
INAUGURAL-DISSERTATION

zur Erlangung der Doktorwürde der
Naturwissenschaftlich-Mathematischen Gesamtfakultät

der Ruprecht-Karls-Universität Heidelberg

vorgelegt von
Kitiporn Plaimas, M.Sc.
aus Bangkok, Thailand

Tag der mündlichen Prüfung: 01.12.2011





Computational Analysis of the Metabolic

Network of Microorganisms

to Detect Potential Drug Targets

Gutachter: Prof. Dr. Roland Eils
Prof. Dr. Gerhard Reinelt





Abstract

Identifying essential genes in pathogens facilitates the identification of the corre-
sponding proteins as potential drug targets and is the basis for understanding the
minimum requirements for a synthetic cell. However, the experimental assessment
of gene essentiality is resource-intensive and not feasible for all organisms, especially
pathogens. Thus, the computational identification of new drug targets has become
an important pursuit in biomedical research. In particular, essential metabolic en-
zymes have been successfully targeted by specific drugs. For directed drug develop-
ment, the prediction of essential genes, especially in metabolic networks, is needed.
In this thesis, I describe our development of a graph-based investigation tool aimed
at finding possible deviations in a mutated network by knocking out particular re-
actions, and examining its producibility with a breadth-first search algorithm. We
showed that this approach performed well at predicting new targets for antimalarial
drugs. In addition, we analyzed the metabolic networks of bacteria and developed
a machine learning approach based on various graph-based descriptors, including
our own developed descriptor, that were potentially associated with the robustness
and stabilization of metabolic networks. These descriptors were related to gene es-
sentiality and included flux deviations, centrality and shortest paths. Besides these
network topological features, we also used genomic and transcriptomic features, such
as sequence characteristics and co-expression properties, as descriptors.

The machine learning technique was developed to identify drug targets in
metabolism. The metabolic networks of Escherichia coli, Pseudomonas aeruginosa
and Salmonella typhimurium were analyzed. The well-studied metabolic network of
Escherichia coli was used because it was an ideal model for formulating and vali-
dating our method. With publicly available genome-wide knockout screens, it was
shown that topological, genomic and transcriptomic features describing the network
are sufficient for defining drug targets. Furthermore, we tested our method across
bacterial species and strains by using the experimental data from the genome-wide
knockout screens of one bacterial organism to infer essential genes for another related
bacterial organism. Our method is generic, and it enables the prediction of essential
genes from a bacterial reference organism to a related query organism without any
knowledge about the essentiality of the genes of the query organism. In general,
such a method is beneficial for inferring drug targets when experimental data about
genome-wide knockout screens are not available for the investigated organism.





Zusammenfassung

Die Identifizierung von essentiellen Genen in Krankheitserregern unterstützt die Bes-
timmung von zugehörigen Proteinen als potentielle Zielmoleküle für Medikamente
und erweitert unser Verständnis minimaler Bedingungen für eine synthetische Zelle.
Der experimentelle Nachweis von essentiellen Genen ist jedoch kostenintensiv und
nicht für alle pathogenen Organismen durchführbar. Daher ist die bioinformatis-
che Identifizierung neuer Zielmoleküle ein wichtiger Bestandteil biomedizinischer
Forschung geworden. Besonders essentielle metabolische Enzyme dieser Pathoorgan-
ismen erwiesen sich als gute Targets für spezifische Medikamente. Für eine gezielte
Entwicklung von Medikamenten ist deshalb die Vorhersage von essentiellen Genen,
speziell in metabolischen Netzwerken, vielversprechend. In dieser Arbeit habe
ich metabolische Netzwerke von Bakterien mit Hilfe verschiedener Graph-basierten
Deskriptoren, die mit Robustheit und Stabilität metabolischer Netzwerke verbun-
den sind, analysiert. Diese beschreiben den Grad des möglichen Einfluss und der
Unersetzbarkeit der Knoten, wie z.B. Zentralität und Konnektivität. Dazu wurde
von uns ein neuer Deskriptor entwickelt, der auf einem Kürzester-Wege Algorithmus
basiert und denkbare

”
Umleitungen“ zu einem Targetenzym bestimmt. Im Weit-

eren haben wir eine Maschinenlernmethode zur Identifizierung von Zielmolekülen
im Metabolismus entwickelt, die verschiedene topologische Eigenschaften des Net-
zwerks und genomische und transkriptomische Eigenschaften, wie Sequenzmerkmale
und Ko-Expressionseigenschaften, berücksichtigt.

Wir haben metabolische Netzwerke von Escherichia coli, Pseudomonas aeruginosa
und Salmonella typhimurium analysiert. Das bereits gut untersuchte metabolische
Netzwerk von Escherichia coli wurde benutzt, da es ein ideales Modell darstellte,
um unsere Methode zu entwerfen und zu validieren. Wir haben mit öffentlich
verfügbaren Genom-weiten experimentellen Datensätzen von Knock-out Screens
gezeigt, dass topologische, genomische und transkriptomische Eigenschaften des
Netzwerkes ausreichend sind, um essenzielle Zielmoleküle zu bestimmen. Außerdem
haben wir unsere Methode an weiteren Bakterien getestet, wobei wir experimentelle
Daten eines Genom-weiten Knock-out Screens eines Organismus benutzt haben,
essentielle Gene eines anderen verwandten Bakteriums abzuleiten. Unsere Methode
ist allgemein anwendbar und ermöglicht die Vorhersage essenzieller Gene eines
Organismus mit Hilfe eines bakteriellen Referenzorganismus ohne Wissen über die
Essentialität der Gene des eigentlichen Organismus. Damit kann unsere Meth-
ode auch dann angewendet werden, Zielmoleküle abzuleiten, wenn experimentelle
Daten von Genom-weiten Knock-out Screens für den analysierten Organismus nicht
vorhanden sind.
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Chapter 1

Introduction

1.1 Motivation

Defining essential genes or their corresponding proteins enables the identification of
potential drug targets, and it may also provide an understanding of the minimal
requirements for a synthetic cell. However, high-throughput experimental assays of
the essentiality of coding genes are error-prone. Additionally, experimental screens
are resource-intensive and not feasible for all organisms because, typically, a knock-
out strain needs to be constructed for each gene. Furthermore, pathogenic bacterial
organisms, such as Salmonella, are hazardous when cultivating and therefore require
higher laboratory safety efforts.

Besides this, a variety of post-genomic techniques have emerged, and biochemical
research is providing an ever extending amount of data about the molecular signal-
ing interactions and metabolism of cells. This leads to novel insights into cellular
mechanisms, not only for a single pathway, but also for multiple interacting path-
ways and players. Furthermore, understanding the behavior and interactions among
cellular components contributes to the identification of new drug targets. Because
the metabolism of a cell is essential for maintaining life and growth, metabolic en-
zymes have been successfully targeted by antibiotics inhibiting essential enzymatic
processes in bacterial organisms [37, 68]. Thus, for directed drug development, com-
putational methods are needed that support the prediction of essential genes, espe-
cially in metabolic networks.

It has been shown that analyzing the metabolic network in silico supports
the identification of enzymes that are essential for the survival of an organism
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(e.g., [25, 54, 100, 131, 146, 167]). A general model for the metabolic network consists
of alternating nodes of reactions and metabolites. Typically, using graph-based ap-
proaches, the cellular network is analyzed by removing a node in the network-model
in order to mimic a specific drug treatment that inhibits the corresponding protein.
A single node in the network is then characterized by estimating the robustness of
the network when this node has been discarded. In this way, several computational
techniques have been developed to identify essential genes in silico. For example,
Flux balance analysis is widely used to assess the essentiality of genes [20, 55]. How-
ever, FBA approaches need clear definitions of nutrition availability and biomass
production under specifically given environmental conditions [144]. The descriptors
for enzymes in the metabolic network were provided by graph-based approaches and
were used to identify drug targets in microorganisms; these descriptors included an
identification of choke points and load points [54, 131, 167], an estimation of dam-
aged compounds and reactions when inhibiting a possible target [100] and various
descriptors for the centrality of a node in a network [1, 51, 63, 65, 129]. Furthermore,
we invented a new descriptor that examines the ability of the network to obtain the
products of a knocked-out reaction from its upstream substrates via alternative path-
ways [54]. In addition, gene sequence features like codon usage (frequency of base
triplets coding for particular amino acids), GC-content (frequency of the bases gua-
nine and cytosine) and phyletic retention (evolutionary sequence conservation), were
used for predicting essential genes [64, 75, 147]. However, a single feature describing
the topology and the sequence may often not yield a good essentiality estimate and
intelligently combining these features can yield a far more comprehensive model.

In this thesis, we developed and applied an integrative machine learning method
that combined these descriptors.

1.2 Objective and scope

The goal of this thesis is to analyze metabolic networks and to develop a machine
learning technique for identifying potential drug targets in the metabolic networks of
microorganisms and, in particular, pathogens. The study focuses on effecting single
targets in metabolism. The main task was the investigation of metabolic network
models, with respect to detecting the loss of the stabilization and robustness of
the network after the removal of a component. This was followed by employing
various graph-based analysis techniques, genome and gene expression analysis and
a machine learning algorithm that related various characteristics of the nodes in
the network with their essentiality. Genome-wide knockout screens served as the
experimental data and the gold standard for evaluating the approach.
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1.3 Outline of the thesis

Chapter 1 introduces the biological background and further basic topics related to
this thesis; it also reviews the computational identification of drug targets and essen-
tial genes, especially graph-based analyses. Chapter 2 summarizes the methodologies
and datasets applied in this thesis. Detailed descriptions of the methods and algo-
rithms, including the machine learning technique used in this thesis, are provided.
Chapter 3 reports the results of analyzing the metabolic network of knockout strains,
validating the experimental screens in Escherichia coli (E. coli) and comparing the
approach to Flux Balance Analysis. Additionally, the results of predicting essen-
tial genes across organisms are described for E. coli, Pseudomonas, and Salmonella.
Chapter 4 provides the discussion and outlook.

1.4 Biological background

In this section, a brief overview of the related biological background is provided. The
focus lies on essential genes and metabolism in bacteria and various biotechnological
backgrounds, such as experimental knockout screens. First, I describe the concept of
the process from DNA to proteins, which is essential to understanding our sequence
analysis. Next, I briefly describe metabolism and its network reconstructions, which
were central to our study. Thereafter, I explain the concept of antibiotic drugs in
order to promote the understanding of the process of drug discovery. Finally, I ex-
plain the main idea of genome-wide knockout screens for detecting gene essentiality.
For more detailed information on these topics, I refer to the standard molecular
biology literature (e.g., [4, 52, 118]).

1.4.1 DNA, genes and proteins

DNA stands for deoxyribonucleic acid, which is a polymer consisting of monomer
units called nucleotides. Nucleotides are composed of a phosphate group, a sugar de-
oxyribose and a nitrogenous base. The four different bases of DNA are adenine (A),
guanine (G), cytosine (C) and thymine (T). According to their chemical structures,
these four bases are generally separated into two groups: purines and pyrimidines.
A and G are the purine bases and form two rings, while C and T consist of one
ring and are the pyrimidine bases. In a DNA molecule, these bases are connected
via a sugar phosphate backbone through the 3’ -hydroxyl group of a sugar and the
5’-phosphate group of the neighboring sugar. Therefore, one end of the DNA carries
an unlinked hydroxyl group at the 3’ position on the sugar ring (3’ end), and the
other end carries a free phosphate group at the 5’ position on the sugar ring (5’
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Figure 1.1: Double-stranded DNA. The structure of a normal DNA molecule com-
plex is double-stranded and consists of two complementary strands. Each strand of the
DNA molecule consists of nucleotides joined together by sugar-phosphate linkages in a
specific manner such that A connects to T with two hydrogen bonds and C connects to G
with three hydrogen bonds (A: adenine, T: thymine, C: cytosine and G: guanine).

end). It is the order of the base pairs from the 5’ end to the 3’ end that encodes the
genetic information of a cell. Two strands of DNA are linked together by hydrogen
bonds between purine bases and pyrimidine bases. A and T form two hydrogen
bonds, while C and G form three hydrogen bonds. Because of this specificity of
base pairing, the two strands of DNA are said to be complementary [4] (see Fig-
ure 1.1). From Figure 1.1, we see that the two strands run in opposite directions
(upper: from left to right, 5’ => 3’; lower: vice versa). The strands run antiparallel
to each other. Thus, the chain in this example described from the 5’ to 3’ end would
read C to T to G and so on. Another way to write this out is in as a condensed
structural formula: 5’-CTGAGGACTGTC-3’. The sequence of the complementary
strand (whose base order is 3’-GACTCCTGACAG-5’) is shown here. Therefore, a
DNA sequence can be considered a sequence from the four-letter alphabet A, C, G
and T for information storage.

In a transcription process, the DNA sequence of a gene is used as a template to
synthesize ribonucleic acid (RNA) molecules. RNA is chemically similar to DNA
but contains a sugar ribose instead of a deoxyribose and the base uracil (U) in-
stead of thymine. The RNA molecule copied from protein-coding genes is further
processed into messenger RNA (mRNA), which is then translated into a protein, a
long polymer chain of amino acids [4]. The information flow from DNA to proteins
is shown in Figure 1.2. The genetic code in an mRNA molecule is the correspon-
dence of three contiguous (triplet) bases, called a codon. During the process of
translation, codons directly guide the insertion of a specific amino acid that is in-
corporated into a polypeptide chain for protein synthesis. For example, in an mRNA
sequence, the codon CUG designates the amino acid leucine. Each codon is non-
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overlapping so that each nucleotide base specifies only one amino acid or termination
sequence. There are four possible nucleotide bases to be arranged into a three-base
sequence codon. Therefore, there are 64 possible codons (43 = 64) encoded in a
DNA sequence. Sixty-one of these codons code for the known twenty amino acids
in protein; i.e., a given amino acid can be specified by more than one codon. The
remaining three codons act as stop signals to terminate protein synthesis. The 61
codons, which specify the 20 amino acids, and the 3 codons that lead to translation
stopping can be found in Table 1.1.

The collection of DNA sequences, called a genome, comprises the genetic infor-
mation that determines the structures and the functions of a cell. Genes are DNA
sequences that are parts of the genome; genes can be transcribed and translated
into proteins, which are macromolecules that perform functions in the cell. A large
number of genomes have been successfully sequenced, and this number has been

Figure 1.2: From DNA to protein. The genetic information is stored in the DNA
and transferred to proteins. In the transcription process, the DNA sequence of a gene is
used as a template to generate RNA. The RNA template is further processed and then
used as a template to synthesize protein molecules in the ribosomes. These proteins are
composed of amino acids transcribed from the gene sequence in which each triplet of bases
(codons) encodes an amino acid.
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Table 1.1: RNA codon table. The RNA codons in the table occur on the sense RNA
sequence arranged at a 5’ → 3’ directionality.

1st 2nd base
base U C A G

U

UUU Phenylalanine UCU Serine UAU Tyrosine UGU Cysteine

UUC Phenylalanine UCC Serine UAC Tyrosine UGC Cysteine

UUA Leucine UCA Serine UAA Stop UGA Stop
UUG Leucine UCG Serine UAG Stop UGG Tryptophan

C

CUU Leucine CCU Proline CAU Histidine CGU Arginine

CUC Leucine CCC Proline CAC Histidine CGC Arginine

CUA Leucine CCA Proline CAA Glutamine CGA Arginine

CUG Leucine CCG Proline CAG Glutamine CGG Arginine

A

AUU Isoleucine ACU Threonine AAU Asparagine AGU Serine
AUC Isoleucine ACC Threonine AAC Asparagine AGC Serine
AUA Isoleucine ACA Threonine AAA Lysine AGA Arginine

AUG Methionine ACG Threonine AAG Lysine AGG Arginine

G

GUU Valine GCU Alanine GAU Aspartic acid GGU Glycine

GUC Valine GCC Alanine GAC Aspartic acid GGC Glycine

GUA Valine GCA Alanine GAA Glutamic acid GGA Glycine

GUG Valine GCG Alanine GAG Glutamic acid GGG Glycine

rapidly increasing as a result of new high-throughput sequencing techniques. Bacte-
rial genomes can contain up to several million base pairs, and the number of genes
found in bacteria ranges from 500 genes to over 5,000 genes [90].

In conclusion, genes are encoded in DNA and can be translated into proteins
that perform biological functions for the growth, development and replication of the
cell. While some genes are needed for the survival of a cell, other genes may only be
used when responding to a particular environment. Although we have the genetic
information encoded in DNA on hand for many microorganisms the challenge is how
we can exploit this information in the understanding of microbial physiology and to
the discovery of antibiotic drugs.

1.4.2 Cellular networks

Proteins are involved in a large variety of cellular functions comprising regulation,
signal transduction and metabolism. These processes can be regarded as cellular
networks that describe associations among proteins and other cell compounds. These
cellular networks can conceptually be divided into three distinct parts: the metabolic
network, the cell signaling network and the transcriptional regulatory network.

The metabolic network is currently the best-described cellular networks (more
details described in Sections 1.4.3 and 2.3.1). Briefly, it consists of a series of bio-
chemical reactions, which are catalyzed by enzymes (proteins that induce chemical
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reactions) [4, 5, 86]. Metabolic reactions typically involve the conversions and mass
flow of small molecules (e.g., sugars); these reactions have been studied for several
decades using enzyme kinetics and tracer experiments. In contrast to the metabolic
network, the knowledge about signaling interactions is much less established on a
general level, and models are often obtained from the functional context and po-
tential wiring/rewiring aspects. The signaling network [5, 86] is a complex system
of interactions between signaling molecules within the cell from receptors (proteins
that receive and respond to a stimulus) to transcription factors (proteins that bind
to specific DNA sequences to control transcription processes). The transcriptional
regulatory network is a network model for the regulation of gene expression in which
transcription factor proteins bind the regulatory DNA regions of a gene to stimulate
or repress the transcription of a gene and, therefore, the production of the corre-
sponding proteins [5, 86]. This topology of regulatory networks is less conserved
and often adapts dynamically to the physiological situation [104]. A protein-protein
interaction (PPI) network is a signal transduction model and usually refers to a
physical interaction between proteins such as phosphorylation or binding. This
term can refer to other associations of proteins, such as functional interactions, sta-
ble interactions to form a protein complex, and transient interactions, which are
brief interactions that can modify a protein and can further change PPIs (e.g., pro-
tein kinases). Moreover, PPI network models are often used as a simplification of
more elaborate signaling networks [51, 63, 142] and as a global view of integrated
cellular networks [1].

1.4.3 Metabolism and its network

Metabolism is a collection of biochemical reactions for food digestion and the main-
tenance of all cellular processes, in which large nutrient molecules, such as proteins,
carbohydrates and fats, are broken down into smaller molecules to produce the con-
structing materials and components of a living cell; these processes involve energy
transformation and conservation [4]. These chemical reactions are controlled by en-
zymes (see Figure 1.3). Enzymes are proteins that catalyze (i.e., increase the rates
of) chemical reactions; without them, most such reactions would not take place at
a useful rate. In addition, an enzyme usually catalyzes only one of the many possi-
ble types of reactions that a specific molecule could possibly undertake. With these
specific properties, enzymes can be used to regulate particular reactions. Enzymatic
reactions are usually connected in a series, so that the product of one reaction be-
comes the substrate for the next reaction. These linear reaction pathways are, in
turn, linked to each other, forming a complex system of interconnected reactions
that enable the cell to survive, grow and reproduce (see Figures 1.3 and 1.4).

Metabolism is usually divided into two categories: catabolism and anabolism [4].
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Figure 1.3: Gene, enzyme and reaction associations in metabolism. Genes
are translated into proteins by transcription and translation processes. Then, the proteins
that act as catalyzers (enzymes) control the biochemical reactions in the cell for main-
tenance, nutrient supply and energy production by consuming or producing metabolites.

Catabolism comprises the reaction pathways that digest food into smaller molecules,
thereby creating useful materials and energy for the cell; some of those small
molecules can be used as building blocks that the cell needs. Anabolism, or biosyn-
thesis, involves the reaction pathways that use energy and small compounds to
construct other needed components of the cell. Many enzymes are specific to one
substrate such that the enzyme activity can be affected by inhibitors and activa-
tors. Inhibitors are molecules that decrease enzyme activity while activators are
molecules that increase enzyme activity. Many drugs and toxins are enzyme in-
hibitors that reduce the activity of important reaction pathways involved in the
cell’s survival [37, 68]. There are other factors, such as temperature, chemical en-
vironment (e.g., pH) and the concentration of substrates in the medium, that can
affect the activity of enzymes. A variety of enzymes are utilized in medicine and
industry. For example, some enzymes are used for the synthesis of antibiotics, and
some enzymes are used in natural cleaning powders to break down protein or fat
stains on clothes.
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Figure 1.4: Metabolic pathways in a cell. The complex system of interconnected
metabolic pathways consists of thousands of metabolic reactions and is linked by alter-
nating nodes of reactions and metabolites. The depicted overview and more details of
the metabolism for each organism can be found in the KEGG Pathway Database at
www.genome.jp/kegg.

1.4.4 Treatment of bacterial infection with antibiotic drugs

Antibiotics are drugs that treat various infections caused by bacteria [10]. In gen-
eral, these drugs are designed to kill pathogenic bacteria without harming the host
organism. The effectiveness of an antibiotic treatment depends on several factors
including the immune system of the host, the infection location, drug dispersion and
concentration, and the resistance factors of the bacteria [10, 135]. Most antibiotics,
such as vancomycin and penicillin, target the bacteria cell walls. Some interrupt
protein synthesis (such as erythromycin and tetracycline), and some interfere with
DNA replication, such as quinolones [37].

Antibiotics have been incredibly effective in treating and controlling bacterial
infections. Many people have been saved, and morbidity has considerably decreased.
However, antibiotic resistance has steadily increased in the last twenty years [16, 47].
Bacteria may be naturally resistant to different classes of antibiotics or may acquire
resistance from other bacteria through the transfer of resistant genes. Antibiotic-
resistant organisms lead to increased hospitalizations, health costs and mortality [8,
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9, 13, 26, 27]. Thus, the discovery and development of new classes of antibiotics to
treat these multi-resistant organisms has become one of the main challenges in the
pharmaceutical industry.

1.4.5 Genome-wide knockout screens for detecting gene es-
sentiality

With the availability of complete genomic sequence data, the systematic evaluation
of the essentiality of each gene in a genome has become possible [52, 118]. The
majority of the techniques used for these evaluations of global gene essentiality in
biological experiments are focused on the growth of mutant strains; gene essentiality
is deduced from the inability of the mutant cell to achieve a certain number of divi-
sions. The approaches for identifying essential genes in the wet lab include several
types of classical forward genetic screens and systematic targeted gene knockout [52].

Genetic footprinting
Genetic footprinting is a well-known technique to distinguish between essential and
non-essential genes and was first developed in yeast. Later it was applied to bacteria,
such as E. coli [60]. It employs transposon mutagenesis, the outgrowth of the mu-
tagenized cell population and the analysis of the fate of cells carrying mutations in
specific genes. Transposons (gene sequences that can be introduced and exchanged
in the genome) of defined length are randomly integrated in the whole genome and
therefore disrupt gene function. In one representative study of the identification
of essential genes, half of the mutagenized population was grown in rich medium
(Lysogeny Broth (LB)), containing additional vitamins and micronutrients. Fifty
percent of mutagenzied cells were immediately frozen. After outgrowing the cells,
the transposons were detected by nested polymerase chain reactions (PCR) and
compared with the transposons in the frozen population. The regions where the
transposons were absent in outgrown cells were considered essential because no cell
survived if this region was disrupted. It is worth noting that footprinting technology
does have some limitations, including the difficulty of assessing the essentiality of
small genes (<400 bp) due to the lower number of transposition events per gene,
the inability to assess duplicated genes or genes with functional paralogs, and the
occurrence of regions where transpositions hardly occur [118].

Systematic targeted gene knockout
Systematic targeted gene knockout was developed to create single knockout mu-
tants to investigate the effects of the loss of one gene, such as in the study E. coli
by Baba et al [12]. The principal strategy is based on the method of one-step inac-
tivation of chromosomal genes. To knock out a gene, the replacement for a target
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gene with a kanamycin-resistant marker was generated by polymerase chain reaction
(PCR) using oligonucleotide DNA primers homologous to the gene flanking regions.
The start-codon and the up-stream translational signal were not replaced and fully
intact. Inframe single-gene deletions were verified by PCR with kanamycin and loci
specific primers. When cells were unable to create a mutant that formed colonies
on a plate, the mutated gene was considered to be essential. The advantages of this
method are the complete deletion of an entire open reading frame (gene) and the
fact that the precise design reduces polar effects (non-integration of the replacement
gene) for the downstream genes of the chromosome.

In conclusion, both methods (genetic footprinting and targeted gene knockout)
are well-established and commonly used for genome-wide knockout screens. Ge-
netic footprinting gives an idea about which genes are essential for vital growth; in
contrast, deletion studies reveal lethal mutants more comprehensively [59].

1.5 Existing computational approaches

Considering the experimental constraints described above (in Sections 1 and 1.4.5),
the development of a computational approach for predicting gene essentiality has
become an important challenge in drug target identification. In this section, vari-
ous existing approaches for computationally identifying potential drug targets are
reviewed. Some of these predictors have been developed using the sequence features
of genes with or without homology comparison [64, 147]. In addition, these predic-
tors of gene essentiality have been developed based on the network topology features
of a protein in a protein-protein interaction network [1, 51, 63, 81] or knocked-out
enzymes from the metabolic network according to gene deletions [20, 55]. I first
explain existing approaches using genomic data, especially those based on gene and
protein sequences. Next, I briefly describe approaches using protein-protein inter-
action networks. Finally, I review various methods that analyze the topology of the
metabolic network for detecting drug targets, such as choke points, damages and
flux balance analysis.

1.5.1 Finding drug targets through the analysis of genomic
data

The availability of complete genome sequences for many organisms has enabled
the discovery of essential genes in several organisms by computational meth-
ods [64, 112, 147]. Some computational methods attempt to determine the “minimal
gene set,” i.e., the set of core essential genes for cellular life [112]. To find the mini-
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mal gene set, Mushegian and Koonin [112] performed comparative genome analysis
based on the notion that conserved genes between species (so-called orthologous
genes) are more likely to be essential [112]. The first two completely sequenced
bacterial genomes, Haemophilus influenzae and Mycoplasma genitalium, were ana-
lyzed, and 256 genes that were orthologous between those bacteria were reported
as an approximation of a minimal gene set for bacterial life [112]. After studying
Bacillus subtilis and E. coli by inferring gene essentiality using homologs, Rocha and
Danchin also reported that essential genes tend to be more conserved and essentiality
may play a fundamental role in the distribution of genes in most bacterial genomes.
Therefore, the identification of orthologous genes across species has become a major
source for inferring gene essentiality.

Gustafson et al. [64] reported constructing a classifier of essential genes, by ex-
ploiting genomic features derived from the sequence data of E. coli and the yeast
Saccharomyces cerevisiae (S. cerevisiae). They defined the “phyletic retention” fea-
ture, which is the number of other organisms in which a gene is conserved (the
presence of an orthologous gene in other organisms) and found that this feature
is a good indicator of gene essentiality. However, deriving the phyletic relation-
ship of genes across organisms requires the attentive selection of related reference
genomes. Characteristic sequence features, such as codon usage, codon adaptation,
GC content and overall hydrophobicity, were used to train a classifier for predicting
essential genes in fungal genomes in the study of Seringhaus et al. [147]. The classifier
was developed using data from S. cerevisiae and was tested on the closely-related
yeast species Saccharomyces mikatae. The predicted essential genes were verified by
assessing their homology to the essential genes in S. cerevisiae, and some of those
genes were tested experimentally. Although most of the studies were performed
in the context of a single organism, this study demonstrates the ability to predict
essential genes using machine learning based on genomic data, which can be applied
to other novel organisms.

1.5.2 Finding essential genes in protein interaction net-
works

In recent years, high-throughput methods have been increasingly used to identify
protein-protein interactions on the genomic scale resulting in interaction maps for
entire organisms [1, 51, 63, 129]. Various descriptors of the centrality of a node
in a network, such as connectivity and betweenness centrality, have been success-
fully applied in the detection of essential proteins in protein-protein interaction
networks [1, 51, 63, 64, 65, 81]. For example, large-scale protein-protein interactions
of yeast have revealed that “hub proteins” (proteins with high connectivity) are
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more likely to be essential and evolve at a slower rate [83]. Batada et al. [17] used
yeast protein interaction data that had been carefully collected from the literature.
They found out that hub proteins are more likely to be essential, but they did
not find that hub proteins are correlated to slow evolutionary rates [17]. Chen and
Xu [34] studied the characteristics of essential genes in yeast, by integrating genomic
and high-throughput experimental data from gene expression and protein-protein
interaction networks. They showed that essential genes were correlated with evo-
lutionary rates, interaction connectivity, gene duplication rates (a measure of gene
homologs within the same species) and gene-expression cooperativity (a measure of
gene co-expression) [34].

Although protein-protein interaction networks may provide a global view of cel-
lular mechanisms, the biochemical implications of high-throughput interactions are
not always obvious [74]. Therefore, we were interested in identifying drug targets
in pathogens inferred from the properties of a mal-functional metabolism after hav-
ing knocked out an enzymatic function because metabolism is the best-described
cellular network and essential for responding to environmental constraints, main-
taining the structure of a cell, and participating in cell growth and reproduction
(see Section 1.4.3).

1.5.3 Analysis of metabolic networks

A general model for the metabolic network has been described by graph-based ap-
proaches and was applied to identify drug targets in pathogenic organisms [54, 55,
100, 131, 146, 167]. Several computational techniques have been developed to iden-
tify essential genes in silico. The concepts of choke points and load points were suc-
cessfully applied to estimate the essentiality of an enzyme [54, 131, 167]. The term
‘damage’ was used to assess enzymes that may serve as drug targets when their inhi-
bition influences a substantial number of downstream reactions and products [100].
In addition, one of the most widely-used techniques to assess gene essentiality in
genome-scale metabolic network is flux balance analysis [20, 55], which considers
mass balance analysis and other constraints with optimality conditions to predict
steady-state reaction rates.

Evaluation of choke points and load points
In metabolic networks, Samal et al. found that most reactions identified as essential
are reactions that are involved in the consumption or production of metabolites with
low connectivity [138]. This is because they are more likely to be the limiting factor
for consuming or producing these metabolites. In the extreme case, they uniquely
consume or produce a certain compound in metabolic networks. Blocking these
reactions may cause cell death through the accumulation of a large amount of toxic
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compounds or the lack of important compounds. Rahman and Schomburg defined
reactions with this property as ‘choke points’ [131]. This technique has been suc-
cessfully applied to identify drug targets for Plasmodium [25, 167] and many other
organisms through the use of their web-based Pathway Hunter Tool [130]. The web-
site also provides an analysis of the shortest paths among metabolites and proposes
the computational identification of potential drug targets by calculating the load
scores of an enzyme in the network [131]. Thus, they define ‘load points’ as hot
spots in the metabolic network (enzymes/metabolites) with high load scores based
on the ratio of the number of shortest paths passing through a metabolite/enzyme
(in/out), and the number of nearest neighbor links (in/out) attached to it. This
ratio was compared to the average load value in the network [131]. Therefore, reac-
tions with high load scores are more likely to be potential drug targets. The load
score is a good measure of possible fluxes passing through a reaction. However, this
technique does not consider the possibility of alternative pathways after removing
a predicted essential reaction with a high load. When knocking out a reaction, the
mutated network may use other reactions to achieve communication in cells. There-
fore, a consideration of deviations, such as alternative pathways and the possibility
of yielding some downstream metabolites, should be taken into account [54] as we
explained in Section 2.4.3.

Estimation of metabolic damages
Lemke et al. proposed the term ‘damage’ which was used to assess enzymes that
may serve as drug targets when their inhibition influences a substantial number
of downstream metabolic reactions and products [100]. We implemented this term
with generalization by counting possible damaged compounds and reactions when
there was no possible alternative pathway by which to reach the compounds and
reactions (see Section 2.4.2).

Flux balance analysis
Flux balance analysis (FBA) is a constraint-based approach for quantitatively ana-
lyzing the flow of metabolites through a metabolic network. Thereby, it is possible
to predict the growth rate of an organism or the rate of production of an important
metabolite [20, 49, 117]. The flux balance constraints are based on the assump-
tion that the total amount of any inner compound in the cell that is produced
must be equal to the total amount being consumed at the steady state. Allow-
able fluxes of any reaction are bounded as the maximum and minimum fluxes, and
this is taken from experimental data from, e.g., enzymatic assays. These flux bal-
ances and bounds define the space of the feasible flux distributions of a system.
Fluxes represent the rates at which every metabolite is consumed or produced by
the corresponding reactions. To optimize the fluxes out of these given constraints, a
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biological objective function is defined. For example, in the case of microorganisms
aiming for maximal growth, the objective is biomass production, which is the rate
at which metabolic compounds are converted into biomass constituents, such as nu-
cleic acids, proteins and lipids. Mathematically, an “objective function” is used to
quantitatively define how much each reaction contributes to the phenotype. This
is mathematically formulated as a system of linear equations. In flux balance anal-
ysis, these equations are solved using linear programming (see Section 2.4.4). By
simulating the whole reconstructed metabolic network of an organism of interest,
we obtain the wildtype growth rate under specific flux bounds and metabolic con-
straints (or conditions). When performing a single gene or reaction deletion under
the same conditions by limiting its corresponding fluxes to zero (so-called knockout
simulation), a mutant’s growth rate is measured and compared to the wildtype’s. A
knocked-out gene or reaction is predicted as essential under the given condition if the
mutant model yields much lower biomass production in comparison to the wildtype.
Flux balance analysis is a widely-used and well-established method for assessing the
essentiality of genes [20, 49, 55, 117]. For example, analyzing flux balances under the
conditions of aerobic glucose (by limiting the glucose uptake rate) using the CO-
BRA toolbox [20] and a newly reconstructed metabolic network of E. coli yielded
92% accuracy when predicting the essentiality of genes [55] under aerobic glucose
conditions and yielded 88% accuracy for rich nutrient conditions. However, FBA
approaches need clear definitions of nutrition availability and biomass production
under specifically given environmental conditions, and it is difficult to characterize
the uptake rates for each compound of a rich medium, especially for situations like
the gut of a host of intestinal pathogens (for a good overview of these aspects see
[56, 144]).

1.6 Main contributions of this thesis

In the following I summarize the main contributions of this thesis:

• Analysis of metabolic networks
We developed an algorithm to examine the ability of the metabolic network to
obtain the products of a knocked-out reaction from its substrates via alterna-
tive pathways. Basically, each reaction in the network was deleted (knocked
out in silico), respectively. A breadth-first search algorithm tested whether
the neighboring compounds of the knocked-out reaction could be produced by
other reactions and pathways of reactions. With this approach, we tested
whether deviations in the network could be used to replace the knocked-
out reaction (see this method in Section 2.4.3 and the results in Section 3.1).
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This was successfully applied to detect potential drug targets for Plasmod-
ium falciparum [54] and used as one of our descriptors in our other investi-
gations. This method was invented by us and reported for the first time in
our article [54]. Furthermore, other descriptors based on metabolic networks,
genomic data and transcriptomic data have been analyzed and examined for
their potential to identify drug targets, and these are described in Sections 2.4
and 2.5.

• Machine learning based approach to integrate the descriptors
In this thesis, we developed a workflow for a machine learning method that
integrates a large variety of different descriptors to identify drug targets. First,
the metabolic network was constructed using various qualitative and quanti-
tative information from public databases and the literature (see Sections 2.2
and 2.3). With the technique of machine learning (explained in Section 2.7),
a large set of features (explained in Sections 2.4 and 2.5) was integrated and
used for a classification of gene essentiality. Finally, the results showed that
our methods can be used to detect potential drug targets in pathogens and
that these methods are feasible for validating experimental knockout data (see
Sections 3.2.3 and 3.2.4). With this newly-developed, integrated approach, we
showed that using a machine learning based approach made it possible to
achieve 79% sensitivity and 97% specificity, which were comparable to those
achieved by flux balance analyses (sensitivity: 51%, specificity: 97%, see Sec-
tion 3.2.2). It is worth noting that, in contrast to FBA, our approach does not
depend on any additional (in addition to the essentiality data serving as the
gold standard) experimental information or elaborate literature study. Fur-
thermore, we show that the method can be used to predict the essential genes
of a query organism using the experimental information about essentiality
from a related bacterial reference organism (see Section 3.3.1).

The results of our research have been published in a peer-reviewed confer-
ence proceedings article [128] and two original journal articles [125, 127] in a
journal with a good reputation in our field of systems biology. Additionally,
we described our approach in a book chapter [126]. The developed approach
was also used in other related projects [53, 54].
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Methods

To integrate a variety of information for the purpose of gaining insight into the
essentiality of a gene or protein, topology descriptors of metabolic networks, ge-
nomic data and transcriptomic data have been assembled for a machine learning
approach. Our approach is based on a collection of methods from the areas of
network analysis and machine learning. This chapter first summarizes the general
workflow in Section 2.1. An explanation of the data, including the metabolic net-
works and knockout screens that we used, is given in Section 2.2. The construction
of the network is addressed in Section 2.3, followed by the extraction of network
descriptors, such as deviations and flux balance analysis features, which is given
in Section 2.4. Genomic and transcriptomic analysis features are explained in Sec-
tion 2.5, including homology analysis and gene expression analysis. Preprocessing
and feature evaluation are explained in Section 2.6. Our classification method and
learning techniques are described in Section 2.7. Finally, performance measures are
explained in Section 2.8.

2.1 General workflow

An overview of our workflow is shown in Figure 2.1. First, the metabolic networks
were constructed for the organisms that were investigated with biochemical reactions
from public databases. For each gene, the features of the gene or the corresponding
reaction were calculated to describe its topology in the metabolic network and its
genomic and transcriptomic relations. These features were then normalized and
statistically analyzed by comparing them to essentiality classes (used as a gold
standard) taken from experimental genome-wide knockout screens. Next, Support
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Figure 2.1: The workflow. The workflow for the prediction of essential genes by
integrating network and genomic information using Support Vector Machines.

Vector Machines (SVMs) were trained based on the features to distinguish between
essential and non-essential genes. The trained machines were evaluated and then
used as a prediction model for gene essentiality. This model was then applied to
identify potential drug targets and to predict new query genes.

2.2 Data sources

2.2.1 Lists of essential genes from knockout experiments

The list of the essential genes for microorganisms was downloaded from the National
Microbial Pathogen Database Resource (NMPDR [108], www.nmpdr.org) and the
literature [12, 60, 79, 93, 103]. In this thesis, we used information about essential
genes from the knockout screens of well-studied organisms, Escherichia coli (E. coli)
and Pseudomonas aeruginosa (P. aeruginosa), to evaluate the performance of our
methods. The knockout screen of Salmonella typhimurium (S. typhimurium) was
used to evaluate the prediction of potential drug targets. Table 2.1 summarizes
the total numbers of tested genes, essential genes and non-essential genes for each
organism and the source from which we obtained the data.

Experimental knockout screens of E. coli

E. coli is one of the most commonly studied organisms. Many experimental screens
have been performed to test which genes are dispensable for E. coli under different
conditions (such as different nutritional media). Recently, two knockout screens of
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Table 2.1: Numbers of essential genes from the knockout experimental screens

Genome Experimental condition Total N E U Reference

E. coli rich LB medium 4,390 3,985 303 102 Baba et al. [12]
E. coli glucose minimal medium* 4,390 3,866 412 102 Baba et al. [12]
E. coli rich LB medium 4,308 3,126 620 562 Gerdes et al. [60]
P. aeruginosa rich LB medium 5,570 4,783 787 0 Jacobs et al. [79]
P. aeruginosa rich LB medium 5,688 4,469 335 884 Liberati et al. [103]
S. typhimurium rich LB medium 4,425 n/a 257 n/a Knuth et al. [93]
N: Nonessential, E: Essential, U: Undetermined and n/a: not available
* This dataset was used to test the flux balance analysis.

E. coli have been reported by Baba et al. [12] and Gerdes et al. [60]. The collection of
knockout mutants from the studies of Baba et al. is known as the “KEIO collection”,
and we will refer to this term again. The knockout experiments were performed in
rich medium and in glucose minimal medium, resulting in two datasets (denoted as
rich medium and glucose minimal medium). For the rich medium, out of the 4,288
tested genes, 303 genes were identified as having no living mutants, and these genes
were defined as essential. Genes that were considered to be essential under the rich
medium condition were also considered to be essential under the glucose minimal
medium condition. In addition to these genes, 119 genes were designated essential in
glucose minimal medium because they showed very slow growth in minimal media.
Gerdes et al. performed random transposon insertions with population outgrowth on
rich medium. They found 620 essential genes and 3,126 non-essential genes.

Experimental knockout screens of P. aeruginosa

For P. aeruginosa, we used the data of Jacobs et al. [79] and Liberati et al. [103]. Ja-
cobs et al. created a library of transposon insertion mutants with clonal outgrowth
on rich medium at room temperature. Approximately 12% of the predicted genes
of this organism lacked insertions. Many of these genes are likely to be essential for
growth on rich medium. They defined 787 essential genes and 4,783 non-essential
genes. Using another strain of P. aeruginosa, Liberati et al. created a non-redundant
library of transposon insertion mutants. They used different transposons to create
the two libraries, which accurately define essential genes. Finally, they defined 335
essential genes and 4,469 non-essential genes.

Experimental knockout screens of S. typhimurium

The experimental dataset for S. typhimurium was from a study of Knuth et al. [93]
and was based on insertion-duplication mutagenesis (IDM). Small, randomly gener-
ated genomic fragments were cloned into a conditionally replicating vector, and the
resulting library of single S. typhimurium clones was grown under permissive con-
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ditions. Upon switching to non-permissive temperatures, discrimination between
lethal and non-lethal insertions following homologous recombination allowed the
trapping of genes with essential functions. With this method, genes were detected
that were indispensable for growth. However, a comprehensive classification of non-
essential genes could not be determined. A total of 257 genes were found to be
essential, 53 genes of which coded for enzymes.

2.2.2 Metabolic network databases

The knowledge about enzymes, reactions, compounds and pathways that was used
to construct metabolic networks of organisms was obtained from the database of the
Kyoto Encyclopedia of Genes and Genomes (KEGG [87, 115], www.genome.jp/kegg)
and the BioCyc Database Collection ([32], http://biocyc.org). To perform
flux balance analysis with a curated metabolic model of E. coli ‘iAF1260’ [55],
the metabolic network of the Biochemical Genetic and Genomic (BiGG [141],
http://bigg.ucsd.edu/) was used.

KEGG is a pathway database that consists of a comprehensive set of biochemi-
cal pathways for the systematic analysis of gene functions. It includes most of the
known metabolic pathways and many of the known regulatory pathways. Similarly,
BioCyc is a collection of genome/pathway databases. Each database contains the
comprehensive genome and metabolic pathways of a single organism. For exam-
ple, EcoCyc is a database for the bacterium E. coli with literature-based curation
of the entire genome and of transcriptional regulation, transporters and metabolic
pathways. BiGG is a resource of various published genome-scale metabolic net-
work models with standard nomenclature for analyzing the metabolic capabilities of
organisms using Constraint-Based Reconstruction and Analysis (COBRA) tool [20].

2.3 Definitions and construction of metabolic net-

works

Several properties and definitions of graphs can be used to explain our metabolic
networks. Thus, in this section, definitions of the graphs that can be applied to define
a mathematical representation of metabolic networks are first described. Some basic
properties of graphs are also explained. Finally, characteristics of a graph can be
explained in terms of the node degree distribution, which usually follows a power-law
distribution in most real-world networks.
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Figure 2.2: Different types of graphs. (a) A directed graph contains directed
edges starting from one node pointing to another node. (b) An undirected graph has
edges connecting two nodes without directionality. (c) A bipartite graph consists of edges
connecting nodes from two different sets. (d) A weighted graph has weights for each edge.

2.3.1 Definition of graphs

In mathematical terms, a network is a graph. We use the term “graph” to refer to
the mathematical concept of a set of vertices connected by links called edges, while
the term “network” is used to refer to an application of a graph that explains an
interconnection of entities such as, in our case, a metabolic network. We use the
term “node” in an application network to refer to a vertex in the graph.

A graph G = (V,E) consists of vertices v ∈ V and edges e ∈ E that connect those
vertices, where E ⊆ V × V . In a directed graph, each edge e ∈ E is an ordered pair
of vertices e = (u, v), with u, v ∈ V , such that e consists of the starting vertex u and
the terminating vertex v. The edges in a directed graph are depicted by arrows. In
the case of an undirected graph, an edge e ∈ E is represented by an unordered pair
of nodes {u, v}, and it is depicted by a line between vertices u and v (see Figure 2.2).
Undirected graphs are used if information about the direction is lacking or is not
needed. In other words, in an undirected graph, there is no direction associated
with an edge. Bidirectionality between vertices u and v can be represented by two
edges, one leading from u to v and one in the opposite direction. In the following, if
not specified, the definitions are applied to both the undirected and directed cases.

A graph is bipartite if the edges connect between the vertices of different sets. In a
bipartite graph, the set of vertices V consists of two disjoint sets of vertices V1 and
V2:

V1, V2 ⊂ V : (V1 ∩ V2 = ∅) ∧ (V1 ∪ V2 = V ),

∀(u, v) ∈ E : (u ∈ V1 ∧ v ∈ V2) ∨ (u ∈ V2 ∧ v ∈ V1). (2.1)
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A weighted graph G = (V,E,W ) has a set of vertices, V , and a set of edges, E.
W represents the corresponding weights of those edges. Unweighted graphs are
a special case of weighted graphs, with all of the weights set to 1 (see Figure 2.2).

Neighboring vertices and neighborhood: In a given graph G = (V,E), two
vertices u and v ∈ V are said to be neighbors, or adjacent vertices, if {u, v} ∈ E.
The neighborhood of a vertex v (N (v)) is a set of neighbors that is defined as the
following:

N(v) = {u ∈ V |{u, v} ∈ E} . (2.2)

For a set S ⊆ V , the neighborhood is defined to be

N(S) =
⋃
v∈S

N(v). (2.3)

If G is directed, then we can distinguish between the incoming neighbors of v (those
vertices u ∈ V such that (u, v) ∈ E) and the outgoing neighbors of v (those vertices
u ∈ V such that (v, u) ∈ E) as

Nin(v) = {u ∈ V |∃(u, v) ∈ E}
Nout(v) = {w ∈ V |∃(v, w) ∈ E} . (2.4)

In this case, the neighborhood of vertex v is then defined as N(v) = Nin(v)∪Noutv.

Paths and path length: Let u and v be two vertices in a graph G. A path from u
to v, path(u,v), is a sequence of vertices where each vertex is a neighbor of the next
vertex,

u = v1, v2, ..., vb = v, (2.5)

such that for i = 1, ..., b− 1:

(i) {vi, vi+1} ∈ E for the undirected case or

(vi, vi+1) ∈ E for the directed case;

(ii) vi 6= vj for i 6= j

where b is the number of vertices in the path and the length of this path is defined
as the number of edges in the path, which is b − 1 (see Figure 2.3). The length
of the shortest path from u to v, |path(u, v)|, is called the geodesic distance which
is simply called “distance”. The diameter is defined as the maximum value of the
shortest paths taken over all of the pairs of vertices in V [169].
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Figure 2.3: An example of a path length. A path from u to v in the graph is from
v1 to v2, v3, v4, and v5. Thus, the path length of this path is 4 (|path(u, v)| = 4).

2.3.2 Graph representations

Graphs can be represented as adjacency matrices that denote which vertices of the
graph are adjacent to which other vertices.

Adjacency matrix of a simple graph: The adjacency matrix A of a weighted
graph G = (V,E,W ) is an N ×N matrix such that

Aij = wij if (i, j) ∈ E, 0 otherwise

for i and j ∈ 1, ..., N (2.6)

where N = ‖V ‖, the number of vertices in V . The adjacency for an unweighted
graph simply replaces wij with 1. Note that the adjacency matrix is symmetric in
the undirected case.

Adjacency matrix of a bipartite graph: The adjacency matrix A of a weighted
bipartite graph G = (V,E,W ) with V = V1 ∪ V2, V1 ∩ V2 = ∅ is an N1 ×N2 matrix
such that

Aij = wij if (i, j) ∈ E, 0 otherwise

for i ∈ 1, ..., N1 and j ∈ 1, ..., N2 (2.7)

where N1 = ‖V1‖ and N2 = ‖V2‖. The adjacency for an unweighted bipartite graph
simply replaces wij by 1.
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Figure 2.4: Representations of the metabolic network. Four representations
of metabolic reactions are shown: (a) typical stoichiometric equations, (b) a bipartite
graph with rectangles as reactions (or enzymes) and circles as metabolic compounds (c)
a reaction-based representation of the metabolic network, and (d) a metabolite-based
representation. Note that in (c) and (d) the direction of the edges are not taken into
account.

Metabolic network representation
Metabolic networks are often represented as directed bipartite graphs (see Fig-
ure 2.4) that consist of two disjoint sets of vertices representing metabolites and
reactions [94]. The directions of the edges in the metabolic networks are given by
the relationship between the substrate and product of the biochemical reactions.
An edge indicates that a metabolite is either a substrate or product of a reaction.
The distinction between the substrates and products of a reaction is only possible
if the graph is directed, i.e., if the set of edges E consists of ordered pairs of ver-
tices. This distinction is often useful when modeling metabolic fluxes [15]. For some
applications, a reaction-based representation is needed in which the vertices of the
network are the reactions, and the edges are present if a product of one reaction
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is the substrate of the other. Similarly, in a metabolite-based representation, the
vertices are the metabolites that are connected by reactions (see Figure 2.4). As a
bipartite graph, the metabolic network can be represented as an adjacency matrix of
m×n dimensions, where m is the number of metabolites and n is the number of re-
actions. More exact models of metabolic networks can be represented by adjacency
matrices with weights for stoichiometric coefficients. The small example network of
Figure 2.4 consists of four reactions and seven metabolites,

R1: A + B 
 C + D
R2: B → E + F
R3: 2 A + E → D
R4: C + 2 G 
 H

The stoichiometric matrix, which is the adjacency matrix that contains stoichiomet-
ric coefficients of each reaction equation, is then given by the following:

S =



−1 0 −2 0
−1 −1 0 0

1 0 0 −1
1 0 1 0
0 1 −1 0
0 1 0 0
0 0 0 −1
0 0 0 1


(2.8)

where the rows correspond to metabolites A, B, C, D, E, F, G and H, respectively,
and the columns correspond to reactions R1, R2, R3 and R4, respectively. Until
now, no optimal and standardized method exists for the reconstruction of a cellular
metabolic network [56, 95]. However, ubiquitous metabolites, such as water, oxygen,
ATP and co-factors are often discarded to model only the most relevant metabolic
fluxes [54, 94, 127].

2.3.3 Degree distributions and power laws

To understand network architecture and robustness, network topology properties
can be considered. One of the most commonly used topological features in graphs
is the degree (or connectivity) [169].

Degree
In undirected graphs, the degree k of a vertex v ∈ V is defined as the number
of edges between v and its adjacent vertices, which is the number of vertices in
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Figure 2.5: Random and scale-free networks. (a) The depicted random network
contains 30 nodes with randomly chosen edges, according to a Poisson distribution. (b)
The depicted scale-free network contains the same number of nodes, with a power-law
distribution in which a few nodes have high connectivities (so-called hubs, shown in dark
blue) and many have low connectivities.

the neighborhood set of v, |Neighborhood(v)|. A vertex with many connections has
a higher degree, which reflects its importance in the network [65, 81, 169]. The
degree for directed graphs can be divided into the in-degree and out-degree (see
neighborhood in Section 2.3.1). The in-degree and out-degree of a vertex v ∈ V
in a directed graph is defined as the number of incoming neighbors and outgoing
neighbors (as defined in Equation (2.4)), respectively:

din(v) = |Nin(v)|
dout(v) = |Nout(v)| (2.9)

For metabolic networks as bipartite graphs, the in-degree of a reaction (node) can
represent the number of its substrates, whereas the out-degree represents the number
of its products.

Power-law distributions
Structures of graphs can be distinguished by their degree distribution. For example,
a lattice grid has a simple degree distribution [11, 15]; all of the inner vertices have
an identical degree, which is four for a square lattice. Erdös and Rényi [50] pointed
out that the connectivity of simple random graphs follows a Poisson distribution.
As defined by Erdös and Rényi [50], the traditional random network is an undirected
graph with n vertices and randomly selected edges. There are 1

2
n(n − 1) possible
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Figure 2.6: An example of a power-law distribution The degree distribution for
the metabolic network of E. coli fitted with a log-log linear regression. The degree (k) of
a reaction is the number of its next nearest neighbors in the network.

edges of these vertices. By choosing edges at random, each of the possible edges
has the same independent probability p to be chosen. Thus, a single vertex in the
random graph is connected to any of the other remaining n − 1 vertices with the
same probability p. Therefore, the probability of the specific vertex having the
degree k, pk, forms a binomial distribution [114]:

pk =

(
n− 1

k

)
pk(1− p)n−1−k (2.10)

For a large graph with large numbers of vertices, this binomial distribution becomes
a Poisson distribution with the same mean. However, many degree distributions
in the real-world follow power laws [15]. Let pk be the fraction of vertices with
degree k. Then, pk is the probability that a randomly chosen vertex has degree
k, pk = nk/n, where nk is the number of vertices with degree k and n is the total
number of vertices. Thus, the degree distribution is given by the following:

P (k) ∼ nk
n
. (2.11)
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P (k) follows a power-law distribution if

P (k) ∼ k−γ (2.12)

where γ > 0 is a constant depending on the network and is usually in the range of
2 < γ < 3 [11, 2, 14]. Graphs with a power-law degree distribution are called scale-
free networks [14, 15]. These scale-free networks consist of a few highly connected
vertices, so-called hubs, and many less connected vertices [5] (see Figure 2.5). Most
of the real-world networks, including metabolic networks, are approximately scale-
free networks [14, 15]. Figure 2.6 shows the degree distribution of the metabolic
network of E. coli with a regression curve for the power-law distribution. Highly
connected nodes in scale-free networks can reach other nodes by a short path.
Therefore, these networks generally have a short diameter [109] and a high clus-
tering coefficient [169]. The benefit of the scale-free architecture is its robustness
against random attacks because it is statistically more probable that vertices with
a lower degree are hit while the overall structure of the network is not affected.
However, targeted attacks against the hubs can lead to devastating effects [3]. The
scale-free topology therefore provides robustness to the network with increased
flexibility to random perturbations. Nevertheless, it is susceptible to targeted
attacks at heavily connected critical hubs [3], and mutations affecting hubs are more
likely to cause a defect [169].

2.4 Descriptors for finding essential nodes in a

network

This section explains various graph-based descriptors and approaches. In the follow-
ing, the most relevant network descriptors are explained for estimating the essential-
ity of nodes in a network. This section is subdivided into four parts. Section 2.4.1
describes node features that are based on undirected graphs and that can be used
for a reaction-based representation of a metabolic network. The other three sections
explain features that have been specifically designed for metabolism as a bipartite
graph. Section 2.4.2 explains features that are basic properties of a reaction; choke
point analysis and damage estimation. Section 2.4.3 considers deviations of possi-
ble ways to produce compounds in metabolism. Finally, Section 2.4.4 describes the
biomass production of bacteria after knocking out a reaction by the flux balance
approach. We conclude the list of these features based on undirected graphs in
Table 2.2 and based on directed bipartite graphs in Table 2.3.
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2.4.1 Network topological features based on undirected
graphs

As mentioned in Section 2.3 and Figure 2.4, a network may be represented as an
undirected graph G = (V,E), which consists of a set of nodes V and a set of
edges E. Each node i ∈ V represents a unique cellular entity such as enzymes,
genes and proteins, while each edge (i, j) ∈ E represents an observed interaction
between two nodes i and j. To construct an undirected graph for metabolism, the
network representation of a reaction-pair network can be used instead of a bipartite
graph. Many descriptors of a node in the network describe the communication
properties of the node. Node descriptors, also called features, for undirected graphs
are described next.

Local topology
In a given network, the local connectivities of a reaction can be measured as the
number of its neighboring reactions (NNR) and the number of neighbors of neigh-
boring reactions (NNNR). Recall that the number of the neighboring reactions is the
degree of a reaction node in the reaction-pair network (see Section 2.3.2). For a re-
action node, v, the number of neighbors of neighboring reactions can be formulated
as the following:

NNNR(v) = |{u ∈ V | {u, v} /∈ E and ∃w ∈ V : {u,w} ∈ E ∧ {w, v} ∈ E}| (2.13)

The clustering coefficient is used to estimate the local density of the network. It
explains the connection among neighbors, which helps to understand the possibility
of local alternative communication. The clustering coefficient value (CCV) of a node

Table 2.2: Topological features for networks based on undirected graphs

Short form Explanation
Local topology

NNR Number of Neighboring Reactions (NNR)
NNNR Number of Neighbors of Neighboring Reactions (NNNR)
CCV Clustering Coefficient Value (CCV): clustering coefficient of a

reaction
Centrality

BW Betweenness centrality
CN Closeness centrality
EC Eccentricity centrality
EV Eigenvector centrality
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Table 2.3: Topological features for networks based on directed bipartite graphs

Short form Explanation
Basic properties

NS Number of Substrates (NS)
NP Number of Products (NP)
DIR Directionality of reaction (DIR): reversible or irreversible reaction

Choke points and load scores
CP Choke Point (CP): a reaction is a choke point or not [131]
LS Load Score (LS): load score of a reaction [131]

Damage
NDR Number of Damaged Reactions (NDR) [100]
NDC Number of Damaged Compounds (NDC) [100]

NDRD Number of Damaged Reactions having no Deviations (NDRD)
NDCD Number of Damaged Compounds having no Deviations (NDCD)
NDCR Number of Damaged Choke point Reactions (NDCR)
NDCC Number of Damaged Choke point Compounds (NDCC)

NDCRD Number of Damaged Choke point Reactions having no Deviations
(NDCRD)

NDCCD Number of Damaged Choke point Compounds having no Deviations
(NDCCD)

Deviation
RUP Reachable/Unreachable Products (RUP): equals one if all products

could be produced when blocking the reaction, otherwise zero
PUP Percentage of Unreachable Products (PUP): the percentage of prod-

ucts which cannot be produced when blocking the reaction
ND Number of Deviations (ND)
APL Average Path Length (APL): the average path length of the devia-

tions
LSP Length of the Shortest Path (LSP): the length of the shortest path

of the deviations
Flux analysis*

BFV Biomass Flux Value (BFV): biomass flux value when blocking a re-
action (under aerobic glucose condition)

* This analysis was done only for a available in silico model of E. coli iAF1260.
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Figure 2.7: A network example to illustrate the topological features based
on undirected graphs. Rectangles represent reactions and lines represent links be-
tween two neighboring reactions. Dark rectangles represent an observed reaction, v. Ex-
ample of an undirected graph (reaction-based representation of the metabolic network)
for computing degree, clustering coefficient and centrality features. The observed node
has a degree of 3 (NNR(v) = 3) and a clustering coefficient of 1/3 (CC (v) = 1/3). The
observed node is placed central and more pathways pass through the node (two out of six)
compared to the other depicted nodes. Therefore, its betweenness centrality is higher in
comparison with the other nodes (observed node: 2 (BW (v) = 2); other nodes: 0).

v is defined as follows as the ratio of the number of connecting edges mv among all
of the neighbors of v and the total number of all of the edges among them that could
be possible:

CCV (v) =
2mv

kv(kv − 1)
, (2.14)

where kv is the degree of node v. The clustering coefficient of the whole network is
defined by the average of the local clustering coefficients of all of the nodes in the
network [15, 164, 169]. Numerical examples of clustering coefficients are shown in
Figure 2.7.

Centrality measures
In the context of cellular networks, descriptors for node centrality are quite power-
ful for describing the essentiality of the node. They describe not only the impact
of the node to its direct vicinity but also the contribution of a node to the global
structure of the network. The simplest of all of the centrality measures is connectiv-
ity, the degree k, as mentioned in Section 2.3.3, which is used in the feature NNR;
NNR describes the local vicinity of the node. In a biological network, the degree is
commonly used to describe the importance of a node because we know that most
hubs (highly connected nodes) in the network are considered to be essential nodes.
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According to the power-law behaviors of real-world networks, metabolic networks
follow this rule in the same way. Not only is the degree, which is one of the central-
ity measures in the network, a good descriptors, but other centralities are also good
descriptors in this circumstance. Next, we cover centrality measures that consider
the entire network.

Betweenness centrality (BW) is the frequency at which a node has the shortest
path that connects all of the pairs of nodes [51]. The betweenness centrality BW (v)
for node v is given by

BW(v) =
∑

i 6=j 6=v∈V

σij(v)

σij
, (2.15)

in which σij is the number of the shortest paths from node i to node j, and σij(v)
is the number of shortest paths from i to j that pass through node v. The sum is
composed of all of the pairs (i, j) of nodes of the network (see Figure 2.7).

Closeness centrality (CN) is defined by the inverse of the average length of the
shortest paths from node v to all of the other nodes in the network, i.e.,

CN(v) =
n− 1∑
i 6=v,i∈V dvi

(2.16)

where dvi is a distance (path length) from v to i and n is the number of nodes in
the network [51].

Eccentricity centrality (EC). The eccentricity of a vertex v is defined as the
maximal distance from v to every other node in the network. Thus, the eccentricity
centrality (EC) is the average of the reciprocal of the eccentricity [95],

EC(v) =
n− 1

max
i 6=v,i∈V

(dvi)
(2.17)

where dvi is a distance (path length) from v to i and n is the number of nodes in the
network. This measure means that more central nodes have a higher value of EC
because such central nodes are the nodes with the smallest eccentricity value [95,
166].

Eigenvector centrality (EV) is based on the assumption that the utility of a
node is determined by the utility of the neighboring nodes [23]. This measure scores
a node higher if it is connected to high-scoring nodes. This centrality is the principal
eigenvector of the adjacency matrix of the network. Let xi denote the score of a
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node i. Thus, the eigenvector centrality EV (v) is the score of xv. Let Aij be the
adjacency matrix of the network, i.e., Aij = 1 if there is an edge between nodes i and
j, and Aij = 0 otherwise. For node i, the eigenvector centrality score is proportional
to the average of the eigenvector centrality scores of the neighbors of i:

xi =
1

λ

∑
j∈N(i)

xj =
1

λ

n∑
j=1

Aijxj, (2.18)

whereN(i) is the neighborhood of node i (as defined in Equation (2.4), Section 2.3.1),
n is the total number of nodes and λ is a constant. This equation leads directly
to the well-known eigenvector equation, Ax = λx. Normally, there are different
eigenvalues λ for which an eigenvector solution exists. According to the Perron-
Frobenius theorem, only the eigenvector of the largest eigenvalue is feasible to be
used for the eigenvector centrality [24].

2.4.2 Network topological features based on directed bipar-
tite graphs

Because metabolic networks are constructed by connecting reactions and metabolites
in a bipartite graph, some special and specific properties of a node in the graph
can be considered. Metabolites are nutrients or, in general, compounds that need
to be synthesized or catabolized by the enzymes of a cell. For identifying drug-
target enzymes, the network topology features are computed for reaction nodes. Let
G = (V,E) represent a directed bipartite graph, where V consists of two disjoint
sets of nodes M and R that represent metabolites and reactions, respectively [94].
Each edge connects the nodes from M to R and vice versa, representing directed
edges leading from the substrates of a reaction to the reaction and from the reaction
to its products (see Figure 2.4).

Basic properties of reactions
Reactions can be reversible or irreversible, and this characteristic is also used to
describe nodes in metabolic networks, i.e., the directionality (DIR) of a reaction.
The number of substrates and the number of products correspond to the number of
different metabolites that are needed for the given reaction and that are produced,
respectively. Note that for a node v ∈ R, the number of substrates NS (v) = din(v)
(the in-degree of a reaction node) and the number of products NP(v) = dout(v) (the
out-degree of a reaction node) are described in Section 2.3.3.



34 Methods

Figure 2.8: Network examples to illustrate the topological features based
on bipartite graphs. Circles represent metabolites, rectangles represent reactions, and
arrows represent directions of the metabolic flux. Dark rectangles represent the observed
reactions. The observed reaction is a choke point (CP(v) = 1). Enzymes are choke points
if they exclusively consume or produce a certain metabolite as depicted here for the filled
reaction being the only reaction producing the lower left metabolite.

Choke points

A reaction that is the sole reaction that consumes or produces a certain metabolite
in a metabolic network is considered to be a choke point [131, 167] (see Figure 2.8).
This feature may make it irreplaceable. The choke point feature CP(v) for a node
v ∈ R is given by the following:

CP(v) =

{
1 if (∃s ∈ Nin(v) ∧ dout(s) = 1) ∨ (∃p ∈ Nout(v) ∧ din(p) = 1),
0 otherwise.

(2.19)

where Nin(v) and Nout(v) are the incoming neighborhood and outgoing neighbor-
hood sets of v, which represent the sets of substrates and products of the reaction,
respectively.

Load scores

Load scores are defined to detect hot spots in the network and are based on the
ratio of the number of shortest paths passing through a reaction and the number
of nearest neighbor links attached to it [131]. This ratio is compared to the average
load value in the network. The load score LS(v) of a node v ∈ R is given by the
following:

LS(v) = ln

 σij(v)/kv∑
i,j∈M,t∈R σij(t)

/∑
t∈R kt

 (2.20)
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where kv is the degree of reaction v, and σij(v) is the number of shortest paths from
metabolite i to metabolite j that pass through v.

Damage in global networks
The damage estimates the potentially effected metabolites (the number of damaged
compounds (NDC)) and reactions (the number of damaged reactions (NDR)) down-
stream of the knocked-out reaction [100] (see Figure 2.9). For irreversible reactions,
it can be calculated using the procedure in Algorithm 1 for an observed reaction v (if
the reaction is reversible, the procedure is performed in both directions and the re-
sulting damaged compounds and reactions are put together). Briefly, the procedure
begins by deleting all of the metabolites that are produced by v, which are counted
as damaged compounds. Next, all of the reactions for which at least one substrate
is missing are deleted and counted as damaged reactions. All of the metabolites
that are produced by the missing reactions are effected and are included in the set
of damaged compounds. This process is repeated until no further nodes are deleted.
All of the deleted metabolites and reactions are collected and are counted, yielding
the feature values for damaged compounds (metabolites) and damaged reactions,
respectively. Combined with the knowledge of choke points and alternative path-
ways, the definition of damage can be applied to define further features, such as
the number of damaged choke points (see Algorithm 1) and the damaged nodes that
cannot be produced by alternative paths [125, 127] (see Algorithm 2).

Figure 2.9: A network example to illustrate the damage feature. Circles
represent metabolites, rectangles represent reactions, and arrows represent directions of
the metabolic flux. Dark rectangles represent an observed reaction. When removing the
observed reaction, damaged compounds and reactions (node d in circles and rectangles,
respectively) are estimated.
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Algorithm 1: FindDamage(G,v)

Input : A bipartite graph G = (V,E) where V consists of two disjoint sets of
vertices M and R representing metabolites and reactions, respectively.
An observed reaction v ∈ R.

Output: Number of damaged compounds (NDC(v)),
Number of damaged reactions (NDR(v)),
Number of damaged choke point compounds (NDCC(v)),
Number of damaged choke point reactions (NDCR(v)).

begin
damagedM←− Nout(v)
damagedR←− ∅
while |Nout(damagedM)\damagedR| > 0 do

damagedR←− Nout(damagedM)
damagedM ←− damagedM ∪Nout(damagedR)

end
damagedCkpM←− ∅
for u ∈ damagedM do

if CP(u) = 1 then
damagedCkpM←− damagedCkpM ∪ {u}

end

end
damagedCkpR←− ∅
for u ∈ damagedR do

if CP(u) == 1 then
damagedCkpR←− damagedCkpR ∪ {u}

end

end
NDC(v)←− |damangedM|
NDR(v)←− |damangedR|
NDCC(v)←− |damangedCkpM|
NDCR(v)←− |damangedCkpR|

end



2.4 Descriptors for finding essential nodes in a network 37

Algorithm 2: FindNoDeviationDamage(G,v)

Input : A bipartite graph G = (V,E) where V consists of two disjoint sets of
vertices M and R representing metabolites and reactions, respectively.
An observed reaction v ∈ R.

Output: Number of damaged compounds without deviations (NDCD(v)),
Number of damaged reactions without deviations (NDRD(v)),
Number of damaged choke point compounds without deviations (NDCCD(v)),
Number of damaged choke point reactions without deviations (NDCRD(v)).

begin
damagedM ←− Nout(v)
damagedR←− ∅
for s ∈ Nin(v) do

for p ∈ Nout(v) do
if no path(s, p) then

damagedM←− damagedM ∪ {p}
end

end

end
while |Nout(damagedM)\damagedR| > 0 do

damagedR←− damagedR ∪Nout(damagedM)
for s ∈ Nin(v) do

for p ∈ Nout(damagedR) do
if no path(s, p) then

damagedM←− damagedM ∪ {p}
end

end

end

end
damagedCkpM←− ∅
for u ∈ damagedM do

if CP(u) = 1 then
damagedCkpM←− damagedCkpM ∪ {u}

end

end
damagedCkpR←− ∅
for u ∈ damagedR do

if CP(u) = 1 then
damagedCkpR←− damagedCkpR ∪ {u}

end

end
NDCD(v)←− |damangedM|
NDRD(v)←− |damangedR|
NDCCD(v)←− |damangedCkpM|
NDCRD(v)←− |damangedCkpR|

end
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2.4.3 Deviations of nodes in the metabolic network as a
bipartite graph

For estimating the feasibility of possible flux deviations if the node under observa-
tion is discarded, several descriptors have been established. These features describe
possible alternative pathways from substrates of the knocked-out reaction to its
products. To calculate these descriptors, a modified breadth-first search algorithm
is used to simulate a qualitative metabolic flux from the substrates to the products
of the observed reaction when the reaction is discarded. The network without the
observed reaction will also be called a “mutated network” in the following. This
graph-based investigation was developed to measure “producibility” of the mutated
network [54] (see Algorithm 3). Thus, the feasibility of the alternative paths is an-
alyzed. A reaction is more likely to be essential for survival when the mutated
network cannot yield the products of the reaction from its substrates or if the mu-
tated network has difficulties reaching the products. The procedure in Algorithm 3
has been proven to be useful for investigating this scenario and is used to identify
drug targets for Plasmodium falciparum [54]. Briefly, the procedure begins by first

Figure 2.10: A network example to illustrate the producibility feature. Cir-
cles represent metabolites, rectangles represent reactions, and arrows represent directions
of the metabolic flux. Dark rectangles represent an observed reaction v. Reactions nearby
the observed reaction and its upstream substrates (S) and downstream products (P ).
Dash-line arrows represent possible alternative pathways to consume substrates S for pro-
ducing products P . The producibility gives the percentage of products of the considered
reaction that can be produced from the substrates via alternative pathways.
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Algorithm 3: Producibility(G,v)

Input : A bipartite graph G = (V,E) where V consists of two disjoint sets of
vertices M and R representing metabolites and reactions, respectively.
An observed knocked-out reaction v ∈ R.

Output: Reachable or unreachable all of the products (RUP(v))
Percentage of unreachable products (PUP(v)).

begin
S ←− Nin(v) // Direct substrates

P ←− Nout(v) // Direct products

upstreamR←− Nin(S)
S ←− S ∪Nin(upstreamR)
// include substrates of the reactions upstream of S

downstreamR←− Nout(P )
P ←− P ∪Nout(downstreamR)
// include products of the reactions downstream of P

Rxn←− (Nout(S) ∪Nin(P ))\{v}
S ←− S ∪Nin(Rxn)
// include substrates of reactions that have at least one of S and

produce a metabolite ∈ P into S.

availableS←− S // Set available substrates

discoveredR←− ∅
while |Nout(availableS)\discoveredR| > 0 do

discoveredR←− discoveredR ∪Nout(availableS)
availableS←− availableS ∪Nout(discoveredR)

end
if |availableS ∩ P | = |P | then

RUP(v)←− 1
else

RUP(v)←− 0
end

end
PUP(v)←− (|P | − |availableS ∩ P |)/|P |
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selecting all of the metabolites that act as incoming nodes (substrates) and outgo-
ing nodes (products) of the knocked-out reaction. The set of substrates is defined
as a set of available substrates S, and the set of products P is defined as a set of
desirable downstream products P of the knocked-out reaction. To obtain a broader
list of available substrates, the substrates of the reactions upstream of S and the
products of the reactions downstream of P are included in the sets S and P , re-
spectively. The substrates of the reactions that have at least one of the substrates
S as a substrate are also added to S. Furthermore, the substrates of the reactions
that have a metabolite of P as a substrate are also included in S. Next, reactions
are selected that use compounds of S as substrates. These selected reactions and
their products are incorporated into the list of discovered reactions and products.
The products are set as newly available metabolites in the network. This process is
repeated until no further reactions can be identified. Finally, metabolites of P that
cannot be produced are counted (for unreachable products P , see Figure 2.10 and
Algorithm 3). After finishing the process, we used the number of desired products
that could be produced within the mutated network (defined as the producibility of
the mutated network) for two features, i.e., a quality feature defining whether all
of the products could be produced (RUP, reachable/unreachable products) and the
percentage of products that could not be produced (PUP, percentage of unreach-
able products). The breadth-first search algorithm was implemented internally in

Figure 2.11: A network example to illustrate the deviation feature. Circles
represent metabolites, rectangles represent reactions, and arrows represent directions of
the metabolic flux. Dark rectangles represent an observed reaction v. The example shows
alternative pathways for the observed reaction. There are two alternative paths to produce
the product of the observed reaction and therefore the number of deviation is 2 (ND(v) =
2). Their respective lengths are one and two reactions. Thus, the length of the shortest
path is 1 (LSP(v) = 1) and the average of alternative path lengths is 1.5 (APL(v) = 1.5).
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the procedure of Algorithm 3.
We again run a breadth-first search on the network to estimate possible devi-

ations. Starting from the direct substrates, the breadth-first search explored the
network for finding the direct products of the knocked-out reaction. When the al-
gorithm visited these products, it stored the corresponding pathway and continued
its search to find further alternative paths until the network was entirely explored
or a maximal path length of 10 reactions was reached. The organism may have
many pathways to produce the products, causing the system to be more robust.
Thus, we counted the number of possible alternative paths that yield feature ND
(ND, number of deviations). We took the average path length (APL, average path
length) and the shortest path length (LSP, length of shortest path) of the deviations
as features for the classifier (see Figure 2.11). The deviation features were used to
find alternative pathways to produce products of the knocked-out reaction by its
substrates S. In the metabolic network, these substrates could also be consumed
by other reactions, yielding their products. Therefore, we kept track of alternative
paths in the network that had the potential to allow the organism to survive when
a reaction was blocked.

2.4.4 Descriptors from flux balance analysis

As introduced in Section 1.5.3, flux balance analysis (FBA) is a mathematical mod-
eling approach that often utilizes quantitative analysis of metabolic flows through
microbial metabolisms. In this section, the basic concepts and the mathematical
descriptions of FBA are explained.

Metabolic modeling
A metabolic network is a bipartite graph that contains two alternative nodes: re-
actions and metabolites (see the definition of a bipartite graph in Sections 2.3.1
and 2.3.2). Edges are represented by the consumer or producer relationships be-
tween reactions and metabolites.

Let sij be the stoichiometric coefficient of metabolite i in reaction j, which specifies
the number of metabolites produced or consumed by reaction j. Then, sij > 0
indicates that reaction j produces metabolite i while sij < 0 indicates that reaction
j consumes metabolite i. The equation sij = 0 means that metabolite i does not
participate in reaction j. For example, consider the reaction A + 2B 
 C; the
stoichiometric coefficients of A, B and C are -1, -2 and 1, respectively. The stoi-
chiometric coefficients sij can be combined into the so-called stoichiometric matrix
S = (sij), which is shown in Equation (2.8). The rate of the concentration change
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of a metabolite can be formulated by a set of differential equations as follows:

dxi
dt

=
∑
j

sijvj (2.21)

where xi is the concentration of metabolite i, sij is the stoichiometric coefficient,
and vi is a consumption/production rate for reaction j.

Usually, we model the dynamic behavior of a system in which metabolite and
enzyme concentrations change over time with kinetic models. However, kinetic mod-
els can become complex, with 15-20 parameters for a single complex enzyme; these
models require a substantial amount of experimental data. Therefore, kinetic mod-
els work well for smaller models in which the kinetic information of the enzymes is
known. The ultimate goal for the development of dynamic models is the simulation
of the entire cellular metabolism. However, the success of such approaches has been
severely hampered by a lack of kinetic information on the dynamics and regulation
of metabolism [121, 158]. However, constructed metabolic networks are large, com-
prising hundreds or thousands of reactions and metabolites in the absence of kinetic
information; it is still possible to assess the theoretical capabilities and operative
models of metabolism using FBA [20, 49, 55, 56, 121]

Steady-state assumption
FBA is based on the assumption of mass conservation at a steady state, where
internal metabolite concentrations are constant over time. Therefore, the concen-
tration change of each internal metabolite i is zero (dxi

dt
= 0). With this assumption,

Equation (2.21) can be formulated as follows:∑
j

sijvj = Sv = 0 (2.22)

where S is the m × n stoichiometric matrix of m metabolites and n reactions in
the network. The vector v represents all of the reaction rates (also called metabolic
fluxes) in the metabolic network. The ranges of individual metabolic fluxes are then
constrained by the following:

αj ≤ vj ≤ βj (2.23)

where αj and βj indicate a minimal and maximal flux of reaction j, respectively.
These inequality constraints allow us to model the reversibility of each metabolic
reaction. If a reaction is reversible, the flux of the reaction vj can be either negative
or positive. In other words, −∞ ≤ vj ≤ ∞. Positive vj indicates a forward direction
of the reaction, converting its substrates into its products; in turn, a negative vj
indicates a backward direction. These constraints allow both forward and backward
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directions for the reactions. If a reaction is irreversible, its flux constraint would be
0 ≤ vj ≤ ∞. If we want to block a reaction, we can force the flux of this reaction to
be equal to zero (vj = 0). In addition, the benefit of these inequality constraints is to
simulate metabolic capabilities under certain conditions such as the glucose minimal
medium condition, for which we can constrain the flux of the glucose uptake rate
within a specific range. Finally, the set of vectors that satisfies all of the set-up
constraints in Equations (2.22) and (2.23) is a set of feasible fluxes that define the
capabilities of the metabolic network under specific conditions.

For the construction of a metabolic model using stoichiometric constraints when
predicting the growth of a cell, it is necessary to formulate the biomass production
(see Section 1.5.3). This scenario can be defined as a set of reactions that directly
produce the metabolites (e.g., amino acids and nucleotides) into either biomass or
macromolecules that form the biomass. Thus, analyzing these feasible fluxes, the
production of biomass constituents can be formulated as the following:∑

j

cjvj (2.24)

where cj indicates portions of selected fluxes for the biomass composition. If cj = 0,
the flux of reaction j is not taken into account. The biomass composition of a
given organism comprises the relative amounts of the molecules and these compo-
sitions can be found in the literature [55, 121]. The flux that is associated with this
biomass composition represents the specific growth rate of an organism. Finally,
FBA formulation is a linear programming problem that optimizes the following:

maxv

n∑
j=1

cjvj (2.25)

and is subject to
n∑
j=1

sijvj = 0 (2.26)

Vj,min ≤ vj ≤ Vj,max (2.27)

where Vj,min and Vj,max are the boundary conditions of flux j. Comparing the
growth rate of mutant and wildtype in silico strains reveals the set of essential
reaction knockouts. These results can be used to suggest genes and enzymes that
are essential and non-essential for a specific condition.

An in silico representation of E. coli has been well developed and studied to de-
scribe a bacterium’s metabolic capabilities [49, 55, 56]. Analyzing flux balances
under aerobic glucose conditions using the COBRA toolbox [20] and the latest re-
constructed metabolic network of E. coli (iAF1260 model) has been successfully
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applied to detect the essentiality of genes [55]. In this thesis, we performed a single
reaction deletion on the network and calculated flux values by FBA using the CO-
BRA toolbox [20] to assess essential reactions under aerobic glucose minimal medium
conditions. A reaction was determined to be essential if the respective prediction of
the mutated network’s maximal biomass production was zero or less than one per-
cent of the wildtype biomass production. The maximal biomass flux value (BFV)
of each mutated network was used as our descriptor for each reaction as well.

2.5 Genomic and transcriptomic features

Apart from the topological features that are described in Section 2.4, we also
used other features derived from genomic and transcriptomic data, such as in-
formation about gene sequences, gene homology and gene expression. An anal-
ysis of codon usage with respect to gene sequences was also performed. Homol-
ogous genes were counted to support the classification that a knocked-out gene
may have homologs in the genome that can replace the function of the knocked-
out gene. Gene conservation among various species was measured as a single
feature, which is called phyletic retention. In addition, the properties of co-
expressed genes using microarray data were also considered. Table 2.4 summarizes
the list of all of the genomic and transcriptomic features. In this thesis, DNA se-
quences of all of the open reading frames (coding regions of genes) were taken from
the NCBI database (http://www.ncbi.nlm.nih.gov/, E. coli : [GenBank:NC 000913],
P. aeruginosa: [GenBank:NC 002516] and S. typhimurium: [GenBank:NC 003197]).
Gene expression data for E. coli were obtained from a study in which the regulation
during oxygen deprivation was investigated [39] and for P. aeruginosa from a study
observing the response to agmatine and putrescine treatment [36] and from a study of
the quorum-sensing response to environmental conditions [145]. For S. typhimurium,
we used data from cells that were treated by limiting nutrients at different time
points [91] and data from a study that captured the regulatory response in the en-
vironment of the host [44].

2.5.1 Genomic features derived from gene sequences

Analysis of codon frequencies and the length of a gene sequence
As explained in Section 1.4.1, genes consist of triplets of bases (codons) that encode
amino acids that make up proteins. Codons were counted for each investigated gene
from its coding region. We counted base compositions at silent sites (third position
of the codons) yielding the features T3s, C3s, A3s and G3s for thymine, cytosine,
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Table 2.4: Genomic and transcriptomic features

Short form Explanation
Codon usage

Nc Number of codons
N3s Base composition at silent sites (T3s, C3s, A3s, G3s)
glt The frequency of amino acids glutamine (exemplarily)

Homologs
NAR Number of Associated Reactions (NAR): the number of reac-

tions that base on the knocked-out gene
Hn Homology at different expectation values: the

number of homologous genes with e-value cutoff
10−30, 10−20, 10−10, 10−7, 10−5, 10−3 (H30, H20, H10, H7,
H5, H3)

Phyletic retention
PR Phyletic Retention (PR): the number of homologs in the other

prokaryotes
Gene expression

NGSE Number of Genes having Similar Expression (NGSE): the num-
ber of genes that have similar expression (correlation coefficient
> 0.8)

MCC Maximum of Correlation Coefficients (MCC): maximum value
of the correlation coefficients for all neighboring genes

adenine and guanine, respectively. Additionally, the number of codons coding for
all of the encoded amino acids (phe, ser, tyr, cys, leu, trp, pro, his, arg, gln, ile,
met, thr, asn, lys, val, ala, asp, glu and gly) were counted. All of the codon counts
were normalized by the division of the total number of codons (Nc). Nc was also
used as a feature.

Analysis of sequence similarity
Two major concerns were followed when the sequence homology was studied.
Gene homologs were searched for within the same organism and across organ-
isms. The analysis of gene similarity can be performed by comparing the DNA
sequences of two genes using the Basic Local Alignment Search Tool (BLAST [7],
http://www.ncbi.nlm.nih.gov/BLAST/). BLAST is an alignment algorithm that
compares DNA sequences or amino-acid sequences of different proteins. A BLAST
search enables a researcher to compare a query sequence with a library or database
of sequences and to identify library sequences that resemble the query sequence
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above a certain threshold (so-called E-value). The E-value represents the expected
value that describes the number of hits one can “expect” to see by chance when
searching a database of the relevant specific size.

• Homologs within the same species. Assuming that two genes that have
similar sequences may encode proteins with similar functions [34, 112], we cal-
culated the number of homologous genes that may have assumed the function
of the knocked-out gene. Homologous genes were searched for using BLAST [7]
against all of the open reading frames (coding regions of genes) of the respective
organism (E. coli, P. aeruginosa, S. typhimurium). We used different E-value
cutoff values, i.e., 10−3, 10−5, 10−7, 10−10, 10−20 and 10−30, to obtain different
numbers of homologs found within a genome that yielded the features H3, H5,
H7, H10, H20 and H30, respectively.

• Homology across species and phyletic retention. Homologous genes
may be conserved across organisms. It has been shown that conserved genes
are more likely to be essential [64]. Therefore, a measure of the number
of organisms in which a gene has homologous counterparts (phyletic reten-
tion ) can be a very predictive feature for essentiality [64]. According to
Gustafson’s study [64], we selected 177 prokaryotic organisms (except for
E. coli, P. aeruginosa and S. typhimurium) from which we counted the num-
ber of organisms that had an open reading frame that was homologous to
the sequence of the knocked-out gene. This task was performed with E. coli,
P. aeruginosa and S. typhimurium using bi-directional best BLAST hits (E-
value cutoff of 0.1).

2.5.2 Transcriptomic features derived from gene expression
analysis

The expression of thousands of genes can be quantitatively monitored at the same
time using a DNA microarray. A DNA microarray is a large array of short DNA
molecules that are bound to a glass slide [4, 113], which are specific for each gene
to measure, employing Crick-Watson base pairing (for details [4]). To use a DNA
microarray to monitor gene expression, mRNA is isolated from the cells being stud-
ied and is converted to cDNA, which is labeled with a fluorescent probe and then
hybridized to the microarray. After hybridization, the array is imaged. The rel-
ative expression of a specific gene is then represented by the image intensity at a
specific position, where the DNA sequence of a gene has a spot. To allow for the
appropriate comparison of data obtained from different microarrays, normalization
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must be performed. At present, there are many established methods for normal-
ization [72, 113, 122], and we used variance stabilizing normalization (vsn) [72]. To
obtain an estimate for the similarity of expression profiles, we calculated the Pearson
correlation coefficient for all of the pairs of genes [113, 122].

Given the expression ratios for two genes under n conditions, X = (x1, x2, x3,. . . , xn)
and Y = (y1, y2, y3,. . . , yn), and the correlation coefficient can be computed as fol-
lows:

R =
cov(X, Y )√
var(X)var(Y )

(2.28)

where

cov(X, Y ) =
n∑
i=1

(xi − x̄)× (yi − ȳ), (2.29)

var(X) =

√√√√ n∑
i=1

(xi − x̄)2, var(Y ) =

√√√√ n∑
i=1

(yi − ȳ)2 (2.30)

cov(X, Y ) represents the covariance between X and Y and var is the variance of the
data. Correlation coefficient values range from -1 to +1. A correlation coefficient
that is close to 1 suggests that the genes behave similarly. If a correlation coefficient
is equal to 1, then the two genes have exactly the same expression profiles, while a
correlation coefficient value that equal to -1 suggests that the two genes have exactly
the opposite expression profiles. A value of 0 means that no linear relationship can
be inferred between the expression profiles of the genes. We used gene expression
data concerning an unspecific regulation, i.e., not from a small band but from a
broad range of effected metabolic pathways. Genes in the same pathway often
show co-regulation [138]. Therefore, the maximum correlation coefficient (MCC) of
all of the neighboring reactions of the knocked-out reaction was used as a feature.
This feature indicated that the knocked-out reaction had a strong connection to
its neighbors and might be heavily used in a certain pathway (see Figure 2.12).
Additionally, we calculated the number of reactions with similar gene expression
(NGSE, correlation coefficient > 0.8) and used it as a feature for an estimate of
co-regulated analogous genes.
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Figure 2.12: The maximum correlation coefficients among the neighbors.
The figure depicts two subnetworks of two reactions, A and B, with their neighboring
nodes in the metabolic networks, where edges are labeled with the correlation coefficients.
The maximum correlation coefficient (MCC) of all of the neighboring reactions of the
knocked-out reaction was used as a feature to estimate the possibility of the reaction to
be used by its neighbors (indicating its importance). Therefore, MCC(A) is 0.9 while
MCC(B) is 0.3, which means that reaction A is highly cooperative with its neighbors,
assuming that it is more likely to be important than reaction B in the network.

2.6 Preprocessing and feature evaluation

2.6.1 Normalization of features

Features were normalized for the training and validation of the classifiers to bring
them into similar orders of magnitudes, which is beneficial for classification [70]. In
this work, we had to cope with various scales for features. For example, the feature
CP is Boolean, indicating that an observed reaction is either a choke point or not.
The value of this feature was set to be one or zero. The feature PUP, estimating
percentage of producibility, was continuous and ranged from 0 to 1. The feature
NNR, the number of neighboring reactions, ranged from 0 to a large number of nodes
in the network. The features were scaled to a range from 0 to 1 using “Min-Max
normalization”. Let xi represent all of the values within one set of features; x́i are
normalized values computed by the following:

x́i =
xi −min(x)

max(x)−min(x)
(2.31)
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2.6.2 Feature evaluation and selection

Feature evaluation and selection is the process of choosing the features that are most
relevant for discrimination. This task is useful for reducing the dimensionality of the
data for the classifier and results in reducing the computational time and improving
the prediction performance. We first evaluated our features using a correlation-
based feature analysis [66], and then we selected the optimized set of features with
a top-down approach.

Correlation-based feature analysis
We calculated the correlation coefficient between xf , which represents the vector of
all of the sample values of a feature f , and y, which is the vector of all of the sample
classes as follows:

R(f) =
cov(xf , y)√
var(xf )var(y)

(2.32)

where cov represents the covariance and var is the variance. The correlation coeffi-
cient gives the principle relationship between a feature and a class label. For each
correlation analysis, we calculated a significance (p-value) for the relationship using
R(f) [77].

Top-down feature selection
Final feature selection was performed by a top-down approach. We trained clas-
sifiers in terms of maximizing the overall accuracy using all of the features. Each
single feature was discarded from the dataset and the performance of the machine
was observed. Testing the performance of the machine was performed by a cross-
validation. The accuracies of the machines missing one feature were compared and
the best machine was kept for the next iteration. This procedure was repeated until
the accuracy did not increase. The machine with the best accuracy was selected as
the best classifier, and its features were selected as the optimized feature set.

2.7 Machine learning model to identify potential

drug targets

All of these features describe the network topology, genomics and transcriptomics
and can support finding an essential node in the network. However, these features
yield much stronger predictions when combined. There exists a variety of methods
to combine such descriptors. We followed a supervised machine learning approach,
specifically the Support Vector Machine (SVM), which we used to classify the essen-
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tial and non-essential genes. For this task, we describe very briefly how (supervised)
machine learning works in principle and provide additional details on SVMs. The
machine learning algorithm or classifier requires prior knowledge about a set of ob-
jects. These objects are composed of values for their descriptors and a class label.
In our case, the object is a node in the network and its descriptors include, for
example, whether an object is a choke point, its connectivity or other features. The
class label of the object is the property of whether it is essential. The classifier
then “learns” from a given dataset for which the class labels are known, which,
in our case, is the information of whether a node is essential and may have been
observed experimentally by a knockout study for the coding gene of the protein. Af-
ter learning, the classifier is applied to superimpose the class labels from the given
descriptors (features) of new objects for which the class labels are not known. We
divided this section into two parts. Section 2.7.1 explains the Support Vector Ma-
chine. Section 2.7.2 describes our machine learning approach in combination with a
voting scheme technique.

2.7.1 Support Vector Machines

The support vector machine [30, 162] is an effective learning algorithm that is a
widely used method for classification. This algorithm addresses the design of a
linear classifier that is optimal in the sense that the distances to the points belong
to separated classes.

Linear support vector machines
The simplest formulation of the classification task is the task for two possible classes
of objects; the two classes could be, for example, -1 for non-essential genes and 1
for essential genes. The classifier attempts to find a function f : RN → {−1, +1},
with N being the number of attributes, or features. The object ~x ∈ RNwith its N
features is a feature vector, and y ∈ {−1,+1} is its desired class. A training set
that consists of features and class pairs (~x, y) is used to estimate the function f. For
M observations (or samples), the training set T can be written as the following:

T =
{

(~xi, yi) ∈ RN × {−1, +1}, i = 1, ..., M
}
. (2.33)

The N features of an object i are stored in the elements of each vector ~xi. To find
a function f that correctly classifies objects, an easy way is to assign an object ~x to
be in the class +1 if f(~x) ≥ 0; the object would be in the class -1 otherwise. With
linearly separable data, we can formulate a linear classifier function or a linear
discriminant function as the following:

f(~x) = sign(~w · ~x + b) (2.34)
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where ~w ·~x indicates the dot product. The sign function returns -1 or +1 depending
on whether the argument is negative or positive. The object ~x is a feature vector,
which is an N -dimensional vector, and ~w is an N -dimensional vector of weights,
while b is a scalar. A separating hyperplane is L = {~x| ~w · ~x+ b = 0}. In two-
dimensional space, an example of a straight linear separation of the feature vectors
that belong to two classes, which are depicted by circles and crosses, is shown in
Figure 2.13. To construct a linear classifier, we are looking for a vector [~w b] that
satisfies the following system of linear inequalities:

~w · ~x + b

{
< 0 for y = −1
> 0 for y = +1

(2.35)

The system in Equation (2.35) is homogeneous, which means that if [~w b] is a solution
of the problem, then any other vector α [~w b] obtained by multiplication by a positive
constant α > 0 is also a solution [30, 162]. Thus, ~w and b can be rescaled such that
the data points closest to the hyperplane satisfy the following:

~w · ~x + b

{
≤ −1 for y = −1
≥ +1 for y = +1

(2.36)

which can be reformulated to

y(~w · ~x + b)− 1 ≥ 0 (2.37)

For finding a suitable weight [~w b] of the system in Equation (2.37), Support Vector
Machines use optimization methods by formulating linear or quadratic programming
problems. SVMs yield an optimal weight in terms of maximizing margins [30, 102,
110], such as in the description that follows.

Consider two samples ~x1 and ~x2 from different classes, with ~w · ~x1 + b = 1 and
~w · ~x2 + b = −1 in the system of Equation (2.37), respectively. Then, the margin
is given by the distance of these two points, which are measured perpendicular
to the hyperplane, i.e., ~w/ ‖~w‖ · (~x1 − ~x2) = 2/ ‖~w‖. Thus, by minimizing ‖~w‖,
the margin is maximized and the support vectors are the objects ~x that satisfy
y(~w ·~x + b)− 1 = 0. By substituting ‖~w‖with 1

2
‖~w‖2 (the factor of 1/2 is used for

mathematical convenience) without changing the solution and recalling the idea of
the construction of the system in Equation (2.37), the parameters ~w, b of an optimal
hyperplane can be obtained from the solution to the quadratic programming problem

min
1

2
‖~w‖2 (2.38)

subject to the constraints
y(~w · ~x + b)− 1 ≥ 0. (2.39)
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Figure 2.13: Linear separating hyperplanes in a two-dimensional feature
space. In a two-dimensional space, the data points are plotted for one feature on the
horizontal axis and the other feature on the vertical axis. There are two classes, which
are marked by circles and crosses. (a) There is an infinite number of possible linear
discriminant functions, or lines, for separating the two classes. (b) The SVM attempts
to find the optimal separation by maximizing the margin. The dashed lines mark the
margin and are chosen using the closest data points to the line. The vectors (points) that
constrain the width of the margin are the support vectors and are shown in bold.

There are many examples in which the optimal discriminant function f(~x) = sign(~w·
~x + b) has better properties than a “randomly chosen” discriminant function, such
as in Figure 2.13, in the optimal line in Figure 2.13(b) and in the randomly chosen
line in Figure 2.13(a).

Because it is difficult to resolve this specific optimization with regard to ‖~w‖ (the
norm is calculated from a square root), ‖~w‖ is replaced through 1

2
‖~w‖2, which does

not change the solutions for w and b. To solve the minimization problem with a
multivariate function f(~w,~b) that is subject to a set of constraints, the technique
of Lagrange multipliers can be applied by introducing positive Lagrange multipliers
αi, i = 1, ...,M . With the function f(~w,~b) to be minimized and the constraints

c(~w,~b) given in Equation (2.39) the Lagrangian is the following:

LP =
1

2
‖~w‖2 −

M∑
i=1

αiyi(~xi · ~w + b) +
M∑
i=1

αi, (2.40)

where αi ≥ 0,∀i. Then, we set the partial derivatives ∂
∂ ~w
LP and ∂

∂b
LP equal to zero,

which results in the following conditions:
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~w =
M∑
i=1

αiyi~xi (2.41)

M∑
i=1

αiyi = 0. (2.42)

The LP in Equation (2.40) forms the primal formulation of the optimization problem.
By substituting Equations (2.41) and (2.42) into Equation (2.40), the LP can be
converted into a dual problem LD, which is the following:

LD =
M∑
i=1

αi −
1

2

M∑
i=1

αiαjyiyj~xi~xj. (2.43)

These two formulations, LP and LD, are derived from the same objective function
but they address different constraints. By minimizing LP or by maximizing LD,
both problems yield the same optimal solution.

For the training of the SVM, the original quadratic problem in Equation (2.38)
with the constraints in Equation (2.39) can be transformed into the problem of
maximizing LD with respect to αi subject to the constraints in Equation (2.42) and
the positivity of the αi. Notice that for every training point, there is a Lagrange
multiplier αi. In the solution, for some of those points, αi = 0 holds, and for some,
αi > 0. The points with αi > 0 are the support vectors. The support vectors are the
critical points of the training set because they lie nearest to the decision boundary,
and they determine the separating hyperplane; if all of the other training points
were removed and the training was repeated, the separating hyperplane would be
the same. Obviously, the weight ~w is explicitly given by Equation (2.41), whereas the
bias b is not. However, b can be determined by applying the Karush-Kuhn-Tucker
(KKT) complementary condition for the primal problem LP [30, 34]:

αi(yi(~w · ~xi + b)− 1) = 0 ∀i. (2.44)

To apply the trained SVM for any test sample ~xt, the following hyperplane decision
function has to be evaluated:

f(~xt) = sign(~w · ~xt + b) = sign(
M∑
i=1

αiyi(~xt · ~si) + b) (2.45)

where ~si are the support vectors. Notice that in the dual formulation in Equa-
tion (2.43), the dot product ~xi · ~xj is presented, and here again, the dot product
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~xt · ~si appears. For the formulation of non-linear SVMs, these dot products can
be replaced by a non-linear kernel function (see Equation (2.51) below). For non-
separable data, additional positive slack variables ξi that measure classification
errors are introduced. Consequently, the quadratic problem in Equation (2.38) with
the constraint in Equation (2.39) can be formulated in a relaxation version as the
following:

min

(
1

2
‖~w‖2 + C

N∑
i=1

ξi

)
, (2.46)

which is subject to the following constraints:

y(~w · ~xi + b)− 1 + ξi ≥ 0, ∀i, ξi ≥ 0 ∀i. (2.47)

The sum of the slack variables
∑
ξi is an upper bound on the number of training

errors where C is a parameter that controls the penalty for errors and has to be
chosen by the user. This formulation is called a soft margin classifier, and it allows
some training points to lie on the wrong side of the decision hyperplane. The
formulation of the primal problem by applying the Lagrangian multipliers αi and µi
is the following:

LP =
1

2
‖~w‖2 + C

M∑
i=1

ξi −
M∑
i=1

αi [yi(~xi · ~w + b)− 1 + ξi]−
M∑
i=1

µiξi. (2.48)

where the µi were introduced to enforce ξi ≤ 0. The formulation of the dual problem
LD becomes the same as the formulation for the separable case of Equation (2.43)
but with an additional constraint 0 ≤ αi ≤ C, ∀i. The solution of the weight ~w
is again given by Equation (2.41), whereas the threshold b can be computed when
applying the KKT complementary conditions:

αi [(yi(~w · ~xi + b)− 1 + ξi] = 0 and µiξi = 0. (2.49)

Non-linear support vector machines
For non-linearly separable samples, we do not need to increase the complexity of
the decision function, but rather, we need to increase the power of the classifier by
performing the classification in higher dimensional space, for which the data become
linearly separable [162]. Thus, the generalization of the above mentioned methods
can be formulated for the non-linearly separable samples [162]. Consider the map-
ping Φ : RN → H, which maps the N -dimensional training data into some generally
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unknown but usually higher dimensional space H such that the data become linearly
separable as can be expressed by a modified version of Equation (2.37):

y(~w · Φ(~x) + b)− 1 ≥ 0. (2.50)

As the mapping Φ is usually unknown and the explicit computation of mappings
to H (which can be infinite dimensional) is very expensive in terms of resources,
this formulation does not allow ~w to be accessed for computation. However, notice
that because of the way in which the data appears in the training problem, the dual
problem in Equation (2.43) is in the form of dot products, ~xi ·~xj. With this property,
we introduce a given kernel function K(~xi, ~xj) that represents a dot product in
Φ [30, 162]:

K(~xi, ~xj) = Φ(~xi) · Φ(~xj). (2.51)

Then, we replace the dot product Φ(~xi) · Φ(~xj) in Equations (2.43) and (2.45) by
the kernel function K. Therefore, the actual mapping Φ of the data can be avoided.
Next, exactly the same techniques that were developed for the linear case can be
used to divide two non-linearly separable samples. The optimization problem in
Equation (2.43) then becomes the maximization the following:

LD =
M∑
i=1

αi −
1

2

M∑
i=1

αiαjyiyjK(~xi, ~xj), (2.52)

which is subject to
M∑
i=1

yiαi = 0 and 0 ≥ αi ≥ C ∀i. (2.53)

Figure 2.14: Non-linear separating hyperplanes in a two-dimensional fea-
ture space.
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Thus, the hyperplane decision function in Equation (2.45) for a testing sample xt
becomes the following:

f(~xt) = sign(~w · ~xt + b) = sign(
M∑
i=1

αiyiK(~xt, ~si) + b) (2.54)

where ~si are the support vectors. A function that satisfies Mercer’s condition can be
used as a kernel function (see [30, 162]). This condition tests whether a prospective
kernel is a dot product in some space but does not provide information on the map-
ping function Φ or the target space H. There exists a number of kernel functions
that satisfy the property K(~xi, ~xj) = Φ(~xi) · Φ(~xj) and that satisfy Mercer’s condi-
tion. Commonly used non-linear kernel functions are shown in Table 2.5. Figure 2.14
shows a set of data that are not linearly separable in two-dimensional space. The
non-linear line classifier can be obtained with a non-linear kernel for which a corre-
sponding mapping (shown in the right part of Figure 2.14) can be found such that
the data become linearly separable. In our work, we used the Gaussian radial basis
function kernel. Therefore, two parameters needed to be defined: the error penalty
parameter C and the kernel parameter γ, which controlled the variance of the Gaus-
sian kernel. To optimize C and γ, we performed a grid search on a limited parameter
space [70]. Different parameter pairs (C = 2−4, 2−3, ..., 24, γ = 2−4, 2−3, ..., 24) were
systematically tested to train different SVMs, and their classification accuracies were
evaluated using separate validation sets. The pair (C, γ), which led the classifier to
the best results, was then chosen as the optimal parameter set, and this task was
performed by a cross-validation (see Section 2.8).

Table 2.5: Commonly used kernel functions

Name K(x, y)
Linear x · y

Gaussian radial basic
function (RBF)

exp(−‖x−y‖
2

γ2
)

Polynomial (x · y + θ)δ

Sigmoidal tanh(κx · y + θ)
Greek letters represent real-valued parameters.
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One of the crucial issues in machine learning is the problem of unbalanced data for
training a machine. This data contains significantly fewer training samples of one
class compared to another class. For balanced datasets, support vector machines
work well because they aim to optimize overall classification accuracy on training
sets. For unbalanced data, the decision boundary tends to be biased towards the
majority class; therefore, the minority class samples are more likely to be misclas-
sified. To limit the influence of the majority class in favor of the minority class,
the original formulation of SVMs can be extended to weighted SVMs [119]. The
weighted SVMs allow systematic weighting of classes by introducing class-specific
penalty parameters C+ and C− instead of using the same penalty parameter C for
all of the classes, as introduced in Equation (2.46). Thus, the objective function to
be minimized becomes the following:

1

2
‖~w‖2 + C+(

∑
i:yi=1

ξi) + C−(
∑

i:yi=−1

ξi) (2.55)

which is subject to the same constraints as Equation (2.47). Because our data con-
tained small numbers of positive samples, we applied the weighted SVMs with var-
ious weights on the positive class. The software library LIBSVM [33] under R envi-
ronments, which was implemented as the package e1071 [45], has been used for our
SVM classifications.

2.7.2 Voting scheme

Voting is a commonly used technique to combine the predicted outputs from differ-
ent classifiers to produce better estimates in a final prediction. With this technique,
it has been shown that for a two-class problem, if we have an ensemble with inde-
pendent classifiers each with an accuracy greater than 0.5, i.e., better than random
guessing, the accuracy of the final classifier increases as the number of classifiers
increases [48, 139, 140]. Furthermore, this technique can be used to cope with the
problem of large data, very small data, and unbalanced data [48, 125]. Because it
is often not feasible to train a classifier with the whole dataset, the approach is to
divide the data into smaller subsets, train a classifier with each subset, and combine
the outputs of these classifiers into a single prediction. With very small datasets,
the trained classifier can be unstable if we add or remove just one or two samples.
Using the voting technique, we can draw several overlapping subsamples from the
original data, learn a classifier with each subsample, and then combine their out-
put by summing over the positive predictions of each classifier (positive “votes”).
Unbalanced data can cause problems because the classifier may be overwhelmed by
the majority class. To train an unbiased classifier, we can draw balanced subsam-
ples several times instead. To make a final prediction, different thresholds can be
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selected, which enables the stringency to be adjusted. Performance measures are
then derived by plotting a receiver operator characteristics (ROC), which sketches
sensitivities versus specificities for a range of different stringencies (see the next sec-
tion). Our data were unbalanced, with a small positive and a large negative class.
Thus, we enhanced the performance of our predictions by generating several clas-
sifiers that were trained with balanced data selected by random sampling and the
described voting technique (see Section 3.3).

2.8 Performance measures

We used several performance measures, and they can be determined from confusion
matrices (also called a contingency table, see Table 2.6). The commonly used mea-
sure is the overall classification rate such as the accuracy (the number of correctly
predicted samples / the number of samples). The accuracy is calculated by the
following:

accuracy =
TP + TN

TP + TN + FP + FN
(2.56)

Table 2.6: Confusion matrix for a two-class classification task

True class
Positive Negative

Prediction Positive TP FP
class Negative FN TN

where TP are the true positives, TN are the true negatives, FP are the false positives
and FN are the false negatives (see Table 2.6)

Other measures are sensitivity, specificity, positive predictive value and negative
predictive value. The sensitivity reflects the accuracy on the positive examples
while the specificity provides the accuracy on the negative examples:

Sensitivity =
TP

Total Positives
=

TP

TP + FN
(2.57)

Specificity =
TN

Total Negatives
=

TN

TN + FP
(2.58)

The positive predictive value (PPV) measures the percentage of positive predictions
made by the classifier that are correct. The PPV is also called precision. Similarly,
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the negative predictive value (NPV) provides the percentage of correctly negative
predictions,

Positive predictive value =
TP

TP + FP
(2.59)

Negative predictive value =
TN

TN + FN
(2.60)

Estimating the performance for the data that the classifier has been trained with
leads to an overestimation of its performance. Therefore, another dataset (called
the validation set) with known class labels is used and the trained function of the
classifier is applied to predict these labels. The predictions are then compared to
the true values and the above described performance measures are calculated. This
procedure provides a more objective estimate of how the classifier performs when
applied to data for which the class labels are not known. After this performance
estimation, the classifier is applied to new data. For these data objects, only the
feature values are known and the classifier then predicts to which class each object
belongs using this information. To achieve a general and reliable performance esti-
mation when the dataset with known class labels is small, the training and testing
procedure can be repeated on several independent datasets, which is called a cross
validation [154].

Cross validation
The simplest cross-validation is the leave-one-out cross-validation; and this cross-
validation scheme was mostly used in our analyses. For this procedure, except for
one object, all of the objects with known class labels are included for learning, and
the classifier is validated with the object that was taken out for learning. As this
procedure does not give a very precise performance estimate, the whole procedure
is repeated for every object (with a known class label) to be excluded and the
performance is estimated by taking the mean prediction performance of all of these
validations. This procedure can, of course, also be performed by excluding more
than one object.

For a k-fold cross-validation, the training data are randomly divided into k
equally sized non-overlapping subsets, where k indicates the number of subsets,
which can be any number from two to the number of training examples. Systemati-
cally, one subset is used as a test set and the other subsets are used together as the
training set for the training of the classifier. The trained classifier then predicts the
classes of the test set, and the predictions are compared to the true class labels to
assess their performance. This procedure is systematically repeated, each time a dif-
ferent subset is chosen as a test set and the concatenation of the other k− 1 subsets
as a training set, respectively. The overall performance is estimated by averaging
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over all of the performances of each subset used as a test set. In this way, such a
cross-validation uses the entire training data in a more efficient manner by increas-
ing the size of the test set, as the entire training data can be used for testing. The
overall accuracy can be measured as making predictions on the entire training data.
To assess a more general estimate of the overall performance, k-fold cross-validation
can be repeated several times using different randomly divided subsets.

ROC curve and AUC
A receiver operating characteristic (ROC) curve and the area under the ROC curve
(AUC) are the two most common measures for assessing the overall classification
performance [124]. The ROC curve was used to measure the performance for a clas-
sifier system with various thresholds. The curve is a graph showing the relationship
between benefits (correct detection rate or true positive rate) and costs (false detec-
tion rate or false positive rate) as the decision threshold varies (see in Figure 2.15).
The ROC curve shows that for any classifier, the true positive rate (TPR) cannot
increase without also increasing the false positive rate (FPR). The true positive rate
is the same as sensitivity, and the false positive rate is equal to

Figure 2.15: An example of an ROC curve. Each threshold yields a prediction
result and one point in the ROC curve. For example, a certain threshold at point A yields
a sensitivity of 0.65 and a specificity of 0.9, while point B (with another threshold) yields a
sensitivity of 0.8 and a specificity of 0.8. The best possible prediction method would yield
a point in the upper left corner at the coordinate (0,1), which represents 100% sensitivity
(no false negatives) and 100% specificity (no false positives). The dashed diagonal line
represents a completely random prediction, which yields an area under the curve (AUC)
of 0.5. The higher the AUC is, the better the performance of the classifier is.
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FPR =
FP

Total Negatives
=

FP

TN + FP
(2.61)

= 1− specificity.

Hence, the ROC curve depicts the sensitivity versus 1 - specificity for various thresh-
olds (see Figure 2.15). The area under this curve (AUC) is a measure to yield a
performance estimate for the entire range of thresholds.





Chapter 3

Results

This chapter describes our results by analyzing the topological features of metabolic
networks using a machine learning based analysis for drug target identification. It
consists of three sections. Section 3.1 shows the results of analyzing the metabolic
network with a new feature that we developed to identify novel potential drug tar-
gets. Section 3.2 shows the results of machine learning based integration of various
descriptors for a single organism model (E. coli). Section 3.3 provides the results of
inferring gene essentiality across organisms.

3.1 Analyzing the metabolic network of knockout

strains

We investigated the essentiality of a reaction in the metabolic network by deleting
(knocking out) such a reaction in silico. The algorithm selected products of the
investigated reaction that had to be produced by alternative biochemical pathways
when the reaction was knocked out. Using a breadth-first search algorithm, we
tested qualitatively whether these products could be generated from the substrates
of the knocked-out reaction by other reactions that produced potential deviations of
the metabolic flux (see Section 2.4.3 deviations). We called this feature “producibil-
ity”. The producibility yielded two measures of the mutant: RUP (reachability of all
of the products) and PUP (percentage of unreachable products). We analyzed the
metabolic network of E. coli with these new features by knocking out each single re-
action in silico and comparing the results to a comprehensive experimentally derived
list of essential genes (KEIO collection, [12]). Table 3.1 shows the comparison of our
producibility features and the other graph-based investigating methods, which em-
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ploy the representation of the network as a bipartite graph (see Section 2.4.2), such
as choke points (CP), load scores (LS) and damages (originally counting the number
of damaged reactions (NDR) and the number of damaged compounds (NDC) [100]).
The producibility yielded higher accuracy, sensitivity and precision than the other
methods (see Table 3.1). It is worth noting that this approach alone was inferior
to flux balance analysis (FBA). For a comprehensive analysis of various network
descriptors and genomic features, refer to Sections 3.2 and 3.3, which present the
machine learning approach results and its comparison to the FBA approach. As
explained in Section 2.4.4, FBA is a comprehensive mathematical modeling method
that concerns the stoichiometry for each reaction and the environmental conditions.
FBA requires information that has been determined accurately determined, such as
the exact constitution of the biomass, the available nutrients and also a sufficiently
detailed reconstruction of the network. Furthermore, similar to other graph-based
approaches (CP, LS, NDR and NDC), our method can be applied for estimating
the potential drug targets of organisms for which less experimental information is
available. After setting up the technology, we applied the method to analyze the
metabolism of the malaria pathogen Plasmodium, for which the detailed network
reconstruction needed for FBA analysis would be difficult.

The identification of novel targets for antimalarial drugs remains a difficult task.
At present, the genome-wide mutagenesis system in Plasmodium is technically chal-
lenging [40]. With a computational choke point analysis for Plasmodium’s metabolic
network, Yeh et al. (2004) identified 216 enzymatic activities as catalyzing choke
point reactions, assuming that each enzyme has only one active site, unless an-
notated as multifunctional [167]. If an enzyme catalyzed at least one choke point
reaction, it was classified as a potential drug target. Within the 216 identified poten-

Table 3.1: Comparison of our producibility feature with other graph-based features

Accuracy Sensitivity Precision
Our producibility feature
RUP 69% 86% 29%
PUP 65% 57% 22%
Damage features
NDC 57% 38% 13%
NDR 59% 38% 14%
Choke points and load scores
CP 56% 56% 17%
LS 54% 52% 16%
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Table 3.2: Results assessing a known drug target for P. falciparum to be essential

Accuracy Sensitivity Precision
Choke point feature 68% 74% 19%
Our producibility feature 80% 32% 17%
Intersection of both methods 88% 24% 29%
Union of both methods 60% 82% 16%

tial targets, they identified three targets of clinically proven drugs and 24 proposed
drug targets with biological evidence (such as in vitro growth inhibition of the para-
site with target inhibition). However, the precision (the number of true predictions
out of all of the predictions) of their approach is limited, which makes it difficult
for a researcher to choose the appropriate potential drug target when developing in-
hibitors as effective therapeutics. We applied our approach together with the choke
point analysis for estimating novel potential drug targets for Plasmodium [54], and
we improved the specificity when comparing our results to a well elaborated list of
known drug targets for Plasmodium.

Estimating novel potential drug targets for Plasmodium
For this task, we used the data of the metabolic reaction database PlasmoCyc [167].
To estimate the performance of our method, we assembled a list of proposed drug
targets from the literature as our gold standard. We used the list of Yeh et al. (2004),
comprising three targets of clinically proven drugs and 24 proposed drug targets
with biological evidence, such as in vitro growth inhibition of Plasmodium falciparum
(P. falciparum) [167]. Additionally, we found further drug targets when scanning
a variety of established databases, i.e., DrugBank [165], TDR Target Database
(www.tdrtarget.org) and the database for Malaria Parasite Metabolic Pathways by
Hagai Ginsburg (http://www.sites.huji.ac.il/malaria/, [61]). To equally compare all
of the predictions with a gold standard, every reaction of the network was mapped to
its corresponding enzyme classification number (EC-number). For performance es-
timations, the reactions without an EC-number were not taken into account. Thus,
our network contained 38 reactions from the gold standard and consisted of a total
of 411 reactions. To yield a valid comparison of the algorithms, we did not take the
reactions into account that were not in the network. As our network was constructed
as a connected graph, we discarded all of the reactions that were not joined with
the bulk of the graph.
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Table 3.3: Novel potential drug targets for P. falciparum
EC-number Genes Reaction Evidence Human homologs E-value

2.1.2.9 MAL13P1.67 Methionyl-tRNA formyltransferase [107] ENST00000373665 0.19
2.4.1.119 PFI0960W Dolichyl-

diphosphooligosaccharideprotein
glycosyltransferase

ENST00000306726 0.034

2.4.2.11 MAL6P1.137 Nicotinate phosphoribosyltransferase ENST00000370856 0.19
2.4.2.30 PFI1005W NAD(+) ADP-ribosyltransferase [132] ENST00000282892 0.052
2.5.1. MAL6P1.78 Glutamyl-

tRNA(Gln) amidotransferase
ENST00000340159 0.009

2.5.1.46 PF14 0125 Deoxyhypusine synthase [111] ENST00000352853 0.54
2.7.1.1 MAL6P1.189 Hexokinase [99] ENST00000240487 0.14
2.7.1.35 MAL6P1.266 Pyridoxal kinase [43, 69] ENST00000234179 0.011
2.7.1.50 PFL1920C Hydroxyethylthiazole kinase ENST00000346134 0.005
2.7.4.7 PFE1030C Phosphomethylpyrimidine kinase ENST00000382103 0.086
2.7.4.9 PFL2465C Thymidylate kinase [161] ENST00000340245 0.90
2.7.7.2 PF10 0147 FMN adenylyltransferase ENST00000256103 0.091
2.7.8.- MAL6P1.97 Cardiolipin synthetase ENST00000233710 0.66

2.7.8.11 MAL13P1.82 CDP-diacylglycerolinositol phos-
phatidyltransferase

[106] ENST00000321998 0.19

3.1.2.6 PFL0285W Hydroxyacylglutathione hydrolase [120] ENST00000389580 0.35
3.5.1.19 PFC0910W Nicotinamidase ENST00000294671 0.12
4.1.2.4 PF10 0210 Deoxyribose-phosphate aldolase ENST00000356689 0.29
4.2.1.17 PF10 0167 Enoyl-CoA hydratase ENST00000335407 0.16
4.2.1.60 PF13 0128 3-Hydroxydecanoyl-[acyl-carrier pro-

tein] dehydratase
[137] ENST00000297933 0.25

4.2.1.70 PFB0890C Pseudouridylate synthase ENST00000370920 0.37
6.1.1.19 PFL0900C Arginine-tRNA ligase [22] ENST00000231572 2e-04

6.2.1.3
PF14 0761

Long-chain-fatty-acid-CoA ligase [156]
ENST0000038037 0.23

PFB0695C ENST00000373480 0.063

Compared to the choke point analysis [167], we were able to improve the predic-
tion results when combining our method with the choke point method (see Table 3.2).
Using the choke point analysis alone yielded an accuracy of 68% and a precision of
19%, whereas applying the choke point analysis together with our method yielded
an increased accuracy of 88% and a precision of 29%. Finally, we analyzed the
“false” positives. This list may serve as candidates for new drug targets. We tested
the sequences of these candidates for sequence homology to the human genome to
exclude severe physiological side effects when targeting. We identified a refined list
of 22 new potential candidate targets for P. falciparum, half of which had reasonable
evidence that they could be valid targets against microorganisms and cancer [54].
These candidate targets with evidence references are listed in Table 3.3. We com-
pared all of the corresponding genes of those targets to all of the transcripts of the
human genome using BLAST [7] and the ENSEMBL database [71]. Arginine-tRNA
ligase showed some homology with E-value 4 × 10−4 and may need more detailed
homology investigations of its active domain. For the rest, we did not find any
significant homologies (all E-values > 0.01). E-values of the best hits and the best
hits are given in the last two columns of Table 3.3. In conclusion, our approach is
computationally inexpensive and simple to implement and has the potential to serve



3.2 Machine learning analysis to identify drug targets in a single genome model 67

as a valid technique to be combined with other established graph-based investiga-
tions of metabolism. However, for predicting drug targets in silico, a useful model
for metabolism is needed.

In another study, we evaluated different network models for P. falciparum by
estimating their robustness. The networks were constructed using either automati-
cally inferred enzymes from the database PlasmoCyc or only enzymes for which the
coding genes were known. Additionally, networks were constructed considering the
enzymes of the human host cell. Comparing the modeling results of our network
features applied to these four different network constructions showed that we had
the best discovery success of known drug targets with a network model consisting
only of enzymes from the parasite alone and for which coding genes were known [53].
In principle, such in silico investigations can be performed for any organism if its
genome and its inferred metabolic network have been discovered in sufficient detail.

3.2 Machine learning analysis to identify drug

targets in a single genome model

In this analysis, a machine learning system was trained to distinguish between the
essential and non-essential reactions. It was trained and validated by a compre-
hensive experimental dataset, which consisted of growth rates of single knockout
mutants of E. coli (KEIO collection [12]). We yielded an overall accuracy of 93% for
predicting the essential reactions under rich medium conditions (see Section 3.2.1).
Comparative analysis between the flux balance approach and our machine learn-
ing approach showed that we yielded a better prediction performance compared to
FBA alone (see Section 3.2.2). Predictions that contradicted the KEIO collection
were experimentally tested and successfully used to detect errors in the experimen-
tal data (see Section 3.2.3). Predicted reactions matching the experimental screen
strengthen their candidacy as potential drug targets (see Section 3.2.4). Conclusions
and beneficial outcomes of this analysis are in Section 3.2.5.

3.2.1 Performance of the machine learning algorithm

We used a well-established metabolic network of E. coli from Feist et al. (2007) [55],
which is known as the “iAF1260” model. Genes were mapped to the correspond-
ing proteins, enzymes and reactions using the gene-protein-reaction table from
Feist et al. [55]. The reaction(s) associated with each gene were defined as essential
or non-essential if there was no other way to activate the reaction(s) by other genes
and if the coding gene was experimentally essential or non-essential, respectively.
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Table 3.4: The number of known essential reactions for training a classifier under
different conditions

Condition Reactions
Essential Non-essential Total

rich medium 231 1,125 1,356
glucose minimal medium 338 1,018 1,356

Otherwise, they were discarded from our training and testing analysis. Further-
more, 133 reactions were discarded from the analysis, as the corresponding genes
could not be defined. Finally, from 303 essential genes in the KEIO collection [12]
(see Section 2.2), we determined a set of 231 essential and 1,125 non-essential re-
actions under rich medium. Out of the 1,125 non-essential reactions under rich
medium conditions, 107 reactions were defined as essential under glucose minimal
medium conditions. In total, 1,356 reactions were used and the experimental results
(KEIO [12]) for their essentiality were considered class labels of the reactions (sam-
ples) for training and validating the classifiers (see Table 3.4). We used all of the
features that were explained in Sections 2.4 and 2.5 except for the phyletic retention
and centrality measures.

Because the set of 1,356 reactions for training and validation was relatively small,
we performed a leave-one-out cross-validation to measure the effectiveness of our ma-
chine learning system. Using the KEIO collection data from the rich medium as the

Table 3.5: Performance of machine learning based predictions on rich medium con-
dition

Machine Learning Machine Learning
(all 30 features) (25 optimized features)

true positives 168 174
true negatives 1078 1092
false positives 47 33
false negatives 63 57
sensitivity (recall) 72.73% 75.32%
specificity 95.82% 97.07%
positive predictive values (precision) 78.14% 84.06%
negative predictive values 94.48% 95.04%
overall accuracy 91.89% 93.36%
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Figure 3.1: ROC-curve showing our prediction results with different weight
factors for positive instances. Each (blue) diamond shows the result for a different
weight. From left to right, the weight was increased from 0.1 to 5.0 by a step size of 0.1.
When the weight factors were higher than 1.0, the sensitivity remained constant. The
dotted line was manually fitted.

reference, we gained an overall accuracy of 92% when all of the features were con-
sidered (Table 3.5). To increase the performance, we conducted a systematic feature
reduction within a top-down procedure. We yielded a better result with an opti-
mized feature set of 25 features (accuracy = 93%, see Table 3.5). These 25 features
may be regarded as the dominating factors for leading to a good performance. To
find out which of them are more relevant, we again started the top-down procedure,
stopping at the first step. For all features, we compared the accuracy for each clas-
sifier lacking one feature. Losing the feature NNNR yielded the worst classification
performance (accuracy -0.89 compared to the classifier with all of the features) and
therefore could be the most relevant feature. This feature was followed by NRSE
(-0.82), BFV (-0.74), NNR (-0.52) and H10 (-0.52). Interestingly, these first five
features already span the whole set of our feature categories (NNNR and NNR: net-
work topology; NRSE: gene expression, genomics; H10: homology, genomics; and
BFV: flux balance analysis).

In our dataset, the sizes of the two classes “essential reactions” and “non-essential
reactions” differed significantly (essential: 17%, non-essential: 83%). To obtain
different stringencies, we weighted the positive instances by a factor ranging from 0.1
to 5.0 with a step size of 0.1 (Figure 3.1). The sensitivity increased significantly from
smaller to higher weights, reaching a plateau for weight factors of 1.0 or more. As
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expected, with a smaller weight the classifier tended to be overwhelmed by the large
negative class. More positive instances were recognized when their weight factor
increased. The highest specificity (99%) and the best precision (95%) was yielded
by the first data point with a weight factor of 0.1. This scenario is beneficial when
predicting drug targets with high reliability. Alternatively, to avoid overlooking
potential targets, increased sensitivity can be achieved by raising weight factors to
at least a 1.0 (sensitivity = 75%). In the following, all of the analyses were performed
with a weight factor of one.

3.2.2 Comparing the performance to flux balance analysis

We performed a single reaction deletion on the network and calculated flux values
by FBA using the COBRA toolbox [20] to assess essential reactions under aerobic
glucose minimal medium conditions (as described in the supplementary material of
Feist et al. [55]). In this analysis, a reaction was considered to be essential if the
respective prediction of the mutated network’s maximal biomass production was <
1% of the wildtype’s biomass production. The biomass objective function used in
the analysis was explained in [55]. Note that simulating rich medium conditions is
challenging because it is difficult to characterize the uptake rates for each compound
of a rich medium (Adam Feist, personal communication 2008). For this reason, we
compared the performances of our approach with FBA on glucose minimal medium.

Table 3.6: Comparison of our machine learning method and flux balance analysis
(FBA) for glucose minimal medium condition

Performance ML\BFV1 ML2 FBA3

true positives 192 266 174
true negatives 932 968 971
false positives 64 28 25
false negatives 146 72 164
sensitivity 56.80% 78.70% 51.48%
specificity 93.57% 97.19% 97.49%
positive predictive values 75.00% 90.48% 87.44%
negative predictive values 86.46% 93.08% 85.55%
overall accuracy 84.26% 92.50% 85.83%
1 Machine learning without the feature BFV (biomass flux value from the FBA)

2 Machine learning including the feature BFV

3 Flux balance analysis
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A total of 338 reactions were found to be essential in glucose minimal medium
according to the experimental criteria for gene essentiality under glucose minimal
medium [12, 55, 85]. A total of 996 reactions were identified as non-essential. The
remaining reactions had no associated gene, were exchange reactions, or could not
clearly be identified. The FBA approach detected the essentiality of a reaction under
aerobic glucose minimal conditions with an accuracy of 86%, a sensitivity of 52%
and a specificity of 98%. We performed our machine learning under glucose minimal
conditions with and without BFV (Biomass flux value from FBA simulation) and
found BFV to improve the results (Table 3.6). With BFV, our approach yielded
90% precision and 79% recall of the experimental results, compared to the FBA
results of 88% precision and 52% recall.

By categorizing the results according to the KEGG pathways [87], a comparison
of our method and FBA is shown in Figure 3.2. The essential reactions that were
found by our machine learning approach but not by FBA were mostly reactions
in amino acid metabolism and lipid metabolism. In amino acid metabolism, the
tRNA transferases of almost all of the amino acids were found to be essential by
the machine learning approach but not by FBA. We improved FBA simulations by
adding the corresponding aminyl-tRNA reactions and their products to the biomass
objective function. This process ensured that all of the tRNA transferases would be
predicted to be essential by the FBA method. The simulations subsequently gained
better results by correctly predicting the essentiality of the aminyl-tRNA reactions.

3.2.3 Validation of the experimental knockout screen

Predicting a different outcome from experimental high-throughput screening
(KEIO [12]) may be due to either an error in our algorithm or an error within
the experimental knockout screen. We examined our lists of false positives and
false negatives with two experimental set-ups. Our list of false negatives contained
71 genes, which our algorithm predicted to be non-essential under glucose minimal
conditions in contradiction to the outcome of the KEIO experiment [12]. For 33 of
them, we obtained corresponding knockout clones from the KEIO library (growing
on rich media) and grew them on M9 glucose medium. Indeed, we were able to
grow 9 out of 33 clones with good growth rates (OD600 = 0.2 after 48 hours) and 3
clones with reasonable growth rates (OD600 between 0.07 and 0.2 after 48 hours).
The complete list is given in Table 3.7.

We also tested the list of false positives, for which our algorithm predicted 33
genes to be essential, in contrast to the experimental high-throughput screen. We
assumed that some of these genes were not knocked out correctly. Baba et al. [12]
provided a validity estimation for their clones. We compared our results to their
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estimations and selected 6 genes for which mutants were estimated to be less than or
equal to 37.5% correct. The knockout mutations were verified by PCR amplification
of genomic loci expected to contain the 1327 base pair gene replacement cassette
with specific primers (see Table 3.8). Primers were chosen to have equal predicted
melting temperatures of 60 ◦C and were hybridized at specific distances upstream
and downstream of the target gene. PCR reactions were performed directly from
freshly grown bacterial colonies for 30 cycles at the annealing temperature of 54 ◦C.
The product sizes obtained from the KEIO collection strains were compared to
those from the wildtype E. coli strain MG1655 on 1% agarose gels. For 5 out of 6
of these genes (alaS, coaA, coaE, glyS and hemE ), PCR with specific primer pairs

Figure 3.2: Comparison of our machine learning predictions, FBA and
the experimental data, according to different pathways. For each pathway of
KEGG [87, 115], the lowest bars represent the experimental result (KEIO [12]), and the
reactions are grouped into non-essential (left, blue) and essential (right, magenta). The
middle and top bars show the prediction results of our machine learning approach and flux
balance analysis, respectively. Larger differences between the machine learning prediction
and the FBA approach were in the amino acid metabolism and the lipid metabolism.
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Table 3.7: Results from our growth experiments

Our Our OD600 of
ORFs Gene experimental OD600 Baba et al.

result1 (48 hours)2 (24 hours)3

b0002 thrA - 0.029 0.023
b0032 carA + 0.432 0.003
b0033 carB - 0.029 0.000
b0115 aceF +/- 0.070 0.091
b0116 lpd - 0.000 0.061
b0242 proB - 0.045 0.003
b0243 proA - 0.006 0.007
b0720 gltA - 0.032 0.014
b0775 bioB + 0.959 0.049
b0776 bioF + 0.795 0.025
b0778 bioD + 1.150 0.037
b1136 icd - 0.003 0.029
b1260 trpA - 0.029 0.008
b1261 trpB - 0.003 0.008
b1264 trpE - 0.016 0.020
b1638 pdxH - 0.001 0.005
b2415 ptsH + 0.747 0.066
b2416 ptsI - 0.039 0.018
b2508 guaB - 0.005 0.005
b2530 iscS +/- 0.084 0.028
b2551 glyA - 0.000 0.002
b2913 serA - 0.002 0.007
b3008 metC +/- 0.152 0.029
b3281 aroE - 0.001 0.007
b3731 atpC + 0.833 0.038
b3737 atpE + 0.671 0.016
b3738 atpB + 0.989 0.014
b3772 ilvA - 0.001 0.014
b3829 metE - 0.008 0.008
b3870 glnA - 0.000 0.005
b3916 pfkA - 0.018 0.087
b3940 metL - 0.000 0.011
b4388 serB - 0.019 0.009

wildtype + 0.702
1 Our experimental results are classified according to OD600

(minus: < 0.07, no growth; plus/minus: between 0.07 and 0.2,

slow growth; plus: > 0.2: growth)
2 OD600 after 48 hours (measured in duplicate)
3 OD600 in glucose MOPS medium with 2nM Pi conditions after 24 hours

as given by Baba et al. (2006) [12]
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(see Table 3.8) yielded two products, which had sizes that correspond to wildtype
and knockout alleles, respectively. This result indicated that the genes were not
correctly knocked out and the wildtype gene was still present. No PCR product
was observed for the ileS knockout. Additionally we tested another 4 genes from
our list, for which mutations were stated to be 100% correct by Baba et al. Indeed,
for all of those genes (aspC, epd, luxS and thiE ), only the correct PCR product
corresponding to the knockout allele was observed.

Table 3.8: List of the applied primer pairs and our experimental results of testing
for correctly knocked-out genes

ORFs Gene %correct
Experimental

fwd primer rev primer
results

b0026 ileS 25.00% no PCR product 5’-gttgcaatggacctttacgg-3’ 5’-gctaataccaatcgcaataccg-3’

b0103 coaE 25.00% 2 PCR-bands 5’-aagggtaagagcgcaactcc-3’ 5’-tggcaatccaggtttctacc-3’

b2697 alaS 25.00% 2 PCR-bands 5’-ccgactgaacgcatacgg-3’ 5’-tacctggttgccctttaccc-3’

b3559 glyS 25.00% 2 PCR-bands 5’-acattcagggcgtagacagc-3’ 5’-tctgcctttcggtgaatacc-3’

b3974 coaA 25.00% 2 PCR-bands 5’-aagtagcgcgcattctatgg-3’ 5’-acgcggaatagacaaacagg-3’

b3997 hemE 37.50% 2 PCR-bands 5’-gccgtgagcgttactaccc-3’ 5’-agagcggttcgaatttaccg-3’

b0928 aspC 100.00% correct k.o. 5’-gacaacaaactgggcgtagg-3’ 5’-ctggatttctggcaaagtgc-3’

b2687 luxS 100.00% correct k.o. 5’-cccgatctgactttctctgc-3’ 5’-ctatcggcacgtcgataacc-3’

b2927 epd 100.00% correct k.o. 5’-gccggtatcacttcacaagc-3’ 5’-cttctcgcctttgttgaagc-3’

b3993 thiE 100.00% correct k.o. 5’-tacctgcgtaaggaggaagc-3’ 5’-actgtgtcagtcgctgttgg-3’

3.2.4 Drug target identification

To propose novel potential drug targets, our predicted reactions were mapped to en-
zymes that are considered to be possible targets for antibacterial drugs. We examine
these predicted targets with known targets that have been used to kill pathogens.
Assembling a list of known drug targets, we selected drugs and their corresponding
drug targets from the drug database DrugBank [165]. We took drugs into account
that affected any organisms except humans and other mammals. Entries that were
found as metabolites for a reaction in the KEGG database [87] were discarded to
restrict our drug list to non-endogenous compounds. The target annotated enzyme
classification numbers (EC-number) of the remaining drugs were collected as our
validated drug targets.

We compared the enzymes of our predictions and the results from the KEIO col-
lection to this comprehensive list of valid drug targets (see Figure 3.3). Surprisingly,
80% of the drug target enzymes were not found by the KEIO high-throughput screen
and were not found by our machine. This result may be because these drug targets
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Figure 3.3: The investigated enzymes. Three sets are shown: essential enzymes
found by the machine learning approach (top circle), essential enzymes found by the
KEIO knockout screen [12] (bottom-left circle) and enzymes that are valid drug targets
taken from the database DrugBank [165] (bottom-right).

are for a broad range of organisms that have different topologies in their metabolic
networks and that may have different alternative pathways for the corresponding
drug targets. It should be noted that this study focused on reactions that are essen-
tial under rich medium conditions. We suggest 37 promising drug target enzymes
that are not in the DrugBank database, which are validated by the intersection of
our predictions with the results from the experimental KEIO screen. A list of these
enzymes with their enzyme classification numbers (EC-number), open reading frame
(ORF) ids, gene symbols and references for reported experimental evidence is given
in Table 3.9.

3.2.5 Conclusions

This section presented the results of the machine learning strategy to study and val-
idate essential enzymes of the metabolic network of E. coli. Each single enzyme was
characterized by its local network topology, its gene homologies and co-expression,
and its flux balance analysis. The machine learning system was trained to distinguish
between essential and non-essential reactions. It was validated by a comprehensive
experimental dataset, which consists of the phenotypic outcomes from single knock-
out mutants of E. coli. We yielded very reliable results with high accuracy (93%) and
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Table 3.9: Novel potential drug targets of E. coli

EC-number ORF Gene Evidence from the literature
1.1.1.158 b3972 murB In B. antracis, antisense dependent MurB2 expression gave

synergistic response to betalactam antibiotics [89].
1.3.1.10 b1288 fabI FabI is a well known drug target against microorganisms [92].
2.3.1.15 b4041 plsB Mutations in plsB occur in E. coli strains with multi-drug

tolerance [152].
2.3.1.51 b3018 plsC nothing found
2.7.1.130 b0915 lpxK It was shown that growth of E. coli is inhibited when lpxK

is inactivated [58].
2.7.1.26 b0025 ribF nothing found
2.7.4.8 b3648 gmk Salmonella with gmk mutations showed growth dependence

on adenine [19].
2.7.7.18 b0639 nadD nothing found
2.7.7.2 b0025 ribF nothing found
2.7.7.3 b3634 coaD nothing found
2.7.7.41 b0175 cdsA nothing found
2.7.8.13 b0087 mraY MraY inhibitors serve as novel antibacterial agents [46].
2.7.8.5 b1912 pgsA PgsA codes for an essential enzyme of Mycobacterium smegmatis

that shows promise as a drug target for anti-tubercolosis therapy [78].
2.7.8.8 b2585 pssA nothing found
3.5.1.18 b2472 dapE Heliobacter strains lacking dapE were dependent on diaminopime-

-lic acid [88].
3.5.4.16 b2153 folE nothing found
3.5.4.26 b0414 ribD nothing found
3.5.4.9 b0529 folD nothing found
4.1.1.65 b4160 psd Psd null mutants of E. coli were non-motile (Karita et al, 1997 [88]).
4.1.2.16 b1215 kdsA E. coli containing missense mutations in kdsA stopped cell growth [57].
4.2.1.52 b2478 dapA Dihydrodipicolinate synthase is essential for lysine biosynthesis in

E. coli [163].
4.3.1.8 b3805 hemC nothing found
4.3.2.2 b1131 purB PurB mutants of Lotus japonicus exhibit purine auxothrophy [116].
6.1.1.11 b0893 serS nothing found
6.1.1.12 b1866 aspS nothing found
6.1.1.16 b0526 cysS Cysteinyl-tRNA synthetase is essential for protein synthesis [29].
6.1.1.17 b2400 gltX nothing found
6.1.1.18 b0680 glnS nothing found
6.1.1.19 b1876 argS Mutations of argS and leuS are found in E. coli strains which are

resistant to the antibiotic novobiocin [84].
6.1.1.2 b3384 trpS nothing found

6.1.1.20
b1713, pheT,

nothing found
b1714 pheS

6.1.1.21 b2514 hisS Mutants expressing a structurally altered HisS protein require external
histidine [155].

6.1.1.22 b0930 asnS AsnS inhibitors are used as anticancer drugs [133].
6.1.1.4 b0642 leuS Mutations of argS and leuS are found in E. coli strains

which are resistant to the antibiotic novobiocin [84].
6.1.1.9 b4258 valS nothing found
6.3.2.13 b0085 murE S. aureus strains which are resistant against the antibiotic methicillin

show mutations in murE which is needed for cell wall synthesis [42].
6.3.2.15 b0086 murF 4-phenylpiperidine was reported to inhibit the MurF enzyme and may

contribute to antibacterial activity by interfering with cell wall
biosynthesis [18].
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precision (90%). We showed that topologic, genomic and transcriptomic features
describing the network are sufficient for defining the essentiality of a reaction. These
features did not substantially depend on specific media conditions and enabled us
to apply our approach for less specific media conditions, such as lysogeny broth rich
medium. Our analysis is feasible to validate experimental knockout data of high-
throughput screens, can be used to improve flux balance analysis, and supports
experimental knockout screens to define drug targets.

3.3 Predicting essential genes across bacteria

In Section 3.2, we showed that the method was successfully applied to predict po-
tential drug targets and to validate an experimental knockout screen of E. coli [127].
In this section, we used the basic concepts of this strategy to enable predicting
essential genes in an organism for which no experimental training data are avail-
able. To develop a classification system that is readily applicable for predicting
essential genes of a new query organism, the system needs to make accurate pre-
dictions for an organism on which it was not trained. Therefore, we performed a
cross validation across the organisms of E. coli and P. aeruginosa, i.e. we trained
with E. coli and validated with P. aeruginosa (and vice versa) to obtain the quality
of the performance of this approach (see Sections 3.3.1 and 3.3.2). We applied the
trained and validated classifiers to the pathogenic bacterium S. typhimurium (see
Section 3.3.3). Furthermore, we analyzed our predictions with gene set enrichment
tests for metabolic pathways (Section 3.3.4). We conclude that our machine learn-
ing approach is a useful tool to infer essential genes from one organism to another
related organism (see Section 3.3.5)

Metabolic networks and gold standards
The metabolic networks of E. coli, P. aeruginosa and S. typhimurium were recon-
structed using the database of KEGG [87, 115]. The reactions were mapped to
enzymes, and enzymes were mapped to their corresponding genes using the asso-
ciation tables from KEGG. Genes that corresponded to dead-end reactions in the
network were not included in the datasets for training and validation. If a gene cor-
responded to more than one reaction, the mean value of the reaction features was
taken. For the Boolean features (RUP, DIR and CP, see Sections 2.4.2 and 2.4.3)
we used the Boolean OR-operation, i.e., a gene feature was set to one if at least one
reaction feature equaled to one.

To train and validate our predictions for E. coli, we used the KEIO collection of
Baba and co-workers [12], which we denoted as ‘ecoB’. The collection consisted of 104
essential and 641 non-essential genes for the metabolic network. The other dataset
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for E. coli was from Gerdes and co-workers [60], which we denoted as ‘ecoG’. This
dataset consisted of 147 essential genes and 533 non-essential genes for our network.
For P. aeruginosa, we used the data of Liberati et al. [103] denoted as ‘paeL’. It con-
sisted of 92 essential genes and 615 non-essential genes for the network. The other
dataset, for P. aeruginosa, was taken from the study by Jacobs et al. [79]. We denoted
this set as ‘paeJ’. It consisted of 150 essential genes and 579 non-essential genes.
The experimental dataset for S. typhimurium was from Knuth and co-workers [93].
For the metabolism, 53 genes were found to be essential and for the remaining 711,
the essentiality could not be determined (see Table 3.10).

The machine learning system
The sizes of the two classes differed considerably in our datasets (essential genes: 8
- 15%, non-essential genes: 85 - 92%). For a broad spectrum of different sensitivi-
ties and specificities, we applied a voting scheme. We trained 100 Support Vector
Machines (SVMs) with all of the essential genes and an equal amount of randomly
selected non-essential genes. With these, we stratified the training data. For the
classification of a query gene, the output of all machines was summed up and used
as a voting score for the gene to be essential for the cell.

3.3.1 Performance of prediction across organisms

We initiated the process of predicting essential genes for E. coli. For this task, we
trained classifiers (machines) with the experimental data of two genome-wide knock-
out screens of P. aeruginosa (datasets paeJ and paeL from experimental studies of
Jacobs and co-workers [79] and Liberati and co-workers [103], respectively). These
datasets were considered to be our gold standard defining true positives and true neg-
atives of essential genes in the metabolism of the training organism (P. aeruginosa).
We trained several classifiers with all of the essential genes and an equal amount

Table 3.10: The number of known essential genes in the metabolic network of each
dataset

Organism Dataset
Genes found in metabolic networks
Essential Non-essential Total

E. coli
ecoB 104 641 745
ecoG 147 533 680

P. aeruginosa
paeJ 92 615 707
paeL 150 579 729

S. typhimurium stm 53 711 764
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Figure 3.4: ROC curves of the prediction performances. (A) A total of 100
Support Vector Machines were trained with the datasets ecoB and ecoG, respectively,
and were then queried using the datasets from P. aeruginosa (union of the datasets paeL
and paeJ). The number of machines predicting essentiality was summed up (voting score).
The results from varying thresholds of the voting score were compared to the experimental
results of paeL and paeJ, yielding the ROC curves (area under the curve: 0.80 and 0.79,
respectively). (B) Similar to (A) only that the machines were trained with the datasets of
P. aeruginosa and queried with the datasets of E. coli, resulting in ROC curves with AUC
= 0.81 and 0.75 for the datasets ecoB and ecoG, respectively.

of randomly selected non-essential genes (stratification of the training data). The
trained machines were then applied to predict essential genes for the query organism
(E. coli). The output of all of the machines was summed up and used as a voting
score that represented the propensity of a gene to be lethal for the cell. In turn, the
same scheme was applied to predict essential genes for P. aeruginosa with classifiers
that were now trained with two datasets from E. coli (ecoB from Baba et al. [12]
and ecoG from Gerdes et al. [60], respectively).

This organism-wise validation was applied to estimate the performance of the
classifiers. We compared the datasets for each genome. A total of 79 of the essential
genes were common in ecoB and ecoG, while 92 were common in paeL and paeJ. One
hundred machines were trained with different training sets for each knockout screen.
Votes from both training sets for an organism were summed up and defined the strin-
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gency. A high number of votes for essentiality led to a high specificity, while lower
numbers led to higher sensitivity. The resulting receiver operator curves (ROC) of
the classifiers are shown in Figure 3.4(a) for predicting P. aeruginosa and in Fig-
ure 3.4(b) for predicting the E. coli. For predicting essential genes for P. aeruginosa
we yielded an area under the curve (AUC) of 0.80 and 0.79 when compared to the
experimental datasets paeL and paeJ, respectively. For E. coli, we yielded an AUC
of 0.81 and 0.75 when compared to ecoB and ecoG, respectively. We wanted to
obtain a reliable list of potential drug targets. For this task, predictions of essential
genes required a low number of false positives. Hence, we set a high stringency and
calculated the precision (true predictions from all of the predictions for essential-
ity) with a high selection criterion (more than 195 out of 200 votes). We yielded a
precision of 67% (accuracy: 87%, sensitivity: 7%, validating with paeL) and 100%
(accuracy: 80%, sensitivity: 3%, validating with paeJ) when predicting essential
genes for P. aeruginosa. We yielded a precision of 61% (accuracy: 87%, sensitivity:
27%, validating with ecoB) and 65% (accuracy: 80%, sensitivity: 18%, validating
with ecoG) for E. coli. Table 3.11 shows the results of different criteria. We fur-
ther analyzed different groups of features to examine the best set of features. We
grouped features according to their measured properties: a) Deviation (described
in section 2.4.3), b) Local topology (in sections 2.4.1 and 2.4.2), c) Choke points
and load scores (in section 2.4.2), d) Damage (in section 2.4.2), e) Centrality (in
section 2.4.1), f) Homologs (in section 2.5.1), g) Gene expression (in section 2.5.2),
h) Phyletic retention (see section 2.5.1) and i) Codon usage (see section 2.5.1). We
yielded the best classifier results when using all of the features, compared to the
classification performance when using individual sets of features (see Figure 3.5).
Table A.2 in Appendix A.2 contains the AUCs for all of the features.

3.3.2 Examining the features

We wanted to obtain an estimate of the correlations of our features to the essen-
tiality of a gene. Therefore, we calculated Pearson’s correlation coefficients of the
essentiality class of each gene (1 = essential, 0 = non-essential) and the correspond-
ing feature values. Figures 3.6 and 3.7 give an overview for all of the features (see
Table A.1 in Appendix A.2 for the correlation coefficients of all of the features). In
the following, we describe the major results of our correlation study.

Topology features
The efficiency of flux deviations was estimated by the features RUP and PUP which
gave an estimate if all of the products of the knocked-out reaction could be pro-
duced without the reaction (RUP) and how large the percentage of non-producible
products (PUP) was. RUP was a Boolean feature to observe whether the mutant
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Table 3.11: Prediction results for different criteria

ecoB ecoG
Vote accuracy sensitivity precision accuracy sensitivity precision
200 87% 12% 75% 80% 7% 79%
195 87% 27% 61% 80% 18% 65%
190 87% 38% 56% 79% 22% 56%
185 86% 42% 51% 79% 26% 51%

...
150 77% 64% 33% 76% 54% 45%
100 62% 85% 25% 65% 78% 36%
50 42% 94% 19% 47% 86% 27%
0 14% 100% 14% 22% 100% 22%

paeL paeJ
Vote accuracy sensitivity precision accuracy sensitivity precision
200 87% 1% 100% 80% 1% 100%
195 87% 7% 67% 80% 3% 83%
190 88% 15% 74% 80% 5% 88%
185 89% 23% 75% 81% 7% 85%

...
150 87% 41% 48% 82% 27% 69%
100 75% 62% 29% 78% 48% 47%
50 58% 83% 21% 66% 79% 35%
0 13% 100% 13% 21% 100% 21%

could produce all of the products of the knocked-out reaction. RUP was set to one
if all of the downstream products could be produced by the mutant while RUP was
set to zero if at least one downstream product could not be produced. RUP was
highly negatively correlated, and PUP highly positively correlated to the essentiality
of the genes (P = 1.2E-10 and P = 2.4E-09, respectively), as shown in Figure 3.6.
If the (in silico) mutant could not produce one or more downstream products, RUP
was zero whereas the percentage of unreachable products was increased compared
to the situation in which all of the products could be produced. The higher the
percentage was of unreachable products of the mutant, the fewer products of the
knocked-out enzyme could be covered by alternative pathways. The number of sub-
strates and products of the reactions of the knocked-out gene (previously denoted
as NS and NP) were positively correlated to gene essentiality (P = 4.3E-06 and
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Figure 3.5: ROC curves for the essential gene predictions with subsets of
features. To evaluate the performance of different subsets of our features, we trained the
machines with subsets of features according to their basic groupings to predict essential
genes. The figure shows their performances for P. aeruginosa with E. coli for training
(upper row, the left (right) diagram shows the performances with paeL (paeJ) as the gold
standard) and vice versa (lower row, the left (right) diagram shows the performances with
ecoB (ecoG) as the gold standard). To estimate the overall performances, we calculated
the area under the curves (AUC, see figure inserts). The machines that used all of the
features performed best (black curves) followed by the set of all of the topology features.
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Figure 3.6: Correlation coefficients for the correlation between essentiality
and the topology features. The feature values of each gene were correlated with
the essentiality of the gene (1 = essential, 0 = non-essential). High values indicate that
the feature was positively correlated to essentiality (see Table A.1 in Appendix A.2 for all
of the correlation coefficients). These values were obtained for all of the gold standards
(ecoB and ecoG for E. coli and paeJ and paeL for P. aeruginosa).

P = 0.0172, respectively) showing that essential enzymes metabolize more differ-
ent compounds. Interestingly, the number of neighboring reactions (NNR) and the
number of neighbors of neighboring reactions (NNNR) showed a weak negative cor-
relation to essentiality (P = 0.14 and P = 0.091, respectively). This construct is
reasonable because a reaction with a high number of neighboring reactions may have
more metabolites as products that can be produced by alternative enzymes. The
clustering coefficients (CCV) showed the same tendency (negatively correlated, P =
0.018), which also pointed to advantageous alternative pathways.

We estimated the feasibility of possible flux deviations by a set of features that
describe alternative pathways. The number of alternative pathways (ND), the aver-
age path length of the deviations (APL) and the length of the shortest alternative
path (LSP) describe the feasibility of the alternative pathways. As expected, all
of these pathways were negatively correlated to essentiality (P = 0.15, P = 3.4E-
04 and P = 0.0063, respectively), i.e., knocked-out enzymes for which alternative
pathways existed were less likely to cause a lethal phenotype if knocked out. Choke
points (CP) are reactions that were uniquely consumed or produced compounds in
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the metabolism and showed a positive correlation with essentiality (P = 2.8E-04)
because choke points are often difficult to replace by the rest of the metabolism.
Load scores (LS) give an estimate of how often a reaction is involved in metabolic
processes. They were also positively correlated to essentiality (P = 9.4E-04). Be-
tweenness centrality (BW) and eccentricity (EC) were strongly positively correlated
to essentiality (P= 1.3E-14 and 7.6E-08, respectively), showing that enzymes have a
higher influence on vitality if placed in the center of the network. Closeness central-
ity (CN) also showed a positive correlation (P = 0.0020). Interestingly, the eigen-
vector centrality (EV) showed a negative correlation (P = 0.0013). Betweenness,
closeness and eccentricity centrality are global centrality measures that consider the
whole network, while the eigenvector centrality is a measure for local centrality and
is computed from its neighbors. Note that, typically, a node with a high value of
eigenvector centrality is a hub (a node with high connectivity) with other hubs con-
nected to it. Hence, flux deviations may be more likely for local hubs that have
hubs in their vicinity, making the node replaceable, whereas global central nodes
seem to be generally substantial for maintaining the metabolic flow in the network.
Therefore, the eigenvector centrality may describe the network topology more in
the sense of the clustering coefficient, specifically with respect to the likelihood of
alternative pathways.

Genomic and transcriptomic features
As expected, the number of homologous genes (H30, H20, H10, H7, H5 and H3)
showed a negative correlation to essentiality (P = 3.2E-04, 6.3E-04, 1.4E-06, 4.7E-
09, 1.1E-10 and 1.5E-09, respectively). Interestingly, an E-value cutoff of 10−5 (H5)
worked best, showing that also non-perfectly matching sequences may take over
functions of the knocked-out gene. The number of genes having similar expression
(NGSE) also exhibited a negative correlation to essentiality (P = 1.7E-04), which
may be due to the co-expression of genes with analogous functions. For the feature
phyletic retention (PR), the number of prokaryotes with orthologs of the knocked-
out gene showed a positive correlation to essentiality (P = 2.1E-16), supporting the
findings of a previous study that the conservation of genes during evolution appear
to imply their essentiality [64].

We analyzed the codon usage for each gene and related these to the essentiality of
the gene. We found that genes with a high number of the nucleotide thymine at the
third position of the codons were more likely to be essential for cell viability (feature
T3s in Figure 3.7 and in Figure 3.8 for the histograms). The third codon position is
the most redundant position in the genetic code. The matching of mRNA to tRNA
codon nucleotides is less robust at the third position, and translational errors are,
therefore, more likely to occur at that position. However, essential genes need to be
stable and need to be protected in the sequence. Thymine in the genetic code might
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Figure 3.7: Correlation coefficients for the correlation between essentiality
and the genomic and transcriptomic features. The feature values of each gene
were correlated with the essentiality of the gene (1 = essential, 0 = non-essential). High
values indicate that the feature was positively correlated to essentiality (see Table A.1 in
Appendix A.2 for all of the correlation coefficients). These values were obtained for all of
the gold standards (ecoB and ecoG for E. coli and paeJ and paeL for P. aeruginosa).

address these needs because it has been shown that thymine protects DNA and
improves the efficiency of DNA replication [101]. Conserved genes are more likely to
be essential [64], and a thymine at the 3rd codon position facilitates stable genetic
inheritance into the off-spring and cellular replicates. Interestingly, we observed a
larger difference of T3s in E. coli when compared to P. aeruginosa. It was found
that a large average of G and C content at the third codon position is common for
all of the genes in P. aeruginosa [62]. This observation results in a low T content at
the third codon position, which we observed, and may explain the larger difference
of T3s for essential and non-essential genes in E. coli compared to P. aeruginosa (see
Figure 3.8).
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Figure 3.8: Histograms for the frequency of T3s in essential genes and
non-essential genes of E. coli (upper row) and P. aeruginosa (lower
row). To examine the relationship between the number of thymines at the 3rd codon
position (T3s) and the gene essentiality, the figures show the T3s distributions of essential
and non-essential genes in E. coli (upper row, left and right for the datasets ecoB and
ecoG, respectively) and in P. aeruginosa (lower row, left and right for the datasets paeL
and paeJ, respectively). Dashed lines indicate the average of T3s in essential genes,
solid lines indicate the average of T3s in non-essential genes. E. coli and P. aeruginosa
are gamma-proteobacteria, which are not closely related. It has been observed that
P. aeruginosa’s genome is GC-rich, while E. coli ’s genome shows an ordinary GC
content. The large average of G and C at the third codon position is common for all
of the genes in P. aeruginosa [62]. This observation results in a low T content of the
third codon position, which we can also observe here and which may explain the larger
difference of T3s for essential and non-essential genes in E. coli compared to P. aeruginosa.
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3.3.3 Identifying drug targets for S. typhimurium

We applied our trained machines from all of the four datasets (ecoB, ecoG, paeL and
paeJ) to predict essential genes for S. typhimurium, and we obtained votes from four
hundred machines for each gene of S. typhimurium, to predict a gene as essential.
To obtain a reasonable threshold for the number of votes needed to predict that a
gene would be essential, we compared the number of genes predicted to be essential
with the numbers in the training sets for E. coli and P. aeruginosa. For E. coli,
104 and 147 genes were essential, corresponding to the datasets ecoB and ecoG,
respectively, and for P. aeruginosa, 92 and 150 (corresponding to datasets paeL and
paeJ, respectively). Therefore, we set a threshold of 350 votes (out of 400 machines)
to classify a gene as essential for S. typhimurium, and we obtained a comparable
resulting amount of 128 predicted essential genes. We then compared our results to
the experimental data from Knuth and co-workers, who performed a large knockout
study for S. typhimurium [93]. They detected 6% of all of the open reading frames as
being essential including 53 essential genes coding for enzymes in metabolism. For
the remaining open reading frames of the genome they did not make any prediction,
including 711 genes for metabolic enzymes.

We compared the list of essential genes of Knuth and co-workers with our pre-
dictions and found 27 of our predicted genes in their list yielding a precision of 21%,
an accuracy of 83% and a sensitivity of 51%. It is worth noting that the experimen-
tal screen of Knuth and co-workers was not comprehensive; the authors stated in
their article that for the genes that were predicted to not be predicted as essential,
they could not conclude that these genes were definitively non-essential. Therefore,
our novel predictions may be suitable as potential new targets for further investiga-
tions. As a conservative and robust estimate of essential genes for S. typhimurium,
we defined the corresponding enzymes of genes that were experimentally deter-
mined (by Knuth and co-workers) and were recognized by our classifiers. We then
searched in the literature to find drug treatments of these enzymes for other mi-
croorganisms. We compared the open reading frames of the predicted genes with
the human transcripts and did not detect significant homologs (using BLAST [7]
and ENSEMBL cDNA transcripts [71]). The results are listed in Table 3.12 with
open reading frame (ORF) ids, gene symbols, enzyme classification numbers (EC-
number), enzyme names and references for reported experimental evidence. The
last two columns of the table provide E-values of the best hits and the best hits.
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Table 3.12: Novel potential drug targets for S. typhimurium from the intersection of
our predictions with the experimental knockout screen

ORF Gene EC-number Enzyme Evidence Human homologs E-value

STM0123 murE 6.3.2.13 UDP-N-
acetylmuramoylalanyl-
D-glutamate-2,6-
diaminopimelate ligase

[28] ENST00000364688 9.6

STM0128 murG 2.4.1.227 N-acetylglucosaminyl trans-
ferase

[96, 67] ENST00000408249 0.73

STM0129 murC 6.3.2.8 UDP-N-acetylmuramate-L-
alanine ligase

[168] ENST00000408663 0.61

STM0154 lpdA 1.8.1.4 Dihydrolipoamide dehydroge-
nase

ENST00000411150 2.1

STM0218 pyrH 2.7.4.22 Uridylate kinase [134] ENST00000410942 4.7
STM0221 uppS 2.5.1.31 Undecaprenyl pyrophosphate

synthase
[123] ENST00000386578 0.18

STM0222 cdsA 2.7.7.41 CDP-diglyceride synthase ENST00000362327 5.5
STM0228 lpxA 2.3.1.129 UDP-N-acetylglucosamine

acyltransferase
ENST00000386484 1.3

STM0232 accA 6.4.1.2 Acetyl-CoA carboxylase [160, 159] ENST00000410499 6.1
STM0489 hemH 4.99.1.1 Ferrochelatase [6] no hit
STM0535 lpxH UDP-2,3-diacylglucosamine

hydrolase
ENST00000386574 4.6

STM0542 folD 1.5.1.5, Bifunctional 5,10-methylene-
tetrahydrofolate dehydroge-
nase

no hit

STM0988 kdsB 2.7.7.38 CTP:CMP-KDO cytidylyl-
transferase

[80, 97] ENST00000386088 1.2

STM1194 fabD 2.3.1.39 Acyl carrier protein S-
malonyltransferase

[85] ENST00000385201 5.9

STM1195 fabG 1.1.1.100 3-ketoacyl-(acyl-carrier-
protein) reductase

[151] ENST00000388337 0.3

STM1200 tmk 2.7.4.9 Thymidylate kinase ENST00000387015 4.1
STM1700 fabI 1.3.1.10 Enoyl-(acyl carrier protein) re-

ductase
ENST00000387331 1.3

STM2483 dapE 3.5.1.18 Succinyl-diaminopimelate
desuccinylase

ENST00000408717 7.2

STM2652 pssA 2.7.8.8 Phosphatidylserine synthase [149] ENST00000365512 8.7
STM3090 metK 2.5.1.6 ENST00000388372 7.4
STM3415 rpoA 2.7.7.6 DNA-directed RNA poly-

merase subunit alpha
ENST00000385068 1.1

STM3724 kdtA 3-deoxy-D-manno-octulosonic-
acid transferase

[21] ENST00000363352 2.1

STM3730 dfp 4.1.1.36 Pantothenate kinase [98] ENST00000410954 0.5
STM3912 rep 3.6.1.- ATP-dependent DNA helicase

Rep
[82] ENST00000222567 0.2

STM3978 yigC ENST00000364285 0.61
STM4153 rpoB 2.7.7.6 DNA-directed RNA poly-

merase subunit beta
[35] ENST00000362682 6.5

STM4154 rpoC 2.7.7.6 DNA-directed RNA poly-
merase subunit beta’

ENST00000388141 1.7
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3.3.4 Pathway enrichment with essential genes

The non-mevalonate pathway and fatty acid biosynthesis are highly enriched with
the essential genes of S. typhimurium. We performed gene set enrichment tests
(Fisher’s exact tests) with all of the pathways from KEGG [115], and we found a
significant enrichment of essential genes in the non-mevalonate pathway (P = 9.2E-
06) and in the fatty acid biosynthesis pathway (P = 3.8E-04). Most of the genes
in these pathways were essential (8 out of 9 genes in the non-mevalonate pathway
and 8 out of 12 genes in the fatty acid biosynthesis pathway). The non-mevalonate
pathway (Figure 3.9) produces isopentenyl diphosphate (IPP) and dimethylallyl py-
rophosphate (DMAPP), which serve as a basis for the production of sterols, dolichols
and ubiquinone, as well as components of macromolecules, such as the prenyl groups
in proteins [73]. The pathway for non-mevalonate biosynthesis has been considered
previously to be attractive targets of novel antibiotics against bacteria [76, 150], in-
cluding S. typhimurium [38, 157]. Figure 3.9 shows the non-mevalonate pathway and
its essential enzymes for S. typhimurium. Note that the arrows in the figure do not
represent information about the irreversibility of these reactions but rather show
the direction of the overall flux. This pathway, which is mostly linear, starts at
1-deoxy-D-xylulose-5-phosphate-synthase (EC-number: 2.2.1.7), which has a cor-
responding gene dxs that has been identified to be essential by the experimental
knockout study of Knuth and co-workers [93]. The next six enzymes downstream
were predicted to be essential by our method. The last enzyme we found in this path-
way was geranyltranstransferase (EC-number: 2.5.1.10), which catalyzes a reaction
to produce farnesyl-diphosphate. Recently, Cornish and co-workers performed an
elaborate mutagenesis study of the non-mevalonate pathway in S. typhimurium and
found five genes to be essential (ispD, ispE, ispF, ispG and ispH ) [38]. We propose
that all of the eight enzymes in this pathway are promising potential drug targets
for S. typhimurium. These genes and their evidence are listed in Table 3.13. We did
not detect significant homologs of the human transcript when using BLAST [7] and
the ENSEMBL database [71]. E-values of the best hits and the best hits are given
in the last two columns of Table 3.13.

3.3.5 Conclusions

In this section, we presented the results of the machine learning technique to iden-
tify essential genes using the experimental data of genome-wide knockout screens
from one bacterial organism to infer the essential genes of another related bacterial
organism. We used a broad variety of topological features, sequence characteris-
tics and co-expression properties that are potentially associated with essentiality,
such as flux deviations, centrality, codon frequencies of the sequences, coregula-
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Figure 3.9: The non-mevalonate pathway. The non-mevalonate pathway produces
isopentenyl diphosphate (IPP). This pathway is an alternative pathway in bacteria and
does not exist in the human host, which uses the mevalonate pathway to produce IPP.
The non-mevalonate pathway was highly enriched with genes that were predicted to be
essential. The reactions are given by their EC-numbers and the gene symbols of the genes
of the corresponding enzymes.
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Table 3.13: Novel potential drug targets for S. typhimurium from the non-
mevalonate pathway

ORF id Gene EC-number Enzyme Evidence Human homologs E-value

STM0049 ispH, lytB 1.17.1.2 4-hydroxy-3-
methylbut-2-enyl
diphosphate reductase

[38] ENST00000408450 0.41

STM0220 dxr 1.1.1.267 1-deoxy-D-xylulose 5-
phosphate reductoiso-
merase

[150] ENST00000384092 2

STM0422 dxs 2.2.1.7 1-deoxy-D-xylulose-5-
phosphate synthase

[105] ENST00000387061 3

STM0423 ispA 2.5.1.10 geranyltranstransferase [153] ENST00000410444 1.3
STM1779 ispE, ipk 2.7.1.149 4-diphosphocytidyl-2-

C-methyl-D-erythritol
kinase

[38, 76, 148] ENST00000386764 5.5

STM2523 ispG, gcpE 1.17.7.1 4-hydroxy-3-
methylbut-2-en-1-yl
diphosphate synthase

[38, 136] ENST00000410400 7.2

STM2929 ispF 4.6.1.12 2-C-methyl-D-
erythritol 2,4-
cyclodiphosphate
synthase

[38, 76] ENST00000384847 12

STM2930 ispD 2.7.7.60 2-C-methyl-D-
erythritol 4-phosphate
cytidylyltransferase

[38] ENST00000364025 0.07

tion and phyletic retention. An organism-wise cross-validation on bacterial species
yielded reliable results with good accuracies (area under the receiver-operator-curve
of 75% - 81%). Finally, the procedure was applied to drug target predictions
for S. typhimurium. We compared our predictions to the viability of experimen-
tal knockouts of S. typhimurium and identified 35 enzymes that are highly relevant
to be considered as potential drug targets. Specifically, we detected promising drug
targets in the non-mevalonate pathway. Using elaborated features characterizing
network topology, sequence information and microarray data enables us to predict
essential genes from a bacterial reference organism to a related query organism with-
out any knowledge about the essentiality of genes of the query organism. In general,
such a method is beneficial for inferring drug targets when experimental data from
genome-wide knockout screens is not available for the investigated organism.





Chapter 4

Discussion

4.1 Summary and discussion

In this thesis, I describe our development of a graph-based analysis system for drug
target identification in the metabolic network of microorganisms. Experimental
data from knockout strains were employed to set up a machine learning system that
integrates a variety of features describing network topology and functional genomic
properties in an elaborated way.

The graph-based investigation of the mutated network
We developed a new graph-based investigating tool, named “producibility,” and we
showed that this approach performed well in the prediction of potential drug targets.
For P. falciparum, we used the target reactions of approved drugs as a gold standard.
In comparison to an established choke point analysis, we yielded more precise pre-
dictions when combining our method with the established approach of choke point
analysis. This makes sense, because in addition to the choke point analysis, we
carefully checked for alternative pathways that could generate the products of the
tested knockout reactions. However, our method alone yielded a lower precision and
accuracy compared to the combined approach. This may be due to the fact that our
algorithm simply searches for any kind of deviation in the network that biochemi-
cally may not always serve as a valid replacement. This is especially the case when
analyzing higher connected reactions. This finding indicates that a combination of
both approaches should be applied; assembling the union of the predictions from
both methods yielded a good sensitivity (82%), whereas their intersection yielded
an improved precision (29%) and a good accuracy of 88%. However, the precision
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of 29% was also not very high. The reason for this is two-fold: first, we needed
to improve our algorithm, and, second, some of our false positive predictions were
indeed valid new drug targets. With at least reasonable evidence, this could be
experimentally shown for half of these targets. In addition, for the KEIO knockout
collection for E. coli, in which every open reading frame was knocked out and tested
for its essentiality, around 300 ORFs were observed to be essential [12]. We mapped
these ORFs to their corresponding reactions and found around 100 metabolic reac-
tions to be essential in E. coli. Transferring this order of magnitude to our case, we
estimate that only about half of all essential reactions in P. falciparum have been
experimentally validated and targeted thus far. In comparison to the choke point
analysis, we yielded a rather low sensitivity (our method: 32%, choke point: 74%,
combined: 24%). However, it was not our aim to predict a large list of potential
targets with a high number of false positives. We calculated a smaller defined list
of concrete candidate targets to be tested in the lab. For our concept, no initial
settings are needed. This makes its application easier in comparison to that of flux
balance analysis, for which the environmental conditions need to be defined, such as
the availability of nutrients, the carbon sources and the temperature. In contrast,
we restricted our method to scan over the local topological properties of the net-
work around the investigated reaction. Such a concept may be combined with a flux
balance analysis by defining the investigated region of the network and restricting
it to local subnets, making FBA more independent from environmental settings.

In summary, this approach is computationally inexpensive and simple to imple-
ment, and it limits the time and costs associated with wet-lab experiments. Also, it
has the potential to serve as a valid technique in combination with other established
graph-based investigations of metabolism. The ability to detect essential nodes in
the network depends on how well the network of interest was reconstructed. Specif-
ically, for P. falciparum, there is a larger gap in information and the reconstructed
networks were far from being complete. Still, it is necessary to have ad hoc solutions
that tackle the increasing demand for drug targets for the severe diseases caused by
this parasite.

Machine learning based approach
A single feature describing the topology may often not yield a good essentiality
estimate, but intelligently combining these features can yield a far more comprehen-
sive model. Thus, we used a machine learning concept integrating various network
topological, genomic and transcriptomic features for two applications. The first ap-
plication involved training the machine to identify the essential genes and reactions
of E. coli. For the gold standard, we used the KEIO collection, which is a compre-
hensive experimental dataset comprising phenotypic outcomes from single knockout
mutants of almost every open reading frame of E. coli [12]. The trained machine ac-
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curately predicted the experimental outcomes, which were, in the case of essentiality
under the glucose minimal condition, comparable to the findings the flux balance
analysis. Thus, the approach can, in principle, handle all media conditions. Rich
medium conditions may better reflect the conditions experienced by pathogens in
their hosts. Flux balance analysis needs clearly defined nutrient compositions, but
providing these compositions can be difficult in such less-defined media as the gut
of the host. An advantage of machine learning approaches is the ability to easily
change the stringency parameter; for example, to increase precision to avoid losing
potential candidates, the weight factor for the positive instances can be increased.

The predictions of the trained classifier were used to detect errors in the ex-
perimental knockout screen. A difference between the experimental data and the
in silico predictions may either be due to an erroneous prediction by the algorithm
or an error in the knockout experiment. Thus, genes that were predicted as false
positives and false negatives were experimentally re-investigated. Five out of the 6
selected false positive genes were found to be not correctly knocked out, and 9 out
of the 33 false negative genes were found to not be essential. In the intersection of
our results and the KEIO collection, we found 37 potential targets for novel drugs;
for 19 of these targets, we could find some reported experimental evidence in the
literature.

Another application of the developed method is the training of the machine with
one organism (e.g., E. coli) to predict essential genes for another organism for which
an experimental high-throughput screen may be too expensive, e.g., in the case of a
pathogen that needs elaborate control and isolation conditions in the laboratory. We
used five experimental datasets from high-throughput knockout screens, two sets of
different studies of E. coli and two sets of different studies of P. aeruginosa. Similar
to E. coli in the gut, P. aeruginosa is an abundant bacterium in the soil. Addi-
tionally, we employed a smaller, non-comprehensive dataset from S. typhimurium in
which 53 knockouts were described to be essential. The classifiers were trained with
essentiality information for the genes of one organism (e.g., E. coli) and were em-
ployed to predict essential genes for the other organism (e.g., P. aeruginosa). These
predictions did not depend on the essentiality information of the query organism for
which the predictions were made, but solely on features that were calculated from
the metabolic network and genomic and transcriptomic information of the query
organism. Such data are abundantly available for many pathogenic bacteria. We
applied the trained machines to predict the essential genes of S. typhimurium as the
query organism of interest and proposed 35 potential drug targets. Twenty-seven
targets resulted from the intersection between our predictions and an experimen-
tal study [93], and 8 targets were found in the non-mevalonate pathway through a
statistical enrichment analysis. The non-mevalonate pathway is non-existent in the
human host which makes it very attractive for designing a specific treatment. Some
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of the enzymes of this pathway are known targets for other pathogenic microor-
ganisms [125]. We discovered interesting correlations between our features and the
essentiality of a gene. Various features describing the network topology allowed the
machine to select reactions that showed no possible pathways for flux deviations,
e.g., in the linear non-mevalonate pathway.

Through this analysis, we gained three valuable insights. First, we could see that
the topologic, genomic and transcriptomic data describing the network attributes
were sufficient for defining the essentiality of a certain reaction under all media
conditions. Secondly, the method could be used to validate the experimental knock-
out screens by means of reducing the number of false, experimentally obtained class
labels, specifically for the positive predictions; this supports the estimation of poten-
tial drug targets. Finally, the method performed well when inferring the essentiality
information for an organism from another, related organism.

Feature analyses
Most of our network descriptors aimed at discovering weak points in a metabolic
network. Because they qualifying the uniqueness of the consumption or production
of a metabolite, choke points have been reported to be well-suited to the detection
of possible drug targets [131]. However, some false positive targets may be identified
because of gaps in an incomplete metabolic network that come along with some dead-
end reactions. After deleting an investigated enzyme in the network, an estimation
of damages is also suitable for detecting possible drug targets [100]. The results of
these damage analyses support the idea of network robustness because the removal
of the majority of the enzymes, when individually deleted, exerts little damage to
the network. It is worth noting that damage analyses may yield many false positives,
specifically when investigating reversible reactions. We used four different measures
for defining central nodes in the networks. As global centrality measures concerning
the whole network, betweenness, closeness and eccentricity centralities were posi-
tively correlated with essentiality, while eigenvector centrality, which describes local
connectivity, was negatively correlated. Both types of centrality measures (local
and global) help to detect flux deviations. The eigenvector centrality detects devia-
tions for hubs locally because high eigenvector centrality indicates highly connected
adjacent nodes, which raises the possibility for flux deviations. This explains the
negative correlation to essentiality. In contrast, high values for the other centralities
indicate the central position of the node in the whole network and therefore suggests
that a node is more likely to be essential. For example, high betweenness centrality
indicates that a node is likely to participate in many paths of any pairs of nodes in
the network.

Our genomic and transcriptomic features aim to analyze similar properties and
functions for essential genes. The genomic sequence is not be the limiting factor for
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most applications because a remarkable number of genomes have been sequenced or
will be sequenced in the near future. Furthermore, our approach uses unspecific gene
expression data, which can be obtained from publicly available resources or from
straightforward experiments. For example, for E. coli, we used gene expression data
from wildtype and single knockout strains. The single knockouts targeted regulators
of respiration affecting a large number of genes and the treatment was rather unspe-
cific (growth in oxygen-rich and oxygen-deprived conditions). Hence, a large portion
of the network pathways of the metabolic network were differentially expressed [143].
Within the presented approach, data from such pathway-unspecific examinations
allowed the classifier to learn which neighboring enzymes jointly worked together.
Therefore, multiple gene co-expression datasets for a variety of conditions may be
well-suited to our approach. However, which type of gene expression data would
optimize performance still needs to be determined.

In conclusion, we developed a machine learning approach for in silico predictions
of drug targets. It intelligently combined all these features and may be seen as an
alternative approach to the established methods of flux balance analysis (FBA) and
elementary flux modes (EFM) if detailed growth and nutrient information are lack-
ing (which is needed for FBA [144]) and if an in-depth refinement of the metabolic
network is considered to be too labor intensive (in EFM, the enzymes need to be
separated into internal nodes and external nodes to reduce the computational com-
plexity [41]). For pathogens, it is often hard to define these environmental parame-
ters, which are complex and changeable (e.g., for intestinal infections). The machine
learning approach described in this thesis can, in principle, handle various environ-
mental conditions without detailed specification, but it may benefit from experi-
mental essentiality screens that performed under similar environmental conditions
as those of the application (e.g., in oxygen-deprived conditions when mimicking the
environmental conditions of the gut).

4.2 Outlook

A machine learning algorithm combining descriptors of network topology for predict-
ing essential genes can be broadly applied to systems seeking potential drug targets
for a variety of important bacterial and other pathogenic infections. Until now,
most studies investigated the prediction of essential nodes for the same organism,
and the inference of essentiality information from one organism for another organism
has been achieved only for closely-related strains of an organism (yeast). We ex-
tended this approach to different, but related, organisms (E. coli, P. aeruginosa and
S. typhimurium). It will be a challenge to open this up to a wider variety of organ-
isms for training and application and to use the descriptors for other applications,
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specifically for multicellular organisms and human cells, e.g., to predict potential
driver mutations in cancer or host factors for viruses. To apply this method to
other microorganisms, the metabolic pathways may need to be well-characterized,
and the method may need to be adapted for less studied organisms or those with
special metabolic capabilities. To apply this method to eukaryotic genomes, the
compartments in the cell where a reaction occurs may need to be considered. Such
a prediction across more distant organisms will be interesting, specifically with re-
spect to studying the differences between conserved and evolved genes.

Because the parasite may employ host enzymes, network reconstructions consid-
ering the network of the host may improve target predictions for parasitic organisms.
We demonstrated this concept in the context of P. falciparum in the human blood
cell. But such a reconstruction can be improved using more detailed experimental in-
formation about host-parasite interactions and metabolic exchanges. Furthermore,
because genes are expressed differentially, such as during the cell cycle or under dif-
ferent conditions, it will be important to dynamically analyze conditionally-specific
networks as opposed to using a static network. Moreover, it will be very challeng-
ing to apply our method to infer multiple drug targets using experimental double
knockout screens, e.g., in the case of the synthetic lethal project of eSGA [31]. For
this, attributes that are related to single players (e.g., sequence features) might be of
less relevance, while specific network features might be more relevant to synergistic
knockout effects. In the future, it will be critical to integrate such topological de-
scriptive approaches with genetic information to systematically explore the network
effects of enzyme treatments and combinations thereof in a realistic and dynamic
environment.
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Appendix A

Additional results

A.1 Essential reactions found by our machine

learning approach but not by FBA

Amino acid metabolism
Reaction BiGG ID Reaction name EC-number ORF

R ASNTRS Asparaginyl-tRNAsynthetase 6.1.1.22 b0930
R ASPO3 L-aspartate oxidase 1.4.3.16 b2574
R ASPO4 L-aspartate oxidase 1.4.3.16 b2574
R ASPO5 L-aspartate oxidase 1.4.3.16 b2574
R ASPO6 L-aspartate oxidase 1.4.3.16 b2574

R ASPTRS Aspartyl-tRNA synthetase 6.1.1.12 b1866
R ARGTRS Arginyl-tRNAsynthetase 6.1.1.19 b1876
R PROTRS Prolyl-tRNAsynthetase 6.1.1.15 b0194
R HISTRS Histidyl-tRNAsynthetase 6.1.1.21 b2514
R PSERT phosphoserinetransaminase 2.6.1.52 b0907

R SERTRS Seryl-tRNA synthetase 6.1.1.11 b0893
R SERTRS2 Seryl-tRNA synthetase (selenocystein) 6.1.1.11 b0893
R THRTRS Threonyl-tRNAsynthetase 6.1.1.3 b1719
R CYSTRS Cysteinyl-tRNAsynthetase 6.1.1.16 b0526
R METTRS Methionyl-tRNAsynthetas 6.1.1.10 b2114
R PHETRS Phenylalanyl-tRNAsynthetase 6.1.1.20 b1713, b1714
R TYRTRS Tyrosyl-tRNAsynthetase 6.1.1.1 b1637
R LEUTRS Leucyl-tRNAsynthetase 6.1.1.4 b0642
R VALTRS Valyl-tRNAsynthetase 6.1.1.9 b4258

Biosynthesis of steroids
Reaction BiGG ID Reaction name EC-number ORF

R DMPPS 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase
(dmpp)

1.17.1.2 b0029
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Fatty acid biosynthesis
Reaction BiGG ID Reaction name EC-number ORF

R 3OAR180 3-oxoacyl-[acyl-carrier-protein] reductase (n-C18:0) 1.1.1.100 b1093
R 3OAR181 3-oxoacyl-[acyl-carrier-protein] reductase (n-C18:1) 1.1.1.100 b1093
R EAR100x enoyl-[acyl-carrier-protein] reductase (NADH) (n-C10:0) 1.3.1.9 b1288
R EAR100y enoyl-[acyl-carrier-protein] reductase (NADPH) (n-C10:0) 1.3.1.10 b1288
R EAR120x enoyl-[acyl-carrier-protein] reductase (NADH) (n-C12:0) 1.3.1.9 b1288
R EAR120y enoyl-[acyl-carrier-protein] reductase (NADPH) (n-C12:0) 1.3.1.10 b1288
R EAR121x enoyl-[acyl-carrier-protein] reductase (NADH) (n-C12:1) 1.3.1.9 b1288
R EAR121y enoyl-[acyl-carrier-protein] reductase (NADPH) (n-C12:1) 1.3.1.10 b1288
R EAR140x enoyl-[acyl-carrier-protein] reductase (NADH) (n-C14:0) 1.3.1.9 b1288
R EAR140y enoyl-[acyl-carrier-protein] reductase (NADPH) (n-C14:0) 1.3.1.10 b1288
R EAR141x enoyl-[acyl-carrier-protein] reductase (NADH) (n-C14:1) 1.3.1.9 b1288
R EAR141y enoyl-[acyl-carrier-protein] reductase (NADPH) (n-C14:1) 1.3.1.10 b1288
R EAR160x enoyl-[acyl-carrier-protein] reductase (NADH) (n-C16:0) 1.3.1.9 b1288
R EAR160y enoyl-[acyl-carrier-protein] reductase (NADPH) (n-C16:0) 1.3.1.10 b1288
R EAR161x enoyl-[acyl-carrier-protein] reductase (NADH) (n-C16:1) 1.3.1.9 b1288
R EAR161y enoyl-[acyl-carrier-protein] reductase (NADPH) (n-C16:1) 1.3.1.10 b1288
R EAR180x enoyl-[acyl-carrier-protein] reductase (NADH) (n-C18:0) 1.3.1.9 b1288
R EAR180y enoyl-[acyl-carrier-protein] reductase (NADPH) (n-C18:0) 1.3.1.10 b1288
R EAR181x enoyl-[acyl-carrier-protein] reductase (NADH) (n-C18:1) 1.3.1.9 b1288
R EAR181y enoyl-[acyl-carrier-protein] reductase (NADPH) (n-C18:1) 1.3.1.10 b1288
R EAR40x enoyl-[acyl-carrier-protein] reductase (NADH) (n-C4:0) 1.3.1.9 b1288
R EAR40y enoyl-[acyl-carrier-protein] reductase (NADPH) (n-C4:0) 1.3.1.10 b1288
R EAR60x enoyl-[acyl-carrier-protein] reductase (NADH) (n-C6:0) 1.3.1.9 b1288
R EAR60y enoyl-[acyl-carrier-protein] reductase (NADPH) (n-C6:0) 1.3.1.10 b1288
R EAR80x enoyl-[acyl-carrier-protein] reductase (NADH) (n-C8:0) 1.3.1.9 b1288
R EAR80y enoyl-[acyl-carrier-protein] reductase (NADPH) (n-C8:0) 1.3.1.10 b1288

Glycerophospholipid metabolism
Reaction BiGG ID Reaction name EC-number ORF

R DASYN120 CDP-diacylglycerol synthetase (n-C12:0) 2.7.7.41 b0175
R DASYN140 CDP-diacylglycerol synthetase (n-C14:0) 2.7.7.41 b0175
R DASYN141 CDP-diacylglycerol synthetase (n-C14:1) 2.7.7.41 b0175
R DASYN180 CDP-diacylglycerol synthetase (n-C18:0) 2.7.7.41 b0175
R DASYN181 CDP-diacylglycerol synthetase (n-C18:1) 2.7.7.41 b0175
R PGSA120 Phosphatidylglycerol synthase (n-C12:0) 2.7.8.5 b1912
R PGSA140 Phosphatidylglycerol synthase (n-C14:0) 2.7.8.5 b1912
R PGSA141 Phosphatidylglycerol synthase (n-C14:1) 2.7.8.5 b1912
R PGSA160 Phosphatidylglycerol synthase (n-C16:0) 2.7.8.5 b1912
R PGSA161 Phosphatidylglycerol synthase (n-C16:1) 2.7.8.5 b1912
R PGSA180 Phosphatidylglycerol synthase (n-C18:0) 2.7.8.5 b1912
R PGSA181 Phosphatidylglycerol synthase (n-C18:1) 2.7.8.5 b1912
R PSD141 Phosphatidylserine decarboxylase (n-C14:1) 4.1.1.65 b4160
R PSD181 Phosphatidylserine decarboxylase (n-C18:1) 4.1.1.65 b4160
R PSSA120 Phosphatidylserine syntase (n-C14:0) 2.7.8.8 b2585
R PSSA140 Phosphatidylserine syntase (n-C14:1) 2.7.8.8 b2585
R PSSA141 Phosphatidylserine syntase (n-C16:0) 2.7.8.8 b2585
R PSSA180 Phosphatidylserine syntase (n-C18:0) 2.7.8.8 b2585
R PSSA181 Phosphatidylserine syntase (n-C18:1) 2.7.8.8 b2585
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Glycerolipid metabolism and Glycerophospholipid metabolism
Reaction BiGG ID Reaction name EC-number ORF

R AGPAT120 1-tetradecanoyl-sn-glycerol 3-phosphate O-
acyltransferase (n-C12:0)

2.3.1.51 b3018

R AGPAT140 1-tetradecanoyl-sn-glycerol 3-phosphate O-
acyltransferase (n-C14:0)

2.3.1.51 b3018

R AGPAT141 1-tetradec-7-enoyl-sn-glycerol 3-phosphate O-
acyltransferase (n-C14:1)

2.3.1.51 b3018

R AGPAT180 1-octadecanoyl-sn-glycerol 3-phosphate O-
acyltransferase (n-C18:0)

2.3.1.51 b3018

R AGPAT181 1-octadec-7-enoyl-sn-glycerol 3-phosphate O-
acyltransferase (n-C18:1)

2.3.1.51 b3018

R G3PAT120 glycerol-3-phosphate acyltransferase (C12:0) 2.3.1.15 b4041
R G3PAT140 glycerol-3-phosphate acyltransferase (C14:0) 2.3.1.15 b4041
R G3PAT141 glycerol-3-phosphate acyltransferase (C14:1) 2.3.1.15 b4041
R G3PAT180 glycerol-3-phosphate acyltransferase (C18:0) 2.3.1.15 b4041
R G3PAT181 glycerol-3-phosphate acyltransferase (C18:1) 2.3.1.15 b4041

A.2 Correlation between gene essentiality and all

of the features

The feature values of each gene were correlated with the essentiality of the gene
(1 = essential, 0 = non-essential). High values indicate that the feature was posi-
tively correlated to essentiality. These values were obtained for all gold standards
(ecoB, ecoG for E. coli and paeJ, paeL for P. aeruginosa) and for the combined gold
standards (all data).

Table A.1: Correlation coefficients (R(f)) of for the correlation between essentiality
and all of the features

ecoB ecoG paeL paeJ
R(f) p-value R(f) p-value R(f) p-value R(f) p-value

RUP -0.145 7E-05 -0.121 0.002 -0.107 0.004 -0.113 0.002
PUP 0.169 4E-06 0.124 0.001 0.056 0.134 0.101 0.006
ND 0.013 0.726 -0.016 0.685 -0.060 0.113 -0.051 0.168
APL -0.074 0.042 -0.092 0.016 -0.060 0.109 -0.048 0.193
LSP -0.068 0.065 -0.090 0.018 -0.039 0.300 -0.016 0.669
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ecoB ecoG paeL paeJ
R(f) p-value R(f) p-value R(f) p-value R(f) p-value

NS 0.116 0.002 0.082 0.033 0.056 0.137 0.092 0.013
NP 0.054 0.142 0.009 0.811 0.047 0.208 0.070 0.057

NNR -0.039 0.283 -0.046 0.235 -0.012 0.759 -0.015 0.676
NNNR -0.050 0.169 -0.043 0.263 -0.027 0.469 -0.009 0.798
CCV -0.032 0.379 -0.073 0.058 -0.044 0.238 -0.029 0.427
DIR 0.080 0.028 0.099 0.009 0.047 0.216 0.060 0.103
CP 0.109 0.003 0.036 0.350 0.046 0.227 0.086 0.021
LS 0.073 0.045 0.044 0.246 0.060 0.109 0.072 0.052

NDR -0.108 0.003 -0.093 0.015 -0.080 0.034 -0.012 0.752
NDC -0.109 0.003 -0.094 0.0142 -0.080 0.033 -0.012 0.738

NDRD -0.107 0.004 -0.092 0.016 -0.079 0.035 -0.011 0.763
NDCD -0.108 0.003 -0.093 0.015 -0.080 0.034 -0.012 0.754
NDCR 0.007 0.850 -0.041 0.287 -0.066 0.081 0.041 0.271
NDCC 0.005 0.882 -0.042 0.276 -0.066 0.078 0.040 0.282

NDCRD 0.008 0.821 -0.040 0.301 -0.065 0.085 0.042 0.263
NDCCD 0.007 0.850 -0.041 0.287 -0.066 0.082 0.041 0.269

BW 0.164 1E-05 0.152 7E-05 0.128 0.001 0.127 0.001
CN 0.040 0.274 0.053 0.167 0.047 0.214 0.085 0.021
EC 0.071 0.052 0.075 0.049 0.105 0.005 0.144 1E-04
EV -0.040 0.272 -0.050 0.189 -0.057 0.127 -0.083 0.025

NAR -0.100 0.007 -0.045 0.241 -0.093 0.013 -0.142 1E-04
H30 -0.060 0.102 -0.055 0.155 -0.059 0.115 -0.092 0.013
H20 -0.043 0.236 -0.045 0.244 -0.075 0.047 -0.095 0.011
H10 -0.057 0.119 -0.089 0.019 -0.094 0.012 -0.128 5E-04
H7 -0.072 0.048 -0.108 0.005 -0.111 0.003 -0.146 8E-05
H5 -0.099 0.007 -0.131 0.001 -0.124 0.001 -0.150 5E-05
H3 -0.073 0.045 -0.104 0.006 -0.158 2E-05 -0.169 4E-06

NGSE -0.141 1E-04 -0.110 0.004 -0.037 0.329 -0.031 0.398
MCC -0.041 0.265 -0.065 0.091 -0.040 0.291 -0.053 0.150
PR 0.126 0.001 0.044 0.250 0.043 0.258 0.049 0.190
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ecoB ecoG paeL paeJ
R(f) p-value R(f) p-value R(f) p-value R(f) p-value

Nc -0.039 0.291 -0.163 2E-05 -0.108 0.004 -0.153 3E-05
T3s 0.059 0.104 0.131 6E-04 0.257 4E-12 0.201 4E-08
C3s -0.009 0.816 -0.082 0.032 -0.128 6E-04 -0.072 0.053
A3s -0.028 0.446 0.053 0.169 0.049 0.195 0.058 0.115
G3s -0.068 0.064 -0.100 0.009 -0.009 0.816 -0.065 0.079
phe -0.054 0.138 -0.065 0.090 -0.013 0.738 -0.059 0.113
ser -0.086 0.018 -0.100 0.009 0.016 0.675 0.025 0.492
tyr -0.082 0.025 -0.118 0.002 -0.030 0.431 -0.050 0.174
cys -0.081 0.027 -0.089 0.020 -0.075 0.047 -0.100 0.007
leu 0.041 0.263 0.019 0.615 0.041 0.281 0.011 0.776
trp -0.024 0.509 -0.096 0.012 -0.033 0.381 -0.058 0.115
pro -0.005 0.883 -0.043 0.259 -0.016 0.675 -0.031 0.406
his -0.017 0.643 0.005 0.899 -0.078 0.039 -0.063 0.087
arg 0.109 0.003 0.076 0.047 -0.027 0.469 -0.036 0.332
gln -0.057 0.121 -0.036 0.352 -0.028 0.454 -0.026 0.483
ile 0.027 0.465 0.008 0.832 0.074 0.047 0.110 0.003

met 0.006 0.880 0.035 0.358 0.082 0.029 0.058 0.117
thr 0.023 0.536 -0.005 0.892 0.000 0.996 0.006 0.881
asn -0.045 0.224 -0.094 0.014 -0.025 0.514 -0.031 0.402
lys -0.001 0.975 0.045 0.245 0.090 0.017 0.107 0.004
val 0.057 0.122 0.118 0.002 0.099 0.009 0.122 0.001
ala 0.025 0.495 0.040 0.294 -0.045 0.229 -0.063 0.087
asp 0.033 0.374 0.071 0.064 -0.010 0.781 0.042 0.253
glu 0.001 0.977 0.044 0.248 -0.015 0.683 -0.008 0.823
gly -0.014 0.692 -0.023 0.553 -0.088 0.018 -0.047 0.206
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Table A.2: Results of AUC (area under curve of the receiver operator characteristics)
for each feature

Feature
AUC

Feature
AUC

paeL paeJ ecoB ecoG paeL paeJ ecoB ecoG
RUP 0.569 0.561 0.597 0.568 H3 0.660 0.625 0.537 0.547
PUP 0.555 0.579 0.637 0.587 H5 0.612 0.602 0.542 0.547
NS 0.555 0.568 0.587 0.541 H7 0.588 0.589 0.525 0.533
NP 0.546 0.558 0.557 0.512 H10 0.565 0.570 0.518 0.524

NNR 0.491 0.479 0.521 0.524 H20 0.539 0.538 0.510 0.508
NNNR 0.512 0.483 0.541 0.542 H30 0.527 0.533 0.513 0.510
CCV 0.523 0.513 0.522 0.549 phe 0.530 0.571 0.551 0.541
DIR 0.535 0.537 0.558 0.560 ser 0.517 0.522 0.557 0.558
ND 0.542 0.547 0.414 0.561 tyr 0.530 0.541 0.572 0.584
APL 0.541 0.546 0.587 0.564 cys 0.576 0.579 0.555 0.551
LSP 0.535 0.541 0.584 0.561 leu 0.534 0.506 0.534 0.516
NDR 0.580 0.521 0.556 0.558 trp 0.580 0.580 0.536 0.587
NDC 0.590 0.534 0.568 0.554 pro 0.508 0.527 0.523 0.523

NDRD 0.586 0.525 0.546 0.547 his 0.565 0.548 0.521 0.499
NDCD 0.587 0.525 0.569 0.560 arg 0.542 0.536 0.597 0.566
NDCR 0.541 0.532 0.542 0.509 gln 0.516 0.513 0.550 0.526
NDCC 0.543 0.529 0.538 0.508 ile 0.565 0.576 0.532 0.511

NDCRD 0.539 0.534 0.546 0.505 met 0.567 0.542 0.496 0.511
NDCCD 0.539 0.535 0.538 0.509 thr 0.495 0.505 0.513 0.521

CP 0.534 0.553 0.578 0.522 asn 0.518 0.525 0.53 0.570
LS 0.545 0.562 0.566 0.519 lys 0.581 0.576 0.497 0.531
bw 0.644 0.616 0.656 0.629 val 0.587 0.595 0.552 0.588
cn 0.516 0.540 0.500 0.513 ala 0.542 0.554 0.514 0.523
ec 0.561 0.584 0.511 0.509 asp 0.491 0.548 0.518 0.529
ev 0.604 0.571 0.589 0.559 glu 0.503 0.511 0.506 0.541

NAR 0.528 0.572 0.550 0.524 gly 0.586 0.546 0.521 0.516
T3s 0.683 0.638 0.579 0.613 codons 0.622 0.629 0.541 0.645
C3s 0.599 0.545 0.516 0.560 COX 0.541 0.536 0.616 0.571
A3s 0.544 0.554 0.516 0.538 MCO 0.528 0.535 0.520 0.541
G3s 0.510 0.554 0.561 0.575 ORT 0.530 0.531 0.588 0.497


