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Zusammenfassung

Das Aktin-Zytoskelett ist ein Netzwerk aus Biopolymeren, welches für die
räumliche Koordination und mechanische Festigkeit biologischer Zellen sorgt.
Aufgrund der asymmetrischen mechanischen Antwort von Polymeren auf
Spannung und Kompression, verhält es sich wie ein mechanisches Kabel-
netzwerk. Darüber hinaus ist es in einem Zustand dauerhafter Kontraktion
aufgrund der Aktivität von Myosinmotoren. Wir untersuchen hier theoreti-
sche Modelle auf zellulärer Skala, die beide Besonderheiten berücksichtigen.
Im ersten Teil dieser Arbeit untersuchen wir Modelle von Zellen, die an
diskreten Haftstellen auf ebenen Flächen adhärieren. Wir vergleichen die
Form und die Kraftverteilung in kontrahierten Feder- und Kabelnetzwerken.
Es zeigt sich, dass nur aktive Kabelnetze die experimentell beobachtete
Zellform korrekt vorhersagen. Im zweiten Teil verwenden wir das aktive
Kabelnetzwerk zur Interpretation experimenteller Daten. Wir verbinden
dieses dazu mit kontraktilen Aktin-Bündeln und sehen, dass diese Kombi-
nation zu überraschend guten Vorhersagen für die Spannungsverteilung von
adhärierten Zellen auf weichen elastischen Substraten führt. Da zelluläre
Kräfte zur Zerstörung des Netzwerkes führen können, untersuchen wir im
dritten Teil das Brechen von Verbindungen in mechanische Netzwerken.
Dabei brechen Verbindungen stochastisch mit Raten, die exponentiell mit
der anliegenden Kraft wachsen. Wir untersuchen die statistischen Eigen-
schaften von Netzwerken unter konstanter Verformung und zeitlich linear
wachsender Verformung. Die Ergebnisse vergleichen wir mit denen aus tra-
ditioneller Bruchmechanik, welche durch Stabilitätsgrenzen dominiert sind.





Abstract

The actin cytoskeleton is a biopolymer network that provides spatial coor-
dination and mechanical strength to biological cells. Due to the asymmetric
mechanical response of polymers under tension versus compression, it be-
haves like a mechanical network of cables. In addition, it actively contracts
through the continuous action of myosin molecular motors. Here we in-
vestigate theoretical models on the cellular scale which incorporate these
special properties. In the first part of this work we model cells adherent to
discrete adhesion sites on planar surfaces. We compare the shape and force
distribution in contracted networks of Hookean springs and cables. We find
that only active cable networks can correctly predict the experimentally
observed cell shape. In the second part we apply the active cable network
to experimental data. We combine this model with contractile actin bun-
dles and find that this combination leads to surprisingly good predictions
for the traction force pattern of adherent cells on soft elastic substrates.
Because cellular forces can lead to failure of the network, in the third part
we investigate bond rupture in mechanical networks. Here, bonds stochas-
tically rupture with rates that grow exponentially with force. We study the
statistical properties of networks under constant strain and strain which
linearly increases in time. The results are compared to traditional fracture
mechanics which are dominated by stability thresholds.
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Introduction

1.1 Biological and Biophysical Background

1.1.1 Actin and Actin-related Proteins

The actin cytoskeleton (CSK) is a crucial part of eukaryotic cells. It consists of the
structural protein actin, 50% of which in the cytoplasm is available in the form of
monomers, small globules with a diameter of ∼ 8 nm, also called G-actin [1]. G-actin
polymerizes to form long protein chains, called actin filaments or F-actin, which can
be up to 100 µm long. The other half of a cell’s actin is available in this filamentous
form, whose representatives have a persistence length on the order of their physiological
length in the µm range [2, 3]. In living cells there is continuous turnover from G-actin
to F-actin and vice versa [1, 4].

G-actin exhibits two structurally different ends, i.e. the actin monomer is polar,
see Fig. 1.1(a). Three actin monomers can build a nucleus, to which more and more
actin globules are added. This happens in such a way that always two different ends
of G-actin bind. Hence, the actin filament is polar itself. It consists of two parallel
polymer chains, which are twisted into a double helix, Fig. 1.1(b). Please note, these
two strands do not form individually. One end of the actin filament, the plus end,
significantly grows faster than the other one, the minus end. G-actin has adenosine
triphosphate (ATP) bound in its center, see Fig. 1.1(a). ATP can be seen as the fuel
of cellular processes. During actin polymerization ATP is hydrolyzed to adenosine
diphosphate (ADP), so ADP is bound inside the monomers of F-actin [1].

There are many cellular processes for which the actin CSK acts as the key player.
Among the most important examples are cell migration [5], cell division [4], and cell
adhesion [6]. But since all these cannot be regulated by variants of the protein actin
only, there are many actin related proteins which take part in regulation [1]. Myosin II,
for example, is a motor protein, which can bind to two actin filaments and slide them
relatively to each other, thereby applying stress to the actin CSK [7]. Further exam-
ples are given by ADF/cofilin which severs actin filaments [8], and capping proteins,
which inhibit polymerization of the filament end they bind to. Formins are also very

1



1. INTRODUCTION

Figure 1.1: Actin Filaments. (a) A schematic view of a single actin molecule. ADP is
bound in the center of the actin molecule. (b) Actin molecules have polymerized to an
actin filament. After 37 nm the helix repeats. (c) Transmission electron microscopy image
of an actin filament. Taken from [1].

important. Proteins from this family, like the protein complex ARP2/3, nucleate fila-
ments [9]. ARP2/3 binds to an actin filament and nucleates a new one. Thus, ARP2/3
is crucial for the regulation of dendritic networks of actin filaments [10].

Motor proteins (MPs) also hydrolyze ATP to gain chemical energy, which they
transform into mechanical work [1]. A myosin II molecule consists of a head and a
tail domain, see Fig. 1.2. The head domain has two heads, each of which is composed
of a heavy chain connected to the tail by two light chains. The tail of myosin II
is a double helix of two twisted parallel strands. Although there has already been
discovered a variety of myosin families, we restrict the discussion to myosin II motors.
A special form of myosin II e.g. acts in muscles to mediate contraction of anti-parallel
actin filaments in sarcomeres. Like most myosins, myosin II is non-processive, i.e. after
binding to a filament, it falls off very soon. However, the two heads can be bound
to an actin filament. It is assumed that ATP hydrolysis leads to the release of one
head. Equivalent to making a step with our feet the head is moved to another place

Figure 1.2: Myosin II motor protein. (a) Cartoon of a myosin II molecule. (b) Trans-
mission electron microscopy image of a single myosin II molecule. Taken from [1].

2



1.1 Biological and Biophysical Background

Figure 1.3: Different actin arrays of a tissue cell. Schematic of the different actin arrays.
Left box: Loosely packed but highly contractile anti-parallel actin bundles in stress fibers
which are connected by α-actinin and myosin II. Middle box: Gel-like actin network in the
cell cortex linked together by filamin. Right box: Densely packed parallel actin bundles
connected by fimbrin. Taken from [1].

to bind again to the filament. So the MP can walk along the filament and displace
cargo, e.g. vesicles or other actin filaments, which are attached to the MP’s tail, along
the filament. To displace cargo over a long distance, several myosin II motors can bind
together to motor complexes and work cooperatively. That way, myosin II can bundle
actin filaments and set these bundles under permanent tension [1]. These bundles may
be anchored e.g. to a substrate, so the motor feels a force against its walking direction.
This decreases the motor’s walking speed eventually down to zero. If stalled, the motor
pulls with a constant value, the motor stall force [11].

In eukaryotic cells there are distinct structures actin filaments are organized into,
see Fig. 1.3 [1]. Contractile bundles consist of anti-parallel actin filaments connected
by α-actinin, which compared to G-actin and the head domain of myosin II is a quite
large (≈ 25 nm) protein, so the contractile bundle is very loosely packed. Hence
myosin II motors can bind to two filaments and walk towards their plus ends. In the
extreme case, filament bundles condense to highly contractile structures called stress
fibers (SFs), which can have one end or both ends anchored to focal adhesion (FAs).
FAs are connections between the actin CSK and extracellular space. SFs and FAs will
be discussed below in more detail. Another actin linker protein, fimbrin, aligns actin
filaments in a parallel fashion. Since fimbrin is much smaller than α-actinin, myosin II
molecules cannot enter the parallel bundle which therefore is not under tension. An-

3



1. INTRODUCTION

Figure 1.4: Epithelial tis-
sue and connective tissue.
Epithelial tissue built by
cells connected via adhesion
belts. The ECM of epithe-
lia basically only consists of
the basal lamina. The ECM
of connective tissue contains
variate macromolecules and
only rarely distributed fi-
broblasts. Taken from [1].

other prominent structure formed by actin filaments, the two-dimensional network of
the cell cortex, is interconnected via the protein filamin, such that the actin network
can be contractile as well [1]. The filopdium shown in Fig. 1.3 is not the only protrusion
of eukaryotic cells. Migrating cells exhibit a thin layer of polymerizing actin filaments
at the cell wall. Two different components of this layer are distinguished. The lamel-
lipodium is a dendritic network branched by ARP2/3 and destabilized by ADF/cofilin,
while the lamella is much more stable and contractile [1].

Besides actin filaments there are other two very important kinds of filaments in
the eukaryotic CSK. On the one hand, there are microtubules, which consist of 13
parallel polar polymer chains forming a hollow tube. The subunit of microtubules is
a heterodimer called tubulin. Microtubules have a persistence length in the range of
mms and therefore are very rigid. Often microtubules are found organized by the
centrosome, an organelle (=a special subunit of the cell), as a spindle with their minus
ends in the center. microtubules mainly serve as tracks for cellular transport, when
the MPs kinesin and dynein walk along them and carry cargo [1]. On the other hand,
intermediate filaments are in contrast to actin filaments and microtubules not polar.
Intermediate filaments consist of related proteins like vimentin, lamin, and keratin,
in size are between actin filaments and microtubules, and are much more resistant
to strain than actin filaments and microtubules. If a eukaryotic cell is under large
external tension in an epithelial sheet, it is the intermediate CSK which maintains its
integrity [1, 12, 13].

1.1.2 Adherent Tissue Cells

Multicellular organisms consist of different tissues, which their cells organize into. Ma-
jor tissue types are connective, epithelial, muscle and nerve tissue. Connective tissue
(CoT) is build by a filamentous network of different proteins called extracellular ma-
trix (ECM), compare Fig. 1.4. The ECM proteins are macromolecules, as e.g. col-
lagen, which provides the ECM’s mechanical strength, and elastin, which guarantees
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1.1 Biological and Biophysical Background

(a) (b)
10 µm

Figure 1.5: Actin-stained cell images. (a) Actin-stained image for a B16 cell on a mi-
cropatterned substrate. Actin is shown in green. Red dots consist of fibronectin and are
spaced by 15 µm. Taken from [14]. (b) Actin-stained image of a human osteosarcoma cell.
Courtesy of J. Stricker and M. L. Gardel.

the ECM’s elasticity. They are secreted by special cells which are widespread into the
tissue, the fibroblasts [1]. Due to the action of contractile bundles and stress fibers fi-
broblasts are highly contractile. In contrast to connective tissue, epithelial tissue (ET)
is formed mainly by epithelial cells which directly adhere to each other via adhesion
belts and to a thin underlying extracellular layer, the basal lamina, see Fig. 1.4. That
is, ET is based on cell-cell adhesions whereas CoT is based on cell-matrix adhesions. In
this thesis we mainly discuss CoT (abbreviated as tissue), fibroblasts, and cell-matrix
adhesions, because these mechanically are very active [1].

It is assumed that tissue cells adherent to two-dimensional substrate surfaces act
similar as in the ECM. Therefore, in cell experiments, this situation is studied exten-
sively. If a tissue cell is placed on such a 2D surface, it usually spreads over a certain
area, thereby becoming very flat. After spreading, contractile cell shapes can be ob-
served. If the surface is coated with the appropriate protein, the cell adheres to the
substrate. The Bastmeyer Lab (Karlsruhe Institute of Technology, Germany) is well-
known for their work on micropatterned substrates [14, 15]. On these substrates cells
can adhere to special protein dots, which are regularly distributed on the surface. In
Fig. 1.5(a) we show a B16 mouse melanoma cell on a micropatterned substrate investi-
gated by the Bastmeyer Lab [14]. Experimentalists from the Gardel Lab (University of
Chicago, IL, USA) study cells on elastic substrates coated with a special protein [16, 17].
Fig. 1.5(b) gives the image of a human osteosarcoma (U2OS) cell on a polyacrylamide
substrate. For the experimental protocol see [16]. Both cells, Fig. 1.5(a) and (b), are
labeled (another term for this is stained) with the appropriate agent to highlight actin
filaments. Therefore signal intensity can be assumed as proportional to actin filament
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density. Both images show that actin filaments are present throughout the whole cell.
In particular, the U2OS cell shows a dendritic actin network.

Note the elongated structures of high actin filament density. These are the stress
fibers, contractile actin bundles held together by α-actinin and myosin II, which appear
as periodic patterns in an alternating order [18]. Actin filaments in SFs are not always
oriented in an anti-parallel fashion. Therefore, the mechanism of contraction and the
question of SF contraction at all is not completely understood. There are three classes
of SFs [19]: Dorsal stress fibers (DSFs) can grow from FAs near the cell boundary
towards the nucleus with an inclination angle of 0◦−90◦ relative to the substrate. Two
DSFs of opposing directions can become connected at their ends. Contraction of this
structure moves it down to the cell bottom. The outcome, ventral stress fibers (VSFs),
thus are straight and assumed to contract in a sarcomere-like fashion. Members of
the third kind of SFs, transverse arcs (TVAs), usually are oriented parallel to the cell
edge. During time, TVAs move towards the nucleus where they disassemble. TVAs are
assembled as connections of short actin bundles or from pre-existing actin networks.
Hence, it is possible that two DSFs first connect to the same TVA to subsequently form
a VSF [18]. The formin mDia polymerizes the actin filaments in SFs. Hence, inhibition
of mDia dramatically reduces the amount of SFs in cells.

There are several ways to manipulate the actin and myosin II in cells. For example,
the drugs Y-27632 and blebbistatin both inhibit myosin II mediated contraction of
actin bundles in cells. The first one, Y-27632, blocks phosphorylation of myosin light
chains [20]. The second one, blebbistatin, binds to the ATPase part of myosin, thereby
disturbing ATP consumption of myosin II [21].

1.1.3 Interactions between CSK and ECM

It has been shown that adherent cells actively explore the geometry and stiffness of their
adhesive environment and respond to it [22]. Migrating fibroblasts, for example, prefer
a certain rigidity of the underlying substrate. Hence, they exhibit a directed movement
along stiffness gradients. This process is called durotaxis. Migrating fibroblasts play
an important role in wound healing. They migrate to the site of injury to build up new
epithelial tissue to close the wound [23]. These special fibroblasts, which are involved
in wound healing, are called myofibroblasts which can differentiate from less developed
fibroblasts [23]. This differentiation is effected by environmental stiffness, too [22].
Substrate geometry and stiffness can also kill the cell or influence its ability to grow
or divide (the generic term is proliferation) [6, 22]. Inhibition experiments for both,
actin and myosin II, have shown that active contractility is crucial for force sensing and
response [22]. There is already much insight into these sensing capabilities of cells [24–
26], but it is still unknown how a cell coordinates force generation, how these forces are
distributed inside a cell and how a cell senses force over its full body.

Although it is a standard procedure in experiments to block force generation and
propagation with chemical inhibitors or by RNA interference [27], it is very difficult to
measure how force is distributed inside cells and between cells and their environment.
Different experimental approaches have been developed to meet this challenge. Trac-
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tion force microscopy (TFM) became very popular during the last decade [17, 28–32].
This technique allows to measure the forces cells transmit to the substrate via focal
adhesions. To this end, tissue cells are placed on elastic substrates decorated with
marker particles, e.g. fluorescent beads. If cells adhere and subsequently apply traction
forces, the substrate is deformed and thus, the markers are displaced. To obtain the
traction strain field the markers’ positions have to be measured twice. First, with a
contractile cell adherent to the substrate and second, after the cell was removed from
the substrate. Cell removal can be achieved by adding the enzyme trypsin, a process
called trypsinization [32]. The remaining step, traction force reconstruction [17], we
will briefly discuss in the next chapter.

Recently TFM has been extended in such a way that also cell-cell forces can be
estimated from cell-matrix forces [33, 34]. However, it is important to note that many
forces balance inside the cell and are not transmitted to the substrate, so the forces
existing inside cells might be much higher than appreciated from TFM [35]. Laser
cutting allows to estimate forces from the mechanical relaxation after cutting load-
carrying elements like microtubules in the mitotic spindle [36, 37] or stress fibers in
the actin cytoskeleton [38–41]. Laser ablation can be used for subcellular analysis of
cortical tension [42]. However, these experiments only probe local relaxation events of
prominent cytoskeletal structures and therefore might miss the global effects of more
distributed and less visible structures. Micromanipulation can be used to distort the
mechanical balance of the cell globally [43–46], but the resulting changes in force distri-
bution can only be estimated indirectly from its effects, e.g. growth of focal adhesions.
To achieve a more systematic understanding, these experimental approaches have to
be complemented by theoretical models.

1.1.4 Mechanical Stability of Cytoskeletal Networks

Recent evidence suggests that cytoskeletal networks often operate at the verge of me-
chanical stability. As an example for this, SFs have been shown to get elongated under
stress and subsequently thin down. This is often accompanied by damages which can
lead to SF failure. Failure can be averted by a repair mechanism which involves the pro-
tein zyxin [41]. Another example is given by epithelial cells under external mechanical
load. At low strain, actin filaments are the main contributors to maintain the CSK’s
integrity. But if strain is increased, the actin filaments rupture and the intermediate
filaments carry the load, because intermediate filaments can bear far more strain than
actin filaments [12, 13, 47]. Molecular dynamics (MD) simulation of the intermediate
filament network revealed that the α-helix turn contributes mainly to the intermediate
CSK’s integrity, even if the network is damaged [48]. On the scale of tissues there is
the ECM, which cannot bear the same amount of strain as its strongest components
elastin and collagen [49]. Using theoretical network models it was found that the weaker
proteoglycans weaken the whole material and lead to failure of the ECM [50].
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Figure 1.6: Focal adhesions. (a) Simplified view of the integrin-fibronectin binding.
Figure was taken from [51]. (b) Cartoon of the complex network of proteins which builds
up a focal adhesion. Taken from [52].

1.1.5 Focal Adhesions

FAs are based on weak interactions between transmembrane proteins, mainly integrins,
which link the actin CSK to extracellular space, and corresponding binding partners
in the ECM. In case of fibroblasts the ECM protein fibronectin acts as a ligand for the
integrin receptors [1]. However, integrins can also bind to collagen or to several other
proteins [53]. Fibronectin binds to a distinct binding pocket of the integrin molecule,
see Fig. 1.6(a). This non-covalent connection is called a bio-molecular bond, which is
built by weak hydrogen bonds or van-der-Waals interactions. As a consequence, noise,
i.e. thermal fluctuation, is sufficient to open the bond. Thermal fluctuations are always
present in living matter, since it is usually operated at the body temperature of ∼ 40◦C.
To maintain the tissue’s physical integrity bio-molecular bonds are able to close again,
often a bond closes which recently opened. During cell migration, for example, rupture
of focal complexes is indispensable for retraction of the cell body. Focal complexes are
cell-matrix adhesions, which have not matured to FAs, yet. We can state: There is
rupture and rebinding present for all times. Beyond integrin and fibronectin a variety of
cellular proteins, such as vinculin, talin, paxillin, and α-actinin are involved in forming
a FA [52], see Fig. 1.6(b). It is impossible to probe FAs by force and to assign changes
in force or length to single bonds in this complex network. Indeed, FAs often do not
break at the integrin-fibronectin bond, but somewhere inside this complex network [54].
This shows that among these weak connections, the integrin-fibronectin bond is one of
the strongest.

1.1.6 Force Spectroscopy of Single Bio-Molecular Bonds

Single bio-molecular bonds have been under exhaustive investigation [55]. Bio-molecular
bonds do not only appear in FAs, but also play an important role e.g. in rolling ad-
hesion of leukocytes, i.e. white blood cells, at the blood vessel wall [56], and for titin,
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Figure 1.7: Laser optical tweezers and biomembrane force probe. (a)-(c) Laser optical
tweezers (LOT). If a laser beam hits a small bead, the bead gets a momentum with a
component in the direction of high intensity. This can be used to move the bead, either
using two unfocused lasers (b), or a focused laser beam (c). (d)-(f) Biomembrane force
probe (BFP). (d) A red blood cell subject to aspiration by the pipette on the left. Scale bar
5 µm. Taken from [55]. (e) Schematic view of the situation with the important physical
properties here, namely the pressure ∆p inside the micropipette and the surface tension
of the RBC. (d) Suction deforms the RBC while displacing the bead and pulling on the
bond.

the actin connector in sarcomeres [57]. Therefore, these have been subject to exten-
sive research for the last 15 years and still are. Bonds usually are probed in pulling
experiments. Measured forces often are on the scale of pN and lengths on the scale
of nm [55, 58]. Hence, reliable measurements depend on the resolution power of the
measuring equipment and thus, on the technical progress. Prominent techniques used
today are atomic force microscopy (AFM) [59], laser optical tweezers (LOT) [60, 61],
and biomembrane force probe (BFP) [62].

AFM is a widely used variant of scanning probe techniques [59]. A probe tip on an
elastic lever arm, a cantilever, scans the surface of a sample in a very close distance
(< 100nm). Interactions between sample and probe, as e.g. van-der-Waals forces,
repulsive forces, adhesion forces, or electrostatic forces, lead to cantilever deflections.
To measure these deflections a laser beam is reflected at the cantilever’s backside. The
signal of the reflected beam is detected by a photo diode [63]. For force spectroscopy
the AFM is not moved laterally to the surface, as it is done for topography analysis.
Instead, the probe tip is brought in contact with the sample. After a certain waiting
time, a bond has formed. If the cantilever is now pulled away from the sample the
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bond is stretched. That way, the force which is necessary to break the bond as well as
the length the bond is elongated can be determined [55].

With LOTs, which can consists of either one laser or two lasers, small dielectric
particles (dimensions < laser wave length) can be moved through the medium. The-
oretically, a laser beam can be subdivided into infinitely many thin laser beams in
parallel. The closer to the center of the beam the larger the intensity of such a small
laser beam. If an unfocused laser beam hits a small bead, the bead gets a momentum
towards the center and away from the laser source, Fig. 1.7(a). To fix the small bead
either a focused laser can be used, which drags the bead towards the laser focus, see
Fig. 1.7(b). Alternatively, two opposed lasers can be used to trap the bead in the center
between them, compare Fig. 1.7(c) [55].

In BFP experiments two microbead surfaces are decorated with receptors and lig-
ands, respectively. One bead is fixed while the other is glued to a red blood cell (RBC).
Mature RBCs lack a nucleus and basically consist of the plasma membrane only. This
three-dimensional network is built up mainly by the cytoskeletal protein spectrin [1].
The RBC is then aspirated by micropipette suction, i.e. a pressure is applied which pulls
the RBC inwards the micropipette, see Fig. 1.7(d-f). From pressure and RBC defor-
mation one can calculate the force on the bonds between the beads and the stretching
length [55].

1.2 Theoretical Treatment

1.2.1 Static Network Models of Adherent Tissue Cells

The mechanical properties of cells, ECM and CoT are strongly determined by fila-
mentous networks of proteins like the aforementioned actin, tubulin, lamin, spectrin or
collagen. Therefore, mechanical networks are widely used theoretical models for cell
and tissue mechanics [7, 64]. One of the best studied cases is the RBC, whose shape
and mechanics have been studied with network approaches in very large detail [65–73].
Modern computer power permits to simulate each of the roughly 105 spectrin links sep-
arately and with molecular detail, for example using the appropriately parameterized
force-extension curve of a semiflexible polymer [71]. In the limit of small extensions,
these models usually reduce to Hookean networks.

For adherent cells, the main structural determinant is the actin cytoskeleton, whose
mechanics differs in several important aspects from the one of the spectrin network of
RBCs. In general, the molecular structure of the actin network is much less defined.
Its most prominent feature in adhesion is strong contractility due to activity of myosin
II motors. This observation implies that the mechanical links between the nodes of the
network cannot be simple actin filaments, but have to be bundles of actin filaments
cross-linked and tensed by myosin II motors. The simplest model for prestress in a
mechanical network is the introduction of a finite resting length which is smaller than
the typical extension of each link. Indeed, one- and two-dimensional spring networks
with prestress are widely used for modeling cell migration [74–77].
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Network models are conceptually very appealing due to their multi-scale nature: by
changing the microscopic rules for the mechanics of the links, one can explore how the
macroscopic behavior of the whole network changes. In particular, important biolog-
ical effects like viscoelasticity of the links or coupling to diffusion fields can be incor-
porated [71–77]. Spring networks offer the additional advantage that homogenization
techniques can be used to arrive at continuum models [78]. Recently, the interplay be-
tween force generation and the geometrical and adhesive properties of the environment
have been addressed using the powerful framework of finite element method (FEM)
models [79], which can be considered as the continuum limit of appropriate network
models. Most FEM models use constitutive equations which correspond to Hookean
networks.

Although conceptually very appealing, modeling cell mechanics with Hookean net-
works does not reflect the fact that the actin cytoskeleton does not provide much
resistance to compression. This is especially true for two-dimensional networks for
cell adhesion and migration, because in this case the network might contract laterally,
while the cytosol flows into the third dimension. In this situation, the network links
do not behave as springs, but rather as cables, which are characterized by an asym-
metric force-extension relation. There are several microscopic reasons for this effective
behavior: not only do thin actin bundles easily buckle under load, they also tend to
telescope in due to filament sliding and even to depolymerize once tensile stress is re-
leased. Cable networks have been successfully used to model the prestress-dependent
mechanical response of adherent cells to local mechanical perturbations [80]. The same
model has also been used to describe how mechanical stress is propagated from the
nuclear region through the cytoskeleton towards focal adhesions, where changes in load
lead to changes in adhesion size [44].

One striking feature of strongly adhering cells is the fact that retracted contours
often take the shape of circular arcs [14, 15, 81, 82], see the B16 cell shown in Fig. 1.5(a)
for an example. Although for cable networks the resulting shapes are strongly invagi-
nated, it has been shown that the circular invaginations observed for cells pinned at
discrete sites of adhesions can only be explained if an additional contractile force is
introduced for each mechanical link [15]. This additional force in an actively contract-
ing cable network does not vanish at the resting length and represents the fact that
contractility arises mainly from myosin II motors, which in steady state operate close
to their non-vanishing stall force.

1.2.2 Dynamic Network Models of Fracture

In continuum mechanics a crack in a homogeneous material is modeled as a boundary
condition for the strain field. The crack will grow and finally lead to failure of the
material, if it is energetically favorable [83]. However, fracture is often the result of
inhomogeneity in the material. A crack can nucleate from a weak spot and grow to
lead to global material failure. Therefore inhomogeneity or disorder must be taken
into account for fracture studies. This can be done very nicely by network models
for material failure, which are widespread in engineering application, e.g. for bridges,
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Figure 1.8: Sketch of the different models for fracture. (a) The fiber bundle model
(FBM), a bundle of parallel fibers of (uniformly) distributed force thresholds. Increasing

load ~F leads to fiber breakage. Force redistribution can be globally (over all remaining
fibers) or locally (only neighboring fibers). (b) The random fuse model (RFM), a network
of electric fuses with (uniformly) distributed current thresholds. Increasing voltage V leads
to increasing current I and subsequently to serial burning of the fuses. (c) The random
spring model (RSM), the vectorial counterpart of the RFM. A network of springs with
(uniformly) distributed force threshold. Increasing displacement of the two attachments
at the top and at the bottom leads to increasing forces in the springs and subsequently to
serial breakage of the springs.

houses, or cars [84]. In computer simulations of such materials, the network bonds
are allowed to rupture. Disorder can be introduced in two ways. On the one hand,
a regular network topology can be disturbed by random dilution of a fraction of the
bonds before starting the simulation. In this case all network bonds have the same
force threshold. If the force in the bond exceeds the threshold the associated bond is
irreversibly removed. On the other hand, one can determine force thresholds from a
given distribution for bonds on a regular network, like e.g. in [48, 50].

There are extensive MD approaches to the mechanisms of fracture [85], also applied
on biological materials using network models [48]. Buehler and co-workers emphasize
the hierarchy of failure and the link between atomic and mesoscopic scales [86]. How-
ever, the most basic model studied in fracture mechanics is the one-dimensional fiber
bundle model (FBM) [87]. A fiber bundle consists of a set of parallel fibers under me-
chanical load, see sketch in Fig. 1.8(a). These fibers have distributed force thresholds.
If one fiber breaks, the force is redistributed among the remaining fibers. There can
be equal load sharing, i.e. the load which was carried by the removed fiber is shared
by all the remaining fibers. Alternatively, local load sharing can be studied: only the
neighboring fibers carry the load of the broken one. The FBM has the advantage that
it can be treated analytically.

2D or 3D materials of different elastic properties exhibit different failure properties.
Two extreme cases can be easily distinguished. On the one hand, we have brittle failure
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of e.g. concrete, which does not deform very much before it breaks. On the other hand,
e.g. tissue or epithelia can be elastically deformed, and therefore show ductile failure.

Brittle failure is analyzed via an enhancement of the FBM, the random fuse model
(RFM) [84], in which a hard material is modeled as a dense square shaped network of
electric fuses, Fig. 1.8(b). The fuses have uniformly distributed current thresholds. In
the RFM mechanical load is modeled as voltage which is increased step-wise between
two parallel sides of the network. In the RFM equilibration is assumed to be faster
than the burning of a fuse.

A less prominent model used in common fracture studies is much closer related to
biological materials. The random spring model (RSM) [88], which is used to study
ductile failure, can be interpreted as the vectorial counterpart of the scalar RFM. In
the RSM the fuses are replaced by springs, the voltages by spatial displacements, the
currents by mechanical forces, and the current thresholds by force thresholds, com-
pare Fig. 1.8(c). Remarkably, the statistical properties of RFM and RSM are very
similar [88].

Failure of bond networks can be interpreted as a first-order phase transition [89].
Take the RFM with distributed current threshold for example. If voltage is increased,
small cracks form. These cracks grow until a spanning crack has formed and the
network has failed. This is strongly reminiscent of forming droplets in the gas-liquid
transition (condensation), which grow until the gas has condensed. In [89] the avalanche
size distribution is calculated with a mean-field theory of an Ising-like model. An
avalanche is a series of secondary rupture events which follow the rupture of a single
(primary) bond. Before the fatal avalanche leads to material failure, avalanches can
appear as precursors. Critical exponents are defined, similar to those in first-order
phase transitions [89]. Nevertheless, it is still under debate, if the scaling laws found
in network models of fracture can be related to a critical point [84].

1.2.3 Rupture of Bio-Molecular Bonds

In contrast to the fracture models discussed above, bio-molecular bonds are modeled
with Kramers escape theory, which was already developed in the 1940s to model chem-
ical interactions as a stochastic process [58, 90]. It describes particles initially bound to
an energy minimum, which they can diffusely escape. If a force is applied, the escape
path is directed because it simply follows the force. Hence, escape can be described
by a one-dimensional reaction coordinate x. Fig. 1.9 shows such an energy landscape
as a double well potential. In order to escape the minimum at xm,1 the particle must
get over the energy barrier εb,1 at xb,1. In the absence of force, this can only happen
stochastically due to thermal fluctuations. If a force F is applied to the bond, the
energy barrier at xb,1 is lowered to ε′b,1 = εb,1 − Fx so the particle can overcome the
barrier to reach xm,2 on a faster time-scale. Now the bond is open, though it can close,
rebind, again. This process is assumed to not depend on the pulling force, therefore
the rebinding rate γ is constant. The form of the potential depicted in Fig. 1.9 implies
that a particle will never return after getting over the second energy barrier at xb,2.
Similar to protein unfolding [91], there can exist several energy barriers corresponding
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Figure 1.9: Double well po-
tential as function of the reac-
tion coordinate x. At F = 0
(top line) the particle at xm,1

must cross the barrier εb,1 at
xb,1. If force F > 0 is applied,
the barrier is lowered down to
ε′b,1 = εb,1−Fxb,1. If the particle
reached xm,2, we have the same
situation. But rebinding (tran-
sition from xm,2 back to xm,1),
which is independent of force is
possible.

to several groups of hydrogen bonds which rupture serially. The escape rate ρ according
to Kramers theory is given by [92]:

ρ ∼ e−
εb,1
kBT . (1.1)

Application of a force F lowers the energy barrier down to εb−Fxb,1 as discussed above.
With constant εb,1 we have

ρ ∼ e
F
F0 , (1.2)

with F0 = kBT/xb,1. Here, kB and T denote Boltzmann constant and temperature,
respectively. This equation was already used by Bell [93] and is therefore referred to
as the Bell equation. Studies of the rupture of single bonds were performed by Evans
and co-workers [92, 94]. More recently, Erdmann and Schwarz discussed the stochastic
behavior of idealized adhesion clusters, which consist of many bonds in parallel [95].
But in FAs in vivo bonds are not all in parallel, they can be arranged into very complex
networks as illustrated in Fig. 1.6(b).

The adhesion clusters discussed by Erdmann and Schwarz [95] and the FBM are
very similarly composed. However, the physics behind bond behavior is fundamentally
different. Bio-molecular bonds disintegrate during time due to thermal fluctuations.
They rupture stochastically if a force is applied. Therefore the bond strength, the most
frequent force the bond ruptures at, increases with pulling speed. All these biologically
very relevant features cannot be included in threshold-based models of fracture. The
assumption of force thresholds leads to a deterministic and not stochastic behavior of
the system. However, there are recent studies, which already incorporate repair [96],
similar to the rebinding mechanisms in the work by Erdmann and Schwarz.
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1.3 Synopsis of the Thesis

The aim of this thesis was to study different network models for the actin CSK. On
the one hand we were interested in a deep understanding of the equilibrium shapes of
the networks, in regard of bond mechanics, topology, size, and geometry. On the other
hand we wanted to compare the rupture dynamics of bio-molecular bond networks to
the results of classical fracture studies. To this end we proceed as given here.

In chapter 2, we first introduce the different network models for adherent cells
(spring models, cable networks, and actively contracting cable networks). Furthermore
we show the network topologies which will be used. We stress the point, that the two
seemingly different subjects of this thesis can be analyzed in the same framework. We
also present the way we model stress fibers. Dorsal stress fibers and transverse arcs are
integrated into the network while ventral stress fibers are assumed not to feel the other
filaments which cross them. Then we introduce the rate-based rupture of the filaments
according to the Bell equation. Two different loading protocols will be used: Constant
displacement of the network sides and linearly increasing displacement. We discuss
traction force reconstruction and how the deformation of a substrate can be calculated.
Finally, we show the numerical algorithms used in this thesis. The algorithms which
are used: conjugated gradient method to calculate the network equilibrium, GrowCut
for image segmentation, MeshGrid for triangulation, and a tree-based algorithm for
percolation.

In chapter 3, we systematically compare the different network models for adherent
cells in regard to the predicted shapes and force distributions. Our main conclusion is
that actively contracting cable networks share many interesting features with adherent
cells. Due to their linear nature, actively contracting spring networks are equivalent
to passive spring networks with a reduced resting length. Passive networks (both from
springs and cables) have a well-defined reference state even in the absence of adhesion
constraints and in general give similar results regarding shape and force distribution,
which is determined mainly by global inputs like the spatial distribution of the adhesion
points. In contrast, actively contracting cable networks do not have a well-defined
reference state because without adhesion constraints, they contract onto a point. In
this case, we find that shape and force distributions are determined mainly by the local
distribution of adhesion sites. The internal force distribution is constant in the bulk
and strongly localizes to the contour, where forces jump by orders of magnitude. This
motivates a detailed study of two contour models, which allow us to derive analytical
predictions which we then compare with the results from the computer simulations.
We also discuss how actively contracting cable networks can be extended to model also
non-linear or adaptive linker mechanics, and comment on the relation of our network
models to tissue mechanics. Large part of chapter 3 has been published before in [97].

Chapter 4 reports the application of the active cable model to experimental TFM
data. We study 3 different cell types. Namely Madin-Darby canine kidney (MDCK)
cells, mouse 3T3 fibroblasts, and human osteosarcoma (U2OS) cells. MDCK cells do not
show stress fibers, therefore they are sufficiently described by the motor force density
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of the network bonds only. In contrast, U2OS cells and 3T3 fibroblasts contain SFs.
Therefore these must be modeled with different motor tensions. Finally, we show that
myosin II inhibition leads to a decrease in motor tension in SFs.

In chapter 5 we extended the static network models to dynamic models of bonds
which stochastically break. The unstrained network can then be understood in the
framework of percolation theory. For networks under prestrain we analyze the statistical
properties of fracture. The second part of this chapter is dedicated to linearly increasing
strain. We find that the statistical properties of dynamic networks differ from the
threshold based fracture networks used for hard macroscopic materials.

16



2

Models & Algorithms

Tissue cells adhering to a planar substrate via discrete adhesion points usually become
very flat and therefore effectively two-dimensional. Only the nucleus, which rises in
the middle, makes them fully three-dimensional, see sketches in Fig. 2.1(a,b). How-
ever, here we focus on lateral contraction and contour effects and thus the nucleus is
expected to play a minor role. In the following we therefore restrict ourselves to two di-
mensions and model the cytoskeletal network as a two-dimensional mesh of mechanical
links joined at N discrete nodes. Nodes are labeled with single indices, i and j. Micro-
scopically links and nodes may represent filament bundles and local accumulations of
cross-linkers, respectively, but in a more general sense, these mechanical elements are
simple representatives of an unknown network architecture which we model in a statis-
tical sense. The network is subject to internal forces originating from molecular motor
activity, ~Factive, and the mechanical resistance of filaments to strain, ~Fmech, compare
Fig. 2.1(c).

2.1 Bond Mechanics

We introduce three fundamentally different kinds of mechanical models for the network
bonds (in this thesis the terms link and bond are equivalent). The simplest case is
a Hookean spring network (HSN) composed of links with resting length L0, which
represent linear springs with spring constant EA/L0, where E is the Young modulus
of the link and A its cross-section. The restoring force acting on a node i due to elastic
strain in the link ij then reads:

~Fij,mech = EAuij~eij , (2.1)

where ~eij = (~Rj − ~Ri)/Lij is the dimensionless unit vector along the link ij. Here,
~Ri and ~Rj specify the node positions, Lij = |~Ri − ~Rj | is the length of the link and
uij = (Lij − L0)/L0 is the strain in the link. The force-extension curve of a single link
in a HSN is shown in Fig. 2.1(d) as a dashed line with short dashes.

The mechanical properties of the cytoskeleton are attributed mainly to the actin
part. Actin is a semi-flexible filament prone to buckling under compression and thus
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(a)

(b)

(c)

Lij

TL0

Fij

−kL0

0

0 L0Lc

(d)

Figure 2.1: Sketch of the system. (a) Side-view of an adherent tissue cell. (b) Top-view.
The cell is assumed to be adherent at four discrete dots. Its contour shows inward directed
shapes resulting from a force balance between inward directed forces and forces in the
boundary. (c) The actin cytoskeleton is tensed by myosin II minifilaments, which actively

contract the network with forces ~Factive. If the network links are strained, restoring forces
~Fmech appear. (d) Force-extension curve Fij(Lij) of a link ij in a simple Hookean network,
a passive cable network, and an active cable network (in order of increasing dash lengths).
(k = spring constant, T = motor stall force per length, L0 = initial link length, Lc =
critical length)
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behaves like a cable, which can be stretched but not compressed. The Hookean assump-
tion of a symmetric elastic response is therefore not valid. The mechanical properties of
actin networks on a coarse-grained scale are more accurately described by assuming a
finite resistance of filaments to tensile strain, uij > 0, but no resistance to compressive
strain, uij < 0. The mechanical restoring forces originating from a link connecting two
nodes i and j in the passive cable network (PCN) are therefore given by:

~Fij,mech =

{
EAuij~eij , L0 < Lij

0, Lij ≤ L0

(2.2)

We show the force-extension relation of the PCN links in Fig. 2.1(d) as a dashed line
with long dashes.

Let us assume that myosin II motor proteins are homogeneously distributed in the
network. Because they are arranged in a parallel fashion, their individual forces add
up. We therefore assume that a link contracts with a force TL0 proportional to its
length, where T is force per length. We also assume that this force does not change as
the filament bundle contracts, because the number of active motors does not decrease.
For a link ij we therefore have:

~Fij,active = TL0~eij , (2.3)

where T > 0 is the tensile force per initial length applied by the motors. The finite
force at zero length is unphysical and we avoid it by introducing an additional rule such
that force is diminished if two neighboring nodes come closer to each other than some
small distance Lc � L0:

~Fij,active = TL0
Lij
Lc
~eij , Lij < Lc. (2.4)

Combining PCN and active contraction, we obtain what we call the active cable
network (ACN), compare the solid line in Fig. 2.1(d):

~Fij =


(TL0 + EAuij)~eij , Lij < L0

TL0~eij , Lc ≤ Lij ≤ L0

TL0
Lij
Lc
~eij , Lij < Lc

(2.5)

Neither the detailed choice of Lc nor the assumption of a linear force reduction below
Lc are crucial for our results.

Active contraction can also be combined with the HSN. However, this simply shifts
the straight dashed line in Fig. 2.1(d), i.e. reduces the HSNs resting length L0 to

L′0 = L0

(
1− TL0

EA

)
. (2.6)

Please note, Eq. (2.6) is only valid for TL0 ≤ EA. In this case it is analogous to the
common HSN with resting length L′0. Therefore we may set Lc = 0. In the following
this network type is not explicitly discussed anymore.
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(a) d = 10ℓ (b) d = 10ℓ (c)

x

y S1

S2

T1

T2

H1

H2

Figure 2.2: Tension-free reference states and topologies under consideration. (a) Square
network with link length ` = 1 and side length d = 10`. (b) Triangular network with the
same ` and d. (c) Unit cells of the topologies under consideration. Link length is ` = 1,
irrespective of topology.

To reduce the number of parameters, we scale all lengths with respect to L0, e.g.
` = L/L0. All forces are scaled as f = F/EA. We define the ratio of active to elastic
forces as

τ =
TL0

EA
. (2.7)

For an ACN we therefore may rewrite the forces acting on a node in the non-dimensionalized
form as:

~fij =


(uij + τ)~eij , 1 < `ij

τ~eij , `c ≤ `ij ≤ 1

τ
`ij
`c
~eij , `ij < `c

(2.8)

In the computer simulations we use `c = 10−3.

2.2 Stress Fiber Modeling

In chapter 4 we extend the network model of the cytoskeleton by inserting inhomo-
geneity into the network. Hereby, we distinguish four different kinds of network bonds.
Normal bonds which represent simple filament bundles, have a motor force density
of τ . These do not interact with ventral stress fibers, which we model as single long
bonds ranging from one fixed node (FA) to another. VSFs are subject to a tension
density τv ≈ τ . In contrast, dorsal stress fibers and transverse arcs are modeled as
sets of serially arranged network links in the network. These serial structures are ob-
tained with fixed points in DistMesh, see below. We will later justify the assumption
τd ≈ τt � τ ≈ τv.

2.3 Network Geometry and Topology

The two main issues of this thesis, cell shape analysis and rupture dynamics of networks,
both are treated in the framework of network mechanics of different topologies. We
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(a)

(b)

Figure 2.3: Triangular network T1 - relaxed vs. prestrained. (a) Free boundary conditions
(FBC). In equilibrium normal stress to upper and lower boundary is zero. (b) Periodic
boundary conditions (PBC). The nodes at bottom and those on top are assumed to be
identical. Parameters: Left: strain 0%, right: strain 200%, Lx = 10, Ly = 6

√
3, i = 0.5,

` = 1.

consider the same regular and irregular topologies for both of them, see e.g. the tension-
free reference state of a network in square topology, see Fig. 2.2(a). If cell shape is
studied, only the filled dots are kept fixed. If we study rupture, we fix (or displace) the
empty nodes as well. We also analyze other simple topologies than the square topology
S1, see Fig. 2.2(c) for their unit cells. For shape analysis as well as rupture analysis,
mainly the network of square external shape is considered. For network topologies
which are not π/2-periodic (H1,H2,T1,T2) the network height is chosen approximately
by its width. Adherent square cells with topologies T2 and H2 are equivalent to those
with T1 and H1, respectively, which follow by π/2−rotation. T2 and H2 are therefore
not explicitly discussed in the cell shape related chapter 3 of the thesis. However,
for rupturing networks it is a priori not clear whether these topologies give the same
results. Therefore, in the rupture related chapter 5 of the thesis we take into account
all 6 topologies.

We also analyze an irregular network topology, the Voronoi construction. To con-
struct a 2D Voronoi network we randomly choose n points ~pi, 1 ≤ i ≤ n, from any
given square S ∈ R2 in the xy-plane. The square S can uniquely be fragmented into
areas Ai, with ~pi ∈ Ai and

Ai = {~x ∈ S : |~x− ~pi| < |~x− ~pj | ∀j 6= i}. (2.9)

The boundary lines of all these areas give the Voronoi construction, which will later
be referred to as VO. Since the nodes at the corners of the square not necessarily are
among the VO nodes, they must artificially be added. To be able to study contour
effects in Voronoi networks, we also draw a square frame around the network.
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(a) (b) (c) (d)

Figure 2.4: Possible predamages to the network. (a) Equally distributed bond removal.
(b) Cut parallel to the applied strain. (c) Cut perpendicular to the applied strain. (d)
Intermediate cut between (b) and (c). Parameters: p = 0.4. T1 network under FBC.

Most of the rupture results presented in chapter 5 are obtained using the T1 net-
work, which has an integer bottom line length Lx. For the simulations we take Lx = 20·i
and Ly = 12

√
3 · i with i ∈ {0.25, 0.5, 1, 2, ..., 11, 12}. This gives total bond numbers

ranging from Ntb ≈ 100 to Ntb ≈ 200000 for the analyzed networks.

Intuitively, there are two different situations for the free network boundaries on
top and at the bottom. If one considers free boundary conditions (FBC), the nodes
with initially largest and lowest y-coordinate are allowed to move freely. Without
bond rupture these boundaries invaginate but in general do not show a round contour,
see Fig. 2.3(a). For periodic boundary conditions (PBC) in y-direction (a cylinder of
infinite radius), Fig. 2.3(b), we treat each node at the bottom of the network as if it
was identical with the one in the top line which initially has the same x-coordinate.

In order to investigate how the bond network deals with damages, we cut some of the
bonds before starting the simulations. Four different kinds of this so-called predamage
are studied, see Fig. 2.4. We quantify predamage by the parameter p ∈ [0, 1]. Equally
distributed removal of p ·Ntb bonds from a network with Ntb is called the ”rand” case,
see Fig. 2.4(a). The other damages under consideration are central cuts parallel (”par”,
see Fig. 2.4(b)), perpendicular (”per”, see Fig. 2.4(c)), and under 60◦-inclination to the
applied strain (”diag”, see Fig. 2.4(d)). The cut length is given by p · dmax, where dmax

denotes the minimal cut length which would lead to loss of percolation. In the case of
the T1 network for par we have dmax = Lx and for per dmax = Ly.

2.4 Bond Rupture and Rebinding

In chapter 5 we assume that bio-molecular bonds (in particular actin filaments) rupture
under force according to a rate τ which is given by the Bell equation Eq. (1.2)

ρij = ρ0e
Fij/F0 , (2.10)

where Fij denotes the force which acts in the bond between node i and node j, ρ0 is
the rupture rate for vanishing force, and F0 is the force unit. To reduce the number of
parameters, times are scaled by τ−10 from Eq. (2.10).
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The rebinding of a broken bond between two nodes i and j must be time dependent,
space dependent, and stochastic. The first is, we introduce a time tmem after which the
network has forgotten the bond between i and j, i.e. the network has a finite memory.
This accounts e.g. for stress fiber retraction after cutting [40]. Secondly, if the distance
between node i and node j, `ij is larger than a maximum rebinding distance `max,
rebinding is prohibited. Randomness is introduced via a rate

γij = γ = const. (2.11)

This gives two additional conditions to stochastic rebinding events. If they all are
fulfilled, a new bond is introduced, which connects nodes i and j again. This new bond
has the same resting length as the old bond between i and j, ` and spring constant
EA/`, with EA equal to the other network bonds.

2.5 Algorithms for Clamped Node Displacement

2.5.1 Constant Displacement

In chapter 5 we simulate situations, in which the filled and empty nodes from the
networks in Figs. 2.2(a) or 2.3(a,b) left are constantly displaced. In that case we use
the so-called next reaction method of the Gillespie algorithm [98, 99]. Let us briefly
describe it here. Given n possible reactions of a system and their respective rates ai, i ∈
{1, ..., n}, first the sum a =

∑n
i=1 ai is calculated. Then the rates are normalized, a∗i =

ai/a ∀i, and two random numbers ξ, ζ ∈ [0, 1] are drawn from a uniform distribution.
The reaction which occurs is reaction j if

j−1∑
i=1

a∗i < ζ ≤
j∑
i=1

a∗i . (2.12)

The time this reaction occurs is given by

t = − ln(ξ)

a
. (2.13)

The Gillespie algorithm has two big advantages compared to time discretization.
First, it is exact in time. Second, if there is no reaction for a long time, no computation
is necessary. Nevertheless, in our simulations we cannot avoid a discretized time running
in parallel to the Gillespie simulation in order to get statistics.

We apply the Gillespie algorithm to study the behavior of a prestrained network of
molecular bonds. In this context, ”prestrain” means that we take the networks shown
in Fig. 2.3 on the left, apply a strain e = 2δx/Lx by pulling each clamped side a length
δx apart and compute the equilibrium. Now we set the system time to zero and keep
the clamped nodes fixed during the simulation. In Fig. 2.3 the clamped nodes are
shown as dots. Following the Gillespie algorithm, we have reaction rates

ai =

{
eFi , for rupture of closed bonds i

γ, for rebinding of open bonds i.
(2.14)
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We stop the calculation as soon as the percolation of one clamped side to the other
has been lost, at the first passage time in the language of [95].

For constant displacement we apply the following procedure:

1. Apply strain e, equilibration, set system time to zero

2. For each (open or closed) bond i:

• if i is closed: ai := eFi (Fi: force in bond i),

• if i is open: ai := γ (if additional constraints forbid rebinding set ai := 0).

3. • Set a :=
∑

i ai, ai := ai/a.

• Draw two random numbers ξ, ζ ∈ [0, 1].

• Add − ln(ξ)/a to system time.

• Find j with
∑

i<j ai < ζ ≤∑i≤j ai.

• Remove or close bond j.

4. Check for percolation, if true: equilibration and return to 2.

5. Exit program.

2.5.2 Linear Displacement

As an extension of the constant displacement we also study node displacement which
linearly increases in time. Because this approach shares several similarities with the
RFM, we discuss the RFM simulation protocol first. For the RFM equilibrium is
achieved by solving the Kirchhoff equations for each node, i.e. the set of linear equations

A~x = ~b. (2.15)

Here the stiffness matrix A contains all the conductivities of the network bonds (the
fuses) and ~b is the vector of the nodal currents. A typical RFM simulation is given by
the following protocol:

1. Increase global load. Equilibration.

2. Check for links with current Ii larger than threshold Ti, if none return to 1.

3. Remove link with largest Ii/Ti.

4. Check for network percolation, if true: equilibration, return to 2.

5. Exit program.
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Obviously, the bottleneck of a simulation according to this protocol is the equili-
bration step which for large systems causes enormous computational costs. There are
very fast algorithms developed to face especially this problem [100, 101].

In our simulations, we also step-wise pull the network apart a unit displacement
dx = 1. After this we equilibrate. We assume that displacement and equilibration
happen instantaneously. We assume, that after the displacement, bond forces do not
change for a time dt. That way, we model a bond network displaced with speed v =
dx/dt. Please note, dx is not identical to the above mentioned δx. However, their
relation is given by δx = m · dx, where m denotes the number of steps taken up to
the time under consideration. The force Fij which acts in the bond connecting nodes i
and j is assumed to be constant during the time dt. That is, the probability that the
bond stays closed over time, qij(t), follows from Eq. (2.10) in dimensionless form and
is given by

q̇ij = −eFijqij . (2.16)

The solution of Eq. (2.16) is qij = exp(− exp(Fij)t). Hence the probability of rupture
of bond ij simply is

pij,rupture = 1− qij = 1− e−eFij ·t. (2.17)

Analogous, the probability of a broken bond to close again (rebinding) is given by

pij,rebind = 1− e−γt. (2.18)

Motivated by the RSM we apply the following procedure:

1. Unit displacement, which takes a time dt. Equilibration

2. For each closed bond:

• draw a random number ξ ∈ [0, 1],

• if ξ < 1− e−eF dt (F : force in the bond), remove bond.

3. If γ > 0: Equilibration.

4. For each broken bond:

• draw a random number ξ ∈ [0, 1],

• if ξ < 1− e−γdt (additional temporary and spatial constraints) close bond.

5. Check for percolation, if true return to 1.

6. Exit Program.
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2.6 Numerical Algorithms

2.6.1 Mechanical Equilibrium with Conjugated Gradients

For almost every numerical result presented in this thesis, it is necessary to calculate
the mechanical equilibrium of bond networks. This has to be done once for cell shape
analysis and several times for rupture studies. Therefore, we need a fast and stable
equilibration algorithm.

Let us assume a network of N nodes, which are labeled with indices 1, .., N . In order
to keep the notation proper, we make use of an adjacency matrix g = (gij) ∈ RN×N ,
which is 1 if nodes i and j are connected and 0 otherwise. Since g is sparse, in real
computer simulations it is replaced by a link list. However, since g allows a closed and
clear presentation, we use it here.

For nodes within the network the total force exerted on a node i is the sum of all
forces applied on the node via bonds to connecting nodes. With g we can write

~Fi =

N∑
j=1

gij ~Fij . (2.19)

In mechanical equilibrium the force on each non-adherent (non-clamped) node has to
vanish: ~Fi = 0 for all non-adherent (non-clamped) nodes i. The existence of adhe-
sion / clamped sites is modeled by fixing the positions of the respective nodes. Thus
the adhesion site geometry / displacement protocol will enter through the boundary
conditions. In the following we will use dimensionless quantities.

Mechanical equilibrium requires the forces on each non-adherent (non-clamped)
node to vanish

N∑
j=1

gij ~fij = 0 ∀ non-adherent / non-clamped nodes i. (2.20)

For a two-dimensional network of N nodes the system of equations (2.20) consists of
2N coupled non-linear equations.

If the left hand side of system (2.20) consisted of arbitrary functions of the ~ri, the
method of choice to solve it would be the Newton-Raphson method [102]. However,
since the left hand side of system (2.20) is a force which has a potential, it is also a
2N -dimensional gradient vector. Therefore we solve the minimization problem for the
potential with the conjugated gradient method (CGM) [103]. Without loss of generality
we use the example of a HSN for demonstration purpose. So we can avoid piece-wise
defined functions in this section.

Given the potential of the whole network:

W : R2N → R, ~r →W (~r) =
1

2

N∑
i=1

N∑
j=1

u2ijgij , (2.21)
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Here, ~r = (~rT1 , ~r
T
2 , ..., ~r

T
N )T contains all the node positions in one vector. The potential

W depends on uij which is a function of `ij = |~ri − ~rj |. That is, via uij the potential

depends on ~r. We can now calculate the gradient of W with respect to ~r, ~f = −~∇~rW (~r):

~f : R2N → R2N , ~r → ~f(~r). (2.22)

Here ~f = (~fT1 ,
~fT2 , ...,

~fTN )T contains all the node forces in one vector. The force acting
on node i then reads

~fi =
(
− (∇~rW (~r))2i−1 ,− (∇~rW (~r))2i

)
= −

N∑
j=1

uij
~̀
ij

`ij
gij . (2.23)

The CGM starts with an arbitrary position ~r0 out of equilibrium, e.g. all free nodes
at their positions from the tension-free reference state. The corresponding force is de-
noted ~h0. The position is updated by calculating the line minimum along the direction
~hl which itself updates according to

~hl+1 = ~f(~rl+1) +
~f(~rl+1) · ~f(~rl+1)

~f(~rl) · ~f(~rl)
~hl. (2.24)

The directions given by Eq. (2.24) satisfy ~hl · ~hm = 0 for l 6= m [104]. This makes the
CGM superior to the steepest descend method (SDM), e.g. used in [15]. In the SDM
the moving directions are the gradients of the potential W themselves, i.e. ~hl = ~f(~rl),
which does not necessarily satisfy ~hl · ~hm = 0 for l 6= m. We stop iterating as soon as
the force on every node (except the periphery nodes) is smaller by at least two orders
of magnitude than the smallest bond force.

2.6.2 Image Segmentation with Otsu’s Method and GrowCut

Since in chapter 4 we simulate real adherent tissue cells, we have to segment the cell
body from the black and white actin-stained images. For these image segmentation
purposes we use the commercial software MatLab. MatLab handles an image as a rect-
angular pixel matrix M . The matrix entries Mij give the signal intensity at pixel (i, j).
MatLab’s image processing toolbox provides an implementation of Otsu’s method [105],
which calculates an intensity threshold for black and white images. We set matrix en-
tries with an intensity higher than the threshold to 1 (inside the cell) and those with
lower intensity to 0 (outside of the cell). We find that this result is not sufficient,
because cell boundaries become very angular. However, this matrix can be taken as
starting point into the algorithm GrowCut [106]. For this purpose, we only use 60% of
the matrix entries. The rest is randomly deleted and treated as unknown.

GrowCut can be easily understood figuratively as spreading bacteria. The seed
pixels outside and inside the cell correspond to bacteria of species A and B, respectively.
Now these bacteria spread on the image. Bacteria of different species fight against each
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other to increase their occupied area. The winner of one fight, which overtakes the
losers pixel, depends on strength and distance of the two competitors. That way, in
the end, the image is segmented by a front line, i.e. the cell boundary. To enhance
smoothness of the front line, one can introduce further rules. For example a bacterium
which is surrounded by too many enemies will die and its pixel will be taken by the
enemies. As we show later, this procedure gives very nice segmented cells.

2.6.3 Triangulation with DistMesh

In order to endow the segmented cells with an actin CSK we generated a network
inside them using the mesh-generator DistMesh [107]. The authors provide a MatLab
implementation of DistMesh, which is directly used by us. It is well known that the
triangular network is the best choice to fill arbitrary geometries with a mesh. Hence
we will not use square or hexagonal network topologies in chapter 4.

DistMesh makes use of a signed distance function dDM (x, y), which in our case
can be obtained via MatLab’s bwdist function. bwdist calculates the euclidean norm
(in units of pixels) from the closest pixel with entry 1. Clever combination of bwdist
applications to the cell image obtained with GrowCut gives dDM (x, y) as the distance to
the cell boundary. Signed means that dDM (x, y) is negative inside the cell and positive
outside. DistMesh starts with regularly distributed nodes in the desired cell. These
nodes are linked via a Delaunay triangulation, which can be seen as complementary to
the Voronoi construction introduced above [108]. This network is assumed to experience
external forces from the boundary, which it must not cross, and from the internal links,
which are assumed as springs of a given (not necessarily) uniform length. In equilibrium,
the links have uniform length. It is possible to define fixed points, which are not varied
by DistMesh. This is very helpful in regard of stress fiber introduction.

2.6.4 Traction Force Reconstruction with FTTC

Note, the term ’traction force reconstruction’ might be misleading. Here, it is not the
traction force which is reconstructed, but traction force per area, i.e. traction stress
~σN .

As mentioned in the introduction, the measured quantity of TFM is the marker
displacement, i.e. substrate strain ~uS . There are several methods to calculate the
traction stress field ~σN from ~uS [17, 28–30]. In this thesis we use the Fourier-transform
traction cytometry (FTTC) algorithm, which is implemented in MatLab code as part
of the program TF reconstruction by Benedikt Sabass [17].

The two-dimensional strain ~uS of the substrate surface is caused by the traction
stress ~σN applied by the adherent cell. According to [17, 29, 109] their relation is given
by the convolution integral

uS,i(~x) =

∫ ∑
j

Gij(~x− ~x′)σN,i(~x′)d~x′, (2.25)
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Figure 2.5: Reconstruction of traction stress. Magnitude of the reconstructed traction
stress field for the cell shown in Fig. 1.5(a). Three different regularization parameters
have been used for reconstruction with FTTC. From left to right: λr = 2.4 × 10−7, λr =
2.4× 10−5 (optimal), and λr = 2.4× 10−3. Data courtesy of J. Stricker and M. L. Gardel.

with the Green function [17]

Gij(~x) =
1 + νS
πES

(
(1− νS)

δij
|~x| + νS

xixj
|~x|3

)
. (2.26)

Here, δij denotes the Kronecker symbol: δij = 1 if i = j and δij = 0 otherwise. ES
and νS are the substrate’s Young modulus and Poisson ratio, respectively. Eq. (2.25)
has to be inverted to obtain ~σN . It is convenient to use a Fourier transformation,
because in Fourier space the convolution integral becomes a simple product. After
spacial discretization and Fourier transformation Eq. (2.25) can be written as [17]

ũS,i,k =

∑
j

G̃ij σ̃N,j


k

, inversion gives: σ̃S,i,k =

∑
j

G̃−1ij ũS,j


k

. (2.27)

The Green function transforms to [17]

G̃ij,k =
2(1 + νS)

ES

(
δij
k
− νSkikj

k3

)
. (2.28)

Because there is very much noise in biological cells, the application of a regulariza-
tion scheme is required. Thereby, the traction stress field is smoothed. For the detailed
calculus please see [17]. The regularized form of Eq. (2.27) is

σ̃N,ik =

∑
l,j

[∑
m

G̃mlG̃mi + λ2rH̃il

]−1
G̃ji


k

. (2.29)

For zeroth order regularization Hij is chosen to be the identity matrix. If the regular-
ization parameter λr is increased, the stress field becomes smoother but information
on smaller length scales is lost. On the other hand does a regularization parameter,
which is too small, lead to very noisy traction stresses, see Fig. 2.5 for an example.
Therefore, an optimal choice of λr is needed. For FTTC the optimal λr is calculated
by an L-criterion [17].
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Boundary Conditions:

~σN(~x2) ~σN(~x3)~σN(~x1)

σS~n = 0 or ~uS = 0

~uS = 0

~σN = σS~n

Figure 2.6: Reconstruction of substrate strain. A tissue cell (light gray) adheres to
the surface of a substrate (dark gray). Strongly simplified, the actin cytoskeleton (red)
connects to the fibronectin coating (green) via integrins (blue). Thereby, traction stress
~σN is transmitted to the substrate, which leads to substrate strain ~uS . The given boundary
conditions are sufficient to calculate ~uS .

2.6.5 Reconstruction of Displacement Fields with celldeform

Numerical calculation of the equilibrium states of the triangular networks obtained via
GrowCut and DistMesh is noise-free. This results in localized traction forces at the fixed
network nodes. This makes it very difficult to compare the smoothed experimentally
obtained traction stress with the simulation result. We therefore put the cart before
the horse: we start with perfect traction stress ~σN and calculate the displacement field
of the substrate ~uS . Then we make use of FTTC like after a TFM experiment, in order
to calculate the reconstructed traction stress ~σ′N .

The stress tensor σS,ij , i, j ∈ {x, y, z}, contains the stresses on a unit cube oriented
with its surfaces orthogonal to the axis of an euclidean coordinate system [109]. Hence,
the unit vectors êi, i = x, y, z of that coordinate system are (anti-) parallel to the surface
normal vectors of the cube. σS,xy, for example, is the stress in y-direction applied to
the cube surface with surface normal vector êx. The stress ~σN on any surface of the
material, which has normal ~n, is related to σS = (σS,ij) via [110]

~σN = σS~n. (2.30)

The substrate strain tensor uS,ij in linear order is given by:

uS,ij =
1

2

(
∂uS,i
∂xj

+
∂uS,j
∂xi

)
. (2.31)

Strain and stress tensor obey the constitutive relation [110]

σS,ij = CS,ijkluS,kl. (2.32)
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2.6 Numerical Algorithms

Note, in this section we use the Einstein sum convention. We assume the substrate to
be homogeneous, isotropic, and linearly elastic. Then there are only two independent
material’s constants, namely the Lamé constants λS and µS :

CS,ijkl = λSδijδkl + 2µSδikδjl. (2.33)

The Lamé constants are related to the substrate’s Poisson ratio νS and Young modulus
ES :

λS =
νSES

(1 + νS)(1− 2νS)
, µS =

ES
2(1 + νS)

. (2.34)

Inserting Eq. (2.33) into Eq. (2.32) we obtain

σS,ij = λuS,kkδij + 2µSuS,ij . (2.35)

In equilibrium
∑

j ∂xjσS,ij has to vanish. Together with Eq. (2.35) this gives the Navier
equation [110]

(λS + µS)∇∇ · ~uS + µS∇2~uS = 0, (2.36)

which has to be solved with the given stress field σN at the top surface and zero strain
at the bottom of the substrate, see Fig. 2.6. The lateral surface can either be assumed
as stress-free or clamped (i.e. with vanishing strain). In the limit of a large substrate
both assumptions give similar results.

The boundary value problem for ~uS is solved with the FEM algorithm celldeform,
which is implemented in C++. celldeform needs the traction stress field on the substrate
surface as input. It must be on a regular grid. Therefore we interpolate the traction
force field first and then divide it by pixel area. celldeform was kindly provided by
Jérôme Soiné.

The polyacrylamide substrate, which was used in the experiments, has νS = 0.5,
i.e. is incompressible. The Young modulus ES varies from 2.8 to 90 kPa.

2.6.6 Percolation Check with a Tree-based Algorithm

To check for percolation of a network we use the fast tree-based algorithm developed
by Newman and Ziff [111, 112]. In this algorithm we investigate the network clusters.
A network cluster is a set of nodes of that network which are connected. Since the
separation of network nodes into clusters is well-defined, each of these clusters contains
a dedicated node which is called root. If and only if two nodes i and j of the network
have the same root, they belong to the same cluster and hence the network percolates
from node i to node j.

The algorithm only needs a label i for each of the N nodes of the network, i ∈
{1, ..., N}, and the so-called pointer array pi. For roots pi is negative. For all other
nodes pi gives the label of another node from the cluster, according to a tree structure.
For every node it must be possible to recursively find the root of its cluster following
the pointers pi.

Initially, every pointer is set to pi = −N − 1, i.e. every node is its own root. We
define the empty state by pi = −N−1. Then for every node i it is checked if a (possible)
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nearest neighbor j is connected to i and if pj 6= −N − 1. In that case the recursive
root-finding routine is applied. If the roots differ, the pointer of the root i1 with the
lower pointer p1 is increased by the pointer p2 of the other root i2. After that, the
pointer p2 is replaced by i1. Hence, i2 is no longer root, but now has root i1. This is
done for every node i.

The actual percolation check then simply reduces to taking the nodes of the two
clamped sides and applying the root finding routine. If there are root nodes which
appear on the one clamped side and on the other clamped side, the network did not
fail yet, if not then it already did. A disadvantage of this algorithm is that it is only
applicable to regular topologies. Thus, it cannot be applied to Voronoi networks. For
Voronoi networks we find the clusters by checking the nodes one by one. This method
is very time consumptive.

2.7 Parameterization

Due to its dynamic and multiscale organization and the known limitations of mi-
croscopy, a detailed model of the actin cytoskeleton is currently out of bounds. In
the face of these uncertainties, our models are not meant to represent the details of the
organization of the actin cytoskeleton. Nevertheless, for practical purposes it is helpful
to parameterize our model using some benchmark values for the actin cytoskeleton.

The elastic modulus of an actin filament, which has cross-section area Afil = 18.8
nm2, was experimentally found to be Efil = 2.8 GPa [113], while typical values for
stress fibers are Afib = 31416 nm2 and Efib = 1.45 MPa [114]. Hence, the Young
modulus of stress fibers is three orders of magnitude smaller than the one of single
actin filaments. This suggests that cross-linkers like α-actinin and myosin II are the
main contributors to elasticity and not the actin filaments themselves. However, the
values for the one-dimensional modulus, EfilAfil = 52.64 nN and EfibAfib = 45.6 nN ,
are effectively very similar, so the one-dimensional modulus is expected to be of the
order of 50 nN .

The mesh size of the cytoskeleton is expected to be typically around L0 = 100 nm.
This is an intermediate value introduced in [80] based on experimental observations of
the actin cytoskeleton in adherent endothelial [115] and fibroblast cells [116]. For the
active force, we estimate that around 1.000 myosin II motors are active in one effective
link. With a stall force of 2 pN per motor head [11], we have T = 2 · 10−2 nN/nm for
the motor force per length. Using Eq. (2.7) and EA = 50 nN , we estimate τ = 0.04
for the active tension in the network.
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3

Contractile Network Models for
Adherent Tissue Cells

Now, we study the different network models for adherent cell contraction, HSN, PCN,
and ACN, in regard of cell shape and contour forces. To this end we mainly use the
square network topology S1. We demonstrate how the cell contour invaginates and that
it exhibits circularity only for ACNs. In order to increase the comprehension of this arc
morphology we relate the ACN to two analytical theories. First the tension-elasticity
model, which has already been used to study adherent cells. Second, an elastic catenary
theory, which is actually used for a chain in the gravitational field. Several extensions
of this approach are discussed also: strain stiffening, link adaptation, homogenization,
and three dimensional networks.

3.1 Equilibrium Shapes

In Fig. 3.1, the results for HSN and PCN are the same for the square shape, Fig. 3.1(a,c),
because these two kinds of networks behave identical as long as all links are tensed.
However, the results are somehow different for the triangle shape, Fig. 3.1(b,d). In
this case, the PCN gives a significantly flatter contour due to the missing response
to compression in the thin arms leading to the adhesion points. The most prominent
examples for compressed links in Fig. 3.1(b,d) are indicated by arrows.

In order to understand our numerical results in more detail, we first note that the
HSN with triangular network topology has a well-defined continuum limit, in which
it corresponds to a two-dimensional sheet with isotropic linear elasticity [64, 65]. The
two corresponding elastic constants are a Young modulus of 2k/

√
3 and a Poisson ratio

of 1/3, where k = EA/L0 is the spring constant of the links. The HSN with simple
cubic topology does not have such a rigorous limit, but in our context it works in a
similar way as the triangular lattice. Therefore similar results as obtained here for the
HSN are also obtained with continuum elasticity theory applied to two-dimensional
cell shapes [79]. Without any adhesion constraint, the HSN contracts isotropically to
a finite size, i.e. the network is uniformly scaled and has a new side length d′ = 10`0.
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(a) (b) (c) (d)
 f

0 0.1 0.2 0.3

Figure 3.1: Tensed Hookean (HSN) and passive cable networks (PCN) with τH = 0.2.
The colorbar gives the dimensionless force f . (a) Contraction of a HSN in the square
reference state. (b) Equilibrium shape of a HSN in triangular reference state. (c) PCN in
square geometry. (d) PCN in triangular geometry. Note the difference between (b) and
(d).

This shape we call the unconstrained reference shape and it is key to understand the
results for HSN. The same shape as shown in Fig. 3.1(a) results if the network contracts
away from its initial state under adhesion constraints or if the network starts from its
unconstrained reference state and its corners are dragged to the desired adhesion points.
This explains the main feature of the force distribution shown by the color coding in
Fig. 3.1(a), namely the strong localization of stresses and strains to the regions around
the adhesion points. With the amount of tension used here, the network can attain its
unconstrained reference state away from the adhesion points and therefore its contour
is essentially flat in the middle parts.

In Fig. 3.3(a) we directly compare the calculated network shapes for the square
geometry to the unconstrained reference shape. In addition, we demonstrate the role
of the link length `. For the small value of tension, τH = 0.2, the contracting network
can reach the unconstrained reference shape over a large region where it is essentially
flat. The smaller `, the faster this contour is reached due to an increased force density
along the contour. For the large value of tension, τH = 0.6, the unconstrained reference
shape is not reached by the contracted network and it stays non-flat along its whole
contour even for rather small values of `.

Figs. 3.2(a)-(d) show the equilibrium shapes of an active cable network (ACN) with
reference state from Fig. 2.2(a) and increasing tension τ . As tension increases, the shape
becomes more and more invaginated, until it collapses onto the zero-area network in
Fig. 3.2(d). This network basically consists of a centrally contracted region which is
connected to the adhesion points by long arms. We therefore call this network the
center tree (CT). Note that this network still retains aspects of the two-dimensional
network, because an effectively one-dimensional structure would collapse onto the so-
called Steiner tree [117] of minimal length, which for a square is not four-fold symmetric.

In contrast to the passive networks, where tension ceases as the unconstrained
reference state is reached, for the ACN no such unconstrained reference shape exists
and without adhesion constraints the shape would collapse onto a single point. This
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(a) (b) (c)

(d) (e) (f)
 f
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Figure 3.2: Contraction of an ACN with square shape. (a) and (b) Contraction of the
network leads to arc formation. (c) With increasing tension tubes form near the adhesion
points. Note the bundling of filaments at the edge. (d) For τ → ∞ the network collapses
onto the center tree. (e) The same situation as in (a) but with ` = 0.5. The contour is
equal to that in (a), even forces are the same. (f) Square Voronoi network with 212 nodes
and 316 links. Note the strong stress localization in the periphery. Tension values are
(from (a) to (f)): τ = 10−3, 10−2, 10−1, 1, 10−3, 10−3.

(a) (b)

Figure 3.3: Boundary line of the different models in square geometry. (a) ACN with
τ = 10−3 (lower set) and τ = 10−2 (upper set). The three lines represent the initial
link lengths ` = 1, 0.1, 0.02 (from top to bottom). (b) HSN/PCN with network tension
τH = 0.2 (lower set) and τH = 0.6 (upper set). The straight line shows the unconstrained
reference shape, while the three curved lines represent different initial link lengths, namely
` = 1, 0.1, 0.02 (from bottom to top within one set).
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(a) (b) (c) (d)
 f

0.001 0.01 0.1

Figure 3.4: Contraction of an ACN with triangle shape. (a)-(c) Contracted equilibrium
shapes for the triangular reference state. (d) Triangular Voronoi network with 175 nodes
and 261 links. Tension values are (from (a) to (d)): τ = 10−3, 10−2, 10−1, 10−3.

explains why no flat parts are observed in the contours of the networks shown in Fig. 3.2.
This figure also shows that the formation of inward directed arcs now corresponds to a
much more inhomogeneous density distribution of filaments: in the bulk of the network
the distance between nodes and thus the filament density remains unchanged, while at
the edges filaments start to bundle strongly along the edge. The color code in Fig. 3.2
shows that stress is strongly localized at the periphery. In the interior, the only forces
acting are the motor forces τ which balance each other at every node. At the periphery,
the force jumps up from τ to much higher values τ + EA∆`j/`, compare Fig. 3.2(a).
The forces are largest close to the adhesion points and decrease towards the center of
the boundary. For large tension (τ > 10−2), tubes are formed near the adhesion points
and the stress distribution along the contour becomes more inhomogeneous.

Fig. 3.2(e) shows the effect of changed discretization for the same tension value
as Fig. 3.2(a). Fig. 3.2(f) demonstrates that for ACN, shape and force values do not
depend significantly on network topology. As an instructive example here we use a
disordered network topology obtained by a Voronoi construction. Even the presence
of relatively large elements in the discretization does not change the invaginated shape
feature of the contracted network. We conclude from Fig. 3.2(e) and Fig. 3.2(f) that
ACN are surprisingly robust in regard to the details of the network topology. Fig. 3.3(b)
gives a more detailed picture for the contour and proves that the lattice constant ` has
an effect, as it increases the force density along the contour as for the passive networks.
However, the effect seems to be considerably weaker than for the passive networks,
compare Fig. 3.3(a).

Similar results as obtained in Fig. 3.2 for the square shape are also obtained for
other initial cell shapes. We checked this in particular for the triangular shape from
Fig. 2.2(b), for which we again observe growing invagination and inhomogeneous bound-
ary stress if we increase τ , see Fig. 3.4(a)-(c). For further increasing τ again tubes are
formed and the triangular network collapses onto the CT Fig. 3.4(c). In all cases, stress
is strongly localized to the periphery. In addition, by analyzing a Voronoi construction
in a triangular shape, we have checked that variation in both cell shape and network
topology do not change our basic results for ACNs, Fig. 3.4(d).
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Figure 3.5: Contraction of networks with square shape with an additional adhesion point
in the middle of the bottom line. (a) HSN model with τH = 0.2. (b) ACN with τ = 10−2.
(c) Relative displacement δ of nodes with x = 5 (vertical middle line) with and without
the additional adhesion point at the bottom. y is the node’s y-coordinate in the initial
network. The four top lines correspond to the HSN while the four bottom lines represent the
ACN. Different symbols show different topologies (square=�, diamond=♦, triangular=4,
hexagonal=©.)

Fig. 3.5 reveals another interesting property of ACN, namely its robustness in regard
to addition of new adhesion points. In Fig. 3.5(a,b) we show the equilibrium shapes
of the HSN from Fig. 3.1(a) and the ACN from Fig. 3.2(b) with one adhesion point
added in the middle of the bottom line. This change in adhesion geometry leads to a
strong change in the global structure of the HSN, but much less so for the ACN. In
case of the ACN model this change at the bottom of the network has little influence
on the positions of nodes not directly connected to the bottom line. In contrast, for
the HSN the additional adhesion point affects the shape of the opposite arc, becoming
more curved in the center. In Fig. 3.5(c) we plot by which distance δ the nodes in the
vertical middle line are pulled down in the negative y-direction upon addition of the
new adhesion point. The plot of log δ versus y is not smooth for numerical reasons, but
clearly shows that the effect decays much more rapidly for the ACN versus the HSN.
In addition to square and triangular network topologies, here we also show results for
rotated square (diamond) and hexagonal networks. Intriguingly, stress in the contour
behaves very differently, compare the color coding of Fig. 3.5(a,b). While in the HSN
stress in the bottom line stays approximately the same, in the ACN it decreases to half
its value, indicating a strong effect on contour forces.

In summary, ACNs behave very differently from HSNs (and therefore also from
the mostly equivalent PCNs). Vaguely speaking, they act more locally than globally.
They are more robust in regard to network topology and adhesion geometry and show
strong localization of the stress to the periphery. Shape and contour stress seems to
be mainly determined by the local adhesion geometry and therefore will be analyzed
in more detail below.
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Figure 3.6: Arc fits for HSN and ACN.
(a) Arc analysis for a tensed HSN. From
bottom to top: τH = 0.1 (+), 0.2 (∗), 0.4
(×), 0.6 (©), 0.8 (�), 1 (♦). Symbols:
Contour. Lines: Straight fits of the lin-
ear contour parts (the three bottom lines),
least square fits of round contour parts to
arcs with constant curvature (the three top
lines). ∗ corresponds to the bottom line
from the networks shown in Figs. 3.1a and
c. (b) Contour analysis for the bottom line
of an ACN with τ = 10−3 (×), 10−2 (+),
2.5 × 10−2 (∗), 10−1 (©), 2.5 × 10−1 (�),
5×10−1 (4) from bottom to top. Symbols
denote node positions of the network arcs
while the lines are least square fits of the
contours to arcs of constant curvature. ×,
+, ©, and dashed line correspond to the
bottom lines from Figs. 3.2a-d.

3.2 Contour Shape and Tension-Elasticity Model

In contrast to HSNs, the contour of ACNs appears to be more circular. Indeed, a
circular arc morphology has been noted before for the shapes of cells adhering to mi-
cropatterned substrates and therefore this shape feature is an important motivation
to study ACNs [15]. We now investigate this important aspect in more detail. In
Fig. 3.6(a) and (b) we show contours of the HSN and ACN from Fig. 3.1 and Fig. 3.2,
respectively. In addition, we vary the tension in the edges (τH and τ , respectively) and
therefore observe more invaginated contours for increased tension.

For the HSN, small tension allows the network to reach the unconstrained reference
shape and therefore the best fit to the middle part of the contour is a straight line.
For larger tension, the unconstrained reference shape cannot be reached anymore and
circular shapes become better fits. This crossover is in marked contrast to the ACN
from Fig. 3.6(b), where circular arcs fit very well for all values of τ . For large τ , the
overall contour starts to deviate from the perfect arc shape because the networks starts
to collapse into tubes near the adhesion points. However, locally (in between the tubes)
the contour stays circular. Another difference between the two network types lies in
the observation that for HSNs, network shape strongly depends on lattice constant `,
while for ACNs, the equilibrium contour is relatively independent of `.

It has been argued before that the circular arc shape feature of the ACNs can be
explained by an analytical theory, the tension-elasticity model (TEM) [15]. For clarity,
here we repeat this analysis and compare it in detail with our network simulations.
Because ACNs do not propagate compression and the motor forces represent a constant
pull in the network, in the TEM the bulk contractility is modeled by a structure-less
surface tension σ. However, elasticity is crucial to understand how the contour reacts to
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Figure 3.7: Schematic representation of the two contour models. (a) In the tension-
elasticity model (TEM), an isotropic surface tension σ pulls the contour in along the normal
direction, while the counteracting line tension λ acts along the tangential direction. r is
arc radius, L is contour length, and d is spanning distance. (b) In the elastic catenary
model, the inward pull is vertical and thus leads to an inhomogeneous line density of force
along the elastic contour.

the internal pull. Therefore the elastic nature of the mechanical network is represented
by an elastic line tension λ, which prevents the contour from collapsing under the
inward pull of the bulk network. This line tension is written as

λ = EA
L− L0

L0
(3.1)

where L is the contour length and L0 is its resting length. Note that we use the same
value EA like for the single links because the elastic line tension will be dominated by
the contribution from the most peripheral line of links. We further assume L0 = αd,
where d is the initial (spanning) distance d between two neighboring adhesion points
(which in the simulations above has been chosen to be 10) and α is a dimensionless
resting length parameter (compare Fig. 3.7 for a schematics). In the following we
restrict ourselves to α = 1, that is we assume that a completely relaxed contour is
straight, but without internal tension. This implies that we neglect the contribution of
the active contractility in the periphery to the line tension.

The relation between surface tension σ and network tension τ , which depends on
network topology and discretization, can be obtained numerically. For this purpose, we
simulate the pulling of a rectangular sheet of network. Surface tension σ then follows
as total force on the pulling boundary divided by its width. Due to this normalization,
the result does not depend much on link length `, thus we use ` = 1 for the simulations.
For all considered network geometries, we find a linear relation:

σsquare = 0.9907 τsquare, (3.2)

σtriangular = 1.6892 τtriangular, (3.3)

σdiamond = 1.0867 τdiamond, (3.4)

σhexagonal = 0.5517 τhexagonal. (3.5)
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Figure 3.8: Relation of arc radii to internal tension of ACN for different dot distances
and comparison to the tension-elasticity model (TEM). Symbols denote simulation results
(� corresponds to square, ♦ to diamond, 4 to triangular, and © to hexagonal topology),
the solid line is the numerical solution of Eq. (3.9) and the dashed line the analytical result
Eq. (3.10). Side lengths are (from bottom to top): d = 10, 19, 31, with critical tensions
σc ≈ 0.114, 0.060, 0.036.

The constant for the square lattice is close to 1 because here all links pull essentially
perpendicular to the boundary.

Given the forces assumed by the TEM, one can derive the shape of the contour
from the force balance. While the surface tension σ acts in the direction of the normal
~n, the line tension λ acts in the tangential direction ~t (compare Fig. 3.7). Because the
elastic line tension is a global quantity, it does not vary with the contour length s and
therefore the contour tension is ~T (s) = λ~t(s). Then the force balance reads

σ~n =
d~T

ds
= λ

d~t

ds
=
λ

r
~n (3.6)

where for the second part we have used the geometrical relation d~t/ds = ~n/r with r
being the radius of curvature. We thus conclude that the TEM predicts circular arcs
with a radius

r =
λ

σ
. (3.7)
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Although this results looks like a simple Laplace law in two dimensions, it is more
complicated, because the arc radius r will depend on global properties like spanning
distance d through the elastic line tension λ from Eq. (3.1).

In order to arrive at an expression for arc radius r as a function of adhesion geometry
and network tension, we use the trigonometric relation

sin

(
L

2r

)
=

d

2r
(3.8)

to replace contour length L by spanning distance d, compare Fig. 3.7. In combination
with Eq. (3.1) (in dimensionless form) and Eq. (3.7), this gives

r =
1

σ

(
2r

d
arcsin

(
d

2r

)
− 1

)
. (3.9)

Since this equation cannot be solved analytically for r, it has to be solved numerically
for given values of d and σ. For small values of σ, the invagination is small and one
can expand the geometrical relation in d/r � 1. This leads to the analytical result

r = 24−
1
3d

2
3σ−

1
3 . (3.10)

In Fig. 3.8 we compare the results from computer simulations for r over a large
range of network tension τ to the results of the TEM with the corresponding range
of surface tension σ, both for the numerical solution of Eq. (3.9) and the analytical
solution Eq. (3.10). We note that the predicted power law behavior applies over a
very large range of tensions, and only breaks down at very large tension σ > 10−2, see
Fig. 3.8. Moreover the numerical analysis of Eq. (3.9) is limited, since for geometrical
reasons r must always be greater than d/2. Therefore, a critical σc exists above which
Eq. (3.9) cannot be solved anymore.

The inverse relation between r and σ in Fig. 3.8 represents a modified Laplace
law for ACNs and thus demonstrates that the concept of an isotropic surface tension
works well to explain cell shape. With the linear relation between σ and τ , this implies
that r ∼ τ−

1
3 . In Fig. 3.8 we also vary the dot distance and again find excellent

agreement between computer simulations and TEM. Thus the elastic effects mediated
by the spanning distance d are well captured by the concept of an elastic line tension.

In summary, the analytical TEM results in a surprisingly good description of the
contour shape of ACNs. In particular, it nicely explains the appearance of circular arcs
and the relation between arc radius r and spanning distance d. As we will discuss in
the next section, however, agreement is less good regarding contour forces.

3.3 Contour Forces and Elastic Catenary Model

Fig. 3.9(a) shows how stress and strain vary throughout a cross-section parallel to the
x-axis of a network with square topology. In the HSN stress decays into the sample,
while for ACN, it jumps up at the periphery. Fig. 3.9(a) also shows that forces in
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Figure 3.9: Force distribution in adherent networks. (a) Force of vertical links which cross
the straight line y = 5.5 in the HSN from Fig. 3.1(a) (top) and the ACNs from Fig. 3.2(a,b)
(bottom, center). (b) Force in the bottom line links of an ACN with σ = 10−3 for different
lattice constants (symbols). From top to bottom: ` = 2, 1, 0.5, 0.2. The straight line gives
the line tension obtained via the TEM, the curved line follows from Eq. (3.19). In both,
(a) and (b), on the x-axis we have the x-coordinate of the center of mass of the links. (c)
Forces on adhesion dots exerted by the ACN (top) and HSN (bottom). Simulation results
are shown as dots, while lines give the power law fits. For the ACN we obtain f = aτ b

with a ≈ 6.16 and b ≈ 0.783 and for the HSN f = aτ bH with a ≈ 4.51 and b ≈ 1.26. (d)
Power law fits of adhesion dot force vs. surface tension. ACN and elastic catenary results
(top line, collapsed) and TEM (low line).

HSNs are much larger than those in ACNs with a comparable equilibrium shape. The
stress distribution in the boundary of an ACN depends on the lattice constant ` of the
network, as shown in Fig. 3.9(b). For both passive and active networks, the force which
is exerted on an adhesion site follows a power law as τH (τ) is increased, see Fig. 3.9(c).
For τ = τH force is much smaller in the HSN than in the ACN. For active and passive
networks of a comparable shape, however, e.g. τH = 0.2 and τ = 10−2, we observe the
opposite behavior.

Although on an absolute scale the variation is not very strong, Fig. 3.2(c) and
Fig. 3.9(b) both demonstrate that for ACNs under large network tension, peripheral
force varies along the contour. In contrast, the tension-elasticity model (TEM), which
is very successful in explaining shape, predicts homogeneous force λ = rσ along the
boundary. Fig. 3.2 suggests one reason which could explain this discrepancy. For ACN,
the links essentially telescope in under contraction and therefore their density along
the contour varies for strong curvature along the contour. This suggests that in order
to explain the spatially varying force in the contour, one has to revisit the assumption
of an isotropic surface tension σ.
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3.3 Contour Forces and Elastic Catenary Model

As an alternative to the TEM, we now investigate another analytical model which
incorporates the effect of varying link density, namely the elastic catenary [118]. In the
elastic catenary, the pulling force on the contour is not along the normal, but along
the direction perpendicular to the original contour, similar to the situation in networks
with square topology. Due to the linear elasticity in the contour, the line density of
links along the contour varies. Since forces in the contour are an order of magnitude
larger than motor forces, see Fig. 3.9(a), we assume the contour links as Hookean
springs when pulled inward. Let σ be the inward force per unit length in the relaxed
state. If the unit length element is under tension it has length 1 + T . Therefore we
have σ/(1 + T ) as force per unit length. We consider an initially horizontal contour
which is pulled downward by a vertical force (as by gravity, compare Fig. 3.7). We call
this inward force again surface tension σ, although now it does not act in the normal
direction. Due to the elastic nature of the contour, the downward force varies along
the contour as ~G(s) = (0,−σ/(1+T (s))), where ~T (s) = T (s)~t(s) is the contour tension
acting in tangential direction. The force balance reads

d~T

ds
+ ~G = 0 . (3.11)

Because the tangent is normalized, it can be written as ~t = (cosφ, sinφ), where φ is the
tangential angle [119]. Different from the TEM, we now have to solve two equations:

d

ds
T (s) cos(φ(s)) = 0 (3.12)

d

ds
T (s) sin(φ(s)) =

σ

1 + T (s)
, (3.13)

Eq. (3.12) can directly be integrated, leading to T cos(φ) = const = λc, while Eq. (3.13)
can be solved via the substitution tan(φ) = sinh(p). This gives

x(p) =
λc
σ
p+

λ2c
σ

sinh(p) + x0, (3.14)

y(p) =
λc
σ

cosh(p) +
λ2c
2σ

cosh2(p) + y0, (3.15)

with a parameter p ∈ [−p0, p0] which cannot be eliminated from the equations. The
integration constants x0 and y0 are determined by the positions of the adhesion sites.
For an infinitely stiff boundary, this equation results in the catenary shape. For a
vanishing resting length, it gives a parabola. Note that circular arcs result rigorously
only for an isotropic surface tension acting along the normal, while here we assume a
vertical force. While in the TEM we assume the line tension λ to be constant along
the whole boundary line, for the elastic catenary only the x-component of tension, λc,
is constant.

With the boundary conditions x(p = 0) = x0 = d/2 ⇒ x(p0) = d we get an
equations system for λc and p0,

σd = 2λc (p0 + λc sinh(p0)) , (3.16)

2σd(λc + 1) = λc (2λcp0 + 4 sinh(p0) + λc sinh(2p0)) , (3.17)
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Figure 3.10: Contracted networks with worm-like chain (WLC) mechanics. (a) PCN
with τH = 0.47. (b) PCN with τH = 0.47 and `n = 0.5. (c) ACN with τ = 1 and `n = 0.5.
(d) Maximum invagination h of linear and non-linear ACN.

which for given σ and d has to be solved numerically. With y0 = d − λc/σ cosh(p0) −
λ2c/2σ cosh2(p0) the boundary line is fully determined.

Consider a circle with center (xm, ym) = (x0, 2λc/σ + 3λ2c/3σ + y0). This gives

(x(p)− xm)2 + (y(p)− ym)2 =

(
λc(1 + λc)

σ

)2

+ O(p4). (3.18)

So the boundary line collapses with a circular arc with radius r = λc(1+λc)/σ. As long
as σ is not larger than 10−2 the relative deviation (λ−λc(1+λc))/λ of this radius from
the one obtained via the TEM is only 4%, that is in this regime, the elastic catenary
model leads essentially to the same result as the TEM with circular arcs. However, in
contrast to the TEM this model predicts a spatially varying boundary tension of

T (p) = λc cosh(p) . (3.19)

The curve without symbols in Fig. 3.9(b) shows that this model qualitatively predicts
the observed minimum in the stress distribution. The force acting on an adhesion dot
is predicted to be

f =
√

2λc (1 + sinh(p0)) . (3.20)

Fig. 3.9(d) shows that this prediction is quite accurate.

3.4 Strain Stiffening

So far, we have treated the network links as cables or springs, in which force increases
linearly with elongation. Hence, the link length is unlimited in principle. As the
links represent filament bundles, in practice they cannot be elongated above a finite
contour length. Another important effect related to the finite contour length is the
observation that thermal fluctuations lead to a non-linear force-extension curve, with
a strong increase of the pulling force at an extension approaching the contour length
(strain stiffening) [120]. To include these physically important effects in our approach,
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Figure 3.11: Arc fits for PCN and ACN
with non-linear links. (a) Contour of the
PCN-WLC from Fig. 3.10(b). Symbols be-
long to different values of τH : 0.1 (+),
0.2 (∗), 0.3 (×), 0.43 (�), 0.47 (♦). ♦
correspond to the bottom line of the net-
work from Fig. 3.10(b). (b) Contour of
the ACN-WLC from Fig. 3.10(c). Symbols
are bottom line node positions, while the
lines are circular fits. Motor force values
are τ = 10−2 (×), 2 × 10−2 (+), 10−1 (∗),
2.5×10−1 (©), 5×10−1 (�), 1 (4). Note,
4 gives the bottom line from Fig. 3.10(c).

we now describe the elastic response of the network links by the worm-like-chain (WLC)
model. The WLC model has been used before to model semiflexible biopolymers like
DNA [121], actin [122, 123] and spectrin [71, 72]. While the WLC proper has vanishing
resting length, here we combine it with a finite resting length to also include the effect
of compression. Thus we use the WLC model to describe the mechanical links as they
are tensed away from their reference state, while the compressed state is modeled as
above (linear response for springs and no response for cables).

Complementing Eq. (2.2) for the PCN, we get

~Fij =

{(
Lij−L0

Ln
+ 1

4

(
1

(1−(Lij−L0)/Ln)2
− 1
))

kBT
L0
~eij , L0 ≤ Lij ,

0, Lij < L0

(3.21)

Here Ln is the difference between maximal extension and reference length. In
dimensionless form we have:

~fij =

{(
uij + 1

4

(
1

(1−uij)2 − 1
))

~eij uij > 0,

0 uij < 0
(3.22)

Force is now given as multiples of kBT/L0, while length is again scaled with L0. Strain
is now defined as uij = (`ij − 1)/`n. Effectively there is only one difference to the
original model, namely the additional term which diverges if the strain uij approaches
1. Without strain, this term vanishes.

For ACNs, Eq. (2.5), we obtain in dimensionless form:

~fij =


(
u′ij + 1

4

(
1

(1−u′ij)2 − 1
)

+ τ
)
~eij , 1 < `ij ,

τ~eij , `c ≤ `ij ≤ 1

τ
`ij
`c
~eij `ij < `c

(3.23)
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We choose `n = 0.5, that is the maximal extension is 1.5 L0. For small tension,
τH < 0.2, the non-linearity does not affect the shape of the PCN much and we observe
the same invagination as in Fig. 3.1. Fig. 3.10(a,b) shows a comparison between linear
and WLC-networks for a large value of tension, τH = 0.47. Obviously the strain-
stiffened network shows a much larger resistance to invagination. We also note that
forces are two orders of magnitude larger in the non-linear model.

ACNs are affected less by the non-linearity, as shown in Fig. 3.10(c). Here we use
τ = 1 and again `n = 0.5. Comparison with Fig. 3.2(d) reveals that the ACN collapses
to a lesser degree than without strain stiffening. This can be quantified by the arc
height h(τ), defined as the maximum distance between initial and current edge in the
equilibrium shape. h is significantly reduced by the non-linearity, Fig. 3.10(d). Thus
much higher motor forces are needed to reach the collapsed state.

In Fig. 3.11(a), the contour of the strain stiffening PCN is analyzed in more detail.
Circle/linear fits are shown as lines. The bottom two are given by straight lines. For
τH < 0.3 the contour of the PCN-WLC is qualitatively the same as that of the linear
one, shown in Fig. 3.6(b). At τH = 0.3 the contour cannot be fitted well by circle or
line. If τH is increased beyond 0.3, the network does not contract any further, but
again expands outward. This surprising effect is special to passive networks and does
not appear for ACNs. For τH > 0.4 the arcs appear to be circular. The ACN-WLC
contour, Fig. 3.11(b), only differs little from the linear ACN contour, Fig. 3.6(b). Arcs
are always circular (except at the regions where tubes form). With increasing τ they
continuously move inward. Comparison with Fig. 3.6(a) reveals that radii typically are
larger in the non-linear case.

In summary, the shapes and forces of ACNs are also surprisingly robust in regard to
the inclusion of non-linear force-extension curves, in particular in regard to the strain
stiffening effects which are expected to occur for actin filaments and bundles.

(a) (b) (c) (d)
 f

0 1 2 3

Figure 3.12: Equilibrium shapes for passive adaptive networks. (a) HSN in square ge-
ometry. On the boundary: ea ≈ 9.40, at the center: ea ≈ 1.75. (b) HSN in triangular
geometry. ea ≈ 9.59 on the boundary, ea = 1 on the thin arms leading to the adhesion
points. (c) PCN in square geometry. Identical to (a). (d) PCN in triangular geometry.
ea ≈ 9.55 on the boundary, ea = 1 on the thin arms. Parameters are: [ea]1 = 10, f0 = 0.5.
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Figure 3.13: Equilibrium shapes for active adaptive networks. (a) Square ACN with
eap ≈ 1.15 for the peripheral links and eai ≈ 1.15 for the internal links. (b) Here: eap ≈ 2.9
and eai ≈ 1.1. (c) Here: eap ≈ 1.5 and eai ≈ 1.5. (d) Here: eap ≈ 7.1 and eai ≈ 2.
Parameters are: τ0 = τ1 = 10−3 (in (a) and (b)), τ0 = τ1 = 10−3 (in (c) and (d)), [ea]1 = 1
(in (a) and (c)), [ea]1 = 10 (in (b) and (d)), f0 = 0.1.

3.5 Link Adaptation

Adherent cells are known to strongly adapt their cytoskeleton to the physical properties
of their environment. During recent years, it has become clear that the actin cytoskele-
ton tends to reinforce under load [124]. In addition, mechanical loading of adhesion
contacts leads to regulatory signals which increase myosin motor activity inside the
cell. Network models are especially suited to study these biologically important effects
in a theoretical framework. In the following, we will investigate which changes occur
in the network if the elastic constant EA and the motor force density T are increasing
with load.

For simplicity, we assume the same force-dependence for both EA and T . We
assume that both quantities initially increase in a linear fashion and then saturate at
constant values, which is the simplest assumption for a process based on enzymatic
regulation:

EA(F ) = [EA]0 + [EA]1
F

F + F0
, (3.24)

T (F ) = T0 + T1
F

F + F0
, (3.25)

where the force scale F0 determines when half the maximal increase has been reached.
We again use dimensionless parameters. Forces EA, T , F are measured in units [EA]0,
i.e. we define τ := TL0/[EA]0 (the same for τ0 and τ1), ea := EA/[EA]0 (the same for
[ea]1, [ea]0 = 1) and f := F/[EA]0 (the same for f0).

For passive networks only Eq. (3.24) must be considered. The results are shown in
Fig. 3.12, where we use the reference states from Fig. 2.2 and apply regulation. The
thicker the link is displayed the stiffer it is. For both, HSN and PCN, the peripheral
links show the largest values of ea. Links parallel to the boundary exhibit stiffnesses
smoothly decreasing with distance from the boundary.
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Figure 3.14: Inhomogeneity ∆ea of the ACN as a function of parameters τ1 and [ea]1.
Parameter values are f0 = 0.1 and τ0 = 10−3 (in (a)), τ0 = 10−2 (in (b)).

We next analyze the ACN from the reference state shown in Fig. 2.2(a) in com-
bination with Eqs. (3.24) and (3.25). Fig. 3.13 shows the equilibrium shapes. To be
able to compare to the non-adaptive case (Fig. 3.2(a,b)), we choose the same motor
forces here. For [ea]1 = 1 we do not observe strong inhomogenization. However, if [ea]1
is increased to 10, Fig. 3.13(b,d), the peripheral links clearly become stiffer than the
internal ones. For the adhesion geometry considered here, all the peripheral links have
almost the same stiffness. The same holds for the rest of the links. We can therefore
describe different shapes just by measuring their maximum Mea and minimum mea

equilibrium link stiffness. In Fig. 3.14 we present ∆ea := Mea−mea as function of [ea]1
and τ1. Increase of [ea]1 or τ1 leads to stiffer links. Increase of [ea]1 at constant τ1
leads to a larger difference between stiffness in boundary and interior. Beyond a certain
threshold (≈ 0.1 in Fig. 3.14(a)) increase of τ1 leads to equal stiffnesses in boundary
and interior of the network.

In summary, for passive networks the adaptation response is spatially continuous,
while for actively contracting networks, it is strongly localized to the rim. This nicely
agrees with experimental observations that strong peripheral actin bundles typically
line the cell contour [15]. In particular, our model suggests that this effect is strongly
determined by the mechanical properties of the underlying networks.

3.6 Relation to Tissue Shape

Tissue contraction with discrete pinning sites is very similar to cell contraction since
adherent tissues also show invaginated arcs [15, 125]. However, in this case the spatial
dimensions of the pinning objects tend to be relatively large. In order to include this
effect, we have simulated a circular network contracting around four circular dots of
finite size, see Fig. 3.15(a). All nodes on the circles are fixed in space. Motor force τ
is increased stepwise and nodes coming closer to each other than `c = 0.01 are glued
together and in the following act as one [44]. Relative dimensions are taken from [125],
where a microtissue tethered to four cylindrical posts is analyzed. With the ACN we
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Figure 3.15: Contraction of an ACN anchored to dots of finite size. (a) Initial situation.
Round tissue with radius rt adherent to 4 round dots of finite radius rd which form a square
with side length dd: (b) Contracted tissue. Parameters are: rt = 38, rd = 4, dd = 36,
τ = 0.1.

are able to reproduce the typical arc morphology of the contracted microtissues, see
Fig. 3.15(b). We note that this is not possible with a FEM model approach, as this
leads to flat contours as for HSN [125]. Thus ACN are a useful model both for cells
and tissues.

3.7 Homogenization

In the networks considered up to this point, the bond length of the undeformed reference
state was assumed to be 100 nm. However, tissue cell dimensions normally are up to
100 µm, i.e. 1000 times larger. Hence, in this section we view the cell cytoskeleton as a
continuous material. We discuss a homogenization approach of the presented models.
Thereby, we follow a homogenization technique which was used previously to describe
actin networks growing from a cylinder surface [78].

Consider again the square network from Fig. 2.2(a) but for large n, see Fig. 3.16
(left). Then each node in the undeformed reference state can be addressed via (νx, νy) ∈
{0, .., n}, Fig. 3.16 (middle). The homogenization step transforms the discrete variables
(νx, νy) into coordinates (λx, λy) ∈ [0; d]2, Fig. 3.16 (right) (with λi = νi`, i = x, y).
The node positions in the deformed state are given by a continuous function ~ϕ(λx, λy).

In the square topology two links, ~Bx and ~By, are sufficient to span each cell, Fig. 3.16
(middle). In λx-direction we can use a Taylor expansion to get

~ϕ(λx + `, λy) ≈ ~ϕ(λx, λy) + `∂λx ~ϕ (3.26)

49



3. CONTRACTILE NETWORK MODELS FOR ADHERENT CELLS

Network Model ContinuumLattice Unit Cell

~ϕ(λx, λy + ℓ)

~ϕ(λx, λy) ~ϕ(λx + ℓ, λy)

λy

λx

~By

~Bx

n → ∞

d = nℓ

d
=

n
ℓ

Figure 3.16: Homogenization of square networks. The lattice unit cell (LUT) in the S1

network is spanned by the basis { ~Bx, ~By}. Therefore, ~Bx and ~By span the whole network.
In the limit n→∞ the network becomes a continuum.

and therefore
~Bx ≈ `∂λxϕ (3.27)

The situation for λy is completely analog: ~By ≈ `∂λyϕ. In the following we will
abbreviate ∂i := ∂λi for i = x, y.

For one lattice unit cell (LUT) of the HSN the free elastic energy is given by:

f( ~Bx, ~By) =
k

2

(
(| ~Bx| − `0)2 + (| ~By| − `0)2

)
=

f(~ϕ) =
k`2

2

(
(|∂x~ϕ| − τH)2 + (|∂y ~ϕ| − τH)2

)
. (3.28)

Here `0 ≤ ` denotes the springs’ resting length, which is related to the tension of HSNs
τH via `0/` = 1 − τH . In the following we abbreviate τH := 1 − τH . k is the spring
constant. For the whole network f has to be integrated

F [~ϕ] =
1

`2

∫
[0;d]2

dxdyf(~ϕ(x, y))

=
k

2

∫
[0;d]2

dxdy
(
(|∂x~ϕ| − τH)2 + (|∂y ~ϕ| − τH)2

)
. (3.29)

The first variation of the free energy F with respect to the continuous function ~ϕ
is given by δF = ∂εF [~ϕ+ εδ~ϕ]|ε=0. This gives:

δF =
k

2

∫
[0;d]2

dxdy

( |∂x~ϕ| − τH
|∂x~ϕ|

(∂x~ϕ) · (∂xδ~ϕ) +
|∂y ~ϕ| − τH
|∂y ~ϕ|

(∂y ~ϕ) · (∂yδ~ϕ)

)
(3.30)
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(a) xxxx (b)

Figure 3.17: Boundary line for HSN obtained by homogenization. (a) The blue line
gives the result from the numerical simulation with τH = 0 and ` = 1. The simulation
result for ` = 0.1 and τH = 0 (black) and the solution of the Laplace equation (red) are
almost perfectly collapsed. (b) Boundary lines for simulations τH = 0.25 and solutions
of Eq. (3.32) with τH = 0.75. Colors are analog to those in (a). The side length of the
networks is d = 10. We use dx = 0.5 for the finite differencing algorithm.

Integrating by parts gives, since the boundaries are not varied (δ~ϕ = 0 at adhesions):

δF = −k
∫

[0;d]2

dxdy

(
∂x

( |∂x~ϕ| − τH
|∂x~ϕ|

(∂x~ϕ)

)
+ ∂y

( |∂y ~ϕ| − τH
|∂y ~ϕ|

(∂y ~ϕ)

))
· δ~ϕ. (3.31)

Because the test function δ~ϕ was chosen arbitrarily, δF = 0 requires

∂x~Sx + ∂y ~Sy = 0, (3.32)

with the stresses ~Sx, ~Sy given by

~Sx =
|∂x~ϕ| − τH
|∂x~ϕ|

(∂x~ϕ), (3.33)

~Sy =
|∂y ~ϕ| − τH
|∂y ~ϕ|

(∂y ~ϕ). (3.34)

The adhesions at the corners are kept fixed, hence we have Dirichlet boundary
conditions (BCs):

ϕ1(0, 0) = ϕ1(0, d) = ϕ2(0, 0) = ϕ1(d, 0) = 0, (3.35)

ϕ1(d, 0) = ϕ1(d, d) = ϕ2(0, d) = ϕ1(d, d) = d. (3.36)

The stress orthogonal to the cell boundary must vanish in equilibrium:

S⊥ = 0. (3.37)

Hence, the system of equations (3.32)-(3.37) can be solved numerically. For τH = 0
(τH = 1) this equation system reduces to the Laplace equation ∆~ϕ = 0 with the
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Dirichlet BCs, Eqs. (3.35),(3.36), and the Neumann BCs ∂x~ϕ = 0 and ∂y ~ϕ = 0 at
the free edges. This system can easily be solved with finite difference methods, see
the appendix A.1 for more information. Fig. 3.17(a) shows the solution of the Laplace
equation in comparison to simulation results. For large lattice constant ` = 1 the
homogenized boundary is not a good approximation, but for finer lattices the boundary
fits very well. The homogenization can be seen as the limit of small lattice constants,
as one could expect.

For τH < 1 the situation is more difficult, because then the stresses Eqs. (3.33)
and (3.34) cannot be simplified. Motivated by the boundary line from Fig. 3.3(a),
which shows that HSNs for moderate tensions τH ≈ 1 only close to the boundary differ
from the freely compacting shape, we assume homogeneous contraction of the network
orthogonal to the boundary. For the Neumann BCs this yields:

∂xϕ1(0, y) = ∂xϕ1(d, y) = τH , (3.38)

∂yϕ2(0, y) = ∂yϕ2(d, y) = 0, (3.39)

∂xϕ1(x, 0) = ∂xϕ1(x, d) = 0, (3.40)

∂yϕ2(x, 0) = ∂yϕ2(x, d) = τH ∀x, y ∈ [0, d]. (3.41)

The numerical solution of Eq. (3.32) for τH = 0.75, i.e. τH = 0.25 in combination
with Eqs. (3.38)-(3.41) is shown in Fig. 3.17(b). Qualitatively, there is good agreement
between the homogenization solution and the simulation result for ` = 1. But this
boundary is definitely not the continuum limit of the network, see in particular the
corners which for `→ 0 become very thin. This cannot be reproduced in the homoge-
nization approach, if using the BCs from Eqs. (3.38)-(3.41), which are only exact at the
center of the boundary, where the three lines collapse. The problem of closure of the
equations is even worse for ACNs, which we cannot homogenize with this technique.
Therefore, we shift the homogenization approach of ACNs to the appendix A.2.

3.8 Arc Geometry in 3D Structures

In this section we extend the network models to three spacial dimensions to model
ACN cubes. Naively there are two starting points for a 3D extension of the ACN.
On one hand there are the experiments on fibroblasts in 3D scaffolds [126], which
resemble two-dimensional mats rotated in space. This motivates the discussion of a
cube fixed at its corners which only consists of its 6 square surfaces. We show such a
contracted cube in Fig. 3.18(a). The invagination on the cube edges is very similar to
the invagination of the boundary line for the 2D network. Different to the flat network,
the surface shows vertical invaginations as well, see Fig. 3.18(c). On the other hand, we
model a complete three-dimensional cube, whose inner is filled with a cubic network,
i.e. an actively contracting three-dimensional material. Of course there is stronger
invagination of surfaces and edges compared to the hollow situation, see Fig. 3.18(b)
and (d). But in both cases the cube edges appear circular.
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(a)xx xxxxx (b)xxxxxx

(c) (d)

Figure 3.18: 3D shapes of ACN cubes. (a) Only boundary areas. (b) Filled 3D network.
For visualization reasons only three surfaces and three initially parallel planes are shown.
Dots denote fixed points. (c) and (d) Cubes from (a) and (b) seen from above. Nodes have
been interpolated to give a continuous height function. In (a) and (b) different link colors
are used for different surfaces. Colors in (c) and (d) give the height of the top surface in
z-direction. We chose τ = 7× 10−4 and d = 25` here.
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Figure 3.19: Arc fits for ACN in cube shape. (a) Contour analysis of the hollow cube. We
plot the line which initially collapses to the x-axis with τ = 10−3 (×), 10−2 (+), 2.5×10−2

(∗), 10−1 (©), 2.5 × 10−1 (�), 5 × 10−1 (4) from bottom to top. Symbols denote node
positions of the network arcs while the lines are least square fits of the contours to arcs of
constant curvature. (b) Contour analysis of the filled cube. Analog to the analysis in (a),
here parameters are τ = 10−3 (×), 10−2 (+), 2.5× 10−2 (∗), 5× 10−2 (©), 7.5× 10−2 (�)
from bottom to top.

To test the circularity of the cube edges, we analyzed the cube edge which initially
collapses with x-axis. This line is first rotated into the xy-plane, so the same least-
square fitting procedure as discussed in section 3.2 can be applied.

We basically observe the same features for the 3D network as for the 2D network,
Fig. 3.19. Increase of motor force leads to network collapse to the CT, which is different
from the 2D case because the remaining non-adherent node is located at the center of
the cube. It has a distance

√
3d/2 to the fixed points. Comparing Fig. 3.19(a) and (b)

we learn that there is much less motor force needed to reach the CT if the network is
filled. This result is not surprising, since the internal links contribute to invagination.

3.9 Summary

Motivated by the network nature of the actin cytoskeleton and its effectively 2D or-
ganization in mature adhesion to flat substrates, we have modeled adherent tissue cell
contraction by 2D network models. The main aim of this chapter is to achieve a de-
tailed comparison of the shapes and force patterns for different network types, namely
Hookean spring networks (HSNs), passive cable networks (PCNs), and active cable
networks (ACNs).

The shape of a HSN can be understood best by considering the shape of its uncon-
strained reference shape. If tension is not too large, the network contour follows the
unconstrained reference shape at regions sufficiently far away from the adhesion sites.
Closer to the adhesion sites, the network deforms and stress and strain accumulate.
In contrast, the ACN does not have an unconstrained reference shape and without
adhesion constraints would contract into a point. Therefore no signature of the un-
constrained reference shape (like flat parts for a square-shaped lattice) appear in the
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3.9 Summary

contour. Because it does not resist compression, stress and strain are not propagated
much into the network and are strongly localized to the contour.

One of the most striking difference between the different network types revealed by
our analysis is the fact that in passive networks, local changes to the adhesion geometry
changes the network globally. This is in marked contrast to the active network, where
the addition of local adhesions has only a local effect on the boundary. However, in
this case the change in spanning distance has a large effect on the stress in the contour,
as predicted by the tension-elasticity model (TEM). The TEM is especially suited to
quantitatively predict the shape of an ACN, namely the circular arcs observed between
neighboring adhesion points and the scaling of their radius with spanning distance and
surface tension.

Despite this success, the TEM does not capture all aspects of the network model.
While the TEM assumes constant contour tension, the computer simulations reveal
that tension varies along the contour. An elastic catenary theory qualitatively predicts
that tension decreases towards the middle of an invagination due to local changes in
link density along the contour. However, it does neither predict the quantitative details
of the contour stress nor the circular arc morphology.

In the case of very large tension, both network types develop different features.
For the passive networks, the invaginations tend to become more round, as the uncon-
strained reference shape becomes so small that the contour cannot reach it anymore. In
contrast, the active network develops straight features, because the network collapses
into tubes at the adhesion points. Indeed the formation of tubes has been observed
experimentally and eventually leads to pearling through a Rayleigh-Plateau instabil-
ity [82]. The region between the tubes always stays circular for ACN.

Network models are ideally suited for multi-scale modeling because physical prop-
erties can be easily added on the level of single link and lead to non-trivial effects on
the level of cell shape and forces. In order to demonstrate this important aspect, we
have studied two important additional features of the cytoskeleton. First non-linear
links were introduced via the worm-like-chain model (WLC). In the WLC case the
passive square network first contracts and then expands again as tension is increased.
The ACN requires much larger tension values to contract compared to the linear case.
Otherwise the arc morphology is essentially the same as in the linear case.

As a biologically very relevant aspect of the cellular cytoskeleton, we also have
studied the adaptation response of network links. For certain parameter values, a
saturation response for both elasticity and tension leads to a strong difference between
EA and T of boundary links, which are strongly increased, and EA and T of internal
links, which are increased much less. Similar aspect have been addressed before in
the framework of Finite Element Modeling (FEM) [79]. In this case, the biochemical
regulation has been modeled with more detail. Both the resulting cell shapes and the
formation of stress fibers inside the cell demonstrate that the FEM model strongly
resembles the HSN studied here. Therefore it would be interesting to combine the
detailed biochemical model with the actively contracting cable network studied here.

55



3. CONTRACTILE NETWORK MODELS FOR ADHERENT CELLS

Active cable networks have also been shown to describe the circular arc morphol-
ogy of tissues pinned at discrete sites [15]. Because here arc radius also scales with
spanning distance as for the arc radius of strongly adhering cells, the tension-elasticity
model seems to capture all essential element of this situation. In the tissue case, the
cable network represents the fibrous nature of the collagen matrix and the active con-
tractility corresponds to cell contraction. Because in addition water can flow out of
the contracting cell-matrix composite, volume is not conserved and compression is not
propagated. Therefore the standard models of elasticity are strictly speaking not ap-
propriate. Indeed they do not predict the circular arc morphology, but rather show flat
contours corresponding to the unconstrained reference shape of the elastic model [125].

It remains a challenging task to relate the microscopic network model to a macro-
scopic continuum theory. By applying a homogenization technique to the HSN, we
were able to reproduce its equilibrium shape by solving a partial differential equation.
It is desirable to improve this technique and to bridge the gap between the ACN and
continuum theories of active materials.

We briefly discussed extensions of the ACN to three spacial dimensions. For this
purpose, we modeled cubes of active cables. If the cubes consists only of their surfaces,
the cube edges behave similar to the edges of flat square networks. Moreover, for small
motor forces, maximum invagination in 3D is proportional to maximum invagination
in 2D.

In summary, HSN, PCN and ACN are simple model systems which however show
surprisingly rich responses to internal contractility and therefore lead to interesting con-
clusions about the physical elements required to endow cells with a sense of geometry.
ACN seem to be very appropriate to model strongly adherent tissue cells as they not
only implement some of the most important fundamental features of the cytoskeleton
(asymmetry under tension and compression, contraction by molecular motors), but also
lead to functions which are very reminiscent of real cells (robustness under structural
re-arrangements and adaptation to local adhesion constraints).
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4

Application of the Active Cable
Model to Experimental Data

In this chapter we use the ACN model introduced in the previous chapter to analyze
the traction stress distribution of several tissue cells adherent to the surface of elastic
substrates. Therefore, our experimental collaborators from the Gardel Lab (University
of Chicago, IL, USA) provided actin- and paxillin-stained cell images as well as associ-
ated traction stress data obtained via TFM for different cell types. We assume that in
these cells actin and paxillin are present over the whole cell area. Hence, segmenting
e.g. the actin part out of the actin-stained images gives the cell area and segmentation
of islands of high intensity out of the paxillin-stained images gives focal adhesion masks.
FA masks are necessary to find the network nodes which connect the actin network to
the substrate. Using the active cable network, we are able to achieve good agreement
with the experimental data in regard of cell shape and traction stress. Please note:
Every experimental data we present in this chapter and in the appendix B is courtesy
of the Gardel Lab.

4.1 Cells without Stress Fibers

In Fig. 4.1 on the left we show the paxillin-stained images, since we do not have actin
data, for two Madin-Darby canine kidney (MDCK) cells ((a): cell A, (b): cell B). After
contrast enhancement, cell area can be recognized with the eye. Like in the previous
section we assume that the nucleus, the black spot in the center, plays a minor role for
lateral contraction. Therefore we disregard it.

We apply the algorithms GrowCut, see section 2.6.2, and DistMesh, see section 2.6.3,
to produce the tension-free reference states of the cells. These are shown on the right
of Fig. 4.1 as background (red). The contracted equilibrium state (blue) of the ACN is
plotted in front of this. The network nodes shown in black coincide with regions of very
high signal intensity, i.e. FAs (bright white spots on the paxillin images). Therefore,
these nodes are kept fixed during the simulations.
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4. APPLICATION OF THE ACN TO EXPERIMENTAL DATA

(a)
10 µm

(b)
10 µm

Figure 4.1: Cell shape of MDCK cells. Paxillin-stained images of Madin-Darby canine
kidney (MDCK) cells (black and white, paxillin density increases with signal intensity).
Tension-free reference states obtained with GrowCut and DistMesh (red), contracted equi-
librium states for τ = 3 · 10−5 (blue), mean initial link length ¯̀= 5 px, with 1 px = 0.107
µm. To model adhesion we fixed the nodes located at the FAs (marked as black dots).
The length of the bar is 10 µm.
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4.1 Cells without Stress Fibers

We see in both, Fig. 4.1(a) and (b), that the initial (red) area has shrunk to the
contracted (blue) area due to motor force. In particular, all links in the intersection
have strongly contracted. The boundary between red and blue can be interpreted as
the lamellipodium-lamella interface, since the lamellipodium does not adhere to the
substrate at the leading edge. In contrast to cell B, cell A exhibits a large spanning
distance between two FAs on its left side and therefore strong invagination. If one aims
at a more adequate description of cell A, it might therefore be necessary to introduce
some boundary reinforcement to prevent this strong invagination.

Now we explore the traction stress the cells apply to the substrate. In the ex-
periments, this is done via TFM. As discussed in the introduction, substrate strain
is obtained by measurement of fluorescent marker positions. First, with the cell on
the substrate, and then without the cell. This measurement is biased by noise in the
cell. Hence, for the traction stress reconstruction the FTTC regularization scheme is
applied. We have described it in more detail in section 2.6.4. In contrast to the exper-
iment, simulation results are proper. That is, we know the exact position and traction
force on every fixed node, i.e. on every adhesion. In order to put the simulation results
on the same level as the experimental ones, we calculate the substrate deformation.
For this purpose we use the FEM program celldeform, compare section 2.6.5. We can
then apply FTTC with the same regularization parameter to obtain the traction stress
distribution.

We show the traction stress magnitudes of MDCK cells in Fig. 4.2. Both cells show
stress accumulation at the FAs close to the boundary. Note, there is an abnormality
of unknown origin in the center of cell B. If we ignore this abnormality, we find that
the traction stress distributions obtained numerically fit the experimental results quite
well. See in particular the two maxima at the left of cell A (simulation result). This
stress increase results from the large spanning distance of the FAs, hence this can be
understood with the TEM. The two large stress peaks at the top of cell A cannot be un-
derstood in our framework. We can only speculate, that some actomyosin concentration
up there might cause the large stress.

We have analyzed another MDCK cell (see appendix B.1 for details). Although
this cell was experimentally studied on a much softer substrate (ES = 8.4 kPa) than
cells A and B (ES = 16.2 kPa), we numerically find well reproduction of traction stress
distribution using the same parameters. For all three cells we use mean link length
` = 5 px and motor force density τ = 3 · 10−5, which with Eq. (2.7) and EA = 50 nN ,
L0 = 1 px = 0.107 µm leads to T ≈ 14 pN/µm. That is, there are 7 myosin II heads
bound to one actin filament of length 1 µm at a time, i.e. there is very low myosin II
activity in MDCK cells.

In general we can say that the ACN leads to stress accumulation at the boundary
peaked at focal adhesions. The larger the distance between the FAs, the higher the
stress. This appears to be sufficient for MDCK cells, but for fibroblasts and other cells
with stress fibers this is certainly not true, as we will discuss in the next section.
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4. APPLICATION OF THE ACN TO EXPERIMENTAL DATA

(a)

(b)
Traction Stress [Pa]

 

 

0 50 100 150

Figure 4.2: Magnitude of the traction stress applied by MDCK cells. For the cells from
Fig. 4.1(a) and (b). The experimental result is shown on the left while its corresponding
simulations result we depict on the right. Parameters are the same as in Fig. 4.1.
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4.2 Cells with prominent Stress Fibers

4.2 Cells with prominent Stress Fibers

We performed the same operations also for other cell types. Fig. 4.3(a) and (b) show
the cell shapes for U2OS cell and a 3T3 fibroblast, respectively. This figure is arranged
similar to Fig. 4.3 with an actin-stained image instead of a paxillin one. In general,
cells of these types do not show FAs arranged in such a regular fashion, as found e.g.
in Fig. 4.1(b). Hence, modeling fibroblasts and U2OS cells by the simple ACN leads to
strong invaginations of the cell boundary accompanied by stress accumulations at FAs
with large spanning distances.

Unfortunately due to lack of data for MDCK cells we cannot directly compare
the actin images. However, there are many pronounced elongated structures of high
intensity, i.e. stress fibers, visible for 3T3 and U2OS cells. The different kinds of SFs
can be easily identified by hand. SFs reinforcing the boundary are TVAs, while DSFs
usually are oriented orthogonal to the cell boundary with their distal end (the one which
is closer to the boundary) at a focal adhesion. VSFs are the long straight structures
which can cross the cell center. We model SFs as described in 2.2, namely with different
motor force densities, τ for normal network links, τd for DSFs, τt for TVAs, τv for VSFs.

We found that increase of tension per length in DSFs and TVAs compared to normal
filaments and VSFs leads the ACN to reproduce cell shape, see Fig. 4.3. Please note,
since VSFs are not integrated into the meshwork the force they apply to their associated
FAs scales with their total length, whereas DSFs force on FAs only scales with the mean
link length of the network.

Fig. 4.4(a) and (b) show the traction stress magnitudes for 3T3 fibroblasts and
U2OS cells, respectively. Compared to MDCK cells traction stress is much larger here.
We can identify distinct force peaks which can be reproduced with the ACN, left. The
stress peaks between boundary and nucleus indicate that these SFs and FAs possibly
are not connected in the real cell. This might be an error due to the 2D approximation,
because DSFs grow above these FAs.

4.3 Manipulation of Stress Fiber Formation

Fig. 4.5 (left) shows an U2OS cell treated with an inhibitor for the formin mDia. Since
this prevents SF formation, their number is drastically reduced compared to U2OS cells
in wild type. However, motor force density of the different components is obviously not
affected by mDia inhibition. So we find the same optimal parameters valid for mDia
inhibited cells as for the wild type U2OS cells. That is, mDia inhibition does not affect
the motor force density in existing stress fibers.

4.4 Manipulation of Stress Fiber Contractility

In this section we explore the influence of Y-27632 on SF contractility, i.e. motor tension.
Therefore we discuss several U2OS cells treated with different amounts of this agent.
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4. APPLICATION OF THE ACN TO EXPERIMENTAL DATA

(a)
10 µm

(b)
10 µm

Figure 4.3: Cell shape of 3T3 and U2OS cells. Actin-stained images of a human os-
teosarcoma (U2OS) cell (a) and a 3T3 mouse fibroblast (b). The setting is the same as in
Fig. 4.1 but we model stress fibers differently here. DSFs and TVAs are shown in yellow
and ventral stress fibers in green (Only in (a), in (b) DSFs and TVAs are not highlighted.).
We use τd = τt = 0.003, τv = τ = 10−5, and ¯̀= 5 px for (a) and τd = τt = 0.02, τv = 10−4,
τ = 10−5, and ¯̀= 5 px for (b). The length of the bar is 10 µm.
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4.4 Manipulation of Stress Fiber Contractility

(a)
Traction Stress [Pa]
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(b)
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Figure 4.4: Magnitude of the traction stress applied by 3T3 and U2OS cells, for the
cells from Fig. 4.3(a) and (b). The experimental result is shown on the left while its
corresponding simulation result we depict on the right.
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Figure 4.5: Cell shape and traction stress magnitudes of an mDia inhibited U2OS cell.
From left to right: Actin-stained image, equilibrium state from network model, experimen-
tally obtained traction stress, traction stress calculated from simulation results. Parameters
are those from Fig. 4.3(a). Traction stress is given by a heatmap and in Pa. The length
of the bar is 10 µm.

Fig. 4.6(a) and (b) show cell shape and traction stress magnitude for U2OS cells
treated with 2 µM and 10 µM , respectively. These cells have more TVAs than U2OS in
WT and tend to quite round contours. With increasing Y-27632 concentration traction
stresses strongly decrease. The maximum traction stress is several hundreds of Pa
without inhibition, and only up to 200 Pa for 2 µM and 50 Pa for 10 µM of y-27632.
A maximum traction stress of 50 Pa is obviously already in the regime where thermal
fluctuation disturb the measurement of the displacement fields. So the experimentally
obtained traction stress distribution has to be interpreted in a more quantitative way.

We analyzed 8 U2OS cells treated with Y-27632 in total (besides 5 U2OS cells
without Y-27632). 3 cells for 2 µM , 2 cells for 5 µM and 3 cells for 10 µM . To
test whether motor tension is affected by myosin II inhibitor concentration or not, we
varied the same parameters for all 8 cells, see appendix B.4 for details. We see that τd
decreases for increasing inhibitor concentration. This function is shown in Fig. 4.6(c).

4.5 Summary

In this chapter we modeled real cells with the active cable model. Input is generated by
segmentation of actin- and paxillin-stained cell images and triangulation. Madin-Darby
canine kidney (MDCK) cells, which do not exhibit actin stress fibers, are sufficiently
described by the motor force density of network links τ . This does not hold for mouse
3T3 fibroblasts and human osteosarcoma (U2OS) cells. Since the actin cytoskeleton
of these cells includes many distinct stress fibers, these must be taken into account
explicitly.

We therefore have 4 different motor force densities for the different network links.
Simple network links have motor force density τ , transverse arcs (TVAs) have τt, dorsal
stress fibers (DSFs) τd, and ventral stress fibers (VSFs) τv. DSFs and TVAs are modeled
as serial links integrated into the network, i.e. have the same mean link length as normal
network links. In contrast, VSFs are long connections of two focal adhesions (FAs) at
the bottom of the cell and therefore are not integrated into the network. We found
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Figure 4.6: U2OS Cells treated with Y-27632. (a) 2 µM Y-27632. (b) 10 µM Y-
27632. Cell shape and traction stress magnitudes. From left to right: Actin-stained image,
equilibrium state from network model, experimentally obtained traction stress, traction
stress calculated from simulation results. We use τd = 8 × 10−4 in (a) and τd = 10−4 in
(b). The remaining parameters are: τt = 10−4, τv = τ = 10−6, ¯̀ = 5 px. (c) Motor force
density in dorsal stress fibers as function of the concentration of Y-27632 present in cells.
For (a) and (b): Traction stress is given by a heatmap and in Pa. The length of the bar
is 10 µm.
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4. APPLICATION OF THE ACN TO EXPERIMENTAL DATA

that τd and τt must be of the same magnitude. Both must be at least two orders of
magnitude larger than τ and τv. Then the cell shapes and traction stress distributions
give good agreement between simulation and experiment.

We used a FEM model of the substrate to compute its deformation from the traction
force field. That way we put the simulation results on the same level as the experimental
results. We hope that in future work this procedure can help to define the noise level in
the traction stress distributions. If the simulation is done in a proper way, the difference
between simulation result and experimental result must be due to noise.

We found that all simulated (wild type) cells of the same type fit best to the
experimental results if the same set of parameters is used. Hence, with the ACN model
including stress fibers we can calculate traction forces of adherent cells by the knowledge
only of shape, stress fiber distribution, and FA distribution. We found that τd and τt
are 10 times higher for 3T3 fibroblasts than for U2OS cells.

We also analyzed cells under different conditions, i.e. after several inhibitors have
been added. mDia is important for stress fiber formation. If it is inhibited less stress
fibers are formed. However, the optimal motor tension parameters stay approximately
the same. That is, the inhibitor lets existing stress fibers unaffected. This picture
changes if myosin II inhibitor Y-27632 is added to U2OS cells. Y-27632 decreases
motor force density in DSFs.
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5

Rupture Dynamics of
Cytoskeletal Networks

In contrast to the previous chapters, now the bond networks are used to study rupture
dynamics. We assume stochastic rupture of bonds according to the Bell equation.
This approach differs from the threshold-based network models of fracture commonly
used. We study the statistical properties of stochastically rupturing bond networks and
compare them to those of threshold-based models. First we discuss constantly strained
networks and in the second part we extend the model to include strain which increases
linearly in time. In analogy to chapter 3 we use networks of square external shape. We
find that for fast increasing strain, stochastic bond rupture and threshold-based bond
rupture give similar results.

5.1 Constant Displacement

5.1.1 Average Network Lifetime without Strain

We start the analysis with the triangular network topology T1 and without rebinding.
That is, in case of vanishing prestrain, e = 0, we simply study bond percolation on
a triangular lattice. Thus, using results from percolation theory we can calculate the
average network lifetime analytically.

The bond percolation threshold for the triangular network is well known to be
pt = 2 sin(π/18) ≈ 0.3473 [127], i.e. equally distributed removal of on average ∼ 65%
of the bonds of a network with zero prestrain leads to failure for the first time. The
total number of bonds of that network be Ntb. Without prestrain the rupture rate
is constant, ai = 1 for all bonds 1 ≤ i ≤ Ntb. Furthermore, all rupture events are
independent of each other. Therefore the rates simply add up, i.e. initially we have a
rate a =

∑Ntb
i=1 ai = Ntb for the first bond of the network to break. The average waiting

time for the first rupture event is then given by t0 = 1/Ntb. The second bond breaks
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xx

Figure 5.1: Definition of line
colors used for figures which show
the results for several network
sizes.

after another waiting time t1 = 1/(Ntb−1) and so on. This gives for the lifetime of the
network in total

T =

(1−pt)Ntb−1∑
i=0

1

Ntb − i
, (5.1)

since the network on average loses bond percolation after removal of a fraction of 1−pt
of the initial bonds. Eq. (5.1) can be written as:

T =

Ntb∑
i=ptNtb+1

1

i
=

Ntb∑
i=1

1

i
−
ptNtb∑
i=1

1

i

= ln(Ntb)− ln(ptNtb) + O(
1

Ntb
)

−−−−−→
Ntb→∞

− ln(pt). (5.2)

In the third step we have used the logarithmic approximation to the harmonic series.
For pt = 2 sin(π/18) we get T ≈ 1.06 for the average lifetime of the T1 network.

5.1.2 Probability of Failure

In the following we present the results from numerical calculations. We discuss the
average behavior of bond networks which are subject to strain. Hereby, we do not only
vary strain but also system size Ntb. For easier comparability we show the averaged
results for the different system sizes in one single figure. Different colors and line-styles
are used for the different system sizes. Unless otherwise stated we use the color code
defined in Fig. 5.1.

Note, we use the Gillespie algorithm in this section. Nevertheless, for the statistics
we note percolation state and number of broken bonds at discrete time steps.

We start the discussion with the probability pF of network failure. During the
simulation of a clamped network at discrete time steps we checked the network for
percolation. If it percolates, the probability of failure pF (t) is set to 0, if it does not,
pF (t) is set to 1. The average over many samples then gives a smooth curve.

In Fig. 5.2(a) we show the results for the average failure probability pF (t). pF
monotonously increases in time. If network size is increased, this ’anti-percolation
transition’ becomes sharper, see Fig. 5.2(a) top. We also observe a point symmetry
about (1.06, 0.5) if e = 0, which is independent of system size. That is, all networks
fail on average at the same time. Application of strain e > 0 changes this behavior.
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Figure 5.2: Probability of network failure and average network lifetime. (a) The prob-
ability pF for a network subject to prestrain e to lose percolation vs. simulation time t.
The steepness of the curves increases with system size. (b) Scaling of the mean network
lifetime. Symbols show simulation results for the network lifetime T plotted vs. side length
Lx, lines give power law fits T = bLa

x.

For e = 1 the jump in the probability of failure is shifted to longer times if system
size is increased, Fig. 5.2(a) middle. Interestingly, for e = 10 the opposite happens, see
Fig. 5.2(a) bottom.

All functions pF (t) shown in Fig. 5.2(a) appear to be approximately point symmetric
about a point with pF ≈ 0.5. Thus, the average lifetime T can be found via pF (T ) ≈ 0.5.
For e = 0 we find T ≈ 1.06, independent of system size. So we have reproduced the
analytical result, Eq. (5.2). In Fig. 5.2(b) we show the average lifetimes as function of
the side length Lx of the network. T exhibits a power law scaling. For e = 0 the scaling
exponent is zero. For small strain (e = 1) it is larger than zero but very small, i.e.
the mean lifetime slowly increases with system size. For e ≥ 5 we find a slow decrease
of the network’s mean lifetime if the network size is increased. The fit parameters are
discussed below in more detail.

5.1.3 Broken Bond Distribution

Next we analyze the number of broken bonds Nbb(t), which in the absence of rebinding
monotonously increases up to failure. Without prestrain, the relative number of broken
bonds Nbb(t)/Ntb increases up to approximately 0.65, the anti-percolation threshold,
see Fig. 5.3(a) top. If prestrain is increased, the fatal fraction of broken bonds drops
below 0.65. This happens because of the spatial arrangement of bonds. Bond rupture
is biased by the forces in these bonds, i.e. the breaking of fewer ”stabilizing” bonds (=
bonds under high force) leads to global system failure. If strain is small enough (e ≤ 1),
Fig. 5.3(a) top and middle, the curves of all network sizes collapse to one master curve.
As shown in Fig. 5.3(a) bottom, the distributions of broken bonds of systems under
large strains do not collapse. The larger the system the sooner it fails and the smaller is
the fraction of broken bonds at failure. Interestingly, after a short non-linear transient,
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Figure 5.3: Number of broken bonds in the system. (a) Time evolution of the relative
number of broken bonds Nbb/Ntb. For (a) bottom: Lifetime decreases with system time.
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Figure 5.4: Time evolution of the normalized stress in the system. Stress σ is defined
as the force the network applies to one clamped side divided by side length Ly. For the
bottom figure: Lifetime decreases with system time.

Nbb/Ntb seems to increase linearly in time. In reality we have a saturating curve. We
find this independent of prestrain and system size.

The average number of broken bonds at failure Nbb,f scales like a power law for
increasing network size Ntb, compare Fig. 5.3(b). The scaling exponent is smaller than
1 and decreases with the applied strain.

5.1.4 Evolution of Network Stress

Next we discuss the stress σ the network applies to its clamped sides. In Fig. 5.4 we plot
the normalized stress vs. time for different network sizes and strains. In case of no strain
we get σ ≡ 0 for all times (trivial, therefore not shown). Increase of prestrain leads
to a monotonously decreasing stress up to failure. At the beginning of the simulation,
relative stress is identical for all network sizes and quickly decreasing. Before failure
is reached, decrease is exponentially. For very large networks there are two distinct
regimes: almost constant stress followed by exponential decay. Furthermore, with
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Figure 5.5: Damage density. Colors give the number of bonds at a given x-position which
break from a given time point t up to failure. Parameters: Lx = 40, e = 0 (left), e = 10
(right).

increasing prestrain, the curve splits up for the different network sizes. The larger the
network the faster the stress decreases.

5.1.5 Fracture Localization

As mentioned before when discussing the differences between Fig. 5.3(a) top and middle,
with increasing e > 0 the stability of the network is not sufficiently described by the
number of bonds which are broken, in contrast to the case of parallel bonds [95]. In [95]
the cluster fails if and only if all bonds are broken. The crucial question here is the one
of fracture localization, which has been addressed before by a large fracture community,
see e.g. [84, 88]. We will also use this concept in the case of linear displacement.

The interesting quantity is the damage density D. To obtain D the bottom line of
the network (without strain) is subdivided into bins of equal size. For each bin every
broken bond, whose center of mass has its x-component in this bin, is counted. This
function is called the damage profile [88]. Because fracture can happen everywhere
along the x-axis, the average over lots of samples would be flat. Therefore, we align the
damage profiles by their centers of mass before averaging [88]. Since we are interested
in the behavior of the system during time, we add all the damage profiles after a given
time point t, i.e. we get as damage density D(x, t) a function of two variables, time t
and coordinate x.

For vanishing strain the damage density is independent of x and monotonously
decreases in time, see Fig. 5.5 (left), i.e. the network diffusely dissolves with many
small isolated cracks, since rupture of one bond does not correlate with rupture of
its neighboring bonds. For large prestrain damage density becomes a sharply peaked
function of x, compare the damage density for e = 10 which we show in Fig. 5.5 (right).
That is, damage is clearly localized. In this case one big master crack is built, which
expands and subsequently leads to network failure.
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Figure 5.6: Fit parameters a (left) and b (right) vs. topology. (a) Parameters from
”Lifetime T vs. side length Lx” (Fig. 5.2(b)). (b) Parameters from ”Number of broken
bonds at failure Nbb,f vs. total bond number Ntb” (Fig. 5.3(b)). Prestrain values are:
e = 0, 1, 5, 10 (indicated by colors black, blue, green, and red). Solid lines are for FBC,
dashed lines are for PBC. In the insets we show the parameters for e = 0 again. Vertical
lines are error bars. The lower end of e = 5 and e = 10 in (b) right cannot be seen due to
the logarithmic scale.

5.1.6 Influence of Topology, Predamage, and Link Mechanics

Next we analyzed if the coordination number (the number of bonds which end at one
internal node) has an influence on the properties of the bond network which were dis-
cussed above. Therefore we performed the same calculations with the other topologies
VO, H1, H2, S1, S2, and T2, see Fig. 2.2(c), as well. To avoid redundancy we do not
show Figs. 5.2-5.5 again for the different topologies. All network topologies behave
very similar. In particular, all network topologies exhibit the power law scaling of the
statistical properties. Let us first discuss the regular topologies and shift the discussion
of the VO network to the end.

The interesting quantities are the fit parameters, i.e. a and b from T = bLax,
Fig. 5.2(b), and Nbb,f = bNa

tb, Fig. 5.3(b). These are plotted in Fig. 5.6. Here the
horizontal axis is the topology axis. For small prestrain e = 0, 1 we get a ≈ 0, see
Fig. 5.6(a) left, i.e. the average lifetime of the network is independent of the total
number of bonds in the system, independent of topology. However, the proportional-
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ity factor b is topology dependent, Fig. 5.6 (a) right. For e = 0, b can be calculated
analytically by insertion into Eq. (5.2). The results are

b(H1)= b(H2) = − ln(1− 2 sin(π/18))≈ 0.43, (5.3)

b(S1) = b(S2) = ln(2) ≈ 0.69, (5.4)

b(T1)= b(T2) = − ln(2 sin(π/18)) ≈ 1.06. (5.5)

Here we use the percolation thresholds from the literature [127, 128]. These results are
reproduced quantitatively by the simulations, see inset of Fig. 5.6(a) right.

If strain is increased to e = 10, b drops down 5 orders of magnitude but still
is roughly independent of topology. This does not hold for the exponent a which
is negative for large e. The higher the coordination number, the larger the network
lifetime, see Fig. 5.6(a).

The number of broken bonds scales linear with system size if strain is small because
we have the scaling exponent a = 1, see Fig. 5.6(b) left. For vanishing strain in this
case we analytically get a ≈ 1 and for b the well known anti-percolation thresholds:

b(H1)= b(H2) = 2 sin(π/18) ≈ 0.35, (5.6)

b(S1) = b(S2) = 0.5, (5.7)

b(T1)= b(T2) = 1− 2 sin(π/18)≈ 0.65. (5.8)

These nicely fit to the numerical results, see inset of Fig. 5.6(b) right. For large
prestrain (e = 10) a becomes topology dependent, increasing with coordination number.
The fit parameter b becomes very sensitive to numerical inaccuracy, if prestrain is very
large.

Since the mean coordination number of the Voronoi construction is approximately
3, in Fig. 5.6 we plot the results for VO left from the H1 network. For e ≤ 5 the VO
network behaves very similar to its regular counterparts. Only for very large prestrain
lifetime decrease with system size is much faster than for the regular networks, see
Fig. 5.6. And there are more broken bonds necessary to destroy the network. That is,
the regular lattice topology weakens the network of bio-molecular bonds.

For small prestrain e ≤ 1 predamage does not influence the rupture behavior of the
network. All fit parameters change only marginally, see Fig. 5.7. This does no longer
hold for large prestrain e ≥ 5. In this case random bond removal and cuts parallel
to strain do not alter the rupture behavior, too. As soon as the cut has a non-zero
y-component, the scaling exponents for both, lifetime and number of broken bonds
at failure, are drastically reduced. For large network sizes this is no longer balanced
by the increase in the associated parameter b. We see that lifetime is significantly
reduced several orders of magnitude, and far fewer bonds are necessary for failure, i.e.
we observe strong correlations of rupturing bonds. This shows that opposite to small
strain a predamage at large strain will grow further and finally lead to network failure.

If we replace the Hookean spring network by a passive cable network, the results
do not change (data not shown), since most of the bonds are tensed. Therefore it is
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Figure 5.7: Fit parameters a (left) and b (right) vs. kind of predamage. (a) Parameters
from ”Lifetime T vs. side length Lx” (Fig. 5.2(b)). (b) Parameters from ”Number of broken
bonds at failure Nbb,f vs. total bond number Ntb” (Fig. 5.3(a)). Prestrain values are: e = 0,
1, 5, 10 (indicated by colors black, blue, green, and red). Solid lines are for FBC, dashed
lines are for PBC. Vertical lines are error bars. The lower end of e = 5 and e = 10 in (a,b)
right cannot be seen due to the logarithmic scale.

more interesting to study the active cable network. Of course we expect the differences
to the spring network to be marginal if prestrain is large, since then elastic forces will
dominate the contractile motor forces. This expectation appears to be true, compare
Fig. 5.8. For vanishing prestrain the scaling exponent a has values −0.02 and −0.117
for τ = 0.1 and τ = 1. b drops down to 0.451 for τ = 1. Indeed, there is a strong
decrease of lifetime with motor force. The mean number of broken bonds at failure
stays approximately constant for τ ≤ 0.1. For τ = 1 fewer bonds break up to failure.

5.1.7 Short Comment on Rebinding

For vanishing prestrain all the rupture rates are given by ρ = exp(0) = 1, which is
constant over the whole simulation. Hence, the minimal rebinding rate to avoid network
failure is given by γ = 1. We hereby assume that the network has infinite memory.
Fig. 5.8 shows the time evolution of the fraction of broken bonds for a small network
with side length Lx = 20 and for different rebinding rates γ. For γ = 0 we obtain
the same curve as shown in Fig. 5.3, i.e. increase up to Nbb/Ntb ≈ 0.65 at t ≈ 1.06.
γ > 0 increases the lifetime of the network. When it approaches 1, the network gets
stabilized. First, the curves are equal, but then split up towards longer lifetimes. For
γ = 0.8 the network lifetime increases an order of magnitude. The network seems to
have stabilized but then it abruptly fails. The fatal fraction of broken bonds is ∼ 0.55
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and therefore smaller than the anti-percolation threshold. In the case of γ = 1 the
curve jumps up to ∼ 0.5 and stays approximately at this value. Further increase of the
rebinding rate γ to 2 and 3 leads to network stabilization at fewer broken bonds.

Although rebinding can avoid failure of the unstrained network and maybe only little
strained ones (e ≤ 1), it only delays failure for largely strained networks. Rebinding
closes small cracks but cannot avoid the fatal crack as soon as it is big enough (data
not shown). This general problem also affects increasing strain. Therefore we do not
discuss rebinding in the next section.

5.2 Linear Displacement

In this section we analyze a network under linear displacement, i.e. the clamped nodes
at the network sides (Fig. 2.3) are not kept fixed during the simulation but pulled apart
step-wise. We follow the procedure described in section 2.5.2. That is, pulling speed
is given by v = dx/dt. A very important aspect of this section is the discussion of the
measured quantities in comparison to those from [88], in which the statistical properties
of a random spring model (RSM) are studied.
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5.2.1 Stress Strain Relation

For illustration purpose in Fig. 5.10 we plot the network stress σ vs. the displacement
δx of the network for a typical simulation sample. For low pulling speed we observe
initially a linearly increasing stress followed by a broad plateau phase and ended by
a rapid decay, Fig. 5.10 (top). For very large speed we get a linear force response up
to a distinct maximum with very large curvature followed by an almost vertical force
decay, Fig. 5.10 (middle) and (bottom). Since pulling speed is constant during the
simulation, the lifetime of the networks is simply δxf · dt. Here, δxf refers to the value
of δx at failure. From Fig. 5.10 we therefore see that the faster one pulls the shorter
is the network lifetime. But for every dt, there is a maximum in the force-extension
curve which increases with pulling speed. Thus, the faster one pulls the more stress the
network can bear before failure. The displacement is always applied to both clamped
sides simultaneously. Hence, in the words of the previous section, the analyzed example
network bears maximum strains 2.11, 4.83, 10.54 (for dt = 10−3, 10−5, 10−8) before it
fails.

5.2.2 Fracture Localization

With increasing pulling speed, the behavior of the network before and after peak load
becomes more and more distinct. This motivates the analysis of the ”prepeak regime”
(from start to peak load) and the ”postpeak regime” (from peak load to failure) [84, 88].

Without rupture, the increase of displacement simply leads to a linear increase of
σ. The same happens in the RSM before peak load is reached [88]. After peak load,
this network force rapidly decreases to zero (failure). We also get this behavior in the
case of high pulling speed Fig. 5.10 (bottom). That is, only few diffusely distributed
bonds break in the prepeak regime, weakening the network only marginally. For the
RSM holds: If the increase of δx is stopped during the prepeak regime, the network will
survive and not fail [88]. In the postpeak regime it will fail anyway. For the network
of bio-molecular bonds the network will always fail, because of thermal fluctuations, at
least if the rebinding rate is small enough.

Next we discuss the damage density D in these two regimes. To calculate D we pro-
ceed as follows. The present situation of the deformed and damaged network is mapped
back to the initial undeformed and intact lattice, i.e. while removing (and inserting)
bonds in the network under tension the same is done with the initial network [88]. For
the RFM both representations are identical.

To define the degree of localization, the x-axis is subdivided into bins of equal size.
For each bin every broken bond whose center of mass has its x-component in this bin
is counted. Because fracture can happen everywhere along the x-axis, the average over
lots of samples would be flat. Therefore, we first align the damage profile by its center
of mass [88]. The damage density profile for the prepeak regime is shown in Fig. 5.11(a)
while for the postpeak regime we depict it in Fig. 5.11(b). Please note, Fig. 5.11(b)
does not show D but ∆D, where the diffusive bottom (D in the prepeak regime) has
been subtracted.
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Figure 5.11: Damage profiles of the different regimes in the bond network subject to
linear displacement. (a) Prepeak regime. (b) Postpeak regime. Lines show the ratio of
broken bonds vs. their x-positions.

In the case of large dt, the difference between prepeak and postpeak regime is very
small. Both damage profiles are flat, implying diffusion dominated damage over the
whole simulation, Fig. 5.11(a) top, and (b) top. If we pull the network faster, the
prepeak damage density drops down, i.e. fewer bonds are broken in the prepeak regime
and a clear difference between the two damage profiles arises, Fig. 5.11(b) bottom. Now,
in the prepeak regime damage is diffusive, while in the postpeak regime it is clearly
localized. This behavior is similar to that of the RSM [88]. The damage profile in the
postpeak regime collapses to one master curve with non-exponential tails. Contrary to
the RSM, for dt ≥ 10−5 we get some ”background noise” in the postpeak regime, i.e.
we always have ∆D > 0. Due to the stochastic bond rupture also less stretched or even
force-free bonds can break in the postpeak regime. Background noise vanishes for very
fast pulling (dt = 10−8).

These results lead to the conclusion that contrary to the RSM the network of
molecular bonds for low pulling speed is not destroyed in a fatal avalanche, one crack
which grows until it spans over the whole network (up to failure), but by many diffusely
distributed and small cracks which weaken and dissolve the material. The accumulation
of force on crack tips is not important for fracture in this regime. For fast pulling the
bond network acts similar to the RSM.

5.2.3 Broken Bond Distribution

We calculated the probability density function (PDF) for the fraction of broken bonds
at peak load Nbb/Ntb. Unfortunately, many samples are necessary to get a smooth
curve, therefore we show the cumulative distribution function (CDF) instead of the
PDF, see Fig. 5.12(a). The CDF is obtained from the PDF by summing up all values
up to a given one. For all pulling speeds studied there is one distinct jump in the CDF,
i.e. a peak in the PDF, for each dt and network size. For dt = 10−3 this jump is shifted
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to larger values if network size is increased. For larger pulling speeds (dt < 10−5) the
jumps are shifted to lower Nbb/Ntb for increasing system sizes, Fig. 5.12(a) bottom.

Now we study the broken bond distribution in more detail. Therefore we plot the
average N̄bb vs. Ntb and fit it by a power law, compare Fig. 5.12(b). For all dt we find
a good agreement with the power law behavior. The exponent for dt = 10−3 is slightly
larger than 1. This might be due to the finite size of the analyzed networks. However,
for dt < 10−3 the fits give exponents less than 1, i.e. in the limit Ntb →∞ the prepeak
regime vanishes. For example at dt = 10−8 we get a = 0.89, which is the RSM limit
of our model, since for the RFM / RSM the exponent is about 0.91 [129] / 0.92 [88].
In the limit of large networks for high pulling speed there are no bonds broken in the
prepeak regime. As soon as the first bond breaks, the catastrophe occurs which leads
to the rapid force decay and, subsequently, network failure.

5.2.4 Fracture Strength

Fracture strength σF is defined as the peak load divided by the clamped side length (Ly).
Like the number of broken bonds at peak load Nbb, the fracture strength distribution
itself is sharply peaked around its maximum, Fig. 5.13(a). In analogy to the distribution
of broken bonds at peak load, we show the CDF here instead of the PDF.

If system size is increased, the mean peak load decreases monotonously. But as
already mentioned when discussing Fig. 5.10: the faster one pulls the higher is the
fracture strength σF . Interestingly, if we decrease dt by five orders of magnitude the
increase in fracture strength is only one order of magnitude.

In Fig. 5.13(b) we plot the mean fracture strength vs. the network side length. We
also did power law fitting here. The fracture strength for the RFM/RSM does not
follow a power law. But the peak load vs. network side length shows the scaling law
Fpeak = C0L

α + C1 [88].

79



5. RUPTURE DYNAMICS OF CYTOSKELETAL NETWORKS

(a)

1 2 3 4 5
0

0.5

1

dt = 10−3

6 7 8 9 10 11 12
0

0.5

1

C
D
F
(σ

F
)

dt = 10−5

15 16 17 18 19 20 21 22 23
0

0.5

1

dt = 10−8

σF (b)
10

1
10

210
−1

10
0

10
1

10
2

: dt = 10−3

: dt = 10−5

: dt = 10−8

σ̄
F

: dt = 10−3

: dt = 10−5

: dt = 10−8: dt = 10−3

: dt = 10−5

: dt = 10−8

Lx

Figure 5.13: Fracture strength. (a) Cumulative fracture strength distribution. (b) Scaling
of fracture strength. Mean fracture strength σ̄F as function of network side length. Symbols
are simulation results while lines denote power law fits of σ̄F = bLa

x.

(a)
10

2
10

3
10

4
10

510
−1

10
0

10
1

10
2

10
3

10
4

: dt = 10−3

: dt = 10−5

: dt = 10−8

d
d

: dt = 10−3

: dt = 10−5

: dt = 10−8

: dt = 10−3

: dt = 10−5

: dt = 10−8

Ntb (b)
10

2
10

3
10

4
10

510
1

10
2

10
3

10
4

10
5

: dt = 10−3

: dt = 10−5

: dt = 10−8

d
d
,f

: dt = 10−3

: dt = 10−5

: dt = 10−8

: dt = 10−3

: dt = 10−5

: dt = 10−8

Ntb

Figure 5.14: Degree of degeneracy dd. (a) Scaling of the average degree of degeneracy.
Average degree of degeneracy without final breaking event vs. total number of bonds.
Simulation results are shown as symbols, power law fits dd = bNtb

a as lines. (b) Scaling
of the final degree of degeneracy. Size of the last breaking event vs. total bond number.
Simulation results are shown as symbols, power law fits dd,f = bNtb

a are shown as lines.

80



5.2 Linear Displacement

10
2

10
3

10
4

10
510

1

10
2

10
3

Ntb

m

: dt = 10−3

: dt = 10−5

: dt = 10−8

Figure 5.15: Mean number of steps m taken up to failure. Symbols are simulation results
while lines denote power law fits of m = bNa

tb.

5.2.5 Degeneracy

In the FBM, RFM, and RSM avalanches (bursts in the language of the FBM) are
defined as the bonds breaking between two unit displacements. The avalanche size is
given by the number of bonds which break during one avalanche. In this thesis we call
avalanches the degree of degeneracy dd because all these bonds break during the same
time interval dt and in parallel, not serially.

Similar to the avalanches in the RSM, we expect a very different behavior of the
degree of degeneracy before (dd) and after (dd,f ) peak load. To calculate dd we only take
into account bond rupture events before peak load. The time between peak load and
failure is very short for all pulling speeds, see Fig. 5.10. Therefore, we call the number
of bonds which break between peak load and failure the final degree of degeneracy dd,f .
Fig. 5.14(a) shows the mean degree of degeneracy dd as function of system size Ntb. We
find a power law scaling. For dt = 10−3 we get dd ≈ 0.15%, for dt = 10−5 dd ≈ 0.01%
and for dt = 10−8 even on magnitude less. dd,f is several orders of magnitude larger
than the average dd before peak load. It also scales like a power law, Fig. 5.14(b).

In the RSM the final avalanche scales with system size according to a power law
with exponent 0.68, [88]. This is far away from the exponents we find for large pulling
speeds, namely 0.81 for dt = 10−5 and 0.87 for dt = 10−8.

For linear displacement lifetime increases with system size, Fig. 5.15. This is not
contradictory to the lifetime of constantly displaced networks which decreases with
system size, Fig. 5.2(b), because here each displacement is of size 1 and therefore
independent of system size. The number of steps m taken up to failure follows a power
law, m = bNa

tb, with an exponent a independent of dt. But b increases with pulling
speed and so does m.
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Figure 5.16: Fit parameters a and b vs. topology. (a) Broken bonds at peak load vs.
total number of bonds. (b) Peak load vs. side length. (c) Average degree of degeneracy vs.
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to failure vs. total number of bonds. Parameters are: dt = 10−3, 10−5, 10−8 (indicated by
colors black, blue, and red). Solid lines are for FBC, dashed lines are for PBC. Vertical
lines are error bars.
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5.2 Linear Displacement

5.2.6 Influence of Predamage, Topology, and Link Mechanics

Analog to the discussion of the constant displacement in the previous section, here we
discuss the fit parameters for the different topologies and boundary conditions, which
are plotted in Fig. 5.16. Results for FBC and PBC are very similar. For the discussion
we restrict ourselves to large networks, i.e. in this case the scaling parameter a is crucial
for the statistical properties of the bond networks.

As long as the network is regular, the scaling exponent of the number of broken
bonds at peak load does not depend on the network topology, see Fig. 5.16(a) left.
For the irregular Voronoi construction a is significantly lower. That is, for irregular
networks fewer bonds break before peak load. For dt = 10−3 independent of lattice
topology a is larger than 1. For dt = 10−5 a is approximately 1 and for dt = 10−8 a is
smaller than 1, independent of lattice topology as long as it is regular.

Fracture strength for irregular networks appears to be independent of pulling speed,
Fig. 5.16(b) left. But for the regular lattices fracture strength increases with pulling
speed and coordination number. Hence, the triangular networks can bear more stress
than the other regular topologies. But for low pulling speeds the irregular networks
can bear even more stress (dt = 10−3).

The mean degree of degeneracy is constant for dt = 10−3, but for smaller dt its
scaling exponent increases with coordination number, i.e. during an average time step
most bonds break in the triangular networks, Fig. 5.16(c) left. The irregular network
has the smallest degree of degeneracy. Also the final degree of degeneracy dd,f is
smallest for irregular networks, Fig. 5.16(d) left. For dt = 10−3 dd,f decreases with
coordination number but its scaling exponent a is always larger than 1. For regular
networks with dt ≤ 10−5 the exponent is constant at a ≈ 0.75.

The number of elongation steps up to failure is smallest for the irregular networks,
compare Fig. 5.16(e) left. Interestingly, for all the regular network topologies the scaling
exponent a is independent of pulling speed and topology constant at a ≈ 0.4. Of course,
the prefactor b increases with pulling speed, but as long as regular it is independent of
topology, see Fig. 5.16(e) right.

As we can see in Fig. 5.16 the difference between the behavior of networks with
FBC and those with PBC is only marginally. But we observe that the corresponding
damage profiles in the postpeak regimes do not collapse. For the PBC the tails decrease
more rapid, compare the example shown in Fig. 5.17. This means that for PBC the
average fatal crack is slightly more pronounced.

In Fig. 5.18 we plot the force-extension curve for a typical T1 network with a
cut perpendicular to the applied strain. For slow pulling the force-extension curve
appears to be independent of cut size, Fig. 5.18(top). But if pulling is faster we can
observe two things. First, peak load decreases and second, the network fails after
much less elongation steps. The lower dt the larger the influence of predamage. See
in particular Fig. 5.18 (middle). A little orthogonal cut of only 10% of the network’s
height drastically reduced the dimensionless fracture strength from ∼ 6.55 to ∼ 3.95, a
decrease of approximately 40%. Further increase of cut size leads to further decrease in
fracture strength, although less drastic. The same happens for the number of steps up
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Figure 5.17: Damage profile in the postpeak regime for the different boundary conditions.
FBC are shown as solid, PBC as dashed lines. Parameters: T1 network, Lx = 80, dt =
10−8.
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Figure 5.18: Force-extension curve of predamaged networks. Stress σ = F/Ly is plotted
vs. the displacement δx of the network clamped sides. F is the force the network applies
to one of its clamped sides. Parameters are: Lx = 240, Ly = 144 ·
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Figure 5.19: Damage profiles of the different regimes in the predamaged network. (a)
Prepeak regime. (b) Postpeak regime. Lines show the number of broken bonds vs. their
x-positions. Parameters: p = 0.1. Central cut is perpendicular to strain.

to failure, a loss from 580 to 425 (∼ 27%). There is a sharp bend in the force-extension
curve of predamage networks subject to fast pulling. What happens is the following.
The predamage crack grows due to force accumulation at its tip. This leads to two
distinct percolation paths from one clamped side to the other, one above the crack and
one below it. Breakage of one of these leads to the sharp bent, since for a short time
strain can be increased at constant stress.

Comparing Fig. 5.19 to Fig. 5.11 we see that predamage has only little influence
on the damage profiles for dt = 10−3. The top figures are basically identical, except
for the small peak in Fig. 5.19(a) top. This peak is just predamage itself because
the damage profile does not fully flatten before peak load. Postpeak there is a flat
valley at the location of the crack, Fig. 5.19(b) top. This gives in total a diffusion
dominated damage in the predamaged network at low pulling speed. For faster pulling
the prepeak behavior is very similar, see a middle. But for very fast pulling there are no
bonds broken before peak load. See Fig. 5.19(a) bottom: the peak in the center is only
the previously placed crack. For dt ≤ 10−3 damage is clearly localized in the postpeak
regime, see (b) middle and bottom. Without predamage this does not happen, compare
Fig. 5.11(b). For dt = 10−3 the damage profile is diffusive even in the postpeak regime.
For very fast pulling of a predamaged network only bonds in the close vicinity of the
crack are broken. This leads to a very narrow peak in the damage profile. Also the
background noise observed in Fig. 5.11(b) bottom vanishes.

We also checked the different kinds of predamage in the case of linear displacement.
The fit parameters are shown in Fig. 5.20. For random damage and parallel cutting
the number of bonds which break up to peak load does not change. But with a cut
component in y-direction Nbb will decrease an order of magnitude, Fig. 5.20(a). Peak
load also decreases only for diagonal and perpendicular cuts, Fig. 5.20(b). The stress
accumulation only marginally influences the mean number of bonds which break during
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Figure 5.20: Fit parameters a and b vs. kind of predamage. (a) Broken bonds at peak
load vs. total number of bonds. (b) Peak load vs. side length. (c) Average degree of
degeneracy vs. total number of bonds. (d) Final degree of degeneracy vs. total number of
bonds. Parameters are: dt = 10−3, 10−5, 10−8 (indicated by colors black, blue, and red).
Solid lines are for FBC, dashed lines are for PBC. Vertical lines are error bars.
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5.3 Summary

one time step. It tends to decrease, Fig. 5.20(c). The fatal degeneracy also tends to
decrease, but not significantly, Fig. 5.20(d).

We also modeled the network bonds as active cables. For fast pulling the results
differ only marginally from those obtained with the Hookean spring model. Analog
to the discussion of active cables under large constant displacement, we conclude that
elastic forces dominate active forces and therefore the active nature of the bonds plays
a minor role, see Fig. 5.21.

So far we have discussed the bond network only for γ = 0. The other extreme
rebinding case, γ = ∞, means that every broken bond will immediately close during
the next time step. This will be limited by `max <∞, i.e. as soon as crack-size is larger
than `max rebinding will be prohibited. After that the network will be destroyed by a
single fatal crack.

5.3 Summary

Motivated by fracture processes which appear in several biological systems on sub-,
super- and single cellular level, we have studied the statistical properties of failure of
networks of bio-molecular bonds under force. Bio-molecular bonds break according
to a rate which is proportional to the exponential of the force in the bond. This
approach is in stark contrast to that of common bond network models for fracture of
hard macroscopic materials. A macroscopic bond breaks if the force it carries exceeds
a fixed threshold.

For our simulations we took networks of square shape in which we clamped the
peripheral nodes of two opposing sides. We extended the distance between the two
clamped sides to apply a strain on the network. Hereby, every movement is modeled as
instantaneous, i.e. the network is treated as always in equilibrium. The two opposing
non-clamped sides can be allowed to move freely, i.e. free boundary conditions, or as if
they were closed and the network would form a cylinder of infinite radius, i.e. periodic
boundary conditions.

The two clamped network sides are displaced in two ways. First, we apply a strain
and calculate the equilibrium. Now rupture is allowed. This procedure is referred to
as the ”constant displacement (CD)”. The other displacement protocol is pulling the
network with a constant speed while it ruptures, the so-called ”linear displacement
(LD)”.

The CD with vanishing strain is identical to a simple percolation investigation
of the network. For both, vanishing and non-vanishing strain, we analyzed the time
dependence of the number of broken bonds, the failure probability, and the force the
network applies to one clamped side. We found that failure probability is very steep,
in particular for large networks. In the absence of rebinding the number of broken
bonds increases monotonously with time. Close to failure this increase is linear. Stress
decreases exponentially when approaching network failure. The statistical properties
which we studied in the CD case were the lifetime of the network, which decreases very
slowly with system size, and the total number of bonds breaking up to failure, which
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Figure 5.21: Fit parameters a and b vs. motor force. (a) Broken bonds at peak load vs.
total number of bonds. (b) Peak load vs. side length. (c) Average degree of degeneracy
vs. total number of bonds. (d) Final degree of degeneracy vs. total number of bonds.
Parameters are: dt = 10−3, 10−5, 10−8 (indicated by colors black, blue, and red). Solid
lines are for FBC, dashed lines are for PBC. Vertical lines are error bars.
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5.3 Summary

increases with system size. Lifetime scales as a power law of the side length of the
network, The number of broken bonds at failure scales as a power law of the total bond
number. Increase of strain drastically decreases lifetime and number of broken bonds
at failure. The latter results from correlations in the bond network. We quantitatively
analyzed this by calculation of the damage profile. This shows that without strain bonds
break in an uncorrelated fashion, but with increasing strain damage is clearly localized,
i.e. a fatal crack destroys the network. This effect is even more pronounced if we
centrally cut the network orthogonal to strain. Such a predamage leads to accumulation
of stress and therefore dramatically decreases lifetime and the number of broken bonds
necessary for system failure.

The investigation of different regular topologies revealed that triangular networks
live longest. We also compared the results obtained with regular networks to those
obtained with a network of irregular topology. We found that irregularity stabilizes the
bond network.

In large part, in this section we model bonds as harmonic springs, but we also
compared the results obtained using the spring model to those we get if the bonds act
as passive or active cables. As long as motor forces are small these are dominated by
the elastic forces. Hence, the differences between springs and cables as bond models
is marginal for small motor forces. For the CD using active cables instead of springs
slowly decreases lifetime.

The LD under fast pulling speed is very closely related to the random spring model
(RSM). Therefore we studied the same statistical properties which are also investigated
in common fracture mechanics. The force-extension curve of a network of bio-molecular
bonds subject to a linearly increasing displacement, starts at zero, then it increases to
a maximum, the so-called peak load, followed by a force decay up to zero, failure.
Hereby we observe that the faster we pull the network the higher the strain it can
stand / the higher peak load / the shorter the network lifetime. For fast pulling the
behavior before and after peak load become more and more distinct. This can be seen
on the damage profiles, which are used to study fracture localization. Before peak load,
damage is diffusely distributed over the network. But for high pulling speed after peak
load it clearly localizes. In stark contrast to the RSM, for slow pulling damage does
not localize in the postpeak regime, the damage profile stays almost constant.

We find that the mean number of broken bonds at peak load, the mean degree
of degeneracy which is defined as the mean number of bonds which break during one
time-step up to peak load, the final degree of degeneracy which is defined as the mean
number of bonds which break from peak load to failure, and the number of elongation
steps taken during the simulation all scale as power laws as function of the total bond
number. The scaling exponent is always positive, i.e. all these statistical quantities
increase with system size. The fracture strength which is defined as peak load divided
by clamped side length shows a power law dependence from the network’s side length.
Here the scaling exponent is negative, hence fracture strength decreases with system
size.
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5. RUPTURE DYNAMICS OF CYTOSKELETAL NETWORKS

If it has a non-vanishing component perpendicular to the applied strain, predamage
decreases peak load and the strain at failure. It furthermore sharpens the distinction of
pre- and postpeak regime, even at intermediate pulling speeds clear fracture localization
after peak load is observed. A central cut will grow until it spans over the whole
network. Only very few bonds break diffusely; i.e. rupture due to thermal fluctuations
is almost switched off. But for very slow pulling speed the statistical behavior of the
bond network is not influenced by predamage.
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Appendix A

Homogenization

A.1 Finite Difference Method

The finite difference method offers an intuitive way to solve partial differential equations
by only taking into account equidistant data points spaced by ∆ > 0. That is, we only
calculate f(i∆, j∆) for i, j ∈ N0. Here, f may represent ϕx or ϕy from the continuous
deformation function ~ϕ = (ϕx, ϕy). The partial derivatives can then be approximated
by:

∂xf(i∆, j∆) ≈ f((i+ 1)∆, j∆)− f((i− 1)∆, j∆)

2∆
, (A.1)

∂2xf(i∆, j∆) ≈ f((i+ 1)∆, j∆) + f((i− 1)∆, j∆)− 2f(i∆, j∆)

∆2
. (A.2)

The inaccuracy is O(∆2) as can be easily verified by inserting the Taylor expansions

f((i± 1)∆, j∆) = f(i∆, j∆)±∆∂xf(i∆, j∆) +
1

2
∆2∂2xf(i∆, j∆)

±1

6
∆3∂3xf(i∆, j∆) + O(∆4) (A.3)

into Eqs. A.1 and A.2. ∂yf(i∆, j∆) and ∂y(i∆, j∆)2 are approximated in a completely
analog way.

If Eqs. (3.32)-(3.37) are discretized in the prescribed manner solving these partial
differential equations reduces to calculating the root of a large system of equations. We
are aware that it appears strange to assume a discretized square lattice after homoge-
nization of a square network.

A.2 A Homogenization Approach to ACNs

To avoid a piecewise defined function in the homogenized equations, here we replace
the force-extension relation Eq. (2.5) for τ = ` = 1 ad hoc by

~fij = (`ij − c)3 ~ei,j , with c =
3`− 1

d
. (A.4)
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τ

ℓ ℓij

fij

Figure A.1: Smoothed force-extension curve for an ACN. Black line: Force-extension
curve for the ACN, see Eq. (2.8). Blue line: Force-extension curve according to Eq. (A.4).

This approximation is reasonable at least in the vicinity of the inital link length `, see
Fig. A.1. If we follow the homogenization technique discussed in section 3.7 for the
ACN we get the following equation:

∂x

(
(|∂x~ϕ| − c)3
|∂x~ϕ|

∂x~ϕ

)
+ ∂y

(
(|∂y ~ϕ| − c)3
|∂y ~ϕ|

∂y ~ϕ

)
= 0 (A.5)

and vanishing stress orthogonal to the contour as boundary condition. Stresses are
given by:

~Sx =
(|∂x~ϕ| − c)3
|∂x~ϕ|

(∂x~ϕ), (A.6)

~Sy =
(|∂y ~ϕ| − c)3
|∂y ~ϕ|

(∂y ~ϕ). (A.7)
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Appendix B

Overview of the analyzed
Experimental Data

B.1 Wild Type MDCK Cells
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Figure B.1: Equilibrium states and traction stress magnitudes for MDCK cells. The con-
tracted equilibrium states are shown on the left. Color codes give traction stress magnitudes
(middle figures: experimental data, right figures: simulation result). Used parameters are:
τ = 3 × 10−5, ¯̀ = 5 px. Traction stress is given by a heatmap and in Pa. The length of
the bar is 10 µm.
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B.2 Wild Type Mouse 3T3 Fibroblasts
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Figure B.2: Equilibrium states and traction stress magnitudes for 3T3 fibroblasts. The
contracted equilibrium states are shown on the left. Color codes give traction stress mag-
nitudes (middle figures: experimental data, right figures: simulation result). Used param-
eters are: τd = τt = 0.02, τv = 10−5, τ = 10−4, ¯̀ = 5 px (for (a),(c),(d)). τd = τt = 0.03,
τv = 10−5, τ = 10−4, ¯̀ = 5 px (for (b),(e)). Traction stress is given by a heatmap and in
Pa. The length of the bar is 10 µm.
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B.3 Wild Type and mDia inhibited U2OS Cells

B.3 Wild Type and mDia inhibited U2OS Cells
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Figure B.3: Equilibrium states and traction stress magnitudes of WT and mDia1 inhib-
ited U2OS cells. (a) and (b) wild type cells. (c)-(e) mDia1 inhibited cells. The contracted
equilibrium states are shown on the left. Color codes give traction stress magnitudes (mid-
dle figures: experimental data, right figures: simulation result). Used parameters are:
τd = τt = 10−3, τv = τ = 10−5, ¯̀ = 5 px. Traction stress is given by a heatmap and in
Pa. The length of the bar is 10 µm.
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Figs. B.1, B.2, and B.3 show cell shape and traction stress distribution for the optimal
parameters of MDCK cells, 3T3 fibroblasts, and U2OS cells, respectively. The optimal
tension parameters vary only slightly within one cell type, but by orders of magnitude
for the different cell types. Hence, our model captures the features of contractile cells
very well.

B.4 U2OS Cells treated with Y-27632

Figs. B.4 and B.5 show that optimal parameters vary slightly for cells treated with the
same inhibitor concentration, but much stronger if inhibitor concentration is changed.
In contrast to the previous sections, we do not plot the results for the optimal param-
eters here but for the same two parameter values for each of the analyzed cells. This
shows that stress fiber contractility decreases with myosin inhibitor concentration.
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Figure B.4: Equilibrium states and traction stress magnitudes for U2OS cells treated
with 2 µM of Y-27632. The contracted equilibrium states for τd = 8× 10−4 are shown on
the left. Color codes give traction stress magnitudes (second from the left: experimental
data, third from the left: simulation results for τd = 10−4, right: simulation results for
τd = 8× 10−4). Other used parameters are: τ = τv = 10−6, τt = 10−4, ¯̀= 5 px. Traction
stress is given by a heatmap and in Pa. The length of the bar is 10 µm.
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B.4 U2OS Cells treated with Y-27632
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Figure B.5: Equilibrium states and traction stress magnitudes for U2OS cells treated
with 5 µM and 10 µM of Y-27632. (a),(b) 5 µM Y-27632. (c)-(e) 10 µM Y-27632. The
contracted equilibrium states for τd = 3× 10−4 (a),(b) and τd = 10−4 (c)-(e) are shown on
the left. Color codes give traction stress magnitudes (second from the left: experimental
data, third from the left: simulation results for τd = 10−4, right: simulation results for
τd = 8× 10−4). Other used parameters are: τ = τv = 10−6, τt = 10−4, ¯̀= 5 px. Traction
stress is given by a heatmap and in Pa. The length of the bar is 10 µm.
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schaftlichen, Gespräche und eine tolle Arbeitsatmosphäre, und zwar:
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