Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Nonsmooth Convex Variational Approaches to Image Analysis

Lellmann, Jan

German Title: Nichtglatte Konvexe Variationsmethoden in der Bildverarbeitung

[img]
Preview
PDF, English Print-on-Demand-Kopie (epubli)
Download (7Mb) | Lizenz: Print on Demand

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the persistent URL or the URN below, as we can guarantee their long-time accessibility.

Abstract

Variational models constitute a foundation for the formulation and understanding of models in many areas of image processing and analysis. In this work, we consider a generic variational framework for convex relaxations of multiclass labeling problems, formulated on continuous domains. We propose several relaxations for length-based regularizers, with varying expressiveness and computational cost. In contrast to graph-based, combinatorial approaches, we rely on a geometric measure theory-based formulation, which avoids artifacts caused by an early discretization in theory as well as in practice. We investigate and compare numerical first-order approaches for solving the associated nonsmooth discretized problem, based on controlled smoothing and operator splitting. In order to obtain integral solutions, we propose a randomized rounding technique formulated in the spatially continuous setting, and prove that it allows to obtain solutions with an a priori optimality bound. Furthermore, we present a method for introducing more advanced prior shape knowledge into labeling problems, based on the sparse representation framework.

Translation of abstract (German)

Variationsmethoden bilden in vielen Gebieten der Bildverarbeitung die Grundlage für die Formulierung von Modellen sowie für deren tieferes Verständnis. In dieser Arbeit betrachten wir einen Variationsansatz für konvexe Relaxierungen des Mehrklassen-Segmentierungsproblems, formuliert auf kontinuierlichen Bildgebieten. Wir stellen mehrere zugehörige Relaxierungen für längenbasierte Regularisierer vor, die sich in der Mächtigkeit, aber auch in der numerischen Komplexität, unterscheiden. Durch die Formulierung im Rahmen der geometrischen Maÿtheorie werden Diskretisierungsartefakte, die bei graphenbasierten kombinatorischen Verfahren aufgrund der frühzeitigen Diskretisierung auftreten, so weit wie möglich vermieden. Zur numerischen Lösung des zugehörigen nichtglatten Optimierungsproblems untersuchen wir Optimierungsmethoden erster Ordnung, basierend auf kontrollierter Glättung und Operator Splitting. Wir formulieren eine randomisierte Rundungsmethode für Mehrklassen-Segmentierungsprobleme auf kontinuierlichen Gebieten und zeigen, dass auf diese Weise ganzzahlige Lösungen mit einer a priori-Schranke für die Optimalität gefunden werden können. Weiterhin stellen wir eine "Sparse Representation"-basierte Methode vor, die es erlaubt, zusätzliches Vorwissen über die Objektform in Variationsansätze zu integrieren.

Item Type: Dissertation
Supervisor: Schnörr, Prof. Dr. Christoph
Date of thesis defense: 12 July 2011
Date Deposited: 06 Oct 2011 14:32
Date: 2011
Faculties / Institutes: Service facilities > Interdisciplinary Center for Scientific Computing
Subjects: 510 Mathematics
Controlled Keywords: Bildsegmentierung, Konvexe Optimierung, Nichtglatte Optimierung, Kombinatorische Optimierung, Funktion von beschränkter Variation
Uncontrolled Keywords: Konvexe Relaxation , Sattelpunktproblem , Coarea-FormelImage Segmentation , Continuous Cut , Saddle Point Problem , Convex Relaxation , Coarea Formula
About | FAQ | Contact | Imprint |
OA-LogoLogo der Open-Archives-Initiative