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Abstract. In this thesis we build on the work of Fukaya and Kato [FK06] in
which they presented equivariant Tamagawa Number conjectures that implied a
very general (noncommutative) Iwasawa main conjecture for rather general mo-
tives. We apply their methods to the case of one-parameter families of motives
to derive a main conjecture for such families (theorem 4.31). On our way there
we get some unconditional results on the variation of the (algebraic) λ- and the
µ-invariant in many cases (theorem 3.33 and corollary 3.34). We focus on the re-
sults dealing with Selmer complexes instead of the more classical notion of Selmer
groups. However, where possible we give the connection to the classical notions.
The �nal chapter deals with the deformation theory of the representations occur-
ring in our theory and the existence of one-parameter families. In particular we
recover and generalize some results on the variation of Iwasawa invariants in Hida
families.

Zusammenfassung. Diese Arbeit baut auf dem Artikel [FK06] von Fukaya und
Kato auf. In diesem Artikel werden äquivariante Tamagawazahl Vermutungen for-
muliert, von denen eine sehr allgemeine (nichtkommutative) Iwasawa Hauptver-
mutung für eine breite Klasse von Motiven abgeleitet wird. Wir wenden die dort
verwendeten Methoden auf den Fall von Ein-Parameter Familien von Motiven an,
um eine Hauptvermutung für diese Familien (theorem 4.31) abzuleiten. Auf dem
Weg dorthin erhalten wir einige Resultate über die Variation der (algebraischen)
λ- und µ- Invarianten (theorem 3.33 und corollary 3.34), die nicht die Vermu-
tungen von Fukaya und Kato voraussetzen. Unser Hauptaugenmerk liegt dabei
auf Resultaten, die Selmer Komplexe an Stelle der klassischeren Selmer Gruppen
verwenden. Wo immer es möglich ist, werden wir aber den Zusammenhang mit
der klassischen Situation herstellen. Das letzte Kapitel beschäftigt sich mit der
Deformationstheorie der Darstellungen, die in der Theorie auftauchen, und der
Existenz von Ein-Parameter Familien. Insbesondere verallgemeinern wir einige
bekannte Resultate über die Variation von Iwasawa Invarianten in Hida Familien.
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CHAPTER 0

Introduction

This thesis studies the Iwasawa theory of families of motives. The idea to
study a whole family at once instead of just a single motive was introduced by
Hida in [Hid86] in which he studied what are now called Hida families of modular
forms, i.e., families that consist of all ordinary modular cusp forms of a given level
and nebentype but arbitrary weight that are congruent modulo p. Among the
early successes of this technique is its use by Mazur and Wiles in [MW86] and
[Wil88] in the proof of the Iwasawa main conjecture for the Tate motive along
the cyclotomic Zp-extension.

There are basically two ways how one can utilize the fact that the motives
are members of a family: the easier one, by far, is to study how certain algebraic
invariants of the Selmer groups of di�erent members of the families are related so
that the invariants for many motives can be computed by just knowing one of them.
This approach has been carried out for the modular forms along the cyclotomic
extension by Emerton, Pollack, and Weston in [EPW06] and for modular forms
along the false Tate extension by Aribam in his PhD thesis [Sha09]. In this thesis,
we will give a version for very general motives, which subsumes many of the results
of [EPW06] and [Sha09]. More importantly, we give a uniform treatment for all
the motives and for many p-adic Lie groups.

The second way to use families is to construct a two-variable p-adic L-function
for the family that interpolates all the L-functions of the members of the family.
This approach was initiated by Greenberg and followed by Ochiai in classical
(commutative) settings (see, for instance, [Och06]). It is worth mentioning that
Ochiai has studied the case of families of Hilbert modular forms using this approach
quite successfully. However, it seems that this method can not be generalized in
non-commutative settings. As a remedy we will use the results of Fukaya and
Kato in [FK06] to formulate a main conjecture for the family of such a kind
that it is compatible with equivariant Tamagawa number conjectures and gives a
two-variable algebraic p-adic ζ-function.

Before delving deeper into the details, it might be helpful to recall the setup
in non-commutative Iwasawa theory for motives:

Let p be an odd prime and let F be a number �eld. Moreover, let M be
an F -motive and F∞/F be a Galois extension, such that G := Gal(F∞/F ) is a
p-adic Lie group. In this setting, (non-commutative) Iwasawa theory investigates
the following Pontryagin dual of of the Selmer group:

X (M,F∞) := Sel(M,F∞)∨

Assuming, for simplicity, that M has coe�cients in Q, then X (M,F∞) has a
structure as a module under the Iwasawa algebra

Λ := ZpJGK := lim←−
U/G

Z[G/U ],

1



2 0. INTRODUCTION

where U runs over the open normal subgroups. One of the main goals of Iwa-
sawa theory is to describe this structure. With this aim in mind, we follow two
approaches:

• The �rst one is to study the λ- and the µ-invariant as de�ned by Coates
and Howson in [CH97], [CH01], and most notably in [How02] as Euler
characteristics, provided that G does not have any p-torsion and F∞
contains the cyclotomic Zp-extension of F .
• The second strategy is to formulate an Iwasawa main conjecture. Such
a conjecture predicts the existence of a p-adic ζ-function ζ(M,F∞/F )
that is related to the module structure of X (M,F∞), at the same time
interpolating values of the complex L-function of twists of M by Artin
characters at zero.

In this thesis, we work with the formulation of the theory given by Fukaya and
Kato in [FK06]. The last article continues a line in noncommutative Iwasawa
theory started by the habilitation thesis of Venjakob [Ven05] and generalized
in the article [CFKSV]. Fukaya and Kato (loc.cit.) succeed in formulating an
Iwasawa main conjecture for motives in a setup generalizing the case of ordinary
reduction at p. Furthermore, they were able to show that this main conjecture
can be derived assuming Tamagawa number conjectures.

The approach of Fukaya and Kato can be applied to motives satisfying the
Dabrowski-Panchishkin condition (condition 2.9), a vast generalization of ordi-
narity. Their method uses two crucial steps. Firstly, the p-adic realization of
the motive together with the subrepresentations given by the condition induces
a pair (T,T0) of free representations over Λ. Here, T is a representation of the
absolute Galois group GQ of Q and T0 is a free direct summand that is stable
under the local Galois group GQp . Secondly, Fukaya and Kato assume equivariant
Tamagawa number conjectures, which we will denote by (FK) in the following.
Assuming that these conjectures hold, they associate a ζ-function to any pair of
representations (T,T0) over an adic ring Λ (see de�nition 1.11 for �adic ring�),
provided T0 is isomorphic as a Λ-module to the 1-eigenspace T+ of the complex
conjugation on T. However, in this generality it is not possible to work with
Selmer groups. Remarkably, if the Λ-module X (M,F∞/F ) is replaced by a com-
plex SC(M,F∞/F ) := SC(T,T0) of Λ-modules that is closely related to it, then
a main conjecture can be formulated linking ζ to this complex.

The ζ-function ζ(M,F∞/F ) is related to the Selmer complex SC(M,F∞/F )
via the long exact sequence of K-theory. Assuming that G has no p-torsion and
SC(M,F∞/F ) has S∗-torsion cohomology groups for the denominator set S∗ ⊂ Λ
described in the quoted articles, the complex SC(M,F∞/F ) then describes a
class in K0(S∗-tor), the Grothendieck group of the �nitely generated S∗-torsion Λ-
modules. In that situation the p-adic ζ-function ζ(M,F∞/F ) should be an element
in K1(ΛS∗), the K1-group of the localization of Λ at S∗. The ζ(M,F∞/F ) and
the class of SC(M,F∞/F ) are connected through the fact that the former maps
to the class of the latter under the connection morphism ∂ in the exact sequence:

K1(Λ)→ K1(ΛS∗)
∂→ K0(S∗ − tor)→ 0

As ζ(M,F∞/F ) ∈ K1(ΛS∗), it can be evaluated at Artin characters ρ : G →
Gln(Qp). This evaluation is de�ned via an extension of the maps K1(Λ) →
K1(Qp) = Q×p , using the functoriality of K-groups.
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The precise main conjecture derived by Fukaya and Kato will be reproduced
in this thesis as theorem 4.24. For the purpose of the introduction and to give a
�rst impression of this kind of results, we state the following simpli�ed version of
the theorem:

Theorem 0.1 (Iwasawa main conjecture for motives). We assume that the
conjectures (FK) hold. Let M be a critical F -motive satisfying the Dabrowski-
Panchishkin condition and let F∞/F be a p-adic Lie extension with Galois group
G without p-torsion. Moreover, let β : T0 → T+ be an isomorphism of Λ-modules.
If SC(M,F∞/F ) has S∗-torsion cohomology groups, then there is an element
ζβ(M,F∞/F ) in K1(ΛS∗) that can be uniquely described and has the following
properties: Firstly, under the connection morphism ∂, the element ζβ(M,F∞/F )
maps to the class of SC(M,F∞/F ). Secondly, the values of ζβ(M,F∞/F ) at Artin
characters ρ can be computed using the value of the complex L-function of M(ρ∗)
at 0.

The classical main conjecture for elliptic curves or modular forms can be pre-
sented in this form.

Finally, we note that the case of the Iwaswa main conjecture, where the motive
M is the Tate motive, F is a totally real �eld, and some µ-invariants vanish, was
most recently proven by Kakde in [Kak10]. Another proof of a similar main
conjecture was provided even slightly earlier by Ritter and Weiss in [RW10].
However, very little is known about motives other than twists of the Tate motive
and motives associated with elliptic curves. Furthermore, the vanishing of the
µ-invariant remains an open problem in many cases.

Let us now turn to the setup for families. Recall that we �xed a number �eld
F and a Galois extension F∞/F with Galois group G. We assume that G does
not contain any p-torsion and that the cyclotomic Zp-extension of F is contained
in F∞. A (height one) specialization is a continuous Zp-algebra morphism φ :
Zp[[t]]→ Zp. We �x a non-empty set Σ of specializations. A family of motives is
a free representation ρ : GF → GL(T ) of �nite rank over Zp[[t]] of the absolute
Galois group GF of F together with a collection of motives Mφ over F such that
the p-adic realization of (Mφ)φ∈Σ is just Mφ,p = T ⊗Zp,φ Qp.

As mentioned earlier, studying the non-commutative main conjecture for a
family of motives by following the methods of Ochiai does not seem to yield results.
Alternatively, we use the basic idea that the construction of the pair (T,T0) can
be applied to the representation ρ of the family instead of the p-adic realization
of a motive to give a pair of Galois representations over the adic ring Λ[[t]]. For
the representation T, this does not provide any problems. However, to apply the
machinery of Fukaya and Kato, we need a free Λ[[t]]-direct summand T0 of T,
which is stable under GQp and isomorphic to the invariant-module of the complex
conjugation on T. Concerning this problem, we get the crucial result (lemma 2.14):

Lemma 0.2. Assume that for every place v of F dividing p we can choose a
submodule T 0(v) ⊂ T which is invariant under the decomposition group of v which
is a direct summand as a Zp[[t]]-module. We assume in addition:

(1) For every φ ∈ Σ, the canonical map

DdR(Fv, T
0(v)⊗Zp[[t]],φ Qp)→ DdR(Fv, T ⊗Zp[[t]],φ Qp)/D

0
dR(Fv, T ⊗Zp[[t]],φ Qp)

is an isomorphism.
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(2) There is one φ ∈ Σ, such that we can construct the pair (Tφ,T0
φ) for the

motive Mφ.

Then it is possible to construct the pair of big representations for all motives Mφ

with φ ∈ Σ and to construct T and T0 for the family such that the constructions
are compatible with specialization.

The conditions on the individual φ are just technical and cannot be removed in
the described setting. A major restriction is the existence of the T 0(v). In fact, the
existence of submodules of this kind is a deformation problem with one particular
nearly ordinary condition. In the last chapter, we will study this problem more
closely and give some examples of when such a representation exists or when it
can never exist.

Much of the work relies on rather explicit computations with power series
rings. However, it seems likely that the last result also holds if we replace Zp[[t]]
with a �nite �at extension. This would be a worthy generalization, as it would
increase the number of known examples considerably.

Assuming from now on that the conditions of the above lemma are satis�ed, we
can study the relations between the Iwasawa invariants of Selmer complexes of the
specializations and the invariant of the complex of the family. In the general case
where the coe�cients of the motives are bigger than Q, there are some technical
problems that need to be solved. The general statements can be found as theorem
3.35 and corollary 3.36. But the case described above (with rational coe�cients)
is already contained in corollary 3.34:

Theorem 0.3. We assume that the extension F∞/F contains the cyclotomic
Zp-extension of F . Let (T,Σ, (Mφ)) be a family and let φ ∈ Σ be a specialization
map. We denote the kernel of φ : Zp[[t]] → Zp by (f). Furthermore, we assume
that (T,T0) is the pair of representations over Λ[[t]] associated to the family and
(Tφ,T0

φ) the pair of representations over Λ associated to Mφ. If SC(Tφ,T0
φ) has

S∗-torsion cohomology groups and condition 2.15 is satis�ed, then the following
holds:

(1) There is an n depending only on the pair (Tφ,T0
φ) such that

µΛ/f (SC(Tφ,T0
φ)) = µΛ/g(SC(Tψ,T0

ψ))

for any ψ ∈ Σ with kernel (g) such that pn|f − g.
(2) Assuming that the cohomology groups of SC(T,T0) are S-torsion, we have

λΛ(SC(T,T0)) = λΛφ(SC(Tφ,T0
φ)).

However, we have to be careful as now the cohomology groups of SC(Tφ,T0
φ)

are automatically S∗-torsion, but need not be S-torsion.

Note that condition 2.15 required in the theorem states that the extension
F∞/F has to be in�nitely rami�ed at places where the representation of the family
is in�nitely rami�ed. Apart from this requirement, the extension F∞/F can be
chosen rather arbitrarily. This theorem is a vast generalization of the analogous
results by Emerton, Pollack, and Weston [EPW06] as well as those of Aribam
[Sha09], as mentioned earlier.

In cases where G does not have any p-torsion, we can compare the Iwasawa
invariants of the Selmer groups with those of the Selmer complexes. Thus, in this
situation we get similar results for invariants of the Selmer groups (corollary 3.40):
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Theorem 0.4. Let (T,T0) be a pair of big Galois representations associated
with a family of motives and assume that the according p-adic Lie group G =
Gal(F∞/F ) does not have any p-torsion and that condition 2.12 on freeness is
met. Moreover, let φ and ψ be two specializations of the family. Then the following
holds:

(1) If φ has kernel (f) and X (T,T0) is S∗-torsion, then there is an n depend-
ing only on (Tφ,T0

φ) such that

µΛφ(X (Tφ,T0
φ)) = µΛψ(X (Tψ,T0

ψ)),

whenever there is a g ∈ Zp[[t]] generating the kernel of ψ such that
πn|f − g.

(2) If the cohomology groups of SC(U,Tφ,T0
φ) are S-torsion and all the groups

Hv for every place v of F dividing p as well as the group H admit in�nite
pro-p quotients without p-torsion, then:

λΛ(X (Tφ,T0
φ)) = λΛφ(X (Tψ,T0

ψ))

We also prove a few slightly di�erent versions of these theorems. The main
ingredients in the proof of these theorems are twofold. On the one hand, we prove
generalizations of many of the results in [FK06] on modules over adic rings. On
the other hand, we make use of the fact that the Iwasawa invariants of Coates and
Howson as well as the Selmer complexes are both de�ned in terms of homological
algebra and therefore relate well to each other.

As mentioned above, the ζ-function of a motive is closely related to the ζ-
function of the corresponding pair of representations. Basically, the only di�erence
are some Euler factors at bad primes. It is possible to mimic this construction for
families in many cases. Assuming the conjectures (FK), we can thus apply the
theorems of Fukaya and Kato to derive the existence of a ζ-function for families.
This result is summed up in theorem 4.31:

Theorem 0.5 (Iwasawa main conjecture for families). Assume that the con-
jectures (FK) hold. Let Mt be a family of motives satisfying the condition 2.12, let
F∞/F be a Lie extension as in section 2.2 inducing a pair of Galois representations
(T,T0), and assume that β is an isomorphism as above. We assume furthermore
that the condition 2.15 is satis�ed and that the cohomology groups of SC(T,T0) are

S∗-torsion. Then there is a ζ-element ζβ(Mt, F∞/F ) ∈ K1(Λ[[t]]S∗)×K1(Λp)K1(Λ̃)
with the following properties:

(1) Under the boundary map of the long exact sequence of K-theory, the ele-
ment ζβ(Mt, F∞/F ) maps to the class of SC(T,T0) in K0(S∗-tor).

(2) Under specialization maps φ, the isomorphism ζβ(Mt, F∞/F ) is mapped

to ζβφ(Mφ, F∞/F ) in K1(ΛS∗)×K1(Λ) K1(Λ̃).
(3) Assume that φ is a specialization, ρ is an Artin character of G, and

j is an integer such that Mφ(ρ)(j) is critical as in theorem 4.24, and
let ρ′ : Zp × G → K ′ be ρ on G and φ on Zp. Then, the value of
ζβ(Mt, F∞/F ) at ρ′κ−j can be described using the value of the complex
L-function of Mφ(ρ∗, j) at 0.

There are cases where a similar result holds for the Selmer groups in place of
the Selmer complexes. However, in general, the classes of the two in K0(Σ) do not
coincide, so we have to introduce a correction factor, which weakens the result.
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The thesis is organized as follows: In the �rst chapter, some technical lemmata
are proven and we reproduce some theorems from di�erent �elds. Please note that
the theorems from homological algebra, while well-known, are carefully stated to
produce canonical morphisms in later chapters. Chapter two reproduces those
parts of the theory of Selmer complexes that are needed later and proves the
relations to the Selmer groups. The third chapter presents our results on the
variation of Iwasawa invariants. In the fourth chapter, we recall the theory of ζ-
isomorphism and derive our versions of the Iwasawa main conjecture for families.
Finally, in the last chapter we discuss some deformation theory specialized to the
nearly ordinary case and present the classical examples of families.
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CHAPTER 1

Preliminaries

Before we actually start working with the Selmer complexes and ζ-isomorphisms,
it is essential to name some basic facts about noncommutative rings and homo-
logical algebra and to �x the notation. For this purpose, we �x once and for all a
rational prime p. Please note that some of our de�nitions depend on this speci�c
prime even though it is not always explicitly mentioned.

1.1. Some facts on modules and representations

In this section, we collect some facts from representation theory we will need
later. For this whole section, let Λ be a not necessarily commutative, left and right
Noetherian ring without zero divisors. Moreover, let G be an abstract group and
T a �nitely generated (left) Λ-module equipped with a Λ-linear (left) G-action.

Let us �rst note:

Proposition 1.1. Let f ∈ Λ be an element of the center. Assume that T does
not have any f -torsion. Then, the canonical map TG/f → (T/f)G is injective. If,
in addition, G is �nite, then the cokernel is annihilated by the order of G.

Proof. As T does not have any f -torsion, we have an exact sequence:

0→ T
f ·→ T → T/f → 0

The long exact cohomological sequence implies the short exact sequence:

0→ TG/f → (T/f)G → H1(G,T )[f ]→ 0

But any cohomology group of G is annihilated by the order of G. Thus the
claim follows.

�

>From that, we deduce the following application:

Corollary 1.2. Let O ⊂ O′ be a �nite extension of commutative principal
ideal domains such that O′ is free as an O-module. Let φ : O[[t]] → O′ be an
O-algebra homomorphism. Then the kernel of φ is a principal ideal. Let T be
an O[[t]]-module that does not have any torsion by a generator of the kernel of
φ. Let G operate O[[t]]-linearly on T . Then, the natural map O′ ⊗O[[t]] T

G →
(O′ ⊗O[[t]] T )G is injective, and if G is �nite, the cokernel is annihilated by the
order of G.

Proof. As O[[t]] is factorial and the kernel of φ is a prime ideal of height 1,
the kernel is principal.

Look at the induced map O′[[t]]→ O′. This is a surjective map and the kernel
is still principal, say generated by f . Clearly, O′[[t]]⊗O[[t]] T does not have any f
torsion. We can therefore apply the last proposition to the O′[[t]]⊗O[[t]] Λ-module

7
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O′[[t]] ⊗O[[t]] T to show that the map O′ ⊗O[[t]] (O′[[t]] ⊗O′[[t]] T )G → (O′ ⊗O[[t]]

O′[[t]] ⊗O′[[t]] T )G has the desired properties. But as O′[[t]] is free over O[[t]], we

conclude that O′[[t]]⊗O[[t]] T
G = (O′[[t]]⊗O[[t]] T )G, proving our assertion. �

Before we develop this theory further, let us remark that the situation with
coinvariants in place of invariants is much better:

Lemma 1.3. Let R and S be (not necessarily commutative) rings. And let
T be an S-module with a linear action of a group G. Moreover let Y be an R-
S-bimodule. We de�ne a G action on Y ⊗S T by taking the trivial operation on
Y . If, furthermore, ()G denotes the G coinvariants, then we have a canonical
isomorphism of R-modules:

(Y ⊗S T )G ∼= Y ⊗ (TG)

Proof. We can view T as an S[G]-module. Let Y [G] := R[G] ⊗R Y =
Y ⊗S S[G] as an R[G]-S[G]-bimodule. Then, we conclude:

Y ⊗S T = Y [G]⊗S[G] T

as R[G]-modules where the G-action on the left hand side is the one described in
the assertion. And further

(Y [G]⊗S[G] T )G = R⊗R[G] Y [G]⊗S[G] T = Y ⊗S[G] T

= Y ⊗S S ⊗S[G] T = Y ⊗S (TG)

as required. �

We will spend the rest of this section giving criteria when Λ-modules, in par-
ticular the module TG, are free.

Let us �rst develop some conditions under which modules are free. Firstly:

Lemma 1.4. For a ring Λ and a �nitely generated projective Λ-module T , we
assume that I ⊂ Λ is contained in the radical and T/IT is free as a Λ/I module;
then, T is free as a Λ-module.

Proof. We choose lifts t1, ..., tn in T of a basis of T/IT . By Nakayama's
lemma they generate T , so that we get an exact sequence

0→ K → Λn → T → 0

where the right map is given by sending the standard basis of Λn to the ti and
where K is de�ned to be the kernel. As T is projective, this sequence splits, so K
is isomorphic to a quotient of Λn. Consequently it is �nitely generated. Moreover,
again making us of the fact that T is projective, we conclude that the sequence

0→ K/I → (Λ/I)n → T/I → 0

is still exact. The map (Λ/I)n → T/I is given by the chosen basis, thus it is an
isomorphism. We can then deduce that K/I = 0 and, using the Nakayama lemma
again, we arrive at K = 0, proving our assertion. �

Secondly, we have some compatibility for free ring extensions:

Lemma 1.5. Let Λ be a ring with radical J , such that Λ/J is a �nite di-
mensional algebra over a skew �eld (compare the de�nition of adic rings in the
next section). Let Λ′ be a �nite extension of Λ, which is free as a Λ-module and
possesses a basis consisting of central elements. Then, for any �nitely generated
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Λ-module T we have: Λ′ ⊗Λ T is free as a Λ′-module if and only if T is free as a
Λ-module.

Proof. The �only if� part is trivial.
To prove the �if� part, assume that T ′ := Λ′ ⊗Λ T is free as a Λ′ module, then

it is free as a Λ-module, too, so T is projective as a Λ-module. We can thus utilize
the last lemma to see that it is enough to show that T/J is free as a Λ/J-module.
If r1, ..., rs is a central basis of Λ′ over Λ, then the (both-sided) ideal J ′ of Λ′

generated by J is Λ′J = JΛ′ =
⊕

i riJ . Therefore, Λ′/J ′ is a free Λ/J-module.
We may thus replace Λ by Λ/J and prove the lemma in the case that J = 0.

Wedderburn's theorem tells us that in this case Λ is a �nite product of matrix
algebras over skew �elds. As the extension Λ′/Λ is generated by central elements,
the central idempotents corresponding to the product decomposition of Λ are also
central in Λ′. It follows that Λ′ has a corresponding product decomposition. As
being a free module of �nite rank n over a product of rings is the same as being a
free module of rank n over all the factors, we have reduced the lemma to the case
where Λ is simple, if we show in addition that the rank of T only depends on the
Λ′ rank of Λ′ ⊗Λ T and the Λ-rank of Λ′.

Finally, in the case that Λ = Mn(k) with some skew �eld k, the (explicit)
Morita equivalence tells us that the category of modules overMn(k) is canonically
equivalent to the category of vector spaces over k. Thus, the isomorphism classes
of �nitely generated Mn(k)-modules T are classi�ed by the dimension of the cor-
responding vector space denoted by r(T ). Moreover, it is not hard to see that T

is free if and only if n|r(T ), and in this case the rank of T is r(T )
n . In the situation

of our lemma, we have that r(T ) = dimk(T ) · 1
n = dimk(T

′) · 1
sn = dimk(Λ

′) · t
sn

where t is the Λ′-rank of the free module T ′. The assertion now follows from the
fact that dimk(Λ

′) = n2s. �

The last lemma is quite well known, but we state it for completeness:

Lemma 1.6. Let Λ be an integral domain with the �eld of fractions F . A
Λ-module T is generated by n := dimF (F ⊗ T ) elements, if and only if it is free.

Proof. The module T is free if and only if it is free of rank n, and if that
is the case, then it is clearly generated by n elements. If T is generated by n
elements, however, we have an exact sequence:

0→ R→ Λn → T → 0

Tensoring with F , we conclude that R⊗F is 0. In other words: R is a torsion mod-
ule. But since R is a submodule of a free module, it is torsion-free. Consequently
it follows that R = 0 and that Λn → T is an isomorphism. �

Corollary 1.7. Assume that Λ is a Noetherian integral domain, f ∈ Λ is
contained in the Jacobson radical and Λ/f is a principal ideal domain. Then, for
any �nitely generated free Λ-module T with a group G acting Λ-linearly on T , the
module of G-invariant elements TG is a free Λ-module.

Proof. By proposition 1.1, TG/f maps injectively into the free module T/f .
It follows that the Λ/f -module TG/f is torsion-free hence it is free as Λ/f is
a principal ideal domain. Therefore, by the last lemma it is generated by n :=
dimQuot(Λ/f)(Quot(Λ/f)⊗ (TG)/f)) elements. By Nakayama's lemma, TG is also
generated by n elements. Localizing at (f) we observe that Λ(f) is a discrete
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valuation ring and so the torsion-free module Λ(f) ⊗ TG ⊂ Λ(f) ⊗ T is free. Thus
we conclude that

dimQuot(Λ)(Quot(Λ)⊗ TG)) = dimQuot(Λ/f)(Quot(Λ/f)⊗ (TG)/f)) = n.

Together with the last lemma the claim follows. �

1.2. Homological algebra

Cohomology theories with compact support and the Selmer complexes are
de�ned as mapping cones. In our applications it turns out, however, that the
numbering of the mapping cone should be shifted by one. The shifted cone is called
the mapping �ber. Adopting this notion, we establish the following de�nition:

Definition 1.8. Let f : B• → C• be a morphism of complexes. The map-
ping �ber A• = cone(f)[−1] of f is the mapping cone of f shifted by one, i.e.,
the complex with the modules Ai = Bi ⊕ Ci−1 and di�erential dA : (b, c) 7→
(dB(b),−dC(c)− f(b)). This complex makes the following a distinguished triangle
in the derived category:

A• → B•
f→ C•

+→
To get maps between mapping �bers and to compute the di�erences between

them, we will adopt the following proposition:

Proposition 1.9. Assume we are given the following diagram of complexes:

B
g //

φ
��

B′′

φ′′

��
C

h // C ′′

We denote the mapping �bers of g and h by B′ and C ′ and the mapping �bers of
φ and φ′′ by A and A′′. Then the following holds:

(1) There is a natural morphism φ′ : B′ → C ′ making (φ′, φ, φ′′) : (B′, B,B′′)→
(C ′, C, C ′′) a morphism of triangles. The same argument gives a natural
morphism f : A→ A′′.

(2) The mapping �bers of φ′ and f are naturally isomorphic as complexes;
denoting them by A′, we get the following natural diagram in the derived
category, where all the rows and columns are distinguished triangles in the
derived category and all the squares commute except for the lower right
one, which commutes up to sign:

A′ //

��

A
f //

��

A′′ //

��

A′[1]

��
B′ //

φ′

��

B
g //

φ

��

B′′ //

φ′′

��

B′[1]

��
C ′ //

��

C
h //

��

C ′′ //

��
−

C ′[1]

��
A′[1] // A[1] // A′′[1] // A′[2]



1.2. HOMOLOGICAL ALGEBRA 11

Moreover, all the maps between complexes without a shift are actually
maps of complexes.

This is a well-known fact, and easily computed using the explicit construction
of the mapping �bers (or cones). A version of it can be found in chapter 10 of
[Wei94]. Let us just point out for the second assertion that viewing the i-th
module of the mapping �bers of φ′ and f as Bi ⊕ Ci−1 ⊕ (B′′)i−1 ⊕ (C ′′)i−2 the
isomorphism is the identity on the �rst three summands and minus the identity
on (C ′′)i−2. The rest of the proof consists of comparing sings.

This proposition has a generalization in general triangulated categories. In this
setting one can still complete the diagram in the form of the second part, however
there are no natural choices for some of the morphisms leading to ambiguities we
would like to avoid.

For later reference and to avoid confusions with the direction of shifting we
note the following special case:

Corollary 1.10. In the situation of the last proposition and keeping the no-
tations we assume in addition that φ : B → C is a quasi-isomorphism. In this
situation, we have a canonical distinguished triangle in the derived category:

B′ → C ′ → A′′ → B′[1].

Equivalently, the mapping cone of the map of the mapping �bers B′ → C ′ is
canonically quasi-isomorphic to the mapping �ber of B′′ → C ′′.

Proof. The last proposition gave us a canonical triangle of complexes:

B′ → C ′ → A′[1]→ B′[1].

As φ is a quasi-isomorphism, A is acyclic and thus the canonical map A′′ →
A′[1] is a quasi-isomorphism. This allows us to replace A′[1] in the above triangle
by A′′ in a canonical way. �

Turning back to more speci�c situations we want to note some facts on adic
rings. For reasons of completeness, we give the de�nition:

Definition 1.11. A ring Λ is called an adic ring if there is a two-sided ideal
I ⊂ Λ such that for all n ≥ 1, Λ/In is �nite of p-power order and Λ = lim←−n Λ/In.

Remark 1.12. Recall that the prime occurring in the de�nition is our �xed
prime p. So by de�nition, �adic ring� implies �pro-p ring�, even if p is not explicitly
mentioned.

If Λ is an adic ring with respect to some ideal I, then I is contained in the
radical J of Λ and Λ = lim←−Λ/Jn. Moreover, we have that Jn ⊂ I for some n, so
that the topology induced on Λ is independent of the choice of I. In the following
Λ will thus be viewed as a topological ring. Furthermore, Λ is semi-local and Λ/J
is a �nite product of full matrix algebras over �nite �elds.

This is shown in paragraph 1.4, of [FK06] in particular in lemma 1.4.4. From
the same paragraph, we take the next lemma, which is our main source of examples
of adic rings.

Lemma 1.13. If G is a pro�nite group which contains an open �nitely generated
pro-p subgroup and if O is the ring of integers of a p-adic �eld then the Iwasawa
algebra OJGK is an adic ring. In particular, p-adic Lie groups ful�ll this condition.
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Proof. For the proof, see part 1.4.2 of the mentioned paragraph. �

Modules over adic rings have the advantage that they behave well with pro-
jective limits, and thus many computations can be reduced to �nite cases. As a
�rst example of this fact, we note the following behavior of K1 groups:

Proposition 1.14. Let Λ be an adic ring and J its radical. Then we have:

K1(Λ) ∼= lim←−
n

K1(Λ/Jn)

This is proposition 1.5.1 of [FK06].

1.3. Galois cohomology

Since this thesis will deal with a variety of cohomolog theories we will �rst lay
down the main de�nitions and theorems to �x the notation. To deal with Galois
cohomology, one needs to have Galois groups, so from now on we assume every
given �eld to be equipped with the choice of an algebraic closure.

Firstly, for a pro�nite group G, a topological Ring R, and a topological R[G]
module M , we de�ne C(G,M) to be the complex of inhomogeneous continuous
cochains, RΓ(G,M) to be the complex viewed as an object in the derived category
of abstract R-modules, and Hm(G,M) to be its m-th cohomology group. Please
note that, in this generality, this is not a derived functor. As a �rst fact we note:

Remark 1.15. Let φ : R′ → R be a homomorphism of topological rings and
let ()R′ be the functor �view as R′-module.� Then C(G,MR′) = (C(G,M))R′ and
therefore RΓ(G,MR′) = (RΓ(G,M))R′ and H

m(G,MR′) = (Hm(G,M))R′ .

While this is a well-known and obvious fact, it is rarely stated in this generality.
Now let us note the compatibility of the cohomology groups with projective

limits. The following is the �rst part of proposition 1.6.5 in [FK06]:

Proposition 1.16. Assume that Λ is an adic ring and Hm(G,M) is �nite for
all �nite abelian groups M of p-power order endowed with a continuous G action.
Then for all �nitely generated (topological) Λ-modules T with a continuous, Λ-
linear G-action, we have a canonical isomorphism:

Hm(G,T )
∼=→ lim←−

n

Hm(G,T/JnT )

for any m with J being the radical of Λ.

Next we give the main notations for Galois cohomology groups: If F is a �eld,
then GF denotes its absolute Galois group and for a continuous GF -module M
we denote by H i(F,M), Ci(F,M), and RΓ(F,M) ) the continuous cohomology,
the cochains, and the derived complex for GF , respectively. Moreover, for F = R
and F = C we de�ne the Tate complexes Ĉ(F, T ) to be the 2-periodic complexes
computing the cohomology for the cyclic groups GR and GC.

We observe the following well-known facts:

Proposition 1.17. If M is �nite of p power order, then in the following cases
the groups H i(F,M) are �nite:

• If F is an l-adic �eld or R or a �nite �eld (l is an arbitrary prime).
• If F is a �nite extension of the maximal unrami�ed extension Qur

l and
l 6= p.
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Moreover, the following is known about the cohomological p-dimensions:

• l-adic �elds have cohomological p-dimension 2.
• Finite �elds have cohomological p-dimension 1.
• cdp(R) = 0 unless p = 2.

• Ĉ(F, T ) is acyclic unless F = R and p = 2.
• Finite extensions of Qur

l have cohomological p dimension 1 if p 6= l.

Proof. All of this is well known and most of it is easily proven (if one knows
the Galois groups). The only aspect requiring some work is the case of the l-adic
�elds. The respective proof can be found, for instance, in [NSW08] Theorem
7.1.8. �

As usual in arithmetic, we need the ��nite part� of the local Galois cohomol-
ogy. This describes a subcomplex of the local cohomology, which computes the
unrami�ed cohomology:

Definition 1.18. For an l-adic �eld F with l 6= p and a Galois module M , let
Cf (F,M) ⊂ C(F,M) be the following subcomplex: Cif (F,M) = 0 unless i ∈ {0, 1},
in degree 0 it is the full module C0(F,M) and in degree 1 it is the kernel of the map
(C1(F,M))d=0 → H1(F ur,M). Here, the index d = 0 should be read as taking the
cocycles and F ur is the maximal unrami�ed extension of F . Moreover, we write
the cohomology of this complex as H i

f (F,M).

Lemma 1.19. In the derived category, we have canonical isomorphisms:

Cf (F,M) ∼= C(F ur/F,M I) ∼= [1− φ : M I →M I ],

where I ⊂ GF is the inertia subgroup, φ denotes the geometric Frobenius, and the
last complex lives in degrees 0 and 1.

Proof. We will not give a complete proof of this fact, but we state what the
canonical morphisms are: The second one is simple: it is given by the map which
is just the identity for the degree 0 parts: C0(F ur/F,M I) = M I and in degree 1
sends a map c ∈Maps(Gal(F ur/F ),M I)) = C1(F ur/F,M I) to −c(φ).

The other quasi-isomorphism is a bit harder to describe: First note that as the
higher cohomology groups of C(F ur/F,M I) vanish, the inclusion of the subcom-
plex [C0(F ur/F,M I) → C1(F ur/F,M I)d=0] is a quasi-isomorphism. The image
of this complex in C(F,M) under the in�ation map is then contained in Cf (F,M)
and the quasi-isomorphism we are looking for is the induced map

[C0(F ur/F,M I)→ C1(F ur/F,M I)d=0]→ Cf (F,M).

�

Turning to global cohomology, let us now �x a number �eld F and an open
subset U ⊂ spec(OF ) not containing the primes dividing p. Let GU denote the
Galois group of the maximal extension of F which is unrami�ed in U . For any
GU -module T , we then denote the chain-complex, derived complex, and the coho-
mology groups by C(U, T ), RΓ(U, T ), and Hm(U, T ), respectively.

We �x embeddings of the algebraic closures F → Fv for all places v of F to
de�ne cohomology with compact support, of which two versions will be used:

Definition 1.20. Let F be a number �eld and U ⊂ OF be an open subset.
We then de�ne for every GU -module T the following complexes:
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(1) The complex Cc(U, T ) is the mapping �ber of the map:

C(U, T )→
⊕
v 6∈U

C(Fv, T )

Here the sum runs over all (�nite or in�nite) places not in U . The coho-
mology of this complex is denoted by H i

c(U, T ).
(2) The complex C(c)(U, T ) is the mapping �ber of the map:

C(U, T )→
⊕
v|∞

Ĉ(Fv, T )⊕
⊕
l 6∈U

C(Fl, T )

Here l runs over all �nite places not in U . The cohomology of this complex
is denoted by H i

(c)(U, T ).

These de�nitions follow the ones made in [FK06].
We observe the following facts about these cohomology groups:

Proposition 1.21. If T is �nite of order a power of p, then all the groups
H i(U, T ), H i

c(U, T ), and H i
(c)(U, T ) are �nite for any m. Moreover, H i

c(U, T ) =

H i
(c)(U, T ) = 0 if i > 3, and if i > 2 and p 6= 2, then H i(U, T ) = 0.

Proof. The cases where p 6= 2 follow directly from proposition 8.3.18 and the-
orem 8.3.20 in [NSW08]. Indeed, this theorem is the assertion on H i(U, T ) = 0,
and the other two cases follow directly from the cohomological dimensions of the
local �elds and the long exact sequences coming for the distinguished triangles
de�ning the cohomology with compact support. Making use of the same exact
sequences, it remains to be shown that H i(U, T )→

⊕
v|∞H

i(Fv, T ) is an isomor-

phism for all i ≥ 3. This last statement is part of the Poitou-Tate theorem and
can be found, for instance, as the second part of theorem 8.6.10 in [NSW08]. �

The perfectness and the base change properties of the Selmer complex depend
on the similar facts for the cohomology theories. These are parts 2 and 3 of
proposition 1.6.5. in [FK06]:

Proposition 1.22. Assume that the groups H i(G,M) are �nite whenever M
is a �nite module of p-power order. Furthermore, the cohomological p-dimension
of G is assumed to be �nite. If T is a �nitely generated projective Λ-module for
an adic ring Λ endowed with a continuous G-action, then the following holds:

(1) The complex RΓ(G,T ) is perfect.
(2) If Y is a �nitely generated projective Λ′-module for some other adic ring

Λ′ endowed with a compatible right Λ-action, then there is a canonical
isomorphism:

Y ⊗LΛ RΓ(G,T )
∼=→ RΓ(G, Y ⊗Λ T )

This applies in particular to Y = Λ′ if Λ′ is a Λ algebra.

Similarly, if F number �eld and U is an open subset of spec(OF ), then for any
GU -module T , that is �nitely generated and projective as a Λ-module, RΓc(U, T )
is perfect, and in the situation of the second part, there is again an isomorphism:

Y ⊗LΛ RΓc(U, T )
∼=→ RΓc(U, Y ⊗Λ T )
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Finally, we state two duality theorems that we will use. The standard refer-
ences for these theorems include [Mil06] and [NSW08]. A treatment of the exact
theorems can be found in [Lim11]

For some Λ-module T , by T∨ := Homcont(T,Qp/Zp) we denote the Pontryagin
dual and by T∨(1) := Homcont(T, µp∞) the Kummer dual. For a complex C•, let
us denote (C•)∨ := RHomcont(C

•,Qp/Zp).
Firstly, there is the local duality:

Proposition 1.23. Let T be a �nitely generated projective module over an
adic ring Λ. We assume that T is endowed with a Λ-linear GF action for some
l-adic �eld F . Then we have a canonical isomorphism:

Φ(F, T ) : RΓ(F, T ) ∼= RΓ(F, T∨(1))∨[−2].

Under this perfect pairing, the orthogonal complement of H1(F ur, T ) ↪→ H1(F, T )
is H1(F ur, T∨(1)) ↪→ H1(F, T∨(1)) and vice versa.

For a proof, see for instance [NSW08] theorems (7.2.6) and (7.2.15).
Secondly, we have the global duality:

Proposition 1.24. Let T be a �nitely generated projective module over an
adic ring Λ. We assume that T is endowed with a Λ-linear GF action for some
number �eld F . We �x an open subset U ⊂ spec(OF ) not containing any places
of F dividing p. Then we have the canonical isomorphisms

Φ(c)(U, T ) : RΓ(c)(U, T ) ∼= RΓ(U, T∨(1))∨[−3]

and
Φ(U, T ) : RΓ(U, T ) ∼= RΓ(c)(U, T

∨(1))∨[−3].

For a proof, see [Mil06] corollary 3.3. Also the main theorem of [Lim11]
treats an even bigger class of modules.



CHAPTER 2

Selmer complexes

Inherent to the theory of zeta isomorphisms as it is developed in [FK06] is the
use of Selmer complexes instead of Selmer groups. Basically, for every set of local
conditions leading to a Selmer group, one gets a Selmer complex. As Nekovar has
already remarked in [Nek06], the only sets of local conditions that are accessible
with elementary means are the ones suggested by Greenberg in [Gre89]. In this
chapter, we will develop the theory of Selmer complexes as far as we need it.
Finally, we will show how they are connected to classical Selmer groups.

2.1. De�nitions and basic facts

Let us �rst discuss how to associate a Selmer complex to a representation of
the absolute Galois group of Q over some adic ring Λ. The next section will focus
on how such a representation is associated to a motive or a family of motives.

Let us �x embeddings Q→ Qv for all places v of Q for the rest of the thesis.
These embeddings induce restriction maps of the corresponding Galois groups and
therefore the following is well de�ned:

Definition 2.1. Let T be a �nitely generated module over an adic ring Λ and
let T 0 ⊂ T be a GQp-subrepresentation for the chosen embedding Q ↪→ Qp. We
choose an open subset U of Spec(Z) not containing p, so that the representation T
is unrami�ed in U and such that the complement of U contains at least one prime
di�erent from p. Then we de�ne the imprimitive Selmer complex SC(U, T, T 0) to
be the mapping �ber of the map

C(U, T )→ C(Qp, T/T
0)⊕

⊕
l 6∈U∪{p}

C(Ql, T ).

Similarly, we de�ne the primitive Selmer complex SCU (T, T 0) to be the map-
ping �ber of

C(U, T )→ C(Qp, T/T
0)⊕

⊕
l 6∈U∪{p}

C(Ql, T )/Cf (Ql, T ).

The U in the index of the primitive Selmer complex can and will be omitted
by the following Lemma:

Lemma 2.2. Let U ′ ⊂ U be two open subsets of spec(Z), both satisfying the con-
ditions on rami�cation. There is then a natural map of complexes SCU (T, T 0)→
SCU ′(T, T

0) which is a quasi-isomorphism.

Proof. This is a standard argument, which is given here for the sake of
completeness. Firstly, we look at the following commutative diagram of complexes:

16
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C(U, T ) //

��

C(Qp, T/T
0)⊕

⊕
l 6∈U∪{p}C(Ql, T )/Cf (Ql, T )

� _

��
C(U ′, T ) // C(Qp, T/T

0)⊕
⊕

l 6∈U ′∪{p}C(Ql, T )/Cf (Ql, T )

Here, the left vertical map is the in�ation and the right vertical map is the canoni-
cal inclusion. The �rst part of proposition 1.9 applies to our situation and produces
the natural morphism

φ : SCU (T, T 0)→ SCU ′(T, T
0).

Of course, if U ′ ⊂ V ⊂ U , this map factors naturally via SCV (T, T 0). Thus by
induction it is enough to prove the lemma in the case U ′ = U ∪ {l}. The second
part of proposition 1.9 tells us that it su�ces to show that the induced map on the
mapping �bers of the vertical maps is a quasi-isomorphism. The mapping �ber
of the right vertical map is canonically quasi-isomorphic to the mapping �ber of
0 → C(Ql, T )/Cf (Ql, T ), which in turn is quasi-isomorphic to the mapping �ber
of C(Qnr

l /Ql, T ) → C(Ql, T ). Combining those �ndings we have a commutative
diagram

C(U, T ) //

��

C(Qnr
l /Ql, T )

��
C(U ′, T ) // C(Ql, T )

where the horizontal arrows are restriction maps and the vertical arrows are in�a-
tion maps. It remains to be shown that the induced map on the mapping �bers
is a quasi-isomorphism. Moreover, using proposition 1.16, we may assume that T
is �nite of p power order. As p is invertible on U and U ′, the group cohomology
coincides in this case with the étale cohomology of the associated sheaf (see for
instance [Mil06] chapter 2 proposition 2.9).

In the language of étale cohomology, both of the mapping �bers actually com-
pute the cohomology relative to l on U and spec(Zl) and those are isomorphic by
the excision lemma. That the isomorphism from the excision lemma is the one
induced by our map on the mapping �bers follows from the fact that any acyclic
resolution can be used to compute derived functors. �

By the de�nition of Nekovar in [Nek06], the cohomology groups of a Selmer
complex should vanish outside the degrees 1, 2, and 3. This is noted in the
following lemma:

Lemma 2.3. Assume that p 6= 2 or invert p, then we have H i(SC(U, T, T 0)) =
H i(SC(T, T 0)) = 0 unless i = 1, 2, 3.

Proof. We have already seen, in the section about Galois cohomology, that
the complexes of which the Selmer complexes are mapping �bers have trivial co-
homology groups outside the degrees 0, 1, and 2. So the Selmer complexes can
only have nontrivial cohomology groups in the degrees 0, 1, 2, and 3. The degree
0 part of SC(U, T, T 0) vanishes as a single localization map in degree 0 is already
injective (being the inclusion of GU -invariants into Gl invariants) and the comple-
ment of U ∪ {p} is nonempty by de�nition. For the complex SC(T, T 0) we note
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that the degree 0 cohomology group is contained in the one of the imprimitive
Selmer complex (compare lemma 2.5) and must therefore vanish. �

Note the similarity in the de�nitions of the Selmer complexes and the de�-
nitions of the cohomology with compact support (including the degrees in which
cohomology can occur). This is not by coincidence: The Selmer complex with
Greenberg's local conditions should be thought of as the �right� cohomology the-
ory for arithmetics in the sense that it is a compactly supported cohomology theory
(H0 = 0), which admits duality results with itself (i.e. not switching between com-
pactly supported and not compactly supported theories like global duality 1.24).
This point of view is explained by Nekovar in [Nek06], in particular in the para-
graphs 0.9 and 0.12, where he presents his results.

To be more precise, proposition 1.9 gives us a morphism of exact triangles:

C(c)(U, T ) //

��

C(U, T ) //

��

Ĉ(R, T )⊕
⊕

l 6∈U C(Ql, T )

��

+ //

SC(U, T, T 0) // C(U, T ) // C(Qp, T/T
0)⊕

⊕
l 6∈U∪{p}C(Ql, T )

+ //

Now remarking that Ĉ(R, T/T 0) is acyclic and using the distinguished triangle
related to the exact sequence

0→ T 0 → T → T/T 0 → 0,

the corollary 1.10 following this proposition gives the �rst part of the next lemma.
The second part follows completely analogously and is stated as equation 4.4 in
[FK06]:

Lemma 2.4. If p 6= 2, we have two canonical distinguished triangles:

(1) C(c)(U, T )→ SC(U, T, T 0)→ C(Qp, T
0)

+→ and

(2) C(c)(U, T )→ SC(T, T 0)→ C(Qp, T
0)⊕

⊕
l 6∈U∪{p}Cf (Ql, T )

+→

The same results hold if p = 2 and we invert p in every module.
We give one result towards the special situation of the next section: Let us

assume that we �x an embedding F → Q and thus identify F and Q via this
embedding. The primitive and the imprimitive Selmer complex are related by the
following fact:

Lemma 2.5. Assume T = Ind
GQ
GF
T ′ is induced from some representation T ′ of

the absolute Galois group of a number �eld F which is unrami�ed at all primes v
of F which lie over U . In this case, we have a canonical, distinguished triangle

SC(T, T 0)→ SC(U, T, T 0)→
⊕
v

Cf (Fv, T
′)

+→ ,

where the sum is taken over all �nite places v of F not lying above U or p.

Proof. First observe that the case F = Q, i.e., the not induced situation, is
an easy application of the corollary 1.10 after the �3 × 3-lemma.� Thus, for the
general case it remains to be shown that there is a canonical quasi-isomorphism
Cf (Ql, T )→

⊕
v|l Cf (Fv, T

′) whenever l 6∈ U .
By applying Mackey decomposition, we have the following equality of GQl-

modules:
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Ind
GQ
GF
T ′ =

⊕
GQlgGF

Ind
GQl
GQl∩(GF )gT

′g =
⊕
v|l

Ind
GQl
GFv

T ′

Here in the middle term the sum is taken over a representing system of the
double cosets GQlgGF and T ′g denotes the module T ′ with the conjugated group
operation. Applying Shapiro's lemma to the cohomology on the right-hand side
gives the desired result. �

Remark 2.6. The choice of the system of representatives of double cosets
corresponds to the choice of embeddings F = Q ↪→ Ql = Fv for the place v
corresponding to the double coset GQlgGF via the chosen embedding Q ↪→ Ql.
Also, the in�uence these choices have is marginal, we will stick to them from now
on.

We conclude this section with two remarks on the imprimitive Selmer complex:

Proposition 2.7. Assume that p 6= 2, then the Selmer complex SC(U, T, T 0)
is perfect. If, in addition, the invariants under the complex conjugation T+ and
T 0 map to the same class in K0(Λ), then [SC(U, T, T 0)] = 0 in K0(Λ).

Proof. The �rst part follows from the fact that RΓ(U, T ) and the local sum-
mands are perfect (see propositions 1.17 and 1.22). The second part can be found
in [FK06] 4.1.2.. �

2.2. The representations associated to motives and families

This section will explain, what kind of representations we will apply the theory
of Selmer complexes to:

As before, p is a �xed odd prime and F is a number �eld. The completion of
F at p is denoted by Fp =

∏
v|p Fv. We �x a Galois extension F∞/F with Galois

group G such that F∞/F is unrami�ed outside a �nite set of places and G is a
p-adic Lie-group.

Definition 2.1.

(1) In the rest of this chapter, a family of Galois representations of rank
n < ∞ over a topological ring R will always be a continuous group
morphism GF → GL(T ) of the absolute Galois group GF of F , where T
is a free module of rank n <∞ over the power series ring R[[t]].

(2) Moreover, if R is an integral domain with �eld of fractions K, represen-
tations V over K are said to be continuous if there is an R-lattice (i.e., a
�nitely generated R- submodule which generates V as a K-module) that
is GF stable, such that GF → GL(T ) is continuous. All representations
are assumed to be continuous if not stated otherwise.

(3) In the above situation, (continuous) representations overK[[t]] are de�ned
in an analogous fashion.

(4) A (height one) specialization is a continuous R-algebra morphism R[[t]]→
R′, where R′ is a �nite R algebra. The specialization of the representation
is the induced representation on T ⊗R′.

The above notion of continuity is necessary since we do not have natural topolo-
gies on all the �elds of fractions and there is no choice of a topology making the
ring an open subset. Nevertheless the de�nition is well-behaved:
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Lemma 2.8. Let ρ : G→ GL(V ) be a not necessarily continuous representation
over K = Q(R), where R is a compact local Noetherian integral domain endowed
with its m-adic topology. Then the following holds:

(1) If R is a complete discrete valuation ring, then K has a natural topology,
and a representation over K is continuous by the above de�nition if and
only if it is continuous in the natural topology.

(2) The de�nition is independent of the lattice: If T, T ′ ⊂ V are ρ-stable
lattices, then ρ : G→ GL(T ) is continuous if and only if ρ : G→ GL(T ′)
is.

(3) The standard way to get ρ-stable lattices works in this case as well: If
ρ is continuous and T ⊂ V is a (not necessarily ρ-stable) lattice, then⋃
g∈G gT is a ρ-stable lattice.

Proof. The �rst assertion is a simple compactness argument.
The second one is a straightforward application of the Artin-Rees lemma once

we note that there are r and r′ in R, such that rT ⊂ T ′ and r′T ′ ⊂ T .
For the last assertion, we have only to show that T ′ :=

⋃
g∈G gT is �nitely

generated as an R-module. But if L ⊂ V is a ρ-stable lattice, then there is a
non-zero element r ∈ R, such that rT ⊂ L. As L is ρ-stable we conclude that
T ′ ∼= rT ′ ⊂ L and is therefore �nitely generated. �

For reasons of convenience, we give a list of notations used in the remainder
of this chapter:

(1) Let K be a number �eld and λ a place of K dividing p. We will then
look at specializations φ : Kλ[[t]] → Kλ and denote the image of φ with
Kφ.

(2) Modules over Kλ[[t]] and Kφ will be denoted by V or Vφ, respectively.
(3) O := Oλ ⊂ Kλ and Oφ ⊂ Kφ are the rings of integers.
(4) Modules over O and Oφ will be denoted by T and Tφ.
(5) The Iwasawa algebras are Λ := Λ(G) := OJGK[[t]] and Λφ := Λφ(G) :=
OφJGK.

(6) Finally, the modules over Λ and Λφ will be denoted by T and Tφ.
We are interested in families of Galois representations with the additional

property that certain specializations are the p-adic realization of motives which
satisfy some extra conditions.

To put it more concretely: Let V be a free linear representation of GF over
Kλ[[t]] of rank n. We will always assume this representation to be unrami�ed
outside a �nite set of primes of F . Let Σ ⊂ Hom(Kλ[[t]],Kλ) be a �nite or in�nite
set of height one specializations, such that for every φ ∈ Σ there is a motive Mφ

over K ′, a �nite extension of K, such that for a place λφ of K ′ dividing λ the
completion of K ′ at λφ is Kφ and the module Vφ := V ⊗Kλ[[t]],φKφ is the λφ-adic
realization of Mφ.

For all φ ∈ Σ, the λ-adic realizations Mλ of the motives Mφ are assumed to
satisfy the Dabrowski-Panchishkin condition:

Condition 2.9. For every place v of F dividing p, there is a GFv submodule
M0
λ(v) of Mλ such that

DdR(Fv,M
0
λ(v))

∼=→ DdR(Fv,Mλ,Mλ)/D0
dR(Fv,Mλ,Mλ).
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Let us recall how to de�ne the big Galois representation T over Λ := Λ(G)
associated to motives as treated in [FK06] and, in the process, on the way de�ne
the analog for families.

Recall that the Λ-adic representation T for a single motive M only depends
on the λ-adic realization of M . The �rst step in the process for single members
of the family is to choose an Oλ-lattice in Mp. It will be crucial in the following
that this lattice is free. While such a lattice evidently exists, as Oλ is a PID, in
the case of families the analog properties need a careful study of modules over
Iwasawa-algebras:

Proposition 2.10. Let R be a commutative, Noetherian and integrally closed
domain and M be a torsion-free �nitely generated R-Module. By M◦ :=
HomR(M,R), we demote the linear dual. Then M◦◦ =

⋂
pMp is re�exive. The

natural morphism M → M◦◦ is a pseudo isomorphism. Moreover, if R is regular
of Krull dimension ≤ 2, then M is free if and only if M is re�exive.

Proof. See [NSW08] lemma 5.1.2 for the �rst part; the second statement is
obvious, and the last assertion is proposition 5.1.9 (loc.cit.). �

Corollary 2.11. Let K := Q(O[[t]]) be the �eld of fractions and G be a
pro�nite group. For every �nite dimensional continuous representation ρ : G →
AutK(W ), there is a free O[[t]] sublattice of W stable under ρ.

Moreover, let R ⊂ K be any ring containing O[[t]] such that p is invertible
in R and t is not. Then starting with a continuous (free) representation V over
R, the lattice T can be taken in V . Any such lattice has the property that for
every specialization map φ : Kλ[[t]]→ Kφ the submodule T ⊗O[[t]] Oφ is a ρ-stable
Oφ-lattice in the Kφ-vector space V ⊗O[[t]] Oφ = V ⊗Kλ[[t]] Kφ.

Proof. By continuity, we have a ρ-stable �nitely generated O[[t]]-submodule
T ′ in W such that T ′ generates W as a K-vector space. We set T :=

⋂
ht(p)=1 T

′
p.

This is again �nitely generated and still ρ-stable. As T ⊃ T ′, it contains a K-basis
of W . The last proposition shows that T is re�exive and, hence, free.

In the second situation we use the �rst part, to choose a free ρ-stable O[[t]]-
lattice T ′ in W = K⊗ V . Then, as T ′ is �nitely generated, there is a nonzero r in
O[[t]], such that rT ′ ⊂ V . We can take T := rT ′.

As t is not invertible in R the specialization map induces φ : R → Kφ. The
The module T⊗O[[t]]Oφ is clearly ρ-stable and compact. Therefore is is a O-lattice
and hence free, because O is a principal ideal domain. �

We apply this corollary to choose a GF -invariant free Oλ[[t]]-lattice T in a
given family of Galois representations V .

The next step is to �nd O[[t]]-direct summands T 0(v) of T corresponding under
the specializations φ ∈ Σ to the tangent space, as in the Dabrowski-Panchishkin
condition. Of course this is not possible in general; it is a special nearly ordinary
condition (see chapter 5 for the corresponding deformation theory).

Condition 2.12. For every place v of F dividing p, there is a free Gv :=
Gal(Fv/Fv) stable O[[t]]-direct summand T 0(v) of T such that its image in Vφ
generates the Kλ-subspace V

0
φ (v) from the Dabrowski-Panchishkin condition.

Now everything is ready to impose the constructions of Fukaya and Kato in
[FK06] to get the big Galois representations of GQ over Λ := Λ(G): First �x a
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system (Fn)n∈N of �nite extensions Fn of F in F∞ such that
⋃
Fn = F∞. Our

big representation is de�ned to be T := lim←− g∗(fn)∗(fn)∗(T ) as a pro-étale sheaf,

where g : Spec(F ) → Spec(Q) and fn : Spec(Fn) → Spec(F ) are the natural
maps. (That is to say: The module is de�ned to be T := Z[GQ]⊗Z[GF ] (Λ⊗Oλ T )
as a GQ-module, and the structure as a Λ-module is the one on Λ ⊗ T , which
carries over to T, as Z[GQ] is free over Z[Gk].)

We repeat this process for the module T0 with the corresponding local �elds:
De�ne T 0 to be the pro-étale sheaf on Spec(F ⊗ Qp) that is given on the points
Spec(Fv) of the scheme by T 0(v). Let gp and fn,p denote the induced maps
of Qp and Fn,p = Fn ⊗ Qp. Completely analogously, we de�ne T0 := T0

Λ :=
lim←− g

∗
p(fn,p)∗(fn,p)

∗(T 0) as a pro-étale sheaf.

Remark 2.13. In terms of Galois modules, this is induction after restriction.
Thus, even if the constructions of T and T0 are done by maps of di�erent spaces, all
those maps are projections of di�erent (�nite) Galois coverings, where the Galois
groups coincide. That implies that they are compatible, and we can view T0 as a
sub-GQp-representation of the GQ-representation T.

This construction sends free O[[t]]-modules to free Λ-modules. Moreover it is
an additive functor and thus sends direct sums to direct sums. In particular as T 0

is a Λ-direct summand of the pullback of T as a pro-étale sheaf of O[[t]]-modules
on Spec(F ⊗Qp) the construction shows that T0 is Λ-direct summand of T.

In order to be able to apply the general machinery for big representations,
there is only one thing missing: an isomorphism between T0 and T+. We are just
stating the compatibility with specializations here:

Lemma 2.14. Assume that p 6= 2. We have (Tφ)+ = Λφ⊗Λ (T+) and the space
(Tphi)0 induced from the T 0

φ is canonically isomorphic to Λφ ⊗Λ T0 we denote

these spaces by T0
φ. In particular, if β : T+ → T0 is an isomorphism of Λ-modules,

then β induces isomorphisms of the Λφ modules (Tφ)+ and (Tφ)0 for every φ ∈ Σ.
Conversely, assume that there is one φ : O[[t]] → O′ in Σ such that (Tφ)+ is
isomorphic to (Tφ)0 as a Λφ-module. Then T0 and T+ are isomorphic. This will
be the case if Mφ is critical; compare property C1 in paragraph 4.2 in [FK06].

Proof. The �rst assertion follows from the fact that the 1 eigenspace of the
complex conjugation (or any involution) acting linear on a module over a ring
where 2 is invertible is automatically a direct summand and thus (Tφ)+ = Λφ ⊗Λ

(T+). The analogous assertion on (Tφ)0 and Λφ ⊗Λ T0 follows directly from the
construction. The �rst statement on β is then obvious.

For the converse part, we �rst demonstrate the assertion for the case that φ is
surjective. The kernel of the surjective map Λ → Λφ is contained in the radical.
Thus we may apply lemma 1.4 to conclude the freeness of T+ from the freeness of
T+
φ . The assertion is therefore reduced to counting the ranks, which can be done

in any specialization. For a general φ by an application of lemma 1.5 it su�ces
to show that O′ ⊗O T is free. We can extend φ naturally to specialization map
φ : O′[[t]]→ O′, which is clearly surjective, thus this is covered by the last case.

The last part is lemma 4.2.8. of [FK06] (and can be reduced to dimension
counting, too). �

So, under the condition 2.12 and assuming again that p 6= 2, we �nd that T+

and T0 are isomorphic and can choose an isomorphism.
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2.3. The Selmer complexes of motives and families

The Selmer complexes associated to motives and families of motives are simply
the ones associated to the representations introduced in the last section. However,
in this induced situation we can make some more precise statements. In particular,
we will prove some good properties of the Selmer complex, that are only true in
the induced situation.

First we will need another condition making SC(T,T0) behave well under
specializations: Let R be either O, the ring of integers of a p-adic �eld, or O[[t]],
the ring of power series over O. Moreover, let T be a free �nitely generated
R-module equipped with a continuous R-linear GF action for a number �eld F .
Assume as always that this action is unrami�ed outside a �nite set. Finally, let
G = Gal(F∞/F ) be a p-adic Lie group and Λ = RJGK. Intending to study the
GQ-module Λ⊗R T , we look at the following condition:

Condition 2.15. For every �nite place v of F not lying over p, if the rami�-
cation index of T is divisible by p∞, then the rami�cation index of G at v is also
in�nite.

Remark 2.16.

• If the operation of GF on T factors through a �nite extension of G, then
the condition is trivially satis�ed.
• If the condition is not satis�ed, it is possible to make G bigger, so that the
condition is ful�lled: Let S be the �nite set where T is rami�ed, then the
false Tate extension Fft/F , where we take all p

n-th roots of one element of
F contained in all members of S but not in any of their squares, is a p-adic
Lie extension of dimension 2. Accordingly, the composition F∞Fft/F
is a p-adic Lie extension with G as a quotient of relative dimension at
most 2. In most cases, we will assume that the cyclotomic Zp-extension
is contained in F∞/F , so that our new group has relative dimension at
most 1.

Let us denote by ()p the localization at the multiplicative set consisting of the
powers of p.

Proposition 2.17. Let v be a �nite place of F not lying over p and Iv ⊂ GF
be the inertia group. We assume that R = O or R = O[[t]] and the condition 2.15
is satis�ed. Then, we have:

(1) The module (Λ ⊗R T )Iv is trivial, if the rami�cation index of G in v is
in�nite.

(2) The Λ-module ((Λ ⊗R T )Iv)p = ((Λ ⊗R T )p)
Iv is �nitely generated and

projective. If we assume additionally that G does not have any p-torsion,
then (Λ⊗R T )Iv is projective.

(3) Now let φ : O[[t]] → O′ be a specialization morphism and denote Λ =
OJGK[[t]] and Λ′ = O′JGK. Then, we have an isomorphism

Λ′ ⊗LΛ (Λ⊗O[[t]] T )Ivp
∼=→ (Λ′ ⊗O[[t]] T )Ivp .

Moreover, if G does not have any p-torsion or φ : O[[t]] → O′ is sur-
jective, then Λ′ ⊗LΛ (Λ ⊗O[[t]] T )Iv = Λ′ ⊗Λ (Λ ⊗O[[t]] T )Iv in the derived
category and the above morphism is induced by the natural inclusion

Λ′ ⊗Λ (Λ⊗O[[t]] T )Iv ↪→ (Λ′ ⊗O[[t]] T )Iv .
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Proof. The �rst assertion with R = O is the contend of proposition 4.2.14(3)
in [FK06]. For the proof, no particular properties of O were used, so it carries
over literally to the case of R = O[[t]], we reproduce it here for completeness: By
the orthogonality statement of the local duality 1.23, the module (Λ ⊗R T )Iv is
the Pontryagin dual of H1(F ur, (Λ⊗R T )∨). As an étale cohomology group this is
isomorphic to H1(F∞ ⊗F F urv , T∨(1)) by Shapiro's lemma. The last cohomology
group is a direct sum over groups isomorphic to H1(F∞F

ur
v , T∨(1)), so that it is

enough to show that the p-cohomological dimension of the composition F∞F
ur
v is

zero or, equivalently, that the p-Sylow group vanishes. But that is obvious, since
the p-Sylow group of GF∞Furv is a subgroup of Zp, the Sylow group of GFurv , such
that the factor group is �nite unless the p-Sylow subgroup is trivial.

To prove the second statement, we can restrict ourselves to the case where G
is of �nite rami�cation index at v, as the case of in�nite rami�cation is covered by
the �rst part. Let G = lim←−Gi with �nite groups Gi and set Λi := R[Gi]. Then,
Λ = lim←−Λi, and, as T is �nitely generated over R, we get Λ ⊗R T = lim←−Λi ⊗ T .
If we de�ne Jv to be the kernel of Iv → G, then we �nd that (Λi ⊗R T )Iv =

(Λi ⊗R T Jv)Iv/Jv , as the Λi are �nitely generated free R modules. From this, we

conclude that (Λ⊗R T )Iv = (Λ ⊗R T Jv)Iv/Jv . It su�ces now to show that T Jv is
free, because then Λ ⊗R T Jv is free and, as the order of the �nite group Iv/Jv is

invertible, in both situation it follows that (Λ⊗RT Jv)Iv/Jv is projective as a direct
summand of a free module.

Now we observe that T Jv is torsion-free and it is therefore free if R = O. If
R = O[[t]], then, using our condition, Jv operates through a �nite quotient and
therefore we can apply corollary 1.7 to see that it is free.

For the third assertion, we remark that if G does not have any p-torsion
(respectively we invert p) then by the second part (Λ ⊗O[[t]] T )Iv (respectively

(Λ⊗O[[t]] T )Ivp ) is projective, so that Λ′⊗LΛ (Λ⊗O[[t]] T )Iv ∼= Λ′⊗Λ (Λ⊗O[[t]] T )Iv . If

φ is surjective, the higher Tor groups vanish, too, as (Λ⊗O[[t]] T )Iv is still torsion-
free and φ means nothing else than dividing out its kernel, which is a principal
ideal, so that we get the same isomorphism.

Applying corollary 1.2 to the Iv/Jv-module (Λ⊗O[[t]] T )Iv , we get an injective

morphism Λ′⊗Λ (Λ⊗O[[t]]T )Iv ↪→ (Λ′⊗Λ (Λ⊗O[[t]]T )Jv)Iv/Jv , the cokernel of which
is annihilated by some power of p. This is clearly an isomorphism if we invert p.

Finally, we apply the same corollary 1.2 to the Jv module Λ⊗O[[t]] T , to arrive
at the assertion.

�

Remark 2.18. The third part of the proposition is not as strong as one might
have hoped: It would simplify matters considerably if the inclusion Λ′⊗Λ (Λ⊗Oλ[[t]]

T )Iv ↪→ (Λ′⊗Oλ[[t]] T )Iv was actually an isomorphism. However, it follows directly
from the proof that this is the case if we strengthen our condition on the rami�cation
2.15. We have to assume the following for all �nite places v of F not dividing p:
If the rami�cation index of v in G is �nite, then the rami�cation index of v in the
representation T is not divisible by p.

Of course, this stronger condition can be ful�lled, for example, by requiring the
Galois extension corresponding to G to contain the false Tate extension, which is
in�nitely rami�ed at all (�nitely many) rami�ed places of the Galois representation
T .
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The proposition leads immediately to the following:

Corollary 2.19. Let T and T0 be de�ned as in the last section 2.2 (for a
family or a motive), and assume that p 6= 2 and that G does not have any p-
torsion. If the condition 2.15 is satis�ed, then SC(T,T0) is perfect. If, moreover,
[T0] = [T+] in K0(Λ), then [SC(T,T0)] = 0 in K0(Λ).

Proof. According to lemma 2.5, it is su�cient to prove the claimed properties
for SC(U,T,T0) and the Cf (Fv,Λ⊗R T ) instead of SC(T,T0). The assertions for
SC(U,T,T0) are shown in proposition 2.7. The properties of Cf (Fv,Λ⊗RT ) follow
from the last proposition together with the quasi-isomorphism Cf (Fv,Λ⊗R T ) ∼=
[1− φ : (Λ⊗R T )Iv → (Λ⊗R T )Iv ] from lemma 1.19. �

2.4. The relation to Selmer groups

While Selmer complexes come more naturally to our approaches, all classical
theorems and conjectures use Selmer groups instead. Selmer groups and complexes
are connected by an exact sequence, as we will see below. This sequence for the
primitive objects is described in [FK06].

As mentioned above, we are using Greenberg's conditions (see [Gre89]):

Definition 2.20. Let F be a number �eld and (T, (T 0(v))v|p) be a pair aris-
ing form the λ-adic realization of a motive satisfying the Dabrowski-Panchishkin
condition. Moreover, let F∞/F be a p-adic Lie extension. Then, we de�ne the
primitive Selmer group Sel(T∨(1), F∞) to be the kernel of

H1(Q,T∨(1))→ H1(Qp, (T0)∨(1))⊕
⊕
l 6=p

H1(Qur
l ,T∨(1))⊕H1(R,T∨(1)),

where l ranges over all prime numbers apart from p.
For some open set U ⊂ spec(Z) not containing p, the imprimitive Selmer group

SelU (T∨(1), F∞) is de�ned to be the kernel of

H1(Q,T∨(1))→ H1(Qp, (T0)∨(1))⊕
⊕
l∈U

H1(Qur
l ,T∨(1))⊕H1(R,T∨(1)).

Remark 2.21. Classically, one would de�ne the Selmer groups over F∞ to be
the direct limits over Selmer groups over �nite subextensions F∞ ⊃ K ⊃ F . The
primitive Selmer group over K, for instance, would be the kernel of

H1(K,T∨(1))→
⊕
v 6|p∞

H1(Kur
v , T

∨(1))⊕
⊕
v|p

H1(Kv, (T
0(v))∨(1))⊕

⊕
v|∞

H1(Kv, T ).

The two de�nitions describe two naturally isomorphic modules by some stan-
dard application of Shapiro's lemma.

It is very common to de�ne the Selmer group, as we did, namely as a subgroup
of the Galois cohomology of the absolute Galois group of Q respectively F∞. But
the Selmer complexes are more naturally related to the cohomology of the Galois
group with restricted rami�cation. This is yet again a di�erent angle from which
to look at the Selmer groups, and we note the following standard fact:
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Lemma 2.22. Let U ⊂ Spec(Z) be an open subset, in which the representation
T is unrami�ed. Then, the primitive Selmer group Sel(T∨(1), F∞) is the kernel of

H1(U,T∨(1))→ H1(Qp, (T0)∨(1))⊕
⊕

l 6∈U∪{p}

H1(Qur
l ,T∨(1))⊕H1(R,T∨(1)).

Likewise, the imprimitive Selmer SelU (T∨(1), F∞) group is the kernel of

H1(U,T∨(1))→ H1(Qp, (T0)∨(1))⊕H1(R,T∨(1)).

Proof. The in�ation map H1(U,T∨(1))→ H1(Q,T∨(1)) is injective, and, as
a subset,H1(U,T∨(1)) is given as the kernel of the restriction mapH1(Q,T∨(1))→
H1(QU ,T∨(1)), where QU is the maximal in U unrami�ed extension of Q. Now
let H ⊂ GQ be the absolute Galois group of QU . For l ∈ U , the restriction map
to H1(Qur

l ,T∨(1)) clearly factors over H1(H,T∨(1)). As in these cases the group
operation is always trivial, the H1-groups actually are groups of homomorphism.
Therefore, all we have to show is that the local inertia groups Il with l ∈ U gen-
erate H as a normal subgroup of GQ. In arithmetic terms this translates as: QU

does not have any nontrivial extension which is unrami�ed for all l ∈ U . This is
the de�nition of QU . �

By X (T,T0) and X (U,T,T0) we denote the Pontryagin dual of the primitive
respectively the imprimitive Selmer group. Then Selmer group and complex are
connected by the following:

Proposition 2.23. Recall that G = Gal(F∞/F ) is our chosen Lie group. Let
G be the kernel of GF → G. Fixing an embedding F → Fv for every place v of F ,
let G(v) be the kernel of GFv → G and Gv be its image. Then, we have two exact
sequences of Λ-modules:

0→ X (T,T0)→ H2(SC(T,T0))→
⊕
v|p

Λ⊗OJGvK (T 0(v)(−1))G(v)

→ T (−1)G → H3(SC(T,T0))→ 0

and

0→ X (U,T,T0)→ H2(SC(U,T,T0))→
⊕
v|p

Λ⊗OJGvK (T 0(v)(−1))G(v)

→ T (−1)G → H3(SC(U,T,T0))→ 0

Proof. The �rst sequence is the main part of proposition 4.2.35 of [FK06].
With the additional work already done, the proof of the second sequence follows
analogously. We give it here for reasons of completeness: We take the long exact
cohomology sequences that comes from the distinguished triangles in lemma 2.4.
Take the �rst one, for instance:

H1(Qp,T0)→ H2
(c)(U,T)→ H2(SC(U,T,T0))→ H2(Qp,T0)→ H3

(c)(U,T)

→ H3(SC(U,T,T0))→ 0

This sequence will prove the second part of our proposition once we have shown
that:

• X (U,T,T0) = coker(H1(Qp,T0)→ H2
(c)(U,T))

•
⊕

v|p Λ⊗OJGvK (T 0(v)(−1))G(v) = H2(Qp,T0) and
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• T (−1)G = H3
(c)(U,T)

The other long exact sequence from lemma 2.4 yields the �rst assertion once we
have shown in addition that:

X (T,T0) = coker(H1(Qp,T0)⊕
⊕

l 6∈U∪{p}

H1
f (Ql,T)→ H2

(c)(U,T))

For the �rst part, we note that H1(Qp,T0)∨ = H1(Qp, (T0)∨(1)) by local
duality (see proposition 1.23) and H2

(c)(U,T)∨ = H1(U,T∨(1)) by global duality

(proposition 1.24). Therefore according to lemma 2.22 the �rst assertion holds.
The similar assertion in the primitive case needs as an extra input that the orthog-
onal complement of H1

f (Ql,T) under the local duality is H1
f (Ql,T∨(1)). Thus,

H1
f (Ql,T)∨ = H1(Ql,T∨(1))/H1

f (Ql,T∨(1)) = H1(Qur
l ,T),

reducing again to the characterization of the Selmer group from lemma 2.22.
To show the second equality, we compute

H2(Qp,T0) ∼= H0(Qp, (T0)∨(1))∨ ∼=
⊕
v|p

H0(Fv ⊗ F∞, (T 0(v))∨(1))∨,

where the �rst equality is local duality and the second one is Shapiro's lemma and
Mackey decomposition. The summands in the rightmost term can easily be shown
to equal Λ⊗OJGvK (T 0(v)(−1))G(v) as required.

The third statement follows by the observation

H2
(c)(U,T) ∼= H0(U,T∨(1))∨ ∼= H0(G, T (−1))∨,

where the �rst equality is global duality and the second one is Shapiro's lemma.
Lastly, the Pontryagin dual of the invariants are the coinvariants of the Pontryagin
dual as required.

�



CHAPTER 3

Variation of Selmer complexes

This chapter will discuss how properties of the families and the specializations
are related. In a few cases, we will also relate properties of di�erent specializations
directly. In particular, we will investigate how the Iwasawa invariants behave
in families. Many special instances of this behavior have been treated directly.
Compare, for instance, the article of Emerton, Pollack, and Weston [EPW06] on
the cyclotomic case or Aribam's PhD thesis [Sha09], on the case of a false Tate
extension.

3.1. Specialization of the Selmer complex

In the following we would like to analyze the relation between the objects of
the big representation and the specializations.

The case of the imprimitive complex is very easy:

Proposition 3.1. Let Λ and Λ′ be adic rings, let U ⊂ Spec(Z) and T, T 0 be
a Galois representation over Λ, unrami�ed in U . Furthermore, let Y be a �nitely
generated projective (left) Λ′-module endowed with a compatible right Λ-action. If
we then set T ′ := Y ⊗ΛT and (T ′)0 := Y ⊗ΛT

0, we have a canonical isomorphism:

Y ⊗LΛ SC(U, T, T 0)
∼=−→ SC(U, T ′, (T ′)0)

In particular, if O ⊂ Λ is a ring of integers of a p-adic �eld and if O′ is a �nite
extension of O, then we have a canonical isomorphism:

O′ ⊗O SC(U, T, T 0)
∼=−→ SC(U,O′ ⊗O T,O′ ⊗O T 0)

Proof. The main assertion is remark 4.1.4 in [FK06] (with the small typing
error of using ⊗ instead of ⊗L). One can easily deduce the base change property
from the analog statement for the cohomology groups stated in proposition 1.22.
The �niteness assumption of this proposition is satis�ed in the relevant cases, by
other assertions in the same section.

In the special case of a scalar extension, we are allowed to drop the L from
the tensor product, as O′ is projective as a right O-module, too. �

Obviously, we are more interested in the analog statement for the primitive
Selmer complex. Unfortunately, the result is not quite as strong, but it will be
su�cient for what follows.

Theorem 3.2. We assume that Λ = OJGK[[t]] and Λφ = OφJGK and that
φ : O → Oφ is a specialization map as in the last chapter. Let (T,T0) be a
pair of representations associated to a family such that the condition 2.15 on the
rami�cation is satis�ed. We then have an exact triangle

Λφ ⊗LΛ SC(T,T0)→ SC(Tφ,T0
φ)→ C

+→,

28
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with C being the mapping �ber of a map of complexes C ′ → C ′[−1], where C ′ is a
perfect complex, the cohomology groups of which are annihilated by some power of
p.

Furthermore, if O′ is a �nite extension of O, which is a maximal order, and
O′φ is a �nite extension of Oφ, we then have two canonical isomorphisms:

O′ ⊗O SC(T,T0)
∼=−→ SC(O′ ⊗O T,O′ ⊗O T0)

and
O′φ ⊗Oφ SC(Tφ,T0

φ)
∼=−→ SC(O′φ ⊗Oφ Tφ,O

′
φ ⊗Oφ T

0
φ)

Proof. Using the exact triangle from lemma 2.5, connecting the primitive and
the imprimitive Selmer complex we can reduce the assertions to the last proposi-
tion. However, to do this, we have to show the related base change properties of
Cf (Fv,Λ⊗T ). Since the complex Cf (Fv,Λ⊗T ) is quasi-isomorphic to the complex

(Λ⊗T )Iv → (Λ⊗T )Iv in degrees 0 and 1, as we have already seen, the �rst claim
follows from the third part of proposition 2.17. The analog of the second claim is
obviously true for Cf . �

Remark 3.3. One could replace the rami�cation condition 2.15 by the stronger
assumption that the Galois extension F∞/F is in�nitely rami�ed at all those �nite
places at which the rami�cation index of T is divisible by p. Under this condition,
the morphism Λφ ⊗LΛ SC(T,T0)→ SC(Tφ,T0

φ) is actually an isomorphism in the
derived category. This follows directly from the remark after proposition 2.17.

Let us note the special case of surjective specializations:

Corollary 3.4. We keep the assumption of the last propositions and assume
in addition that φ ∈ Σ is a surjective specialization map. The kernel of φ is a
principal ideal denoted by (f). We then have a canonical distinguished triangle:

SC(U,T,T0)
f ·→ SC(U,T,T0)→ SC(U,Tφ,T0

φ)
+→

If, moreover, the condition 2.15 is satis�ed, we also have a canonical triangle:

SC(T,T0)p
f ·→ SC(T,T0)p → SC(Tφ,T0

φ)p
+→

In this sequence ()p again denotes the localization with respect to the multiplicative
set {1, p, p2, ...}. In particular, there is an exact sequence of Λφ-modules for every
integer i:

0→ H i(SC(U,T,T0))/f → H i(SC(U,Tφ,T0
φ)→ H i+1(SC(U,T,T0))[f ]→ 0

Likewise, under the conditions for the second triangle we have exact sequences:

0→ H i(SC(T,T0)p)/f → H i(SC(Tφ,T0
φ)p)→ H i+1(SC(T,T0))p)[f ]→ 0

Proof. According to proposition 2.7 and corollary 2.19 all Selmer complexes
in question are perfect. It follows that we have a distinguished triangle

SC(U,T,T0)
f ·→ SC(U,T,T0)→ Λ/f ⊗Λ SC(U,T,T0)

+→,
and after inverting p the same is true without U . On the other hand by proposition
3.1 there is a canonical isomorphism

Λ/f ⊗Λ SC(U,T,T0) ∼= SC(U,Tφ,T0
φ)

and again we get the same isomorphism without U after inverting p.
�
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3.2. The canonical Ore sets S and S∗

Let us �rst recall the notion of a non-commutative Ore set:
A (left and right) Ore set in a ring Λ is a multiplicatively closed set S, such

that, for all elements r ∈ Λ and s ∈ S, there are s′, s′′ ∈ S and r′, r′′ ∈ Λ satisfying
rs′ = r′s and s′′r = r′′s; i.e., one can write left fractions as right fractions and
vice versa. If we have a left and right Ore set, then left and right localizations
exist and coincide. We intend to compare Ore sets and thus make the following
de�nition:

Definition 3.1. Let S and S′ be two multiplicative sets in Λ, then we say
that S′ is divisible by S if, for every s ∈ S, there are s′ and s′′ in S′ and r′ and r′′
in Λ such that sr′ = s′ and r′′s = s′′. If S is divisible by S′ and S′ is divisible by
S, then we call them codivisible.

Remark 3.5.

• Codivisibility is an equivalence relation.
• For codivisible Ore sets S and S′, a Λ-module is S-torsion if and only if
it is S′-torsion.
• The localizations on codivisible Ore sets coincide.

We keep the general assumptions of the last sections and assume in addition
that F∞ contains the cyclotomic Zp-extension Fcyc of F and that G is a p-adic Lie
group. As usual, we denote H := Gal(F∞/Fcyc) ⊂ G and Γ := Gal(Fcyc/F ) =
G/H ∼= Zp. The �rst part of this section is purely group-theoretic, so the assump-
tion of G and H actually being Galois groups is not really needed here.

Under these assumptions, all characterizations of the set S introduced in
[CFKSV] are equivalent and de�ne a left and right Ore set. The most important
ones are:

Definition 3.2. As before, let Kλ be a p-adic �eld with the ring of integers
O and the residue �eld k. Let Λ be either the Iwasawa-algebra OJGK or the ring
of power series OJGK[[t]]. In the former case, let G′ = G and H ′ = H, in the latter
G′ = G× Zp and H ′ = H × Zp such that Λ = OJG′K. Then, an element s ∈ Λ is
in the subset S if and only if it satis�es the following equivalent conditions:

(1) There is an open pro-p subgroup U of H ′ which is normal in G′ such that
the image of s in kJG/UK is not a left zero divisor.

(2) For every open pro-p subgroup U of H ′ which is normal in G′, the image
of s in kJG/UK is not a left zero divisor.

(3) The Λ module Λ/Λs is �nitely generated as a module over OJH ′K for
some H ′ as above.

(4) The Λ module Λ/Λs is �nitely generated as a module over OJH ′K for all
H ′ as above.

(5) The right Λ module sΛ\Λ is �nitely generated as a module over OJH ′K
for some H ′ as above.

(6) The right Λ module sΛ\Λ is �nitely generated as a module over OJH ′K
for all H ′ as above.
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Let π ∈ O be a uniformizer and g ∈ O[[t]] be an arbitrary nonzero element. We
de�ne

S∗ :=
⋃
n≥0

πnS and

S∗g :=
⋃
n,k≥0

πngkS.

Remark 3.6.

• The de�nitions of S∗ and S∗g do not depend on the choice of π as two such

choices di�er by some factor in O× and units are elements of S.
• The paragraph 2 and parts of the paragraphs 3 and 4 of [CFKSV] contain
a careful study of these denominator sets. This applies to the S and S∗

of the families because we view them as the Ore sets of the group G×Zp.
• The set S∗ de�ned here is somewhat bigger than

⋃
n≥0 p

nS, the one used

in [CFKSV]. However, it is clear that they are codivisible.
• A Λ-module M is S∗-torsion if and only if M/M(p) is S-torsion.
• It may happen that some module is S∗-torsion after specialization (i.e.,
after tensoring with Λφ), but the module itself is not S∗-torsion. That
is why we de�ned the extended set S∗g. This does not solve the problem
completely, but the author is not aware of an Ore set extending the class
of torsion modules substantially while still specializing to a set codivisible
with S∗.

Of course we would not study these sets if we did not have the following
theorem:

Theorem 3.7. The sets S, S∗, and S∗g of the last de�nition are (left and right)
Ore sets in Λ.

Proof. The statement for S is theorem 2.4 in [CFKSV]. The generalizations
from S to S∗ and S∗g are obvious as we extend the multiplicative set by central
elements. �

Let us �rst remark that these sets behave well under scalar extensions:

Lemma 3.8. Let G and H be groups as in the de�nition of S. Let O′/O be
an extension of rings of integers of p-adic �elds. By S and S′ we denote the
denominator sets in Λ := OJGK and Λ′ := O′JGK. Then S and S′ are codivisible
as subsets of Λ′. The same statement holds for the accoding sets S∗ and (S∗)′.
And, if g ∈ O[[t]] is a non-zero element and S∗g and (S∗g)′ are the multiplicative

sets in OJGK[[t]] and O′JGK[[t]], respectively, then they are codivisible.

Proof. Let us �rst proof the assertion on S. According to the characteriza-
tions of S, it is the preimage of the corresponding set in OJG/UK when U is a
normal pro-p subgroup of G contained in H. We may thus assume H to be �nite.
Moreover, G contains an open subgroup isomorphic to Zp. Therefore, Λ is a �nite
extension of a ring isomorphic to OJZpK = O[[t]] and any element of this subring
not divisible by a uniformizer π of O is an element of S by Weierstrass preparation
theorem. As S′ is clearly divisible by S, it is enough to show that every element
of S′ divides some power series in this subring, the coe�cients of which are not
divisible by π. For any s′ ∈ S′, the kernel I of the canonical map O[[t]]→ Λ′/Λ′s′
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should contain such a power series to give the right divisibility. But using the
fourth of the equivalent characterizations of S′, we see that Λ′/Λ′s′ is a �nitely
generated O′JHK-module; thus, it is �nitely generated as an O-module. The quo-
tient O[[t]]/I is therefore generated by �nitely many monomials as an O-module.
It follows that it is possible to write one (bigger) monomial as a �nite sum of
smaller ones in the quotient giving the desired prower series (in fact: polynomial)
in I. The left divisor property follows completely analogously.

The assertions on the other sets follow directly from the one on S. �

Now we will study how these sets behave under specialization. The sets are
all compatible with each other with the small di�erences coming purely from non-
trivial scalar extensions.

Proposition 3.9. Let O′/O be an extension of rings of integers of p-adic
�elds. Let φ : O[[t]]→ O′ be a continuous morphism and G a compact p-adic Lie
group with a closed normal subgroup H, as in the de�nition of the denominator
sets. Moreover, let g be a distinguished polynomial in O[[t]] prime to the kernel (f)
of φ. If we set Λ := OJGK[[t]] and Λφ := O′JGK, then φ induces a map: Λ→ Λφ.
By S and S∗g we denote the denominator sets of Λ and by Sφ and S∗φ the ones of
Λφ. Then the following holds:

(1) The denominator sets are related by S = φ−1(Sφ). Moreover, φ(S) is an
Ore set and Sφ and φ(S) are codivisible. In particular, if the extension
of the residue �elds of O′ and O is trivial, then φ(S) and Sφ coincide.

(2) We have φ(S∗) ⊂ φ(S∗g) ⊂ S∗φ, and all three sets are codivisible Ore sets.

Moreover, if O = O′, then they coincide.

For the proof we make use of the following elementary fact:

Lemma 3.10. Let Γ be a pro�nite group and k′/k an extension of �nite �elds
of characteristic p. An element s ∈ kJΓK is a left (respectively, right) zero divisor
in k′JΓK if and only if it is one in kJΓK.

Proof. The ring extension k′JΓK/kJΓK is free, hence faithfully �at both as
a left or a right module. Therefore, the property of the right (respectively, left)
multiplication by s to be injective is preserved. �

Proof (of the proposition). For the �rst statement, let H ′ be any open
pro-p subgroup of H which is normal in G. We have a commutative square of
topological rings

Λ
φ //

��

Λφ

��
kJ(G× Zp)/(H ′ × Zp)K // k′JG/H ′K ,

where the lower horizontal arrow is induced by the identi�cation (G× Zp)/(H ′ ×
Zp) = G/H ′ and the inclusion k ↪→ k′. All maps are continuous ring morphisms
and the commutativity of the diagram, restricted to the subring OJGK of Λ =
OJGK[[t]] is obvious. Thus, all we have to check is the commutativity for t. But
as φ is continuous, it maps t to an element of the maximal ideal of O′, it follows
that the image projects to 0 in k′. On the other hand, because we divide out the
full extra Zp factor from the group in the left vertical projection, t maps to zero.



3.2. THE CANONICAL ORE SETS S AND S∗ 33

Now, as the denominator sets S and Sφ are the preimages of the sets of non-
zero divisors, we get S = φ−1(Sφ) from the lemma. As Λφ is an extension of φ(Λ)
by central elements, it is easy to check that the images of Ore sets are still Ore
sets. If now S′φ is the analogously de�ned denominator set in the subring OJGK of
Λφ, then S

′
φ ⊂ φ(S) ⊂ Sφ. By lemma 3.8 we know that S′φ and Sφ are codivisible,

thus the same holds for Sφ and S proving our claims.
The second part follows from the �rst one once we handle the images of g and

the chosen uniformizer in O. But S∗φ contains all nonzero elements of O′, so the
inclusions φ(S∗) ⊂ φ(S∗g) ⊂ S∗φ is proven. The codivisibility is obvious. �

We will need the following well-known proposition (compare for instance
[CFKSV] proposition 2.3):

Proposition 3.11. Let M be a �nitely generated OJGK-module, then M is
S-torsion if and only if it is �nitely generated over OJHK.

From this proposition we deduce immediately:

Theorem 3.12. Let C• be a perfect complex over Λ := OJGK[[t]] and φ :
O[[t]]→ Oφ be a specialization map. If the cohomology groups of C• are S-torsion
(respectively, S∗g-torsion for some g prime to (f) = ker(φ)), then the cohomology

groups of Λφ ⊗LΛ C• are Sφ-torsion (respectively, S∗φ-torsion). Conversely, if the

cohomology groups of Λφ ⊗LΛ C• are S-torsion the same is true for those of C•.

Proof. We replace C• with a quasi-isomorphic bounded complex of projective
modules and may thus replace ⊗L by ⊗. As OφJGK[[t]] is free over OJGK[[t]], we
have

H i(OφJGK[[t]]⊗Λ C
•) = OφJGK[[t]]⊗Λ H

i(C•).

Therefore, using that the corresponding denominator sets are codivisible (lemma
3.8), we can replace C• by OφJGK[[t]]⊗ΛC

• and Λ by OφJGK[[t]]. It is thus enough
to prove the theorem for the case, where φ is surjective.

The kernel of φ : O[[t]] → O is generated by one element f 6= 0. As f is not
a zero divisor and central in Λ, the multiplication with f is a injective morphism
on projective Λ-modules. Thus, we have an exact sequence of complexes:

0→ C•
f ·→ C• → Λφ ⊗Λ C

• → 0

We take the long exact cohomology sequence and obtain a short exact sequence
for every integer i:

0→ H i(C•)/f→H i(Λφ ⊗Λ C
•)→ H i+1(C•)[f ]→ 0

Using proposition 3.9 we conclude that if all H i(C•) are S-torsion (resp. S∗g-
torsion) then the H i(Λφ ⊗LΛ C•) are Sφ-torsion (resp., S∗φ-torsion).

In the other direction, if H i(Λφ⊗C•) is Sφ-torsion for some i, then H i(C•)/f
is S-torsion. Using the characterization from proposition 3.11, the topological
Nakayama lemma (see for instance lemma 5.2.18 in [NSW08]) shows that H i(C•)
is S-torsion, thus proving the last assertion. �

We are most interested in the application of these compatibilities to Selmer
complexes:
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Corollary 3.13. Let SC(U,T,T0) be the Selmer complex over Λ := OJGK[[t]]
of a family and φ : O[[t]]→ O′ be a specialization map. If the cohomology groups
of SC(U,T,T0) are S-torsion (respectively, S∗g-torsion for some g prime to (f) =

ker(φ)), then the cohomology groups of SC(U,Tφ,T0
φ) are Sφ-torsion (respectively,

S∗φ-torsion). Conversely, if the cohomology groups of SC(U,Tφ,T0
φ) are S-torsion,

then the same is true for those of SC(U,T,T0).

Proof. We need only note that the Selmer complex is perfect, and by propo-
sition 3.1 the tensor product can be computed as

Λφ ⊗LΛ SC(U,T,T0) = SC(U,Tφ,T0
φ).

�

As the base change property for SC(T,T0) is not as strong as the one of
SC(U,T,T0), one should not expect the analog torsion properties for SC(T,T0).
We get the following:

Corollary 3.14. In the situation of the last corollary, if the cohomology
groups of SC(T,T0) are S∗g-torsion for some g prime to (f) = ker(φ), then the

cohomology groups of SC(T,T0
φ) are S∗φ-torsion. Conversely, if the cohomology

groups of SC(Tφ,T0
φ) are S-torsion, then the cohomology groups of SC(T,T0) are

S∗-torsion.

Proof. This follows easily from the theorem together with lemma 2.5. �

It is not clear how to ensure that the H i(SC(U,T,T0)) are S∗g-torsion, as
the S∗-torsion property for the specializations is not enough. The problem is
illustrated by the following:

Example 1. In the situation where G = Zp we know that Λ := ZpJGK[[t]] =
Zp[[x, t]] is the power series ring in two variables. Now let f1, ..., fk be any prime
elements of the factorial ring Zp[[t]] which are prime to p. Then M := Λ/(pn −
f1 · ... · fktx)Λ is a torsion Λ-module without Zp[[t]]- or S-torsion, but M/fiM is
annihilated by pn for all i = 1...k.

3.3. Basics on the algebraic Iwasawa invariants

The previous section has ended on a negative example for the S∗-torsion prop-
erty of the family. We will study the variation of the µ− and λ−invariants in
di�erent specializations and show how to partially work around these problems in
later sections. First, however, let us make some general remarks, and recall basic
properties of these invariants:

Lemma 3.15. Let Λ = OJGK[[t]] or Λ = OJGK and let π be a uniformizer of O.
For a �nitely generated Λ-module M and a non-negative number n, the following
properties are equivalent:

(1) For every m ∈M , there is an s ∈ S such that πnsm = 0 ∈M .
(2) There is a system of generators m1, ...,mk of M such that for every i =

1, ..., k, there is an si ∈ S with πnsimi = 0.
(3) M/M [πn] is S-torsion.

We call a module M with these properties πnS-torsion.
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Proof. This is an easy computation using the the Ore set property of S and
the fact that π is central. �

Remark 3.16. A �nitely generated Λ-module is S∗-torsion if and only if it is
πnS-torsion for all su�ciently large n.

Even though we do not necessarily get an S∗-torsion property for the family,
it is still possible to get some variational results.

Proposition 3.17. Let Λ = OJGK[[t]] and let M be a �nitely generated Λ-
module. We denote the maximal ideal of O[[t]] by m and a uniformizer of O by
π. Let φ : O[[t]]→ O′ be a surjective specialization map with the kernel generated
by a prime element f ∈ O[[t]]. We assume in addition that O′ ⊗O[[t]] M is πnSφ-
torsion. Then, for every specialization map ψ : O[[t]]→ O′′ the kernel of which is
generated by a prime element g ∈ O[[t]] with f−g ∈ πnm, the module O′′⊗O[[t]]M
is πnSψ-torsion.

Proof. First, we reduce the assertion to an analog for quotients ofM : As the
image of S in Λφ and Sφ are codivisible (proposition 3.9) and the analog statement
holds for ψ, we can view all modules as Λ-modules and show that if O′⊗O[[t]]M is
πnS-torsion, then O′′⊗O[[t]]M is πnS-torsion. Moreover, ifM/gM is πnS-torsion,
then so is O′′ ⊗M . Thus, it su�ces to show that if M/fM = O′ ⊗O[[t]] M is
πnS-torsion, then so is M/gM .

Let f and g be as in the proposition and denote f − g = πnr with r ∈ m.
Furthermore we set M̃ := (M/g)/(M/g)[πn]. It is enough to show that M̃ is
S-torsion. But by proposition 3.11, a �nitely generated module M is S-torsion if
and only if it is �nitely generated over OJHK[[t]]. Therefore, using the topological
Nakayama lemma (and the fact, that m is contained in the radical of Λ), we

conclude that M̃ is S-torsion if and only if M̃/r is.
Now for an arbitrary element m ∈ M there is an s ∈ S and an m′ ∈ M

such that πnsm = fm′ = gm′ + πnrm′; thus, we get πn(sm − rm′) = gm′. This

in turn implies sm = rm′ in M̃ and so sm = 0 in M̃/r. Therefore, we have

shown that M̃/r is S-torsion, and by the former observations this implies the �rst
assertion. �

With these preparations in place, we can �nally turn to the invariants. From
now on, we assume that the p-adic Lie group G does not have any p-torsion. For
the assertions on the λ-invariant, we will always consider the following situation:

(*) The group G contains a closed normal subgroup H, such that Γ = G/H is
isomorphic to Zp. Moreover, the denominator sets S, S∗ and S∗g are de�ned with
respect to this subgroup.

For reasons of simplicity, we set Λ(G) := OJGK and Ω(G) := FqJGK, with Fq = Fpk
being the residue �eld of O. Both of these rings have �nite global dimension, and
for a �nitely generated Λ-module M and a �nitely generated Ω(G)-module N we
de�ne:
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rankΛ(G)(M) :=
∑
i

(−1)irankO(Hi(G,M))

rankΩ(G)(N) :=
∑
i

(−1)idimFq(Hi(G,N))

µΛ(G)(M) :=
∑
i

(−1)ilogq(ord(Hi(G,M(π)))) =

∞∑
i=1

rankΩ(G)M [πi]/M [πi−1]

λΛ(G)(M) :=
∑
i

(−1)irankO(Hi(H,M))

Here, for the λ-invariant we assume that we are in the situation (*) and that
M is S-torsion (equivalently, M is �nitely generated over Λ(H)). The right-hand
sides are then always �nite sums over �nite numbers, so that the ranks are well
de�ned.

Remark 3.18.

• It is one of the main results of Susan Howson's article [How02] (namely
theorem 1.1) that if the Λ(G) does not contain any nontrivial zero divisors
(equivalently, G has no torsion), then the rank as de�ned above coincides
with the naive rank, namely the dimension of the localized module over
the skew �eld of fraction which exists in this situation.
• These ranks are called homological ranks and are written hmrankΛ(G) etc.
in Howson's article (loc.cit.). But as the two ranks are shown to be equal
when both are de�ned, we do not need to distinguish between them.
• The λ-invariant depends on the choice of the subgroup H ⊂ G. If G
is a Galois group, H should be thought of as the subgroup related to the
cyclotomic Zp-extension.

Before we prove �rst properties of these ranks, let us recall the following fact
from homological algebra:

Proposition 3.19. Assume that there is a commutative square of (not neces-
sarily commutative) Noetherian rings of �nite global dimension

R //

��

R′

��
S // S′

and M is a �nitely generated R-module. Then, taking [•] to denote the class in
K0(S′), all objects in the following formula are well de�ned, the sums are �nite,
and equality holds:∑

i,j

(−1)i+j [TorSi (S′, T orRj (S,M))] =
∑
i,j

(−1)i+j [TorR
′

i (S′, T orRj (R′,M))]

In particular, for Λ := OJGK[[t]] and φ : O[[t]]→ Oφ, a specialization map, we set
again Λφ := OφJGK. If M is a �nitely generated Λ-module, then for any invariant
I on �nitely generated Oφ modules, which is additive on short exact sequences, we
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have:∑
i,j

(−1)i+jI(Hi(G,Tor
Λ
j (Λφ,M))) =

∑
i,j

(−1)i+jI(Tor
O[[t]]
i (Oφ, Hj(G,M)))

Proof. The Tor groups are clearly �nitely generated by the Noetherian hy-
pothesis, and thus admit perfect resolutions by the assumption on the global di-
mension. It remains to be shown that the equality holds. This can be accomplished
by comparing each side of the equality to

∑
i(−1)i[TorRi+j(S

′,M)], using the two

base-change spectral sequences for Tor (see for instance [Wei94] theorem 5.6.6):

TorSi (S′, T orRj (S,M))⇒ TorRi+j(S
′,M)

and

TorR
′

i (S′, T orRj (R′,M))⇒ TorRi+j(S
′,M)

The second assertion follows by takingR = OJGK[[t]], S = Λφ, R
′ = OJGK[[t]]/IG =

O[[t]], and S′ = OφJGK/IG = Oφ, as well as the maps to be the canonical ones. �

From that we conclude immediately:

Corollary 3.20. Let O′/O be an extension of rings of integers of p-adic
�elds of rami�cation index e. We set Λ := OJGK and Λ′ := O′JGK. Then, for any
Λ-module M we have rankΛ(M) = rankΛ′(Λ

′ ⊗Λ M) and e · µΛ(M) = µΛ′(Λ
′ ⊗Λ

M). Moreover, if in situation (*) the module M is S-torsion, we have λΛ(M) =
λΛ′(Λ

′ ⊗Λ M).

Proof. This follows directly from the last proposition together with the fact
that O′/O and Λ′/Λ are free, hence �at, ring extensions. �

We can now summarize some basic facts about the homological ranks:

Proposition 3.21. Assume there is an exact sequence of �nitely generated
Λ(G)-modules:

0→M ′ →M →M ′′ → 0

Let π be a uniformizer of O. We set Fq := O/π and Ω(G) := FqJGK. Then we
have:

(1) rankΛ(G)(M) = rankΛ(G)(M
′) + rankΛ(G)(M

′′).
(2) rankΛ(G)(M) = rankΩ(G)(M/πM)− rankΩ(G)(M [π]).
(3) If U / G is a normal subgroup such that G/U does not have any tor-

sion and is in�nite and M is �nitely generated as Λ(U)-module, then
rankΛ(G)(M) = 0.

(4) In situation (*), if M is S-torsion, then µΛ(G)(M) = 0.
(5) In situation (*), if M is S∗-torsion, then

µΛ(G)(M) = µΛ(G)(M
′) + µΛ(G)(M

′′).

(6) If M is �nitely generated over Λ(H), then

λΛ(G)(M) = λΛ(G)(M
′) + λΛ(G)(M

′′).

(7) If again M is �nitely generated over Λ(H), then

λΛ(G)(M) = rankΩ(H)(M/π)− rankΩ(H)(M [π]).
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Remark 3.22. We stress that one should not expect to many properties of
an naive rank to hold for the homological rank. In particular, the rank can be
negative and there are submodules of nonzero rank of modules of rank zero. See
for instance [How02] the second remark after corollary 2.4 for an example of
a module of negative rank. This example is due to Venjakob and also provides
an other negative result: It is �nitely generated over Zp and the group G has
dimension 1, but it still has nonzero rank, showing that the assertion in part 3 of
our proposition that U has to be normal is crucial.

Proof. The �rst assertion is lemma 2.1 from [How02]. For the naive rank,
this is a very general fact (if a skew �eld exists).

The second assertion is corollary 1.10 from the same article if G is assumed
to be pro-p in addition. To prove it in the general case we compute with the last
proposition:

rankΛ(G)(M) =
∑
i

(−1)irankO(Hi(G,M))

=
∑
i

(−1)i
(
dimFq(Hi(G,M)/π)− dimFq(Hi(G,M)[π])

)
=

(∑
i

(−1)idimFq(Hi(G,M/π))

)
−

(∑
i

(−1)idimFq(Hi(G,M [π]))

)
= rankΩ(G)(M/π)− rankΩ(G)(M [π])

Here, we used the assertion in the case that G = 1 in the second line and the last
lemma in the third one.

The third claim is immediately reduced to the case that U = 1 and that G is
a p-adic Lie group without any torsion. Then M is a torsion Λ(G)-module and its
rank is zero by comparison with the classical de�nition.

The fourth assertion is analogous to the third one, only replacing the Λ(G)-
rank with the Ω(G)-rank and U with H.

For the �fth statement, �rst assume that M is p-primary. Then, like the �rst
assertion, this one is just the additivity of homological ranks. In the general case,
set C := coker(M(π)→M ′′(π)), so that we have an exact sequence of p-primary
modules:

0→M ′(π)→M(π)→M ′′(π)→ C → 0

It is thus enough to show that µ(C) = 0. We know that C is the epimorphic image
of a subset of M/M(π), therefore it is S-torsion. It follows from the previous
statement of the lemma that µ(C) = 0, as required.

The last two assertions are simply the �rst two applied to H instead of G. �

If M is a �nitely generated Λ(G)-module which is annihilated by π, then
we have M/π = M = M [π]. We conclude by induction that rankΩ(H)(M/π) =
rankΩ(H)(M [π]) for any p-primary module which is in addition �nitely over Λ(H).
It follows from the last part of the proposition that λ(M) = 0 for such a module
M . Therefore, we can compute the λ-invariant for any �nitely generated S-torsion
module M as λΛ(G)(M) = λΛ(G)(M/M(π)). For this reason, the following de�ni-
tion extends the previous ones:
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Definition 3.3. In situation (*), ifM is an S∗-torsion module, then we de�ne

λΛ(G)(M) := λoldΛ(G)(M/M(π)),

where λold is the λ-invariant as de�ned before.

This generalized λ-invariant does not behave well. In particular, it is not
additive on exact sequences. Where possible we will try to avoid these cases. At
one point, however, we will need the following fact:

Lemma 3.23. Let F : M →M ′ be a morphism of �nitely generated S∗-torsion
Λ(G)-modules such that the kernel and cokernel are annihilated by some power of
p. Then, λ(M) = λ(M ′).

Proof. We look at the induced morphism M/M(π) → M ′/M ′(π). It is
injective, and its cokernel is the surjective image of the cokernel of f , thus it
is annihilated by the same power of p. We may therefore apply part 6 of the
proposition to the exact sequence

0→M/M(π)→M ′/M ′(π)→ N → 0

to conclude the assertion. �

An immediate consequence of the additivity of the ranks and the de�nition as
an Euler characteristic is the following one:

Proposition 3.24. Let us assume again that M is a �nitely generated Λ(G)-
module and N is a �nitely generated Ω(G)-module. Moreover, we assume that
G′ ⊂ G is a normal (closed) subgroup such that G/G′ does not have any p-torsion.
We then have:

rankΛ(G)(M) =
∑
i

(−1)irankΛ(G/G′)(Hi(G
′,M))

rankΩ(G)(N) =
∑
i

(−1)irankΩ(G/G′)(Hi(G
′, N))

µΛ(G)(M) =
∑
i

(−1)iµΛ(G/G′)(Hi(G
′,M(π)))

λΛ(G)(M) =
∑
i

(−1)iλΛ(G/G′)(Hi(H
′,M))

For the λ-invariant we here assume that we are in situation (*) and that M is
S-torsion, and set H ′ = G′ ∩H. The invariant λΛ(G/G′) is de�ned with respect to

the subgroup H/H ′.

Proof. Recall the Hochschild-Serre spectral sequence for group homology:

Hi(G/G
′, Hj(G

′,M))⇒ Hi+j(G,M)

Then, by general nonsense, for any invariant I that is additive on short exact
sequences, the alternating sum can be computed as∑

i

(−1)iI(Hi(G,M)) =
∑
i,j

(−1)i+jI(Hi(G/G
′, Hj(G

′,M))).

Writing the right hand side as a double sum yields the desired results. For the
assertion on the λ-invariant, we have to replace G by H and G′ by H ′. �
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Remark 3.25. Note that for the statement on the µ-invariant we had to take
the π-primary part �rst to use the spectral sequence, making this result consider-
ably weaker. In particular, taking the π-primary part will not be compatible with
specialization maps.

We will use this last proposition to prove variation results. The last remark
displays the source of the problems with the µ-invariant that we run into. These
problems can only be avoided, if one restricts the statements to certain subsets of
the specializations.

3.4. The variation of the algebraic Iwasawa invariants

Now that we have �xed our notation and stated the basic facts, we can start
to prove statements on the variational behavior of the invariants. From now on,
we will always assume that we are in the situation (*), i.e., we �x a subgroup H
of G such that Γ = G/H is isomorphic to Zp.

For the µ-invariant we have to do some explicit calculations:

Lemma 3.26. If M is a �nitely generated Λ(G)-module, which is πnS-torsion
for some n ≥ 0, then µ(M) = µ(M [πn]) = µ(M/πnM).

Proof. The module M is πnS torsion if and only if either of the following
two equivalent statements holds

(1) The submodule πnM ⊂M is S-torsion, or
(2) the quotient M/M [πn] is S-torsion.

Putting the inclusion and the projection, in their respective tautological short
exact sequences and using the fact that S-torsion modules have trivial µ-invariant
(part 4 of proposition 3.21) together with the additivity of the µ-invariant (part 5
of the same proposition) yields the assertion. �

For the variation of the µ-invariant, this gives the following result:

Corollary 3.27. Let Λ := OJGK[[t]], let M be a �nitely generated Λ-module,
and let f, g ∈ O[[t]] be prime elements with πn|f−g such that O[[t]]/f and O[[t]]/g
are maximal orders. If M/f and M/g are both πnS-torsion (compare proposition
3.17), then µΛ/f (M/f) = µΛ/g(M/g) and µΛ/f (M [f ]) = µΛ/g(M [g]).

Proof. From the last lemma, we get µΛ/f (M/f) = µΛ/f (M/(πn, f)) and like-
wise µΛ/g(M/g) = µΛ/g(M/(πn, g)). By the assumption we know that (πn, f) =
(πn, g) as ideals in Λ, so the modules coincide as Λ/(πn, f)-modules. This smaller
quotient, however, is still enough to compute the µ-invariants. For the sec-
ond part, observe that by the other assertion of the last lemma µΛ/f (M [f ]) =
µΛ/f ((M [f ])[πn]) = µΛ/f (M [(f, πn)]). Here, we denote M [(f, πn)] := {m ∈
M |rm = 0 ∀r ∈ (f, πn)}. The last form again only depends on the ideal, which is
the same for f and g. �

Remark 3.28. The proof shows that we could have replaced the condition
�πn|f−g� by �(πn, f) = (πn, g) as ideals in O[[t]].� Clearly, the second assumption
on f and g is weaker. But we are less interested in f and g themselves than in
the ideals (f) and (g) they generate. The p-adic Weierstraÿ preparation theorem
tells us that each ideal is generated by a unique distinguished polynomial and the
di�erence of those two is divisible by πn, provided the ideals are the same.
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For the λ-invariant, the result would not be as good if we looked at λ(M/f)
and λ(M [f ]) separately. We can, however, use homological methods to get even
stronger statements for their di�erence:

Firstly, we de�ne any of the above invariants for complexes with �nitely many
nonzero cohomology groups by setting for instance µ(C•) :=

∑
i(−1)iµ(H i(C•))

or λ(C•) :=
∑

i(−1)iλ(H i(C•)). Compare for the theory of generalize Iwasawa
invariant also the third section of [BV11] where in Burns and Venjakob develop
a theory for the µ-invariant.

If the cohomology groups of the complexes in question are S-torsion, then the
λ-invariant is compatible with specializations:

Theorem 3.29. Let φ : O[[t]] → Oφ be a specialization map and denote
Λ(G) := OJGK[[t]] and Λφ(G) := OφJGK. Moreover, let C• be a perfect complex of
Λ-modules. Then, we have

rankΛ(G)(C
•) = rankΛφ(G)(Λφ(G)⊗LΛ(G) C

•).

Similarly, if the cohomology groups of C• are �nitely generated as Λ(H)-modules,
then we have

λΛ(G)(C
•) = λΛφ(G)(Λφ(G)⊗LΛ(G) C

•),

where the λ-invariant over Λ(G) = OJG×ZpK is computed with respect to H ×Zp
and λΛφ(G) with respect to H.

Remark 3.30. Recall that we have shown in theorem 3.12 that if C• has S-
torsion cohomology groups, then so has Λφ(G) ⊗LΛ(G) C

•. Accordingly, both sides

of the assertion on the λ-invariants are well-de�ned.

We will need two lemmata for the proof:

Lemma 3.31. Keeping the notations of the theorem, let M be a �nitely gen-
erated Λ(G)-module, which is S-torsion. Then for all i ≥ 0 there is a canonical
isomorphism of Λφ(H)-modules:

Tor
Λ(G)
i (Λφ(G),M) ∼= Tor

Λ(H)
i (Λφ(H),M)

Proof. The assertion follows directly from the fact that Λφ(G) = Λ(G)⊗Λ(H)

Λφ(H) and that Λ(G) is �at over Λ(H) applied to the �at base change theorem
of Tor. �

Secondly, we will need the special case of the theorem, where C• is replaced
by a single module:

Lemma 3.32. Still keeping the notation of the theorem, we assume that M is
a �nitely generated Λ(G)-module. We then have

rankΛ(G)(M) =
∑
i

(−1)irankΛφ(G)(Tor
Λ(G)
i (Λφ(G),M)).

If, moreover, M is �nitely generated over Λ(H), then

λΛ(G)(M) =
∑
i

(−1)iλΛφ(G)(Tor
Λ(G)
i (Λφ(G),M)).
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Proof. Using the last lemma and replacing the λ-invariant with the Λ(H)-
rank, we can rewrite the assertion on λ-invariants as:

rankΛ(H)(M) =
∑
i

(−1)irankΛφ(H)(Tor
Λ(H)
i (Λφ(H),M))

Thus, we have reduced the second statement to the �rst one. (As long as we do not
use the fact that G has the special subgroup H in the proof of the �rst assertion.)

Using proposition 3.24 to rewrite the ranks, we translate the �rst assertion to:∑
i

(−1)irankOJZpK(Hi(G,M)) =
∑
i,j

(−1)i+jrankOφ(Hj(G,Tor
Λ(G)
i (Λφ(G),M)))

The special case of proposition 3.19 shows that the right-hand side of the last
equation is equal to:∑

i,j

(−1)i+jrankOφ(Tor
O[[t]]
j (Oφ, Hi(G,M)))

Taking only the i-th summand and replacing Hi(G,M) by an arbitrary �nitely
generated OJZpK-module N we have reduced the problem to the identity:

rankOJZpK(N) =
∑
j

(−1)jrankOφ(Tor
OJZpK
j (Oφ, N))

I.e., it su�ces to prove the assertion in the case G = 1.
For this last claim, choose a �nite free resolution P• of N as OJZpK-module

with Pi = OJZpKni . Such a resolution exists as OJZpK has �nite homological rank
and is local. It follows that rankOJZpK(N) =

∑
i(−1)ini. On the other hand, we

can compute the Tor-groups with this resolution and get

∑
i

(−1)irankOφ(Tor
OJZpK
i (Oφ,M)) =

∑
i

(−1)irankOφ(Hi(Oφ ⊗OJZpK P•))

=
∑
i

(−1)irankOφ(Oφ ⊗OJZpK Pi)

=
∑
i

(−1)irankOφ(Oniφ )

=
∑
i

(−1)ini

as required. �

Proof (of the theorem). Let us only focus on the assertion on the λ-
invariant, the one on the rank is proven in a similar manner. First, recall that we
already know from theorem 3.12 that the cohomology groups of the derived tensor
product are S-torsion. Recall the spectral sequence for the cohomology groups of
the derived total tensor product (see [Wei94] application 5.7.8):

Tor
Λ(G)
i (Λφ(G), Hj(A•))⇒ Hj−i(Λφ(G)⊗LΛ(G) A

•)

As λ is an invariant which is additive on short exact sequences of S-torsion mod-
ules, it follows that
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λΛφ(G)(Λφ(G)⊗LΛ(G) C
•) =

∑
j

(−1)jλΛφ(G)(H
j(Λφ(G)⊗LΛ(G) C

•))

=
∑
i,j

(−1)j−iλΛφ(G)(Tor
Λ(G)
i (Λφ(G), Hj(C•)))

=
∑
j

(−1)j
∑
i

(−1)iλΛφ(G)(Tor
Λ(G)
i (Λφ(G), Hj(C•)))

=
∑
j

(−1)jλΛ(G)(H
j(C•)) = λΛ(G)(C

•),

where, in the �nal line, we used the last lemma. Thus, the assertion is proven. �

3.5. The Iwasawa invariants of the Selmer complexes

Using the theorems of the last section, we intend to show that the Iwasawa
invariants of the Selmer complexes have good behavior under specialization:

Theorem 3.33. Let G, H, T, T0, and U be as in the previous sections (see sec-
tion 2.2). We assume that condition 2.12 on the freeness of the subrepresentations
is satis�ed. We set Λ := OJGK[[t]] and, for a specialization map φ : O[[t]] → O′,
we set Λφ = O′JGK. Assuming that the cohomology groups of the Selmer complex
SC(U,Tφ,T0

φ) are S∗φ-torsion, the following holds:

(1) If φ is surjective with kernel (f), then there is an n depending only on
the pair (T/f,T0/f) such that

µΛ/f (SC(U,T/f,T0/f)) = µΛ/g(SC(U,T/g,T0/g))

for all prime elements g ∈ O[[t]] with πn|f − g such that O[[t]]/g is a
maximal order.

(2) If the cohomology groups of the Selmer complex SC(U,T,T0) (equiva-
lently, of SC(U,Tφ,T0

φ) ) are S-torsion, then we have:

λΛ(SC(U,T,T0)) = λΛφ(SC(U,Tφ,T0
φ))

Proof. The �rst assertion follows from the short exact sequences

0→ H i(SC(U,T,T0))/f → H i(SC(U,Tφ,T0
φ))→ H i(SC(U,T,T0))[f ]→ 0

from corollary 3.4. The S∗φ-torsion condition tells us that all three modules in
these sequences are πnS- torsion for some n. Then, we can apply proposition 3.17
and corollary 3.27 to the left and right modules to conclude the assertion.

The second assertion is just the combination of the last theorem with the base
change property of the Selmer complex (proposition 3.1). �

For the primitive Selmer complex, we have a weaker specialization property
described in theorem 3.2. Therefore, we have to use the extended de�nition of the
λ-invariant:

Corollary 3.34. Keeping the notation of φ,f , Λ, and Λφ from the last the-
orem, we still assume that (T,T0) is a pair of Λ-representations as in section 2.2
ful�lling condition 2.12, such that SC(Tφ,T0

φ) has S∗φ-torsion cohomology groups.
Moreover, we assume that condition 2.15 holds. Then we conclude:
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(1) If φ is surjective with kernel (f), then there is an n depending only on
the pair (T/f,T0/f) such that

µΛ/f (SC(T/f,T0/f)) = µΛ/g(SC(T/g,T0/g))

for all prime elements g ∈ O[[t]] with πn|f − g such that O[[t]]/g is a
maximal order.

(2) Assuming that the cohomology groups of SC(T,T0) are S-torsion, we have

λΛ(SC(T,T0)) = λΛφ(SC(Tφ,T0
φ)).

However, we have to be careful as now the cohomology groups of SC(Tφ,T0
φ)

are automatically S∗-torsion, but need not be S-torsion.

Proof. Recall the exact triangle in theorem 3.2

Λφ ⊗LΛ SC(T,T0)→ SC(Tφ,T0
φ)→ C

+→,

where C was the mapping �ber of a map C ′ → C ′[−1], with C ′ a perfect complex
with p-primary cohomology groups. As the cohomology groups of SC(Tφ,T0

φ)
are S∗φ-torsion and the ones of C• even p-primary; it follows that the ones of

Λφ ⊗LΛ SC(T,T0) are S∗φ-torsion, too. Thus, the µ-invariant is additive on the

long exact sequence. Moreover, µ(C) = µ(C ′) − µ(C ′) = 0, and we conclude
µΛφ(SC(Tφ,T0

φ)) = µΛφ(Λφ ⊗LΛ SC(T,T0)). The assertion on the µ-invariant is
therefore reduced to the one of the imprimitive Selmer complex.

For the claim on the λ-invariant, we use the long exact sequence coming out
of the same triangle and then apply lemma 3.23 to show that λΛφ(SC(Tφ,T0

φ)) =

λΛφ(Λφ ⊗L SC(T,T0)). Replacing the term in the assertion, reduces it to the
second part of theorem 3.29. �

The condition that we are only allowed to take surjective specializations if we
want to have results on the variation of the µ-invariant is mainly due to the fact
that this variation property has been proven with very elementary means, and we
wanted to keep our notation slim. However, we will next establish the invariance
under scalar extension, which allows us to drop this condition:

Theorem 3.35. Let Λ = OJGK[[t]] or Λ = OJGK and let (T,T0) be a pair of
Λ-representations. Moreover, let O′ be a �nite extension of O, which is a maximal
order, too. We denote the rami�cation index of O′/O by e and set Λ′ = O′ ⊗O Λ,
T′ = O′ ⊗ T, and T′0 = O′ ⊗ T0. Then, we have:

e · µΛ(SC(U,T,T0)) = µΛ′(SC(U,T′,T′0))

e · µΛ(SC(T,T0)) = µΛ′(SC(T′,T′0))

Moreover, if the cohomology groups of SC(U,T,T0) are S-torsion, we have:

λΛ(SC(U,T,T0)) = λΛ′(SC(U,T′,T′0))

λΛ(SC(T,T0)) = λΛ′(SC(T′,T′0))

Proof. We have already seen in proposition 3.1 and theorem 3.2 that taking
the Selmer complex commutes with scalar extension for every case. Then the
assertions follow from corollary 3.20 and the fact that for any complex C• of
O-modules we have H i(O′ ⊗O C•) = O′ ⊗H i(C•) as O′/O is free. �

Finally, we can deduce the general variation property for the µ-invariant:
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Corollary 3.36. Let G, H, T, T0 and U be as above. We set Λ := OJGK[[t]]
and, for a specialization map φ : O[[t]] → Oφ with kernel (f), we set Λφ =
O′JGK. Moreover, let e denote the rami�cation index of Oφ/O. Assuming that the
cohomology groups of the Selmer complex SC(U,Tφ,T0

φ) are S∗φ-torsion, there is a

positive integer n depending only on (Tφ,T0
φ) and the degree Oφ/O, so that for all

specializations ψ : O[[t]]→ Oψ whose kernel (g) satis�es πn|f − g we have:

e′ · µΛφ(SC(U,Tφ,T0
φ)) = e · µΛψ(SC(U,Tψ,T0

ψ))

Here, e′ denotes the rami�cation degree of Oψ/O. Moreover, if in addition condi-
tion 2.15 is satis�ed, we also get:

e′ · µΛφ(SC(Tφ,T0
φ)) = e · µΛψ(SC(Tψ,T0

ψ))

Proof. Take O′ to be an extension of O which contains Oφ and Oψ. We
intend to apply the �rst two theorems of this section to the induced specialization
maps φ′ : O′[[t]] → O′ and ψ′ : O′[[t]] → O′. Possibly changing f and g each
by a unit factor, we may assume that both are distinguished polynomials (p-adic
Weierstraÿ preparation). Then, the degrees of f and g coincide (say they are
equal to d) and the kernels of φ′ and ψ′ are generated by linear factors f ′ of f ,
respectively, g′ of g. As f and g were irreducible, we conclude, if πn|f−g it follows
that πn

′ |f ′ − g′ with n′ = [n/d]. Therefore, taking n large enough such that n′ is
as in the last theorems, we have proven the assertions. �

Remark 3.37. It can be seen from the proof that the integer n needed in the
corollary is actually larger than the one needed for surjective specializations. Thus,
although it is not explicitly noted, the �rst two theorems of this section have ad-
vantages.

3.6. The Iwasawa invariants of the Selmer groups

We want to apply the results of the last section to get some results for the
Iwasawa invariants of the Selmer groups. The �rst observation is that there are
cases where [SC(T,T0)] = [X (T,T0)] in K0(MH(G)) (i.e., K0 of the category of
complexes with S∗-torsion cohomology groups). As the µ-invariant factors over the
projection into this group, the µ-invariants of the Selmer group and the Selmer
complex will coincide. This is the case, for instance, if p ≥ 5 and the motive
comes from an elliptic curve over Q with ordinary reduction at p, where we take
G to be the image of the absolute Galois group in the automorphisms of the
Tate module (see [FK06] 4.5.3). But we can say more about the relation of the
Iwasawa invariants of Selmer complexes and the ones of the related Selmer groups.
In general, it is hard to compare the classes in K0; it is much easier, however, to
show that the Iwasawa invariants coincide for many examples.

Theorem 3.38. Assume that (T,T0) is a pair of big Galois representations as-
sociated to a single motive (not a family) and the p-adic Lie group G = Gal(F∞/F )
as above. We assume that G does not have any p-torsion. If X (T,T0) has S∗-
torsion cohomology groups, we have

µΛ(G)(X (U,T,T0)) = µΛ(G)(SC(U,T,T0)) and

µΛ(G)(X (T,T0)) = µΛ(G)(SC(T,T0)).
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For any place v of F dividing p, take Hv = Gv ∩ H to be the intersection of the
decomposition group of v and H. If, in addition, all the groups Hv and H have an
in�nite pro-p quotient without p-torsion and the cohomology groups of the Selmer
complexes are S-torsion, then so is the Selmer group, and

λΛ(G)(X (U,T,T0)) = λΛ(G)(SC(U,T,T0)) and

λΛ(G)(X (T,T0)) = λΛ(G)(SC(T,T0)).

Proof. The proof has two steps: Firstly, we show that the invariants of the
Selmer groups coincide with those of the second cohomology groups of the Selmer
complex, secondly, we show that the invariants of the other cohomology groups of
the Selmer complex vanish.

For the �rst step, we take the exact sequences relating the Selmer complex and
the Selmer groups (see proposition 2.23). We have to show that the µ-invariant
of any submodule of

⊕
v|p Λ ⊗OJGvK (T 0(v)(−1))G(v) vanishes, and, in the case

described in the theorem, the same holds for the λ-invariant. For v|p the map
Gv → Γ = G/H is surjective, so that we have OJGK = OJHK⊗̂OJHvKOJGvK as

OJHK-OJGvK-bimodules. The representation T 0(v)(−1) is �nitely generated as an
O-module; consequently, it is �nitely generated as an OJGvK- and as an OJHvK-
module, too. It follows that OJGK ⊗OJGvK T

0(v)(−1) = OJHK ⊗OJHvK T
0(v)(−1)

is �nitely generated as an OJHK-module, showing that the module is S-torsion, so
that the µ-invariant of any submodule vanishes by part 4 of proposition 3.21.

To demonstrate the vanishing of the λ-invariant, we remark that, taking U to
be the kernel of the projection of Hv onto an in�nite pro-p group, we can apply
part 3 of proposition 3.21 to show that any submodule of T 0(v)(−1) has zero
OJHvK rank. This implies that OJHK⊗OJHvKT

0(v)(−1) has zero OJHK rank. (For
this part, compare proposition 4.3.16 in [FK06].)

For the second step, we observe that again due to the exact sequences in
proposition 2.23 the moduleH3(SC(U,T,T0)) = H3(SC(T,T0)) is the epimorphic
image of T (−1)G and therefore of T (−1). But T - hence also every quotient of it -
is a �nitely generated Zp-module and has therefore µ-invariant 0. If H admits an
in�nite pro-p quotient without torsion, then the OJHK-rank is zero, too. It follows
that the invariants of the third cohomology group vanish.

By lemma 2.3, apart from H2 and H3 there is only one cohomology group
that might not vanish: the �rst one. By proposition 4.3.13 in [FK06], the group
H1(SC(T,T0)) is zero in the case of dim(G) > 1 such that we only need to focus
on the case of the µ-invariant. In the case of dim(G) = 1, however, the same
proposition computes H1(SC(T,T0)) as a subset of T G , consequently it is �nitely
generated over Zp and thus has trivial µ-invariant. To prove the same statement
for H1(SC(U,T,T0)), we use the distinguished triangle form lemma 2.5, relating
the primitive and the imprimitive Selmer complex, to get an exact sequence⊕

v

H0
f (Fv,Λ⊗ T )→ H1(SC(U,T,T0))→ H1(SC(T,T0))→ . . . .

As the invariants of all subsets of H1(SC(T,T0)) vanish in the appropriate situ-
ations, it is enough to show that the H0

f (Fv,T) vanish. By assumption, however,

H1(SC(U,T,T0)) is S∗-torsion and H0
f (Fv,Λ ⊗ T ) ⊂ Λ ⊗ T is torsion-free as a

subset of a free module. Thus, it is the 0 module.
�
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Remark 3.39. The conditions on the group H for the λ-invariant are a bit
technical. But it is certainly enough that if F∞/Fcyc contains an in�nite (normal)
pro-p subextension, such that all primes dividing p are at most �nitely decomposed.
This is for instance the case if F∞ contains K = ∪iFcyc( pi

√
p)

Finally, let us note what this implies for the behavior of the invariants in
families:

Corollary 3.40. Let (T,T0) be a big Galois representation associated to a
family of motives and assume that the according p-adic Lie group G = Gal(F∞/F )
does not have any p-torsion and that condition 2.12 on freeness is met. Moreover,
let φ and ψ be two specializations of the family. Then the following holds:

(1) If φ has kernel (f) and X (T,T0) is S∗-torsion, then there is an n such
that:

eψ · µΛφ(X (Tφ,T0
φ)) = eφ · µΛψ(X (Tψ,T0

ψ))

for all specializations ψ with kernel (g) such that πn|f − g. Here, eφ and
eψ are the rami�cation indices of Oφ/O, respectively, Oψ/O.

(2) If the cohomology groups of SC(U,Tφ,T0
φ) are S-torsion and for every

place v of F dividing p the groups Hv and H admit in�nite pro-p quotients
without p-torsion, then:

λΛ(X (Tφ,Tφ)) = λΛφ(X (Tψ,T0
ψ))

Proof. This is the combination of the last theorem with corollaries 3.36 and
3.34. �

Remark 3.41. There is also an obvious imprimitive version of this corollary,
which is obtained by replacing corollary 3.34 with theorem 3.33.



CHAPTER 4

p-adic zeta isomorphisms

In this chapter, we would like to give a brief summary about the p-adic ζ-
isomorphisms conjecturally constructed by Fukaya and Kato in our main reference
[FK06]. While, for reasons of brevity, it is not possible to give all the details of
the construction, we have to review some of their tools, just to state the results.
Assuming the conjectures of Fukaya and Kato, we will then be able to show an
Iwasawa main conjecture for families of the kind described above.

4.1. Determinant categories

We will not give a full account of determinant categories over noncommutative
rings here; mainly we reproduce the review in subsection 1.2 of [FK06]. For more
details please consult Venjakob's explanations in the �rst section of [Ven07]. A
more conceptual account can be found in [BF03]. However, the categories are
obtained in a di�erent way there and the explicit construction of Fukaya and Kato
are used to describe the ζ-isomorphism.

Let us start by recalling the de�nition of the the determinant category CΛ over
a (possibly noncommutative) ring Λ: The objects of CΛ are pairs (P,Q) of �nitely
generated projective Λ-modules with the morphisms de�ned as follows. The set
HomCΛ((P,Q), (P ′, Q′)) is not empty, if and only if [P ] − [Q] = [P ′] − [Q′] in
K0(Λ). In that case, there is a �nitely generated projective Λ-module R such that
P ⊕Q′⊕R is isomorphic to P ′⊕Q⊕R. The set of isomorphisms is a torsor for the
groups of automorphisms of both sides, and we de�ne the Set of homomorphisms
HomDet(Λ)((P,Q), (P ′, Q′)) to be

K1(Λ)×AutΛ(P⊕Q′⊕R) IsomΛ(P ⊕Q′ ⊕R,P ′ ⊕Q⊕R)

This construction can be shown to be independent of R. There is a (functorial)
multiplicative structure on this category induced by the direct sum. Via this
structure, the neutral object is 0 = [(0, 0)] and the inverse of the object [(P,Q)]
is [(Q,P )]. Moreover, there is a functor from the category of �nitely generated
projective Λ-modules with Λ-isomorphisms as morphisms into this category. This
functor is called DetΛ. In particular, this functor will map Λ-automorphisms
to automorphisms of determinant objects, which are canonically isomorphic to
K1(Λ).

If C• is a bounded complex of �nitely generated projective Λ-module, then
we de�ne DetΛ(C•) to be (Ceven, Codd), where Ceven is the direct sum of the even
degree modules and Codd is the direct sum of the odd degree ones.

We conclude our introducing remarks by noting that for any second ring Λ′ and
any Λ′-Λ-bimodule Y which is projective and �nitely generated as a Λ′-module,
the tensor product Y⊗Λ induces a �change of rings� functor also denoted as a
tensor product between the determinant categories.

We will need a few canonical isomorphisms. The �rst one is:

48
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Fact 4.1. If A• : [A0 → A1] is a complex and φ : A1 → A0 is an isomorphism,
then φ induces a natural isomorphism of determinants:

DetΛ(0)→ DetΛ(A•)

In most cases, A1 and A0 will be naturally identi�ed.

Next, we get a canonical isomorphism for short exact sequences:

Fact 4.2. If

0→ P ′
ι→ P → P ′′ → 0

is an exact sequence of �nitely generated projective Λ-modules (or of complexes of
such modules), then there is a natural isomorphism:

DetΛ(P ′) ·DetΛ(P ′′)→ DetΛ(P )

Moreover, using the multiplicative structure of CΛ we get an canonical isomor-
phism:

DetΛ(0)→ DetΛ(P ) ·DetΛ(P ′)−1 ·DetΛ(P ′′)−1

Indeed, the isomorphism is constructed by choosing a splitting s : P ′′ → P

and taking the canonical morphism to be the image of P ′ ⊕ P ′′ ι⊕s→ P under the
DetΛ-functor. This construction is independent of the choice of s.

More generally, one obtains:

Fact 4.3. If C is an acyclic, bounded complex of �nitely generated projective
Λ-modules, then there is a canonical isomorphism

Det(0)→ Det(C).

The morphism in question is given as follows: As a bounded exact sequence
of projective modules C splits. Thus after choosing splittings s we get that s+ d :
Codd ∼= Ceven is an isomorphism. Thus inducing an isomorphismDet(0)→ Det(C)
as required.

Finally, we note that the construction can be extended to the derived category:

Fact 4.4. Quasi-isomorphisms of complexes induce isomorphisms in the deter-
minant category. In particular, the functor Det factors over the derived category
with quasi-isomorphisms.

The mapping cones of quasi-isomorphisms are acyclic. The last fact applied
to the mapping cone gives the desired morphism when we view the modules of the
cone as direct sums of the modules of the two complexes.

With these preparations in place, one can state some compatibilities for the
�change of ring� functor:

Lemma 4.5. Assume that Λ and Λ′ are two rings and Y is an Λ′-Λ-bimodule
that is projective as a Λ′-module. Then we have:

(1) The functor �Y⊗Λ� commutes with the det functor. I.e., for any bounded
complex of �nitely generated Λ-modules, we have (Y⊗Λ) ◦ (DetΛ) ∼=
DetΛ′ ◦ (Y⊗Λ).
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(2) If f : C → C ′ is a quasi-isomorphism of complexes of �nitely generated
projective Λ-modules and Y ⊗Λ C (hence also Y ⊗λ C ′) is acyclic, then
Y ⊗Λ DetΛ(f) = DetΛ′(idY ⊗ f) = 1 ∈ Aut(DetΛ′(0)) = K1(Λ′), where
we identify the determinants of acyclic complexes with 0 via the canonical
isomorphism from fact 4.3.

Proof. As the �rst part is an easy calculation, we only demonstrate the
second part:

The �rst equality follows directly from the �rst part of the lemma. For the
second equality, we look at the commutative diagram:

DetΛ′(Y ⊗Λ C)
idy⊗f // DetΛ′(Y ⊗Λ C

′)

DetΛ′(0)
id0 //

Det(0)

OO

DetΛ′(0)

Det(0)

OO

There, the Det(0) on the vertical arrows denotes the determinant of the zero map,
which is a quasi-isomorphism by assumption. It follows that Det(idY ⊗ f) =
Det(id0) = 1. �

4.2. The localized K1

The noncommutative Iwasawa main conjecture as introduced in special cases
in [Ven05] and generalized in [CFKSV] predicts a p-adic ζ-function as an element
of K1(ΛS∗). Thus, it can only be a characteristic element of the Selmer group if
theMH(G) conjecture is ful�lled, i.e., if the dual of the Selmer group is S∗-torsion.
It seems unreasonable, however, to believe there is a similar statement for very
general families, and even for the classical settings this conjecture is known to
hold only in a few special cases. Fortunately, there is a way to work around this
obstruction: Fukaya and Kato introduced to the theory some localized K1 group
relative to some subcategory Σ. This group is equal to K1(ΛS∗) in the case that Σ
is the subcategory of S∗-torsion modules and satis�es standard functorialities. For
the moment we will therefore adopt this notion. Only in the end of this chapter
we will note, how to deduce results involving the classical notions assuming some
kinds of MH(G) conjectures are satis�ed.

Let us �rst recall the construction: By Σ ⊂ P(Λ) we denote a full subcate-
gory of the category P(Λ) of bounded complexes of �nitely generated Λ-modules
satisfying the following conditions:

Condition 4.6.

(1) If C is in Σ, then so are all complexes quasi-isomorphic to it.
(2) Σ contains all acyclic complexes.
(3) For any C ∈ Σ, all the translations C[r] belong to Σ, too.
(4) For any short exact sequence in P(Λ),

0→ C ′ → C → C ′′ → 0.

If C ′ and C ′′ belong to Σ, then so does C.

By a slight abuse of the term, we will call such a Σ a triangulated subcategory
of P(Λ), meaning that it is the preimage of a triangulated subcategory of the
derived category.
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Remark 4.7. If we have any collection of Ci of triangulated subcategories, then
the full subcategory of objects that are contained in all Ci is a triangulated subcat-
egory, too. Thus, there is always a smallest triangulated subcategory containing
some objects.

With this description, we de�ne:

Definition 4.8. Let Σ be a triangulated subcategory of P(Λ). Then the group
K1(Λ,Σ) is the (multiplicatively written) abelian group de�ned by the generators
[C, a], where C is an object of Σ and a is an isomorphism DetΛ(0) → DetΛ(C),
subject to the following relations:

(1) If C is acyclic, then [C, can] = 1. Here, can is the isomorphism from fact
4.3.

(2) For exact sequences 0 → C ′ → C → C ′′ → 0 of objects of Σ, set B =
C ⊕ C ′[1] ⊕ C ′′[1]; then [B, can] = 1 where this time can is the second
morphism from 4.2.

(3) The multiplicative structure of DetΛ is preserved: For two generators
[C, a] and [C ′, a′], we have

[C, a] · [C ′, a′] = [C ⊕ C ′, aa′].

Remark 4.9. In general, our �rst canonical isomorphism (fact 4.1) will in
general not be identi�ed with 1.

Before we state more properties of the localized K1 we note two cases where
we get classical K-groups (proposition 1.3.7 in [FK06]).

Proposition 4.10.

(1) The full subcategory acycl of acyclic complexes in P(Λ) is a triangulated
subcategory. The localized K1 group with respect to this subcategory is
K1(Λ, acyc) = K1(Λ).

(2) If S is an Ore set in Λ, then the full subcategory S-tor of complexes with
S-torsion cohomology groups in P(Λ) is a triangulated subcategory and
K1(Λ, S − tor) = K1(ΛS).

The second part of this proposition is recounts proposition 1.3.7. in [FK06].
The �rst part can be deduced from the second part by taking S = 1. Please
note that the identi�cation is sending a pair [C, a] ∈ K1(Λ, acyc)→ K1(Λ) to the
composition can−1 ◦ a ∈ Aut(Det(0)) = K1(Λ), where can−1 is the inverse map
of the one described in fact 4.3.

Let us note the following fact: If Λ and Λ′ are two rings and if Σ and Σ′ are
triangulated subcategories of P(Λ), respectively, P(Λ′), then any Λ′-Λ-bimodule
Y which is projective and has the property that for every element C of Σ we have
Y ⊗Λ C ∈ Σ′ induces a morphism Y⊗ : K1(Λ,Σ) → K1(Λ′,Σ′). Using this map,
the identi�cation from the second part can be written as

K1(Λ, S − tor) ΛS⊗→ K1(ΛS , acyc)→ K1(ΛS).

Next we state the generalization of the usual localization sequence of K-theory
(this is theorem 1.3.15 of [FK06]):

Theorem 4.11. For any triangulated subcategory Σ of P(Λ), the sequence

K1(Λ)
f→ K1(Λ,Σ)

g→ K0(Σ)
h→ K0(Λ)
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is exact. The maps can be de�ned in the following way: f sends the class of

an automorphism φ : M →M of projective Λ-modules to [[M
φ→M ], id], where id

denotes the isomorphism Det(0)→ Det(M) ·Det(M)−1 given by the fact 4.1 via
the identity map on M . The morphism g sends a pair [C, a] to the class of C in
K0(Σ). Finally, h sends the class of a complex in K0(Σ) to the class of the same
complex in K0(Λ).

These maps are compatible with the change of ring functors induced by tensor-
ing with bimodules Y .

In some classical cases (e.g. when Σ is the subcategory of complexes with
S∗-torsion modules as cohomology groups), one often knows that the map h in
the above sequence is the zero map (see for instance [CFKSV]). This generalizes
directly to families if we view our Iwasawa algebra OJGK[[t]] as OJG × ZpK. But
again, it is not even clear what the MH(G) conjecture for families should state
exactly.

For many results, MH(G) can be replaced by one of the following subcate-
gories:

Definition 4.12. For any pair of Galois representations (T,T0), an open
set U of spec(Z) such that we can de�ne the Selmer complexes SC(U,T,T0) and
SC(T,T0), we take Σ(U,T,T0) to be the smallest triangulated subcategory of P(Λ)
containing all complexes quasi-isomorphic to SC(U,T,T0). Similarly, Σ(T,T0) is
the smallest triangulated subcategory containing all complexes quasi-isomorphic to
SC(T,T0).

Of course, this de�nition only makes sense if the Selmer complexes are perfect.
With some additional conditions we can say more:

Corollary 4.13. Assume that p 6= 2, Λ = OJGK, or Λ = OJGK[[t]] for a p-
adic Lie group G and that we have a pair of representations (T,T0) obtained from
a motive, respectively, a family of motives as in Section 2.2, such that T0 and T+

are isomorphic as Λ-modules. Suppose we are in one of the two situations:

(1) The subcategory is Σ = Σ(U,T,T0), where U ⊂ spec(Z) is a subset inside
which both the extension F∞/F and the representation T are unrami�ed.

(2) The group G does not have any p-torsion, the rami�cation condition 2.15
is satis�ed, and the subcategory is Σ = Σ(T,T0).

Then there is an exact sequence:

K1(Λ)
f→ K1(Λ,Σ)

g→ K0(Σ)
h→ 0

Proof. In fact, by lemma 2.7 and corollary 2.19 the classes of the Selmer
complexes in K0(Λ) vanish in these situations. Thus, their classes in K0(Σ) map
to zero under h. But the full subcategory of Σ consisting of all objects whose
classes map to zero clearly is a triangulated subcategory. So, as Σ is by de�nition
the smallest triangulated subcategory containing the Selmer complex, h is the zero
map. �

We conclude this section by de�ning the evaluation map for elements ofK1(Λ,Σ).
Assume that L is a p-adic �eld and ρ : Λ→Mn(L) is a ring homomorphism such
that all complexes C of Σ become acyclic after tensoring with Mn(L). Then the
value ξ(ρ) ∈ L× of an element ξ ∈ K1(Λ,Σ) at ρ is just its image under the
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following natural map:

K1(Λ,Σ)
Mn(L)⊗Λ→ K1(Mn(L), acycl) = K1(Mn(L)) = K1(L) = L×

Remark 4.14.

(1) As a right Mn(Λ)-module, Mn(Λ) is the sum of n copies of Ln inter-
preted as row vectors acted on by matrix multiplication from the right.
Thus, becoming acyclic after tensoring with Mn(Λ) is the same as being
acyclic after tensoring with the L − Λ-bimodule Ln. Moreover, when we
applied Morita invariance to see that K1(Mn(L)) = K1(L), we e�ectively
tensorized with Ln⊗Mn(L). Accordingly, we could have written the map
as:

K1(Λ,Σ)
Ln⊗Λ→ K1(L) = L×

(2) If Σ is the minimal subcategory containing some set of complexes M and
satisfying condition 4.6, then it is enough to ask that all complexes of M
become acyclic after tensoring with Mn(L), respectively, Ln. Indeed, in
this case all complexes of Σ become acyclic, as the ones that do form a
triangulated subcategory and Σ is minimal.

We intend to evaluate elements in slightly di�erent sets, thus we introduce:

Definition 4.15. For an adic ring Λ, we set

Λ̃ := lim←−(W (Fp)⊗Zp Λ/Jn),

where W (Fp) are the Witt vectors and J is the radical of Λ. Similarly, for a p-adic

�eld L with ring of integers OL, we write L̃ := L⊗OL ÕL.

Then we extend our evaluation map to elements in K1(Λ,Σ)×K1(Λ) K1(Λ̃)
For a map ρ : Λ→Mn(L) as before we look at the canonical map:

K1(Λ,Σ)×K1(Λ) K1(Λ̃)→ K1(L)×K1(L) K1(L̃)→ K1(L̂ur),

where the �rst map is the one induced by the map above and the second one is

induced by the natural map L̃→ L̂ur.

4.3. ζ-isomorphisms for Galois representations

The main result of Fukaya and Kato in [FK06] is to give a conjectural con-
struction of the p-adic zeta element of a pair of Galois representations (T,T0)
together with some open unrami�ed set U .

The results depends on some conjectures, we denote them by (FK) in the
following. This notation includes:

• The Beilinson-Deligne conjecture (given in [FK06] 2.2.8): The descrip-
tion of the classical L-function of a motive at the critical spot s = 0, in
particular the association of a ζ-isomorphism describing the value.
• An equivariant global Tamagawa number conjecture (given in 2.3.2 loc.cit.):
A compatible way to associate isomorphisms

ζ : DetΛ(0)→ DetΛ(RΓc(U, T ))−1

for representations of the absolute Galois group of Q over adic rings Λ
extending the ζ-isomorphisms from the Beilinson-Deligne conjecture.
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• A local Tamagawa number conjecture (given in 3.4.3 and 3.5.2 loc.cit.):
A compatible way to associate epsilon factors as isomorphisms in deter-
minant categories to representations of the absolute Galois groups of Qp

and Ql over adic rings.
• Some functional equation relating the zeta isomorphisms of a representa-
tion with the one of its Kummer dual (given in 3.5.5 loc.cit.).

Without going into the details, we will simply assume that these conjectures
are ful�lled when needed and will work with the results deduced from them by
Fukaya and Kato, which are state below.

Firstly, there is a natural choice of a characteristic element (See [FK06] 4.1.3):

Theorem 4.16. Assuming conjectures (FK), let (T, T 0) is a pair of represen-
tations of GQ and GQp which are �nitely generated projective modules over an adic

ring Λ such that [T 0] = [T+] in K0(Λ). Furthermore, let U be an open subset of
spec(Z) such that the GQ-representation T is unrami�ed in U . If we choose an

isomorphism β : Λ̃ ⊗DetΛ(T+) → Λ̃ ⊗DetΛ(T 0), then the construction [FK06]

produces an element ζβ(U, T, T 0) ∈ K1(Λ,Σ(U, T, T 0))×K1(Λ)K1(Λ̃). This element
can be written as ([C, a], k), with [C, a] ∈ K1(Λ,Σ(U, T, T 0) in the above notation
and C = SC(U, T, T 0). In particular, under the canonical map from theorem 4.11,
the element ζβ(U, T, T 0) maps to the class of the Selmer complex SC(U, T, T 0) in
K0(Σ(U, T, T 0)).

This ζ-element behaves well under base change(see [FK06] 4.1.4):

Theorem 4.17. In the situation of the last theorem, assume Λ′ is another
adic ring and Y is a Λ′-Λ-bimodule, projective over Λ′. We set T ′ := Y ⊗Λ T and
(T ′)0 := Y ⊗Λ T

0. Then the isomorphism β induces β′ : Λ̃′ ⊗ DetΛ′((T ′)+) →
Λ̃′ ⊗DetΛ′((T ′)0), and under the canonical map

K1(Λ,Σ(U, T, T 0))×K1(Λ) K1(Λ̃)→ K1(Λ′,Σ(U, T ′, (T ′)0))×K1(Λ′) K1(Λ̃′),

the isomorphism ζβ(U, T, T 0) maps to ζβ′(U, T
′, (T ′)0).

Please note that this natural map exists, as the Selmer complex over Λ is
mapped onto the one over Λ′ (shown in proposition 3.1) and as the preimage of
Σ(U,T′, (T′)0) is a triangulated subcategory, it contains Σ(U,T,T0).

The following corollary is the case of this theorem, that is most important for
what follows:

Corollary 4.18. Assume that the pair of representations comes from a fam-
ily of motives as in section 2.2 and Λ := OJGK[[t]]. Let β : Λ̃ ⊗ DetΛ(T+) →
Λ̃⊗DetΛ(T0) be an isomorphism and let βφ : Λ̃φ⊗DetΛφ(T+

φ )→ Λ̃φ⊗DetΛφ(T0
φ)

be the induced isomorphism. Moreover, let U be a set outside of which T is un-
rami�ed. Then, for any specialization map φ, we have that ζβ(U,T,T0) maps to
ζβφ(U,Tφ,T0

φ) under the canonical map:

K1(Λ,Σ(U,T,T0))×K1(Λ) K1(Λ̃)→ K1(Λφ,Σ(U,Tφ,T0
φ))×K1(Λφ) K1(Λ̃φ)

Lastly, these ζ-isomorphisms have some interpolation properties, but to de-
scribe them we have to introduce some notations �rst:

Let V be a �nite dimensional representation of Gal(Q/Q) over a p-adic number
�eld L. Then the Euler polynomial at l 6= p is

PL,l(V, u) := detL(1− φlu;V Il)



4.3. ζ-ISOMORPHISMS FOR GALOIS REPRESENTATIONS 55

where φl is the geometric Frobenius. If l = p, the polynomial at p is

PL,p(V, u) := detL(1− φpu;Dcrys(V |Gal(Qp/Qp)).

Now, if M is a K-motive over Q and Mλ is the λ-adic realization for some place λ
of K dividing p, then the L-function of M should be given by the Euler product:

LK(M,u) =
∏
l

PKλ,l(Mλ, u)−1

Assuming in addition that L is again some p-adic �eld with an embedding Kλ → L
such that there is some Gal(Qp/Qp) invariant subspace V

0 in V = L⊗KλMλ with

DdR(V 0)
∼=→ DdR(V )/DdR

0(V ), let us �x some isomorphism β : V + → V 0.
Moreover, all the cohomology groups H0(Q,Mp), H

1
f (Q,Mp), H

0(Q, (Mp)
∗(1)),

and H1
f (Q, (Mp)

∗(1)) are zero. If the conjectures (FK) hold, then we can de�ne

the complex and p-adic periods as follows (see [FK06] 4.1.11 for the details):
As usual, one has to choose aK-basis γ ofM+

B , the part of the Betti realization
of M �xed under the complex conjugation and δ of tM = MdR/M

0
dR. Then, the

complex period Ω∞(M) ∈ C× is just the Deligne period given as the determinant
of the period map C⊗KM+

B → C⊗K tM with respect to the chosen basis. The p-

adic period Ωp,β(M) ∈ (L̂ur)× essentially captures the information on the epsilon
factors from the local Tamagawa number conjecture and depends on our chosen
β. Moreover, both Ω∞ and Ωp,β depend on the chosen basis γ and δ, but an other
choice will change them both by the same factor in K×.

With these notations, we can write down the conjectured values of our zeta-
element (which is theorem 4.1.12.(2) in [FK06]):

Theorem 4.19. Assuming the conjectures (FK) as before, let (T, T 0) be a pair
of Galois representations over an adic ring Λ and let U be an open set as above.
Moreover, assume that there is a morphism ρ : Λ → Mn(L) and a K-motive M
over Q, satisfying the Dabrowski-Panchishkin condition 2.9 such that (Vρ, V

0
ρ ) are

the p-adic realization and the local subrepresentation of the Dabrowski-Panchishkin
condition. Furthermore, the following supposed to hold:

(1) H0(Q, Vρ), H1
f (Q, Vρ), H0(Q, (Vρ)∗(1)), and H1

f (Q, (Vρ)∗(1)) are zero.

(2) For any prime l 6= p not contained in U , we have PL,p(Vρ, 0) 6= 0.
(3) The polynomials PL,p(Vρ, u)PL,p(V

0
ρ , u)−1 and PL,p((V

0
ρ )∗(1), u) do not

have a zero at u = 1.

Then, the value of ζβ(U, T, T 0) at ρ is:

LK(M, 0)Ω∞(M)−1Ωp,β(M)
∏
r≥1

Γ(r)h(−r)

[PL,p(Vρ, u)PL,p(V
0
ρ , u)−1]u=1PL,p((V

0
ρ )∗(1), 1)

∏
l 6∈U∪{p}

PL,l(Vρ, 1)

A motive satisfying the conditions of this theorem is called critical. Following
the de�nitions of Fukaya and Kato in section 4.2. we set:

Definition 4.20. Let M be an F motive with coe�cients in K. We assume
that M satis�es the Dabrowski-Panchishkin condition 2.9. Moreover, we choose
an extension F∞/F with Galois group G and U ⊂ spec(Z) as in section 2.2.
Then, for the induced representations (T,T0), the invariants under the complex
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conjugation are isomorphic to T0 and we choose a Λ-isomorphism β : T+ → T0.
In this situation the imprimitive ζ-function is denoted as:

ζβ(U,M,F∞/F ) := ζβ(U,T,T0)

Moreover, if we replace the motive M in the above considerations by a family Mt

and and assume in addition that it satis�es condition 2.12 on freeness, we can
again choose some β : T+ → T0 and take again ζβ(U,T,T0) as the imprimitive
ζ-function ζβ(U,Mt, F∞/F ) for Mt.

Please note that these are the imprimitive ζ-elements; they are lacking some
Euler factors outside U . To get a ζ-isomorphism for SC(T,T0) we have to de�ne
Euler factors as appropriate isomorphisms in the determinant categories:

Definition 4.21. We look at the setting of a pair of big Galois representations
(T,T0) coming from a motive or a family. In the case of a family, we assume in
addition that the condition on the rami�cation 2.15 holds. For a prime v of F
not dividing p, we set Σ(v) to be the smallest subcategory of P(Λ) that satis�es
condition 4.6 and contains all complexes quasi-isomorphic to Cf (Fv,Λ ⊗ T ) ∼=
[(Λ ⊗ T )Iv → (Λ ⊗ T )Iv ]. Then, ζ(v,T) ∈ K1(Λp,Σ(v)p) is de�ned to be the
canonical isomorphism DetΛp(0) → DetΛp(Cf (Fv,Λ ⊗ T ))−1 from fact 4.1. The

lower p indicates that we invert the multiplicative set {1, p, p2, ...} and thus we can
apply fact 4.1 by proposition 2.17.

If p is not 2 and G does not have any p-torsion then every �nitely generated
Λ-module (including (Λ⊗T )Iv) admits a perfect resolution, therefore we may drop
the index p in this situation.

Assuming the conjectures (FK) again, we can de�ne a primitive ζ-isomorphism:

Definition 4.22. Fix a pair of Galois representations (T,T0) coming from
a motive M or a family of motives Mt and a set U as above. Recall that this
�xes a Galois extension F∞/F with Galois group G. Then, for any isomorphism

β : Λ̃⊗DetΛ(T+)→ Λ̃⊗DetΛ(T0), we set:

ζβ(M(t), F∞/F ) := ζβ(U,T,T0) ·
∏

v 6∈U∪{p}

ζ(v,T).

Here, the product is to be understood in the following way: We set ζβ(M(t), F∞/F ) :=

([C, a], k), where C is a complex quasi-isomorphic to SC(T,T0), k ∈ Λ̃p the corre-
sponding element of ζβ(U,T,T0) and, �nally, where a : DetΛ(0)→ DetΛ(SC(T,T0))
is the product of the determinant morphisms of ζβ(U,T,T0) and ζ(v,T) with re-
spect to the product structure on the determinant category. The ζ-isomorphism is
therefore an element in K1(Λp,Σ(T,T0)p)×K1(Λp) K1(Λ̃p).

If p is not 2 and if G does not have any p-torsion, we can drop the index p in
this de�nition.

Remark 4.23. The construction from the above de�nition is possible using the
description of ζ(U, T, T 0) from theorem 4.16 and the distinguished triangle

SC(T,T0)→ SC(U,T,T0)→
⊕
v

Cf (Fv,T)
+→

from lemma 2.5 to identify DetΛ(SC(T,T0)) canonically with DetΛ(SC(U,T,T0) ·∏
vDetΛ(Cf (Fv,T)).
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4.4. The main conjecture for families

Assuming the conjectures (FK), Fukaya and Kato derived the following version
of the Iwasawa main conjecture (theorem 4.2.22 in [FK06]):

Theorem 4.24. Assume the conjectures (FK) and let (T,T0) be a pair of

Galois representations associated to a motive M . Let β : Λ̃ ⊗ DetΛ(T+) → Λ̃ ⊗
DetΛ(T0) be an isomorphism as above.

(1) If Σ is Σ(T,T0)p (resp., Σ(U,T,T0)p) is the subcategory associated to the

Selmer complex, then the canonical map K1(Λp,Σ) ×K1(Λp) K1(Λ̃p) →
K0(Σ)p sends ζβ(M,F∞/F ) (resp., ζβ(U,M,F∞/F ) ) to the class of the
Selmer complex SC(T,T0) (resp., SC(U,T,T0)). We can drop the index
p if G does not have any p-torsion and p 6= 2.

(2) For some extension K ′ of K, let ρ : G → GLn(K ′) be a homomorphism
factoring over a �nite quotient of G and M(ρ∗) := [ρ∗] ⊗K M be the
twisted motive. For some integer j, we assume that M(ρ∗)(j) is critical
(i.e., the conditions from theorem 4.19 are satis�ed) and let (V, V 0(v))
be the λ-adic representation associated to M(ρ∗)(j). Then the value of
ζβ(M,F∞/F ) (resp. ζβ(U,M,F∞/F ) ) at ρκ−j is

L′K(M(ρ∗), j)Ω∞(τ(M(ρ∗))(j))−1Ωp(τ(M(ρ∗))(j))
∏
r≥1

Γ(r)h(j−r)

∏
v|p

[PL,v(V, u)PL,v(V
0(v), u)−1]u=1PL,v((V

0(v))∗(1), 1)
∏
v∈A

PL,v(V, 1) ,

where A is the set of all places of F not dividing p and where F∞/F is
in�nitely rami�ed (resp., the set of all places not lying over U or p).

The specialization properties of the imprimitive Selmer complexes which we
noted at the beginning of the last chapter make it easy to generalize the main
conjecture for motives that Fukaya and Kato derived from their conjectures (FK)
to families in the imprimitive setup: We have already seen that characteristic
elements of the big Selmer complex specialize to characteristic elements of the
Selmer complexes of the specializations. In the last section, we also discussed that
the ζ-isomorphism of the family maps onto the one of the specialization. Thus,
we get as a corollary:

Corollary 4.25. Let (T,T0) be a pair of Galois representations associated
to a family of motives Mt and a p-adic Lie extension F∞/F . Assuming the con-
jecture (FK), the ζ-isomorphism of a family ζ(U,Mt, F∞/F ) maps to the class
of the Selmer complex SC(U,T,T0) under the boundary map and maps to the ζ-
isomorphisms of the specializations ζ(U,Mφ, F∞/F ) under the specialization map
φ. Moreover, it interpolates the critical values of the L-functions of the specializa-
tions in the sense of the last theorem.

Proof. Theorem 4.16 tells us that ζ(U,T,T0) maps to the class of the Selmer
complex, corollary 4.18 tells us that the specializations are the correct ones, and
theorem 4.24 gives us the values in terms of values of the L-functions. �

The analog statement in the primitive setup is derived from the imprimitive
one: Firstly, we note that characteristic elements of SC(T,T0) map to character-
istic elements of SC(Tφ,Tφ) under our standard assumptions:



58 4. p-ADIC ZETA ISOMORPHISMS

Proposition 4.26. Again, let (T,T0) be a pair of Galois representations in-
duced from a family of motives Mt and a Lie extension F∞/F . Assuming that
the condition on the rami�cation 2.15 is ful�lled, there is a characteristic ele-
ment c(T,T0) for the Selmer complex SC(T,T0). Moreover, any such element has
the following property: Take Σ to be the smallest subcategory of P(Λ) containing
Σ(T,T0) and all complexes with p primary cohomology groups, and de�ne Σφ ac-
cordingly. Then, for any specialization φ : O[[t]] → O′, we have that under the
map

K1(Λ,Σ)×K1(Λ) K1(Λ̃)→ K1(Λφ,Σφ)×K1(Λφ) K1(Λ̃φ)

the element c(T,T0) maps to a characteristic element of SC(Tφ,T0
φ).

Proof. The only extra input we need here is that in the triangle

Λφ ⊗LΛ SC(T,T0)→ SC(Tφ,T0
φ)→ C

+→

from theorem 3.2, the class of the complex C in K1(Σ) is zero. But C can be
obtained as the mapping �ber of C ′ → C ′[−1] with C ′ in Σ. Thus, the class of C
is [C] = [C ′]− [C ′] = 0.

�

Remark 4.27. If we take the stronger rami�cation condition from the remark
after proposition 2.17, then we could replace the category Σ in the assertion by the
smaller one Σ(T,T0).

Next, we remark that, assuming the conjectures (FK) hold, the ζ-isomorphism
is still a characteristic element for the Selmer complex in the primitive setup:

Fact 4.28. The canonical map K1(Λ,Σ(v)) → K0(Σ(v)) sends ζ(v,T) to the
class −[Cf (Fv,Λ⊗T )]. Moreover, if the conjectures (FK) are satis�ed and (T,T0)
is a pair of Galois representations associated to a family of motives Mt satisfying
the condition 2.15, then ζβ(Mt, F∞/F ) is a characteristic element of SC(T,T0).

Proof. This is obvious from the de�nition of the ζ elements and the boundary
map sending a pair [C, a] ∈ K1(Λ,Σ) to the class C in K0(σ). �

Finally, we show that the class of the ζ-element of a family maps onto the one
of a specialization.

Proposition 4.29. We assume the conjectures (FK) hold. Let (T,T0) be a
pair of Galois representations associated to a family Mt and F∞/F be a p-adic Lie

extension satisfying the condition 2.15. Moreover, let β : Λ̃ ⊗ DetΛ(T+) → Λ̃ ⊗
DetΛ(T0) be an isomorphism as above and let φ : O[[t]] → Oφ be a specialization

of the family. If we write β′ : Λ̃ ⊗ DetΛ(T+
φ ) → Λ̃ ⊗ DetΛ(T0

φ) for the induced

isomorphism, then the canonical morphism

K1(Λp,Σ(T,T0)p)×K1(Λp) K1(Λ̃p)→ K1(Λφ,p,Σ(Tφ,T0
φ)p)×K1(Λφ,p) K1(Λ̃φ,p)

sends ζ(Mt, F∞/F ) to ζ(Mφ, F∞/F ). In particular, if ρ : G×Zp → K ′ is a charac-
ter with values in a p-adic �eld K ′ containing Oφ such that ρ|Zp = φ|Zp⊂OJZpK=O[[t]],

then the value of ζβ(Mt, F∞/F ) at ρ coincides with the value of ζβ′(Mφ, F∞/F )
at ρ|G.
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Proof. The second assertion follows obviously from the �rst one.
If we replaced ζβ(Mt, F∞/F ) with ζβ(U,Mt, F∞/F ) and the specialized ele-

ments accordingly, then the claim would be contained in corollary 4.25. The only
things we have to take care of are thus the Euler factors. To put it di�erently:
We have to show that the di�erence of the Euler factor of the specialization and
the image of the Euler factor of the family is 1 if we invert p. However, that is an
easy application of lemma 4.5 together with the last part of proposition 2.17. �

Remark 4.30. The reason why we had to invert p here is that, in general, the
Euler factors of the family will not map to those of the specialization, when we do
not invert p. This is due to the fact that the last part of proposition 2.17 is not
as good as one would hope. As remarked directly after this proposition, this issue
can be �xed by replacing the condition 2.15 on the rami�cation by a stronger one.
It is easy to see that in that case we are able to prove the last proposition without
inverting p. The same holds for the next theorem.

Combining the results, we have proven:

Theorem 4.31 (Iwasawa main conjecture for families). Assume that the con-
jectures (FK) hold. Let Mt be a family of motives satisfying the condition 2.12 and
let F∞/F be a Lie extension as in section 2.2 inducing a pair of Galois represen-
tations (T,T0), and let β be an isomorphism as above. If we assume furthermore
that the condition 2.15 is satis�ed, then there is a ζ-element ζβ(Mt, F∞/F ) ∈
K1(Λp,Σ(T,T0)p)×K1(Λp) K1(Λ̃p) with the following properties:

(1) Under the boundary map of the long exact sequence of K-theory, the ele-
ment ζβ(Mt, F∞/F ) maps to the class of SC(T,T0) in K0(Σ(T,T0)p).

(2) Under specialization maps φ, the isomorphism ζβ(Mt, F∞/F ) is mapped

to ζβφ(Mφ, F∞/F ) in K1(Λφ,p,Σ(Tφ,T0
φ)p)×K1(Λφ,p) K1(Λ̃φ,p).

(3) Assume that φ is a specialization, ρ is an Artin character of G, and j
is an integer such that Mφ(ρ∗)(j) is critical as in theorem 4.24, and let
ρ′ : Zp×G→ K ′ be ρ on G and φ on Zp. Then, the value of ζβ(Mt, F∞/F )
at ρ′κ−j is given by

LK′(Mφ(ρ∗), j)Ω∞(τ(Mφ(ρ∗))(j))−1Ωp(τ(Mφ(ρ∗))(j))
∏
r≥1

Γ(r)h(j−r)

∏
v|p

[PL,v(V, u)PL,v(V
0(v), u)−1]u=1PL,v((V

0(v))∗(1), 1)
∏
v∈A

PL,v(V, 1) ,

where again (V, V 0(v)) is the representation associated to Mφ(ρ∗)(j) and
A is as above.

It would be desirable to have a similar result with the dual Selmer groups in
place of the Selmer complexes. It seems likely that we can take the same ζ-element
for the Selmer group if we take MH(G) as the subcategory de�ning our localized
K1 and assume certain conditions on G and our motive. Fukaya and Kato gave an
example when this is the case (see corollary 4.3.18 in [FK06]). In more general
settings, we get a correction factor which also occurs in interpolation properties.
But at least, we get one factor for the family, which specializes to factors for the
motives:

Corollary 4.32. Let Mt, G = Gal(F∞/F ) and (T,T0) be as in the last
theorem. Again, we require condition 2.15 to be ful�lled and assume in addition
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that dim(G) ≥ 2 as a p-adic Lie group. Let S − tor denote the triangulated
subcategory of P (Λ) of complexes with S-torsion cohomology groups. Moreover,
let G := ker(GF → G) and set G(v) := ker(GFv → G) and Gv := Im(GFv →
G) for places v of F dividing p. Then, there is an element ξ ∈ K1(Λ, S − tor)
mapping to the class [(T (−1)G)]−

∑
v|p[Λ⊗OJGvK (T 0(v)(−1)G(v))] in K0(S− tor).

Furthermore, if we take Σ to be the smallest triangulated subcategory containing
S−tor and Σ(T,T0), then Σ contains a complex quasi-isomorphic to X (T,T0), and

ζ ′β(Mt, F∞/F ) := ξ · ζβ(Mt, F∞/F ) ∈ K1(Λ,Σ) ×K1(Λp) K1(Λ̃p) has the following
properties:

(1) Under the boundary map of the long exact sequence of K-theory, the ele-
ment ζ ′β(Mt, F∞/F ) maps to the class of X (T,T0) in K0(Σp).

(2) For a specialization map φ we de�ne ξφ to be the image of ξ inK1(Λφ,Σφ).
Then, the isomorphism ζ ′β(Mt, F∞/F ) is mapped to ζ ′βφ(Mφ, F∞/F ) :=

ξφ·ζ ′βφ(Mφ, F∞/F ) inK1(Λφ,p,Σp)×K1(Λφ,p)K1(Λ̃φ,p), and ζ
′
βφ

(Mφ, F∞/F )

is a characteristic element for X (Tφ,T0
φ).

(3) Assume that φ is a specialization, ρ is an Artin character of G, and j
is an integer such that Mφ(ρ∗)(j) is critical as in theorem 4.24, and let
ρ′ : Zp×G→ K ′ be ρ on G and φ on Zp. Then, the value of ζ ′β(Mt, F∞/F )

at ρ′κ−j is given by

LK′(Mφ(ρ∗), j)Ω∞(τ(Mφ(ρ∗))(j))−1Ωp(τ(Mφ(ρ∗))(j))
∏
r≥1

Γ(r)h(j−r)

∏
v|p

[PL,v(V, u)PL,v(V
0(v), u)−1]u=1PL,v((V

0(v))∗(1), 1)

∏
v∈A

PL,v(V, 1) · ξ(ρ) ,

where again (V, V 0(v)) is the representation associated to Mφ(ρ∗)(j) and
A is as above.

Proof. As remarked before, it is well known thatK1(Λ, S−tor) = K1(ΛS)→
K0(S − tor) is surjective. Moreover, T (−1)G is �nitely generated over O; there-
fore it is S-torsion and as Gv → G/H is surjective, all the modules Λ ⊗OJGvK
(T 0(v)(−1)G(v)) are S-torsion, too. Thus, ξ exits.

It follows from the long exact sequence in proposition 2.23 and the vanishing of
H1(SC(T,T0)) that ζ ′β(Mt, F∞/F ) is a characteristic element for the family. For

the second assertion all we have to show is that ξφ maps to the class [(Tφ(−1)G)]−∑
v|p[Λ ⊗OJGvK (T 0

φ(v)(−1)G(v))], but that is obvious as tensoring commutes with

taking coinvariants (as seen in lemma 1.3).
Finally, the third part follows directly from the third part of the theorem. �



CHAPTER 5

Complements and Examples

In this chapter, we will discuss what kind of families satisfy our conditions and
will start by summing up the deformation theory for our situation. Then we will go
on to show that for any �nite number of given motives the one parameter setting
we look at is as good as the n-parameter setting, and we will generalize our results
of the variational behavior of the Iwasawa invariants. Finally, we would like to
give examples of some families of motives allowing in�nitely many specializations.

5.1. Basics on deformation theory

In this section, we would like to give the basic de�nitions and results of the
deformation theory of the kind of Galois representations that we are interested in.

LetO be the ring of integers of a p-adic �eld with residue �eld F. Very generally
speaking, by a deformation problem we understand a functor D from CO, the
category of local complete commutative Noetherian O-algebras with residue �eld
F, to the category Set of sets. More precisely, for our discussion it is su�cient to
take O to be the ring of Witt vectors of a �nite �eld F and for some pro�nite group
G. Recall that a subfunctor F of a set valued functor G is a functor such that for
any object M the set F (M) is naturally a subset of G(M) and for any morphism
f the map F (f) is the restriction of G(f). The functors we are interested in are
subfunctors of one of the following two functors:

(1) Fixing a �nite dimensional G-representation VF over F, there is the uni-
versal deformation functor DG sending a local O-algebra (A,m) to the
set of equivalence classes (VA, φ) of (free) G-representations VA over A,
together with an F-isomorphism φ : A/m⊗a VA → VF.

(2) Keeping in mind the notation of (1), we assume in addition that we are
given an F-basis ββ of VF. We then de�ne the deformation functor of

framed representations D�
G to send A to the set of equivalence classes of

pairs (VA, βA) of a free G-representation VA over A with a basis βA, such
that the identi�cation of βF and the image of βA in A/m⊗VA induces an
isomorphism of G-representations.

In general, the �rst functor is not representable. However, we have the follow-
ing theorem due to Mazur:

Theorem 5.1. Let us assume that the maximal pro-p quotient of any open sub-
group of G is �nitely generated. Then, if EndF[G](VF) = F, the functor DG is repre-
sentable. If we drop the condition on the endomorphism, then there is still a versal
hull, i.e., there is a ring Rv ∈ CO and a natural transformation HomCO(Rv, •)→
DG, which is surjective, and an isomorphism for HomCO(Rv,F[ε]/ε2) →
DG(F[ε]/ε2). Finally, still assuming the condition on G, the functor D�

G is repre-
sentable.

61
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A proof of the statements on DG can be found in [Maz89]. The assertion on
D�
G is well known. A short proof of it can be found in [Böc10] (proposition 5.1

in lecture 1).
In particular the condition on G is satis�ed for many Galois groups: We are

interested in Galois representations of GF , the absolute Galois group of a number
�eld F . In section 2.2 we mentioned that our representation should be unrami�ed
outside a �nite set, so let S be a �nite set of places of F containing the set Sp
of all places above the �xed prime p and all in�nite places. We are interested in
representations of GS := GS,F := Gal(FS/F ), where FS is the maximal extension
of F , which is unrami�ed outside S. Moreover, for a place v of F we denote
by Gv the absolute Galois group of Fv. Then we note that GS and Gv both
satisfy the �niteness condition. We abbreviate the deformation functors as follows:
DS := DGS , D

�
S := D�

GS
and D�

v := D�
Gv
.

Now let us turn to condition 2.12. Please recall that it states there are sub-
representations T (v) for all places v dividing p that interpolate the ones given by
the Dabrowski-Panchishkin condition for that specializations. This translates to
the representation being nearly ordinary:

Definition 5.2. We will call a free representation V of Gv over a ring A
nearly ordinary of rank n0 if there is a free A-direct Gv-stable summand V 0 of V
of rank n0. A representation of GS is called nearly ordinary of rank n0 at p if for
all places v of F dividing p the restriction to Gv is nearly ordinary of rank n0.

We �x some n0 for the rest of this and the following sections. All nearly
ordinary representations will b tacitely assumed to be nearly ordinary of rank n0.

Remark 5.3. This is a very narrow class of nearly ordinary representations.
There is a wide array of more general notions. A much broader class containing
the case described above was studied by Tilouine in his book [Til96].

Moreover, we assume that VF is nearly ordinary and �x subrepresentations
(VF)0

v as in the de�nition. Then, the ordinary deformation functor Dn.o.
v is de-

�ned to send a ring A in CO to equivalence classes of triples (VA, V
0
A, φ) of a

Gv-representation VA and a subrepresentation V 0
A of rank n0 and an isomorphism

φ : A/m ⊗ VA → VF that identi�es the image of V 0
A with V 0

F . Similarly, Dn.o.
S (A)

is de�ned to be a triple (VA, (V
0
A,v)v|p, φ) with the obvious compatibilities.

To de�ne the functor D�,n.o.
v , we agree to the convention that the basis is

chosen in such a way that the subspace V0 is given as the span of the �rst n0 basis

vectors. Finally D�,n.o.
S is de�ned with a little twist: Instead of just one basis on

VF resp. a deformation, we �x a family (βv)v|p of bases such that the submodule
for Gv is given by the �rst n0 basis vectors of βv.

The question when (a much more general class than) the ordinary deforma-
tion functors are representable has been studied by Tilouine in [Til96] with some
corrections in Mauger's thesis [Mau04]. Many results where reproduced and gen-
eralized by Böckle in [Böc99] and [Böc07]. In particular propositions 3.3 and 3.4
in [Böc07] can be applied to our situation as follows:

Proposition 5.4. The functors D�
v and D�,n.o.

v are representable. If the func-
tors Dn.o.

v are subfunctors of Dv, then D
n.o.
v and Dn.o.

S admit versal hulls. If fur-
thermore DS is representable, then so is Dn.o.

S , and if Dv is representable, then so
is Dn.o.

v .
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Proof. This is almost exactly the statement of the quoted theorems. These
theorems need two conditions to be ful�lled: Firstly that the functors Dv admit
a versal hull. But that is the theorem of Mazur quoted above as theorem 5.1.
Secondly, we have to observe that the natural transformation Dn.o.

v → Dv is rela-
tively representable in the sense of de�nition 3.1 (loc.cit.). But this condition can
be stated as follows: Assume A1 → A0 and A2 → A0 are surjective morphisms of
Artinian rings in CO and set A := A1 ×A0 A2. Furthermore, assume that VA is a
representation of Gv and that there are subrepresentations V 0

Ai
⊂ VAi := Ai ⊗ VA

for i = 1, 2 making VAi nearly ordinary such that A0 ⊗A1 V
0
A1

= A0 ⊗A2 V
0
A2

in

VA0 := A0⊗A VA. There is then a unique subrepresentation V 0
A in VA, making VA

ordinary and mapping to VAi for i = 1, 2. As we have VA = VA1 ×VA0
VA2 , we can

thus take V 0
A := V 0

A1
×VA0

V 0
A1

and the claim follows. �

Remark 5.5. That Dn.o.
v is a subfunctor of Dv is the case if there is only one

choice for lifts of V 0
F . This is the case, for instance, if there is a subgroup I of Gv

such that V 0
F = V I

F and (VF/V
0
F )I = 0. Or if VF/V

0
F are the I coinvariants of VF

and the coinvariants of V 0
F vanish.

These are the two likely instances of a more general criterion used by Tilouine
in [Til96]: Let ad denote the module of endomorphisms of VF where the Gv-action
is the conjugation. Denote by ad′ ⊂ ad the submodule of endomorphisms that send
V 0
F to itself. If H0(Gv, ad/ad

′) vanishes, then Dn.o.
v is a relative representable

subfunctor of Dv.

5.2. Obstructions for ordinary deformations

We have thus found that our functors are usually representable or at least
admit a versal hull. Thereby, we have translated the problem of �nding families
containing some speci�ed representations over O to �nding O-algebra morphisms
of the universal or versal ring into the O[[t]] over which the morphisms given by
the speci�ed O representations factorize. We will see below that this is possible for
a �nite number of given representations lifting the same residual representation,
provided that the (uni-)versal ring is regular. This is the case, if the deforma-
tion problem is unobstructed. More precisely, in general the problem of lifting
a given representation to an in�nitesimally larger ring produces an obstruction
class in some H2-group. The problem is called �unobstructed� if this the H2 van-
ishes. We will see that in the case of nearly ordinary deformation problems we
are dealing with the second cohomology group of a Selmer complex (for a �nite
representation).

Let us �rst recall how deformation rings are constructed in general: Firstly,
the tangent space of a deformation functor D is de�ned to be tD := D(F[ε]/ε2).
If the functor is representable by a ring R or - more generally - admits a versal
hull, then the tangent space can be recovered as the mod p Zariski tangent space
of R: (m/(m2 + mO))∗, where the asterisk denotes the F linear dual and mO is
(the ideal in R generate by) the maximal ideal of O. Thus, if the F-dimension of
tD is d, then R has a presentation:

0→ J → O[[t1, ..., td]]→ R→ 0

The minimal number of variables ti needed in such a presentation is d. Therefore
this is a minimal presentation and R is regular (equivalently smooth over O) if
and only if J = 0. As the ring O[[t1, ..., td]] is local Noetherian, it is equivalent
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to show that J = 0 and that J ′ := J/mJ = 0. One can typically show that the
(F-linear) dual of J ′ maps injectively into some second order cohomology group.
In particular, the following cases are known:

Proposition 5.6. We denote tangent spaces, (uni-)versal deformation rings,
and the ideals J ′ with the same indices as the deformation functors they are as-
sociated to. Moreover, let ad denote the F-endomorphisms of VF made into a GS
module by conjugation. Then the following holds:

(1) The tangent space tv of Dv is naturally isomorphic to H1(Gv, ad) and
(J ′v)

∗ maps injectively into H2(Gv, ad).
(2) Assuming that VF is ordinary as a Gv-representation, with V

0
F being the

distinguished subspace we set ad′ to be the submodule of endomorphisms
that send V 0

F to itself. We assume that H0(Gv, VF) = 0. Then the tangent
space of Dn.o.

v is isomorphic to H1(Gv, ad
′
v) the functor admits a versal

hull and (Jn.o.v
′)∗ maps injectively into H2(Gv, ad

′
v).

(3) The global tangent space tS is canonically isomorphic to H1(GS , ad).
Moreover, the dual (J ′S)∗ maps injectively into H2(GS , ad).

The �rst and the last assertion are special cases of a deformation functor
without extra conditions. They are due to Mazur and can be found in [Maz89].
The middle assertion is proven in the same manner. A very conceptual view of it
can be found in [Böc07] as proposition 6.3.

As mentioned above, these are not the rings we are most interested in: The
case of the global nearly ordinary deformation rings, or rather, the case of just
one place v dividing p, can be understood with a certain Selmer complex for the
representations ad and ad′v. In the case that H0(Gv, ad/ad

′
v) = 0 this result can

be found spread out through chapter 6 of the book of Tilouine [Til96]. However,
as we the deformation functors de�ned above are slightly di�erent from the ones
of Tilouine if the above condition is not satis�ed, in general our statement has a
di�erent appearance and seems to be a bit more uniform.

Theorem 5.7. Assume that v is the only place of F dividing p. We de�ne
SC(ad, ad′v) to be the mapping �ber of the following map induced by the restriction
morphism:

C•(GS , ad)→ C•(Gv, ad/ad
′
v)

With this de�nition we have: The tangent space tn.o.S is canonically isomorphic to
H1(SC(ad, ad′v)). Furthermore, if Dn.o.

S has a versal hull, then we de�ne (Jn.o.S )′

as above and its F-linear dual maps injectively into the group H2(SC(ad, ad′v)).

Proof. Firstly, let us observe that the Selmer complex can be described as the
subcomplex of those cochains in C•(GS , ad), whose restriction to Gv has images
contained in ad′v.

To de�ne the isomorphism with the tangent space tDn.o.S
= Dn.o.

S (F[ε]/ε2),

recall that an element of the tangent space is given by a triple (VF[ε]/ε2 , V
0
F[ε]/ε2 , φ).

The morphism φ identi�es VF[ε]/ε2/ε canonically with VF sending V 0
F[ε]/ε2 to V 0

F .

Moreover the multiplication with ε induces an isomorphism VF[ε]/ε2/ε
∼=→ VF[ε]/ε2 [ε].

Using this decomposition we conclude, that every triple as above is isomorphic to
one of the form (VF ⊕ VF, V 0

F ⊕ V 0
F , π1) where the multiplication by ε sends a pair

(v, w) to (0, v) and π1 is the projection to the �rst component. The GS-operation
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ρ on VF ⊕ VF is of the form ρ(g)(v, w) = (ρ̄(g)v, ρ̄(g)w + ψ(g)(w)), where ψ is a
map from GS to ad. For the GS-operation to stabilize V 0

F ⊕ V 0
F we need that for

all g ∈ Gv the morphism ψ(g) is contained in ad′v.
A small computation shows that c := ψ·ρ̄−1 is actually a 1-cocycle in SC(ad, ad′v)

and every such cocycle corresponds to a ψ induced by an operation ρ as above.
Finally, straightforward computations also show that two morphisms ψ and ψ′

coming from isomorphic triples of the described form, di�er by a boundary in
SC(ad, ad′v). We have thus proven the assertion on the tangent space.

Now, to map (Jn.o.S
′)∗ into H2(SC(ad, ad′v)), we will follow the usual strategy

of lifting the versal representation to a bigger ring, as applied, for instance, for the
deformation ring RS in [Böc99] theorem 2.4:

Firstly, let f ∈ (Jn.o.S
′)∗ be a nonzero element, i.e., f is a surjective F-linear

morphism Jn.o.S
′ → F. Composing f with the natural projection Jn.o.S → Jn.o.S

′,

the projection πO[[t1, ..., td]]→ Rn.o.S factors as O[[t1, ..., td]]
f→ R′

π′→ Rn.o.S , where
the kernel of π′ is identi�ed with F and the restriction of f to Jn.o.S is our chosen
f .

The versal deformation ring Rn.o.S comes together with an ordinary versal rep-
resentation ρ : GS → VRn.o.S

, with a Gv-invariant submodule V 0
Rn.o.S

. We extend

these Rn.o.S modules to R′ modules, such that V 0
R′ is still a free R

′-direct summand
of the free R′-module VR′ . Then, we can choose a continuous (but not necessarily
homomorphic) lift ρ′ of ρ:

GS
ρ′//

ρ

%%

AutR′(VR′)

��
AutR(VR)

Moreover, we can choose ρ′ in such a way that the images of elements of Gv
stabilize V 0

R′ . Setting cf (g, h) := ρ′(gh)ρ′(h)−1ρ′(g)−1, we observe that ρ′ is a
homomorphism if and only if cf = 0 as a map. As ρ is a homomorphism, it follows
that the image of cf is contained in the kernel of Aut′R(VR′) → AutRn.o.S

(VRn.o.S
),

which is canonically isomorphic to ad and elements of GV are mapped to ad′v.
One can easily verify that cf (gh, k)cf (g, h) = ρ′(ghk)ρ′(k)−1ρ′(h)−1ρ′(g)−1 =
cf (g, hk)cf (h, k)g; therefore, cf is a 2-cycle in SC(ad, ad′v). Moreover, choosing a
di�erent lift ρ′′ = z · ρ′ with z : GS → ad corresponds to changing cf by minus
the boundary of z. Therefore we have shown: The choice of f gives a well-de�ned
class in H2(SC(ad, ad′v)) which is zero if and only if it is possible to lift ρ to a
homomorphism ρ′, satisfying the usual ordinary condition.

It remains to show that nonzero f never map to zero classes. So assume that
there is a homomorphic lift ρ′ of ρ. The versal property of Rn.o.S tells us that
there is a map Rn.o.S → R′. By construction, this morphism is an isomorphism
on the tangent spaces, and Rn.o.S is complete; thus, the morphism is surjective.
However, R′ → Rn.o.S is surjective by de�nition. It is well known that surjective
ring endomorphisms of Noetherian local complete rings are isomorphisms, thus
the projection R′ → Rn.o.S is injective, which is a contradiction to the assumption
that f was surjective. �



66 5. COMPLEMENTS AND EXAMPLES

5.3. Finite families

In the previous chapters, we were looking at one-parameter families of Galois
representations. When one is looking for families admitting multiple specializa-
tions, allowing only one parameter seems to be a rather strong restriction. In the
last section we studied deformation problems and discussed how common it is for
them to be unobstructed. In the case of a �nite number of Galois representations
corresponding to points of such an unobstructed deformation functor, we will show
that they are indeed (almost) members of such a family.

In this section, all rings are assumed to be commutative and Noetherian.
Before we turn to the general statement, let us discuss the case of two repre-

sentations: We assume that there are two representations over some p-adic rings
of integers O1 and O2 that correspond to two ideals p1 and p2 in a deformation
ring R, i.e., we assume that Oi = R/pi. In general, there is just some morphism
O[[t]]→ Oi, but we assume it to be surjective. We aim to �nd an ideal q ⊂ p1∩p2

such that R/q is regular. We note that for the results concerning the variation of
Iwasawa invariants this is already everything we need. However, for the predic-
tions of the main conjecture a family interpolating more than two representations
carries additional information.

We will deduce the following result:

Theorem 5.8. Let R be a local (commutative Noetherian) ring and let p1 and
p2 be ideals such that R/pi is regular of dimension one for i = 1, 2, Then, there is
an ideal q ⊂ p1 ∩ p2 such that R/q is regular of dimension at most 2 if and only if
there is an ideal q′ contained in p1 ∩ p2 such that R/q′ is regular.

Some preliminary work has to be done before proving this theorem. Recall that
a regular parameter sequence in a local ring R is a sequence x1, ..., xn of elements
of the maximal ideal m such that their images in the R/m vector space m/m2

are linearly independent. With this de�nition, one can characterize the ideals in
regular rings such that the quotient rings are regular:

Proposition 5.9. Let R be a regular local ring and p ⊂ R be an ideal. Then
R/p is regular if and only if p is generated by a regular parameter sequence.

A proof of this fact can be found in [Mat89] theorem 14.2.
Thus, with p1 and p2 as in the theorem it is equivalent to ask for an ideal q

contained in p1∩p2 either that R/q is regular or that the images of both the ideals
p1 and p2 in R/q are generated by regular sequences.

We will use the following well-known fact:

Fact 5.10. Let R be a commutative ring and a1 and a2 two ideals, then

R/(a1 ∩ a2) ∼= R/a1 ×R/(a1+a2) R/a2.

To put it in geometrical terms: The set theoretic union of two reduced closed
subschemes is isomorphic to the scheme one gets by gluing them along their inter-
section.

Next, we need a special way of expressing elements of R with respect to ideals,
which are almost maximal:

Lemma 5.11. Let (R,m) be a local ring and let b be an ideal of R and x ∈ m
such that xR + b = m. We assume in addition that there is a natural number
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k such that mk ⊂ b. Then, every element r ∈ m2 can be written in the form
r = bm+ xsu, with b ∈ b, m ∈ m, u ∈ R×, and s ≥ 2 an integer.

Proof. Firstly, as b + xR = m, we have m2 = bm + xm. Inserting the �rst
equation again for the last m, we get m2 = bm + x(b + xR) = bm + x2R. Now
R = R× ∪ (b + xR) and by induction we get R = R× ∪ xR× ∪ ... ∪ xk−1R× ∪ b,
where in the last step we used that by assumption xk ∈ mk ⊂ b. Inserting the
right-hand side for R in the equation m2 = bm + x2R gives the assertion. �

Now we are prepared to prove the theorem. The �only if� part is obvious and
we rephrase the �if� part in the next lemma to streamline our notation:

Lemma 5.12. Let R be a regular local ring of dimension n and let p1 and p2 be
two ideals of R such that R/pi are local regular rings of dimension 1, then there is
an ideal q ⊂ p1 ∩ p2 such that R/q is a local regular ring of dimension at most 2.

Proof. We �rst note that we may assume that the dimension of R is more
than 2, because otherwise choosing q to be the 0 ideal will trivially meet the
requirements.

If the dimension of R is at least 3 we will �nd q as in the lemma such that
dim(R/q) = 2. Using proposition 5.9, it is enough to �nd a subset of a regular
parameter sequence of length n− 2, which is contained in p1 ∩ p2. Now, geomet-
rically speaking, the ideals correspond to two curves and we have to distinguish
two cases: case 1, these curves intersect transversally in the sole closed point, and
case 2, they do not. More precisely:

Case 1 (transversal intersection): p1 + p2 = m in R.
In this case, (p1 +m2)/m2 and (p2 +m2)/m2 generate the n-dimensional R/m

vector space m/m2. As they are both n− 1 dimensional, the intersection has the
dimension n − 2. We want to lift a basis of it to p1 ∩ p2, thus we have to prove
that:

((p1 ∩ p2) + m2)/m2 ∼= ((p1 + m2)/m2) ∩ ((p2 + m2)/m2)

The canonical map is clearly injective, and it remains to be shown that it is
surjective. We prove that by showing dually that the map

(R/(p1 ∩ p2))/m2 → (R/m2)/((p1 + m2)/m2 ∩ (p2 + m2)/m2)

is injective. Using the above fact, this map can be written as

(R/p1 ×R/m R/p2)/m2 → R/(m2 + p1)×R/m R/(m2 + p2) .

Therefore, all we have to show is that m2(R/p1 ×R/m R/p2) = m2R/p1 ×m2R/p2

as ideals in R/p1 ×R/m R/p2. As the �rst term is simply the image of m2 ⊂ R in
this �ber product, it is enough to �nd preimages of all elements of the right-hand
side in R. This last assertion follows from our assumption p1 + p2 = m.

Case 2 (non transversal intersection): p1 + p2 6= m.
An application of Nakayama's lemma shows that the images of p1 and p2 in

m/m2 cannot generate the whole R/m-vector space. But the images are n − 1
dimensional, so that we conclude that the images coincide. Now choose ele-
ments x1, ..., xn−1 in p1 which map to a basis of (p1 + m2)/m2 ⊂ m/m2 and
x′1, ..., x

′
n−1 in p2 which map to the same basis. Let xn ∈ m be an element such

that x1, .., xn map to a basis of m/m2. By de�nition, each di�erence xi − x′i
(i = 1, ..., n − 1) is contained in m2. Using the last lemma we can write each
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di�erence as xi − x′i = q
(1)
i − q

(2)
i + xkin ui, where q

(s)
i ∈ mpi and ui ∈ R×. Let

us assume without loss of generality that kn−1 ≤ ki for all i. Then, we de�ne

yi := xi−xki−kn−1
n uiu

−1
n−1(xn−1+q

(1)
n−1)−q(1)

i and y′i := x′i−x
′ki−kn−1
n uiu

−1
n−1(x′n−1+

q
(2)
n−1) − q(2)

i for i = 1, ..., n − 2. It follows that y1, ..., yn−2 is a regular parameter

sequence, because, modulo m2, we changed the xi's only by a multiple of the linear
independent element xn−1. Moreover, yi ∈ p1, y

′
i ∈ p2 and yi = y′i. Thus, we have

found a regular parameter sequence of cardinality n − 2, which is contained in
the intersection p1 ∩ p2 as required. We have thus �nished the proof of the �rst
theorem, too. �

Before we to the case of a �nite number of given representations, let us state
the consequences for the variation of the Iwasawa invariants: Basically, one can
replace the one-parameter family by an n-parameter family, as far as the invariants
are concerned. More precisely following theorem 3.33, we get for the µ-invariants:

Corollary 5.13. Let G, H, and U be as in the previous sections (see par-
ticularly section 2.2), moreover, assume that we are given a complete regular local
ring R with a �nite residue �eld of characteristic p and a free R-representation
T of the absolute Galois group GK over K together with sub-Gv-representations
T 0(v) for any place v of F satisfying the condition 2.12. We associate the RJGK-
representations (T,T0) as in section 2.2. Assume that φ : R → Oφ is a surjec-
tive homomorphism and we de�ne Λφ, Tφ, and T0

φ as in the previous sections.

Assuming that the cohomology groups of the Selmer complex SC(U,Tφ,T0
φ) are

S∗φ-torsion, the following holds: There is an n depending only on the pair (Tφ,T0
φ)

such that

µΛφ(SC(U,Tφ,T0
φ)) = µΛψ(SC(U,Tψ,T0

ψ))

for all morphisms ψ : R→ O′ such that ker(φ) + (pn) = ker(ψ) + (pn).

Proof. Assume we are given maps φ and ψ as in the corollary, where the n
is chosen to be the one of theorem 3.33. By theorem 5.8, there is a q ⊂ R such
that φ and ψ factor over the regular quotient R/q and the dimension of R/q is at
most 2. If the dimension is one, then ψ = φ and the assertion is obvious. If the
dimension is 2, then R/q is isomorphic to O[[t]], where O is the ring of integers of
a p-adic number �eld.

To be able to apply theorem 3.34 to this situation, it remains to be shown
that the images of ker(φ) and ker(ψ) in R/q are generated by elements f and g
such that pn|f − g. But by our assumption (f) + (pn) = (g) + (pn). Therefore, if
we take f and g to be the unique distinguished polynomials generating the ideals,
the assertion follows.

�

Remark 5.14.

• The corresponding properties for the invariant of the primitive Selmer
complex (compare corollary 3.34) and the Selmer group (compare theorem
3.38) carry over accordingly.
• It is again possible to get rid of the condition on the surjectivity of φ and
ψ, using the known properties of the µ-invariant under scalar extensions
(theorem 3.35).
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• In the language of rigid geometry, RigSpec(R) is the unit ball and the
maps φ and ψ correspond to points. Then the condition ker(φ) + (pn) =
ker(ψ) + (pn) translates to �ψ is in a ball with radius |pn| around φ.�

For the λ-invariant, the following assertion is a direct consequence:

Corollary 5.15. Let G, H, U , R, and T be as in the last corollary. We
assume that φ : R → Oφ is a homomorphism and the cohomology groups of
SC(U,Tφ,T0

φ) are S-torsion. Then, for any other homomorphism ψ : R → Oψ
the cohomology groups of SC(U,Tψ,T0

ψ) are also S-torsion and we have:

λΛφ(SC(U,Tφ,T0
φ)) = λΛψ(SC(U,Tψ,T0

ψ))

Proof. Utilizing the invariance of the λ-invariant under scalar extension (the-
orem 3.35), we may assume that φ and ψ are surjective. Therefore, we can apply
theorem 5.8 to our situation and �nd again that φ and ψ are members of a one-
parameter family. Then the assertion follows from theorem 3.33. �

Let us now discuss the case when n representations can be viewed as members
of the same one-parameter family. The exact analogue of the case of two given
representations cannot hold, as we typically do not �nd a 2-dimensional subspace
of the Zariski tangent space on R containing all the directions given by the n ideals
pi. However, if we allow �nite integral ring extensions, we get a similar result, as
will be stated detailed in the following theorem:

Theorem 5.16. Let O be the ring of integers of a p-adic �eld. We set R :=
O[[t1, ..., tn]] and assume we are given O-algebra maps φi : R→ Oi for i = 1, ..., k,
where the Oi are �nite extensions of O. Then there is a �nite extension O′ of O
and rings of p-adic integers O′i containing O′ and the corresponding Oi together
with an O-algebra map ψ : R→ O′[[t]] and O′-algebra morphisms ψi : O′[[t]]→ Oi
such that the following diagram is commutative for all i = 1, ..., k:

R
φi //

ψ
��

Oi� _

��
O′[[t]]

ψi // O′i

Moreover, O′ and O′i can be chosen in a way such that O′[[t]] is �nite over the
image of ψ and, for every i, the ring O′i is the normalization of the image of ψi.

As in the �rst part of this section, we need some technical preparations before
we can prove this theorem:

Lemma 5.17. Let O be the ring of integers of a p-adic number �eld and π be
a uniformizer. We �x some integer k ≥ 1 and denote O′ = O[ k

2√
π]. In O′, the

element π′ := k2√
π is a uniformizer and the following holds:

(1) There are polynomials Pi ∈ O′[t] for i = 1, ..., k such that Pi(π
′j) = δij ·π

for i, j ∈ {1, ..., k} and all Pi are contained in the maximal ideal of O′[[t]].
(2) For every choice of elements x1, ..., xk in πO, there is a polynomial Px ∈
Os[t] such that Px(π′i) = xi for i = 1, ..., k and P is contained in the
maximal ideal of O′[[t]].
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Proof. Clearly, the second part follows from the �rst one. For the �rst part,
let us denote by v a valuation on O′. We de�ne Qi ∈ O′[t] by Qi(t) :=

∏
j 6=i(t−π′j)

where the product ranges over all j = 1, ..., k di�erent from i. Then Qi(π
′j) = 0

for i 6= j and we have to show that Qi(π
′i) divides π. The valuation of v(π′i−π′j)

is min(i, j) · v(π′); thus, it is bounded by k · v(π′) = 1
k · v(π). It follows that

v(Qi(π
′i)) ≤ v(π). Denoting ci := π/Qi(π

′i), we set Pi := ci · Qi and the claim
follows. �

The next lemma is a special instance of the theorem:

Lemma 5.18. With O again a p-adic ring of integers, we set R := O[[x, y]] and
assume that we are given O-algebra morphisms φi : R → O for i = 1, ..., k. Then
there is an extension O′/O and morphisms ψ : R → O′[[t]] and ψi : O′[[t]] → O′
such that the following diagram commutes for every i:

R
φi //

ψ
��

O� _

��
O′[[t]]

ψi // O′

Moreover, it is possible to chose O′, ψ, and ψi in such a way that O[[t]] is �nite
over the image of ψ.

Proof. Let π be again some uniformizer of O and O′ and π′ be as in the
last lemma. We set xi := φi(x) ∈ πO and yi := φi(y) ∈ πO. Then, using the
notations of the last lemma, we have two polynomials Px and Py in O′[t]. As these
polynomials are contained in the maximal ideal of O[[t]], we can de�ne the algebra
morphism ψ by ψ(x) = Px and ψ(y) = Py. Finally, de�ning the morphisms ψi by

ψi(t) = π′i, we see that the diagrams commute.
In general the described construction does not have the property that O′[[t]]

is �nite over the image of ψ. However, we may change the construction as follows:
Let v be the valuation on O′ normalized such that v(π′) = 1 for a uniformizer π′

of O′. Denoting Px(t) =:
∑k

i=0 ait
i and Py(t) =

∑k
i=0 bit

i we de�ne n as follows:

n := min{v(a1)

1
,
v(a2)

2
, ...

v(ak)

k
,
v(b1)

1
,
v(b2)

2
, ...

v(bk)

k
}

Replacing O′ with a rami�ed extension and adjusting π′, v, and n accordingly, we
may assume that n is an integer. It follows that Px and Py are elements in the

subring O′[[π′nt]]. Thus, the whole image of ψ is contained in O′[[π′nt]].
Assuming without loss of generality that n = v(ai)

i then O′[[π′nt]]/Px is gener-
ated by the �nite set {1, t, ..., ti−1} over O′[[Px]]. An application of the topological
Nakayama lemma tells us that O′[[π′nt]] is �nite over O′[[Px]]. As O′ is �nite over
O we conclude that O′[[Px]] is �nite over the image. Replacing π′nt with t we have
shown the assertion. �

With these preparations we are ready to prove the theorem.

Proof (of theorem). In the situation of the theorem, we replace O and Oi
by a ring of integers Õ of a p-adic number �eld containing all Oi and extend the
maps φi accordingly. Then we can apply the last lemma to the restriction of the
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morphisms to Õ[[tn−1, tn]]. Extending ψ and ψi as the identity on t1, ..., tn−2, we
get a commutative diagram:

Õ[[t1, ..., tn]]
φi //

� _

ψ

��

Õ� _

��
O′[[t1, ..., tn−2, t]]

ψi // O′

The map ψ in this diagram is chosen such that it is �nite. Using induction and
composing the maps with the inclusions O ↪→ Õ and Oi ↪→ Õ yields the commu-
tative square:

O[[t1, ..., tn]]
φi //

ψ
��

Oi� _

��
O′[[t]]

ψi // O′

Here we possibly replaced the O′ from the last diagram with a bigger one. As
compositions of �nite maps are �nite the ψ in the new diagram is still �nite. If we
replace the O′ in the lower right corner by O′i, the integral closures of the images
of ψi, we get the diagram from the assertion in the theorem. �

5.4. Example 1: Twists by characters

Firstly, a theory of families should be able to deal with the easiest case. So,
although not much knowledge can be gained thereby, we treat the case of a trivial
character �rst:

We assume that we are given a single F -motive M with a K operation.
We denote the λ-adic realization by Mλ; it is unrami�ed outside a �nite set S.
Moreover, we assume that this motive satis�es the Dabrowski-Panchishkin con-
dition 2.9. The trivial extension of the λ-adic realization given by AutO(Mλ) ⊂
AutO[[t]](O[[t]]⊗OMλ) satis�es then all our conditions on families in section 2.2, in
particular 2.12, the one on freeness. For this family, we can allow every continuous
morphism O[[t]]→ O as a specialization.

If the main conjecture 4.24 for the motive M holds, then it is easy to describe
what happens in this case: The ζ-function of the family is just the image of
the one of the motive, under the map induced on the K-groups by the natural
inclusion O → O[[t]]. In fact, this inclusion is a section for any specialization map
φ : O[[t]]→ O, as those are O-algebra morphisms; therefore, the ζ-function of the
family does indeed specialize to the one of M under any specialization map, as
conjectured.

Now let us turn to the case of non-trivial characters. We still assume that
we �xed the �nite set S. Let O be the ring of integers of a p-adic �eld and
χ : GS → O× be a (continuous) character. Firstly, let us note:

Fact 5.19. There is an integer k (depending only on O) such that for any two
integers n1 and n2 with k|n2−n1 we have χn1 ≡ χn2 mod ps, where s is the p-adic
valuation of (n2 − n1)/k.

Proof. Let v be the valuation normalized to v(p) = 1 and let t be the smallest
natural number such that for a uniformizer π of O we have v(πt) ≥ 1

p−1 . Then it



72 5. COMPLEMENTS AND EXAMPLES

is known that v(xp − 1) = v(x− 1) + 1 for all x ≡ 1 mod πt. Thus, we can take k
to be the smallest natural number such that χk ≡ 1 mod πt. �

With this fact in place we note:

Lemma 5.20. Assume that k is as in the last fact and s < k, then there is a
character χ̃ : GS → O[[t]] such that for every z ∈ Z we have

χ̃/(t− z) = χzk+s .

Proof. We prove this fact using a well-known strategy in the theory of
pseudo-representations:

Let Ii =
∏i
z=0(t − z) as an ideal of O[[t]]. Then we construct χi : GS →

O[[t]]/Ii inductively: The character χ0 is set to be χs. For i > 0, we note that
O[[t]]/Ii ∼= O[[t]]/Ii−1 ×O[[t]]/(Ii−1)+(t−i) O[[t]]/(t − i) by fact 5.10. We set χi to

be χi−1 on the left factor and χik+s on the right factor. This is possible as the
de�nitions agree on O[[t]]/(Ii−1)+(t− i) by the last fact. Now, taking χ̃ to be the
limit of the χi on O[[t]] = lim←−O[[t]]/Ii, we �st note that the assertion is ful�lled
for all i ≥ 0 by the de�nition of χ̃. For i < 0, take some subsequence i0, i1, ... of
the non-negative integers that converges p-adically to i. Then, utilizing the last
fact again, we see that the χkir+s converge to χki+s and the reductions χ̃/(t− ir)
converge to χ̃/(t− i). So the assertion follows for all i < 0, too. �

If now χ is the p-adic realization of a motive X of rank one and ρ : GS →
Aut(Mλ) is the p-adic realization of our given motive M , then χ̃ρ is a family of
motives specializing to the twists X ki+r ⊗M . In particular, all �nite characters
can be achieved as the p-adic realization of a Dirichlet motive.

As the twists might change the weights, in general one cannot expect all the
specializations of this family to satisfy the Dabrowski-Panchishkin condition with
respect to the given subrepresentation T0

φ. However, the only problem that might
occur is that after twisting with χn some previously non-negative weights become
positive or vice versa. And for high enough (resp., low enough) powers of χ, all
weights that will eventually become positive or non-negative will have done so.
Thus, there are two subfamilies with in�nitely many specializations satisfying the
condition each with respect to one given subrepresentation.

Theorem 5.21. Let χ be a character as above. Let ρ : GS → Aut(Mλ) be
the p-adic realization of the motive M . Then there is a family of representations
χ̃ρ→ O[[t]] such that for k and s as above we can specialize modulo t− z for any
big enough integer z to get the p-adic realization of M(χzk+s). This family with
the set of specializations being t 7→ z for su�ciently large integers z, satis�es all
our conditions, including 2.12, the one on freeness.

5.5. A counterexample: No families of elliptic curves

This short section is aiming to show that there are no examples of in�nite
families of elliptic curves. This is probably known to the experts, but in the
opinion of the author this knowledge has not spread wide enough in the community
yet.Moreover, we will hint at a generalization for abelian varieties.

The naive idea would be to look at situations (i.e., moduli problems), where
the (rigid) moduli space X of some geometric objects exists (as a scheme) and
has in�nitely many K-rational points for a number �eld K. Then �nding a curve
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in X that passes through in�nitely many of the rational points should give us
a family. However, there are two problems with that approach: Firstly, the p-
adic representations of two rational points which are p-adically close should be
congruent modulo some high power of p which is not obvious at all. Secondly, it
turns out, that the requirement of the representations to be unrami�ed outside a
�nite set of primes results in only �nitely many points (i.e., objects) in classical
situations.

Let us now turn to the case that is probably best understood: elliptic curves.
As is well known, the moduli space of elliptic curves over a number �eld with some
moduli structure is again a curve. Thus, to have in�nitely many rational points,
we have to be in one of the cases where the genus of the modular curve is zero
or one. That at �rst glance this seems to be achievable: In fact, it is remarked
by Rubin and Silverberg in [RS95] that there are indeed in�nitely many elliptic
curves with full level 3, respectively level 5, structure and thus with trivial mod
3 (resp. mod 5) representation. The result of the cited paper is even better:
By twisting the curves of this in�nite set with an arbitrary elliptic curve, we get
in�nitely many elliptic curves with any given mod 3 (resp. mod 5) representation
that actually occurs for one curve. So this setting seems to be rather promising.

However, we need much more: For any given n, we want in�nitely many elliptic
curves over the same number �eldK, which induce the same representation modulo
pn. But that turns out to be impossible for any n > 1: In fact, still �xing the
number �eld K and denoting the kernel of a given mod pn Galois representation
by U , all elliptic curves over K with this mod pn representation have a full level pn

structure after base change to K
U
. As the genus of (a connected component of)

the modular curve with full level N structure is independent of the number �eld
and bigger than 1 as soon as N > 6, there are always at most �nitely many elliptic
curves with a given structure. As the Galois group with restricted rami�cation
GS for a �nite set S is �nitely generated (compare: 1.21), there are only �nitely
many mod pn representations for any given S. Thus, the above reasoning shows
that even though we �nd in�nitely many elliptic curves with the same mod p
representations of the absolute Galois group, we only �nd �nitely many of them,
such that the full Tate module is unrami�ed outside any given �nite set S, so this
attempt failed.

Therefore one might be inclined to believe that this is due to the fact that, in
any case, there were only very few moduli spaces with in�nitely many K-rational
points to start with. The question arises, can this defect be �xed by looking at
situations where the moduli space is higher dimensional? It is not entirely clear to
the author, if there can be such families of abelian varieties. However, the above
argument can be reduced to the fact, that the complex points of the modular
curve have the upper half-plane as an analytic cover which is unrami�ed, provided
that we �x a big enough level structure. It was remarked that algebraic curves
in Shimura varieties classifying polarized abelian varieties should have the same
property in most cases.

5.6. Example 2: Hida families of modular forms

So far, we have not seen many natural occurring families. However, there is
one general principle that provided the motivating examples for Iwasawa theory
of families: Hida families of modular forms. The general idea is that the universal
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ordinary deformation ring of the residual representation associated to an ordinary
Hecke eigenform should be naturally isomorphic to a Hecke algebra, which is in
turn a local complete intersection. As the deformation ring is denoted by R and
this Hecke algebra is often denoted by T , these theorems are referred to as �R=T�
theorems in deformation theory.

Firstly, the case of elliptic modular forms is a famous theorem of Taylor and
Wiles [TW95]. It can be found in chapter 7 of Hida's book [Hid00] as theorem
5.29:

Theorem 5.22. Assume that S is a �nite set of places of Q consisting of all
in�nite places, and those places dividing pN for an integer N prime to p. Let
GS = Gal(QS/Q) and let ρ : GS → VFp be the residual representation associated
to an elliptic Hecke eigen cusp form of tame conductor N and �xed nebentype χ.

Suppose that ρ restricted to QS/Q(
√

(−1)(p−1)/2p) is absolutely irreducible and
that one of the two characters of ρ is in fact rami�ed (not just the character with
coe�cients in Zp). If we suppose in addition that p > 3, then the universal ordinary
deformation ring Rn.o. can be identi�ed with the Hecke algebra Tn.o. operating on
the ordinary cusp forms of nebentype χ over Q with coe�cients in Λ := O[[t]].

This theorem is particularly interesting together with the next one (theorem
5.30 in [Hid00]):

Theorem 5.23. In the situation of the last theorem Tn.o. is a �nite �at com-
plete intersection over Λ.

While this is not enough to imply that Rn.o. is regular, we have Λ = Tn.o. in
�most� of the cases. More precisely, it is noted by Hida (remark b after corollary
5.50 in [Hid00]) that if ρ is the residual representation attached to a Hecke eigen
cusp form f of weight k, then Λ = Tn.o. holds if and only if there is no other Hecke
eigenform of the same weight that is congruent to f modulo p.

In this situation, our universal ordinary deformation ring is therefore already
of the form we are looking for. Therefore, we get variation results for Iwasawa
invariants of Hida families of elliptic modular cuspforms as a corollary of the
theorems above and the results in sections 3.5 and 3.6:

Corollary 5.24. Let Q∞/Q be a p-adic Lie extension with Galois group G
without p-torsion. Assume that f is an elliptic modular Hecke eigen cusp form,
which is p-ordinary, of nebentype χ satisfying the conditions of the last two the-
orems. We assume that f has coe�cients in a p-adic integer ring O and set
Λ := O[[G]]. Moreover, we assume that there is no other form of the same weight
that is congruent to f modulo p. Then f arises as the specialization of a one pa-
rameter Hida family as above. Moreover, every modular eigen cusp form f ′ of the
same nebentype which is congruent to f modulo p arises as a specialization of this
family. Let (Tf ′ ,T0

f ′) be a pair of big Galois representations associated to f ′ as

in section 2.2 and assume for some admissible U ⊂ spec(Z) that the cohomology
groups of SC(U,Tf ,Tf ) are S∗- torsion. Then, the invariant µΛ(SC(U,Tf ,T0

f ))

vanishes if and only if µΛ(SC(U,Tf ′ ,T0
f ′)) vanishes. Moreover, in general, there

is an n depending only on f such that

µΛ(SC(U,Tf ,T0
f )) = µΛ(SC(U,Tf ′ ,T0

f ′)) = µΛ(X (U,Tf ′ ,T0
f ′)) and

µΛ(SC(Tf ,T0
f )) = µΛ(SC(Tf ′ ,T0

f ′)) = µΛ(X (Tf ′ ,T0
f ′))



5.6. EXAMPLE 2: HIDA FAMILIES OF MODULAR FORMS 75

for all f ′ in the family congruent to f modulo pn. Furthermore, if SC(U,Tf ,T0
f )

has S-torsion cohomology groups, then the analogous statement for the λ-invariant
holds:

λΛ(SC(U,Tf ,T0
f )) = λΛ(SC(U,Tf ′ ,T0

f ′)) = λΛ(X (U,Tf ′ ,T0
f ′)) and

λΛ(SC(Tf ,T0
f )) = λΛ(SC(Tf ′ ,T0

f ′)) = λΛ(X (Tf ′ ,T0
f ′))

Remark 5.25. The special case where Q∞/Q is a false Tate extension was
treated by Aribam in [Sha09] with a more explicit approach and without the con-
gruence assumption.

In the case that Q∞/Q is the cyclotomic Zp-extension, Ochiai formulated a
di�erent two-variable Iwasawa main conjecture (see [Och06]) for Hida families. It
would be interesting to compare the two approaches; however, Ochiai uses di�erent
period elements and there is no obvious way to compare them to the motivic periods.

There are other cases where the ordinary deformation ring is known to equal
some Hecke algebra and where in many cases this Hecke algebra can be recovered
as an Iwasawa algebra. Most notable is the case of Hilbert modular forms. Much
of this theory is the work of Fujiwara. Firstly, the R = T theorem is the main
result in [Fuj] (theorem 0.2 resp. 11.1). Again, the Hecke algebra is presented over
an Iwasawa algebra (corollaries 4.21-4.24 of [Hid06]) and is known to equal this
Iwasawa algebra in many cases (Hida's remark after question (q9) in [Hid06]).

Please note that even in the case that the universal ring is regular, we are not
exactly in the situation of the main conjectures stated in this thesis: Instead of
a treatment of the one parameter case, one would need a version for n-parameter
families. However, in section 5.3 on �nite families, we saw that this does not
pose a problem for assertions on the Iwasawa invariants. Moreover, an iteration of
the methods presented in the previous chapters should also predict an n-variable
version of the ζ-element.
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