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Zusammenfassung I 

 

Zusammenfassung 

Das Proteom der Modellpflanze Arabidopsis thaliana wird auf ~ 13.000 nicht-redundante 

Proteine geschätzt (Baerenfaller et al., 2008). Die meisten dieser Proteine interagieren 

miteinander entweder über transiente Assoziationen oder durch den Aufbau von stabilen 

Protein-Komplexen. Diese Interaktionen werden von Chaperonen katalysiert und von 

verschiedene Qualitätskontrollen überwacht. Anhand des hier verwendeten Modell-

Protein-Komplex, der vakuolären H+-ATPase (V-ATPase), widmet sich diese Arbeit sowohl 

der Qualitätskontrolle, als auch der Interaktion von Chaperonen.  

In Kapitel 1 dieser Arbeit wird die Rolle der ER lokalisierten Proteine AtVMA12 und 

AtVMA22 im Detail charakterisiert. Lokalizationstudien zeigen, dass AtVMA22 von 

AtVMA12 zur ER-Membran rekrutiert wird. Expression von microRNAs gegen beide 

putative Assembly Faktoren verursacht Phänotypen die charakteristisch für Pflanzen mit 

fehlender V-ATPase-Aktivität sind. Dies weißt darauf hin, dass beide Proteine eine 

entscheidende Rolle bei dem Zusammenbau der V-ATPase haben. Eine eingehendere 

biochemische Charakterisierung zeigte dass AtVMA12 direkt mit einer integralen 

Untereinheit VHA-a3 und AtVMA22 mit der peripheren Untereinheit VHA-C der V-ATPase 

interagiert. Zusammenfassend zeigen die Ergebnisse, dass AtVMA12 und AtVMA22 

spezifische Chaperone darstellen, die für den Zusammebau der V-ATPase erforderlich sind. 

Im zweiten Teil dieser Arbeit wird ein Mechanismus vorgestellt, der nicht-funktionellen V-

ATPase-Komplexe im ER zurückhält. Unter Verwendung von pharmakologischen und 

genetischen Ansätzen konnte nachgewiesen werden, dass aktive V-ATPase Komplexe und 

das membran-assoziierte Chaperon Calnexin erforderlich sind, um nicht-funktionellen 

Protein-Komplexe im ER zurückzuhalten. 

Schlägt die Qualitätskontrolle von nicht-funktionalen Komplexen fehl, wird die Fitness der 

Pflanze negativ beeinflusst, was die Bedeutung einer funktions-abhängigen 

Qualitätskontrolle unterstreicht.  
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Summary 

The proteome of the model plant Arabidopsis thaliana is estimated to contain ~13000 

non-redundant proteins (Baerenfaller et al., 2008). During their lifetime most of these 

proteins interact with each other, either via transient association or by assembling into 

stable protein complexes. These interactions are facilitated by chaperones and monitored 

by various quality control systems. This thesis presents data on both topics, using the plant 

vacuolar H+-ATPase (V-ATPase) as a model protein complex.  

In chapter 1 of this thesis the role of the ER localized proteins AtVMA12 and AtVMA22 are 

characterized in detail. Localization studies demonstrate that AtVMA22 is recruited to the 

ER membrane by AtVMA12. Artifical microRNAs directed against both assembly factors 

cause phenotypes characteristic for plants lacking V-ATPase activity, suggesting a pivotal 

role in V-ATPase assembly. Further biochemical characterization revealed a direct 

interaction between AtVMA12 and the integral membrane subunit VHA-a3 and an 

association of AtVMA22 with the peripheral subunit VHA-C of the V-ATPase. Taken 

together the results lead the author to postulate that AtVMA12 and AtVMA22 represent 

true assembly factors of the plant V-ATPase.  

In the second part of this work, the mechanism is characterized by which non-functional V-

ATPase complexes are retained in the ER. Using a combination of pharmacological and 

genetic approaches it is demonstrated that V-ATPase activity and the membrane 

associated chaperone calnexin are required to retain non-functional protein complexes.  

However, non-functional complexes escaping the quality control negatively affect the 

fitness of the plant, underpinning the importance of a QC that retains non-functional 

proteins.   
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General Introduction 

Structure of the V-ATPase 

The eukaryotic cell contains membrane-bound organelles, which provide optimal 

conditions for a variety of biochemical reactions. Transport proteins control the internal 

milieu of these compartments by regulating the ion and solute composition. One 

important factor is the pH, which is controlled by three proton pumps in plants. The 

plasma membrane H+-ATPase (PM H+-ATPase) acidifies the extracellular space, whereas 

the vacuolar pyrophosphatase (V-PPase) and the vacuolar H+-ATPase (V-ATPase) 

translocate protons into the lumen of compartments. Among these pumps, the V-ATPase 

is the most ubiquitous pump found in endomembranes of all eukaryotic cells. 

V-ATPases are a multi-subunit, membrane-bound protein complexes which are structurally 

and mechanistically related to the F1F0-ATP synthases (F-ATPase) (Fillingame et al., 2000b), 

but in contrast to the F-ATPases, V-ATPases can only hydrolyze ATP under physiological 

conditions (Saroussi and Nelson, 2009). Similar to the F-ATPase, the V-ATPase operates by 

a rotational mechanism (Cipriano et al., 2008). The peripheral V1 subcomplex serves as an 

ATP hydrolysis engine (Watanabe et al., 1999), driving the rotation of the proteolipid ring 

of the V0 subcomplex (Kawasaki-Nishi et al., 2003). V1 and the V0 subcomplex are 

connected by a central and a peripheral stalk. In terms of composition the peripheral 650 

kDa V1 subcomplex consists of eight subunits (A, B, C, D, E, F, G and H) (Forgac, 2007). 

Subunits A and B are arranged in alternating positions forming a hexamer. At the interface 

of subunit A and B ATP is hydrolysed. ATP is bound by subunit B (Nelson et al., 1989), while 

subunit A hydrolyses ATP (Hirata et al., 1990). Subunit B has also been implicated in 

regulating V-ATPase activity. The remaining V1 subunits are part of the peripheral or the 

central stalk. The peripheral stalk, also referred to as stator, composed of subunits C, E, H 

and G prevents the AB hexamer from rotating (Tomashek et al., 1997). Subunit H is the 

only subunit of the V1 subcomplex that is not required for correct assembly, but is still 

needed for proper function (Hirata et al., 1993). The central stalk, which is composed of 

subunit D and F serves as a rotor that couples the energy that is released from the 

hydrolysis of ATP to the proton translocation through the V0 subcomplex. It is assumed 

that subunit H may play a role in inhibiting the ATPase activity of dissociated V1 

subcomplexes found in the cytosol (Parra and Kane, 1998). 
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Fig. 1 Structure of the V-ATPase The vacuolar H+-ATPase (V-ATPase) complex is composed of a peripheral V1 

domain, which is responsible for ATP hydrolysis, and an integral VO domain which is involved in proton 

translocation across the membrane. The core of the V1 domain is composed of a hexameric arrangement of 

alternating A and B subunits, which participate in ATP binding and hydrolysis. The VO domain includes a ring of 

proteolipid subunits (c, c' and c") that are adjacent to subunits a and e. The V1 and VO domains are connected by a 

central stalk, composed of subunits D and F of V1 and subunit d of VO, and multiple peripheral stalks, composed of 

subunits C, E, G, H and the N-terminal domain of subunit a (Ondzighi et al., 2008). 

 

The integral 260 kDa V0 subcomplex is composed of six different subunits (a, d, e, c, c’ and 

c’’). Within the V0 subcomplex the 100 kDa subunit a works similar to the subunit a of the 

F-ATPase (Fillingame et al., 2000a). It contains two hemi-channels, which transfer protons 

from the cytosol, via the proteolipid ring (c, c’ and c’’) into the lumen of endomembrane 

compartments. The exact stoichiometry of the proteolipid ring proteins is not clear. It is 

assumed that at least 5 of those proteins need to be present (Powell et al., 2000). Subunit 

d is positioned on top of the proteolipid ring, serving as a link between the V0 and V1 

complex. The small hydrophobic subunit e was first identified in bovine brain ATPase 

(Ludwig et al., 1998) and recently the homologue has been also identified in yeast 

(Sambade and Kane, 2004). Its exact position within the V0 subcomplex is not entirely 

clear, but it is believed to be associated with subunit a (Fig. 1) (Compton et al., 2006).  
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Proton translocation  

The V-ATPase carefully controls the pH of intracellular compartments in a 

eukaryotic cell by acidifying organelles relative to the cytosol and by establishing a 

negative potential difference. The proton gradient and the proton motive force (pmf) 

generated by the V-ATPase are used in a number of cellular processes (Forgac, 1989) like 

receptor-mediated endocytosis (Nishi and Forgac, 2002), intracellular membrane 

trafficking (Stevens and Forgac, 1997) and coupled transport of small molecules. Previous 

studies on the yeast vacuolar H+-ATPase (V-ATPase) have elucidated the importance of the 

100 kDa subunit a for proton translocation (Leng et al., 1996; Kawasaki-Nishi et al., 2001a; 

Finnigan et al., 2011). Topological studies have revealed a two-domain structure with a 

hydrophilic, cytoplasmic N-terminus and a membrane integral C-terminal region with nine 

putative transmembrane helices (Leng et al., 1999). In Arabidopsis and in yeast the N-

terminus is required for the targeting of V-ATPase complexes (Kawasaki-Nishi et al., 2001c; 

Dettmer et al., 2006). In yeast two isoforms target the V-ATPase either to the Golgi (Stv1p) 

or to the vacuole (Vph1p) (Manolson et al., 1994; Kawasaki-Nishi et al., 2001c). 

Arabidopsis has three different isoforms, designated as VHA-a1, VHA-a2 and VHA-a3 (Sze 

et al., 2002). V-ATPase complexes containing VHA-a1 will localize to the trans-Golgi 

network/early endosome (TGN/EE), whereas complexes containing the VHA-a2 or VHA-a3 

isoform are targeted to the tonoplast (Dettmer et al., 2006). The C-terminus of subunit a 

marks the entry and exit point for protons (Powell et al., 2000). Similar to the F-ATPase, 

the C-terminus of the subunit a of the V-ATPase has two hemi-channels, through which 

protons enter and exit the V-ATPase (Fig. 2A). Access of the cytosolic hemi-channel is 

facilitated by the several amino acid (aa) residues, i.e. glutamic acid at position 789 (Glu-

789) and the arginine at position 799 (Arg-799) (Fig. 2B, shaded area). The exchange of a 

Glu-789 to a glutamine has been shown to reduce V-ATPase activity to less than ~20 % 

(Leng et al., 1996), while exchanging the Arg-799 to a lysine retains ~10% of V-ATPase 

activity (Kawasaki-Nishi et al., 2001a). Interestingly none of these mutations had any effect 

on V-ATPase assembly. Protons are transferred from the cytosolic hemi-channel to carboxy 

groups of glutamic acid residues within the proteolipid ring. The energy transferred from 

the V1 subcomplex results in clockwise rotation of the proteolipid ring, allowing protons to 

pass through the hydrophobic lipid milieu, eventually returning back to subunit a. The 

deprotonation of the carboxy groups is promoted by an essential arginine at position 735 

(Arg-735) in the luminal hemi-channel (Kawasaki-Nishi et al., 2001a). Exchanging the Arg-
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735 to an asparagine (Vph1pR735N) renders the V-ATPase completely inactive, while V-

ATPase assembly was again not affected (Kawasaki-Nishi et al., 2001a).  

 
Fig. 2: Three amino acid residues within subunit a are essential for proton translocation. (A) Model of 
rotary mechanism in the V0 subcomplex. Shown are: C-terminus of subunit a (yellow) and proteolipid ring 
(blue). Exposed glutamic acid residue (E-789, green) accepts proton (red circle) from the cytosol. As the 
proteolipid ring rotates a neutral glutamic acid residue is exposed to the cytosolic hemi-channel, 
accepting the proton. Further rotation transports the proton towards the luminal hemi-channel. A critical 
arginine residue (R-735, blue) interacts with the glutamic acid, promoting deprotonation and release of 
the proton into the luminal hemi-channel. Model adopted from Jeffries et al., 2008 (Jefferies et al., 2008). 
(B) Model of proton hemi-channel within subunit a. Putative transmembrane regions are shown as circles 
(TM7 and TM9). Aa residues important for proton translocation are indicated by colored circles with 
numbers indicated. Putative access channel is indicated as shaded area. Model adopted from Kawasaki-
Nishi et al., 2001a (C) Alignment of the subunit a from Arabidopsis thaliana (AtVHA-a3), Saccharomyces 
cerevesiae (Vph1p), Oryza sativa (OsVHA-a3), Danio rerio (DrVHA-a3), Mus musculus (MmVHA-a3) and 
Homo sapiens (HsVHA-a3). Identical residues are indicated with black letters. Conserved aa residues, 
which reduce V-ATPase activity without affecting assembly are highlighted and the yeast amino acid 
position is mentioned (For VHA-a3 these aa residues correspond to: Arg-729, Glu-780, Arg-790).  
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Assembly of the V-ATPase 

In Arabidopsis all subunits of the V0 subcomplex and the subunit B, E and G of the 

V1 subcomplex have different subunit isoforms. In total, 28 Vacuolar H+-ATPase (VHA) 

genes are present in the genome of Arabidopsis encoding for the different V-ATPase 

subunits and their corresponding isoforms (Frydman et al., 1994). To orchestrate the V-

ATPase assembly process, a highly specific assembly machinery has evolved.  

In yeast, three assembly factors (VMA12, VMA22, VMA21) coordinate the assembly and 

the biogenesis of the V-ATPase (Hill and Stevens, 1994, 1995; Jackson and Stevens, 1997; 

Dixon et al., 2003). All assembly factors have been located to the ER, and they are not part 

of the final V-ATPase holo-complex. Loss of any of the three essential assembly factors 

VMA12, VMA22 and VMA21 results in a phenotype identical to those observed for mutant 

cells lacking any V-ATPase subunit (Graham et al., 1998). This phenotype includes the 

inability to grow on high concentrations of calcium and zinc as well as the inability to grow 

on neutral and alkaline media buffered to pH 7 (Kane, 2006). Vma12p, Vma22p and 

Vma21p stabilize Vph1p of the V0 subcomplex (Hill and Stevens, 1994; Graham et al., 

1998). Yeast knock-out strains lacking VMA12, VMA22 and VMA21 do not display defects 

in targeting, assembly and processing of other vacuolar membrane or plasma membrane 

proteins (Hill and Stevens, 1994). VMA12 encodes for a 25 kDa protein (Vma12p), with two 

predicted transmembrane domains, both N- and C-termini are orientated towards the 

cytosol (Tamura et al., 2004). VMA22 encodes for a 21 kDa protein (Vma22p), located in 

the cytosol that is recruited to the ER by Vma12p forming a heterocomplex that transiently 

interacts with the V0 subcomplex in the ER during V-ATPase assembly (Graham et al., 

1998). VMA21 codes for an 8.5 kDa protein (Vma21p) with two predicted transmembrane 

domains that interacts with the proteolipid ring of the V0 subcomplex made up of subunits 

c, c’ and c” (Malkus et al., 2004). Recently two additional assembly factors have been 

identified as part of the V-ATPase assembly machinery, however they are not essential. 

VOA1 encodes for a 35 kDa glycoprotein (Voa1p) with two transmembrane domains that 

works in the ER in conjunction with Vma21p (Ryan et al., 2008). voa1Δ cells do not display 

a growth phenotype due to a modest decrease in V-ATPase activity; however in 

combination with a mutant allele of vma21, V-ATPase assembly is significantly reduced 

(Ryan et al., 2008). PKR1 encodes for a 14 kDa ER membrane protein (Pkr1p) that has been 

proposed to increase the efficiency of the V0 subcomplex assembly (Davis-Kaplan et al., 

2006). pkr1Δ mutant cells can assemble V-ATPases, though at decreased efficiency. After 
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completion of V0 assembly, the V0-Vma21p complex is transported to the Golgi (Malkus et 

al., 2004). Vma21p dissociates from the V0 subcomplex in the cis-Golgi and is recycled to 

the ER via a di-lysine ER retention signal at the C-terminus of Vma21p. The exact point, 

where the V1 sector associates with the V0 sector is still elusive.  

 

 
Fig. 3 Assembly of the V0 subcomplex. Vma21p associates with the subunits c, c’ and c’’ of the 
proteolipid ring of the V0 subcomplex. Voa1 associates with the assembled complex, consisting of 
Vma21p and the proteolipid ring. Simultaneously the hetercomplex of Vma12p and Vma22p with 
subunit a. After the disassociation of Voa1, subunit a, d and e assemble with the proteolipid ring, 
forming a V0-Vma21p complex. The assembled V0-Vma21p complex is now competent to exit the ER. 
 

In Arabidopsis thaliana, AtVMA21a and AtVMA21b have been identified as first Vma21p 

orthologues. The two orthologues share only 25% sequence identity with Vma21p, and 

they both can functionally replace the endogenous Vma21p in yeast V-ATPase assembly 

(Neubert et al., 2008). The phenotype of RNA interference knockdown of AtVMA21a 

resembles plants with impaired V-ATPase function (Neubert et al., 2008). As a 

consequence of the reduced V-ATPase activity plants exhibit a significant reduction in 

hypocotyl length and bending and swelling of Golgi cisternae as it has been previously 

described for VHA null alleles (Dettmer et al., 2005; Strompen et al., 2005). Despite these 

findings the molecular mechanism of V-ATPase assembly in Arabidopsis remains unclear.  

 

ER quality control (ERQC)  

Almost one-third of all eukaryotic proteins are destined for the secretory pathway and the 

endoplasmatic reticulum (ER) is the first organelle they encounter (Ghaemmaghami et al., 

2003; Kanapin et al., 2003). In contrast to the cytosol, the ER provides an optimal 

environment for protein folding and maturation. Here, favorable redox conditions and the 

presence of molecular chaperones allow the formation of disulphide-bonds, N-linked 

glycosylation, signal-peptide cleavage and glycophospatidylinositol (GPI)-anchor addition 

(Coleman et al., 1995; Vitale and Denecke, 1999). In plant cells, proteins usually enter the 

ER cotranslationally in three phases. First, nascent proteins are channeled cotranslational 
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and cotranslocational through the ER translocon complex, entering the lumen of the ER. 

After the completed protein chain is released from the translocon complex, post-

translational modifications take place. And finally, single subunit proteins assemble into 

higher oligomeric structures. Several molecular chaperones in the ER participate folding 

process. These folding enzymes and chaperones ensure that only correctly folded proteins 

exit the ER and that aberrantly and incompletely assembled proteins are eliminated from 

the ER (Hartl, 1996; Ellgaard and Helenius, 2003). The presence of a strict ER quality 

control (ERQC) is crucial to prevent incorrectly folded and thus non-functional proteins 

from reaching other compartments, where they could have toxic effects (Zerangue et al., 

1999).  

In general ERQC can be distinguished into a primary and a secondary quality control 

(Ellgaard et al., 1999; Ellgaard and Helenius, 2003). The primary quality control applies to 

all proteins encountering the ER, while secondary quality control is reserved for special 

classes of proteins (Ellgaard et al., 1999). One well studied primary QC system is the so-

called calnexin/calreticulin (CNX/CRT) cycle (Denecke et al., 1995; Hebert et al., 1995). 

Especially under stress conditions, glycoproteins repeatedly fold and refold, constituting 

the CNX/CRT cycle (Hammond et al., 1994). This cycle promotes the folding of 

glycoproteins and retains immature proteins either until they reach their mature 

conformation or if maturation fails, targets misfolded proteins for degradation (Ou et al., 

1993; Ware et al., 1995). The CNX/CRT cycle is driven by opposing actions of glucosidase II 

that removes the glucose and UDP-glucose:glycoprotein glucosyltransferase (UGGT) that 

reattaches it (Caramelo et al., 2003). Prolonged stay of an immature glycoprotein within 

this cycle retards their export from the ER, and proper folding may be promoted by the 

thiol oxidoreductase ERp57, which associates with both CNX and CRT (Elliott et al., 1997; 

Jessop et al., 2009). In Arabidopsis the ERp57 proteins belong to the PDI family, but it is yet 

not known whether a member of the PDI can function as ERp57 in Arabidopsis (Lu and 

Christopher, 2008). Arabidopsis thaliana has two isoforms of CNX and three of CRT. Both, 

CNX and CRT have a similar structure: An extended hairpin structure called the P domain 

and a C domain. In yeast Ca2+ has been shown to bind within the P domain of CRT (Parlati 

et al., 1995), while a similar interaction for CNX has so far only been reported in mammals 

(Wada et al., 1991). Recently, the hairpin domain and the transmembrane domain of CNX 

have been suggested to play a role in glycosylation independent protein quality control 

(Ihara et al., 1999; Swanton et al., 2003). In vitro showed that the purified hairpin domain 
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of CNX can suppress protein aggregation of non-glycosylated cytosolic substrate under 

physiological conditions (Ihara et al., 1999; Brockmeier and Williams, 2006). In vivo 

experiments done in human cell lines demonstrated that the transmembrane domain of 

CNX is required to specifically recognize non-glycosylated transmembrane proteins 

(Swanton et al., 2003). How the recognition specificity is achieved is still unclear, however 

the exchange of a single amino acid within the transmembrane domain of CNX substrates 

is sufficient for the retention of these proteins to the ER membrane (Swanton et al., 2003). 

Until today the role of the transmembrane domain of CNX in quality control of non-

glycosylated polytopic membrane proteins has so far only been shown in human cell lines. 

If the maturation process fails, misfolded or aberrant proteins are recognized, 

retrotranslocated, poly-ubiquitylated and then eventually degraded by the 26S 

proteasome by a process termed ER-associated degradation (ERAD) (McCracken and 

Brodsky, 1996). Retrotranslocation of target proteins into the cytosol requires the 

ubiquitin-proteosome system and the AAA-ATPase Cdc48 complex (Brodsky et al., 1999). 

Until today it remains unclear if and to what extend the QC machinery recognizes V-

ATPase complexes in plants. Only for Vph1p it has been shown to be a substrate for ERQC 

in yeast cells (Hill and Cooper, 2000).  
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I – Assembly of the V-ATPase 

Abstract 

The vacuolar H+-ATPase (V-ATPase) is a multi-subunit protein complex, required for the 

acidification of intracellular compartments. The formation of a functional complex and the 

underlying mechanisms of the assembly of the V-ATPase subcomplexes V0 and V1 still 

remain largely elusive. Here, we explored the role of the potential Arabidopsis thaliana 

assembly factors AtVMA12, and AtVMA22 in the assembly of the membrane bound V0 

subcomplex. In order to assess the functional relationship between the assembly factor 

candidates and the V-ATPase, we characterized T-DNA insertion lines of AtVMA22 and 

AtVMA12. We were unable to detect homozygous plants, due to a lethality as it is also 

observed for V-ATPase knock-out alleles. In order to complement this phenotype, we 

transformed genomic construct of AtVMA22-GFP as well as overexpressing constructs of 

AtVMA12-RFP and AtVMA22-GFP. To study the localization and the interaction between 

AtVMA12 and AtVMA22, the proteins were expressed transiently in Arabidopsis 

protoplasts and Nicotiana benthamiana. We demonstrate that AtVMA22 is recruited to 

the endoplasmic reticulum (ER) by AtVMA12. We used inducible artificial microRNA 

constructs against AtVMA22 and AtVMA12 and assessed their effect on the V-ATPase. 

Activated amiRNA constructs led to impaired cell expansion and changed Golgi 

morphology characteristic for plants with reduced V-ATPase activity. Using CO-IP 

experiments we could demonstrate that both assembly factors directly associate with 

components of the V-ATPase.  
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Introduction  

In a eukaryotic cell, most proteins do not act in isolation, but interact with other proteins 

to fulfill a dedicated cellular task (Ye et al., 2011). The assembled protein complexes are 

essential for the survival of the cell. Nevertheless our understanding of the coordinated 

formation of these protein complexes is limited. For soluble proteins it is well-known that 

hydrophobic effects are the driving forces behind the aggregation and association of 

proteins (Iwasaki et al., 2009). For membrane-embedded proteins however a 

thermodynamic view of the subunits constituting a complex is insufficient. Instead 

membrane-embedded proteins rely on the varying properties of the membrane as well as 

on the presence of folding and assembly chaperones (Yasuda et al., 2009). These 

chaperones physically interact with complex intermediates, to prevent their aggregation 

and subsequent degradation. One example for this interaction represents the bacterial 

F1F0-ATPase (F-ATPase), whose membrane-embedded F0 subcomplex is assembled with 

the coordinated help of the assembly factors UncI, ATP10 and ATP23 (Descamps et al., 

2009; Gruber et al., 2009; Wagner and Mittag, 2009). Structurally and mechanistically 

similar to the F-ATPase are the V-ATPases. The first indications that assembly factors 

interact with the V-ATPase came subcellular fractionation analysis of yeast mutants lacking 

Vma22p. Vma22p is a cytosolic protein, yet in wild-type cells, it was found associated with 

the ER. In vma12Δ cells, the fractionation profile of Vma22p changed, now being localized 

in the cytosol (Hill and Stevens, 1995). Further investigation revealed that the ER 

association of Vma22p depended on the presence of Vma12p. Vma12p and Vma22p form 

a stable hetero-complex assisting in the assembly of the V0 subcomplex in the ER. Both 

proteins were not detected in the final V-ATPase holo-complex, which led to the 

conclusion that they only transiently interact with the V-ATPase, before it is transported to 

the vacuole (Graham et al., 1998).  

Despite the strong conservation in overall V-ATPase composition, localization, and 

function, in plants and other higher eukaryotes the assembly of the V-ATPase is largely 

unaddressed. We have identified one potential Arabidopsis thaliana orthologue of 

Vma12p and of Vma22p. Here we report that both putative orthologues are essential for 

plant development. BIFC analysis revealed that AtVMA22 is recruited to the ER membrane 

by AtVMA12. We present biochemical evidence that AtVMA12 directly interacts with 

components of the V0 sbucomplex in the ER. Finally, reduction of transcript levels of both 

assembly factors led to impaired V-ATPase activity shown by reduced hypocotyl length and 
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aberrant Golgi morphology. In addition, we observe pro-vacuolar structures within 

meristematic root cells. Our analysis indicates that AtVMA12 and AtVMA22 are required in 

the plant cell ER to assemble a functional V-ATPase. 
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Results  

 

Identification of Vma12p and Vma22p orthologues 

Based on low sequence similarity but similar protein size and topology potential 

orthologues of Vma12p and Vma22p of Arabidopsis thaliana (AtVMA12 At5g52980; 

AtVMA22 At1g20770) and Drosophila melanogaster (DmVMA12 CG7071, DmVMA22 

CG14671) have been identified (Fig. 4A and B). The Vma12p orthologues from Drosophila 

and Arabidopsis share ~11 % amino acids (aa) identity and ~24 % aa similarity. AtVMA12 

with 25,4 kDa is similar in size to Vma12p with 25,2 kDa, while DmVMA12 with 34,52 kDa 

is larger than its orthologues. The difference in size can be explained by the presence of 

the 65 aa longer N-terminus of DmVMA12. Similar to the yeast Vma12p, the Arabidopsis 

and the Drosophila orthologue are predicted to have two transmembrane domains. The 

alignment in Fig. 4A also highlights the membrane topology of the VMA12 proteins based 

on predictions of SignalP4.0 (Petersen et al., 2011). AtVMA12 possesses a strong C-

terminal dilysine (KK) - motif, whereas the yeast orthologue possesses only a weak KITL C-

terminal retention signal (Jackson et al., 1990). The DmVMA12 lacks a classical ER 

retention motif. The VMA22 proteins also share weak aa identity (~9 %) and a similarity 

(~23 %). All VMA22 proteins have a similar size with ~20 kDa (DmVMA22 17,3 kDa; 

Vma22p 20,1 kDa; AtVMA22 23,8 kDa). There are no putative membrane spanning 

domains in AtVMA22, Vma22p and DmVMA22 as predicted by hydropathy analysis (Kyte 

and Doolittle, 1982). 1

We analyzed the expression pattern of AtVMA12 and AtVMA22 using the data set of 

AtGenExpress Developmental series (Schmid et al., 2005). Both assembly factors show 

similar expression profiles in seedlings, roots, shoots, leaves and flowers. The transcript 

levels of AtVMA22 are slightly stronger than the expression of AtVMA12 in all of the 

previous named organs. In the ripening seeds however the correlation of the expression 

between the assembly factors is lost. While AtVMA12 expression increased fourfold, 

expression of AtVMA22 decreased by half (

 

Fig. S. 3).  

 

                                                        
1 Further characterization of the Drosophila candidates was done in collaboration with Dr. Fani 
Papagiannouli, 2011-2012 and will be described and discussed elsewhere. 

http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G52980�
http://www.arabidopsis.org/servlets/TairObject?id=29965&type=locus�
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Fig. 4: Alignment of Vma12p and Vma22p with candidate proteins from Arabidopsis thaliana and 
Drosophila melanogaster. Identity between the proteins is indicated by red letters, similarity between 
the proteins is not highlighted. (A) Amino acid sequences of yeast Vma12p, AtVMA12 (At2g31710) and 
DmVMA12 (CG7071) were aligned using the Clustal W algorithm. The VMA12 proteins share 11% amino 
acid identity. Transmembrane domains are marked as TM1 and TM2.Topology was predicted using 
TMHMM. (B) Amino acid sequences of yeast Vma22p and AtVMA22 (At2g31710) and Drosophila 
DmVMA22 were aligned using the Clustal W algorithm. The VMA22 proteins share 9% amino acid 
identity.  
 

Localization and interaction of AtVMA12 and AtVMA22  

In yeast, the membrane-integral Vma12p interacts directly with the soluble Vma22p 

recruiting it onto the cytosolic face of the ER membrane. The interaction results in the 

formation of a hetero-complex assisting in the assembly of the V0 subcomplex (Graham et 
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al., 1998). To determine the subcellular localization of AtVMA22 and AtVMA12, we created 

overexpressing constructs for AtVMA12 and AtVMA22, both under the control of the 

Ubiquitin promotor (UBI10) (Norris et al., 1993), thereby guaranteeing a ~100 higher and 

ubiquitous expression of our constructs. Due to the potential C-terminal ER di-lysine motif, 

AtVMA12 was tagged with mRFP at the N-terminus. AtVMA22 was tagged at the N-

terminus with GFP.  

GFP-AtVMA22 was transiently expressed together with RFP-AtVMA12 or as a control with 

AtVMA21-RFP (Neubert et al., 2008). We used Arabidopsis suspension culture protoplasts 

(FIG. S. 2) and Nicotiana benthamiana plants for the transient expression of the constructs. 

GFP-AtVMA22 is localized to the cytosol, if co-expressed with AtVMA21-RFP (Fig. 5A-C). 

The co-expression of GFP-AtVMA22 and RFP-AtVMA12 resulted in the recruitment to the 

ER surface (Fig. 5D-E), indicating that the two proteins interact in planta. 

 
Fig. 5: GFP-AtVMA22 is recruited to the ER, when co-expressed with RFP-AtVMA12. Three week old 
plants of Nicotiana benthamiana were transiently expressed with (A) GFP-AtVMA22 and (B) AtVMA21-
RFP or (D) GFP-AtVMA22 and (E) RFP-AtVMA12. Figure C depicts an overlay of A and B. Figure F depicts 
an overlay of D and E. Bars represent 10 µm 

In yeast, the recruitment of Vma22p to the ER membrane is a result of the direct 

interaction between Vma12p and Vma22p. We were interested whether the recruitment 

of GFP-AtVMA22 to the ER membrane was the result of a direct interaction between RFP-

AtVMA12 and GFP-AtVMA22. To answer this question, we used the bimolecular 

fluorencence complementation (BIFC) technique for visualization of protein-protein 

interaction (Hu et al., 2002).  
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AtVMA22 and AtVMA12 cDNAs were cloned into pxYC (p22YC) and pYNx (pYN12), 

respectively. As control, we cloned the cDNA of AtVMA21 into the pYNx (pYN21). We 

observed YFP fluorescence, when the combination of p22YC and pYN12 were expressed 

(Fig. 6A). Notably, we were unable to detect any fluorescence signals when pYN12 was co-

expressed with a construct where the YFP-fragment was fused N-terminal to cDNA of 

AtVMA22 (pYC22) (data not shown). Expression of p22YC with pYN21 however induced no 

fluorescence signals (Fig. 6C). Immuno-blot analysis of protein samples prepared from 

tobacco leaf material was performed to determine if the proteins were expressed. We 

used c-myc-tag- (pYN12 and pYN21) and HA-specific (p22YC) antibodies to demonstrate 

the expression of all fusion proteins in tobacco cells (Fig. 6B and D).  

 

 

Fig. 6 AtVMA22 interacts 
directly with AtVMA12 in 
the ER membrane. Three 
week old plants of 
Nicotiana benthamiana 
transiently expressed (A) 
pYN12 and p22YC or (C) 
pYN21 and p22YC. The 
presence of the expressed 
fusion proteins was 
demonstrated by 
immunodetection with 
anti-c-myc (α-myc) 
antibodies for YN fusions 
and anti-HA (α-HA) for YC 
fusions (B and D). Bars 
represent 10 µm 

Do AtVMA12 and AtVMA22 function in V-ATPase assembly in yeast? 

In order to determine if AtVMA12 and AtVMA22 are functional orthologs of the yeast 

assembly factors Vma12p and Vma22p, we tested whether AtVMA12 alone or in 

conjunction with AtVMA22 could complement yeast cells lacking Vma12p (vma12Δ). The 

vma12Δ null mutant exhibits a characteristic vma-
 phenotype, including an increased 

sensitivity to high concentrations of Ca2+ in the medium and an inability to grow on media 

buffered to pH 7.5 (Graham et al., 1998). We compared the growth phenotype of yeast 

lacking the assembly factor Vma12p with cells expressing either AtVMA12, or co-
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expressing AtVMA12 and AtVMA22. All proteins were expressed by a CEN plasmid under 

the control of the Vma12 promotor. An HA-epitope tag was introduced at the N-terminus 

of AtVMA12. As shown in Fig. 7, yeast cells lacking Vma12p (vma12Δ), do not grow on rich 

media supplemented with 60 mM Ca2+, due to a lack of functional V-ATPases. Neither the 

expression of the Arabidopsis assembly factor AtVMA12, nor the co-expression of 

AtVMA12 and AtVMA22 together in vma12Δ cells restored growth in the presence of 

elevated calcium. Total cell proteins were extracted from vma12Δ cells transformed with 

AtVMA12::HA and separated using SDS-PAGE. We were unable to detect AtVMA12::HA 

using anti-HA antibodies, from which we concluded that AtVMA12 could not be expressed 

in yeast cells (data not shown).   

Taken together, unlike AtVMA21 (Neubert et al., 2008), the two Arabidopsis candidates fail 

to complement the respective yeast mutants indicating a higher degree of functional 

divergence (Fig. 7). Although the assembly factors lack the amino acid conservation known 

from components of the V-ATPase, we hypothesized that there is a structural conservation 

among the assembly factors. We therefore generated AtScVMA12 chimeric constructs, by 

either replacing the yeast N-terminus or C-terminus of ScVMA12 with the respective 

portion of AtVMA12 (AtScVMA12_N/ AtScVMA12_C). We were unable to complement the 

yeast mutant vma12Δ and vma12Δvma22Δ with the chimeric AtScVMA12 constructs (Fig. 

S. 1). 

 
Fig. 7: The Arabidopsis assembly factors AtVMA12/22 do not complement the compromised growth 
phenotype of the yeast mutant vma12Δ. vma12Δ cells transformed with either AtVMA12::HA or with 
AtVMA12::HA and AtVMA22 were grown in SD-URA medium to OD600= 1. As a control Wt (SF 838-1) cells 
were grown in YEPD medium to an OD600= 1. The cultures were serially diluted (1:10, 1:100) and spotted 
onto YEPD medium buffered to pH 5 and on YEPD media containing and 60 mM CaCl2. 
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AtVMA22 and AtVMA12 are essential for the plant 

Neither AtVMA12 alone, nor in conjunction with AtVMA22 were able to rescue the 

vma12Δ phenotype. To prove that AtVMA12 and AtVMA22 are true assembly factor of the 

plant V-ATPase, we characterized T-DNA insertion lines for AtVMA22 (SALK_031513) and 

AtVMA12 (SAIL_634_F09). To rule out the possibility of chromosomal rearrangements and 

to determine the exact insertion site, both T-DNA/genomic DNA junctions of the insertion 

allele of atvma12 and atvma22 were sequenced (Fig. 8A and B).  

 

Fig. 8: Structure of the AtVMA22 T-DNA allele and structure and segregation AtVMA12 T-DNA allele. 
(A-B) Schematic representation of the T-DNA insertion allele atvma12 (T-DNA insertion line 
SAIL_634_F09) and atvma22 (T-DNA insertion line SALK_031513). Primers used to sequence T-DNA 
junctions are indicated as either LB1.3 (T-DNA specific), or PCR_FOR/REV (genome specific). Below: 
Position of T-DNA insertion (black box “T-DNA”) is shown within the genomic sequence, exon (capital 
letters) and intron (small letters). (A) The T-DNA is inserted in the third exon (exons are indicated as 
black boxes) of AtVMA12. Position 21482702 – 21482624 of chromosome 5 is shown as sequence 
below. T-DNA insertion is highlighted. (B) The T-DNA is inserted in the first exon of AtVMA22. Position 
7216742 – 7216520 of chromosome 1 is shown as sequence. T-DNA insertion is highlighted (C) 
Segegration analysis of heterozygous AtVMA12/- plants.  
 

We established that a tandem T-DNA insertion with inverted orientation, where the left 

border (LB) of the T-DNA is facing the genomic DNA has been integrated in the third exon 

of AtVMA12 (Fig. 8A). For AtVMA22, a single T-DNA is inserted in the first exon, its LB 

http://www.arabidopsis.org/servlets/TairObject?type=germplasm&id=4634101�
http://www.arabidopsis.org/servlets/TairObject?type=germplasm&name=SAIL_634_F09�
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facing towards the 5’ upstream region of the genomic DNA (Fig. 8B). Out of 140 and out of 

260 individuals we were unable to detect homozygous plants for the null mutant of 

atvma22 and atvma12, respectively, indicating either gametophyte or embryo lethality. 

Previous research on V-ATPase mutants has shown that single copy V-ATPase knock-out 

alleles lead to gametophyte or embryo lethality (Dettmer et al., 2005; Strompen et al., 

2005). We proceeded with a genetic analysis of the heterozygous AtVMA12/- line using 

the Basta-Resistance (BastaR) on the T-DNA to observe the segregation. For AtVMA22/- 

plants the resistance gene has been silenced, therefore segregation analysis based on the 

kanamycin resistance (KanR) could not be employed. Analysis of the progeny of self-

fertilized AtVMA12/- plants showed a decreased transmission of the BastaR gene (Fig. 8C). 

We asked whether the decreased transmission was due to a female or the male 

gametophyte lethality. We performed reciprocal crosses between AtVMA12/- and wild-

type plants. Analysis of BastaR of the resulting progeny showed that transmission through 

the male gametophyte was impaired whereas transmission through the female 

gametophyte was not affected (Fig. 8C). One explanation for this might be that 

microgametogenesis of the null allele microspores can be sustained by sporophytic gene 

products, provided by the anther wall (Maitrejean et al., 2011). As a consequence 

subsequent fertilization of the female gametophyte can occur, but embryo development 

for individuals homozygous for the null allele is arrested, after the sporophytic gene 

product has been consumed. To rule out that reduced transmission of the T-DNA was not 

caused by a second-site mutation, but indeed by a lack of AtVMA12, BastaR AtVMA12/- 

plants were transformed with RFP tagged AtVMA12 constructs carrying a KanR gene. 20 

KanR T1 plant lines were self fertilized; the T2 progeny was subjected to kanamycin and 

BASTA selection, to obtain homozygous individuals for the null allele and for the RFP-

AtVMA12 insertion. Homozygous individuals were confirmed via PCR (Fig. 9A). Expression 

of RFP-AtVMA12 was confirmed by CLSM analysis (Fig. 9B). Heterozygous AtVMA22/- 

plants were identified via PCR and transformed with GFP tagged AtVMA22 constructs 

linked to a BastaR gene. Homozygous individuals for the null allele were confirmed via PCR 

(Fig. 9C). We were unable to detect any fluorescent signals in 20 independent GFP-

AtVMA22 lines (Fig. 9D). Unlike the RFP-AtVMA12 construct, which was driven by the 

UBI10 promotor, the GFP-AtVMA22 construct was expressed under the control of the 

endogenous AtVMA22 promotor. Using the data set of the AtGenExpress Developmental 

series (Schmid et al., 2005), we analyzed the expression pattern of AtVMA22 (Fig. S. 3). 
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From this data we concluded that the expression of GFP-AtVMA22 was too low to be 

detected.   

Taken together our results indicate that observed lethality is due to the absence of the 

putative assembly factors AtVMA22 and AtVMA12, respectively.  

 

Fig. 9: GFP-AtVMA22 and RFP-AtVMA12 complement the atvma12 and the atvma22 null allele. 
Heterozygous AtVMA12/- and AtVMA22/- plants were transformed with RFP-AtVMA12 and GFP-
AtVMA22 constructs respectively. (A) Plants homozygous for the null allele (atvma12) were identified 
via PCR using three primers (AtVMA12_FOR/REV and LB1.3). Due to the tandem T-DNA insertion, two 
bands were expected. (B) Root tips of 5 day old seedlings expressing RFP-AtVMA12 were subjected to 
confocal laser scanning microscopy (CLSM) analysis. (C) Homozygous plants for the GFP-AtVMA22 
construct were selected on BastaR. Among these plants, homozygous plants for the null allele (atvma22) 
were identified by PCR using gene specific primers (AtVMA22_FOR/_REV) and T-DNA specific primers 
(LB1.3). (D) Root tips of 5 day old seedlings expressing GFP-AtVMA22 were subjected to confocal laser 
scanning microscopy (CLSM) analysis. CLSM bars represent 10 µm. 
 

Are AtVMA12 and AtVMA22 functional assembly factors of the V-ATPase? 

Similar to null alleles of V-ATPase single copy genes, which exhibit either gametophyte or 

embryo lethality (Dettmer et al., 2005; Strompen et al., 2005), null alleles of AtVMA12 and 

AtVMA22 are lethal, suggesting that they function in V-ATPase assembly. In order to 

understand whether AtVMA12 and AtVMA22 are functional assembly factors of the V-

ATPase, phenotypic analyses of weak mutant alleles in Arabidopsis thaliana were 

employed.  



I – Assembly of the V-ATPase 21 

 

 

 

Fig. 10: Ethanol-induced expression of artificial microRNA against AtVMA12 (ami12) and AtVMA22 
(ami22) respectively leads to a V-ATPase-deficient phenotype. (A) Hypocotyl length of 4d old etiolated 
seedlings grown in the absence or presence of EtOH. Shown are the results for VHA-a3-GFP and two 
independent transgenic lines expressing the ami-constructs against AtVMA12 (ami12) and AtVMA22 
(ami22), respectively. At least 30 seedlings of each line were measured, error bars represent standard 
error. (B) Normal Golgi morphology is depicted in high-pressure frozen VHA-a3-GFP samples. Golgi 
morphology is altered in samples expressing the amiRNA against (C) AtVMA12 and (D) AtVMA22. (F) 
Quantitative analysis of the amiRNA effects on Golgi morphology. Roots of the indicated lines were 
analyzed counting the number of Golgis in 100 sectioned cells per root. Bars represent 100 nm.  
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Homozygous plants expressing the tonoplast-localized subunit of the V-ATPase VHA-a3-

GFP and ami12 or ami22 exhibit a reduced hypocotyl growth, which has been shown to 

reflect a reduction of the V-ATPase activity (Brüx et al., 2008; Neubert et al., 2008)(Fig. 

10A). Ultrastructural analysis of Arabidopsis seedlings co-expressing ami12 and ami22 with 

VHA-a3-GFP revealed an aberrant Golgi morphology (Fig. 10C and D) as it has been 

previously described for V-ATPase knockout alleles and ConcA treatment (Dettmer et al., 

2005; Strompen et al., 2005; Brüx et al., 2008). Statistical analysis showed a significant 

increase in aberrant shaped Golgi stacks in plants with induced ami12 and ami22 

constructs, while only mild changes in Golgi morphology could be observed in plants with 

non-induced ami constructs (Fig. 10F). The mild induction of the ami constructs under non-

inducing conditions can be explained with a leakiness of the AlcR/AlcA two component 

system (Roslan et al., 2001; Roberts et al., 2005). Confocal laser scanning microscopy 

(CLSM) analysis of 5 day old Arabidopsis ami12 and ami22 seedlings demonstrated that 

VHA-a3-GFP is localized to tubular structures (Fig. 11B and C). Previous work has suggested 

that mature vacuoles form as a result of branching ER tubules that sequester the 

cytoplasm (Hilling and Amelunxen, 1985). These pro-vacuoles have been identified in 

meristematic root cells of oat seedlings. Alternatively these tubules could represent 

vacuoles that are retarded in growth, possibly due to reduced V-ATPase activity. We 

applied immuno electron microscopy to further characterize these VHA-a3-GFP labeled 

tubules. We used meristematic cells in root tips probing with Arabidopsis vacuolar H+-

pyrophosphatase (AVP1) antibodies. Gold particles were present at numerous tubular 

structures (Fig. 11D). Together, the IEM and the confocal laser scanning microscopy data 

indicate that the tubular structures could either represent pro-vacuoles or immature 

vacuoles. The CLSM data shows the presence of these tubular structures in plants, co-

expressing VHA-a3-GFP and the amiRNA against the assembly factors (Fig. 11B,C).  
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Fig. 11 Knock-down of the assembly factors AtVMA12/AtVMA22 results in localization of VHA-a3-GFP 
to tubular structures. Root tips of 5 day old seedlings grown in the presence of ethanol (EtOH) were 
subjected to confocal laser scanning microscopy (CLSM) analysis and immuno electron microscopy 
(Biermann et al.). (A) VHA-a3-GFP is localized to mature vacuoles. Expression of (B) ami12 and (C) ami22 
resulted in an increased number of pro-vacuoles labeled by VHA-a3-GFP (arrowheads). (D) AVP1 labled 
pro-vacuoles. CLSM Bars represent 10 µm; IEM bar reprents 100 nm. 

 

The maturation of vacuoles is a process including multiple fusion events of smaller vesicles 

and osmotic swelling due to water uptake. The role of the V-ATPase in the vacuolar 

maturation process has yet not been addressed in Arabidopsis. Our data suggests that the 

knockdown of the assembly factors AtVMA22 and AtVMA12 either directly interferes with 

the maturation of pro-vacuoles or the absence of an efficient assembly machinery delays 

the maturation by affecting V-ATPase assembly and/or function. To test whether these 

tubular structures can be attributed towards the loss of functional V-ATPases, we assayed 

the protein stability of VHA-a3-GFP in amiRNA lines. 
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Knockdown of AtVMA22 or AtVMA12 does not affect vacuolar V-ATPase stability 

Knockout of VMA12 and VMA22 results in a severe destabilization of the Vph1p, leading to 

the degradation of the entire V0 subcomplex (Kane, 1992). We were unable to detect a 

reduction of the protein levels of VHA-a3-GFP in Arabidopsis seedlings co-expressing VHA-

a3-GFP and the amiRNA against the assembly factors (Fig. 12). We hypothesize that knock-

down of the assembly factors was incomplete and therefore V0 subcomplexes are still 

formed. In order to monitor V0 subcomplex degradation we subjected induced and non-

induced ami22 lines to Cycloheximide (CHX). CHX is a well established antibiotic inhibiting 

protein biosynthesis. After 2h CHX treatment of VHA-a3-GFP lines with activated artificial 

microRNA against AtVMA22 protein levels were not changed, implying that the 

knockdown does not affect the stability of VHA-a3-GFP (Fig. 12).  

  

Fig. 12: VHA-a3-GFP 
protein stability is not 
affected after knockdown 
of AtVMA22. 6 day old 
plants grown on MS 
medium either 
supplemented with 0.3% of 
EtOH were subjected to 
300 µM CHX treatment for 
2h. 

AtVMA12 interacts with the V0 subcomplex 

In yeast, cross-linking experiments have proven a direct interaction of the heterocomplex 

Vma12p/Vma22p with Vph1p. The interaction between the VO subcomplex and the 

assembly factors has been reported to occur with a half-life of less than 5 min, due to 

rapid trafficking of VO subcomplexes out of the ER (Graham et al., 1998).  

Our results so far indicate that AtVMA12 and AtVMA22 play a critical role for the function 

of the V-ATPase complex. In order to better understand how AtVMA12 and AtVMA22 

facilitate the assembly process, we asked whether AtVMA12 directly interacts with VO 

subunits. To answer this question, we co-immunoprecipitated RFP-AtVMA12 from plants 

co-expressing RFP-AtVMA12 and VHA-a3-R729N-GFP. The mutation in the VHA-a3 isoform 

renders the V-ATPase non-functional, while protein complex assembly is not affected 

(Refer chapter II). In contrast to Wt Col-0 plants, expressing VHA-a3-GFP, Vo complexes 

containing VHA-a3R729N-GFP are retained in the ER, not reaching the vacuole (Fig. 13A 

and B). As can be seen in Fig. 13B RFP-AtVMA12 and VHA-a3R729N-GFP co-localized in the 
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ER to a very high degree. We extracted total microsomal membranes from 5 day old 

etiolated Arabidopsis seedlings either co-expressing VHA-a3-GFP/-R729N and RFP-

AtVMA12, or RFP-AtVMA12 alone. Using an anti-RFP antibody we were able to detect a 

~50 kDa protein, which corresponds to the expected size of RFP-AtVMA12 (Fig. 13C). 

 

Fig. 13 RFP-AtVMA12 directly interacts with VHA-a3R729N-GFP in the ER membrane. Arabidopsis root 
tips of 5 day old seedlings (A) co-expressing of RFP-AtVMA12 and VHA-a3-GFP and (B) co-expressing 
RFP-AtVMA12 and VHA-a3R729N-GFP. (C) GFP immunoprecipitation from 5 day old etiolated 
Arabidopsis seedlings co-expressing RFP-AtVMA12 and VHA-a3R729N-GFP, or RFP-AtVMA12 and VHA-
a3-GFP, or expressing RFP-AtVMA12 alone, using GFP-TRAP® coupled magnetic particles. Total 
microsomal extracts (Input), unbound protein flow (Flow) and immunoprecipitates (IP) were subjected 
to immunoblots using anti-GFP and anti-RFP antibodies. CLSM bars represent 10 µm. 
 

In a control experiment of plants only expressing RFP-AtVMA12, the 50 kDa band could 

only be detected in the Input and Flow, while it was not recovered in the actual IP, 

indicating that RFP-AtVMA12 specifically binds to VHA-a3-GFP and VHA-a3R729N-GFP (Fig. 

13C). Interestingly, the protein amount of RFP-AtVMA12 co-immunoprecipitating with 

VHA-a3R729N-GFP was almost equal to the amount of RFP-AtVMA12 co-

immunoprecipitating with VHA-a3-GFP (Fig. 13C), indicating that the retention of VHA-

a3R729N-GFP in the ER did not prolong the interaction between AtVMA12 and the V0 

subcomplex.  
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Taken together we conclude that AtVMA12 interacts with the V0 subcomplex in the ER. 

The retention of the Vo subcomplex, in the case of the VHA-a3R729N, in the ER does not 

change the kinetics of the Vo – AtVMA12 interaction. 

 

AtVMA22 interacts with the V1 subcomplex 

Our results so far indicate that AtVMA22 is recruited by AtVMA12 which in turn interacts 

with the V0 subcomplex. Interactome studies indicated that AtVMA22 interacts with the V1 

subcomplex (Back et al., 2005). We therefore asked whether AtVMA22 can also interact 

with the V1 subcomplex. To answer this question, we generated total protein extracts from 

5 day old etiolated Arabidopsis seedlings expressing either GFP under the control of the 

Ubi10 promotor, or AtVMA22-GFP under its endogenous promotor. Protein extracts were 

subjected to immunoprecipitation experiments using GFP-Trap® magnetic beads followed 

by western blotting. Using an anti-VHA-C antibody we detected a ~41 kDa protein, which 

was present in the IP of AtVMA22-GFP, while it was absent in protein extracts of plants 

expressing GFP (Fig. 14). From these results we conclude that AtVMA22-GFP interacts with 

the V1 subcomplex, whereas unbound GFP cannot co-immunoprecipitate VHA-C.    

 
Fig. 14: AtVMA22 interacts with the V1 subcomplex. GFP immunoprecipitations using anti- GFP-TRAP® 
coupled magnetic particles from 5 day old etiolated wild-type seedlings expressing free GFP under the 
control of the Ubi10 promotor and seedlings expressing AtVMA22-GFP under the endogenous 
promotor. Total protein extracts (Input), unbound protein flow (Flow) and immunoprecipitations (IP) 
were subjected to immunoblot using anti-GFP and anti-VHA-C antibodies. 

 
It remains to be shown if the interaction of AtVMA22 with the V1 subcomplex occurs in the 

cytosol or at the ER membrane.   
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Appendix 

Appendix A  

 

Fig. S. 1 vma12Δ cells transformed with either AtVMA12_N or with AtVMA12_C were grown in SD-URA 
medium to OD600= 1. vma12Δvma22Δ cells transformed either with AtVMA12_N and AtVMA22 or with 
AtVMA12_C and AtVMA22 were grown in SD-URA medium to OD600 = 1. As a control Wt (SF 838-1) 
cells were grown in YEPD medium to an OD600 = 1. The cultures were serially diluted (1:10, 1:100) and 
spotted onto YEPD medium buffered to pH 5 and on YEPD media containing and 100 mM CaCl2. 

 

 

  



28 I – Assembly of the V-ATPase 

 

 

Appendix B   

 

Fig. S. 2  GFP-AtVMA22 is recruited to the ER membrane by AtVMA12-RFP. Transient expression of 
fluorescently tagged AtVMA12 (RFP-AtVMA12), AtVMA21 (AtVMA21-RFP), AtVMA22 (GFP-AtVMA22) 
and p24 (p24-RFP; (Langhans et al., 2008)) in Arabidopsis root protoplasts. Fluorescence signals were 
detected 3 days after transformation. (A) GFP-AtVMA22 was co-expressed with (B) the ER marker p24-
RFP. (C) Overlay of GFP-AtVMA22 and p24-RFP. Both markers were separate from each other. (D) GFP-
AtVMA22 was co-expressed with (E) the assembly factor AtVMA21-RFP. (F) The overlay of both channels 
.. Co-expression of (G) GFP-AtVMA22 and (H) AtVMA12-RFP. The once cytosolic GFP-AtVMA22 is 
recruited to the ER membrane as can be seen in the (I) overlay.    
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 Appendix C 

 

Fig. S. 3: AtVMA12 and AtVMA22 expression profile correlates during development. The line graphs 
show raw intensity values with a logarithmic scale. AtVMA12 (green line) and AtVMA22 (blue line) 
expression is correlated during development with the siliques. Expression data were obtained from the 
AtGenExpress Developmental series (Schmid et al., 2005). 
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Discussion  

 

Protein folding and protein complex assembly in the endoplasmic reticulum takes place in 

a crowded environment, in which the protein concentration is estimated to be around 100 

µg/µl (Winnay and Kahn, 2011). In this environment hydrophobic domains within 

membrane-embedded proteins can interact non-specifically, forming unwanted 

aggregates. ER resident chaperones and assembly factors are known to shield hydrophobic 

protein patches and preserve assembly intermediates for subsequent processing.  

Here, we show that Arabidopsis has one gene for AtVMA12 and for AtVMA22 which are 

predicted to encode proteins with ∼18% amino acid identity with yeast Vma12p and ~26% 

amino acid identity with Vma22p respectively. Expression of a RFP-tagged AtVMA12 

together with an GFP-tagged AtVMA22 revealed that both proteins interact with each 

other in the ER membrane. Further biochemical analysis showed that AtVMA12 and 

AtVMA22 interact with components of the V0 and the V1 subcomplex of the vacuolar H+-

ATPase.  

 

Despite our efforts to unravel the molecular role of the assembly factors, it is still unclear 

how the membrane bound AtVMA12 and the cytosolic AtVMA22 co-assist in the assembly 

of the V0 subcomplex. Loss of Vma12p or Vma22p in yeast exposes Vph1p to rapid 

degradation. Interestingly artificial microRNAs directed against AtVMA12 and AtVMA22 

had no effect on the stability on the Arabidopsis Vph1p orthologue VHA-a3. From these 

results we concluded that the knockdown of the assembly factors was incomplete, 

therefore not affecting VHA-a3 protein levels. However, it cannot be ruled out that the 

assembly factors in plants function differently, thus possibly affecting other subunits of the 

V0 subcomplex. In contrast to yeast, all the Arabidopsis V0 subunits are encoded by gene 

families suggesting a requirement for a more accurate coordination to incorporate the 

correct isoform with respect to a complex developmental program. In the light of this 

evolutionary subunit diversification, the question arises whether the assembly factors 

have different affinities for the three VHA-a isoforms. Furthermore, high throughput yeast 

two-hybrid (Y-2-H) screens show that Vma22p interacts with subunit F of the V1 

subcomplex (Schroder and Kaufman, 2005), suggesting a role of Vma22p apart from V0 

subcomplex assembly. Interactome studies for Arabidopsis proteins confirmed a putative 

interaction of AtVMA22 with subunit F of the V-ATPase (Back et al., 2005). Interestingly, 
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unlike any other deletion in any of the V1 subunits, yeast mutants lacking Vma7p (subunit 

F) affect the stability of the V0 subcomplex (Graham et al., 1994). In the light of the 

interactome studies, it seems likely that the VMA22 proteins have a pivotal function, 

possibly on the one hand recruiting the V1 subcomplex to the ER and on the other hand 

modifying the V0 subcomplex in a way to become competent for V-ATPase holo-complex 

assembly. Biochemical evidence from Co-IP experiments presented in this work supports 

this hypothesis of AtVMA22 interacting with the cytosolic V1 subcomplex. However further 

characterization is necessary to elucidate whether AtVMA22 interacts with the V1 

subcomplex in conjunction with AtVMA12 at the ER membrane or independent of 

AtVMA12 in the cytosol.  

Furthermore the interactome studies suggest an interaction of AtVMA22 and 

Vma22p with components of the conserved oligomeric Golgi complex (COG complex). The 

COG complex seems to be essential for maintaining or establishing the structure and 

function of the Golgi. This complex is proposed to function in retrograde transport within 

the Golgi (Schroder et al., 2004), but also in ER to Golgi trafficking (Schroder et al., 2003; 

Wiederkehr et al., 2004). Although the exact mode of action of COG is unclear, it is 

thought to affect the intralumenal pH of the Golgi (Kaufman et al., 2002). Judging from 

these studies, it seems possible that AtVMA22 could interplay with COG at the Golgi, 

regulating V-ATPase activity, thereby affecting intralumenal pH. Indeed, our studies show 

that reduced transcript levels of AtVMA22 resulted in swollen and bent Golgi cisternea in a 

way typical for plant cells with reduced V-ATPase function (Strompen et al., 2005; Dettmer 

et al., 2006; Brüx et al., 2008; Neubert et al., 2008). In the light of the interactome studies, 

it does not seem too farfetched that the aberrant Golgi morphology could be the result of 

fewer assembled V1V0 subcomplexes at the Golgi. If AtVMA22 is acting at the ER as well as 

at the Golgi, how does AtVMA22 cycle between these compartments? The carboxy-

terminus of AtVMA12 contains a di-lysine (KK) – motif, which has previously been reported 

to be required for ER localization of type I and type II membrane proteins (Jackson et al., 

1990). Previous studies have shown that the carboxy-terminal KK-motif is directly 

recognized by COPI coat components and that KK containing proteins are incorporated 

into COPI-coated vesicles which travel from the Golgi to the ER (Wieland and Harter, 1999; 

McMahon and Mills, 2004). So far, our data does not exclude cycling of a complex of 

AtVMA12 and AtVMA22 between the ER and the Golgi. However, mutating the KK-motif 

did not alter the localization of AtVMA12, indicating that the C-terminal di-lysine motif is 



32 I – Assembly of the V-ATPase 

 

 

not a functional retention/recycling signal (data not shown). Nevertheless this does not 

entirely disprove the possibility of AtVMA12 cycling between the ER and the Golgi. We 

have shown that AtVMA12 specifically interacts with AtVMA22 and components of the V0 

subcomplex. But are both assembly factors specific chaperones for the plant V-ATPase? In 

vma22Δ and vma21Δ mutant cells, indirect immunofluorescence staining pattern for the 

yeast plasma membrane ATPase Pma1p and for the vacuolar integral membrane protein 

alkaline phosphatase (Alp) were indistinguishable from wild-type cells (Hill and Stevens, 

1994, 1995), indicating no defect in transport efficiency. Also quantitative analysis of Alp 

revealed no general defect in vacuolar transport efficiency, but it was neglected in general 

that total protein amount of Alp was decreased in vma22Δ and vma21Δ mutant cells. 

Whether this decrease in protein amount is a consequence of the poor growth of these 

mutant cells, or the absence of the assembly factors affects protein stability of other 

proteins is still unclear.  

 

Model for V-ATPase assembly  

The characterization of three ER localized chaperones, assisting in the assembly of the 

plant V-ATPase suggests that the assembly process is carefully organized. Based on our 

findings, we propose the following model for the assembly of the V-ATPase. AtVMA22 is 

recruited to the membrane by AtVMA12. We cannot exclude at this point that the 

formation of the AtVMA12-AtVMA22 heterocomplex precedes the interaction of AtVMA12 

with the V0 subcomplex. AtVMA22 interacts with the V1 subcomplex. At what point 

AtVMA22 interacts with the V1 subcomplex is unclear. AtVMA22 could be recruited to the 

ER in conjunction with the V1 subcomplex, thereby serving as a guiding protein, facilitating 

the holo-complex assembly. Alternatively AtVMA22-AtVMA12 heterocomplex formation 

precedes the interaction of AtVMA22 with the V1 subcomplex. Based on this model 

AtVMA22 could function as a plug, possibly controlling V-ATPase holo-complex assembly in 

the ER. The third assembly factor AtVMA21 associates independently with the V0 

subcomplex. The role of AtVMA12 and AtVMA22 in the further transport of the V-ATPase 

is unclear. AtVMA12 could together with AtVMA22 and the V-ATPase be packed into COPII 

coated vesicles and transported together with AtVMA21 to the Golgi. AtVMA21 

disassociates and is recycled to the ER membrane. Whether AtVMA12 or a heterocomplex 

of AtVMA12/AtVMA22 is also part of this transport process or whether AtVMA22 is able to 

interact with the COG complex at the Golgi, fulfilling regulatory functions is unclear.  
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Fig. 15 Model of the V-ATPase assembly in the ER. AtVMA12 and AtVMA22 associate to form a 
heterocomplex that interacts directly with the V0 subcomplex in the ER membrane. AtVMA22 can 
interact with the V1 subcomplex either independent of AtVMA12 or in conjunction with AtVMA12. 
AtVMA21 assists in the assembly of the proteolipid ring of the V0 subcomplex. Since VHA-a3-GFP cannot 
exit the ER in the absence of other V0 subunits, we propose that the V-ATPase complex must be 
assembled completely before it exits the ER. The precise role of AtVMA12 and AtVMA22 in the assembly 
and release of the V-ATPase V0 subcomplex is not yet clear.  
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Material and Methods 

Plant Materials and Growth Conditions 

Arabidopsis (Arabidopsis thaliana) ecotype Columbia 0 (Col-0) plants were grown on 

nutrient solid MS medium as described previously (Xiong et al., 2005) under long-day 

conditions (16 h light) at 22°C, unless described otherwise. Arabidopsis seeds were surface 

sterilized in 70% (v/v) Ethanol and 0.1% (v/v) Triton X-100 solution for 20 min followed by 

10 min sterilization with 95% (v/v) Ethanol. Seeds containing ethanol-inducible alc gene-

expression constructs were surface sterilized using 6 % sodium hypochlorite (NaClO) for 5 

min followed by several washing steps with ddH2O. Sterilized seeds were exposed to cold 

treatment for at least 2 d. For concanamycin A and MG132 treatment, 4-d-old seedlings 

grown on nutrient solid MS medium were transferred to liquid MS medium 1 μM 

concanamycin A or 50 µM MG132 and incubated for the indicated times.  

 

Staining of Seedlings with FM4-64 and Microscopy 

5 day old seedlings were transferred into liquid MS medium (1/2 MS + 0.5% sucrose; pH 

5.8) and stained with a final concentration of 1 μM FM4-64. FM4-64 was dissolved in 

DMSO and stored at -20°C.  

 

Constructs generated for this study 

Generation of pURT2Kan 

For the pURT2Kan, we generated a 678 bp DNA fragment encoding the ORF of monomeric 

red fluorescent protein (mRFP) by PCR amplification using Ara6-mRFP (Ueda et al., 2004) 

as template. BamHI restriction sites were introduced with primers RFP_BamHI_f and 

RFP_BamHI_r. The fragment was subcloned into the pJET1.2/blunt Cloning Vector (Thermo 

Fisher Scientific Inc) for sequencing and then ligated into the BamHI-BamHI digested 

pUTkan, which is a derivative of the pJH212 vector.  

 

Generation of pUTbar+ 

All basic plant binary vectors that confer Basta resistance in plants are based on the pTbar 

vector, a derivative of pPZP312 based on pPZP vectors (Pierce et al., 2007). We introduced 

a new MCS into the pTbar vector. The oligonucleotides MCS_for and MCS_rev were 
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annealed by stepwise lowering the temperarture from 99 °C to room temperature and 

phosphorylated at the 5’-ends using the T4 polynucleotide kinase (Fermentas). The pTbar+ 

was generated by restriction digestion of pTbar BamhI-SalI and subsequent ligation of the 

doublestranded oligo containing 5’-BamHI and 3’-SalI overhangs. Next a 647 bp fragment 

of the Ubiquitin-10 promoter sequence was PCR-amplified using the primer pair 

UBIQ10_BamHI_for and UBIQ10_BamHI_rev adding BamHI restriction sites on both ends. 

pTbar+ was digested with BamHI to ligate the Ubiquitin-10 fragment and generate 

pUTbar+. 

 

Generation of pUGT2kan 

For the pUGT2kan, the GFP5 (S65T) gene (kindly provided by C. Fankhauser, Geneva) was 

PCR amplified with the forward primer GFP_BglII_f and reverse primer GFP_BamHI_r. The 

721 bp fragment was subcloned into the pJET1.2/blunt Cloning Vector for sequencing. The 

GFP5 sequence was isolated using BglII and BamHI restriction enzymes, and ligated into 

the BamHI digested pUTkan, which is a derivative of the pJH212.  

 

Generation of pAtVMA22:AtVMA22-GFP 

For AtVMA22 (At1g20770) a 497bp DNA fragment encoding the promotor-sequence plus 

the 5’UTR was obtained by PCR amplification from genomic plant DNA material. A BamHI 

and SacII restriction site have been introduced with the primers 22_Prom_BamhI_f and 

22_Prom_SacII_r. The genomic sequence containing five introns and the terminator of 

AtVMA22 were amplified using primers 22_gen_SpeI_f and 22_gen_SalI_r. For an N-

terminal fusion of AtVMA22, the GFP5 (S65T) gene was PCR amplified with the forward 

primer GFP_SacII_f and reverse primer GFP_SpeI_r. In order to obtain the AtVMA22-GFP 

rescue construct the promoter sequence was isolated via SpeI-SalI restriction digest, 

ligated to the GFP5 sequence and subcloned into the pJET1.2/blunt Cloning Vector. The 

promotor-GFP fusion was isolated using BamHI and SpeI restriction enzymes, and ligated 

together with the genomic AtVMA22 sequence, which was isolated via restriction digest 

using SpeI and SalI into the binary vector pPZP312.  
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Generation of U:AtVMA12-RFP 

For AtVMA12 (At5g52980), the cDNA from Col-0 plants was amplified using primers 12_for 

and 12_rev. The 669 bp fragment was subcloned into the pJET1.2/blunt Cloning Vector. 

XmaI and SacII restriction sites were introduced by PCR amplification using primers 

At12_XmaI_f and At12_SacII_rev. The fragment was ligated into the XmaI-SacII digested 

pURT2kan, which is a derivate of the pJH212 vector.   

 

Generation of AlcA:amiAtVMA22 and AlcA:amiAtVMA12 

For the generation of artificial microRNA (amiRNA) constructs against AtVMA22 and 

AtVMA12, we used the WMD3 - Web app for the automated design of artificial microRNAs 

(http://wmd.weigelworld.org), where the principles for the design amiRNAs have been 

integrated into a Web-based tool (Schwab et al., 2006). In brief, At5g52980 (AtVMA12) 

and At1g20770 (AtVMA22) have been selected as target genes. The amiRNA sequences 

were selected, which were predicted to target specifically AtVMA12 and AtVMA22 

respectively.  

Four oligonucleotides were used for each target gene to engineer the amiRNA into the 

endogenous miR319a precursor by site-directed mutagenesis. As a template for the PCR, 

the plasmid pRS300, containing the miR319a precursor in the pBluescript (Stratagene) was 

used (plasmids were kindly provided by Detlef Weigl). The amiRNA sequence was digested 

using EcoRI and BamHI restriction enzymes and ligated into the EcoRI-BamHI digested 

pHanAlcA, a derivative of the pHANNIBAL (Wesley et al., 2001), in which the 35S promoter 

has been replaced by an ethanol-inducible promoter pAlcA (Roslan et al., 2001). The 

pAlcA:amiAtVMA12 and pAlcA:amiAtVMA22 casette was digested NotI and ligated into the 

binary plant vector pBart_AlcR, which contains the coding sequence for the transcriptional 

activator AlcR, which activates the ethanol-inducible promoter pAlcA in the presence of 

ethanol. Transgenic plants were selected based on the phosphinothricin (BASTA) 

resistance conferred by the bar gene contained in pBART_AlcR. Homozygous lines were 

established, and hypocotyl length of etiolated seedlings grown on MS plates containing 

0.2% ethanol was compared with seedlings grown in the absence of ethanol.   

Generation of the binary BIFC vectors pYNx, pxYN, pxYC, pYCx 

We amplified a 683 bp fragment via PCR containing the MCS, the c-myc tag and the N-

terminal 155aa of the e-YFP using the 35S:SPYNE173 (Accession-No: EU796363) as 

http://wmd.weigelworld.org/�
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template (Sze et al., 2002). A BamHI and a BglII restriction site have been introduced using 

primers YN173_BglII_f and YN173_BamHI_r. In order to generate the pYNx vector, we 

ligated the cassette containing the MCS, myc tag and the N-terminal fragment of the e-YFP 

into the BamHI digested pUTkan vector, which is a derivative of the pJH212. 

For pxYN, we ligated a 575bp PCR fragment generated with the primers cYN_SpeI_for and 

cYN_XbaI_rev, using the 35S:SPYNE (Accession-No: EU796373) as template (Sze et al., 

2002) into the SpeI digested pUTKan.  

The pYCx and the pxYC vectors were generated based on pUTbar+ described previously. 

For pYCx the primers nYC_AatII_For and nYC_AatII_Rev was used to PCR-amplify the eYFP-

HA cassette from the SPYCE(MR) template (Sze et al., 2002). The PCR fragment was 

subcloned into the pJET1.2/blunt vector and sequenced. Finally the eYPF-HA cassette was 

isolated from pJET and ligated into the AatII digested pUTbar+. Correct orientation of the 

insert was confirmed by test digestion. For the generation of pxYC the HA-eYFP cassette 

was PCR-amplified from SPYCE(M) using cYC_SalI_For and cYC_SalI_Rev. The fragment, 

flanked by SalI restriction sites was sub-cloned into the pJET1.2/blunt vector and subjected 

to sequence analysis. After digestion with SalI the HA-eYFP fragment was ligated into the 

SalI digested pUTbar+, designated pxYC.  

Generation of U:YN-AtVMA12 

A 678 bp fragment was separated from the U:AtVMA12:RFP (described above) construct 

via XmaI-SacII. The fragment was ligated into the XmaI-SacII digested pYNx to generate the 

U:YN:AtVMA12 construct.  

Generation of U:AtVMA22-YC 

A 660 bp PCR fragment was amplified using primers AatII_At22_f and SpeI_22_r 

introducing AatII-SpeI restriction sites. The vector pxYC was digested AatII-SpeI and the 

fragment containing AtVMA22 was ligated to generate the construct U:AtVMA22-YC.  

Generation of U:YN-AtVMA21 

We amplified AtVMA21, using pJet-AtVMA21a as a template (Neubert et al., 2008) 

introducing two EcoRV restriction sites. The fragment was ligated into the SmaI digested 

pYNx.  
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Generation of pVMA12:AtScVMA12_N 

For the pVMA12:AtScVMA12_N , a 461 bp PCR fragment encoding the ORF of AtVMA12 

until the first predicted transmembrane domain plus 40 bp of the 5’UTR of the yeast 

ScVMA12 promotor was generated using primers AtVMA12_P_f and AtVMA12_TMD1_r. 

As a template we used the U:AtVMA12:RFP. In a second PCR reaction a 350 bp fragment 

containing the ORF of ScVMA12 starting at the first predicted transmembrane domain plus 

40 bp of the 3’UTR of ScVMA12 was am amplified using primers Vma12_TMD1_f and 

ScVma12_ter_r. We used the pDJ2 as template (Jackson and Stevens, 1997). Both PCR 

fragments were used in a third PCR reaction to generate one chimeric construct 

AtScVMA12_N by using primers AtVMA12_P_f and ScVma12_ter_r.  

Generation of pVMA12:AtScVMA12_C 

For the pVMA12:AtScVMA12_C , a 732 bp PCR fragment encoding the ORF of ScVMA12 

until the second predicted transmembrane domain plus 40 bp of the 5’UTR of the yeast 

ScVMA12 promotor was generated using primers ScVMA12_P_f and AtVMA12_TMD2_r. 

As a template we used the pDJ2. In a second PCR reaction a 154 bp fragment containing 

the ORF of AtVMA12 starting at the second predicted transmembrane domain plus 40 bp 

of the 3’UTR of ScVMA12 was am amplified using primers Vma12_TMD1_f and 

AtVma12_ter_r. We used the pDJ2 as template (Jackson and Stevens, 1997). Both PCR 

fragments were used in a third PCR reaction to generate one chimeric construct 

AtScVMA12_C by using primers ScVMA12_P_f and AtVma12_ter_r.  

 

Blast searches were carried out using the TAIR database (http://www.arabidopsis.org) 

and the databases at the NCBI (http://www.ncbi.nlm.nih.gov). 

Molecular complementation 

Complementation of the atvma22 and atvma12 mutant 

The transgenic lines SALK_031513 (atvma22) and Sail_634_F09 (atvma12) were identified 

by SALK institute and by Nottingham Arabidopsis Stock Centre. The rescue constructs 

pAtVMA22:AtVMA22:GFP and U:AtVMA12:RFP were introduced into the Agrobacterium 

strain GV3101::pMP90. Col-0, atvma12/+, atvma22/+ plants were transformed using 

standard procedures. Transformants were selected by spraying 0.1% BASTA (AgrEvo, 

Düsseldorf, Germany) and screened via PCR for presence of the T-DNA disrupting the 

AtVMA12 and AtVMA22 gene. Seeds of BASTA-resistant atvma22/+ plants and atvma12/+ 

http://www.arabidopsis.org/�
http://www.ncbi.nlm.nih.gov/�
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plants were germinated on MS plates containing 50 μg ml−1 kanamycin. AtVMA22/+ plants 

were transferred to soil and then sprayed with Basta. To identify homozygous AtVM22 

plants the following primers were used:  Salk_l, Salk_r and LB1.3. 

To identify homozyogous AtVMA12 plants the following primers were used: Sail_12r, 

Sail_12l, LB1.  

Protein Extraction 

Frozen plant tissue (100 mg) was ground in liquid nitrogen. The powder was transferred 

into a 2 ml Eppendorf tube and 500 µl of Extraction buffer (0.35 M Saccharose, 70 mM pH 

8.8 Tris-HCl,  

10 % v/v Glycerol, 3 mM Na2EDTA, 1.5 % w/v PVP-40, 0.5 % Triton X-100, 0.15 v/v BSA, 4 

mM DTT, 1x Complete Protease Inhibitor [Roche Diagnostics GmbH]) was added. The 

homogenate was vigorously vortexed and then centrifuged at 10.000 g for 15 min at 4°C. 

The supernatant was afterwards transferred into a new Eppendorf tube and centrifuged 

again. Protein concentration of the supernatant was determined using Bradford assay 

(Bradford, 1976).    

Co-Immunoprecipitation 

Protein extracts subjected to Co-immunopreciptiation were obtained as described with 

some modifications (Schumacher et al., 1999). Plant tissue (1g/ml buffer) from 5 day 

etiolated Arabidopsis plants was homogenized in liquid nitrogen using extraction buffer 

(50 mM Tris pH 8, 50 mM NaCl, 10% Glycerol and 1 x Complete Protease Inhibitor [Roche 

Diagnostics GmbH]). The homogenate was centrifuged at 10.000 g at 4°C for 10 min. The 

supernatant was centrifuged at 150.000g for 30 min at 4°C. The supernatant was discarded 

and the pellet homogenized with a Potter-Elvehjem tissue grinder in extraction buffer. 

Protein concentration was determined using Bradford assay (Bradford, 1976). For 

immunoprecipitation, 100 µg protein was solubilized and incubated for 1 h at 4°C using 3 

% NP40. Solubilized proteins were separated from non-solubilized proteins by 

centrifugation at 150.000 g for 30 min. The supernatant was loaded on GFP-Trap® coupled 

to agarose beads (ChromoTek GmbH, München, Germany) and incubated for 2h at 4°C. 

Beads were washed three times and then proteins were eluted with SDS-sample buffer (4 

% SDS, 140 mM Tris-HCl pH 6.8, 20 % Glycerol, 0.01 % Bromophenolblue, 10 % ß-

Mercaptoethanol) at 50°C for 5 min.  
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Fluorescence Microscopy 

Fluorescence microscopy was performed using a Leica TCS SP5 confocal laser-scanning 

microscope. All CLSM images were obtained using the Leica Confocal software and a 63x 

water-immersion objective. The excitation wavelength was 488 nm; emission was 

detected for GFP between 500 and 530 nm, for RFP between 565 and 600 nm, and for 

FM4-64 between 620 and 680 nm. Adobe Photoshop was used for image processing. 

Quantification of colocalization was assessed using the Leica Confocal software.   

 

Primer used 

Name Sequence  

RFP_BamHI_f 5’- GGATCCATGGCCTCCTCCGAGGACGT-3’ 

RFP_BamHI_r 5’- GGATCCGGCGCCGGTGGAGTGGC -3’ 

MCS_for 5’- GATCCGACGTCTCTAGATTAATTAACCATGGACTAGTG-3’ 

MCS_rev 5’- TCGACACTAGTCCATGGTTAATTAATCTAGAGACGTCG-3’ 

UBIQ10_BamHI_for 5’- CTAGGATCCCGACGAGTCAGTAATAAACG-3’ 

UBIQ10_BamHI_rev 5’- CATGGATCCGCTGTTAATCAGAAAAACTC -3’ 

GFP_BglII_f 5’- ATAAGATCTAAGGAGATATAATCATGAG-3’ 

GFP_BamHI_r 5’- ATAGGATCCTTTGTATAGTTCATCCATGCC-3’ 

22_Prom_BamhI_f 5’- CTTGGATCCAGAAGAAGATGGGTTGAAG-3’ 

22_Prom_SacII_r 5’- CATCCGCGGCGAAATTTAGCTCCAAC-3’ 

22_gen_SpeI_f 5’- ATGACTAGTGCGGAGATTTACGAGGAAGG-3’ 

22_gen_SalI_r 5’- AATGTCGACCGTCGTGGATAAGAGATTAA-3’ 

GFP_SacII_f 5’- CCGCGGATGAGTAAAGGAGAAGAAC-3’ 

GFP_SpeI_r 5’- ACTAGTTTTGTATAGTTCATCCATGC-3’ 

12_for 5’- GTGTTTGGACCCGATCAAAGATCGATA-3’ 

12_rev 5’- GGAAAAGAATGCAAACAAAGTTCTACTCGAG-3’ 

At12_XmaI_f 5’- CATCCCGGGATGGATCAACCCGACCCG-3’ 

At12_SacII_rev 5’- CTACCGCGGTTGATTTTTCTTAGTAGTGGGAG-3’ 

YN173_BglII_f 5’- ACTAGATCTATGGTGAGCAAGGGCGAGGAG-3’ 

YN173_BamHI_r 5’- GAAGGATCCAAGATCCTCCTCAGAAATC-3’ 

cYN_SpeI_for 5’- CCAACTAGTATGGAGCAAAAGTTGATTTC-3’ 

cYN_XbaI_rev 5’- CATTCTAGACTACTCGATGTTGTGGCGGATC-3’ 
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nYC_AatII_For 5’ -CATGACGTCATGGACAAGCAGAAGAAC-3' 

nYC_AatII_Rev 5'- CCTGACGTCAGCGTAATCTGGAACATCG-3' 

cYC_SalI_For 5'- CATGTCGACATGTACCCATACGATGTTC-3' 

cYC_SalI_Rev 5'- GATGTCGACTTACTTGTACAGCTCGTC-3' 

AatII_At22_f 5’- GACGTCATGGCGGAGATTTACGAGG-3’ 

SpeI_22_r 5’- ACTAGTCTTCTCTGTGATCGCTC-3‘ 

AtVMA12_P_f 5’- GGATAATTGACGATTGGCATCACATAAAAGAACTCTAATG 

GATCAACCCGACCCG-3’ 

AtVMA12_TMD1_r 5’- CAAGAACGTTGAAAACAGTGGTAACGAGCTGGTCTTTGTA-3’ 

Vma12_TMD1_f 5’- GTTACCACTGTTTTCAACGTTCTTGTAAGTGTCATATCGG-3’ 

ScVma12_ter_r 5’- GCTCTCGGATCTCGGAGTTCTTATTTATAAAATGATCAGTTAA 

GCGTAATCTGGAACGT-3’ 

ScVMA12_P_f 5’-GATAGGATAATTGACGATTGGCATCACATAAAAGAACTCTAA 

TGTTCGAAATTAAACTG-3’ 

AtVMA12_TMD2_r 5’- GTTATACACAACCACATCTGCTACTAAGACCAATATTCC-3’ 

Vma12_TMD1_f 5’- GTAGCAGATGTGGTTGTGTATAACAAAACGTCTAAAGATG-3’ 

AtVma12_ter_r 5’- GCTCTCGGATCTCGGAGTTCTTATTTATAAAATGA 

TCAGCTATTGATTTTTCTTAGTAG-3’ 

Salk_l 5′- CGGTTTGACCCGAAAGAGGTA-3′ 

Salk_r 5′- GATCAAACCATCCCTGCAAAA-3′ 

LB1.3 5′- ATTTTGCCGATTTCGGAAC-3′ 

Sail_12r 5’-GGATGCTTCTGGGTTTCTTTC 

Sail_12l 5’-TCAGTAGGAAAAGAATGCAAACAAA -3’ 

LB1 5’-GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC -3’ 
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Abstract 

In a eukaryotic cell approximately one-third of all proteins are targeted to the secretory 

pathway, thus making the endoplasmic reticulum (ER) the first organelle they encounter 

(Ghaemmaghami et al., 2003). In this crowded environment the ER provides a save 

environment for protein folding and oligomerisation. In a sophisticated quality control 

(QC) system, so-called chaperones monitor the maturation process of the proteins, 

ensuring that only correctly folded proteins are secreted (Ellgaard and Helenius, 2003).  

The ERQC been defined as a system controlling folding and maturation of proteins 

(Brodsky and McCracken, 1999; Ellgaard and Helenius, 2001), but so far no system has 

been described monitoring the function of proteins. Here we have presented data on 

three VHA-a3 point mutations reducing V-ATPase activity to a varying degree, depending 

on the mutation. Further characterization of these mutations has led us to assume that 

the presence of active V-ATPase complexes determines the fate of non-functional V-

ATPase complexes. To decipher the mechanism behind this function dependent ER quality 

control (FERQCL), we showed that the ER chaperone calnexin is required to retain non-

functional V-ATPase complexes in the ER. The impaired growth phenotype associated with 

inactive V-ATPase complexes not being retained in the ER emphasizes the biological 

relevance of a FERQCL system.  
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Introduction 

Malfunctioning and defective products in today’s world are often the reason for customer 

complaints leading to subsequent trials, costs and a ruined reputation for the company. By 

installing a highly accurate quality control within the production line of a company, 

defective products can be sorted out before they ever reach a customer. Therefore a 

quality control is essential for the survival of a company in a competitive market. In 

biology, eukaryotes have installed this economic principle and employed a variety of 

mechanisms to monitor the quality of their cellular products (proteins). For almost one-

third of all eukaryotic proteins, which are destined for the secretory pathway the 

endoplasmatic reticulum (ER) is the first organelle they encounter (Ghaemmaghami et al., 

2003; Kanapin et al., 2003). Here, an ER quality control (ERQC) system ensures that only 

correctly folded proteins reach the Golgi (Ellgaard and Helenius, 2003). Primary quality 

control identifies structural and biophysical features that allow distinction of mature 

molecules and immature proteins. Malfolded proteins are retained, while correctly folded 

proteins leave the ER. The efficiency of this system is mainly determined by 

conformational stability of the folded protein, which is defined as the free energy of 

folding (Shusta et al., 1999). In other words, the higher the free-energy barrier between 

native and non-native structure, the lower the fraction that is retained in the ER. Mutant 

as well as wild-type proteins are present in a folding equilibria transiently unfolding, 

exposing chaperone binding sites and returning to their native conformation (Englander et 

al., 2007; Liu and Howell, 2010). Due to the lower conformational stability the 

incompletely folded form of a mutant protein is favored, making chaperone binding more 

frequent. Although the conformational stability provides an explanation for the retention 

of non-native proteins, the molecular mechanisms guiding chaperones, like calnexin and 

calreticulin to their target molecules are not well understood. In addition, it remains to be 

shown, whether non-functional but correctly folded proteins can be recognized by the 

ERQC and if so, how this machinery discriminates between functional and non-functional 

substrates.  

We have designed a pH-sensor by generating an Arabidopsis mutant VHA-a3 

protein (VHA-a3R729N) fused to the pH-sensitive orange seapen Ptilosarcus gurneyi GFP 

(PtGFP) (Schulte et al., 2006). In yeast, introduction of this very specific amino acid change 

abolished V-ATPase activity and proton translocation, while assembly of the V-ATPase 

complex is not affected (Leng et al., 1996; Kawasaki-Nishi et al., 2001a). When expressed 



44 II – Quality control of the plant V-ATPase 

 

 

in the yeast vph1/stv1Δ mutant strain, all mutant V-ATPase complexes were transported 

to the vacuolar membrane, passing normal ERQC despite their impaired functionality.  

We expressed VHA-a3R729N-ptGFP in wild-type Arabidopsis thaliana and in vha-

a2vha-a3 double mutants, lacking both tonoplast-localized isoforms (VHA-a2 and VHA-a3) 

and as a result has no tonoplast V-ATPase activity (Krebs et al., 2010). Interestingly, VHA-

a3R729N-ptGFP was retained in the ER in wild-type plants, while the mutant protein was 

efficiently transported to the vacuolar membrane in the vha-a2vha-a3 double mutant 

(data not shown). To gain insight into the mechanism controlling the localization of the 

same protein in different genetic backgrounds, we repeated these experiments using GFP 

fusion constructs. 
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Results  

The VHA-a3R729N-GFP containing V-ATPase complexes are retained in the ER 

and degraded by the 26S Proteasome in wild type plants 

We expressed the VHA-a3R729N-GFP protein under the control of the UBI10 promotor in 

Col-0 and vha-a2vha-a3 Arabidopsis plants. Plants carrying the construct were 

indistinguishable from the wild-type and the vha-a2vha-a3 mutant. (Fig. S. 4).    

Using CLSM analysis, VHA-a3R729N-GFP was localized in the ER in cells of the root 

differentiation and elongation zone in wild-type seedlings (Fig. 16A, D). In contrast, VHA-

a3R729N-GFP in the vha-a2vha-a3 double mutant localized to the tonoplast (Fig. 16B, E). 

Total proteins were extracted from 5 day old seedlings expressing VHA-a3R729N-GFP or 

VHA-a3-GFP. Immunoblotting with anti-GFP antibodies revealed that the signal intensity of 

independent plant lines expressing VHA-a3R729N-GFP was considerably lower than in 

plants expressing VHA-a3-GFP (Fig. 16G). We found that the low signal intensity 

corresponded to low protein levels of VHA-a3R729N-GFP (Fig. 16G). We were curious 

whether the low protein amount in Arabidopsis could be ascribed to a degradative process. 

Arabidopsis seedlings were treated for 2 h with proteasome inhibitor MG132 (Fig. 16G). 

The levels of VHA-a3R729N-GFP in wild-type Col-0 increased 4 fold after treatment, 

suggesting that VHA-a3R729N-GFP is degraded by the 26S proteasome (Fig. 16G). To rule 

out that the degradation is caused by VHA-a3 outcompeting VHA-a3R729N-GFP for 

available V0 subunits, we asked whether the mutant protein has been incorporated into 

the V-ATPase holo-complex. 
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Fig. 16 VHA-a3R729N-GFP is retained in the ER in wild-type Col-0 plants and localizes to the tonoplast 
in the vha-a2vha-a3 double mutant. (A-F) Root tips of 5-day old Arabidopsis seedlings were subjected to 
CLSM analysis (plant lines as indicated). (G) VHA-a3R729N-GFP is stabilized after MG132 treatment. 5 
day old Arabidopsis seedlings have been treated with 50µM of MG132 (+). In control lanes (-) no MG132 
was applied. After 2h total protein extracts were made from 50 seedlings. (H) VHA-a3 interacts with the 
V1 subcomplex at the ER. GFP immunoprecipitations using anti- GFP-TRAP® coupled magnetic particles 
from 5 day old etiolated wild-type seedlings (Col-0) expressing VHA-a3R729N-GFP or VHA-a3-GFP. Total 
microsomal membranes (Input), unbound protein flow (Flow) and immunoprecipitations (IP) were 
subjected to immunoblot using anti-GFP and anti-VHA-C antibodies. 
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Subunit VHA-C co-immunoprecipitated with VHA-a3R729N-GFP and VHA-a3-GFP as shown 

in Fig. 16H. We inferred that the co-immunoprecipitation of subunit VHA-C with VHA-a3-

GFP/VHA-a3-GFPR729N reflects the assembly of the V1 and the V0 subcomplex. This 

simplification is justified from previous experiments, demonstrating that only assembled 

V1 subcomplexes are able to associate with fully assembled V0 subcomplexes (Ho et al., 

1993).  

Taken together, VHA-a3R729N-GFP is incorporated into the V-ATPase holo-complexes and 

transported to the vacuole in the vha-a2vha-a3 background. In contrast, in wild-type 

plants V-ATPase complexes containing VHA-a3R729N-GFP are retained in the ER and 

degraded by the 26S proteasome. Consistent with these results from Arabidopsis we 

observed a similar behavior of the mutated Vph1p yeast orthologue. In wild-type cells 

Vph1R735N-GFP is retained in the ER, while in the vph1/stv1Δ mutant, Vph1R735N-GFP 

localizes in the ER (Upendo Lupanga, Masterthesis, 2011). We assumed that the retention 

of V-ATPase complexes containing VHA-a3R729N-GFP resulted from the presence of 

functional V-ATPase complexes. We therefore asked, whether V-ATPase activity might be a 

required for the retention of VHA-a3R729N-GFP.    

V-ATPase activity is required to retain VHA-a3R729N-GFP in the ER 

If V-ATPase acitivty is required to retain VHA-a3R729N-GFP in the ER, we assumed that by 

preventing proton translocation VHA-a3R729N-GFP would be released from the ER into 

the endocytic pathway.  

Concanamycin A (ConcA) has been proven to be a specific inhibitor of the V-ATPase (Drose 

and Altendorf, 1997). In addition, ConcA interferes with both endocytic and secretory 

trafficking, resulting in an accumulation of cargo from both pathways in the ConcA-

induced vesicle aggregates (Dettmer et al., 2006). 5 day old wild-type seedlings expressing 

VHA-a3R729N-GFP were incubated with 5 µM ConcA for 2h. VHA-a3R729N-GFP containing 

V-ATPase complexes exited the ER, now accumulating in dots. To investigate the nature of 

these dots, we incubated ConcA treated plants with the lipophilic styrl dye FM4-64. FM4-

64 is endocytosed and labels endosomal, prevacuolar and vacuolar compartments over 15 

min to 2 h (Dettmer et al., 2006). After 15 min co-localization between VHA-a3R729N-GFP 

and the FM4-64 at the trans-Golgi network (TGN) was observed (Fig. 17B), whereas no 

colocalization could be observed for the untreated control (Fig. 17A). Quantification of 

CLSM images revealed that ~70% of the pixels with signal intensities above the chosen 

threshold overlapped between the red and green channels. In comparison to the 
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untreated plants, this overlap represents a genuine colocalization of the FM and GFP signal 

at the TGN (Fig. 17D). Consistent with these results, relocalization of Vhp1R735N-GFP to 

the Golgi after ConcA treatment was observed in wild-type yeast (U.Lupanga, 

Masterthesis, 2011). 

 
Fig. 17 The VHA-a3R729N-GFP exits the ER upon Concanamycin A treatment. CLSM analysis of 5 day 
old Arabidopsis wild-type Col-0 seedlings. (A) Root expressing VHA-a3R729N-GFP incubated with FM4-64 
for 15 min. (B) Root expressing VHA-a3R729N-GFP treated with 5 µM Concanamycin A (ConcA) and 
incubated with FM4-64 for 15 min. (C) Root expressing VHA-a3-GFP, treated with 5 µM ConcA and 
incubated with FM4-64 for 15 min. (D) Quantification of colocalization between VHA-a3R729N-GFP and 
FM4-64, treated with and without ConcA. Data represent the means of 10 independent experiments 
±SD. CLSM bars = 10 µm 
 

From these results, we concluded that V-ATPase activity is a required for the retention of 

non-functional complexes in the ER in yeast and in plant. Interestingly 2h ConcA treated 

VHA-a3-GFP plants did not show any colocalization with the FM4-64 (Fig. 17C). Extending 

ConcA treatment from 2h to 6h up to 12h did not change the exclusive vacuolar 

localization of VHA-a3-GFP (data not shown), indicating a TGN-independent transport 

route of VHA-a3-GFP to the vacuole. 
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VHA-a3E780Q-GFP is transported to the vacuole 

Having shown that the inactive V-ATPases are retained in the ER in the presence of active 

V-ATPase complexes, we were interested if there was an activity threshold controlling the 

release or the retention. To that end, we replaced the glutamic acid with a glutamine at 

amino acid position 789 within the VHA-a3 protein. The particular exchange within Vph1p 

has been shown to reduce V-ATPase activity to ~ 20 % in yeast (Leng et al., 1996). The 

VHA-a3E780Q-GFP protein was expressed under the control of the UBI10 promotor in 

wild-type Col-0 and in the vha-a2vha-a3 double mutant. Plants were indistinguishable 

from untransformed control plants (Fig. S. 4). Five independent homozygous plant lines 

were used for CLSM analysis for each genetic background. In wild-type plants we observed 

a clear labeling of the vacuolar membrane (Fig. 18A). In the vha-a2vha-a3 mutant VHA-

a3E780Q-GFP was also localized to the tonoplast (Fig. 18B).   

 

Fig. 18  VHA-a3E780Q-GFP 
localizes to the vacuolar 
membrane. (A) CLSM analysis 
of Col-0 seedling root tip 
expressing VHA-a3E780Q-
GFP. (B) CLSM analysis of vha-
a2vha-a3 seedling root tip 
expressing VHA-a3E780Q-
GFP. CLSM bars = 10 µM 

 

 

 

VHA-a3R790K-GFP localized to the trans-Golgi network and the vacuole 

Our results so far showed that V-ATPases, possessing only 20 % of activity exit the ER, 

reaching the tonoplast. The exchange of another conserved amino acid residue allowed us 

to lower the V-ATPase activity further. According to Kawasaki-Nishi et al. the exchange of 

this conserved arginine residue at amino acid position 790 to a lysine residue reduces V-

ATPase activity to ~10 % and ~5 % proton translocation activity (Kawasaki-Nishi et al., 

2001a). We expressed the VHA-a3R790K-GFP under the control of the UBI10 promotor in 

wild-type Col-0 and in the vha-a2vha-a3 mutant. Except for one plant line, all plants 

carrying the construct were indistinguishable from the untransformed control (Fig. S. 4). 

One line expressing VHA-a3R790K-GFP in the wild-type background showed a growth 

phenotype similar to the vha-a2vha-a3 mutant (v23-like) (Fig. 19D). We reasoned that this 
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negative effect was caused by an overexpression of the VHA-a3R790K-GFP protein. 

Therefore we generated total protein extracts from 5-day old etiolated VHA-a3-GFP wild-

type and VHA-a3R790K-GFP mutant seedlings and probed with anti-GFP antibodies.  

 
Fig. 19 VHA-a3R790K-GFP has a negative effect on plant growth. Arabidopsis wild-type and vha-a2vha-
a3 plants grown on soil with 16-h light/ 8-h dark cycle. (A) vha-a2vha-a3 double mutant. (B) Wild-type 
Col-0 plant expressing VHA-a3-GFP. (C-D) Wild-type Col-0 expressing VHA-a3R790K-GFP. (B-D) The 
presence of the expressed protein was demonstrated by immunodetection with anti-GFP-antibodies. 
 

Immunoblots showed a high abundance of the VHA-a3R790K-GFP protein in the wild-type 

line with the v23-like phenotype (Fig. 19D). We next assayed the localization of VHA-

a3R790K-GFP in both genetic backgrounds. In 5 day old seedlings, we observed that the 

majority of VHA-a3R790K-GFP localized to the vacuolar membrane and to a punctuate 

pattern in root cells of the differentiation zone and elongation zone in wild-type and in the 

vha-a2vha-a3 double mutant. To determine the identity of the dots we incubated 

seedlings for 15 min with FM4-64. We observed a colocalization between the VHA-

a3R790K-GFP and FM4-64 at the TGN (Fig. 20C). The localization of VHA-a3R790K-GFP in 

plants exhibiting the v23-like phenotype was indistinguishable from plants with an 

unremarkable phenotype. No colocalization was observed for wild-type VHA-a3-GFP 

control plants incubated with FM4-64 (Fig. 20A).  

Taken together, based on the localization and the level of expression, we assume that the 

v23-like phenotype is caused by a competition between VHA-a3R790K-GFP and VHA-a3 for 

available V-ATPase complexes. This competition lowers the total proton translocation 

efficiency and as a consequence reduces plant growth. Whereas ~20% of V-ATPase activity 

seems to be sufficient to correctly target V-ATPase complexes to the tonoplast, a 

reduction to 10 % results in dual labeling of the TGN and the vacuolar membrane. Inactive 

V-ATPase complexes are retained in the ER in the presence of active V-ATPase complexes 

by a yet unknown mechanism.  
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What molecular components are required to retain non-functional V-ATPase 

complexes? 

Having shown that V-ATPase activity is required to retain non-functional V-ATPase 

complexes in the ER, we wanted to understand the molecular mechanism of action that 

retains non-functional complexes. One promising candidate marked calnexin, an ER 

chaperone, necessary for retaining non-native proteins in the ER (Ellgaard and Helenius, 

2003). Calnexin has been found to co-immunoprecipitate with V0 subcomplexes isolated 

from oat seedlings (Li et al., 1998). The genome of Arabidopsis thaliana encodes two 

paralogous genes for calnexin (AtCNXI At5g61790.1; AtCNXII At5g07340). We have 

designed inducible artificial microRNA (amiRNA) against calnexin I and II (amiCNX). 

Expression of a construct was either controlled by the ethanol-inducible promoter AlcA 

(Roslan et al., 2001) or by the UBI10 promoter. VHA-a3R729N-GFP and VHA-a3-GFP plants 

were transformed and T2 lines were established. The efficiency of the calnexin knockdown 

was determined by western blot analysis using an anti-calnexin antibody (Fig. 21A). Lines 

that showed a significant decrease in the protein level of calnexin were used for CLSM 

analysis. Arabidopsis seedlings were grown five days on MS plates and on MS plates 

containing 0.2% ethanol (EtOH) for induction. Plant lines only expressing VHA-a3-GFP 

showed vacuolar labeling under both growth conditions (Fig. 21B-C). VHA-a3R729N-GFP 

was localized in the ER independent of the growth condition (Fig. 21D-E).   

 

 

Fig. 20 VHA-a3R790K-GFP localizes to the TGN and to the vacuolar membrane. (A) CLSM analysis of a 
wild-type Col-0 seedling root tip expressing VHA-a3-GFP incubated with FM4-64 for 15min. (B) CLSM 
analysis of a vha-a2vha-a3 seedling root tip expressing VHA-a3R790K-GFP. (C) CLSM analysis of a wild-
type Col-0 seedling root tip expressing VHA-a3R790K-GFP incubated with FM4-64 for 15min. 
Colocalization indicated by arrows. CLSM bars = 10 µM  
 

http://arabidopsis.org/servlets/TairObject?id=133969&type=gene�
http://arabidopsis.org/servlets/TairObject?id=135897&type=locus�
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Fig. 21 Calnexin I and calnexin II retain VHA-a3R729N-GFP in the ER. (A) Calnexin protein levels are 
reduced in independent lines expressing the amiRNA construct. Total proteins were extracted from 5-
day old Arabidopsis seedlings. Calnexin protein levels were detected using anti-calnexin (α-CNX) 
antibodies. (B-G) CLSM anaylsis of wild-type seedlings, grown on MS medium with and without 0.2% 
Ethanol (EtOH), expressing (B-C) VHA-a3-GFP, (D-E) VHA-a3R729N-GFP and (F-G) VHA-a3R729N-GFP 
with amiCNX. (H) GFP immunoprecipitation from 5 day old etiolated Arabidopsis seedlings co-
expressing VHA-a3-GFP, VHA-a3R729N-GFP, VHA-a3R790K-GFP and VHA-a3E780Q--GFP using GFP-
TRAP® coupled magnetic particles. Total microsomal extracts (Input), unbound protein flow (Flow) and 
immunoprecipitates (IP) were subjected to immunoblots using anti-GFP and anti-Calnexin (CNX) 
antibodies. 
 
However, lines co-expressing VHA-a3R729N-GFP and the amiCNX under inducing 

conditions showed relocalization of VHA-a3R729N-GFP to the vacuolar membrane (Fig. 

21G), indicating that in the wild type calnexin is required for the retention of VHA-

a3R729N-GFP in the ER. The relocalization was observed in two independent lines with the 

inducible promotor and in two independent lines, where the construct was driven by the 

UBI10 promotor. Due to the general role of calnexin in the primary ERQC system, the 

knockdown could have decreased overall ERQC efficiency, releasing VHA-a3R729N-GFP 

and potentially other aberrant proteins from the ER. We therefore asked whether the 

retention of VHA-a3R729N-GFP required a direct interaction with calnexin. Total 

microsomal membranes from 5 day old etiolated Arabidopsis seedlings expressing VHA-

a3/-R729N/-R790K/-E780Q –GFP were extracted. We were unable to co-

immunoprecipitate calnexin with VHA-a3-GFP and VHA-a3E780Q-GFP, while a faint 

calnexin band was detected in the IP lane of VHA-a3R729N-GFP and VHA-a3R790K-GFP 

(Fig. 21H). From this we conclude that non-functional complexes specifically interact with 

calnexin, while functional complexes are competent to leave the ER. VHA-a3E780Q-GFP 

and VHA-a3-GFP might be transported to the tonoplast very efficiently, thus not allowing a 

detectable interaction of calnexin with these proteins. We observed a growth phenotype 

for the R729N mutation in the amiCNX background (Fig. 22B). In lines, where the amiCNX 

construct was driven by the UBI10 promotor and VHA-a3R729N-GFP was localized to the 

vacuole, plant growth was reduced. From this we conclude that the non-functional V-

ATPase V0 subcomplexes at the tonoplast compete with wild-type subcomplexes for 

available V1 subcomplexes, thus reducing overall V-ATPase activity, leading to the 

observed growth phenotype. 
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Fig. 22 VHA-a3R729N-GFP plants expressing 
the amiCNX construct show a growth 
phenotype. (A) VHA-a3-GFP plant expressing 
the artificial microRNA against calnexin under 
the control of the UBI10 promotor. (B) VHA-
a3R729N-GFP plant expressing artificial 
microRNA against calnexin under the control 
of the UBI10 promotor.  

 

 

If the V-ATPase is already assembled in the ER, is it active?  

We have seen that the retention of the non-functional V-ATPase complexes is dependent 

on V-ATPase activity, yet it remains to be shown, whether the V-ATPase complexes are 

active in the ER. To determine if and to which extend the Arabidopsis ER might be acidified 

and if this is due to the activity of the V-ATPase, we used the pH-sensitive GFP from the 

orange seapen Ptilosarcus gurneyi (PtGFP). To ensure the retention of the PtGFP to the 

lumen of the ER we generated a PtGFP construct with an N-terminal signal peptide derived 

from an Arabidopsis vacuolar basic chitinase (SP) and the C-terminal amino acid sequence 

KDEL. Expression of the protein was controlled by the UBI10 promotor. Previous 

experiments using normal GFP fusions efficiently targeted SP-GFP-HDEL to the ER lumen in 

Arabidopsis (Matsushima et al., 2003b; Matsushima et al., 2003a). Arabidopsis protoplasts 

were transformed with the U:SP-PtGFP-KDEL construct and localization was monitored 

using CLSM analysis. As is shown in Fig. 23A the GFP fluorescence was observed in the ER 

lumen. We generated transgenic Arabidopsis bearing the U:SP-PtGFP-KDEL construct. All 

20 T1 lines (à 8 individuals), which were screened failed to give any detectable 
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fluorescence above the autofluorescence level (data not shown). The expression of these 

proteins in Arabidopsis was below the detection level, due to either strong degradation or 

poor expression.   

 

Fig. 23 Expression of SP-pHluorin-HDEL under control of the p16 promotor results in ER localization in 
stable transformed plants. (A) SP-PtGFP-KDEL was expressed under the control of the Ubiquitin10 
promotor in Arabidopsis root protoplasts. (B) Sp-pHluorin-HDEL was expressed under the control of the 
Ubiquitin10 promotor in Arabidopsis root protoplasts. Fluorescence signals were detected 3 days after 
transformation. (C) Arabidopsis root tips of 5 day old seedlings stably expressing SP-pHluorin-HDEL 
under the control of the p16 promotor. CLSM bars represent 10 µm. 

Therefore, we exchanged the PtGFP and the C-terminal KDEL sequence for the ratiometric 

pHluorin and a C-terminal HDEL sequence, thus generating an U:SP-pHluorin-HDEL 

construct. Similar to the previous construct, ER localization of the pHluorin protein could 

be confirmed in transient experiments (Fig. 23B), while stable transformed plants lacked 

fluorescence signals (data not shown). From these experiments we concluded that high 

expression of the pH sensitive GFP is required for fluorescence detection in stable 

transformed Arabidopsis plants. Hence, we generated SP-pHluorin-HDEL construct under 

the control of the p16 ribosomal promotor. As can be seen in Fig. 23C, stable transformed 

Arabidopsis T1 plants exhibited robust ER localization of the SP-pHluorin-HDEL.   

 

Is the V-ATPase part of the ERQC system? 

We observed that VHA-a3R729N-GFP is retained in the ER, possibly due to absence of V-

ATPase activity in the ER. We next ask, whether this loss of activity effects ERQC control in 

general. To answer this question we have transformed the vha-a2vha-a3 double mutant 

with well established markers for ERQC. The mutant of Arabidopsis thaliana 

Carboxypeptidase Y (AtCPY*) is recognized by the ER associated degradation (ERAD) 

system retranslocated to the cytosol by AtCDC48 and degraded in a proteasome 
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dependent manner (Yamamoto et al., 2010). The structurally mutant, but biochemically 

functional brassinosteroid recepter bri1-9 is retained in the ER due to the ERQC. Reduction 

of the fidelity of the retention-based ER quality control, allows bri1-9 to be exported to the 

cell surface (Jin et al., 2007). If the V-ATPase activity in the ER is crucial for the recruitment 

of ERQC proteins like AtCDC48, we would expect a transport of AtCPY* along the secretory 

pathway to the vacuole, and the export of the bri1-9 along the secretory pathway to the 

plasmamembrane.  

 

Fig. 24 The vha-a2vha-a3 double mutant does not affect other ER quality control processes. Plants 
were grown for 5 days on MS medium. (A) Wild-type Col-0 plants expressing bri1-9-GFP under the 
control of the Ubiquitin10 promotor. (B) AtCPY*-GFP expressed under the control of the 35S promotor 
in vha-a2vha-a3 double mutant. (C) bri1-9-GFP expressed under the control of the Ubiquitin10 
promotor in vha-a2vha-a3 plants 
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Appendix 

 
Fig. S. 4: VHA-a3 mutants do not complement the vha-a2vha-a3 phenotype. (A-H) Phenotype of VHA-
a3 mutants in Col-0 wild-type and vha-a2vha-a3 3 week old Arabidopsis plants (as indicated). 3 week old 
Arabidopsis wild-type and vha-a2vha-a3 plants grown on soil with 16-h light/ 8-h dark cycle. 
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Discussion  

V-ATPase activity determines the fate of non-functional complexes 

In this study, we have demonstrated that VHA-a3R729N-GFP is part of the assembled V-

ATPase complex in Arabidopsis. Previous experiments in yeast have stated that the 

mutation only affects V-ATPase activity, rendering the entire complex inactive, without 

affecting assembly or composition (Kawasaki-Nishi et al., 2001a). Complexes expressing 

VHA-a3R729N-GFP were not able to complement the growth phenotype of vha-a2vha-a3 

double mutant, from which we conclude that these complexes were inactive and non-

functional in Arabidopsis. Intracellular localization of VHA-a3R729N-GFP was different, 

depending on whether it was expressed in the vha-a2vha-a3 double mutant or in the wild-

type Col-0. We showed that the protein was degraded by the proteasome in the wild-type, 

from which we conclude that VHA-a3R729N-GFP becomes poly-ubiquitylated prior to 

degradation. Once ubiquitylated, this polytopic membrane protein must be extracted from 

the membrane, but it is unclear how this is accomplished in the case of VHA-a3R729N-GFP.  

In a few cases, it has been reported that the proteasome is sufficient for retro-

translocation (Lee et al., 2004). However it has been reported that polytopic membrane 

proteins can be extracted from the ER and targeted to the proteasome with the help of an 

AAA+-ATPase AtCDC48 complex (Marshall et al., 2008; Yamamoto et al., 2010). In contrast 

to the expression in wild-type plants we observed an overall low expression of the VHA-

a3R729N-GFP in the vha-a2vha-a3 background that could not be stabilized after MG132 

treatment. It is possible that the low expression of VHA-a3R729N-GFP in the vha-a2vha-a3 

double mutant and its insensitivity to MG132 is the result of proteasome independent 

degradation. Until today, the mechanism responsible for the recognition and degradation 

of tonoplast integral membrane proteins is largely unknown. For the Arabidopsis tonoplast 

potassium channel AtTPK1 recent data suggests that AtTPK1 is degraded either via 

internalization into the vacuolar lumen or vesicles bud from the vacuole and fuse with 

multivesicular bodies (MVBs)(Maitrejean et al., 2011). The authors also suggest that this 

degradation might represent a general turnover pathway of tonoplast integral membrane 

proteins, thereby possibly also applying to VHA-a3R729N-GFP. Consistent with the results 

obtained in planta, we observed the same intracellular redistribution in yeast. 

Vph1R735Np-GFP was efficiently transported to the vacuolar membrane, while it was 

retained and degraded in the wild-type (Upendo Lupanga, Masterthesis, 2011).  
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How can this difference in localization of VHA-a3R729N-GFP (Vph1R735N-GFP) in two 

different genetic backgrounds be explained? When Vph1R735N was first described the 

mutation was shown to not affect V-ATPase assembly or localization (Kawasaki-Nishi et al., 

2001a). In these studies the mutant protein was only expressed in the vph1/stv1Δ mutant, 

where Vph1R735N was not competing with wild-type Vph1p and Stv1p for available V0 

subunits. By expressing VHA-a3R729N-GFP (Vph1R735N-GFP) in the wild-type background, 

wild-type proteins might outcompete their mutant counterparts. Although we could not 

answer whether VHA-a3 is favored over VHA-a3R729N-GFP in V-ATPase assembly, we did 

show that VHA-a3R729N-GFP was incorporated into the V-ATPase complex. However the 

relocalization of VHA-a3R729N-GFP in wild-type plants after ConcA treatment argues 

against a competition between mutant and wild-type VHA-a3 subunits. If VHA-a3R729N-

GFP would compete with VHA-a3 for available V0 subcomplexes, this competition would 

still be occurring after ConcA treatment, thereby not affecting localization. However VHA-

a3R729N-GFP (Vph1R735N-GFP) exits the ER after ConcA treatment. Could ConcA have 

changed the conformation of VHA-a3R729N-GFP, thereby achieving export from the ER? 

ConcA has been found to bind in a pocket formed by helices 1, 2, and 4 of subunit c 

(Bowman et al., 2004). In addition, cytosolic amino acid residues within subunit a have 

been identified which, when mutated, confer decreased sensitivity to ConcA (Wang et al., 

2005). None of these mutations have been shown to change the conformation and 

stability of the V-ATPase, making it unlikely that ConcA is responsible for conformational 

changes that induce relocalization of VHA-a3R729N-GFP.  

Alternatively the difference in localization in the wild-type and the mutant background 

could be explained with the fact that the V-ATPase itself functions as a pH sensor 

(Marshansky, 2007). It was previously demonstrated that the mammalian subunit a2 

recruits the cytosolic Arf-GEF ARNO in an acidification dependent manner (Maranda et al., 

2001). Structural analysis of Vph1p supports the hypothesis of Marshansky et al. by 

showing that the N-terminus of Vph1p is regulated by pH (Dechant and Peter, 2010). The 

authors suggest that intraluminal amino acid residues sense pH changes, transmitting the 

information to the N-terminus of the protein. Based on these findings, the N-terminus of 

VHA-a3R729N-GFP in wild-type plants could undergo conformational changes that result 

in the retention and degradation of this protein, while the absence of a proper pH, either 

after ConcA treatment or in the vha-a2vha-a3 mutant suspends retention and 

degradation. This hypothesis could also explain the localization of VHA-a3R790K-GFP and 
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VHA-a3E780Q-GFP. Although in both mutants proton translocation is attenuated it still 

sufficient to attain an N-terminal conformation that allows ER export.  

It remains to be shown what level of V-ATPase activity is required to retain non-functional 

complexes in the ER. In the yeast experimental setup we were able to express 

Vph1R735Np-GFP either in vph1Δstv1Δ mutant cells with of 0% of V-ATPase activity, or in 

wild-type cells with 100% V-ATPase activity. Expression of Vph1R735Np-GFP in the vph1Δ 

or in the stv1Δ single mutant, both having reduced levels of V-ATPase activity could help 

determining the activity level.  

Taken together our observation led us to conclude that we have a cross-kingdom 

conserved mechanism that distinguishes between non-functional and functional V-ATPase 

complexes at the ER. To our knowledge an ER quality control mechanism that is based on 

function than on folding has not been described so far. We therefore propose that the 

functionality of V-ATPase complexes is controlled by a function dependent ER quality 

control (FERQCL) mechanism. 

 

Calnexin is required for a function dependent ER quality control (FERQCL) 

Previous reports have shown that the ER lectin calnexin can associate with components of 

the V0 and V1 subcomplex in oat (Li et al., 1998). Using silencing of calnexin in Arabidopsis 

and yeast calnexin knock-out mutant cneΔ (U.Lupanga, Masterthesis, 2011), we observed 

a relocalisation of non-functional complexes to the tonoplast and vacuole. However, 

neither VHA-a3 nor VHA-a3R729N-GFP has any putative glycosylation sites. Although 

Vph1p has four predicted N-glycosylation sites, topological studies of the protein 

demonstrate that these sites are located in the cytoplasmic soluble domain of the protein, 

making it unlikely that any of these sites get N-glycosylated (Leng et al., 1999). We 

therefore propose that calnexin acts glycan-independent in the FERQCL. The precise role 

of calnexin in folding and quality control is still part of an ongoing debate. Most of the 

evidence of its glycan-independent substrate recognition was obtained from in vitro 

studies, using cytosolic proteins that would not encounter calnexin in vivo (Ihara and 

Williams, 1998). There is compelling evidence that calnexin can interact glycan-

independent with proteins within the ERQC apparatus (Saito et al., 1999; Swanton et al., 

2003). In vivo experiments done in human cell lines demonstrated that the 

transmembrane domain of calnexin is required to specifically recognize non-glycosylated 

transmembrane proteins (Swanton et al., 2003). Interestingly the exchange of a single 
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amino acid within the transmembrane domain of calnexin substrates is sufficient for the 

retention of these proteins to the ER membrane (Swanton et al., 2003). The mechanism of 

this retention is unclear, however it has been suggested that the introduction of a single 

polar amino acid within the hydrophobic environment of the lipid bilayer can be 

recognized by calnexin. The here presented single amino acid changes were all introduced 

in the transmembrane domain of VHA-a3. It is possible that these changes directly 

influenced the binding affinity of calnexin, or that the mutations exposed additional polar 

amino acid residues targeted by calnexin. As a consequence the mutations affected 

binding kinetics, resulting in a shift of unbound V0 subcomplexes towards a calnexin-bound 

state. This hypothesis is supported by our Co-IP experiments. Proteins that were 

misstargeted co-immunoprecipitated calnexin, while VHA-a3-GFP and VHA-a3E780Q-GFP, 

which were targeted correctly to the vacuolar membrane did not co-immunoprecipitate 

calnexin.  

Future research will focus on identifying additional factors apart from calnexin which are 

required for this mechanism. We are currently establishing an unbiased forward genetic 

approach by expressing VHA-a3R729N-GFP in a sensitized vha-a3 background. vha-a3 

plants are indistinguishable from wild-type plants, however they have reduced V-ATPase 

activity at the tonoplast. Ethyl methanesulfonate (EMS) will be used to obtain diverse 

mutant alleles that play a critical role in the FERQCL system. We assume a relocalization of 

VHA-a3R729N-GFP to the vacuolar membrane, lowering V-ATPase activity and thereby 

reducing plant growth. In addition, we have employed screens of the yeast mutant library. 

So far, several ER quality control and ER associated degradation (ERAD) yeast mutants 

were tested for their impact on Vph1pR735N-GFP localization. However, we did not 

observe a relocalization of non-functional complexes in any of these mutants except for 

the calnexin mutant cneIΔ (U.Lupanga, Masterthesis, 2011).   

 

VHA-a3-GFP is not transported to the tonoplast via the secretory pathway  

In this study we show that VHA-a3R729N-GFP and VHA-a3R790K-GFP can localize to the 

TGN, while VHA-a3-GFP was not localized to the TGN after drug treatment. This could 

indicate that VHA-a3 is transported to the tonoplast via a TGN independent trafficking 

pathway. How is it possible that the structurally similar V-ATPase complexes that differ 

only in their activity are transported via different trafficking routes? For the TGN/ Golgi 

localizing V-ATPase complexes, unanimous studies in yeast and plant show that the N-
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terminal cytosolic sequence of Stv1p and VHA-a1 contain the required targeting 

information for its localization, however it is still unclear how the specific localization is 

achieved (Kawasaki-Nishi et al., 2001c; Dettmer et al., 2006). Apart from the structural 

requirements, it might be sufficient to have correct activity for sorting. In yeast, V-ATPase 

complexes containing Stv1p has been shown to have a six times lower ratio of ATP 

hydrolysis to H+ transport than vacuolar protein complexes containing Vph1p (Kawasaki-

Nishi et al., 2001b). Assuming the same coupling efficiencies are true for the Arabidopsis 

orthologues, VHA-a1 and VHA-a3 could be sorted via different transport pathways due to 

their activity. This hypothesis could also explain the localization of VHA-a3R70K-GFP and 

VHA-a3E780Q-GFP. With its higher V-ATPase activity VHA-a3E780Q-GFP reaches the 

tonoplast, while VHA-a3R790K exhibits a dual localization. How the sorting of differently 

active complexes is achieved remains elusive. Immunogold labeling of V-ATPase complexes 

in the ER in oat seedlings however revealed a spatial variation on the ER cisternae, which 

could according to the authors represent a regional specialization of the ER (Herman et al., 

1994). V-ATPase complexes might be sorted to different trafficking routes in those ER 

“micro domains” according to activity and other not yet identified features.  

 

The V-ATPase is assembled in the ER 

The organelle of V-ATPase holo-complex assembly has been part of an ongoing debate. 

While work done in oat seedlings clearly demonstrated holo-complex assembly in the ER 

(Li et al., 1998), the yeast research community is divided. Co-IP experiments in 

temperature sensitive sec18 mutant strains, where ER export is abrogated at restrictive 

temperatures (Graham and Emr, 1991) were employed to assay the level of association.  

Levels of Vph1p (V0) that co-immunoprecipitate with Vma1p (V1) are reduced, when 

compared to wild-type cells (Kane et al., 1999; Malkus et al., 2004). While Kane et al. 

interpret this data in favor of V-ATPase holo-complex assembly occurring in the ER, Malkus 

et al. object this model.  

In addition to elucidate the FERQCL mechanism, we utilized VHA-a3R729N-GFP to 

demonstrate that the entire V-ATPase holo-complex is already assembled in the ER. Yet, it 

remains to be shown, whether this complex is active. Active V-ATPase complexes could 

greatly contribute to the overall ER luminal milieu, affecting downstream processes, i.e. 

PDI formation of disulphide-bonds, N-linked glycosylation and establishing favorable redox 

conditions. Recent research has revealed the presence of a PIN-FORMED5 (PIN5) auxin 
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efflux carrier in the ER membrane (Mravec et al., 2009), which is required for intracellular 

auxin homeostasis. Members of the PIN proteins belong to secondary active transporters 

(Feraru and Friml, 2008; Zažímalová et al., 2010). Their source of energy is unknown, 

however it has been suggested that PIN transport action is based on auxin/H+ antiport, 

which is fueled by an energizing proton pump. It therefore seems plausible that the V-

ATPase is not only assembled, but also already active in the ER. The ConcA experiments 

presented here in this work support the idea that the V-ATPase is active in the ER. 

Although we did not observe any effect on general ERQC, which we monitored with bri1-9-

GFP and AtCPY*-GFP, the change in luminal pH could just be sufficient to favor 

conformational stability of the VHA-a3 mutant proteins thus changing affinity for calnexin. 

In the future, we will be able to directly image the pH within the ER lumen with the here 

presented pH-sensor, thereby proving the hypothesis of an active V-ATPase in the ER.   
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Model of the FERQCL system 

 

Fig. 25 Model for the function dependent ER Quality control (FERQCL). (A) In the presence of active V-ATPase 
complexes calnexin is recruited to non-functional complexes. The subunit a of the non-functional complexes is then 
exported from the ER and degraded by the proteasome, while still functional V-ATPase complexes are transported 
to the vacuole. (B) In the vha-a2vha-a3 mutant V-ATPase activity has been reduced. Non-functional complexes 
cannot be recognized by calnexin and are therefore exported to the tonoplast. (C) If V-ATPase activity has been 
abolished by ConcA, calnexin cannot distinguish between functional and non-functional complexes. Therefore non-
functional complexes leave the ER accumulating in the TGN.  
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Material and Methods 

Plant Materials and Growth Conditions 

Arabidopsis thaliana ecotype Columbia 0 (Col-0) plants were grown on nutrient solid MS 

medium as described previously (Xiong et al., 2005) under long-day conditions (16 h light) 

at 22°C, unless described otherwise. Arabidopsis seeds were surface sterilized in 70% (v/v) 

Ethanol and 0.1% (v/v) Triton X-100 solution for 20 min followed by 10 min sterilization 

with 95% (v/v) Ethanol. Seeds containing ethanol-inducible alc gene-expression constructs 

were surface sterilized using 6 % sodium hypochlorite (NaClO) for 5 min followed by 

several washing steps with ddH2O. Sterilized seeds were exposed to cold treatment for at 

least 2 d. For concanamycin A and MG132 treatment, 4-d-old seedlings grown on nutrient 

solid MS medium were transferred to liquid MS medium 1 μM concanamycin A or 50 µM 

MG132 and incubated for the indicated times.  

 

Constructs generated for this study 

Generation of U:VHA-a3R790K-GFP, U:VHA-a3E780Q-GFP, U:VHA-a3R729N-GFP 

A 364bp fragment was separated from the VHA-a3 cDNA with SalI-EcoRI and subcloned 

into the pJet1.2/blunt Cloning Vector generating the plasmid pa3Cterm. Site directed 

mutagenesis was performed on the pa3Cterm according to the manufacturer’s protocol. 

For U:VHA-a3R790K-GFP the primers a3R790K_f and a3R790K_r were used, for U:VHA-

a3E780Q-GFP the primers a3E780Q_f and a3E780Q_r were used and to obtain the 

fragment resulting in U:VHA-a3R729N-GFP primers R729N_for and R729N_rev were used. 

Fragments containing the indicated mutations were then substituted back into the 

pUGT2kan containing the wildtype VHA-a3 cDNA.  

 

Generation of AlcA:amiCNX and U:amiCNX 

For the generation of artificial microRNA (amiRNA) constructs against AtCNX1 and AtCNX2, 

we used the WMD3 - Web app for the automated design of artificial microRNAs 

(http://wmd.weigelworld.org), where the principles for the design amiRNAs have been 

integrated into a Web-based tool (Schwab et al., 2006). In brief, At5g61790 (AtCNX1) and 

At5g07340 (AtCNX2) have been selected as target genes. The amiRNA sequences were 

selected, which were predicted to target both AtCNX1 and AtCNX2 respectively.  

http://wmd.weigelworld.org/�
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Four oligonucleotides were used to engineer the amiRNA into the endogenous miR319a 

precursor by PCR amplification. As a template for the PCR, the plasmid pRS300, containing 

the miR319a precursor in the pBluescript (Stratagene) was used (plasmids were kindly 

provided by Detlef Weigl). The amiRNA sequence was digested using EcoRI and BamHI 

restriction enzymes and ligated into the EcoRI-BamHI digested pHanAlcA, a derivative of 

the pHANNIBAL (Wesley et al., 2001), in which the 35S promoter has been replaced by an 

ethanol-inducible promoter pAlcA (Roslan et al., 2001). The pAlcA:amiAtCNX casette was 

digested NotI and ligated into the binary plant vector pBart_AlcR, which contains the 

coding sequence for the transcriptional activator AlcR, which activates the ethanol-

inducible promoter pAlcA in the presence of ethanol. Transgenic U:VHA-a3R729N-GFP 

Col0 plants were selected based on the phosphinothricin (BASTA) resistance conferred by 

the bar gene contained in pBART_AlcR. Homozygous lines were established, and seedlings 

were screened for GFP signals. 

For the U:amiCNX construct the amiRNA sequence was digested using ApaI and SacII 

restriction enzymes and ligated into the ApaI-SacII digested pUTkan, which is a derivative 

of the pJH212. The amiRNA sequence was digested from the pUTkan using SalI restriction 

enzyme and ligated into a SalI digested pUTbar+, which is a derivative of pZP312.  

 

Generation of U:SP-PtGFP-KDEL 

We generated 751 bp fragment of PtGFP (Schmid et al., 2005)by PCR amplification adding 

the first 34 bp of the basic vacuolar chitinase signal sequence (SP-sequence) and a C-

terminal KDEL sequence, using primers Sp-Pt_1for and Sp-pt_KDEL_rev. The resulting PCR 

fragment was used as template for a second PCR amplification adding 44 bp of the SP-

sequence and a BamHI restriction site to the N-terminus using primers Sp-Pt_2for and Sp-

pt_KDEL_rev. The fragment was subcloned into the pJet1.2/blunt Cloning Vector and 

sequenced. For the U:Sp-PtGFP-KDEL construct the PtGFP-KDEL sequence was digested 

using BamHI and SacII restriction enzymes and ligated into the BamHI-SacII digested 

pUTkan.  

 

Generation of U:Sp-pHluorin-HDEL 

We generated 803 bp fragment of pHluorin (Moseyko and Feldman, 2001) by PCR 

amplification adding the first 37 bp of the basic vacuolar chitinase signal sequence (SP-

sequence) and a C-terminal HDEL sequence, using primers P1-Sp-for and HDEL_rev. The 
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resulting PCR fragment was used as template for a second PCR amplification adding 44 bp 

of the SP-sequence and a BamHI restriction site to the N-terminus using primers P2-SP-

2for and HDEL_rev. The fragment was subcloned into the pJet1.2/blunt Cloning Vector and 

sequenced. For the U:Sp-pHluorin-HDEL construct the SP-pHluorin-HDEL sequence was 

digested using BamHI and SacII restriction enzymes and ligated into the BamHI-SacII 

digested pUTkan.  

 

Generation of pp16tkan 

For the pp16tkan, we isolated the Atp16 promotor (At3g60245) form the pCS-015 plasmid 

(kindly provided by Christoph Schuster, Lohmann group) by restriction digestion using KpnI 

and BamHI. We digested the pUTkan vector KpnI-BamhI to replace the Ubiquitin10 

promotor with the p16 fragment. The p16 fragment was ligated into the KpnI-BamHI 

digested pUtkan to generate the pp16Tkan.  

 

Generation of p16:Sp-pHluorin-HDEL 

For the p16:Sp-pHluorin-HDEL, we isolated the Sp-pHluorin-HDEL fragment from the U:Sp-

pHluorin-HDEL by restriction digestion with BamHI-SacII. The fragment was ligated into the 

BamHI-SacII opened pp16tkan to generate the p16:Sp-pHluorin-HDEL. 

 

Blast searches were carried out using the TAIR database (http://www.arabidopsis.org) and 

the databases at the NCBI (http://www.ncbi.nlm.nih.gov). 

 

Protein Extraction 

Frozen plant tissue (100 mg) was ground in liquid nitrogen. The powder was 

transferred into a 2 ml Eppendorf tube and 500 µl of Extraction buffer (0.35 M 

Saccharose, 70 mM pH 8.8 Tris-HCl, 10 % v/v Glycerol, 3 mM Na2EDTA, 1.5 % w/v PVP-40, 

0.5 % Triton X-100, 0.15 v/v BSA, 4 mM DTT, 1x Complete Protease Inhibitor [Roche 

Diagnostics GmbH]) was added. The homogenate was vigorously vortexed and then 

centrifuged at 10.000 g for 15 min at 4°C. The supernatant was afterwards transferred into 

a new Eppendorf tube and centrifuged again. Protein concentration of the supernatant 

was determined using Bradford assay (Bradford, 1976).    

http://www.arabidopsis.org/�
http://www.ncbi.nlm.nih.gov/�
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Co-Immunoprecipitation 

Protein extracts subjected to Co-immunopreciptiation were obtained as described with 

some modifications (Schumacher et al., 1999). Plant tissue (1g/ml buffer) from 5 day 

etiolated Arabidopsis plants was homogenized in liquid nitrogen using extraction buffer 

(50 mM Tris pH 8, 50 mM NaCl, 10% Glycerol and 1 x Complete Protease Inhibitor [Roche 

Diagnostics GmbH]). The homogenate was centrifuged at 10.000 g at 4°C for 10 min. The 

supernatant was centrifuged at 150.000g for 30 min at 4°C. The supernatant was discarded 

and the pellet homogenized with a Potter-Elvehjem tissue grinder in extraction buffer. 

Protein concentration was determined using Bradford assay (Bradford, 1976). For 

immunoprecipitation, 100 µg protein was solubilized and incubated for 1 h at 4°C using 3 

% NP40. Solubilized proteins were separated from non-solubilized proteins by 

centrifugation at 150.000 g for 30 min. The supernatant was loaded on GFP-Trap® coupled 

to agarose beads (ChromoTek GmbH, München, Germany) and incubated for 2h at 4°C. 

Beads were washed three times and then proteins were eluted with SDS-sample buffer (4 

% SDS, 140 mM Tris-HCl pH 6.8, 20 % Glycerol, 0.01 % Bromophenolblue, 10 % ß-

Mercaptoethanol) at 50°C for 5 min.  

 

Fluorescence Microscopy 

Fluorescence microscopy was performed using a Leica TCS SP5 confocal laser-scanning 

microscope. All CLSM images were obtained using the Leica Confocal software and a 63x 

water-immersion objective. The excitation wavelength was 488 nm; emission was 

detected for GFP between 500 and 530 nm, for RFP between 565 and 600 nm, and for 

FM4-64 between 620 and 680 nm. Adobe Photoshop was used for image processing. 

Quantification of colocalization was assessed using the Leica Confocal software.   

 

Primer used  

Name Sequence  

a3R790K_f 5’-GAAACTCAACCCAGTGAAGTTTCAGCGC-3’ 

a3R790K_r 5’-CGCGTTCCTTCACGCGCTGAAACTTCAC-3’ 

a3E780Q_f 5’-GAAGGAACGCGCTTAGTGTCTGCATCAC-3’ 

a3E780Q_r 5’-GGGAGTTTTGCTGGTGATGCAGACACTA-3’ 

R729N_for 5’-CTTACCTGAATCTATGGGCTCTCAGTCTTGCCC-3’ 
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R729N_rev 5’-CCATAGATTCAGGTAAGAAGCGGTGTTGGAAACAGCTCC-3’ 

Sp-Pt_1for 5’-CTTTTCACTTCTCCTATCATTATCCTCGGCCGAATTCAACCGCAACGTG-3’ 

Sp-pt_KDEL_r 5’-CCGCGGTTACAGTTCATCCTTCACCCATTCATGCAGGCTGCC-3’ 

Sp-Pt_2for 5’- GGATCCATGAAGACTAATCTTTTTCTCTTTCTCATCTTTTCACTTCTCCT-3’ 

P1-Sp-for 5’-CTTTTCACTTCTCCTATCATTATCCTCGGCCGAATTCAGTAAAGGAG 
AAGAAC-3’ 

HDEL_rev 5’-CCGCGGTTACAGTTCATCGTGTTTGTATAGTTCATCCATGCC-3’ 

P2-SP-2for 5’-GGATCCATGAAGACTAATCTTTTTCTCTTTCTCATCTTTTCACTTCTCCT-3’ 
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Concluding remarks and outlook 

The compartment newly synthesized proteins destined for the secretory pathway first 

encounter is the endoplasmic reticulum. The ER has a dual function; it assists in folding 

and assembly, but also monitors the quality of newly formed proteins. It presents a 

challenging task to distinguish between a protein that is in the process of folding and a 

defective one that cannot fold or assemble. The ER is constitutively loaded with new 

proteins that are in the process of folding and assembly and hence these proteins could be 

considered transiently defective. To deal with this paradox, the ER hosts a battery of 

chaperones that identify malfolded proteins.  

We have identified two novel Arabidopsis assembly factors, which are required for V-

ATPase assembly and we have presented a quality control system that monitors the 

function of the V-ATPase. However it is difficult to draw a clear line that divides assembly 

from the function dependent ER quality control system (FERQCL). The assembly factors 

could be part of the machinery that recruits calnexin or, yet unidentified factors to non-

functional complexes. With the help of AtVMA12/AtVMA22 mutated VHA-a3 could be 

maintained in a prolonged transitional state that allows association with calnexin or other 

ER chaperones, like the thiol oxidoreductase ERp57. The identification of three assembly 

factors in a higher eukaryote now allows a comparative analysis of assembly factors from 

yeast and Arabidopsis thus determining the underlying molecular mechanism in assembly 

and quality control. Having shown that the FERQCL system is conserved in both, yeast and 

Arabidopsis, research on other model organisms could be employed to extend and 

complete our understanding of this novel QC system.  
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