
INAUGURAL - DISSERTATION
zur

Erlangung der Doktorwürde

der
Naturwissenschaftlich-Mathematischen Gesamtfakultät

der
Ruprecht - Karls - Universität

Heidelberg

vorgelegt von Diplom-Informatik
Ali Al-Shabibi
aus Baghdad, Irak

Tag der mündlichen
Prüfung 6. Juli 2011

MultiPaths Revisited -
A novel approach using OpenFlow-enabled

devices

Ali AL-SHABIBI

Gutachter: Prof. Dr. Volker Lindenstruth
Prof. Dr. Ulrich Brüning

To my Iraqi family, the ones I know,
the ones I will never know,

and the ones I have yet to meet.

Acknowledgements

The road has been rather long — not to mention somewhat winding.

Over the past three years, it has been my good fortune to have and met
many friends/people who saw past the whining and still decided to stick around
and listen to me grovel about my thesis ad eternum. They have given me their
time, companionship, professional and personal help, and above all: patience
than was perhaps warranted by my seeming determination to indefinitely po-
sition the deadline for finishing this thesis at “next year”.

I would first like to thank my advisor, Volker Lindenstruth, who had the
courage to take me on as a Ph.D student even though he did not yet know me
very well. Even though, he has a busy schedule he still found time to listen to
my problems and advise me appropriately.

Brian Martin was simply instrumental to the completion of this thesis. He,
unfortunately for him, had to share an office with me. As if that isn’t already
torture enough, he graciously sacrificed himself to correcting, proof reading,
and criticizing my articles and this thesis. His finely tuned BS-detector is
about as sensitive as the ATLAS detector on the LHC and without it this
thesis would have been full of it. I shall be eternally indebted to him.

I would also like to thank my fellow researchers and colleagues. Catalin
Meirosu’s support and watchful eye as I was embarking on the implementa-
tion phase of this thesis. Stefan Stancu for his help in deploying my testbed.
Michael Levine’s critical encouragements in moments of doubt.

Rather than listing everyone, I wish to send out an aggregated thank you
to all my family and friends without whom this thesis would have never been
possible. Thank you all for the support and the availability to follow me into
any random place I thought was “cool”. I would also like to give a special
shout out to the Bums, who have always been there for me whenever I needed

i

ii ACKNOWLEDGEMENTS

them. I am truly honoured to call these people my friends.

I am, of course, particularly indebted to my parents and my brother Ridha
for their monumental, unwavering support and encouragement on all fronts.
They have truly always been there for me, and without them none of this
would have been even remotely possible.

Ali AL-SHABIBI
Geneva, December 2010

Abstract

This thesis presents novel approaches enhancing the performance of computer
networks using multipaths. Our enhancements take the form of congestion-
aware routing protocols. We present three protocols called MultiRoute, Step-
Route, and finally PathRoute. Each of these protocols leverage both local and
remote congestion statistics and build different representations (or views) of
the network congestion by using an innovative representation of congestion
for router-router links. These congestion statistics are then distributed via an
aggregation protocol to other routers in the network.

For many years, multipath routing protocols have only been used in simple
situations, such as Link Aggregation and/or networks where paths of equal
cost (and therefore equal delay) exist. But, paths of unequal costs are often
discarded to the benefit of shortest path only routing because it is known
that paths of unequal length present different delays and therefore cause out
of order packets which cause catastrophic network performances. Further,
multipaths become highly beneficial when alternative paths are selected based
on the network congestion. But, no realistic solution has been proposed for
congestion-aware multipath networks. We present in this thesis a method
which selects alternative paths based on network congestion and completely
avoids the issue of out of order packets by grouping packets into flows and
binding them to a single path for a limited duration.

The implementation of these protocols relies heavily on OpenFlow and
NOX. OpenFlow enables network researchers to control the behavior of their
network equipment by specifying rules in the routers flow table. NOX provides
a simple Application Programming Interface (API) to program a routers flow
table. Therefore by using OpenFlow and NOX, we are able to define new
routing protocols like the ones which we will present in this thesis.

We show in this thesis that grouping packets together, while not optimal,

iii

iv ABSTRACT

still provides a significant increase in network performance. More precisely
we show that our protocols can, in some cases, achieve up to N times the
throughput of Shortest Path (SP), where N is the number of distinct paths
of identical throughput from source to destination. We also show that our
protocols provide more predictable throughput than simple hash-based routing
algorithms.

Todays networks provide more and more connections between any source-
destination pair. Most of these connections remain idle until some failure
occurs. Using the protocols proposed in this thesis, networks could leverage the
added bandwidth provided by these currently idle connections. Therefore, we
could increase the overall performance of current networks without replacing
the existing hardware.

Diese Arbeit präsentiert neuartige Ansätze, um die Leistung von Comput-
ernetzwerken durchmultipathszu verbessern. Unsere Verbesserungen haben die
Form von congestionaware routing protocols. Wir präsentieren drei Protokolle
mit den Bezeichnungen MultiRoute, Step-Route und nally PathRoute. Jede
dieser Protokolle lokale und entfernte Verkehrsstatistiken und bilden Repräsen-
tierungen (oder Abbildungen) des Netzwerkverkehrs durch das Nutzen einer in-
novativen Representation des Verkehrsaufkommens von Router-Router Verbin-
dungen. Diese Verkehrsstatistiken werden dann durch ein Aggregationspro-
tokoll zu anderen Routern im Netzwerk verteilt.

Lange Jahre wurden multipath routing Protokolle nur in einfachen Situa-
tionen, so wie Link Aggregation benutzt und/oder Netzwerken bei denen Pfade
mit selben Kosten (und deshalb die selben Verzögerungen) vorherrschen. Je-
doch sind Pfade mit unterschiedlichen Kosten oftmals zumnutzen des kürzesten
und einzigroutenden Pfades ausgesondert. Dies geschieht da es bekannt ist,
dass Pfade von unterschiedlichen Längenanderezeigen und deshalb katastrophale
Netzwerk Leistungen bewirken. Desweiteren werden multipaths hochgradig
nützlich, wenn alternative Pfade basierend auf Netzwerkauslastung ausgesucht
werden. Jedoch wurde keine realistische Lösung für auslastungsbewusste mul-
tipath Netzwerke. Wir presentieren in dieser Arbeit eine Methode, die alterna-
tive Pfade basierend auf Netzwerkauslastung selektiert und das Problem von
out-of-order Packeten durch Gruppierung von Packeten in fliesst umgeht und
sie für eine begrenzte Zeit in einen einzelnen Pfad bindet.

Die Implementierung dieser Protokolle ist stark von OpenFlow und NOX
abhängig. OpenFlow ermöglicht Netzwerk Forschern das Verhalten ihrer Net-
zwerkausrüstung durch Festlegung von Regeln in den fliesst Tabellen der Routern
zu kontrollieren. NOX bietet eine einfaches Application Programming Inter-
face (API), um fliesst Tabellen von Routern zu programmieren. Aufgrund
dessen sind wir in der Lage neue Protokolle wie die, die wir in dieser Arbeit
presentieren werden zu definieren.

v

Wir demonstrieren in dieser Arbeit, dass die Gruppierung von Packeten
eine signifikante Netzwerkleistungssteigerung liefert, auch wenn diese nicht op-
timal ist. Genauer gesagt zeigen wir auf wie unsere Protokolle in einigen Fällen
bis zu N mal den Durchlauf des Shortest Path erreichen, wobei N die Zahl der
verschiedenen Pfade des identischen Durchlaufes von Quelle zum Ziel sind.
Desweiteren zeigen wir, dass unsere Protokolle mehr vorhersehbahren Durch-
lauf als einfache hash-basierte Leitweg Algorythmen liefern.

Heutige Netzwerke liefern immer mehr Verbindungen zwischen sämtlichen
Quell-Ziel Paaren. Die meisten dieser Verbindungen bleiben ungenutzt bis ir-
gend ein Fehler stattfindet. Mit den Protokollen die in dieser Arbeit vorgeschla-
gen werden, könnte sich der zusätzlichen Bandbreite dieser derzeitig ungenutz-
ten Verbindungen bedient werden. Folglich könnten wir die Gesamtleistung
von bestehenden Netzwerken steigern, ohne die hardware zu ersetzen.

Contents

Acknowledgements i

Abstract iii

List of Figures xi

1 Introduction 1

1.1 Today’s Internet . 2

1.2 The Benefits of Multipath . 3

1.3 The Applications of Multipath Routing 5
1.3.1 Load Balancing . 5
1.3.2 Quality of Service . 5

1.4 Thesis Contributions . 5

1.5 Outline . 7

2 History of Routing 9

2.1 Networking Fundamentals . 9
2.1.1 Reference Models . 9
2.1.2 Foundations of Ethernet. 13
2.1.3 Evolution of Ethernet - The fast and the faster. 17

2.2 High Performance Networks - InfiniBand 20

2.3 Routing - Where to next? . 21
2.3.1 Some Issues in Routing 22
2.3.2 Properties of Routing Algorithms 24

2.4 Classification and the Evolution of Routing Algorithms. 25
2.4.1 Static Algorithms . 25

vii

viii CONTENTS

2.4.2 Adaptive Algorithms . 26
2.4.3 Distance Vector Routing 26
2.4.4 Link State Routing . 30
2.4.5 Optimal Routing . 32

2.5 Summary . 33

3 Multipath Routing 35

3.1 Why Multiple Paths: Some justifications 35

3.2 Multipath Routing Schemes . 37
3.2.1 Proposed Extensions to Single Path routing 37
3.2.2 Multipath Routing Algorithms 42

3.3 Multipath Routing in current IP networks 44
3.3.1 OSPF Extensions . 44
3.3.2 Alternative Methods . 46

3.4 Summary . 48

4 Multipath Theory and Models 49

4.1 Graph Algorithms . 49
4.1.1 Dijkstra’s Algorithm . 49
4.1.2 Bellman-Ford Algorithm 50

4.2 Selfish Routing . 54

4.3 Analytical Models . 55
4.3.1 Queue Theory . 56

4.4 Summary . 61

5 The MultiRoute Family 63

5.1 Path Discovery . 63
5.1.1 MultiRoute Path Construction (MRPC) 64
5.1.2 Algorithm Sketch . 66

5.2 MMP - MultiRoute Monitoring Protocol 67
5.2.1 MMP Packet Structure 68
5.2.2 MMP Header . 69
5.2.3 Status Packet . 70
5.2.4 Update Packet . 70

5.3 The Protocols . 72
5.3.1 The Classical - MultiRoute 72
5.3.2 The Organizer - StepRoute 81
5.3.3 The Know-it-all - PathRoute 85
5.3.4 Implementation Experience 89

5.4 Commodity Protocols . 90
5.4.1 Shortest Path . 90

CONTENTS ix

5.4.2 Equal Cost MultiPath 90

5.5 Theoretical Delay Model for MultiRoute-based protocols 92

5.6 Summary . 94

6 Materials & Methods 95

6.1 OpenFlow & NOX . 95
6.1.1 OpenFlow . 95
6.1.2 NOX . 98

6.2 TestBed Installation . 99
6.2.1 Routing Hardware . 99
6.2.2 Network Installation . 101
6.2.3 Machine deployment . 104

6.3 GETB Network Testers . 104

6.4 Experimental Technique . 105
6.4.1 Parasite Traffic . 105
6.4.2 Fully Meshed Traffic . 105
6.4.3 Latency . 105

6.5 Summary . 105

7 Results & Discussion 107

7.1 Test Topologies & Associated Routing Tables 107

7.2 Parasite Traffic . 109
7.2.1 Parasite Traffic on the Flower Topology 111
7.2.2 Parasite Traffic on the Pentagon 114

7.3 Fully-Meshed Traffic . 118
7.3.1 Fully-Meshed Traffic on the Flower 119
7.3.2 Fully-Meshed Traffic on the Pentagon 120

7.4 Latency & Packet Loss Tests 121
7.4.1 Latency & Packet loss on the Flower 122
7.4.2 Latency & Packet loss on the Pentagon 124

7.5 Summary . 124

8 Conclusions & Future Work 127

8.1 Achievements . 127

8.2 Summary of Results . 128

8.3 Future Work . 129

A Collection of derivations 131

A.1 Disruptions in the Hash Threshold variant of ECMP 131

A.2 Backpressure messages given in AMP 132

x CONTENTS

A.3 Dependence of Message Length and Interarrival times 133

A.4 The Price of Anarchy in Multipath networks with linear cost
functions . 135

B Collection of Pseudocodes 139

B.1 Dijkstra’s Algorithm Pseudocode 139

B.2 Bellman-Ford’s Algorithm Pseudocode 140

B.3 MultiRoute Path Construction - Pseudocode and Proof 141
B.3.1 Proof . 141

B.4 MultiRoute Protocol Family . 143
B.4.1 The Classical - MultiRoute 143
B.4.2 The Classifier - StepRoute 145
B.4.3 The Know-it-all - PathRoute 147

References 149

List of Figures

1.1 Internet users per 100 inhabitants 1997-2007 1
1.2 Illustration of Path Quantity and Independence. 4

2.1 Inter-networking models . 10
2.2 The TCP/IP Model . 12
2.3 The concept of Ethernet, as drawn originally by Bob Metcalfe. 14
2.4 A simplified algorithm sketch for CSMA/CD 15
2.5 Structure of an 802.3 Ethernet Frame. 16
2.6 A bridged Ethernet network. 18
2.7 A switched Ethernet network. 19
2.8 Interaction between Transport and Network Layer 23
2.9 Conflict between fairness and optimality. 24
2.10 Evolution of Distance Vector Algorithms 27
2.11 Evolution of Implemented Routing Algorithms 30
2.12 Evolution of Optimal Routing Algorithms 33

3.1 A complex network . 36
3.2 The Evolution of multipath algorithms 38
3.3 An example of MPA. 39
3.4 An example of SPF-EE . 40
3.5 An example of AMP. 41
3.6 An example of Shortest Multipath constructed with DASM. . . 43
3.7 The flow classifier. 47

4.1 Running Example of Dijkstra’s Algorithm 51
4.2 Running Example of Bellman-Ford’s Algorithm 53
4.3 Pigou’s Example . 54

xi

xii LIST OF FIGURES

4.4 A standard queue. 56
4.5 Average delay as a function of ρ. 59
4.6 A tandem network. 60

5.1 Output of the MRPC algorithm 65
5.2 Step-by-Step of MRPC according to the algorithm. 67
5.3 A Routing Mask with its associated routing table 69
5.4 MMP header . 70
5.5 MMP status packet . 71
5.6 MMP update packet . 71
5.7 The reference topology. 74
5.8 Comparing a Routing Mask with its an Update Vector 75
5.9 The transfer function used in Classical MultiRoute. 76
5.10 Routing Mask Length as a function of N and C. 77
5.11 Plot of the Routing Mask Limitation 79
5.12 The transfer function used in StepRoute. 82
5.13 Flowgraph of the distance diffusion computation. 87
5.14 Inheritance/Dependency graph for MultiRoute-based protocols 91
5.15 Flow delay as function of the load (= λ

mµ) and number of servers. 93
5.16 Number of flows in each queue 94

6.1 The OpenFlow flow signature. 96
6.2 The OpenFlow switch. 97
6.3 An explanation of routing processes. 100
6.4 The testbed as it is implemented at CERN’s computing center. 102
6.5 The connectivity map of the Testbed. 103

7.1 The Flower topology. 108
7.2 The Pentagon topology. 110
7.3 Shortest Path versus MultiRoute in the presence of Parasitic

traffic. 111
7.4 Shortest Path versus StepRoute in the presence of Parasitic

traffic. 112
7.5 Shortest Path versus PathRoute in the presence of Parasitic

traffic. 113
7.6 A comparison of the predictability of MultiRoute versus Hash

Threshold . 115
7.7 Shortest Path versus MultiRoute in the presence of Parasitic

Traffic. 116
7.8 Shortest Path versus StepRoute in the presence of Parasitic

Traffic. 117
7.9 Shortest Path versus PathRoute in the presence of Parasitic

Traffic. 118

LIST OF FIGURES xiii

7.10 Fully-Meshed Traffic running on the Flower. 119
7.11 Successive Fully-Meshed Traffic running on the Flower. 120
7.12 Fully-Meshed Traffic running on the Pentagon. 121
7.13 Latency plots for protocols running on the Flower. 122
7.14 Packet Loss for protocols running on the Flower. 123
7.15 Latency plots for protocols running on the Pentagon. 123
7.16 Packet Loss for protocols running on the Pentagon. 124

A.1 Before and After the deletion of the third next hop possibility. 131

Chapter1
Introduction

Over the past two decades the Internet has grown at an unprecedented rate.
Estimates show that one in five inhabitants of the planet are now connected to
the Internet. That number is expected to grow rapidly with the emergence of
mobile devices and increasing penetration in developing countries as depicted
in Figure 1.1. This has, and will, lead to the deployment of more networking
infrastructure and therefore there will be an increase in connectivity worldwide.

Figure 1.1: Internet users per 100 inhabitants 1997-2007

1

2 INTRODUCTION 1.1

This increase comes with extra challenges for ISPs to provide a continued
good level of service to customers, achieve their operational objectives and dif-
ferentiate their service offerings. The increased infrastructure and connectivity
brings new problems in traffic engineering, namely in terms of congestion and
network performance. One of the major challenges to Internet traffic engineer-
ing is constructing the ability for automated control that adapts rapidly to a
changing network state as mentioned in [ACE+02]. This challenge is precisely
the topic of discussion in this thesis.

Besides these challenges, the increase in connectivity and infrastructure
brings a new opportunity to the Internet by providing many redundant con-
nections between networks. Each of these redundant connections can be seen
as an alternative path for networks, which are currently unused by routing
protocols. Moreover, current technologies do not use congestion information
as a criteria for their routing decision process. For these reasons, research in
multipath routing protocols has become very active. By embracing the In-
ternet’s growth and using appropriate technologies to measure and distribute
congestion indications, it is our belief that a viable multipath routing protocol
will emerge.

1.1 Today’s Internet
Packet switched networks rely quasi-entirely on efficient routing algorithms.
Current protocols have been designed to mainly deliver network robustness and
resiliency in the event of a failure. While this has been a noble and just cause,
the research community and interests are shifting towards traffic engineering,
ie. the optimization of networks in terms of performance. Current technologies
have not been designed for traffic engineering as they do not provide a simple
solution to allocate network resources with respect to changing traffic demands.

Nowadays, the Internet is built mainly on shortest path first protocols such
as OSPF in [Moy98], RIP in [Hed88] , etc. Such protocols only consider the
shortest path between two networks and either discard alternative paths or
they will only consider alternatives which are of equal cost to the shortest
path. This, of course, has the disadvantage of not only limiting the maximum
throughput between any two networks; but also, and much worse, increasing
the probability of congestion.

Current operational networks suffer significantly from issues related primar-
ily to congestion. A network device is said to be congested if it experiences a
sustained overload over an interval of time. Congestion almost always causes
a degradation of the throughput offered by network connections.

In an effort to solve these problems, much research has been done employ-
ing multipath solutions. One interesting single path approach by [FT00] was to
use the current technologies, mainly OSPF in multipath scenarios, and modify

1.2 THE BENEFITS OF MULTIPATH 3

the connections weights based on the projected network resources demands by
users. Unfortunately the optimization problem was shown to be computation-
ally intractable (NP-hard), and moreover it was very difficult to obtain timely
and accurate traffic values from a live network. Since such solutions will always
require the use of heuristics, a solution involving a multipath protocol may be
far simpler.

1.2 The Benefits of Multipath
Multipath technology attempts to exploit the underlying physical network re-
sources more efficiently by providing multiple paths between source and des-
tination pairs. By providing multiple paths, multipath technologies have the
ability to aggregate the bandwidth offered by the various paths and thereby
enable the network to support higher data rates than that supported by a sin-
gle path. Moreover, since multipath technologies function over several paths
simultaneously, we can expect increased resiliency to failure due to the fact
that as one path fails others are still in operation. Furthermore, if there is a
network failure re-computation can be done off-line while the multipath proto-
col is still transporting traffic, thereby rendering failures virtually transparent
to users.

A multipath protocol needs to guarantee two essential aspects. The first
being the computation of multiple loop-free paths and the second is the ability
to split traffic amongst these paths efficiently. When considering a multipath
scheme, the device implementing such a scheme must first calculate the set of
paths available between the source and destination. There are two concepts
which characterize a path set:

• Path Quantity defines the number of available paths between the nodes.
A higher number indicates that there is a better chance at load distribu-
tion.

• Path Independence describes the freedom of each path set, ie. does this
path set contain paths which share one or more links with other path
sets? Evidently, independent path sets are ideal but complete indepen-
dence can be very difficult to achieve.

Figure 1.2 illustrates these two concepts. Consider the following paths set
for node A sending data to node F, ℘1 = {(A−B−E−F), (A−C −E−F)}
and ℘2 = {(A − B − D − F), (A − C − E − F)}. Both path sets contain
the same number of paths, but for path set ℘1, we can easily see that the
paths are not independent due to the fact that they share link E-F. Path set
℘2 is independent and therefore would lead to better usage of the network
resources and would be less likely to get congested. Multipath protocols which

4 INTRODUCTION 1.2

A

C B

E D

F

Figure 1.2: Illustration of Path Quantity and Independence.

1.4 THE APPLICATIONS OF MULTIPATH ROUTING 5

try to optimize these concepts will therefore deliver higher performance. While
these concepts are essential, we also believe it is vital to inform the multipath
protocol about the network status and also it needs to be aware of the network
topology, these concepts will be introduced in Section 1.4.

1.3 The Applications of Multipath Routing

1.3.1 Load Balancing
Load balancing, in the context of Multipath routing, is geared towards min-
imizing the risk of congestion by making more use of the available network
resources. By minimizing congestion, the idea is to reduce packet loss to a
minimum but, on the other hand, if alternative paths are inaccurately chosen
then we would obtain additional propagation delay. We therefore have a trade-
off situation, namely throughput versus delay, as some network applications
are sensitive to packet loss whilst others are affected by delay. As we will see
later, it is very important to be able to control this trade-off.

The ability to control the traffic flow is essential when deploying a load
balancing solution. In traditional systems, the network administrator had to
control the link metrics taking care not to disrupt the overall traffic flow. In
a multipath system, the routing algorithm is responsible for monitoring the
metrics and taking action based on them thereby resulting in rapid adaptation
to changing network conditions.

1.3.2 Quality of Service
Quality of Service has long been a feature which has been difficult to imple-
ment. The IETF’s (Internet Engineering Task Force) Integrated Services has
shown scalability problems when faced with the large amount of memory re-
quired to store routing states and to maintain consistency. Another IETF
effort, called Differentiated Services has also proved to be non feasible as it
would impose a significant overhead to cope with link failures and maintain
consistency [BMG00].

Multipath offers a scalable solution to Quality of Service, as various paths
can be reserved for a specific type of service. Flows of similar types can be
aggregated, and therefore the quality for an aggregated flow can be guaranteed
which in turn provides guarantees to an individual flow.

1.4 Thesis Contributions
This thesis presents a new approach to multipath routing, called MultiRoute,
which is media independent and this solution can co-exist with current routing

6 INTRODUCTION 1.4

technology. This protocol breaks down the underlying global optimization
problem of resource allocation into a set of local problems. The next-hop for
each destination is computed off-line and stored in the routers forwarding table,
enabling a rapid next-hop lookup. Traffic is then grouped into a flow identified
by several parameters, and assigned to the port corresponding to its next-
hop. A flows assignation is immutable for the duration of its lifetime, thereby
avoiding path oscillations and thus providing a guarantee for the protocol’s
stability.

The first contribution is a method for computing alternative paths based on
a modified Dijkstra algorithm. The multiple path discovery process relies on
the existence of a shortest path between source and destination points. After
establishing the shortest path cost (the reference cost), each alternate path is
computed whose cost is within a reasonable delta of the reference cost. This
ensures that the latency versus throughput trade-off is respected.

The second contribution is an In-Network monitoring protocol to distribute
the statistical information, eg. counter values or congestion representations,
to other routers. The statistics are polled locally by the router and sent to
neighboring routers, this process is performed in-band and not by an external
monitoring process. A one bit representation of congestion is used, thereby
reducing to a minimum the size of the monitoring information and therefore
its impact on the network load. Disseminating the congestion information
is achieved by using an aggregation protocol, therefore allowing for real-time
statistics to be distributed within the network efficiently.

A third contribution is a novel topology representation which allows routers
to enhance their routing decision based on the destination of a flow. Each
router maintains its own routing vector, consisting of congestion representation
of its paths to different networks. Routing vectors are then exchanged with
neighboring routers using the In-Network monitoring. The neighboring router
is required to interpret this information according to its own forwarding table,
therefore each router must be aware of the forwarding table of each of its
neighboring routers. To achieve this, we introduce the concept of a routing
mask which represents the structure of forwarding tables in multipath enabled
routers.

The fourth and final contribution of this thesis is the deployment and in-
stallation of a real world testbed. This test bed was used to develop, test and
perform experiments on our routing protocols. The testbed was implemented
using NOX and OpenFlow technology using commodity ethernet hardware.

Experimental results will be presented to demonstrate both the correct
functioning of the routing protocol and the improvements over existing tech-
nologies. Representative topologies presented, and in each case a multitude
of traffic patterns, will be used to test each protocol. The routing protocol
will be submitted to several scenarios in order to establish its effect on delay

1.5 OUTLINE 7

and throughput. Results show that in most cases our protocol outperforms
shortest path and other multipath technologies in terms of throughput and
delay.

1.5 Outline
A brief and elementary introduction to networking will be presented in Chapter
2. Chapter 2 will also define routing and why it exists, followed by an overview
of existing technologies and their classification.

The state-of-the-art is discussed in Chapter 3, where several other multi-
path protocols designed for different situations will be presented. Chapter 4
will introduce theoretical aspects of multipath routing and discuss the limi-
tations of current models, and therefore demonstrate the mathematical com-
plexity in building an accurate model. Next in Chapter 5, we discuss the
important components that have to be taken into account when building a
multipath system.

Chapter 6 will be describing the experimental setup and detail the imple-
mentation of this routing protocols and those used as comparison. Finally
Chapter 7 will present the results of this protocol when compared with other
multipath protocols under varying topologies, scenarios and metrics.

Chapter2
History of Routing

“Not all those who wander are lost.”
– J.R.R. Tolkien

2.1 Networking Fundamentals

One of the most significant evolution of computer systems is the merging of
computers with communication systems [Tan03]. The early model of a single
mainframe computer serving just local users has been replaced with a glob-
ally distributed set of interconnected commodity machines. This new model
is called a Computer Network. The interconnecting media, and the way they
are exploited have also evolved.with time giving rise to countless network pro-
tocols.

Many communication solutions have emerged over the decades in response
to different requirements and therefore there are innumerable network tech-
nologies used to support or create them. The main drawback of this situation
is that there are also countless network protocols, and thereby it becomes
virtually impossible to understand all of them.

2.1.1 Reference Models

Networking software has been designed as layers, as shown in Figure 2.1a, in
an effort to reduce its complexity. The goal of each layer, in all networks, is to
expose services to the higher layers via interfaces between each layer, thereby
abstracting the implementation complexities. Such a design is extremely pow-
erful, not only because each layer is free to define how it performs its objective

9

10 HISTORY OF ROUTING 2.1

Layer 5

Layer 4

Layer 3

Layer 2

 Layer 1

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 5 Protocol

Layer 4 Protocol

Layer 3 Protocol

Layer 2 Protocol

Layer 1 Protocol

Layer 4/5 Interface

Layer 3/4 Interface

Layer 2/3 Interface

Layer 1/2 Interface

Node 1 Node 2

Transmission/Physical Medium

Communication Path

(a) The Reference Model.

Layer 5

Layer 4

Layer 3

Layer 2

 Layer 1

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Session Layer

Transport Layer

Network Layer

Datalink Layer

Physical Layer

Node 1 Node 2

Transmission/Physical Medium

Communication Path

Layer 6

Layer 7

Layer 6

Layer 7

Presentation Layer

Application Layer

(b) The OSI Model

Figure 2.1: Inter-networking models

but also it can be optimized or completely replaced without affecting other lay-
ers. Each layer on a host uses a protocol to communicate with the same layer
on another host. A protocol is defined as an agreement by both communicating
parties on how the information exchange should proceed.

Figure 2.1 depicts the layers, protocols and interfaces used to communi-
cate between two nodes. Horizontal lines depict logical communication path,
as no actual physical communication occurs horizontally, but rather physical
communication occurs as shown by the dotted line, ie. via all the layers.

In the next subsections, we will present two models; the OSI and the
TCP/IP models. While the OSI model is general and the features addressed
by each layer are still important, it is rarely used because of the bad timing of
the standard ratification and its complexity. However, it is still the theoretical
reference model for networks. On the other hand, the TCP/IP protocols are
widely used, but the model is particular, and does not always provide a clear
separation of interfaces and protocols.

2.1 NETWORKING FUNDAMENTALS 11

The OSI Model

The Open Systems Interconnection (OSI) reference model was originally devel-
oped by the International Standards Organization in an effort to standardize
the protocols used in the model. Figure 2.1b, shows the seven layers which
make up the OSI stack.

Each layer in the OSI model performs a well defined function, and the
boundaries are chosen to minimize the amount of information which has to be
exchanged across the interfaces.

We will now present the function of each layer:

1. The Application Layer is the layer which is closest to the user. Essentially
this means that both this layer and the user interact with the software
application.

2. The Presentation Layer, contrarily to the other lower level layers which
are designed to shift bits around reliably, attempts to add syntax and
semantics to to the information. It does this by providing function to
operations that are performed often.

3. The Session Layer enables users to establish sessions between themselves.
For example, it would be used to login to a remote system or transfer a
large document.

4. The Transport Layer has the basic role of obtaining data from the above
session layer and splitting it up into smaller data units. These data units
are then passed to the underlying network layer and the transport layer
then makes sure the data arrives correctly at the other end.

5. The Network Layer handles and controls all the operations concerning a
subnet. A particular issue is how a packet is routed from its source to its
destination. These routes can either be determined statically or allocated
dynamically. In this thesis we discuss different algorithms which are
implemented in this layer.

6. The Data Link Layer has the task of obtaining the raw data from the
physical layer and turning it into an input stream that seems error-free.
This is accomplished by imposing that the sender split up the data into
frames and transmit them sequentially.

7. The Physical Layer is responsible for transmitting the raw bits over the
physical medium. It is responsible for the actual translation of bits into
electrical voltages or optical levels and vice versa.

12 HISTORY OF ROUTING 2.1

The TCP/IP Model

TCP/IP was designed for the ARPANET which was a project sponsored by
the US Department of Defense (DoD). TCP/IP was built with a high degree
of resiliency due to the fact that the DoD could have its installation attacked
at any moment, and therefore wanted to keep communications alive as long as
the end-hosts were still alive. The TCP/IP reference model, shown in Figure
2.2, was first defined by Cerf et al. [CI05], and consists of four layers which
we are going to detail below:

Application Layer

Transport Layer

Network Layer

Host-to-Network
Layer

Application Layer

Transport Layer

Network Layer

Host-to-Network
Layer

HTTP, FTP, SNMP,

SMTP, etc.

User Datagram Protocol

Transmission Control
Protocol

Internet Protocol

Medium Access

Control Protocol

Transmission/Physical Medium

Figure 2.2: The TCP/IP Model

1. The Application Layer contains the same high level protocols described
for the OSI application layer. The protocols used at this layer are denoted

2.1 NETWORKING FUNDAMENTALS 13

as Layer 7 protocols (analogy with the OSI layers), even if the TCP/IP
stack only has four layers (five, depending how you consider the Host-
to-Network Layer).

2. The Transport Layer provides the same functionality described by the
OSI Transport layer, and its protocols are frequently denoted as Layer
4 protocols. Two end-to-end protocols are defined by the model: TCP
(Transport Control Protocol) and UDP (User Datagram Protocol). While
TCP is connection-oriented and provides a reliable (error free) end-to-
end communication, UDP is a connectionless protocol which does not
provide any guarantee on the integrity of the transmitted data. How-
ever, UDP is lightweight compared with TCP and also provides multicast
capabilities (i.e. one-to-many transmission).

3. The Internet Layer defines the IP (Internet Protocol) protocol and packet
format. This protocol is designed to deliver the IP packets over a network
with multiple paths. As packets from the same conversation may follow
different routes, experiencing different delays, there is no guarantee for
preserving the order of IP packets. As the IP protocol provides function-
ality similar with that of the OSI network layer, it is often denoted as a
Layer 3 protocol.

4. The Host-to-Network Layer is not precisely defined in the TCP/IP model
except to state that the host must connect to the physical medium in
order to send IP packets. The protocol, commonly, found here is the
Medium Access Control Protocol, which provides addressing and medium
access control mechanisms that make it possible for several hosts to com-
municate within a network.

2.1.2 Foundations of Ethernet.
Ethernet is a technology which spans layers one and two of the OSI model,
namely the physical layer and the datalink layer. Actually, the datalink layer
has never changed since the introduction of Ethernet. The real beginning to
Ethernet took place on the island of Hawaii in the early 1970s with a system
named the ALOHA developed by the University of Hawaii [Abr70]. This sys-
tem was constructed to allow radio communications between distant machines
scattered over the island and a central IBM mainframe.

The ALOHA system allowed for a data rate of 9600 bits per second with
fixed size frames transmitted sequentially. The mainframe would use a separate
channel to convey acknowledgements of a successful transmission to sending
hosts. If a terminal did not receive an acknowledgement after a fixed amount
of time, it would timeout. Upon a timeout, the sending station would wait a
random amount of time and attempt to retransmit. If two stations attempted

14 HISTORY OF ROUTING 2.1

to transmit simultaneously, the data arriving at the mainframe would appear
corrupted due to the overlapping communications from the source stations.
Such an event was referred to as a collision causing both data packets to be
lost and therefore neither station would receive an acknowledgement from the
mainframe. The collision and timeout mechanisms resulted in poor perfor-
mance by the ALOHA protocol, only about 18% of the bandwidth was ever
usable [Tan03].

In 1973, a researcher named Robert Metcalfe in Xerox’s research laboratory
in Palo Alto developed an improved version of the ALOHA system. This
system, named Ethernet (Figure 2.3), was designed to interconnect computers
in the laboratory. Ethernet was named after luminiferous ether, which was
thought to be the universal transmission medium for light at the end of the
19th century.

Figure 2.3: The concept of Ethernet, as drawn originally by Bob Metcalfe.

With Ethernet came a new transmission medium, a thick yellow coaxial
cable. Still the idea was the same as ALOHA, as the coaxial cable was the
shared medium. Ethernet did not have a control channel as ALOHA did, so
Metcalfe devised the Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) protocol [Tan03], in order to better make use of the available
bandwidth offered by this cable.

Figure 2.4 shows a simplified flowchart of the CSMA/CD algorithm. Ini-
tially, a station must listen on the shared medium before taking a decision to
transmit, as it can only transmit when the medium is free, otherwise it will
cause a collision. Due to the propagation delay imposed by the shared medium,
two stations may consider that the medium is free and start their transmission,
thereby inadvertently causing a collision. The stations detect this collision and
stop their transmissions immediately and wait a random amount of time before

2.1 NETWORKING FUNDAMENTALS 15

Start

Assemble
a frame

Is another
station

transmitting?

Attempt
Transmission

Transmit first
bit of frame.

Collision
Detected?

Transmission
Finished?

End

Transmit next
bit of frame.

Collision
Recovery

Subalgorithm

End

Data is ready to be sent

Physical Address used
(MAC Addresses)

Yes

Yes

Yes

No

No

No

Recovered

Not Recovered

Transmission Failed
(too many collisions)

Successful Transmission

Figure 2.4: A simplified algorithm sketch for CSMA/CD

16 HISTORY OF ROUTING 2.1

attempting a retransmission. The interval in which a collision may happen is
referred to as the collision window.

The maximal collision window is double the propagation time between the
two ends of the network. In order for the collision mechanism to work cor-
rectly, the transmission time for the smallest frame has to be greater or equal
to the collision window, if it is less then we obtain what is known as a collision
fragment. It is therefore clear that a small collision window associated with
the transmission of large frames would yield the maximum efficiency of the
transmission medium. The Ethernet standard, however, defines the smallest
and largest frame sizes possible. This in turn determines the theoretical effi-
ciency of the network transmission, while real networks have more overhead
as shown in [BMK88].

The Ethernet developed by Metcalfe and Xerox was so successful that Xe-
rox, DEC and Intel drew up a standard for it which later became the base for
IEEE 802.3 [IEE85; Spu00]. The transmission rate was set to 10 Mbps, the
maximum and minimum frame sizes where set to 1518 and 64 bytes respec-
tively. The official denomination 10BASE5 was adopted (10 Mbps data rate,
base band transmission with network segments of 500 meters maximum). The
shared medium was used for both directions thereby creating a half duplex
network. In order to increase the maximum size of the network, devices called
repeaters were introduced, which would clean and amplify the signal.

Preamble
(7 bytes)

SFD
(1 byte)

Destination
(6 bytes)

Source
(6 bytes)

Length Type
(2 bytes)

Payload
(48-1500 bytes)

CRC
(4 byte)

Figure 2.5: Structure of an 802.3 Ethernet Frame.

The Ethernet IEEE standard [IEE85] defined the structure of the frame
as shown in Figure 2.5. The frame starts with a preamble, which is a special
pattern allowing the receiver clock to synchronize with the incoming stream.
The preamble is followed by the Start of Frame Delimiter (SFD) which indi-
cates the immediate arrival of the frame. The source and destination fields are
numbers which uniquely identify a device connected to the Ethernet network,
although the destination field can contain special numbers that indicate that
this communication is either multicast or broadcast. The length field is used
to communicate the amount of data in the payload if it is less than 1500 oth-
erwise this field is used to give information to higher layer on how to interpret
the payload. If the payload carried is less than 46 bytes then it is padded
with zeros in order to reach the minimum length of an Ethernet frame of 64

2.1 NETWORKING FUNDAMENTALS 17

bytes. The Cyclic Redundancy Check (CRC) enables the receiver of the frame
to determine if the frame was corrupted during transmission. Every frame is
followed by an idle period of 96 bit times, which indicates the End of Frame
Delimiter (EFD).

Essentially, Ethernet was a broadcast communication protocol as all net-
work members are listening on the cable at the same time. To this end, the
IEEE standard introduced a special broadcast address (0xFFFFFFFFFFFF)
to take advantage of this natural feature of Ethernet. A frame sent out with
this destination address would be processed by all stations on the network.
Another special group of addresses, which all have their first bit equal to 1,
were used for multicast. Multicast frames where only processed by a subset of
stations on the network.

As the popularity of Ethernet networks grew, and the number of stations
exchanging data grew as well, it became apparent that CSMA/CD’s limita-
tions on the size of the network were a constraint. As traffic on the network
increased, a phenomenon called network congestion appeared which caused the
useful throughput to drop significantly below what was theoretically expected.
Protocols of higher levels which included their own congestion control mecha-
nism, for example TCP [Pos81], caused further degradation of transfer rate as
the number of stations increased.

The Ethernet bridge was introduced by IEEE in 1990 with the IEEE 802.1D
standard [IEE91]. Bridges have the feature that traffic local to a collision do-
main are not passed over it, shown in Figure 2.6. If the network was well
designed most of the traffic remained local to a collision domain, thereby in-
creasing the useful bandwidth available on the two networks as opposed to a
network with a single large collision domain.

2.1.3 Evolution of Ethernet - The fast and the faster.

In the same year as the introduction of the network bridge came IEEE 802.3i
[IEE90] which presented a new type of media for Ethernet Transmission: the
Unshielded Twisted Pair cable (UTP). The cable enabled full duplex trans-
mission and changed the topology of networks from a shared bus to a star.
Devices were placed around a hub or a switch which was at the center of the
network.

A hub is a special type of Ethernet repeater, it is in fact just a collapsed
segment. While its earliest version consisted of only two ports that linked
two Ethernet segments together, it quickly became possible to obtain hubs
with many ports. It provided no extra functionality over the shared coaxial
cable and therefore the network was still viewed as a single collision domain.
Moreover, transmissions were still limited to half duplex and limited to 10
Mbps.

18 HISTORY OF ROUTING 2.1

Bridge

Figure 2.6: A bridged Ethernet network.

2.1 NETWORKING FUNDAMENTALS 19

A major development in Ethernet Networks was the introduction of the
switch. A switch is capable of connecting any of its ports to any other one
for a brief instant via rapid configuration changes as shown in Figure 2.7.
This enabled full duplex communications and therefore practically doubled
the bandwidth available on the network. For a network switch of N ports the
number of concurrent conversations is N

2 . If the internal speed of the switch
fabric is sufficient to service all ports concurrently it is said to be non-blocking.
A blocking switch can still handle conversations on all ports provided that the
total bandwidth does not exceed its internal capacity. At that point it is said
to be oversubscribed.

Ethernet Switch

Figure 2.7: A switched Ethernet network.

Nowadays, Ethernet networks are built using switches. A switches internal
fabric does not necessarily provide enough bandwidth to satisfy any config-
uration. In the situation where the incoming traffic surpasses the available
internal bandwidth the switch is said to be oversubscribed. This is common
practice amongst network manufacturers in order to provide relatively inex-
pensive solutions to customers who do not need the full bandwidth.

Fiber optics were standardized in IEEE 802.3j [IEE93] in 1993. Later in
1995, transmission speed was increased to 100 Mbps in IEEE 802.3u [IEE95].
Finally, in 1998, Gigabit Ethernet was introduced in IEEE 802.3z [Fra98].
More recently, in 2002, 10 Gbps was introduced.

Arguably, during the first decade of Ethernet there were other technologies
that provided much better quality services. For example, Token Ring [IEE89]
which provided a collision-free protocol and more bandwidth than the origi-

20 HISTORY OF ROUTING 2.2

nal Ethernet. The Asynchronous Transmit Mode (ATM) was able to provide
guarantees on the bandwidth that could be shared between different types of
traffic, whereas Ethernet has no such guarantee and can only be considered
as ’best effort’. These technologies proved themselves to be too expensive and
much more complicated than Ethernet.

As stated earlier, Ethernet is mainly a technology located at layer one
and two of the OSI model, which has the modest goal of, essentially, moving
frames from one wire to another. As Ethernet networks grow, it becomes more
complicated to transport packets from their source to destination as there may
be intermediary devices and several possible routes between them. This is what
the Network Layer (Layer 3) and more precisely network routing is responsible
for.

2.2 High Performance Networks - InfiniBand
Before moving to routing techniques, we are going to detail an alternative com-
munication technology, named InfiniBand, as its structure resembles modern
Ethernet and its control structure is similar to OpenFlow (see 6.1.1). There-
fore, we believe that the novel congestion protocols could be adapted to func-
tion in an InfiniBand network.

Infiniband has established itself as the industry standard for inter-server
I/O. It was established by a consortium of about 180 companies under the
InfiniBand Trade Association (IBTA). Membership to the IBTA is open to
universities and research labs. Infiniband was designed to provide high levels
of scalability, availability, performance and reliability. Achieving this goal
does not come easy, the InfiniBand Architecture (IBA) has a 1500 page long
specification [Ass].

The length of the specification allows the IBA to scale up and down de-
pending on the required solution for the problem. On the other hand, this has
lead to the development of many options, such as multiple link widths, multiple
MTU, optional major features, and many more. This has become confusing
and therefore IBA supports profiles which contain predefined options in order
to simplify the deployment of IBA.

The IBA was developed due to the fact that processing power was starved
by slow I/O, mainly because modern computer still rely on buses to transport
data (at least until the adoption of PCI-Express). Buses are inherently shared
mediums and therefore require an arbitration algorithm to mediate access to
the said bus but this comes with a significant overhead. On top of this, buses
are memory-mapped and therefore are accessed via the CPU’s store and load
operations. A store operation does not pose much of a problem as it can overlap
with computation, but load operations are costly as the CPU will probably
need the result of the operation rather sooner than later and therefore the

2.3 ROUTING - WHERE TO NEXT? 21

CPU will have to wait until this information becomes available. Finally, a
third reason is that busses do not deliver the level of availability or reliability
required by high performance systems. Indeed, a single failed device on a bus
may disrupt some or all other devices attached to the bus.

As a solution to the problems encountered by buses, IBA defines point-
to-point connections, and therefore data transfer is not bussed. Moreover
it defines message semantics and therefore command and data exchanges as
achieved via messages and not as memory operations. As many modern com-
munication systems, the IBA is defined as a stack containing a physical, link,
network, and transport layer.

The smallest functional IBA system is a subnet which can be joined to-
gether by router to form larger systems in a similar manner to modern IP
networks. Switches route data from a source to a destination based on the
routing tables computed either at the network’s initialization and/or network
modification. The exact structure and format of the routing tables depends
entirely on the subnet manager as it is the entity responsible for maintaining
the tables. Subnet managers send messages to the devices they control (ie. the
agents). Each IBA system must contain at least one subnet manager that can
either reside on an endnode or a switch. The subnet manager discovers all the
devices on the network and assigns them local IDs, and computes the rout-
ing tables to be loaded a each device. There has been some study of routing
techniques used in IBA systems [GFR+02] as well as some extension proposals
[FLS+06].

The architecture of an IBA is similar to the solutions developed in this doc-
ument to construct network protocols. Therefore, it is the author’s belief that
even though the implementation presented in this thesis employed Ethernet,
that the same approach could be used in IBA systems. Indeed, a central aspect
of an IBA system is the subnet controller which is quite similar to an Open-
Flow controller (see Section 6.1.1), which is used to control Ethernet device
behavior.

2.3 Routing - Where to next?
At the end of the previous section we discussed primarily Layer 2 networks,
which only provide means for transport frames from wire to wire over an Eth-
ernet hub or switch. Layer 3, the network layer, is concerned with transporting
packets from the source to their final destination [BG92]. This process, called
routing, achieves this goal by using devices called routers. This goal may
seem simple, but the algorithms they employ are complex. Moreover, there is
a variety of routing protocols which define how routers can communicate to
determine the best routes to all destinations.

The origins of routing can be traced back to the late 1950s, where various

22 HISTORY OF ROUTING 2.3

shortest path algorithms where proposed by Ford [Jr.56], Bellman [Bel58],
Floyd-Warshall [Flo62] and Dijkstra [Dij59]. These algorithms compute the
shortest path between a source and destination pair in a graph, and they make
up the core of current routing protocols implemented nowadays. Each link in
a network is given a cost, and therefore the cost of a path is the sum of the
constituent link costs, and trivially the shortest path is the path with the lowest
cost. Since these algorithms provide remarkable simplicity and generality, they
have been in use since the early days of the ARPANET [KZ89] to networks
nowadays.

Routing is a complex process, which involves several independent algo-
rithms exchanging information between themselves. There are a several rea-
sons for this complexity:

• Routing requires all the network nodes to coordinate to offer a coherent
routing strategy.

• Routing must be capable of surviving link and node failures, this requires
the algorithms to provide alternative paths and therefore to keep their
routing databases up-to-date.

• In order to achieve high performance, a routing strategy may be required
to modify its routes as areas of the network become congested.

2.3.1 Some Issues in Routing
Routing affects mainly two performance metrics, the first is Throughput (Quan-
tity of Service) and the second is average packet delay (Quality of Service)
[BG92]. These metrics are determined by the flow control mechanism pro-
vided by the Transport Layer as shown by Figure 2.8.

When the network is lightly loaded we can easily say that,

Throughput = OfferedLoad (2.1)

As network load increases the flow control scheme will reject some traffic,
due to congestion. We therefore have Equation 2.2,

Throughput = OfferedLoad−RejectedLoad (2.2)

Traffic within the network will also receive an extra delay due to time
required for the routing scheme to select the appropriate path. This (and
other indirect factors resulting from the rejected load) will significantly affect
the throughput as flow control schemes attempt to strike a balance between
throughput and delay. Therefore, we can say that the more the routing scheme
keeps delays low, the more the flow control scheme will allow traffic on the
network.

2.3 ROUTING - WHERE TO NEXT? 23

Transport Layer

Flow Control

Network Layer

Routing
Offered

Load

Throughput

Delay

Rejected Load

Figure 2.8: Interaction between Transport and Network Layer

24 HISTORY OF ROUTING 2.3

2.3.2 Properties of Routing Algorithms
Before entering into the classification of routing algorithms let us first describe
some desirable properties for routing algorithms: correctness, simplicity, ro-
bustness, stability, fairness, and optimality [Tan03].

• Simplicity and Correctness are trivial. All routing protocols should pro-
vide a simple solution to the routing problem, and maybe more impor-
tantly they should be correct.

• Robustness - When a routing algorithm is brought online, it may be
expected to run for many years. Therefore, it must be able to withstand
failures, changes in topology and traffic patterns.

• Stability is one of the most fundamental aspect of a routing algorithm
simply because an algorithm which does not converge to some equilib-
rium could cause unpredictable network results.

• Fairness and Optimality - While they are enormously desirable prop-
erties, they are often opposed. As shown in Figure 2.9, suppose the
horizontal links between A and A’, B and B’, and C and C’ are satu-
rated. In order to maximize the total flow, traffic between X and X’
should be virtually non existent, but from X and X’ point of view this is
unfair. Therefore there is a tradeoff between fairness and optimality.

X

A B C

A' B' C'

X'

Figure 2.9: Conflict between fairness and optimality.

2.4 CLASSIFICATION AND THE EVOLUTION OF ROUTING ALGORITHMS. 25

One last important concept before we move onto the classification of routing
algorithms is a statement about optimal routes regardless of topology and
traffic. This is known as the Optimality Principle. In its simplest form it
states that if a router B lies on the optimal path between routers A and C,
then the optimal path between B and C falls on the same route. The major
consequence of this principle is that all the routes from any source to a given
destination comprise a tree rooted at the destination. This tree is called a Sink
Tree.

2.4 Classification and the Evolution of Routing Algorithms.
In this section we will attempt to classify routing algorithms while presenting
their evolution from the original graph algorithms. We will not enter into the
details of the graph algorithms, for more information see Section 4.1. Two
classes are commonly used to group routing algorithms: Static and Adaptive.
In static algorithms, all routes are computed off-line and this configuration
is then downloaded to the routers. This is sometimes referred to as Source
Routing. Adaptive algorithms react to changes in topology and network state
(such as congestion, delay, or other metrics), these protocols are the most
common in packet switched networks [BG92]. Another class of algorithms we
will discuss are called Optimal Routing Algorithms. Although they have never
had a real world implementation, they have an influence on multipath routing
algorithms which will be discussed in Chapter 3.

2.4.1 Static Algorithms
The most basic static routing algorithm is to compute all the possible source-
destination shortest paths off-line using a Shortest path algorithm [Dij59;
Flo62; Bel58]. Then, use the output of this computation and install static
routes at each router in the network. The details of these algorithms will be
given in Section 4.1.

Another static algorithm is Flooding, where each incoming packet is sent
on every outgoing line except the one it arrived on. Clearly, this algorithm
generates many duplicate packets, and it can be shown that an infinite num-
ber of duplicates will persist in the network. To avoid these duplicates, each
packet contains a hop count field which is incremented at each router. When
the counter reaches some predefined limit the packet is dropped. Flooding is
actually used in current protocols, such as OSPF [Moy98], in order to advertise
a routers connections.

The two previous algorithms only consider topology. Flow-based routing
considers both topology and network load. The assumption here is that the
capacities and the average load for each link in the network is known. If these

26 HISTORY OF ROUTING 2.4

values are known and so is the topology, it is possible to compute the mean
delay from queuing theory. Finally, from the mean delay for each link it is
then simple to calculate the mean packet delay for the entire subnet.

2.4.2 Adaptive Algorithms
Nowadays networks mainly use dynamic routing algorithms rather than static
ones. The two main classes of algorithms are presented here: Distance Vector
and Link State routing.

2.4.3 Distance Vector Routing
Distance Vector Routing algorithms function by having each router maintain
its best known distance to each destination and which outgoing link to use in
a routing table. Each entry is composed of the outgoing line and the metric
estimate for each destination. These tables are then exchanged with each of
the neighboring routers. The metric used to compute the distance may either
be the number of hops, delay, or the number of packets queued along the path
(queue depth). The local router knows its distance to all its neighbors, if the
metric is hops then its distance is one hop. If the metric is queue depth, then
the router simply measures it. Otherwise if the metric is delay, the router can
send a special echo packet in order to measure the delay.

As an illustration of Distance Vector algorithms, assume that the metric
is hop count and therefore the router knows that all its direct neighbors are
within one hop. Periodically, every router sends its hop counts (exchange
vector) for each destination to each of its neighbors, while also receiving one
from every neighbor. Consider that router Y receives an exchange vector from
router A containing the hop count AB , which is the hop count from router A
to B. If Y knows its hop count to A, denoted YA, then it can conclude that
B is YA + AB hops away, and update its routing table accordingly. If this is
done for all neighbors, a router will have an estimate of distances to each other
router in the network.

Distance Vector Algorithms are sometimes called distributed Bellman-Ford
routing algorithms or the Ford-Fulkerson algorithm, because of the researchers
who developed it [Bel58; Jr.56]. Other implementations of distance vector
algorithms include RIP [Hed88] and the original routing algorithm of the
ARPANET [MW77] as shown in Figure 2.10. Distance Vector algorithms still
exist in some current routing algorithms as shown in EIGRP [AGLAB94], as
shown in Figure 2.11.

While Distance vector works very well in theory and reacts quasi perfectly
when a newer and shorter route appears, there are situations where these
algorithms can take a a very long or even infinite amount of time to converge.
Consider the situation when a router X, only knows of a very long path to Z.

2.4 CLASSIFICATION AND THE EVOLUTION OF ROUTING ALGORITHMS. 27

Bellman '58 ARPANET '69
(RIP)

Cegrell '75
(Split Horizon)

Garcia Luna '93
(DUAL)

Garcia Luna '97a
(LPA)

Garcia Luna '97b
(EDVA)

Figure 2.10: Evolution of Distance Vector Algorithms

28 HISTORY OF ROUTING 2.4

If now a router Y tells X that it knows of a shorter route to Z, X will directly
change its forwarding table to reflect this situation. This situation describes
the normal and optimal operation of a Distance Vector algorithm.

A B C D E
0 ∞ ∞ ∞ ∞ initial situation
0 1 ∞ ∞ ∞ one exchange
0 1 2 ∞ ∞ two exchange
0 1 2 3 ∞ three exchanges
0 1 2 3 4 four exchanges

(a) A good news situation

A B C D E
1 2 3 4 initial situation
3 2 3 4 one exchange
3 4 3 4 two exchange
5 4 5 3 three exchanges
5 6 6 6 four exchanges

..
.

∞ ∞ ∞ ∞
(b) A bad news situation

Table 2.1: Count-to-infinity problem.

Consider a topology where for the simplicity of argument, all the routers
(A through E) are arranged in a line. Figure 2.1 illustrates the distance tables
at each router to A. Figure 2.1a depicts the situation when all the routers
are up and functioning correctly. Figure 2.1b shows the situation when A has
suddenly gone down for some reason (link failure or broken router). At the
first exchange, router B does not receive a message from A, but C tells B that
it has a path to A of length 2. The problem here is that B does not know
that the path advertised by C passes through itself. Therefore B thinks it can
reach A via C with a length of 3. Next C notices that all the routers around
have a path to A with length 3, and therefore it must update its table. By
doing so it causes the same sequence of messages to occur again as shown in
Figure 2.1b. Therefore all the routers never cease to update their tables, and
will keep increasing their path length to A ad eternum. This issue is known as
the count-to-infinity problem.

In 1975, Cegrell introduced the concept of Split Horizon [Ceg75] to counter
the effect of the count-to-infinity problem. Split horizon operates on a very

2.4 CLASSIFICATION AND THE EVOLUTION OF ROUTING ALGORITHMS. 29

simple premise, if a node A is routing traffic to a destination X via node B,
it makes no sense for B to try to route to X via A. Therefore it is useless
for A to announce to B that X is close to A. Split Horizon is elegant as it
only involves a small change to the routing algorithm. Indeed, instead of a
router always broadcasting all its routes on all its links, it simply modifies the
exchange message on the the links that some destinations are actually routed
through.

Unfortunately, split horizon does not solve the problem entirely. Consider
two connected routers X and Y who both connect to T via Z. Suppose that
initially both X and Y have a distance 2 to T, and Z has a distance 1. If the
link between Z and T goes down for some reason, both routers X and Y report
that they cannot get to T and Z reports that T is unreachable. Unfortunately
in the meantime, X and Y both exchange their routing information where they
have a route to T. Causing X and Y to think they can reach T via Y and X
respectively, with length 3. After this, for every exchange they increment their
length to T by one and therefore we are back to the count-to-infinity problem.
This is known as a three-way loop.

Some important Algorithms

In this section we will discuss some algorithms, developed by Garcia-Luna-
Aceves, which had an influence on some of the multipath algorithms discussed
in Chapter 3.

In early 1993, Garcia-Luna-Aceves proposed a family of innovative routing
algorithms, named Diffusing Update Algorithms (DUAL) [GLA93], which com-
puted shortest paths using diffusing computations based on the idea presented
in [DS80]. Diffusing computations is a computation that takes place over a
set of networked machines. Dijkstra proposed method [DS80] for detecting
the termination of the computation. DUAL provides loop-free operation at
every instant throughout a route computation. This allows routers involved
in a topology change to synchronize at the same time, while not involving
routers that are unaffected by the change. DUAL is currently used by EIGRP
[AGLAB94], which is a Cisco proprietary routing protocol.

A few years later in 1997, Garcia-Luna-Aceves presented an algorithm for
Loop-free Path-finding Routing named LPA [GLAM97]. This algorithm elimi-
nates the temporary formation of routing table loops during a topology change
more efficiently than DUAL. A routing table loop is a path which is specified
by the routers’ routing tables at a specific time (usually during a topology
change), which causes a packet to visit the same node more than once before
reaching its destination.

Finally, later that same year, Garcia-Luna-Aceves presented a more Effi-
cient Distance Vector Algorithm (EDVA) [XDla97]. EDVA uses the enhance-
ments of the two previously described algorithms to reduce the convergence

30 HISTORY OF ROUTING 2.4

time and the number of control packets needed by the routing algorithm. As we
will see later, EDVA has had some influence on multipath routing algorithms.

Bellman '58

ARPA '69
(RIP)

Internet RIP

IGRP

EIGRP

Split Horizon

DUAL

Distance Vector

Dijkstra '59

ARPA '80
Early OSPF

IS - IS

Internet
OSPF

Link State

Figure 2.11: Evolution of Implemented Routing Algorithms

2.4.4 Link State Routing
Link State algorithms came about as a replacement to Distance Vector al-
gorithms and provided the major improvement of being free of the count-to-
infinity problem. While this improvement is highly desirable, it came at a price,
Link State algorithms need to maintain a complete and up-to-date vision of
the network topology at every participating node. In order to achieve this goal,
Link State algorithms must initially discover all their neighbors. Then, they

2.4 CLASSIFICATION AND THE EVOLUTION OF ROUTING ALGORITHMS. 31

must measure the cost (in terms of hops or delay) to each discovered neighbor.
Next, this discovery must be advertised to all routers in the network, as we
will see this is achieved via Link State packets. Only once all this information
is gathered can the algorithm compute the shortest path to every other router
using Dijkstra’s Shortest paths algorithm [Dij59].

Link State algorithms provide several advantages over Distance Vector al-
gorithms as is shown below:

• Loopless and Fast Convergence - As we have seen with Distance
Vector schemes, the number of steps required to achieve convergence can
be large and even sometimes infinite. Link State solves this by distribut-
ing information rapidly via a flooding protocol, and then performing a
computation which is local to every router. Immediately after the com-
putations all the routes are guaranteed to be valid and loopless.

• Multiple Metrics - Distance vector schemes do not cope well with mul-
tiple metrics. Indeed, if a single metric can have several orders of mag-
nitude in variation, introducing others will probably cause the algorithm
to converge very slowly as the solution space is expanded. Whereas Link
State algorithms perform their computation with full topology knowl-
edge, there can be as many metrics as desired.

• Multiple Paths - Nowadays, complex networks provide paths which are
either identical or very similar to the shortest path. Distance Vector al-
gorithms cannot support multiple paths in their current form because the
routing table can only accommodate one entry per destination [Hui95].
In Link State, a simple modification to shortest path computation can be
added and this will provide us with a list of candidate equal cost paths
for a given destination. Thereby, this has the potential for increasing the
overall performance of the network.

Neighbor discovery is achieved by sending specially crafted HELLO packets
on each of the router’s outgoing lines. Any router receiving such a packet
must respond immediately indicating its identity. This introduces an, albeit
minor, constraint to Link State protocols which is that router identities must
be unique. A line’s cost can easily be estimated by sending a ECHO packet.
As with the HELLO packet, once a router receives a ECHO packet it sends
it back immediately. This provides an estimate for the round trip time on a
given line, which is then divided by two to obtain the line delay.

Once the information described above has been collected, the router builds
the Link State packets. The distribution of the link state packets must be
achieved reliably in order to guarantee that each router has the same view of
the network. This distribution is achieved via a flooding algorithm similar to
the one described in Section 2.4.1.

32 HISTORY OF ROUTING 2.5

Nowadays, most of the Internets routes are governed by OSPF [Moy98].
OSPF grew from an early link state algorithm which was designed to replace
RIP [Hed88] in the ARPANET [MRR79]. It took over most of the functional-
ities developed in IS-IS [RFC04]. This evolution is shown in Figure 2.11.

2.4.5 Optimal Routing

Optimal Routing aims at optimizing the average global delay of a network,
instead of only finding a shortest path. Therefore the problem of comput-
ing optimal routes in a network can be expressed as a optimization problem
(more precisely, a nonlinear multicommodity flow problem) [CG74], this will
be explained in more detail in Chapter 4.

Performance and costs are usually measured by metrics like delay, maxi-
mum line utilization, packet loss rate, stability of the system, and convergence
time after failures. Current routing methods used in the Internet are not opti-
mal in terms of any of these metrics. For instance, most of the routing protocols
use hop-counts, or weights (derived from metric estimates) assigned to the lines
in order to derive the routing tables which obviously cannot optimize any of
the metrics mentioned above.

A direct way to improve the routing process (ie. optimize in some sense the
metrics described above) is to use multiple paths between source-destination
pairs. Current protocols, such as OSPF [Moy98] or IS-IS [RFC04] do this in
a limited sense, by splitting the load to a destination along multiple shortest
paths if these exist. This is an improvement, but still it is not optimal.

Optimal Routing has been researched and studied for many years. Its
simplest form is Flow-Based Routing (see 2.4.1) where a network is modeled
by a set of nodes which are connected by links. The capacity and amount
of traffic on each link is known, and using this information the total cost to
transport messages is minimized.

In 1974, Cantor and Gerla [CG74] modeled this problem as a optimiza-
tion problem and used separation techniques to solve it. In 1977, Gallager
[Gal77] proved the necessary and sufficient conditions for having a minimum-
delay routing and introduced a distributed multi-path routing algorithm for
this purpose that is loop-free at each iteration under the assumption that the
network traffic is stationary or slowly changing. In 1999, Garcia-Luna-Aceves
proposed a new algorithm, called Near-OPT [GLAVZ99], which constructs
multiple loop-free paths, and then applies a similar method to the one pro-
posed by Gallager. This algorithm is the basis of a multipath algorithm which
will be described in Chapter 3. Figure 2.12 depicts the evolution of Optimal
Routing algorithms. None of these methods were used in practice due to their
complexity as well as low performance of processors and low capacity of links
at the time these methods were proposed.

2.5 SUMMARY 33

Ford '58 Cantor '72

Gallager '77

Garcia Luna '99
(NEAR-OPT)

Figure 2.12: Evolution of Optimal Routing Algorithms

2.5 Summary
In this section, we have presented the fundamentals of networking along with
a history of routing algorithms. Over time the OSI model has turned into a
reference only model, while the TCP/IP model is virtually ubiquitous. Eth-
ernet has evolved from 9600 bits per second beginnings to 10 Gbps with 100
Gbps at our doorstep.

Distance Vector algorithms have been mostly replaced by Link State ones.
Primarily due to their shortcomings in terms of convergence time and their
inability to support sophisticated metrics. Optimal Routing algorithms have
for long been a mathematicians toy and a networks researchers dream, due to
the fact that they were only implementable in a centralized manner.

In the next chapter, we will discuss the state-of-the-art in multipath rout-
ing. These algorithms attempt to reconcile the best from Link State or Dis-
tance Vector routing and Optimal routing.

Chapter3
Multipath Routing

“If you want to succeed you should strike out on new paths,
rather than travel the worn paths of accepted success.”

– J. D. Rockefeller

3.1 Why Multiple Paths: Some justifications
Computer networks have grown over the past decades, this growth has lead
to a rise in complexity of their topology. While increased complexity is often
viewed negatively, it may be a blessing in disguise to networks because it can
provide multiple paths towards a destination. If we are able to utilize these
alternative paths intelligently, we can expect ta significant increease in network
performance.

Figure 3.1 shows a complicated network consisting of multiple paths be-
tween a given source-destination pair. For example, consider source A and
destination C: we have four possible paths from A to C (A-B-C, A-D-C, A-D-
B-C, A,D-E-C). Most protocols nowadays, only consider a single path at any
given instant. While such a decision reduces the diffculty in building correct
routing tables, it comes with a major drawback: instead of using the entire
capacity of the network, one will only use a relatively small fraction (in this
case, only a fourth is used).

It has been proven that splitting traffic over multiple paths reduces delay
while increasing he efficiency of the network [JMG93; Hui95]. If all packets of
a given communication can be assigned to one path, then we will obtain higher
network throughput as several communication can occur simultaneously and
lower delays in both absolute terms and delay variations. Moreover, using

35

36 MULTIPATH ROUTING 3.1

D

B

A

E

C

Figure 3.1: A complex network

multiple paths solves another problem which is encountered in single paths
routing: link failure. If a link fails in a multipath scenario, then the traffic
can simply be rerouted via an alternative path while a recalculation occurs or
the failed path is re-established contrasting with single path routing where the
routing tables must be recalculated and all traffic is lost in the meantime.

On the other hand, splitting traffic over multiple paths comes with its own
problems. First, it is possible that packets on different paths encounter differ-
ent path MTU (Maximum Transmission Unit) and therefore would require a
router to break up packets according to the path they take, thereby negating
the advantage of an advertised MTU. Second, debugging tools, such as tracer-
oute or ping, are made inaccurate or even incorrect due to the use multipaths.
Finally, a much more serious problem, is the phenomenon of variable delays
encountered by packets on different paths which cause them to arrive out of
order. In many TCP (Transmission Control Protocol [APS99]) implementa-
tions, out of order packets cause retransmissions which drastically reduce the
performance of a network. A solution to this problem is suggested in Section
3.3.1.

Before we continue, we must introduce the concept of flow, which in this
document is similar to the definition of a microflow in [NBBB98].

Definition. A flow is a sequence of packets which is identified by its charac-
teristics, such as source and destination address, source and destination port.
Where characteristics could for example be same header values.

There are two features which are desirable for multipath protocols:

3.2 MULTIPATH ROUTING SCHEMES 37

• Minimal Disruptions - Since multipath protocol route traffic on many
paths, the probability of one path failing or removed for an arbitrary
reason is much greater than in the case of single path. It is therefore
desirable to minimize the number of flows affected by a link removal.

• Fast Computation - The overhead required to compute the next hop
to forward a packet or flow should be small when compared with single
path protocols.

Multipath routing, essentially, asks the question of how to best split net-
work traffic on a set of paths given some cost function. This is known as a
flow maximization problem and is a very difficult problem to solve. Moreover,
we are not looking for a centralized solution, nor a distributed solution where
routers make their own decisions, but a solution based on a feedback loop where
decisions are influenced by the evolving network conditions. The centralized
solution is NP-Complete, but if we retain some network paths we can solve the
problem in a bounded time by assigning a price to each link of the network.
The price is the first derivative of the cost function evaluated at the offered
traffic level. In order to estimate the offered traffic we must first be aware of
all the routing decisions taken by all routers, and therefore this makes such al-
gorithms difficult, if not impossible, to implement in a real network. Moreover,
such approaches will inevitably suffer from scalability problems and therefore
convergence problems. These problems make up a very active field of research.

3.2 Multipath Routing Schemes
As it has been shown in the previous section, single path algorithms, such as
OSPF, RIP, EIGRP [Hed88; Moy98; AGLAB94], make inefficient use of the
overall network bandwidth. In this section we present some research multiple
paths algorithms whose evolution is shown in Figure 3.2.

3.2.1 Proposed Extensions to Single Path routing
Multiple Path Algorithm (MPA) [NST99] is an extension that could be added
to OSPF [Moy98]. MPA constructs a subset of paths in a given network which
satisfy a condition for loop freeness. This algorithm introduces the notion of a
viable next hop, where initially the shortest paths are computed. A router then
computes the difference between its neighbor’s path length to the destination
and the distance to get to its neighbor, if this distance is less than the distance
from the router to the destination then the path is considered viable. More
formally, for every neighbor N of router R the test in Equation 3.1 is performed:

DN (R,X)− d(R,N) < D(R,X) (3.1)

38 MULTIPATH ROUTING 3.2

MPA '99

Wang '90
(SPF-EE)

AMP '03

Proposed Extensions

Dijkstra '59

Garcia Luna '99
(NEAR-OPT)

Garcia Luna '93
(DUAL)

Garcia Luna '97
(EDVA)

Single Path
Algorithms

Zauman '98
(DASM)

Vutukury '01
(MDVA)

Vutukury '99
(MPATH)

Vutukury '99
MPDA

Distance Vector
Algorithms

Link State
Multipath

Figure 3.2: The Evolution of multipath algorithms

3.2 MULTIPATH ROUTING SCHEMES 39

Where,

• DN (R,X) is the distance from neighbor N to destination X

• c(R,N) is the cost of the link between R and N

• D(R,X) is the distance from R to X.

R

N

X

1

10

10

Figure 3.3: An example of MPA.

If this test is successful then the neighbor is considered a viable next hop.
As shown in Figure 3.3, the path R-N-X is not the shortest path because its
total length is 11 whereas the direct path R-X has a length of 10. According to
the viability test in Equation 3.1, the path R-N-X can be used as an alternative
and it does not create any loops.

The problem with classic routing algorithms is their inability to re-route
traffic when one of the paths becomes congested or fails. In 1990, Wang pro-
posed the idea of adding emergency exits for traffic when faced with congestion.
Shortest Path First with Emergency Exits (SPF-EE) [WC90] behaves like a

40 MULTIPATH ROUTING 3.2

S

A

D

X

(a)

SP

AP
RAP

S

A

D

X

N

(b)

Figure 3.4: An example of SPF-EE

classic algorithm under light traffic conditions, but provides alternate routes
when congestion or failures occur rather than updating the routes which is an
expensive process.

Figure 3.4 illustrates the idea behind SPF-EE. If the network load is low
then a source router S forwards packets along its shortest path to the desti-
nation D (denoted SP in Figure 3.4). In the event of some failure, two cases
have to be distinguished:

1. The alternative path’s next hop is downstream from the source router S.

2. All the neighbors to S, other than the shortest path next hop, are up-
stream.

In the first case, the packet will simply travel from S to the alternative
path (denoted by AP in Figure 3.4) next hop (A) and then follow the shortest
path from A to the destination as shown in Figure 3.4a. The second case is
more complicated as there are no downstream possibilities (assuming that all
routing table updates have taken place, and therefore S knows that its shortest
path is down) shown in Figure 3.4b. Router S therefore sends a control packet
to all its neighbors asking if they have an alternative path to the destination.
If a neighbor router N finds a path then it sends the control packet back to S
who then establishes a reverse alternative path (RAP), otherwise the neighbor
propagates the request to its neighbor routers excluding S.

The use of a control packet in SPF-EE is problematic because it increases
the packet delay significantly while an alternative is found. Moreover, if the
source router has no other neighbors other than the shortest path, the algo-
rithm simply fails. A better solution would be to precompute the alternative
path set in order to minimize the delay in the event of a failure.

3.2 MULTIPATH ROUTING SCHEMES 41

SPF-EE only re-routes traffic in the event of an overload or a failure, an-
other approach would be to take advantage of the path redundancy contin-
uously. Adaptive MultiPath (AMP) [GZRR03] does precisely that. AMP is
based on providing routers with local network status information by exchang-
ing so-called backpressure messages (BM). Thus, enabling routers to adapt
continuously to the changing network loads.

When AMP detects congestion on a link, it attempts to shift traffic away
from this link. In order to achieve this, a router R connected to the congested
link sends to its neighboring routers a BM indicating their contribution to the
congested link. The neighboring router which receives this BM then notifies
its neighbors of their contribution and so on. The routers then attempt to
forward the congestion-inducing traffic onto other routes. Figure 3.5 illustrates
the dispersion of the BMs when congestion originates from the Y routers.

X R

Y1

Y2

Y3

Direction of
traffic

Backpressure
Message

Figure 3.5: An example of AMP.

The issue with such an approach is that while router R knows how much
traffic is sent to the individual Y routers, it generates a single value which
is then sent back to router X in the form of a BM. Thereby the information
which router X is interested in, namely its contribution to the congestion on
a given path, is lost. By analyzing the structure of the BMs, we notice that
every router needs to maintain a counter for each flow and store a reference
of the flows origin because each router needs to compute a BM containing
a value which is composed of the contributions of each individual flow, this
clearly poses a scalability problem. The derivation of the BMs can be found

42 MULTIPATH ROUTING 3.2

in Section A.2.

3.2.2 Multipath Routing Algorithms
In 1998, Zauman introduced a new algorithm for the computation of multiple
loop free paths from a source to a destination called Diffusing Algorithm for
Shortest Multipath (DASM) [ZGLA98]. DASM is based on a generalization of
the Diffusing Computations introduced by Dijkstra [DS80] and therefore it is
also a generalization of DUAL [GLA93] described in Section 2.4.3. DUAL only
maintains a single next hop for any destination whereas DASM maintains a set
of possible next hops. DASM introduces the concept of the Shortest Multipath,
which is an extension of DUAL’s loop free routing along shortest paths. In
DASM, the Shortest Multipath is guaranteed to be acyclic at the end of the
diffusing computation.

Definition. A shortest multipath is defined by the directed acyclic graph ob-
tained by the entries of the routing tables at each router in all paths from a
source to a destination.

In order to ensure loop freeness, DASM constructs the Shortest Multipath
graph by forcing routers to select next hops whose distance to the destination is
less than their own. Figure 3.6, illustrates the concept of Shortest Multipaths
which contains the shortest path along with longer paths. It should be noted
that each router computes the possible paths to the destination, therefore the
shortest and longer paths at each router represent the shortest path and longer
as computed from the current router.

A subsequent extension of DASM is presented in 2001 by Vutukury which
provides loop freeness at every instant. Multipath Distance Vector Algorithm
(MDVA) [VGLA01] is based on EDVA [XDla97] algorithm presented in Section
2.4.3. To provide loop freeness at every instant MDVA makes sure that at
every instant during a diffusing computation, a node who reports a distance
via a next-hop K must keep K as its next hop at least until the end of the
computation. Simply put, by using the loop free conditions enunciated by
EDVA and the method to build multiple paths in DASM coupled with the
invariance of reported distances during a computation, MDVA is capable of
computing loop free multipaths at every instant.

In link state algorithms, Vutukury proposed MPDA [VGLA99c] which pro-
vides multiple paths of unequal costs to every destination which are loop free
at every instant. The idea is to first compute multiple loop free paths using the
same method as Near-OPT [GLAVZ99], but then use heuristics built on Gal-
lager’s Theorem [Gal77] to allocate flows to the computed paths and thereby
approximating the optimal result presented in Near-OPT. MPDA sends up-
dates to its neighbors and awaits their acknowledgement before sending an-
other update, contrasting with previous algorithms who used diffusing compu-

3.2 MULTIPATH ROUTING SCHEMES 43

D

D

D

D

D

S

Shortest Multipath

Shortest Path

Figure 3.6: An example of Shortest Multipath constructed with DASM.

44 MULTIPATH ROUTING 3.3

tations which span the entire network, MPDA only sends out information to
its neighbors and therefore its synchronization only spans a single hop.

Along the same lines as MPDA, Vutukury proposed MPATH [VGLA99a;
VGLA99b] which is a distance vector algorithm providing multiple loop free
paths using only neighbor information. MPATH exchanges distances to des-
tinations along with the predecessor to the destination, thereby allowing it to
compute multipaths using only predecessor information. Similarly to MPDA,
MPATH synchronizes only with its neighbors and therefore performs single hop
synchronization. MPDA and MPATH differ only in the type of information
their participating nodes exchange.

3.3 Multipath Routing in current IP networks

3.3.1 OSPF Extensions

Equal Cost Multipath

OSPF defines a multipath protocol, called Equal Cost Multipath (ECMP)
[Moy98], which only considers alternative paths of equal length to the shortest
path, ie. each router maintains the set of possible next hops whose subsequent
paths are of equal cost to the shortest solution. ECMP suffers from out of
order packet arrival if routing decisions are taken packet per packet. To solve
this problem several solutions are proposed by [TH00], which each define flows
and then each flow is assigned to an outgoing port.

1. Modulo-N Hash - The router performs a modulo-N operation over the
hash of the packet headers which identity a flow. This method results in
N−1
N flow disruptions upon a link failure.

2. Hash-Threshold - The router computes a hash of the packet headers
used to identify a flow. The output range of the hash function is mapped
against the number of possible next hops such that a the value of the
computed hash will indicate which next hop to use. This method results
in between 1

4 and 1
2 of all flows to be disrupted upon a link failure. This

method is analyzed in [Hop00]. The analysis of the disruptions is given
in Section A.1.

3. Highest Random Weight - The router computes a key for each next-
hop by computing a hash over the fields of a flow, as well the over the
address for the next-hop [TR98]. The key which obtains the highest
value is selected and therefore so is the next-hop. This method involves
N times the number of computation as in Modulo-N hash, but only 1

N
flows are disrupted upon a link failure.

3.3 MULTIPATH ROUTING IN CURRENT IP NETWORKS 45

An alternative approach is proposed by Vutukury [VGLA00] in which a key
is appended by the source router to each packet belonging to a flow. This key
is then used to by each router along the path to the destination to determine
the next hop.

OSPF Weights

Fortz and Thorup [FT00] and similarly Wang [WWZ01] propose methods to
optimize the weights assigned to OSPF links. This centralized approach re-
quires that the weights be precomputed assuming that the required load is
known beforehand and that the network is quasi-static. Such assumptions
make this solution unrealistic for an arbitrary network.

A typical and naive approach is to include a load metric with the standard
distance metric [Hui95]. The combination of these two metrics is then used to
compute the shortest paths. This process therefore creates a feedback loop:

1. A router receives an update for the different link loads and computes the
new shortest paths.

2. The traffic is now re-routed according to the new shortest paths. This
causes the link loads to change and therefore,

3. A new update message is generated and distributed.

Feedback loops cause routes to oscillate and therefore create out of order
packets, which as we have seen cause a significant performance loss. The fre-
quency of the oscillations depends on the duration of the feedback loop. If
the loop is slow, the number of oscillations is small but very little is gained
over standard OSPF. On the other hand, if the loop is fast and many oscilla-
tions occur, we can expect many out of order packets and therefore very poor
network performance.

Optimized Multipath OSPF

We have seen in the previous subsections techniques which attempt to divide
traffic more or less equally among the available path sets. In 1998, Villamizar
proposed OSPF Optimized Multipath (OMP) [Vil99] which takes into account
path loads to distribute traffic efficiently among paths. OMP uses mechanisms
already available in OSPF to flood the link information within a subnet [Col98].

Initially the algorithm computes the initial set of possible paths. Then the
load on each link is iteratively adjusted according to the load information re-
ceived from other routers. The following steps describe the process of building
the path sets:

46 MULTIPATH ROUTING 3.3

1. Using a standard shortest path first algorithm the shortest paths to all
destinations are computed.

2. Construct a set of possible alternative paths by inspecting paths from
neighbors to destinations and combining them with the links from a given
router and these neighbors.

3. Paths which then have equal costs or are within an acceptable margin
of the minimum cost are kept. In order to avoid loops, paths which
are longer than the minimal cost will only be kept if their immediate
neighbor closer to the destination than the origin router.

Once the possible path sets are established, the router can share load onto
the paths. Routers will monitor the links and flood load information when the
load changes. Depending on the overall network load, the flooding interval can
be as large as 20 minutes if the load is low and 30 seconds otherwise. Every
time a router receives new load information it will reexamine its load sharing
as explained below:

1. Examine all links and determine the critical links, and therefore establish
the links with the highest load.

2. Reduce the load on paths containing critical links.

3. Increase the load on paths which do not contain critical links.

OMP is still considered an experiment and has not yet been deployed in a
production environment. However, it is very promising. In the next section
we will discuss other load sharing algorithms which are research experiments.

3.3.2 Alternative Methods
In [BEZ92], the authors introduce a routing scheme which is similar to the idea
presented by SPF-EE [WC90]. Under light traffic conditions, traffic is routed
along the shortest path but as the load increases and congestion becomes sig-
nificant the algorithm attempts to shift traffic onto less congested paths. To
achieve this the algorithm uses two main concepts. The first is the classifica-
tion of link states to identify more easily congested links. The second, is the
computation of acceptable alternative paths which are within an acceptable
margin of the shortest path in terms of hop count.

Load sensitive routing has always been hampered by the signaling over-
heads. Moreover, oscillations occur frequently in the path selection because
the routing decisions are taken on out dated information. In [SRS99], the
authors suggest a hybrid approach to solve the efficiency and stability issues,
which relies on identifying long lived traffic flows and routing them separately.

3.4 MULTIPATH ROUTING IN CURRENT IP NETWORKS 47

The algorithm provides load sensitive routing for long lived flows while for-
warding short lived flows on preprovisioned static paths. In order to identify
long lived flows and ensure stability, routers relate the detection of long lived
flows to the timescale of signaling messages.

A similar approach is suggested in [LC01], where packets are also grouped
into flows to avoid out of order arrivals and long lived flows are also differenti-
ated. Although in [LC01], the authors suggest that a minimum of flow states
should be maintained by the router. This results that a flow is either routed
on the primary (shortest) path or on the secondary (alternate) path depending
on whether it is long lived or not. Figure 3.7 shows this load control mecha-
nism: the flow classifier, identifies long lived flows and stores them in the flow
table. Then the packet forwarding module forwards the packets according to
the contents of the flow table.

Flow Classifier
Packet

Forwarding
Module

Flow Table

Incoming

Packets

Primary
path

Secondary
path

Long-Lived Flow

Short-Lived Flow

Figure 3.7: The flow classifier.

A dynamic multipath routing (DPMR) scheme to improve resource uti-
lization of a network carrying real time traffic by re-routing on going flows
through shorter routes is proposed in [DD01; DDT01]. These approaches alle-
viate instantaneous congestion by allowing rerouting of a flow through a longer
route. In contrast, in this paper, rerouting of an ongoing flow is allowed only
if the new route is more preferable (i.e., shorter) than the current one. DMPR
scheme works based on the route length, and is independent of the network
congestion.

48 MULTIPATH ROUTING 3.4

3.4 Summary
In this section, we have presented the current state of the art in terms of
multipath protocols. We have seen that the current protocols do not use
multipath in a dynamic sense. Some protocols only consider paths of equal
length, but these paths may not always be available. Other protocols introduce
mechanisms for quick failover in case a path breaks. Finally, some protocols
are simply not implementable as they will require too many resources. In the
next sections, we will introduce models for multipath protocols and describe
our congestion-aware protocols.

Chapter4
Multipath Theory and Models

“In theory, theory and practice are the same.
In practice, they are not. ”

–Albert Einstein

In this chapter we will start by detailing the various graph algorithms used
to compute shortest paths both in the Link State and Distance Vector scenar-
ios. Next, we will describe the concept of Selfish routing which will provide a
formal definition of the consequences of congestion insensitive routing. Finally,
we will give a brief introduction and present the most remarkable results of
Queue Theory which will be used later in this document to model our Multi-
path routing protocol.

4.1 Graph Algorithms
The algorithms presented in this section do not provide multipath routes but
only shortest paths. That said, they can be used, with some minor modifica-
tions, to build multipath routes as we will see in Chapter 5.

4.1.1 Dijkstra’s Algorithm
Dijkstra’s Algorithm was proposed by Edsger Dijkstra in 1959 [Dij59], it is a
graph search algorithm which given a graph composed of a set of edges, nodes
and edge weights, finds the shortest path from a given source to all other nodes.
It is therefore obvious that this algorithm is fundamental in Internet routing.

The idea behind this algorithm is simple, consider a city’s road system
with intersections. You wish to find the shortest path between two points

49

50 MULTIPATH THEORY AND MODELS 4.1

in this city. At your start point, you build a list of intersections which are
directly connected to it. Then, select the intersection that is closest to your
destination and mark the road and the starting intersection used. Next, repeat
these steps considering the current intersection as your start point, considering
one intersection at each iteration. Once the list of intersections is empty, the
algorithm ends, and your shortest path is the the one consisting of all the
marked intersections.

We will now give the algorithm description in textual form, the pseudo-code
can be found in Section B.1, followed by a running example of the algorithm
in Figure 4.1, the notation x

y|z is used where x is the node name and y is the

distance to the initial node and z the previous node.

1. Set the distance of the initial node to zero and infinity for all the others.

2. Set all nodes to unvisited except the initial node (current node).

3. For unvisited neighbors of the current node, compute their distance from
the initial node. If this distance is less than their current distance, replace
their current distance with the computed one.

4. Once the distance for all unvisited neighbors have been computed, mark
the current node as visited.

5. If no unvisited nodes remain, then the algorithm is finished. Otherwise
pick the node with the smallest distance from the initial node and set it
as the current node and repeat from step 3.

As is shown by Figure 4.1, Dijkstra’s Algorithm grows a tree from a given
source to all the other nodes for which the distance from the source to all the
other nodes is minimal. We initially start with the original graph at node A
which has a cost of zero. In the second step, we start at A and search for
its closest neighbor (red arrows), we than remove A from the list of unvisited
nodes (Q). Next, having found D as the closest neighbor, we can safely mark
the edge from A to D as part of the shortest path (green arrow). We then
repeat the search for D and find E and remove D from Q. At E we only
consider the edge to C as the others link to nodes which are no longer in Q.
At the end, we obtain the green graph which is the shortest path from A to
all the other nodes. Table 4.1 shows the intermediate steps in the algorithm,
the notation x/y is used where x represents the distance from the initial node
and y is the precedent node in the shortest path.

4.1.2 Bellman-Ford Algorithm
Bellman-Ford’s algorithm [Bel58] is the basis for Distance Vector routing pro-
tocols. It was proposed simultaneously by Bellman and Ford in 1958. It pro-
duces the same result as Dijkstra’s algorithm but it is more flexible, namely it

4.1 GRAPH ALGORITHMS 51

A
0|−

B
∞|−

C
∞|−

D
∞|−

E
∞|−

10

5

1

2

7

9
2 43 6

(a) Initial Graph.

A
0|−

B
10|A

C
∞|−

D
5|A

E
∞|−

10

5

1

2

7

9
2 43 6

(b) Search for node closest to A.

A
0|−

B
8|D

C
14|D

D
5|A

E
7|D

10

5

1

2

7

9
2 43 6

(c) D found, repeat search for closest
node.

A
0|−

B
8|D

C
13|E

D
5|A

E
7|D

10

5

2

1

7

9
2 463

(d) Only consider node C, as others have
already been found.

A
0|−

B
8|D

C
9|B

D
5|A

E
7|D

10

5

2

1

7

9
2 463

(e) Consider only C again, for the same
reason.

A
0|−

B
8|D

C
9|B

D
5|A

E
7|D

10

5

2

1

7

9
2 463

(f) Green edges show the final shortest
path graph.

Figure 4.1: Running Example of Dijkstra’s Algorithm

52 MULTIPATH THEORY AND MODELS 4.1
I A B C D E Q Path Nodes
0 0/- ∞/− ∞/− ∞/− ∞/− A-E ∅
1 0/- 10/A ∞/− 5/A ∞/− B-E A
2 8/D 14/D 5/A 7/D B,C,E A,D
3 8/D 13/E 7/D B,C A,D,E
4 8/D 9/B C A,D,E,B
5 9/B ∅ A,D,E,B,C

Table 4.1: Step by Step of Dijkstra’s Algorithm

allows for negative edge weights1. It is a decentralized algorithm which only
requires nodes to inform its neighbors of their distances to other nodes. Then,
each node receiving this information picks the shortest advertised weight.

In a network, routers which use this algorithm maintain a distance table
containing an entry for each of the nodes in the network. By looking up in
the distance table, a router will know where to send traffic intended for a
particular destination. Below we give a textual description of the algorithm,
whose pseudo-code can be found in Section B.2 followed by a running example
of the algorithm.

• Initialize the graph by setting all distances to∞ and the source’s distance
to zero.

• If the distance from the source to a neighbor using a particular edge is
shorter than the current distance, overwrite the current distance with
the new one. Repeat this step for all nodes and reconsider all edges in
the graph.

• Finally check for negative edge cycles by computing the distance from a
node to its neighbor, if this distance is smaller than the stored distance
then the graph contains negative edge weights.

The order in which the edges are visited is not specified by the algorithm,
therefore we will opt to visit, from left to right, the top horizontal edges first,
then the vertical ones, followed by the bottom horizontal ones, and leave the
diagonal ones last. The notation is the same as in the case of Dijkstra.

It may seem in Figure 4.2, that Bellman-Ford’s algorithm is extremely
efficient. This is not the case, because for each node it analyses every edge in
the network, this is not shown for reasons of brevity and clarity. Bellman-Ford
therefore requires O(|V ||E|) operations, whereas Dijkstra’s algorithm requires

1While this is an interesting fact, it is useless for internet routing. Indeed, negative
weights have no physical meaning.

4.1 GRAPH ALGORITHMS 53

A
0|−

B
∞|−

C
∞|−

D
∞|−

E
∞|−

10

5

1

2

7

9
2 43 6

(a) Initial Graph

A
0|−

B
8|D

C
11|B

D
5|A

E
7|D

10

5

2

1

7

9
3 42 6

(b) At node B, update distances according
to edge traversal order

A
0|−

B
8|D

C
9|B

D
5|A

E
7|D

1010

5

2

1

7

9
3 42 6

(c) Update distance for node C, since it
was missed in the last iteration.

Figure 4.2: Running Example of Bellman-Ford’s Algorithm

54 MULTIPATH THEORY AND MODELS 4.2

O(|E|+ |V |log|V |), where |V | is the number of vertices’s and |E| the number
of edges.

4.2 Selfish Routing
Selfish routing describes the overall negative effects on the performance of a
network when routing decisions are taken selfishly. It is clear that the travel
time between two points is highly dependant on the number of users using a
given route. Yet, most of us will always opt for the shortest path that gets
us to our destination fastest, regardless of the effect this decision has on other
users. This is referred to as Selfish Routing [Rou05].

Routing on the Internet is insensitive to congestion and therefore suffers
from the phenomena explained by Selfish routing. Indeed, shortest path rout-
ing is analogous to commuters traveling to work each choosing the shortest
path and thereby delaying everyone. Figure 4.3 shows a network (referred to
as Pigou’s Example [Pig20]), in which the total traffic is represented by one,
with two paths where the upper one has a delay of one time unit regardless
of congestion and the lower path’s delay is a function of the congestion. It is
reasonable to assume that all traffic will be selfishly routed along the lower
path, and therefore that it will be delayed by one time unit. On the other
hand, if we consider that the traffic is split equally between the two paths, the
overall delay is 3

4 . Indeed, the traffic on the upper path suffers a delay of one
time unit but now the traffic on the lower path is only delayed by half a time
unit. Therefore, we easily see that no traffic is worse off and moreover half of
the traffic is delivered significantly faster. Clearly, the phenomenon illustrated
in the first situation could be offset by increasing the link capacities but this
is not a tenable nor scalable solution in the longterm.

S D

d(x)=1

d(x)=x

Figure 4.3: Pigou’s Example

Selfish Routing also provides us with a further justification of deploying
multipath routing protocols. Before we develop further this justification we
must first proceed to the definitions of a few concepts which are more formally
detailed in Section A.4. First, we must redefine the notion of a flow which will
be limited to this section only.

4.3 ANALYTICAL MODELS 55

Definition. A flow f is interpreted as the aggregated routes chosen by the
traffic, with fp measuring the amount of traffic on route p.

Note: The term flow used here differs significantly from our previous def-
inition. This definition only hold for this section and during the rest of this
document we will revert to our previous definition.

• Nash Flow can be seen as a flow routed selfishly, as in the first case given
in Figure 4.3.

• Optimal Flow is the flow with minimum possible delay, as in the second
case of Figure 4.3.

• Price of Anarchy is the worst-possible ratio between the delay of a Nash
flow and that of an optimal flow.

With these definitions at hand and if we consider multipath networks with
only linear delay functions, Selfish routing tells us that the upper bound2

on the Price of Anarchy is 4
3 (see proof in Section A.4). This result further

justifies our exploration of multipath networks, because in a multipath network
with selfish users it would be expected that additional problems in congestion
would arise and therefore deteriorate the performance of the network. This
result shows us that this is not the case, and that even in a multipath network
with only selfish users there is “only” about a 33% loss in performance, which
gives us hope that we may improve the performance of a multipath network
significantly while paying a relatively small price in the worst-case scenario (ie.
only shortest paths available). Indeed, as we will see in the next chapter, our
protocol attempts to leverage all feasible alternative paths and defaults to the
shortest path (selfish route) if the alternative paths are not available. As the
delay functions increase in degree (ie. polynomial delay functions), the Price
of Anarchy increases as well.

4.3 Analytical Models

In this section we present some analytical models based on Queuing Theory
which will allow us to model multipath protocols. It should be stated that
an exact analysis of multipath communication is too complex [Kle72], however
the independence assumption of Section 4.3.1 simplifies the calculations and
provides a reasonable approximation.

2An upper bound also exists for all polynomial delay functions, which is given in Section
A.4, but for the sake of clarity we only refer to linear cost functions here.

56 MULTIPATH THEORY AND MODELS 4.3

4.3.1 Queue Theory
A queuing system [Kle75], as shown in Figure 4.4 is characterized by the
following parameters:

Arrivals Waiting Room Service Room Departure

Service Process Queuing
Policy

Service Process Departure
Process

Figure 4.4: A standard queue.

• Arrival process (A) is defined by the distribution of the inter-arrival time
of clients into the queue. The only interesting arrival process in this thesis
is exponential (Markovian).

• Service time distribution (B) represents the time required to serve a
client present at the top of the queue. We will only deal with Markovian
distributions.

• Number of servers (m) present in a single queue. We will deal with
models containing one or more servers.

• Capacity (K) of the queue is the maximum number of clients which can
be present in the system at any given moment.

• Population size (N) represents the potential number of clients whether
finite or infinite. We will consider situations with infinite populations.

• Queuing policy (D) defines in which order the next client is selected from
the queue, eg. first in, first out (FIFO).

Kendall’s Notation is often used to identify the type of queue used which
is denoted by A/B/m/K/N/D. The parameters K, N, and D are often omitted
indicating that they are either infinite or that a FIFO policy is used.

The arrival and service time processes can be either of the following:

• Markovian - A Poisson distribution [Kin93] where the inter-arrival times
are independent and exponentially distributed.

4.3 ANALYTICAL MODELS 57

• Deterministic - constant inter-arrival/service time.

• General Distribution where the underlying probability density function
is arbitrary.

It is worth presenting some general results and notations which apply to
all queuing systems:

• λ is the average inter arrival rate of clients into the systems.

• 1
µ , the average service time per server.

• ρ is the utilization factor of the queue (λµ and λ
mµ in the multi-server

case). For the queue to be stable, we should have 0 ≤ ρ < 1.

• T is the total average time in the system (queue + service).

T = W +
1

µ
=

1

µ− λ
(4.1)

• W is the average waiting time in the queue.

W =
ρ

µ− λ
(4.2)

• N̄ is the average number of clients in the system given by Little’s Result
[Lit61].

N̄ = λT (4.3)

• N̄q is the average size of the queue.

N̄Q = N̄ −mρ (4.4)

• PN is the probability that there are N clients in the system.

In the next sections we will present remarkable results for both the M/M/1
and M/M/m queues. We will also describe Kleinrock’s Independence Assump-
tion.

M/M/1 Queue

The M/M/1 queue is composed of exponentially distributed inter-arrival pro-
cess and service times along with a single server model. The M/M/1 queue is
the simplest form a queue can take, while still remaining interesting. While
being simple its behavior is similar to other more complex cases.

58 MULTIPATH THEORY AND MODELS 4.3

Since the inter arrival distribution is Poisson, the arrival rate is given by λ
and the service time is 1

µ , which gives us directly the following relations:

N̄ =
ρ

1− ρ
(4.5)

Using Little’s Result (Equation 4.3) and Equation 4.4, we obtain the fol-
lowing relations for W and T .

W =
ρ

µ(1− ρ)
(4.6)

and,

T =
1

µ(1− ρ)
(4.7)

All the relations given for N̄ , T , and W demonstrate common behavior
with respect to the utilization factor ρ, more precisely they behave inversely
to 1− ρ. Therefore, as ρ tends towards one the average delays and queue sizes
tend towards infinity as shown in Figure 4.5.

M/M/m Queue

We will now consider a generalization of the M/M/1 queue to m servers. In
this model, a single queue forms the entry to the system and a collection of
servers will handle the first client at the head of the queue. As previously, λ
is the arrival rate and 1

µ is the average service time. Also, we have here that

ρ = λ
mµ .

Before presenting the steady state relations relative to an M/M/m queue,
we must first distinguish the situations where the queue is busy and when it
is not, which help establish the steady state relations. This is given by the
probability of finding that all servers are busy when a new client arrives:

PQ =
p0(mρ)m

m!(1− ρ)
(4.8)

where,

p0 =

[
m−1∑
n=0

(mρ)n

n!
+

(mρ)m

m!(1− ρ)

]−1

(4.9)

PQ is known as the Erlang C formula [Erl17] and is widely used in tele-
phony. Now we give the following relations for the number of clients in the
system and in the queue, respectively. The complete derivation of these rela-
tions can be found in citeKLEVol1 and other Queuing Systems literature, the
author only wishes to remind them here.

4.3 ANALYTICAL MODELS 59

ρ→

T

1

1
µ

Figure 4.5: Average delay as a function of ρ.

60 MULTIPATH THEORY AND MODELS 4.3

N̄ = mρ+
ρPQ
1− ρ

(4.10)

and,

N̄Q =
ρPQ
1− ρ

(4.11)

Using Little’s Result (Equation 4.3) and Equation 4.4, we obtain the fol-
lowing relations for the average time (network delay) and the average waiting
time (forwarding and processing time) spent in the system, respectively.

T =
1

µ

(
1 +

PQ
m(1− ρ)

)
(4.12)

and,

W =
PQ

mµ (1− ρ)
(4.13)

Kleinrock’s Independence Assumption

In the two models, presented above, we have assumed that both the arrival
and service times respect the Markovian property, ie. the future state of the
system depends only on the present state. Moreover Burke’s Theorem [Bur56]
states:

Theorem 1. Burke’s Theorem. The steady-state output of a queue with N
channels in parallel, with Poisson arrivals and message lengths chosen inde-
pendently from an exponential distribution is itself Poisson-distributed.

Consider now the situation, which exists within data networks, where many
queues interact in the sense that the output from one queue is the input of
another (or possibly several others). Given Burke’s Theorem and the models
we have presented, one might think that delays in data networks are simple
to obtain via such models. Unfortunately this is not the case, the message (or
packet) inter-arrival time and the message lengths beyond the first queue in
the network become strongly dependent. Due to the fact that the service times
at each queue are a function of the message length and therefore the arrival
time at each subsequent queue is no longer Markovian [Kle72].

1 2

Figure 4.6: A tandem network.

4.4 SUMMARY 61

Figure 4.6 illustrates two queues in tandem where packet lengths are expo-
nentially distributed and independent of each other as well as the inter-arrival
times at the first queue. We can therefore state that the first queue follows the
M/M/1 model, but we cannot say the same about the second queue because
the inter-arrival times at the second queue are strongly correlated with the
packets lengths. Indeed the inter-arrival time at the second queue is equal
to the transmission time at the first queue. As an analogy to this situation,
consider a truck traveling on a narrow busy road along with several fast cars.
Typically the truck will see an empty road ahead of it while it is being closely
followed by a line of cars. The dependence between inter-arrival and message
lengths (and therefore service time) is a source of great mathematical com-
plexity for the analysis of queuing networks, in which even the simple case of
the tandem network has no known exact solution [BG92]. A full mathematical
demonstration of this dependence is given in Section A.3.

As previously shown the dependence appears for queues which are internal
to the network. Therefore, one might ask: Why is there a difference be-
tween the initial (network entry) queue and internal queues? The answer is
straightforward, the initial queue receives its messages from an external source
consisting of many subscribers (in our case people or computers) which are all
generating messages. The overall message generation by the subscribers ex-
hibits an independence [Kle72] since one message is different from one person
to the next. In a general network a similar situation exists. Indeed, more than
one queue can deliver messages to any given queue, similarly any given queue
is receiving messages from many other queues. If we accept this observation
then we can define the following assumption:

Theorem 2. Independence Assumption. Each time a message is received
at a queue within the net, a new length v is chosen for this message from the
following distribution:

P (v) = µe−µv

Obviously, such an assumption does not correspond to the reality with a
general network. Nevertheless, it results in a far simpler mathematical mod-
eling of networks, while still maintaining an acceptable degree of accuracy
[Kle72].

4.4 Summary
This section has presented the modeling tools that we have used to describe
our protocols. As we have shown, it is clearly beyond the scope of this docu-
ment to attempt to describe multipath networks accurately due to the sheer
mathematical complexity involved.

62 MULTIPATH THEORY AND MODELS 4.4

We have also discussed and given justification for deploying multipath pro-
tocols. While the use of multipath may seem evident, using longer paths rather
than only the shortest path is less clear. We have seen that routing selfishly (ie.
always onto the shortest path), causes the performance to drop significantly.

Chapter5
The MultiRoute Family

“There is always a better strategy than the one you have;
you just haven’t thought of it yet”

– Sir Brian Pitman

We now present the MultiRoute suite of congestion-aware inter-gateway
routing protocols. But first, we should define the path discovery strategy
employed by MultiRoute variants as it is identical and fundamental to all
protocols. Then, we will describe MultiRoute Monitoring Protocol (MMP)
which is responsible for the dissemination of congestion information throughout
the network. While it differs slightly from protocol to protocol, its essential
basis stays unchanged within each protocol.

Next, we will follow RFC 1264 [Hin91] which describes the procedures for
creating and documenting standards on routing protocols. While this RFC has
been obsoleted for practical reason, the author still believes that some aspects
of the RFC can be used.

5.1 Path Discovery
Modern computer networks may offer many paths from any source to any
destination but current protocols only employ the shortest path or make use
of multiple paths of minimum cost if they exist.

The first goal of any routing protocol is to discover the shortest path, while
a multipath protocol must also discover the possible alternative paths. We
have employed a technique similar to the one present in IGRP [Bos92], which
allows a router to forward packets through paths whose length is less than the
product of the shortest path length and the variance factor. Since such an

63

64 THE MULTIROUTE FAMILY 5.1

approach may lead to routing loops1, we have employed a slightly modified
Relaxed best path criterion [Vil99].

5.1.1 MultiRoute Path Construction (MRPC)

MultiRoute’s path construction algorithm relies heavily on Dijkstra’s Shortest
Path algorithm [Dij59]. However, the idea here is not only to discover the
shortest paths between any source-destination pair, but also find all the avail-
able paths whether they are of equal length or within an acceptable delta of
the shortest path length. This is achieved through the use of two parameters
to the algorithm, the first represents the tolerable cost deviation (δ) which we
accept, the second being the maximal hop count deviation (H). Both of these
parameters are set by the network engineer, and should be chosen carefully as
they directly affect the latency versus throughput trade-off.

The MRPC algorithm can be explained as a two phase algorithm. First, the
algorithm constructs a set of paths identical to OSPF, ie. the shortest paths,
each shortest path cost is then set as the reference cost. Second, considering
the δ parameter, the algorithm now computes the potentially longer alternative
paths. Let the value α to be the shortest path from some node A on route to a
destination node B, and set β as the length of the alternative path which passes
through node C. The algorithm, then, visits the alternative path possibilities,
by checking whether β ≤ α+δ, and if so it adds this alternative path to the list
of available paths. By the end of the algorithm we are guaranteed to obtain a
set of alternative paths whose lengths are no longer than δ plus the shortest
path length (See proof in Section B.3).

Figure 5.1 shows the output of the algorithm run with δ = 3 and H = 3 and
initial source 1 and destination 6. The shortest path is 1-8-4-7-6 whose cost
is 15. It can be easily seen that the two other paths, 1-2-3-5-6 and 1-8-4-5-6,
have costs 18 and 16 respectively. These results respect the property that no
alternative is longer than the reference cost plus δ.

It is clear that such a modification to Dijkstra’s Shortest path algorithm
introduces loops as can be seen in Figure 5.1. A rather simple solution to this
problem is to only select paths whose next-hop is closer to the final destination.
This is called the Relaxed Best Path Criteria and guarantees that no loops can
appear as we route only onto shorter paths. We apply a slight modification
here, and state that we shall only route onto a path whose next-hop is closer
in terms of distance to the final destination with respect to the ingress port.
Since, a router may have multiple distances to a given destination associated
to different paths (and therefore ports), we perform computations with respect
to the ingress port a packet came on rather than the ingress router.

1Routing onto paths which are longer than the shortest path is known to lead to routing
loops.

5.1 PATH DISCOVERY 65

1

2

8

3

4 5

7 6

0

0

6

5

65

6
4

6
7

5
7

7 4 4
6

7
6

73

3
2

62

ww�

1

2

8

3

4 5

7 6

0

0

6

5

6 4

7

7

3

6

Figure 5.1: Output of the MRPC algorithm

66 THE MULTIROUTE FAMILY 5.1

In order to avoid pathological cases, the hop count must be kept within
a reasonable value compared to the shortest path’s hop count. For example,
consider a graph where the shortest path is made up of links whose costs are
much greater than one and an alternative path is made of many links whose
costs are one. It could happen that, the alternative path was selected, much
longer in terms of hop count but close in terms of cost. This situation must
be avoided as the latency for communication will be heavily affected2. The
process for pruning such paths is similar to the one described above.

5.1.2 Algorithm Sketch

In the previous section, we mentioned that the MRPC algorithm can be seen as
a two phase process. While this is a practical way to visualize and understand
the algorithm, the implementation involves only a single pass over the network
graph.

Starting with a network graph and the set of associated vertices and an
initial vertex S, we will detail the step taken by the algorithm:

1. Set the distance of the initial node to zero and infinity for all the others.

2. Set all nodes to unvisited except the initial node (current node).

3. For unvisited neighbors of the current node, compute their distance from
the initial node. If this distance is less than their current distance, re-
place their current distance with the computed one and reinitialize the
neighbor list of predecessors and append the current node to its prede-
cessors.

4. If the alternative distance is less than the current shortest distance plus
the tolerance value δ, then append the alternative node to the predeces-
sors list, as well.

5. Once all the unvisited nodes have been processed, mark the current node
as visited.

6. If no unvisited nodes remain, then the algorithm is finished. Otherwise
pick the node with the smallest distance from the initial node and set it
as the current node and repeat from step 3.

2Practically, latency is significantly affected by the delay in the router

5.2 MMP - MULTIROUTE MONITORING PROTOCOL 67

By running the algorithm on Figure 5.1, we obtain the following output:

Vmin1 2 3 4 5 6 7 8 Q
0 0/-∞/−∞/− ∞/− ∞/− ∞/− ∞/− ∞/−1-8
1 0/- 0/1 ∞/− ∞/− ∞/− ∞/− ∞/− 0/1 2-8

2,8 0/1 6/2 {6,5}/{2,8}∞/− ∞/− ∞/− 0/1 3-7
3,4 6/2 {6,5}/{2,8}{10,12}/{3,4} ∞/− {13,12}/4 5-7
5,7 {10,12}/{3,4}{15,16}/{7,5}{13,12}/4 6
6 {15,16}/{7,5} ∅

Figure 5.2: Step-by-Step of MRPC according to the algorithm.

The pseudocode and the proof for the algorithm can be found in Section
B.3

5.2 MMP - MultiRoute Monitoring Protocol
With each congestion-aware routing protocol is associated a monitoring pro-
tocol which provides routers with crucial network status information. MMP
achieves this goal by employing an innovative representation of a routers rout-
ing table, which then enables each router to represent the actual congestion
value as it wishes. In this section, we will describe the fundamentals of MMP
along with its associated packet structure.

MMP is an in-band monitoring protocol as opposed to an out-of-band pro-
tocol, such as SNMP [CFSD90] or sFlow [WLL04]. Out-of-band protocols are
not adapted to the design of a congestion-aware routing protocol, due to the
simple fact that they require a central entity (or management station) to col-
lect the statistics from the monitored devices. Such a management station
creates a single point of failure, which is obviously unacceptable for a routing
protocol which has to be resilient to failures.

Moreover, a centralized approach poses a major timing problem. Network
statistics are all sent to the management station, from there they are sent
back to the concerned router in a format the router can interpret and take an
appropriate action. It is clear that the time required for the statistics to travel
from the router, be processed at the management station and finally back to
the relevant router would violate the requirement a congestion-aware routing
protocol has for fresh and timely statistics.

We have therefore developed MMP, which is a decentralized in-network
monitoring protocol. The basic premise is that each router polls its own local
counters. Based on these values, each router applies a function called the
transfer function, to generate a representation of the polled value. The actual
transfer function used by the router at this point is unspecified, it is up to the

68 THE MULTIROUTE FAMILY 5.2

specific routing protocol to supply it. The output of the transfer function is
then packed into a data structure called the Update Message. So far we have
described the general idea behind MMP, but we have not said anything about
how a router interprets the information it receives. This is exactly what a
Routing Mask (RM) does.

A Routing Mask allows remote routers to make sense of the values received
in Update Messages from other routers. By relying on the order of the routing
tables, we construct the RM. The actual ordering relation is irrelevant as long
as the same one is used by all routers in the network. RM s consist of a
sequence of zeros separated by ones which corresponds to the structure of the
routing table as shown in Figure 5.3. A set of one or more zeroes define the
field containing the output of the transfer function, which will be filled in by
the transfer function when constructing the update messages. It indicates the
set of links which can be used to send packets to the next destination. A one is
the delimiter which indicates the transition to the next network in the routing
table. Still, this does not explain how a router understands the meaning of
this sequence of bits. The solution to this is simple, initially, each router
computes its RM including the area reserved for the output of the transfer
function and sends it to its neighboring router. Once a router receives the
initial RM from its neighbor, it compares it with the order (not the contents)
of its own routing table, therefore allowing the router to interpret which parts
of the RM refer to which network and the length of the Update Messages to
expect. Concretely, this means that for every one encountered in the RM,
the router determines that the next entries (ie. the zeroes) correspond to the
next network in the routing table. Basically, ones in the RM can be seen as
an instruction which tells the router to move on to the next network entry
in the routing table. Clearly, if a new network appears then all the routers
must recompute their RMs. The interpretation of the output of the transfer
function is left unspecified and is completely dependent on the specific routing
protocol. It should also be noted that an Update is only send to neighboring
routers when it is different to the previous one.

Routing Masks provide a simple method for representing all a routers sur-
rounding congestion while retaining the flexibility to enable a protocol designer
to develop his own representation of congestion. Moreover, RM provide a
lightweight mechanism to exchange detailed congestion information. As we
will see in Section 5.3, by only modifying the transfer function, we can obtain
protocols which have very different characteristics.

5.2.1 MMP Packet Structure
MMP consists of three types of packets, one header packet and two data pack-
ets. MMP packets can either be encapsulated in Ethernet or IP packets as
they define an Ethernet type and an IP protocol.

5.2 MMP - MULTIROUTE MONITORING PROTOCOL 69

A B C D E F
SRC

DST

A LOCAL P1 P2 P1, P2 P1, P2 P1, P2

Routing
Mask 0 1 0 1 0 001 001 001

Figure 5.3: A Routing Mask with its associated routing table

5.2.2 MMP Header

The MMP header consists of three fields, which are packed with the most-
significant bit first (ie. big-endian format).

• The 8-bit Type field indicates the type of MMP packet which is encap-
sulated by this header. It can either be STATUS or UPDATE.

• The Code field is used to determine the status of this packet. This field
is relevant to both STATUS and UPDATE MMP types. This field is
8-bits

• The 16-bit Checksum field is used to store the checksum of the entire
MMP packet. When a router receives an MMP packet, it computes
the checksum for the packet. If the computed value is different to the
checksum field, the packet is discarded.

• The 48 bit Data field which will contain extra information about the
router or port status. It is intentionally large to accommodate for many
states.

The header packet is 32 bits long and contains a data field which, strictly
speaking, is not part of the header as it will contain the encapsulated packet
(ie. the status or update packets).

70 THE MULTIROUTE FAMILY 5.2

ChecksumCodeType

Figure 5.4: MMP header

5.2.3 Status Packet
A MMP status packet is used to convey information about a router or some
port on a router. The packet contains 3 fields and one data field which is used
to provide a detailed explanation of the status, if one is available from the
router.

• The Chassis Address is the mac address of the router which is concerned
by this message.

• An optional 32 bit Port Number if the message is about a port status.

• The 16 bit State field is made up of 6 different possible types:

– Fail - Failure of a router or port

– New - New router/port announcement

– Update - Status update of router/port (details are contained in the
data field).

– Root - Used for specific algorithms (eg. Spanning Tree, Diffusion
Algorithms) to designate the Root of a computation.

– Init - Indicates the beginning of a computation, all routers must
clear their variables.

– Terminate - Ends the protocol or the computation.

5.2.4 Update Packet
The MMP update messages are designed to send information to routers on the
collected statistics or to enable a computation (eg. Diffusion Computation).
It is 160 bits long and contains 4 fields.

• The Chassis Address is the MAC of the sending node/router of this
update message (48 bits).

• If relevant, the Port is the originating port of this message (32 bits).

5.2 MMP - MULTIROUTE MONITORING PROTOCOL 71

Chassis Address

Port State

Data

Figure 5.5: MMP status packet

Chassis Address

Port Value

Parent Node (Chassis Address)

Figure 5.6: MMP update packet

72 THE MULTIROUTE FAMILY 5.3

• Value can signal the distance from one node to another (eg. current node
vs. source node) when used in the context of a distance computation.
Otherwise, when the protocol is running, initially it contains the Routing
Mask and all subsequent packets contain the update Update Message.
Currently, this field is 128 bits long, which is more than sufficient for our
tests.

• Parent Node is used to store the MAC of the parent node of an aggre-
gation step. Concretely, this refers to the node which actually performs
the aggregation is stored in this field (48 bits).

5.3 The Protocols
In this section we will detail three routing protocols built on top of the path
discovery method described above, and the MMP protocol. Each protocol
has its own specific manner for describing congestion. MultiRoute describes
congestion as a single bit value, whereas StepRoute provides a method to define
congestion classes. Finally, PathRoute describes congestion from any source
to the desired destination. It should be also noted that once a next-hop is
chosen for a flow it remains so for the duration of the flow’s lifetime. In other
words, a routing decision is final and immutable as long as the selected link
does not fail, if the link does fail another decision will be taken.

All the protocols described below have been implemented using NOX [GKP+08]
and OpenFlow [MAB+08] which is described in Section 6.1.1. OpenFlow en-
ables the programmer to control the behavior of a switch or router via a single
API, and NOX gives simple access to this API using several wrapper functions.
While enabling innovation, OpenFlow and NOX, also impose their overhead
since ultimately the controller (which is running on a PC somewhere) decides
where traffic should be directed. Hence, initially a switch/router does not
know where to direct traffic and therefore it must query the controller to ob-
tain this information. This caused an experimental delay in route setup which
is caused by the experimental technique. This will be described in more detail
in Section 6.1.1.

The examples given in this Section refer to the topology in Figure 5.7 and
to the connectivity suggested in Table 5.1.

5.3.1 The Classical - MultiRoute

The classical implementation of MultiRoute is based on a single bit represen-
tation of congestion, which allows it to leverage local and remote congestion
information. It is based on an approach similar as the one used in Random
Early Marking [ALL00] (REM).

5.3 THE PROTOCOLS 73
Destination

A B C D E F

S
ou

rc
e

A L 1 1 2 2 2
B 1 L 1 1 1 2
C 1 1 L 1 1 2
D 1 1 1 L 1 1
E 2 1 1 1 L 1
F 2 2 2 1 1 L

Table 5.1: The connectivity table. Each entry shows the number of possible paths.

Protocol Detail

As stated above, MR is modeled on REM. Each router probabilistically marks
a link as congested, this congestion information is then sent to neighboring
routers allowing them to modify their route selection algorithm. Links are
marked congested following an exponential measure of the link congestion (ie.
the transfer function), doing so ensures that the marking probability is also
exponential for the path congestion measure.

Achieving the behavior described above requires that each router to obtains
both the available paths for routing and their associated statistics. Conve-
niently, the Path Discovery algorithm described in Section 5.1.1 delivers Mul-
tiRoute (MR) [ASM10] with a set of valid multipaths available for routing.
Based on this set of links, MR builds a preliminary routing table indicating
the set of paths available for each destination. This, then, allows MR to con-
struct the Routing Mask (shown in Figure 5.3) representing the structure used
by the congestion updates. The local and remote congestion information re-
ceived from neighboring routers allows the current router to build the final
routing table which only contains the best (in terms of congestion) next-hop
to all destinations. The algorithm by which this table is built is detailed in
Section 5.3.1.

The update message received from a neighboring routers is compared to
the Routing Mask obtained initially from that same router. By aligning the
Routing Mask and the update message, as shown in Figure 5.8, it is clear to the
current router how to interpret the update message and therefore it is evident
which paths for each destination are congested. Thereby, enabling a simple
method to compute the final routing table.

Actually, the final routing table can be pre-computed as all the information
to determine the next-hop for each destination is available before packets to
these destinations arrive. Pre-calculating the final routing table is justified by
the fact that in the worst case update messages will be received at one second
intervals as this is the minimal polling interval router support for counter

74 THE MULTIROUTE FAMILY 5.3

A

C

E

F

D

B

Figure 5.7: The reference topology.

updates [ASCSA07]. Moreover, it minimizes the flow setup time as the router
now only needs to perform a lookup in the routing table to obtain the best
next-hop.

MultiRoute’s Monitoring Protocol delivers the MR with raw statistics from
the interface counters. MR then uses the transfer function shown in Equation

5.3 THE PROTOCOLS 75

Routing
Mask

Update
Vector

0 1 0 1 0 1 00 1 00 1 00

0 1 1 1 0 1 10 1 10 1 10

A B C D E F

Destinations

Figure 5.8: Comparing a Routing Mask with its an Update Vector

5.1 to compute a 1-bit probabilistic marking of the router-router links, where ∆
is the difference between two consecutive counter values and Γ is the capacity
of the router-router link. Finally, Φ is a scaling factor set by the network
operator. Basically, the larger this factor is the more probable a link will be
marked.

P [Link is congested] = 1− Φ−
∆
Γ (5.1)

As the link utilization (ρ = ∆
Γ) increases, the probability to mark the link

increases exponentially, as shown in Figure 5.9, where the dotted lines show
the curve for different values of Φ. The 1-bit marking is derived by random
variable who value is compared to the output of the transfer function, if the
random variable is smaller than the output of the function then the linked is
marked as congested. The rational behind this is that we want to rapidly mark
a link as congested in order to shift traffic from it as early as possible.

Another factor that is important is the Routing Mask length obtained when
using this transfer function with the classical implementation of MultiRoute.
Trivially, the Routing Mask length, given in bits, is shown in Equation 5.2.

76 THE MULTIROUTE FAMILY 5.3

ρ = Link Utilization

P
ro

b
.

to
se

t
co

n
ge

st
io

n

1

1
f(ρ) = 1− φ−ρ

Figure 5.9: The transfer function used in Classical MultiRoute.

5.3 THE PROTOCOLS 77

RM Length = (N − 1) +N

N∑
i=1

Ci
N

= (N − 1) +NC̄

= N(1 + C̄)− 1 (5.2)

Equation 5.2 gives the derivation of Routing Masks where N is the number
of networks, Ci is the number of uplinks per destination. It is difficult, if
not impossible, to predict the Ci values as they are linked to the topology
therefore we define C̄ as the average number of uplinks per destination which
is equal to the sum of Ci divided by N . The first term, (N − 1), represents
the number of separator bits in terms of number of networks and the second
term represents the number of bits required to represent the congestion per
destination. Based on this equation we have the 3D plot in Figure 5.10 of the
length of the Routing Mask as a function of the average number of uplinks and
the number of networks.

Figure 5.10: Routing Mask Length as a function of N and C.

Features and Limitations

MR provides an extremely lightweight mechanism to represent congestion
within a multipath network. The crucial information describing which link to

78 THE MULTIROUTE FAMILY 5.3

which destination is congested is maintained by the Update Messages relying
on the Routing Masks. Therefore, rather than aggregating congestion informa-
tion at each router, MR provides congestion information for each router-router
link and represents them clearly to all routers in the network using a single
bit. Due to the use of only a single bit to represent congestion, MR is best
suited for networks in which flows are long-lived and each flow consumes the
entire bandwidth offered by the router-router link.

Moreover, MR uses a minimal amount of processing power at flow setup
time as it pre-computes the best next-hop for each destination. The selection
algorithm which builds the final routing table requires itself few resources.
First, it does not create any extra data structures, thereby requiring no extra
memory. Second, it is essentially a comparison algorithm and the elements of
the comparison are delivered in a simple form (Update Message). Therefore
the computation is straightforward as shown in Section B.4.1. Overall, the
protocol maintains just one extra table more than legacy protocols (such as
Shortest Path protocols). All protocols maintain a routing table which contains
the next-hop to any destination, MR also maintains the preliminary routing
table which contains all the possible paths to any destination obtained from
the path construction component.

As MR functions by receiving signals from neighboring routers, it is clear
that the main problem is the signal propagation time. Due to the congestion
on the paths, signals may either be delayed significantly or in the worst case,
lost. MMP, which is responsible for delivering the monitoring messages, does
not verify if messages arrive at their destination (thereby behaving like UDP).
As congestion increases, the probability to delay or lose packets increases sig-
nificantly but as MR monitoring messages only contain an Update Message
plus an MMP packet header they are very small (typically less than 200 bits
as shown in Figure 5.10). Therefore, the risk of delaying or losing packets is
mitigated by the size of the packets themselves.

Another limitation is given by the Routing Mask length itself. It is known
that the Maximum Transmission Unit (MTU) for an IPv4 path is 576 bytes,
and the MMP protocol does not support fragmentation3. By setting RM
Length to 576 ∗ 8 bits in Equation 5.2, we can see that there is an inverse rela-
tionship between the number of networks and the average number of uplinks
per destination as shown in Figure 5.11. Considering that MR is an interior-
gateway routing protocol, an unreasonably large number of networks and/or
parallel uplinks would be required to exceed the MTU limit.

3Moreover, fragmentation is nowadays considered harmful [KM95]

5.3 THE PROTOCOLS 79

C̄

N

1000 2000 3000 4000 5000

10

20

30

40

50

Figure 5.11: Plot of the Routing Mask Limitation

80 THE MULTIROUTE FAMILY 5.3

Routing Algorithm

The Routing Algorithm in MR, given all the congestion indications, constructs
the best (or least congested) next-hop based on the set of available paths ob-
tained from the preliminary table. The pseudocode is given in Section B.4.1.
The Routing Algorithm considers both local and remote congestion informa-
tion and we distinguish three cases in which the algorithm operates:

• Case I - All local paths uncongested. In this case, we consider the remote
congestion statistics relevant to the destination under consideration. If
there are multiple local paths available, for each potential next hop the
number of uncongested paths are counted. The local path associated to
the next hop with the least congested paths is selected, thereby maxi-
mizing the probability that the traffic will be forwarded unhindered. On
the other hand, if all the remote congestion counts are equal or if there
are multiple candidates, the shortest path is selected.

• Case II - Some local paths are congested while others are not. Here
we first consider the uncongested local paths in ascending path lengths.
Then the associated remote paths are inspected, if one is found that is
not congested then it is selected as a next hop. Otherwise, the shortest
path is selected. This case will attempt to fill available and uncongested
paths, thereby increasing the overall throughput of the network.

• Case III - All local paths are congested. In this last case, we perform a
search which is similar to the first case. The idea being that we want to
find a path that is well suited to accommodating more traffic. If none is
found, we select the shortest path again.

It is clear from the outline of the algorithm that in the worst case the
algorithm will always select the shortest path. Moreover, the algorithm favors
the shortest path first, and only once this path is considered congested does
the algorithm switch to an alternative path. This approach guarantees that
the algorithm cannot perform worse in terms of throughput than the current
shortest path algorithms.

Consider now the network shown in Figure 5.7 and the associated routing
table given in Table 5.1, and multiple flows originating from the network under
router F with destination network at router A. For the purpose of this example,
let us assume that the flow’s inter-arrival time at the source router is greater
than the update interval at neighboring routers4. We also assume that each
flow is long lived and immediately consumes the entire bandwidth of the path it
utilizes. There are four paths between networks F and A, namely F-D-B-A (1),

4In practical terms, these routers poll their local statistics at one second intervals, there-
fore the update time is one second plus the update message transmission time.

5.3 THE PROTOCOLS 81

F-D-C-A (2), F-E-C-A (3), and F-E-B-A (4), path (1) is considered to be the
shortest followed by path (2) and so on. As there are only two distinct paths
we can expect to double the network throughput with respect to a shortest
path algorithm.

When the first flow arrives, it is bound to path (1) as this path is considered
to be the shortest, and due to Case I, this then causes an update from the
routers F, D, and B indicating that their links are congested. When the next
flow arrives, the decision is taken by Case II of the algorithm, and therefore the
algorithm will consider the paths with next hop E as this link is not congested.
The path (4) is excluded, because the link between B and A is congested due
to the first flow. Therefore the second flow is bound to path (3). Finally, for
each subsequent flow, Case III of the algorithm will apply. The next two flows
will be bound to paths (2) and (4) respectively, and the rest will be sent along
the shortest path.

5.3.2 The Organizer - StepRoute

StepRoute [ASM11] is a variant of MultiRoute which enables the network ad-
ministrator to define congestion classes. These classes allow for a finer control
of the congestion of the network and therefore enable for a more efficient use
of the network resources.

Protocol Detail

StepRoute contrasts with MultiRoute by first extending the Routing Masks
to accommodate the definition of congestion classes. Second, it uses a linear
transfer function rather than an exponential one in order to simplify the defi-
nition of the congestion classes. Based on a predefined value, a link is deemed
to be part of one of the congestion classes.

By classifying congestion into classes and using Routing Masks, we are able
to deliver timely information to routers while maximizing the accuracy of the
delivered statistics. Each router has to define the same number of congestion
classes, otherwise neighboring routers will not be able to interpret the Routing
Masks received correctly.

γ =
∆

Γ
(5.3)

In a similar fashion to MR, StepRoute obtains its raw statistics from MMP.
StepRoute then classifies the link into the corresponding congestion class based
on the transfer function, shown in Equation 5.3, and the congestion classes
defined in Table 5.2 where the α values are the congestion class boundary value.
As the link utilization increases the link is classified into a higher congestion

82 THE MULTIROUTE FAMILY 5.3

classes, thereby simplifying the process by which the Routing Algorithm will
select the next-hop, ie. favor links in lower congestion classes.

Class 1 0.0 < γ ≤ α1

Class 2 α1 < γ ≤ α2

Class i αi−1 < γ ≤ αi
Class P αP−1 < γ ≤ αP = 1.0

Table 5.2: Congestion Classification.

Figure 5.12 depicts the linear transfer function used in StepRoute. In this
variant of MultiRoute, it is preferable to use a linear transfer function as we
wish to distribute traffic equally amongst all the links we have at our disposal.
If an exponential transfer function had been used then links would quickly fall
into the highest congestion class and links with unused bandwidth would not
be used.

ρ = Link Utilization

C
on

g
es

ti
o
n

V
a
lu

e

1

1
f(ρ) = ρ

Figure 5.12: The transfer function used in StepRoute.

Using such a classification mechanism we can simply encode the conges-
tion class number in the Update Message. Therefore if we would like to rep-

5.3 THE PROTOCOLS 83

resent m classes of congestion where m can be expressed as 2n, then we only
need n bits per router-router link are needed to represent all the congestion
classes. Therefore, as the number of congestion classes grows exponentially,
the space required to represent them, in the Update Message, grows linearly.
This method allows us to describe many congestion classes while employing a
lightweight, and therefore easily distributable, representation.

On the other hand, using multiple bits to represent the congestion class will
require longer Routing Masks as each entry for each destination in the Routing
Mask is now n bits long. We therefore have Equation 5.6 which represents the
length of the Routing Masks in StepRoute.

L = (N − 1) +N

N∑
i=1

nCi
N

(5.4)

= (N − 1) +NnC̄ (5.5)

= N(1 + nC̄)− 1 (5.6)

Equation 5.6 is identical to Equation 5.2 if we set n, the number of bits
required to represent the congestion classes, to one. Therefore, all the other
terms in Equation 5.6 represent the same thing as for MR.

Features and Limitations

As StepRoute is built on top of MultiRoute it inherits all the functionality that
MR had, but also it also suffers from the limitations of MultiRoute. Namely,
it suffers from the same problem of signal propagation time and the potential
Routing Mask length. Due to the fact, that StepRoute uses more bits in the
Routing Masks than MultiRoute, it supports less networks or less connections
per destinations. In other words, the inverse relationship between number of
networks and number of connections in StepRoute is steeper than in Multi-
Route.

StepRoute uses slightly more memory than MultiRoute as it requires three
tables. The first two are also found in MultiRoute, the third table is used to
convert the raw congestion value into a congestion class. The size of this table
depends entirely on the number of congestion classes and therefore it is safe
to say that it contains n− 1 entries.

StepRoute allows for a finer control of the congestion on the network. By
defining multiple congestion classes, StepRoute can represent the current level
of congestion to neighboring routers and therefore attempt to install flows onto
paths which have enough bandwidth to support the new flow. This approach
leads to much better usage of the network resources especially in the presence
of flows which do not consume the entire bandwidth of router-router links.

84 THE MULTIROUTE FAMILY 5.3

Typically, if the the router uplinks have a much larger capacity than the un-
derlying network, StepRoute will load balance this traffic much more efficiently
than MultiRoute, as flows will always consume a fraction of the capacity of
the uplink and therefore the congestion classes will describe more precisely the
partial congestion present on each uplink.

Routing Algorithm

Similarly to MultiRoute, StepRoute distinguishes three cases which represent
the state of the congestion local to the router. Then, based on these three
cases it selects the current best next-hop from the preliminary routing table
and constructs the final routing table. The pseudocode is given in Section
B.4.2. We should note here that the algorithm considers the lowest congestion
class as already being congested and therefore attempts to avoid the potentially
lightly loaded link.

• Case I - All local paths uncongested. In this case, the algorithm only looks
at the statistics received from neighboring routers. Assuming there are
multiple paths available, the router searches for the least congested path
which is simple due to the classification of the congestion values discussed
in Section 5.3.2. Clearly, if the algorithm finds a remote path with is not
at all congested, it immediately selects this path for forwarding. On the
other hand, if all the remote congestion counts are equal or if none is
found, the shortest path is selected.

• Case II - Some local paths are congested while others are not. This case
is slightly more complex because a local path, even if it is carrying some
traffic, may still be amongst one of the better options. This is due to
the fact that remote paths, which lay beyond a completely uncongested
link, may be completely congested. In this case, the algorithm ranks
the candidate paths by summing their local congestion with the remote
congestion. The path with the lowest congestion value is then selected.
As with Case I, if there are multiple candidates, the shortest one is
selected.

• Case III - All local paths are completely congested. This case is very much
similar to the first case. The idea here is to look at the congestion values
of remote routers and determine the least congested path, in an effort
to use up all the available bandwidth. Again, if multiple candidates are
found, the algorithm defaults to the shortest path.

Let us consider, as an example, the network given in Figure 5.7 and its asso-
ciated Table 5.1, when multiple flows enter at router F destined for network A.
We also assume that each flow is long lived and that it immediately consumes

5.3 THE PROTOCOLS 85

half of the available bandwidth. There are four paths between networks F and
A, namely F-D-B-A (1), F-D-C-A (2), F-E-C-A (3), and F-E-B-A (4), path (1)
is considered to be the shortest followed by path (2) and so on. As there are
only two distinct paths we can expect to double the network throughput with
expect to a shortest path algorithm. It is important to note that, with respect
to the real implementation the routing tables are pre-computed as statistics
become available and not when a flow arrives.

When the first flow arrives, it is bound to path (1) as this path is considered
to be the shortest, and due to Case I, this then causes an update from the
routers F, D, and B indicating that their links are partially congested. When
the next flow arrives, the decision is taken by Case II of the algorithm, and
therefore the algorithm will consider the paths with next hop E as this link is
not congested. The path (4) is excluded, because the link between B and A is
congested due to the first flow. Therefore the second flow is bound to path (3).
Upon arrival of the third flow, Case II will rank the available paths according
to the congestion level and will choose path (2) as the link between D and C
is not congested. Similarly, when the fourth flow arrives, Case II ranks the
available paths again and picks path (4). As subsequent flows arrive at router
F, Case III attempts to find available bandwidth to send the flow on and if
this is not possible it sends it onto the shortest path.

Similarly to MultiRoute, the algorithm defaults to the shortest path as
well. This default is to reduce the delay experienced by the packets in the
situation where no best option exists.

5.3.3 The Know-it-all - PathRoute
While MultiRoute provides a link by link measure of the path congestion,
PathRoute provides the actual congestion over the entire path from a given
source to any destination. MultiRoute could in certain circumstances lead
traffic into a congested area of the network due to a lack of knowledge of the
effective distant congestion. PathRoute, by reporting entire path congestion at
every router, avoids this situation and will never lead traffic into a congested
area to the extent of the possible of course.

While the previous two protocols limited themselves to distributing update
vectors to their direct neighbors only, PathRoute concatenates the information
contained in update vectors to deliver the path congestion for each router. To
achieve this objective PathRoute uses the same transfer function as MultiRoute
and also represents congestion on a single bit. The difference resides in the fact
that now the protocol analyzes the information received from its neighbors to
derive the path congestion. In order to distribute path congestion, PathRoute
needs to know two pieces of information:

1. The set distances from a given router to all the other routers in the

86 THE MULTIROUTE FAMILY 5.3

network. This will allow PathRoute to define the length of the Routing
Masks and therefore construct the initial mask which will be used to
inform neighboring routers about the structure of the update messages.

2. The set of congestion information that should be concatenated at each
router and sent to neighboring ones. A router needs to determine which
part of an update message is relevant to it, then concatenate this infor-
mation and send it to neighboring routers.

The first problem is solved using Diffusion Algorithms with termination
detection [DS80]. Each router initiates a computation by outputting an Update
MMP of code INIT on each of its router-router links for each destination
and keeps track of the number of messages it has sent and received. Next,
when a router receives an Update MMP with code INIT, it checks whether
the packet is destined for it, if it is then the router increments the distance
counter (contained in the packet), changes the code of the packet to NEW
and replies to the source over the shortest path. Otherwise, the counter is
incremented and the packet is forwarded to the destination, if the current
router has multiple paths to the destination it duplicates the packet and sends
it down each of the uplinks for that destination. Then, if a router encounters
an MMP with NEW code, it checks whether its number of sent and received
messages is equal, if yes it sends the reply towards the source along the shortest
path otherwise it simply stores it. Doing so, guarantees that if router sends
a reply it is either the destination of the query or it has received as many
queries as it has sent and therefore by the time the source obtains a reply we
know that the computation has terminated. Finally, when the source receives
a reply it updates its distance table. The flowchart in Figure 5.13. Once all the
routers have computed their relative distances, each router can now construct
and send their Routing Mask to their neighbors. This process occurs at the
initial state of the network and therefore we assume that no other traffic can
interfere with this process.

The second issue can be divided into two sub-problems. First, knowing that
each entry for a destination in the Update Message contains the entire path
congestion to that destination, the protocol must first know where to insert its
local congestion information. Second, when receiving an update message the
router must identify the parts of the update message which are of interest to it,
ie. the parts which describe the congestion to one or more of its destinations.

The first sub-problem can be solved quite easily. Knowing the distance and
the number of uplinks for any destination, given by the distance table and the
preliminary routing table respectively, the router can easily identify the first
bit of a path description which will be the congestion value for its local uplink.
The following sub-problem relies on the structure of the Routing Mask. When
a router receives an update message, it first determines if the port on which

5.3 THE PROTOCOLS 87

Output an INIT message
on each uplink and

increment sent counter

Receive MMP
INIT packet

Am I the
destination?

Yes No

- Increment
distance counter.
- Change type to
new.
- Reply over
shortest path.

Increment distance
counter.

Multiple links
to forward on?

Yes No

Forward on
multiple uplinks.

Forward on
single uplinks.

Receive MMP NEW packet,
increment receive counter.

Send counter
=

Receive counter?

Send replies
towards source. Store replies.

Yes No

Source updates
distance table.

Occurs at
source router.

Occurs at
source router.

Figure 5.13: Flowgraph of the distance diffusion computation.

88 THE MULTIROUTE FAMILY 5.3

the message is received is used for any destination and if so, is the distance to
the destination on this port greater than one? Then by comparing the message
with the Routing Mask, just like in MultiRoute or StepRoute, it determines
which parts of the update message contain information about one or more of
its destinations. The router can simply copy the interesting parts of the update
message into its own update message, by concatenating the local congestion on
the uplink with information received in the update message from the neighbor.
This new update message is then propagated to the neighbors which therefore
distributes the congestion information around the network and enables routers
to build their view of the path congestion. This process is referred to as the
aggregation step of PathRoute.

The major side-effect of representing the entire path congestion within
the update messages is that their length increases significantly. While this
is intuitively trivial, it is not so clear analytically since it is impossible to
formalize the path length as it is intimately coupled to the network topology.
Therefore we can only predict the message size by specifying an average path
length, P̄ , as shown in Equation 5.9.

L = (N − 1) +N

N∑
i=1

P
Ci
N

(5.7)

= (N − 1) +NP̄ C̄ (5.8)

= N(1 + P̄ C̄)− 1 (5.9)

Features and Limitations

PathRoute delivers an extremely space and computation efficient mechanism
for representing the path congestion at each router. By computing the distance
from any router to another, PathRoute is able to extend its Routing Mask
with space to describe every link along the path to a destination and therefore
deliver full path congestion information to every router. Finally, since each
router running PathRoute knows all the information about the status of the
path to the destination, the resulting routing algorithm is very simple and only
requires information which is locally stored which therefore enables rapid flow
installation.

By design, MultiRoute may unknowingly route traffic into congestion since
it only has congestion information about its local links and its neighbors links.
Therefore, if congestion lies beyond the next-hop andthe next-hop has no other
option then MultiRoute may exacerbate the congestion in some areas of the
network. PathRoute, on the other hand having full knowledge of path con-
gestion, will never route traffic into congestion unless there is no other option
available to it.

5.3 THE PROTOCOLS 89

Even though PathRoute provides deep information about the status of the
network to each router, it requires no more memory than StepRoute. Three
tables are required, a preliminary routing table, a final routing table, and a
distance table. On the other hand, initially, PathRoute requires slightly more
CPU power as it must send MMP packets to compute the relative distances
from one router to another.

As PathRoute is built on top of MultiRoute, it suffers from the same prob-
lems. Moreover, since update messages may be aggregated, the propagation de-
lay for an update message is potentially multiplied by the path length. There-
fore, the probability of delay or drop of the update message is also increased,
but again this is mitigated by the relatively small size of these messages.

Routing Algorithm

As each router now has all the information about the path congestion, there is
no longer a need to distinguish three cases for the routing algorithm. PathRoute’s
routing algorithm takes the simplest form. More precisely, it simply finds the
least congested path and forwards packets through the associated next-hop.
As shown in B.4.3, the routing algorithm is straightforward and simply counts
the number of links which are not congested. The path which contains the
least number of congested links is selected.

Consider, once again, the network given in 5.7 and its associated connectiv-
ity Table 5.1, when flows originate at multiple routers in the network. Let us
also assume that each flow directly consumes the entire bandwidth proposed
by the path. We assume that the source routers are F, D, and E and a single
destination A. Therefore, the available paths are F-D-B-A (1), F-D-C-A (2),
F-E-C-A (3), F-E-B-A (4), D-B-A (5), D-C-A (6), E-C-A (7), and E-B-A (8).

Considering the situation described above, two flows arrive at router F.
Based on PathRoute the first flow will select path (1) and the second path (2).
Now, a flow arrives at router D, since path (5) has now two congested links
(D-B and B-A) caused by the first flow. Router D selects path (6) which only
has one congested link. The same occurs for the flow that originates at Router
E and path (8) is selected. We can see that PathRoute will attempt to use all
the links of the networks before sharing full paths.

5.3.4 Implementation Experience

The entire MultiRoute family was designed and implemented within NOX (see
Section 6.1.1). NOX is a controller API for OpenFlow whose main advantage is
the exposition of a simple API which enables the rapid prototyping of research
networking protocols. NOX introduces the concept of components which can
be viewed as black boxes computing a certain function, for example, compute

90 THE MULTIROUTE FAMILY 5.4

the set of shortest paths within a network. NOX components communicate
via events and direct message passing.

The design of the MultiRoute family is based on components. Each func-
tion described the previous section is implemented with a component. The
component itself may be further segmented into various files. The code which
makes up the MultiRoute suite is highly modular. Each protocol depends on
different components. Changing these components modifies the behavior of the
protocol. For example, switching the transfer function in MultiRoute for the
one which computes congestion classes yields the StepRoute protocol. Figure
5.14 show the dependency maps for each protocol, notice that each protocol
differs only in some of the components used. Since similar components expose
identical API or produce the same events, most of the code from one protocol
to another is re-used. This design accelerates the implementation cycle and
guarantees that the code is stable from protocol to the next. Moreover, the
implementation was almost exclusively done using Python [Pyt] which means
that the implementation itself was simple and is easily understandable.

5.4 Commodity Protocols

The protocols detailed below were implemented to enable us to test MultiRoute-
based protocols against the protocols which are used today in industry. Each
of these protocols were implemented on our OpenFlow-enabled testbed.

5.4.1 Shortest Path

Shortest Path Routing is a direct application of Dijkstra’s Shortest path al-
gorithm [Dij59]. In essence, it is a destination-based, load-insensitive routing
algorithm which is built based either on the minimum hop count or sum of
link weights. Therefore, given a destination the routing algorithm performs a
lookup in its routing table, which contains the next-hops to every destination,
and returns the next-hop of the shortest path to the requested destination.

This protocol is made to resemble OSPF [Moy98] as much as possible with-
out having to re-implement the totality of OSPF. This is justified, as we are
only interested OSPF’s routing model but not its distributed nature nor all its
extra functionality.

5.4.2 Equal Cost MultiPath

Equal Cost MultiPath (ECMP) [TH00] is similar to Shortest Path routing in
that it is also destination-based but it differs in the fact that multiple best
paths may be used to forward packets. Therefore, as it name indicates, if the

5.4 COMMODITY PROTOCOLS 91

Discovery

Gateway

PathRouteStepRouteMultiRoute

MultiRouting PathRoutingStepRouting

Generic
Routing

Functions

PathStatsStepStatsMultiStats

PathMMPStepMMPMultiMMP

MMP
Inherits

Depends on

Figure 5.14: Inheritance/Dependency graph for MultiRoute-based protocols

92 THE MULTIROUTE FAMILY 5.5

network contains multiple shortest paths between any source-destination pair
then they are all used to forward packets.

Normally, ECMP uses a hash which is computed based on the source and
destination mac-address contained in the packets. In our case, out network
testers and machines connected to our testbed only have a limited number
of mac addresses. Therefore, to increase the diversity of the hash, we have
computed based on the source and destination port numbers which are random
for every flow.

Section A.1 derives and explains the number of disruptions to expect when
a link of an ECMP set goes offline.

5.5 Theoretical Delay Model for MultiRoute-based protocols
In this section, we will use the model detailed in Section 4.3.1 to derive a delay
model for Congestion-Aware Routing protocols. Furthermore, we also evaluate
the average number of flows present at any node in the system.

A multipath network can be seen as a system with multiple servers. Each
server, therefore would represent an uplink between nodes in the system.
Routers are then referred to as nodes. We now need to define the arrival
(input) and departure (output) models. We can safely assume that the arrival
model is Markovian since packets sent are sent from end nodes (ie. computers)
are independent and memoryless, the same goes for the output model since
it only depends on the actual packet length of the router which is constant.
Therefore we can model our first queue in the System as M/M/m queue (see
4.3.1). But, as explained in Section 4.3.1, we cannot simply say the same
thing for any other queue in the system as the message length and the inter-
arrival times become highly dependant. Fortunately, Kleinrock’s Independence
assumption 2 and in particular Burke’s Theorem, allow us to select a new mes-
sage size at the output of each queue independently and therefore model our
entire system as independent M/M/m queues.

Therefore, we can now say that the delay created by a certain node is the
average time spent in the system and for an M/M/m queue is given by:

T =
1

µ

(
1 +

PQ
m(1− ρ)

)
(5.10)

Where PQ is given by Equation 4.8 and 1
µ is the service time and ρ = λ

mµ
is the utilization ratio with λ the arrival rate and m the number of servers.

Since, we claim that each queue is independent we can state that the overall
delay in the network is simply a function of the number of hops a packet must
traverse and therefore we have:

T̄ = n̄T (5.11)

5.6THEORETICAL DELAY MODEL FOR MULTIROUTE-BASED PROTOCOLS 93

Figure 5.15: Flow delay as function of the load (= λ
mµ

) and number of servers.

Figure 5.15 shows that as the arrival rate increases the overall load on the
system increases and eventually leads to ∞ which is to be expected because
the expression for delay is dominated by 1− ρ

Another interesting quantity is the number of clients (ie. flows) that are
present at any queue. This quantity will allow us to determine the expected
disruption should a queue become unavailable for some reason.

N̄ = mρ+
ρPQ
1− ρ

(5.12)

Since Equation 5.12 is also dominated by 1 − ρ, we would have the same
behavior than in Figure 5.15. Namely, as the system load increases the number
of flows in queue will increase as well. Figure 5.16 shows the number of flows
waiting at each queue. We can see that as the arrival rate increases, the number
of flows in the queue increases significantly. This value can also be seen as the
number of flows that would be disrupted if an uplink where to go offline, thus
giving us an approximation on the number of communications that would need
to be re-established should there be a problem. We should note that if we pick
m = 1, then we have a model for a single path system. We can see that in
such a system the delay increases significantly than in multipath systems.

94 THE MULTIROUTE FAMILY 5.6

Figure 5.16: Number of flows in each queue

5.6 Summary
In this section, we have described three protocols by using the outline given
in RFC 1264 [Hin91] then we gave several theoretical predictions which, while
not fully accurate, provide us with an idea of the performance we can expect
of our protocols.

The first protocol, MultiRoute, describes congestion as a single bit. While
the second, StepRoute, defines congestion classes. Finally the third protocol,
provides a congestion measure for the entire path from source to destination.

Using multipaths does not change the rules of the game in networks, by this
we mean that the latency still increases as the load on the network increases
and queues still get more and more full as the load increases. That said,
all these phenomena happen when the load is higher than in the single path
settings. More importantly, we also see that even though each of our protocols
routes flow rather than individual packets, we can still expect a significant
increase in performance while not optimal it is still quite a desirable increase
over single path routing.

Chapter6
Materials & Methods

“If you are afraid of change, leave it here.”
– Seen on a tip box, Mountainview, CA

6.1 OpenFlow & NOX
OpenFlow is an open standard which enables a network engineer to control
the behavior of their networking equipment programmatically. It represents
a radical shift for the networking status quo. First, manufacturers need to
embrace OpenFlow and implement it1. Second, it signals the end of distributed
network algorithms and a return to simpler centralized algorithms.

OpenFlow and NOX are the basis for the implementation of the work in
this Thesis. While the author believes that the future of computer networks
lie alongside OpenFlow, he has implemented his work in a distributed manner
in order to resemble current day network protocols.

6.1.1 OpenFlow
OpenFlow [MAB+08] offers a way for network researchers to try their exper-
imental protocols on real hardware and on the networks they use every day.
Until now there has been an extremely high barrier to entry for new networking
ideas due to the face that there is a rational reluctance within the community
to experiment with production traffic. The installed base of networking hard-
ware has been largely built to conform with the extant RFC’s and as such offers
few, or no external interfaces. The result of this has been to exclude innovation
since there is no mechanism to deploy or test alternative strategies to the ones

1So far, HP, NEC and Broadcom are known to have hardware implementations.

95

96 MATERIALS & METHODS 6.1

laid down in silicon. Up until quite recently the only way that experimental
progress could be made was work with specific experimental installation such
as GENI [GEN]. GENI is an nation-wide (in the United States) network which
provides programmable network elements via virtualization and is capable of
processing packets for multiple isolated experiments. The disadvantage with
such installations is that they are very costly and take years to implement. An-
other example of such systems, while smaller, are Emulab [Emu] and StarBed
[Sta].

There also exists several software solutions. Many OSs can route pack-
ets between their interfaces and software implementation of routing protocols
exist, for example from XORP [HHK03] (eXtensible Open source Routing
Platform). Moreover, the CLICK [MKJK99] router project allows researchers
to control and manage the packet processing. While these solutions are in-
teresting, they do not provide the performance or the port density required
to test news ideas efficiently. Hardware implementations are also available,
the largest one is the Advanced Telecommunications Computing Architecture
Supercharged PlanetLab platform [TCD+07] but it is targeted for large deploy-
ments and it is extremely costly. There is also a NetFPGA [NETb] solution,
but this only provides four ports per card.

The question is why can we not find a way to use the hardware we currently
have and the networks we have deployed. This is exactly what OpenFlow is
designed to do.

In
Port

Vlan
ID

Ethernet

SA DA

TCP

Type

IP

SA DA Proto Src Dst

SA = Source address DA = Destination address Proto = IP Protocol

Figure 6.1: The OpenFlow flow signature.

OpenFlow exploits the flow-tables contained in modern switches. Flow-
tables are built from TCAMs2, which allow functions like QoS, NAT, firewalls
to run at line rate. OpenFlow stores the signature of a flow, shown in Figure
6.1 into the flow-table, and associates one or more actions to be applied to

2A TCAM is a Ternary Content Addressable Memory. This allows the operating system
to match a third state, ”X.” The X state is a ”mask,” meaning its value can be anything.
This lends itself well to networking, since netmasks operate this way. Routers can store their
entire routing table in these TCAMs, allowing for very quick lookups.

6.1 OPENFLOW & NOX 97

the flow. The signature then allows the switch to match subsequent packets
onto that flow. The overall effect of the actions determines the behavior of
the network. Figure 6.2 shows an OpenFlow-enabled switch which is made
up of a secure channel and a flow-table. The secure channel connects the
controller to the switch enables the controller to send commands to the switch
and manipulate its flow-table.

SW
Secure

Channel

HW
Flow Table

Controller

Desktop PC

Openflow Switch

Openflow Protocol

Figure 6.2: The OpenFlow switch.

OpenFlow then provides an open and programmable interface to control
the contents of the flow-table. The set of actions which can be applied depend
on whether the switch implements all the actions or only the required ones.
Moreover, some manufacturers may not be able to implement certain actions
due to their underlying hardware as we will see in Section 6.2.1. The set of
actions supported by an Openflow switch are summarized below:

• Set VLAN ID - Specify or overwrite the VLAN identifier.

• Set VLAN priority - Define the priority of the packet with the VLAN.

• Strip VLAN header - Remove all VLAN information.

• Modify source or destination MAC address - Overwrite the Eth-
ernet header information.

98 MATERIALS & METHODS 6.1

• Modify source or destination IP address - Overwrite the IP header
information.

• Modify ToS bits - Modify the Type of Service bits.

• Modify Transport source or destination ports - Overwrite the TCP
header information.

OpenFlow decouples the control from the datapath and exports it to a
controller, such as NOX, which will control the contents of the flow table. As
an OpenFlow device is usually referred to as a switch even though technically
it is not a stereotypical switch. OpenFlow can implement the function of a
switch, router or even both; but it may also implement any other function.
The term switch here is used to refer to the hardware on which OpenFlow is
deployed.

6.1.2 NOX

NOX [GKP+08] is an OpenFlow controller whose goal is to provide a program-
matic interface so that other applications can manage the underlying network.
NOX presents applications with a centralized programming model. NOX, pro-
grams are written as if the network were contained on a single machine. NOX
abstracts low-level network details away from the developer. It essentially
provides a framework to manage OpenFlow-enabled switches and routers by
handling the low-level OpenFlow API provided by the enabled hardware.

A NOX based network is made up of openflow-enabled switches and one or
more instances of NOX where each instance provides the exact same network
view to the developer(s). Network applications are written on top of NOX and
control the behavior of the network by manipulating the flow-table. During
normal operation, NOX receives flow initiations (first packet of an unmatched
flow), these are passed by NOX to the network application which decides what
to do with such a flow. In the end, a new flow rule may be added to the flow
table and therefore subsequent matching flow will not be sent to NOX but
rather the switch will apply the action specified in the added flow rule.

NOX’s programmaable interface is driven by events, the namespace and
the network view. Traffic patterns in modern networks are constantly shifting
therefore flows come and go, links go up and down. NOX handles this by
allowing developers to register for events. When an event occurs NOX calls
the handler passed at the registration.

NOX builds a network view based on messages obtained from the Openflow-
enabled switches as they connect. Applications use the network view to per-
form computations or decide how to handle a certain type of packet, etc. Each

6.2 TESTBED INSTALLATION 99

NOX instance constructs a list of loaded applications and from this point on-
wards each loaded application can exchange messages with each other. This is
known as the NOX namespace.

6.2 TestBed Installation

6.2.1 Routing Hardware
The testbed is implemented on HP Procurve switches [procurve] running an
experimental OpenFlow-enabled firmware. OpenFlow on the HP platform is
instantiated per VLAN3. We have exploited this by defining different VLANs
on each network device which are then used to identify the network address
range controlled by the device. The VLAN ID is then advertised to the con-
troller who uses it to assign a virtual gateway address for each router in the
network.

The HP implementation of OpenFlow has several limitations which are
mostly due to the underlying hardware. For example, HPs cannot perform
mac address rewriting in hardware because their routing support is monolithic
and the re-writing functionality cannot be isolated from the other routing
functionality. It is actually more limiting, HPs can only re-write mac-addresses
to a single mac address (the base address of the device) and therefore specifying
a custom mac address is impossible. Since the hardware does not support
some OpenFlow actions, they are implemented by the OpenFlow firmware in
software. As the processor within switches is a shared resource between all the
ports and is not very powerful in the first place, the software path is a very
slow path. Our measurements show that the software path provides roughly
1.25 MB/s overall bandwidth per switch, this is equivalent to 10Mb/s cross
sectional bandwidth.

Since we are designing a new routing protocol which is supposed to surpass
all existing ones in terms of performance, using our OpenFlow devices in soft-
ware path (ie. invoking the switch CPU) is counter productive. Therefore we
have employed several workarounds in order to build a routing protocol using
HP’s OpenFlow implementation.

Our goal is to develop a protocol which achieves its routing function without
replacing the Link Layer information, which is mainly how a router behaves
[RFC95]. The Link Layer information is replaced by a router in order to be able
to direct a packet to its next-hop whilst maintaining the source and destination
IP fields intact. This is easily solved in an OpenFlow implementation as we can
direct packets out of any interface at any moment. The more crucial problem
arises when the packet is arriving at its destination. Because we will not be
able to re-write the MAC address, which is set to the MAC address of the

3Virtual Local Area Network

100 MATERIALS & METHODS 6.2

srcip : A
dstip : B
srcmac : X
dstmac : R

Packet

IP: A
Subnet: W

MAC: X

IP: G
MAC: R

Left Subnet : W
Right Subnet : Z

IP: B
Subnet: Z
MAC: Y

ARP TABLE
IP G -> MAC R

srcip : A
dstip : B
srcmac : R
dstmac : Y

Packet

Step 1

Step 2

Step 3

ARP Request

(a) Standard routing model.

srcip : A
dstip : B
srcmac : X
dstmac : Y

Packet

IP: A
Subnet: W

MAC: X

IP: G
MAC: R

Left Subnet : W
Right Subnet : Z

IP: B
Subnet: Z
MAC: Y

ARP TABLE
IP B -> MAC Y

srcip : A
dstip : B
srcmac : X
dstmac : Y

Packet

Step 1 Step 2

(b) HP Openflow Routing.

Figure 6.3: An explanation of routing processes.

6.2 TESTBED INSTALLATION 101

last-hop router, the destination host will reject the packet. The workaround
here is rather cumbersome, we prepopulate each host ARP table with the IP to
MAC address mappings, and therefore when a host sends out a packet to any
other host it can already set the destination MAC address to its final value.
These two workarounds allow us to design a routing protocol albeit slightly
simplified but the main routing function, of routing packets through a network
via the most efficient path, is still guaranteed. Figure 6.3a depicts the normal
behavior of a router and Figure 6.3b shown the behavior of routing in our
OpenFlow testbed. In Figure 6.3a, a host with IP address A sending traffic
to another host with IP B would first notice that due to its subnet mask that
the destination IP is not on the same local area network (LAN). Therefore, it
builds a packet with source and destination IP A and B respectively and source
and destination MAC address X and R respectively (Step 1). When the packet
arrives at the router, the router performs an ARP request to determine the
MAC address associated to IP B (Step 2). Once the MAC address is resolved,
the router rewrites in the packet and sends the packet to the destination (Step
3). In Figure 6.3b, since the HP Openflow firmware is not able to do any re-
writing (efficiently, at least), we prepopulate the ARP table at every host for
all other hosts. This results in that the packet built at Step 1 already contains
the correct MAC address for the destination IP. Therefore, the router performs
no MAC address lookup and simply forwards the packets to the destination
(Step 2).

6.2.2 Network Installation

The testbed, shown in Figure 6.4, is designed to provide isolated connectiv-
ity for OpenFlow experiments while providing hosts and network testers (see
Section 6.3 for experimental evaluation). This is achieved by deploying con-
nectivity via three networks. First, comes the connection to CERN’s General
Purpose Network (GPN), then there is the Control Network (CN) and finally
the OpenFlow network (OF).

Figure 6.5 shows the block connectivity map used with our testbed. The
GPN provides connectivity to the world which allows us to install software on
the hosts and update the firmware running on the switch devices. The CN
is the command and control network, which provides the Network FileSystem
(NFS) where the data and systems are stored for the hosts. The GETB Ma-
chines (see 6.3 for a complete description) are installed as individual machines
each connected to the GPN via its own interface. The OF is the actual con-
nectivity which defines the topology of our test network, as shown in Figure
6.5.

102 MATERIALS & METHODS 6.2

Figure 6.4: The testbed as it is implemented at CERN’s computing center.

6.2 TESTBED INSTALLATION 103

CERN
GPN

CS

Openflow-enabled
devices

GETB MachinesNetbooted Machines

Openflow Network

Control Network

Machines to testbed connection

GPN Network

GETB to testbed connection

Figure 6.5: The connectivity map of the Testbed.

104 MATERIALS & METHODS 6.3

6.2.3 Machine deployment

The hosts are netbooted4 from the Central Server (CS). Each is configured
to obtain an IP address at boot time via the Dynamic Host Configuration
Protocol (DHCP). DHCP provides the hosts with extra information such as the
gateway address, and the netbooting server. The host downloads a bootloader
from the netbooting server and boots as if it had the bootloader locally. The
bootloader instructs the host to mount an NFS volume where all the boot and
data for the host to run is contained. For more information on netbooting, the
reader is referred to [Neta].

Each host has a dedicated directory on the CS which contains the specific
configuration of that particular host. Therefore, each host behaves as a diskless
machine and pulls its root filesystem from the CS. This approach has several
advantages. First, the configuration of the hosts is simplified as they can all
be done on the CS. Second, deployment of a new machine is accelerated as we
can simply copy another hosts’ directory and modify the configuration. Third,
since the directory containing all the applications used by the hosts is shared
by all the hosts, we just need to install application into this directory and it
is directly available on all the hosts.

6.3 GETB Network Testers

The Gigabit Ethernet TestBed [CSLM05] (GETB) is a FPGA-based platform
designed to provide a flexible and fully programmable device testing environ-
ment. The GETBs were designed to deliver full 1Gb/s wire speed full duplex
for two ports running concurrently.

Modifications to the FPGA firmware are difficult and time consuming. This
is why the GETB was programmed to offer services. A set of relatively simple
functions were implemented in the FPGA. These were then used as building
blocks for more complex behavior the hardware functions were accessible to
the user through the GETB control software (GETB/CS).

The aim of the GETB/CS was to provide a common control infrastructure
for all the GETB-derived projects. We needed a system flexible enough to
allow complete customization for the different applications. We also wanted to
be able to easily automate the actions of the GETB cards. This requirement
practically excluded the development of a Graphical User Interface specifically
for the GETB (which we thought would limit the functionality and would be
difficult to maintain and further improve). Finally, our decision was to build
almost all the GETB control system using the Python scripting language [Pyt].

4Netbooting consists in booting machines from a server over the network. These machines
can either be diskless or not, but all the boot information is contained on the network server.

6.5 EXPERIMENTAL TECHNIQUE 105

The GETB/CS is divided into two main components: the server compo-
nent which runs on the computers hosting GETB cards; and the client com-
ponent running on any other machine which needs to access the resources of
the servers. Each machine which contains GETB cards runs the server compo-
nent. Then, the client is run on a different machine and controls the operation
of the GETB cards.

The GETB cards enable you to generate traffic at various rates and in
a controlled fashion. Therefore, we are able to devise test scenarios with a
relatively large port density as we can connect up to 32 GETB simultaneously.

6.4 Experimental Technique
Now that we have described our experimental testbed setup and and the asso-
ciated network tester, we are going to briefly define the methods used to test
our protocols.

6.4.1 Parasite Traffic
In this test, we measure the capacity of the network device to forward traffic
in the presence of interfering traffic. This test will indicate the capacity of the
router to avoid areas with pre-existing congestion.

6.4.2 Fully Meshed Traffic
Fully meshed traffic, in which traffic is transmitted from all active ports to
all other active ports. This will allow us to determine the drop-rates and
throughput.

6.4.3 Latency
In this scenario the idea is to measure the time required to transmit a packet
from one host to another while the network is transporting traffic at different
rates. Doing so will bring out the capability of the routing protocol to route
traffic efficiently and through the current best path.

6.5 Summary
In this section, we have presented the tools which have enabled us to develop
our congestion-aware protocols. Moreover, we have introduced the technologies
which allow us to deploy our testbed and end nodes. Finally, we have described
our tester boards which will generate the traffic we need to test our protocols.
The next section will present the results obtained from our test environment.

Chapter7
Results & Discussion

“Insanity: doing the same thing over and over again
and expecting different results.”

– Albert Einstein

In this chapter we will present the most notable results which were obtained
from our real-world testbed implementation. First, we will present a scenario
in which our protocols perform exceptionally well. Then, we show that even in
the extreme worst cases, our protocols still present an improvement over the
legacy protocols. Finally, we show how the latency and packet loss are affected
by our protocols. But before presenting the results we should introduce the
topologies on which the results where generated.

7.1 Test Topologies & Associated Routing Tables
The Flower, shown in Figure 7.1, is the first topology we present. It consists
of a fully connected square with two networks at either side of this network.
This topology is quite common in campus networks as it provides redundant
paths between the exterior networks (SW1 and SW6 in this case). While it
contains relatively many links it only delivers a maximum of two absolutely
independent paths from any source to any destination.

The low number of independent paths means that the opportunity for lever-
aging the alternative paths is reduced. Therefore, the full-mesh runs should
display similar results regardless of the protocol used. It’s associated routing
table is shown in Table 7.1.

The next topology used is called the Pentagon due to its pentagonal shape.
This topology presents many more alternative paths from a given source to

107

108 RESULTS & DISCUSSION 7.1

SW06

SW05SW04

SW02 SW03

SW01

47

47 48

48

45 45

43 41

41

39

39

37

3743

46 46

38

38 40

40

Figure 7.1: The Flower topology.

7.2 PARASITE TRAFFIC 109
Destination

SW1 SW2 SW3 SW4 SW5 SW6

S
ou

rc
e

SW1 L 47 48 [47,48] [47,48] [47,48]
SW2 47 L 45 43 41 [43, 41]
SW3 48 45 L 39 37 [37, 39]
SW4 [43, 39] 43 39 L 46 37
SW5 [41, 37] 41 37 46 L 40
SW6 [38, 40] [38, 40] [38, 40] 38 40 LOCAL

Table 7.1: The routing table associated to the Flower topology.

any destination. This topology is also quite common in campus networks as
it consists of a starpoint centered on SW6, neighboring networks are then
connected to each other to provide redundancy. The routing table is shown in
Table 7.2.

Destination
SW1 SW2 SW3 SW4 SW5 SW6

S
ou

rc
e

SW1 L 26 27 [26,25] [27,25] 25
SW2 26 L [26, 27] 28 [27, 28, 26] 27
SW3 27 [27, 29] L [29, 30, 27] 30 29
SW4 [28, 31] 28 [31, 32, 28] L 32 31
SW5 [30, 33] [32, 33] 30 32 L 33
SW6 25 27 29 31 33 L

Table 7.2: The routing table associated to the Pentagon topology.

It should be also noted that the entries in the routing tables are sorted by
distance to the destination. Therefore, the leftmost entry is the shortest to the
destination. Moreover, each link in the experimental network runs at 1Gb/s.

Each of these topologies are connected to the GETB machines. There are
32 connections to the GETB machines and there are six switches, therefore
we have chosen to drop two GETBs and have five connections per switch.
The communication path for the GETBs is determined programmatically and
depending on the scenario employed.

7.2 Parasite Traffic
In this section we will present results for both topologies when faced with
parasite traffic. The idea of these tests is to run a UDP stream (ie. The

110 RESULTS & DISCUSSION 7.2

SW01

SW2 SW03

SW05SW04

SW06

25

25

26

26 27

27

27

2728

28

29

29

30

30
31

31

32 32

33

33

Figure 7.2: The Pentagon topology.

7.2 PARASITE TRAFFIC 111

parasitic traffic) on a segment over the entire shortest path between two nodes.
Then, two TCP flows are sent between the two same nodes. We then compare
our results with Shortest Path (SP) only routing and the Hash-Threshold
variant of ECMP (HTE).

7.2.1 Parasite Traffic on the Flower Topology
In this setup, parasitic UDP traffic is sent from SW2 to SW6 via SW4. Then,
two TCP flows are sent from SW1 to SW6 and the behavior of each protocol
is observed.

Shortest Path versus MultiRoute

0 200 400 600 800 1000
Parasitic Load [Mb/s]

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 [M

b/
s]

MR - FLow 1
MR - Flow 2
MR - Average
SP - Flow 1
SP - Flow 2
SP - Average

Figure 7.3: Shortest Path versus MultiRoute in the presence of Parasitic traffic.

Figure 7.3 shows MultiRoute’s behavior in the presence of parasitic input
load. We can see that as the parasitic traffic rate increases, one of the flows
gradually ramps down while the other is running at line rate. This situation
indicates that during these runs MultiRoute did not mark the link running
the parasitic traffic as congested, because the associated transfer function was

112 RESULTS & DISCUSSION 7.2

not sensitive enough. Once this link is marked, the two flows share links
along the path to the destination, and this causes TCP’s congestion control
to rate limit the traffic and therefore we observe that both flows share the
bandwidth between themselves. Figure 7.3 also presents the results when
running a shortest path only protocol. As expected, the two TCP streams
share the available bandwidth between themselves and as the parasitic traffic
rate increases, we observe the throughput for both flows being significantly
affected.

Shortest Path versus StepRoute

0 200 400 600 800 1000
Parasitic Load [Mb/s]

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 [M

b/
s]

SR - Flow 1
SR - Flow 2
SR - Average
SP - Flow 1
SP - Flow 2
SP - Average

Figure 7.4: Shortest Path versus StepRoute in the presence of Parasitic traffic.

When running StepRoute, classes of congestion are used, and therefore
as the parasitic load increases it is classified into different congestions levels.
As a TCP flow consumes the entire bandwidth available, StepRoute directly
classifies the paths used by the first TCP stream into the highest congestion
class. Therefore the paths used by the TCP stream are considered to be a worse
option than the ones carrying the parasitic load as the parasitic traffic classifies
into lower congestion levels. Thus, on Figure 7.4 we see that one TCP flow

7.2 PARASITE TRAFFIC 113

runs unhindered at line rate while the other shares with the parasitic traffic
until the parasitic traffic is classified into the highest congestion level, at which
point the TCP flows share the same paths and therefore share the available
bandwidth,

The issue with this behavior is that UDP does not cooperate with TCP (or
with anyone for that matter) as it does not implement the congestion control
algorithms that TCP does, which means that the UDP traffic will continue to
to use all the bandwidth it needs and leaves the remainder for the effective
TCP traffic. Therefore, on Figure 7.4 we see that the second TCP flow is
affected significantly by the parasitic traffic but it is never worse than the
shortest path.

Shortest Path versus PathRoute

0 200 400 600 800 1000
Parasitic Load [Mb/s]

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 [M

b/
s]

PR - Flow 1
PR - Flow 2
PR - Average
SP - Flow 1
SP - Flow 2
SP - Average

Figure 7.5: Shortest Path versus PathRoute in the presence of Parasitic traffic.

PathRoute uses the same congestion marking scheme as MultiRoute. There-
fore, the first part of Figure 7.5 behaves similarly to MultiRoute where one
flow goes along the alternative path and the other flow shares the traffic with
the parasitic traffic. But as the parasitic traffic increases in intensity, the

114 RESULTS & DISCUSSION 7.2

segments which it uses are eventually marked as congested, but as the first
segment of the path SW1 to SW6 is not congested at all, the first flow uses it
and then reroutes via SW5, this causes the segment SW1 to SW2 to be con-
gested. When the second flow arrives it avoids the congested area totally and
therefore takes the option containing less congested segments, this causes the
second flow to share bandwidth with the parasitic traffic. This explains the
seemingly exchange in roles between the two TCP flows. Eventually, all the
segments used by the parasitic traffic are marked as congested causing both
TCP flows to avoid the congested area and share bandwidth.

Hash-Threshold versus MultiRoute

Figure 7.6 shows the average throughput with error bars which represent the
variation in throughput observed when running our tests for MultiRoute (Fig-
ure 7.6a) and HTE (Figure 7.6b) . These measurements where done while
varying the parasitic traffic rate. Considering only the result for HTE, we ob-
serve a large variation of minimum and maximum values. This is explained by
the fact that HTE does not consider congestion statistics, and therefore flows
may in one case share links and not in others. This phenomenon is especially
apparent when the parasitic traffic is high, in some cases all flows will share the
same path as the parasitic traffic, causing quasi null throughput for these flows,
and in others one flow will be alone on an uncongested path resulting in line
rate throughput. These results show that in such situations, HTE throughput
can become difficult or nearly impossible to predict accurately. Consider now
the results for MultiRoute, the variance between the maximum and minimum
values is significantly smaller than in the case of HTE, especially when the
parasitic traffic is high. As the parasitic traffic increases in intensity, Multi-
Route will route all TCP flows onto the same path causing, like in Figure 7.3,
to share the available bandwidth while avoiding the path used by the parasitic
traffic.These results show that we can predict with a significantly higher de-
gree of confidence the expected throughput of MultiRoute in the presence of
other traffic flows. It is also interesting to notice than in average MultiRoute
performs better than HTE.

7.2.2 Parasite Traffic on the Pentagon
In this setup, parasitic UDP traffic is sent from SW2 to SW5 via SW6. Then,
two TCP flows are sent along that same path.

Shortest Path versus MultiRoute

In this situation, there is more than one alternative path to the destination.
Therefore, it is expected that all the congestion aware protocols will eventually

7.2 PARASITE TRAFFIC 115

0 200 400 600 800 1000
Parasitic Load [Mb/s]

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 [M

b/
s]

MR - Average

(a) MultiRoute’s throughput variation

0 200 400 600 800 1000
Parasitic Load [Mb/s]

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 [M

b/
s]

HTE - Average

(b) Hash Threshold’s throughput variation

Figure 7.6: A comparison of the predictability of MultiRoute versus Hash Threshold

116 RESULTS & DISCUSSION 7.2

use all the available paths and therefore avoid the parasitic traffic altogether.
Indeed, as we can see in Figure 7.7, one TCP flow shares the shortest path to
the destination with the parasitic traffic but then switches to an alternative
path when the shortest path is marked as congested.

0 200 400 600 800 1000
Parasitic Load [MB/s]

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 [M

B/
s]

SP - Flow 1
SP - Flow 2
SP - Average
MR - Flow 1
MR - Flow 2
MR - Average

Figure 7.7: Shortest Path versus MultiRoute in the presence of Parasitic Traffic.

Shortest Path versus StepRoute

When running this test with StepRoute, we observe the same behavior except
that both TCP flows quickly run at line rate as can be seen in Figure 7.8. This
can easily be explained by the fact that StepRoute uses congestion classes and
not a single bit only. Therefore, as StepRoute quickly marks the link used by
the parasitic traffic as lightly congested, it directly uses the alternative path
to the destination. We can therefore say that StepRoute is quite sensitive to
the congestion status of the various paths.

Shortest Path versus PathRoute

Figure 7.9 shows the same test when running PathRoute. Since MultiRoute
and PathRoute use the same mechanism to detect and represent congestion we

7.2 PARASITE TRAFFIC 117

0 200 400 600 800 1000
Parasitic Load [MB/s]

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 [M

B/
s]

SP - Flow 1
SP - Flow 2
SP - Average
SR - Flow 1
SR - Flow 2
SR - Average

Figure 7.8: Shortest Path versus StepRoute in the presence of Parasitic Traffic.

118 RESULTS & DISCUSSION 7.3

observe a similar result to the one presented in Figure 7.7 with MultiRoute.
But the performance of PathRoute is significantly lower than MultiRoute or
StepRoute. This can be explained due to the longer feedback loop which is
introduced by PathRoute’s complexity (ie. the knowledge of congestion for a
source to any destination). The long feedback loop causes PathRoute to take
decisions which are out of sync with the current network status.

0 200 400 600 800 1000
Parasitic Load [MB/s]

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 [M

B/
s]

SP - Flow 1
SP - Flow 2
SP - Average
PR - Flow 1
PR - Flow 2
PR - Average

Figure 7.9: Shortest Path versus PathRoute in the presence of Parasitic Traffic.

7.3 Fully-Meshed Traffic
Fully-Meshed traffic is the worst possible situation for our protocols as they
represent conditions where congestion is equal and omnipresent throughout
the network. These tests were performed using the GETB boards. Four end
nodes were connected to each switch then each end node sends traffic to each
other end node at varying loads from 1% to 25% (as this sums up to 100% for
each switch) and the behavior of each protocol is observed.

For both topologies, one might expect to see a linear throughput until some
asymptotic limit, but this is not what was observed in either case. This can

7.3 FULLY-MESHED TRAFFIC 119

be explained by the fact that effective throughput is essentially a function of
a switch’s packet drop probability. The higher this probability is, the lower
the throughput will be. Therefore, when traffic is run through one switch
we observe linear increase in throughput as the load increases, because the
drop probability is a linear function of the load. Unfortunately this is not
the case when there are multiple switches connected to each other. Indeed,
while the packet drop probability is still a function of the load, it is now
also conditional on the packet drop probability of the previous switch. This
conditional probability manifests itself in the following plots as variations (or
“kinks”) in the measured throughput curves.

An attempt was made at modeling this conditional probability using Bayesian
Networks [Hec97], but the model turned out to be vastly too complex and re-
sulted in a combinatorial explosion for the expression of this probability.

7.3.1 Fully-Meshed Traffic on the Flower

20 40 60 80 100
Percentage Load

5000

10000

15000

20000

O
ve

ra
ll T

hr
ou

gh
pu

t [
M

B] SP
HTE
MR
SR
PR

Figure 7.10: Fully-Meshed Traffic running on the Flower.

As is shown in Figure 7.10, all the protocols seem to perform similarly. We
can explain this by the fact that all the paths are congested and therefore our
congestion aware protocols quickly default to the shortest path. That said,
there is a slight (albeit marginal) increase in performance for our protocols.
This increase in performance can be better observed when the tests are run

120 RESULTS & DISCUSSION 7.3

successively in order to eliminate the effect of the variations in the throughput
as shown in Figure 7.11. We observe that even though the throughput for both
protocols is similar, we clearly notice that as the load increases the difference in
the throughput between the shortest path protocol and the congestion-aware
increases in average. Actually, there is about a 2GB difference on average, this
equates to roughly 66MB every second which means that our protocols have
added 2

3 of a Gigabit link over a shortest path protocol. We believe that this
a significant achievement in a Fully-Meshed environment.

20 40 60 80 100
Percentage Load

5000

10000

15000

20000

O
ve

ra
ll T

hr
ou

gh
pu

t [
M

B] MR
SP

Figure 7.11: Successive Fully-Meshed Traffic running on the Flower.

7.3.2 Fully-Meshed Traffic on the Pentagon
In a topology which offers more alternative paths, we clearly see that our pro-
tocols consistently outperform legacy protocols. It is particularly interesting
to observe that the Hash Threshold variant of ECMP performs least well. We
can explain this by the manner in which HTE selects its next-hop (based on
the source and destination MAC addresses), source-destination pairs will al-
ways use the same path regardless of the load they impose on the network and
therefore not only does HTE overload those paths it also uses longer congested

7.4 LATENCY & PACKET LOSS TESTS 121

paths to the destination which significantly decreases its performance.

20 40 60 80 100
Percentage Load

5000

10000

15000

20000

O
ve

ra
ll T

hr
ou

gh
pu

t [
M

B] SP
HTE
MR
SR
PR

Figure 7.12: Fully-Meshed Traffic running on the Pentagon.

7.4 Latency & Packet Loss Tests
These final results were also obtained using the GETB boards. Full-Mesh
traffic was run on each topology, then a stream of probe traffic was sent between
two nodes on the network. The time of arrival of the probe traffic as measured
and the number of packets lost was counted.

Before explaining the results in this section, we should comment the pseudo
step function that is observed in both latency plots below. The linear part of
the curve can be seen as the buffers at a router filling, once full we see a sig-
nificant increase in latency as the switch requires more time to let a packet
through its full buffers. From the theory we would expect a linear increase as
the router buffers fill up followed by a flat line when all the buffers are full.
Unfortunately, this is where our theory and practice differ as it is mathemat-
ically complex to construct a queuing model which can tolerate losses. If we
consider a single router situation we would observe a linear increase followed

122 RESULTS & DISCUSSION 7.4

by a flatline as the buffers start to drop packets. But now, as we have several
routers in a row, we observe a step function which is explained by the fact that
a router who is dropping packets has an influence on the loss probability of the
next router in the chain who now has a lower loss rate due to a lighter input.
Hence, we observe a step function as the routers in the chain have differing
rates of buffer saturation.

7.4.1 Latency & Packet loss on the Flower

20 40 60 80 100
Percentage Load

500

1000

1500

2000

La
te

nc
y

[m
ic

ro
se

co
nd

] SP
HTE
MR
SR
PR

Figure 7.13: Latency plots for protocols running on the Flower.

Figures 7.13 and 7.14 show the latency and packet loss experienced by the
different protocols respectively. In the case of latency we can see that our
protocols present paths which provide less latency, which is to be expected
because in this topology we have alternative paths of identical lengths and
therefore our latency should either be equal to the shortest path or less. For
packet loss, we see that both MultiRoute and StepRoute perform better than
the other protocols, this is consistent with our previous results (see Figure 7.10)
as they present increased performance in terms of throughput. On the other
hand PathRoute performs less well, but again this is consistent as PathRoute
does not perform well in terms of throughput during a full-mesh.

7.4 LATENCY & PACKET LOSS TESTS 123

20 40 60 80 100
Percentage Load

0

5x106

1x107

1.5x107

2x107

Pa
ck

et
 L

os
s

SP
HTE
MR
SR
PR

Figure 7.14: Packet Loss for protocols running on the Flower.

20 40 60 80 100
Percentage Load

200

400

600

800

1000

1200

1400

1600

1800

La
te

nc
y

[m
ic

ro
se

co
nd

] SP
HTE
MR
SR
PR

Figure 7.15: Latency plots for protocols running on the Pentagon.

124 RESULTS & DISCUSSION 7.5

20 40 60 80 100
Percentage Load

5x106

1x107

1.5x107

2x107
Pa

ck
et

 L
os

s

SP
HTE
MR
SR
PR

Figure 7.16: Packet Loss for protocols running on the Pentagon.

7.4.2 Latency & Packet loss on the Pentagon

In this case, it is interesting to see that protocols, namely MultiRoute and
StepRoute, present a higher latency as shown in Figure 7.15. We can explain
this by simply noticing that the alternative paths for this topology are longer
that the shortest path and therefore require a higher transit time. Figure
7.16 confirms this observation as the packet loss presented by StepRoute and
MultiRoute is lower than the Shortest Path protocol, which means that an
alternative path must have been used else the packet loss would have been
similar to the shortest path.

7.5 Summary
As these results have shown, our congestion-aware protocols have outperformed
legacy protocols. Both, in worst case situations (Full-Mesh) and rather advan-
tageous positions (Parasitic Traffic). Nevertheless, deployment of such proto-
cols requires a rigorous study of the type of services which will de offered by
the network. For example, if a network is supposed to carry mainly Voice-
over-IP traffic then the network engineer should make sure to provide paths
of identical lengths to all destinations in an effort to keep the traffic latencies
constant.

Naively, one would expect that a protocol which has quasi network wide
knowledge, such as PathRoute, would deliver optimal results. Unfortunately

7.5 SUMMARY 125

this is not the case, from the results presented in this chapter we clearly ob-
serve that PathRoute performs significantly worse than its peers (MultiRoute
and StepRoute). This phenomenon is exacerbated when we consider fullmesh
situations. The reason for this lack in performance can be found in control
theory’s standard problem, ie. the duration on the feedback loop. While all
the congestion-aware routing protocols presented in this thesis suffer from a
delay between observing congestion and adapting the network state to reflect
this change, the impact on PathRoute is more significant that on its peers.
Indeed, any update in any area of the network may, in the worst case, trigger
updates at all the routers in the network and therefore cause some routers
to have opposing network views thereby causing poor routing decisions to be
taken.

Chapter8
Conclusions & Future Work

“Finally, in conclusion, let me say just this. ”
– Peter Sellers

8.1 Achievements

The objective of this thesis was to revisit the concept of congestion-aware
routing. This idea was introduced in the early days of the ARPANET but
quickly abandoned due to out of order delivery of packets which caused the
effective throughput of the network to be catastrophic. To achieve this goal,
we have divided the problem into three sub-problems, namely:

1. Path Construction - The multiple path discovery process relies on the
existence of a shortest path between source and destination points. After
establishing the shortest path cost (the reference cost), each alternate
path is computed whose cost is within a reasonable delta of the reference
cost.

2. Network Monitoring - The statistics are polled locally by the router and
sent to neighboring routers, this process is performed in-band and not
by an external monitoring process. Then, depending on the transfer
function used, a representation of the congestion is derived.

3. Topology Representation - Each router maintains its own routing vector,
consisting of congestion representation of its paths to different networks.
Routing vectors are then exchanged with neighboring routers using the
Monitoring protocol .

127

128 CONCLUSIONS & FUTURE WORK 8.2

Using this approach we have been able to build three different congestion-
aware protocols which contrast with previous multipath protocols in several
aspects. First, they treat alternative paths as another possibility rather than
a route to take in case of failure. Second, they do not require full knowledge
of the network topology as they obtain the congestion status of their direct
neighbors only. Finally, they avoid out-of-order packet distribution by using
flows as a basis for routing rather than packets. This coupled with the fact
that routing decisions are immutable completely side-steps the problem of out-
of-order packets. On the other hand, this raised the following question: Can a
protocol with such restrictions still provide a benefit in term of performance?
We believe that this thesis shows that the answer to this question is Yes!

Another aspect of this thesis was the implementation a real world testbed in
which our congestion-aware protocols were deployed. The design, construction
and evaluation of this testbed was carefully studied. First, it was designed so
that it could easily be extended, for example adding an end node to the test bed
is as easy as entering a few configuration lines in the file server and then booting
the desired end node. This end node would then have all the functionality
previously existing nodes have. Second, the testbed was constructed in such a
was that it would be simple to interconnect and physically simple to extend.
Finally, by designing and constructing the system with the knowledge that the
system would have to be tested, it was simple to provide connectivity to the
test machines and the traffic generators.

8.2 Summary of Results

Based on the results presented in Chapter 7 we believe that we can say that
our congestion aware protocols provide an significant increase in performance
when compared to legacy protocols. This results have been tested on two
representative topologies.

Our protocols perform best when asked to route around a congested area.
We show that is some cases our protocols provide line rate performance when
shortest path or Equal Cost MultiPath (ECMP) provide close to zero through-
put. We also show that even though our protocols are congestion-aware, they
provide a predicable throughput where ECMP could not.

We have also shown that in the face of fierce adversity, ie. Full-Mesh
traffic, our protocols provide an increased level of performance. This worst
case scenario demonstrates that these protocols can be expected to deliver
increased performance on non-traffic engineered networks.

While we show that our protocols present increased performance, a network
engineer deploying such protocols should study the requirements of the network
he is implementing. We believe the questions that need to be answered are:

8.3 FUTURE WORK 129

1. Does the expected traffic tolerate loss?

2. Does the expected traffic tolerate delay?

3. Does the expected traffic consist of short or long lived flows?

4. Is the traffic on this network expected to be traced?

The answers to these questions will determine which protocol to use and/or
the type of topology to deploy (either equal cost lengths or variable alternative
path lengths).

8.3 Future Work
As with any thesis, many lines of research remain. We shall state a few here
in the form of open ended questions:

• How does one trace traffic through a multipath network? Is debugging
even possible?

• What are the effects of using other metrics as a basis for congestion
detection?

• Do our congestion-aware routing protocols scale to networks with hun-
dreds of routers?

• How can the feedback loop required for congestion-aware routing proto-
cols be made as small as possible?

• Will it ever be possible to mathematically model multipath networks
accurately?

AppendixA
Collection of derivations

A.1 Disruptions in the Hash Threshold variant of ECMP
TCP protocols perform superbly in situation where the path they flow does
not change during the connection. Disruptions is the measure of how many
flows will be affected by a path change. Consider now a hash based next hop
selection, if our hash function is uniform then each next hop has an equivalent
probability to be selected. Therefore, we can say that the hash-space is equally
distributed between next-hops (or regions) as shown in Figure A.1

1 2 3 4 5

1 2 4 5

Before

After

Figure A.1: Before and After the deletion of the third next hop possibility.

We can formalize this by considering the removal of regionK in the presence
of N regions. This causes the remaining N − 1 regions to fill the 1

N space
left by the removal of region K. Therefore each remaining region grows by

131

132 APPENDIX A
1

N(N−1) . But now, this means that every non-end region has to be moved

to accommodate for its now grown neighbor. So the first regions grows and
causes the second region to shift towards towards region K by 1

N(N−1) , and in

turn the third region is caused to move by 2
N(N−1) and so on until both ends

meet at the borders of K. These moves causes i
N(N−1) flows in region i+ 1 to

to be taken over by region i. Therefore, we have the following equations:

disruptions =

K−1∑
i=1

i

N(N − 1)
+

N∑
i=K+1

i−K
N(N − 1)

(A.1)

=
1

N(N − 1)

(
K−1∑
i=1

i+

N∑
i=K+1

i−K

)
(A.2)

=
(K − 1)(K) + (N −K)(N −K + 1)

2N(N − 1)
(A.3)

Equation A.3 formalizes the number of flows which would be disrupted if
a link on a path to a next-hop fails.

A.2 Backpressure messages given in AMP
A backpressure message in AMP is given by two factors; consider the link XY :

1. The load on the links directly connected to X; and

2. The contribution of the traffic routed at X on the links from Y to Z
(Y Z).

The first point is immediate as the router can directly measure the con-
gestion on their direct links, this is given by ρ. The remaining value describes
the messages sent from the neighboring routers called BZ→Y which is itself
computed based on the two factors described above. Therefore, we can simply
note BMs as BZ→Y , formally BM(Y,X) = BY→X . BM(Y,X) is the back-
pressure message sent from node Y to node X. We can now define BY→X
as a function of the directly measurable congestion values and the BZi→Y ,
therefore we have:

BY→X = f(ρXY i
, BZi→Y),∀i = 1, . . . , n (A.4)

As the contributions to congestion from traffic routed at X vary at each
neighboring router, since only a fraction of the overall traffic is routed to a

DEPENDENCE OF MESSAGE LENGTH AND INTERARRIVAL TIMES 133

particular neighbor, AMP proposes to define these varying contributions as a
weighted average where the weight for link Y Zi corresponds to the ratio of
traffic on the link Y Zi that has arrived from X via Y and the total traffic on
the link Y Zi. Therefore, we have:

BY→X =
∑

Zi∈ΩY \X

βY Zi
(X)

βY Zi

max(ρXY i,BYi→X
) (A.5)

Where ΩY is the set of all neighbors of node X, βY Zi
(X) is the number of

bytes sent from node X via Y to Zi, and finally βY Zi
denotes the total number

of bytes sent from any node ∈ ΩY \X via Y to Zi.

A.3 Dependence of Message Length and Interarrival times
Let us derive the joint probability P (vn, a2n) between the message length and
the inter-arrival time at some queue. For this consider the tandem network
given in Figure 4.6, and the following quantities:

vn = message length of the nth message.
ain = the inter-arrival time between the (n− 1)th message and the nth at

node i.
Now we recall the assumptions of queuing systems with Markovian prop-

erties of Section 4.3.1 where both vn and ain are described by exponential
distributions, given by:

p(a1n) = λe−λa1n (A.6)

p(vn) = µe−µvn (A.7)

Due to these facts, Theorem 1 holds and thereby we have that the inter-
departure times at the first node in the tandem are identical to the inter-arrival
times at the second node. Therefore we have:

p(a2n) = λe−λa2n (A.8)

When the nth message leaves the first node:

1. it is separated by a time gap gn from the (n− 1)th message. Or,

2. transmitted immediately after the (n−1)th message is done transmitting.

It is clear that Case 1. only occurs if the first node emptied out before
receiving the nth message, which happens with probability 1− ρ. The second

134 APPENDIX A

case occurs when the first node is busy which has probability ρ. Where ρ = λ
µ

is the utilization factor as defined in Section 4.3.1. We now have,

p(vn, a2n = ρP (vn, a2n|node 1 busy) + (1− ρ)P (vn, a2n|node 1 empty) (A.9)

Trivially, the probability that message n has length vn and arrives at a2n

such that node 1 is busy is equal to the probability that vn = a2n, otherwise
the queue would be idle. Thus,

P (vn, a2n|node 1 busy) = P (vn = a2n)

= µe−µvnµ0(a2n − vn)

Where µ0 is the unit impulse function.

Alternatively, the probability that message n has length vn and arrives at
a2n such that node 1 is empty implies that a2n − vn 6= 0 = gn, obviously
otherwise the queue would always be busy, combined with the fact that the
message length permits the queue to become empty. Due to the fact that gn
follows the same distribution as p(a2n), we therefore have,

P (vn, a2n|node 1 empty) = P (a2n|vn, node 1 empty)P (vn|node 1 empty)

= P (gn = a2n − vn)P (vn|node 1 empty)

= P (gn = a2n − vn)p(vn)

= λe−λ(a2n−vn)µe−µvn

And finally the overall expression becomes:

p(vn, a2n = µe−µvnµ0(a2n − vn) + λe−λ(a2n−vn)µe−µvn (A.10)

By analysis of Equations A.10, A.7 and A.8, we can clearly see that:

p(vn, a2n) 6= p(vn)p(a2n)

which, by definition independent events, illustrates the deep dependence
between the message lengths and the inter-arrival times.

THE PRICE OF ANARCHY IN MULTIPATH NETWORKS WITH LINEAR COST

FUNCTIONS 135

A.4 The Price of Anarchy in Multipath networks with linear
cost functions

First let us define more formally the delay of a flow as a function of the links
l it traverses as,

C(f) =
∑
l

cl(fl)fl (A.11)

where,

• cl is the cost induced by a flow on the link l,

• fl is the amount of flow using link l.

Due to the fact that the model for Selfish routing is a static one, we only
consider flows which are in a state of equilibrium. Therefore it is clear that
a flow is not in a equilibrium state if it can shift some traffic to another link
while reducing the overall delay of the network. Thus, we have the following
definition:

Definition. A flow f is a Nash flow if for all paths P1, P2 ∈ P and amounts
δ ∈]0, fP1] of traffic, we have:

cP1(f) ≤ cP2(f̃)

where,

f̃ =

 f + δ if P = P1

f − δ if P = P2

f if P /∈ {P1, P2}

Alongside the definition of a Nash flow, we have the straightforward defi-
nition of an optimal flow, which is simply:

Definition. A flow f is considered optimal if it is the flow with minimum
possible delay. It is then denoted by f∗.

As an example, a Nash flow is illustrated by the first situation in Figure
4.3, whereas an optimal flow is depicted by the second situation.

Finally, we can define the worst-possible ratio between the cost of a Nash
flow and that of an optimal flow. This ratio is known as the Price of Anarchy
and is given by the following relation and Equation A.11:

136 APPENDIX A

ρ =
C(f)

C(f∗)
(A.12)

Let us know postulate that optimal and Nash flows are the same things,
just with different delay function. In order to establish this we must establish a
relationship between optimal and Nash flow as a function of the delay functions.

Definition. If c is a differentiable delay function, then the corresponding
marginal delay function c∗ is defined by:

c∗ =
d

dx
(xc(x)) (A.13)

By considering definitions A.4 and A.4, we can conclude that:

Definition. Let G be a network defined by continuously differentiable delay
functions and corresponding marginal delay functions c∗, then a flow f for G
is optimal if and only if it is at Nash equilibrium under the marginal delay
functions.

Now let us consider a network with linear delay functions of the form
ax+ b, therefore by equation A.11 we have the expression for the delay in such
a network:

C(f) =
∑
l

alf
2
l + blfl (A.14)

and thus trivially we have that:

Definition. Suppose a network has linear delay functions and f is a flow at
Nash equilibrium. Then,

1. c∗l

(
fl
2

)
= cl(fl) for any link l;

2. The flow f
2 is optimal for the same network with have the link capacity.

The relations in definition A.4 are simply a result of applying Equation
A.14.

We now can express the delay caused by an optimal flow as:

C(f∗) ≥ C
(
f

2

)
+
∑
l

c∗l

(
fl
2

)
fl
2

(A.15)

By definition A.4 and equation A.11 we have that:

THE PRICE OF ANARCHY IN MULTIPATH NETWORKS WITH LINEAR COST

FUNCTIONS 137

∑
l

c∗l

(
fl
2

)
fl
2

=
1

2

∑
l

cl (fl) fl (A.16)

=
1

2
C(f) (A.17)

All we need to solve now is C
(
f
2

)
, this is simple if we recall that we are

considering linear cost functions and that therefore we can apply Equation
A.14:

C(
f

2
) =

∑
l

(
1

2
alfl + bl

)
fl
2

(A.18)

≥ 1

4

∑
l

(alfl + bl) fl (A.19)

=
1

4
C(f) (A.20)

By introducing equations A.20 and A.17 into Equations A.15, we obtain:

C(f∗) ≥ 3

4
C(f) (A.21)

Equation A.21 allows us to conclude that the Price of Anarchy for a mul-
tipath network with linear delay functions is at most 4

3 . This result can be
extended to polynomial delay functions, and we obtain the following Price of
Anarchy as a function of the degree of the polynomials:

ρ =
(p+ 1) p

√
p+ 1

(p+ 1) p
√
p+ 1− p

p→∞
=

p

ln(p)
(A.22)

AppendixB
Collection of Pseudocodes

B.1 Dijkstra’s Algorithm Pseudocode

Algorithm 1 Dijkstra’s Algorithm

Require: A network R = (V,E, c), |V | = n, |V | = m, where c : E 7→ <+ is a
weighting of arcs on the graph G = (V,E). A particular vertex S ∈ V called
the source.

Ensure: For all vertex v ∈ V , the lengths D (v) are guaranteed to be minimal.
D (S) = 0
D (v) =∞,∀v 6= S ∈ V
∀v ∈ V, Pv = ∅
Q = V
while Q 6= ∅ do
u← REMOV E −MIN (Q)
for each v ∈ Adj (u) do

if D (v) > D (u) + c (u, v) then
D (v)← D (u) + c (u, v)
Pv = v

end if
end for

end while

139

140 APPENDIX B

B.2 Bellman-Ford’s Algorithm Pseudocode

Algorithm 2 Bellman-Ford’s Algorithm

Require: A network R = (V,E, c), |V | = n, |V | = m, where c : E 7→ < is a
weighting of arcs on the graph G = (V,E). A particular vertex S ∈ V called
the source.

Ensure: For all vertex v ∈ V , the lengths D (v) are guaranteed to be minimal.
for each vertex u ∈ V do
d[u] =∞
p[u] = u

end for
d[s] = 0
for i = 1 to |V | − 1 do

for each edge (u, v) ∈ E do
if (w(u, v) + d[u] < d[v]) then
d[v] = w(u, v) + d[u]
p[v] = u

end if
end for

end for

MULTIROUTE PATH CONSTRUCTION - PSEUDOCODE AND PROOF 141

B.3 MultiRoute Path Construction - Pseudocode and Proof

Require: A Network R = (V,E, c), |V | = n, |V | = m, where c : E 7→ <+ is a
weighting of arcs on the graph G = (V,E). A particular vertex S ∈ V , and
ε which is the tolerance to the optimal path length

Ensure: For all vertex v ∈ V , the lengths D (v) of a alpha-shortest indepen-
dant paths within ε of the optimal path length (the ε-property). From S to
v (D (v) =∞ if there is no path from s to v in G) along with the immediate
predecessor(s) Pv of vertex v in such a path.
D (S) = 0
D (v) = 0,∀v 6= S ∈ V
∀v ∈ V, Pv = ∅
Q = V
while Q 6= ∅ do
u← REMOV E −MIN (Q)
K ← {k ∈ Q| |D (u)−D (k)| ≤ ε}
if u = ∅ then

Graph disjoint, QUIT
end if
for each v ∈ Adj (u) do

if D (v) > D (u) + c (u, v) then
D (v)← D (u) + c (u, v)
Pv = Pv ∪ {v}

end if
if D (v) > D (k) + c (k, v) and |D (k) + c (k, v)−D (v)| ≤ ε then
D (v)← D (k) + c (k, v)
Pv = Pv ∪ {k}

end if
end for

end while

B.3.1 Proof
We will now proove the correctness of the MRPC algorithm. This proof is
heavily based on Dijkstra’s algorithms own correctness proof and the Opti-
mality Principle.

• Proposition -
The algorithm terminates with with:

∀v ∈ V, δ (S, v) = D (v) < δ (S, v) + ε,

142 APPENDIX B

where δ (S, v) is the shortest path between S and v.

• Case I:

δ (S, v) ≤ D (v)

This is given directly by proof of Dijkstra’a algoritm stating that the
shortest distance between S and v is the one recorded at v.

• Case II:

D (v) < δ (S, v) + ε

We only consider an arc if:

D (v) > D (u) + c (u, v) and |D (u) + c (u, v)−D (v)| ≤ ε

We know: δ (S, v) = D (u) + c (u, v) because of the optimality principle
and Dijkstra’s algorithm.

From the equations above we have that:

|δ (S, v)−D (v)| ≤ ε

This gives us three possible cases detailed below.

1. δ (S, v)−D (v) = 0
This case is covered by Case I.

2. δ (S, v)−D (v) > 0
In this case we obtain that:

δ (S, v)− ε ≤ D (v)

Which is not possible, because we know from Dijkstra that δ (S, v)
is the shortest path.

3. δ (S, v)−D (v) < 0
Here we have:

D (v) < δ (S, v) + ε

Which is indeed what we wanted.

MULTIROUTE PROTOCOL FAMILY 143

B.4 MultiRoute Protocol Family

B.4.1 The Classical - MultiRoute

Algorithm 3 The Classical Algorithm

Require: The local network identifier locNet, the destination network
dstNet, the sorted set (from shortest to longest path) of available ports, P ,
for this destination. The set of routing masks, RM associated to each pos-
sible next hop and the local routing mask LRM . The latest update vectors
for each possible next hop and the local router, UV and LUV respectively.

Ensure: The output port, R, associated with the path containing lowest con-
gestion or the path along the shortest path.
LocalCongestion = ObtainCongestionStatus(LUV,LRM, dstnet)
(max, port) = (0, ports[0])
if LocalCongestion contains all False or LocalCongestion contains all True
then

for each p ∈ P do
RemoteCongestion = ObtainCongestionStatus(UVp, RMp, dstnet)
if RemoteCongestion contains all False then

return p
else

if max < RemoteCongestionStatus.getNumFalse() then
(max, port) = (RemoteCongestionStatus.getNumFalse(), port)

end if
end if

end for
else

for each p associated to an uncongested link do
RemoteCongestion = ObtainCongestionStatus(UVp, RMp, dstnet)
if RemoteCongestion contains all False then

return p
else

if max < RemoteCongestionStatus.getNumFalse() then
(max, port) = (RemoteCongestionStatus.getNumFalse(), port)

end if
end if

end for
end if
return port

ObtainCongestionStatus compares the local update vector with the routing

144 APPENDIX B

mask, and using the destination network id returns the bitset of congestion
indications which matches the order of the set of ports P.

A link is considered uncongested when the corresponding entry in Local-
Congestion is False.

MULTIROUTE PROTOCOL FAMILY 145

B.4.2 The Classifier - StepRoute

Algorithm 4 The StepRoute Algorithm

Require: The destination network dstNet, the sorted set (from shortest to
longest path) of available ports, P , for this destination. The set of routing
masks, RM associated to each possible next hop and the local routing mask
LRM . The latest update vectors for each possible next hop and the local
router, UV and LUV respectively.

Ensure: The output port, R, associated with the path containing lowest con-
gestion or the path along the shortest path.
LocalCongestion = ObtainCongestionStatus(LUV,LRM, dstnet)
(max, port) = (0, ports[0])
if LocalCongestion contains all False or LocalCongestion contains all True
then

for each p ∈ P do
RemoteCongestion = ObtainCongestionStatus(UVp, RMp, dstnet)
if RemoteCongestion contains all False then

return p
else

if class > RemoteCongestionStatus.getCongestionClass(p) then
(class, port) = (RemoteCongestionStatus.getCongestionClass(),
port)

end if
end if

end for
return port

else
for each p ∈ P do
localCongestionClass = LocalCongestion.getCongestionClass(p)
RemoteCongestion = ObtainCongestionStatus(UVp, RMp, dstnet)
remoteCongestionClass = RemoteCongestion.getCongestionClass(p)
overallCongestion = localCongestionClass+ remoteCongestioClass
if max > overallCongestion then

(max, port) = (overallCongestion, port)
end if

end for
return port

end if

ObtainCongestionStatus compares the local update vector with the routing
mask, and using the destination network id returns the bitset of congestion

146 APPENDIX B

indications which matches the order of the set of ports P.
getCongestionClass(p) returns a value representing the congestion class for

the link associated to the port p.

MULTIROUTE PROTOCOL FAMILY 147

B.4.3 The Know-it-all - PathRoute

Algorithm 5 The PathRoute Algorithm

Require: The destination network dstNet, the sorted set (from shortest to
longest path) of available ports, P , for this destination. The RM for the
local routing mask LRM . The latest update vectors for the local router,
LUV .

Ensure: The output port, R, associated with the path containing lowest con-
gestion or the path along the shortest path.
{ObtainCongestionStatus compares the local update vector with
the routing mask, and using the destination network id returns the
bitset of congestion indications which matches the order of the set
of ports P. In this case, we only obtain the local congestion as it
will contain the congestion for the entire path.}
(max, port) = (MAXINT, ports[0])
congestion = ObtainCongestionStatus(LUV, LRM, dstnet)
for each p ∈ P do
congOnPath = congestion.getUncongestedLinksOnPathStartingAt(p)
if congOnPath = Distanceto(dstnet) then

return p
end if
if max > congOnPath then

(max, port) = (congOnPath, port)
end if

end for
return port

References

[Abr70] Norman Abramson. The aloha system: another alternative for
computer communications. In AFIPS ’70 (Fall): Proceedings of
the November 17-19, 1970, fall joint computer conference, pages
281–285, New York, NY, USA, 1970. ACM.

[ACE+02] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao.
Overview and principles of internet traffic engineering, 2002.

[AGLAB94] Bob Albrightson, J.J. Garcia-Luna-Aceves, and Joanne Boyle.
Eigrp - a fast routing protocol based on distance vectors. In
Proc. Networld/Interop, 1994.

[ALL00] Sanjeewa Athuraliya, Steven H. Low, and David E. Lapsley. Ran-
dom early marking. In QofIS ’00: Proceedings of the First COST
263 International Workshop on Quality of Future Internet Ser-
vices, pages 43–54, London, UK, 2000. Springer-Verlag.

[APS99] M. Allman, V. Paxson, and W. Stevens. RFC 2581: TCP con-
gestion control, 1999.

[ASCSA07] A. Al-Shabibi, Meirosu C., Stancu S., and
Tupurov A. Yatg: Yet another traffic grapher.
https://edms.cern.ch/document/839606/1, mar. 2007.

[ASM10] A. Al-Shabibi and B. Martin. Multiroute - a congestion-aware
multipath routing protocol. In High Performance Switching and
Routing (HPSR), 2010 International Conference on, pages 88–93,
jun. 2010.

149

150 REFERENCES

[ASM11] A. Al-Shabibi and B. Martin. Steproute - a multiroute variant
based on congestion intervals. In Tenth International Conference
on Networking (ICN 2011), 23-28 January, 2011, The Nether-
lands Antilles. IEEE Computer Society, 2011.

[Ass] InfiniBand Trade Association. Infiniband architecture specifica-
tion volume 1, release 1.2.

[Bel58] Richard Bellman. On a routing problem. Quarterly of Applied
Mathematics, 16(1):87–90, 1958.

[BEZ92] Saewoong Bahk and Magda El Zarki. Dynamic multi-path routing
and how it compares with other dynamic routing algorithms for
high speed wide area network. SIGCOMM Comput. Commun.
Rev., 22(4):53–64, 1992.

[BG92] Dimitri Bertsekas and Robert Gallager. Data Networks. Prentice
Hall, second edition, 1992.

[BMG00] Yoram Bernet, Yoram Bernet Microsoft, and S. Giordano. The
complementary roles of rsvp and differentiated services in the full-
service qos network. 2000.

[BMK88] D. R. Boggs, J. C. Mogul, and C. A. Kent. Measured capacity of
an ethernet: myths and reality. In SIGCOMM ’88: Symposium
proceedings on Communications architectures and protocols, pages
222–234, New York, NY, USA, 1988. ACM.

[Bos92] CA) Bosack, Leonard (Atherton. Method and appa-
ratus for routing communications among computer net-
works. http://www.freepatentsonline.com/5088032.html, Febru-
ary 1992.

[Bur56] Paul J. Burke. The Output of a Queuing System. OPERATIONS
RESEARCH, 4(6):699–704, 1956.

[Ceg75] T. Cegrell. A routing procedure for the tidas message-switching
network. Communications, IEEE Transactions on, 23(6):575 –
585, jun 1975.

[CFSD90] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin. Simple
network management protocol (snmp), 1990.

[CG74] D.G. Cantor and M. Gerla. Optimal routing in a packet-switched
computer network. IEEE Transactions on Computers, 23:1062–
1069, 1974.

REFERENCES 151

[CI05] Vinton G. Cerf and Robert E. Icahn. A protocol for packet net-
work intercommunication. SIGCOMM Comput. Commun. Rev.,
35(2):71–82, 2005.

[Col98] R. Coltun. RFC 2370: The OSPF Opaque LSA Option.
http://www.ietf.org/rfc/rfc2370.txt, July 1998. Obsoleted by
RFC 5250, updated by RFC 3630.

[CSLM05] M. Ciobotaru, S. Stancu, M. LeVine, and B. Martin. Getb, a
gigabit ethernet application platform: its use in the atlas tdaq
network. page 6 pp., jun. 2005.

[DD01] Swades De and Sajal K. Das. Dynamic multipath routing (dmpr):
An approach to improve resource utilization in networks for real-
time traffic. In MASCOTS ’01: Proceedings of the Ninth In-
ternational Symposium in Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, page 23, Washington,
DC, USA, 2001. IEEE Computer Society.

[DDT01] S. De, S.K. Das, and O. Tonguz. Dynamic multipath routing
in networks and switches carrying connection-oriented traffic. In
Communications, 2001. ICC 2001. IEEE International Confer-
ence on, volume 10, pages 3130 –3134 vol.10, 2001.

[Dij59] Edsger. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

[DS80] Edsger W. Dijkstra and Carel S. Scholten. Termination detection
for diffusing computations. Inf. Process. Lett., pages 1–4, 1980.

[Emu] EMULAB. http://www.emulab.net.

[Erl17] A. K. Erlang. Solution of some problems in the theory of proba-
bilities of significance in automatic telephone exchanges. P.O.E.E
Journal, 10:189, 1917.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM,
5(6):345, 1962.

[FLS+06] J. Flich, P. Lpez, J. Sancho, A. Robles, and J. Duato. Improving
infiniband routing through multiple virtual networks. In Hans
Zima, Kazuki Joe, Mitsuhisa Sato, Yoshiki Seo, and Masaaki
Shimasaki, editors, High Performance Computing, volume 2327
of Lecture Notes in Computer Science, pages 363–368. Springer
Berlin / Heidelberg, 2006.

152 REFERENCES

[Fra98] H. Frazier. The 802.3z gigabit ethernet standard. Network, IEEE,
12(3):6 –7, may/jun 1998.

[FT00] Bernard Fortz and Mikkel Thorup. Internet traffic engineering by
optimizing ospf weights. In INFOCOM, pages 519–528, 2000.

[Gal77] R. Gallager. A minimum delay routing algorithm using dis-
tributed computation. IEEE Transactions on Communications,
25(1):73–85, 1977.

[GEN] Global Environment for Network Innovations.
http://www.freepatentsonline.com/5088032.html.

[GFR+02] M. Gmez, J. Flich, A. Robles, P. Lpez, and J. Duato. Evalua-
tion of routing algorithms for infiniband networks. In Burkhard
Monien and Rainer Feldmann, editors, Euro-Par 2002 Parallel
Processing, volume 2400 of Lecture Notes in Computer Science,
pages 159–162. Springer Berlin / Heidelberg, 2002.

[GKP+08] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martin
Casado, Nick McKeown, and Scott Shenker. Nox: towards an op-
erating system for networks. Computer Communication Review,
38(3):105–110, 2008.

[GLA93] J. J. Garcia-Lunes-Aceves. Loop-free routing using diffusing com-
putations. IEEE/ACM Trans. Netw., 1(1):130–141, 1993.

[GLAM97] J. J. Garcia-Luna-Aceves and Shree Murthy. A path-finding algo-
rithm for loop-free routing. IEEE/ACM Trans. Netw., 5(1):148–
160, 1997.

[GLAVZ99] J.J. Garcia-Luna-Aceves, S. Vutukury, and W.T. Zaumen. A
practical approach to minimizing delays in internet routing. vol-
ume 1, pages 479 –483 vol.1, 1999.

[GZRR03] I. Gojmerac, T. Ziegler, F. Ricciato, and P. Reichl. Adaptive mul-
tipath routing for dynamic traffic engineering. volume 6, pages
3058 – 3062 vol.6, dec. 2003.

[Hec97] David Heckerman. Bayesian networks for data mining. Data Min.
Knowl. Discov., 1:79–119, January 1997.

[Hed88] C. L. Hedrick. RFC 1058: Routing information protocol, June
1988.

[HHK03] Mark Handley, Orion Hodson, and Eddie Kohler. Xorp: an open
platform for network research. SIGCOMM Comput. Commun.
Rev., 33(1):53–57, 2003.

REFERENCES 153

[Hin91] R.M. Hinden. Internet Engineering Task Force Internet Routing
Protocol Standardization Criteria. RFC 1264 (Historic), October
1991. Obsoleted by RFC 4794.

[Hop00] C. Hopps. Analysis of an equal-cost multi-path algorithm, 2000.

[Hui95] Christian Huitema. Routing in the Internet. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1995.

[IEE85] Ieee standards for local area networks: Carrier sense multiple ac-
cess with collision detection (csma/cd) access method and physi-
cal layer specifications. ANSI/IEEE Std 802.3-1985, 1985.

[IEE89] Ieee standards for local area networks: Token ring access method
and physical layer specifications. IEEE Std 802.5-1989, 1989.

[IEE90] IEEE. 802.3i-1990 IEEE Supplement to Carrier Sense Multiple
Access with Collision Detection CSMA/CD Access Method and
Physical Layer Specifications: System Considerations for Multi-
segment 10 Mb/s Baseband Networks (Section 13) and Twisted-
Pair Medium Attachment Unit (MAU) and Baseband Medium,
Type 10BASE-T (Section 14). 1990. IEEE product number
SH13763.

[IEE91] Ieee standards for local and metropolitan area networks: Media
access control (mac) bridges. IEEE Std 802.1D-1990, page 1,
1991.

[IEE93] Ieee standards for local and metropolitan area networks: Sup-
plement to carrier sense multiple access with collision detection
(cswcd) access method and physical layer specifications fiber op-
tic active and passive star-based segments, type 10base-f (sections
15-18). ANSI/IEEE Std 802.3j-1993, page 1, 1993.

[IEE95] Ieee standards for local and metropolitan area networks: Sup-
plement to carrier sense multiple access with collision detection
(csma/cd) access method and physical layer specifications media
access control (mac) parameters, physical layer, medium attach-
ment units, and repeater for 100 mb/s operation, type 100base-t
(clauses 21-30). IEEE Std 802.3u-1995 (Supplement to ISO/IEC
8802-3: 1993; ANSI/IEEE Std 802.3, 1993 Edition), pages 0 –
398, 1995.

[JMG93] Alain Jean-Marie and Levent Gün. Parallel queues with rese-
quencing. J. ACM, 40(5):1188–1208, 1993.

154 REFERENCES

[Jr.56] L.R. Ford Jr. Network flow theory. Paper P-923, The RAND
Corperation, Santa Moncia, California, August 1956.

[Kin93] J. F. C. Kingman. Poisson Processes (Oxford Studies in Proba-
bility). Oxford University Press, USA, January 1993.

[Kle72] Leonard Kleinrock. Communication nets; stochastic message flow
and delay. Dover Publications, Incorporated, 1972.

[Kle75] L. Kleinrock. Queueing Systems, Volume 1: Theory. Wiley, 1975.

[KM95] Christopher A. Kent and Jeffrey C. Mogul. Fragmentation con-
sidered harmful. SIGCOMM Comput. Commun. Rev., 25:75–87,
January 1995.

[KZ89] A. Khanna and J. Zinky. The revised arpanet routing metric.
SIGCOMM Comput. Commun. Rev., 19(4):45–56, 1989.

[LC01] Youngseok Lee and Yanghee Choi. An adaptive flow-level load
control scheme for multipath forwarding. In ICN ’01: Proceed-
ings of the First International Conference on Networking-Part 1,
pages 771–779, London, UK, 2001. Springer-Verlag.

[Lit61] John D. C. Little. A proof for the queuing formula: l = λw.
Operations Research, 9(3):383–387, 1961.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and
Jonathan Turner. Openflow: enabling innovation in campus net-
works. SIGCOMM Comput. Commun. Rev., 38(2):69–74, 2008.

[MKJK99] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans
Kaashoek. The click modular router. SIGOPS Oper. Syst. Rev.,
33(5):217–231, 1999.

[Moy98] J. Moy. Ospf version 2, 1998.

[MRR79] John M. McQuillan, Ira Richer, and Eric C. Rosen. An overview
of the new routing algorithm for the arpanet. In SIGCOMM
’79: Proceedings of the sixth symposium on Data communications,
pages 63–68, New York, NY, USA, 1979. ACM.

[MW77] John M. McQuillan and D.C. Walden. The arpanet design deci-
sions,. In Computer Networksi Vol. 1, No.5,, 1977.

[NBBB98] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the
differentiated services field (ds field) in the ipv4 and ipv6 headers,
1998.

REFERENCES 155

[Neta] Netbooting a Linux workstation.
http://http://aput.net/̃jheiss/netboot linux/.

[NETb] NetFPGA: Programmable Networking Hardware.
http://www.netfpga.org.

[NST99] P. Narvaez, K.-Y. Siu, and H.-Y Tzeng. Efficient algorithms for
multi-path link-state routing. In in Proceedings of ISCOM, 1999.

[Pig20] A. C. Pigou. The economics of welfare. Macmillan, London :,
1920.

[Pos81] Jon Postel. Rfc 793. http://www.ietf.org/rfc/rfc793.txt, Septem-
ber 1981.

[Pyt] The Python Programming Language. http://www.python.org.

[RFC95] Requirements for ip version 4 routers, 1995.

[RFC04] Recommendations for interoperable ip networks using intermedi-
ate system to intermediate system (is-is), 2004.

[Rou05] Tim Roughgarden. Selfish Routing and the Price of Anarchy. The
MIT Press, 2005.

[Spu00] Charles E. Spurgeon. Ethernet: the definitive guide. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 2000.

[SRS99] Anees Shaikh, Jennifer Rexford, and Kang G. Shin. Load-
sensitive routing of long-lived ip flows. In SIGCOMM ’99: Pro-
ceedings of the conference on Applications, technologies, architec-
tures, and protocols for computer communication, pages 215–226,
New York, NY, USA, 1999. ACM.

[Sta] StarBed. http://www.starbed.org.

[Tan03] Andrew S. Tanenbaum. Computer Networks. Pearson, Upper
Saddle River, NJ, 4. edition, 2003.

[TCD+07] Jonathan S. Turner, Patrick Crowley, John DeHart, Amy Free-
stone, Brandon Heller, Fred Kuhns, Sailesh Kumar, John Lock-
wood, Jing Lu, Michael Wilson, Charles Wiseman, and David Zar.
Supercharging planetlab: a high performance, multi-application,
overlay network platform. SIGCOMM Comput. Commun. Rev.,
37(4):85–96, 2007.

[TH00] D. Thaler and C. Hopps. Multipath issues in unicast and multi-
cast next-hop selection, 2000.

156 REFERENCES

[TR98] D.G. Thaler and C.V. Ravishankar. Using name-based mappings
to increase hit rates. Networking, IEEE/ACM Transactions on,
6(1):1 –14, feb 1998.

[VGLA99a] S. Vutukury and J.J. Garcia-Luna-Aceves. An algorithm for mul-
tipath computation using distance-vectors with predecessor infor-
mation. pages 534 –539, 1999.

[VGLA99b] S. Vutukury and J.J. Garcia-Luna-Aceves. A distributed algo-
rithm for multipath computation. volume 3, pages 1689 –1693
vol.3, 1999.

[VGLA99c] Srinivas Vutukury and J. J. Garcia-Luna-Aceves. A simple ap-
proximation to minimum-delay routing. In SIGCOMM ’99: Pro-
ceedings of the conference on Applications, technologies, architec-
tures, and protocols for computer communication, pages 227–238,
New York, NY, USA, 1999. ACM.

[VGLA00] S. Vutukury and J.J. Garcia-Luna-Aceves. A traffic engineering
approach based on minimum-delay routing. pages 42 –47, 2000.

[VGLA01] S. Vutukury and J.J. Garcia-Luna-Aceves. Mdva: a distance-
vector multipath routing protocol. volume 1, pages 557 –564
vol.1, 2001.

[Vil99] Curtis Villamizar. OSPF Optimized Multipath.
http://tools.ietf.org/html/draft-ietf-ospf-omp-02, February
1999.

[WC90] Z. Wang and J. Crowcroft. Shortest path first with emergency
exits. SIGCOMM Comput. Commun. Rev., 20(4):166–176, 1990.

[WLL04] M. Wang, B. Li, and Z. Li. sflow: towards resource-efficient and
agile service federation in service overlay networks. In Distributed
Computing Systems, 2004. Proceedings. 24th International Con-
ference on, pages 628–635, 2004.

[WWZ01] Yufei Wang, Zheng Wang, and Leah Zhang. Internet traffic engi-
neering without full mesh overlaying. In INFOCOM, pages 565–
571, 2001.

[XDla97] Zhengyu Xu, Sa Dai, and J. J. Garcia luna aceves. A more efficient
distance vector routing algorithm. In in Proceedings of IEEE
MILCOM, page 97, 1997.

[ZGLA98] W.T. Zaumen and J.J. Garcia-Luna-Aceves. Loop-free multipath
routing using generalized diffusing computations. volume 3, pages
1408 –1417 vol.3, mar-2 apr 1998.

