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Abstract
In a cluster computer a parallel file system is encharged to spread one single parallel
file on the different computer’s I/O nodes using a determined distribution function.
In file I/O intensive parallel scientific applications with semi-random temporal par-
allel file I/O access patterns, this file is accessed at different addresses at the same
time by a number of processes that may vary between two consecutive iterations.
In this thesis a set of semi-random temporal parallel file I/O access patterns gener-
ated by a phylogenetical application is categorized. For these patterns a partitioning
function is proposed that guarantees at any time during execution access to the par-
allel file.
This thesis shows the correlation existing between the type of I/O access patterns
and the type and setting of two round robin based distribution functions so that the
overall application’s execution time can be reduced.

Auf einem Clusterrechner dient ein paralleles Dateisystem dazu, eine einzelne par-
allele Datei den verschiedenen E/A-Knoten des Rechners mittels einer bestimmten
Verteilungsfunktion zuzuweisen.
In parallelen wissenschaftlichen Anwendungen mit intensiven zeitlich semi-zufälligen
parallelen E/A-Zugriffen wird auf mehrere Addressen einer solchen parallelen Datei
aus unterschiedlichen Prozessen gleichzeitig zugegriffen, wobei sich die Anzahl dieser
Prozesse zwischen zwei nacheinander folgenden Iterationen ändern kann.
In dieser Dissertation wurde ein Satz von zeitlich semi-zufälligen parallelen E/A-
Zugriffen kategorisiert, der von einer Stammbaumberechnungsanwendung erzeugt
wird. Für diesen Satz von Zugriffen wurde eine Partitionierungsfunktion konzipiert,
die der Anwendung jederzeit das Schreiben ihrer Daten in die parallele Datei unab-
hängig vom E/A-Zugriffstyp ermöglicht.
In dieser Dissertation wird die existierende Korrelation zwischen den E/A-Zugriffsty-
pen und den Einstellungen zweier Round-Robin-basierter Verteilungsfunktionen ge-
zeigt, unter denen die Anwendungsausführungszeit reduziert wird.
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1. Introduction

1.1 Motivation

Mainly due to the electromechanical dependent seek time and rotational latency
of hard disk drives (HDDs), the performance of disks has evolved at a smaller
rate than that corresponding to the performance of CPUs during the last years
[MTHC+08, PaCh98]. This difference of development at the hardware level is one
of the main causes of the so-called I/O-bottleneck problem in disk-based computing
systems. Several approaches have been undertaken to solve this problem. In the last
years at the hardware level, the deployment of fast flash memory based solid state
drives (SSDs) [PSSM+10, TKRM08] presents a promising solution to this isssue.
Nevertheless, one single fast secondary storage device can also become the I/O bot-
tleneck, if its throughput does not scale with the number of used CPUs. Such
scenarios are typical for data intensive parallel scientific applications that frequently
convey huge amount of data sets between primary and secondary storage on SMP-
and multicore-based cluster computers1. Therefore, other methods to diminish the
I/O-bottleneck drawbacks have been conceived. The parallel I/O concept is one of
them and it consists in providing the computing system with more than one sec-
ondary storage device that can parallely be accessed from processes running on any
of the used CPUs. The application of this concept does not only reduce access and
delay times to one single value, but it also exploits the aggregated throughput and
capacity of the used secondary storage devices set.
A cluster computer, in which at least two nodes have their own secondary storage
device, inherently constitutes an appropriate hardware testbed for supporting par-
allel I/O. Nevertheless, in order for the file I/O intensive scientific applications to
appropriately access this set of secondary storage devices, corresponding operations
at the file system and middleware level must be provided. Furthermore, the appli-
cations’ file accesses must be adapted to these operations.
At the file system level, a parallel file system is encharged of the physical distribution
of files on top of the involved storage devices. It also manages the created files and
their attributes. The middleware provides an appropriate interface and optimiza-
tions to use the parallel file system’s functionalities.

1For this work I used an HDD-based testbed. Thus, except when explicitly stated, the descrip-
tions are limited to this type of systems.



2 1. Introduction

A parallel I/O intensive scientific application can access its data from many pro-
cesses to one single parallel file. This file is spread across the involved secondary
storage devices by the parallel file system through the usage of physical distribution
functions. At different times throughout the whole execution time the application
accesses the file at different addresses. Thus, generating temporal and spatial I/O
patterns while accessing the file.
In this work I propose the thesis that one distribution function presents different de-
grees of efficiency when it is applied to service different applications’ access patterns.
Therefore, the execution time of an I/O intensive scientific application, accessing one
single file with given access patterns, can be reduced by applying the adequate dis-
tribution functions or parameters to store the file across secondary storage devices.

1.2 Summary of Main Results

This section summarizes this work’s contributions while using the approach that I
describe in subsection 2.4.1 to answer the posed research question under section 2.3.
These contributions support the thesis stated in section 1.1.

1. In this work I have identified and categorized in four types a set of semi-random
temporal parallel file I/O access patterns that may appear during the execution
of the p(MC)3 algorithm on an abstract machine provided with a one dimen-
sional array as parallel I/O interface. I have also proposed a mathematical
expression to determine the total possible number of different patterns that
might appear during the whole execution time based upon the number of I/O
swaps that can be determined during the first iteration.

2. I have proposed the mapping at first generation partitioning function, in order
to write into a parallel file data generated by any of the identified semi-random
temporal parallel file I/O access patterns.
The mapping at first generation partitioning function can be applied to applica-
tions in which the time parallel I/O access patterns randomly vary throughout
the whole execution time, but whose data storage structure in a parallel file
can be determined in a map during the first iteration. This map is a data
structure containing all offsets and sizes of the parallel file. It is constructed
based upon a predefined file format, one of each element sizes that the file
will contain, and the number of entries for each one of these elements. At
writing iteration each process with data to be written, using the map and the
iteration number, computes the corresponding address(es) for its data in the
parallel file. Finally, the write operation takes place.
In this work I have implemented the MFG function for the p(MC)3 algorithm.
This is a write-only case that generates a set of semi-random temporal paral-
lel file I/O access patterns. Since the mapping at first generation partitioning
function provides each process with a complete mapping of the parallel file at
any time, it is also suited for write-only applications with random parallel I/O
access patterns.

3. The mapping at first generation partitioning function in combination with the
simple stripe distribution function supports each one of the categorized semi-
random temporal parallel file I/O access patterns generated by an application
based on the p(MC)3 algorithm, whereas in combination with the varstrip dis-
tribution function it supports only the π1 pattern (see Sec. 7.4). Independently

2



1.3. Structure of the Thesis 3

of the used distribution function to handle the parallel file, this pattern presents
the highest speedup values among all recognized patterns on the I/O environ-
ment described in section 7.2. Furthermore, this pattern presents the highest
of its speedup values while serving it with the varstrip distribution function.
In order to further increase this speedup with this distribution function, I also
proposed the parallel line buffering mechanism to control the number of com-
puted results to be kept in main memory before writing them into the parallel
file.

4. For π1 patterns I identified a set of conditions to set the striping unit within
the simple stripe distribution function and to apply parallel line buffering to
set the varstrip chunk size within the varstrip distribution function, in order
to reduce execution time.

5. In this work I have shown that the speedup for a π1 pattern varied in a semi-
parabolic manner in terms of the MPI processes number. I called the number
of processes with which the highest speedup was attained as the process sat-
uration number (see Sec. 7.6.2.1). Except for the highest speedup value, this
parabolic behavior means that the same speedup value was attained by choos-
ing two different MPI process numbers to execute the serial and parallel I/O
implementations of the program. Nevertheless, the same speedup translates
into different execution times for the serial and parallel I/O implementations.
A speedup value obtained with MPI process numbers smaller or equal than the
process saturation number corresponded to the smaller of these two execution
time values. Thus, I called it the smallest-process-overhead speedup.
In this work I have experimentally determined the process saturation number
to be equal to one MPI process per CPU. Furthermore, the speedup values
also approached a maximum value towards the total used number of CPUs on
an I/O cluster with 2 CPUs SMP architecture nodes.

6. The application’s parallel I/O implementation that I propose in this work is
suited for the computational phylogenetical analyses involving a big number
of taxa and runs. While using the mapping at first generation in combination
with the simple stripe distribution function and its striping unit default value
to compute an analysis with 256 runs an input matrix containing 2664 taxa,
a speedup at process saturation number of 11.3 with an efficiency of 70% was
measured. This speedup was computed on an I/O cluster of 8 nodes with 2
CPUs SMP architecture nodes and one secondary storage device per node2.

1.3 Structure of the Thesis

This chapter states the thesis that I propose in this work. It also summarizes the
results obtained through the course of this work that support the proposed thesis.
This work involves basically two disciplines of human knowledge: parallel I/O and
phylogenetical analysis. These are disciplines from computer sciences and biology,
respectively. Chapter 2 provides the necessary terminology from these areas, in order
to gain a precise understanding of this work’s research question and the approach
that I used to solve it. I thoroughly describe these under section 2.3 and 2.4, respec-
tively.

2Since this is a π1 pattern, this speedup can still be improved by applying the varstrip distri-
bution function with the optimal value for the varstrip chunk size.

3



4 1. Introduction

Chapter 3 describes two distribution functions implemented within the PVFS2 paral-
lel file system. The first one is the varstrip distribution function, which we proposed
to control I/O throughput and load balancing within the parallel file system. The
second one is the simple stripe distribution function. In order to show the perfor-
mance of these distribution functions and their interactions with different parallel
I/O patterns, in this work I have proposed a parallel I/O implementation for Mr-
Bayes, which is a program for the computation of phylogeny. Chapter 4 presents
a description of the original program’s serial file I/O activities. This is a very first
approach to acquire some knowledge about the program’s I/O requirements. As
part of the parallel I/O implementation process, in chapter 5 I present a theoreti-
cal analysis of the p(MC)3 algorithm (application’s algorithm) in terms of its I/O
requirements on an abstract computing machine under the assumption that this ma-
chine is provided with a one dimensional array to store its data. In section 5.2 I
quantify and categorize the set of time parallel I/O access patterns that can appear
in a semi-random manner during the algorithm’s execution time.
In chapter 6 I propose the mapping at first generation partitioning function (MFG).
In a general case, the mapping at first generation partitioning function enables pro-
cesses, involved in an algorithm with random time parallel I/O access patterns, to
access their data into a parallel file at the corresponding addresses. In this particular
case, I have implemented the MFG for the p(MC)3, an algorithm with semi-random
temporal parallel file I/O access patterns and write-only operations. Chapter 6 also
presents the function’s interactions with distribution functions within the parallel
file system, especially how the parallel line buffering mechanism sets the varstrip
distribution function. Chapter 7 describes the performance evaluation of the MFG
function with different parameters at the application and system software level.
Finally, chapter 8 presents the conclusions and a list of possible future research topics
that can be conducted based upon this thesis.

4



2. Background and Research
Problem

The purpose of this chapter is to provide a detailed description of the research ques-
tion (see Sec. 2.3) that I am addressing in this work. Before posing this question,
the required vocabulary to understand its context is introduced. Due to the multi-
disciplinarity of this work, it is necessary to define two types of terminologies: one
in the area of parallel I/O (see Sec. 2.1) and the other in the area of phylogenetical
analysis (see Sec. 2.2). Section 2.4 describes the approach that I used to tackle this
research question and it also describes some related work.

2.1 The Parallel I/O Concept

A relatively abstract idea of a hardware computing system consists of a central pro-
cessing unit (CPU) and a memory. Concerning the system’s performance, the user
should theoretically expect an infinite fast processing unit, an infinite space to store
data, and an infinite fast access time for the CPU to access the corresponding data.
Unfortunately, due to physical constraints actual computing systems do not provide
these requirements. In the memory’s case an actual computing system does not
have only one type of memory, but rather it has a set of different types of memory
that are ordered in a hierarchical manner according to their parameter ranges. The
access time, the data troughput, and the storage capacity are three of these param-
eters. The access time across two of these types may vary to one or more orders
of magnitude. In many computing systems hard drive disks constitute the slowest
devices of their memory hierarchy. When a CPU requires to access data stored on
such devices for a given computation, the overall system’s performance to conduct
this task suffers because the parameters’ ranges of such devices are greater than
those corresponding to registers, cache and main memory. This difference between
CPU and I/O devices yields to the so-called I/O-bottleneck problem [HsSm04] in
disk-based computing systems.
In past years the storage capacity of hard disks has increased, but their throughput
has not correspondingly kept pace with this development [Leve10, MoTr03]. This
increment of storage capacity makes disk-based systems attractive for applications
that deal with huge amounts of data in the area of high performance parallel com-
puting [FoCo94, CuSG99, DoSe98, Dong05]. Nevertheless, solutions are required to
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overcome or ameliorate the corresponding I/O-bottleneck of such systems. One of
these solutions is the concept of parallel I/O [May01, RCCK+95, WoGr97]. The ba-
sic idea behind this concept is to provide the computing system with more than one
secondary storage device and arrange them in such a manner that their throughput
and storage capacity values arithmetically add up to one single aggregated through-
put and one single storage capacity value.
This parallel I/O concept applies to distributed memory systems such as cluster
computers and it has as central concept the so-called logical file. The logical file is
an abstraction for representing the total data accessed by a computing program in
a one dimensional array. On the one hand this data is divided among the so-called
compute nodes in order to process their corresponding part of the problem. On the
other hand, this one dimensional array must be divided among many I/O nodes,
which store it in their corresponding secondary storage devices. Spreading this one
dimensional logical file across different I/O nodes is called physical file layout or
striping [Croc89, ChPa90], whereas the division among the compute nodes is called
partitioning [Quin03]. The striping concept has been applied at the different levels
within a computing system. In the case of RAID level 0 systems [LeKa93], this
concept is applied at the hardware level in special disk controllers, whereas other
applications are virtualizations, such as it is the case of software RAIDs [Cort99].
In a cluster computer the parallel I/O consists in conveying the global data structure
that is partitioned among compute nodes to a file spread across I/O nodes. At the
lowest level a parallel I/O operation can be viewed as a mapping between compute
node memories and disk addresses [NiLo97].
The following sections describe the computing system environment that is required
to implement the parallel I/O concept on a cluster computer. This includes the
hardware, the file system, the middleware, and a parallel I/O application.

2.1.1 I/O Cluster

Even though the processor speed and the hard disk capacity storage of monoproces-
sor systems (see Def. A.1) continue to increase, there are certain computing problems
for which these resources are insufficient. Usually the characteristic of such a com-
puting problem is not its difficulty to be computed, but to be computed with a small
execution time in order to keep up with the design cycle of a product being devel-
oped or to meet real time requirements [Volk99]. Furthermore, such a computing
problem might generate an amount of data which exceeds the storage capacity pro-
vided by the monoprocessor system. This limitation might lead to a partial solution.
In order to provide at some degree suited hardware for these computing problems,
cluster computers are deployed. These are collections of monoprocessor systems that
communicate and cooperate to quickly solve a large problem [AlGo89]. A cluster
computer is a distributed memory computer in which information exchange occurs
using messages. The strengths of a cluster computer is its memory scalability in
terms of the number of nodes and the fast access of one node to its local memory.
Nevertheless, a domain decomposition function and a load balancing function (if
required) must be programmed to divide the computing task among the cluster’s
nodes. For the purposes of this work I consider an I/O cluster computer as a special
type of cluster computer, in which each node has exactly one physical secondary stor-
age device. In this work an I/O cluster provides the basic parallel I/O infrastructure
that must be made available to the application through corresponding mechanisms
at the parallel file system and I/O library level.
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2.1.2 Parallel File Systems

Applying the parallel I/O concept to an I/O cluster offers applications the possibility
to use the secondary storage devices as a single entity. In order for an application
to exploit the strengths of such storage entity, a corresponding software architecture
is required. This basically is a layered architecture, which consists of a parallel file
system and a parallel I/O interface. This and the next subsection describe these two
layers, respectively.
In the context of a parallel file system the physical nodes of a cluster computer are
divided into three different sets of nodes: the compute, the I/O, and the metadata
nodes. The compute nodes are deployed for the actual program’s computation. The
I/O nodes store the corresponding data. Thus, they must have at least one physical
secondary storage device. The metadata nodes administer the file system’s meta-
data set.
A parallel file system is the software encharged for the management of parallel files.
This management consists of two parts. The first one consists in providing a logical
view of a file to processes that parallely access it. The second one consists in storing
or retrieving the file to or from more than one physical secondary storage device.
The basic mechanisms implemented in parallel file systems are: Buffering and distri-
bution functions. The idea behind buffering is to minimize the access to secondary
storage as much as possible by keeping data in buffers in main memory. Buffering
requires the corresponding implementation of mechanisms to decide the appropriate
time to access secondary storage. In applications in which accesses occur in small
sizes some parallel file system keep them in buffers on the compute nodes, I/O nodes,
or both and proccess them at once after certain criteria are met. In [IMOS+04] the
researchers describe the implementation of two such mechanisms, collective I/O and
cooperative caching, in the clusterfile parallel file system. Keeping data on different
buffers on different nodes requires the implementation of mechanisms such as locking
or consistency protocols, in order to guarantee data consistency.
The distribution function is the mechanism used to parallelly store or retrieve one
single logical file over many secondary storage devices. A simple distribution func-
tion can be implemented by using the round robin mechanism. This mechanism is
also deployed for RAID 0 systems.
The provided aggregated bandwidth and the augmented maximum file size in par-
allel file systems are two characteristics that can be exploited by file I/O intensive
scientific applications that generate huge amounts of data.
Some of the parallel file systems are: VESTA [CoFe96], PPFS [JERC+01], GPFS
[ScHa02], Clusterfile [IsTi03].

2.1.2.1 The PVFS2 Parallel File System

This section describes the PVFS2 parallel file system, the open source second ver-
sion of the Parallel Virtual File System (PVFS) [LiRo01, IIRo99, LiRo96]. This is a
small description of the implemented functionalities and mechanisms, architecture,
provided interfaces, and configurations. It is based upon the documentation pro-
vided under doc and the source code of the pvfs-2.8.1. We provide in [KuLV04] a
German description of the parallel file system that includes a set of diagrams, with
which we thoroughly depict the parallel file system configuration, the server and
client architecture in a layered model as well as in terms of state machines. This
last set of diagrams is of special interest from the programming point of view.
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8 2. Background and Research Problem

PVFS2 has a client-server architecture. It has one type of client and two types
of servers, the io and the metadata servers.
Client and servers have a layered architecture, from which the Job manager, Flows,
and the Buffered Message Interface (BMI) are common to both. In the context
of PVFS2 an operation consists of jobs. The Job manager handles the development
of such jobs. The Flows layer is encharged of data movement among network, stor-
age devices, or memory. The BMI abstracts the network. Additionaly to the above
mentioned layers the client includes the System Interface. This interface provides
the set of PVFS2 functionalities that can be accessed from a parallel I/O library such
as ROMIO, the kernel driver, or the PVFS library. Many of the operations available
at the system interface are implemented through corresponding state machines.
Besides the common layers the servers have also the Trove, Op State Machine, and
the Request Handler layers. Trove abstracts the storage devices, whereas the other
two layers take care of the operation machines and requests, correspondingly.
As in other parallel file systems, in the context of PVFS2 a cluster computer is
divided in three different set of nodes: the compute, I/O, and the metadata nodes.

2.1.2.2 Distribution Functions

Distribution function is a method describing the mapping from logical files, logical
one dimensional sequence of bytes, to a physical layout of bytes on PVFS2 I/O nodes.
In PVFS2 several distribution functions have been implemented. If none of these
is explicitly selected by the user, the parallel file system applies the simple stripe
distribution function with a default striping unit of 64KB.
The simple stripe distribution function is a mechanism that divides the one dimen-
sional logical file in a set of non-overlapping chunks of data, which are called strips.
These strips are then stored in a round robin manner on datafiles on the I/O nodes
[LMRC04].
In the PVFS2 terminology a strip is the amount of data written to a single server,
whereas a stripe is the total number of strips written into the I/O servers in a
round robin cycle. Chapter 3 describes in a more extended manner the distribution
functions that I used in this work.

2.1.3 Interfaces

One way to use parallel file systems is directly from a parallel program. Such pro-
grams can be implemented by using different programming models and correspond-
ing libraries such as PVM [GeSc02, Chapter 11], OpenMP [CDKM+01] or the mes-
sage passing interface (MPI) library.
In the case of MPI-based parallel programs the ROMIO library [ThGL99b], imple-
mented according to the MPI-2 standard, is an alternative to access the parallel I/O
subsytem. This subsection briefly describes the parallel I/O functions specified in
the MPI-2 standard and the ROMIO library implementation.
The MPI-2 standard specifies functions for supporting asynchronous I/O, strided
accesses, and control over the striping mechanisms. In the context of the MPI-2
standard an MPI File is considered as a set of ordered etypes (elementary types).
These etypes can be MPI predefined or derived types. Writing or reading data oc-
curs in etypes units. Figure 2.1 illustrates these elements. A view is defined as
the data, which a process can access in an opened file. It is defined by the tuple
(displacement, etype, filetype). The offset is defined as a position in terms
of etypes and within a given view. In the MPI-2 two types of file pointers are dis-
tinguished: shared and individuals. Shared file pointers have a shared value among
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Figure 2.1: MPI file elements according to the MPI-2 standard (4 MPI processess)

the processes, which open a file. The value of individual file pointers are local to the
processes.
Once an MPI file is open, a corresponding file handle is returned and this is used
for the operations on the file. Besides operations for file manipulation such as open,
close, delete, resize, preallocation, query, and file info, the MPI-2 stan-
dard specifies operations for manipulating file views, data accessing, file interoper-
ability, consistency and semantics, and error handling. Detailed descriptions can be
found in [GrLT99, MPI 08].
The following paragraphs to describe the ROMIO libray is strongly based on the
description found in [WLRR03, Chapter 19]. ROMIO includes basically two op-
timizations: the two phase I/O [ThCh95] and data sieving [ThGL99a]. The two
phase I/O or collective buffering is an optimization for collective I/O operations
and it differs for write and read operations. For a write operation the first phase
consists in distributing the data to a set of processes called the aggregators. In
the second phase the aggregators write the data to the file system. In the case
of read operations the aggregators acquire their regions from secondary storage
and distribute them to the processes involved in the collective read operation. Six
MPI hints from the type described in subsection 2.1.3.1 can be used to control the
two-phase I/O: cb_buffer_size, cb_nodes, romio_cb_read, romio_cb_write,

romio_no_indep_rw, cb_config_list. Data sieving consists in accessing a set of
noncontiguous regions of a file by reading a single block, which includes all regions in-
cluding the data between them. Finally, the client extracts from this single block its
required data. The following hints can be used for data sieving in a stack consisting
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10 2. Background and Research Problem

of ROMIO and PVFS: ind_rd_buffer_size, romio_ds_read. The following hints
control List I/O in PVFS: romio_pvfs_listio_read, romio_pvfs_listio_write.

2.1.3.1 MPI-Hints

In the context of the MPI-2 standard the info object [MPI 08, Chapter 9] is a tuple
(<key>, <value>). A key can have only one value and both elements are case sen-
sitive strings. This object can be given as argument for MPI functions. The MPI-2
standard specifies a set of operations to create, set, delete, query, and free

info objects.
In the context of MPI-2 standard the info object can be used to specify hints
that provide information on optimizations. Providing hints may enable an imple-
mentation to deliver increased I/O performance or minimize the use of system re-
sources. Hints are specified on a per-file basis in MPI_FILE_OPEN, MPI_FILE_DELETE,
MPI_FILE_SET_VIEW, and MPI_FILE_SET_INFO. The reserved file hints mainly affect
access patterns and the layout of data on parallel I/O devices [MPI 08, Chapter 10].

2.1.4 Applications

This subsection completes the description of the whole hardware and software stack
in a parallel I/O environment. It provides a brief description of the file I/O intensive
scientific applications’ characteristics.

2.1.4.1 A File I/O Intensive Application

Since there are different areas of science and engineering, in which parallel file I/O
intensive applications can be found, this section describes in a general manner the
characteristics of such applications, instead of describing a particular one.
For the purposes of this description I simplify such an application as consisting
of a number of iterations. In these iterations computing and access to the I/O
subsystem can take place. In theory the application can access the I/O subsystem
in each iteration for compulsory data, checkpointing, data staging [MiKa91], and
other kinds of data or it can access the I/O subsystem only during the last iteration
due to compulsory data. This means that the same scientific application represents
different workload to the I/O subsystem. Based upon this fact, I propose in this
work in expression 2.1 the definition of an X percent file I/O intensive scientific
application .

Definition 2.1 A scientific application is X percent file I/O intensive, if it com-
putes or simulates phenomena in the areas of natural sciences or engineering and
satisfies:

1. X =
TMaxio

Texec
∗ 100, Texec = Total execution time, TMaxio

= Maximum possible
total I/O time. The time TMaxio

refers to the time used in accessing the I/O
subsystem.

2. Its I/O software capacity requirements at the file system level exceeds those
provided by sequential file systems.

10



2.2. Phylogenetical Analysis 11

2.2 Phylogenetical Analysis

In order to understand the application’s context, this section introduces a small
terminology in the area of phylogenetical analysis.

2.2.1 Phylogeny

A binary tree Tbin is a connected graph [CoLR90] without cycles, which can be
expressed as Tbin(N, E). N and E respectively are sets of nodes and edges. An
n ∈ N is called leaf or tip if it is connected by exactly one e ∈ E, else n is called
internal node. A rooted binary tree Trooted is a binary tree, in which except for the
root node each internal node has three edges. The root node has two edges. An
unrooted binary tree Tunrooted has no root node.
A phylogenetic tree [DHJL+97] or phylogeny Tphyl is a binary tree Tphyl(N, E, D),
in which D is a set of parameters such as distances or evolution parameters that are
assigned to the edges e ∈ E. In the context of systematic biology phylogenetic trees
show the course of evolution in a group of organisms [Fels83].

2.2.2 Computational Phylogenetical Analysis

The purpose of a phylogenetical analysis is to determine the relationship of fa-
miliarity among biological species, populations, individuals or genes from a given
set of sequences of proteins, deoxyrebonucleic acids (DNA) or rebonucleic acids
(RNA)[Lesk03]1.
The actual relationship of familiarity among a group of biological organisms is rep-
resented in a phylogeny Tphylactual

. Its internal nodes represent the ancestors of each
biological entity that are represented at the leaves. The edges represent the relation-
ship of descendency or ancestry among the entities. A distance d ∈ D between two
nodes represents time or distance of mutational changes between the correspond-
ing sequences. An unrooted phylogeny only provides information about the degree
of familiarity among the organisms, whereas a rooted phylogenetic tree additionaly
shows their common ancestors.
Ideally the ultimate goal of computational phylogenetical analysis is to determine
Tphylactual

corresponding to a given set of sequences. If the number of sequences is
small the determination of Tphylactual

from this set of different phylogenetical can-
didates Tphylcandidatej

, j ≥ 2, is a relatively easy task. As the number of sequences

increases computing the value of Tphylactual
becomes complex and depending on the

constraints, such as permitted execution time, used algorithm, and computing re-
sources, an approximated phylogeny Tphylfinal

may be computed instead of the ac-
tual Tphylactual

. Equation 2.1 and 2.2 show the total number of possible phylogenies
Tphylunrooted

and Tphylrooted
as a function of n number of sequences to be compared

as described in [HuBo01]. These equations correspond to the unrooted and rooted
phylogenies, respectively.

Tphylunrooted
(n) =

(2n− 5)!

2n−3(n− 3)!
(2.1)

Tphylrooted
(n) =

(2n− 3)!

2n−2(n− 2)!
(2.2)

1Except when explicitly stated, the term sequence in this work refers to any of these three types.
11



12 2. Background and Research Problem

Depending on the utilized method to determine Tphylactual
and the required accuracy

a computer program may store some or each computed phylogeny in secondary
storage. Equations 2.3 and 2.4 express the theoretically maximum values of the
required secondary storage for phylogenies of γ bytes.

SSTunrooted
(n) = γ ∗ Tunrooted(n) (2.3)

SSTrooted
(n) = γ ∗ Trooted(n) (2.4)

As an example, an analysis of 20 organisms where each computed phylogeny, rooted
and unrooted, has a γ of 1 byte would maximally require the following space on
secondary storage: SSTunrooted

(20) = 220 Exabytes (1018) and SSTrooted
(20) = 8, 2

Zettabytes (1021).
A computer program determines the actual phylogeny Tphylactual

for a given set of
sequences using a method of phylogeny’s inference. This method works on the
provided set of sequences producing as output Tphylfinal

, the best approximation for
Tphylactual

. Some of the used methods provide only point estimates of the phylogeny,
so assesing confidence methods such as bootstraping [HoLe03] must be applied to
determine how strongly the data support each of the relationship presented in the
phylogeny. The following section describes probabilistic methods for the inference
of phylogenies.

2.2.3 Probabilistic Methods

The probabilistic methods work with a-priori or a-posteriori probabilities on the
candidates trees Tphylcandidatej

, j ≥ 2, in order to determine the appropriate phylogeny

Tphylfinal
. These methods are based on the Bayes’s theorem.

The Bayes’s theorem can be mathematically expressed for two independent events
M and T as indicated by equation 2.5. The term P (T |M) is the probability of T
to happen provided that the evidence M is known. This expression is also called
the a-posteriori probability of T because it depends on M . P (M |T ) is known as the
likelihood function. The other terms of equation 2.5 are a-priori probabilities of T
and M .

P (T |M) =
P (T )P (M |T )

P (M)
(2.5)

In the area of phylogenetical analysis equation 2.5 determines the probability of a
tree T , with topology, and a set of distances and evolution parameters, given the
known matrix of aligned DNA sequences M . Equation 2.6 presents a more detailed
version of equation 2.5 that is used for phylogenetical inference.

2.2.3.1 The Maximum Likelihood Method

The Maximum Likelihood method identifies as the optimal phylogeny Tphylfinal
the

one which presents the maximum value for the likelihood function P (M |T ) on the
space of all Tphylcandidatej

, j ≥ 2 trees. A thorough description can be found in

[DEKM98].

2.2.4 Bayesian Inference of Phylogeny

The determination of phylogeny Tphylfinal
through the Bayesian method basically

consists of two parts. The first part is the computation of the posterior probability
for each tree from the set of possible trees depending on the number of sequences

12



2.2. Phylogenetical Analysis 13

as expressed by equations 2.1 and 2.2. The second part consists in summarizing the
results from the computed posterior probability distribution of trees to determine
phylogeny Tphylfinal

. The Maximum a-posteriori probability or MAP method, for
example, considers the tree having the highest posterior probability as Tphylfinal

[YaRa97]. The posterior probability of the ith phylogenetic tree τi can be calculated
using expression 2.6 and 2.7 such as indicated in [HuBo01].

f(τi|M) =
f(M|τi)f(τi)∑T (n)

j=1 f(M|τj)f(τj)
(2.6)

f(M|τi) =

∫
λ

∫
θ

f(M |τi, λ, θ)f(λ, θ)dλdθ (2.7)

In equation 2.6 and 2.7 M represents a matrix with the aligned DNA sequences.
The total number of possible trees T (n) can be either Trooted or Tunrooted as stated in
equations 2.1 and 2.2. The branch lengths and substitution parameters are repre-
sented by λ and θ respectively. The a-priori probability of a phylogeny τi is usually

1
T (n)

and the prior on branch lengths and substitution parameters is expressed as

f(λ, θ). The likelihood function f(M |τi, λ, θ) is typically calculated under the as-
sumption that substitutions occur according to a time-homogeneous Poisson process
[HuRo01].

2.2.5 The Markov Chain Monte Carlo, MCMC, Method

Because the integration and addition required to compute expression 2.6 are complex
to perform analytically even for small phylogenetic problems [HoLe03], the Markov
chain Monte Carlo (MCMC) method has been used [HRNB01, YaRa97], to approx-
imate the posterior probability distribution. This approach consists in initiating
a Markov chain with a tree T c. The state space of the chain corresponds to the
tree’s characteristics such as topology, length, and evolution models. By stochasti-
cally perturbating the current tree T c a new tree T n is proposed. The acceptance
probability R of this new tree is given by equation 2.8 as stated in [HLMR02].

R = min[1,
f(M |T n)

f(M |T c)
∗ f(T n)

f(T c)
∗ f(T c|T n)

f(T n|T c)
] (2.8)

From left to right the three ratios of expression 2.8 are called likelihood, prior, and
proposal ratio respectively. The terms of the proposal ratio are the probabilities
of proposing the current or new chain. After the acceptance probability has been
determined, a uniform random variable is drawn from interval (0, 1). If this number
is less than R then T n becomes T c. Otherwise the chain remains in the old state.
This process of perturbing, accepting or rejecting new states is repeated many times.

2.2.6 The Metropolis coupled MCMC, (MC)3, Method

This subsection presents the Metropolis coupled Markov Chain Monte Carlo (MC)3

method. The next subsection describes its parallel version, the p(MC)3 method.
Since the parallel I/O patterns that I categorize in this work are conditioned by the
p(MC)3 algorithm, the descriptions in these subsections are strongly based on the
original description of these algorithms found in [ADHR04, HLMR02].
Instead of using one single Markov chain, the Metropolis coupled Markov chain
Monte Carlo runs n chains. If for a chain the likelihood and prior ratio are raised

13



14 2. Background and Research Problem

to 0 < β < 1, the heat value, the chain is called heated, else it is a cold chain.
Raising these terms to β increases the acceptance probability R. In the context of
the so-called incremental heating the heat value of each chain Chj, j = 1...n is given
by equation 2.9.

βj =
1

[1 + ∆T ∗ (j − 1)]
, ∆T > 1 (2.9)

The term ∆T in equation 2.9 is called the temperature increment parameter and it
determines the acceptance of the swaps. Equation 2.9 indicates that for n chains,
the first one is a cold chain.
The iteration process in the (MC)3 method works similarly to the one described for
the MCMC method in subsection 2.2.5 except that after a given number of iterations
two randomly chosen Chj and Chk are selected to exchange states. The swap has a
probability of acceptance given in equation 2.10.

Rs = min[1,
f(Tk|M)βj ∗ f(Tj|M)βk

f(Tj|M)βj ∗ f(Tk|M)βk)
] (2.10)

As for the acceptance in equation 2.8 for each chain, Rs will be compared with a
uniformly random number in the interval (0, 1). If the random generated number is
less than Rs then Tj and Tk exchange states. This process will be repeated many
times and the frequency of states sampled by the cold chain will be taken as an
approximation of the posterior distribution.

2.2.7 The Parallel (MC)3 Algorithm

As in the case of the former subsection, this subsection is strongly based on the
description found in [ADHR04]. The parallel (MC)3 or p(MC)3 distributes Markov
chains among processes. This means that a swap may correspond to communication
between processes. In order to minimize the amount of data being interchanged
between two processes during a swap, the processes exchange their heat instead
of their states. In order to guarantee that the result of the parallel implementa-
tion is equivalent to the serial implementation, the two chains which are involved
in one swap must be in the same generation. This means that a synchronization
must be made between two chains that are involved in a swap. In [ADHR04] two
types of synchronization schemes have been proposed: the global exchange and the
point-to-point swap. In the message passing implementaion of the global exchange
all chains synchronize by calling the function MPI_Barrier() before sending and
receiving the swap acceptance information and executing heat swaps between two
randomly chosen chains Chj,Chk. The point-to-point variant in the message passing
programming model is accomplished by using the function MP_SendRecv() between
two chains involved in the swap and there is no need to synchronize with the rest of
chains.
Figure 2.2 shows an example of the p(MC)3 algorithm in the space of trees for a run
with three heated chains and one cold. In this particular case two chains are chosen
in a random manner to exchange states after five iterations.

2.2.8 The Open Source Program MrBayes

MrBayes [HuRo01, RoHu03] is an open source program for the computation of phy-
logeny that uses Bayesian inference principles. In the MPI version of the program the
posterior probability distribution of a phylogenetical tree is approximated by using
the parallel Metropolis coupled Markov chain Monte Carlo algorithm as described
in subsections 2.2.5 - 2.2.7.
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Figure 2.2: Example of possible paths of one cold chain with 3 corresponding heated
chains in the posterior probability distribution of trees.

2.3 Research Question

The general research question of this work is how the usage of different physical
distribution functions and corresponding parameters within a parallel file system
can affect the execution time of different parallel I/O access patterns of a file I/O
intensive scientific application running on an I/O cluster computer. In order to
provide answers to this research question, in this work I implemented a parallel I/O
version of MrBayes, a program to compute phylogeny that generates a set of semi-
random temporal parallel file I/O access patterns during execution time. Using the
PVFS2 parallel file system, this parallel I/O implementation writes its data into
parallel files, whose physical distributions on the different I/O nodes can be chosen
by the user through MPI hints at the application level.

2.4 Approach and Related Work

2.4.1 Approach

The approach that I used to answer the research question posed under section 2.3
consisted of the following steps:

1. Analysis of the I/O activities in the application’s serial I/O implementation.

2. Qualitative and quantitative analyses of the spatial and temporal I/O access
patterns generated by the MPI processes involved in the p(MC)3 algorithm
under the assumption that this algorithm accesses a parallel I/O interface. In
this work I call them semi-random temporal parallel file I/O access patterns.

15



16 2. Background and Research Problem

3. Proposition of the mapping at first generation partitioning function. This
function supports the access to the one logical parallel file from the identified
semi-random temporal parallel file I/O access patterns generated by the MPI
processes involved in the p(MC)3 algorithm. The function’s name expresses
the fact that in order to guarantee file access, each one of the involved process
computes during the first iteration (generation, in the application’s terminol-
ogy) a map of the parallel file structure.

4. Interaction of the MFG function with the simple_stripe and varstrip phys-
ical distribution function.

The approach’s first step was the characterization of the I/O properties used in the
serial I/O application’s implementation. This characterization consisted in deter-
mining the dataflow, the number and type of input and output files as well as their
corresponding contents. During this stage I identified the online files as those files,
in which the application writes while executing the p(MC)3 algorithm. I experimen-
tally determined the relationship among the amount of data written into the online
files in each iteration and after the whole execution time. Analytically, I proposed
a mathematical expression to compute the total amount of data written into the
online files2. During the characterization stage I observed that the MPI process
with rank 0 is responsible for writing the data into n online files. The value of n
was twice the number of runs. Thus, before the actual write operations into the
files occur, one many-to-one communication pattern is generated. A many-to-one
communication pattern appears when a group of MPI processes, the ones that have
data to be written into the secondary storage, send their data to the MPI process
with rank 0.
The second step consisted in a theoretical analysis of the temporal parallel I/O access
patterns generated by the MPI processes involved in the p(MC)3 algorithm under the
assumption that they access a parallel I/O interface, a one dimensional array that
can be accessed at the same time by more than one process. Under these conditions
one write operation from the application’s perspective corresponds to one temporal
parallel I/O pattern. In this work I defined one temporal parallel I/O pattern as the
assignment of cold chains to MPI processes and the processes’ accesses to the I/O
subsystem within a given iteration. Due to the random nature of the swaps between
two Markov chains in the p(MC)3 algorithm after a certain number of generations,
the patterns generated during the first iteration (except pattern π1) do not remain
constant during the whole execution time. As part of this analysis I proposed a
mathematical expression for the computation of the total possible different number
of temporal parallel I/O access patterns that may appear during the p(MC)3 algo-
rithm’s whole execution time. Furthermore, I also proposed a classification of these
temporal parallel I/O patterns in four categories.
The next step was to propose the mapping at first generation partitioning function.
As a partitioning function, the MFG is encharged to assign spaces of the parallel
file to the processes that write into this file at the same time. One such assignment
corresponds to one parallel I/O pattern. Thus, I conceived the MFG function to
handle all possible patterns of the four above mentioned categories that may appear
during the whole p(MC)3 algorithm’s execution.
In order to determine the influence of different distribution functions and their pa-
rameters’ settings on the execution time, I determined the interaction of the MFG

2In this work I only took into consideration files with .p and .t extensions.
16



2.4. Approach and Related Work 17

partitioning function with the simple stripe distribution function as well as with
the varstrip distribution function. In order to select an appropriate varstrip chunk
size for this last distribution function, I also implemented the parallel line buffering
mechanism.

2.4.2 Related Work

This thesis belongs to the category of research projects that have been conducted to
gain a better understanding of the relationship existing between the scientific par-
allel applications’ file input and output related characteristics and the mechanisms
used to store these files in parallel file systems on multiprocessor systems.
One work on this research line was conducted in [Pura96]. In this work the researcher
found that write operation into writes-only files were a dominant part of the used
workload. The author proposed a write caching mechanism for write-only files based
upon disk directed I/O and implemented it on a multiprocessor simulator.
In [Madh97] the researcher proposed two methods to detect qualitative file access
patterns and correspondingly serve these access patterns by applying the appropri-
ate caching and prefetching policies within the file system. In order to classify the
access patterns the author proposed one method based on neural networks for short
time scales and another on hidden Markov models for long time scales like file reuse.
In [Simi00] the researcher proposed a method based on fuzzy logic principles to set
the striping unit provided the system’s state. The researcher proposed to use the
striping unit value based upon the request rate, the request size, the network, and
disk speed. The parameters were expressed as fuzzy variables with corresponding
fuzzy sets. These two projects were implemented as extensions to the Portable Par-
allel File System [JERC+01].
In [BCST+08] the researchers proposed a mechanism for the MPI-IO library to set
prefetching based upon different so-called I/O signatures that they assign to access
patterns, in order to classify them. These signatures are obtained from previous
runs and are used by a thread to set prefetching during execution time.
In most of the projects mentioned above the researchers used a set of applications
to test the performance of the proposed concepts within the parallel file system or
the parallel I/O library.
Several projects, which take into consideration data set sizes, have been conducted
to improve the performance of computational phylogenetical inference. In [FeCB06]
the researchers proposed a parallel implementation based on the MCMC method to
compute phylogeny. Their approach basically consisted in optimizing the likelihood
evaluation and to propose a mapping of the input matrix and the number of chains
among a matrix of CPUs for the computation. In [StAl10] the researchers proposed
a compression algorithm that exploits the gap in the input original matrix. They
proposed to use a reduced matrix for likelihood- or Bayesian-based methods, in order
to compute phylogeny. For a minimum gapiness in the input matrix of 27% with
an implementation for a likelihood method, half of the file I/O sizes measured and
presented by the researchers were in the order of GB.
Both approaches have not taken into consideration parallel I/O neither for the input
nor the output whatsoever. Therefore this work’s contribution can be complemen-
tary to those approaches. Concerning solely a mean for this application to write
data into a parallel file, we have proposed other approaches. One of them was im-
plemented in [Zeer05]. This approach was based on the idea of defining one fixed
set of I/O processes that was encharged for the application’s write operations.
Instead of also using a set of applications as the other mentioned approaches, in this
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18 2. Background and Research Problem

work I concentrated on only one single application which generates a set of different
semi-random parallel I/O access patterns during execution time. I proposed the
mapping at first generation partitioning function as an application’s extension to
store its data into one single parallel file independently of the semi-random access
pattern generated in the writing iteration. In order to further reduce the applica-
tion’s execution time, in this work I also proposed a set of conditions, with which
the users can select the type of physical distribution function and parameters via
MPI hints.

2.5 Summary

In this chapter I have described the work’s main research questions as well as the
corresponding approach to answer these questions. This description was possible
due to the concepts in the area of parallel I/O and phylogenetical analysis which
were introduced in the sections at the beginning of this chapter. At the end of
this chapter I describe similar projects that have been conducted in order to tackle
similar research questions.

18



3. Flexible Distribution Functions
in PVFS2

The main purpose of this chapter is to describe the varstrip distribution function.
Section 3.1 describes a set of spatial parallel file I/O access patterns at the applica-
tion level that I surveyed of projects that have been conducted on multi-processor
systems. One of these patterns, pattern 1 (see Fig. 3.1), served as reference for
proposing the above mentioned distribution function. In subsection 3.2.2 I theo-
retically analyze the I/O performance of the simple stripe distribution function to
serve pattern 1. Furthermore, this subsection presents the mechanism behind the
varstrip distribution function to serve this pattern. Subsection 3.2.2.2 describes the
corresponding distribution’s usage. In this subsection I also suggest a set of I/O pa-
rameters at the different levels of a parallel I/O environment that the users should
take into consideration while choosing distribution functions.

3.1 Reference File I/O Access Patterns

The main objective of this subsection is to present a set of spatial parallel file I/O
access patterns at the application level, which we have taken into consideration in
order to propose the varstrip distribution function [LuLu05].
Parallel scientific applications store and retrieve to and from secondary storage the
values of the variables that they compute. I represent such a spatial parallel I/O
access at the application level as the mathematical relation 3.1.

Pappl(P,A,G) (3.1)

In expression 3.1 P represents a set of processes that require I/O accesses, A a set of
addresses within the parallel logical file, and G a set of global factors . Each address
aj ∈ A has a corresponding offset Offj and operation Opj. For the purposes of
this work, I assume a maximum possible cardinality for both P and A equal to the
number of bytes within the parallel logical file. Expression 3.2 shows some elements
of G.

G = {τ, α, π, ε, σ, ...} (3.2)

A spatial parallel file I/O access pattern Pappl strongly depends on the time τ within
the whole application’s execution time. The total set of different spatial parallel file
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I/O access patterns Pappl create the application’s temporal parallel file I/O access
pattern. Such a pattern might present a periodicity or it might be random. Chapter
5 presents a more detailed description of time patterns, especially of the random
ones that are generated from the P(MC)3 algorithm. As expression 3.2 shows, such
a pattern is also conditioned by the application’s nature α, the purpose of I/O π,
the programming environment ε, and the system’s I/O interface σ.
The application’s nature α strongly defines the behavior of each computing process
during execution time. A random nature, for example, might translate also into
random I/O accesses. The user’s purpose to access I/O π strongly influence spatial
parallel file I/O access patterns. Basically, the user accesses the I/O subsystem
for compulsory data, checkpointing, or data staging [MiKa91]. Compulsory data
constitutes the data that must be processed as part of the computation, whereas
checkpointing is done for recovery purposes. Data staging must be done when the
data exceeds the size of main memory.
Some application patterns are conditioned by the used programming environment
ε. Such as it is the case when using the BLOCK, CYCLIC combinations in High
Performance Fortran [KLSS+94]. The system’s I/O interface σ influences spatial
parallel file I/O access patterns basically through the view that they offer of the
logical file and through the functions that they provide to manipulate this logical
file. The logical file is presented to the applications as a one dimensional, such as
in the case of MPI-IO, or as a one multidimensional array. For the purposes of
this work I have summarized a set of spatial parallel file I/O access patterns and
depicted it in figure 3.1. This summary is based upon the analyses of parallel I/O
access patterns described in [MaRe97, ThGL98, RKPH04] that have been conducted
on multi-processor systems. In pattern 0 each process accesses a corresponding file.
In a strict manner this pattern does not belong to the parallel I/O set since there
is no one parallel logical file. Nevertheless, it is important to take this pattern into
consideration for comparison purposes. The rest of the patterns can be classified in
terms of their degree of sequentiality as proposed in [MaRe04]. Pattern 1 is called
global partitioned sequential. In this pattern the processes access different disjoint
areas of the file in a sequential manner. Pattern 2 is a special case of pattern
1, in which only a portion of the entire file is accessed. This pattern appears at
initialization time, for example. Pattern 3 as well as pattern 4 are global interleaved
sequential. In pattern 3 each process has a sequential local view of the accessed
data, but the data is strided in equal access regions within the file. Pattern 4 is an
irregular global interleaved sequential pattern. In this pattern each process has a
local sequential view of the data, but the data is strided in the file and each stride
has different sizes. For the purposes of this work, I assume that each process does
the same type of operation, read, write, sync or seek at a given point in time. This
can be done through non-collective or collective I/O functions in the context of the
MPI-IO interface.

3.2 Access Patterns and Distribution Functions

3.2.1 Variable Simple stripe

The simple stripe distribution function divides the logical file in chunks called strips
and spreads these strips across the different I/O nodes involved in an I/O operation in
a round robin manner. In the PVFS2 parallel file system if the users do not explicitly
specify a distribution function and corresponding settings, this distribution function
is used with a striping unit of 64 KB. This mechanism is shown in figure 3.2.

20
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Figure 3.1: A set of spatial parallel I/O file access patterns at the application level

A flexible variant of this function offers the possibility to set the striping unit to a
value different of the default one.

3.2.2 The Varstrip Distribution Function

Spreading the data on I/O nodes by applying only the simple stripe distribution
function results in throughput and load balancing performance drawbacks for some
access patterns at the application level as I discuss in this subsection. An example
of such patterns presents the pattern 1 generated on an I/O cluster. In figure 3.3
the simple stripe and a configuration of the varstrip distribution functions are used
to serve such a pattern1. From the algorithmical point of view there is no differ-
ence between the time complexities of these distribution functions to serve an I/O
operation for an amount of data dataio that equals one stripe in the context of the
simple stripe distribution function. Both have a time complexity of O(Dataio/SF )
with SF representing the number of chosen I/O nodes2. Nevertheless, in the case
that this pattern runs on an I/O cluster in which each node has been configured as
compute and I/O node at the same time and the application accesses an amount of
data dataio greater than one stripe, applying the simple stripe distribution function
induces network overhead by unnecessarily sending strips over the network to serve
this I/O operation. Figure 3.3 depicts a hypothetical case of a pattern 1 running on
the above mentioned configuration and writing into a parallel file that is divided in
five strips by the simple stripe distribution function. In such a scenario three strips
use the network stack and reduce the total throughput performance in comparison
to the varstrip function, in which no strips are sent over the network. From the load

1For this discussion I assume that the simple stripe distribution function stripes the data always
initiating on the same I/O node.

2In the ROMIO terminology SF is known as the striping factor.
21
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Figure 3.2: The Simple stripe distribution function in PVFS2

balance perspective these strips are purposelessly sent over the network, since the
load imbalanced partition translates also into a load imbalanced physical distribu-
tion of the data on the I/O nodes. Furthermore, in the case of a load imbalanced
application, the load imbalance on the I/O nodes remains across different executions
of the same application. In the case depicted in figure 3.3 each time the application
is executed, the leftmost I/O node diminishes its available free storage capacity by
one strip compared to the rightmost node. Thus, only the leftmost node’s free avail-
able storage capacity limits the amount of data to be stored on the I/O nodes.

3.2.2.1 Objective

In order to overcome the drawbacks discussed under subsection 3.2.2 we proposed
the varstrip distribution function [LuLu05]. The main idea behind this function is
to provide, via MPI hints at the application level, a mean for data placement control
on the I/O nodes. This data placement control in a general sense means that MPI
processes storing data into one parallel file can choose data sizes as well as the I/O
nodes, in which these data sizes must be stored. The strength of the data placement
control is to tune the data storage in the parallel file for high throughput or for load
balancing purposes. For the case depicted in figure 3.3 each process stores its data
size, varstrip chunk size in this work, on its corresponding local I/O node. In this
case the I/O nodes have varstrip chunk size values of 2 and 3 storing units. Since
no data is sent over the network the I/O throughput increments compared to the
throughput obtained while applying the simple stripe distribution function.
As in the case of the simple stripe distribution function, executing this application
n times induces a load imbalance of n storing units. Nevertheless, due to the data
placement control provided by the varstrip distribution function this load imbalance
can be reduced to a value of zero or one storing unit for even or odd values of n,

22
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Figure 3.3: Pattern 1, the Simple stripe and the Varstrip distribution functions in
PVFS2 on an I/O cluster.

respectively. This is possible by executing the application n/2 times with the shown
configuration and the rest by exchanging the I/O nodes between the MPI processes.
In this last configuration the storage of each storing unit involves the network stack
and the throughput decreases. This trade off between throughput and load balance
must be considered by the user before applying the varstrip distribution function.
In this work I concentrate only on throughput issues.

3.2.2.2 Usage

The data placement control provided by the varstrip distribution function enables
users to select the varstrip chunk size values to be stored on the different used I/O
nodes. In order to provide such functionality to an MPI based parallel program at
the application level, distribution hints[LuLu05] can be deployed. These are MPI-IO
hints for the selection of distribution functions and their corresponding parameters.
The following snippet illustrates how to set the varstrip distribution function by
a program with two MPI processes. Process 0 writes 200KB on I/O node 1 and
process 1 writes 4MB on node 23:

MPI_Info_set(fileInfo, "varstrip_dist:string:strips","0:200000;1:4000000");

The combination of the data placement control provided by the varstrip distribu-
tion function and the configuration of compute nodes as I/O nodes at the same time
can translate into throughput or load balance performance gain.
Besides the relationship between compute and I/O nodes, in table 3.1 I propose a

3For simplicity I am considering 1MB = 1000000 bytes.
23
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set of factors that users should take into consideration when choosing a given distri-
bution function and corresponding parameter values. I selected part of these factors
while conducting this work’s evaluation. These factors are presented in appendix
A.2 through an entity relationship diagram model and corresponding fields’ expla-
nations in table A.7. In [EGVL05] we present a set of measurements that show the

Applications
Type of access pattern
Partition’s load balance

Blocking or non-blocking operations
Compute Nodes

Processes per compute node
PIOlibrary optimization

I/O Nodes
Interconnect between compute nodes and I/O nodes: network, no network.

Physical Storages
Existing load imbalance

Storage capacity heterogeneity

Table 3.1: Factors to take into consideration while choosing distribution functions.

performance of both distribution functions to serve a set of synthetic I/O accesses.
These measurements experimentally support the argumentation in subsections 3.2.2
and 3.2.2.1.
3.3 Distribution Function Metrics
In order to be able to compare performances of distribution functions, a set of metrics
is required. This section describes those that I use in the rest of this work. I use the
term physical degree of I/O parallelism and define it in equation 3.3, where Nioacc

represents the number of I/O nodes accessed during one I/O operation and Niot the
total number of available I/O nodes.

δπiox
=

Nioacc

Niot

∗ 100 (3.3)

I also use the term depth of I/O parallelism and represent it by δπioz
to define the

number of stripes required for one I/O operation. In round robin based distribution
functions the value of these metrics depend on the data provided to the distribution
function and the selected striping unit to store it. A striping unit bigger than the
data to be written translates into access to one single I/O node and presents the
minimum value of the physical degree of I/O parallelism for such a configuration.

3.4 Summary
In this chapter I have described data placement control and how the varstrip distri-
bution function applies it to control data throughput and load balancing, to trade off
these parameters against each other, and to decouple an imbalanced partition from
an imbalanced data physical distribution. A variant of the simple stripe distribution
function, in which it is possible to choose the striping size was also described.
In this chapter I have presented a set of file I/O characteristics at the application
level, which served as reference for proposing the varstrip distribution function. Fur-
thermore, I listed a set of I/O parameters that users should take into consideration
while selecting distribution functions.
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4. Application’s Characterization

Before proposing parallel I/O alternatives for the application, which would minimize
the execution time of the p(MC)3 algorithm, it was important to understand the I/O
accesses in the application’s original serial I/O version. This chapter presents the
experimental and analytical steps that I conducted to characterize the application’s
serial I/O requirements.
Section 4.1 describes the different data flows with corresponding files and contents
which occur before, during, and after the algorithm’s execution. In section 4.2.1 I
analytically and experimentally describe the file I/O activities during execution time.
This description includes the amount of data, I/O patterns, and the application’s
percentage of file I/O intensity according to definition 2.1.

4.1 Analyzing the Data Flow

The first step of the application’s I/O characterization consisted in determining the
data flow generated during an mcmc analysis. Figure 4.1 shows a summary of this
data flow with a granularity at the file level. In order to determine this data flow,
I used an input matrix with 12 taxa and 898 characters (detailed information on
the matrix can be found under appendix A.3.2) and ran an mcmc analysis with four
chains 1000 number of generations 1. The computed information in each generation
was written into secondary storage.
Figure 4.1 shows a set of Petri-Netze with four elements: states, transitions, tokens,
and edges. The states correspond to files or main memory. Files are represented
in the figure through their suffixes. The transitions represent commands. The data
and its direction flow are represented through tokens and edges, respectively. For
sake of clarity, I depicted the edges joining commands and input states to represent
the fact that a command can be called any number of times.
During this application’s characterization, I identified three stages for a phyloge-
netical analysis. For the purposes of this work I simply called them I, II, and III.
Figure 4.1 shows the data flow in each one of these stages. During stage I the input
file containing the matrix to be analyzed was read into main memory. In stage II

1In the MrBayes terminology an iteration is called a generation. Thus, in this work I indistinctly
used both terms.
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.  .  ..  .  .

I .nex

execute

Main Memory

II

mcmc

Main Memory

III
.run1.t            .run<m>.t .run1.p        .run<m>.p

sumt   sump

.parts .con .trprobs .stat

.run<k>.p .run<i>.t         .run<j>.t

plot comparetree

console.mcmc .run<k>.p

.run<k>.t

<Filename>.comp.dist

<Filename>.comp.parts

Figure 4.1: Data flow in MrBayes 3.1. Representation with a granularity at the file
level.

the p(MC)3 algorithm was executed and three types of files were generated: <File-
name>.mcmc, <Filename>.p, and <Filename>.t, which in this work I call mcmc, p,
and t file, respectively. Since these files were accessed during the algorithm’s execu-
tion, I also called them online files. The total number of p and t files were defined
by the chosen number of runs. Each run was stored in one p and one t file. Stage
III corresponded to the postprocessing. As figure 4.1 shows, different types of files,
which I called the postprocessing files, were generated during this stage using only
the content of p and t files as input.

4.2 The Online Files

According to the above analysis only the manner in which the online files are ac-
cessed may alter the amount data generated by the application and its execution
time. Thus, I concentrated on further analysis of these files. I especially concen-
trated on the analysis of the p and t files, which were needed by the postprocessing
commands and contained the actual information concernig the phylogenies.

4.2.1 Amount of Data

Subsection 4.2.1.1 describes a set of experiments to determine the relative amount
of data generated and written into the online files by selecting different iteration
numbers. Furthermore, in subsection 4.2.1.2 I propose an expression to determine
the total amount of data generated during one mcmc analysis.
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Figure 4.2: Amount of data generated during an mcmc analysis and its distribution
among online files. These values correspond to an input matrix with 12 taxa of 898
characters.

4.2.1.1 Experimental

In order to experimentally determine the amount of data generated during mcmc

analyses2 and in which proportion this data was distributed among the three online
files, I ran a set of mcmc analyses using the input matrix with 12 taxa and 898
characters.
I ran each analysis with four MPI processes. The difference among the analyses
was the value of ngen, which I varied from 1 to 10 millions in steps of one order
of magnitude. Except for the number of generations that I changed by each mcmc

analysis, I explicitly set and used the values of the following mcmc parameters:

nruns=1 allchains=Yes burninfrac=0.25 stoprule=No

ngen=<1,10,...> temp=0.2 allcomps=Yes Savebrlens=Yes

samplefreq=1 startingtree=Random mcmcdiagn=Yes Printall=No

nchains=4 relburnin=Yes diagnfreq=1000 Printfreq=100

I present the measured values in figure 4.2. These measurements show that the
maximum contribution of the mcmc file to the total amount of written data was
42% with ngen= 1 and dropped to values under 1.8% for ngen> 100. Under these
conditions most of the data was written into the p and t files. In analyses with
ngen > 100 the amount of data written into the t file was twice as much as the
data written into the p file. In the case of the analysis with one million generations

2The MrBayes command mcmc starts the execution of the phylogenetical analysis.
27
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the total amount of data was 0.35 GB. When I ran the mcmc analysis with ten
million generations diagnostic information and the statistical parameter concerning
the last generation were written into the mcmc and p files respectively, but the
t file only contained the representation of 8295731 trees. With these number of
tree representations the size of the t file was 2147483647 bytes or 2 GB, which
corresponded to the maximum size set in the used ext3 filesystem. This fact is clearly
depicted in the upper half of figure 4.2. The fact that the last tree representations
were not written could have altered the execution time after generation 8295731,
therefore I also conducted an mcmc analysis with 8 million generations. After 8
million generations the size of the t file was of 1.92 GB and the total amount of
generated data of 2,85 GB. Using the measured values I calculated the total amount
of data for the 10 million generations. This calculated value was 3.5 GB.

4.2.1.2 Analytical

Before proposing a parallel I/O implementation for the p and t files, it is important
to analytically determine the amount of data written at the end of each iteration,
the total amount of data generated during an experiment, and the parameters on
which these quantities depend.
In order to propose an expression for the total amount of generated data after an
experiment, I abstract the contents of the t and p files as follows: I consider a t
file as a set of t lines, tti, i > 0, with a file header tth. The file header provides
information on the file’s format, the identity of the analysis, from which the lines
tti are generated, and the taxa. Each of the tti is a topological representation of a
phylogenetic tree that is computed during the mcmc analysis.
I similarly consider a p file as a set of p lines, tpi, i > 0, with a file header tph. Each
tpi contains parameter related information on the corresponding tti line of the t file.
The header provides information on the semantical meaning of the components of
the lines tpi.
The complete information on a phylogenetical tree and its parameter values after
the completion of a sampled iteration i is represented by tti and tpi in the t and p
file, respectively. Thus, I propose equation 4.1 to express the total amount of written
data by nruns runs into the t and p files after ngen iterations with sample frequency
samplefreq.

Dtotal = nruns(th + ph) +
nruns∑
j=1

(

FileSize(ngen,samplefreq)∑
i=1

(tt + tp)i)j (4.1)

Equation 4.1 shows the different parameters which influence the amount of generated
data. The variable FileSize (depending on ngen and samplefreq) represents the file
size of one single file, either t or p file, expressed in number of lines. The size of each
tpi varies depending on the chosen parameters of the model of DNA substitution.
The size of tti depends mainly on the number of taxa being studied. The execution of
nruns > 1 increases the precision of the results computed within a given time frame.
These results can be used, for example, to determine the degree of convergence such
as conducted in [HiHJ05]. The total number of tti and tpi within a given run to
be written into secondary storage can be varied according to the chosen ngen and
how often this are sampled, samplefreq. For a given number of iterations ngen and
runs, the maximum amount of data is generated with samplefreq = 1 and the least
amount with samplefreq = ngen.
The generated data in each writing iteration can be computed by using equation 4.1
and the total number of these iterations.
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Figure 4.3: Execution Time with I/O, no I/O, and corresponding time difference
percentage

4.2.2 Percentage of File I/O Intensity

This section describes experiments that I conducted to determine the different types
of time frames which compose an iteration. These are basically the CPU, commu-
nication, and file I/O time. In order to have a preliminar idea of the application’s
(in)dependency on file I/O activities, the performance of the No-I/O code is also
presented. This is a code variant that I modified so that no data is written into the
online files during mcmc analyses.
The application’s percentage of file I/O intensity, according to definition 2.1, is
strongly conditioned by the parameters of equation 4.1 such as the number of runs
and the number of iterations to be written into the online files. Furthermore, it
is also conditioned by the input matrix size, the number of MPI processes such as
thoroughly described in chapter 7. Thus, the objective of the experiment described
in this section was to determine whether or not there was at least one application’s
setup that would benefit from a parallel I/O implementation of the online files.
I conducted these experiments using 4 MPI processes under the same conditions as
in subsection 4.2.1. Figure 4.3 and 4.4 depict the measured values. The total execu-
tion time and the required CPU time were measured with /usr/bin/time and the
built-in MrBayes timing. Figure 4.4 shows a correlation between the measurements
made with /usr/bin/time and those provided by MrBayes. The total execution
times were 17.5 and 21.9 hours for 8 and 10 million generations, respectively. The
maximum percentage of CPU time was reached between these two intervals and was
of 26%. This means that 74% of the time was used for communication and file I/O
operations.
Figure 4.3 shows in the upper half the execution times measured for both codes vari-
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Figure 4.4: Execution Time, CPU Time, and CPU Time Percentage

ants: the I/O and the No-I/O variant. For this last variant I commented the function
PreparePrintFiles(), PrintStatesToFiles(), and the code for the mcmc file cre-
ation.
I measured the total execution and the CPU times for the No-I/O variant and as
figure 4.3 shows, except for one measurement point, the CPU time was smaller than
the execution time for the No-I/O variant. This time difference was due to the
swapping communication between chains. The lower half of figure 4.3 also presents
the time difference percentage as I define it in equation 7.3 taking as reference time
the Timeio, the time for the code with file I/O accesses. This graph shows that for
number of generations greater than 100 the average value is of 72%. This means that
the No-I/O variant took only 6.17 hours to compute 10 millions iterations instead
of the mentioned 21.9 hours.

4.2.3 Serial File I/O Access Patterns

After analyzing the original code of MrBayes Version 3.1, I identified the following
three processing cycles within one iteration: computation (A), communication (B),
and File I/O (C). Figure 4.5 shows these cycles for one mcmc analysis executed with
three runs at the same time on four MPI processes (0,1,2,3). The chains belonging to
the same run are identified by the same filling pattern. Each run has a total of 5 local
chains, which means a total of 15 (0,...14) global chains. The first chain in each run
is the cold one, according to the discussion in subsection 2.2.6. The cold chains are
illustrated in figure 4.5 as circles within squares to differentiate them from the heated
chains, which are only represented through circles. In order to start computation,
the chains must be distributed among the participating processes. Each process is
assigned Chproc chains and those processes whose rank is smaller than Prem get one
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Figure 4.5: Processing Cycles: Processing cycles within an iteration involving I/O
activity for an mcmc analysis computed by four MPI processes. This analysis in-
volves 3 runs with corresponding 5 chains. During cycles A and B, computation
and swapping between chains take place. During cycle C only processes having cold
chain (circle within square) send their data to process 0, which writes them into the
online files.

extra chain3. Figure 4.5 shows such an assignment in the time frame before the first
cycle A. The most relevant time frame for this work is the file I/O cycle (C). During
this cycle the computed results of the cold chains are written into the corresponding
p and t files. The write operations are exclusively done by process 0. The processes
that have cold chains at this point in time send their results to process 0, which
writes the result into the files. I call this communication pattern many-to-one and
notationally write it as {0, ..., n} → 0, n ≥ 0. The case shown by figure 4.5 can be
written as {0, 1, 3} → 0, to represent the fact that MPI process with ranks 0, 1, and
3 send data to process 0. A many-to-one pattern consists of communication and file
accesses. Since such patterns appear only when the secondary storage is accessed
and changes during the total execution time, I call them temporal I/O patterns. I
also consider them I/O and not communication patterns because their existences
are conditioned by the used I/O interface, sequential in this case. Figure 4.6 shows
the I/O accessing in the serial version. It shows the many-to-one patterns as well
as the actual writing into the Unix files by process 0. Figure 4.6 depicts a case
with four MPI processes computing 3 runs. In a general case process 0 writes the
files in the following order: < FileName > run1.p ≺< FileName > run1.t ≺<

3For further information on these parameters see appendix A.1.1.
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Figure 4.6: Serial File I/O Accesses: These file I/O accesses correspond to a con-
figuration of four MPI processes (0,1,2,3) and three runs (circles within squares).
While sending cold chains (arrows) to process 0, the processes generate 8 different
many-to-one communication patterns. Solely process 0 writes the received data into
the files beginning with the leftmost depicted file.

FileName > run2.p ≺< FileName > run2.t... ≺< FileName > run < nruns >
.p ≺< FileName > run < nruns > .t. According to the notation of table A.3
in the appendix, this means that for an experiment with n runs, process 0 writes
sequentially the lines in the p and t files beginning with the line in the p file of the
first run and ending with the t file of the n run. Each entry in the p and t file
represents probability and topology of the phylogeny in the respective generation
and run.

4.3 Summary

In this chapter I have described the experimental and analytical process conducted
to characterize the file I/O activities implemented in the application’s original serial
I/O version. After determining the complete data flow of the application, I identified
the online files. These files are accessed during an mcmc analysis and their accesses
have direct influence on the total execution time. I have described the total amount
of data written in these files as well as the patterns generated while doing these
operations. I have also described an experiment that show that the application can
benefit of a parallel I/O implementation of the online files.
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5. Temporal Parallel I/O Access
Patterns

This chapter presents a theoretical analysis of the p(MC)3 algorithm in terms of I/O
requirements. The objective of this analysis is to quantify and categorize the parallel
file I/O access patterns that may appear during the execution of such algorithm on
an abstract computing environment with parallel I/O interface. Only after knowing
the number and type of these patterns, I propose for the application’s parallel I/O
implementation the mapping at first generation partitioning function in section 6.2.

5.1 Accessing a Parallel I/O Interface

I assume for this theoretical analysis that the algorithm runs with np > 1 process
that write out at the same time their data into a one dimensional array parallel I/O
interface1. I am also assuming that in each iteration a number of 2n (n ≥0) pairs
of Markov chains (randomly chosen by the algorithm) exchange their states within
each of the selected runs.
In such an environment the cold chains, containing compulsory data to be written
into secondary storage, randomly move among the processes that are responsible for
the corresponding run’s computation in each generation. Thus, in this work I call
such a relationship of cold chains to processes and the processes’ access(es) to the I/O
subsystem within a given iteration a semi-random temporal parallel file I/O access
pattern (PIOsrt). Even though the swaps of chains within the scope of a run may
happen in a completely random manner, this is is not the case from the perspective
of the allocation of Markov chains to the processes, which finally influences the way
how processes access the I/O subsystem and generate in a semi-random manner the
I/O access patterns. There are two factors that define this semi-randomness. The
first one is the p(MC)3 algorithm’s load balacing mechanism based upon Chproc and
Prem (see Sec. A.1.1). This mechanism basically assigns Chproc Markov chains to
each MPI process and evenly distributes Prem Markov chains among the processes
with rank numbers between 0 and (Prem−1). The second factor is the non-existence
of inter-run swapping between Markov chains.

1This one dimensional array view is supported by the ROMIO library that I used for the
implementation.
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5.2 Number of Parallel I/O Access Patterns

In order to determine the total possible number of semi-random temporal parallel
file I/O access patterns which may appear during the whole execution time (given
a configuration of Markov chains, runs, and processes), I introduce the following
definitions:

Definition 5.1 A swap sioji
, j = 1, ..., n, i = 1, ..., ngen is an I/O swap in iteration

i, if it occurs between a cold and a heated chain, within a certain run, and it involves
interprocess communication.

Definition 5.2 Tsioi is the total number of I/O swaps that can occur in iteration
i. Correspondingly, Tsio1 =

∑n
j=1 sioj1 represents the total number of I/O swaps in

the first generation.

In definition 5.1 and 5.2, n can take a maximum value equal to nruns∗(nchains−1)2.
This corresponds to the case, in which each MPI process computes one single chain.
Based upon definitions 5.1 and 5.2, I propose equation 5.1 to determine the total
number of semi-random temporal parallel file I/O access patterns, TPIOsrt as follows:

TPIOsrt =

{
2Tsio1 , nruns > 1
np, nruns = 1

(5.1)

Equation 5.1 expresses that conducting the analysis with one run (nruns = 1), any
of the np processes can write the cold chain. Thus, the number of different I/O
patterns equals the total number of processes np. The fact that an I/O swap sioji

may or may not occur is expressed through the binary base.
Using equation 5.1 to determine the possible number of semi-random temporal paral-
lel file I/O access patterns for the configuration of figure 4.5, for example, I identify
the I/O swaps shown in figure 5.1. This means that for this configuration there are 8
possible different semi-random temporal parallel file I/O access patterns, which may
semi-randomly appear through the whole execution time. In this particular case,
these patterns correspond to the 8 many-to-one patterns that I show in figure 4.6.

5.3 Types of Parallel I/O Access Patterns

In this section I propose a categorization in four types for the TPIOsrt different
semi-random temporal parallel file I/O access patterns that can be generated as
discussed in section 5.2. In order to be able to propose this categorization, I introduce
definition 5.3 and 5.4. I also introduce definition 5.5 as complementary to definition
5.4. For these definitions I assume that the same I/O operation (write, read, sync,
etc.) is conducted at a given point in time.

Definition 5.3 ΠIO(∆τ)i = (π, ω, σ)(∆τ)i is a semi-random temporal parallel I/O
access pattern in the ith time interval (∆τ)i, i ≥ 1. In this expression each of
the three arguments is a field, a one dimensional array. The elements of field
π[0...(np − 1)] are scalar and represent the processes’ ranks. In the offsets’ field
ω[[[...[...]...]l]

j
k], j = 0, 1...δ, k = 0...(np − 1), l = 1...λ the elements can be scalar or

2See appendix A.1.1 for notation.
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Figure 5.1: Total Number of I/O Swaps during the first iteration for a configuration
with 3 runs, 5 chains, and 4 MPI Processes

fields depending on the chosen value for δ, which defines the nesting level of fields.
A value of δ = 0 means that the elements of ω are scalar. The scalar elements of
these fields represent offsets in secondary storage to be accessed at the same time
during (∆τ)i by process k. The field σ contains the sizes corresponding to the offsets
in ω.

In definition 5.3 the variable np stands for the number of chosen MPI processes
and the variable λ represents the number of lines to be kept in main memory with
the parallel line buffering mechanism (see Sec. 6.3.1). In the parallel I/O version
the amount of data in bytes from the perspective of one single MPI process that
corresponds to λ = 1 results from multiplying twice the number of assigned runs to
this process by the size of the p and t lines.

Definition 5.4 PIOk,l((∆τ)i), k = 1...np, i, l ≥ 1 is an I/O process. This is an
MPI process, which is involved in l I/O operation(s) within a time interval (∆τ)i.

Definition 5.5 A Null I/O process PNIOk,0((∆τ)i), i ≥ 1 is a process that points
to the element ω[[[NULL]0]k] ((∆τ)i) within the time interval ((∆τ))i. It does not
access the I/O subsystem in ((∆τ)i).
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In definition 5.3 the values contained in field ω can be represented without nested
fields. Nevertheless, I propose this notation in order to assign a context to the I/O
access. This context is a compositum to express the kind of data for the access and is
application dependent. The different number of contexts can be represented through
the δ variable, which I call the degree of parallel I/O context. I represent n different
contexts as δ = (n − 1). For the application in this work I have defined 2 different
values for the degree of parallel I/O context. I have defined δ = 0 to represent the
parallel I/O at the run level and δ = 1 for accesses at the t and p lines level. Figure
7.2 shows a set of patterns with δ = 0 within an iteration and figure 6.2 shows a
set of five different semi-random temporal parallel file I/O access pattern with δ = 1
that can be generated within one iteration.
Based upon the concept of a semi-random temporal parallel file I/O access pattern
(definition 5.3), an I/O process (definition 5.4), and a null I/O process (definition
5.5), I propose a classification of four different types of semi-random temporal parallel
file I/O access patterns at the run level δ = 0 as I show in table 5.1.
I denote such patterns as semi-random temporal to refer to the fact that the values of
the parameters that define them (including k and l) change between two consecutive
time frames (∆τ)i and (∆τ)i+1 in a semi-random manner.
If the assignment of cold chains to the processes is bijective and load balanced there
are no I/O swaps ((nruns mod np) = 0; nruns ≥ 2), the exponent of equation 5.1 is
zero. This means that under these conditions one single pattern of type Complete-1,
in the proposed categorization of table 5.1, is generated. For simplicity I call it
pattern π1.

Type Description Set Description
Complete-1 Each I/O process is involved

in exactly one I/O operation np = {
⋃np

k=1 PIOk,1}
Partial-1 Each I/O process is involved

in exactly one I/O operation, np = {
⋃A

k=1 PIOk,1}
but the number of these is smaller

⋃
{
⋃np

k=A+1 PIOk,0}
than np, the total number of
processes.

Complete+1: Same as Complete-1, but at least

one I/O process is involved in at np = {
⋃A

k=1 PIOk,1}
least two I/O operations

⋃
{
⋃np

k=A+1 PIOk,l≥2}
Partial+1: A variant of Partial-1, but

as in the case of Complete+1 np = {
⋃A

k=1 PIOk,0}
here at least one I/O process

⋃
{
⋃B

k=A+1 PIOk,1}
is involved in at least two I/O

⋃
{
⋃np

k=B+1 PIOk,l≥2}
operations.

Table 5.1: Types of semi-random temporal parallel file I/O access patterns, δ = 0

5.4 Summary
In this chapter I have introduced formal definitions for the description of parallel
I/O access patterns within an iteration and throughout the whole execution time
of the p(MC)3 algorithm while using a parallel I/O interface. I have proposed an
expression to quantify the different number of semi-random time parallel I/O access
patterns that can appear during the algorithm’s execution time. Furthermore, I have
proposed a four type categorization for these patterns at the run level (δ = 0).
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6. Parallel I/O Adaptation
The main objective of this chapter is to present the parallel I/O adaptation that I
have proposed for the p(MC)3 algorithm. Basically I followed two objectives through
this parallel I/O adaptation. The first one was to eliminate the I/O bottleneck in-
herent to the many-to-one communication patterns during I/O activities, in order
to reduce the algorithm’s execution time. The second one was to enable the appli-
cation to compute comparatively more runs than its serial I/O counterpart, in order
to correspondingly increment the phylogeny’s approximation computed by an mcmc

analysis.
The first step of this parallel I/O adaptation consisted in proposing a parallel file
format to store the generated data. Section 6.1 presents one such format. In section
6.2 I discuss the mapping at first generation partitioning function for I/O operations.
This is a novel function for partitioning a parallel file among many processes whose
temporal and spatial parallel I/O accesses vary in a semi-random manner. Subsec-
tion 6.3.1 describes how the MFG partitionig function interacts with MPI hint based
physical distribution functions. It especially describes the parallel line buffering, a
mechanism that I propose to select different varstrip chunk size values.

6.1 Parallel File Format

There are different possible format configurations in which the generated total amount
of data expressed in equation 4.1 can be stored in one single parallel file. In this
work I propose the format presented in figure 6.1. It consists of one header that con-
tains metadata information on the corresponding trailer. The trailer is divided in
areas for each run. These areas are subdivided in p and t areas that correspondingly
contain the p and t lines. These areas store the parameters of the computed trees
and their topologies, respectively. The format shown in figure 6.1 corresponds to
the results of one mcmc analysis.

6.2 The MFG Partitioning Function

This section describes the mapping at first generation partitioning function, after
having determined the total amount of data and its type in chapter 4 and the corre-
sponding semi-random temporal parallel file I/O access patterns generated from the
p(MC)3 algorithm in chapter 5.
As I have mentioned in subsection 4.2.3 each serial I/O write operation consists of
two phases: the many-to-one communication pattern and the actual write operation
into 2*n files. The second phase has a time complexity of O(n) for one write opera-
tion, with n representing the number of runs being computed. I propose in this work
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Figure 6.1: One proposed parallel file format for MrBayes3.1

the MFG partitioning function to store the data into a parallel file with the format
described in section 6.1. Due to this partitioning function all processes are able to
write their data at the same time into the parallel file. In a Complete-1 pattern, for
instance, the time complexity of one write operation is O(c) independently on the
computed number of runs. For other types of patterns categorized in table 5.1, c is
defined by the slowest process involved in the write operation. The value of c can
be reduced through the selection of adequate application and system parameters,
such as access patterns and distribution function related parameters as presented in
chapter 7.
Figure 6.2 depicts a set of semi-random temporal parallel file I/O access patterns
with δ = 1 that can be serviced with the MFG partitioning function, including a
special case for one single MPI process. Table 6.1 presents the pseudo-code of
the MFG partitioning function in a C based pseudo-language. This pseudo-language
uses the same notation and definitions from chapter 5 and the appendix A.

6.2.1 Parallel File Map, Local Runs

The time interval (∆τ)i, i ≥ 1 from definition 5.3 in this application refers to a
time frame at the end of each iteration gen. During (∆τ)1, at the end of the first
iteration, each process computes the size of the p and t lines. Based upon this
information and the provided file format φ, the total number of runs ρ, the total
number of generations ngen, and the sampling frequency sf , each process is capable
to construct the file map µ. This map is a structure that consists of offsets of all
runs within the parallel file and offsets of the t and p sections within a run and
corresponding sizes. This map corresponds to the union set operation of all ω and
σ fields from defintion 5.3. Once the µ map has been constructed by each process
during the first iteration, the next step of each process is to determine the l runs
that they compute in each generation. This is dependent on the used load balancing
mechanism.

6.2.2 Filling Main Memory Buffer β

Each process fills its main memory buffer β with the l runs that it has received from
the lbm load balancing mechanism. The variable l represents the local number of
runs. This main memory buffer β will be filled up to λ generations.

6.2.3 Parallel File Opening

During file opening the distribution function, the striping unit, and varstrip chunk
size are set by each one of the computing processes to the user’s provided values.
If the semi-random temporal parallel file I/O access pattern is a π1 and the varstrip
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Figure 6.2: A set of semi-random temporal parallel file I/O access patterns with
δ = 1: A set of 5 different patterns that can be served with the MFG partitioning
function. This is an example of an mcmc analysis with 4 runs that is executed with
1 - 5 MPI processes.

distribution function is chosen by the user, the varstrip chunk size will be set to the
value of λ. If no parallel I/O parameters are selected by the user, the simple stripe
distribution function with its default value will be set, else the provided striping unit
value will be applied to the simple stripe distribution function to open the file.

6.2.4 Creating the File View

Before finally writing into the parallel file, each I/O process constructs its own view
of the file ≺file. In this work such a parallel file view ≺file is one data structure per
process that contains in a linearized representation the offsets and sizes, where the
set of p and t lines contained in β will be written into the parallel file.
This ≺file is constructed based upon the file map µ, the current writing generation
wg, and in the case of the varstrip distribution function the parallel line buffering
factor λ. Within the writing iteration wg each process constructs a one dimensional
array which contains offsets and corresponding sizes. This array is an association of
each offset contained in ω from definition 5.3 to its corresponding sizes contained in
σ. In order to implement this association using the programming elements of MPI-2,
I constructed an MPI_Datatype based upon one array of only offsets and another
of only sizes with the MPI_Type_create_hindexed that had the data to be written.
Using the MPI_File_set_view, I associated these datatypes to the corresponding
file handle.
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40 6. Parallel I/O Adaptation

/*Process global variables:*/

ngen /* Total number of generations*/

gen /* Current generation */

wg /* Writing Generation */

sf /* Data Sampling Frequency */

ρ /* Total number of runs */

λ /* parallel line buffering factor*/

lbm /* Load balancing mechanism */

pf /* Parallel file handle */

φ /* Parallel file format */

µ /* Parallel file map */

/* Distribution Functions: */

s /* Simple_stripe */

su /* striping unit */

v /* Varstrip */

vscs /* varstrip chunk size */

π1 /* Complete-1 pattern */

/* at δ = 0 level*/

/*Process local variables:*/

β /* Buffer in main memory */

l /* Number of runs */

≺file /* Process’s file view */

while(gen ≤ ngen){
PIOk,l≥1 ∧PNIOk,l=0:
if ((ρ % np) == 0) { π1 = YES }

if(gen == 1) /*mapping at first generation*/
{Compute µ(φ, ρ, ngen, sf)}

if((gen % sf) == 0)

{Determine l based on lbm
FillBufferβ(l ∗ λ)}

if(gen == λ)
{if((λ == 1) ∧ (s selected))

{PFopen(su)}
if((λ ≥ 1) ∧
(v selected) ∧ (π1 == Y ES))
{PFopen(vscs)}}

if((gen % wg) == 0) {

PIOk,l≥1:
CreateType ≺file using(µ, wg, λ)
Associate ≺file to pf
PFWriteOut(pf, β)

PNIOk,l=0:
Barrier

}}

Table 6.1: Pseudo-code of the mapping at first generation Partitioning Function.
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6.3. Accessing Flexible Distribution Functions 41

6.2.5 Parallel Write Out

A process that buffers at least one run in its main memory β participates in the
parallel file write out operation performed in each writing generation wg.
Each I/O process writes out its β into the file using the MPI_File_write. During
this time the PNIO processes, definition 5.5, call the MPI_barrier.

6.3 Accessing Flexible Distribution Functions

The user can select at the application level the type of physical distribution function,
with which the parallel file system opens the parallel file. Once a function has been
chosen, the user can also set the striping unit value or the varstrip chunk size for
the simple stripe or varstrip distribution function, correspondingly.
The selection of the function is limited by the type of semi-random temporal parallel
file I/O access patterns to be generated during execution. For a constant π1 pattern
both functions can be chosen. For any sequence of the patterns categorized in table
5.1 at δ = 0 or table at δ = 1, only the simple stripe function should be chosen.
In chapter 7 I present thorough information about choosing optimal distribution
functions and their parameters.

6.3.1 The Parallel Line Buffering Mechanism

For the usage of the varstrip distribution function with the MFG partitioning func-
tion I propose the parallel line buffering mechanism. In each generation g each
process that has cold chains, buffers in main memory β the lines for the t and p area
of these chains. In this work I have defined as default value for the varstrip chunk
size within the varstrip distribution function a value corresponding to λ = 1, which
means that each process writes the content of its main memory buffer β within each
generation. Nevertheless, if the size of these lines are relatively small this might
yield to unnecessary I/O overhead, which might decrease performance. In order to
overcome this situation, I propose the parallel line buffering mechanism that consists
in keeping the results of more than one generation in the main memory buffer before
writing the data into the file, λ > 1. Figure 6.3 shows the synchronization of the C

functions that I have used to implement the parallel line buffering mechanism. This
graph depicts a case of an mcmc analysis with 20 iterations when retaining 6 lines in
main memory (λ = 6)1. The number in circles, 1 - 4, show the chronological order
in which the C functions are called.

6.3.2 Proposed λmax

Buffering results in main memory should not activate the operating system swapping.
In equation 6.1 I propose an expression for the computation of λmax for a given
configuration so that operating system swapping is not activated. In this expression
MT represents the physical main memory size, MST the swapping threshold memory
size, MProc the process memory size, MLine the line memory size, and Rl the number
of local runs assign to an MPI process.

λmax =
MT − (MST + MProc)

MLine ∗Rl

(6.1)

Depending on the I/O cluster configuration, different values for λmax can be com-
puted across all I/O nodes. In order not to activate operating system swapping on

1A value of λ = y can be selected with dnmlines = y within the mcmc prompt.
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Figure 6.3: Synchronization of C functions for the implementation of the parallel
line buffering mechanism: This example shows the execution of 20 iterations while
retaining 6 lines in main memory (λ = 6). The number in circles (1 - 4) show the
order of the C calls.

any node, the smallest λmax should be used. Furthermore, I propose to use an upper
limit of only 75% of this allowed maximum number. If during the first generation
the operating system activates swapping, I propose to use λ = 1. Equation 6.1 also
provides information on the number of runs that can be selected before activating
operating system swapping based upon a chosen λ and the line memory size. For a
π1 pattern, load balanced, this can be determined through the multiplication of Rl

by the number of I/O nodes.

6.4 Summary

In this chapter I have presented the two main contributions of this work. Firstly, at
the application level I have described the mapping at first generation partitioning
function. This is a partitioning function for applications in which time parallel I/O
access patterns are semi-random during execution. Nevertheless, the application
must have a defined file format and during the first generation each line type must
be computed so that using the format and these initial values, all offsets and sizes
within the file can be determined in a map during the first generation. This map must
contain information about the position in the file of a line type at a given generation.
During a writing generation a process with lines to be written into secondary storage
looks up the corresponding file position in the map for the lines in question at the
given writing generation. Finally it writes into those positions. In this particular
case, I have implemented the MFG function for an application with a set of semi-
random temporal parallel file I/O access patterns. Nevertheless, the strength of the
mapping at first generation is its independency, due to the map existence, from the
number of processes that are involved in an I/O operation. Therefore it is also suited
for application with random temporal parallel I/O access patterns.
Secondly, at the application level I have also proposed the parallel line buffering
mechanism to set the varstrip chunk size value at the parallel file system within the
varstrip distribution function for π1 patterns.
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7. Evaluation
The purpose of this chapter is to present the set of experiments that I conducted
to show the performance of the mapping at first generation partitioning function
in conjuction with the varstrip and the simple stripe distribution function. In this
work this performance is expressed in terms of speedup and time difference percent-
age values as defined under subsection 7.3.1.
The speedup of a parallel I/O MPI based program running on an I/O cluster com-
puter is conditioned by different setups of the parallel processing environment and
the program’s parameters. From these setups and parameters in this evaluation I
took into consideration the type of distribution function and corresponding settings,
the used number of physical I/O nodes, the number of MPI processes per node, the
total number of runs, and the number of Markov chains per run.
The application has parameters whose values change the execution time indepen-
dently of the used I/O interface. One of such parameters is the temperature with
which the chains are provided. In this evaluation I used a temperature middle value
of 0.5 and default values for similar parameters.

7.1 Overview of Experiments

The following enumeration presents an overview of the set of conducted experiments
in this evaluation:

1. Set of experiments to demonstrate the support of all identified temporal I/O
access pattern types generated from the p(MC)3 algorithm by the mapping
at first generation partitioning function in conjuction with both distribution
functions (see Sec. 7.4): Subsection 7.5 presents the validation of the MFG
function with the simple stripe distribution function to handle all patterns and
with the varstrip distribution function to handle π1 patterns. Furthermore,
subsection 7.5.1 demonstrates that these patterns present different speedup
values.

2. Experiments to determine π1 pattern speedup (see Sec. 7.6): Subsection 7.6.1
describes the experiments that I conducted to show the speedup of the MFG
partitioning function with both distribution functions to compute π1 patterns
that generate different amount of data in each iteration datagen and have differ-
ent number of runs. Subsection 7.6.2 describes the speedup behavior in terms
of different MPI processes on 2, 4, and 8 physical nodes.
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3. Pattern π1 speedup in terms of distribution function parameters (see Sec. 7.7):
Subsection 7.7.1 presents the experiments that I conducted to determine the
speedup dependency on the striping unit values for the simple stripe distribu-
tion function. Correspondingly subsection 7.7.2.1 describes the experiments to
demonstrate the functionality of the parallel line bufferig mechanism for the
varstrip distribution function. Furthermore, for this mechanism in subsections
7.7.2.2 - 7.7.2.3 I demonstrate how different λ values provide different speedup
values for different amounts of data.

4. Speedup in terms of number of iterations (see Sec. 7.8): Section 7.8 describes
experiments that I conducted to show the speedup’s behavior in terms of the
number of iterations for 8 runs (the smallest number of runs to exploit parallel
I/O functionalities on the used I/O environment described under section 7.2)
and 64 runs. Finally section 7.9 describes an experiment that I conducted to
provide a speedup comparison to compute 128 runs with a π1 pattern.

7.2 I/O Environment

The deployment of the MFG partitioning function with the simple stripe distribution
function supports each one of the time parallel I/O access patterns that I have
categorized in table 5.1. Nevertheless, as we mention in [LuLu05] and [EGVL05]
we propose the varstrip distribution function for spatial application access pattern
of type 1 (see Sec. 3.1). In the context of this application this corresponds to a π1

pattern with (nruns mod np) = 0. Therefore, in order to compare the performance
of the mapping at first generation function with both physical distribution functions,
pattern π1 should be supported at all levels of the parallel I/O environment as I
describe in this section.
In this evaluation I utilized 8 nodes of a 9 nodes I/O cluster. Each of these nodes
has an SMP architecture with 2 processors, a 1GB main memory, and one secondary
storage device with a capacity of 80GB. The nodes 01-05 are provided with two extra
160 GB disks that work as RAID01. These nodes communicate with each other over
a gibabit ethernet using a star topology. Their technical characteristics are included
under appendix A.3.10.1 and their performance measurements can be found under
[PuVe10].
At the parallel file system I used pvfs-2.8.1 that already included our proposed
varstrip distribution function. The configured parameters in the config.log file’s
header are shown in appendix A.3.9.1. Each PVFS2 node was configured using
the all in one configuration, in which each node has the role of client, server and
metadata server at the same time. The corresponding used pvfs2.conf file is shown
in appendix A.3.9.2.
I used the mpich2-1.0.8p1 as parallel I/O interface library, to which I applied our
software code that enables the applications to choose the distribution function types
and set their corresponding parameters. The config.log file’s header for the used
MPICH2 is included under appendix A.3.8.1.

7.3 Input Matrices and Metrics

At the parallel application level I used two sets of input matrices. One set consisted
of biological DNA strings and the other consisted of synthetical strings.
The set of biological strings consisted of matrices with 8, 12, 16, 32, 64, 128, 256, 512,

1Each of these nodes has an operating system swapping partition space of 2.93 GB.
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768, and 1024 taxa. Each of these taxon had a DNA character length of 2086 char-
acters. These were matrices of anatidae, whose biological context can be found in
[GoDW09]. I also used the 12 taxa with character length 898 from the primates.nex
file that is provided with MrBayes3.1. Detailed information about the input matrices
can be found under appendix A.3.2.
In order to use any input matrix, I wrote a program called gtaxa. This program cre-
ates synthetical taxa in an input file conform with the nexus file format [MaSM97].
It randomly creates an input matrix based upon the given number of taxa and string
length2.
The dimensions of an input matrix can be expressed in terms of the number of taxa
and the corresponding DNA string lengths or in bytes. Depending on the used input
matrix for an analysis, a certain amount of data datagen is generated to be written
into secondary storage in each iteration for a chosen number of runs.
In order to establish the correspondence between matrix dimensions and datagen,
I synthetically created matrices with number of taxa between 10 and 10000 and
whose string length were 10, 100, 1000, and 10000 characters. Using these matri-
ces as input, I ran 8 runs 10 iterations on eight MPI processes and physical nodes.
Figure 7.1 presents the measured datagen values for number of taxa between 10 and
90. Figure 7.1 shows in the lower half that using different input dimensions yields
different execution times, but in the upper part it shows that the amount of data
datagen generated and written in each iteration solely correlates with the number of
taxa. Figure A.1 in the appendix depicts this correlation for up to 10000 taxa.
The evaluation in this work strongly depended on the amount of data datagen gen-
erated in each iteration. Nevertheless, it is not obvious to determine it. Therefore,
besides the information from figure 7.1 and A.1 table A.5 and A.6 in the appendix
provide cross referencing information. This information includes: the input matrix
sizes, distribution function parameters, and the amount of data datagen generated in
each iteration. This last parameter is expressed in these tables in terms of physical
degree of I/O parallelism and depth of I/O parallelism. For these two terms I used a
reference value of 64 KB, the simple stripe distribution function striping unit default
value.

7.3.1 Speedup, Efficiency, and Time Difference Percentage

This subsection lists the metrics that I use to express the performance measured in
this evaluation. In the context of this work I define the speedup in equation 7.1
based upon Amdahl’s law.

speedup =
TimeserialIO

TimeparallelIO

(7.1)

In this equation TimeserialIO
and TimeparallelIO

represent the execution time of the
serial and parallel I/O program versions, respectively. In equation 7.2 I define the
corresponding efficiency in terms of the number of processing units efficiencyCPU .

efficiencyCPU =
speedup

NumCPUs
(7.2)

In this expression NumCPUs represents the number of used CPUs.
Another metric that I use to compare two or more execution time values is what I
call in this work the time difference percentage as I define it in expression 7.3

∆perf =
Timeref − Timei

Timeref

∗ 100 (7.3)

2The gtaxa is also included under the source code tree of the parallel I/O version.
45



46 7. Evaluation

0.0e+00

1.0e+00

2.0e+00

3.0e+00

4.0e+00

5.0e+00

6.0e+00

7.0e+00

8.0e+00

9.0e+00

 10  20  30  40  50  60  70  80  90

E
xe

cu
tio

n 
T

im
e,

 S
ec

s.

Number of Taxa

10000Chars_
1000Chars_

100Chars_
10Chars_

2.0e+03
4.0e+03
6.0e+03
8.0e+03
1.0e+04
1.2e+04
1.4e+04
1.6e+04
1.8e+04
2.0e+04

 10  20  30  40  50  60  70  80  90

D
at

a/
Ite

ra
tio

n,
 B

yt
es

Figure 7.1: Amount of data generated in each iteration: Data generated in each
iteration in terms of different taxa and four different string lengths. In the lower
half the corresponding execution times are presented.

In equation 7.3 Timeref corresponds to the reference execution time that I select
by applying certain criteria. In this evaluation some values assigned to Timeref , for
instance, correspond to the execution time with the default striping unit or varstrip
chunk size values. The Timei, i = 1...n variable represents the n execution time
values to be compared.

7.4 Mapping at First Generation Validation

The first question to answer is whether or not the categorized semi-random access
patterns in table 5.1 are correctly served by the combination of the mapping at first
generation with the simple stripe distribution function and its striping unit of 64
KB and with the varstrip distribution function, in the case of the π1 pattern. In the
set of measured pattern configurations I did not conduct extra measurements for
the Partial+1 type. From the patterns shown in figure 7.2 such a pattern is created
based upon pattern Partial-1, when one of the MPI processes writes two runs and
within the same iteration two processes do not write any data at all. Thus, the func-
tionality of such pattern can be deduced upon the functionalities of the Partial-1
and Complete+1 patterns.
In this work I consider correct patterns servicing, if independently of the pattern
chosen during the first iteration, at the end of an analysis the application creates
the parallel file with the appropriate format and content. Furthermore, the parallel
file must also be stored on the I/O nodes with the required distribution functions’
settings.
Once this has been clarified, the next question to answer is whether or not these
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Figure 7.2: Evaluated types of temporal I/O parallel access pattern, representation
at the δ = 0 level, used to test the functionality of the MFG partitioning function
in combination with the simple stripe distribution function and the varstrip distri-
bution function. This last distribution function serves only the Complete-1 pattern.

patterns are served with the same speedup on an I/O environment as the one dis-
cussed in section 7.2. This section presents the set of experiments that I conducted
to answers these two questions.
For the set of experiments described in this section I used the patterns depicted in
figure 7.2. This figure shows the configurations in terms of MPI process, runs,
and Markov chains that I utilized to generate these patterns.

7.5 Support of the p(MC)3 I/O Temporal Access

Patterns

This section describes the set of measurements conducted to validate the mapping
at first generation partitioning function in conjuction with default values for distri-
bution function related parameters to serve the categorized p(MC)3 patterns from
table 5.1. In the case of the π1 pattern I conducted measuremets of the mapping at
first generation performance with both distribution functions. I ran each one of the
patterns shown in figure 7.2 for one iteration using an input matrix that generated
a parallel file with a size of 5.4 KB. This experiment showed a worst case when all
processes write at the same time into the parallel file from the logical point of view,
but due to the small data size a tiny parallel file is written into one single physi-
cal I/O node by the simple stripe distribution function and its striping unit default
value3. The input synthetical matrix’s header is included under appendix A.5.1.

3In the rest of this evaluation in most of the cases the parallel file is stored on many I/O nodes
indepedently of the striping unit value.
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The generated parallel files were stored with the simple stripe distribution function
and its striping unit default value for each pattern. In the case of the Complete-1 or
π1 pattern, I also conducted an analysis, in which the parallel file was stored with
the varstrip distribution function and its default varstrip chunk size value.
For each case I recorded the parallel file content, the information about distribution
functions, and used I/O nodes. I include this information in appendix A.5.2, A.5.3
, and A.5.4, for the Complete+1, Complete-1, and Partial-1 patterns, respectively.
The content of these parallel files show that the results of many runs, in this case 7,
8, and 9, that are part of the same mcmc analysis are written with the defined format
in section 6.1 into one single parallel file independently of the chosen temporal par-
allel I/O access pattern. The information on these parallel files in the subsections
A.5.2.2, A.5.3.2, and A.5.4.2 of the appendix show the corresponding distribution
function information, with which these files were stored. Furthermore, it also shows
which nodes contain the file4. These very tiny parallel files were mostly stored in
one single I/O node, except in the case of the varstrip distribution function while
serving the Complete-1 pattern. The parallel file for this pattern using the varstrip
distribution function was stored on each one of the eight I/O nodes as shown by
the pvfs2-viewdist output in appendix A.5.3.4. This output shows that each node
contained 701 bytes of the parallel file.

7.5.1 Patterns and Speedup Values

After demonstrating how the mapping at first generation partitioning function in
combination with the two physical distributions serves the categorized semi-random
temporal parallel file I/O access patterns from table 5.1, I proceeded to determine
whether or not these categorized patterns are served with the same speedup.
In order to answer this question, I conducted mcmc analyses with each one of the
patterns shown in figure 7.2 for only one single iteration. In this experiment I used
an input matrix that generated an amount of data with depth of I/O parallelism
δπioz

= 2 and the parallel file was stored with the simple stripe distribution function
the striping unit of 64 KB.
Figure 7.3 presents the computed speedup values according to equation 7.1. This
figure shows different speedup values for the different patterns. This figure illustrates
that from all patterns the Complete-1 or π1 pattern presents higher speedup than
the other patterns, independently of the used physical distribution. The highest
one was measured with the varstrip distribution function (3.86 in this case). The
smallest speedup is presented by the Complete+1 pattern (2.85 in this case). These
speedup values can be explained by looking at the number of I/O swaps and the
number of overloaded MPI processes (processes that write more runs as the others)
for each pattern. The Complete+1 pattern presents 2 I/O swaps and 1 overloaded
process. These two factors make the computation for one iteration slower compared
to the other patterns. The Partial-1 pattern has two I/O swaps and one underloaded
process which makes the computation not very slow as in the former case, but not
as fast as in the case of π1 pattern, in which neither I/O swaps nor an overloaded
process exist.

4This information is determined through a small perl script that calls the pvfs2-statfs before
and after each mcmc analysis. In order to associate the parallel file information (especially those
provided as output of pvfs2 commands) to the corresponding experiment, I also include to this
information the header of the corresponding performance tracing file.
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Figure 7.3: Computed speedup, equation 7.1, at generation one of three time par-
allel I/O access patterns supported by the MFG partitioning function and the two
distribution functions. Speedups for an amount of data with depth of I/O paral-
lelism δπioz

= 2 in each iteration. All patterns were served with the simple stripe
distribution function and its default striping unit. Only the parallel file for pattern
Complete-1 was also stored with the varstrip distribution function and a default
varstrip chunk size. The labeling is to be interpreted as follows: The elements left
from the element IO provide information on the type of semi-random temporal paral-
lel file I/O access pattern, including the used distribution function (ss and vs stand
for simple stripe and varstrip, respectively). The numbers right from the element
IO stand for the number of runs, chains, MPI processes, and iterations, respectively.

7.6 Speedup

Subsection 7.5.1 demonstrates that the π1 pattern presents the highest speedup
values among all patterns on the used I/O environment. It also shows that this
pattern is supported by both distribution functions. The main objective of the set
of experiments described in this section was to determine how the speedup for π1

patterns changed in terms of the generated data in each iteration datagen, the number
of different physical I/O nodes, MPI processes, and runs.

7.6.1 Number of Runs

The objective of the experiments described in this section was to determine how the
π1 pattern’s speedup varied with different number of runs.
For this experiment I selected an input matrix that generated an amount of data
in each iteration datagen of 49076 bytes for 2 runs and 11.60 MB for 496 runs. I
used as median value an amount of data that produced δπioz

= 1 and set as upper
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limit a value of datagen that corresponded to δπioz
= 5. The input matrix had 1024

taxa with string length of 2086 as shown in table A.4. In this experiment I used
8 MPI processes for each measurement point, including those measurement points
in which due to the generated amount datagen only 1, 2, 4 or 7 physical I/O nodes
were accessed. Each run contained 4 Markov chains and I changed the number of
runs according to the expression nruns = 2n, n = [1 − 9], so that the pattern was
always π1. Selecting nruns = 1 run was not possible, since 4 MPI processes would
not get assigned any chain to compute by the load balancing mechanism.
The serial I/O version could not run nruns = 512 because the environment variable
_SC_OPEN_MAX returned by sysconf was set to 1024 and limited the maximum num-
ber of files that a process can have open at any time, according to sysconf (man

3). Thus, representing an upper limit for process 0 in the serial I/O version. In this
case it needed to open 1025 files including the one with the input matrix. Due to
this limitation a measurement point was set not in the above mentioned scheme at
nrun = 496. By choosing this number of runs each MPI process and node computes
exactly 248 markov chains. Thus, this measurement point was also a π1 pattern.
Figure 7.4 depicts the computed speedup values after conducting the corresponding
measurements for the serial and parallel I/O versions of the code. This figure shows
the speedup presented by applying the simple stripe distribution function with the
default striping unit value. It mainly depicts the speedup’s behavior in terms of the
selected number of runs. For each of these speedup values it also shows the cor-
responding written data in each iteration as well as the number of I/O nodes that
were accessed to store this data. Figure 7.5 also depicts the computed speedup
values for the same set of measurement points when storing the parallel file with the
varstrip distribution function.
In both figures the speedup increments while incrementing the number of accessed
I/O nodes and runs. In order to be able to compare the number of accessed I/O
nodes before reaching δπiox

= 100%, I used the simple stripe distribution function
without enabling the stuffing mechanism within the parallel file system, which writes
small amounts of data into one single datafile in a round robin manner5.
Before reaching δπiox

= 100% the speedup is caused by two factors. The first one is
the number of accessed physical I/O nodes and the second factor is the non-existence
of the many-to-one communication in the parallel I/O version. These two factors
produce a speedup up to 5.3 for δπiox

= 100% when using all eight nodes of the
I/O cluster. Once the maximum number of I/O nodes has been used, doubling the
number of runs only contributes to a speedup of 0.7 in the best of the cases. By
increasing the number of runs in our eight nodes I/O cluster, a speedup towards a
maximum value of 7 is reached, independently of the applied distribution function.
Both figures show that for cases δπiox

< 100% the different distribution functions
store the same amount of data into different numbers of I/O nodes. The sim-
ple stripe distribution function stores two runs (50 KB) into one single I/O node,
since this is smaller than the default striping unit, whereas the varstrip distribution
function stores it into two I/O nodes, since 2 MPI process request a varstrip chunk
size of 25 KB.
The similar speedup values computed while using the two different distribution func-
tions are caused by the sizes of the data generated in each iteration datagen. For this
particular experiment I selected the input matrix so that the values of datagen were
multiple of the default striping unit. In the case of the varstrip distribution function

5This mechanism can be chosen in the file system configuration file as shown in appendix A.3.9.2.
For further details see ../server/create.sm in the code tree.
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Figure 7.4: Speedup in terms of number of runs for small input matrices, datagen

values around δπioz
= 1: This is the speedup presented by an input matrix that writes

in each iteration 50 Kbytes for 2 runs up to 12 MB for 496 runs. This speedup is
presented by applying the simple stripe distribution function with the default value.

this selection is irrelevant, since it automatically adapts to the data available in the
writing iteration. An example that shows the information on the parallel file when
it was stored with the varstrip distribution function, is included under appendix
A.6.2.1.
7.6.2 Number of MPI Processes and Physical I/O Nodes

An important factor that influences the speedup is the number of MPI processes
with which a certain number of runs is computed on a given number of physical
cluster nodes. In an I/O cluster with sufficient CPUs and secondary storage devices
to provide parallelism, the selection of a relatively too small number of processes
may not exploit parallelism, whereas a relatively too big number of processes may
introduce unnecessary overhead. The objective of the set of experiments that I de-
scribe in this section was to determine the speedup for a given number of runs in
terms of the number of MPI processes on a certain number of physical I/O nodes.
Thus, providing information on the number of processes to maximize speedup val-
ues. Differently from the results already presented in subsection 7.6.1, in which the
number of accessed physical I/O nodes was conditioned only by datagen, in the set
of experiments that I describe in this section the number of physical I/O nodes to be
used was explicitly set with mpdboot -totalnum=<8 | 4 | 2>. Furthermore, the
chosen number of MPI processes created π1 patterns on these nodes.

7.6.2.1 Eight Physical I/O Nodes

The experiments described in this and the next two subsections were served with
the simple stripe distribution function and its striping unit default value. In the
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Figure 7.5: Speedup in terms of number of runs for small input matrices, datagen

values around δπioz
= 1, varstrip: This is the speedup presented by an input matrix

that writes in each iteration 50 Kbytes for 2 runs up to 12 MB for 496 runs. This
speedup is presented by applying the varstrip distribution function with its default
varstrip chunk size value.

case of 8 physical I/O nodes I selected an input matrix that caused a depth of I/O
parallelism between one and four for 32 and 256 runs respectively. I executed 10
iterations each one of these number of runs with 8, 16, 32, and 64 MPI processes.
Figure 7.6 presents the computed speedup values at iteration 10
This figure shows that given a depth of I/O parallelism greater than one, the behavior
of speedup in terms of the number of MPI processes, presents a semi-parabolic
behavior. At lower number of processes the speedup increments while incrementing
the number of processes up to a value, the process saturation number, where it
reaches its maximum value and then decreases while still incrementing the number of
processes. In this case speedup reached its maximum when using 16 MPI processes
independently of the selected number of runs. In this set the biggest speedup
improvement was measured for 256 runs that changed about 5.4 by selecting 16
instead of 8 processes. On the other hand, selecting a too high number of MPI
processes, even with operating system swapping not activated as in this case, the
speedup can drop to about 56% compared to the best value, as presented in figure
7.6 for the case of 32 runs.

7.6.2.2 Two and Four Physical I/O Nodes

The objective of this experiment was to determine whether or not the speedup’s semi-
parabolic behavior with corresponding process saturation number prevailed when us-
ing different number of physical I/O nodes.

52



7.6. Speedup 53

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

 0  10  20  30  40  50  60  70

 S
pe

ed
up

0.200
0.250
0.300
0.350
0.400
0.450
0.500
0.550
0.600
0.650
0.700

 0  10  20  30  40  50  60  70

 E
ffi

ci
en

cy

MPI Processes on 8 SMP I/O Nodes with 2 CPUs.

128Runs_ 256Runs_ 32Runs_ 64Runs_

Figure 7.6: Speedup and efficiency: Speedup and efficiency, acccording to their
definitions under subsection 7.3.1, in terms of MPI process numbers on 8 SMP
physical I/O nodes provided with 2 CPUs. These values correspond to an amount
of data generated in each generation with depth of I/O parallelism between one and
four for 32 and 256 runs, respectively.

I conducted this experiment with the same input matrix and conditions as the one
already discussed in subsection 7.6.2.1, except that I used 1 - 64 runs on 2 physical
nodes. Figure 7.7 shows the speedup and efficiency computed values. Using
the same input matrix as in the case with two physical nodes6, I executed for one
generation 32, 64, and 128 runs on 4 physical I/O nodes. These runs were executed
with 4, 8, 16, 32, and 64 MPI processes. The used input matrix generated in each
iteration amounts of data datagen with depth of I/O parallelism values of 2, 4, and 8
for the 3 mentioned number of runs, respectively. Figure 7.8 depicts the computed
speedup values. On the three different numbers of physical I/O nodes, the cases of
32 and 64 runs generate exactly the same amount of data in each iteration. Figures
7.6, 7.7, and 7.8 show for these two numbers of runs that depending only on the
chosen number of physical I/O nodes different speedup values were computed. In
the case of 64 runs7 at process saturation number I computed speedup values of 9.6,
6.6, and 3.6 for 8, 4, and 2 physical SMP I/O nodes provided with 2 CPUs, respec-
tively. The corresponding efficiency, equation 7.2, values were 0.6, 0.85, and 0.9. The
highest speedup of 11.3 with an efficiency of 0.7 was computed at process saturation
number for 256 runs on 8 physical nodes. Figures 7.6, 7.7, and 7.8 illustrate how
the process saturation number shifts depending on the chosen number of physical
nodes. It presents values of 4, 8, and 16 for 2, 4, and 8 physical nodes. These values

6Synthetical input matrix with 2664 taxa of 10 characters.
7Similar behavior is presented by 32 runs

53



54 7. Evaluation

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

 0  10  20  30  40  50  60  70

 S
pe

ed
up

0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900

 0  10  20  30  40  50  60  70

E
ffi

ci
en

cy

MPI Processes on 2 SMP I/O Nodes with 2 CPUs.

16Runs_
1Run_

2Runs_
32Runs_

4Runs_
64Runs_

8Runs_

Figure 7.7: Speedup and efficiency: Speedup and efficiency, acccording to their
definitions under subsection 7.3.1, in terms of MPI process in terms of MPI pro-
cess numbers on 2 SMP physical I/O nodes provided with 2 CPUs. These values
correspond to an amount of data generated in each generation with depth of I/O
parallelism between four and sixteen for 1 and 64 runs, respectively.

correspond to one MPI process per CPU on the used SMP nodes8. The process
saturation number was also conditioned by the assignment of runs to processes. In
these cases no interprocess communication takes place to compute runs.
These speedup curves show that the same speedup value can be obtained by select-
ing two different numbers of MPI processes. Nevertheless, only the speedup corre-
sponding to the smallest number of MPI processes represents for the user also small
execution time. Thus, in this work I call it the smallest-process-overhead speedup. It
is obtained while selecting a number of MPI processes less or equal than the process
saturation number.

7.7 Speedup and Distribution Functions

The objective of the set of experiments described in this section was to determine
how the speedup of a π1 pattern served by the MFG partitioning function could be
changed by using different striping unit and varstrip chunk size values.

7.7.1 Optimal striping unit

Provided an amount of data to be written to all I/O nodes in each generation datagen,
a number of I/O nodes NIOt , and δπiox

= 100%, theoretically a striping unit can be

8In the set of conducted experiments there was not notable bottleneck effects due to the fact
that 2 CPUs on one single SMP node were writing their data into one single secondary storage
device.

54



7.7. Speedup and Distribution Functions 55

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

 0  10  20  30  40  50  60  70

 S
pe

ed
up

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

 0  10  20  30  40  50  60  70

E
ffi

ci
en

cy

MPI Processes on 4 SMP I/O Nodes with 2 CPUs.

128Runs_ 32Runs_ 64Runs_

Figure 7.8: Speedup and efficiency: Speedup and efficiency, acccording to their
definitions under subsection 7.3.1, in terms of MPI process numbers on 4 SMP
physical I/O nodes provided with 2 CPUs. These values correspond to an amount
of data generated in each generation with depth of I/O parallelism between two and
eight for 64 and 128 runs, respectively.

chosen between a minimum sumin = 1 and a maximum value sumax as expressed in
equation 7.4.

sumax =
datagen

NIOt

(7.4)

This section describes the experiment to determine which striping unit values be-
tween these two limits reduce or increment execution time. Selecting a striping unit
value greater than sumax translates into δπiox

< 100%. This section also presents a
complementary experiment that independently of any particular application shows
the execution time behavior when using striping unit values that yield δπiox

< 100%.
I conducted the first experiment using four values for datagen that presented δπioz

=
1, 2, 4, 8 with a 64 KB reference, respectively. This means, for example, that for
δπioz

= 8 an amount of data datagen = 4 MB was written in each iteration into the
parallel file. Thus, 512 KB was written on each node in each generation. For this
set of data, I measured the execution time for different striping unit values between
1 and the corresponding sumax values.
Figure 7.9 shows corresponding time difference percentages for these execution times
according to equation 7.3. In this equation Timeref was assigned the measured val-
ues corresponding to δπioz

= 1 for each one of the generated amounts of data datagen.
Figure 7.9 depicts the time difference percentage reductions and increments due to
different striping unit values in the upper and lower half, respectively. It shows that
su = 1 induced overhead so that the execution time values were 2 -10% slower than
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Figure 7.9: The time difference percentages in terms of striping unit values for a
π1 pattern: These percentages are computed according to equation 7.3 taking as
Timeref the execution time for δπiox

= 100%, δπioz
= 1 for cases with δπioz

= 1, 2, 4, 8
using as reference 65536 bytes. Positive values translate into execution time re-
ductions. The following example presents the labeling interpretation: The label
8DP 65536 stands for an amount of data with depth of I/O parallelism (DP) δπioz

= 8
while using a reference of 65536 bytes).

the corresponding sumax time values. Differently from the time increments a maxi-
mum time reduction of 0.6% was measured.
Figure 7.9 also shows that the time difference percentage also varies depending on
the amount of data generated in each iteration datagen. Smaller amount of data are
more sensitive to different striping unit values. The time difference percentage values
in terms of striping units shows an asymptotic behavior towards the sumax value.
Striping unit values between 100 bytes and the sumax present smaller execution time
difference percentages.
Figure 7.9 shows that setting δπiox

< 100%, by choosing a striping unit value big-
ger than the data written by each node in each iteration, incremented execution
time, except in the case for δπioz

= 1 that presented a maximum time reduction of
0.05%. Nevertheless, this time reduction for 10 iterations increased while increasing
the number of iterations as shown in figure 7.10. This figure depicts the measured
values of a complementary experiment that I conducted to determine the execution
time behavior in terms of striping unit values that are bigger than the main memory
buffer’s size independently of the used application. For this experiment I wrote a
small program, which did not require any input matrix, to write out 300 iterations
10000 bytes from each one of the 8 nodes. For these operations I used striping
unit values of 10000, 20000, and 40000 bytes. Due to the small generated amount
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Figure 7.10: Execution time increments for δπiox
< 100% in terms of number of

iterations: Execution time measured by selecting a striping unit value multiple of
the main memory buffer’s size. The labeling is to be interpreted as follows: the
leftmost number is the main memory buffer size in bytes, the middle one is the
striping unit value and the right most the number of iterations. The labels (N)FS
stand for the (no) application of the file stuffing mechanism within the parallel file
system.

of data, I conducted the measurements with and without the stuffing mechanism
within the parallel file system. Figure 7.10 shows that using values greater than the
buffer’s size, δπiox

< 100%, produced values greater than the one corresponding to
δπiox

= 100% and δπioz
= 1. This is especially notorious for higher number of iter-

ations. Furthermore, the execution time did not remain constant across iterations,
since different I/O node sets were accessed in each iteration.

7.7.2 Varstrip, Maximum and Optimal Varstrip Chunk Size

In the varstrip distribution function each computing process writes a chunk size of
data on a given I/O node. In this work I call this amount of data the varstrip
chunk size and I consider the buffer size after one generation as its default value. In
general, this default size takes different values on the different I/O nodes depending
on the degree of load balancing. Since in this work I propose to apply the varstrip
function only to patterns of type π1, the varstrip chunk size has the same value
across all computing nodes.
The purpose of the set of experiments described in this section was to evaluate how
the application of parallel line buffering to set the varstrip chunk size value affected
execution time.
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Figure 7.11: Execution time and written data into the secondary storage while
keeping 1, 6, 10, 15, 20 computed results in main memory and using this value
for the varstrip chunk size for the input matrix with 8 taxa with lengths of 2086
characters. Detailed information on the meaning of the first 12 labeling elements
can be found under subsection A.4.1.2 in the appendix. The last element stands
for the number of iterations to be kept in memory with the parallel line buffering
mechanism.

7.7.2.1 Parallel Line Buffering

The objective of the first experiment was to evaluate the correct functionality of par-
allel line buffering. The objective was to show how parallel line buffering influences
execution time when conducting mcmc analyses of matrices with a small (8) and a
medium (1024) number of taxa.
One example of the used mcmc script is included under appendix A.3.7.2 for further
information. Figure 7.11 and 7.12 depict the measured values. Figure 7.11 shows
how different varstrip chunk size values influence execution time for the input ma-
trix with 8 taxa and 2086 characters. I executed this experiment with 64 runs each
having 4 chains on 8 MPI processes during 20 generations. In this setup I applied
parallel line buffering to keep in main memory 1, 6, 10, 15 and 20 generations’ results
before writing them into the parallel file. In figure 7.11 these values are shown as
the rightmost element of the labels in terms of lines. The maximum and minimum
byte sizes for these lines across all processes are shown as the 7th and 8th elements
of the labels, correspondingly. Since this setup was load balanced there was only
one value for the varstrip chunk size across all MPI processes.
Figure 7.11 shows the measured execution time as well as the amount of data that
was written into the parallel file by all MPI processes. This figure shows that setting
the varstrip chunk size to a value multiple of default value influenced the execution
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time. In this particular case it reduced it. It also shows that keeping different num-
ber of results in main memory influences time execution in different proportions.
For instance, buffering 6 results (10416 bytes on each computing node) contributes
to an execution time’s reduction of 42% compared to retaining only 1 result (1736
bytes). On the other hand, the effect of keeping the result of 20 generations (34720
bytes) yielded a time reduction of 50%. In this set of measurements I computed a
maximum of time reduction percentage of 50% compared to the execution time of
the default varstrip chunk size value after 20 generations.
Depending on the input matrix size, setting the varstrip chunk size to values greater
than the default value does not always yield a time reduction. Figure 7.12 visualizes
the measured execution times for the input matrix with 1024 number of taxa. In this
particular case the measured minimum execution time values, best performance, cor-
responded to the default value. The lower part of the picture shows the total amount
of data written into the parallel file. After the first generation the processes wrote
a total of 3456832 bytes (3.29 MB) into the file. From the second generation on the
processes wrote a total of 1570304 (1.49 MB) after each generation. Depending on
the required analyses’s precisions this yields an amount of data of 14.62 GB after
10000 generations, 0.14 TB after 100000, and 1.42 TB after one million generations.

7.7.2.2 The Maximum Parallel Line Buffering Factor λMax

The results presented in figures 7.11 and 7.12 show two extrem cases of applying
parallel line buffering to set the varstrip chunk size to a value different from the
default one. Figure 7.11 shows a case, in which parallel line buffering only reduced
execution times in different proportions. On the other hand, figure 7.12 shows a
case, in which parallel line buffering only increased the execution times in different
proportions. The only difference between these two setups was the input matrix
size, which defined the amount of data in main memory in each generation.
The objective of the experiment described in this section was to determine the cause
of time reduction while increasing the value of λ. Thus, this experiment consisted in
measuring the execution time while keeping relatively big number of lines in main
memory (8000L and 9000L) without writing them into secondary storage. I con-
ducted the experiment with pattern π1 on the I/O environment described under
section 7.2 using an input matrix with 1024 taxa (2.1MB). Figure 7.15 shows the
measured execution time values. In figures 7.15, 7.14, and 7.13 the first seven el-
ements in the labeling have the following meanings: type of I/O interface, type of
distribution function, number of runs, number of chains, MPI processes, total num-
ber of iterations, λ value (in number of lines). The string M 1024 stands for the
number of taxa in the input matrix having a string length of 2086 characters and
the rest of the string provides information on the different types of virtual memory
monitored on one of the cluster nodes (node01). Figure 7.15 shows that execution
with λ = 8000L was faster than with λ = 9000L. This difference in execution time
was especially notorious for small numbers of generations. For one generation it was
about one order of magnitude. Since the program did not have I/O activities, only
the values for the virtual memory usage under /proc/meminfo on all 8 I/O nodes
during the execution time were monitored. Figures 7.13 and 7.14 visualize the mea-
sured values on node019. In order to have similar initial conditions, the operating
system swapping was turned off and on before each analysis.

9Except when explicitly noted the virtual memory information corresponds to the monitored
memory values under /proc/meminfo.
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Figure 7.12: Execution time and written data into the secondary storage while
keeping 1, 5, 10, 15, 20 computed results in main memory and using these values
as the varstrip chunk size for the input matrix with 1024 taxa with lengths of 2086
characters. Detailed information on the meaning of the first 12 labeling elements
can be found under subsection A.4.1.2 in the appendix. The last element stands
for the number of iterations to be kept in memory with the parallel line buffering
mechanism.

These two figures present the virtual memory usage in terms of the number of mea-
surement points during the whole execution time. These values were polled from
each node to the front end node of the testbed cluster10. In figure 7.13 the execution
time began when the value of the available free memory dropped and finished when
the memory returned to its original value. This figure also shows that during the
whole analysis the operating system swapping partition was used and this usage
did not remain constant. It also shows that the amount of memory used as buffer
increased due to λ, whereas the memory used for caching remained constant.
Figure 7.14 shows the virtual memory usage for λ = 8000L. It clearly shows that
there was no usage of the operating system swapping partition whatsoever. These
two figures show that setting λ to a relatively big value decreases the amount of
free memory below the value that activates the operating system swapping and thus
decreases execution time. In this work I propose in equation 6.1 an expression for
determining the upper limit λMax so that setting 1 < λ < (75%) ∗ λMax does not
activate operating system swapping. Nevertheless, if operating system swapping is
activated during the first iteration, λmax = λ = 1 should be applied.

10There is no one to one correspondence between the application’s iterations and the virtual
memory measurement polling frequency.
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Figure 7.13: Virtual memory information on node01: These values were measured
over the whole execution time for λ = 9000L. Operating system swapping was
activated.

7.7.2.3 The Optimal Value for λopt

For a total amount of generated data over the whole execution time datatotal, the
value for the varstrip chunk size can be explicitly set between a minimum and a max-
imum value as expressed in equation 7.5 and 7.6, respectively. In these expressions
datagen stands for the amount of data generated in each iteration, wnum represents
the total number of write operations during the whole execution time, and NIOt

stands for the total number of accessed I/O cluster nodes.

vscsmin =
datagen

NIOt

, λ = 1 (7.5)

vscsmax =
datatotal

NIOt

, λ = wnum (7.6)

Concerning performance, one upper limiting factor constitutes the activation of the
operating system swapping as I have experimentally shown in subsection 7.7.2.2
and theoretically describe in equation 6.1. The objective of this experiment was
to study the execution time behavior in terms of λ values that did not activate
operating system swapping, 1 < λ < λmax. Specifically, the objective was to deter-
mine under which conditions the execution time was reduced by making one single
write operation with λopt compared to making many write operations with λ, for
λmax > λopt > λ > 1.
I conducted this experiment using δπioz

= 1, 2, 4, 8 as I have already described in
subsection 7.7.1 for the simple stripe distribution function. For each one of the δπioz
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Figure 7.14: Virtual memory information on node01: These values were measured
over the whole execution time for λ = 8000L. Operating system swapping was not
activated.

values I set λ = 1, 2, 4, 8, 16 for a total of 16 iterations.
Figure 7.16 shows the corresponding time difference percentages computed accord-
ing to equation 7.3 for the measured execution times. In equation 7.3 I used as
Timeref the execution time measured for cases with λ = 1. This figure illustrates
the time difference percentage reductions and increments due to different varstrip
chunk size values. The execution time values used for this graph correspond to the
total execution time after 16 iterations. This figure illustrates that smaller amount
of data, δπioz

≤ 4, exploit the strengths of λ > 1. In the case of δπioz
= 1, for exam-

ple, λ = 16 a time reduction of up to 2.5% was experimented. On the other hand,
bigger amount of data, δπioz

> 4, present time execution increment when using λ > 1
(1 MB or greater amounts of data on each node in each generation). A maximum
value for a time increment of -2.5% for δπioz

= 8 was computed. Thus, in such cases
λ = 1 shall be applied. This figure also shows that smaller values of δπioz

are more
sensitive to λ values. Figure 7.17 also presents the amount of written data into the
parallel file corresponding to the execution times used in figure 7.16. This figure
depicts the total written data into the parallel file in terms of the number iterations,
λ values, and the depth of I/O parallelism δπioz

with a 64KB reference. Figure 7.17
shows that in the case of δπioz

= 8 a total of 70MB (72573136 bytes) was written
into the parallel file after 16 iterations which corresponds to 0.4 Terabytes for an
analysis with 100000 number of iterations.

7.8 Speedup and Iterations

Theoretically after a code has been parallelized, a steady speedup value should be
expected independently of the iteration number at which this speedup is measured.
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Figure 7.15: Execution times for the first 8000 generations with λ = 9000L and
λ = 8000L without I/O operations. Detailed information on the labeling can be
found under subsection A.4.1.2 in the appendix.

In the particular case of the I/O parallelization that I propose for this application,
this is not the case due to the following factors: different file opening operations
during the first iteration, overhead due to the mapping at first generation partition-
ing function for the parallel I/O variant during iteration one, and the amount of
generated data during the first iteration is bigger than the rest of iterations, since
it includes header information. Even though, this last factor exists in both code
variants, it represents different I/O overhead for both codes.
Mainly due to the above enumerated factors the execution times vary across it-
erations of the same code variant11. Thus, a non-constant speedup value across
iterations is to be expected. The objective of this experiment was to determine the
speedup in terms of iterations.
On the already discussed cluster testbed I generated π1 patterns using 8 MPI pro-
cesses with 8 runs and 64 runs. Using input matrices that generated depth of I/O
parallelism values between 0.5 and 32, I ran analysis for 8 iterations as depicted in
figure 7.18. For the parallel I/O measurements the varstrip chunk size was set to
λ = 1. Figure 7.18 illustrates different speedup values for the same amount of data
generated in each iteration. This speedup changed in terms of the number of runs
and the depth of I/O parallelism δπioz

. It shows that the mapping at first generation
in combination with a distribution function, varstrip in this case, is appropriate to
serve relatively big number of runs, 64 in this case, with bigger depth of I/O paral-
lelism values, 16. Under these conditions a speedup of 7 was computed.

11For this discussion I consider that no notorius difference is induced by the application semi-
randomness in any code variant.
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Figure 7.16: The time difference percentages in terms of varstrip chunk size values
λ = 1, 2, 4, 8, 16 for a π1 pattern: These percentages are computed according to
equation 7.3 between the total execution time and Timeref corresponding to λ = 1
for each of the four cases δπioz

= 1, 2, 4, 8 with a 64KB reference. Positive values
translate into execution time reductions.

With both number of runs the speedup in terms of iterations presents an asymptotic
behavior. Nevertheless, for 8 runs the speedup increases towards a maximum value,
whereas in the case for 64 it decreases towards a minimum value with the number
of iterations. In the case of 64 runs and δπioz

= 8, 16 the speedup remains constant
across all iterations.
With 8 runs and δπioz

= 1 there is almost no difference between the data written
into secondary storage by both codes. Thus, not only the speedup has a small value,
4, but differences across iterations are not very relevant. In the case of δπioz

= 32
and λ = 1 the serial I/O code has relatively less overhead during iteration 1. Thus,
the computed speedup value is 3.8. Nevertheless, for iterations greater than 1 the
parallel I/O overhead due to mapping at first generation does not exist anymore and
speedup values start to increase towards a maximum value, 5 in this case.
With 64 runs and δπioz

= 0.5 even though the amount of data is small and the
mapping at first generation overhead is present during the first iteration, these two
factors are not very significant compared to the overhead due to the number of
runs. Thus, under these circumstances the parallel I/O variant is faster than the
serial I/O during iteration one and the speedup has the highest value of 5 and it
decreases towards a miminum value of 3.5 after 8 iterations. The non-stable effects
of the overhead values during the first iteration become negligible while the amount
of generated data in each iteration becomes bigger as in the case of δπioz

= 8, 16,
64



7.9. Speedup Comparison, Pattern π1 65

 100000

 1e+06

 1e+07

 1e+08

 0  2  4  6  8  10  12  14  16

8

4

2

1

 T
ot

al
 W

rit
te

n 
D

at
a,

 B
yt

es

D
ep

th
 o

f I
/O

 P
ar

al
le

lis
m

Number of Iterations, Ngens 

 

Figure 7.17: Total written data into the parallel file by a π1 pattern over 16 iterations:
In each iteration the application generates an amount of data of δπioz

= 1, 2, 4, 8 with
a reference of 64KB (right y-axis). This data is written into the parallel file using
the varstrip distribution function with λ = 1, 2, 4, 8, 16 over a total of 16 iterations.
The curve corresponding to λ = 1 (writing into the file in each iteration) can be
used as reference for each curve set.

where no significant difference was measured between speedup at iteration 1 and 8.

7.9 Speedup Comparison, Pattern π1

Throughout the experiments that I have conducted in this evaluation, I have iden-
tified ranges of values for the striping unit and the varstrip chunk size that increase
or decrease speedup in comparison to the default values. The objective of this ex-
periment was to show the speedup presented by an mcmc analysis with 128 runs12

with a π1 pattern when using values for the striping unit and varstrip chunk size
that belong to each one of these ranges, including the default values.
For this experiment I used an input matrix that generated an amount of data in
each iteration with a depth of I/O parallelism δπioz

= 376. Using this matrix I ran
4 iterations the same mcmc analysis 6 times. For each execution different striping
unit and varstrip chunk size values were used. Provided the number of runs and the
depth of I/O parallelism the striping unit was set to the following values: 1, 1024,
65536. The varstrip chunk size was set to λ = 1, 2, 4.
Figure 7.19 visualizes the computed values. The upper half presents the amount
of data written into the parallel file in each iteration. For the varstrip distribu-
tion function this shows the data written with λ = 1, 2, 4. After 4 iterations 75

12A relatively high number of runs before operating system swapping is activated
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Figure 7.18: Varstrip smallest-process-overhead speedup in terms of number of runs:
Total amount of data written into the parallel file and corresponding speedup values.
These values correspond to 8 and 64 runs that generated amounts of data in each
iteration, datagen, with the depth of I/O parallelism values (with a 64 KB reference)
presented on the rightmost y-axis.

MB (78978304 bytes) were written into the parallel file. Running this analysis over
100000 iterations generates a parallel file of 1.8 TB. In the lower half the correspond-
ing computed speedup values are presented. Except for the case with su = 1, where
a speedup of 6.6 was computed after 4 generations, most of the speedup values were
close to one another. Nevertheless, the highest speedup in terms of distribution
parameter values was computed for λ = 1, followed by λ = 2, λ = 4, su = 1024,
and the su = 65536. These speedup values as well as the relationship among them
corresponded to the expected values, according to the experiment results that I have
described in this chapter. Even though the differences among these speedup values
are relatively small, they become notorious in cases where execution times are in the
range of weeks or months.

7.10 Summary

• The mapping at first generation functionality with physical distribution func-
tions: In subsection 7.5 I demonstrate that the mapping at first generation par-
titioning function in combination with the simple stripe distribution function
writes the computed values of the p(MC)3 algorithm into one single parallel file
in the required format, independently of the parallel I/O pattern generated at
any point in time during execution time. Furthermore, the computed results
of Complete-1 or π1 patterns can be written into a parallel file by the mapping
at first generation in combination with the varstrip distribution function.
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Figure 7.19: Speedup for different parallel I/O settings to compute 128 runs with a
pattern π1: The highest speedup was computed for the varstrip distribution function
with λ = 1 and the lowest for the simple stripe distribution function with su = 1
(7.05 and 6.6 after 4 iterations, respectively). For the simple stripe distribution
function a su = 1024 presents higher speedup values than the default value. The
upper half shows the total amount of data written into the parallel file by all 8 MPI
processes. Detailed information on the labeling for both distribution functions can
be found under subsection A.4.1.2 in the appendix.

• Patterns selection and performance: Provided an I/O environment, in which
the parallel file system uses the all in one configuration on an I/O cluster, one
manner to additionally improve speedup with the mapping at first generation
partitioning function is to run analyses with the π1 pattern. In subsection
7.5.1 I demonstrate that this pattern presents higher speedup values than the
other patterns regardless of the used physical distribution function.

• Speedup of π1 patterns and distribution functions: The speedup values for π1

patterns are conditioned by the balanced I/O load and the non-existence of
I/O swaps in such patterns. This last property can be further supported at
the parallel file system level by using the varstrip distribution function that
stores the computed data on the same I/O node. Thus, it increases speedup
values for π1 patterns as I show in subsection 7.5.1 and 7.9.

• Suited application characteristics for the parallel I/O version of the code: In
section 7.3 I demonstrate that from all input matrix dimensions solely the
number of taxa influences the amount of data generated in each iteration. In
subsection 7.6.1 I also demonstrate that higher speedup values are computed
while increasing the amount of data generated in each iteration and the number
of runs. Thus, the parallel I/O implementation that I propose in this work is
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suited to conduct mcmc analyses that involve higher number of taxa and runs.
Under section 7.9 the highest speedup for a π1 pattern was measured when
applying the varstrip distribution function and λopt. The smallest speedup
value was measured while using the simple stripe distribution function and a
striping unit smaller than 100 bytes.

• Number of MPI processes: The number of MPI processes chosen to conduct an
mcmc analysis strongly determines the speedup of the parallel I/O application’s
implementation. In this work I define as the process saturation number the
number of MPI processes that yields the highest speedup. In subsection 7.6.2.2
and 7.6.2.1 I measured process saturation number values of 4, 8, and 16 while
using 2, 4, and 8 cluster nodes, respectively. Since the testbed cluster has
only SMP nodes with 2 CPUs, these values correspond to the total number
of used CPUs. Thus, resulting in an assignment of one MPI process per CPU
and two CPUs per secondary storage device. Furthermore, I also show that
the same speedup can be obtained while choosing two different numbers of
MPI processes. Users should select numbers of processes smaller or equal
than the process saturation number since they yield smallest-process-overhead
speedup values, which translate into smaller execution times. Furthermore,
the measurements under subsection 7.6.2 show that the difference between
the speedup for number of MPI processes equal or greater than the process
saturation number decrements while incrementing the number of runs.

• The striping unit size: By selecting an appropriate striping unit size the exe-
cution time can be reduced. In subsection 7.7.1 I show that up to a value of
δπioz

= 8 for the data generated in each iteration and δπiox
= 100%, selecting

a striping unit value in the range [suthreshhold, sumax] provides the smallest ex-
ecution time values. The maximum value sumax = datagen

NIOt
and the minimum

value is in this case suthreshhold = 100. Furthermore, I also showed how values
δπiox

< 100% yield execution increment across iterations.

• The maximum and optimal values for λ: In cases in which operating system
swapping is activated during the first iteration or the amount of data has
a depth of I/O parallelism δπioz

≥ 8, I propose to use λ = 1 for the varstrip
chunk size value. If operating system swapping is not activated during the first
iteration as a first approach I propose to use λmax. The main objective of this
last approach is to keep as much data in main memory before operating system
swapping is activated on any of the cluster nodes as expressed in equation
6.1. Applying λmax for any amount of generated data in each iteration yields
reproducible total execution times among different executions, but does not
necessarily yield the smallest execution time. Thus, in subsection 7.7.2.3 I
demonstrate that up to an amount of data with δπioz

= 4 in each generation
a value of 1 ≤ λ ≤ 16 can be applied to reduce the execution time. Selecting
higher values for λ in this range while generating amounts of data approaching
δπioz

= 1 improves performance. In the case of δπioz
= 1 choosing λ = 16

instead of λ = 1 reduced the execution time by 3%.

• Speedup and iterations: The speedup does not present a constant value across
iterations. It shows an asymptotic behavior in terms of the number of itera-
tions that remains at a maximum or minimum value after a certain number of
iterations. Constant speedup values across iterations are computed for higher
number of runs and δπioz

(in this evaluation 64 runs and δπioz
= 16).
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8. Conclusion

8.1 Summary

This section summarizes the whole work at a high level of abstraction1. Chapter 2
introduced the necessary theoretical background in the area of parallel I/O and com-
putational phylogenetical analysis in order to describe the research question under
section 2.3 with the appropriate terminology. Section 2.4 pointed out other projects
that have been conducted to tackle similar research questions.
Chapter 3 presented the varstrip distribution function that we have proposed for
the PVFS2 parallel file system. It also discussed a variant of the simple stripe dis-
tribution function, in which the striping unit can be set to any value. In order to
compare these functions’ performance values, section 3.3 described a set of metrics
that I have applied in this work.
Chapter 4 described the first approach that I experimentally conducted in order to
gain knowledge about the application’s I/O requirements in the serial I/O version.
In chapter 5 I have theoretically categorized the number and type of semi-random
temporal parallel file I/O access patterns that can appear during the execution time
of the p(MC)3 algorithm. In chapter 6 I have presented the two main contributions
of this work: The mapping at first generation partitioning function to handle all
categorized parallel I/O patterns and the parallel line buffering mechanism to set
the varstrip chunk size value within the varstrip distribution function.
Chapter 7 described the work that I conducted to experimentally demonstrate the
functionality of the parallel I/O implementation to correctly serve all identified par-
allel I/O patterns. This chapter showed the speedup (equation 7.1) in terms of the
following parameters: Number of MPI processes, I/O nodes, runs, Markov chains,
and iterations. Furthermore, in section 7.7 I have described the conditions under
which the speedup can be improved by selecting the appropriate pattern, physical
distribution function, striping unit, and varstrip chunk size values. Finally, section
7.9 described an experiment to demonstrate the speedup for the π1 pattern for 128
runs in terms of different distribution function parameters.

1More detailed summaries are found at the end of each corresponding chapter. This is especially
notorious for the parallel I/O adaptation chapter 6.4 and the corresponding evaluation chapter 7.10.
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8.2 Conclusions

8.2.1 (Semi-)Random Parallel I/O Accesses

1. In an ideal set of random parallel I/O accesses, the number of processes par-
allely accessing the I/O subsystem at different addresses changes between two
consecutive iterations, whereas in a semi-random parallel I/O accesses set it
changes, but not necessarily between two consecutive iterations.
In an application with semi-random based computation, the semi-randomness
during computation may or not translate into semi-random accesses to the
I/O subsystem. In this thesis I have shown that a π1 pattern remains constant
throughout the execution time, although the computation from one iteration to
the next as well as the exchange between chain states depend on semi-random
processes. In this pattern these computations occur on the same compute I/O
node so that the I/O subsystem access pattern from the first iteration remains
constant through the whole execution time.
Nevertheless, if a Complete+1 or a Partial-1 pattern is chosen during the first
iteration, the semi-randomness during computation translates also into semi-
random temporal parallel file I/O access patterns that vary throughout execu-
tion time. On the parallel I/O environment presented in section 7.2 in this
thesis I have demonstrated that different patterns present different speedup
values. The highest speedup value is presented by the π1 pattern while being
served by the varstrip distribution function with an optimal varstrip chunk
size value as described under section 7.9.

8.2.2 Parallel I/O Implementation

1. A parallel I/O implementation increases the speedup of a parallel scientific
application that generates and writes into secondary storage a relatively big
amount of data in each iteration 2. In this work I have shown for this ap-
plication and a chosen number of write operations that this amount of data
depends on the number of taxa and number of runs.
Since the speedup correlates with the number of runs and the number of runs
correlates with the computed solution’s precision, the strength of the paral-
lel I/O implementation that I propose in this work is not only the computed
speedup, but also the increment of the solution’s precision at the same time.
This applies in cases where higher number of runs cannot be conducted with
the serial I/O version of the program due to I/O subsystem constraints3.
On the other hand, an application setup that generates in each iteration a rel-
atively small amount of data over a long period of time presents lower speedup
values. Nevertheless, conducting analyses with the parallel I/O version can still
be benefitial for the user if the total generated data is required in a parallel
file for fast postprocessing.

2. Provided the parallel I/O environment discussed in section 7.2, one relatively
simple setup to exploit the benefits of the parallel I/O implementation that I

2For this application the amount of data in each iteration can be computed using the total
amount of data express in equation 4.1 and the number of write operations.

3I describe such one soft constraint in subsection 7.6.1.
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propose in this work, is to select whenever possible, a π1 pattern in combina-
tion with the varstrip distribution function with its varstrip chunk size default
value. If a π1 pattern cannot be generated, the parallel file must be served by
the simple stripe distribution function.
The strength of setting optimal values for the varstrip chunk size or striping
unit is especially notorious when conducting analyses with higher number of
iterations that generate higher amounts of data in each one of these itera-
tions, since under these conditions the impact of speedup differences, such as
those caused by distribution function parameters tuning discussed in subsec-
tion 8.2.4.1 and 8.2.4.2, translate into relatively big execution time reductions.

3. For a π1 pattern I have shown that the speedup varied in a semi-parabolic man-
ner in terms of the MPI processes number. Except for the highest speedup
value (attained with the process saturation number) the same speedup value
was computed by choosing two different MPI process numbers to execute the
serial and parallel I/O implementations of the program. Thus, users should se-
lect MPI process numbers smaller or equal than the process saturation number
in order to obtain smallest-process-overhead speedup, the speedup that trans-
lates into the smallest execution times.
Experimentally I showed that the process saturation number was equal to the
total used number of CPU of the used I/O cluster. Furthermore, the speedup
values also approached a maximum value towards this value.

8.2.3 The Mapping at First Generation Function

1. In order to provide a parallel application a medium to access a parallel I/O
interface independently of the number of processes, as in the case of applica-
tions with semi-random temporal parallel file I/O access patterns, in this work
I have proposed the mapping at first generation partitioning function. This
function creates a map of the parallel file’s structure at iteration one. This map
is a global data structure containing all offsets and sizes of the parallel file. It
is constructed based upon a predefined file format, one of each elements that
the file will contain as well as their corresponding number of entries in the file.
At a writing iteration the process(es) write the data into the corresponding
address(es) based upon the map and the iteration number.
Since each process has a file map, the writing operation can be executed in-
dependently of the number of processes. Thus, supporting applications with
(semi-)random spatial and time I/O access patterns.

8.2.4 Physical Distribution Functions

8.2.4.1 varstrip distribution function

1. While serving π1 patterns with the varstrip distribution function in this work
I have proposed to use for the varstrip chunk size a default value equal to the
amount of data generated by the application in each iteration (λ = 1). Thus,
differently from the fixed 64KB striping unit default value of the simple stripe
distribution function, this default value automatically changes with the gener-
ated data in each iteration.
In order not to increment execution time, I have proposed to use this value
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for cases, in which operating system swapping is activated during the first it-
eration or in cases where the amount of data has a depth of I/O parallelism
δπioz

≥ DPlim. With the testbed used in this work I measured DPlim = 8 under
subsection 7.7.2.3. One manner that I have proposed in this work to further re-
duce execution time with the varstrip distribution function is to apply parallel
line buffering to set an optimal varstrip chunk size to λopt (1 < λopt < λmax). In
subsection 7.7.2.3 I demonstrated that up to an amount of data with δπioz

= 4
in each generation, a value of 1 ≤ λ ≤ 16 can be applied to reduce the execu-
tion time. Selecting higher values for λ in this range while generating amounts
of data approaching δπioz

= 1 improves performance. In the case of δπioz
= 1

choosing λ = 16 instead of λ = 1 reduced the execution time by 3%.

8.2.4.2 simple stripe distribution function

1. In a round robin based physical distribution function selecting a striping unit
to increase throughput for a write-only application should be done in two steps.
The first one is to select4 a sumax value that guarantees a physical degree of
I/O parallelism of 100% and a depth of I/O parallelism of 1. The second step
consists in selecting a striping unit value in the range [1, sumax].
In this work I have experimentally demonstrated that rather than having only
one striping unit value that notoriously yields the smallest execution time, the
smallest or values within 2% tolerance from this value can be obtained, when
selecting the striping unit value from a range [suthreshhold, sumax]. The value
of suthreshhold depends on the amount of data to be written in each iteration
and I/O parameters. In subsection 7.7.1 I have experimentally determined a
suthreshhold = 100 for an amount of data generated in each iteration of up to
δπioz

= 8.
In this work I have shown that for an amount of written data in each iteration
with δπioz

= 1, selecting values su < suthreshhold incremented execution time
up to 10% compared to the execution time measured for su = sumax. This
percentage diminished while incrementing δπioz

. For δπioz
= 8 it was around

2%.

8.3 Future Research

This section lists some research topics that can be conducted based upon this work’s
contribution.

8.3.1 Random Parallel I/O Applications

This thesis proposes the mapping at first generation to handle semi-random spatial
and temporal parallel I/O access patterns for a write-only case. Research can be
aimed at using this function or similar ones to handle the parallel I/O accesses of ap-
plications, in which the operations such as write, read, seek, and their combinations
also randomly change throughout execution time.

4Via user hint or automatic mechanism
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8.3.2 Parallel I/O Environments

The mapping at first generation based parallel I/O implementation proposed in this
work is a general solution that can be applied to handle fully random parallel file
I/O access patterns. Its application presupposes the existence of an appropriate
parallel I/O environment. Such an environment is strongly conditioned by the used
hardware. Therefore research work can be conducted to study the application’s par-
allel I/O implementation on clusters using other types of secondary storage devices
(such as SDDs), other ratios between CPUs and secondary storage devices, and other
parallel file systems.

8.3.3 Parallel File Systems Mechanisms

In this work I have used two types of flexible distribution functions in conjuction with
the mapping at first generation. In the used I/O environment for a π1 the varstrip
distribution function with an appropriate varstrip chunk size value presents the
highest speedup. Nevertheless, only the simple stripe distribution function supports
each one of the generated parallel I/O access patterns by the application. This
fact demonstrates that no single physical distribution function can satisfy each one
of the application’s requirements. Therefore research can be aimed at augmenting
the set of physical distribution functions, based upon other applications’ and I/O
environments’ parameters. Furthermore, other methods can be developed to select
these functions.

8.3.4 Parallel File Format and I/O Optimizations

The construction of the map µ for the mapping at first generation depends on a
given file format. The file format that I used in this work corresponds to translating
into spatial concatenation the time sequence in which the p and t files are written in
the serial I/O version. This does not necessarily mean that this format is the best
suited to provide the highest performance. Thus, future research can be addressed
towards the determination of the partition function’s performance in terms of dif-
ferent file formats and the determination of the relationship between these formats
and parallel library optimizations such as collective buffering, and data sieving. Fur-
thermore, the partitioning function’s implementation with non-blocking operations
can be considered.

8.3.5 Postprocessing Methods

This thesis concentrates on the execution time reduction for conducting mcmc analy-
sis. Research can be aimed at parallelizing the other phylogenetical inference stages
in order to minimize the total time used to conduct such an inference.
Based upon the data stored in parallel files proposed in this work, future research
can be directed towards the reduction of the postprocessing time by developing par-
allel methods to process this data. This includes the conception of file parallel I/O
methods to read the data, parallel algorithms to process it, and parallel I/O visual-
ization methods.
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8.3.6 Parallel Input

Research can also be conducted to conceive new decomposition functions in terms of
computation that take into consideration input matrices that are stored in a parallel
file. Thus, allowing the computation of bigger phylogenies and reducing the read in
time into main memory.
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A. Appendix

A.1 Notation

A.1.1 p(MC)3 Parameters Relevant for I/O

This section presents the used notation for the p(MC)3 parameters that are relevant
for I/O activities.

Parameter Description

Pk, k = 0...np− 1 MPI Process k. The total number of
processes is np, which is
a parameter of mpiexec.

Rl, l = 1...nruns Run l. The total number of
runs that are started simultaneously is nruns
This is a parameter of mcmc.

Chi, i = 0...nchains− 1 Markov chain i. The number of chains for
each run is nchains, an argument
of mcmc.

Chglobal = nchains ∗ nruns Total number of Markov chains
used for an mcmc analysis.

Chproc =
Chglobal

np
Number of chains assign to one process Pk

in an equally load balance system.
Prem = Chglobal%np Chains remaining

after load balacing them among processes.

Table A.1: Notation for the p(MC)3 algorithm’s parameters relevant for I/O oper-
ations

A.2 Temporal and Spatial Notation

A.2.1 Spatial

This section presents the notation used to describe spatial serial states.
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Parameter Description

A ≺ B or B � A Denotes the spatial relationship
between the two spaces in memory
It means that the A has a smaller
memory address than B. There is no intersection

Table A.2: Notation for spatial parameters

A.2.2 Temporal

This section presents the notation used to describe temporal serial states.

Parameter Description

A ≺ B or B � A Denotes the temporal relationship
between the two activities A and B.
It means that the A activity must be
finished before beginning activity B.

Table A.3: Notation for temporal parameters

A.3 Testbed Cluster

A.3.1 Application Software

For the experiments that I conducted in this work two sets of input matrices were
used. One set contained biological DNA sequences as described in subsection A.3.2
and another contained synthetical sequences as described below in subsection A.3.3.

A.3.2 Biological Sequences

The following nexus file headers show the input matrices’ dimensions of used matrices
containing actual biological sequences. The primates.nex is delivered with the
application’s serial I/O version.

• primates.nex:

#NEXUS

begin data;

dimensions ntax=12 nchar=898;

format datatype=dna interleave=no gap=-;

matrix

• anatidae.nex:

#NEXUS

begin data;

dimensions ntax=125 nchar=2086;

format datatype=dna missing=n gap=-;

matrix
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In order to have different amounts of data generated in each iteration, I used sub-
and supra-matrices based on the matrix contained in anatidae.nex. Table A.4
provides information on the used input matrices in terms of the number of taxa,
string length, input file size, and the amount of data generated in each iteration per
1 run in bytes.

Number String File Generated Data
of Length Sizes pro
Taxa Iteration

(8 I/O nodes,
(Bytes) 1 run, Bytes)

12 898 11052 308

8 2086 16948 217
12 2086 25359 722
16 2086 33787 401
32 2086 67447 769
64 2086 134756 1506
256 2086 538943 6080
512 2086 1077761 12225
1024 2086 2155400 24538

Table A.4: Sizes of input matrices with actual biological strings.

A.3.3 Synthetical Sequences

In order to thoroughly test the MFG function with the distribution functions using
input matrix sizes that generate amount of data in each iteration with a depth of
I/O parallelism greater than one, I wrote a small program called gtaxa that based
upon a given number of taxa and their length, it randomly generates a taxa set in
a nexus file, which immediately can be provided as input to MrBayes. I have also
included this tool in the source code tree of the parallel I/O implementation. The
following example shows the first 2 taxa of 1000000 in a gtaxa generated file:

#NEXUS

[TITLE: Synthetic input matrix generated from gtaxa.]

[TITLE: A very simple program that I have written to]

[TITLE: test the parallel I/O version of MrBayes3.1]

[TITLE: hipolito.vasquez@informatik.uni-heidelberg.de]

begin data;

dimensions ntax=1000000 nchar=10;

format datatype=DNA missing=n gap=-;

matrix

1

tctttactcg

2

cgcgttggag
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A.3.4 Synthetical Sequences Input Matrix Sizes

In order to fulfill the corresponding objectives of the different experiments that I
conducted as part of the evaluation, I generated with gtaxa a set of synthetical
input matrices based upon the number of taxa, string lengths, file size, depth of I/O
parallelism of the corresponding generated data in each generation.
Table A.5 and A.6 are included in order to ease cross referencing among these sizes.

I/O Type Input Matrix Distribution I/O Parallelism
Function Conditions
Parameters δπiox

= 100%
Depth of Parallelism

(8 Runs) δπioz

String length = 10
Taxa, Size in KBytes [ss | λ ] ↓

Parallel I/O:
Simple stripe 2664, 41 ss = 65536 1

5328, 83 2
10656, 167 4
21312, 344 8
42624, 698 16
85248, 1400 32

Simple stripe 2664, 41 ss = 1024 512
5328, 83 1000
10656, 167 2000
21312, 344 4000
42624, 698 8000
85248, 1400 16000

Parallel I/O:
Varstrip 2664, 41 λ = 1 1

5328, 83 1
10656, 167 1
21312, 344 1
42624, 698 1
85248, 1400 1

Varstrip 2664, 41 λ = 8 1
5328, 83 1
10656, 167 1
21312, 344 1
42624, 698 1
85248, 1400 1

Table A.5: Set of parallel I/O measurement points for a π1 pattern and 8 runs. In
these setups in each iteration the degree of parallelism is δπiox

= 100% and the depth
of parallelism is δπioz

≥ 1.
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I/O Type Input Matrix Distribution I/O Parallelism
Function Conditions
Parameters δπiox

= 100%
Depth of Parallelism

(64 Runs) δπioz

String length = 10
Taxa, Size in KBytes [ss | λ ] ↓

Parallel I/O:
Simple stripe 334, 5.12 ss = 65536 1

668, 10.4 2
1336, 20.9 4
2664, 43 8
5328, 87.2 16
10656, 175 32

Simple stripe 334, 5.12 ss = 1024 512
668, 10.4 1000
1336, 20.9 2000
2664, 43 4000
5328, 87.2 8000
10656, 175 16000

Parallel I/O:
Varstrip 334, 5.12 λ = 1 1

668, 10.4 1
1336, 20.9 1
2664, 43 1
5328, 87.2 1
10656, 175 1

Varstrip 334, 5.12 λ = 8 1
668, 10.4 1
1336, 20.9 1
2664, 43 1
5328, 87.2 1
10656, 175 1

Table A.6: Set of parallel I/O measurement points for a π1 pattern and 64 runs.
In these setups in each iteration the degree of parallelism is δπiox

= 100% and the
depth of parallelism is δπioz

≥ 1.

A.3.5 Data per Iteration

Complementary to the information contained in table A.5 and A.6, figure A.1 shows
experimental measured values of the amount of data generated in each iteration by
eight runs in terms of the number of taxa in the input matrix. These were synthetical
input matrices generated with gtaxa for 4 different string lengths.

79



80 A. Appendix

 1000

 10000

 100000

 1e+06

 1e+07

 10  100  1000  10000

 D
at

a 
pe

r 
Ite

ra
tio

n

Number of Taxa 

10000Chars_ 1000Chars_ 100Chars_ 10Chars_

Figure A.1: Generated data per iteration by eight runs: The generated data per
iteration only linearly changes with the number of taxa and it does not change with
the DNA string length.

A.3.6 Scripts for mcmc, Serial I/O

In order to measure I/O performance, timing and written data, I have included for
the serial and parallel I/O program’s version the pmsfreq, performance measurement
sample frequency.

begin mrbayes;

set autoclose=yes nowarn=yes;

execute /home/vasquez/TracingSandBox/nexfiles/primates.nex;

mcmc ngen=10000 samplefreq=1 nruns=496 nchains=4 \

temp=0.5 mcmcdiagn=no \

pmsfreq=1;

end;

A.3.7 Scripts for mcmc, Parallel I/O

A.3.7.1 Example, simple stripe distribution function

begin mrbayes;

set autoclose=yes nowarn=yes;

execute /home/vasquez/TracingSandBox/nexfiles/primates.nex;

mcmc ngen=10000 samplefreq=1 nruns=512 nchains=4 \

temp=0.5 mcmcdiagn=no \

pmsfreq=1 dfunction=simple dfsetup=23 dnmlines=1;

end;
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A.3.7.2 Example, varstrip distribution function

begin mrbayes;

set autoclose=yes nowarn=yes;

execute /home/vasquez/TracingSandBox/nexfiles/anatidae8.nex;

mcmc ngen=20 samplefreq=1 nruns=64 nchains=4 \

temp=0.5 mcmcdiagn=no \

pmsfreq=1 dfunction=varstrip dfsetup=1 dnmlines=20;

end;

A.3.8 Parallel I/O Library

A.3.8.1 config.log File’s Header

../configure --prefix=/home/vasquez/SIMPLELOCALPVFS2MPICH2 \

--enable-romio \

--with-file=ufs+nfs+pvfs2 \

--with-pvfs2=/home/vasquez/SIMPLELOCALPVFS2MPICH2 \

--with-mpe \

--enable-g=meminit, dbg \

--enable-fast=O0

A.3.9 Parallel File System

A.3.9.1 config.log File’s Header

../configure --prefix=/home/vasquez/SIMPLELOCALPVFS2MPICH2 \

--with-mpi==/home/vasquez/SIMPLELOCALPVFS2MPICH2 \

--with-mptrace

A.3.9.2 PVFS2 all in one Configuration

I call in this work the PVFS2 all in one configuration, the configuration in which
each pvfs2 node is a client, server and metadata at the same time. The pvfs2.conf
file looks as follows:

<Defaults>

UnexpectedRequests 50

EventLogging none

EnableTracing no

LogStamp datetime

BMIModules bmi_tcp

FlowModules flowproto_multiqueue

PerfUpdateInterval 1000

ServerJobBMITimeoutSecs 30

ServerJobFlowTimeoutSecs 30

ClientJobBMITimeoutSecs 300

ClientJobFlowTimeoutSecs 300

ClientRetryLimit 5

ClientRetryDelayMilliSecs 2000

PrecreateBatchSize 512

PrecreateLowThreshold 256

StorageSpace /tmp/pvfs2-vasquez

LogFile /tmp/pvfs2-server.log

</Defaults>

<Aliases>

Alias node01 tcp://node01:22333

Alias node02 tcp://node02:22333

Alias node03 tcp://node03:22333

Alias node04 tcp://node04:22333

Alias node05 tcp://node05:22333

Alias node06 tcp://node06:22333

Alias node07 tcp://node07:22333

Alias node08 tcp://node08:22333

</Aliases>

<Filesystem>
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Name pvfs2-fs

ID 1150543096

RootHandle 1048576

FileStuffing yes

<MetaHandleRanges>

Range node01 3-576460752303423489

Range node02 576460752303423490-1152921504606846976

Range node03 1152921504606846977-1729382256910270463

Range node04 1729382256910270464-2305843009213693950

Range node05 2305843009213693951-2882303761517117437

Range node06 2882303761517117438-3458764513820540924

Range node07 3458764513820540925-4035225266123964411

Range node08 4035225266123964412-4611686018427387898

</MetaHandleRanges>

<DataHandleRanges>

Range node01 4611686018427387899-5188146770730811385

Range node02 5188146770730811386-5764607523034234872

Range node03 5764607523034234873-6341068275337658359

Range node04 6341068275337658360-6917529027641081846

Range node05 6917529027641081847-7493989779944505333

Range node06 7493989779944505334-8070450532247928820

Range node07 8070450532247928821-8646911284551352307

Range node08 8646911284551352308-9223372036854775794

</DataHandleRanges>

<StorageHints>

TroveSyncMeta yes

TroveSyncData no

TroveMethod alt-aio

</StorageHints>

</Filesystem>

A.3.9.3 Simple stripe Distribution Function, Number of Datafiles

The following pvfs2-stat output provides information on a parallel file generated
by 512 runs in one generation with an input matrix of 11 KB (12 Taxa, 898 char-
acters). It was stored into one datafile with the stuffing mechanism enabled by the
simple stripe distribution function with its default striping unit value. Without this
mechanism it is stored in 5 datafiles.

-------------------------------------------------------

File Name : /mnt/pvfs2-vasquez/hv12T_898S.nex.pvs

Relative Name : /hv12T_898S.nex.pvs

fs ID : 1150543096

Handle : 2882303761517117431

Mask : 2704000177

Permissions : 644

Type : Regular File

Size : 288664

Owner : 13101 (vasquez)

Group : 100 (users)

atime : 1284719914 (Fri Sep 17 12:38:34 2010)

mtime : 1284719914 (Fri Sep 17 12:38:34 2010)

ctime : 1284719914 (Fri Sep 17 12:38:34 2010)

datafiles : 1

flags : none

The following pvfs2-stat output shows a parallel file stored in eight data files
without stuffing for the simple stripe distribution function.

-------------------------------------------------------

File Name : /mnt/pvfs2-vasquez/hv2664T_10S.nex.pvs

Relative Name : /hv2664T_10S.nex.pvs

fs ID : 1150543096

Handle : 3458764513820540918

Mask : 2704000177

Permissions : 644

Type : Regular File

Size : 869832

Owner : 13101 (vasquez)

Group : 100 (users)

atime : 1284717336 (Fri Sep 17 11:55:36 2010)

mtime : 1284717336 (Fri Sep 17 11:55:36 2010)

ctime : 1284717336 (Fri Sep 17 11:55:36 2010)

datafiles : 8

flags : none

A.3.10 Hardware

A.3.10.1 Nodes

The used testbed cluster has eight working nodes. The nodes are provided with:

• Intel Server Board SE7500CW2
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• Two Intel Xeon 2GHz CPUs

• 1 GB DDR-RAM

• 80GB IDE HDD

• Two 100-MBit/s-Ethernet-Ports (out of use)

• Two 1-GBit/s-Ethernet-Port (one in use) / Intel 82545EM Gigabit Ethernet Con-
troller

A.4 Experimental Evaluation

In order to conduct the experimental evaluation, I have defined a set of performance
metrics, which the program writes into the performance measurement files at certain
points in time. These metrics’ values are used to construct the correspondings
pvsperf measurement performance file’s name and are also included as headers
in these files. Subsection A.4.1.1 and A.4.1.2 include three examples to explain
the notation. In the case of parallel I/O the metrics vary depending on the used
distribution function. Some notations are a little bit different from these presented
here, but they follow the same order.

A.4.1 Metrics

A.4.1.1 Serial I/O

The string SIO_32_4_128_10000_ shows an example of the metrics that were recorded
for serial I/O. Its components are interpreted as follows:

• SIO: Serial I/O

• <32>: Number of runs

• <4>: Number of chains

• <128>: Number of MPI processes

• <10000>: Maximum number of generations.

I include these metrics in the corresponding performance measurement file as follows:

#$ Author: hipolito.vasquez@informatik.uni-heidelberg.de$
#$ Date:$
#Hipolito Vasquez Lucas’s PhD Thesis Experiment’s File
#Experiment’s Id: SIO_32_4_128_10000_.pvsperf
#Conducted on: Tue Dec 1 14:19:27 2009

#Setup parameters:
#1) Ngen [1 ... [10000 | 100000]
#2) ExecTime
#3) OverallWrittenData [1 ... 2000000000]
#4) MaxNgen [10000, 100000, 1000000]
#5) Nprocs [2^n, n=3 ...]
#6) Nchains [n*default, n = 1,2,.. ]
#7) Nruns [2^n, n = 2, ...]
#8) Type of I/O [0 = SIO, 1 = ParIO]
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A.4.1.2 Parallel I/O

The string ParIO_Simple_4096_8_0_308_308_8_3_8_10000_ shows an example of
the metrics that were recorded for parallel I/O in the case of using the simple stripe
distribution function. Its components have the following meaning:

• ParIO: Parallel I/O

• <Simple>: Distribution function’s name

• <4096>: striping unit size

• <8>: Number of MPI processes that write a buffer of “big” size

• <0>: Number of MPI processes that write a buffer of “small” size

• <308>: “big” size in bytes

• <308>: “small” size in bytes

• <8>: Number of runs

• <3>: Number of chains

• <8>: Number of MPI processes

• <10000>: Maximum number of generations

I include these parameters in the file’s header as follows:

#$ Author: hipolito.vasquez@informatik.uni-heidelberg.de$
#$ Date:$
#Hipolito Vasquez Lucas’s PhD Thesis Experiment’s File
#Experiment’s Id:
ParIO_Simple_4096_8_0_308_308_8_3_8_10000_.pvsperf
#Conducted on: Sat Dec 19 01:53:32 2009

#Setup parameters:
#1) Ngen [1 ... [10000 | 100000]
#2) ExecTime
#3) OverallWrittenData [1 ... 2000000000]
#4) MaxNgen [10000, 100000, 1000000]
#5) Nprocs [2^n, n=3 ...]
#6) Nchains [n*default, n = 1,2,.. ]
#7) Nruns [2^n, n = 2, ...]
#8) Type of I/O [0 = SIO, 1 = ParIO]
#9) Max Buffer size in MM before write [ ]
#10) Min Buffer size in MM before write [ ]
#11) LB: Number of Procs with Max Buffer [<#WithMaxVal>]
#12) LB: Number of Procs with Min Buffer [<#WithMinVal>]
#13) Distribution Function: [0 = SS, 1 = VS]
#14) StripingUnit [ ]

The string ParIO_Varstrip_669_669_8_0_308_308_8_3_8_10_ shows an example
of the metrics that were recorded for parallel I/O in the case of using the varstrip
distribution function. Its components have the following meaning:
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• ParIO: Parallel I/O

• <Varstrip>: Distribution function’s name

• <669>: Maximum value of the varstrip chunk size

• <669>: Minimum value of the varstrip chunk size

• <8>: Number of MPI processes that write a buffer of “big” size

• <0>: Number of MPI processes that write a buffer of “small” size

• <308>: “big” size in bytes

• <308>: “small” size in bytes

• <8>: Number of runs

• <3>: Number of chains

• <8>: Number of MPI processes

• <10>: Maximum number of generations

I record these metrics in the file as follows:

#$ Author: hipolito.vasquez@informatik.uni-heidelberg.de$
#$ Date:$
#Hipolito Vasquez Lucas’s PhD Thesis Experiment’s File
#Experiment’s Id:
#ParIO_Varstrip_669_669_8_0_308_308_8_3_8_10_.pvsperf
#Conducted on: Sat Dec 19 15:19:47 2009

#Setup parameters:
#1) Ngen [1 ... [10000 | 100000]
#2) ExecTime
#3) OverallWrittenData [1 ... 2000000000]
#4) MaxNgen [10000, 100000, 1000000]
#5) Nprocs [2^n, n=3 ...]
#6) Nchains [n*default, n = 1,2,.. ]
#7) Nruns [2^n, n = 2, ...]
#8) Type of I/O [0 = SIO, 1 = ParIO]
#9) Max Buffer size in MM before write [ ]
#10) Min Buffer size in MM before write [ ]
#11) LB: Number of Procs with Max Buffer [<#WithMaxVal>]
#12) LB: Number of Procs with Min Buffer [<#WithMinVal>]
#13) Distribution Function: [0 = SS, 1 = VS]
#14) Max varstrip chunk size [<#MaxVsCS> ]
#15) Min varstrip chunk size [<#MinVsCS> ]

A.5 Parallel Files Information for All Patterns

A.5.1 Header of Input Matrix
#NEXUS

[TITLE: Synthetic input matrix generated from gtaxa.]

[TITLE: A very simple program that I have written to]

[TITLE: test the parallel I/O version of MrBayes3.1]

[TITLE: hipolito.vasquez@informatik.uni-heidelberg.de]

begin data;

dimensions ntax=16 nchar=2000;

format datatype=DNA missing=n gap=-;
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A.5.2 Complete+1 Pattern

A.5.2.1 Parallel File Content

#NEXUS

[ID: 9891715578]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((((3:0.100000,(12:0.100000,2:0.100000):0.100000):0.100000,(10:0.100000,(16:0.

100000,11:0.100000):0.100000):0.100000):0.100000,(7:0.100000,14:0.100000):0.

100000):0.100000,(8:0.100000,(9:0.100000,(5:0.100000,(((13:0.100000,4:0.100000):

0.100000,6:0.100000):0.100000,15:0.100000):0.100000):0.100000):0.100000):0.

100000,1:0.100000);[ID: 9891715578]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59800.826 2.900 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9891715578]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((((3:0.100000,(12:0.100000,2:0.100000):0.100000):0.100000,(10:0.100000,(16:0.

100000,11:0.100000):0.100000):0.100000):0.100000,(7:0.100000,14:0.100000):0.

100000):0.100000,(8:0.100000,(9:0.100000,(5:0.100000,(((13:0.100000,4:0.100000):

0.100000,6:0.100000):0.100000,15:0.100000):0.100000):0.100000):0.100000):0.

100000,1:0.100000);[ID: 9891715578]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59800.826 2.900 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9891715578]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((((((((12:0.100000,10:0.100000):0.100000,13:0.100000):0.100000,4:0.100000):0.

100000,9:0.100000):0.100000,15:0.100000):0.100000,(((7:0.107483,11:0.100000):0.

129502,14:0.100000):0.096775,(3:0.100000,((2:0.100000,16:0.100000):0.100000,5:0.

100000):0.100000):0.100000):0.100000):0.100000,6:0.100000):0.100000,8:0.100000,1

:0.100000);[ID: 9891715578]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59671.911 2.934 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9891715578]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,
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11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

(((16:0.100000,(((((15:0.100000,5:0.100000):0.100000,7:0.100000):0.100000,(9:0.

100000,10:0.100000):0.100000):0.100000,((8:0.100000,11:0.100000):0.100000,(14:0.

100000,(12:0.100000,4:0.100000):0.100000):0.100000):0.100000):0.100000,3:0.

100000):0.122039):0.105621,(6:0.100000,13:0.100000):0.134417):0.100000,2:0.

100000,1:0.100000);[ID: 9891715578]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59678.061 2.962 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9891715578]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

(((((((16:0.100000,(3:0.100000,(7:0.100000,6:0.100000):0.100000):0.099669):0.

080284,10:0.100000):0.073754,(12:0.100000,((4:0.100000,9:0.100000):0.100000,8:0.

100000):0.100000):0.100000):0.100000,14:0.100000):0.100000,15:0.100000):0.100000

,5:0.100000):0.100000,(11:0.100000,(13:0.100000,2:0.100000):0.100000):0.100000,1

:0.100000);[ID: 9891715578]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59802.907 2.854 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9891715578]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((((((9:0.115380,16:0.100000):0.092160,((((14:0.100000,((6:0.100000,3:0.100000):

0.100000,(2:0.100000,11:0.100000):0.100000):0.100000):0.100000,13:0.100000):0.

100000,4:0.100000):0.100000,15:0.100000):0.100000):0.102879,7:0.100000):0.100000

,12:0.100000):0.100000,8:0.100000):0.100000,(5:0.100000,10:0.100000):0.100000,1:

0.100000);[ID: 9891715578]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59741.693 2.910 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9891715578]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

(((((((((14:0.100000,9:0.100000):0.100000,5:0.100000):0.100000,12:0.100000):0.

100000,16:0.100000):0.100000,11:0.100000):0.100000,15:0.100000):0.100000,7:0.

100000):0.100000,(3:0.100000,4:0.100000):0.100000):0.100000,(2:0.100000,(10:0.

100000,((8:0.100000,13:0.100000):0.100000,6:0.100000):0.100000):0.100000):0.

100000,1:0.100000);[ID: 9891715578]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59652.455 2.900 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9891715578]

begin trees;

translate

1 1,
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2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((((4:0.100000,(11:0.100000,(9:0.100000,((13:0.100000,7:0.100000):0.100000,15:0.

100000):0.100000):0.100000):0.100000):0.100000,(14:0.100000,3:0.100000):0.100000

):0.100000,(10:0.100000,((12:0.100000,(16:0.100000,8:0.100000):0.100000):0.

100000,6:0.100000):0.100000):0.100000):0.100000,(5:0.100000,2:0.100000):0.100000

,1:0.100000);[ID: 9891715578]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59773.754 2.900 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9891715578]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

(((((11:0.100000,(((((16:0.100000,12:0.100000):0.100000,(14:0.100000,3:0.100000)

:0.100000):0.107438,7:0.100000):0.073683,(4:0.100000,10:0.100000):0.100000):0.

136028,(5:0.100000,(13:0.100000,2:0.100000):0.100000):0.100000):0.100000):0.

100000,15:0.100000):0.100000,9:0.100000):0.100000,6:0.100000):0.100000,8:0.

100000,1:0.100000);[ID: 9891715578]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59926.068 2.917 0.250000 0.250000 0.250000

0.250000

A.5.2.2 Information on Parallel File

#Experiment’s Id: ParIO_Simple_65536_7_1_401_802_9_3_8_1_.pvsperf

#Conducted on: Thu Sep 23 18:23:04 2010

#Setup parameters:

#1) Ngen [1 ... [10000 | 100000]

#2) ExecTime

#3) OverallWrittenData [1 ... 2000000000]

#4) MaxNgen [10000, 100000, 1000000]

#5) Nprocs [2^n, n=3 ...]

#6) Nchains [n*default, n = 1,2,.. ]

#7) Nruns [2^n, n = 2, ...]

#8) Type of I/O [0 = SIO, 1 = ParIO]

#9) Max Buffer size in MM before write [ ]

#10) Min Buffer size in MM before write [ ]

#11) LB: Number of Procs with Max Buffer [<#WithMaxVal>]

#12) LB: Number of Procs with Min Buffer [<#WithMinVal>]

#13) Distribution Function: [0 = SS, 1 = VS]

#14) StripingUnit [ ]

#1)Ngen #2)ExecTime #3)OverallWrittenData

#4)MaxNgen #5)Nprocs #6)Nchains #7)Nruns #8)IOType #9)MaxBufInMM

#10)MinBufInMM #11)WithMaxVal #12)WithMinVal #13)DFunction

#14)StripingUnit

0 0.000000 0 1 8 3 9 1 802 401 1 7 0 65536

#

server: tcp://node01:22333

bytes used: 0Kbytes

server: tcp://node02:22333

bytes used: 0Kbytes

server: tcp://node03:22333

bytes used: 0Kbytes

server: tcp://node04:22333

bytes used: 0Kbytes

server: tcp://node05:22333

bytes used: 0Kbytes

server: tcp://node06:22333

bytes used: 0Kbytes

server: tcp://node07:22333

bytes used: 0Kbytes

server: tcp://node08:22333

bytes used: 8Kbytes
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A.5.3 Complete-1 Pattern

A.5.3.1 Parallel File Content, simple stripe distribution function

#NEXUS

[ID: 9564357168]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((((7:0.100000,8:0.100000):0.100000,(16:0.100000,(2:0.100000,(3:0.100000,(13:0.

100000,(5:0.100000,(((11:0.100000,15:0.100000):0.100000,14:0.100000):0.100000,12

:0.100000):0.100000):0.100000):0.100000):0.100000):0.100000):0.100000):0.100000,

(6:0.100000,9:0.100000):0.100000):0.100000,(10:0.100000,4:0.100000):0.100000,1:0

.100000);[ID: 9564357168]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59641.147 2.900 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9564357168]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((6:0.100000,(16:0.100000,(((((8:0.100000,2:0.100000):0.100000,7:0.100000):0.

100000,4:0.100000):0.100000,(5:0.100000,(3:0.100000,9:0.100000):0.100000):0.

100000):0.100000,14:0.100000):0.100000):0.098402):0.099448,(10:0.100000,(13:0.

100000,((11:0.100000,15:0.100000):0.100000,12:0.100000):0.100000):0.100000):0.

100000,1:0.099446);[ID: 9564357168]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59474.926 2.897 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9564357168]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((((((8:0.100000,13:0.100000):0.100000,11:0.100000):0.100000,(((5:0.100000,12:0.

100000):0.100000,((7:0.100000,(3:0.100000,6:0.100000):0.100000):0.100000,2:0.

100000):0.100000):0.100000,10:0.100000):0.100000):0.100000,(4:0.100000,15:0.

100000):0.100000):0.100000,16:0.100000):0.100000,(14:0.100000,9:0.100000):0.

100000,1:0.100000);[ID: 9564357168]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59956.233 2.900 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9564357168]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

89



90 A. Appendix

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

(((((5:0.100000,8:0.100000):0.100000,(4:0.100000,(13:0.100000,14:0.087779):0.

138379):0.088645):0.100000,10:0.100000):0.100000,(11:0.100000,((16:0.100000,15:0

.100000):0.100000,(3:0.100000,(6:0.100000,((7:0.100000,2:0.100000):0.100000,12:0

.100000):0.100000):0.100000):0.100000):0.100000):0.100000):0.100000,9:0.100000,1

:0.100000);[ID: 9564357168]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -60013.210 2.915 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9564357168]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

(((((((4:0.100000,3:0.100000):0.100000,8:0.100000):0.100000,(((((2:0.100000,5:0.

100000):0.100000,13:0.100000):0.100000,(14:0.100000,6:0.100000):0.100000):0.

100000,10:0.100000):0.100000,7:0.100000):0.100000):0.100000,12:0.100000):0.

100000,(15:0.100000,11:0.100000):0.100000):0.100000,9:0.100000):0.100000,16:0.

100000,1:0.100000);[ID: 9564357168]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59883.509 2.900 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9564357168]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((((((((7:0.100000,3:0.100000):0.100000,((13:0.100000,2:0.100000):0.100000,(4:0.

100000,5:0.100000):0.100000):0.100000):0.100000,(11:0.100000,(16:0.100000,14:0.

100000):0.100000):0.100000):0.100000,15:0.100000):0.100000,10:0.100000):0.100000

,6:0.100000):0.100000,(8:0.100000,9:0.100000):0.100000):0.100000,12:0.100000,1:0

.100000);[ID: 9564357168]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59978.170 2.900 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9564357168]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

(((10:0.100000,(15:0.100000,(((2:0.100000,9:0.100000):0.100000,6:0.100000):0.

100000,((12:0.100000,(5:0.100000,8:0.100000):0.100000):0.100000,16:0.100000):0.

100000):0.100000):0.100000):0.100000,7:0.100000):0.103340,((4:0.100000,(13:0.

100000,14:0.100000):0.100000):0.100000,(11:0.100000,3:0.100000):0.134124):0.

144228,1:0.100000);[ID: 9564357168]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59692.885 2.982 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9564357168]

begin trees;

translate

1 1,
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2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

(((((((5:0.100000,14:0.100000):0.100000,12:0.100000):0.100000,15:0.100000):0.

100000,(7:0.100000,4:0.100000):0.100000):0.100000,8:0.100000):0.131820,((6:0.

100000,(16:0.100000,3:0.100000):0.100000):0.148784,13:0.100000):0.099300):0.

100000,(2:0.100000,(9:0.100000,(11:0.100000,10:0.100000):0.100000):0.100000):0.

100000,1:0.100000);[ID: 9564357168]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59520.234 2.980 0.250000 0.250000 0.250000

0.250000

A.5.3.2 Information on Parallel File, simple stripe distribution function

#Experiment’s Id: ParIO_Simple_65536_8_0_401_401_8_3_8_1_.pvsperf

#Conducted on: Thu Sep 23 18:34:49 2010

#Setup parameters:

#1) Ngen [1 ... [10000 | 100000]

#2) ExecTime

#3) OverallWrittenData [1 ... 2000000000]

#4) MaxNgen [10000, 100000, 1000000]

#5) Nprocs [2^n, n=3 ...]

#6) Nchains [n*default, n = 1,2,.. ]

#7) Nruns [2^n, n = 2, ...]

#8) Type of I/O [0 = SIO, 1 = ParIO]

#9) Max Buffer size in MM before write [ ]

#10) Min Buffer size in MM before write [ ]

#11) LB: Number of Procs with Max Buffer [<#WithMaxVal>]

#12) LB: Number of Procs with Min Buffer [<#WithMinVal>]

#13) Distribution Function: [0 = SS, 1 = VS]

#14) StripingUnit [ ]

#1)Ngen #2)ExecTime #3)OverallWrittenData

#4)MaxNgen #5)Nprocs #6)Nchains #7)Nruns #8)IOType #9)MaxBufInMM

#10)MinBufInMM #11)WithMaxVal #12)WithMinVal #13)DFunction

#14)StripingUnit

0 0.000000 0 1 8 3 8 1 401 401 0 8 0 65536

#

server: tcp://node01:22333

bytes used: 0Kbytes

server: tcp://node02:22333

bytes used: 0Kbytes

server: tcp://node03:22333

bytes used: 0Kbytes

server: tcp://node04:22333

bytes used: 0Kbytes

server: tcp://node05:22333

bytes used: 8Kbytes

server: tcp://node06:22333

bytes used: 0Kbytes

server: tcp://node07:22333

bytes used: 0Kbytes

server: tcp://node08:22333

bytes used: 0Kbytes

A.5.3.3 Parallel File Content, varstrip distribution function

#NEXUS

[ID: 9399782165]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((((((((3:0.100000,(7:0.100000,13:0.100000):0.100000):0.100000,(2:0.100000,8:0.

100000):0.100000):0.100000,6:0.100000):0.100000,9:0.100000):0.100000,11:0.100000

):0.100000,16:0.100000):0.100000,15:0.100000):0.100000,(10:0.100000,(4:0.100000,

(12:0.100000,(14:0.100000,5:0.100000):0.100000):0.100000):0.100000):0.100000,1:0

.100000);[ID: 9399782165]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)
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1 -59582.035 2.900 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9399782165]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

(((((((((9:0.100000,((7:0.100000,16:0.100000):0.066799,13:0.100000):0.096944):0.

089945,6:0.100000):0.100000,11:0.100000):0.100000,5:0.100000):0.100000,3:0.

100000):0.100000,(12:0.100000,(2:0.100000,15:0.100000):0.100000):0.100000):0.

100000,(14:0.100000,10:0.100000):0.100000):0.100000,8:0.100000):0.100000,4:0.

100000,1:0.100000);[ID: 9399782165]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59858.754 2.854 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9399782165]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((((15:0.100000,16:0.100000):0.100000,(((9:0.100000,13:0.100000):0.100000,(7:0.

100000,10:0.100000):0.100000):0.100000,11:0.100000):0.100000):0.100000,(4:0.

100000,(2:0.100000,14:0.100000):0.100000):0.100000):0.100000,((12:0.141216,(8:0.

100000,(5:0.100000,6:0.100000):0.100000):0.100000):0.071414,3:0.100000):0.145419

,1:0.100000);[ID: 9399782165]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59539.721 2.958 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9399782165]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((3:0.100000,(((4:0.100000,(16:0.100000,((14:0.100000,11:0.100000):0.100000,9:0.

100000):0.100000):0.100000):0.100000,7:0.100000):0.100000,((8:0.100000,15:0.

100000):0.100000,((12:0.100000,6:0.100000):0.100000,((5:0.100000,2:0.100000):0.

100000,10:0.100000):0.100000):0.100000):0.100000):0.100000):0.100000,13:0.100000

,1:0.100000);[ID: 9399782165]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59897.228 2.900 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9399782165]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,
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15 15,

16 16;

tree rep.1 =

(((((((((2:0.100000,14:0.100000):0.100000,3:0.100000):0.100000,11:0.100000):0.

100000,5:0.100000):0.100000,(15:0.100000,16:0.100000):0.100000):0.100000,13:0.

100000):0.100000,8:0.100000):0.100000,9:0.100000):0.100000,((4:0.100000,7:0.

100000):0.100000,((10:0.100000,12:0.100000):0.100000,6:0.100000):0.100000):0.

100000,1:0.100000);[ID: 9399782165]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59741.747 2.900 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9399782165]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((((10:0.100000,15:0.100000):0.100000,(16:0.100000,((6:0.100000,11:0.100000):0.

100000,(2:0.100000,13:0.100000):0.100000):0.100000):0.100000):0.100000,7:0.

100000):0.100000,((3:0.100000,14:0.100000):0.100000,((((8:0.100000,9:0.100000):0

.100000,5:0.100000):0.100000,4:0.144079):0.157540,12:0.100000):0.066826):0.

100000,1:0.100000);[ID: 9399782165]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59556.943 2.968 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9399782165]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((((((((13:0.100000,(7:0.100000,((5:0.100000,(12:0.100000,(6:0.100000,8:0.100000

):0.100000):0.100000):0.100000,10:0.100000):0.100000):0.100000):0.100000,(11:0.

100000,15:0.100000):0.100000):0.100000,3:0.100000):0.100000,14:0.100000):0.

100000,16:0.100000):0.100000,2:0.100000):0.100000,9:0.100000):0.100000,4:0.

100000,1:0.100000);[ID: 9399782165]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59829.956 2.900 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9399782165]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((((13:0.100000,15:0.100000):0.100000,((12:0.100000,4:0.100000):0.100000,((14:0.

100000,11:0.100000):0.100000,(((7:0.100000,3:0.100000):0.100000,8:0.100000):0.

100000,16:0.100000):0.100000):0.100000):0.100000):0.100000,(6:0.100000,(9:0.

100000,(2:0.100000,10:0.100000):0.100000):0.100000):0.100000):0.100000,5:0.

100000,1:0.100000);[ID: 9399782165]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59881.849 2.900 0.250000 0.250000 0.250000

0.250000

A.5.3.4 Information on Parallel File, varstrip distribution function

#Experiment’s Id: ParIO_Varstrip_701_701_8_0_401_401_8_4_8_1_.pvsperf

#Conducted on: Thu Sep 23 19:15:43 2010
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#Setup parameters:

#1) Ngen [1 ... [10000 | 100000]

#2) ExecTime

#3) OverallWrittenData [1 ... 2000000000]

#4) MaxNgen [10000, 100000, 1000000]

#5) Nprocs [2^n, n=3 ...]

#6) Nchains [n*default, n = 1,2,.. ]

#7) Nruns [2^n, n = 2, ...]

#8) Type of I/O [0 = SIO, 1 = ParIO]

#9) Max Buffer size in MM before write [ ]

#10) Min Buffer size in MM before write [ ]

#11) LB: Number of Procs with Max Buffer [<#WithMaxVal>]

#12) LB: Number of Procs with Min Buffer [<#WithMinVal>]

#13) Distribution Function: [0 = SS, 1 = VS]

#14) Max varstrip chunk size [<#MaxVsCS> ]

#15) Min varstrip chunk size [<#MinVsCS> ]

#1)Ngen #2)ExecTime #3)OverallWrittenData

#4)MaxNgen #5)Nprocs #6)Nchains #7)Nruns #8)IOType #9)MaxBufInMM

#10)MinBufInMM #11)WithMaxVal #12)WithMinVal #13)DFunction

#14)MaxVsCS #15)MinVsCS

0 0.000000 0 1 8 4 8 1 401 401 0 8 1 701 701

dist_name = varstrip_dist

dist_params:

0:701;1:701;2:701;3:701;4:701;5:701;6:701;7:701

Metadataserver: tcp://node06:22333

Number of datafiles/servers = 8

Datafile 0 - tcp://node01:22333, handle: 5188146770730808832 (47fffffffffff600.bstream)

Datafile 1 - tcp://node02:22333, handle: 5764607523034232832 (4ffffffffffff800.bstream)

Datafile 2 - tcp://node03:22333, handle: 6341068275337656832 (57fffffffffffa00.bstream)

Datafile 3 - tcp://node04:22333, handle: 6917529027641080832 (5ffffffffffffc00.bstream)

Datafile 4 - tcp://node05:22333, handle: 7493989779944504832 (67fffffffffffe00.bstream)

Datafile 5 - tcp://node06:22333, handle: 8070450532247925237 (6ffffffffffff1f5.bstream)

Datafile 6 - tcp://node07:22333, handle: 8646911284551348736 (77fffffffffff200.bstream)

Datafile 7 - tcp://node08:22333, handle: 9223372036854772736 (7ffffffffffff400.bstream)

A.5.4 Partial-1 Pattern

A.5.4.1 Parallel File Content

#NEXUS

[ID: 9386433625]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((((6:0.100000,14:0.100000):0.100000,(4:0.100000,(((12:0.100000,11:0.100000):0.

100000,15:0.063617):0.121922,3:0.100000):0.147583):0.100000):0.100000,10:0.

100000):0.100000,(16:0.100000,(2:0.100000,(8:0.100000,(5:0.100000,((13:0.100000,

9:0.100000):0.100000,7:0.100000):0.100000):0.100000):0.100000):0.100000):0.

100000,1:0.100000);[ID: 9386433625]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59623.159 2.933 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9386433625]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((((((8:0.100000,10:0.100000):0.100000,16:0.100000):0.100000,((9:0.100000,11:0.

100000):0.100000,12:0.100000):0.100000):0.100000,(6:0.136832,((2:0.100000,(15:0.

100000,((7:0.100000,4:0.100000):0.100000,14:0.100000):0.100000):0.100000):0.

068446,3:0.100000):0.131484):0.100000):0.100000,13:0.100000):0.100000,5:0.100000

,1:0.100000);[ID: 9386433625]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59588.682 2.937 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9386433625]
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begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((((5:0.100000,(14:0.100000,(15:0.100000,10:0.100000):0.100000):0.100000):0.

100000,(8:0.100000,((6:0.100000,(13:0.147512,(16:0.100000,(12:0.100000,(2:0.

100000,4:0.100000):0.100000):0.100000):0.100000):0.157187):0.149553,(3:0.100000,

9:0.100000):0.100000):0.100000):0.100000):0.100000,7:0.100000):0.100000,11:0.

100000,1:0.100000);[ID: 9386433625]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59258.991 3.054 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9386433625]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

((3:0.100000,(10:0.100000,(15:0.100000,(14:0.100000,((8:0.100000,(9:0.100000,7:0

.100000):0.100000):0.100000,(4:0.100000,11:0.100000):0.100000):0.100000):0.

100000):0.100000):0.100000):0.067528,(((((13:0.100000,5:0.100000):0.100000,12:0.

100000):0.100000,6:0.100000):0.100000,2:0.100000):0.100000,16:0.198973):0.031958

,1:0.100000);[ID: 9386433625]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59561.675 2.898 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9386433625]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

(11:0.100000,((9:0.100000,6:0.100000):0.100000,(((16:0.100000,14:0.100000):0.

100000,2:0.100000):0.100000,(3:0.100000,(((5:0.100000,12:0.100000):0.100000,4:0.

100000):0.100000,(13:0.100000,(8:0.100000,(7:0.100000,(10:0.100000,15:0.100000):

0.100000):0.100000):0.100000):0.100000):0.100000):0.100000):0.100000):0.100000,1

:0.100000);[ID: 9386433625]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59959.488 2.900 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9386433625]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =
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(((((5:0.100000,9:0.100000):0.100000,10:0.100000):0.100000,2:0.100000):0.100000,

12:0.100000):0.100000,(((15:0.100000,4:0.100000):0.100000,3:0.100000):0.100000,(

(13:0.100000,14:0.100000):0.100000,(8:0.100000,(16:0.100000,(11:0.100000,(6:0.

100000,7:0.100000):0.100000):0.100000):0.100000):0.100000):0.100000):0.100000,1:

0.100000);[ID: 9386433625]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59853.261 2.900 0.250000 0.250000 0.250000

0.250000 #NEXUS

[ID: 9386433625]

begin trees;

translate

1 1,

2 2,

3 3,

4 4,

5 5,

6 6,

7 7,

8 8,

9 9,

10 10,

11 11,

12 12,

13 13,

14 14,

15 15,

16 16;

tree rep.1 =

(((((((15:0.100000,4:0.100000):0.100000,(5:0.100000,(13:0.100000,((3:0.100000,8:

0.100000):0.100000,12:0.100000):0.100000):0.100000):0.100000):0.100000,(9:0.

100000,((11:0.100000,2:0.100000):0.100000,14:0.100000):0.100000):0.100000):0.

100000,10:0.128103):0.112084,16:0.094770):0.100000,7:0.100000):0.100000,6:0.

100000,1:0.100000);[ID: 9386433625]

Gen LnL TL pi(A) pi(C) pi(G) pi(T)

1 -59540.571 2.935 0.250000 0.250000 0.250000

0.250000

A.5.4.2 Information on Parallel File

#Experiment’s Id: ParIO_Simple_65536_1_7_0_401_7_3_8_1_.pvsperf

#Conducted on: Thu Sep 23 18:39:59 2010

#Setup parameters:

#1) Ngen [1 ... [10000 | 100000]

#2) ExecTime

#3) OverallWrittenData [1 ... 2000000000]

#4) MaxNgen [10000, 100000, 1000000]

#5) Nprocs [2^n, n=3 ...]

#6) Nchains [n*default, n = 1,2,.. ]

#7) Nruns [2^n, n = 2, ...]

#8) Type of I/O [0 = SIO, 1 = ParIO]

#9) Max Buffer size in MM before write [ ]

#10) Min Buffer size in MM before write [ ]

#11) LB: Number of Procs with Max Buffer [<#WithMaxVal>]

#12) LB: Number of Procs with Min Buffer [<#WithMinVal>]

#13) Distribution Function: [0 = SS, 1 = VS]

#14) StripingUnit [ ]

#1)Ngen #2)ExecTime #3)OverallWrittenData

#4)MaxNgen #5)Nprocs #6)Nchains #7)Nruns #8)IOType #9)MaxBufInMM

#10)MinBufInMM #11)WithMaxVal #12)WithMinVal #13)DFunction

#14)StripingUnit

0 0.000000 0 1 8 3 7 1 401 0 7 1 0 65536

#

server: tcp://node01:22333

bytes used: 0Kbytes

server: tcp://node02:22333

bytes used: 0Kbytes

server: tcp://node03:22333

bytes used: 0Kbytes

server: tcp://node04:22333

bytes used: 0Kbytes

server: tcp://node05:22333

bytes used: 0Kbytes

server: tcp://node06:22333

bytes used: 8Kbytes

server: tcp://node07:22333

bytes used: 0Kbytes

server: tcp://node08:22333

bytes used: 0Kbytes

A.5.5 Parameters’ Database

For the set of experiments I created a small database. Figure A.2 shows the cor-
responding entity relationship model diagram. Furthermore, table A.7 shows these
parameters in a stack manner.
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produces
contains

has
ExperimentsExperimentIDDescriptionObjectiveSetupIDResultID

ResultsResultIDExecutionTimeCPUTimeIOTimeFileNameExperimentIDAnalysisID
AnalysesAnalysisIDNumberGenerationsNumberRunsNumberChainsTemperatureSwapFrequencyNumberSwapsSampleFrequencySaveBranchLenghtMcmcDiagnosticsDiagnosticsFrequencyAllChainsFileNameResultIDSetupID

SetupsSetupIDAccessPatternAccessOperationAccessFileSizeBlockingOperationsPIOLibraryOptimizationMeasurementToolExperimentIDClusterNodeID

ClusterNodesClusterNodeIDPFSClientPFSServerPFSMetadataServerDistributionFunctionConfigurationIDSetupID
ConfigurationsConfigurationIDP0...P15ClusterNodeID

FilesFileNameRows(Taxon)CharactersSizeContentInputOutputStorageDeviceID

involves has for

for

input
Figure A.2: Entity relationship diagram model representing the database of the
evaluation experiments

A.6 Definitions

A.6.1 Computer Architecture

Definition A.1 A Monoprocessor System is a basic computing system consisting of
one processor and one memory hierachy, which consists of registers, caches, main
memory, and one hard disk secondary storage.

A.6.2 Parallel File Information

This section includes information on the generated parallel file while conducting the
evaluation.
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Table: Setups DB Field Name
Application Level
Access Pattern: AccPa9
Access Size: AccSi9
Operation: AccOp9
File Size AccFS9
Partition Load Balance: PLoBa9
Blocking non-blocking Operations: BloOp9
PIO Library Level
PIO Library Optimization: PioLO9
Parallel File System Level
Process per Compute Node: ProCN9
Interconnect between CN and I/O N: ICIon9
Type of Distribution Function: DisFu9
Physical Level
Existing load balance: ExLBa9
Storage Capacity Homogeneity: StCaH9
Measurement Tools
Measurement Tool MeTol9
Table: Analyses DB Field Name
IO relevant Application’s parameters
Input File
Dimensions: Dimen9
mcmc Related Parameters
Ngen (Number of Generations): NGene9
Nruns (Number of Runs): NRuns9
Nchains (Number of Chains): NChai9
Temp (Temperature): Tempe9
Swapfreq (Swap Frequency): SwapF9
Nswaps (Number of Swaps): NSwap9
Samplefreq (Sample Frequency): SFreq9
Savebrlens (Save Branch Lengths): SBLen9
mcmc Diagnostics Related Parameters
mcmcdiagn (mcmc Diagnostics): McmcD9
Diagnfreq (Diagnostic Frequency): DiagF9
Allchains (All Chains): AChaD9
Table: Results
Application Level
Execution Time: ExTim9
CPU Time: CpTim9
IO Time: I/O Tim9
Physical Level
Final Load Balance: FiLoB9
Application related results
Generated File Size: GFiSi9

Table A.7: Measurements parameters and their database field names
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A.6.2.1 Data File and I/O Nodes Correspondency

This is one sample of the parallel file’s information provided by pvfs2-viewdist.
This corresponds to a file generated with the varstrip distribution function with a
varstrip chunk size of 3.62 MB.

#$ Author: hipolito.vasquez@informatik.uni-heidelberg.de$

#$ Date:$

#Hipolito Vasquez Lucas’s PhD Thesis Experiment’s File

#Experiment’s Id:

#ParIO_Varstrip_3803000_3803000_8_0_2205390_2205390_8_4_8_8_.pvsperf

#Conducted on: Mon Aug 23 05:09:17 2010

#Setup parameters:

#1) Ngen [1 ... [10000 | 100000]

#2) ExecTime

#3) OverallWrittenData [1 ... 2000000000]

#4) MaxNgen [10000, 100000, 1000000]

#5) Nprocs [2^n, n=3 ...]

#6) Nchains [n*default, n = 1,2,.. ]

#7) Nruns [2^n, n = 2, ...]

#8) Type of I/O [0 = SIO, 1 = ParIO]

#9) Max Buffer size in MM before write [ ]

#10) Min Buffer size in MM before write [ ]

#11) LB: Number of Procs with Max Buffer [<#WithMaxVal>]

#12) LB: Number of Procs with Min Buffer [<#WithMinVal>]

#13) Distribution Function: [0 = SS, 1 = VS]

#14) Max varstrip chunk size [<#MaxVsCS> ]

#15) Min varstrip chunk size [<#MinVsCS> ]

#1)Ngen #2)ExecTime #3)OverallWrittenData

#4)MaxNgen #5)Nprocs #6)Nchains #7)Nruns #8)IOType #9)MaxBufInMM

#10)MinBufInMM #11)WithMaxVal #12)WithMinVal #13)DFunction

#14)MaxVsCS #15)MinVsCS

0 0.000000 0 8 8 4 8 1 2205390 2205390 0 8 1 3803000 3803000

dist_name = varstrip_dist

dist_params:

0:3803000;1:3803000;2:3803000;3:3803000;4:3803000;5:3803000;6:3803000;7:3803000

Metadataserver: tcp://node06:22333

Number of datafiles/servers = 8

Datafile 0 - tcp://node01:22333, handle: 5188146770730808832 (47fffffffffff600.bstream)

Datafile 1 - tcp://node02:22333, handle: 5764607523034232832 (4ffffffffffff800.bstream)

Datafile 2 - tcp://node03:22333, handle: 6341068275337656832 (57fffffffffffa00.bstream)

Datafile 3 - tcp://node04:22333, handle: 6917529027641080832 (5ffffffffffffc00.bstream)

Datafile 4 - tcp://node05:22333, handle: 7493989779944504832 (67fffffffffffe00.bstream)

Datafile 5 - tcp://node06:22333, handle: 8070450532247925237 (6ffffffffffff1f5.bstream)

Datafile 6 - tcp://node07:22333, handle: 8646911284551348736 (77fffffffffff200.bstream)

Datafile 7 - tcp://node08:22333, handle: 9223372036854772736 (7ffffffffffff400.bstream)
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