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Abstract
A deconvolution framework is presented in this thesis and applied to several problems
in medical and biological imaging. The framework is designed to contain state of the art
deconvolution methods, to be easily expandable and to combine different components
arbitrarily. Deconvolution is an inverse problem and in order to cope with its ill-posed
nature, suitable regularization techniques and additional restrictions are required.

A main objective of deconvolution methods is to restore degraded images acquired
by fluorescence microscopy which has become an important tool in biological and med-
ical sciences. Fluorescence microscopy images are degraded by out-of-focus blurring
and noise and the deconvolution algorithms to restore these images are usually called
deblurring methods. Many deblurring methods were proposed to restore these images
in the last decade which are part of the deconvolution framework. In addition, existing
deblurring techniques are improved and new components for the deconvolution frame-
work are developed. A considerable improvement could be obtained by combining a
state of the art regularization technique with an additional non-negativity constraint. A
real biological screen analysing a specific protein in human cells is presented and shows
the need to analyse structural information of fluorescence images. Such an analysis re-
quires a good image quality which is the aim of the deblurring methods if the required
image quality is not given.

For a reliable understanding of cells and cellular processes, high resolution 3D images
of the investigated cells are necessary. However, the ability of fluorescence microscopes
to image a cell in 3D is limited since the resolution along the optical axis is by a factor
of three worse than the transversal resolution. Standard microscopy image deblurring
techniques are able to improve the resolution but the problem of a lower resolution
in direction along the optical axis remains. It is however possible to overcome this
problem using Axial Tomography providing tilted views of the object by rotating it
under the microscope. The rotated images contain additional information about the
objects which can be used to improve the resolution along the optical axis. In this
thesis, a sophisticated method to reconstruct a high resolution Axial Tomography image
on basis of the developed deblurring methods is presented.

The deconvolution methods are also used to reconstruct the dose distribution in pro-
ton therapy on basis of measured PET images. Positron emitters are activated by proton
beams but a PET image is not directly proportional to the delivered radiation dose dis-
tribution. A PET signal can be predicted by a convolution of the planned dose with spe-
cific filter functions. In this thesis, a dose reconstruction method based on PET images
which reverses the convolution approach is presented and the potential to reconstruct
the actually delivered dose distribution from measured PET images is investigated.

Last but not least, a new denoising method using higher-order statistic information of
a given Gaussian noise signal is presented and compared to state of the art denoising
methods.





Zusammenfassung

In dieser Arbeit wird ein Framework an Entfaltungsverfahren vorgestellt und auf ver-
schiedene Probleme in der medizinischen und biologischen Bildgebung angewendet.
Das Framework, welches Methoden des aktuellen Standes der Technik enthält, wurde
entworfen, um leicht erweiterbar zu sein. Des Weiteren bietet es die Möglichkeit, ver-
schiedene Komponenten beliebig zu kombinieren. Entfaltung ist ein inverses Problem
und um mit der schlecht gestellten Natur dieses Problems zurecht zu kommen, sind
geeignete Regularisierungsverfahren sowie zusätzliche Beschränkungen erforderlich.

Ein Hauptziel der Entfaltungsmethoden ist die Wiederherstellung von verschmierten
und verrauschten Bildern, die mittels Fluoreszenzmikroskopie aufgenommen wurden.
Durch Entfaltung sollen die Bilder wiederhergestellt werden. Viele solcher Verfahren
wurden in den letzten Jahren entwickelt. Zusätzlich wurden bereits bestehende Tech-
niken verbessert und neue Komponenten für das Framework entwickelt. Es ließ sich
eine beachtliche Verbesserung erzielen, indem ein Regularisierungsverfahren mit einer
zusätzlichen Einschränkung auf nicht negative Werte kombiniert wurde. Eine biolo-
gische Untersuchungsreihe, die ein spezielles Protein in menschlichen Zellen unter-
sucht, wird vorgestellt und zeigt die Notwendigkeit, strukturelle Informationen in Flu-
oreszenzbildern zu analysieren. Für eine solche Analyse ist eine gute Bildqualität er-
forderlich. Sollte die geforderte Bildqualität nicht gegeben sein, kann diese durch die
Entfaltungsmethoden ermöglicht werden.

Für ein zuverlässiges Verständnis von Prozessen in Zellen werden hoch aufgelöste 3D
Bilder der untersuchten Zellen benötigt. Die Fähigkeiten von Fluoreszenzmikroskopen
Bilder in 3D aufzunehmen sind jedoch eingeschränkt, da die Auflösung entlang der
optischen Achse um einen Faktor drei schlechter ist als in die anderen beiden Dimen-
sionen des Bildes. Entfaltungsverfahren sind zwar in der Lage, die Auflösung der Bilder
zu verbessern, aber das Problem der schlechteren Auflösung in Richtung der optischen
Achse wird dadurch nicht gelöst. Es ist möglich, dieses Problem mittels axialer To-
mographie zu überwinden, in dem das Objekt unter dem Mikroskop rotiert und aus
verschiedenen Blickwinkeln aufgenommen wird. Die so entstandenen Bilder enthalten
zusätzlichen Informationen, die in einem neuen hochentwickelten Verfahren dazu ver-
wendet werden, die Auflösung entlang der optischen Achse zu verbessern. Dieses neue
Verfahren basiert auf den Entfaltungsmethoden.

Die Entfaltungsmethoden werden auch dazu verwendet, die Dosisverteilung in der
Protonentherapie auf Basis von PET Bildern zu rekonstruieren. Ein bei der Protonenbe-
strahlung entstandenes PET Signal kann durch eine Faltung der geplanten Dosis mit
einer speziellen Filterfunktion vorhergesagt werden. Eine Entfaltung des PET Signals
erlaubt wiederum die Rekonstruktion der Dosis und bietet somit die Möglichkeiten, die
tatsächlich abgegebene Dosis anhand von gemessenen PET Daten zu rekonstruieren.

Abschließend wird ein neues Entrauschungsverfahren vorgestellt, das statistische In-
formationen höherer Ordnung für ein gegebenes Gausssches Rauschsignal verwendet.
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Preface
This PHD thesis contains several different research projects with different project part-
ners. Parts of this work have already been published at different national/international
conferences and in journals.

A cell analysis tool was developed in cooperation with AG Nickel (Biochemical Cen-
ter, University of Heidelberg). The analysis tool was presented at the MIAAB workshop
in New York in 2008 [135] and an extension at the SPIE conference in Orlando, Florida
in 2011 [136]. The tool was successfully used in the analysis of all screening data in the
PHD thesis "Identification of Components of the Intracellular Transport Machinery of
Acylated Proteins by a Genome-wide RNAi Screen" of Julia Ritzerfeld [139] and this
work was published in the Genome Research journal in 2011 [140].

The improvements of the deconvolution framework were published and presented
at various conferences. The new deblurring algorithm containing the Bregman distance
was presented at the BVM conference in 2008 [137] while the accelerated version of the
iterative Richardson-Lucy algorithm with Total Variation regularization was published
at the BVM conference in 2009 [131]. The new deblurring method using a constraint
conjugate gradient method to enforce non-negativity in combination with a background
signal was presented at the World Congress on Medical Physics and Biomedical Engi-
neering in 2009 [130].

The reconstruction of a high resolution image on basis of Axial Tomography images
was a project in collaboration with the AG Cremer/Hausmann (Kirchhoff Institute for
Physics, University of Heidelberg). Parts of the axial reconstruction approach were
presented at the SPIE conference in Orlando, Florida in 2011 [134].

The dose deconvolution approach was developed in collaboration with Thomas Bort-
feld and Harald Paganetti (Massachusetts General Hospital and Harvard Medical School)
during my six month research visit at the MGH. Parts of the dose deconvolution method
were presented at the joint AAPM/COMP conference in 2011 [133]. Furthermore, a
paper containing a detailed description of the approach is accepted in the Physics in
Medicine and Biology journal [132].

After proofing the feasibility of the Higher Order Statistics denoising approach, a joint
project with the AG Steidl (Mathematical Image Processing and Data Analysis Group,
University of Kaiserslautern) was started and an extension of the original approach with
a substantial theoretical introduction is submitted to the Journal on Signal Processing
[158].
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Part I.

Introduction and Motivation
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1. Preamble
Deconvolution is challenging research area and there are many applications in digital
image processing. In this thesis, a deconvolution framework containing state of the art
deconvolution methods is presented and the focus is on several applications in medical
and biological imaging. In addition, the basic deconvolution framework is extended
by improved deconvolution methods. Deconvolution means by definition to reverse a
convolution which sounds quite simple at first sight. However, deconvolution is an ill-
posed inverse problem and not trivial to solve. In addition, all recorded images contain
noise which is a major problem in deconvolution.

In confocal fluorescence microscopy which is one application addressed in this thesis
the recorded images are degraded by blur and usually a strong noise signal. Such an
image of a human cell is shown in figure 1.1 on the left side. For a reliable understanding
of cellular processes, a good quality of the images is necessary and many discoveries
are based on the possibility to analyse fine details in the images. Since the quality
of the recorded images is sometimes not sufficient, restoration methods to reverse the
degradations are required. The blur in the image can be described by a convolution
with an appropriate filter mask and thus a deconvolution is a suitable tool to remove
the blurring in the image. Additionally, the recorded image contains noise and thus
the reconstruction of the image becomes more difficult. The restoration of microscopy
images is usually denoted as deblurring and a deblurring result of the cell is shown
in figure 1.1 on the right side. The noise given in the measured microscopy image is
removed and the resolution of the image is enhanced. Finer structures of the cell are
visible and a more detailed analysis of the cell is possible. In order to emphasize the
improvement of the image quality given by the deblurring method, the measured image
and the reconstructed image are merged in figure 1.2.

Cells are three-dimensional entities and the ability of fluorescence microscopes to
image a cell in 3D is limited. The resolution of the acquired volumes in direction along
the optical axis is considerably smaller than in transversal direction. Image deblurring
techniques are able to improve the resolution but the problem of a lower resolution in
direction along the optical axis remains. It is however possible to overcome this problem
using Axial Tomography providing tilted views of the object by rotating it under the
microscope. The rotated images contain additional information about the objects which
can be used to improve the resolution along the optical axis. An approach to reconstruct
a high resolution image on basis of the rotated images is presented. This approach
is based on deblurring methods and the components of the deconvolution framework

3



1. Preamble

Fig. 1.1.: Measured fluorescence microscopy image (Left) and deblurring result of hu-
man cell (Right).

Fig. 1.2.: Overlapping of measured cell image and deblurring result.

4



are used to reconstruct the Axial Tomography image. Prior to the reconstruction, a
bleaching correction is necessary and the additional images have to be aligned correcting
translational and rotational shifts. A multi-resolution rigid registration method is used
for that purpose.

Another application of the deconvolution framework is the dose reconstruction in
proton radiotherapy based on PET images. The main purpose of the PET treatment
verification is currently the verification of the proton beam range. The objective of the
dose reconstruction approach is to improve the range verification by reconstructing the
delivered dose and to eventually extend the method from range verification to overall
treatment verification. Since a PET image is not directly proportional to the delivered ra-
diation dose distribution, predicted PET images are compared to measured PET images
and an agreement of both indicates a successful irradiation. Such predictions are given
on basis of Monte Carlo calculations or a filtering approach which uses a convolution
of the planned dose with specific filter functions to estimate the PET activity. A decon-
volution is thus able to reverse the PET prediction based on the convolution approach
and allows the dose reconstruction on basis of measured PET signals obtained after the
irradiation. In addition, the PET images are degraded by a point spread function con-
volution and contain noise. Not considering these degradation leads to large artifacts
in the dose reconstruction result and removing this convolution is thus mandatory by
applying another suitable deconvolution method.

The outline of this thesis is as follows. First, a detailed definition of ill-posed in-
verse problems is given and the underlying imaging systems of the medical and bio-
logical applications of the deconvolution framework are described. A RNAi-based
high-throughput microscopy screen to investigate intracellular trafficking and targeting
of acylated Src kinases is presented in order to motivate the topic of image deblur-
ring. An automated software tool was developed to interpret the images acquired in
this screen and structural information in the fluorescence microscopy images have to be
analysed. A good image quality is therefore required and a preprocessing deblurring
step can improve the image quality and allow more reliable results. The architecture of
the realized deconvolution framework and its basic components are presented in chapter
6. The improved deconvolution methods are described in chapter 7 and the methods to
evaluate the reconstruction results can be found in chapter 8. Results using the standard
components of the deconvolution framework and results of the improved deconvolution
methods are presented in chapter 9. The reconstruction methods for the Axial Tomo-
graphy and corresponding results are shown in chapter 10 while chapter 11 contains the
dose reconstruction methods for the proton radiotherapy based on PET images. A con-
clusion chapter completes the main part of this thesis. Before an outlook is given in the
last chapter, a feasibility test for a new denoising approach using higher order statistics
is presented in chapter 13.
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2. Deconvolution as ill-posed
Inverse Problem

Inverse problems were introduced in medical image processing when the first CT im-
ages were reconstructed. A CT provides a series of projections of the investigated object
which cannot be directly interpreted by a physician. First, an image about the original
object has to be reconstructed using the projections. The reconstruction is hereby called
the inverse problem in relation to the forward or direct problem of generating the projec-
tions. Another example for an inverse problem is microscopy deconvolution also called
microscopy deblurring. Due to the diffraction limit of light and the optical aperture of a
microscope, the images are blurred with a point spread function (PSF) which represents
the forward problem in this case. In order to reconstruct the original image, the inverse
problem of deconvolving the recorded image with the PSF has to be solved. PET images
and microscopy images are in fact quite similar because a PET image is also degraded
by a PSF as well. Furthermore, the dose reconstruction method presented in this thesis
is realized by a deconvolution as well and thus also belongs to this class of problems.

Unfortunately, a typical property of inverse problems is ill-posedness which means by
definition that these problems are not well-posed. The concept of well-posed problems
was introduced by Hadamard [62] on boundary value problems for partial differential
equations and their physical interpretation. A well-posed problem has an unique solu-
tion and exists for arbitrary data according to this first formulation. Later, Hadamard
added the continuous dependence of the solution on the data claiming that a solution
which varies considerably on small variations is not really a solution in the physical
sense. In addition, this third property is of importance since physical data is never
known exactly due to noise and other degradations which occur during measurements.
In general, a direct or forward problem, i.e. a problem oriented along a cause-effect
sequence, is well-posed while the corresponding inverse problem, which implies a re-
versal of the cause-effect sequence, is ill-posed. A forward problem, e.g. a convolution,
can be described by y = Ax. Hereby, x represents the original object, A is a matrix
describing the properties of the imaging system and y denotes the result of the measure-
ment. x is an element of X , y an element of Y and thus A describes a transformation
from X → Y . The corresponding inverse problem which implies a reversal of the
cause-effect sequence is well-posed if the following properties are fulfilled:

• The solution of the problem exists:

7



2. Deconvolution as ill-posed Inverse Problem

∀y ∈ Y, ∃x ∈ X : Ax = y

• The solution of the problem is unique:
y1 = y2 ⇔ Ax1 = Ax2 ⇒ x1 = x2

• The solution depends with continuity on the data:
A−1 exisits and describes a continuous transformation.

If one of these properties is violated, the inverse problem is called an ill-posed prob-
lem. Ill-posed inverse problems are in particular sensitive to noise since the third prop-
erty is usually violated. If not considered correctly, noise or other small variations in
the data can be amplified and degrade the reconstruction result considerably.

8



3. Fluorescence Microscopy
Imaging

3.1. Fluorescence Microscopy

Fluorescence microscopy is a widely spread imaging technique used in nearly all fields
of cell and molecular biology. The principle of fluorescence is the excitation of a fluo-
rescent molecule with light of a specific wavelength and the almost instantly responding
emission of light with a longer characteristic wavelength (Figure 3.1). The excitation
light is absorbed and the released energy moves an electron from an inner orbital of the
fluorescent molecule to an orbital being farther away from the nucleus. After usually
losing a bit of its energy by vibrational relaxation the electron moves back to its initial
ground state while emitting the remaining energy as fluorescence light. The difference
in the wavelengths between the absorbed and emitted light, known as Stokes shift, is the
reason that fluorescence can be used as powerful imaging technique. The exciting light
is completely filtered while the emitted fluorescence light can be detected (Figure 3.2).
As result, the fluorescent object can be seen in high contrast because the background,
assuming no other light sources of the given wavelength, remains dark. Over the last
decades many thousands of fluorescent probes have been developed and these probes
can be used to label virtually any imaginable aspect of biological systems. It is even
possible to use more fluorophores to image different components simultaneously [92].

In principle, there are two different types of fluorescence microscopes: widefield mi-
croscopes and confocal microscopes. Both microscope types are low-photon imaging
techniques suffering from Poisson noise typical for such techniques. In conventional
widefield microscopy, a slice of the imaged specimen is excited and imaged at once
(Figure 3.3). This procedure can be repeated at different depths within the whole spec-
imen resulting in an image stack forming a complete 3D volume. Exciting a huge area
of the specimen leads to a high degree of fluorescence emission and most of the fine
detail is lost. Especially when imaging thicker specimen, emission light from outside
the focal plane can be seen in the images. Confocal microscopy is able to exclude the
surrounding fluorescence light and thus provides a higher resolution [154], [89].

In confocal microscopy, the specimen is scanned and imaged point-by-point in 3D
[109] [38] [176] [37] (Figure 3.4). A focused laser beam is used to excite the actually
scanned region. The rest of the specimen mostly remains dark and no fluorescence light
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3. Fluorescence Microscopy Imaging

Fig. 3.1.: Fluorescence principle.

Fig. 3.2.: Basic schema of fluorescence microscope.
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3.2. Image Formation Model

Fig. 3.3.: Imaging schema of a widefield microscope [92].

should arise from there. In addition, most out-of-focus light is excluded by a pinhole.
Therefore, the acquired image has a higher resolution in x, y and z direction compared
to widefield microscopy [154], [89] but there is still blur in these images. There are
two properties that still influence the quality of the images. The pinhole is able to reject
most out-of-focus light but the diffraction limited nature of the optics and light itself
remains. Furthermore, the pinhole strongly reduces the amount of detectable light. It
is not possible to increase the laser power in order to get a stronger signal because the
risk of photo bleaching and photo toxicity increases at the same time. In general, the
photo bleaching effect is stronger in confocal than in widefield microscopy imaging and
it takes more time to acquire the image.

3.2. Image Formation Model

Widefield and confocal microscopy degrades the acquired images like any other optical
system. The out-of-focus light blurs the image and can be described by a point spread
function (PSF) convolution. Figure 3.5 shows the PSFs of a widefield and a confocal
fluorescence microscope. Since fluorescence microscopy is a low-photon imaging tech-
nique, the noise statistics in the image is well described by a Poisson process which is
represented by φ(.). A suitable image formation model with i being the observed image,
o the original image and ∗ describing a convolution is given by:
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3. Fluorescence Microscopy Imaging

Fig. 3.4.: Imaging schema of a confocal microscope [35].
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3.2. Image Formation Model

Fig. 3.5.: PSF of widefield and confocal Microscopy [35].

Fig. 3.6.: Illustration of image formation model.

i = φ(o ∗ PSF ) (3.2.1)

Hereby, the three-dimensional digital images i and o are given as functions of the form
f : Ω→ R defined on a restricted image domain Ω ⊂ Z3. In fact, there are no negative
values in the images and because of the discretisation to integer values, the range of
these functions is actually N0 with an upper boundary given by the data format. There
is a background signal b in fluorescence microscopy images and an extended image
formation model was thus suggested [163]:

i = φ(o ∗ PSF + b) (3.2.2)

Figure 3.6 illustrates the image formation model step by step. The image is blurred
in a first step and additional Poisson noise is added in a second step resulting in the
degraded image.

13



3. Fluorescence Microscopy Imaging

3.2.1. PSF
For most deblurring methods, it is assumed that the PSF is already known. It is possible
to use a second image with beads to estimate the PSF in a preceding step [178] or to
calculate the PSF due to the physical properties of the used microscope. A centered
and normalized Gaussian PSF with a certain variance is usually used. In general, the
PSF is assumed to be constant all over the image plane but there are also approaches
suggesting that the PSF varies in different depths. In [127] the authors assume that
spherical aberrations worsen as the microscope is focused deeper and thus suggest a
depth-varying image formation model. For the synthetic images used in this thesis, a
centered normalized 3D Gaussian PSF with certain variances in all dimensions (σx, σy,
σz) is used:

G(x, y, z) =
1

√
2π

3
σxσyσz

e
−
(
x2

2σ2x
+ y2

2σ2y
+ z2

2σ2z

)
(3.2.3)

Fortunately, a Gaussian filter mask is separable. This means that it is possible to use
three 1D convolutions with according 1D filter masks instead of one 3D convolution
with a size given by the product of the sizes of the 1D filter masks. A one dimensional
Gaussian filter function with a variance σ2 is given by:

G(x) =
1√
2πσ

e−
x2

2σ2 (3.2.4)

The principle of separable filters is described in the following using two dimensional
functions. Separable filters based on three dimensional functions can be created in the
same way using an additional analogous extension for the third dimension. An arbi-
trary two dimensional filter mask Hxy is separable if the condition in equation 3.2.5
is fulfilled, i.e. the filter function of Hxy can be separated in a product with each fac-
tor containing the according components of the filter mask for one dimension. A two
dimensional Gaussian filter function can thus be separated according to equation 3.2.6.

Hxy = Hx ·Hy (3.2.5)

G(x, y) =
1

2πσxσy
e
−
(
x2

2σ2x
+ y2

2σ2y

)
=

1√
2πσx

e
− x2

2σ2x · 1√
2πσy

e
− y2

2σ2y (3.2.6)

3.2.2. Poisson Noise
A major problem for ill-posed inverse problems is noise. If not considered properly
noise is amplified and creates artifacts. There is Poisson noise in the fluorescence mi-
croscopy images. A Poisson noise distribution at point x ∈ Ω is described by:
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3.2. Image Formation Model

P (i(x)|(o ∗ PSF )(x)) =
[(o ∗ PSF )(x)]i(x) e−(o∗PSF )(x)

i(x)!
(3.2.7)

i is the observed image and o ∗ PSF is the original image blurred by the PSF . Ω
again denotes the image domain. Since it can be assumed that the noise in the observed
fluorescence microscopy images is statistically uncorrelated, the present statistics is the
likelihood distribution given by:

P (i|(o ∗ PSF )) =
∏
x∈Ω

[(o ∗ PSF )(x)]i(x) e−(o∗PSF )(x)

i(x)!
(3.2.8)
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4. PET Imaging in Proton
Radiotherapy

Positron emitters are produced as a by-product in tissue which is penetrated by a proton
beam (Figure 4.1). Hereby, nuclear interactions cause separations of neutrons from
nuclei in the tissue leading to β+-decays in the residual nuclei. During a β+-decay a
proton turns into a neuron while emitting a positron e+ and a neurino νe.

A(Z,N)→ A(Z − 1, N + 1) + e+ + νe (4.0.1)

In the β+-decay the positron and the neutrino share the available energy in an arbi-
trary proportion leading to a continuous energy spectrum. The positron loses energy
while traveling through matter due to inelastic Coulomb collisions with atomic elec-
trons. After losing most of its energy, the positron either annihilates with an electron
from surrounding tissue into two photons or captures an electron forming an unstable
bound state. There are different possible bound states which annihilates into two or
three photons. However, the 3γ-emission can be neglected and the 2γ-annihilation is
assumed to form the detectable radiation. In detail, both photons carry an energy of
511 keV equal to the positron and electron rest mass and are emitted in opposite di-
rections. A PET scanner is able to detect the photons using opposite detectors working
synchronised. The spatial distribution of the positron emitters can then be determined
using suitable reconstruction algorithms leading to a three dimensional image. The re-
construction is based on two assumptions [15]: (i) the nucleus from which the positron

Fig. 4.1.: β+ decay: 1. Neutron separation, 2. Positron emission and 3. Positron anni-
hilation.
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4. PET Imaging in Proton Radiotherapy

Fig. 4.2.: FWHM for a Gaussian function.

originated is exactly located along the line at which the two photons are emitted and
(ii) the two annihilation photons are emitted at 180◦. These assumptions are inaccu-
rate since a positron travels in the tissue due to its initial energy. Besides, biological
washout effects can also influence the position of the positron annihilation. Due to
these and other factors, the authors in [83] state that the accuracy of the proton beam
range verification using PET imaging is of 1-2 mm in case of head and neck patients.
However, depending on the position of the tumor, other factors like patient motion can
have a far greater influence.

The PET images are degraded by noise like any other recorded image. Since positron
emission tomography is a low-photon imaging technique, the acquired image signals
s are degraded by Poisson noise. In addition, Gaussian noise can also be found in the
images caused by the detectors acquiring the image data. Poisson noise is multiplicative
while Gaussian noise is additive. The PET images are also degraded by a point spread
function (PSF) convolution. A PET image is not recorded directly but reconstructed
using suitable algorithms and the PSF reflects blur caused by smoothing in the image
reconstruction but also many other sources like e.g. positron range and PET camera res-
olution. The PSF of the PET images is approximated by a three dimensional Gaussian
convolution kernel which is usually described by a specific full width at half maximum
(FWHM). A PSF with a FWHM of 7 mm is used to account for the response of the PET
imaging system given by the systems specifications. Gaussian functions are often char-
acterized by a variance σ2 and the correlation between FWHM and variance is given
by:

FWHM = 2σ
√

2ln(2) σ2 = FWHM2

8ln(2) (4.0.2)

The FWHM is basically the distance between the two points where the Gaussian
function reaches half of its maximum value as illustrated in figure 4.2. In summary, the
PET images are smoothed using a PSF convolution and suffer from both Gaussian and
Poisson noise.
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Positron Reaction Threshold Half-life Decay Positron
emitter channel energy time constant max E.

(MeV ) (min) (min−1) (MeV )
11C 12C(p, pn) 20.61 20.39 0.0340 0.96
11C 16O(p, 3p3n) 59.64 20.39 0.0340 0.96
13N 16O(p, 2p2n) 5.66 9.965 0.0696 1.19
15O 16O(p, pn) 16.79 2.037 0.3398 1.72

Table 4.1.: Relevant positron emitters for proton therapy

Protons cause the production of β+-emitting target fragments along the penetration
path as long as their energy is beyond a certain energy threshold of nuclear interactions.
E.g., the energy thresholds for the production of 11C and 15O in the main reaction chan-
nels are 16.6 MeV and 20.3 MeV [168]. Besides the (p, pn) reaction channel on 12C,
the (p, 2p2n) and (p, 3p3n) reaction channels on 16O are relevant for the PET imaging
in proton therapy. In case of a longer delay time between irradiation and PET measure-
ment, 11C positron emitters from 12C(p, pn) and 16O(p, 3p3n) reaction channels were
considered primarily [115] [119]. Since in-room PET imaging allows decreased delay
times, positron emitters with a smaller half-life time are of importance as well. Hereby,
15O and 13N were investigated lately [7]. The reduction of the PET activity I of differ-
ent emitters in dependence of the delay time ∆t with I0 being the initial PET activity
after the irradiation is given by:

I(∆t) = I0 · e−λ∆t (4.0.3)

Hereby, a positron emitter specific decay constant λ which depends on the half-life
time T1/2 is used. The connection between half-life time and decay constant is described
by:

λ =
−ln(0.5)

T1/2

(4.0.4)

An overview of the relevant positron emitters and their properties is given in table 4.1
[14].
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5. Automated Cell Analysis for
Genome Wide RNAi Screens

5.1. Introduction

RNAi-based high-throughput microscopy screens have become an important tool in bi-
ological sciences in order to decrypt mostly unknown biological functions of human
genes. Manual analysis is impossible for such screens since the amount of image data
sets can often be in the hundred thousands. Reliable automated tools are thus required
to analyse the fluorescence microscopy image data sets usually containing two or more
reaction channels. Such an automated cell analysis tool which was developed in collab-
oration with Julia Ritzerfeld, Heidelberg University Biochemistry Centre is presented in
this chapter. These tools have similar structures and functionalities but since each RNAi
screen investigates a specific biological function, the visual representation of the cells is
different leading to problem-specific techniques. The presented image analysis tool is
designed to analyse a RNAi screen investigating the intracellular trafficking and target-
ing of acylated Src kinases. In this specific screen, a data set consists of three reaction
channels and the investigated cells can appear in different phenotypes. The main issue
of the image processing task is an automatic cell segmentation which has to be robust
and accurate for all different phenotypes and a successive phenotype classification. The
cell segmentation is done in two steps by segmenting the cell nuclei first and then using
a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. In
a first version of the cell analysis tool, the cell classification was realized by a manually
adapted classification function [135]. In the final version of the analysis tool, the clas-
sification of the cells is realized by a support vector machine which has to be trained
using supervised learning [136]. Furthermore, the tool is brightness invariant allowing
different staining qualities and it provides a quality control that copes with typical de-
fects during preparation and acquisition. In order to evaluate the correctness of the tool
the results are compared to a manual analysis done by an expect for a representative
amount of images. Besides, there is a positive control in the RNAi screen giving the
opportunity to evaluate the tool objectively. The first version of the tool has already
been successfully applied for an RNAi-screen containing three hundred thousand image
data sets and the SVM extended version is designed for additional screens.

This section is organized as follows: Section 5.2 describes the biological background
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5. Automated Cell Analysis for Genome Wide RNAi Screens

Fig. 5.1.: Intracellular transport of Src kinases labeled with GFP.

of the RNAi screen. In section 5.3, a short summary of the state of the art of cell
segmentation and automated analysis tools is given. The analysis tool is described in
detail in section 5.4 while section 5.5 contains an overview about the experiments used
to evaluate the quality of the tool and the results of this evaluation. A summary and
discussion concludes the chapter in section 5.6.

5.2. Biological Background

An important task in biomedical science is the decryption of the biological functions
of human genes; which are mostly unknown. The identification of the genes and their
corresponding functions are important for fundamental research as well as for the devel-
opment of pharmaceutic agents. It is possible to reduce the expression of target genes
by RNA interference (RNAi) which was discovered by Fire and Mello [54]. All known
genes can be silenced separately with this screening method and existing functions of
the genes can be observed. For a complete and systematic analysis for a specific bio-
logical function a genome-wide high-throughput RNAi screen has to be done. Such a
screen requires a robust and automated methodology like that described in [74]. Be-
sides, it provides a huge amount of data to be analysed. Since it is impossible to analyse
this amount of data manually, suitable tools are required.

The analysis tool which is presented in this chapter was developed for a genome-wide
RNAi screen investigating intracellular trafficking and targeting of acylated Src kinases.
In this specific screen the investigated living cells can appear in three different phe-
notypes depending on the localization of the fluorescence marker: plasma membrane,
cytoplasm and Golgi. In fact, two distinct kinases are investigated in this screen. These
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5.2. Biological Background

two kinases were tagged with different fluorescent proteins (GFP/mCherry) and are ex-
pressed by a human model cell line. Both kinases localize to the plasma membrane, but
the pathway and factors involved are unknown and the objective of the RNAi screen.
As mentioned before, all genes are silenced separately during the RNAi screen. If a
gene which is involved in the transport is silenced the fluorescent kinases are arrested
before reaching the final position in the pathway and the cell appears in a different phe-
notype. In this case either the original location of the kinases can be seen or a different
position revealing a part of the pathway of the kinases transport. Originally, the kinases
are located in the cytoplasm of the cell. In the transport pathway of the Src kinases
there is only one intermediate station that can be seen in the screen. The Src kinases are
located at the golgi apparatus in case of this intermediate station. The golgi apparatus
is a specialized subunit of the cell located next to cell nucleus. The final position in the
investigated transport path is the plasma membrane. The whole pathway of the kinases
transport is illustrated in figure 5.1 beginning with the localization of the kinases in the
cytoplasm. In the next step the Src kinases are located at the golgi apperatus before
finally being transported to the cell membrane. This means that there are two separated
steps in the kinases transport: one step is the transport of the Src kinases from the cyto-
plasm to the Golgi while during the second step the kinases are transported to the plasma
membrane. Silencing genes which are involved in the first step of the transport path of
the kinases, from the cytoplasm to the golgi apperatus, results in the appearance of the
cells in the original phenotype, meaning as cyroplasm cells. Other genes are involved
in the second step from the golgi to the plasma membrane. Cells appearing as golgi
phenotype imply an involvement of the gene in this part of the transport. Finally, if the
cells appear as plasma membrane phenotype the investigated gene is not involved in the
transport at all.

A confocal image of all three phenotypes can be seen in figure(5.2). The bright areas
in the image are the locations where the fluorescence markers are located while all
other parts of the cells are dark. In case of a plasma membrane cell, the fluorescence
markers are located in the boundary of the cell while the markers in a cytoplasma cell
can be found all over the cell. The Golgi apparatus, as mentioned before, is a small
compartment of the cell located next to the cell nucleus and the fluorescence marker is
situated there for the Golgi phenotype. Since there are different intensities within the
Golgi phenotype, an additional class named Golgi strong was added for the purpose of
a more accurate biological analysis. This additional class is not an additional phenotype
but a subdivision of the Golgi phenotype in order to point out cells having a highly
developed Golgi phenotype.

In total, the analysed screen includes 149 LabTeks in duplicates with 384 spots per
LabTek resulting in 340000 single images and about one Terabyte of data. For each spot
an image dataset containing three channels is acquired. The Hoechst channel contains
the fluorophore-labeled cell nuclei while the actual cells in appearance of the three phe-
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Fig. 5.2.: Confocal image of phenotypes (Left to right: plasma membrane, cytoplasm,
Golgi).

notypes can be seen in both the GFP and the mCherry channel. These two channels are
the result of the simultaneous expression of the two different Src kinases labeled with
GFP and mCherry fluorophores and have to be analysed separately.

5.3. State of the Art

Various approaches for cell nuclei or whole cell segmentation have been published in
recent years. Fernandez et al. [53] focused on cell nuclei segmentation and tried to
detect directly neighbouring cell nuclei in order to separate them. In this approach,
dominant or concave points on the binary contour of the region are detected and consid-
ered to be points where the nuclei can be split. In [107], Lezoray and Cardot described
an active contour technique for the segmentation of cell nuclei. A whole cell segmen-
tation using region growing and adaptive segmentation methods was presented in [4].
Wu et al. [82] used a two step method for coarse and fine segmentation which ap-
plied hierarchical thresholding for whole cell segmentation. In [121] the segmentation
is done by a thresholding method and adaptive fuzzy c-means clustering. Alternatively,
there are several approaches using a watershed algorithm for cell nuclei or whole cell
segmentation (See [169] [91] and references therein). In addition, Wählby [169] is try-
ing to separate cell aggregates by merging or deleting small regions in a second step
following the watershed segmentation. The approach of Metzler et al. [108] is able
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to separate touching cells and in this multi-scale approach, mathematical morphology
operators are used. The cell segmentation in [110] is realized by a neural network ap-
proach but for this approach the cell contours have to be emphasized. Elter et al. [48]
present a three-step segmentation called maximum-intensity-linking closely related to
classic watershed methods. Here, the neighborhood of each pixel is evaluated and a
smoothing preprocessing step is used in order to be robust against noise. In addition, a
post-processing step merges oversegmented regions.

Harder et al. [63] presented an automated image analysis method focusing on cell
nuclei. The method segments, tracks and classifies cell nuclei automatically and distin-
guishes the nuclei into different mitotic phases. In this approach, multi-cell 3D images
are analysed while a 2D projection is used for segmentation and tracking. The seg-
mentation of the cell nuclei is based on a local adaptive thresholding approach and the
classification is using a Support Vector Machine. In [106], an analysis tool for high-
throughput microscopy is described. The underlying RNAi screen investigates genes
involved in Hepatitis C and Dengue virus replication. In a first step the cell nuclei are
segmented by a gradient thresholding and in the following step the infection level is
determined by investigating the neighbourhood of the cell nuclei. In order to determine
the neighbourhood of the nuclei, different approaches from dilation to region growing
were tested.

5.4. Methods

The analysis tool presented in this chapter was developed for a genome-wide RNAi
screen investigating intracellular trafficking and targeting of acylated Src kinases [139].
In this specific screen, the investigated cells can appear in three different phenotypes:
plasma membrane, cytoplasm and Golgi (Figure 5.2). Each image data set consists of
three different reaction channels and a typical data set can be seen in figure 5.3. The
Hoechst channel contains the fluorophore-labeled cell nuclei while the actual cells in
appearance of the different phenotypes can be seen in both the GFP and the mCherry
channel. These two channels are the result of the simultaneous expression of two dif-
ferent Src kinases labeled with GFP and mCherry fluorophores and have to be analysed
separately but in the same way. A first version of the analysis tool was already presented
[135] and contains the problem-specific segmentation and a manually adapted classifi-
cation function. In addition, the image quality is analysed and the segmentation results
for both nuclei and cell are reviewed in an additional step to guarantee a valid segmen-
tation and to cope with local contamination. Several features are extracted on basis of
the segmentation result and the classification is realized by a manually adjusted decision
function. This approach is time consuming since it is not trivial to decide which features
are relevant and the adjustment of the necessary coefficients in the decision function has
to be done by hand. In addition, the decision function is valid for just one biological set
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Fig. 5.3.: Cell image with Hoechst (Top), GFP (Middle) and mCherry (Bottom) channel.
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5.4. Methods

Fig. 5.4.: Image analysis strategy.

up and any changes like just using different microscope slides (E.g. well plates instead
of LabTeks) require a new adjusted decision function. In order to provide a complete
automated image analysis tool, a supervised learning approach realized by a Support
Vector Machine is applied. Supervised learning can be used for various image analysis
problems [151]. Using a Support Vector Machine, the analysis tool can be easily trained
by manually classifying a certain amount of cells which is then used both to train and to
adjust the parameter for the Support Vector Machine. In addition, this step provides an
evaluation of the resulting classification set up. In order to perform an analysis for the
genome-wide RNAi screen, it is necessary to detect the number of cells in each image
and to differentiate the phenotypes shown in the GFP and the mCherry channel. The
analysis tool processes many LabTeks at once by a batch process which is controlled by
a Matlab GUI. The results of the analysis are stored in two text files, one for the GFP
and one for the mCherry results. This way, the results can be easily imported into a
spreadsheet application for further evaluation.

5.4.1. Analysis Algorithm
For the analysis of each three-channel image data set, the strategy which is sketched in
figure 5.4 is used. The main parts in the strategy are:
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• Quality control.

• Segmentation of cell nuclei and cell Segmentation.

• Classification of different phenotypes.

5.4.2. Quality Control
Three reasons for image degradation are considered: out-of-focus image acquisition,
noise and local contamination. Additional noise in the image is handled by the robust
segmentation technique. Furthermore, there are areas in the images which are corrupted
by contaminations. These degradations are only local and do not influence the image
quality in general. As an analysis shows, the best way to handle such degradations is to
detect and exclude them after the segmentation. Finally, the focus of the microscope is
determined by an auto focus functionality that is not always reliable. Hereby, the quality
control of the three channels is performed by analyzing the quality of each channel
separately. To measure this degradation, the image channels are transformed in the
Fourier space and out-of-focus images are detected by their lacking in high frequency
bands. In general, the quality of an image is described by one of four possible quality
levels. The quality rating of each image channel is added to the analysis result and in
this way a weighting of the results is possible.

5.4.3. Cell Nuclei Segmentation
First, the cell nuclei are segmented using the Hoechst channel. Since the intensity val-
ues of the cell nuclei in the Hoechst channel are within a certain range, threshold tech-
niques are applied. An evaluation of several Hoechst images shows that the brightness
in this image channel can vary and that a fixed threshold will not lead to a satisfactory
segmentation for all Hoechst images. For this reason, an adaptive thresholding is ap-
plied: Starting with a high value, the threshold is decreased until an appropriate result is
achieved. For each threshold parameter the segmentation generates connected regions
of a certain size. An appropriate result is reached when the average size of these regions
correspond to the assumed size of the cell nuclei. The threshold is decreased with a vari-
able step-size becoming smaller according to the proximity of the current segmentation
to the assumed result. In an additional step, holes in the nucleus regions are closed and
local contaminations are excluded.

5.4.4. Cell Segmentation
The following cell segmentation process can either operate on the GFP or the mCherry
channel. Both image channels contain the same cells and thus the segmentation can
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be performed on both channels. The proposed region growing method requires a seed
point and a stopping criterion fitting all phenotypes which is realized by a rule-based
classifier. As seed points, the cell nuclei region segmented from the Hoechst channel
are used and in addition this region serves as source for information used in the classifier.
The classifier uses the minimal local cell brightness in the known nucleus region and the
gradient of the cell image. The stopping criterion is fulfilled, if and only if the brightness
of an inspected pixel is below the brightness in the nucleus region and the gradient
magnitude at that point is above a certain threshold. Let the minimal local brightness in
the nucleus region be t1. The stopping criterion is fulfilled if both following rules are
maintained. If one rule is violated the region growing is not stopped.

• Rule 1: The brightness of a new pixel must be below t1 − ε, where ε > 0 is a
suitable threshold.

• Rule 2: The gradient magnitude of a new pixel has to be above a threshold t2.

This classifier-enhanced region growing approach is suitable for all three phenotypes
and, in addition, it is fluorescence brightness invariant. The approach is successful for
bright and dark cells since the local brightness is considered in the segmentation. A
cytoplasm cell can be segmented correctly since there are only low gradient magnitudes
inside the cell and therefore rule 2 is violated while rule 1 can be fulfilled inside the
cell area. The Golgi phenotype can be segmented because the brightness of the pixels
within the cell is beyond the threshold t1 − ε of rule 1 and despite of the high gradient
magnitudes inside the cells. Finally, the plasma membrane cells possess low gradient
values inside the cells as well and the borders of the cells are recognized correctly even
if the membrane is not displayed as a closed structure.

In an additional step, the segmented cells have to be inspected before they can be
classified and thus a quality control for the segmentation results is required. Local
contaminations or weak and noisy intensity signals can cause infeasible segmentation
results. These results are detected by evaluating the size and the shape of the segmented
cells and have to be excluded. In addition, a valid classification result cannot be guar-
anteed if a cell is too close to the edge of the image domain since essential areas of the
cell can be missing. Besides, if two cell nuclei are too close to each other it is likely
that the cells overlap and a valid segmentation is not possible in this case. Again, valid
results which are free of artifacts and contaminations are obtained by excluding these
cells from the segmentation output.

5.4.5. Classification
The segmentation result provides the basis for the classification and is used to divide
the cell into complementary parts: nucleus, boundary and interior. The nucleus of the
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cell is already characterized by the segmentation result of the Hoechst channel. In order
to determine the cell boundary, a modified morphological gradient (Difference between
original and eroded image) is applied. Finally, the interior is the difference between the
complete cell region and the boundary unified with the nucleus. For each cell and its
constituent parts, the mean value and standard deviation of the corresponding pixel val-
ues are feature candidates for the classification. The following features are considered
as relevant due to several tests:

• Standard deviation and mean value of cell.

• Mean value of nucleus, boundary and interior.

It is important for the phenotype classification to be invariant to the fluorescence
brightness of the different cells and therefore the features are defined using proportions
between the different extracted mean values and standard deviation like e.g. mean inte-
rior vs mean nucleus or standard deviation vs mean value of the whole cell.

The classification for the GFP channel is independent from the mCherry channel and
vice versa. These channels contain images of the same cells and the segmentation result
is valid for both images while the feature extractions as well as the decision functionality
are completely separated. Both channels are simultaneous expressions of two different
protein kinases and contain the same phenotypes. Thus, the same features can be used
for the classification.

Decision tree classifaction

In the first version of the tool, the rules for the decision functionality were the result of
an intensive analysis of the extracted features for all phenotypes. The classification was
performed by a decision tree containing the manually found rules. Cells which did not
fit a phenotype criterion were classified as invalid. In addition, a subtype Golgi strong
was added for the Golgi phenotype. This subtype contains cells with a highly developed
Golgi phenotype and therefore the definition for this class is more restricted.

The classification of the phenotypes is performed by a decision functionality dis-
played as a decision tree in figure 5.5. In rare cases, there are cells changing their
phenotype when the image is acquired. Such cells do not fit into one of the phenotype
classes and they are thus marked as invalid. The rules for the decision functionality are
the result of an intensive analysis of the extracted features for all phenotypes. This anal-
ysis contains the evaluation of more than three thousand cells of different phenotypes.
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Fig. 5.5.: Decision tree for phenotype classification.

5.4.6. Support Vector Machine Classification and
Supervised learning

In the final version, a supervised learning method based on a Support Vector Machine is
applied. This method is flexible and a lot easier to handle than a manual adjusted deci-
sion function. In general, a Support Vector Machine requires a set of already classified
examples which are used as training data.

D = {(xi, ci) |xi ∈ Xp, ci ∈ {−1, 1}} for i = 1, ..., n (5.4.1)

Hereby, each xi is a p dimensional feature vector representing the properties of one
cell and ci indicates the class to which the example cell i belongs. In total, the set D
contains n classified examples and the aim is to find the maximum-margin hyperplane
separating the points with ci = 1 from those with ci = −1. Any hyperplane can be
written as a set of points x satisfying

〈w, x〉 − b = 0 (5.4.2)

with w being the normal vector of the hyperplane. In addition, b
‖w‖ determines the

offset of the hyperplane from the origin along the vector w. In order to determine the
hyperplane for a given training data set D, w and b have to be chosen in a way that the
margin is maximized, i.e. the distance between the hyperplanes described by
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〈w, x〉 − b = 1 〈w, x〉 − b = −1 (5.4.3)

has to be maximized. In other words, w and b are chosen in a way that the smallest
distance of the example points xi with i = 1, ..., n to the hyperplane 〈w, x〉 − b =
0 is maximal. The hyperplane can be determined solving the optimization problem
minimizing 1

2
‖w‖2 with respect to the constraint

ci (〈w, x〉 − b) ≥ 1 for i = 1, ..., n (5.4.4)

This constrained quadratic optimization problem can be efficiently solved using La-
grange multipliers. A hyperplane can be used to classify data which is linearly separa-
ble and the previously described method is thus named linear Support Vector Machine.
There is a soft margin extension of the support vector machines which allows misclassi-
fied examples by using an additional penalty function in case the given data is not linear
separable. In principle, several examples are not considered when the hyperplane is
determined and the amount of those examples is controlled by a soft margin parameter.

In addition, a realization of proper non-linear classification is possible with Support
Vector Machines by using the so called kernel trick. Instead of using scalar products
of the form 〈xi, xj〉, kernel functions k which are mapping the input space to a higher
dimensional space are used. Such a kernel function is defined by

k(xi, xj) = 〈φ(xi), φ(xj)〉 (5.4.5)

with φ being a non-linear mapping. The kernel functions allow non-linear classifi-
cation with the Support Vector Machines because they transform the data to a higher
dimension where a linear separation using a hyperplane is again possible. In order to
use the full effectiveness of a support vector machine, it is important to both choose an
appropriate kernel and to adjust a soft margin parameter. The choice of the kernel has
to be appropriate to the location of the support vectors. In this case, a polynomial kernel
function of order three is used to obtain a suitable result.

k(xi, xj) = (xi · xj)3 (5.4.6)

In addition, the soft margin basically determines the amount of considered support
vectors and thus allows mislabeled examples. This parameter has a huge influence on
the overall classification result and is determined adaptively. Half of the manually clas-
sified data is used as training data and the other half is then used as test data to evaluate
the training success. Varying the soft margin parameter and comparing the classifica-
tion result of the test data with the manual classification allows both the determination
of a suitable soft margin parameter and the evaluation of the classification. In general,
the Support Vector Machine is able to distinguish between two categories and there are

32



5.5. Results

various strategies to realize a multi-category classification which is required for the phe-
notype classification. In this approach, each phenotype is classified by comparing it to
all other types by a separate Support Vector Machine.

5.5. Results

An expert evaluated the segmentation methods of the cell analysis tool manually. The
images of the RNAi screen have a size of 1344 × 1024 pixels and contain 200 cells on
average. Many of the images are difficult to segment because they are out-of-focus, con-
tain local contamination or touching/overlapping cells. The evaluation contains many
images with different quality levels and different fluorescence brightness. Before the
segmentation is started, the quality of the image is determined and quantified into four
classes named excellent, good, acceptable and insufficient. Prior to cell segmentation,
the cell nuclei segmentation was evaluated. The nucleus segmentation has an error of
less than 1% for excellent and good images independent of their fluorescence brightness.
In addition, all local contaminations are detected due to their size and thus excluded.
Cells can only be classified properly if they do not overlap. In case of cell clusters
containing more layers of overlapping cells, the cell nuclei touch each other and form a
large connected region in the segmentation result. The size of such a connected region is
significant larger than the assumed size of a cell nucleus and these overlapping cells are
excluded like contaminations. For images with an acceptable quality, fewer cell nuclei
are segmented correctly (approximately 60% to 80% depending on the brightness of
the Hoechst image). Other cell nuclei are excluded by the quality control because only
parts of the nucleus area are segmented or the cell nuclei are not segmented at all. Al-
beit not all cell nuclei are included in the segmentation result, the considered nuclei are
segmented correctly in general. For insufficient images the segmentation result contains
less than 1% of the cell nuclei and is thus not usable at all.

In figure 5.6 the result of a segmentation including the cell nuclei and boundary is dis-
played. This is the segmentation result of the GFP channel shown in figure 5.3. Local
contaminations and incorrectly segmented cells are already excluded. The segmentation
result contains bright as well as dark cells. In both cases the cells are segmented accu-
rately. A region with touching cells is extracted from this image. The original image
and the segmentation result are displayed in figure 5.7. As it can be seen, the touching
cells are segmented as expected. In case of touching cells with different brightness,
the segmentation result is accurate. Neighboring cells with similar brightness are not
segmented such accurately but nevertheless a reasonable classification is still possible.

In order to evaluate the cell segmentation, results of about three thousand cells were
investigated by an expert cell-by-cell. Only less than 5% of all regarded cells are seg-
mented incorrectly. Such a high quality is possible because of the strict quality criteria.
About 15% to 30% of all segmented cells, depending on the image quality, are not
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Fig. 5.6.: Segmentation result containing cell nuclei and boundary.

Fig. 5.7.: Segmentation for touching cells: segmentation result (Left) and original GFP
channel (Right).
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considered in the following classification. In addition, local contaminations and over-
lapping cells are identified and excluded. Some of the images in this evaluation were
analyzed completely by an expert meaning cell count and classification by hand. These
manually obtained results sometimes contain fewer cells than found by the segmenta-
tion. Dark cells in the images can hardly be seen in the GFP or mCherry channel and
since the Hoechst channel is not considered in a manual analysis, these cells remain
unnoticed.

The segmentation works properly for all three phenotypes: cytoplasm, plasma mem-
brane and Golgi. Detailed segmentation results for all phenotypes based on the GFP
channel are shown in the figures 5.8, 5.9 and 5.10. For each phenotype, the original data
is displayed in the top row. On the right side the Hoechst channel can be seen which is
used as basis for the cell nuclei segmentation while the GFP channel used for the cell
segmentation is shown on the left side. In the bottom row the segmentation result is
presented on the left side and the regions for nucleus, boundary and interior which are
the basis for the classification are marked with different gray values. On the right side
the stopping criterion for the region growing is illustrated. This image contains infor-
mation about the regions where the gradient magnitude of the GFP image is above t2
(Rule 2) as well as information about the region where the intensity values of the cells
are too low according to the minimal local brightness t1 of the cells (Rule 1). The region
growing is stopped when both rules are fulfilled and these areas are marked as red. The
yellow regions present the areas where the gradient magnitude is above t2 and therefore
rule 2 is fulfilled while rule 1 is still violated. The areas where the intensity values are
low enough that rule 1 is fulfilled and rule 2 is violated are cyan. Finally, in the blue
areas both rules are violated.

The segmentation result for all phenotypes is as expected. The segmentation for
the cytoplasm cells in figure 5.8 is dominated by the blue areas in the centre of the
cells where both rules necessary for the stopping criterion are violated. The actual
edges of the cells are located where the intensity values of the GFP channel fall below
the threshold determined by the local brightness of the cell (Rule 1) and the gradient
magnitude is above t2 (Rule 2). However, rule 2 is already fulfilled in the yellow regions
next to the edges of the cell and thus rule 1 determines the exact location of the edge.
In the Golgi cells displayed in figure 5.9, there are also some areas where both rules are
violated (Blue regions) but in many areas within the cell one of both rules is fulfilled.
Especially in the Golgi cell which is lower in the image, it can be seen that both rules are
necessary for the segmentation of this phenotype. It would not be possible to segment
such cells by using only one of the two criteria, the intensity values of the cells or
the gradient magnitude. Due to the internal structures of the Golgi cells the gradient
magnitude is above t2 in many areas inside the cells and therefore rule 2 is fulfilled here
(Yellow regions). In addition, in the upper right part of the cell, the intensity values are
already too low according to the local brightness of the cell and rule 1 is fulfilled while
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Fig. 5.8.: Cytoplasm cell segmentation with details.

Fig. 5.9.: Golgi cell segmentation with details.
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Fig. 5.10.: Plasma membrane cell segmentation with details.

amount of found proportion
positive controls (in percentage)

manual recognition 78 97,5%
software tool 73 91,25%

Table 5.1.: Evaluation of positive control with 80 LabTek

the gradient magnitude is still too low and rule 2 is violated (Cyan regions). Both rules
are also necessary to segment the plasma membrane cell properly (Figure 5.10). There
are cyan and yellow regions inside of the cell where one of both rules is fulfilled although
the cyan regions are not as large as in the example for the Golgi cell. In summary, the
classifier-enhanced region growing approach is able to segment all phenotypes properly
and, in addition, it is invariant to the fluorescence brightness of the segmented cells.

In order to define the rules for the decision functionality used in the manual classifi-
cation, the extracted features of about three thousand cells used to evaluate the segmen-
tation are considered. Afterwards, an expert verified the classification by evaluating the
result for about a thousand cells manually and verified the correctness of the classifica-
tion. In addition, there is a positive control in the RNAi screen on 80 LabTeks that is
used to evaluate the cell analysis tool as well. Both the results of a manual evaluation of
the positive control and the results of the cell analysis tool are listed in table 5.1.

The software tool recognizes 93,6% of the positive control being rated as valid by
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a manual analysis of an expert. In this case the interpretation of the results from the
software tool is done by evaluating the distribution of the different phenotypes in the
images. In addition, the manual analysis of an expert is influenced by the location of the
cells and therefore by the local distribution of the different phenotypes. In this way an
image with a local conglomeration of a specific phenotype can be rated as valid in the
manual analysis even if the total appearance of this phenotype is not dominating. This
information is not considered in the software tool. Despite this limitation the result of
the cell analysis tool is satisfying compared with a manual analysis.

In order to evaluate the supervised learning method, a small data set which is shown in
figures 5.12 and 5.11 is used at first. The training data contains 13 Golgi, 16 Membrane
and 15 Cytoplasm cells and is used to train the Support Vector Machine. The automated
classification is then tested with the test data containing 20 Golgi, 16 Membrane and 20
Cytoplasm cells and the classification result was a 100% correct for all three different
phenotypes. Hereby, the soft margin parameter was set manually and the result shows
the potential of this method. In addition, the segmentation for all three phenotypes is
robust and accurate despite of a different cell brightness.

In a second evaluation, a training data set and a test data set with each consisting of
three complete image data sets is used and both data sets are manually classified by a
biologist. The training data set contains 280 Golgi, 131 Membrane and 132 Cytoplasm
cells and half of the cells are used to train the Support Vector Machine while the other
half is used to adjust the soft margin parameter and to evaluate the classification. The
classification result varies from 24.3% correctness up to 98.5% and leads to a choice
of 0.013 as soft margin parameter. Afterwards, a test data set containing 127 Golgi,
129 Membrane and 221 Cytoplasm cells is classified. The classification correctness is
96.4% for the Golgi phenotype, 99.2% for Membrane and 96.7% for Cytoplasm.

5.6. Summary and Discussion

The presented analysis tool segments the images of the screen using a classifier-enhanced
region growing. The seed points for this region growing are given by a preprocessing
step segmenting the cell nuclei from the Hoechst channel of the image data sets using
an adaptive threshold method. This approach yields a reliable segmentation of different
phenotypes and is especially invariant to the fluorescence brightness of the segmented
cells. In an additional step, the segmentation results are analysed and inadequate objects
are removed to guarantee an artifact-free and valid segmentation result. A rule based
classification is applied in a first version of the analysis tool using features from com-
plementary parts of the cells. A Support Vector Machine is used for the classification
in the final version allowing easy adaptations to new screening modalities. Supervised
learning is used to train the Support Vector Machine and to adjust the soft margin pa-
rameter likewise. The evaluation results for the trained Support Vector Machine show a
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Fig. 5.11.: Training data sets (Hoechst, mCherry and segmentation) containing all dif-
ferent phenotypes: Plasma membrane, Golgi and cytoplasm (From top to
bottom).

39



5. Automated Cell Analysis for Genome Wide RNAi Screens

Fig. 5.12.: Test data sets (Hoechst, mCherry and segmentation) containing all different
phenotypes: Plasma membrane, Golgi and cytoplasm (From top to bottom).
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high accuracy for all phenotypes and a suitable adjustment of the soft margin parameter.
Furthermore, the quality of the images is analyzed and added to the analysis result to
allow an objective rating of the individual results. The software tool is well suited for
the analysis of the genome-wide RNAi screen and the results allow a complete evalua-
tion of the screen. In addition, the supervised learning allows an easy adjustment of the
classification and therefore a simple application to different screening modalities.

Since the analysis tool is very robust, it is even possible to analyse images of moderate
but still acceptable quality. In this case, however, the analysis is becoming more difficult
and the results, nevertheless being correct, are not as obvious and clear as they are for
images of good or excellent quality. The classification has to be brightness invariant
and is thus using rules that compare the mean brightness values of different parts of the
cell. For an image with good or excellent quality the differences between the values
are quite high and the classification is easy and clear. With a decreasing quality these
differences are becoming smaller and the classification is not that definite. The reasons
for a worse image quality are noise on the one side and blurring on the other side. A
little noise is neither influencing the segmentation nor the classification but blurring
does have a considerable influence on both parts of the analysis algorithm. The main
reason for blurring is that the images are not necessarily well focused. As mentioned
before, the auto focus functionality of the microscopes is not always reliable and out-
of-focus images are possible. A worse focusing of the image results in a more blurred
image. In a blurred image the bright structures of the cells are not clear with sharp edges
and influence their neighbourhood as well. In this case, the segmentation is becoming
more difficult and the used region growing segmentation might stop a little too early or
too late. Such a result leads to an inaccurate division of the cells into complementary
parts which can contain other areas of the cell or the background that do not belong
to that part. In addition, the bright structures in a blurred image are brightening their
neighbourhood and thus creating signals in the bordering parts of the cell that do not
belong to these parts. As example, the segmentation of a plasma membrane cell is not
easy because the boundary of the cell is no longer well defined by a sharp edge but
hard to detect because of the blurring. Additionally, part of the brightness of the plasma
membrane is given to other parts of the cell or lost in the background. Another example
is that part of the brightness of the interior part of a Golgi cell is given to the nucleus
part of the cell in a blurred image.

In summary, the analysis of images with a moderate quality is more difficult and the
results are not quite definite. A preprocessing deblurring step could improve the image
quality and allow more reliable results. Furthermore, the analysis of images with a poor
quality which was not possible before could be considered after deblurring the images.
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6. The Deconvolution Framework
In the following chapter, the architecture of the realized deconvolution framework and
its basic components are presented in detail. The design and architecture of the frame-
work is described and the framework is created as extension to the Volume Graphics
Library (VGL - Volume Graphics GmbH [1]) as part of the ProInno Project. A suit-
able interface using the properties of a VGL standard filter template serves as basis to
integrate the deconvolution framework into the VGL library.

6.1. State of the Art
Deblurring methods are necessary because it is impossible to build imaging instruments
that produce arbitrarily sharp images uncorrupted by noise. In the recorded images there
are, however, hidden information that can be used to reconstruct the underlying images
with less blur and noise. It is not trivial to deblur the images and this problem belongs to
the class of ill-posed inverse problems [80]. Noise can always be found in these images
and is amplified and creates artifacts if not properly considered in the reconstruction. In
this section, the state of the art in image deblurring, especially fluorescence microscopy
images, is presented with a particular reflection of currently used methods. First the
linear approaches are introduced and later the nonlinear approaches are described lead-
ing to the newest compound algorithms. Besides, since astronomy images show similar
properties, deblurring methods developed for these images are presented as well. De-
blurring methods are also applied to shaken camera images and the latest developments
in this area are also discussed.

6.1.1. Linear Methods
A linear approach to deblur an image is to use an inverse filter. The PSF have to be
known and both the PSF and the recorded image are transformed in the Fourier space.
Then the blurring is removed by a division and the result is backtransformed from the
frequency domain. Since noise is not considered in this approach there are artifacts in
the reconstructed images. A more stable result can be obtained when using a Wiener
filter. In principal, the Wiener filter works in the same way as the inverse filter but
the noise is considered by a spectral density function and thus a better result can be
achieved. An even more advanced linear approach is the Tikhonov-Miller filter method
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[3]. Objective of this method is the find a reconstructed image that minimizes the error
between reblurred result and recorded image and is regularized with a Tikhonov-Miller
functional in order to get a stable solution. This minimization can be done analytically
resulting in a linear algorithm. In this approach, adaptive Gaussian noise is assumed
and thus this method is not suitable for microscopy images.

6.1.2. Nonlinear Methods
The possibilities of linear approaches are limited and thus nonlinear approaches are used
to restore blurred images. The Jansson Van Cittert algorithm was introduced as one of
the first nonlinear methods [88]. In this approach, the image is reconstructed iteratively
by comparing the reblurred restored image with the recorded one and in each step the
difference between these both images is minimized. If stopped before noise is amplified
the Jansson Van Cittert approach is able to obtain acceptable results. The Jansson Van
Cittert approach was later extended by non-negativity constraints and widely used for
deconvolution in light microscopy [170]. An iterative version of the already introduced
Tikhonov-Miller filter was presented in [167] and used for microscopy images. This
approach shows better results than its linear version but in [164] the authors showed
that using a Richardson Lucy (RL) algorithm further improves the results. The RL al-
gorithm [101] [138] considers the Poisson noise in the image and is therefore perfectly
suited for fluorescence microscopy images. Considering the noise statistics is critical
and most standard image deconvolution methods rely on the Gaussian noise model.
Different noise models require different deconvolution methods and there are e.g. de-
convolution approaches suitable for salt and pepper, i.e. impulsive noise [11] [12]. The
latter approach was originally designed for gray value images but was later extended
to process color images [10]. The basic RL algorithm is not stable in its original form
and noise is still amplified when using a large number of iterations. Therefore, it can
be stopped before noise is amplified or the images can be denoised in a previous step
[58]. A statistical information based analysis method is used to stop the iterative RL
algorithm in [124]. The basic RL algorithm contains a non-negativity constraint and in
[163], the authors showed that the performance of the RL algorithm can be further im-
proved by adding a background signal to the image formation model in order to get near
zero values. Later, an additional regularization term was added in order to get a stable
result. A very popular choice for a regularization term is the Tikhonov-Miller (TM)
regularization [126]. This regularization term suppresses noise amplification success-
fully and guarantees a stable solution [58]. Nevertheless, applying TM regularization
leads to smoothed edges and thus Total variation (TV) regularization was introduced.
TV regularization was first used to denoise images [142] and later applied to deblur-
ring problems. While preserving edges, TV is able to smooth homogeneous areas and
thus to suppress noise amplification. An algorithm containing the RL functional with
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the TV regularization was proposed in [44]. In order to minimize the underlying com-
bined functional a multiplicative gradient-based algorithm is used. The RL algorithm
itself guarantees the non-negativity of the solution but in the RLTV algorithm nega-
tive values are possible. In order to avoid negative values the authors suggest using a
small regularization parameter. Since the original RL algorithm has a slow convergence
rate an adaptive accelerated RL method is presented in [148]. The acceleration is done
by adding an exponent to the correction ratio which is computed adaptively by using
the deblurred images from previous iterations. Since there is no regularization in this
method, noise amplification is a problem. Therefore, the authors suggest to stop the
algorithm at the optimum and to use a wavelet-domain denoising as post-processing
step. In case of noise-free images, it is shown that the new accelerated method is able
to obtain better results after less iterations. TV regularization is used in many image
restoration methods and a main concern is how to minimize the objective functional
and the convergence of the applied algorithms. First-order numerical schemes for TV
image restoration are investigated in [8] and the convergence of the proposed schemes
is proven. First-order numerical schemes are also evaluated in [100] [172]. The Breg-
man distance introduced in [24] was used in [64] to improve a blind deconvolution
method assuming Gaussian noise. In [145], an advanced minimization technique based
on a split Bregman technique is used to solve the RLTV optimization for a deblurring
problem. This approach is less computational intensive than previously developed al-
gorithms based on the split Bregman technique since no additional inner iteration loop
is necessary. The original split Bregman method for TV regularization [59] was intro-
duced to solve general TV-regularized problem. A Douglas-Rachford splitting method
in combination with the I-divergence and the TV regularization is also used to denoise
images suffering from multiplicative noise, e.g. Gamma noise [152]. There is a rela-
tion between the Douglas-Rachford splitting method and the split Bregman technique
[144] and the known convergence properties of the Douglas-Rachford splitting are used
to investigate the convergence of the split Bregman techniques [145]. The authors of
[59] state that the split Bregman technique can also be applied to compressed sensing
problems alongside to deconvolution problems. Compressed sensing allows the recon-
struction of images from a small amount of data [30] [31] [46] and also belongs to the
class of ill-posed inverse problems. There are many applications for methods based on
compressed sensing like in medical imaging for sparse MR image reconstruction [102]
[103]. Another possibility for regularization is to use the Mumford-Shah functional
which gives preference to piecewise smooth images. Several variational deconvolution
approaches with Mumford-Shah-like regularizing and nonlocal image information are
investigated in [78] [79]. These algorithms are designed for Gaussian or Impulse noise
and thus not suitable for images corrupted by Poisson noise. Regularization can also
be given by favoring a wavelet expansions with a small number of nonzero coefficients
[166] which is typical for piecewise smooth objects.
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6.1.3. Deblurring in Astronomy
Astronomy images are quite similar to microscopy images since both are low-photon
images and suffer from Poisson noise. Additionally, due to the diffraction limited na-
ture of the optics and light the astronomy images are blurred as well. Similar as for
microscopy images, it is usual to use deblurring to improve the image quality of the
astronomy images before analysing them [23]. A good overview about the common and
new deblurring techniques used in astronomy is given in [128]. In astronomy images,
like in microscopy images, it is not possible to have negative values and in order to
deblur an image a robust and fast optimization strategy is needed. A conjugate gradient
method is presented that is modified to maintain the required non-negativity constraint
by modifying the actual gradient and the restored image in each iteration step. This
method guarantees a stable and fast convergence of the RL functional. It belongs to a
class of iterative schemes called projections onto convex sets, which are guaranteed to
converge.

In this review [128], regularization terms are discussed as well. The authors think that
in future spatially adaptive regularization methods are used. These techniques are more
flexible and can be adapted to different image conditions. The full Pixon method is one
of these techniques and hereby the spatially adaptive image smoothness permitted by the
data is maximized. In other words the objective of this method is to find the smoothest
possible image under the restriction of non-negativity. A set of Pixon kernels which is
rich enough to allow all images of interest but exclude unwanted images at the same
time is used to reconstruct the image. The important point is that all shapes of the image
features can be build. Besides, since the approach is more flexible it can be applied to
images with different characteristics. Other approaches being specialized for a specific
type of image may not be able to achieve good results for other image conditions.

6.1.4. Deblurring of Shaken Camera Images
A general problem with digital camera images is camera shake which can spoil the pho-
tos. This effect is especially distinctive when the shutter speed is relatively slow and
the photo is taken in low-light conditions. The image degradation is usually modeled as
the convolution of the image with a shift-invariant filter kernel representing the blurring
[32]. Blind deconvolution approaches are usually used to deblur these images and an
example of such an algorithm is the adapted blind deblurring method based on a vari-
ational inference approach [52]. This algorithm estimates the blur kernel and removes
the camera shake blur by using the Richardson Lucy algorithm which deconvolves the
blurry image with the estimated kernel. Blind deconvolution is difficult since the esti-
mation of the blur kernel and the deblurring have to be done in one step. An approach
which is modeling the physical properties of a 2-D rigid body movement was proposed
[146] and is designed to deblur rotational motions from a single image. The authors state
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that this method is superior to single image motion deblurring using pixel color/gradient
information and that rotation and possible translations can be corrected. A different idea
to improve the blind deblurring results correcting camera shake is to use a second noisy
image which is hardly blurred. Such a second image can be obtained by a short exposure
time resulting in a dark and noisy image. The proposed approach uses the help of the
noisy image to estimate an accurate blur kernel which is difficult to obtain from a single
blurred image. Afterwards, the deconvolution is performed using again both images to
reduce ringing artifacts. The final result is then obtained by a further suppression of
ringing artifacts in smooth image regions using a gain-controlled deconvolution process
[180]. All previously described approaches assume a shift-invariant and thus uniform
filter kernel. However, a real camera shake is in general not uniform and a non-uniform
filter kernel is better suited to deblur the images [90]. In [174], a non-uniform filter
kernel is used and applied to two deblurring algorithms: a blind deblurring based on a
single image and an approach based on a blurry image and a sharp but noisy image of
the same scene. The non-uniform filter kernel is realized by a parameterized geometric
model of the non-uniform image blur. The authors state that this approach is able to
remove a wider class of blurs than previous approaches and demonstrate its effective-
ness using real images. Motion blurring when observing a distant scene is discussed
in [157]. The blur is modeled as an integration of the clear scene under a sequence of
planar projective transformations describing the path of the camera. The authors state
that this method is more effective at modeling the spatially varying motion blur than
conventional methods based on space-invariant blur kernels. A modified Richardson
Lucy algorithm which incorporates state-of-the-art regularization is used to deblur the
images. A recently presented approach is to use a hardware attachment consisting of
a combination of sensors to support the blind deconvolution methods [77]. The data
acquired by the sensors during an exposure is used to estimate a non-uniform blur func-
tion from the acceleration and angular velocity of the camera. This approach which the
authors denote as "aided blind-deconvolution" is completely automatic and the authors
claim that is outperforms the current leading image-based methods.

6.2. Architecture of the Deconvolution Framework

The deconvolution framework is designed to contain the maximum-likelihood and ma-
ximum-a-posteriori deconvolution algorithms. In addition, it is possible to extend the
framework and to combine different components arbitrarily. The included deconvolu-
tion methods iteratively minimize a given functional containing the underlying noise
model and additional regularization due to the ill-posed nature of the deconvolution
problem. Considering the likelihood distribution P (i|o) of the underlying noise dis-
tribution leads to a maximization likelihood (ML) algorithm [40]. Since noise is am-
plified after several iterations, an improved result can be obtained if regularization is
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Fig. 6.1.: Deconvolution functional.

added. For this reason, a priori knowledge P (o) is used in order to get a stable solution.
Instead of maximizing the likelihood distribution P (i|o), the a posteriori distribution
P (o|i) = P (i|o) · P (o) is being maximized allowing a stable result of the ill-posed
inverse problem by using additional information about the original image o. Instead of
maximizing P (o|i), it is also possible to minimize−P (o|i) or even−log(P (o|i)) which
is done e.g. for the Richardson Lucy functional.

In general, an iterative MAP approach to deconvolve an image consists of a similar-
ity or fitting term S containing the convolution mask PSF and the given signal i and a
regularization term R realizing the consideration of a priori knowledge. In addition, the
similarity term contains the model for the underlying noise distribution. An initial esti-
mation for o is required which is then iteratively modified to the reconstruction result.
An illustration of a deconvolution functional is given in figure 6.1.

J(o) = S(i, PSF, o) + λR(o) (6.2.1)

The regularization term has to be weighted by a parameter λ in order to balance it
against the similarity term. It is not trivial to determine a suitable value for λ since λ has
a huge influence on the result of the deconvolution algorithm. In [58], the influence of
the regularization parameter on a Tikhonov regularized RL algorithm was investigated.
The a priori knowledge is meant to guarantee a stable result but it should not determine
the result by overweighting the similarity term containing the recorded image. A stable
solution can be obtained if the noise in the image is suppressed properly and thus a lower
signal to noise radio (SNR) requires a higher value for λ. Later, simulations are used
to evaluate the deconvolution methods, especially to investigate the possible quality of
the results. In such a case, the original signals are known and can be compared to the
deconvolution results. Therefore, a brute force search can be used to determine the best
suitable value for λ.

In order to deconvolve a given image i with a filter mask PSF , the deconvolution
functional J which contains S and R has to be minimized representing a formulation
of the MAP distribution. The minimization is performed by a suitable optimizer. In
addition, an initial signal o0 is required and an empty signal is usually used for that
purpose. Since the optimization methods used to minimize the functional J are gradient
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Fig. 6.2.: Optimizer.

Fig. 6.3.: Architecture of deconvolution filter.

based, the gradient ∂J/∂o of J is required and has to be provided by the Functional
object.

∂J(o)

∂o
=
∂S(i, PSF, o)

∂o
+ λ

∂R(o)

∂o
(6.2.2)

Several optimization methods include a line search step which is realized as a separate
component. In this way, different line search algorithms can be realized and arbitrarily
selected in the different optimization techniques. The optimizer therefore consists of a
optimization functional containing the actual optimization technique and an additional
optional line search technique (Figure 6.2).

In summary, the deconvolution framework contains a deconvolution functional which
is formed by the similarity and the regularization functional. In addition, an optimizer
is required to minimize the deconvolution functional with an optional line search algo-
rithm (Figure 6.3).
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6.3. Implementation with VGL

According to the architecture of the filter framework, the implementation consists of
the different already described components. Since the scope of the ProInno project is
the implementation of microscopy deblurring methods, the interface class to the VGL
library is called VGLDeblurrFilter instead of deconvolution filter. This class is derived
from the class VGLObject and implemented in the current style for VGLFilter classes.
VGLObject serves as basis for all high-level objects in the VGL library and is derived
from VGLClass. The class VGLClass serves in general as basis for all VGL classes and
the classes Functional and Optimizer are derived from this class as well. The Functional
and the Optimizer class form the core of the deconvolution framework and are meant to
be independent from every other component of the VGL library. The only direct con-
nection between the framework and the VGL library is given by the required interface
VGLDeblurrFilter. The Functional consists of a similarity functional and a regulariza-
tion functional provided by the SimilarityFunctional and the RegularizationFunctional
container. These container basically contain a collection of the required functionals en-
closed by an own namespace IPSolver. The name of the namespace was chosen due
to the fact that an inverse problem has to be solved to perform a deconvolution. The
connection between the Functional class and the actual similarity and regularization
functional implementations is given by using functional pointers which can be assigned
easily. An extension of the framework thus requires a small additional component in the
Functional class linking the according functional pointer. The actual implementation
can be done in the SimilarityFunctional or the RegularizationFunctional container by
providing an additional separate function. Each implementation of both the similarity
and the regularization functional consists of a function to calculate the function value
and the gradient of the functional for the current estimated deconvolution result. The
design of the Optimizer class is similar to the Functional class. The actual implemen-
tation of the optimization algorithms and the line search techniques are located in a
container and the connection is given by functional pointers within the Optimizer class.
The Optimizer class can be updated with little effort while the actual implementation
of additional methods is located in a separate container. Since functional pointers are
used in both the Optimizer and the Functional class, the parameter and return variables
of the different components are well defined and additional components can be used in
collaboration of every other existing methods.

In addition, a separate class Examiner is used to supervise the iterative deconvolu-
tion process. The supervision of the iterative process requires several additional com-
putations and has a considerable impact on the overall computational time of the de-
convolution. The supervision is thus optional and offers different possibilities like the
mere tracking of the functional value in each iteration step up to a calculation of the
mean square error between the actual estimated deconvolution result and the original
image if such a connection is provided. Another possibility is the determination of the
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Fig. 6.4.: Overview of VGL deblurring framework.

I-divergence value of the measured image and the reblurred actual estimated deconvo-
lution result in case the connections to the measured image and the PSF are given.

Figure 6.4 shows the schema of the VGL implementation of the deconvolution frame-
work. The deconvolution framework consists of several different components and in-
cludes different similarity and regularization functionals and different optimization func-
tionals which are sometimes supported by line search techniques.

The similarity functionals given by the included state-of-the-art deconvolution meth-
ods are:

• Least Square.

• Richardson Lucy.

The deconvolution functional is completed by an additional regularization functional
and the following functionals are included in the deconvolution framework:

• Tikhonov-Miller.

• Total Variation.
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The minimization of the deconvolution functional is performed by the following opti-
mization functionals. Since it is possible that a deconvolution functional does not allow
negative values in the estimated deconvolution result, constraint optimization function-
als are provided as well.

• Descent Gradient.

• Gradient Line Search.

• Constraint Descent Gradient and Constraint Gradient Line Search.

• Conjugate Gradient.

Several line search techniques are included in the deconvolution framework and can
be used in different optimization functionals.

• Interval.

• Descent.

• ThreePointParabolic.

6.3.1. Interface to VGL Library
The VGL classes derived from VGLObject contain properties, methods to access the
properties like get/set and one action. There are standard properties which are available
for all derived classes and additional properties can be defined. The functional pointer
for the similarity functional, the regularization functional, the optimizer and the line
search techniques do not have to be known but enumerated type (VGLenum) values
with according names are used to identify them. The VGLDeblurrFilter contains all
standard properties of VGLFilter classes like FirstSource and FirstDestination. In addi-
tion a PSF attribute and a start image attribute are added. In order to control the iterative
process, it is the possible to determine the maximal amount of iteration steps and the
λ parameter which weights the regularization functional. The action of this class per-
forms the actual iterative process by using the Functional and Optimizer class. Which
similarity functional, regularization functional and optimizer is used in the deconvolu-
tion is determined by three additional properties containing enum variables. There is no
additional property for the line search since not every optimizer requires one. In case a
line search is needed, it is determined by the optimizer.

An overview of the required properties is given by the following list:
Data containers:

• FirstSource.
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• FirstDestination.

• PSF.

• StartImage.

Deconvolution method:

• SimularityFunctional.

• RegularizationFunctional.

• Optimizer.

Additional parameter:

• λ.

• NumberOfIterations.

6.4. Standard Components of the Deconvolution
Framework

6.4.1. Similarity Term
The similarity term considers the noise distribution given in the recorded image. In
most cases, the recorded images are degraded by Gaussian noise and a Least Square
similarity term is used to cope with Gaussian noise. Since microscopy deblurring is
also an objective of the deconvolution framework, images degraded by Poisson noise
have to be considered as well and a Richardson Lucy similarity term is used in this case.
In the following equations, i denotes the recorded image, o the reconstructed and PSF
the point spread function. Furthermore, ∗ describes a convolution, x an arbitrary point
and Ω the image domain.

Least Square

If the recorded image suffers from Gaussian noise, a least square (LS) fitting term is
used since it considers the properties of Gaussian noise [141].

SLS(o) =

∫
|o ∗ PSF − i|2 dΩ (6.4.1)

Instead of the continuous version of the LS term, the following discrete version is
used in the implementation.
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SLS(o) =
∑
x∈Ω

|o(x) ∗ PSF − i(x)|2 (6.4.2)

In addition, the gradient of the discrete LS term is required. The gradient is given
by an image or a volume of the same dimension and size than the given image i. The
gradient of the LS term in an arbitrary point x in the image domain Ω is given by:

∂SLS(o)

∂o
(x) = 2 |o(x) ∗ PSF − i(x)| abs(1, (o(x) ∗ PSF − i(x))) ∗ PSF ∗ (6.4.3)

This equation contains a gradient of a norm and the following function is used to
express the gradient.

∂ |y|
∂y

= abs(1, y) =


−1 y > 0
1 y < 0
0 y = 0

(6.4.4)

Richardson Lucy

The Richardson Lucy (RL) algorithm [101] [138] considers the Poisson noise in the
image and is therefore perfectly suited for fluorescence microscopy images. In principle,
the RL algorithm maximizes the Poisson likelihood distribution (Equation 3.2.8) with
respect to o. Instead of maximizing P (i|o) it is possible to minimize −log(P (i|o))
being equivalent to the minimization of the functional SRL1. Besides, it is also possible
to derive the RL algorithm by using the Expectation-Maximization algorithm [41].

SRL1 =

∫
(o ∗ PSF )− i · log (o ∗ PSF ) + log(i!)dΩ (6.4.5)

Since the functional SRL1 is minimized with respect to o, the all constant parts i.e.
log(i!) can be removed resulting in functional SRL2.

SRL2 =

∫
(o ∗ PSF )− i · log (o ∗ PSF ) dΩ (6.4.6)

Instead of using the original version, a modified version of the RL functional has to
be used. Regions of zero values in the images are possible and thus the original RL
functional would contain a logarithm of zero which is not defined. A small ε > 0 is
introduced to overcome this problems and leads to the modified functional SRL.

SRL(o) =

∫
(o ∗ PSF )− i · log (o ∗ PSF + ε) dΩ (6.4.7)

A discrete version of the SRL functional is necessary for the implementation.
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SRL(o) =
∑
x∈Ω

(o(x) ∗ PSF )− i(x) · log (o(x) ∗ PSF + ε) (6.4.8)

Additionally, the gradient of the discrete SRL term is required for the optimizer. The
gradient of the modified RL term in an arbitrary point x in the image domain Ω is given
by:

∂SRL(o)

∂o
(x) =

(
1− i(x)

o(x) ∗ PSF + ε

)
∗ PSF ∗ (6.4.9)

Hereby, PSF ∗ denotes the adjoint of the filter mask PSF . In case of a symmetric
filter mask, the adjoint filter mask and the filter mask are the same.

6.4.2. Regularization Term
The already introduced Tikhonov-Miller (TM) regularization and the Total variation
(TV) regularization are included in the deconvolution framework. Both the TM and
the TV regularization assume a smooth result of the deconvolution problem and are
thus able to suppress noise amplifications and artifacts caused by small variations. The
Tikhonov-Miller (TM) regularization was used at first and guarantees a stable solution
[58]. Nevertheless, applying this regularization term leads to smooth edges which is
a drawback of this method. Due to its drawbacks, the TM regularization was later re-
placed by Total variation (TV) regularization which is able to overcome this problem.
TV regularization was originally used to denoise images and later applied to deblur-
ring problems. TV smoothes homogeneous areas while preserving edges because it
smoothes the images in the tangential direction of the image levels and not in the or-
thogonal direction. However, the TV regularization also has some drawbacks. It does
not smooth edges but there is a stair-casing effect when ramps are reconstructed. This
effect is especially noticeable when 1D signals are deblurred but is also present in case
of 2D and 3D images. Furthermore, TV rounds corners in the images which is not of
importance for fluorescent microscopy since cells are structures without corners. Nev-
ertheless, both techniques are very popular and commonly used. The choice for the
regularization term should depend on the content of the given signals. Due to its prop-
erty of preserving edges, the TV regularization should be used in case of sharp edges
while the TM regularization is better suited in case of a continuous increase of signal
values.

Tikhonov-Miller

A very popular choice for a regularization term is the Tikhonov-Miller (TM) regulariza-
tion [126]. In its base form, the TM regularization is given by
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RTM(o) =

∫
|Γo|2dΩ (6.4.10)

for a suitably chosen Tikhonov matrix Γ and with |.|2 describing the L2 norm. The
identity matrix can be chosen a Tikhonov matrix, i.e. Γ = I , leading to the level 0 TM
regularization which gives preference to solutions with smaller norms:

RTM0(o) =

∫
|o|2dΩ (6.4.11)

Instead of the continuous version of the LS term, the following discrete version is
used in the implementation:

RTM0(o) =
∑
x∈Ω

|o(x)|2 (6.4.12)

Again, the gradient of the discrete level 0 TM term is required. The gradient of the
level 0 TM term in an arbitrary point x in the image domain Ω is given by:

∂RTM0(o)

∂o
(x) = 2 |o(x)| abs(1, (o(x))) (6.4.13)

The level 0 TM regularization is able to suppress noise amplification but is not suit-
able for microscopy deblurring problems. Since this regularization favors solutions with
smaller norms, parts of the signal content i are also suppressed leading to a deflated re-
construction result which is not desirable. The level 1 TM regularization which contains
the gradient of the image o is better suited in this case since this regularization assumes
a smooth solution.

RTM1(o) =

∫
|∇o|2dΩ (6.4.14)

In this equation ∇o describes the gradient of the image o given by a Tikhonov ma-
trix Γ containing a discrete derivative. The L2 norm of the gradient of the image o is
realized as square sum of the partial gradients of the image o in all dimensions of the
image domain. Since microscopy images are acquired in a two or three dimensional im-
age domain, the superior three dimensional case is investigated and the according parts
containing the z dimension can be ignored in the two dimensional case.

RTM1(o) =

∫ (
∂o

∂x

)2

+

(
∂o

∂y

)2

+

(
∂o

∂z

)2

dΩ (6.4.15)

Instead of the continuous version of the level 1 TM term, the following discrete ver-
sion is used in the implementation:
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RTM1(o) =
∑
x∈Ω

(
∂o

∂x
(x)

)2

+

(
∂o

∂y
(x)

)2

+

(
∂o

∂z
(x)

)2

(6.4.16)

The necessary gradient of the level 1 TM term in an arbitrary point x in the image
domain Ω is given by:

∂RTM(o)

∂o
(x) = 2∇(∇o(x)) = 2∆o(x) = 2

(
∂o2

∂2x
(x) +

∂o2

∂2y
(x) +

∂o2

∂2z
(x)

)
(6.4.17)

Total-Variation

Total variation (TV) regularization was first used to denoise images and later applied to
deblurring problems. Compared to the level 1 TM regularization, the TV regularization
uses the L1 norm instead of the L2 norm.

RTV (o) =

∫
|∇o|dΩ (6.4.18)

Again, ∇o describes the gradient of the image o and the L1 norm of the gradient of
the image o is used in the TV regularization term. The L1 norm of ∇o is realized as
square root of the square sum of the partial gradients of the image o in all dimensions of
the image domain. The equation is given for a three dimensional case and the according
parts containing the z dimension can be ignored in the two dimensional case.

RTV β(o) =

∫
|∇o|β =

∫ √(
∂o

∂x

)2

+

(
∂o

∂y

)2

+

(
∂o

∂z

)2

dΩ (6.4.19)

Unfortunately, the basic TV regularization term is not differentiable in case ∇o is
equal to a zero vector because the L1 norm is not differentiable at zero. Therefore,
a modified version of the TV functional presented in [165] is used. Adding a small
β > 0 prevents the norm from being zero and therefore the derivative of the TV term
is well defined. In [33] the authors recommend to use 10−5d as β with [0, d] being
the dynamic data range of the already reconstructed image ok and β is set according
to this recommendation. The 3D version of the modified TV functional is shown in
equation 6.4.20 including the parameter β. In case of a 2D image, the partial derivative
with respect to z can be neglected. In accordance with the 2D image case, the partial
derivative with respect to y can also be ignored for 1D signals. Figure 6.5 shows the
modified norm included in the stable TV regularization term for several β values in the
1D case.
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Fig. 6.5.: Illustration of stable TV regularization norm in 1D.

RTV β(o) =

∫
|∇o|βdΩ =

∫ √(
∂o

∂x

)2

+

(
∂o

∂y

)2

+

(
∂o

∂z

)2

+ βdΩ (6.4.20)

In order to implement the TV regularization functional it has to be discretized:

RTV β(o) =
∑
x∈Ω

√(
∂o

∂x
(x)

)2

+

(
∂o

∂y
(x)

)2

+

(
∂o

∂z
(x)

)2

+ β (6.4.21)

The gradient of the discrete TV regularization functional is necessary for the opti-
mization:

∂RTV β(o)

∂o
(x) = ∇

(
∇o

|∇o(x)|β

)
(x) (6.4.22)

This gradient contains the modified L1 norm of ∇o at a investigated point x and is
calculated using the same realization as in the original functional calculation:

|∇o(x)|β =

√(
∂o

∂x
(x)

)2

+

(
∂o

∂y
(x)

)2

+

(
∂o

∂z
(x)

)2

+ β (6.4.23)

The implementation of the actual gradient of RTV β using the just described norm
|∇o(x)|β at each point x in the image domain is realized by:
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∂RTV β(o)

∂o
(x) =

(
∂

∂o
∂x

|∇o(x)|β
/∂x

)
(x) +

(
∂

∂o
∂y

|∇o(x)|β
/∂y

)
(x)

+
(
∂

∂o
∂z

|∇o(x)|β
/∂z
)

(x)
(6.4.24)

6.4.3. Optimizer
In this section several optimization techniques are presented. The scope of the optimiza-
tion is a minimization based on a given functional J . Details about the functional J are
not important for the optimization but knowledge about the gradient of the functional
∂J(x)
∂x

is required. In addition, several functionals are defined for a non-negative data
range.

Descent Gradient

The descent gradient optimization technique is a quite simple optimization technique.
The negative gradient of the functional is calculated and a certain fixed step size γ is
used to alter the grid using the gradient (Figure 6.6).

fk+1 = fk − γ
∂J(fk)

∂x
(6.4.25)

This technique is considered to be most accurate when the step size is small. On the
other side it shows a slow convergence rate and is thus not a very practical choice. It
is however very useful to verify the results of accelerated techniques and to investigate
the true potential of different methods. A real drawback is that local minima cannot be
overcome.

Gradient Line Search

In this method the gradient of the functional is calculated first. Then a linear search
is used to determine the optimal step size γk meaning the minimal functional value
possible on the line given by the actual position and the gradient (Figure 6.7).

fk+1 = fk − γk
∂J(fk)

∂x
(6.4.26)

Constraint Descent Gradient and Constraint Gradient Line Search

These techniques contain the same optimization step than the normal version of the
Descent Gradient and Gradient Line Search optimization. Since some functionals like
the RL functional do not allow negative values, an additional step backprojects the grid
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Fig. 6.6.: Illustration of Descent Gradient optimization.

Fig. 6.7.: Illustration of Gradient Line Search optimization.
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to the valid data range. All negative values which are not allowed in the constraint
versions of the optimization techniques are set to zero providing a valid data range after
each iteration step.

Conjugate Gradient

The conjugate gradient (CG) technique is a more sophisticated optimization technique.
In order to minimize the deconvolution functionals, the nonlinear conjugate gradient
method which generalizes the conjugate gradient method to nonlinear optimization is
used. The gradient of the functional is required for the CG algorithm and is called grad
in the following description. The CG algorithm uses a search direction to determine the
next iteration step instead of simply using the current gradient. Each search direction
is formed by the previous search direction and the current gradient weighted by a γ
parameter. In order to calculate the current search direction for the CG algorithm, the
Polack-Ribiere formula is used [126]. A discretized version of this formula with k being
the actual iteration step is given by:

γ =

∑
Ω gradk (gradk − gradk−1)∑

Ω gradk−1gradk−1

(6.4.27)

A description as pseudocode of the CG with a maximal allowed number of iterations
M is as follows:
Require: initial image o0

k=0
d = gradient(o0)
while k < M do
ok+1 = line search(ok, d)
g = gradient(ok+1)
compute γ {using Polack Ribière}
d = g + γd
k = k + 1

end while

6.4.4. Line Search Methods
The purpose of a line search method is to find the optimal point on a given line defined
by a start point and a direction vector. The optimal point is the point where the functional
value is minimal in case of the deconvolution problem.
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Interval

In the Interval line search method, a certain step size and amount of allowed steps are
used in a first stage. The step size and amount of allowed steps lead to a set of sampling
points on the direction vector and the minimal functional value for these sampling points
can be determined resulting in an optimal point. Additional stages are used to improve
the accuracy of the optimization result. The neighbourhood of the result point of the
previous stage is investigated using a decreased step size and a more accurate solution
can be determined. This stage can be repeated arbitrarily with further decreased step
sizes until the designated accuracy is given.

Descent

The Descent line search method is similar to the Interval line search method except of
the determination of the result point of the first stage. In the first stage, a certain step
size is given but a variable amount of steps is possible. The line search method deter-
mines the functional value of the point given by a first step along the search direction.
Additional points along the search line are then investigated until the functional value
increases. The point with the minimal functional value, i.e. the next to last investigated
point, serves as result for the first stage. A more accurate result is then obtained by using
the same technique as in the additional stages of the Interval line search method. The
neighbourhood of the result point of the previous stage is investigated using a decreased
step size.

Parabolic Interpolation

The Parabolic Interpolation line search method is based on Brents method [126]. This
method is illustrated in figure 6.8 and requires a suitable underlying function. The
function should be nicely parabolic near to the minimum and a parabola is used to
approximate the function near the optimum leading to an accurate estimation of the
optimum which is independent from a step size. Three points are used to determine
a parabola in each step and the vertex point of this parabola serves as new estimation
for the optimum. The point with the highest functional value is then replaced by the
vertex point and the interpolation is repeated until the procedure does not improve the
result any further. Since the objective is to find an abscissa rather than an ordinate, the
procedure is technically called inverse parabolic interpolation. In the figure, the original
points 1,2,3 are first evaluated (dashed line) and then the minimum of the first parabola,
4, replaces point 3. A new parabola (dotted line) leads to point 5, which is close to the
minimum of the function. This method is really fast because it requires just a small
number of function evaluations.
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Fig. 6.8.: Illustration of line search using parabolic interpolation.

6.5. Additional Components of the Deconvolution
Framework

6.5.1. Multiplicative RL Algorithm
An iterative multiplicative form of the RL algorithm is then given by

ok+1 =

{[
i

ok ∗ PSF

]
∗ PSF ∗

}
ok (6.5.1)

after removing the constant parts of the functional. Hereby, a start image o0 which is
non-zero is necessary. The RL algorithm does not converge for noisy images due to the
ill-posed nature of the underlying problem. Instead, noise is amplified after several iter-
ations and artifacts are generated. In order to allow a stable result, the RL algorithm can
be stopped before noise is amplified [124] or the images can be denoised in a previous
step [164].

6.5.2. Multiplicative RL Algorithm with Background
Signal

The basic RL algorithm is maintaining a non-negativity constraint which is effective
only when the restored intensities have near-zero values [163]. Therefore an advanced
multiplicative RL algorithm was introduced including the extended image formation
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model (Equation 3.2.2). The background estimation has an influence on the effec-
tiveness of the non-negativity constraint of the algorithm and an accurate estimation
is mandatory.

ok+1 =

{[
i

ok ∗ PSF + b

]
∗ PSF ∗

}
ok (6.5.2)

6.5.3. Multiplicative RLTV Algorithm
An algorithm containing the RL functional with the TV regularization was proposed in
[44]. In order to minimize the underlying combined functional a multiplicative gradient-
based algorithm is used. This algorithm is iterative, a start image o0 is necessary and in
each step the following calculation has to be done:

ok+1 =

{[
i

ok ∗ PSF

]
∗ PSF ∗

}
ok

1− λ∇
(
∇ok
|∇ok|

) (6.5.3)

As mentioned before, it is possible to have zero values in the images and in order to
get a valid equation a slightly modified version is used:

ok+1 =

{[
i

ok ∗ PSF + ε

]
∗ PSF ∗

}
ok

1− λ∇
(
∇ok
|∇ok|β

) (6.5.4)

The modified version contains a small ε > 0 avoiding a division by zero. In addi-
tion, since the derivative of the TV regularization is included in the RLTV the modified
version for TV including a β > 0 value is used.

This algorithm is well-suited for microscopy image deblurring since it is adapted to
Poisson noise and the TV regularization guarantees a stable solution with sharp edges.
The algorithm was tested both with synthetic and real data and showed good results,
both visually and quantitatively, compared with the unregularized RL version of the
algorithm [44]. Nevertheless, this algorithm has an essential limitation. The values that
can be used as λ are not allowed to be too high since the denominator in equation (6.5.3)
can become zero or negative. This would cause very high intensities for small values or
even a violation of the non-negativity constraint. In order to overcome this problem the
authors suggested to use small values for λ and they used e.g. 0.002 as λ in their own
experiments.
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7.1. Accelerated RLTV

The convergence speed of the multiplicative RLTV method is not satisfying and an ac-
celeration method [17] is used to improve the convergence speed of the algorithm. This
approach can be applied to various algorithms as long as the basic iterative algorithm
contains a known independent functional ψ to calculate the next iteration step.

fk+1 = ψ (fk) (7.1.1)

The multiplicative RLTV algorithm fulfills this requirement. However, this require-
ment is not fulfilled for a conjugate gradient method because each iteration step depends
on the direction of the previous iteration step. In the original RLTV algorithm, the func-
tional ψ is calculated in each step using the result from the previous step as start point.
A virtual point gk is calculated in the accelerated version and this point is used in the
functional ψ to determine the next point.

fk+1 = ψ (gk) (7.1.2)

In order to create this virtual point gk, the direction dk of the previous iteration step
is used. These differences describe the actual changes made by the functional ψ.

dk = fk − fk−1 (7.1.3)

The virtual point gk is calculated by using the direction dk and a weighting parameter
α which has to be determined in each iteration step.

gk = fk + αk · dk (7.1.4)

In order to estimate αk, the differences lk between the virtual point gk−1 and the
respectively next iteration fk are used.

lk = fk − gk−1 (7.1.5)
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Fig. 7.1.: Illustration of acceleration.

The direction dk has to be weighted by an acceleration parameter αk which is es-
timated by using the previous two iteration steps. A more accurate solution could be
obtained by a line search but this is no option because of the computational effort.

αk =

∑
Ω (lk−1 � lk−2)∑
Ω (lk−1 � lk−1)

(7.1.6)

Hereby, � denotes an element-wise multiplication and
∑

sums all elements in the
image domain Ω. In addition, each α has to fulfill the condition 0 ≤ α ≤ 1 and
is modified after the estimation if necessary. Figure 7.1 shows graphically how the
acceleration influences the calculation. It can be seen that instead of the original step
size much larger changes can be achieved in each iteration step by using the virtual
points. In the following, the accelerated RLTV algorithm is called accRLTV .

7.2. Bregman Distance
An alternative approach to reconstruct blurred and noisy images is using the Bregman
distance introduced in [25]. This distance was first used for image denoising and sev-
eral preliminary results for deblurring were shown [114]. The first step of this denoising
approach is to denoise the image with the well-known ROF (Rudin, Osher and Fatemi)
algorithm [142] which introduced the TV regularization. Instead of stopping after re-
covering this first result, it is used in the next step to compute the next result using the
Bregman distance. This step is repeated resulting in a sequence of intermediate results
which slowly and monotonically converges to the original noisy image. However, this
sequence also monotonically gets closer to the noise free image before the noisy image
is reconstructed. To stop the procedure at the right point leads to an improved denois-
ing result. Later, the Bregman distance was added to a blind deconvolution algorithm
[65] and also used to reconstruct a high resolution image on basis of a set of low res-
olution images [105]. In both approaches a L2 norm based deblurring functional with
TV regularization is used which is suitable for Gaussian noise. The blind deconvolution
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algorithm [65] consists of two independent parts which alternately deblur the image and
estimate the PSF. In the following approach, the PSF is supposed to be already known
and the deblurring of the image is of interest. The new algorithm is using the Bregman
distance D [25] which is defined as follows:

Dϑ(x, y) = ϑ(x)− ϑ(y)− 〈x− y, ∂ϑ(y)〉 (7.2.1)

In this definition< ., . > denotes the inner product and ∂ the gradient of ϑ. In order to
reconstruct the blurred image, a minimization of a standard energy functional (Equation
6.2.1) containing a similarity and regularization functional is used in a first step. Since
the objective is to deblur microscopy images, a RL term SRL (Equation 6.4.7) is used to
cope with the Poisson noise in the given images. A TV regularization termRTV β already
known from equation (6.4.20) is added in order to guarantee a stable solution and this
term is weighted by a regularization parameter λ. It is necessary to start this approach
with an empty image and to do the first step without using the Bregman distance. In the
following steps which are called Bregman iterations, the observed image i is modified
using i = i + vm for the (m + 1)th Bregman iteration with vm = i + vm−1 − h ∗ om
being a result of the additional Bregman distance in the reconstruction algorithm. The
general equation to calculate the result of the reconstruction in each Bregman iteration
using the Bregman distance is:

om = argmino
{
SRL(o, i) + λ ·DRTV β(o, om−1)

}
(7.2.2)

The RL deblurring term SRL(o, i) contains the known PSF and the regularization
functional RTV β is used in the Bregman distance D. In order to reformulate and imple-
ment the algorithm, a new term named Breg is introduced which represents an addi-
tional image with the same size as the observed image and is supposed to be empty at
the beginning.

The further algorithm itself consists of two separate steps which have to be performed
in every Bregman iteration. The first step is to reconstruct the image iteratively using
the result of the previous step as start image. This reconstruction is done according to
the following equation for m = 1...n with n being the requested amount of Bregman
iterations.

om = argmino {SRL(o, i) + λRTV (o)− λ 〈o,Breg〉} (7.2.3)

This equation is based on equation (7.2.2) with the constant parts being removed and
the additional Breg term. The second step of the algorithm in each Bregman iteration
step is the modification of the Breg term according to the Bregman distance.

Breg = Breg − 1

λ
∂SRL(om, i) (7.2.4)

∂SRL(om, i) describes the gradient of the RL functional SRL(o, i) (Equation 6.4.9).
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7.3. Constrained RLTV Method with Conjugate
Gradient Optimization

The objective of this method is to deblur confocal fluorescence microscopy images and
therefore the Richardson Lucy functional is used as basis. The new deblurring algorithm
is based on a constraint conjugate gradient method using an additional TV regulariza-
tion. Instead of using the original functionals, the stable versions already presented in
equation 6.4.7 and 6.4.20 are used. In general, the more a priori knowledge can be ap-
plied, the better the deblurring result should be. Since fluorescence microscopy images
are non-negative, a non-negativity constraint provides additional a prior information and
thus allows an improvement of the deblurring result. However, the non-negativity con-
straint is effective for near zero values only. In order to provide near zero values, the
alternative image formation model (Equation 3.2.2) suggested in [163] is used. A back-
ground signal b is added to the RL functional in accordance with the extended image
formation model.

SRLb1 =

∫
(o ∗ PSF + b)− i · log

(
i

o ∗ PSF + b

)
dΩ (7.3.1)

Since regions of zero values in the images are possible and the background value b
can be zero as well, a modified version of the functional has to be used. A small ε > 0
is introduced to guarantee that a logarithm can be zero which is not defined.

SRLb =

∫
(o ∗ PSF + b)− i · log

(
i

o ∗ PSF + b+ ε

)
dΩ (7.3.2)

A discrete version of the SRLb functional is necessary for the implementation.

SRLb(o) =
∑
x∈Ω

(o(x) ∗ PSF + b)− i(x) · log (o(x) ∗ PSF + b+ ε) (7.3.3)

Additionally, the gradient of the discrete SRLb term is required for the optimizer. The
gradient of the stable SRLb term in an arbitrary point x in the image domain Ω is given
by:

∂SRLb(o)

∂o
(x) =

(
1− i(x)

o(x) ∗ PSF + b+ ε

)
∗ PSF ∗ (7.3.4)

Again, PSF ∗ denotes the adjoint of the filter mask PSF . A strong unregarded back-
ground signal causes the non-negativity clipping step to be needless and the algorithm is
thus not working as expected. An additional background signal ensures near zero values
and in this case the algorithm achieves improved results. A background enhanced im-
age model is not necessary if only a TV regularization functional is used and the authors
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[43] showed that it has no influence on the deblurring result for the multiplicative RLTV
algorithm.

In order to reconstruct the image, the combined functional JCCG has to be minimized.

JCCG(o) = SRLb(o) + λRTV β(o) (7.3.5)

To minimize the functional JCCG, a constrained conjugate gradient method (CCG)
is used. Since this is a gradient based optimization technique, the gradient of JCCG
with respect to o has to be known including the gradient of the TV regularization term
introduced in equation 6.4.22.

∂JCCG(o)

∂o
=
∂SRLb(o)

∂o
+ λ

∂RTV β(o)

∂o
(7.3.6)

∂JCCG(o)
∂o

is called grad in the following. In order to calculate the current direction
for the CCG, the Polack-Ribiere formula is used [126]. A discretized version of this
formula with k being the actual iteration step is given by:

γ =

∑
Ω gradk (gradk − gradk−1)∑

Ω gradk−1gradk−1

(7.3.7)

Additionally, a line search is necessary and Brents method already introduced as
Parabolic Interpolation line search method is applied. Inspired by an algorithm dis-
cussed in [128], the non-negativity constraint is maintained by modifying the search
direction and the reconstructed image itself after each iteration. Hereby, all negative
values in the search direction with corresponding zero values in the reconstructed im-
age are set to zero. This operation will be called truncate(direction). At the end of each
iteration step all negative values of the reconstructed image are set to zero. This step
will be called clip(image). In the basic algorithm [128] the negative gradient is pro-
cessed before the current search direction is determined. In this case, it is possible to
have negative value in the search direction leading to an inevitable violation of the non-
negativity constraint being later corrected by the clipping operation. In order to avoid
that behaviour, the search direction instead of the negative gradient is processed in this
approach. A description as pseudocode of the CCG with a maximal allowed number of
iterations M is as follows:
Require: initial image o0

k=0
d = gradient(o0)
while k < M∧ solution not accurate do

truncate(d)
ok+1 = line search(ok, d)
clip(ok+1)
g = gradient(ok+1)
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compute γ {using Polack Ribière}
d = g + γd
k = k + 1

end while
Besides, the algorithm is restarted every five iteration steps in order to maintain nu-

merical stability. As accuracy criterion to stop the minimization, the norm of the gradi-
ent g can be evaluated and even compared with the norm of the gradient in the previous
step. This approach is quite efficient since these values have already been calculated as
part of the Polack-Ribière formula. The algorithm can be stopped when the norm of the
gradient is becoming too small and further iterations would not improve the result any
more.

In summary, this method is using a stable TV regularized RL functional that is mini-
mized by a constrained conjugate gradient method including an efficient line search. A
non-negativity constraint was added and considers additional a priori knowledge allow-
ing further improved deblurring results. The advantage of this method compared with
the multiplicative RLTV algorithm is that arbitrary values for λ can be used.
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8. Evaluation of the Results

The results of the different reconstruction approaches can be evaluated quantitatively
by using the mean square error (MSE), the root mean square error (RMSE) and the I-
divergence (Idiv) criteria. All criteria can be applied to 2D and 3D images and the image
domain is called Ω and a pixel or voxel is named x. In case the point spread function
is needed, it is denoted as PSF and ∗ describes a convolution. The MSE criterion
comparing the images or volumes A and B is given by:

MSE(A,B) =
∑
x∈Ω

(A(x)−B(x))2 (8.0.1)

and the RMSE criterion comparing the images or volumes A and B is described by:

RMSE(A,B) =

√∑
x∈Ω

(A(x)−B(x))2 (8.0.2)

The MSE criterion measures the similarity of two images according to the L2 norm
and the RMSE is the square root of the MSE criteria. The MSE and the RMSE are
commutative and good criteria to compare a reconstructed image with the original one.

The Idiv is commonly used to evaluate the result of microscopy deblurring methods
since Poisson noise is considered. It is the only consistent measure in the presence of a
non-negativity constraint [39]. The Idiv criterion comparing the images or volumes A
and B is given by:

Idiv(A,B) =
∑
x∈Ω

(
A(x)log

(
A(x)

B(x)

)
− A(x) +B(x)

)
(8.0.3)

Since this functional is not defined in case the image or volume B contains zero
values, it is necessary to add a small value ε > 0 to A and B in equivalence to the RL
functional.

Idiv∗(A,B) =
∑
x∈Ω

(
(A(x) + ε) log

(
A(x) + ε

B(x) + ε

)
− A(x) +B(x)

)
(8.0.4)

The I-divergence is not commutative and thus the same order of the images has to be
used.
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In case of synthetic data the original image o∗ is known and can be used in the evalu-
ation by comparing it directly with the reconstructed image o using the MSE or RMSE
criteria. For real data the measured image i is compared to the reblurred reconstructed
image o ∗ PSF . Since there is noise in the recorded image which is not present in
the reblurred reconstruction result, the results of this evaluation are not that significant
and must be interpreted with caution. The Idiv is used for microscopy images suffer-
ing from Poisson noise since this criterion considers the Poisson noise distribution. In
case of Gaussian noise or the presence of a mixed noise signal containing both noise
distributions, an according MSE or RMSE criteria is used.

If the criteria are used in their current form an evaluation of the whole image domain
Ω is given. The used synthetic test images consist of simple geometric objects with
known gray value intensities. A threshold t is used to distinguish the objects (Ωobj)
from the background (Ωbg) and the MSE or RMSE of the different image regions is
analysed separately. Additionally, the border areas Ωbor where the object regions and the
background regions are touching are of interest. Each pixel or voxel with a neighbour
belonging to the other region is included in this case. With d(x, y) = 1 describing
neighbour pixels x and y (Naturally, d(x, y) = 0 means that x and y are no neighbours)
and considering only pixels or voxels in the image domain Ω, the different image regions
are described by:

Ωobj = {x|o∗(x) ≥ t}
Ωbg = {x|o∗(x) < t}

Ωbor = {x| (x ∈ Ωobj ∧ ∃x2 ∈ Ωbg : d(x, x2) = 1)}∪
{x| (x ∈ Ωbg ∧ ∃x2 ∈ Ωobj : d(x, x2) = 1)}

(8.0.5)

Applying the quality criteria to the reconstruction results allows an evaluation of the
final results of the algorithms but lacks an investigation of the intermediate results cre-
ated during the underlying iterative processes. In order to evaluate the complete recon-
struction process for the different algorithms, it is necessary to supervise the iterative
process after each step. The applied criteria are thus calculated after each iteration step
allowing an more extensive evaluation of the different methods. Since the functional
value and the required calculation time are of interest as well those values are also in-
vestigated in each iteration step.

In case of synthetic image data sets, the strength of the noise signal is of interest and
the signal-to-noise ratio (SNR) is used to quantify the noise strength compared to the
signal strength. In general, the signal-to-noise ratio is defined as the power ratio between
the signal and the noise. There are however different possibilities how to realize the
calculation of the SNR and examples of different concrete definitions of the SNR are
given by Young [179]. The blurred image õ is hereby compared with the degraded image
i which simulates the measured image and contains additional noise. The following
definition is used in order to calculate the SNR in dB:
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SNR = 10 · log
( ∑

x∈Ω õ(x)∑
x∈Ω(õ(x)− i(x))

)
(8.0.6)

The residuals of the reconstruction result allow an additional property to evaluate the
reconstruction. The residuals are given as the difference between the reblurred recon-
structed image and the recorded image.

Residuals = i− o ∗ PSF (8.0.7)

The residuals contain the information about the estimated noise in the recorded im-
age and show how well the assumed noise model is considered in the reconstruction.
Assuming the reconstruction is correct the residuals only contain the noise included in
the recorded image. In case of an inaccurate reconstruction, structures of the image can
be found in the residuals. It is hardly possible to evaluate the residuals automatically
and thus they are commonly used to evaluate the reconstruction by a visual analysis.
This criterion is well-suited for Gaussian noise since no structural information should
be visible any more. In case of Poisson noise, it can be difficult to interpret the residuals
since the local noise strength depends on the underlying image.

Using a Fourier transform of both the acquired and the reconstructed image allows
a further evaluation of the reconstruction methods. The frequencies included in the ac-
cording images are visible and this is especially useful for the Micro Axial Tomography
since the aim is to reconstruct the combined support region of three different images. In
case of synthetic images, the Fourier transform of the original image can also be taken
into consideration.

Sometimes it is difficult to visualize 3D images in 2D. It is possible to show a slice
of the volume or the surface using a threshold to extract the included objects. How-
ever, microscopy images contain sparse objects and most of the volume is background.
Therefore maximum projections of the volume in x, y and z direction are used as well.
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9. Microscopy Deblurring

9.1. Deblurring using Standard Components of the
Deconvolution Framework

In this section, several deblurring results using the standard components of the deconvo-
lution framework are presented. The original multiplicative RL algorithm is compared
with the multiplicative RLTV algorithm which is the current state-of-the-art method in
microscopy deblurring. In addition, a RL approach with TM regularization is used with
a descent gradient optimization technique. Synthetic image data sets are used to eval-
uate the methods and deblurring results of a measured data set containing a cell are
displayed.

9.1.1. Synthetic Data

Figure 9.1 shows the synthetic images used in this section. The first image is shown
in the upper row and the second one in the lower row. Both images are blurred with a
Gaussian PSF (σ2 = 2.0) and degraded by Poisson noise resulting in a SNR of about
12dB. The first image is referred to as Image1 and the second dataset is denoted as
Image2.

The results for the RL, RLTM and RLTV algorithm are displayed in figure 9.2. The
RMSE values and Idiv values of the deblurring results compared with the original im-
ages are shown in table 9.4. The deblurring result of the RL algorithm contains strong
artifacts since the noise signal in the degraded image is strong and no regularization is
applied. The RLTM method improves the deblurring result due to the TM regulariza-
tion. The value for the regularization parameter λ is determined by a brute force search
leading to the best possible result. The quality of the result obtained by the RLTV algo-
rithm is superior to the other two methods since the TV regularization is well suited for
the underlying objects in the images. The TV regularization is able to reconstruct sharp
edges and to suppress heavy noise amplification. The RMSE and Idiv values confirm
this result.
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Fig. 9.1.: Original (Left) and degraded images (Right) for Image1 (Upper row) and Im-
age2 (Lower row).

Fig. 9.2.: Deblurring results RL (Left), RLTM (Middle) and RLTV (Right) for Image1
(Upper row) and Image2 (Lower row).
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9.2. Accelerated RLTV

Table 9.1.: RMSE and Idiv of synthetic data
RMSE Degraded RL RLTM RLTV
Image1 929 817 668 513
Image2 1719 1529 1430 1216
Idiv Degraded RL RLTM RLTV
Image1 9527 7824 7131 5123
Image2 32227 28007 25434 17587

9.1.2. Real Data
In order to demonstrate the possibilities of the standard components of the deconvolu-
tion framework, a cell image data set is deblurred using the RLTV algorithm. Several
slices of the measured image data set are displayed in the upper part of figure 9.3. The
measured images contain a strong noise signal comparable to the noise signal in the
synthetic images. A Gaussian PSF with an estimated variance is used to deblur the
image data set and the result is presented in the lower part of figure 9.3 by displaying
the corresponding deblurred slices. The deblurring considerably improved the image
quality and the result does not contain any noise. In addition, the resolution is enhanced
and sharp edges can be seen. In fact, several cell structures are visible in the deblurring
result which cannot be seen in the measured images.

9.2. Accelerated RLTV

For the evaluation of the accelerated RLTV algorithm, two synthetic test images (3D)
with a size of 100× 100× 60 voxels and 200× 200× 50 voxels are used. The images
are blurred with a Gaussian PSF of size 9 × 9 × 9 voxels with a variance of 1.8 and
corrupted by Poisson noise. One slice of each test image together with their degraded
versions are shown in figure 9.4. Furthermore, the results of the deblurring for the RLTV
and accRLTV are displayed.

In average, one iteration of the accRLTV algorithm takes 5% longer than the RLTV
(Average time for one iteration image 1: RLTV 1.38 seconds and accRLTV 1.45 seconds
with a 2.6 GHz Quad Core CPU). Each test image was degraded three times and restored
with both the RLTV and the accRLTV. The deblurring is stopped when a certain MSE
is reached and the amount of necessary iterations is shown in table 9.2. The progress
of both the MSE and the IDiv are shown in figure 9.5 for one test image. In addition,
figure 9.6 shows the deblurring results for a real Cell image.

In figure 9.4 it can be seen that the result images of both algorithms are nearly identi-
cal. Since the differences in the computational time for both algorithms are quite small
the computational time can be neglected in the further evaluation. For the first test image
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Fig. 9.3.: Slices of measured volume of cell and RLTV deblurred result.
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9.2. Accelerated RLTV

Fig. 9.4.: Left to right: original image, degraded image, RLTV and accRLTV.

Test 1 Test 2 Test 3
RLTV accRLTV RLTV accRLTV RLTV accRLTV

First image 29 18 31 21 30 19
Second image 25 15 25 14 26 16

Table 9.2.: Amount of iterations to deblur the images

Fig. 9.5.: Progress of MSE and IDiv values of original and reconstructed results.
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Fig. 9.6.: Cell image: measured image, RLTV and accRLTV (Top to bottom).

84



9.3. Bregman Distance

Idiv MSE
Original & Degraded 1.304.030 22.459.100
Original & Reconstructed (RLTV) 67.671 21.536.600
Original & Reconstructed (Bregman) 56.951 18.058.600

Table 9.3.: Idiv and MSE values of synthetic data

Fig. 9.7.: Degraded image (Left) and Bregman reconstructed image (Right).

the desired MSE is reached by the accRLTV within 30% less iterations compared with
the RLTV. In case of the second test image the improvement is even higher: it takes 40%
less iterations to reach the specified MSE for the accRLTV. The progress of the MSE
and Idiv in figure 9.5 shows graphically that the accRLTV reconstructs the image faster
than the original algorithm. In summary, the accRLTV produces similar results as the
RLTV algorithm and requires considerably less computational time.

9.3. Bregman Distance

The quantitative results of a simulated test are shown in table 9.3. In the first row,
the I-div and the MSE between the original and the degraded image are displayed. In
the second row, the quality measurement of the multiplicative RLTV is listed and the
results of the new algorithm can be seen in the last row. Figure 9.7 shows the result
of a simulation. The degraded image and the reconstruction result using the Bregman
approach can be seen.

This simulated test shows that the quality of the reconstructed images can be im-
proved by using the new Bregman approach compared with the RLTV algorithm. Both
the I-div and the MSE show an improvement of approximately 15%. The result of the
new algorithm is highly dependent on the amount of Bregman iterations. With a very
high number of iterations the algorithm would reconstruct the degraded image itself
which is not the requested result. An empty image is used to start the algorithm and the
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result is reconstructed iteratively. In every step finer structures are reconstructed which
means that after some iterations the noise is reconstructed as well. There is an interme-
diate result during the iterative process which is very close to the original image and this
result is a very good solution for the reconstruction. It is however difficult to stop the
algorithm in case of real images since the original image is not known. One possibility
would be to use the discrepancy principle [93] to stop the algorithm.

9.4. Constrained RLTV Method including
Conjugate Gradient Optimization

The constrained RLTV method is compared with the original RL and the RLTV algo-
rithms using synthetic and real images. Furthermore, the influence of the background
signal is investigated. The constrained RLTV is referred to as CCG.

9.4.1. Synthetic Data
Figure 9.8 shows the synthetic images used in this section. The first dataset (Upper
row) contains circles while the second one (Lower row) includes different objects. Both
images are blurred with a Gaussian PSF (σ2 = 2.5) and degraded by Poisson noise
using two different photon counts (SNR 10.2dB and SNR 17.2dB). The degraded first
dataset is referred to as Image1a for the low photon count and Image1b for the high
photon count. The second dataset is denoted Image2a and Image2b accordingly.

Fig. 9.8.: Synthetic images: original, degraded with high and low photon count (From
left to right).

86



9.4. Constrained RLTV Method including Conjugate Gradient Optimization

First, the influence of the background signal in the CCG algorithm is investigated.
Figure 9.9 clearly shows that an improvement in the result can be achieved if the cor-
rect background signal is chosen. An underestimation of the background yields to a
performance that is comparable with a model not including the background. An over-
estimation leads to poor results because too much information in the image is lost by
clipping. A good estimation of the background signal is thus mandatory.

Fig. 9.9.: RMSE in dependence of background signal in CCG for Image1a and Image1b.

The results which are displayed in figures 9.10 and 9.11 show that the CCG algorithm
further improves the quality of the deblurring results. Fewer artifacts are created for
both low and high photon count and the object edges are significantly sharper than for
the RL and the RLTV algorithm. The regularization in the RLTV is weighted by 0.002
as suggested. Since there are no limitations for the weighting in the CCG algorithm,
0.005 is used for Image1b and Image2b. In case of a high photon count 0.002 is used as
well in the CCG algorithm. Because of the included background signal the results are
improved in comparison to the RLTV algorithm. The RMSE values in table 9.4 confirm
the improvement of the CCG algorithm. The quality of the deblurring is improved for
the whole image region as well as for the object regions in the images.

9.4.2. Real Data
To evaluate the performance of the CCG method on real data, a cell image is used.
The cell image together with the deblurring results are displayed in figure 9.12 while a
region of interest (ROI) is shown in figure 9.13.

The resolution of the cell image is improved for all deblurring algorithms. However,
the result of the RL algorithm does not contain sharp edges. The RLTV algorithm
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Fig. 9.10.: Deblurring results RL (Left), RLTV (Middle) and CCG (Right) for Image1a
(Top) and Image1b (Bottom).

overcomes this problem but some areas are plain. This stair-casing effect is a well
known drawback of the TV regularization. The CCG algorithm does not show this
behaviour despite including TV. Figure 9.14 shows a profile of such an area and the
advantage of the CCG can be seen.
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Fig. 9.11.: Deblurring results RL (Left), RLTV (Middle) and CCG (Right) for Image2a
(Top) and Image2b (Bottom).

Table 9.4.: RMSE values for whole image region and object region
Whole image RL RLTV CCG
Image1a 836 772 581
Image1b 765 678 477
Image2a 1562 1428 1025
Image2b 1381 1192 803
Object regions RL RLTV CCG
Image1a 646 561 472
Image1b 621 539 417
Image2a 1248 1075 886
Image2b 1098 924 728
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Fig. 9.12.: Cell image. Top row: Recorded image (Left) and RL result (Right). Bottom
row: RLTV result (Left) and CCG result (Right).

90



9.4. Constrained RLTV Method including Conjugate Gradient Optimization

Fig. 9.13.: ROI of cell image. Top row: Recorded image (Left) and RL result (Right).
Bottom row: RLTV result (Left) and CCG result (Right).

Fig. 9.14.: Profile of image, RLTV and CCG results.
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10. Axial Tomography

10.1. Introduction
For a reliable understanding of cellular processes, it is necessary to develop light op-
tical methods to acquire high resolution 3D images of the investigated cells. Cells are
three-dimensional entities and a 2D image represents just a slice and thus only a small
fragment of the whole object. Unfortunately, the ability of fluorescence microscopes
(Widefield and confocal) to image a cell in 3D is limited. For both fluorescence mi-
croscopy types, the resolution of the acquired volumes in direction along the optical
axis (Z-direction) is considerably smaller than in transversal (X- and Y-direction) direc-
tion [176]. In a conventional widefield microscope, the resolution in axial direction is
about a factor of three lower than in lateral direction. The PSF and the optical-transfer-
function (OTF) in X- and Z- direction of such a microscope are shown in figure 10.1.
The OTF is the Fourier transform of the PSF and shows the spatial frequencies that can
be imaged by the widefield microscope. As it can be seen, only relatively low frequen-
cies can be imaged in Z-direction. The PSF was calculated due to the physical properties
of the used microscope.

There have been various approaches to overcome the problem of a lower resolution in
direction along the optical axis. It has been suggested to obtain tilted views in confocal
theta microscopy using a double observation. The object is illuminated from one side
and the emitted light is detected simultaneously in the direction parallel to the illumi-

Fig. 10.1.: PSF (Left) and OTF (Right) of a Widefield Microscope.

93



10. Axial Tomography

nation direction and in a direction with an angle theta to the illumination direction [95].
In a 4Pi-confocal microscope, an illumination from two directions is applied. The spec-
imen is illuminated and observed coherently from above and below improving the axial
resolution [69] [71]. Both techniques have been combined in a 4Pi-confocal theta mi-
croscope [94]. Alternatively, two- and multi-photon excitation instead of single-photon
excitation can be used to improve resolution [42] [70]. Hereby, light is emitted when at
least two or more photons are absorbed which is less likely in the out-of-focus region
and thus suppresses out-of-focus light. The two photon excitation approach and the
4Pi confocal fluorescence microscope were also combined improving the image quality
[72].

It is also possible to get tilted views of the object by rotating the object under the
microscope using a Micro-Axial-Tomograph [20] [47] [45]. The technique of axial to-
mography was introduced and applied to widefield microscopy by Shaw et al. [147].
Later it was again used for widefield microscopy [81] [36] and additionally, the tech-
nique is applicable to confocal microscopy [21] [36]. The Micro-Axial-Tomograph is
an advanced device based on a microscope which allows the imaging of an object from
different angles. Using at least three different viewing angles, it is possible to recon-
struct a three-dimensional volume with a high resolution in all three dimensions. The
cells or beads can be imaged from different angles since they are located on a round
glass fibre as displayed in figure 10.2. The basic idea of the Micro-Axial-Tomograph is
then to rotate the glass fibre as displayed in figure 10.3. Thus, it is possible to image
the cells from different viewing angles. In principle, the images resulting from differ-
ent viewing angles contain the same cells degraded with a rotated PSF when seen in
an aligned position. Using three different viewing angles leads to three different PSFs
and OTFs as displayed in figure 10.4. Each additional image based on a rotated imag-
ing contains additional information that are missing in the other images. In this way,
a larger area of the frequency domain can be covered and all of this information can
be used to reconstruct a high resolution image. The combined OTF of three different
PSFs can be seen in figure 10.5 and shows the available information. Images of the
actual setup are displayed in figure 10.6. The glass fibre is fixed at two locations and
connected to a motor that rotates the fibre. The fibre is fixed by using a spring force to
press it in a bearing block. Like that, it is stable at three points while still being able to
rotate. Figure 10.7 shows a real image of cells on a glass fibre. This image and the later
displayed image data sets were acquired by Bianca Oehm (geb. Reinhard) during her
diploma thesis [129].

10.2. State of the Art

As mentioned before, there are usually three different viewing angles in Micro Axial
Tomography resulting from the rotation of the object under the microscope. The im-
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Fig. 10.2.: Schematic illustration of beads on fibre.

Fig. 10.3.: Basic Idea of Micro Axial Tomography.
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10. Axial Tomography

Fig. 10.4.: PSFs (Upper row) and OTFs (Lower row) of three different viewing angles.

Fig. 10.5.: Combined OTF of all three different viewing angles.
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10.2. State of the Art

Fig. 10.6.: Method to fix the glass fibre.
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10. Axial Tomography

Fig. 10.7.: Image of cells on fibre.

age of each direction covers another area of the frequency domain and thus additional
information is available to improve the resolution. However, the result image must be
reconstructed from these three images using appropriate methods regarding the different
PSFs. Note that in axial tomography, the different images have to be aligned before the
actual reconstruction can be done. Hereby, possible translational and rotational shifts
between the tilted views caused by instabilities of the tilt axis have to be corrected.
The tilted view reconstruction problem was first addressed in [147]. The relative rota-
tion and translation between a pair of tilted views are estimated from the images by a
modified phase cross correlation function. Thereafter, the reoriented and deconvolved
images are merged treating the amplitude and phase data separately. In [143], the im-
age is reconstructed by maintaining the frequencies with the highest amplitudes from
the different tilted views in each single object point. This method provides a gain in
axial resolution without significant decrease in lateral resolution. However, simulations
demonstrated that this method is sensitive to noise and to even small misalignments of
the datasets. An Axial Tomography reconstruction method using a maximum likeli-
hood approach has been published in [68]. This approach is based on the RL image
deblurring method for confocal microscopy images described above. First, the image
data sets have to be aligned which is done manually. In the next step, the three aligned
data sets are simultaneously used to iteratively reconstruct a single high resolution data
set using an unconstrained maximum likelihood deconvolution. This method combines
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the quality improvements gained by RL deconvolution with the refinement allowed by
the use of additional information acquired from different viewing angles. Addition-
ally, over-relaxation factors are used to improve the convergence speed. In [67], this
method was extended by an automatic alignment determining the relative angles of ro-
tation between the different data sets. The alignment method uses the measured image
data and is based on the computation of a modified (High frequency enhanced) cross-
correlation function. This function includes Fourier and inverse Fourier transforms and
is maximized over the angles of rotation. For each unknown rotation angle an iterative
technique is used comparing one image with another at a time. Furthermore, the com-
plete automated method was compared to standard confocal data reconstruction using a
known sample. The automated alignment is superior to manual methods since hereby
sub-voxel accuracy is possible. In [86], the whole process starting with cell prepara-
tion, image acquisition and finally the reconstruction is investigated and automated as
far as possible. For that purpose, a special software module has been developed. The
software module then drives all hardware components required for automated Micro
Axial Tomography and performs the image acquisition. Finally, the already discussed
reconstruction algorithm [143] using the point-wise maximum in Fourier space is used
to obtain a high-resolution image. This automated method was then used to image flu-
orescence in situ hybridisation-stained (FISH) cell nuclei which were fixed on a glass
fibre [87]. In addition, a method for the preparation of cell nuclei attached to glass fibres
has been developed and the advantages of a glass fibre compared to a glass capillary are
discussed. A image processing technique that fuses multi-view image data sets into a
high quality three-dimensional image is presented in [155]. The method is non-blind
and shift-invariant and furthermore able to cope with partially opaque samples when
each view shows only a portion of the specimen. As multi-view deconvolution method
either an iterated Wiener filter approach or a maximum a posteriori methods adapted for
Gaussian noise is used. The method described here shows good results especially for a
high number of image data sets.

10.3. Materials and Methods

Three images obtained from different viewing angles are the basis of the Micro Axial
Tomography reconstruction. These three images are usually given in a uint16 file format
while just the first 12 Bits are used allowing a data range from 0 to 4096. The images
have to be acquired properly using a main part of the data range without allowing over-
exposure. In order to perform a high quality reconstruction, the given data format is
not suitable. Using an integral range of values causes a lot of errors and artifacts when
performing necessary interpolations during the registration or in the reconstruction al-
gorithm. Therefore, a floating point data range is used in all calculations.
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10. Axial Tomography

Fig. 10.8.: Illustration of bleaching in image data set: first image (Left) and third image
(Right).

10.3.1. Background and Bleaching
It is well known that fluorescence proteins tend to bleach and thus the signal strength
is decreasing after a certain excitation time [66]. Especially when the movement and
mobility of proteins inside the cell is of interest, this problem has to be considered
properly [9]. Fluorescence agents that are designed to show a reduced photo bleaching
behaviour are investigated in [99]. In addition, there are techniques to correct this effect
like the fluorescence recovery after photobleaching (FRAP) method presented in [97].

The Micro Axial Tomography images are acquired with the same microscope one
after the other. Thus, the second image might already suffer from bleaching and this
effect is even stronger for the third image. Furthermore, due to a different background
activity and possible differences in the exposure times, the background signal can vary
from image to image. Both, the background signal and bleaching have to be corrected
before the images can be processed. Besides, some tools like Matlab scale the data
range when showing the images and thus the bleaching effect cannot be seen. If the
images are scaled correctly the photo bleaching is obvious as it is shown in figure 10.8.
Hereby, the first and the third image of the cell data set are shown. In order to correct
bleaching and the background signal, the model presented in equation 10.3.1 is used.
This model includes an additional constant background signal b and a factor f to cope
with the bleaching.

obleach = fbleach · ooriginal + brecording (10.3.1)

First, the background signal has to be estimated and has to be removed before the
bleaching can be determined. However, an evaluation of the histogram does not provide
a reliable estimate for the cell images. This method is quite common for background
estimation but the cells illuminate their surrounding areas and thus alter the histogram.
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Fig. 10.9.: Cell images with removed areas to estimate the background signal.

This illumination can be found in all images and is thus influenced by the bleaching
factor as well. It should be excluded from the background estimation and therefore, the
areas around the cells are cut out and the remaining data values are analysed. In figure
10.9 x and z maximum projections of the cell images are shown. On the left, the original
image can be seen while some areas are removed from the image in the middle and in
the right image. The illumination of the surrounding area is obvious and the right image
was then used to estimate the background signal bimage.

Next, the bleaching factor has to be estimated but the background signal has to be
removed first.

odata = orecorded − bimage (10.3.2)

The bleaching factor is determined by evaluating a certain amount of the brightest
voxels after removing the background signal. An evaluation showed that this method
is quite stable and the factors do not vary in case of considering 0.01% of the highest
intensity values up to 5%. The brightest image is used as reference image and 0.5%
of the brightest voxels are used to estimate the bleaching factors for the other images.
These images are corrected using their own background signal bi and their bleaching
factor according to equation 10.3.3. bref is the background signal of the reference image
and like that, all images are of the same appearance and can be further processed.

o∗i =
oi − bi
fi

+ bref (10.3.3)

101



10. Axial Tomography

Fig. 10.10.: Rotated and shifted grid structures of the Axial Tomography image data set
with an underlying isotropic grid structure.

10.3.2. Registration
Before the reconstruction of the high resolution image can be done, the three images
have to be aligned. It has been shown that a accurate alignment is mandatory and other-
wise an acceptable reconstruction result is not possible. In the past, a cross correlation
coefficient has been used to correct the rotation and some tests showed that this method
is reliable to correct rotational misalignment. However, the results in case of an addi-
tional translation have not been satisfying and thus a more advanced technique to align
the three images is used. The objects appear differently in the three images due to noise
and blurring under different rotation angles. Thus, misalignments in the registration
process are possible and have to be avoided. In order to allow an optimal registration
result, the three different images are deblurred separately and the deblurring results are
used to estimate the rotation and translation. Additionally, the sampling distance in axial
direction is of factor two larger than in lateral direction for normal imaging. This has to
be considered in the alignment process as well since isotropic well-aligned images are
required for the reconstruction. An illustration of the image grids regarding sampling,
rotation and translation is given in figure 10.10.

In a first step before the actual alignment, isotropic images are created using a B-
Spline interpolation correcting the higher sampling distance in axial direction. These
images are deblurred separately and serve as basis of the multi-resolution, rigid, ver-
sor 3D registration process which is used for the estimation of the three dimensional
rotation and three dimensional translation. In a last step, the aligned isotropic images
used in the reconstruction are then created on basis of the original images. This step is
important because only one B-Spline interpolation has to be applied in this way. If the
already created isotropic grids were used the quality of the result would be worse since
additional errors and artifacts are possible with every additional interpolation even when
a B-Spline method is used. Besides, this effect would be even stronger when integral
data values would be used.
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Fig. 10.11.: The basic components of the registration framework [76].

Rigid Versor 3D Registration

In general, each registration algorithm consists of four components necessary to align
two images. These components are transform, optimizer, metric and interpolator. Dur-
ing the registration, one image is considered to be moving while the other one is fixed
and the transform describes how the first image should be aligned. Hereby, it is pos-
sible to use a simple rotation in 2D represented by just one parameter up to an affine
transforms including even anisotropic scaling or shearing with many parameters to be
determined. The estimation of the according parameter is done by the optimizer which
has to be well-suited for the used transform. Affine transforms with many parameters
for example require advanced optimization techniques to obtain a good registration re-
sult. The interpolator is used to create the moved image which is then compared with
the fixed image using a specified metric. The metric has to be minimal for a correct reg-
istration and should not have other local minima. If those conditions are not fulfilled the
registration cannot work properly and the images cannot be aligned correctly. The met-
ric has to be adapted to the image types especially when multi-modal images like CT and
MR are registered and in such a case, a mutual information metric is recommendable.
When choosing the interpolation method, a compromise between computational time
and accuracy has to be made. An interpolation has to be performed in every registration
step investigating modified parameters and generates almost the whole computational
effort necessary for the registration. A more accurate interpolation slows down the reg-
istration considerably but allows an improved result. The whole registration process and
the interaction between the different components is shown in figure 10.11.

There is a well-established, open source framework for registration in ITK [76] and
this framework is used to perform the registration necessary for the Micro Axial Tomog-
raphy reconstruction. First, an according transform has to be chosen and the objective
is to have as less parameters as possible. In that way, the registration is more stable and
reliable and the computational time is shorter which is important since relatively huge
images have to be registered. Isotropic grids are used as basis of the registration and
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thus neither anisotropic scaling nor shearing has to be considered. In addition, the cells
are not deformed during the image acquisition and therefore a rigid transform can be
used. However, a three dimensional rotation and a three dimensional translation must
be corrected leading to a so called VersorRigid3DTransform including six parameters.
The translation is represented by a vector while the rotation is specified by a versor. In
principle, there are different methods to describe a three dimensional rotation. It can be
described by a normalized vector and a rotation angle, three rotation angles (rx, ry and
rz) or by a versor consisting of three values (q1-q3). Since the description of the rota-
tion in three angles is interesting regarding the Micro Axial Tomography, the according
conversion from a versor is shown: rx

ry
rz

 = 2
arcsin

(√
q2

1 + q2
2 + q2

3

)
√
q2

1 + q2
2 + q2

3

 q1

q2

q3

 (10.3.4)

As mentioned before, the optimizer should be well suited for the underlying trans-
form. There is an optimizer especially designed for the VersorRigid3DTransform in the
ITK framework which is called VersorRigid3DTransformOptimizer. Since all images
are acquired with the same microscope and both bleaching and background signal are
corrected, a mean square metric called MeanSquaresImageToImageMetric is suitable.
At last, a linear or a B-Spline interpolator can be used. The B-Spline interpolator is
more accurate in general but the computational effort is considerably larger and thus the
linear version is used mostly. This issue is again discussed in the next section.

Multi-Resolution Registration

When using the rigid versor transform, there are six parameters and thus a six dimen-
sional optimization problem has to be solved. Since the Micro Axial Tomography im-
ages are relatively large, especially in their isotopic version, the registration is quite
computational intensive. Depending on the distance from the optimum to the initial
transform, the effort for the registration can be enormous. The parameters for the rota-
tion are roughly known due to the set up of the Micro Axial Tomograph but the transla-
tion is totally unknown and difficult to estimate beforehand. It is not possible to provide
an initial transform being near to the optimum and thus, a multi-resolution approach is
used to perform the registration. Such an approach is widely used to improve speed,
accuracy and robustness of the registration. The basic idea is that registration is first
performed at a coarse scale where the images have a considerably smaller size and thus
the computational effort is reduced. The result from this step is then used as initializa-
tion of the next finer scale. This process is repeated until it reaches the finest possible
scale. Therefore, with growing computational effort, the initialization is nearer to the
optimum and less iterations are necessary. Such a coarse-to-fine strategy improves the
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Fig. 10.12.: Illustration of the multi-resolution registration process [76].

registration and also increases robustness by eliminating local optima at coarser scales.
The concept of the multi resolution registration is illustrated in 10.12.

In addition, it is possible to use a linear interpolator in the coarse scale steps. Hereby,
the accuracy provided by a linear interpolation is quite adequate and the computational
time can be reduced further. In the last step representing the finest scale when the
original images are registered, a B-Spline interpolator is then used to guarantee a high
accuracy.

After performing the registration, the transform result and the scaling information
leading to an isotropic grid are used to create the registered images. Hereby, the original
images are used and like that, only one interpolation is necessary avoiding additional
errors and artifacts. The registered images are then used for the reconstruction.

10.3.3. PSF
The PSF of a fluorescence microscopy image can be approximated by a Gaussian func-
tion with a certain variance. This model is often used when applying blind deconvolu-
tion algorithms because it is simple and can be well described by few parameters. In
the simulations done for the Micro Axial Tomography reconstruction, a Gaussian PSF
is also used. As mentioned before, the axial resolution is of factor three worse than the
axial resolution and thus the variance in z direction σz is three times the variance in x
direction σx. The variance σy is equal to σx and the PSF is then given by:

f(x, y, z) =
1

√
2π

3
σxσyσz

e
−
(

(x)2

2σ2x
+

(y)2

2σ2y
+

(z)2

2σ2z

)
(10.3.5)
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This PSF is well suited for simulations but can always cause errors for real images
since it is an approximation. For real images the PSF can be estimated using beads.
The first processed Micro Axial Tomography images consist of beads and the images
of single beads are used to create the PSFs used for the reconstruction. Three PSFs are
needed and all three PSFs are created using the mean of two images of single beads.
Therefore, the background has to be removed first and then the images of the beads
have to be centered. This is not trivial since they are not symmetric. A simple center of
mass calculation is not working but the inner kernel of each bead image is assumed to
be symmetric and used for that purpose. After the mean of both images are calculated,
the PSFs have to be normalized before being used in the reconstruction.

10.3.4. Micro Axial Tomography Reconstruction
In the reconstruction for the Micro Axial Tomography, one single, isotropic, high res-
olution image is reconstructed and therefore a similar functional as for the microscopy
deblurring can be used. The major difference is that three recorded images (i1, i2 and i3)
with three PSFs (h1, h2 and h3) have to be considered. These images are already regis-
tered and sampled on the same isotropic grid structure. The implementation of the reg-
ularization term remains exactly the same as before since those functionals only apply
on the reconstructed image and are completely independent from the recorded images
and PSFs. Now, three different methods are presented for the Micro Axial Tomography
reconstruction. A multiplicative RL method containing no regularization is described at
first [67]. Then a multiplicative RLTV approach will be presented and last but not least
the CCG method is extended for the Micro Axial Tomography reconstruction.

The multiplicative RL method for the Axial Tomography is denoted as aRL in the
following and this method contains no regularization and is based on the original RL
algorithm. Stopping the aRL algorithm in order to get the best possible result is called
aRL+.

ok+1 =

{[
i1

ok ⊗ h1

]
⊗ h∗1 +

[
i2

ok ⊗ h2

]
⊗ h∗2 +

[
i3

ok ⊗ h3

]
⊗ h∗3

}
ok
3

(10.3.6)

In order to cope with the ill-posed nature of the reconstruction problem, the multi-
plicative aRL algorithm is extended by a TV regularization weighted by λ. This algo-
rithm is called aRLTV in the following:

ok+1 =

{[
i1

ok ⊗ h1

]
⊗ h∗1 +

[
i2

ok ⊗ h2

]
⊗ h∗2 +

[
i3

ok ⊗ h3

]
⊗ h∗3

}
ok

3
(

1− λ∇ ∇ok|∇ok|

)
(10.3.7)
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In order to use the constrained conjugate gradient algorithm containing the non-
negativity constraint, the similarity functional

SRLax(o) =
∫
o⊗ h1 + o⊗ h2 + o⊗ h3 + 3b− i1 · log (o⊗ h1 + b)
−i2 · log (o⊗ h2 + b)− i3 · log (o⊗ h3 + b) dΩ

(10.3.8)

which includes the background signal b and its gradient

∂SRLax(o)

∂o
= 3− i1

o⊗ h1 + b
⊗ h∗1 −

i2
o⊗ h2 + b

⊗ h∗2 −
i3

o⊗ h3 + b
⊗ h∗3 (10.3.9)

are required. As before, the extended image formation model containing a back-
ground signal b is used and ε guarantees a well defined behaviour in case of regions
with zero values. This algorithm is denoted as aCCG in the following.

10.4. Axial Reconstruction Results

The axial reconstruction algorithms can be used for 2D and 3D images likewise and for
a first evaluation, 2D test images are used. The objective hereby is to focus on the inves-
tigation of the axial reconstruction algorithms without considering the other steps of the
whole reconstruction process. In case of synthetic data sets, the results can be directly
compared with the original image using a RMSE and the Fourier transform. The RL,
the RLTV and the CCG algorithm are included in the evaluation and in addition a result
obtained by stopping the RL algorithm at the minimal RMSE. This result is denoted as
RL+. Besides the axial reconstruction methods, a deblurring with the respective algo-
rithms on basis of one degraded image is performed and compared to the axial results.
The axial results are labeled as aRL, aRL+, aRLTV and aCCG while the deblurring re-
sults based on a single degraded image are denoted by sRL, sRL+, sRLTV and sCCG.
In addition, a synthetic 3D image is used to investigate the whole reconstruction process
including the registration which is not considered in the 2D case. Last but not least, an
image data set containing experimentally measured beads and a measured image data
set illustrating a human cell are processed and the reconstruction results for the dif-
ferent methods are displayed. Before the results of the actual axial reconstruction are
shown, the possible errors regarding the necessary interpolations and transformations
are investigated.
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Fig. 10.13.: Surface of object in 3D test image.

10.4.1. Synthetic Image Data Sets

Transformation and Interpolation Errors

The quality of the processed data is essential and before the reconstruction can be
started, a scaling, a three dimensional rotation and a three dimensional translation have
to be done in order to create the necessary aligned data sets. All three steps are executed
in a single combined operation including just one B-Spline interpolation. In addition,
all calculations are performed using a float data type instead of the original uint16 data
type. In the following, a short demonstration on the importance of such things and what
happens if they are not taken into consideration is given. Therefore, a simple three
dimensional test image is used (Figure 10.13) and several operations like rotation and
translation are performed. To evaluate the results, all operations are performed forth
and back and the result is compared with the original image using the MSE criteria. It
would be ideal if the MSE was zero but since this is hardly possible a minimal MSE
value is best.

First, a rotation and a translation was done on the test image with a uint16 data type.
Hereby, the rotation is done with 1.3◦ in x, −37.5◦ in y and 0.7◦ in z direction and the
translation accordingly with −1.2, 5.4 and 8. The results can be seen in the upper row
of figure 10.14 and the MSE values are 3588513 for the separate processing with two
interpolations and 1750552 for the combined process. The separate process is almost of
a factor two worse.

The results of the same experiment for a float data type are shown in the lower row of
figure 10.14. Again, the combined processing is of factor two better with MSE values
2937779 and 1533508. Compared with the uint16 result, the MSE values of the float
processing are decreased by 14% showing the advantages of the float calculations.

It is possible to drastically improve this test by highsampling of the images before
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Fig. 10.14.: Original, separate and combined Transformation (From left to right). The
uint16 data set is shown in the upper row while the float data set is dis-
played in the lower row.

Fig. 10.15.: PSFs for 2D Simulation.

processing them and again downsampling the results. A highsampling of factor two in
all dimensions leads to a result with a MSE value of 43629 being an improvement of
factor 35. Unfortunately, the Micro Axial Tomography images have to be processed in
the backward way and thus an advantage of this property cannot be realized. Using a
higher sampling rate for the forth and back transformation separately with a downsam-
pling between both operations does not improve the result.

Simulations with Synthetic 2D Data

In the 2D simulation, the objective is to evaluate the different reconstruction methods
and not the other parts of the axial reconstruction process like e.g. registration. In this
case, already rotated Gaussian PSFs are used for both the degradation of the original
image and the axial reconstruction. The variances of the PSFs are σx = 1.5 and σy = 4.5
and the rotation angles are set to −60◦ and 60◦. The Fourier domain is covered in the
best possible way using these three viewing directions. The PSFs for the 2D simulation
can be seen in Figure 10.15.
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Fig. 10.16.: Simulated images of first test image (IDS1a) in upper row: original image
(Left) and degraded images with different PSFs (Middle to right). The lower
row shows the corresponding Fourier transforms.

These PSFs are used to create several test data sets on basis of the two previously used
test images. Two different photon counts provide different test conditions by influencing
the additional Poisson noise and lead to a SNR of about 10dB in a first case and a SNR
of about 17dB in a second case. Figure 10.16 shows the first image data set (IDS)
with a low photon count which is represented by IDS1a in the following. The Fourier
transforms also displayed in this figure clearly illustrate which frequencies are imaged
by the different viewing angles and which are suppressed. In addition, figure 10.17
shows the remaining image data sets. IDS1b denotes the first test image with a high
photon count and the notation for the second test image is consistent as IDS2a and
IDS2b.

In order to emphasize the possible benefit from the Axial Tomography, a deblurring
on basis of a single viewing angle is done as well using all described algorithms. For
both the deblurring and the axial reconstruction there are two results for the RL algo-
rithm. The first result is obtained by a limited large number of allowed iterations which
is usually not reached by the other algorithms since they converge earlier. The RL al-
gorithm does not converge due to noise amplification and has to be stopped in this way.
Since this result is not optimal for the RL algorithm, the reconstruction is repeated and
stopped when the minimal MSE value is reached (RL+) showing the best possible so-
lution using this method. The RLTV algorithm has to be weighted with a regularization
parameter and λ = 0.002 is used following the recommendation in [44] for a strong
noise signal and λ = 0.001 for a weak noise signal producing improved results. Last
but not least, the new axial CCG method is used and in order to determine a suitable
value of λ, a brute force search is applied. This search covers a suitable range of pos-
sible values and it is not necessary to use too many iterations within the reconstruction
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Fig. 10.17.: Simulated images of remaining image data sets (Top to bottom: IDS1b,
IDS2a and IDS2b). Each original image is displayed on the left and the
degraded images from the middle to the right.
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Fig. 10.18.: The upper row contains the results for IDS1a: sRLTV, aRL, aRL+, aRLTV,
aCCG. The corresponding Fourier transforms are shown in the lower row.

since the effects of the different λ values can be seen quite early. The results of IDS1a
for the axial reconstruction methods and the RLTV deblurring method on basis of a
single degraded image together with the corresponding Fourier transforms are shown
in figure 10.18. The results for the remaining image data sets are displayed in figure
10.19. The results of the aRL algorithms contain artifacts due to the amplified noise
which are depleted for the aRL+ method but still visible. The results of the aRLTV
algorithm are free of artifacts because of the additional regularization and thus superior
to the aRL results. The quality of the results of the aCCG algorithm is however further
improved compared to the aRLTV algorithms due to the additional regularization effect
of the non-negativity constraint supported by the incorporated background signal. The
Fourier transform of the sRLTV result shows the enhancement of the support region in
the frequency domain that can be obtained by deblurring methods. However, the limi-
tations in the axial directions cannot be overcome by deblurring a single image but by
using the axial reconstruction methods. The Fourier transform of the results for the aRL
and aRL+ algorithm show that all support regions of the three images can be combined
but the possibilities to enhance them is limited. The additional regularization in the
aRLTV and aCCG algorithm allows a further improvement of the resolution and a large
coverage of the frequency domain.

Table 10.1 shows the RMSE values of the deblurred and reconstructed images com-
pared to the original image for the whole image region. In addition, table 10.2 shows the
RMSE values for the image regions containing objects which have been identified using
threshold segmentation. The RMSE values confirm the improvements of both the axial
reconstruction compared to a single deblurring and of the CCG algorithm to the RLTV
and RL algorithms. As expected, it is possible to obtain an improved result if less noise
is given in the degraded images. The RMSE values of the object regions prove that the
CCG algorithm also improves the image quality within these areas. The background
region is naturally improved due to the additional constraint influencing these areas.
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10.4. Axial Reconstruction Results

Fig. 10.19.: Results of remaining image data sets. From top to bottom: IDS1b, IDS2a
and IDS2b. From left to right: sRLTV, aRL,aRL+, aRLTV, aCCG.

Single deblur Axial reconstruction
sRL sRL+ sRLTV sCCG aRL aRL+ aRLTV aCCG

IDS1a 1018 932 799 648 801 749 627 485
IDS1b 859 837 749 543 652 648 581 405
IDS2a 1887 1632 1342 1061 1522 1393 1085 838
IDS2b 1506 1460 1249 911 1215 1192 1054 700

Table 10.1.: RMSE of 2D simulations for whole image region

Simulations with Synthetic 3D Data

The whole Axial Tomography reconstruction process including registration with rota-
tion and translation is simulated in 3D. Again, a simple test image (Figure 10.20) is
used and the reconstruction results are compared with the original data using the RMSE
value.

In order to test the registration and the axial reconstruction, two image data sets are
created with different rotation and translation values as displayed in table 10.3. The
relocation values for the first 3D image data set (3D-IDS1) are inspired by the Axial
Tomography set-up of the real image data sets which are processed later (Figure 10.21).
The rotation for the second 3D image data set (3D-IDS2) allows an optimal coverage
of the frequency domain and thus an investigation of the influence of the rotation angle.
Each image data set contains three different separate images. The image created by
a negative main rotation angle is denoted as ’Minus’ and the second created image as
’Plus’ accordingly. The original image which is also part of the image data set is referred
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Single deblur Axial reconstruction
sRL sRL+ sRLTV sCCG aRL aRL+ aRLTV aCCG

IDS1a 788 746 622 569 618 594 477 426
IDS1b 674 667 591 508 512 511 452 368
IDS2a 1489 1285 1020 924 1191 1102 811 744
IDS2b 1211 1177 979 838 979 959 814 640

Table 10.2.: RMSE of 2D simulations for object region

Fig. 10.20.: 3D test image: Slice (Left) and surface of the object (Right).

to as ’Base’.

Rotation Translation
θx θy θz tx ty tz

3D-IDS1 Minus -1.3 37.5 -0.7 1.2 -5.4 -8.0
3D-IDS1 Plus -0.4 -35.5 -0.1 -2.1 3.8 -6.0
3D-IDS2 Minus -0.8 65.3 0.5 1.1 -2.4 4.0
3D-IDS2 Plus 0.6 -67.7 -0.4 -3.1 5.8 7.0

Table 10.3.: Initial rotation and translation for 3D Simulation

The rotation and translation are performed in the same order during the creation of
the data and the registration. The rotation is done first in both cases and the registration
would have to reverse this order to allow the usage of the original translation vector.
The initial translation vector has to be rotated in order to compare it to the registration
results. The rotation matrix R containing all three rotation angles (θx, θy and θz) is
used for that purpose (si denotes sin(θi) and ci denotes cos(θi)). The rotated translation
vectors for both image data sets are shown in table 10.4.
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10.4. Axial Reconstruction Results

Fig. 10.21.: Surface of the rotated objects for 3D simulation (3D-IDS1).

R =

 1 0 0
0 cx −sx
0 sx cx

 cy 0 sy
0 1 0
−sy 0 cy

 cz −sz 0
sz cz 0
0 0 1

 (10.4.1)

Rotated Translation
tx ty tz

3D-IDS1 Minus -3.97 -5.57 -6.91
3D-IDS1 Plus 1.78 3.76 -6.14
3D-IDS2 Minus 4.10 -2.38 0.69
3D-IDS2 Plus -7.64 5.82 -0.11

Table 10.4.: Rotated translation vectors for 3D Simulation

The image data sets created by rotation and translation are degraded by a PSF and
additional Poisson noise. A 3D Gaussian PSF is used for that purpose and the variances
are set to σx = 1.5, σy = 1.5 and σz = 4.5. For each image data set, two different
noise strengths are used resulting in a SNR of 15.8dB and 9.3dB. Each image data
set corrupted by weak noise is marked by an additional ’a’ whereas the strong noise
is indicated by an additional ’b’. Selected slices of the image data set 3D-IDS1a and
3D-IDS1b are shown in figure 10.22

The multi-resolution registration is performed using the image data set 3D-IDS1 on
basis of different conditions in order to evaluate its accuracy. First, the basic relocated
image data set 3D-IDS1 which does not contain any degradation is used for the registra-
tion. Both relocated images ’Minus’ and ’Plus’ are registered in reference to the ’Base’
image. The same registration process is repeated with the degraded images for both
noise levels. This case corresponds to the measured image data sets obtained by the
microscope. In order to allow a more accurate registration, the degraded image data sets
are separately deblurred with the sRLTV and the sCCG algorithm and the deblurring
results are used as basis of the registration. In each case, the registration results have
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10. Axial Tomography

Fig. 10.22.: Selected slices of degraded image data sets 3D-IDS1a (Top row) and 3D-
IDS1b (Bottom row).

to be used to align the underlying degraded images which are later used in the axial
reconstruction. The registration results for all test cases are shown in table 10.5.

To analyse the registration result, the rotation and translation correction are evalu-
ated separately. The estimated rotation given by the registration is compared to the
initial rotation using the norm nθ =

√
∆θ2

x + ∆θ2
y + ∆θ2

z with ∆ representing the
difference between each initial and estimated rotation angle. In addition, the norm
nt =

√
∆t2x + ∆t2y + ∆t2z is used to evaluate the translation correction. The results

of this evaluation are displayed in table 10.6 for all investigated conditions. There is
a constant small error in the estimation of the translation which is present for all con-
ditions. If the images are degraded the error of the rotation estimation is decreased
considerably. A deblurring with the sRLTV or the sCCG algorithm allows an improve-
ment of the accuracy of the registration which almost reaches the best possible quality
given by images without any degradation. Since the degradations including noise and
blurring are given in measured data, it is recommendable to use deblurred images for
the registration. The registration results are then used to align the degraded images used
in the axial reconstruction.

Selected slices of the aligned image data sets 3D-IDS1a and 3D-IDS1b are displayed
in figure 10.23. The alignment of the degraded images is performed on basis of the
registration result using the deblurring results with the sCCG algorithm. A single PSF
is used to create all three images included in each image data set in accordance with
the real imaging process. It is however necessary to use three aligned PSFs to perform
the axial reconstruction. The original PSF has to be rotated according to the registration
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10.4. Axial Reconstruction Results

Rotation Translation
θx θy θz tx ty tz

Minus to Base image
Relocated 3D-IDS1 -1.242 37.497 -0.6174 -3.554 -5.540 -6.686
Degraded 3D-IDS1a -1.196 37.714 -0.787 -3.564 -5.537 -6.704
3D-IDS1a sRLTV -1.297 37.370 -0.678 -3.576 -5.542 -6.654
3D-IDS1a sCCG -1.268 37.434 -0.656 -3.559 -5.542 -6.683
Degraded 3D-IDS1b -1.165 37.620 -0.853 -3.588 -5.526 -6.687
3D-IDS1b sRLTV -1.264 37.340 -0.724 -3.586 -5.535 -6.661
3D-IDS1b sCCG -1.267 37.390 -0.728 -3.578 -5.535 -6.670

Plus to Base image
Relocated 3D-IDS1 -0.403 -35.498 -0.113 1.639 3.729 -6.540
Degraded 3D-IDS1a -0.364 -37.366 -0.134 1.544 3.752 -6.498
3D-IDS1a sRLTV -0.420 -35.725 -0.130 1.608 3.739 -6.540
3D-IDS1a sCCG -0.405 -35.565 -0.132 1.619 3.736 -6.545
Degraded 3D-IDS1b -0.328 -37.450 -0.130 1.514 3.771 -6.519
3D-IDS1b sRLTV -0.429 -35.912 -0.138 1.566 3.743 -6.569
3D-IDS1b sCCG -0.391 -35.787 -0.136 1.556 3.748 -6.568

Table 10.5.: Registration results for image data set 3D-IDS1.

result to create the PSFs needed for the aligned ’Minus’ and ’Plus’ images. Note that
the translation does not influence the PSFs and only the rotation has to be considered.
A central slice of the three resulting PSFs is displayed in figure 10.24.

In order to evaluate the axial reconstruction and to compare its performance with the
deblurring on basis of a single image, manually aligned image data sets are used. The
initial rotation angles and translation vectors are used to create these image data sets
and the according PSFs. These results represent an optimal axial reconstruction which
is later compared to the results on basis of the registered image data sets. Selected slices
of the axial reconstruction results for the image data sets 3D-IDS1a and 3D-IDS1b are
shown in figure 10.25. The results of the aRL and aRL+ algorithm contain artifacts
which are suppressed for the aRLTV result. A further improvement of the resolution is
given in the result of the aCCG algorithm. In general, the results for the weaker noise
signal are superior to those with a stronger noise signal. However, the aRLTV and aCCG
algorithms are less sensitive to noise due to the additional regularization.

The RMSE values for the different results compared to the original images are given
in table 10.7. In addition to the results for the axial reconstruction, the RMSE value
of a degraded image and the results of the sRLTV and sCCG deblurring algorithms are
shown. The RMSE values illustrate the improvements of the axial reconstruction com-
pared to a single deblurring with one degraded image. In addition, the CCG algorithm
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10. Axial Tomography

Fig. 10.23.: Slice of aligned image data sets 3D-IDS1a (Top) and 3D-IDS1b (Bottom).

Fig. 10.24.: Registered PSFs for 3D simulation.
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10.4. Axial Reconstruction Results

Weak noise signal: 3D-IDS1a
relocated degraded sRLTV sCCG

Minus Rotation nθ 0.142 0.404 0.154 0.140
Minus Translation nt 0.673 0.648 0.683 0.670
Plus Rotation nθ 0.018 1.936 0.276 0.103
Plus Translation nt 0.585 0.616 0.607 0.604

Strong noise signal: 3D-IDS1b
relocated degraded sRLTV sCCG

Minus Rotation nθ 0.142 0.408 0.219 0.170
Minus Translation nt 0.673 0.652 0.672 0.671
Plus Rotation nθ 0.018 2.052 0.481 0.332
Plus Translation nt 0.585 0.668 0.674 0.678

Table 10.6.: Rotation error nθ and translation error nt for simulated 3D registration.

for both the axial reconstruction and the deblurring is superior to the RLTV and RL
algorithms. As expected, it is possible to obtain an improved result if the rotation angles
is set to near +/− 60◦ since a better coverage of the frequency domains is given by the
support regions of the single images. In addition, an improved result can be obtained if
the noise signal is decreased.

Deblur Axial
degraded sRLTV sCCG aRL aRL+ aRLTV aCCG

3D-IDS1a 7133 4434 3648 4047 4037 3793 3000
3D-IDS1b 7307 4627 4287 4538 4415 3948 3110
3D-IDS2a 7132 4233 3647 4096 3768 3492 2687
3D-IDS2b 7299 4451 4125 4331 4107 3745 2904

Table 10.7.: RMSE of reconstruction results based on manually aligned image data sets

At last, the axial reconstruction is performed on the aligned image data sets based
on the registration results using both the degraded and the deblurred images. Selected
slices of the reconstructed images are displayed in figure 10.26 and the RMSE values
are shown in table 10.8. All according RMSE values are higher compared to the RMSE
values of the manually aligned image data sets indicating a worse quality of the overall
result despite the usage of the same axial reconstruction methods. However, the result
obtained by using the aligned images on basis of the sCCG deblurred images is almost
as good as the best possible result given by the manually aligned images. The quality of
the results on basis of the registration with the degraded images is decreased and thus
the effort of the additional deblurring step is justified and recommendable.
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10. Axial Tomography

Fig. 10.25.: Reconstruction results on basis of manually aligned image data sets for
3D-IDS1a (Top) and 3D-IDS1b (Bottom): aRL, aRL+, aRLTV and aCCG
(From left to right).

Fig. 10.26.: Axial reconstruction results on basis of registered image data sets. From left
to right: aRLTV and aCCG result on basis of registration on degraded im-
ages and corresponding results on basis of registration on sCCG deblurred
images. Results for image data sets 3D-IDS1a are shown in the upper row
and for 3D-IDS1b in the lower row.

120



10.4. Axial Reconstruction Results

Degraded registered sCCG registered
aRLTV aCCG aRLTV aCCG

3D-IDS1a 3995 3140 3857 3017
3D-IDS1b 4224 3276 4070 3196

Table 10.8.: Axial reconstruction results based on registration results.

Rotation Translation
θx θy θz tx ty tz

’Minus’ -32.562 -0.305 -0.103 3.385 28.318 -34.352
’Plus’ 38.740 0.239 0.047 -2.017 -45.596 22.330

Table 10.9.: Bead registration results

10.4.2. Real Image Data Sets

Image Data Set Containing Beads

Maximum projections of the Axial Tomography image data set containing beads with a
diameter of 100nm are shown in figure 10.27. The projections are done in x direction
pointing along the glass fibre and in y direction. The image data set contains three
images and these images are denoted as ’Minus’, ’Base’ and ’Plus’ in accordance to
their main rotation angle (−36◦, 0◦ and +36◦). The images of the bead image data
set already have an isotropic grid structure. The spacing of the images is 200nm in z
direction and usually 100nm in x and y direction. Unfortunately, binning was activated
for the bead images which means that a 2×2 neighbourhood is used in x and y direction
to create one voxel value using the mean of the four values. This method reduces noise
at the expense of resolution and results in an isotropic grid structure with a spacing
distance of 200nm. The beads are located on the surface of the glass fibre and the
intensity values of the beads are similar in all three images. There is practically no
bleaching in the bead images since the fluorescence agent is synthetic and very robust.
It is therefore not necessary to perform a bleaching correction and an adjustment of
the background values is sufficient to prepare the images for further processing. The
background is estimated using the mean of 60% of lowest intensity values and results in
340 for the Minus image, 348 for the ’Base’ image and 371 for the ’Plus’ image.

After the background signal is adapted, the registration is performed. A rotation angle
of +/−36◦ in x direction is used to initialize the registration and the rotation angles and
the translation vector of the registration result are shown in table 10.9. A resampling of
the images is not necessary in this case since the images already have a isotropic grid
structure. Maximum projections of the aligned images are shown in figure 10.28 and a
region of interest (ROI) is displayed in figure 10.29.
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10. Axial Tomography

Fig. 10.27.: Maximum projections of the original bead image data set in x (Upper row)
and y (Lower row) direction.

Fig. 10.28.: Maximum projections of the registered Bead image data set in x (Upper
row) and y (Lower row) direction.
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10.4. Axial Reconstruction Results

Fig. 10.29.: Maximum projections of ROI containing parts of the registered Bead image
data set in x (Upper row) and y (Lower row) direction.

After the registration is completed, the registered images are used to extract the PSFs
that are necessary for the axial reconstruction. The images of two beads are used to
create each PSF. First, the background is removed and the bead images are centered.
Then, the mean of both bead images is taken and the result is normalized. The extracted
PSFs which are used in the axial reconstruction are shown in figure 10.30.

A reconstruction result using the RLTV method with λ = 0.002 is shown in figure
10.31 on the left side. The reconstruction results using the other methods look quite sim-
ilar and it is not possible to see any differences when analysing the whole image region.
In order to compare the different results, a ROI of all results is also shown. All results
improve the resolution of the image considerably compared to the measured images.
Since binning was activated while the images were measured there is little noise in the
images and the need for regularization is essentially not present. As consequence, the
results of the aRL and aRLTV algorithm look almost alike. The aCCG algorithm is able
to further improve the quality of the reconstruction result within the given limitations
caused by binning.

The aim of the Axial Tomography is to obtain an isotropic image with a high resolu-
tion in all dimensions. Analysing the Fourier transform of the registered images and the
reconstruction result in figure 10.31 clearly shows that this aim is fulfilled for the bead
reconstruction. The Fourier transforms of the aligned images shows their support region
having the typical shape of the underlying OFTs. The reconstruction result however
combines all support regions and even increases them due to the included deblurring
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Fig. 10.30.: Maximum projections of extracted PSFs in x (Upper row) and y (Lower
row) direction.

Fig. 10.31.: Maximum projections of axial reconstruction results in x (Upper row) and
y (Lower row) direction. From left to right: aRLTV result of whole image
region, aRL, aRLTV and aCCG results in ROI.
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10.4. Axial Reconstruction Results

Fig. 10.32.: Fourier transform slices of registered bead image data set and of axial re-
construction result in x,z direction (From left to right).

methods.

Image Data Set Containing a Human Cell

The results of an image data set containing a human cell [129] are shown in this section.
The used cell is called CAL-51 and belongs to a human breast cancer cell line taken
after irradiation and chemotherapy. These cells are a rare example for tumor cells with
a normal karyotype. The CAL-51 cells grow adhesive, i.e. its shape is long and thin
in contrast to suspension cells and the actin fibres in the cell are stained with the Alexa
Fluor 488 Phalloidin fluorescence agent. The cell has been imaged separately from
three different angles (−36◦, 0◦ and +36◦) and these angles serve as initial guess for
the registration. The spacing of the images is 100nm in x and y direction and 200nm
in z direction. The aim is to create a single image containing all available information
with an isotropic grid structure with a spacing distance of 100nm. The cell is located
on a glass fibre with a refractive index n = 1, 5168 and ImmersolTM with a refractive
index n = 1, 518 is used as immersions medium in the image acquisition. Maximum
projections of the cell image data set is shown in figure 10.33. As before, these images
are denoted as ’Minus’, ’Base’ and ’Plus’ in accordance to their main rotation angle.

The imaged cell suffers from bleaching especially for the ’Minus’ image since it has
been taken latest. Both bleaching and background signal have to be corrected in order
to allow a processing of the data. First, the background is estimated and the results
are 174, 207 and 184 for the ’Minus’, ’Base’ and ’Plus’ image. Then the bleaching
factors are estimated and the factors are 2.5267 for the ’Minus’ image and 1.6204 for
the ’Plus’ image compared to the ’Base’ image. These factors quantitatively show that
the bleaching for the ’Minus’ image is worse than for the ’Plus’ image. Bleaching and
background signal are correct using equation 10.3.3 and the result is shown in figure
10.34.

After adapting the different cell images, the images have to be registered before the
actual axial reconstruction can be done. In order to allow an accurate registration, the
cell images are deblurred and the deblurring result is used in the registration. The 3D
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10. Axial Tomography

Fig. 10.33.: Maximum projections of original cell image date set (’Minus’, ’Base’ and
’Plus’) in x (Upper row) and y (Lower row) direction.

Fig. 10.34.: Maximum projections of adapted cell image date set (’Minus’, ’Base’ and
’Plus’) in x (Upper row) and y (Lower row) direction.
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Fig. 10.35.: Maximum projections of deblurred cell image date set (’Minus’, ’Base’ and
’Plus’) in x (Upper row) and y (Lower row) direction.

Rotation Translation
θx θy θz tx ty tz

’Minus’ degraded 33.620 0.485 0.029 3.028 -30.254 46.919
’Plus’ degraded -35.068 -1.095 0.612 -5.104 -55.485 63.314
’Minus’ sCCG 34.180 0.508 0.035 2.880 -30.835 45.930
’Plus’ sCCG -34.523 -0.292 0.377 -5.141 -54.939 61.476

Table 10.10.: Cell registration results

simulation has shown that a more accurate result was obtained by using deblurred im-
ages rather than the measured degraded images. The results of the deblurring of the
different images are shown in figure 10.35.

The sampling distance of the cell image data set is not isotropic and the spacing of
the underlying grid structure has to be changed in the registration process. As result,
an isotropic grid structure with a spacing distance of 100nm is created. Both the mea-
sured and the deblurred images are used to perform the registration and the results are
displayed in table 10.10. The differences between both cases are similar to the results
of the 3D simulation and it can therefore be assumed that the result obtained by using
the deblurred images is more accurate. The aligned isotropic images on basis of this
registration result are shown in figure 10.36.

The PSFs already used for the bead images are used here as well since the cell images
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10. Axial Tomography

Fig. 10.36.: Maximum projections of registered cell image date set (’Minus’, ’Base’ and
’Plus’) in x (Upper row) and y (Lower row) direction.

are acquired with the same microscope as the bead images. The differences in the
rotation angles and sampling are corrected and the resulting PSFs that are shown in
figure 10.37 are used in the axial reconstruction.

The results of the axial reconstruction and the original ’Base’ image are shown in
figure 10.38 and figure 10.39. In these figures, slices which are extracted from the vol-
ume are displayed instead of maximum projections. The resolution of the cell image is
improved for all axial reconstruction algorithms especially in direction along the optical
axis where additional information is provided by the different viewing angles. Despite
improving the image quality and the resolution, the potential of the aRL algorithm is
limited. The actin fibres which are stained with the fluorescence agent appear in a higher
resolution but are still blurred. It is not possible to further improve the result of the aRL
algorithm since noise amplification would degrade the result using more iterations. The
quality of the aRLTV algorithm overcomes this problem using the additional TV regu-
larization. The TV regularization is necessary to obtain a stable solution but assumes
homogeneous areas with sharp edges. This assumption does not completely apply to
the stained actin fibres which are in fact shaped like thin tubes. The axial reconstruction
result therefore contains plain homogeneous areas instead of thin structures. This stair-
casing effect is a well known drawback of the TV regularization. The aCCG algorithm
does not show this behaviour despite including TV. The actin fibres are reconstructed
as thin tube-like structures as expected. The TV regularization is necessary to suppress
noise amplifications but the additional non-negativity constraint provides a second reg-
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Fig. 10.37.: Maximum projections of resampled and aligned PSFs for cell image data
set in x (Upper row) and y (Lower row) direction.

ularization mechanism and the cooperation of both leads to a stable solution without
suffering from the drawbacks of a single TV regularization.
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Fig. 10.38.: Slices of original ’Base’ image and axial reconstruction results aRL, aRLTV
and aCCG. zy slices are shown in the upper row and xz slices in the lower
row.

Fig. 10.39.: ROI of original ’Base’ image and axial reconstruction results aRL, aRLTV
and aCCG shown in figure 10.38.
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11. Proton Dose Reconstruction

11.1. Introduction

Cancer is a class of diseases which caused about 13% of all human deaths in 2007 (7.6
million people) [150] [173]. Hereby, a cell or a group of cells display uncontrolled
growth, invasion and sometimes metastasis. There are various different types of cancer
and the search for diagnostic tools and options for cure has been a major research topic
for more than a hundred years. The possibilities and strategies of cancer therapy are
as multifaceted as cancer itself. Most cancers form a tumor but there are some, like
leukemia, which do not form a tumor. Cancer can be treated by surgery, chemotherapy,
radiation therapy, immunotherapy, monoclonal antibody therapy or other methods de-
pending on the tumor, the state of the disease and the patient. The complete removal of
the tumor without damaging the rest of the body is the ultimate goal of cancer therapy.
In order to treat a tumor, the three main options are surgery, chemotherapy and last but
not least radiation therapy (or radiotherapy). In radiation therapy, ionized radiation is
used to control malignant cells with the chance to cure the disease or at least local dis-
ease control or symptomatic relief where a cure is not possible. The discovery of X-rays
in 1895 formed the basis of radiation therapy and the concept of therapeutic radiation
was invented by the German physicist Wilhelm Conrad Röntgen. The groundbreaking
work of Marie Curie-Sklodowska lead to a new area in medical treatment and research
[111]. Medical linear accelerators have been developed since the late 1940s and the
invention of the computed tomography (CT) by Godfrey Hounsfield allowed a three di-
mensional (3D) planning and thus a 3D conformal radiation. In the last few decades,
new techniques for radiation delivery and visualization have moved radiation therapy to
intensity modulated radiotherapy (IMRT) and eventually to image guided radiotherapy
(IGRT). In our days, 70% of cancer patients receive radiotherapy, at least as part of their
treatment.

The majority of radiotherapy involves high energy photons with an increasing inter-
est in treatment with proton beams as the number of clinical proton therapy facilities
increases worldwide. Robert R. Wilson had the idea to use energetic proton beams to
treat tumor patients [175] while being involved in the design of the Harvard Cyclotron
Laboratory (HCL). The first treatments using particle accelerators took place in 1954
at the Berkley Radiation Laboratory and at Uppsala in Sweden in 1957. In 1961, the
HCL and the Massachusetts General Hospital (MGH) started a collaboration for proton
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therapy and treated 9116 patients in the next 41 years. The first hospital based pro-
ton therapy center in the United States was built in 1990 at the Loma Linda University
Medical Center in Loma Linda, California (now named James M. Slater Proton Therapy
Center). During 2001 to 2002, The HCL treatment program was transferred to the new
established Northeast Proton Therapy Center at the MGH (recently named Francis H.
Burr Therapy Center).

Proton radiotherapy allows the delivery of a high dose to the tumor while the dose to
healthy tissue can be minimized. The most important interaction of the proton beam is
the electromagnetic coulomb interaction between the projectile and electrons causing a
continuous energy loss of the proton. Hereby, the energy loss increases with decreasing
speed and therefore increasing depth of penetration. This phenomena leads to the char-
acteristic Bragg curve describing the delivered dose in dependence of the penetration
depth [22]. In the entrance region, a relatively low dose is delivered and a high-dose
peak in the target area with no further dose delivery afterwards. This finite beam range
is the main advantage of protons in radio therapy compared to photon beams delivering
dose at any penetration depth. Several Bragg peaks with different penetration depths
can be combined to a spread-out Bragg peak (SOBP) forming a stable plateau with a
constant dose delivery (Figure 11.1). In order to generate such Bragg peaks, passive
energy degraders can be used or the acceleration energy has to be varied. Such a SOBP
is perfectly suited to irradiate a tumor while sparing surrounding tissue. Such a well-
positioned dose delivery is not possible with photons (Figure 11.2).

A sketch of the beam modeling devices used at the MGH can be seen in figure 11.3.
A longitudinal widening of the dose distribution is created through a modulation wheel
and results in a SOBP. A successive scatterer is then able to spread the dose distribu-
tion in lateral direction. Another possibility to achieve a lateral spread of a proton dose
distribution is to use magnetic deflection. Finally, custom milled apertures and compen-
sators are used to provide a suitable lateral and distal shape of the dose distribution to a
Patient specific treatment [85].

The differences of protons and photons for patient treatments are illustrated in figures
11.4 and 11.5. The dose delivery for the tumor is similar in both cases since the treat-
ment would not be effective otherwise. It can be seen that the surrounding tissue has a
higher dose delivery in case of photons which is called a "dose bath". Such a dose bath
can be avoided using protons by taking advantage of the finite beam range. Surrounding
healthy tissue is thus preserved from damage.

However, uncertainties in the treatment planning and delivery can have a consider-
able impact on the applied dose resulting in under dosage of the tumor or over dosage
of surrounding healthy tissue. The reason for such uncertainties can be due to patient
specific uncertainties, errors in the treatment planning algorithm, motion and anatomical
changes [49]. In addition, artifacts in the planning CT and ambiguity in the Hounsfield
Unit (HU) conversion can result in errors in the dose delivery [61]. Precise treatment
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Fig. 11.1.: Bragg peak, SOBP and photon dose distribution.

Fig. 11.2.: Photon and SOBP dose delivery.
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Fig. 11.3.: Beam line in gantry-treatment rooms at MGH: 1. First scatterer 2. Modula-
tion wheel, 3. Second scatterer, 4. Aperture and 5. Range compensator.

Fig. 11.4.: Photon and proton treatment for head and neck patient.

Fig. 11.5.: Photon and proton treatment.
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delivery is important and additional verification methods are required due to the steep
dose fall-off of a proton beam. In conventional radiotherapy, electronic portal imaging
methods can be used detecting traversing photons. Such strategies cannot be applied to
proton radiation because the proton beam is stopped completely. However, since proton
beams activate positron emitters, Positron Emission Tomography (PET) can be used for
in-vivo verification of radiotherapy [16] [56] [160] [98]. Unfortunately, the PET image
and the delivered dose distribution are not proportional and thus cannot be compared
directly. There is no proton induced nuclear reaction under an energy threshold of 15-
20MeV [160] resulting in a lack of activity just before the proton beam is stopped and
where most of the dose is delivered. In order to use the PET image for dose verifica-
tion, it is compared with a predicted β+-activity distribution following the approach of
treatment monitoring for carbon ion therapy [50] [123]. Hereby, detailed Monte Carlo
(MC) simulated activity distributions are compared with measured PET signals in order
to verify the dose delivery [116] [117]. First investigations of the potential of PET based
non-invasive proton radiotherapy monitoring methods showed a possible millimeter ac-
curacy [118] [119]. The PET based approach to verify the proton beam range including
a comparison with MC simulations was further investigated using phantom studies [84]
and patients [83].

Alternatively, an analytical approach using Gaussian-powerlaw convolutions is able
to predict the activity distribution [115]. Hereby, the planning dose is convolved with
a positron emitter specific filter function resulting in the according PET activity predic-
tion. At first, due to a relative long delay time between irradiation and PET measure-
ment, only positron emitters with a long half-life time (i.e. 11C with T1/2 = 20.39min)
were considered. The therefore used PET/CT scanner was located within 10 min walk-
ing distance from the proton therapy unit. With an decreased delay time using in-room
or even in-beam PET scanners [5], different short-lived emitters (e.g. 15O, 13N ) have
to be taken into account. A filter framework considering different isotopes was devel-
oped and tested using phantom measurements and corresponding MC calculation [7].
Later, the filter framework was also validated using simulations on real patient data and
assuming an in-room PET data acquisition starting at the end of the irradiation [6].

Both the MC and the filtering approach are able to predict the PET activity distribu-
tion assuming a given dose delivery. Comparing these predictions and their distal fall-off
regions with measured PET signals is used for treatment verification. An agreement of
simulated and measured PET activity indicates a dose delivery to the right location but
the actually delivered dose is not reconstructed from the measured PET image which is
most desirable.

In [55], a method to reconstruct the dose delivery from measured PET signals using
previously calculated positron emitters species matrices (PESM) is proposed. Once the
PESM which are based on proton energy fluence distributions are known, the authors
state that the absolute dose distribution in a patient can be found using a deconvolution
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of the measured PET activity with the PESMs. In this framework, the PET and the dose
distributions are described by:

PET (r, t) =
∑
i,j

wi,j
∑
k

∆Ñk(r, Ei) · C(k, j, t) (11.1.1)

DOSE(r, t) =
∑
i,j

wi,j d̃k(r, Ei) (11.1.2)

For the PET distribution, ∆Ñ describes the PESM and C contains a weighting of the
isotope specific activity due to irradiation and delay time. d̃ represents the dose kernels
normalized per incident proton in the dose formula. The weights wi,j are included in the
descriptions of both the PET and the dose distribution. Before a dose reconstruction can
be done, the PESM have to be known and are calculated analytically. The actual recon-
struction is done by determining the weights wi,j solving an inverse problem and using
them to calculate the dose distribution based on the dose kernels. The authors used the
random creep algorithm, which is a variation of the gradient search technique, to deter-
mine the weights. This approach showed good results for an initial reconstruction using
a homogeneous tissue-phantom and is meant to perform in vivo dose reconstructions
for patients. The authors predicated that the computational effort and the complexity of
the inverse problem are extensive in this case. Inhomogeneities in the tissue have to be
considered in the calculation of the PESMs using underlying CT scans. An additional
large amount of beamlets in the dose delivery would lead to a large system of equations
to be solved.

In general, an accurate knowledge of the dose delivery in radiation therapy is essential
and even Gaussian blurring included in ion chamber measurements of dose deliveries is
investigated [161]. In [162], the author proposes a linear combination of Gaussian con-
volution kernels to reconstruct the original dose distribution. A framework of Gaussian
kernels with positive coefficients is used in case of transverse profiles of dose distribu-
tions (protons and photons). In addition, a so called Mexican hat containing Gaussian
kernels with negative coefficients is applied in case of a proton Bragg curve.

In the following, an approach to reconstruct the dose distribution in proton radiother-
apy using PET signals is described and its feasibility for measured PET signals is evalu-
ated. Previous publications show that the main purpose of PET treatment verification is
currently the verification of the proton beam range. Thus, the location of the fall-off is
the most important aspect and this is one of the main concerns and uncertainties in pro-
ton beam therapy. The objective of the new method is to improve the range verification
by reconstructing the delivered dose and to extend the method from range verification
to overall treatment verification. The new method is based on the filtering approach
using Gaussian-powerlaw convolutions [115]. Since an estimation of a PET signal is
obtained by convolving a planned dose distribution with a corresponding filter mask in
1D, a 1D deconvolution is used to reconstruct the dose distribution from the PET signal.
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Deconvolution is an ill-posed inverse problem and regularization techniques are thus
used in order to obtain a stable solution. The application of the reconstruction method
in case of homogeneous media is shown first and the generalization to inhomogeneous
media is described afterwards. This advanced reconstruction approach is tested using
1D phantom signals and dose distributions for inhomogeneous 2D phantom data and
a head and neck patient data set are also reconstructed. Last but not least, the dose
reconstruction method is extended to process PET signals containing a combination of
different positron emitters and simulated results for a patient data set are shown.

11.2. The Gaussian and Powerlaw Convolution
Framework

As mentioned before, the new approach to reconstruct the dose delivery in proton radia-
tion is based on the convolution framework introduced in [115]. Hereby, the PET activ-
ity distribution of an individual positron emitter introduced by a certain dose distribution
can be estimated by a 1D convolution of the dose distribution with a corresponding fil-
ter function assuming homogeneous tissue. In principle, a given dose distribution D in
homogeneous tissue can be described by a superposition of individual Bragg peaks b
depending on a nominal range R. z describes the depth in direction of the proton beam.

D(z) =

∫ ∞
0

w(R)b(z, R)dR (11.2.1)

The energy of a proton beam is equivalent to its nominal range in case of homo-
geneous tissue and the weights w(R) describe the energy spectrum of the beam. The
irradiation-induced PET signal P can be described in a similar way with p being the
PET activity induced by a mono-energetic beam.

P (z) =

∫ ∞
0

w(R)p(z,R)dR (11.2.2)

According to [115], it is possible to predict a specific PET activation p by convolving
the corresponding Bragg peak bwith a specific filter function f which is in fact indirectly
defined by this equation.

p(z) = b(z) ∗ f(z) (11.2.3)

Hereby, ∗ describes a convolution. Since the dose distribution is given by a superpo-
sition of individual Bragg peaks, the total irradiation-induced PET signal is given by a
convolution of the dose distribution with the filter function f .

P (z) = D(z) ∗ f(z) (11.2.4)
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In order to determine a filter function using equation 11.2.3, an analytical represen-
tation of a Bragg peak and the corresponding PET signal is required. In [115], a set
of Q̃ν(x) functions already introduced to describe Bragg peaks in [19] is used for that
purpose. The Q̃ν(x) functions are generated by a convolution of a Gaussian

G(x) =
1√
2π
exp

(
−x

2

2

)
(11.2.5)

and a powerlaw function

Pν(x) =

{ 1
Γ(ν)

xν−1 ifx > 0

0 otherwise
(11.2.6)

in which the gamma function Γ(ν) is used for normalization purposes. A closed form
of the convolution in terms of parabolic cylinder functionsD was introduced in [60] and
is given by:

Q̃ν(x) = G(x) ∗ Pν(x) =
1√
2π
exp

(
−x

2

4

)
D−ν(−x) (11.2.7)

Depending on the parameter ν, the set of Q̃ν functions contain several other inter-
esting functions. For ν = 0, the Q̃ν function is equivalent to a Gaussian function and
for ν = 1, the Q̃ν function can be expressed through an error function. The depth
dose distribution of a therapeutic proton beam can be represented by a Q̃ν function with
ν ≈ 0.6. The graphs of different Q̃ν functions can be seen in figure 11.6. Furthermore,
another useful property is that the convolution of two arbitrary Q̃ν functions is again a
Q̃ν function.

Q̃ν1 (x) ∗ Q̃ν2 (x) =
√

2
ν1+ν2−1

Q̃ν1+ν2

(
x√
2

)
(11.2.8)

In order to represent a Bragg peak or an irradiation-induced PET signal, a shifted and
scaled versions of Q̃ν functions is required.

Q̃ν

(
x− a
b

)
(11.2.9)

The result of a convolution of two shifted and scaled Q̃ν functions is then given by
(see Appendix in [115]):

Q̃ν1

(
x− a1

b1

)
∗ Q̃ν2

(
x− a2

b2

)
=

√
b2

1 + b2
2

ν1+ν2−1

bν1−1
1 bν2−1

2

Q̃ν1+ν2

(
x− a1 − a2√

b2
1 + b2

2

)
(11.2.10)
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11.2. The Gaussian and Powerlaw Convolution Framework

Fig. 11.6.: Q̃ν functions with different ν.

Using the Q̃ν functions, it is possible to determine a filter function for a specific
positron emitter in homogeneous media. In this framework, an individual filter function
is required for each positron emitter and each filter function is valid for the homogeneous
tissue on which the underlying dose and PET signal are given. In order to determine the
filter function, the Bragg curve and the corresponding PET signal have to be fitted with
Q̃ν functions. Hereby, the accuracy of the fit can be improved by using more than one Q̃ν

function. In [115], a filter function for a 11C positron emitter was determined on basis of
a homogeneous polymethyl methacrylate (PMMA) target. The required representation
of a Bragg curve with a energy of 152.1MeV and the corresponding PET signal using
Q̃ν functions are given in the following equations.

b(x) = 6.46mGmm2Q̃0.625

(
−x+ 140.7mm

1.53mm

)
(11.2.11)

p(x) = 4.6313mm−1Q̃1.3353

(−x+136mm
2.18mm

)
+2.5769mm−1Q̃1.4596

(−x+136mm
2.18mm

) (11.2.12)

Both distributions were calculated using Monte Carlo (MC) simulations and fitted
with Q̃ν functions using suitable optimizers. The aim was to have an acceptable fit of
the Q̃ν functions for a relevant depth range containing the area around the distal fall-off
region of both curves (Shown in figure 11.7). The corresponding filter function is then
determined using equation 11.2.3. Assuming a filter function with two Q̃ν functions,
b(z) ∗ f(z) can be calculated using equation 11.2.10 and then be compared with p(z)
leading to a linear system of six equations containing six parameters determining the
filter function f . The given Bragg peak (Equation 11.2.11) and the corresponding PET
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11. Proton Dose Reconstruction

Fig. 11.7.: Fitting result of Q̃ν functions to Bragg curve and PET signal.

Fig. 11.8.: Left: Bragg curve and PET signal, right: filter function.
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Fig. 11.9.: Forward filtering examples: Bragg curve (Left) and SOBP (Right).

signal (Equation 11.2.12) result in the filter function f(x) and their graphs can be seen
in figure 11.8.

f(x) = 0.4143mGy − 1mm−4Q̃0.7103

(−x−4.7mm
1.553mm

)
+0.2210mGy − 1mm−4Q̃0.8346

(−x−4.7mm
1.553mm

) (11.2.13)

The filter function allows a prediction of the PET activity for the underlying positron
emitter in homogeneous PMMA material or PMMA equivalent material. Hereby, the
dose distribution is convolved with the filter function according to equation 11.2.4 which
is called forward filtering in the following. Due to the superposition principle, the dose
distribution is not limited to Bragg curves and e.g. SOBPs can be processed as well.
A Bragg peak and a SOBP, the corresponding forward filtering results and PET signals
predicted by MC simulations are shown in figure 11.9. It can be seen that the MC PET
signals and the PET signals obtained by forward filtering are in good agreement in the
relevant areas including the distal fall-off region.

The Bragg peak and the SOBP used for the forward filtering are results of MC sim-
ulations as well. Besides MC simulations of the dose distributions, treatments planning
dose distributions can be used to predict the PET signal using the convolution frame-
work as well. All of these signals are given in a discrete form with a specific sampling
distance (1mm in the previous case). The filter function is given by Q̃ν functions and
therefore in a continuous form. In order to apply the filter function to a given dose
distribution, it has to be sampled using the same sampling distance as the dose signal.
If the sampling distance is too large important information can be lost. According to
the Nyquist-Shannon theorem, the sampling frequency fsampling should be at least two
times the maximum frequency fmax of the sampled signal in case it is band-limited.

fsampling > 2fmax (11.2.14)

In order to investigate what sampling distances can be allowed for the convolution
framework, the Fourier transforms of the previously used filter function is investigated.
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Fig. 11.10.: Fourier transform of filter (Sampling: left 0.1mm, right 1mm).

Hereby, the filter function is sampled with 0.1mm and 1mm using the continuous Q̃ν

function form. The according Fourier transforms can be seen in figure 11.10. The
allowed maximum sampling distance is determined using the doubled frequency where
the value of the Fourier transform falls below 1% of its maximum serving as cut off
frequency to determine a band width. Thus, the allowed maximum sampling distance is
1.74mm.

11.2.1. Detection of Distal Fall-off Region
In accordance with the shape of the delivered dose in proton therapy, a main focus of
a dose verification is the detection of the distal fall-off region. Since measured data
contains noise and deconvolution is a difficult problem, it is possible to have artifacts
in the reconstructed dose distribution and thus a reliable determination of the distal fall-
off region is required. In the proposed approach, the midpoint of the largest falling
edge estimates the location of the distal fall-off region and is determined by using the
gradient of the dose signal. A reconstructed dose signal can contain artifacts leading to
larger gradient values compared to the fall-off region and thus a simple determination of
the maximum value of the gradient is not sufficient. An artifact while containing large
gradient values is quite small compared to the distal fall-off edge of a Bragg peak or a
SOBP and this property is used by analysing a smoothed version of the gradient to de-
termine the distal fall-off edge. The gradient is smoothed by a Gaussian convolution and
a sharp peak of an artifact is thus deflated while the gradient of the distal fall-off region
becomes dominant. The maximum value of the smoothed gradient indicates the location
of the distal fall-off region. This method is quite robust against artifacts but limited in
its accuracy since it depends on the sampling points of the underlying grid structure. In
order to investigate the accuracy of the dose reconstruction, the reconstruction result is
compared with the treatment planning dose and the distance between both distal fall-off
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Fig. 11.11.: Gradient based edge detection: on grid (Left), parabolic estimation (Mid-
dle) and Gradient signals (Right).

regions is calculated. Such a distance can only be an integral multiple of the sampling
distances which is quite inaccurate for a relative large sampling distance of e.g. 1mm.
The accuracy is improved by using a parabolic interpolation of the maximum area of
the smoothed gradient and determining its angular point which represents the midpoint
of the distal fall-off region. The results of an edge detection of a SOBP using a treat-
ment planning dose and a reconstruction result is shown in figure 11.11. On the right
side of the figure, details of the smoothed gradient and the parabolic interpolation are
displayed.

The distance between the midpoints of the distal fall-off regions of a reconstructed
dose and a treatment planning dose is used to evaluate the reconstruction result in case
of 1D signals. For 2D or 3D signals the mean value µ and the variance σ2 of the
according distances dist using a certain amount N of proton beams are used to evaluate
the reconstruction result.

µ =
1

N

N∑
i=1

disti (11.2.15)

σ2 =
1

N − 1

N∑
i=1

(disti − µ)2 (11.2.16)

11.3. Dose Reconstrution with Deconvolution
Approach

Since the PET signal is predicted using the forward filtering on basis of the dose distri-
bution, the dose distribution could be reconstructed using an inverse filter f−1. It is not
possible to represent such an inverse filter analytically and thus the dose D(z) is recon-
structed by deconvolving the PET signal P (z) using the filter function f (Ψ describing
a suitable deconvolution method in 1D):
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D(z) = P (z) ∗ f−1(z) ≈ Ψ(P (z), f(z)) (11.3.1)

The deconvolution of the PET signal is called "dose deconvolution" in the following
and the reconstruction of the distal fall-off region is the primary aim. In proton therapy,
the tumor should be irradiated while the surrounding tissue should be spared as much as
possible. Therefore, the distal fall-off region is crucial for treatment verification due to
the shape of a Bragg peak and a SOBP. In general, deconvolution is an ill-posed inverse
problem which is not trivial to solve. In the following, the methods which are used to
deconvolve the PET signals are described in detail.

11.4. Dose Deconvolution in Homogeneous Tissue
In this section, the proposed dose reconstruction in case of homogeneous tissue is dis-
cussed and according results are shown. In order to keep things simple, just one filter
function given by the 11C activity is used here. At first, a MC simulated Bragg curve
and its corresponding PET signal is used to test the dose deconvolution. Then, a SOBP
is used with both a MC simulated PET signal and a real measured PET signal. The
delay between irradiation and PET measurement is hereby considered long enough that
only the 11C positron emitter signal is of importance and other positron emitters can be
neglected. The dose and PET signals for the Bragg curve and the SOBP are shown in
figure 11.12 on basis of a sampling distance of 1mm.

The PSF of the PET scanner is neglected for the Bragg curve, i.e. the MC PET signal
does not contain an additional PSF. The forward filtering is quite simple in this case
since it consists of one single step:

• Convolve dose distribution with filter function.

The dose deconvolution consists of one step as well but the deconvolution is a difficult
problem as discussed before:

• Deconvolve PET signal with filter function.

The PSF included in real PET images is considered in the MC simulated PET sig-
nal for the SOBP since the according measured image is influenced by a PSF as well.
Therefore, the forward filtering has to be modified and a convolution with the PSF has to
be added in order to be comparable to the measured and the MC simulated PET signal.
The forward filtering is thus given by:

• Convolve dose distribution with filter function.

• Convolve forward filtering result with PSF.
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Fig. 11.12.: Left: Bragg peak and PET signal. Right: SOBP, MC PET signal and mea-
sured PET signal.

In case of homogeneous phantoms when a single proton beam line in the middle of
the delivered dose is used, the PSF convolution can be modeled by a 1D convolution
with a 1D Gaussian filter mask. This simplification cannot be used in case of real PET
signals since the geometry of the irradiation dose and the composition of the irradiated
material respectively tissue cannot be assumed to be the same in each beam direction.
The PET estimation using the convolution approach has to be modified by adding a
second convolution with the PSF [115] which has to be reversed in the dose decon-
volution as well. It would be possible to deconvolve the PET signal with the PSF in
a first step and then perform the actual dose deconvolution with the filter function us-
ing the result of the PSF deconvolution. Fortunately, convolutions are associative, i.e.
(D ∗ f) ∗ PSF = D ∗ (f ∗ PSF ) and the dose reconstruction using the PET signal
is performed in one step with a modified filter function fPSF = f ∗ PSF in a single
deconvolution. The modified filter function fPSF is a smoothed version to the original
PSF .

• Deconvolve PET signal with modified filter function fPSF .

The forward filtering results using the filter function for the 11C positron emitter have
already be shown in figure 11.9 for both the Bragg peak and the SOBP. The PET signals
obtained by the forward filtering are in good accordance with the MC PET signals. Sev-
eral dose deconvolution results for the Bragg peak are shown in figure 11.13 and figure
11.14. A long delay between irradiation and imaging is assumed and thus just one filter
function given by the 11C activity is used. At first, the dose deconvolution method is
tested with a MC simulated Bragg curve and its corresponding PET signal. The 1D
deconvolution is performed using the MC simulated PET signal which contains sev-
eral small variations. If no regularization is applied these small variations are amplified
resulting in a degraded signal containing large oscillations (Figure 11.13). This result
clearly shows the challenge when solving inverse problems and in this case, the used
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Fig. 11.13.: Bragg curve: Dose deconvolution without regularization.

signal was merely degraded by small variations. A noise signal in a real PET measure-
ment can be considerably stronger. The other results are obtained by using TM (Left
image in figure 11.14) and TV (Right image in figure 11.14) regularization and the regu-
larization parameter λwas set to 0.19 for the TM and 0.7 for the TV regularization being
the results of brute force searches. The TM regularization seems to be better suited for
the given dose distribution since the distal fall-off region is reconstructed well and the
peak of the Bragg curve is better shaped than in the reconstruction result with the TV
regularization. The TV regularization forms a plateau instead of a peak and the distal
fall-off region is reconstructed as a sharp edge instead of a continuous decrease of the
signal values. As mentioned before, the TV regularization is meant to reconstruct sharp
edges and shows a stair-casing effect in case of a continuously increased signal values.
These properties obviously do not match the properties of the Bragg curve and the TM
regularization seems to be better suited to reconstruct the peak and the distal fall-off
region of the Bragg curve. The known behaviour of the TM regularization to smooth
edges allows a better reconstruction of the dose distribution than the TV regularization.

The results of the SOBP dose reconstruction based on the MC simulated PET signal
are shown in figure 11.15. The reconstructed dose distribution which is obtained with-
out considering the PSF can be seen in the left image and the result using the modified
filter function containing the PSF is displayed in the right image. It is obvious that con-
sidering the PSF leads to a better reconstruction of the distal fall-off region. The result
without considering the PSF shows a smoothed distal fall-off edge still containing the
smoothing of the PSF convolution. Since the MC simulated PET signals are hardly
degraded by small variations in this case, a quite small value for the regularization pa-
rameter λ can be used and a brute force search leads to 0.01. The estimated distance
between the distal fall-off region of the treatment planning dose and the reconstructed
dose is 0.01mm using the proposed edge detection method.

Figure 11.16 shows the reconstruction result based on the measured PET signal in-
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Fig. 11.14.: Bragg curve: Dose deconvolution using TM (Left) and TV (Right) regular-
ization.

Fig. 11.15.: Dose deconvolution results SOBP based on MC PET signal: without PSF
(Left) and with PSF (Right).
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Fig. 11.16.: Dose deconvolution results for SOBP based on measured PET signal.

duced by an irradiation of a PMMA cylinder phantom with a dose of 8 Gy. Due to the
noise and artifacts in the measured signal, a higher value for the regularization parameter
λ has to be used and 1 is used in this case. The plateau of the SOBP is not completely
reconstructed and the distance between the distal fall-off region of the reconstructed
dose and the treatment planning dose is 0.6 mm.

If there are artifacts in a measured PET signal it is not possible to avoid artifacts in
the dose reconstruction result. Suitable regularization techniques allow a stable recon-
struction result and may be able to reduce artifacts to a minimum but a perfect result is
not possible. Comparing the MC simulated PET signal with the measured PET signal in
figure 11.12 shows that differences in both signals beyond noise can be found. The mea-
sured signal contains smaller values than the MC simulated signal in regions influencing
the reconstruction of the plateau of the SOBP. However, the reconstruction of the distal
fall-off region seems to be quite accurate and this reconstruction of the dose distribution
based on a measured PET signal is thus considered as useful for range verification.

11.5. Dose Reconstruction in Inhomogeneous
Tissue

In [115], the authors generalized the filter framework for the forward filtering to inhomo-
geneous media and this formalism is used for the dose deconvolution approach as well.
There are several different aspects which have to be considered in order to generalize
the filter framework. First of all, a CT image of the target material is required which is
usually available because the treatment planning is based on a CT image as well. In or-
der to use the already given filter function on inhomogeneous media, a range-conversion
is necessary and then local factors have to be applied to determine the created amount
of positron emitters depending on the irradiated material. In addition, the irradiation
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Fig. 11.17.: Example for phantom: base signals (Left) and range-conversion (Right).

time and the delay time between irradiation and PET imaging have to be considered.
Last but not least, the PSF convolution included in the measured PET images has to be
incorporated properly.

11.5.1. Range-conversion
The filter functions are only valid for a homogeneous reference media and it is really
complicated to modify a filter function to be valid for inhomogeneous media. It would
be necessary to have different locally adapted filter functions for each positron emitter
dependent on the underlying media. Thus, a large amount of filter functions would be
needed and the calculations for just the forward filtering would be extensive. In [115],
another method is proposed which allows the use of the already given filter function on
inhomogeneous media. Proton beams with the same energy result in different residual
ranges in different media due to the fact that protons are slowed down differently in
different materials. The unique filter function is defined for a specific homogeneous
material and can be used for another material if the according spatial dose distribution
is stretched to an equivalent path length in the reference material. A general range-
conversion formalism which can transform a path containing different materials into
an equivalent path length in the reference material is given in analogy to the water-
equivalent range-conversion formalism well established in particle treatment planning
[75]. In this formalism, the path length z is transformed to the water-equivalent path
length lw given by equation 11.5.1 using the electron density ρel of the traversed material
at depth z′ in relation to the electron density of water ρel,w. The electron density ρel of
a material can be determined using a mapping table based on CT values which has to
known.

lw(z) =

∫ z

0

ρel(z
′)

ρel,w
dz′ (11.5.1)
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For the filtering approach, the range-conversion has to be based on the reference
material which was used to calculate the filter function. This leads to a local path length
operator F containing the electron density ρel,ref of the reference material.

F : z → z∗ =

∫ z

0

ρel(z
′)

ρel,ref
dz′ (11.5.2)

Since all signals are given in a discrete form with a specific sampling distance, a
discrete version of F is used. Hereby, n denotes the index of the investigated sampling
point:

F : z(n)→ z∗(n) =
n∑
i=1

ρel(z(i))

ρel,ref
(11.5.3)

A second path length operator F−1 is required to reverse the range-conversion. Both
path length operators are realized by resampling the given signal on basis of irregular
grids containing modified distances according to the range-conversion. The dose distri-
bution D∗ which can be filtered in the depth equivalent space z∗ is calculated using F
and denoted as F (D) in the following. In addition, the filtered PET signal P ∗ is then
back transformed to the original range system using F−1 and is described by F−1(P ∗).

D∗(z∗) = D∗(F (z)) = D(z) (11.5.4)

P (z) = P (F−1(z∗)) = P ∗(z∗) (11.5.5)

A simple example of a range-conversion is shown in figure 11.17 using the PET
signal of a phantom. The phantom consists of PMMA and lung equivalent material
and the required CT signal is given. The electron density values needed for the range-
conversion are given indirectly by the CT values. As it can be seen, the range inside
the PMMA material is not converted since the filter function is defined on basis of that
material. The electron density value of the lung equivalent material is lower than in the
PMMA material resulting in a compression for the according area. The original range
from−111mm to 89mm is converted to a range from−111mm to 41mm with the start
point at −111mm serving as fixed point in both range systems.

11.5.2. Tissue Dependent Factors
Besides the range-conversion, local factors have to be used to weight the PET signals
in dependence of the underlying tissue composition. Therefore, several properties of
the material which are all based on CT values are required. In addition to the electron
density which was already used for the range modulation, the mass density of the ir-
radiated material and a weighting based on the target nuclei involved in the according
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HU El. density w12C w16O HU el. density w12C w16O

< -950 0.0242 0 0.232 < 500 1.2395 0.361 0.38
< -120 0.476 0.105 0.749 < 600 1.2901 0.335 0.387
< -83 0.9286 0.681 0.198 < 700 1.3401 0.31 0.394
< -53 0.9577 0.567 0.308 < 800 1.3909 0.287 0.4
< -23 0.982 0.458 0.411 < 900 1.4403 0.265 0.405
< 7 1.0069 0.356 0.509 < 1000 1.4905 0.246 0.411
< 18 1.0229 0.284 0.578 < 1100 1.5418 0.227 0.416
< 80 1.0503 0.134 0.723 < 1200 1.5913 0.21 0.42
< 120 1.1004 0.207 0.622 < 1300 1.6424 0.194 0.425
< 200 1.0932 0.455 0.355 < 1400 1.6927 0.179 0.429
< 300 1.1391 0.423 0.363 < 1500 1.7427 0.165 0.432
< 400 1.1891 0.391 0.372 > 1500 1.7941 0.155 0.435

Table 11.1.: Electron densities and weights of involved target nuclei 12C and 15O

HU Mass density
< -98 0.00121+(0.93-0.00121)/(-98+1000)*(hu+1000))
<= 14 1.018+0.893e-3*hu
< 23 1.03
<= 100 1.003+0.001.169*hu)
< 2000 1.017+0.000592*hu)
< 3060 2.2010 +(2.550-2.020)/(3060-2000)*(hu-2000)
>= 3060 4.5

Table 11.2.: Mass densities

reaction channels are needed. The mapping of the CT values to the electron density and
to the weights based on the 12C respectively 16O reaction channels is shown in table
11.1 while the mapping to the mass density can be found in table 11.2.

All weighting coefficients and density values based on the CT values are illustrated
in figure 11.18. The tissue dependent local factor gtissue which is then used to weight
the PET signals is given by:

gtissue =

[
wi(z)ρ(z)

wi,refρref

] [
ρ(z)

ρref

ρel(z)

ρel,ref

]
(11.5.6)

In this equation, wi(z)/wi,ref is the weight of the target nucleus (12C and 16O) in-
volved in the given reaction channel at depth z in relation to the reference material.
Additionally, ρ(z)/ρref and ρel(z)/ρel,ref are the mass density and the electron density
of the material at depth z relative to the reference material. In the forward filtering
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Fig. 11.18.: Weighting coefficients and densities based on CT.

formalism for inhomogeneous media, the predicted PET signal given by a convolution
of the dose distribution with the filter function has to be weighted with factor gtissue to
consider the properties of the irradiated materials.

11.5.3. Time Dependent Factors
In addition to the tissue dependent weighting factor, a second weighting factor gtime
considering the irradiation time tirr and the delay time between irradiation and the image
acquisition tdel is required. In order to calculate the factor gtime, the decay constant λ
of the produced positron emitter is used. The predicted PET signal using the forward
filtering has to be weighted with this time dependent factor as well.

gtime =
1− e−λitirr

tirr
e−λitdel (11.5.7)

11.5.4. Sampling Distances and Alignment of Images
The dose deconvolution approach will be tested on real measured phantom and patient
data in the following section. In order to allow extensive investigations about the poten-
tial of the proposed methods, MC simulated PET signals are used as well leading to a
large amount of different data sets including a CT image, a treatment planning dose and
the measured PET signals as well. All of these different data sets have to be aligned and
sampled using the same grid structure and sampling distance which should be as small
as possible. Unfortunately, the data sets are usually given on shifted grid structures with
different sampling distances. Before the data sets can be processed using the filtering
framework, all data sets have to be aligned and resampled on the same grid structure. It
is recommendable to use B-spline interpolators for this task in order to keep interpola-
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11.5. Dose Reconstruction in Inhomogeneous Tissue

Fig. 11.19.: Different possible sampling grids in Reference to a basic isotropic grid.

tion errors as small as possible. An example of different possible grid structures with an
underlying target grid structure is illustrated in figure 11.19.

Furthermore, it is possible that the direction of the proton beam is not conform to a
direction of one of the dimensions of the grid structure. In such a case it is also necessary
to rotate the data sets because the filter function can only be applied along the direction
of the proton beam. Last but not least, it is sometimes helpful to focus on a region
of interest and avoid processing the whole data set in order to limit the computational
effort.

11.5.5. Dose Deconvolution Approach
In summary, the generalized approach for the forward filtering in inhomogeneous media
is given by a course of tasks starting with the 1D convolution of each proton dose beam
line with the filter mask enclosed by the range-conversion to cope with the inhomoge-
neous media. Afterwards, the local factors are applied and the 3D convolution with the
PSF completes the result. The complete forward filtering approach is described by:

• Range conversion: D∗1(z∗) = F (D(z)).

• 1D convolution with filter function: P ∗2 (z∗) = D∗1(z∗) ∗ f .

• Inverse range conversion: P3(z) = F−1(P ∗2 (z∗)).

• Apply local factors: P4(z) = P3(z) · gtime · gtissue.

• 3D convolution with PSF: P = P4(z) ∗ PSF .

A closed form of the forward filtering approach is given by:

P =
(
gtime · gtissue · F−1 (F (D) ∗ f)

)
∗ PSF (11.5.8)
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A corresponding dose deconvolution approach has to reverse all necessary steps of the
forward filtering in the correct order. Two deconvolutions are necessary since the filter
function has to be applied on a range-converted signal while the original grid structure
has to be used for the PSF. First, the PSF deconvolution has to be performed and since
the PET signal suffers from Poisson noise, a RL similarity functional is used in this
case. Furthermore, the PSF deconvolution result requires sharp edges since the local
factors are removed afterwards and smooth edges would create large artifacts in areas
where different tissues are next to each other. In order to provide sharp edges, TV regu-
larization is used in the PSF deconvolution. Since the local factors can be zero at some
points and thus the required reciprocal value is not defined, a minimum value minLF >
0 is introduced and all values of the local factors below minLF are set to the minimum
value. It is essential to consider the PSF in the dose deconvolution approach but it is not
possible to obtain perfect results using a deconvolution with the PSF especially in case
of a noisy signal. Not considering the PSF leads to large artifacts when removing the
local factors gtime and gtissue at locations with a large gradient in the CT image. Similar
artifacts are found as well when the PSF is considered due to the limited possibilities of
the deconvolution but the remaining artifacts are much smaller. In order to improve the
signals after removing the local factors, a local smoothing which is dependent on the
gradient of the underlying CT image is used. Thus, the signal is smoothed in locations
where the described artifacts are possible and not altered elsewhere. The smoothing is
performed using the median value of a certain amount of neighbour values whereat the
CT gradient determines the amount of neighbour values. The median is known to be
more robust than the mean value and is therefore used here. After smoothing the signal,
the deconvolution with the filter function is performed using a LS similarity functional
and a TM regularization which is better suited for the dose distribution as discussed
before. In addition, the deconvolution with the filter functions is enclosed by the range-
conversion. The complete dose deconvolution approach for inhomogeneous media is
described by (With Ψ describing suitable deconvolutions):

• 3D deconvolution with PSF (RL and TV): P1(z) = Ψ(P (z), PSF ).

• Reverse local factors: P2(z) = P1(z)/(gtime · gtissue).

• CT gradient dependent local smoothing: P3 = smooth(P2).

• Range modulation: P ∗4 (z∗) = F (P3(z)).

• 1D deconvolution with filter function (LS with TM): D∗5(z∗) = Ψ(P ∗4 (z∗), f).

• Inverse range modulation: D(z) = F−1(D∗5(z∗)).

A closed form of the dose deconvolution approach is given by:
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11.6. Dose Deconvolution Results in Inhomogeneous Tissue

Fig. 11.20.: Phantom slices with lung (Left) and bone (Right) equivalent material.

D = F−1

(
Ψ

(
F

(
smooth

(
Ψ(P, PSF )

gtime · gtissue

))
, f

))
(11.5.9)

11.6. Dose Deconvolution Results in
Inhomogeneous Tissue

The dose deconvolution approach for inhomogeneous tissue is applied to phantom and
patient data in this section. The phantom contains four different materials: PMMA, lung
equivalent material, bone equivalent material and air. The phantom was irradiated with a
total dose of 8 Gy and the delay between irradiation and PET imaging is approximately
14 min allowing the use of the 11C filter function only. Two slices of a CT image of the
phantom are shown in figure 11.20 with one containing lung equivalent material and the
other bone equivalent material. At first, the dose deconvolution approach is applied to
1D profiles of the phantom shown as yellow lines in the figure. Hereby, several simula-
tions using the forward filtering results as basis are performed before the measured PET
signal is used to reconstruct the delivered dose. Subsequent, the measured phantom data
is processed in 2D using the two shown slices. At last, a measured patient PET signal
of a head and neck patient is used to reconstruct the delivered dose.

11.6.1. 1D Phantom Profiles
The available signals for the 1D phantom profiles can be seen in figure 11.21. The first
profile consists of PMMA and lung equivalent material with surrounding air while the
second profile contains bone equivalent instead of the lung equivalent material. The
forward filtering results of both profiles using the treatment planning dose are shown in
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Fig. 11.21.: Phantom profiles with lung (Left) and bone (Right) equivalent material.

Fig. 11.22.: Forward filtering results for phantom profiles with lung (Left) and bone
(Right) equivalent material.

figure 11.22. The filtering results are displayed with the MC simulated PET signals and
it seems that both are in good agreement. A PSF with FWHM = 7mm was used to
account for the system response of the PET imaging system.

Figure 11.23 shows intermediate results of the dose deconvolution process for the first
profile containing lung equivalent material. Removing the local factors (LF) without
considering the PSF leads to large artifacts (Upper row, left image) and the additional
PSF deconvolution is thus necessary to reverse the PET estimation. The deconvolution
result after removing the PSF contains sharp edges necessary to reverse the LF (Upper
row, right image). However, after removing the LF, similar but much smaller artifacts
are found as well due to the limited possibilities of the deconvolution (Lower row, left
image). The gradient dependent smoothing based on the CT image is able to remove
those small artifacts without influencing the signal in general (Lower row, right image).

The locally smoothed signal is used for the actual dose reconstruction in the last
step. Hereby, the range modulation is used to perform a range conversion to a reference
material-equivalent range which is necessary for the filter function. The final results of
the dose deconvolution for both profiles can be seen in figure 11.24. Since there is no
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Fig. 11.23.: Intermediate dose deconvolution results: Remove LF without consider-
ing PSF, remove PSF, gradient dependent smoothing and remove LF af-
terwards.
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Fig. 11.24.: Dose deconvolution results for phantom profiles with lung (Left) and bone
(Right) equivalent material.

noise in the PET signals and the signals are quite smooth, the necessity for regularization
is quite weak and thus a small value for λ can be used. The reconstruction results are
very satisfying in this case because they are almost identical to the treatment planning
dose.

In order to simulate a more realistic PET signal and to test the robustness of the pro-
posed method, Poisson noise is added to both PET signals and the dose deconvolution is
repeated in the same way. The signal to noise ratio (SNR) for the first profile is 19.1dB
in the first test case and 15.7dB in the second test case while the corresponding SNRs
are 19.1dB and 15.2dB for the second profile. These test cases are called Noise1 and
Noise2. The results of the dose deconvolution and the noise degraded PET signals are
shown in figure 11.25 for the first profile and in figure 11.26 for the second profile. Due
to the noise in the signals and in order to suppress noise amplification, suitable values
for λ weighting the regularization term are required. Since the underlying PET signal
was created using the given treatment planning dose, the latter can be used to evaluate
the reconstruction result directly and thus allowing a brute force search to determine
the weighting parameters. The deconvolution of the PSF is performed using a TV reg-
ularization with λ ≈ 20 in the first case and λ ≈ 100 in the second case handling the
stronger noise signal. The second deconvolution which is based on the regularized and
thus denoised result of the previous deconvolution does not require an equal strong TM
regularization and therefore λ ≈ 10 is sufficient in the first case and λ ≈ 30 in the
second case.

The simulated PET signals which are degraded by Poisson noise are not similar to the
measured PET signals given for these profiles (See figure 11.21). The noise in the mea-
sured PET signals seems to be stronger and smoothed at the same time. As mentioned
before, the PSF originates in the PET imaging process and the reconstruction algorithm
which is necessary to convert the acquired data in a useable image. In addition, there
is Gaussian noise in the images besides Poisson noise. The delay time between irradi-
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Fig. 11.25.: Dose deconvolution simulation for phantom profiles with lung equivalent
material and Poisson noise.

Fig. 11.26.: Dose deconvolution simulation for phantom profiles with bone equivalent
material and Poisson noise.

Fig. 11.27.: Dose deconvolution simulation for phantom profile 1 with advanced noise
model.
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Fig. 11.28.: Dose deconvolution simulation for phantom profile 2 with advanced noise
model.

ation and PET imaging was quite long resulting in a strongly degraded image. It can
be assumed that a decreased delay time using in-room PET scanner leads to improved
images comparable to the already simulated signals. In case of longer delay times an-
other simulation approach including Gaussian noise and a Gaussian smoothing with the
PSF after adding the noise signal is required. Such simulated PET signals can be seen
for the first profile in figure 11.27 on the left side and for the second profile in figure
11.28. The base PET signal denotes the PET signal degraded by both the Gaussian and
the Poisson noise signal while the final signal is obtained by smoothing the base sig-
nal using the PSF. This test case is called Noise&Smooth. The SNR for the Gaussian
noise is 5.6dB and 5.0dB for the Poisson noise. Both figures also show the reconstruc-
tion results on the right side. A strong regularization is required in order to cope with
the strong degradations in the simulated PET signals used for the deconvolutions. λ is
therefore set to 500 for the TV regularization in the first deconvolution and to 50 for the
TM regularization in the second deconvolution.

The simulated degradations based on the Gaussian and the Poisson noise in combina-
tion with the smoothing seems to be quite similar to the degradation which can be found
in the measured PET signals. Therefore, the same λ values to weight the regulariza-
tion are used to reconstruct the dose distribution using the measured PET signals. The
reconstruction results of the measured PET signals are shown in figure 11.29 for both
profiles.

In order to evaluate the dose reconstruction, the edge of the distal fall-off region for
the treatment planning dose and the reconstructed dose is determined using the gradient
based approach. The distance of both points can give an impression how accurate the
dose reconstruction algorithm is working in case of the simulations using the forward
filtering result. In addition, the robustness of the method is evaluated using additional
degradations with noise or even smoothing. At last, the delivered dose is estimated
using the measured PET signal and also compared with the treatment planning dose.
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Fig. 11.29.: Dose deconvolution results for phantom profiles using measured PET sig-
nals.

Profile1 Profile2
(parabolic) (parabolic)

Simulated 0.0 0.05 0.0 0.14
Noise1 0.65 0.34 0.0 0.05
Noise2 0.65 0.50 0.65 0.27
Noise&Smooth 0.65 0.82 2.59 2.88
Measured 0.65 0.78 2.59 2.28

Table 11.3.: Distance of distal fall-off reconstructed dose to treatment planning dose (in
mm)

Table 11.3 shows the distances for all cases and both profiles using the simple edge
detection and the parabolic interpolation approach. The parabolic interpolation shows
a more accurate evaluation since it is not connected to the sampling distance of 0.65
mm. The distance of the distal fall-off region between the treatment planning dose
and the reconstruction result is very small for the simulation which confirms the good
result. With a decreasing strength of degradations, the distance gets larger and the last
simulation with the additional Gaussian noise and smoothing has a similar distance
as the result for the measured PET signal. The distances for the first profile are all
within 1 mm showing the robustness of our approach and the possible quality of the
reconstruction results. However, the distance for the Noise&Smooth simulation and the
measured PET signal are relatively large for the second profile with values up to almost
3 mm.
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Fig. 11.30.: Given data of phantom slices showing treatment planning dose (Left), MC
PET signal (Middle) and measured PET signal (Right). The top row dis-
plays the signals of first slice with a superimposed CT image and the bottom
row corresponding signals of the second slice.

11.6.2. 2D Phantom Data
Two profiles from two different phantom slices were used to evaluate the dose recon-
struction method in 1D in the previous section. Here, the two complete 2D slices of the
phantom are used and the given image data including a MC simulation are shown in
figure 11.30.

The PSF is removed by a 2D deconvolution in a first step and the actual dose recon-
struction is performed along the beam line of the proton irradiation, i.e. line-by-line
using a 1D deconvolution. In addition, the range modulation is performed line-by-line
as well. However, before the processing of the data can be done, the grid structures
of the different signals have to be considered. Since the CT signal and the measured
PET signal are given on basis of different grid structures, it is first necessary to define a
common grid structure which is denoted as System in the following and resample the
signals on this structure. In addition, the treatment planning dose is used to evaluate the
reconstruction results and a MC simulated PET signal allows an evaluation of forward
filtering results. In total, there are four different grid structures defined by the start and
end point of the different regions and the sampling distances in both directions (Table
11.4). The grid structure of the measured PET signal is used as System and all other
signals are resampled on this basis using B-Spline interpolations to avoid unnecessary
interpolation errors.
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Start X End X Sampling X Start Y End Y Sampling Y
CT -165.564 165.564 0.648 -214.064 117.064 0.648
TP dose -154.800 139.200 2.000 -111.300 90.700 2.000
MC -140.292 158.436 0.648 -188.792 109.936 0.648
Measured -105.300 123.444 0.648 -141.488 117.064 0.648
System -105.300 123.444 0.648 -111.032 90.496 0.648

Table 11.4.: Range and sampling distances (in mm)

The dose reconstruction results for both phantom slices are shown in figure 11.31
and 11.32. The first figure displays the simulated PET signals and the corresponding
dose reconstruction results. The second figure shows the dose reconstruction results
on basis of measured PET signals. The dose deconvolution results are shown on the
right side. In addition, the underlying PET signals are displayed in the middle and the
initial treatment planning dose on the left side. The measured PET signals are corrupted
by strong artifacts resulting in artifacts in the reconstruction result which cannot be
avoided.

The midpoints of the distal fall-off regions are estimated using the smoothed gradi-
ent of the reconstructed dose signal and compared to the treatment planning dose for
several beam lines. The proton beam is not stopped within the image domain in case
of the PMMA-air-PMMA beam line and the corresponding beam lines are excluded. In
addition, the irradiated area in the first phantom slice is smaller resulting in less beam
lines. 100 beam lines are used in the evaluation of the first phantom slice and 167 beam
lines for the second phantom. The mean values and standard deviations of the calcu-
lated distances between the treatment planning dose and the reconstruction results are
determined on bases of the given beam lines. Selected profiles of the phantom slices and
the distances between the distal fall-off regions of the relevant beam lines are shown in
figure 11.33. The distances between the distal fall-off regions can be up to are 8 mm
and the estimation is unstable due to the strong artifacts in the reconstructed dose. Table
11.5 shows an overview of the mean values and variances of the calculated distances
between the treatment planning dose and the reconstruction results for the measured
PET signals and a simulation.

11.6.3. Measured Patient Data
The dose deconvolution method is now used for a real dose reconstruction of a head and
neck patient who was irradiated with a dose of approximately 2 Gy. The dose decon-
volution approach is simulated in a first step (Figure 11.34 top row) and the forward
filtering result based on the treatment planning dose is used as basis for the dose recon-
struction. The reconstruction result is satisfying since the conformity to the treatment
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Fig. 11.31.: Processing of phantom slices showing treatment planning dose (Left), sim-
ulated PET signal (Middle) and reconstructed dose (Right). The top row
displays the signals of first slice with a superimposed CT image and the
bottom row corresponding signals of the second slice.

Fig. 11.32.: Processing of phantom slices showing treatment planning dose (Left), mea-
sured PET signal (Middle) and reconstructed dose (Right). The top row
displays the signals of first slice with a superimposed CT image and the
bottom row corresponding signals of the second slice.
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Fig. 11.33.: Details of edge detection method. Top row: Selected profiles of first phan-
tom slice. Middle row: Selected profiles of second phantom slice. Bottom
row: Distances between distal fall-off regions of treatment planning dose
and reconstructed dose for relevant beam lines.

Phantom1 Phantom1 Phantom2 Phantom2
(parabolic) (parabolic)

µ σ2 µ σ2 µ σ2 µ σ2

Simulated 0.79 0.17 0.70 0.11 0.63 0.07 0.54 0.02
Measured 2.24 3.11 2.15 2.91 2.10 2.71 2.05 2.82
Amount of profiles 100 100 167 167

Table 11.5.: Distance of distal fall-off reconstructed dose to treatment planning dose (in
mm)

165



11. Proton Dose Reconstruction

Fig. 11.34.: Dose reconstruction of head and neck patient: the treatment planning dose
is displayed on the left side superimposed with the CT image. The top row
shows simulation results of the forward and dose deconvolution. The re-
constructed dose is hereby based on the forward filtering result. The bottom
row shows the measured PET signal and the resulting dose distribution.

planning dose is good. The actually delivered dose is estimated using a measured PET
signal (Figure 11.34 bottom row). The delay time between irradiation and PET imag-
ing is relatively long in this case and it can thus be assumed that 11C emitters dominate
the measured PET image. Compared to the PET prediction using the forward filtering,
the quality of the measured PET signal is poor and contains significant artifacts. The
reconstruction result is thus degraded by many artifacts as well and it is not possible
to use this result for an accurate dose verification. The original shape of the treatment
planning dose is not clearly visible in the reconstruction result and the dose distribution
is degraded by artifacts and inaccuracies.

11.7. Dose Reconstruction Combining Different
Positron Emitters

In-room PET scanners allow shorter delay times between irradiation and PET imaging
and the influence of additional positron emitters with smaller half-life times increases.
In the following, a dose deconvolution method which is able to reconstruct a delivered
dose distribution on basis of several positron emitters is presented. As mentioned be-
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fore, each positron emitter requires a different filter function and different local factors.
The local factors are influenced by the half-life time and the concentration of the basic
isotopes (12C and 16O) in the activated tissue. The forward filtering approach is used to
estimate a PET signal by simply combining the separate filtering results for the different
positron emitters [7]:

P =
N∑
i=1

LFi · F−1(F (D) ∗ fi) (11.7.1)

N denotes the amount of different positron emitters, LFi the corresponding local
factor and fi the corresponding filter function for the different positron emitters. The
convolution of the dose distribution with the filter functions has to be done using the
range modulation which is described by F and F−1. The PSF is neglected in this case
but has to be considered for measured PET signals as described in the previous section.

The corresponding dose reconstruction is based on the combined PET signal and
has to consider all involved positron emitters. In addition, regularization is required to
guarantee a stable solution and to cope with noise. The functional J has to be minimized
in order to reconstruct the dose distribution:

J(D) =

∫
|P − simPET (D)|2 + λReg(D)dΩ (11.7.2)

In this equation, P denotes the given PET signal and simPET represents a simulated
PET signal on basis of the estimated dose D containing all positron emitters. In fact,
simPET is calculated according to the forward filtering formalism already introduced in
equation 11.7.1. Reg denotes a regularization term and the TM regularization is used
for that purpose.

The proposed method including different positron emitters is applied to a head and
neck patient. The CT image of the patient and a treatment planning dose distribution
can be seen in figure 11.35. In addition, the electron density which is necessary for the
range modulation and the local factors for the different reaction channels (12C and 16O)
are displayed as well. The different filter functions (11C, 13N and 15O) which are used
in the filtering approach are displayed in figure 11.36.

MC simulations of the three PET signals are displayed in figure 11.37. The results of
the forward filtering approach on basis of the treatment planning for the three positron
emitters are shown in figure 11.38. The three different PET signals given by the forward
filtering are used to create realistic PET signals containing all positron emitters (11C,
13N and 15O) with proper weighting. An irradiation time of tirr= 30 min is used and
three different delay times are considered: tdel1= 2 min, tdel2= 6 min, tdel3= 12 min. The
irradiation and delay times lead to time dependent factors gtime shown in table 11.6.
The resulting combined PET signals for the different delay times are shown in figure
11.39. Last but not least, the reconstruction results of the combined PET signals are
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Fig. 11.35.: CT and treatment planning dose for patient (Upper row). Electron density
and local factors for 12C and 16O (Lower row).

Fig. 11.36.: Filter functions (11C, 13N and 15O).
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Fig. 11.37.: MC PET signals for different positron emitters (11C, 13N and 15O).

tdel1 tdel2 tdel3

delay time (min) 2 6 12
11C factor 0.020 0.017 0.014
13N factor 0.025 0.019 0.012
15O factor 0.016 0.004 0.001

Table 11.6.: Time dependent factors gtime to create combined PET signals.

displayed in figure 11.40. Since the combined PET signals are generated using forward
filtering results, there is no noise in the signals and the weighting for the regularization
is set to λ = 0.02. The results show that the dose distribution is reconstructed properly
in all cases, i.e. for all different delay times. This approach is thus suited for PET
images obtained with shorter delay times and considers different positron emitters which
influence the PET image.

11.8. Discussion

The objective of the presented method is to reconstruct the dose distribution in proton
radiotherapy based on PET images. Previous work allowed PET range verification only
with the use of Monte Carlo PET. In this case the treatment verification is done by com-
paring Monte Carlo PET with measured PET. The main goal of the new method is to
improve the range verification and to eventually extend the method towards complete
dose reconstruction. The basic concept of the presented method is to reverse the PET
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Fig. 11.38.: Forward filtering results (11C, 13N and 15O).

Fig. 11.39.: Combinations of PET signals (11C, 13N and 15O) with different delay times.
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Fig. 11.40.: Dose deconvolution results for combined PET signals.

estimation given by a convolution approach [115] for one positron emitter. This convo-
lution approach is valid for homogeneous media and additional procedures are neces-
sary to generalize the PET estimation to inhomogeneous media. In addition, there is an
advanced framework using additional short-lived positron emitters [6] and the proposed
reconstruction method is extended to cope with additional positron emitters.

The basic reconstruction approach for homogeneous media requires a deconvolution
to reverse the PET estimation process. Simulations show that it is possible to reconstruct
a dose distribution on basis of PET signals generated by the underlying convolution ap-
proach and MC simulations. However, the reconstruction of measured PET signals is
difficult and the quality of the results decreases. Measured PET signals usually contain
artifacts and these artifacts influence the reconstruction result which cannot be avoided.
Regularization allows a stable solution of the deconvolution problem but cannot com-
pensate artifacts.

This problem intensifies in case of inhomogeneous media since additional compo-
nents are necessary in the reconstruction method. An additional deconvolution is nec-
essary to reverse the PSF of the PET imaging system. Removing the local weighting
factors without considering the PSF would lead to large artifacts which would strongly
degrade the reconstruction result. Simulations show that this extensive reconstruction
method is able to completely reverse the PET estimation process in case of inhomo-
geneous media. The reconstructed dose is almost identical to the treatment planning
dose used to estimate the PET signal which is identical to a MC simulation. In case of
measured PET signals, the quality of the images for both the phantom data and the head
and neck patient is poor and the images contain a lot of artifacts. It is not possible to
reconstruct the accurate shape of the treatment planning dose and the dose distribution
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is degraded by artifacts and inaccuracies caused by the poor quality of the PET images.
In case of measured PET signals, it is difficult to detect the distal fall-off region in

the reconstructed dose distribution. A method which is based on the smoothed gradient
of the dose distribution is therefore used to estimate the midpoint of the distal fall-off
region. This method is able to cope with the artifacts in the reconstructed dose distri-
bution and to overcome the typical resolution of a PET scanner since a dose gradient is
analysed and not a point in the dose distribution. The average error between the distal
fall-off region of the treatment planning dose and the reconstructed dose distribution is
between 2 mm and 3 mm for the processed measured PET slices from the phantom data
set. A maximal error of up to are 8 mm is possible for several beam lines because of
large artifacts. However, the average error shows that the reconstruction result provides
a basis for range verification despite the artifacts.

Considering additional positron emitters in the dose reconstruction leads to an ex-
tended method to reverse the PET estimation method. A simulation shows that the
reconstruction method is able to reverse the PET estimation method. Unfortunately, a
measured PET image was not available in such a case but it can be assumed that the
PET image quality is improved. The delay time between irradiation and PET imaging
can be decreased considerably resulting in an increased signal strength.

In addition, there is a physiological activity wash-out effect which also influences
the measured PET images. This effect is not yet considered in the dose reconstruction
method. The objective of this method is to reverse the PET estimation method and the
wash-out effect is not included in this method. However, the wash-out effect has to be
considered in order to provide a complete dose reconstruction method.

The proposed dose reconstruction method is limited to process PET signals generated
by a single beam. A proton dose generated by several superimposed beams cannot
be reconstructed properly since the actual dose deconvolution is working in 1D along
the proton beam line. A second beam influences the PET signal and it is not possible
to separate the different components of the PET signal generated by different proton
beams.
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12. Conclusion
As motivation to image deblurring, a RNAi-based high-throughput microscopy screen
to investigate intracellular trafficking and targeting of acylated Src kinases was pre-
sented and an automated software tool to analyse the images obtained during this screen
was described. The analysis tool includes a stable and robust cell segmentation using
a classifier-enhanced region growing method. This approach yields a reliable segmen-
tation of different phenotypes and is especially invariant to fluorescence brightness of
the segmented cells and cell nuclei. A Support Vector Machine is applied to classify
the phenotype of the cells and supervised learning is used to train the Support Vec-
tor Machine and to adjust the soft margin parameter likewise. The software tool is well
suited for the analysis of genome-wide RNAi screens and the supervised learning allows
an easy adjustment of the classification. The underlying biological problem shows the
need to analyse structural information of fluorescence images and a good image quality
is thus required. The analysis of images with a moderate quality is more difficult and
the results are not quite definite. A preprocessing deblurring step can improve the image
quality and could allow more reliable results. Furthermore, the analysis of images with
a poor quality which was not possible before could be considered after deblurring the
images.

The deblurring results using the standard components of the deconvolution frame-
work illustrate the potential of deblurring methods with synthetic and real images. The
deblurring considerably improved the image quality and noise was removed almost
completely. The resolution of a cell image is enhanced and sharp edges can be seen.
In fact, several cell structures are visible in the deblurring result which cannot be seen
in the measured images. Since the convergence speed of the iterative RLTV deblurring
algorithm is slow, an accelerated version based on a vector extrapolation technique is
presented. Several tests show that 30% to 40% less iterations are required with the ac-
celerated algorithm to obtain the same quality improvement. A new algorithm using the
Bregman distance is presented and improves the quality of the RLTV deblurring algo-
rithm. It is difficult to use this new algorithm since it has the drawback that it is highly
dependent on the amount of Bregman iterations. A high number of iterations would lead
to the degraded image itself as reconstruction result and a low number would not im-
prove the result compared to the standard algorithm. The Bregman deblurring method
was tested once with a limited amount of data and not investigated further. Finally, a
new deblurring approach is presented which incorporates an additional restriction by
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enforcing non-negativity. The new deblurring method is based on a TV regularized
RL functional considering an image formation model with a background signal. A
constrained conjugate gradient method is used in the algorithm and enforces the non-
negativity restriction. The TV regularization is necessary to allow a stable solution but
has the drawback to enforce homogeneous areas and sharp edges which is well known
as stair-casing effect. The non-negativity constraint which is supported by a background
signal in order to ensure its full effectiveness provides an additional regularization al-
lowing a stable solution without the drawback of the stair-casing effect. In fact, the
non-negativity constraint incorporates a priori knowledge which is known to be true
since there are no negative values in the reconstruction results. The TV regularization
is an assumption which is not necessarily true for all processed images but required to
guarantee a stable solution. The combination of both techniques allows an improved
result which is not possible when using either technique alone. Synthetic tests show
that the new deblurring method improves the quality of the results regarding both a vi-
sual analysis and the RMSE compared to the known original image. Additional tests
with real microscopy images confirm the quality improvement of the new CCG method
compared to the original RL algorithm and the regularized RLTV algorithm which is
the current state of the art method in fluorescence microscopy deblurring.

Microscopy images suffer from a low resolution in direction of the optical axis and
Axial Tomography is able to overcome this problem by providing images from different
viewing angles. An axial reconstruction method is presented which uses the additional
information in the rotated images to create a single image with an isotropic resolution
containing all available information. This reconstruction method is based on the deblur-
ring methods and the components of the deconvolution framework are used to recon-
struct the Axial Tomography image. Before the actual axial reconstruction can be done,
bleaching has to be corrected and the images have to be aligned. A bleaching factor is
therefore estimated and a multi-resolution registration method is used. The deblurring
results of the different images are used as basis for the registration and allow an im-
proved registration accuracy. A high resolution image is then reconstructed on basis of
the aligned Axial Tomography images using the information included in all images. The
axial reconstruction algorithms are based on the deblurring methods allowing an addi-
tional enhancement of the resolution besides including the information in all images.
Synthetic 2D tests show that the axial reconstruction methods both include all available
information and improve the image quality in general. The results of the axial CCG
algorithm are superior to the other reconstruction methods. The registration is tested in
3D showing that the accuracy of the registration is improved by using deblurred images
instead of measured/degraded images. Again, the axial CCG algorithm generates the
best 3D axial reconstruction results regarding the RMSE criterion. The proposed axial
reconstruction process is used to reconstruct an image data set containing beads. The
results show a considerable improvement of the resolution and the Fourier transforms
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of the registered bead images and the corresponding reconstruction result illustrate the
enhanced isotropic resolution. At last, an axial image data set is reconstructed including
bleaching correction and a registration on basis of deblurring results of the single mea-
sured images. The axial reconstruction result of the axial CCG algorithm shows a high
resolution image with well reconstructed actin fibres.

A novel approach for dose reconstruction in proton radiotherapy which is based on
an existing filtering framework to predict the induced PET signals has been proposed.
The PET signals are predicted by a convolution of the planned dose with specific filter
functions and a deconvolution is thus able to reverse the PET prediction and allows the
dose reconstruction on basis of PET signals. The new approach was first tested using
Monte Carlo simulated PET signals given in homogeneous media for one positron emit-
ter and then generalized to inhomogeneous media. Simulations on basis of estimated
PET signals show that the proposed dose reconstruction method is able to reverse the
underlying PET estimation method in case of homogeneous and inhomogeneous media.
Measured PET signals of a phantom experiment are used to reconstruct the delivered
dose and the delay between irradiation and imaging is relatively large in this case result-
ing in a poor quality of the PET signals. It is difficult to process measured PET images
since there are artifacts in the images which leads to artifacts in the reconstructed dose
distribution. A similar result was obtained by processing a head and neck patient data
set: The reconstruction result on basis of the estimated PET signal is as expected but the
quality of the reconstruction result on basis of measured PET signals is not satisfying.
In-room PET scanners allow decreased delay times and additional short lived positron
emitters have to be considered for such measurements. An extended version of the dose
reconstruction approach allows the processing of PET images acquired with a consider-
ably reduced delay time and an improved PET image quality should be possible in this
case.
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13. Higher Order Statistics
Denosing

13.1. Introduction

All measured signals or images are corrupted by noise or even blur and therefore image
denoising or reconstruction is necessary. Especially images with a low quality require
reliable and robust methods. The proposed method is restricted image denoising with
underlying Gaussian noise which is common for detectors and can thus be found in all
digital images. Each pixel value is acquired by a light intensity measurement, usually
made by a CCD matrix coupled with a light focusing system. The number of incoming
photons for a fixed time period on a single CCD captor leads to the pixel value at the
according position in the image. Even a constant light source results in varying pixel
values and this effect is reduced in high quality cameras but cannot be eliminated. The
image formation model for a measurement image corrupted by Gaussian noise is given
by:

g = f + n with n ∼ N (µ, σ) (13.1.1)

Hereby, f is the unknown signal and g the measured signal. The signal is degraded by
Gaussian noise n defined by a mean value µ and variance σ2. The result of a denoising
method is a decomposition of the measured image g in the estimated original image f̂
and the additional noise. The difference between the measured and denoised image is
called residuum and denoted as r.

r = g − f̂ (13.1.2)

A perfect denoising would be able to reconstruct the original image f and thus the
residuum r would contain the additional noise and no fraction of the original image f . A
standard method for denoising is to use a Gaussian smoothing to reduce the noise in the
image realized by a convolution with a Gaussian kernel [96]. The computational effort
of this method is quite low since it contains a single convolution. However, a Gaussian
filtering is a low pass filtering removing all high frequency parts of the image together
with the noise. Since images usually contain high frequency parts, it is not possible to
achieve a good denoising result with this method.
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Another standard method is to use frequency domain filters like the Wiener Filter
[177]. The denoising result of this method is usually corrupted by artifacts looking like
periodic patterns [26] [27]. In theory, this effect can be avoided using additional infor-
mation but therefore the Fourier transform of the original image has to be known. Ad-
ditional denoising methods are the anisotropic filtering model [120] [2], neighborhood
filters like the SUSAN filter [149] or the discrete universal denoiser DUDE [112]. Ac-
cording to [27] all of the previously mentioned methods are based on a local or global
generic image smoothness resulting in an elimination of fine structures in the images
which have a similar appearance as the underlying noise model. These methods are
therefore not able to perfectly separate the image from the additional noise.

An improved result can be obtained using iterative methods but a priori knowledge
P (f) about the image is required and used in the denoising method leading to a max-
imum a posterior (MAP) algorithm instead of an expectation maximization (EM). The
EM algorithm maximizes P (g|f) while the MAP maximizes P (f |g) considering the a
priori knowledge P (f) as described by the Bayes theorem.

P (f |g) =
P (g|f)P (f)

P (g)
(13.1.3)

Hereby, P (f |g) is the a posteriori probability distribution, P (g|f) is the likelihood
distribution or noise model, P (f) is the a priori distribution of the signal and P (g) is the
distribution of the measured signal which is of course constant for a single measurement.
A seminal result has been achieved by Tikhonov and Miller for introducing regulariza-
tion (TM) which is limiting the noise amplification in the solution [159]. However, the
TM regularization has the drawback to smooth edges and was therefore replaced by a
non-linear approach named total variation regularization (TV) which is able to over-
come that problem and produces sharp edges [153]. TV regularization was introduced
in [142] and widely used and improved for image denoising [113] [156] [33]. Hereby,
the denoising is based on the minimization of the combined functional:

f̂ = argminf

∫
Ω

|∇f(x)|dx+ λ

∫
Ω

|f(x)− g(x)|2 dx (13.1.4)

The functional used in this maximum a posteriori (MAP) denoising consists of a fit-
ting term given by a least square norm and the TV regularization. In addition, it requires
a weighting parameter λ balancing between the fitting term and the regularization. The
weighting parameter has a huge influence on the denoising result and requires an accu-
rate estimation [165].

In [26], a non local means (NL) algorithm is presented which is designed to overcome
this problem since no noise model or smoothness in the image is assumed. Hereby,
pixels with a similar neighbourhood are averaged in order to provide a denoised image
showing very promising results. The NL means method was improved [171] and used
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for different applications like MR [122] or even movies [29]. For additional denoising
methods, see [28].

In the following, a new denoising method based on higher moments of the underlying
Gaussian noise distribution is presented. The new method is denoted as HOS method
since it incorporates higher order statistics. The HOS method takes into account the lim-
ited number of data and the correlation of the values in the residuum r. The new method
does not contain any a priori information and thus represents a maximum likelihood
estimation. In principle, the fitting fidelity term P (g|f) is extended by modeling the
probability distribution of the residual by its moment representation whereby the HOS
method is restricted to the first two moments. These two moments, for which an indi-
vidual moment distribution is derived, are statistically independent in case of Gaussian
noise and P (g|f̂) = P (g − f̂) = P (r). Without loss of generalization, the independent
identical distribution (i.i.d.) of the noise vector n can be assumed, i.e. the cross corre-
lation matrix Σ is a scalar matrix with σ as diagonal value. Therefore, the data fidelity
term of a MAP algorithm is minimal whenever all components ri = gi − f̂i maximize
P (ri). Consequently, without the regularization term or equivalently for λ = 0, the
reconstructed noise vector r would be a constant vector and equal to the null vector in
case of a least square norm. These estimates may seem reasonable for a signal length
N close to one. Since the vector n is i.i.d. and there is usually a larger signal length
N , the empirical distribution of the components of the estimated noise vector r should
resemble the distribution of the noise vector n. In order to check how good a set of sam-
ples coincides with a given distribution, it is possible to apply the Kolmogorov-Smirnov
[18] or the Anderson-Darling test [125]. The HOS method contains a representation of
the distribution that depends both on moments and especially on the correlation of noise
to individual signal elements (In contrast to [51][73]). The included noise correlation
[34] allows achieving de-correlated residuals of the denoising results. Similar results
are achieved ad hoc with non-local means denoising [26] according to empirical stud-
ies. In order to evaluate the HOS approach, several results are compared with the MAP
denoising method already introduced in equation 13.1.4.

13.2. Material and Methods

The basic idea is to use higher order moments to demand that the residuum r is as con-
sistent with the anticipated probability density function of the noise signal n as possible.
The new algorithm is based on a 1D signal f of length N (i.e. f ∈ RN ) and fi denotes
the ith component of the signal. The basis of the new algorithm is the expectation-
maximization (EM) approach of a general Gaussian distribution. A discrete signal s of
length N is Gaussian distributed N (µG, σG) if the functional JG in equation 13.2.1 is
minimal (Except for si = µG ∀i = 1 · · ·N ).
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JG(s) =
N∑
i=1

(si − µG)2

2σ2
G

(13.2.1)

13.2.1. HOS Functional
In case of a correct reconstruction, f̂ is identical to the original signal and thus the
residuum r contains the noise signal. If the statistical distribution of the noise signal
is known (e.g. Gaussian N (µ, σ)), it is possible to force the reconstruction to produce
such a residuum. However, using just the first moment of the Gaussian noise distribu-
tion is not sufficient to obtain that objective. In the new approach, the second moment
of the Gaussian noise distribution is used to get an advanced and more powerful recon-
struction algorithm. Note that hereby no a priori knowledge about the original signal
is used and thus the new method is an EM algorithm. The new algorithm consists of
the minimization of a HOS functional J containing the properties of the Gaussian noise
signal.

J(r) = J (1)
mean(r) + J (2)

var(r) + J (2)
covar(r) (13.2.2)

Since this formulation has multiple minima, an empty initial guess of f̂ is used to
start the method resulting in a residuum r containing the noisy signal g. Later, a weight-
ing of the different summand of J is added in order to cope with the details of the
concrete implementation. The first moment of the underlying Gaussian noise signal is
considered in J (1)

mean while the second moment containing variance and covariance val-
ues is differentiated in J (2)

var and J (2)
covar. The distribution of each moment used in the new

denoising method is described by the following lemma derived from the probabilistic
theory theorems of Bienayme and Mood, Graybill and Boes.

Lemma 1. Let Xi, i = 1, · · · , n, be uncorrelated random variables which follow the
same probability distribution. Set Z := 1

n

∑n
i=1Xi. Then, it holds that

E(Z) = 1
n

∑n
i=1E(Xi) = E(Xi) and V (Z) = 1

n2

∑n
i=1 V (Xi) = 1

n
V (Xi)

Lemma 2. Let Xi, i = 1, · · · , n, be independent random variables which follow the
same probability distribution. Set Z := 1

n−1

∑n
i=1(Xi − E(Xi))

2. Then

E(Z) = n
n−1

V (Xi) and V (Z) = n
(n−1)2

(E(X4
i )− V (Xi)

2)

Lemma 3. Let Xi, Yi, i = 1, · · · , n, be independent random variables which follow the
same probability distribution. Set Z := 1

n−1

∑n
i=1(Xi − E(Xi))(Yi − E(Yi)). Then

E(Z) = 0 and V (Z) = n
(n−1)2

V (X)V (Y )
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In order to use these lemmas, the probability distributions of the underlying random
variables have to be considered properly.

Definition 1. A random variable X with density

χ2
n(x) = 1

Γ(n
2

)2n/2
x
n
2
−1e−

x
2 0 < x <∞

is called chi-square distributed with n degrees of freedom. It holds that E(X) = n and
V (X) = 2n. Note that this distribution is a special case of a Gamma distribution with
parameters (n/2, 1/2).

Theorem 1. Let Xi, i = 1, · · · , n, be independent random variables which follow the
normal distribution N (0, 1). Then Z =

∑n
i=1X

2 has a chi-square distribution with n
degrees of freedom.

Corollary 1. Let X1, X2 be two independent, chi-square distributed random variables
with n1 and n2 degrees of freedom, respectively. The sumX = X1+X2 has a chi-square
distribution with n1 + n2 degrees of freedom.

Theorem 2. Let Xi, i = 1, · · · , n, be independent and identically distributed random
variables with E(Xi) = µ and V (X) = σ2 > 0. Then for all x ∈ R, it holds that

limn→∞P

(
X1 + · · ·+Xn − nµ√

nσ
≤ x

)
= Ψ(x)

where Ψ stands for the distribution function of the normal distribution N (0, 1).

Corollary 2. Let X be a chi-square distributed random variable with n degrees of free-
dom. For large n the random variable 1√

2n
(X−n) approximates the normal distribution

N (0, 1).

The first moment is Gaussian distributed which is described by N (µµ, σ
2
µ). The sec-

ond moment is chi-square distributed and a chi-square distribution can be approximated
by Gaussian distributions. The distribution of the variance values is given byN (µσ, σ

2
σ)

and the according distribution of the covariance values by N (µ0, σ
2
0). The mean values

(µµ, µ0 and µσ) and variances (σ2
µ, σ2

0 and σ2
σ) of these Gaussian distributions can thus

be calculated using the following equations 13.2.3. Note that these values are dependent
on the window size M and the underlying Gaussian distribution N (0, σ) of the noise
signal n.

µµ = 0.0 σ2
µ = 1

M
σ2

µσ = M
M−1

σ2 σ2
σ = 2M

(M−1)2
σ4

µ0 = 0.0 σ2
0 = M

(M−1)2
σ4

(13.2.3)
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Fig. 13.1.: Decomposition of signal into separate boxes.

In order to calculate the values of the first and second moment, r is subdivided into
separate boxes of size M leading to an amount of boxes K with N = KM . Naturally,
M must be a divisor of N resulting in a integral amount of boxes K. The values of
the residuum r in box Boxj with j ∈ {1, · · · , K} are given by equation 13.2.4 and the
separation is displayed in figure 13.1.

Boxj = {r((j − 1) ·M + j), · · · , r(j ·M)} (13.2.4)

The mean value of a certain box µBoxj can then be calculated using equation 13.2.5
and hereby Boxj(i) denotes the ith value in box number j.

µBoxj = 1
M

∑M
i=1Boxj(i) j = 1..K (13.2.5)

The distribution of µBox is considered in J (1)
mean which represents the first moment

of the Gaussian noise distribution. This distribution is a Gaussian distribution with
N (µµ, σµ) and an EM approach leads to the functional in equation 13.2.6 according to
the EM method for a general Gaussian distribution (Equation 13.2.1).

J (1)
mean(r) =

K∑
i=1

(µBoxi − µµ)2

2σ2
µ

(13.2.6)

The second moment leads to a cross-correlation matrix Σ of size K × K where the
diagonal entries are the variances within a block and the non-diagonal elements show the
correlation in the residual (Covariance). Each component of the matrix Σ is calculated
using equation 13.2.7 with µ being the mean value of the Gaussian noise signal n. An
extract of such a matrix with an underlying discrete Gaussian distribution is shown in
figure 13.2.

Σi,j = 1
M−1

∑M
l=1 (Boxi(l)− µ) · (Boxj(l)− µ) i, j ∈ {1...K} (13.2.7)

The variance and the covariance values are separated in two different sets and the
variance values are examined in J

(2)
var while the covariance values are considered in

J
(2)
covar. The second moment is chi-square distributed and the separate variance and co-

variance distributions can be approximated by Gaussian distributions with N (µσ, σσ)
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Fig. 13.2.: Extract of Second Moment matrix Σ (Variance and covariance).

and N (µ0, σ0) leading to the functionals J (2)
var and J (2)

covar. In equation 13.2.9, it is con-
sidered that the matrix Σ is symmetric.

J (2)
var(r) =

K∑
i=1

(Σi,i − µσ)2

2σ2
σ

(13.2.8)

J (2)
covar(r) = 2

K∑
i=2

K∑
j=i+1

(Σi,j − µ0)2

2σ2
0

(13.2.9)

Equation 13.2.10 shows a weighted version of functional J(r) and hereby, each single
term has the same influence on the total functional meaning to be based on the relatively
same amount of values. J (1)

mean and J (2)
var are based on K values since the separated boxes

are considered here. J (2)
covar is based on K(K − 1) values and is thus multiplied with

1
K−1

to even it up.

J(r) = J (1)
mean(r) + J (2)

var(r) +
J

(2)
covar(r)

K − 1
(13.2.10)

13.2.2. Gradient of HOS Functional
The minimization is performed to reconstruct a signal f̂ using J(r) with r = f̂ − g and
thus the gradient is calculated with respect to f̂ . Hereby, f̂i denotes the ith component
of f̂ and the gradient has the same size N as the noisy signal g. In order to calculate the
gradient, it is necessary to know the number of the box and the index inside the box for
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the investigated value f̂i. The number of the box is given by gB(i) and the index inside
the box by gI(i) using the Matlab indexing system starting at 1.

gB(i) = getBox(i) =

⌊
i− 1

M

⌋
+ 1 (13.2.11)

gI(i) = getIndex(i) = mod(i− 1,M) + 1; (13.2.12)

The gradients are shown in equations 13.2.13-13.2.15 with Boxl(k) denoting the kth
value in the lth box.

∂J
(1)
mean

∂fi
=

1

σ2
µM

(
1

M
−

M∑
k=1

BoxgB(i)(k)µµ

)
(13.2.13)

∂J
(2)
var

∂fi
=

2r(i)

σ2
σ(M − 1)

(
1

(M − 1)

M∑
k=1

(
BoxgB(i)(k)− µ

)
− µσ

)
(13.2.14)

∂J
(2)
covar

∂fi
= 2(rI(i)−µ)

σ2
0(M−1)

∑K¬gB(i)
k=1(

1
(M−1)

∑M
l=1(BoxgB(i)(l)− µ)(Boxk(l)− µ)− µ0

) (13.2.15)

13.2.3. Minimization of the HOS Functional
In order to minimize the HOS functional, the fminunc function provided by Matlab
(Version: R2008b, www.mathworks.org) is used. This optimizer contains two different
algorithms: a Large-Scale and a Medium-Scale algorithm. The Large-Scale algorithm
approximates the underlying function by a quadratic approximation q based on the first
two terms of a Taylor series.

q =
1

2
stHs+ stg (13.2.16)

Hereby, H is the Hessian matrix and g the gradient of the underlying function at
the investigated point. This quadratic function is then minimized on a so called two
dimensional trust region S. S is determined with the aid of a preconditioned conjugate
gradient process defining it as the linear space spanned by s1 and s2. s1 is the direction
of the gradient g, and s2 is either an approximate Newton direction Hs2 = −g or the
direction of the negative curvature given by st2Hs2 < 0. The idea is to force global
convergence and achieve fast local convergence.

The Medium-Scale algorithm uses a Quasi-Newton Method including an iterative ap-
proximation of the Hessian matrix H based on an initial positive definite symmetric
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Fig. 13.3.: Divide image and create 1D box signals.

matrix H0 (e.g. the identity matrix). In each iteration step k, the Hessian matrix Hk−1 is
then updated using the gradient gk and the functional value at the investigated point. In
addition, a line search based on a polynomial interpolation of the underlying functional
is then performed using a search direction dk given by dk = −H−1

k gk.
The Large-Scale algorithm can only be used if a gradient g is provided manually. Ad-

ditionally, the Hessian matrix H can be given manually or is approximated by fminunc.
On the other side, providing a gradient g is optional for the Medium-Scale algorithm
but recommendable since a considerable speed up can be achieved. A manual Hessian
matrix H is ignored in that case. In addition, the manually provided gradient g can be
tested by comparing it to the approximated gradient.

13.2.4. Decomposition of 2D Images
The used 2D test images are far too large to be processed at once and in fact, this is
not necessary. It is important to divide a signal in a relatively large amount of different
boxes but as long as the second order moments show the characteristic properties, a
larger amount of boxes is not necessary. Additionally, the window size of the boxes
should be relatively large as well but does not have to be increased further. In the
following, 2D images are processed region by region with a constant region size. Each
region is then divided into different boxes which values are converted to vectors and
then form the boxes used in the HOS algorithm (See figure 13.3).
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13.3. Results
Since synthetic signals are used to evaluate the new denoising method, the original sig-
nals are known and can be directly compared to the reconstruction results. To quantify
the quality of the denoised signal, it is usual to use the mean square error (MSE) criteria.
The HOS method is compared to the TV regularized denoising [142] (Equation 13.1.4)
which is denoted as MAP-TV in the following. In order to get an optimal value for
λ, a brute force (bf) search with a wide range of possible values is used. Hereby, the
reconstruction results are compared to the original signals. In addition, a standard (std)
value is used for λ.

13.3.1. 1D Signals
Four different synthetic 1D signals are denoised in this section. Each signal is degraded
with another Gaussian noise signal (µ = 0 and σ2 = 20) but the same degraded sig-
nal is then used for both denoising algorithms. The first signal is denoted as Signal1
and contains mostly low frequency parts while the second signal Signal2 includes a
zigzag signal all over the signal domain. The signals Signal3 and Signal4 are cre-
ated by adding Sine signals with different frequencies h. Hereby, equation 13.3.1 is
used and it is important that the frequencies h of the Sine functions do not violate the
Nyquist Shannon sampling theorem, i.e. they have to be smaller than half the sampling
frequency hs. Signal3 consists of three Sine functions with h1 = 0.1hs, h2 = 0.001hs
and h3 = 0.0002hs. In the same way, Signal4 is composed of two Sine functions with
h1 = 0.01hs and h2 = 0.07hs. All signals and the reconstruction results of the HOS
method and the MAP-TV method with the brute force determined λ are shown in figure
13.4. Table 13.1 shows the MSE values for the denoising results. The MSE results show
that the HOS algorithm outperforms the MAP-TV method in case of signals with high
frequency parts. The result for the MAP-TV methods is superior for the smooth signal
since the included a priori knowledge assumes smoothness.

SineSignal(x) = w1sin (2πh1x) + w2sin (2πh2x) + w3sin (2πh3x) (13.3.1)

Moreover, the HOS method produces a much better reconstruction of the original
noise vector as illustrated in figure 13.5 for Signal3. The approximation of the his-
togram of the HOS residuum to the shape of the density function of the given noise
signal is almost perfect while there are considerable differences in case of the MAP-TV
denoising method. The sample mean µ̃ and sample variance σ̃2 defined by

µ̃ = 1
N

∑N
i=1 ri σ̃2 = 1

N−1

∑N
i=1(ri − µ)2 (13.3.2)

are very close to the original parameters µ = 0 and σ2 = 20 as shown in table 13.2.
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Fig. 13.4.: 1D signals degraded with Gaussian noise and reconstruction result (MAP-
TV and HOS).

Signal1 Signal2 Signal3 Signal4
Noisy signal 20294 20419 150626 20405
MAP-TV std 2358 48798 275731 22566
MAP-TV bf 2358 19163 96422 9364
HOS 8851 9727 29606 4720

Table 13.1.: MSE of denoising results for different 1D signals
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Fig. 13.5.: Left, top to bottom: True noise signal used for corrupting Signal3 and re-
constructed noise signals by MAP-TV std, MAP-TV bf and HOS. Right:
Histograms of the noise values and scaled Gaussian with µ = 0 and σ2 = 20
(Black curve) for comparison.
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Signal1 Signal2 Signal3 Signal4
µ̃ σ̃2 µ̃ σ̃2 µ̃ σ̃2 µ̃ σ̃2

MAP-TV std 0.1 17.2 -0.2 66.1 0.0 47.8 -0.1 33.4
MAP-TV bf 0.1 17.2 0.0 0.5 0.0 2.7 0.0 10.57
HOS 0.0 19.8 0.0 19.4 0.0 20.1 0.0 20.0

Table 13.2.: Estimated µ and σ2 of original and reconstructed noise signals.

Lena Barbara Barbara (ROI)
Noisy signal 125405234 125405234 13855805
MAP standard 56489875 64274267 8409265
MAP brute force 15241442 39799435 8281825
HOS 41659099 51750440 6773282

Table 13.3.: MSE of denoising results for 2D images

13.3.2. 2D Images

The 2D test images are corrupted by a Gaussian noise signal with µ = 0 and σ2 =
500. The images are given in a uint8 format and thus include a maximal value range
from 0 to 255. Since the Gaussian noise is additive and negative values are possible,
all calculations are performed using a float representation of the images providing an
unlimited and accurate data range. All images have a size of 500×500 and are processed
as described before. The images are decomposed in regions of size 100×50 and the box
size M is set to 100 being a 10×10 box. This partitioning results in 50 boxes per region
(K) which is suitable for the HOS algorithm. A larger number is always desirable but
causes a larger computational effort. As mentioned before, the regularization of the
MAP algorithm is set to a standard value λ = 10 and then to an optimal result of a brute
force search evaluating a broad range of different values. The results for the first image
(Lena) can be seen in figure 13.6 with λ = 43 as result of the brute force search. The
corresponding λ value for the second image (Barbara) is 30 and the denoising results
are shown in figure 13.7. Since this image contains both high frequency and smooth
parts, a region of interest (ROI) is extracted and analyzed in detail (Figure 13.8). In
addition, table 13.3 shows the MSE values for all the denoising results and the ROI of the
Barbara image. The HOS algorithm is able to improve the image quality for each image
but due to large smooth areas, the results of MAP-TV method are superior especially
with the brute force determined regularization parameter. However, in a ROI in the
Barbara image containing mainly high frequency parts, the HOS algorithm outperforms
the MAP-TV denoising.
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Fig. 13.6.: Lena original and noisy image (Upper row) and denoising results (Lower
row, from left to right: HOS, MAP-TV(std), MAP-TV(bf)).

Fig. 13.7.: Barbara original and noisy image (Upper row) and denoising results (Lower
row, from left to right: HOS, MAP-TV(std), MAP-TV(bf)).
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Fig. 13.8.: Barbara ROI original and noisy image (Upper row) and denoising results
(Lower row, from left to right: HOS, MAP-TV(std), MAP-TV(bf)).

13.4. Discussion
In case of 1D signals, the HOS method allows a better reconstruction of signals con-
taining high frequency parts than the MAP-TV method. Hereby, the MSE values of the
HOS results are at least by a factor of 2 smaller than the according MSE values for the
MAP-TV method. It is clear that the TV-term smoothes the solution and therefore can-
not cope with high-frequency parts. On the contrary, the higher-order term leads to the
next local optimum according to the first two moments and therefore without additional
a priori information, smooth structures cannot be recovered since they are not attainable
over local optimization. The same effect can be found in 2D signals. The denoising
quality of the Barbara image is worse for the HOS method since there are many regions
with smooth structures. However, the HOS method is superior to the MAP-TV method
in a region of interest in the Barbara image containing mainly high frequency parts. As
a problem that is connected with the block-based approach, there are block artifacts in
the reconstruction which are considered in the MSE values.

193





14. Outlook
The first version of the cell analysis tool contains a rule based classification which
worked as supposed for the first screen. However, this version of the tool failed to ana-
lyse a second small validation screen with different image modalities. The rule based
classification had to be adjusted manually and therefore the tool was extended with a
Support Vector Machine classification. Supervised learning is used to train the Support
Vector Machine and first results are as expected. This final version of the cell analysis
tool has not been used for a real RNAi screen so far but there are plans for a successive
screen which would be a good opportunity to apply the final version of the cell analysis
tool. The cell analysis tool was designed to provide a robust and stable analysis result.
A conservative strategy was thus used and cell nuclei and cells were excluded in case
the segmentation result was not satisfying. Furthermore, the general image quality was
evaluated and added to the analysis result to allow an exclusion of image data sets with
an insufficient image quality. It would be interesting to evaluate the potential of a pre-
processing deblurring step and how an analysis result of an image with a poor quality
could be improved.

There are some open questions regarding the deblurring methods. In order to apply
the algorithms to fluorescence microscopy images, a PSF is required. It is possible to
approximate the PSF of a confocal fluorescence microscope with a 3D Gaussian filter
mask by estimating the required variances. Such an approximation is not suitable for
widefield fluorescence microscopy images since the shape of the PSF is different in this
case and does not match a Gaussian function. An accurate representation of a PSF of
a widefield fluorescence microscope can be achieved by using Zernike moments [13].
Zernike moments offer a compact representation where e.g. low-order coefficients re-
present typical aberrations. In addition, the PSF might change significantly along the
optical axis as the depth increases [57]. A recently published paper [104] proposes a
depth variant PSF using Zernike moments. In this approach, the needed PSFs are in-
terpolated from a limited number of measured PSFs instead of measuring all required
PSFs. In this thesis, bead images have been used to estimate the PSFs for the widefield
image data sets in the axial reconstruction chapter. However, the bead images were
severely undersampled and the PSFs had to be interpolated in order to apply them to
the cell image data set which is not optimal. In case of confocal fluorescence images,
the PSFs were approximated by a Gaussian filter function and the variances were esti-
mated. This procedure is reasonable but obtaining a PSF by measuring a sub-resolution
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fluorescent bead allows a superior result. The collaboration on the axial reconstruction
with the AG Cremer/Hausmann (Kirchhoff Institute for Physics, University of Heidel-
berg) continues and further experiments are currently being carried out which will be
processed with the described axial reconstruction method.

Another open question is the modeling of the background signal. In this thesis, a
constant background signal was used which is a considerable simplification. Widefield
microscopy data is typically acquired using CCDs which have the following features:
varying pixel sensitivity, camera offset (which can drift over time), dark noise build-up
and hot pixels. In addition, the light source can fluctuate in intensity over time and the
background signal may change with increasing depths. A constant background signal
is therefore unlikely in real images and an advanced model may improve the deblurring
and axial reconstruction results of real images.

A drawback of the deconvolution methods is the estimation of the λ parameter which
is required. This parameter has a huge influence on the reconstruction result and de-
pends on the quality of the underlying signal. In general, a stronger noise signal requires
a larger value for λ. A brute force search can be used to determine the optimal value
for λ in case of simulated signals. Using simulations help to get an idea of a suitable
λ value for different conditions which is then used for measured data sets but does not
necessarily have to be the optimal value. There are different strategies to estimate a
regularization parameter which could be used for that purpose, e.g.: unbiased predictive
risk estimator method, generalized cross validation or discrepancy principle [165].

The dose deconvolution approach does not include a physiological activity wash-out
effect which also influences the measured PET images. The objective of the method
is to reverse the PET estimation method and the wash-out effect is not included in this
method. However, the wash-out effect has to be considered in order to provide a com-
plete dose reconstruction method and this topic remains an open issue. In addition, an
extended dose reconstruction method is presented considering additional positron emit-
ters and has not been used to reconstruct a dose distribution on basis of measured PET
images. The decreased delay time between irradiation and imaging given by in-room
PET scanners might allow an improved image quality with fewer artifacts and thus an
improved dose reconstruction result. Further research on this issue is necessary.

The proposed HOS denoising method is an extension of the standard maximum like-
lihood estimation and uses higher order moments. No a priori knowledge is used in the
first version of the HOS method and the objective of this method is to proof the gen-
eral feasibility of this approach. Several tests on 1D signals and 2D images show that
the HOS method is superior to standard MAP-TV denoising methods in case of high
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frequency signals and it allows recovering fine structures which are smoothed when ap-
plying standard TV regularization. This result gives hope that HOS allows for a more
detailed and accurate reconstruction compared to standard techniques. However, the
underlying minimization problem has multiple minima and a useful result can only be
obtained by choosing a fitting start signal. A joint project with the AG Steidl (Mathe-
matical Image Processing and Data Analysis Group, University of Kaiserslautern) was
started and an extension of the original HOS method with a substantial theoretical in-
troduction has been submitted to the Journal on Signal Processing [158].
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