 
TCID50/cell as indicated in the legend. The cellular tool used for expression 

of single-chain antibodies is shown in dark blue. After eight days, surviving cells were stained with crystal 

violet. As negative controls for transgene toxicity, viruses encoding luciferase instead of scFvCEA-Fc were 

included. Similar replication-deficient virus variants containing the CMV promoter instead of the             

E1 genes were used to check for replication-dependent cytotoxicity. B) adenovirus infection of several 

cell lines was carried out in presence or absence of 25 µg/ml AraC to block viral DNA replication.        

After 72 hours, equal volumes of cell culture supernatant were loaded on a denaturing gel for 

immunoblotting. Monomeric scFvCEA-Fc was detected by anti-mouse-horseradish peroxidase antibodies 

and a chemoluminescent reaction. Abbreviations represent scFvCEA-Fc expressing viruses using the stated 

cellular tool for transgene expression. 
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Next, I infected several cell lines, that again were either devoid for or expressing the CEA 

molecule, with my armed oncolytic HAdV-5/3 variants. A titer of 100 TCID50 per cell was used 

and samples from supernatants as well as cell pellets were collected three days post infection. 

Additionally, I incubated one sample of each cell line with 25 µg/ml arabinosyl-cytosine (AraC), a 

nucleotide analog and known replication inhibitor of DNA viruses [216,217]. This allowed me to 

analyze whether antibody expression via the different insertion strategies is replication-

dependent. Equal volumes of all samples were subsequently analyzed by Western blotting. 

Referring to Figure 25B, secreted antibody was readily detectable in supernatants from all 

tested cell lines infected with any of the recombinant HAdV-5/3 variants, except one where the 

scFvCEA-Fc is under control of the L1 pIIIa splice acceptor. Supernatant from uninfected cells did 

not give a signal showing that the bands I observed were specific. Moreover, antibody 

production and secretion drastically diminished in the presence of AraC with exception of 

samples from HAdV-5/3 CMV-scFv infected cells. Here, even an opposing effect could be seed in 

some cell lines represented by stronger band intensities compared to mock treated samples. 

When I examined cell pellets for intracellular scFvCEA-Fc antibodies, no or only a barely visible 

signal was obtained by immunoblotting regardless of AraC treatment (data not shown). 

Taken together, I could show that insertion of a single-chain antibody gene into the 

adenoviral genome led to production and secretion of antibodies from tumor cells without 

significant loss of oncolytic potency. Also there was no obvious difference between CEA positive 

and negative cell lines suggesting that the scFvCEA-Fc antibody per se was not toxic to the cells. 

In addition, the absence of detectable antibodies in the cell pellet indicated a highly efficient 

transgene secretion in adenovirus infected cells. Overall the highest transgene expression in all 

tested cell lines resulted from infection with HAdV-5/3 40SA-scFv and HAdV-5/3 IRES-scFv, 

respectively. The amount of secreted antibodies was strongly dependent on the transgene 

insertion strategy and on viral DNA replication, implied by the dramatic loss after incubation 

with AraC. This was also supported by the observation that AraC had no deleterious effect on 

cells harboring the constitutively active, but replication-deficient, HAdV-5/3 CMV-scFv variant. 

The fact that AraC treatment sometimes led to higher antibody amounts might be attributed to 

a cell cycle arrest in S-phase which presumably created optimal conditions for transgene 

expression via the CMV promoter. However, HEK293 cells stably express the adenoviral             

E1 genes which allow replication of the otherwise replication-deficient HAdV-5/3 CMV-scFv. 
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Hence, AraC treatment of infected HEK293 cells inhibited viral genome replication and antibody 

expression. Next, I wanted to determine the antibody amounts in supernatants from infected 

cells more precisely. 

 

4.3 Kinetics of antibody expression 

A routinely used method for quantification of soluble antibodies is the enzyme linked 

immunosorbent assay (ELISA) based on an antibody-antigen reaction which combines high 

sensitivity with high specificity. For generation of a standard curve known concentrations of 

antibodies, in this case purified scFvCEA-Fc antibodies, are added to micro titer plates coated 

with their respective antigen, here commercially available CEA, and detected through a 

secondary species specific antibody/enzyme reaction. In parallel, the antibody concentration of 

unknown samples can be determined. This approach enabled me to rapidly and reliably 

measure the concentration of secreted scFvCEA-Fc in cell culture supernatant of infected 

samples. 

Since my previous immunoblots suggested that the highest amounts were generated 

through infection with HAdV-5/3 40SA-scFv and HAdV-5/3 IRES-scFv, I used these viruses for 

infection of CEA positive A549 lung carcinoma cells and SK-MEL-28 melanoma cells. In addition, 

the non-replicating HAdV-5/3 CMV-scFv virus was included as control for constitutive expression 

of antibodies. Here, a titer of 1 TCID50/cell was used for each virus variant and samples were 

collected every day over five days until cell lysis was microscopically apparent throughout the 

cell monolayer (data not shown). In both A549 and SK-MEL-28 cells I detected an almost stable 

level of soluble scFvCEA-Fc 24 hours after HAdV-5/3 CMV-scFv infection, which only gradually 

increased over time up to 40-fold in A549 and 10-fold in SK-MEL-28 cells (Figure 26A).                

In contrast, antibody titers after infection with the replication-competent variants               

HAdV-5/3 40SA-scFv or HAdV-5/3 IRES-scFv were already 30 to 60-fold higher at 24 hours post 

infection and peaked at day two in A549 cells with up to 750-fold higher antibody levels as 

compared to the replication-deficient virus. Although a marginal increase was detectable on day 

five, the biggest differences resulted early between day two and day three post infection. 

Infection of SK-MEL-28 cells reflected a similar but slightly delayed antibody expression profile 

for the HAdV-5/3 40SA-scFv or HAdV-5/3 IRES-scFv. Here, the 24 hour samples did not contain 
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any measurable antibody titer followed by a strong increase over day two and day three. 

However, the differences to the non-replicating CMV virus were only about 15-fold over the 

whole time period and therefore not as pronounced as in A549 cells. In parallel, I carried out an 

almost identical experiment using HAdV-5/3 variants carrying the luciferase transgene instead 

of the scFvCEA-Fc antibody cassette (Figure 26B). Contrasting to the latter, luciferase could not 

be secreted from infected cells and accumulated in the cytosol. Nonetheless, I found a strikingly 

similar pattern for luciferase expression after infection with the non-replicating                    

HAdV-5/3 CMV-luc variant and the replication-competent HAdV-5/3 40SA-luc or                   

HAdV-5/3 IRES-luc. Here transgene expression via IRES was slightly better than via the           

40SA tool. Moreover, the kinetics of expression was again cell type specific as noted in the 

antibody production profile for A549 and SK-MEL-28 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26|   expression kinetics of scFvCEA-Fc versus an intracellular transgene: A549 cells (left panels) 

and SK-MEL-28 cells (right panels) were infected with 1 TCID50/cell of different scFvCEA-Fc expressing 

viruses (scFv, upper panels) or matching luciferase controls (luc, lower panels). A) for antibody titers 

supernatants were collected every day and analyzed by ELISA. Bars represent means of double 

measurements from one sample, error bars were calculated according to the standard deviation.            

B) for luciferase expression cell pellets were harvested accordingly and assayed for luciferase activity 

indicated by relative light units. Bars represent means of triplicate samples, error bars were calculated 

according to the standard deviation, ND = not detectable. 
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In conclusion, as shown before, adenovirus DNA replication significantly enhanced 

antibody production and secretion for HAdV-5/3 40SA-scFv and HAdV-5/3 IRES-scFv. This 

coincided between 24-48 hours in A549 cells and 48-72 hours in SK-MEL-28 cells which most 

likely reflected cell type specific differences and permissivity for adenoviral replication also seen 

in my previous experiments of chapter II, 1.4. The cell type-dependent expression was also 

notable when comparing the antibody levels to the non-replicating HAdV-5/3 CMV-luc which 

seemed to be more active in melanoma cells than in A549 cells. These findings correlated with 

the immunoblot results from the previous paragraph II, 4.2. Further, the comparison to the 

luciferase expression profiles showed that the amounts and kinetics of a secreted transgene 

were comparable to an intracellularly produced one demonstrating that oncolysis does not 

interfere with secretion. Thus, arming of oncolytic adenoviruses with therapeutic antibodies 

combined with efficient transgene expression was feasible. Last but not least, the produced 

antibodies from infected tumor cells bound to purified antigen CEA in-vitro. To demonstrate 

their functionality in binding living cells expressing CEA, I subsequently tested the           

antibody-antigen reaction by flow cytometry. 

 

4.4 Binding of secreted antibodies to CEA on the cell surface 

With the advent of hybridoma technology, antibodies became popular tools in immunology to 

study cellular surface antigens. Similarly to ELISAs, living cells are usually exposed to a primary 

antibody solution which binds to the molecule of interest. Then, this antigen/antibody complex 

can be detected through a secondary antibody staining usually including the use of fluorescent 

molecules. High throughput analysis by flow cytometry allows rapid and reliable quantification 

of antigen expression on single cells. In contrast to ELISAs, the antigen is presented in its natural 

context here. Therefore, I analyzed if the antibodies produced during infection with oncolytic 

adenoviruses can access and bind to cellularly displayed CEA. 

Accordingly, the previously generated supernatants from cells infected with the      

HAdV-5/3 40SA-scFv or HAdV-5/3 IRES-scFv (experiment shown in Figure 25) were used as 

primary antibody solutions. Further, I also included the corresponding samples treated with 

AraC to determine its impact on transgene expression more precisely. As target cell line, I chose 

LS174T cells derived from a colorectal CEA positive tumor and incubated them in serially diluted 
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supernatants or with an irrelevant isotype matched antibody (negative control) as stated in 

Figure 27. Binding of primary antibodies was detected with a fluorescently labeled anti-mouse 

immunoglobulin G2a (IgG2a) antibody which recognizes the mouse heavy chain                    

gamma 2 constant domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27|   binding of scFvCEA-Fc to living CEA positive cells: at day three, supernatants from the    

HAdV-5/3 40SA-scFv (upper panels) or HAdV-5/3 IRES-scFv (lower panels) infected HEK293 cells were 

harvested and used as primary antibody against CEA expressing LS174T cells in serial                      

dilutions (left panels, see figure legend). In parallel to samples receiving only vehicle, infected cells were 

incubated in the presence of 25 µg/ml AraC (right panels). A non-specific isotype IgG2a antibody served as 

negative control (black lines). Bound scFvCEA-Fc or isotype control was performed by staining with a 

secondary anti-mouse-phycoerythrin antibody and detected in FL2-H. 

 

In flow cytometry analysis, supernatants obtained from infected cells by either virus strongly 

bound to the surface of living LS174T cells. Whereas I did not detect any signal mediated 

through bound negative control antibodies. Overall, the signal intensity diminished with 

increasing dilutions revealing a threshold level for 1000-fold diluted supernatants from       

HAdV-5/3 40SA-scFV or HAdV-5/3 IRES-scFv infected cells. Further, AraC treatment of            
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virus infected cells drastically decreased signal intensities for both cell culture supernatants. 

However, the inhibitory effect of AraC was more pronounced in case of the HAdV-5/3 IRES-scFv 

infection than for the HAdV-5/3 40SA-scFv variant which still produced a detectable signal at a 

tenfold dilution. A similar staining pattern and threshold was observed for recombinant   

scFvCEA-Fc purified from a stably transfected cell line and diluted accordingly for                       

flow cytometry (data not shown). 

In summary, scFvCEA-Fc antibodies secreted in course of oncolytic adenovirus infection 

specifically interacted with surface CEA on living cells, adding another piece of evidence for the 

functional antigen binding domain. Binding properties of HAdV-5/3 40SA-scFv produced 

antibodies were similar to those diluted from supernatants of HAdV-5/3 IRES-scFv infected cells. 

Treatment with AraC decreased production of antibodies as previously seen by immunoblot 

analysis indicating the relevance of genome replication for efficient transgene production. 

Moreover, the inhibitory effect differed depending on the transgene insertion strategy as it was 

more potent against the HAdV-5/3 IRES-scFv than the HAdV-5/3 40SA-scFv variant. This 

difference could be due to leaky expression caused by alternative splicing of the 40SA site. The 

latter was most certainly circumvented through bi-cistronic expression of fiber and scFvCEA-Fc 

from a common mRNA. Consequently, I checked if the effector domain, represented by the 

recombinant mouse heavy chain gamma 2 constant region, was able to mediate Fc receptor 

engagement on immune cells. 

 

4.5 Influence of scFvCEA-Fc on phagocytosis of CEA positive tumor cells by macrophages 

Several immune cells, including natural killer cells, neutrophils, macrophages, and mast cells, 

display Fc receptors on their cell surface that are able to bind various constant domains of 

immunoglobulins. Normally antibodies react with pathogen associated antigens, a process 

called opsonization, and if engaged by Fc receptors trigger antibody-dependent cellular 

cytotoxicity or antibody-dependent cellular phagocytosis [187]. As shown in the previous two 

paragraphs the antigen binding domain in the single-chain antibody was fully functional.       

Here, I assessed the effector domain in context of macrophage-dependent phagocytosis of    

CEA positive tumor cells in an in-vitro model system using my recombinant scFvCEA-Fc. 
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Figure 28|   evaluation of scFvCEA-Fc antibody-dependent phagocytosis: CFSE labeled tumor targets 

were boiled at 56 °C to induce necrosis. Afterwards, macrophages were added to the targets in a 3:1 or 

5:1 ratio. Further, medium was supplemented with different antibodies. A) gating strategy showing 

macrophages labeled with anti-CD11b-phycoerytrhin antibodies (FL2-H, black dots) and tumor targets 

(FL1-H, blue gate). Population of CFSE
+
/CD11b

+
 (red gate) represents phagocytosis of targets by 

macrophages. Controls incubated at 4 °C show significantly lower uptake of tumor targets (left panel) 

than samples incubated at 37 °C (right panels). B) percentages of phagocytosis were calculated according 

to the formula stated in V, 3.7.4 for each effector/target ratio. Medium contained either recombinant 

scFvCEA-Fc (dark blue and light blue boxes) or anti-HER2/neu antibodies (orange and green circles) at 

increasing concentrations. In addition, samples were incubated with relevant isotype controls at the 

highest concentration. 

 

To this end, the immortalized mouse macrophage cell line RAW264.7 was incubated with 

different target cells and antibody concentrations. As target cells, I chose the CEA positive 

colorectal cancer cell line LS174T as well as the lung adenocarcinoma cell line A549. The latter 
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expressed also the HER2/neu antigen. Both were labeled with the green fluorescent dye 

carboxyfluorescein diacetate succinimidyl ester (CFSE) which is passively taken up by living cells 

and trapped in the cytosol [218]. After labeling, I boiled the targets at 56 °C to induce necrosis 

and degradation of cells into small green vesicles that can be easily internalized. Then, target 

cells were added in different effector/target ratios to macrophages with increasing amounts of 

recombinantly expressed and purified scFvCEA-Fc or a relevant positive control antibody 

targeting the HER2/neu antigen. Additionally, I incubated some samples at 4 °C in order to allow 

distinction between mere binding of macrophages to targets and real phagocytosis. Following 

incubation for four hours, phagocytosis was analyzed by flow cytometry (Figure 28A). 

Therefore, I stained macrophages with a specific marker (CD11b, red fluorescence FL2-H) 

whereas tumor cells or particles were green (CFSE, green fluorescence FL1-H). Macrophages 

readily internalized around 80 % of CFSE labeled necrotic cells or particles marked by the 

increased proportion of CFSE/CD11b positive cells as compared to the 4 °C control. 

Disappointingly, the efficiency of phagocytosis for either target moiety could not be further 

augmented by my recombinant single-chain antibody or by a HER2/neu control antibody (refer 

to Figure 28B). Assays were repeated using living target cells but yielded identical results 

independent of the used antibody (average phagocytosis values around 30 %, data not shown). 

Also, increasing the effector/target ratio or incubation with the corresponding isotype controls 

had no further inhibitory or stimulatory properties on phagocytosis.  

Thus, although the recombinant scFvCEA-Fc was able to bind to CEA positive cells it did 

not notably enhance antibody-dependent cellular phagocytosis of different tumor cells in an in-

vitro setting. This held even true for the established anticancer antibody HER2/neu implying that 

my results were unlikely to be caused by a nonfunctional Fc domain in my recombinant single-

chain antibody. Alternatively, my system was either not sensitive enough or other factors were 

required to mediate antibody-dependent phagocytosis of opsonized tumor cells. However, the 

average ratios of macrophages containing green tumor cells or particles were already high. This 

observation could indicate that the mechanism of antibody-mediated phagocytosis might be of 

higher relevance in an in-vivo system where physiological effector/target ratios and antibody 

concentrations exist. As an outlook, future studies comprising alternative in-vitro assays 

involving natural killer cells and in-vivo mouse studies will be carried out to evaluate the clinical 

benefit of antibody-producing oncolytic adenoviruses. 
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III DISCUSSION 

To date most conducted clinical trials with oncolytic viruses have investigated the clinical use of 

HAdV-5 based oncolytic viruses. They have shown a favorable safety profile but also an 

insufficient overall antitumoral efficacy [103,104]. The aims of my study were to investigate wild 

type HAdV-5 infections and compare different aspects of the virus life cycle in the natural host 

cells to cancer cells, especially in malignant melanoma. This was followed by a thorough 

microarray analysis of infected cells to find cellular genes with critical functions for adenovirus 

genome amplification in order to provide a rationale for enhancing oncolytic adenovirus        

DNA replication in melanoma cells. Finally, an arming strategy should be developed for the 

expression of therapeutic antibodies via replication-competent human adenoviruses. 

Although not all aspects contributing to efficient viral oncolysis are known, it is widely 

accepted that virus genome replication is a major aspect for virus mediated tumor cell         

killing [21-23]. Since adenoviruses are obligate intracellular parasites they depend on the 

cellular DNA synthesis machinery. Hence to exploit this, the virus has to drive infected cells into 

the S-phase where several factors are provided by the host. This aspect is realized through 

expression of the adenovirus master regulator protein E1A which disrupts the                   

pRB/E2F regulatory network and leads to transcriptional activation of cellular and viral 

promoters [42,43,69,76,77]. As a model system for HAdV-5 infection, I chose primary human 

bronchial epithelial cells which so far have only been used as controls in cytotoxicity assays for 

transcriptionally targeted or mutant oncolytic adenoviruses [176,219-221]. Characterization by 

immunofluorescence demonstrated expression of typical epithelial markers and initial 

experiments including cytotoxicity assays, viral gene expression, and DNA replication showed 

that HBEC resemble an optimal primary lung cell model for in-vitro analyses of HAdV-5 

infections in native host cells. In infected HBEC and closely related lung squamous carcinoma 

cell line, which originate from epithelial lesions in the respiratory tract, the adenovirus E1A gene 

was transcribed immediately after infection to very high extends. This was followed by early 

onset of virus DNA replication and expression of late structural genes. In striking contrast, two 

melanoma cell lines SK-MEL-28 and Mel624 showed a markedly reduced E1A mRNA 

transcription resulting in delayed virus genome amplification. A similar phenotype was 

described by Zhao et al. for human fibroblasts that normally do not serve HAdV-5 as host [195]. 
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My investigations of the E1A promoter fragment in transient transfection assays revealed an 

equally strong activity profile in HBEC and melanoma cells implying that a posttranscriptional 

regulatory mechanism or additional regulatory elements outside the promoter region account 

for differences in E1A mRNA expression in both cell types. Although increased E1A expression 

through heterologous promoter elements in melanoma cells is possible, it did not result in 

enhanced oncolysis as demonstrated for a replication-competent HAdV-5 CMV-E1A [222]. 

However, my analysis of HAdV-5 cytotoxicity in different cell types could be closely correlated 

with their respective E1A expression/DNA replication phenotypes. In other words, slower 

expression and viral DNA replication kinetics resulted in lower cytotoxicity most probably 

because of delayed virus spread. A similar albeit less pronounced correlation was found in the 

generation of infectious virus progeny, which was delayed in SK-MEL-28 cells compared to 

HEBC. The overall virus yield was comparable to previous results for viral replication assays 

using primary bronchial epithelial cells [176,219]. Further, HAdV-5 infection of primary HBEC 

resulted in similar toxicity to infected A549 cells which are a major reference cell line in the 

oncolytic adenovirus field. Although more facets of the virus life cycle are essential for these 

effects, slower DNA replication and formation of infectious progeny virions ultimately impede 

efficient viral oncolysis. As shown here, certain cell type specific differences allowed the virus to 

amplify faster in HBEC than in melanoma. Therefore, I investigated genome-wide differences in 

the host cell gene expression of primary and several cancer cells after infection with HAdV-5 and 

related uninfected equivalents. Several studies have been published aiming to unravel virus host 

interactions during infection with HAdV-2 and HAdV-5 [194,195,197,223-225]. The gene 

expression data comprises different stages of adenovirus infection such as early responses to 

the incoming virus, modulation of inflammatory processes, events during viral DNA replication, 

and targeting of cellular structures at late stages of infection. Yet, the investigators used 

exclusively either fibroblast or cervical carcinoma cells for their experiments; both are not 

natural host cells for HAdV-2 or HAdV-5 unlike HBEC. Also, there is no available study that 

simultaneously compares gene expression in infected native host cells versus tumor cells. 

 

For the present microarray study, cells and infection conditions were first adapted to 

optimal in-vitro conditions for all cell types including similar medium formulations (especially 

low serum content), cell number passage, normalized titers for a high level infection, as well as 
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determining appropriate time points for RNA extraction. As viral DNA replication was my main 

focus I chose cell type specific time points where adenovirus genome replication became 

apparent. Subsequently, the microarrays could be successfully hybridized and measured with 

great reproducibility as well as sensitivity but they nevertheless revealed only minor changes in 

gene expression after adenovirus infection. In addition, the overall differences between 

individual cell types and their transcriptomes prevailed. To solve this problem, my data was 

analyzed together with Frank Holtrup, Kurt Fellenberg, and Jörg Hoheisel (division of    

Functional Genome Analysis, DKFZ) which led to the development of a procedure to filter the 

data according to infection dependent changes in cellular gene expression regardless of the 

analyzed cell type or genetic background. Astonishingly, I found that HAdV-5 had the most 

pronounced impact on host cell gene regulation in HBEC (950 regulated genes) and the lung 

squamous carcinoma cell lines SW900 (772 regulated genes) and SK-MES-1 (709 regulated 

genes). Both melanoma cell lines SK-MEL-28 (314 regulated genes) or Mel624 (212 regulated 

genes) were mostly refractory to adenovirus induced changes in gene regulation. Besides, I 

found the number of downregulated genes was generally equal or higher to the number of 

upregulated genes. Although the overall number of regulated genes appears to be small 

compared to the size of a cell’s transcriptome, my findings are supported by other microarray 

studies showing that usually only a small set of genes is altered during adenovirus           

infection [194,195,197,223,224]. However, Miller and colleagues found that adenovirus 

infection of quiescent fibroblasts had a dramatic impact on the cellular gene expression leading 

to the regulation of at least 2000 genes with a two-fold change in mRNA amount or more [225]. 

These observed discrepancies most likely reflect different experimental setups, including the 

cell type and proliferation state, and the methods used to collect and analyze the hybridization 

data. An alternative explanation could be that in primary cells, especially if they are quiescent, 

the virus has to reprogram the cell in a more dramatic way as compared to infection of a cycling 

transformed tumor cell. Nonetheless, the differential gene expression patterns observed 

between HBEC and the melanoma cells could provide a possible explanation for the delayed 

expression of viral genes, DNA replication, and reduced cytotoxicity. 

For further in-depth analysis, sophisticated computational tools including hierarchical 

clustering, gene ontology search, and Ingenuity Pathway Software were used. This allowed me 

to identify striking differences in gene activation patters linked to the G1/S-phase transition 
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pathway. Whereas, HAdV-5 stimulated expression of several key player genes comprising    

E2F2, CCNE, or CDC25A in infected HBEC and also in some closely related lung squamous cell 

carcinomas, the two melanoma cell lines again responded by indolence or even suppression of 

these genes. Besides cell cycle regulation, several downstream targets of the pRB/E2F pathway 

including genes known to be important for DNA nucleotide metabolism, DNA replication factors, 

or DNA repair were similarly inert in melanoma cells but not in cells of lung origin. Regarding the 

primary bronchial epithelial cells, my findings exactly mirror the results from Miller et al. who 

analyzed HAdV-5 infection of quiescent fibroblasts [225]. In addition several genes, like the    

E2F family members, CCNE, and the cellular phosphatase CDC25A, have also been identified by 

others as primary targets in context of S-phase induction by adenoviruses during infection of 

fibroblasts, lung adenocarcinoma cells A549, and cervical carcinoma cells                                  

HeLa [74,75,194,197,225]. Especially, CDC25A is a major target of E1A which leads to a rapid 

increase in expression and phosphatase activity in quiescent cells. Alternatively, the E1B-55k 

protein might have redundant functions in increasing CDC25A levels in infected cells as shown 

by microarray experiments from Rao et al. [226]. Together with CCNE, a potential co-stimulatory 

molecule for CDC25A, these two proteins are sufficient to induce S-phase through activation of 

CDK2/CCNE complexes [74,75]. This important point for adenovirus infection was further 

addressed as I developed a modified reporter gene assay to measure S-phase entry in various 

cells. HBEC as well as all lung carcinoma cell lines analyzed showed an E1A dependent, specific, 

and strong increase in E2F promoter activity upon HAdV-5 infection. This was most likely a result 

of the auto-feedback loop activation by released E2F transcription factors from E1A inactivated 

pRB/E2F complexes [227,228]. Even though likewise events are supposed to occur in infected 

melanoma cells, this effect was drastically diminished or absent in SK-MEL-28 or Mel624. 

Therefore, my data might elucidate why S-phase related genes became less activated in these 

cells but certainly not why most of these genes were strongly downregulated. 

Unfortunately, all my attempts to link expression of single candidate genes, identified in 

the previous comparison of infected HBEC versus SK-MEL-28 and Mel624, to the susceptibility 

for HAdV-5 infections in a wider melanoma cell panel failed. Indeed, wild type adenovirus 

infection sometimes resulted in quite opposing gene regulation patters for this set of analyzed 

genes. For example, whereas most genes were likewise downregulated in the highly permissive 

A549 cell line, they were often upregulated in less permissive pigmented and amelanotic 
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melanoma cells other than SK-MEL-28 and Mel624. This finding emphasized that it is vital in the 

future to investigate cell type specific changes in genome wide expression patterns, de-novo 

protein synthesis, and protein-protein interactions besides single gene expression in order to 

correlate susceptibility for oncolytic adenoviruses in various melanomas. Nonetheless, this was 

the first study which investigated adenovirus related alterations in host cell gene expression of 

various cancer cells and primary human bronchial epithelial cells that resemble a natural 

environment for HAdV-5. The presented data confirms previous publications investigating 

changes in cellular gene expression after infection with HAdV-2 and the closely                    

related HAdV-5 [194,195,197,223,225]. Since gene expression was analyzed shortly before the 

onset of viral DNA replication, I could not see a pronounced regulation of genes or pathways 

involved in immune responses, growth arrest, or cell architecture as previously described. This, 

however, was expected as suppression of the immune system is an immediate action of the 

incoming virus while growth arrest and destruction of the cell cytoskeleton are features of later 

infection stages prior to cell lysis. Therefore, my work adds to the current understanding of 

adenovirus mediated cell cycle regulation to induce an optimal S-phase environment for DNA 

synthesis and further outlines major differences in gene regulation between native host cells 

versus cancer cells which ultimately determine the efficacy of viral replication and oncolysis. 

 

To date, mainly two strategies are applied to create novel oncolytic adenoviruses with 

improved replication and/or spread in tumor cells. In so-called bioselection approaches, a virus 

stock is randomly mutagenized through chemical compounds, such as nitrous acid, and 

passaged in cancer cells several times [229-231]. Afterwards, mutants with enhanced oncolytic 

activity are isolated and characterized for the underlying mutation. Examples for successful 

bioselection are the tumor-selective ONYX-201 and -203 viruses expressing a truncated               

i-leader protein, which presumably is involved in initiation of viral DNA replication or switch to 

the late phase of the viral life cycle [229]. As a consequence, viral oncolysis is increased in 

various tumor cells as compared to the parental viruses. Alternatively, oncolytic activity can be 

increased by targeted mutations, such as deletion of the anti-apoptotic E1B-19k gene, resulting 

in more efficient viral release and enhanced cell-to-cell viral in some cancer entities while in 

others oncolysis was not enhanced [172-174]. In contrast to bioselection and targeted mutation, 

the here presented microarray approach is a more systematic way to identify certain virus host 
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interactions directly influencing efficient viral DNA replication. My data comprising the striking 

abundance of genes associated with regulation of the G1/S-phase transition raises the question 

why S-phase induction seems to be so essential for infection of rapidly dividing tumor cells. In 

contrast to HBEC, most tumor cells bear several mutations that lead to continuous initiation and 

progression of the cell cycle which is thought to provide an optimal environment for the 

replication of oncolytic viruses per se. However, there seems to be a major difference in the 

quality of cell cycle regulation in tumor cells versus S-phase induction in normally growing 

primary cells regarding adenovirus infection. The underlying mechanisms to this might hold the 

answer to the paradigm of cell type specific differences in adenovirus genome replication and 

lysis. In successive transient transfection assays, I tried to enhance viral DNA synthesis or 

generation of progeny virions. First, several cellular regulators of the G1/S transition pathway 

including the activating transcription factors E2F1, E2F2, E2F5 as well as CCNE or CDC25A were 

evaluated for their ability to stimulate adenovirus DNA replication but showed no promise. 

Simultaneously, multiple viral oncogenes from human papilloma viruses, herpes viruses, and the 

simian virus 40 known to trigger cell cycle progression of infected host cells in a similar fashion 

to adenoviruses were assessed but again found to be ineffective for this approach [37,232,233]. 

Thus, the regulation of G1/S-phase transition or modulation of the S-phase environment in 

infected melanoma cells appeared to be far more complex or robust towards overexpression of 

single activator genes. Alternatively, the applied transient transfection system might be 

inappropriate to achieve stimulating effects on adenovirus replication using the assessed 

transgenes and/or these transgenes failed to induce S-phase in SK-MEL-28 melanoma cells. 

The results from the transient transfection assays were also supported by small 

interfering RNA knockdown assays that aimed to deprive melanoma cells of the cell cycle 

inhibitory p16
INK4a

 and p21
WAF/CIP

 proteins. The latter competes with CDC25A for         

CDK2/CCNE complexes and thus inhibits cell cycle progression [234]. Similar experiments using 

p21
WAF/CIP

 knockdowns for HAdV-5 infected colorectal cancer cells have been successful and 

yielded increased numbers of infectious virus particles [209]. However, in my hands knockdown 

of p16
INK4a

 or p21
WAF/CIP

 in infected melanoma cells did not increase adenovirus replication or 

virus particle formation. A possible explanation for this discrepancy might be found in the 

different cell types meaning that knockdown of p21
WAF/CIP

 affects colorectal cancer cells in 

another way than melanoma cells and thus viral replication. Last but not least, the necessity to 
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combine different treatments for effective cancer therapy inspired me to analyze how 

chemotherapeutic drugs affect adenovirus replication and hence virotherapy. A common 

mechanism of most drugs is induction of DNA damage and consequently initiation of a cell cycle 

arrest and eventually apoptosis [235,236]. At first glance a cell cycle arrest seemed 

counterintuitive to forcing S-phase entry in melanoma cells. However, there is evidence that 

prolonging an S-phase environment comprising high nucleotide levels and other DNA replication 

factors can synergize with oncolytic virus amplification and spread [210,211,237,238]. For that 

reason, I tested the impact of different chemotherapeutic drugs on the cell cycle of melanoma, 

preferably those which block in or after S-phase. Whereas etoposide or camptothecin caused a 

prominent cell cycle block in the G2/M-phase, they had no enhancing effect on adenovirus   

DNA amplification. Treatment with two other drugs, rapamycin and 5-fluorouracil, resulted in 

G1-phase arrest and inhibited viral replication. Nonetheless, a similar study from                  

André Lieber’s lab showed an enormous increase in virus DNA replication after treatment with 

any of these drugs at the herein applied concentrations [210]. As in my experiments, DNA 

replication was deduced from expression of a replication-dependent transgene but I was not 

able to reproduce these results with exception for the drug temozolomide. Intriguingly, 

temozolomide is a frontline therapeutic prodrug against malignant melanoma which is 

converted at physiological pH to the toxic form 5-(3-methyltriazen-1-yl)imidazole-                        

4-carboxamide [239]. The latter is an alkylating agent leading to DNA damage induction and 

subsequent S-phase arrest. In the present study, temozolomide treatment of infected 

melanoma cells enhanced adenovirus genome replication in some but not all cell lines, which is 

in line with previous observations from our lab [212,240]. In addition, I could show for infected 

SK-MEL-28 cells that temozolomide altered the host cell environment in a way that adenovirus 

genome replication was not only more efficient but also led to the generation of up to fivefold 

more infectious virus progeny. Although this increase seems to be minor, one has to keep in 

mind that in an optimal patient’s setting the virus will amplify over several days thereby 

multiplying this increase which potentially favors a better therapeutic outcome. 

Finally, I developed various transgene insertion strategies to produce antibodies from 

oncolytic adenoviruses in order to combine viro- and antibody therapy for the treatment of 

cancer. The latter is a widely accepted approach to fight cancer and other diseases [185]. So far, 

almost all concepts of arming oncolytic adenoviruses with therapeutic transgenes encompass 
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either prodrug-activating enzymes, apoptosis inducing factors, immunomodulatory molecules, 

or molecules that affect the tumor microenvironment [241]. Examples are numerous and 

include recombinant viruses expressing yeast cytosine deaminase which is able to convert a 

systemically applied non-hazardous drug precursor into its toxic form [242,243], tumor necrosis 

factor related apoptosis-inducing ligand [182], granulocyte macrophage stimulating factor or 

interleukin-12/B-Lymphocyte Activation Antigen B7-1 [180,181], or extracellular matrix 

degrading proteins such as relaxin [183]. The bottom line of all these arming approaches is to 

achieve better tumor cell killing and/or enhanced virus spread either directly through the 

bystander effect on uninfected surrounding tumor cells or indirectly by redirecting the immune 

system to the tumor site. Similarly, arming with therapeutic antibodies aims at more efficient 

tumor destruction in order to increase the clinical benefit of virotherapy. This approach, in 

contrast to well-established arming concepts, features mainly two vital advantages beyond the 

local production of high antibody titers in the tumor. First, the format and function of 

therapeutic antibodies is extremely flexible allowing for several modifications of single domains. 

In other words, the antigen binding domain can be exchanged to target different available 

cancer surface markers and thus different tumor entities. Additionally, the effector domain can 

be altered to either induce direct tumor cell killing by fusing the antibody to toxic molecules 

such as the subunit A of the bacterial diphtheria toxin or indirectly by recruiting immune cells, 

such as natural killer cells, via the Fc domain to the tumor site [187,244]. Alternatively, the 

antibody format can be changed to incorporate bi-specific antibodies that bind to the tumor cell 

on the one hand and to cytotoxic T cells on the other [245,246]. Second, locally produced 

therapeutic antibodies have the potential to spread systemically and are therefore capable to 

target distant metastases, which were not and/or cannot be efficiently destroyed by the 

oncolytic virus or by untargeted therapeutic genes such as prodrug-activating enzymes. At the 

same time, toxicity for the patient is expected to remain low since systemic application of 

therapeutic antibodies has been well tolerated in clinical setting [185]. 

Towards the goal of combined oncolytic adenovirus and antibody therapy, I created four 

different replication-competent viruses in order to express antibodies at late stages of 

adenovirus infection. Therefore, different tools comprising the internal ribosomal entry site, the 

HAdV-40 long fiber gene splice acceptor, the HAdV-2 L1 pIIIa splice acceptor, and the human 

beta globin splice acceptor were evaluated for their ability to control expression of recombinant 
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antibodies via the adenovirus major late promoter. This strategy is commonly used for arming of 

replication-competent adenoviruses in order to minimize detrimental effects of the transgene 

on the infected host cell potentially resulting in reduced viral replication and virus progeny 

formation [129,241]. As a control, a replication-deficient virus bearing the constitutively active 

CMV promoter for transgene expression was also created. For proof of principle, I successfully 

introduced a CEA specific single-chain antibody in each virus format. The antibody binding 

domain is fused to the mouse heavy chain IgG2a constant region which, similar to other               

G type immunoglobulins has the intrinsic ability to activate the classical complement cascade 

resulting in formation of a membrane attack complex and cell killing as well as activation of 

antibody-dependent cellular cytotoxicity by natural killer cells after Fc receptor          

engagement [187]. Alternatively, antibody/Fc receptor interactions trigger phagocytosis of 

opsonized pathogens and tumor cells by macrophages.  

All recombinant virus variants showed unaltered oncolytic capacity in CEA positive and 

negative cells as well as highly efficient secretion of soluble antibodies into the supernatant. 

Nonetheless, the produced antibody amounts were clearly distinguishable on the basis of the 

genetic insertion strategy/tool ranging between undetectable amounts when expressed from 

the pIIIa splice acceptor up to several micrograms per milliliter when expressed via IRES or the 

HAdV-40 long fiber gene splice acceptor. The antibody concentrations were similar to a 

replication-competent oncolytic Newcastle disease virus expressing a complete immunoglobulin 

antibody targeted against a vascular tumor marker [184]. In different experimental settings 

including an ad hoc established ELISA system, the highest titers resulted from infection of 

various CEA positive or negative cancer cell lines with the HAdV-5/3 40SA-scFv or                 

HAdV-5/3 IRES-scFv. The titers were several orders of magnitude higher compared to my 

replication-deficient control HAdV-5/3 CMV-scFv and could be drastically diminished by 

inhibition of adenovirus replication using the nucleotide analog arabinosyl-cytosine. 

Furthermore, the time points of peaking antibody amounts, produced from viruses with 

replication-dependent transgene expression cassettes, coincided with the time of virus genome 

replication in a cell type specific manner. Hence, infected lung adenocarcinoma cells A549 

reached this point faster than infected melanoma cells SK-MEL-28. My findings, together with 

previous publications, highlight the enormous potential of adenovirus DNA replication to 

produce high transgene levels for therapeutic applications [241,247]. In addition, the secreted 
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antibodies were fully functional to bind their antigen in flow cytometry analysis of                    

CEA displaying target cells or using recombinant CEA antigen in ELISA demonstrating proof of 

principle for oncolytic adenoviruses expressing antibodies for the first time. The effector domain 

was studied in an in-vitro assay for antibody-mediated phagocytosis involving mouse 

macrophages. Therefore, tumor targets were incubated in presence of recombinantly produced 

CEA specific single-chain antibodies or relevant controls in different ratios with macrophages. 

However, phagocytosis of living or necrotic tumor target cells was already very efficient so that 

opsonizing antibodies had no further stimulatory effect. Usually these assays are performed 

with erythrocytes or latex beads rather than tumor cells which could account for the difficulties I 

observed with my assays [248]. Besides, the relevance of antibody-dependent cellular 

phagocytosis of tumor cells by macrophages might play a more important role in-vivo. Future 

experiments will address the functionality of the effector domain in terms of tumor cell killing 

by immune cells in alternative in-vitro assays involving natural killer cells or more importantly in 

xenograft mouse model studies. 

 

In summary, this is the first study investigated HAdV-5 infections and genome-wide changes 

in cellular gene expression in human primary bronchial epithelial cells, resembling the natural 

host environment, versus various cancer cells. Major differences between these cell moieties 

were reduced viral gene expression, genome replication, and cytotoxicity in the melanoma cells 

SK-MEL-28 and Mel624 as compared to HBEC, accompanied by absent activation of cellular 

genes involved in the G1/S-phase transition pathway. Despite several efforts, adenovirus 

replication and lysis could not be enhanced in SK-MEL-28 and Mel624 melanoma cells, neither 

by overexpression or knockdown of key regulator genes nor by addition of various 

chemotherapeutic drugs. Yet there was one exception, the combination of viro- with 

chemotherapy involving the front line melanoma drug temozolomide resulted in enhanced viral 

DNA replication and progeny virus generation, but only in the SK-MEL-28 cell line. The 

underlying mechanism certainly deserves further attention in the future and might improve 

combined cancer treatment modalities for malignant melanoma. Additionally, I established 

novel strategies for efficient expression of therapeutic antibodies from oncolytic adenoviruses 

for wide applications. This approach capitalizes on the already established concept of antibody 

therapy and combines it with the prospects of oncolytic viruses in order to facilitate high 

expression of therapeutic antibodies at the tumor site. 
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IV MATERIALS 

1 Chemicals 

name supplier name supplier 

2-mercaptoethanol 

50 mM for cell culture 

Invitrogen, Karlsruhe lithium chloride CARL ROTH, Karlsruhe 

5-fluorouracil Sigma-Aldrich, 

Taufkirchen 

Luria Bertani medium 

“Lennox” (LB) 

CARL ROTH, Karlsruhe 

2-mercaptoethanol 

8.3 M for in-vitro use 

Sigma-Aldrich, 

Taufkirchen 

magnesium chloride 

(MgCl2) 

CARL ROTH, Karlsruhe 

agarose Invitrogen, Karlsruhe magnesium sulfate 

(MgSO4) 

CARL ROTH, Karlsruhe 

Airway Epithelial Cell 

Growth Medium 

Promocell, Heidelberg Melanocyte Growth 

Medium 

Promocell, Heidelberg 

ammonium persulfate 

(APS) 

Sigma-Aldrich, 

Taufkirchen 

Minimal Essential 

Medium (MEM) 

Invitrogen, Karlsruhe 

ampicillin CARL ROTH, Karlsruhe penicillin Invitrogen, Karlsruhe 

bacto-trypton CARL ROTH, Karlsruhe phenylmethylsulfonyl 

fluoride (PMSF) 

AppliChem, Darmstadt 

bromphenole blue AppliChem, Darmstadt potassium chloride 

(KCl) 

Sigma-Aldrich, 

Taufkirchen 

calcium chloride (CaCl2) CARL ROTH, Karlsruhe potassium dihydrogen 

phosphate (KH2PO4) 

Sigma-Aldrich, 

Taufkirchen 

camptothecin Sigma-Aldrich, 

Taufkirchen 

propidium iodide Sigma-Aldrich, 

Taufkirchen 

cesium chloride AppliChem, Darmstadt rapamycin Sigma-Aldrich, 

Taufkirchen 

crystal violet CARL ROTH, Karlsruhe RNase A Invitrogen, Karlsruhe 

dimethyl sulfoxide CARL ROTH, Karlsruhe Roswell Park Memorial 

Institute 1640 (RPMI) 

Invitrogen, Karlsruhe 

dithiothreitol AppliChem, Darmstadt Rotiphorese Gel 30 CARL ROTH, Karlsruhe 

Dulbecco’s Modified 

Eagle Medium (DMEM) 

Invitrogen, Karlsruhe skim milk powder CARL ROTH, Karlsruhe 

Dulbecco’s phosphate 

buffered saline (DPBS) 

Invitrogen, Karlsruhe sodium acetate Sigma-Aldrich, 

Taufkirchen 

ethidium bromide AppliChem, Darmstadt 

 

 

sodium azide (NaN3) AppliChem, Darmstadt 
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ethylenediaminetetra- 

acetic acid (EDTA) 

Sigma-Aldrich, 

Taufkirchen 

sodium chloride (NaCl) CARL ROTH, Karlsruhe 

etoposide Sigma-Aldrich, 

Taufkirchen 

sodium deoxycholate BD Biosciences, 

Heidelberg 

fetal calf serum PAA, Pasching sodium dihydrogen 

phosphate (Na2HPO4) 

CARL ROTH, Karlsruhe 

gentamicin Invitrogen, Karlsruhe sodium dodecyl sulfate 

(SDS) 

Sigma-Aldrich, 

Taufkirchen 

glucose AppliChem, Darmstadt sodium fluoride Sigma-Aldrich, 

Taufkirchen 

glycerol CARL ROTH, Karlsruhe sodium orthovanadate Sigma-Aldrich, 

Taufkirchen 

glycine CARL ROTH, Karlsruhe sodium pyruvate Invitrogen, Karlsruhe 

HEPES CARL ROTH, Karlsruhe streptomycin Invitrogen, Karlsruhe 

IGEPAL NP-40 Sigma-Aldrich, 

Taufkirchen 

sucrose Sigma-Aldrich, 

Taufkirchen 

imidazole Sigma-Aldrich, 

Taufkirchen 

TEMED (N,N,N′,N′-

tetramethylethylenedia

mine) 

Sigma-Aldrich, 

Taufkirchen 

kanamycin CARL ROTH, Karlsruhe temozolomide Sigma-Aldrich, 

Taufkirchen 

Keratinocyte Growth 

Medium 2 

Promocell, Heidelberg Trizma® Sigma-Aldrich, 

Taufkirchen 

LB-agar “Luria/Miller” CARL ROTH, Karlsruhe Tween 20 Sigma-Aldrich, 

Taufkirchen 

L-glutamine Invitrogen, Karlsruhe yeast extract CARL ROTH, Karlsruhe 

L-lysine, poly  Sigma-Aldrich, 

Taufkirchen 

Zeocin™ Invitrogen, Karlsruhe 

 

2 Prokaryotic cells, eukaryotic cells, and viruses 

2.1 Bacterial strains 

Escherichia coli Maximum Efficiency DH5α: genotype: F-Φ80ΔlacZΔM15, recA1, endA1, hsdR17 

PhoA, supE44, gyrA96, relA1 (Invitrogen, Karlsruhe) 

 

Escherichia coli Electro Maximum DH5α: genotype: F-Φ80ΔlacZΔM15, recA1, endA1, hsdR17 

mcrA, mcrB, mcrC, mrr (Invitrogen, Karlsruhe) 
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Escherichia coli BJ5183: genotype: endA1, sbcBC, recBC, galK, met, thi-1, bioT, hsdR (Stratagene, 

Amsterdam) 

 

2.2 Human primary cells and established cell lines 

designation origin source 

A375M amelanotic melanoma cell line 
Isaiah Fidler, 

Houston, USA 

A549 
lung adenocarcinoma epithelial cell line from alveolar basal 

epithelial cells, CEA positive 

ATCC, Manassas, 

USA 

C8161 amelanotic, CAR negative melanoma cell line 
Danny Welch, 

Birmingham, USA 

Colo-829 melanoma cell line, pigmented 
Jacques Banchereau, 

Dallas, USA 

HBEC 

primary epithelial cells isolated from human bronchi of healthy 

donors. Lot 5092901.17 was derived from a 55 year old Caucasian 

male; Lot 7110910.11 originates from a 67 year old Caucasian 

male. 

Promocell, 

Heidelberg 

HEK293 
human embryonic kidney cell, contains integrated wild type HAdV-

5 DNA resulting in E1 gene expression 

Quantum, Quebec, 

Canada 

HEK293T 
human embryonic kidney cell, expressing SV40 T-antigen and 

HAdV-5 E1 genes 
Georg Fey, Erlangen 

HEK293T-

scFvCEA 

stably expresses recombinant single-chain antibodies against the 

carcinoembryonic antigen fused to the constant domain of mouse 

IgG2a 

established in this 

dissertation 

HeLa cervix adenocarcinoma, CEA negative 
ATCC, Manassas, 

USA 

HFF primary normal foreskin fibroblasts 
Manfred Marschall, 

Erlangen 

LS174T human colon adenocarcinoma, CEA positive 
Roland Kontermann, 

Stuttgart 

Mel624 melanoma cell line, pigmented 
Jeffrey Schlom, 

Bethesda, USA 

Mel888 melanoma cell line, pigmented 
Jeffrey Schlom, 

Bethesda, USA 

PHK primary human keratinocytes 
Frank Rösl, 

Heidelberg 

pMel A low passage melanoma cell line, pigmented 

Detlef Dieckmann, 

Matthias Lüftl, 

Erlangen 
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pMel A2 low passage melanoma cell line, pigmented 

Detlef Dieckmann, 

Matthias Lüftl, 

Erlangen 

pMel L low passage melanoma cell line, pigmented 

Detlef Dieckmann, 

Matthias Lüftl, 

Erlangen 

RAW264.7 
murine macrophage cell line established from a tumor induced by 

the Abelson murine leukemia virus. 

Philipp Beckhove, 

Heidelberg 

SK-MEL-28 melanoma cell line, pigmented 
ATCC, Manassas 

USA 

SK-MES-1 lung squamous cell carcinoma, CEA negative DKFZ, Heidelberg 

SKOV-3 ovarian adenocarcinoma, CEA negative 
Janet Price, 

Houston, USA 

SW900 lung squamous cell carcinoma, CEA positive 
ATCC, Manassas  

USA 

 

2.3 Human adenoviruses 

designation features 

HAdV-5 
serotype 5, wild type; propagated from the pTG3602 plasmid provided by David 

Curiel, Birmingham, USA [249] 

HAdV-5 

CMV-gfp 

replication-incompetent E3 deleted HAdV-5, contains the immediate early CMV 

promoter/enhancer and a green fluorescent protein transgene in the E1 region 

HAdV-5/3 

genetically similar to serotype 5 wild type, fiber gene was replaced by a chimeric 

5/3 fiber for enhanced infection of CAR negative cells, provided by David Curiel, 

Birmingham, USA [249] 

HAdV-5/3 

CMV-luc 

similar to HAdV-5 CMV-gfp but with a firefly luciferase transgene and a chimeric 

5/3 fiber 

HAdV-5/3 

CMV-scFv 

similar to HAdV-5 CMV-gfp but with the scFvCEA-Fc recombinant antibody transgene 

a chimeric 5/3 fiber 

HAdV-5/3 Δ24 

40SA-luc 

serotype 5, encodes a chimeric 5/3 fiber, bears a 24 bp deletion in E1A, expresses 

firefly luciferase from pGL3-basic under control of the HAdV-40 splice acceptor 

HAdV-5/3 Δ24 

40SA-scFv 

similar to HAdV-5/3 Δ24 40SA-luc but with the scFvCEA-Fc recombinant antibody 

transgene 

HAdV-5/3 Δ24 

BPSA-scFv 

serotype 5, encodes a chimeric 5/3 fiber, bears a 24 bp deletion in E1A, expresses 

scFvCEA-Fc under control of the human beta globin splice acceptor 

HAdV-5/3 Δ24 

IRES-luc 

serotype 5, encodes a chimeric 5/3 fiber, bears a 24 bp deletion in E1A, expresses 

firefly luciferase from pGL3-basic via an IRES fused to the fiber gene 

HAdV-5/3 Δ24 similar to HAdV-5/3 Δ24 IRES-luc but with the scFvCEA-Fc recombinant antibody 
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IRES-scFv transgene 

HAdV-5/3 Δ24 

pIIIaSA-scFv 

serotype 5, encodes a chimeric 5/3 fiber, bears a 24 bp deletion in E1A, expresses 

scFvCEA-Fc under control of the HAdV-2 L1 pIIIa splice acceptor 

HAdV-5/3 Δ24 

T2A-luc 

similar to HAdV-5/3 Δ24 IRES-luc, luciferase expression via the self-cleaving motif 

T2A of the Thosea asigna insect virus [250] 

 

3 Media 

3.1 For bacteria 

LB medium 25 g/l powder dissolved in bi-distilled 

water, sterile 

 

SOC Medium 20 g/l bacto-trypton 

5 g/l yeast extract 

2.5 mM NaCl 

10 mM MgCl2  

10 mM MgSO4 

20 mM glucose 

 

LBAMP LB medium supplemented with     

100 µg/ml ampicillin 

 

LBKAN LB medium supplemented with 

50 µg/ml kanamycin 

 

LBAMP agar 15 g/l LB-agar “Luria/Miller” 

dissolved in LBAMP 

 

LBKAN agar 15 g/l LB-agar “Luria/Miller” 

dissolved in LBKAN 

 

3.2 For eukaryotic cells 

Airway 

Epithelial Cell 

Growth 

Medium 

 

4 µl/ml bovine pituitary extract 

10 ng/ml epidermal growth factor 

5 µg/ml insulin 

0.5 μg/ml hydrocortisone 

0.5 μg/ml epinephrine 

6.7 ng/ml triiodo-L-thyronine 

10 μg/ml transferrin, holo 

0.1 ng/ml retinoic Acid 

100 U/ml penicillin 

100 µg/ml streptomycin 

 

 

Keratinocyte 

Growth 

Medium 2 

4 µl/ml bovine pituitary extract 

125 pg/ml epidermal growth factor 

5 μg/ml insulin 

0.33 μg/ml hydrocortisone 

0.39 μg/ml epinephrine 

10 μg/ml transferrin, holo 

0.06 mM CaCl2 

100 U/ml penicillin 

100 µg/ml streptomycin 
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DMEM-10 % GlutaMAX™  

4.5 g/l glucose  

10 % (v/v) fetal calf serum 

100 U/ml penicillin 

100 µg/ml streptomycin 

MEM-10 % Earle’s salts 

2 mM L-glutamine 

10 % (v/v) fetal calf serum 

100 U/ml penicillin 

100 µg/ml streptomycin 

100 µg/ml gentamicin 

 

Melanocyte 

Growth 

Medium 

4 µl/ml bovine pituitary extract 

1 ng/ml fibroblast growth factor 

5 μg/ml insulin  

0.33 μg/ml hydrocortisone  

10 ng/ml phorbol myristate 

acetate 

100 U/ml penicillin 

100 µg/ml streptomycin 

RPMI-10 % GlutaMAX™ 

10 % (v/v) fetal calf serum 

0.05 mM 2-mercaptoethanol 

1 mM sodium pyruvate 

100 U/ml penicillin 

100 µg/ml streptomycin 

 

4 Buffers and solutions 

4.1 For common use 

DPBS 137 mM NaCl 

2.68 mM KCl 

7.3 mM Na2HPO4 

1.4 mM KH2PO4  

1 mM CaCl2 

2 mM MgCl2 

pH 7.0 

TE-buffer 10 mM tris-HCl  

1 mM EDTA 

pH 7.4 

 

4.2 For gel electrophoresis of nucleic acids 

10× 

DNA sample 

buffer 

0.1 % (w/v) bromphenole blue 

50 % (v/v) glycerol 

0.1 M EDTA 

pH 8.0 

 

50× 

TAE buffer 

2 M tris 

1 M sodium acetate 

62.5 mM EDTA 

pH 8.5 

 

agarose gel 

solutions 

1× TAE buffer 

0.5-2 % (w/v) agarose 

1 μg/ml ethidium bromide 

ethidium 

bromide 

10 mg/ml 
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4.3 For gel electrophoresis for proteins 

1× 

SDS sample 

buffer 

200 mM tris-HCl  

400 mM dithiothreitol 

8 % (w/v) SDS 

0.4 % (w/v) bromphenole blue 

40 % (v/v) glycerol  

10 % (v/v) 2-mercaptoethanol 

pH 6.8 

 

10× 

running buffer 

2 M glycine 

250 mM tris 

1 % (w/v) SDS 

4× 

separating 

buffer 

1.5 mM tris-HCl 

0.04 % (w/v) SDS 

pH 8.8 

 

4× 

stacking buffer 

0.5 M tris-HCl 

0.4 % (w/v) SDS 

pH 6.8 

 

12.5 % 

separation gel 

6 ml bi-distilled water 

7.5 ml Rotiphorese Gel 30 

4.5 ml 4× separating buffer  

25 µl TEMED 

120 µl 10 % (w/v) APS 

 

4 % 

stacking gel 

5.15 ml bi-distilled water 

1.1 ml Rotiphorese Gel 30 

2.1 ml 4× stacking buffer  

17.5 µl TEMED 

60 µl 10 % (w/v) APS 

 

RIPA protein 

lysis buffer 

10 mM tris-HCl  

150 mM NaCl  

1 % (v/v) IGEPAL NP-40  

1 % (w/v) sodium deoxycholate 

0.1 % (w/v) SDS 

1 mM PMSF 

20 mM sodium fluoride 

2 mM sodium orthovanadate 

pH 7.5 

  

 

4.4 For Western Blot analysis and enzyme linked immunosorbent assays 

1× 

transfer buffer 

25 mM tris 

192 mM glycine 

20 % (v/v) methanol 

 

10×  

TBS buffer stock 

250 mM tris-HCl  

1.5 M NaCl 

pH 7.4 

 

blocking 

solution 

1× TBS 

5 % (w/v) skim milk powder 

0.02 % (v/v) Tween 

0.02 % (v/v) NaN3 

 

washing 

solution (TBST) 

1× TBS 

0.02 % (v/v) Tween 

washing 

solution (PBST) 

1× DPBS 

0.05 % (v/v) Tween 
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4.5 For protein purification 

5× Na2HPO4 

buffer stock 

250 mM Na2HPO4 

2.5 M NaCl 

0.02 % (v/v) NaN3 

pH 7.0 

 

IMAC elution 

buffer 

1× Na2HPO4 buffer 

250 mM imidazole 

0.02 % (v/v) NaN3 

pH 7.0 

 

IMAC 

equilibration 

loading buffer 

1× Na2HPO4 buffer 

20 mM imidazole 

0.02 % (v/v) NaN3 

pH 7.0 

IMAC wash 

buffer 

1× Na2HPO4 buffer 

35 mM imidazole 

0.02 % (v/v) NaN3 

pH 7.0 

 

4.6 For fluorescent cell activated sorting 

FACS buffer DPBS 

10 % (v/v) fetal calf serum 

0.1 % (v/v) NaN3 

 

FACS washing 

buffer 

DPBS 

1 % (v/v) fetal calf serum 

0.01 % (v/v) NaN3 

PI staining 

buffer 

DPBS 

50 µg/ml propidium iodide 

100 µg/ml RNase A 

  

 

4.7 For HAdV purification and analysis 

cesium chloride 

solution 1.41 

500 ml bi-distilled water 

304.6 g cesium chloride 

pH 7.8, sterile 

 

cesium chloride 

solution 1.27 

500 ml bi-distilled water  

227.2 g cesium chloride  

pH 7.8, sterile 

 

crystal violet 

staining solution 

70 % (v/v) ethanol 

2 % (w /v) crystal violet 

VL buffer 100 µM TE-buffer 

0.5 % (w/v) SDS 
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5 Nucleic acids, oligonucleotides and plasmids 

5.1 For cloning and PCR 

All oligonucleotides were purchased from and synthesized by MWG-Biotech, Martinsried. 

designation sequence 

3 knob forward 5’-TTAATGTAGAACTATACTTTGATGC-3’ 

5 knob forward 5’-AGGCAGTTTGGCTCCAATATCTGG-3’ 

Ad1124-1100 reverse 5’-ATTTTCACTTACTGTAGACAAACAT-3’ 

Ad40SALinker forward 
5’-Phospho-ATCTTAATTAAGCAGGCGCAATCTTCGCATTTCTTTTTTCCAGGAAGC 

CACCATGGACTGACTGC-3’ 

Ad40SALinker reverse 5’-Phospho-CATGGTGGCTTCCTGGAAAAAAGAAATGCGAAGATTGCGCCTGCA-3’ 

E1A promoter forward 5’-GAGGCCCTTTCGTCTTCAAGGATCCG-3’ 

E1A promoter reverse 5’-TCCCATGGTCAGTCCCGGTGTCG-3’ 

E1AΔ24 reverse 5’-AAAGCCAGCCTCGTGGCAGGTAAG-3’ 

E3 forward 5’-CTGCTAGTTGAGCGGGACAGGGGAC-3’ 

E3 reverse 5’-GGCAAGGAGGTGCTGCTGAATAAAC-3’ 

E4 forward 5’-ATTGAAGCCAATATGATAATGAGGG-3’ 

E4 reverse 5’-CACAGCGGCAGCCTAACAGTC-3’ 

HPV-31 E7 forward 5’-AATTAGATCTGCCACCATGCGTGGAGAAACACCTACGTTG-3’ 

HPV-31 E7 reverse 5’-TTAAGGATCCTTACAGTCTAGTAGAACAGTTGGGGCAC-3’ 

pGL3-Seq3MCS reverse 5’-TTATGCAGTTGCTCTCCAGCGGTTC-3’ 

pIIIaSA forward 
5’-CTTAGATCTAGTACTAAGCGGTGATGTTTCTGATCAGATGGAGACAGACACACTC 

CTGC-3’ 

scFvCEA-Fc reverse 5’-TCGGTCGACGGATCCTTATC-3’ 

Seq Mfe fiber reverse 5’-TGTATAAGCTATGTGGTGGTGGGG-3’ 

SeqITR forward 5’-CGGGAAAACTGAATAAGAGGAAGTGA-3’ 

SV40 large T antigen 

reverse 
5’-TTAAGGATCCAATTGCATTCATTTTATGTTTCAGG-3’ 

SV40 large/small T 

antigen forward 
5’-AATTAGATCTGCCACCATGGATAAAGTTTTAAACAGAGAGG-3’ 

SV40 small T antigen 

reverse 
5’-TTAAGGATCCTTAGAGCTTTAAATCTCTGTAGGTAGTTTGTCC-3’ 
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5.2 For quantitative PCR 

All human Quantitect™ primers were obtained from Qiagen, Hilden and reconstituted in 1.1 ml 

TE buffer, pH 8.0. Following primers were used: ACTB QT01680476, BLM QT00027671, CCNE1 

QT00041986, CD83 QT00069923, CDC25A QT00001078, CDT1 QT00020601, CHAF1B 

QT00012845, E2F2 QT00045654, E2F5 QT00062965, EGR1 QT00999964, FOS QT00007070, 

GAPDH QT01192646, H2BFS QT00227199, HERC5 QT00007280, HES4 QT00208726, IRS2 

QT00064036, MCM2 QT00070812, MGC13057 QT00221347, PKMYT1 QT00013580, RFC3 

QT00019243, TIPIN QT00054334, UNG1 QT00037912; 

 

All oligonucleotides were purchased from and synthesized by MWG-Biotech, Martinsried. 

designation sequence 

ACTB 
forward 

reverse 

5’-TAAGTAGGCGCACAGTAGGTCTGA-3’ 

5’-AAAGTGCAAAGAACACGGCTAAG-3’ 

E1A 
forward 

reverse 

5’-AACCAGTTGCCGTGAGAGTTG-3’ 

5’-CTCGTTAAGCAAGTCCTCGATACA-3’ 

E4 
forward 

reverse 

5’-GGTTGATTCATCGGTCAGTGC-3’ 

5’-TACGCCTGCGGGTATGTATTC-3’ 

Fiber 
forward 

reverse 

5’-TGATGTTTGACGCTACAGCCATA-3’ 

5’-GATTTGTGTTTGGTGCATTAGGTG-3’ 

GAPDH 
forward 

reverse 

5’-GGTTTACATGTTCCAATATGATTCCA-3’ 

5’-ATGGGATTTCCATTGATGACAAG-3’ 

Hexon 
forward 

reverse 

5’-ACCTGGGCCAAAACCTTCTC-3’ 

5’-CGTCCATGGGATCCACCTC-3’ 

p16
INK4a

 
forward 

reverse 

5’-ACGTGCGCGATGCCT-3’ 

5’-ATGGCCCAGCTCCTCAG-3’ 

p21
WAF/CIP

 
forward 

reverse 

5’-CTGGAGACTCTCAGGGTCGAA-3’ 

5’-CCAGGACTGCAGGCTTCCT-3’ 

 

5.3 Small interfering RNAs 

All siRNAs were obtained from Dharmacon, Braunschweig and reconstituted with 1× siRNA 

buffer (Dharmacon, Braunschweig) to give a final concentration of 20 µM for each stock. 
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Following siRNAs were used: p16
INK4a

 J-011007-08, p21
WAF/CIP

 J-003471-12, nonsense control 

pool D-001810-10; 

5.4 Plasmids 

designation features 

pcDNA3.1/hygro (+) 
cloning vector for the expression of proteins in mammalian cell lines via a CMV 

promoter (Invitrogen, Karlsruhe) 

pcDNA3.1-CCNE-

HA/FLAG 

expression plasmid for the human cyclin E protein isoform 1 fused to the 

hemagglutinin and FLAG tag, a kind gift from Ingrid Hoffmann 

pcDNA3.1-CDC25A-

gfp 

expression plasmid for the human CDC25A phosphatase, fused to the enhanced 

greed fluorescent protein, a kind gift from Ingrid Hoffmann 

pcDNA3.1-HPV-31 E7 

expression plasmid for the HPV-31 E7 protein, cloned via PCR using E7 

forward/reverse oligonucleotides from wild type HPV-31 DNA, a kind gift from 

Elizabeth Schwarz, DKFZ, inserted into pcDNA3.1/hygro(+) via BglII/BamHI sites 

pcDNA3.1-SV40 LT 

expression plasmid for the SV40 large T antigen, cloned from wild type DNA via 

PCR using the respective SV40 large T antigen forward/reverse oligonucleotides 

and BglII/BamHI sites 

pcDNA3.1-SV40 ST 

expression plasmid for the SV40 small T antigen, cloned from wild type DNA via 

PCR using the respective SV40 small T antigen forward/reverse oligonucleotides 

and BglII/BamHI sites 

pcDNA4-HHV-8 

ORF72 

expression plasmid for the HHV-8 viral cyclin, a kind gift from Frank Neipel, 

Erlangen 

pCMV-HPV-16 E7 

HA/FLAG 

expression plasmid for the HPV-16 E7 protein, contains the hemagglutinin and 

FLAG tags, a kind gift from Felix Hoppe-Seyler, DKFZ 

pCMV-HPV-18 E7 

HA/FLAG 

expression plasmid for the HPV-18 E7 protein, contains the hemagglutinin and 

FLAG tags, a kind gift from Felix Hoppe-Seyler, DKFZ 

pcDNA3-YB1 
expression plasmid for the human YB1 transcription factor, a kind gift from      

Per Sonne Holm, Klinikum rechts der Isar, Munich 

pF5/3-40SA-luc 

adenovirus transfer vector containing a chimer 5/3 fiber and the firefly luciferase 

gene fused to the HAdV-40 long fiber gene splice acceptor site. The 40SA-luc 

cassette was transferred via XhoI/BamHI sites 

pF5/3-40SA-scFvCEA 

similar to pF5/3-40SA-luc, created by inserting a blunted 40SA-scFvCEA-Fc 

cassette, excised via XhoI/SalI digest, into XhoI/BamHI digested and blunted fiber 

plasmids 

pF5/3-IRES-FCU1 

adenovirus transfer vector containing a chimer 5/3 fiber and the yeast cytosine 

deaminase and uracil phosphoribosyl transferase chimera fused to it via an IRES 

site, provided by Michael Behr, DKFZ 

pF5/3-IRES-luc 
similar to pF5/3-IRES-FCU1, created by inserting the firefly luciferase gene via 

partial digest of NcoI/XbaI 

pF5/3-IRES-scFvCEA 
similar to pF5/3-IRES-FCU1, created by partial digest of NcoI/XbaI and insertion 

of recombinant scFvCEA-Fc antibody 



 Materials | Nucleic acids, oligonucleotides and plasmids 

 

 

102  

 

 

pF5/3-pIIIaSA-scFvCEA 

adenovirus transfer vector containing a chimer 5/3 fiber and the scFvCEA-Fc fused 

to the HAdV-2 L1 pIIIa splice acceptor, the transgene cassette was excised via 

XhoI/SalI from pGL3-pIIIaSA-scFvCEA and blunt end cloned into XhoI/BamHI 

digested and blunted fiber plasmids 

pGL3-40SA-luc 
pGL3-basic variant with the HAdV-40 splice acceptor site from the long fiber 

gene inserted through annealed Ad40SALinker sequences via BglII/NcoI sites 

pGL3-40SA-scFvCEA 
similar to pGL3-40SA-luc, the luciferase transgene was replaced with the 

recombinant scFvCEA-Fc antibody via NcoI/XbaI sites 

pGL3-basic 
encodes the firefly luciferase reporter gene, lacks any eukaryotic promoter 

sequences (Promega, Madison USA) 

pGL3-BPSA-luc 
similar pGL3-basic, additionally contains the human beta globin splice acceptor 

upstream of the firefly luciferase 

pGL3-BPSA-scFvCEA 
similar pGL3-BPSA-luc, the luciferase transgene was replaced with the 

recombinant scFvCEA-Fc antibody via NcoI/XbaI sites 

pGL3-CMV 
pGL3-basic containing the immediate early gene promoter and enhancer 

sequences from the cytomegalovirus 

pGL3-E1A 

pGL3-basic containing the left inverted terminal repeat and E1A promoter 

sequences from the HAdV-5 genomic plasmid pTG3602 (nucleotides 37935 to 

557) cloned by PCR and transferred via BamHI/NcoI sites into BglII/NcoI digested 

vector 

pGL3-E2F 
pGL3-basic containing a shortened E2F1 promoter (nucleotides -221 to 

+60) 

pGL3-hTK pGL3-basic containing the human thymidine kinase promoter 

pGL3-pIIIaSA-scFvCEA 

the recombinant scFvCEA-Fc antibody was cloned by PCR using pIIIaSA forward 

and scFvCEA-Fc reverse oligonucleotides and inserted via BglII/XbaI sites into 

pGL3-basic 

pGL3-SV40 
pGL3-basic containing the early gene promoter and enhancer sequences from 

the simian virus 40 

pS-CMV-luc 
E1 deleted adenovirus transfer vector containing the firefly luciferase gene 

downstream of the immediate early cytomegalovirus promoter/enhancer 

pS-CMV-scFvCEA 

similar to pS-CMV-luc, the luciferase transgene was replaced with the scFvCEA-Fc 

antibody, previously excised with NcoI/XbaI, using blunt end cloning into XhoI 

digested vector 

pSecTag-HisA-

scFvCEA-Fc 

plasmid contains a recombinant single-chain antibody, directed against the 

human carcinoembryonic antigen, fused to the constant domain of mouse IgG2a 

(Roland Kontermann, Stuttgart) 

pSΔ24-BPSA-FCU1 

adenovirus transfer vector which contains a mutant E1A gene with a 24 bp 

deletion to prevent binding and inactivation of pRB, carries the yeast cytosine 

deaminase and uracil phosphoribosyl transferase chimera fused to the human 

beta globin splice acceptor, provided by Michael Behr, DKFZ 

pSΔ24-BPSA-scFvCEA 
similar to pSΔ24-BPSA-FCU1, the FCU1 transgene was replaced with the scFvCEA-

Fc antibody via MluI/SalI 
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pTG3602 plasmid containing the complete wild type HAdV-5 genome, [251] 

pTriEx4-large T expression plasmid containing the , a kind gift from Jürgen Hämmerling, DKFZ 

pVK500 5/3 ΔE3 
plasmid containing the HAdV-5 genome with a chimeric 5/3 fiber and a deleted 

E3 region 

pVK500 Δ24 ΔE3 
plasmid containing the HAdV-5 genome with partial deletion of the fiber gene, a 

24 bp deletion in the E1A region, and deleted E3 region 

 

6 Antibodies and recombinant proteins 

description origin dilution source 

anti-mouse-CD11b-

phycoerytrhin 

Rat, monoclonal (M1/70), 

Lot 101208  
1:400 

BioLegend, 

San Diego, USA 

anti-mouse-IgG-

horseradish peroxidase 
goat, polyclonal, Lot L21 1:5000-10000 

Cell Signaling Technology, 

Danvers, USA 

anti-mouse-IgG-

phycoerythrin 
goat, polyclonal, Lot 66135 1:400 

BD Pharmingen, 

Heidelberg 

anti-rabbit-IgG-

horseradish peroxidase 
goat, polyclonal, Lot L16 1:10000 

Cell Signaling Technology, 

Danvers, USA 

carcinoembryonic antigen 
human liver metastasis of colon 

adenocarcinoma, Lot L25193 
300 ng / well 

AppliChem, 

Darmstadt 

HAdV-5 fiber tail 

(monomeric and trimeric) 

mouse, monoclonal (4D2), 

Lot 894112 
1:2000 

Abcam, 

Cambridge, UK 

HAdV-5 hexon rabbit, polyclonal, Lot 868916 1:2000 
Abcam, 

Cambridge, UK 

human ACTB 
mouse, monoclonal (AC-74), 

Lot A228 
1:2000 

Sigma-Aldrich, 

Taufkirchen 

isotype IgG2a 
mouse monoclonal (MOPC-173), 

Lot B111221 
1:200 

BioCat, 

Heidelberg 

scFvCEA-Fc recombinant protein 1:200 Our lab 
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V METHODS 

Standard methods of molecular biology required for this dissertation were performed according 

to the laboratory manual “Molecular Cloning” by Sambrook and Russel [252]. 

 

1 Recombinant DNA and RNA techniques  

1.1 Gel electrophoresis of DNA fragments 

Samples were supplemented with 1× DNA sample buffer and analyzed on agarose gels 

containing ethidium bromide. Electrophoresis done horizontally at 100 V in 1× TAE buffer led to 

separation of DNA fragments according to their size. Relevant fragment sizes were determined 

by simultaneously separating a GeneRuler™ 1 kb DNA Ladder mix (Fermentas, St. Leon-Rot). 

Afterwards, DNA was visualized with UV light at 265 nm. For cloning, respective bands were 

excised using a scalpel and extracted (see below). 

 

1.2 Cloning of DNA fragments into plasmid vectors 

Plasmids, amplified PCR products, and phosphorylated oligonucleotides were cleaved with 

relevant restriction endonucleases in buffers (all Fermentas, St. Leon-Rot) as described by the 

manufacturer to generate vector and insert fragments for cloning. For the conversion of DNA 

overhangs after a restriction digest, i.e. filling in recessed 5’-overhangs or digesting protruding 

3’-overhangs, T4 DNA Polymerase (Fermentas, St. Leon-Rot) was utilized according to the 

manufacturer’s protocol. Religation of cut vector ends was prevented through 

dephosphorylation by subsequent treatment with shrimp alkaline phosphatase following the 

manufacturer’s instructions (Fermentas, St. Leon-Rot). If required and depending on the 

fragment length or desired purity, DNA fragments were directly purified using either    

QIAquick® PCR Purification Kit or gel electrophoresis (see above) for subsequent DNA extraction 

with QIAprep® Gel Extraction Kit (both Qiagen, Hilden) as described by the manufacturer. 

Afterwards, ligation of vector and insert was performed using the Rapid Ligation Kit           
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(Roche, Mannheim) according to the respective manual. For efficient cloning, the amount of 

insert was calculated according to the following formula: 

 

amount of insert DNA =        ×                      × amount of vector DNA 

 

A tenfold molar excess of insert was mixed with 200 ng of vector DNA and the reaction mix was 

incubated at 22 °C overnight and used to transform bacteria (see below). 

 

1.3 Production of transformation-competent bacteria 

1.3.1 For heat shock 

A single colony of Escherichia coli Maximum Efficiency DH5α was inoculated in 5 ml LB-medium 

without antibiotics and cultivated overnight at 37 °C in a shaker incubator at 180 rpm. On the 

next day, overnight culture was transferred to Erlenmeyer flasks containing 300 ml LB-medium. 

Bacteria were incubated until they reached exponential growth phase as measured by optical 

density at 600 nm of 0.4-0.6. Suspension was incubated on ice for 15 minutes and bacteria were 

collected by centrifugation at 4 °C and 3080 g for 5 minutes. Pellets were resuspended in 150 ml 

ice-cold, sterile 0.1 M MgCl2 solution and incubated on ice for one hour. Following another 

round of centrifugation, bacteria were resuspended in 12 ml ice-cold, sterile 0.1 M CaCl2 

solution and incubated for another hour on ice. Afterwards, sterile glycerol was added reaching 

a final concentration of 20 % (v/v). Heat shock competent bacteria were stored subsequently in 

200 μl aliquots at -80 °C. 

 

1.3.2 For electroporation 

A single colony of Escherichia coli Electro Maximum DH5α or Escherichia coli BJ5183 was 

inoculated in 10 ml LB-medium without antibiotics and incubated at 37 °C overnight in a shaker 

incubator at 180 rpm. Then, 4 ml of the overnight culture was added to Erlenmeyer flasks 

containing 500 ml LB-medium. Bacteria were cultivated until they reached an optical density of 

0.8 at 600 nm wavelength before incubating the suspension for one hour on ice. Following 

 size vector 
 

10    
 

 
 
 

 size  insert 
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centrifugation at 3080 g for 10 minutes at 4 °C, bacterial pellet was resuspended in 200 ml      

ice-cold, sterile 10 % (v/v) glycerol solution. This step was repeated twice and cells were 

collected in 5 ml of ice-cold, sterile 10 % (v/v) glycerol. Aliquots of 50 μl electro-competent 

bacteria were stored at -80 °C. 

 

1.4 Heat shock transformation 

For transformation of small plasmids up to 15 kb, heat shock competent bacteria were thawed 

on ice. Then, 10-50 ng of a relevant plasmid or 5 µl of a ligation mix was added to each 50 µl 

aliquot of competent cells. The samples were incubated for 15 minutes on ice before exposing 

them to a heat shock at 42 °C for 1 minute. Afterwards, samples were immediately put on ice 

for 90 seconds while adding 1 ml of SOC medium. Bacteria were incubated at 37 °C, 300 rpm for 

at least 20 minutes before streaking them out on LB-agar dishes containing the appropriate 

selection antibiotic. Plates were incubated overnight at 37 °C and colonies of single clones could 

be picked the next day for downstream applications. 

 

1.5 Transformation by electroporation 

Plasmids larger than 15 kb required transformation in electro-competent DH5α. For each 

sample, 50 µl of competent cells were thawed on ice and added to 1-50 ng of a relevant plasmid 

or ligation mix. After incubation on ice for 1 minute, samples were transferred into pre-chilled 

electroporation cuvettes. Single cuvettes were placed in an electroporator and pulsed at 2.5 kV 

for 4.5-5.5 milliseconds. Immediately after transformation, 1 ml of SOC medium was added to 

the cells. Following shaking at 37 °C for one hour, bacteria were streaked out on LB-agar dishes 

containing a relevant selection antibiotic. Plates were incubated overnight at 37 °C before 

picking single clone colonies. 

 

1.6 Generation of recombinant adenoviral genomes by homologous recombination 

Alteration of adenovirus genomes was done by cloning DNA fragments into relevant shuttle 

plasmids and homologous recombination in electro-competent BJ5183 bacteria. Therefore, 6 µg 
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of shuttle plasmid was linearized through PmeI digestion at 37 °C for 5 hours or overnight. DNA 

was precipitated by first adding a final concentration of 800 mM lithium chloride and then    

2.5× volumes of 100 % ethanol. After centrifugation at 17000 g for 30 minutes, the supernatant 

was aspirated and the pellet resuspended in 20 µl bi-distilled water. Electroporation was carried 

out as described above with 100-200 ng of a respective adenovirus backbone and 5-10 µl 

linearized shuttle plasmid per sample. All incubation steps were done at 30 °C rather than 37 °C. 

Bacteria harboring recombined adenovirus genomes were selected via a relevant antibiotic and 

analyzed by restriction enzyme analysis. 

 

1.7 Preparation of DNA and RNA 

1.7.1 Small scale isolation of plasmid DNA (mini prep) 

Single clone colonies were inoculated in 5 ml LB-medium containing a relevant antibiotic and 

incubated overnight in a shaker incubator at 180 rpm and 37 °C. Bacteria containing adenoviral 

genomes the temperature was lowered to 30 °C. The next day, bacteria were harvested by 

centrifugation at 3080 g for 10 minutes. DNA was extracted using QIAprep® Spin Miniprep Kits 

(Qiagen, Hilden) according to the manufacturer’s protocol. Briefly, bacterial pellets were 

resuspended in 200 μl of buffer P1 and lysed by adding 400 μl buffer P2. Lysis was stopped after 

5 minutes incubation at room temperature through addition of 300 µl of buffer P3. Bacterial 

lysates were cleared by centrifugation at 17000 g for 10 minutes and supernatants loaded on 

QIAprep® columns. After another round of centrifugation again at 17000 g for one minute, 

purified DNA was precipitated by adding 750 µl isopropanol to each sample. After mixing, 

precipitated DNA was pelleted at 17000 g for 30 minutes and washed with 70 % (v/v) ethanol. 

Supernatants were aspirated and DNA resuspended in 50 μl TE-buffer for further downstream 

applications. Larger plasmids (size > 15 kb) were essentially extracted as described but leaving 

out the purification via columns to avoid shearing. 

 

1.7.2 Large scale isolation of plasmid DNA (midi lysate) 

Similarly to the small scale isolation procedure of plasmid DNA (see above), larger amounts of 

purified plasmid DNA regardless of size were obtained by using QIAGEN® Plasmid Midi Kits 
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(Qiagen, Hilden) as described by the manufacturer. Briefly, 100-250 ml of an overnight culture 

was harvested and bacterial pellet dissolved in 4 ml buffer P1. Cell wall lysis was enabled by 

adding 8 ml buffer P2 and stopped with 6 ml buffer P3, differing from standard protocol. 

Precipitated DNA plasmids were resuspended in 100 μl TE-buffer and stored at -20 °C. 

 

1.7.3 DNA isolation from human cell cultures 

Total DNA from human cell cultures was prepared by using QIAamp® DNA Mini and Blood Kits 

(Qiagen, Hilden). For this purpose, up to 5×10
6
 cells were harvested by replacing the medium 

with 200 µl DPBS and usage of a cell scraper. Samples were stored at -20 °C until further 

purification following the manufacturer’s instructions. For RNA free genomic DNA, 4 µl RNase A 

was added before addition of buffer AL, the remaining protocol was left unchanged. Purified 

DNA was stored in 200 µl TE buffer at -20 °C. 

 

1.7.4 RNA isolation from human cell cultures 

Total RNA was isolated from human cells using RNeasy® Mini Kits (Qiagen, Hilden) according to 

the manufacturer’s protocol. Briefly, up to 5×10
5
 cells were harvested in 350 µl RLT buffer 

containing 3.5 µl 2-mercaptoethanol and either processed directly or stored at -80 °C. For larger 

samples, QIAshredder® columns (Qiagen, Hilden) were utilized to ensure higher lysate 

homogeneity. An optional on column digest with RNase free DNase Kits (Qiagen, Hilden) was 

performed for 15 minutes at room temperature as mentioned in the manual. However, this step 

was left out if total RNA was extracted and to be used for gene expression analysis by 

microarrays (see below). Purified RNA was eluted with 30 µl RNase free water. 

 

1.8 Gene expression analysis by microarray 

Total RNA from uninfected and infected cells was isolated (see above), its concentration 

determined, and set to 250 ng/ml. Samples were sent to the Genomics & Proteomics Core 

Facility at the DKFZ, Heidelberg where further processing, labeling, and hybridization to the 

array platform took place using reagents from Illumina, San Diego, USA if not stated otherwise. 
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Briefly, sample quality was assessed by gel analysis using the total RNA Nano chip assay on an 

Agilent 2100 Bioanalyzer (Agilent Technologies, Berlin). Only samples with a RNA index value 

greater than 8.5 were selected for expression profiling. Biotin-labeled cRNA samples for 

hybridization on Illumina Human Sentrix-8 V2 BeadChip arrays were prepared according to 

Illumina's recommended sample labeling procedure based on the modified Eberwine protocol 

[253]. In brief, 250-500 ng of total RNA was used for complementary DNA (cDNA) synthesis, 

followed by an in-vitro transcription amplification and labeling step to synthesize biotin-labeled 

cRNA according to the MessageAmp™ II aRNA Amplification kit. Biotin-16-uridine-triphosphate 

was purchased from Roche, Mannheim. The cRNA was column purified according to the 

TotalPrep™ RNA Amplification Kit, and eluted in 60-80 µl of water. Quality of cRNA was again 

controlled using the RNA Nano chip assay quantified by a NanoDrop ND-1000 UV/VIS 

spectrophotometer (Peqlab, Erlangen). Hybridization was performed at 58 °C, in GEX-HCB buffer 

at a concentration of 100 ng cRNA/µl, unsealed in a wet chamber for twenty hours. Spike-in 

controls for low, medium and highly abundant RNA were added, as well as mismatch control, 

perfect match, and biotinylation control oligonucleotides. Microarrays were washed once in 

High Temperature Wash Buffer at 55 °C and then twice in E1BC buffer at room temperature for 

five minutes (in between washed with ethanol at room temperature). After blocking for five 

minutes in 4 ml of 1 % (w/v) casein Hammarsten grade in DPBS (Pierce Biotechnology, Rockford, 

USA), array signals were developed by a ten minute incubation time in 2 ml of 1 µg/ml cyanine-

3-streptavidin solution (Amersham Biosciences, Buckinghamshire, UK) and 1 % (w/v) blocking 

solution. After a final wash in E1BC buffer, the arrays were dried and scanned. Microarray 

scanning was done using an Illumina BeadStation array scanner, setting adjusted to a scaling 

factor of one and PMT settings at 430. Data extraction was done for all beads individually, and 

outliers were removed if > 2.5 median absolute deviation. All remaining data points were used 

for the calculation of the mean average signal and standard deviation for a given probe.        

Data from different microarray replicates was normalized using lin-log transformation without 

local background subtraction. Afterwards, data was loaded into the Multi-Conditional 

Hybridization Intensity Processing System software as virtual two color approach. Results and 

raw data will be deposited in a public microarray database as stated in Dorer, Holtrup et al. in 

preparation. 
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1.9 Polymerase chain reaction (PCR) 

1.9.1 For analysis and cloning  

 analysis cloning 

10× PCR buffer 1× 1× 

10 mM dNTP’s 200 µM 250 µM 

50 mM MgCl2 1.5 mM 2 mM 

10 µM primer, forward 500 nM 250 nM 

10 µM primer, reverse 500 nM 250 nM 

DNA template 500 pg – 25 ng 500 pg – 25 ng 

enzyme 0.04 U Taq Polymerase 1 U PRECISOR Polymerase 

final volume 25 µl 50 µl 

 

Thermal cycler profile: 

stage description repetitions temperature time 

1 initial denaturation 1 96 °C 3 minutes 

2 denaturation 30-40 96 °C 15 seconds 

 annealing  58-62 °C 30 seconds 

 extension  72 °C 
15 seconds / 1 kb 

fragment length 

3 final extension 1 72 °C 10 minutes 

4 cooling 1 4 °C ~ 

 

Genomic and plasmid DNA was amplified during a polymerase chain reaction using either a Taq 

Polymerase Kit (Invitrogen, Karlsruhe) for common PCR analysis or a PRECISOR High-Fidelity 

DNA Polymerase Kit (BioCat, Heidelberg) for cloning according to the manufacturer’s protocol. 

All primers were synthesized and purchased from Eurofins MWG, Ebersberg. 

Deoxyribonucleotide triphosphates (dNTP’s) were obtained from Bioron, Ludwigshafen. 

Template from adenoviruses was gained by boiling 50 µl stock solution at 95 °C for 10 minutes. 

To remove debris, samples were centrifuged at 10000 g for 3 minutes. The PCR was run on a 

T3000 Thermocycler Biometra, Jena. Each sample was prepared as stated above. The annealing 

temperature, repetitions and extension time was individually defined for the relevant 
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oligonucleotide primers and expected fragment length. Ten micro liters of each PCR sample was 

analyzed by standard agarose gel electrophoresis (see section V, 1.1). PCR samples for cloning 

were purified using the QIAquick® PCR Purification Kit (Qiagen, Hilden) as suggested by the 

manufacturer and further processed as described in paragraph V, 1.2 

 

1.9.2 Quantitative real time PCR 

 cellular mRNA viral mRNA viral DNA 

2× Power SYBR® Green PCR Master Mix 1× 1× 1× 

50 U/µl reverse transcriptase 6.25 U 6.25 U - 

20 U/ µl RNase inhibitor 10 U 10 U - 

10 µM primer, forward - 50 nM 50 nM 

10 µM primer, reverse - 50 nM 50 nM 

10× Quantitect™ Primer Mix 1× - - 

template 20 ng 1-100 ng 1-100 ng 

final volume 25 µl 25 µl 25 µl 

 

Thermal cycler profile: 

stage description repetitions temperature time 

1 reverse transcription* 1 48 °C 30 minutes 

2 initial denaturation 1 95 °C 10 minutes 

3 denaturation 40 95 °C 15 seconds 

 annealing / extension  60 °C 1 minute 

4 dissociation 1 

95 °C 

60 °C 

95 °C 

60 °C 

15 seconds 

1 minute 

15 seconds 

15 seconds 

* only for mRNA templates 

 

Adenoviral genome copies, viral mRNA as well as cellular mRNA expression levels were 

quantified by qPCR based on the detection of SYBR® Green. All reagents were purchased from 

Applied Biosystems, Darmstadt except Quantitect™ Primers which were obtained from Roche, 

Mannheim and used exclusively for chip candidate gene quantification. Samples were analyzed 

on a 7300 Real Time PCR System (Applied Biosystems, Darmstadt). Total RNA or genomic DNA 
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was isolated according to sections V, 1.7.4 and V, 1.7.3 and added to                              

MicroAmp™ Optical 96 well plates containing the appropriate reaction mix (see above). Each run 

further included negative controls as well as appropriate standard curves if available. For 

quantification of adenoviral mRNA and genomes, plasmid pTG3602 containing the whole 

genome of HAdV-5 was diluted to 10
8
, 10

6
, 10

4
, and 10

2
 copies/well. Normalization of mRNA 

amounts was done accordingly with a standard of HeLa total RNA (Stratagene, Amsterdam), 

diluted to 200, 20, 2 and 0.2 ng/well. For normalization of DNA, a similar standard made from 

extracted total DNA of A549 cells was used. Fluorescence emitted through SYBR Green dye 

incorporated into double stranded PCR products was measured at the end of every cycle            

in stage 2. After completion of the cycling process, samples were subjected to an optional 

melting curve analysis from 60°C to 95°C at 0.1 °C/s with continuous fluorescence monitoring to 

distinguish primer dimers and unspecific amplicons from specific target gene products. Data was 

analyzed with the 7300 System SDS Software V1.4 (Applied Biosystems, Darmstadt) and 

presented as relative E1A or fiber mRNA, viral genomes, and relative cellular mRNA content 

using the formula below or Q-Gene software if no standard curve was available [254]: 

 

mRNA or genome content = ddddddddddddddddddddddddddddd  

 

2 Biochemical and immunological protein methods 

2.1 Preparation of total protein lysates 

Human cells were harvested by trypsinization and pelleted at 225 g for 3 minutes. Afterwards, 

supernatants were removed and cells washed once in 5 ml ice-cold DPBS. Lysis was done with 

100 µl per 1×10
6
 cells freshly prepared RIPA buffer for 30 minutes on ice. Subsequently, cellular 

debris was removed by spinning samples at 17000 g for 30 minutes in a cooled centrifuge          

at 4 °C. Supernatants containing soluble total protein were transferred to new reaction tubes 

and stored at -80 °C. 

 

ng reference gene 
   




 
 

 target gene copy numbers 
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2.2 Measuring sample protein concentration  

The concentration of total protein lysates was determined using the Bio-Rad DC Protein Assay 

(Bio-Rad, Munich). Therefore, standard curves were generated using bovine serum albumin 

(New England Biolabs, Frankfurt am Main) diluted to 1.4 μg/μl, 1.05 μg/μl, 0.7 μg/μl, 0.35 μg/μl, 

and 0.175 μg/μl. Samples were diluted 1:4 in 20 µl bi-distilled water and mixed with 100 µl 

reagent A and 800 µl reagent B. After 20 min incubation at room temperature, absorbance at 

750 nm wavelength was determined in a spectrophotometer. 

 

2.3 Discontinuous SDS-polyacrylamide gel electrophoresis (SDS-PAGE)  

Separation of proteins according to molecular weight and charge was performed by SDS-PAGE 

pursuing essentially Laemmli’s method [255]. If not state otherwise, 20-100 µg lysate was mixed 

with 4× protein sample buffer and incubated at 95 °C for 10 minutes to obtain reduced and 

denatured protein. For analysis of oxidized but denatured dimerized single-chain antibodies,    

4× protein sample buffer without 2-mercaptoethanol or dithiothreitol was prepared and used 

accordingly. Thereafter, reaction tubes were shortly put on ice and droplets collected by quick 

spin centrifugation. Samples were loaded on previously prepared polyacrylamide gels composed 

of a 12.5 % separating gel and a 4 % stacking gel. Electrophoresis was done using 1× running 

buffer for two to four hours at 100 V. 

 

2.4 Analysis of proteins by Coomassie Blue staining 

After separation of proteins by SDS-PAGE (see above), gels were boiled for two minutes in 

Coomassie Brilliant Blue R-250 Staining Solution (Bio-Rad, Munich) and incubated for 10 minutes 

at room temperature. Then gels were fixed and washed three times in Coomassie Brilliant Blue 

R-250 De-staining Solution (Bio-Rad, Munich) for 10 minutes and put in distilled water 

overnight. Gels were dried using a Model 583 Gel DRYER (Bio-Rad, Munich) and scanned to 

obtain digital images. 
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2.5 Western blot analysis 

For immunological identification of separated proteins, electrophoretic transfer of proteins on 

PROTRAN® Nitrocellulose Transfer Membrane (Schleicher & Schuell, Dassel) with a pore size of 

0.2 μm was carried out. Therefore, a sandwich of Whatman filters (Schleicher & Schuell, Dassel), 

a gel, and a nitrocellulose membrane was assembled and soaked in 1× transfer buffer. The 

transfer was performed in a wet blot chamber (Bio-Rad, Munich) at 0.8 mA/cm
2
 for one hour. 

Afterwards, membranes were incubated in 5 ml blocking solution for 30 minutes at room 

temperature on a rocking platform. Membranes were extensively washed three times in 10 ml 

TBST washing solution for 15 minutes before incubating them in primary antibody diluted in 

either blocking solution or TBST containing 5 % (w/v) bovine serum albumin                        

(New England Biolabs, Frankfurt am Main) according to the MATERIALS section IV, 6. After 

overnight incubation at 4 °C, membranes were washed again and following application of 

diluted secondary antibody conjugated to horseradish peroxidase for one hour at room 

temperature. Unbound antibodies were washed away and detection of bound antibody 

complexes was enabled by chemoluminescence. To this end, ECL Western Blotting Substrate 

(Pierce Biotechnology, Rockford, USA) was used according to the manufacturer’s protocol. 

Exposition time of Fuji Super RX Medical X-ray films (Kisker-Biotech, Steinfurt) was individually 

determined for each blot. 

 

2.6 Enzyme linked immunosorbent assay 

PolySorb™ 96-well plates (Nunc, Langenselbold) were coated overnight at 4 °C with 200 µl DPBS 

per well containing 300 ng purified carcinoembryonic antigen. The next day, antigen solution 

was discarded and wells washed three times with 200 µl PBST washing solution. To reduce 

background signals, 200 µl DPBS containing 2 % (v/v) fetal calf serum was added to each well for 

one hour at room temperature. Wells were washed again three times before adding duplicates 

of 200 µl cell culture supernatant diluted in PBST washing solution containing secreted     

scFvCEA-Fc. Dilutions were individually determined according to expected protein yield. Following 

incubation for another hour at room temperature and three washing steps, bound scFvCEA-Fc 

was detected with 200 µl anti-mouse-horseradish peroxidase antibody diluted 10000-fold in 

PBST. Therefore, 200 µl TMB substrate (BD Biosciences, Heidelberg) was prepared according to 
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the manufacturer’s manual which develops a blue color in the presence of bound peroxidase-

conjugates. The reaction was stopped with 50 µl 4 M H2SO4 and quantified through fluorometric 

measurement using a FluoroskanAsentFL (Thermo-Scientific, Braunschweig) set to a wavelength 

of 450 nm. 

 

2.7 Immunofluorescence staining 

Primary HBEC and lung squamous tumor cells were grown on poly-L-lysine coated coverslips for 

24 hours. Therefore, coverslips were first sterilized in 70 % (v/v) ethanol and air dried before 

coating. Then, they were incubated in 50 µg/ml of a sterile aqueous poly-L-lysine solution for     

1 hour at 37 °C and washed with sterile DPBS two times afterwards. Immunofluorescence 

staining was done in collaboration with Werner Franke’s lab and Cäcilia Kuhn. Briefly, cells were 

fixed in methanol or paraformaldehyde solution (Sigma-Aldrich, Taufkirchen) depending on the 

cellular antigen. If required, a permeabilization step using a Triton X-100 solution was carried 

out (Sigma-Aldrich, Taufkirchen). Detection of cellular markers was performed with respective 

primary antibodies and subsequent labeling using fluorescently conjugated secondary 

antibodies. Images and statistics were provided by Cäcilia Kuhn. 

 

2.8 Immobilized metal affinity chromatography (IMAC) 

Cells stably expressing and secreting recombinant scFvCEA-Fc single-chain antibodies were 

expanded to twenty dishes in normal cell culture medium. Upon reaching 60-70 % confluence, 

growth medium was replaced by OptiMEM (Invitrogen, Karlsruhe) without serum. Cell culture 

supernatants were replaced every three days and cellular debris removed by centrifugation at 

225 g for 5 minutes. After addition of 0.01 % (v/v) NaN3, supernatants were stored at 4 °C up to 

two weeks. Then, supernatants were pooled and soluble protein precipitated by gradually 

adding ammonium sulfate to a final concentration of 60 % (w/v). Precipitates were collected by 

centrifugation at 3080 g for 30 minutes and 4 °C and pellets dissolved in 20 ml ice-cold DPBS. 

His-tagged scFvCEA-Fc was isolated applying a modified IMAC protocol. Therefore, 2.5 ml Ni-NTA 

beads were equilibrated in 10 ml IMAC equilibration buffer, centrifuged at 225 g, and 

supernatant aspirated. The equilibrated beads were added to the protein solution and 
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incubated on a rotor for 30 minutes at room temperature. Afterwards, beads were recovered 

again by centrifugation and washed three times in 50 ml ice-cold IMAC washing buffer. Bound 

scFvCEA-Fc was eluted from the beads with 10 ml IMAC elution buffer and dialyzed overnight 

against DPBS at 4 °C using Slide-A-Lyzer® Dialysis Cassettes (Pierce Biotechnology, Rockford, 

USA) with a 10000 molecular weight cut off (MWCO). The next day, protein samples were 

concentrated using VivaSpin columns (Sartorius, Göttingen) with a 10000 MWCO. Concentrated 

samples stored at 4 °C for immediate use or at -20 °C for long term storage. Quality and purity 

was checked by Coomassie Blue staining (see chapter V, 2.4). 

 

2.9 Luciferase reporter gene assay 

For the determination of luciferase activity, the Luciferase Assay System (Promega, Madison 

USA) was utilized as described by the manufacturer. Cells were washed once with DPBS and 

lysed in 200 μl Reporter Lysis buffer. After incubation for at least 30 minutes at -80 °C, lysates 

were thawed at room temperate. For each sample, 50 μl cell lysate was mixed with 50 μl 

Luciferase Assay substrate and immediately measured in a FluoroskanAsentFL (Thermo- 

Scientific, Braunschweig). Cells devoid for luciferase expression were used as negative controls 

to determine nonspecific background. 

 

3 Cell culture techniques 

All cells were kept in a Steri-Cult 200 incubator at 37 °C with 5 % CO2 and a humidified 

atmosphere. Respective growth media were prepared as described in the MATERIALS section IV, 

3.2 and stored at 4 °C. Media were pre-warmed to 37 °C in a water bath before use. Cell lines 

A549, C8161, HeLa, HEK293 and derivatives, LS174T, Mel624, RAW264.7, SK-MEL-28, SK-MES-1, 

SKOV-3, and SW900 were cultivated in DMEM-10 %. The cell lines and low passage melanoma 

cells A375M, Colo-829, Mel888, pMel A, pMel A2, and pMel L were maintained in RPMI-10 %. 

For primary melanomas medium was additionally supplemented with 10 mM HEPES, 0.1 % (v/v) 

amphotericin B (Sigma-Aldrich, Taufkirchen) and 0.2 % (v/v) gentamicin. HFFs were kept in 

MEM-10 % medium. Primary HBEC as well as PHK cells were cultivated in complete Airway 

Epithelial Cell Growth Medium and Keratinocyte Growth Medium 2, respectively. For 
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establishing and maintaining stable cell lines, 50-300 µg/ml Zeocin™ was used as a relevant 

selection antibiotic.  

 

3.1 Sub-cultivation of adherent cell lines and primary cells 

Upon reaching 60-80 % confluence, cells were washed with 15 ml DPBS and detached by 

trypsinization with 100 µl/cm² 0.05 % (w/v) trypsin-EDTA (Invitrogen, Karlsruhe) at room 

temperature. Enzyme activity was stopped by adding a corresponding amount of medium 

containing 10 % (v/v) fetal calf serum. For primary HBEC cells, Trypsin Neutralizing Solution 

(Promocell, Heidelberg) was used instead of serum. Cells were collected by centrifugation at 

1500 g for 3 minutes, the supernatant discarded, and pellets resuspended in the respective 

growth medium. Suspension was split in a ratio of 1:3 to 1:10 depending on the individual cell 

line or used for further experiments 

 

3.2 Sub-cultivation of permanent cell lines for microarray experiments 

Melanoma cells SK-MEL-28 and Mel624 as well as lung squamous carcinoma cell lines SW900 

and SK-MES-1 with similar, low passage numbers were slowly adapted to low serum conditions. 

Therefore, fetal calf serum content was gradually reduced by mixing DMEM-10 % with rising 

volumes of Melanocyte Growth Medium or Airway Epithelial Cell Growth Medium, respectively. 

Cells were passaged at least once before further reduction of serum. Finally, cells were sub-

cultivated in a mixture of one volume DMEM-10 % and three volumes of Melanocyte Growth 

Medium or Airway Epithelial Cell Growth Medium, respectively (referred to as “microarray 

growth medium” herein). Frozen aliquots of adapted cells were made as described below.  

 

3.3 Cryopreservation and resuscitation of frozen cells 

For long term storage, cells were collected by trypsinization, counted (see below) and 

centrifuged at 225 g for 3 minutes. Pellets were resuspended in ice-cold fetal calf serum with   

10 % (v/v) dimethyl sulfoxide at a concentration of 1×10
6
/ml cells and transferred to Cryovials® 

(Nunc, Langenselbold). A special freezing medium Cryo-SFM (Promocell, Heidelberg) without 

serum was used for primary HBEC cells. Then, aliquots were put in a container allowing freezing 
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at constant rate of approximately -1 °C per minute and kept at -80 °C overnight before storing 

them at -196 °C in liquid nitrogen. To re-cultivate frozen cell line stocks, samples were quickly 

thawed in a water bath at 37 °C and washed once with 10 ml of the relevant growth medium 

before seeding cells at an appropriate density. 

 

3.4 Cell number quantification 

To determine viable cell count, an equal amount of cell suspension was mixed with trypane blue 

solution (Sigma-Aldrich, Taufkirchen) and filled into a Neubauer counting chamber. Cell number 

was calculated using the following formula: 

 

number of cells/ml = number of cells in large squares × dilution factor × 10
4
 

 

3.5 Transfection of nucleic acids into human cells 

3.5.1 Plasmid DNA 

Twenty four hours prior transfection, 5-7.5×10
4
 cells (depending on the cell line) were seeded 

out in 0.5 ml of their respective growth medium in 24 well plates. Cells reached approximately 

60-80 % confluence on the next day and were transiently transfected in triplicates using 

Lipofectamine™ and PLUS™ reagent (both Invitrogen, Karlsruhe) as suggested by the 

manufacturer. Briefly, for every sample 0.5 µg DNA was mixed with 100 µl OptiMEM® 

containing 0.5 µl PLUS™ reagent and incubated at room temperature for 15 minutes. Then,     

2.5 µl Lipofectamine™ was added and samples mixed by vortexing. Following another                

30 minutes incubation time at room temperature, transfection mix was added directly to the 

cells. Medium was replaced after 24 hours. 

 

3.5.2 Small interfering RNAs 

In order to knock down expression of single genes, 1.6-3×10
5
 cells (depending on the cell line) 

were seeded in 1 ml of their respective growth medium in 12 well plates shortly before 

transfection. Transfection mix was set up by diluting 225 ng of a relevant siRNA in 100 µl 
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OptiMEM® medium containing 3 µl HiPerFect (Qiagen, Hilden). Samples were mixed by 

vortexing and incubated for 10 minutes at room temperature before adding them to the cells in 

triplicates. Transfection was repeated after 14-16 hours and knockdown efficacy verified by 

qPCR analysis (see section V, 1.9.2) 72 hours post transfection. Knockdown cells were used for 

infection assays 24-48 hours post transfection as stated in the respective experiments. 

 

3.6 Generation of scFvCEA-Fc expression clones 

To obtain HEK293T clones stably expressing soluble recombinant single-chain antibody, cells 

were transfected as described above with pSecTag-HisA-scFvCEA-Fc encoding a resistance marker 

against Zeocin™. Following transfection, cells were split 24 hours later and diluted 1:10-1:80 in 

growth medium containing 300 µg/ml Zeocin™. Colony formation of resistant cells could be 

observed after 7-14 days whereas untransfected controls died within 3-5 days. Medium was 

frequently replaced with freshly diluted antibiotics. Stable clones were further cultivated and 

analyzed for protein expression by Western blot analysis (see chapter V, 2.5). 

 

3.7 Fluorescence activated cell sorting (FACS) 

All samples were analyzed on a FACScan machine (BD Biosciences, Heidelberg). For green 

fluorescence, such as CFSE or green fluorescent protein expression, the fluorescent channel FL1 

was used. For red fluorescence, like propidium iodide or phycoerythrin staining, channel FL2 

was applied. Appropriate compensation if required was set up for each experiment individually 

and data was recorded for at least 10000 events. Data was analyzed using FCS Express Version 3 

software. 

 

3.7.1 Viability staining 

Up to 10
6
 cells were harvested by trypsinization, washed twice in FACS washing buffer and 

collected by centrifugation at 225 g for 3 minutes. For staining of dead cells, pellets were 

resuspended in 100 µl DPBS containing a final concentration of 50 µg/ml propidium iodide. After 

incubation at room temperature for 10 minutes, cells were further diluted in 200 µl FACS buffer 

and analyzed immediately. 
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3.7.2 Cell cycle analysis 

Cell pellets consisting of 10
6
 living cells were fixed in 1 ml ice-cold 70 % (v/v) ethanol while 

vortexing to reduce cell clumping. Samples were incubated at 4 °C for at least one hour or 

overnight. To stain for cellular DNA content, fixed cells were washed twice in DPBS and pelleted 

at 225 g for 3 minutes before dissolving the pellets in 100 µl PI staining buffer. Following 

incubation for 30 minutes at room temperature, 200 µl FACS buffer was added to the cells 

which were analyzed immediately. 

 

3.7.3 Staining of surface antigens 

To stain for proteins expressed on the cell surface, cells were harvested by trypsinization and 

rinsed once with DBPS. After centrifugation at 225 g for 3 minutes, pellets were resuspended in 

50 µl FACS buffer containing a diluted primary antibody (see section IV, 6). Staining was carried 

out for 30 minutes at room temperature and cells rinsed again in FACS washing buffer to 

remove unbound antibodies. Subsequently, cells were dissolved in 50 µl FACS buffer with a 

diluted secondary antibody conjugated to a relevant fluorochrome. Before acquisition on a FACS 

machine, samples were washed again in FACS washing buffer and diluted in 300 µl FACS buffer. 

 

3.7.4 Antibody-dependent cellular phagocytosis 

Shortly before incubation with mouse macrophages RAW264.7, 5×10
6
/ml target cells were 

labeled in 1.5 nM CFSE/DPBS staining solution (Sigma-Aldrich, Taufkirchen) for 10 minutes in the 

dark at room temperature. Afterwards, an equal amount of ice-cold fetal calf serum was added. 

Then, cells were washed two times in ice-cold DPBS and centrifuged at 225 g for 3 minutes. 

Labeled targets were then either boiled at 56 °C to induce necrosis or added directly to the 

macrophages in triplicate wells of a flat bottom 96 well plate. The final volume was 200 µl and 

contained 5×10
4 

targets with a number of 3 or 5 times more effector cells. In addition, medium 

contained serially diluted antibodies or relevant isotype controls as stated in the experiment. 

Samples were incubated at 37 °C or 4 °C for 24 hours, pooled, and subsequently stained for the 

murine macrophage specific marker CD11b. Afterwards, the double positive CD11b/CFSE 
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population, representing macrophages with phagocytosed tumor cells, was quantified by FACS 

analysis. Percentage of phagocytosis was calculated according to the formula: 

 

% phagocytosis =                                                                        × 100 

 

4 Recombinant human adenovirus methods 

Most experiments with HAdVs were performed in DMEM containing only 2 % (v/v) fetal calf 

serum or in microarray growth medium as described in paragraph V, 3.2. 

 

4.1 Production and purification of viral particles 

A total amount of 6 µg adenoviral genomes were linearized through PacI digest for 5 hours or 

overnight at 37 °C. Digested DNA was precipitated by first adding a final concentration of        

800 mM lithium chloride and then 2.5× volumes of 100 % ethanol. Precipitates were recovered 

by centrifugation at 17000 g for 30 minutes and resuspended in 20 µl bi-distilled water. After 

analyzing linear adenoviral DNA by gel electrophoresis (see section V, 1.1), a T25 flask of 

relevant production cell line was transfected using Lipofectamine™ (see chapter V, 3.5.1). For 

the generation of replication-competent adenoviruses, A549 cells were used while replication-

deficient adenoviruses were produced in E1-complementing HEK293 cells. Upon complete cell 

lysis on day 10 to day 12, infected cells were collected by centrifugation at 225 g for 15 minutes. 

Afterwards, cells were lysed in 5 ml growth medium by three freeze thaw cycles at -80 °C and  

37 °C and cellular debris removed by centrifugation at 3080 g for 10 minutes and 4 °C. Infectious 

supernatants were amplified by three subsequent rounds of infection and virus recovery from 

rising cell quantities. When complete lysis during the last amplification round was seen, viruses 

were purified via cesium chloride density gradients. Therefore, supernatants were transferred 

onto gradients composed of 3 ml cesium chloride solution 1.41 overlaid with 5 ml cesium 

chloride 1.27 in sterile ultracentrifugation tubes (Herolab, Wiesloch). Following 

ultracentrifugation for 2 h at ~125000 g and 4 °C resulting in separation of complete and empty 

virus particle bands, viruses were aspirated using a syringe equipped with a 21 G needle. Virus 

  
% double positives + % free targets 

    
 

 
 
 

 % double positives 
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suspension was buffered with 5 mM HEPES solution and purified by a second round of cesium 

chloride gradient density ultracentrifugation overnight at ~125000 g and 4 °C. The next day, 

viruses were aspirated again and desalted via PD10 columns (Amersham, Munich) in a final 

volume of 2.5 ml DPBS according to the manufacturer’s instructions. Pure viruses were eluted in 

fractions of 0.5 ml DPBS. Fractions two and three containing the highest virus yield were 

combined and supplemented with 10 % (v/v) glycerol. Virus stock was divided in aliquots of      

50 μl each and put at -80 °C for long term storage. Each virus stock was analyzed by PCR         

(see section V, 1.9.1) to verify introduced modifications and rule out contaminations with wild 

type adenovirus. 

 

4.2 Determination of viral particle and infectious particle concentrations 

4.2.1 Physical virus titer 

Virus stocks were diluted in VL buffer with varying concentrations and lysed by incubation at    

56 °C for 10 minutes. For each sample, optical absorption of DNA was determined at 260 nm 

wavelength using a NanoDrop ND-1000 UV/VIS spectrophotometer (Peqlab, Erlangen). Viral 

particle concentration was determined accordingly [256,257]: 

 

virus particles/ml = OD260 × viral dilution × 1.1×10
12

 

 

4.2.2 Tissue culture infectious dose 50 (TCID50)-assay 

For measuring infectious particle amounts, 1×10
4
 HEK293 cells per well were seeded in 96-well 

plates in a total volume of 100 µl DMEM-2 %. The next day, adenovirus stocks were tenfold 

serially diluted in DMEM-2 % up to 10-12 and used for infection of ten replicates per dilution by 

adding 100 µl virus suspension to each well. Uninfected cells served as control and assays were 

done in duplicates for each virus stock. After 12 days incubation, cytopathic effects were 

determined by light microscopy and wells were evaluated as positive if one or more plaques 

were visible. The virus titer was calculated according to Kärber’s statistical method [258]: 

 

TCID50/ml = 10
1 + 1 × (sum of positive wells-0.5) 
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Ratios between physical and infectious virus titers were 5-100 depending on the virus type and 

preparation. 

 

4.3 Infection of human cell lines  

4.3.1 For cytotoxicity assays using crystal violet staining 

To determine virus mediated cytotoxicity, 3×10
4
 cells/well were seeded in 48 well plates. The 

following day, cells were infected in 200 µl DMEM-2 % containing tenfold serially diluted 

adenovirus with concentrations from 0.001-100 TCID50/cell. Mock infected cells or infection with 

serially diluted replication-incompetent viruses served as negative controls. The next day, 500 µl 

growth medium was added and cells incubated until cytopathic effects could be observed in 

wells containing low viral inoculums. Cell lysis was documented by aspirating the cell culture 

supernatants and staining of live cells by addition of 100 µl crystal violet solution for 30 minutes 

at room temperature. Afterwards, plates were rinsed twice in water to remove excessive dye, 

air-dried, and scanned to obtain digital images. 

 

4.3.2 For determination of transduction rates in living cells 

Infection levels in different human cell lines were normalized through reporter gene 

quantification. Therefore, 1×10
6
 cells were thawed in a water bath at 37 °C for one minute    

(see section V, 3.3), transferred to a 15 ml falcon tube, and washed once in their respective 

microarray growth medium. Afterwards, ~15800 cells/cm
2
 were seeded in pre-warmed and CO2 

equilibrated microarray growth media into 24 well plates. The next day, growth medium was 

exchanged and cells incubated for another day. After two days, various TCID50 titers of HAdV-5 

CMV-gfp were serially diluted in 500 µl microarray growth medium and incubated on the cells 

for one hour at 37 °C. Subsequently, medium was aspirated and replaced by 1 ml fresh 

microarray growth medium. Cells were harvested 48 hours post infection by trypsinization and 

transgene levels in living cells measured by flow cytometry (see paragraph V, 3.7.1). Similar 

experiments including A549, Mel888, or Colo-829 were carried out with permanently cultured 

infected in DMEM-2 %. Transduction rate normalization of cells devoid for CAR receptor 

expression like A375M, C8161, pMel A, pMel A2, or pMel L was done with wild type HAdV-5/3 
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and microscopic analysis of cytopathic effects over several days. Titers for high transduction 

efficacy were deduced from Wells containing over 80 % of floating cells. 

 

4.3.3 For microarray experiments, viral gene expression, and replication assays 

Cells were plated as described above and infected 48 hours later with equivalent titers of  

HAdV-5 wild type diluted in microarray growth medium. For microarray experiments samples 

were upscaled accordingly to 6 well plates. Thereafter, total RNA and genomic DNA was 

harvested at relevant time points as indicated in the respective experiments and purified       

(see sections V, 1.7.4 and V, 1.7.3). Samples were analyzed for viral gene expression, genome 

replication, and cellular gene expression by quantitative real time PCR (see chapter V, 1.9.2). 

 

4.3.4 For quantification of infectious progeny particles 

Experiments were carried out in triplicates but were identical as in chapter V, 4.3.2 using 

equivalent titers of HAdV-5 wild type diluted in microarray growth medium. In addition, virus 

inoculum was removed one hour post infection and cells washed twice with DPBS. Supernatants 

containing free adenovirus particles were harvested at given time points and cellular debris 

removed by centrifugation at 225 g for 5 minutes. Cell free supernatants were transferred to 

new reaction tubes and stored at -80 °C. Meanwhile, cell pellets were scraped off in 1 ml DPBS 

and subjected to three freeze thaw cycles. Cellular debris was removed by centrifugation and 

supernatants containing intracellular viral particles were stored at -80 °C until further use. 

Infectious viral particles were quantified according to section V, 4.2.2. 

 

4.3.5 For analyses of the virus life cycle in presence of temozolomide 

Similarly as in the previous paragraphs V, 4.3.3 and V, 4.3.4, experiments were performed using 

cells from permanent cultures. One day after seeding, cells were infected with either wild type 

HAdV-5 or HAdV-5/3 Δ24 T2A-luc at 1 TCID50/cell for one hour at 37 °C. Infection medium was 

replaced afterwards by the respective growth medium supplemented with 650 µM (SK-MEL-28) 

or 312 µM (Mel624) temozolomide. At given time points, samples were harvested for qPCR 
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(RNA and DNA), luciferase assays, or for quantification of progeny virions in supernatants and 

cell pellets. 

 

4.3.6 After DNA plasmid or siRNA transfection 

SK-MEL-28 and Mel624 were transfected according to chapters V, 3.5.1 or V, 3.5.2 with the 

relevant DNA plasmids or siRNAs. After sixteen hours incubation for DNA plasmid transfections 

or 24 hours for siRNA transfections, cells were infected with HAdV-5 at 1 TCID50/cell diluted in 

DMEM-2 % for one hour at 37 °C. Medium was replaced thereafter and infection incubated up 

to 72 hours. Samples of total cellular DNA or RNA were harvested at relevant time points as 

stated in the respective experiment, purified as described in V, 1.7.3 or V, 1.7.4, analyzed by 

qPCR for expression of adenoviral and cellular genes. 

For analyzing S-phase entry, various cell lines and primary HBEC were transfected with 

either a SV40 promoter or E2F promoter/luciferase construct for 24 hours. Then, cells were 

infected with individual TCID50 titers of HAdV-5 or HAdV-5 CMV-gfp resulting in 80-90 % 

infection of living cells. Therefore virus was diluted in the respective growth medium containing 

no fetal calf serum (HBEC) or only low amounts. Inoculums were removed after one hour at     

37 °C and cells grown in their normal growth media for twenty hours before luciferase 

expression was quantified (refer to V, 2.9). 

 

4.3.7 For expression of recombinant scFvCEA-Fc antibodies 

One day before infection, 1×10
5
 cells/well were seeded into 12 well plates. The following day, 

cells were infected with 1 TCID50 per cell of a relevant scFvCEA-Fc encoding adenovirus diluted in 

DMEM-2 %. Alternatively, similar adenoviruses encoding a firefly luciferase transgene were used 

as controls. After one hour incubation at 37 °C, medium was removed by aspiration and 

replaced by 2 ml of the normal growth medium. To block DNA replication of adenoviruses, cells 

were treated with either 25 µg/ml AraC (Sigma-Aldrich, Taufkirchen) or a correspondent vehicle 

control every twelve to fourteen hours. Supernatants or cell pellets were harvested at given 

time points and transgene levels assessed by ELISA (see paragraph V, 2.6) or by luciferase 

reporter gene assays (see paragraph V, 2.9). 
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