
Inaugural-Dissertation

zur

Erlangung der Doktorwürde

der

Naturwissenschaftlich-Mathematischen Gesamtfakultät

der

Ruprecht-Karls-Universität

Heidelberg

vorgelegt von

Florian Justus Gaisendrees, Master of Advanced Study in Mathematics

aus Schweinfurt





Thema

“Fiberwise Homology Truncation”

Betreuer: Prof. Dr. Markus Banagl

Tag der mündlichen Prüfung:
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Abstract. In [Ban10] a spatial version of intersection homology is defined.

A key step is fiberwise homology truncation of the link bundle of a pseudoman-

ifold. This is implemented in [Ban10] for trivial link bundles. The difficulty of
extending said results to more general link bundles is informed by two factors:

firstly, the type of fiber (which is also the link of the pseudomanifold), and
secondly, the base space of the bundle (which is the singular set of the pseudo-

manifold). We extend the methods introduced in [Ban10] to link bundles of

two types: (1) Fibers CW-complexes with (amongst other conditions) evenly
graded homology and base space a sphere. (2) Using a fiber admitting trunca-

tion only in selected degrees and base space such that the bundle is glued from

two trivial bundles.
Different methods are required in each setting. In the first setting, trun-

cation of the fiberwise gluing homeomorphisms yields only homotopy equiva-

lences. Hence homotopy theory is necessary to build a truncated bundle with
the right properties. In the second case, this difficulty is not encountered, and

no homotopy theory is necessary. Here, we use sheaf theory. In both cases we

require the link bundle to be glued from trivial bundles by means of cellular
homeomorphisms. Generalized Poincaré duality is shown for pseudomanifolds

with each type of link bundle.

Zusammenfassung. In [Ban10] wird eine räumliche Version der Schnittho-

mologie definiert. Ein wichtiger Baustein ist das Faserweise Abschneiden der
Homologie eines Linkbündels einer Pseudomannigfaltigkeit. In [Ban10] wird

dies für triviale Linkbündel ausgeführt. Zwei Faktoren bestimmen den Schwie-

rigkeitsgrad einer Verallgemeinerung dieser Technik: zum einen die Form der
Faser (die der Link der Pseudomannigfaltigkeit ist) und zum anderen die Art

der Basis des Bündels (welche gleichzeitig die singuläre Menge der Pseudoman-

nigfaltigkeit ist). Die Methoden aus [Ban10] werden in dieser Arbeit für zwei
Typen von Linkbündeln erweitert: (1) Bündel mit Fasern CW-Komplexe mit

u. a. verschwindender Homologie in ungeraden Graden und Basis eine Sphäre.

(2) Für Fasern, die das Abschneiden der Homologie nur in bestimmten Graden
zulassen, und einem Bündel, welches aus zwei trivialen Bündeln verklebt wird.

Verschiedene Methoden sind in beiden Fällen angebracht. Im ersten Fall

ergibt eine Anwendung des Abschneidefunktors auf die Verklebungshomöomor-
phismen nur Homotopieäquivalenzen. Daher ist es notwendig, Homotopiethe-

orie einzusetzen um ein abgeschnittenes Bündel mit den gewünschten Eigen-
schaften zu konstruieren. Im zweiten Fall treten diese Probleme nicht auf,

und es wird keine Homotopietheorie benötigt. Stattdessen wird Garbentheorie

verwendet. In beiden Fällen ist es notwendig, zu fordern dass die Linkbündel
mittels zellulärer Homöomorphismen aus trivialen Bündeln verklebt werden.

Verallgemeinerte Poincaré Dualität wird für Pseudomannigfaltigkeiten mit bei-

der Art Linkbündel gezeigt.
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Preface

Banagl defined in [Ban10] a spatial homology truncation functor which can
be used to define a spatial “sibling” of intersection homology theory. Roughly
speaking, this intersection space homology of a pseudomanifold X is calculated in
two steps: Given a perversity p, one firstly assigns to X an intersection space IpX.
This space IpX arises from X by making certain geometric changes to X in a
way dictated by the perversity p. Secondly, the (ordinary) homology H∗(I

pX) is
calculated, and called the perversity p intersection space homology of X. One may
ask whether intersection space homology satisfies generalized Poincaré duality. The
construction of the intersection space, along with the proof of generalized Poincaré
duality, has been carried out in [Ban10] for several classes of spaces X, among
them pseudomanifolds with isolated singularities and two-strata pseudomanifolds
with trivial link bundles.

We extend these results to two-strata pseudomanifolds with two types of link
bundles, some of which include nontrivial fiber bundles, and obtain generalized
Poincaré duality in each case. The process of showing this is broadly similar in
both cases. We therefore outline the first case as well as the general idea.

The first type of setting is a two-strata pseudomanifold with link bundle with
cellular structure group (i.e. consisting only of cellular self-homeomorphisms with
cellular inverses), interleaf links and spheres as singular sets. An interleaf link is a
link which is an object in the interleaf category ICW, defined in [Ban10, Definition
1.62] as comprising simply connected CW-complexes with finitely generated even-
dimensional homology and vanishing odd-dimensional homology for any coefficient
group as well as cellular maps. The focus on links from the interleaf category
ICW is due to the availability of a certain lift: namely, for a fixed N ∈ Ob ICW
and for some maps f ∈ HomICW(N,N), the truncation t<k(f) can be lifted from
the homotopy category HoCW of CW-complexes and homotopy classes of cellular
maps to the category CW of CW-complexes and cellular maps. This setting is
addressed in Chapter 2.

To outline the method, consider a pseudomanifold

X = Xn ⊃ Xn−c,

composed of two strata, and with interleaf link and trivial link bundle. The last
condition requires an explanation; there is a neighborhood of the singular set Σ =
Xn−c which admits the structure of a fiber bundle. In the present setting, this is a
trivial bundle,

Σ× ◦
cone (L),

with base space Σ and fiber
◦

cone (L), the open cone of the link L of X. Excision of

an open neighborhood of the total space Σ × ◦
cone (L) yields M . The latter space

is a compact manifold, and its boundary

∂M = Σ× L
is called the link bundle of X. By assumption, this is a trivial bundle. Also by
assumption, L is an interleaf CW-complex, and hence admits spatial homology
truncation in arbitrary degrees, as explained in [Ban10]. To be precise, there is a

xi
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map
t<k(L)→ L.

Applying truncation to each fiber of ∂M yields a map

Σ× t<k(L)→ Σ× L = ∂M ↪→M,

which we denote ik. The parameter k depends on a perversity p. Ultimately, it is
the defining characteristic of the space

IpX = M ∪ik cone (Σ× t<k(L)).

which is accordingly referred to as the perversity p intersection space IpX of X.
Assume now that the link bundle is a non-trivial fiber bundle. Any such bundle

may be thought of as consisting of two segments of data:

(1) a covering {Uα} and a corresponding collection of trivial bundles {Uα×L},
together with

(2) a collection of gluing functions {gαβ : Uα ∩ Uβ → Homeo (L)} satisfying
the cocycle condition.

We can apply the spatial homology truncation functor in a fiberwise fashion to
the trivial bundles Uα × L, yielding a collection of trivial bundles Uα × t<k(L).
Often, but not always, these can then be glued back together to a space ft<k (∂M)
by means of the truncated gluing functions t̃<k ◦ gαβ , using functoriality of spatial
homology truncation. This process is called fiberwise homology truncation, because
it is a fiberwise application of the spatial homology truncation functor t<k. Then a
map

µ : ft<k (∂M)→ ∂M

is defined, in order to attach the new link bundle to M . The composition of µ with
the standard inclusion ∂M ↪→ M plays a role analogous to that of ik, above. This
technique was introduced at the level of differential forms in [Ban11].

Comparing this situation to that of a trivial link bundle, two new obstacles to
carrying out the construction arise:

(1) Fiber bundles are glued by means of gluing functions which take value in
the group of homeomorphisms of the fiber. Yet the output of our fiberwise
truncation process are only homotopy equivalences.

(2) In order to glue the truncated bundle to M we need a continuous map
µ. The construction of the truncated bundle must enable the existence of
this map. Additionally, we would like µ to be a fiberwise map, so that we
can exploit naturality of the Leray-Serre spectral sequence for the proof
of generalized Poincaré duality.

The first problem is addressed by a modified gluing process. We do not glue two
trivial bundles Uα×t<k(L), Uβ×t<k(L) directly, but instead attach them to opposite
ends of a mapping cylinder. The resulting bundle is a Dold fibration due to a
result from [Pup74]. Of course, using a modified gluing process creates additional
difficulties for the construction of the map µ. This leads to the second problem,
which we have approached by adapting a process from [Bau89] for constructing
maps between mapping cylinders.

Exploiting naturality of the Leray-Serre spectral sequence, we are then able
to show that interleaf fiber bundles over spheres of dimension greater than one
with cellular structure groups have cohomology and homology of product bundles.
This result holds for Dold fibrations with the same properties as well. Thus we
can calculate the cohomology and homology of both, the link bundle of X and
its truncated version. This enables a proof of generalized Poincaré duality which
follows the proof for the case of trivial link bundles in [Ban10]. The isomorphism
we obtain is

H̃n−i(IpX) ∼= H̃i(I
qX),
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for complementary perversities.
In summary, one may state that in Chapter 2 the focus is placed on links

which admit truncation in arbitrary degrees. Fitting with this theme, generalized
Poincaré duality is shown to hold for arbitrary complementary perversities. In
the second setting, detailed in Chapter 3, we change this viewpoint. To be more
specific, one may ask whether generalized Poincaré duality is retained if we demand
that the link need only admit truncation in certain degrees. A partial answer is
given. If a given pair of complementary perversities governs the degrees in which
a link admits truncation, then we can show that a pseudomanifold with this link
satisfies a statement of generalized Poincaré duality governed by these same two
perversities. Similarly to the first setting, an intersection space is defined by excising
a neighborhood of the singular set, truncating the link bundle, defining a map µ and
then showing that µ∗ has a right inverse. In this setting, we are able to construct
a right inverse to

µ∗ = incl∗ : H∗(∂M)→ H∗(ft<k (∂M))

by means of sheaf theory. A proof of generalized Poincaré duality will then proceed
in a manner similar to Chapter 2.

If the structures of the proofs in the two chapters are broadly similar, the main
difference lies in how the map µ∗ is shown to have a right inverse. In Chapter 2, the
proof is accomplished by using homotopy theory, while in Chapter 3, the backbone
of the same proof is sheaf theory. In both cases, the corresponding cohomological
Leray-Serre spectral sequences collapse. But only in Chapter 2 can this aspect be
used to show the total space to have the homology of a product bundle. In Chapter
3, the bundle under consideration need not be equipped with a simply connected
base space. Therefore the local cohomology of the bundle can be twisted.

To complete the outline of this text, in Chapter 1 some preliminary results are
established and recalled. Amongst these are results on bundles in general and weak
fibrations in particular. Finally, Appendix A recalls some results on cofibrations
and the cohomology of mapping cylinders for the convenience of the reader.

Perhaps it is of interest to note that in [IS08] for a given functor Top→ Top
with certain properties a fiberwise application is introduced, which maps certain
quasifibrations to quasifibrations. Comparing this with the fiberwise application
of spatial homology truncation, we see that the two settings are different. In the
setting discussed in the present text, the input is a functor ICW→ HoCW, which
is then applied to each fiber of a fiber bundle. The output is then a Dold fibration.

Explanation of Limitations. It may be interesting to briefly explain the reasons
behind some of the conditions of the main results in this text. Both of the main
chapters address exclusively links F which are finite CW-complexes. This is due
to the fact that we need the group of cellular self-homeomorphisms with cellular
inverses, HomeoCW (F ), to be a topological group in order to enable the fiberwise
truncation process. The link bundles under consideration in both chapters are fiber
bundles glued from trivial bundles by maps from HomeoCW (F ). Of course, not
all cellular self homeomorphisms possess a cellular inverse. But in Section 2.7, we
show that at least for finite CW-complexes, a cellular self-homeomorphism always
has a cellular inverse. Moreover, this restriction to maps with cellular inverses is
frequently used in the theory of transformation groups. See e.g. the definition of an
isomorphism of relative G-CW-complexes in [Lüc89, p. 7].

Some pseudomanifolds can be treated with both the methods of Chapter 2 and
3. It should be noted that the output of the two procedures is slightly different
geometrically, even if the statement of generalized Poincaré duality is not. By
geometrically we mean that the intersection spaces are not homeomorphic. The
underlying cause for this is the presence of homotopy theory in Chapter 2, where we
do not glue two trivial bundles outright but rather attach them to opposite ends of a
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mapping cylinder. Since this gluing procedure is not replicated in Chapter 3, where
no homotopy theory is required and direct attachment without an intermediary
mapping cylinder is possible, the resulting intersection spaces differ by design.

Prerequisites. Terminology and results from [Ban10] are used throughout this
text. Chapter 3 employs sheaf theory and draws on results, and in particular
notation, from [Bre97].

Results on weak bundles such as Serre and Dold fibrations are employed. There
is unfortunately no comprehensive reference dedicated exclusively to weak fibra-
tions, but [Rud08, Chapter IV, Section 1] contains an overview of the topic.

Quoted results are marked by the quotation of the source in the header of their
environments.

Notation. Following the notation in [Ban10], we define the mapping cylinder
Mf of a map f : X → Y to be

Mf =
Y tX × I

(x, 1) ∼ f(x)∀x ∈ X
,

i.e. the gluing takes place at the 1-end of X × I. Likewise, the mapping cone (or
homotopy cofiber) of f is

cone (f) = Y ∪f cone (X) = Mf/X × {0}.
We sometimes use the more compact notation Cf = cone (f) as well as CX =
cone (X).

We use the American English spelling of the word “fiber”. For reasons of
uniformity, quotations containing the British English spelling “fibre” have been
changed to the American English version. When not explicitly stated otherwise,
the ring of coefficients for both, cohomology and homology, is Q. Definitions and
notation for spatial homology truncation and intersection space homology are used
as introduced in [Ban10]. The word fibration will refer to a Hurewicz fibration
unless indicated otherwise. The symbol ik will always denote – for a given space Y
– a map

Y → Y × I, y 7→ (y, k).

At times, the range of ik may be a mapping cone, mapping cylinder, or some other
quotient space involving Y × I. The symbol jk will be used analogously.

For spaces, for which spatial homology truncation is defined, we abbreviate the
notation for the spatial homology truncation and cotruncation functors of [Ban10]
by writing

L<k = t<k(L),

L≥k = t≥k(L).

When discussing the Leray-Serre spectral sequence, we use the notation of
[McC01]. In this book, much of the necessary background on this spectral se-
quence may be found.

For maps, the standard exponential notation

Y X = {f : X → Y | f continuous}
is used. Notice that we explicitly demand that any element f ∈ Y X be continuous.

When discussing pairs, we use the shorthand

(X × (Y, Z)) = (X × Y,X × Z),

as well as (for a subset K ⊂M)

(M | K) = (M,M −K).

These may be combined when writing

((M | K)×X) = (M ×X, (M −K)×X).
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When discussing sheaf theory, we follow the notation of [Ban07]. In partic-
ular, Hn(X) will denote both ordinary cohomology and sheaf cohomology. The
distinction will be clear from the context.

Depending on the situation, we use both notations for the interior of a subspace,

intU =
◦
U.

We say that a spectral sequence collapses if all differentials in the E2-term and in
all higher terms vanish.

Suppose there is a map

F : X × Y → X × Y
of product spaces such that for

proj1 : X × Y → X, (x, y) 7→ x

it holds that
proj1(F (x, y)) = proj1(x, y).

Then it holds that

(1) F (x, y) = (x, proj2 ◦ F (x, y)).

If we define for x ∈ X the map

f(x) : Y → Y, y 7→ proj2 ◦ F (x, y),

then we can write equation (1) as

F (x, y) = (x, f(x)(y)).

In such circumstances, we define

(x, F (x)y) = (x, f(x)(y)).





CHAPTER 1

Preliminaries

1.1. Bundles

1.1.1. Generalities on Bundles. This section defines some terms relating to
bundles and collects some of the classical results pertaining to the topic at hand.

Definition 1.1.1. A triple ξ = (X, p,A) with X and A being topological spaces
and p : X → A being a continuous map is called a bundle over A. The space X is
referred to as the total space, A is called the base space and p is the projection of
the bundle. For any point a ∈ A, the space p−1(a) is called the fiber over a of the
bundle ξ.

We use the terms fiber bundle, Hurewicz fibration and Serre fibration in the
usual sense. For some bundles, all fibers are equivalent in some sense. E. g. in
a Hurewicz fibration ξ = (X, p,A) with connected base, the fibers over any two
points are homotopy equivalent. Thus there is some justification for referring to this
homotopy class as the “fiber of the bundle”. By abuse of notation, we sometimes
include the fiber of a fibration by writing the bundle as a quadruple

ξ = (F,X, p,A).

The abuse is of course that we should include only the homotopy class, but in fact
we include the actual fiber F over some distinguished point. We assume that it is
understood that the fiber may change up to homotopy equivalence when moving
along the base space, and we proceed analogously for fiber bundles.

We alternatively refer to the bundle ξ = (X, p,A) as ξ, X or p, depending on
the situation. For a bundle ξ, let F (ξ) denote the fiber of ξ and let B(ξ) denote the
base space of ξ. Recall that we can factor any bundle ξ = (X, p,A) as

X
phe

'
// W (p)

pHf // A

such that phe is a homotopy equivalence, pHf is a Hurewicz fibration, and the dia-
gram

X
phe

'
//

p
��

W (p)

pHf

||
A

(2)

commutes. The bundle ξaHf = (W (p), pHf , A) is called the associated Hurewicz
fibration of ξ.

Given bundles ξ = (X, p,A) and η = (Y, q,B), a fiberwise map

(φ,Φ): ξ → η

is a commutative diagram:

X
φ
//

p

��

Y

q

��

A
Φ // B

1
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If base spaces are equal, A = B, a fiberwise map (φ, id) may be written simply as

φ : X → Y.

Definition 1.1.2 (Definition 6.16 on p. 123 in [DK01]). Given two bundles
over A, ξ = (X, p,A) and η = (Y, q, A), and two fiberwise maps φ0, φ1 : X → Y , we
say that H : X × I → Y is a fiber homotopy over A from φ0 to φ1 if the diagram

X × I H //

p×idI
��

Y

q

��

A× I
proj1 // A

(3)

commutes, and furthermore we have H(·, 0) = φ0 and H(·, 1) = φ1. In this case, we
say that φ0 and φ1 are fiber homotopic. Likewise, a fiber homotopy equivalence is
a fiberwise map φ : X → Y such that there exists a fiberwise map ψ : Y → X with
φψ : Y → Y and ψφ : X → X being fiber homotopic to the respective identities.

In the following, the words fiberwise homotopy will mean “fiber homotopy”.
Commutativity of diagram (3) means for (x, t) ∈ X × I that

q(H(x, t)) = proj1(p× idI(x, t))

= proj1(p(x), t)

= p(x),

which implies H(x, t) ∈ q−1(p(x)). So a fiber homotopy is a homotopy between total
spaces which moves points only within a fiber. A fiberwise map between Hurewicz
fibrations that is a homotopy equivalence of total spaces is a fiber homotopy equiva-
lence by [Hat01, Exercise 4H.3]. Conversely, a fiber homotopy equivalence induces
homotopy equivalences if restricted to fibers. Furthermore, under some mild re-
strictions, a fiberwise map which restricts to a homotopy equivalence on each fiber
can be shown to be a fiber homotopy equivalence:

Theorem 1.1.3 (Satz 1 and Bemerkung 3 on p. 120ff. in [Dol55]). Let ξ =
(X, p,A) and η = (Y, q, A) be fiber bundles over a finite CW-complex A. Let φ : X →
Y be a fiberwise map. Then φ is a fiber homotopy equivalence if and only if for all
a ∈ A, the restriction

φ| : p−1(a)→ q−1(a)

is a homotopy equivalence.

The requirement that A be a finite CW-complex is indeed needed. See [Dol55,
Bemerkung 3] for an example of a fiber bundle ξ = (X, p,A) with A not a finite CW-
complex and a fiberwise map (φ, id) : ξ → ξ with φ restricting to a homeomorphism
on each fiber, such that φ is not a fiber homotopy equivalence.

Definition 1.1.4 (Dold fibration, Definition 5.1 and Proposition 5.13 on p.
238ff. in [Dol63]). A bundle ξ = (X, p,A) such that p has the weak covering homo-
topy property (WCHP) is called a Dold fibration. This means that for every homo-
topy H : Z×I → A, and every initial position h : Z → X such that ph(z) = H(z, 0),

there exists a homotopy H̃ : Z × [−1, 1]→ X such that H̃(z,−1) = h(z) and

pH̃(z, t) = H(z, t)∀t ∈ [0, 1]

while
pH̃(z, t) = H(z, 0)∀t ∈ [−1, 0].

In other words, H is covered by a homotopy H̃|Z×[0,1] whose initial position

H̃(·, 0) is vertically homotopic to h. Dold fibrations over connected base spaces share
a property with fibrations: Both posses fibers which are defined up to homotopy.
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Figure 1. Examples of (from left to right): a fiber bundle, a
Hurewicz fibration and a Dold fibration. These examples are due
to V. Puppe.

Contrast this with the situation in a fiber bundle; here we have a fiber defined up
to homeomorphism.

Another key aspect is that a Dold fibration remains a Dold fibration under fiber
homotopy equivalence.

Lemma 1.1.5 (Korollar 6.7 on p. 111 in [tDKP70]). Let ξ = (X, p,A) and
η = (Y, q, A) be bundles such that there is a fiber homotopy equivalence φ : ξ → η.
Then ξ is a Dold fibration if η is.

There is a useful local criterion for Dold fibrations involving numerable cover-
ings. Notice that a numerable covering need not be open.

Theorem 1.1.6 (Theorem 1.25 on p. 195 in [Rud08]). Let {Uα} be a numerable
covering of a space A, and let ξ be a bundle over A. If ξ|Uα is a Dold fibration for
every α, then so is ξ.

Proposition 1.1.7 (Recollection 1.24 on p. 195 in [Rud08]). Every locally
finite covering of a paracompact space is numerable.

1.1.2. Dold Fibrations and Mapping Cylinders. Given two (Hurewicz
or Dold) fibrations ξ = (X, p,A) and η = (Y, q, A) as well as a fiberwise map
φ : X → Y , the mapping cylinder Mφ, viewed as a bundle over A× I, is in general
no longer a fibration.

Example 1.1.8 (p. 263 in [Wir74]). Let ξ = η = (A× {1, 2},proj1, A) and

φ : A× {1, 2} → A× {1, 2}, (a, k) 7→ (a, 1).

Then Mφ does not have path lifting properties and thus is neither a Hurewicz nor
Dold fibration.

So Dold fibrations are not preserved under the operation of taking mapping
cylinders of arbitrary fiberwise maps. One may suspect that mapping cylinders of
fiber homotopy equivalences of Dold fibrations are again Dold fibrations. For some
fiber homotopy equivalences, this is confirmed by a result of Puppe in [Pup74],
which we will now describe.

We first need to introduce some notation. Fix a topological space F . Then
TopF is the category with objects bundles p : X → A such that the associated
Hurewicz fibration pHf : W (p)→ A has only fibers homotopy equivalent to F . Mor-

phisms in TopF are fiberwise maps

X
φ
//

p

��

Y

q

��

A
Φ // B
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such that the canonical map ψ : X → Φ∗(W (q)) is a homotopy equivalence. We
consider this canonical map now. We can factorize q as

Y
qhe

'
// W (q)

qHf // B,

with qHf being the associated Hurewicz fibration. This fits into a commutative
diagram:

X
φ
//

p

��

Y

q

��

qhe // W (q)

qHf
||

A
Φ // B

(4)

We can pull back W (q) along Φ to obtain:

Φ∗(W (q))

proj1
&&

X
ψ

oo

p

��

A

Thus,
Φ∗(W (q)) = {(a,w) ∈ A×W (q) | qHf(w) = Φ(a)},

and the image of x ∈ p−1(a) under the canonical map is

ψ : x 7→ (a, qhe ◦ φ(x)).

This is well-defined if and only if

qHf(qhe ◦ φ(x)) = Φ(a);

which does in fact hold:

Φ(a) = q ◦ φ(x) (square in (4), and recall that x ∈ p−1(a))

= qHf ◦ qhe ◦ φ(x) (triangle in (4)).

Lastly, we note that the restriction of the canonical map ψ to a fiber p−1(a) of X is

(5) ψ|p−1(a) = qhe|q−1(Φ(a)) ◦ φ|p−1(a).

Remark 1.1.9. (1) Let η = (Y, q, A) be a Hurewicz fibration. Then qhe =

id and qHf = q. Therefore η is an object of TopF if and only if the fiber
of η over each point a ∈ A is homotopy equivalent to F .

(2) Every Dold fibration is fiber homotopy equivalent to its associated Hure-
wicz fibration by [Dol66, Satz on p. 6.6]. I.e. for a given Dold fibration
ξ = (X, p,A) we have a commutative diagram

X
phe

'
//

p
��

W (p)

pHf

||
A

in which phe is even a fiber homotopy equivalence. In particular, every fiber
of p is homotopy equivalent to a fiber of pHf . Therefore, if ξ is an object of
TopF , the fiber of ξ over each point a ∈ A is homotopy equivalent to F .
Conversely, if the fiber of ξ over each point a ∈ A is homotopy equivalent
to F , then the same holds for the fibers of pHf , making ξ an object of
TopF .

(3) The first two items in this remark can be condensed to [Pup74, Remark
on p. 2]: If ξ = (X, p,A) is a fibration (Hurewicz or Dold), then ξ is

an object of TopF if and only if the fiber of ξ over each point a ∈ A is
homotopy equivalent to F .
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The last remark facilitates checking whether a given Dold fibration is an object
of TopF . We want to establish a similar criterion for fiberwise maps between Dold
fibrations. We need some preliminary considerations:

Definition 1.1.10 (p. 364 in [Pup71]). A topological spaceX is called numerab-
ly contractible if it admits a numerable cover {Uα} such that each inclusion Uα ↪→ X
is nullhomotopic.

Theorem 1.1.11 (Theorem 6.3 on p. 243 in [Dol63]). Let A be numerably
contractible. Let ξ = (X, p,A) and η = (Y, q, A) be Dold fibrations. Then a fiberwise
map (φ, id) : ξ → η is a fiber homotopy equivalence if and only if for each a ∈ A,
the restriction

φ|p−1(a) : p−1(a)→ q−1(a)

is a homotopy equivalence.

Remark 1.1.12. Note that [Dol63, Theorem 6.3] also mentions that this
same result holds if we exchange “numerably contractible space” with “locally con-
tractible paracompact space”. Furthermore, [Dol63, Proposition 6.7] notes that
every connected CW-complex is numerably contractible. If a space A is numerably
contractible with a numerable cover of contractible spaces {Uα}, then the same
holds for subspaces formed by taking unions of sets Uα, provided that these unions
are connected.

Proposition 1.1.13. Let

X
φ
//

p

��

Y

q

��

A
Φ // B

be a fiberwise map between Dold fibrations ξ = (X, p,A) and η = (Y, q,B). Let ξ and
η have only fibers homotopy equivalent to F , let A be either numerably contractible
or locally contractible paracompact, and let the restriction of φ to each fiber be a
homotopy equivalence. Then (φ,Φ) is a morphism in TopF .

Proof. We have to show that the induced map

ψ : X → Φ∗(W (q))

is a homotopy equivalence. The map

qHf : W (q)→ B

is a Hurewicz fibration, hence so is Φ∗(W (q)) → A by [Rud08, Proposition 1.14].
From equation (5) we know the restriction of ψ to a fiber to be

ψ|p−1(a) = qhe|q−1(Φ(a)) ◦ φ|p−1(a).

By assumption, the map φ| is a homotopy equivalence and so is qhe|. Hence the
composition ψ| is a homotopy equivalence. We can invoke Theorem 1.1.11 and Re-
mark 1.1.12 to show that ψ is a fiber homotopy equivalence because A is numerably
contractible. In particular, ψ is a homotopy equivalence. �

Remark 1.1.14. (1) If DTopFCW is the full subcategory of TopF with
objects Dold fibrations ξ = (X, p,A) such that ξ has fiber F and A is a
connected CW-complex, we can give a sufficient condition for a fiberwise
map to be a morphism: A fiberwise map is a morphism in DTopFCW if
it restricts to a homotopy equivalence on each fiber. This is due to the
fact that A, being a connected CW-complex, is numerably contractible
by [Dol63, Proposition 6.7], which enables an application of Proposition
1.1.13.
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(2) Let HTopFCW be the full subcategory of DTopFCW with objects Hurewicz

fibrations. Then (φ, id) : ξ → η is a morphism in HTopFCW if and only if
φ restricts to a homotopy equivalence on each fiber. To see this, that one
side of this equivalency was already shown, above. For the other side, let
(φ, id) is a morphism in HTopFCW. Now η = (Y, q, A) being a Hurewicz
fibration implies W (q) = Y . Then

ψ : X → id∗(W (q)) = id∗(Y )

is a homotopy equivalence. It is also, by definition, a fiberwise map. As
both spaces involved are Hurewicz fibrations (X by definition and id∗(Y )
as the pull-back of a Hurewicz fibration), we can invoke [Hat01, Exercise
4H.3] to show that ψ is a fiber homotopy equivalence. In particular, the
restriction to a fiber ψ| = φ| is a homotopy equivalency.

Lemma 1.1.15. Let

X1

p1

��

X0
φ1oo

p0

��

φ2 // X2

p2

��

A1 A0
Φ1oo

Φ2 // A2

be a commutative diagram such that the vertical maps are Dold fibrations and objects
of TopF . Let furthermore both squares be morphisms in TopF . Then the induced
map p : X → A between the row-wise double mapping cylinders is a Dold fibration.

Proof. This follows from the proof of [Pup74, Lemma 2, p. 4]. �

1.2. Leray-Serre Spectral Sequences

1.2.1. Naturality of Leray-Serre Spectral Sequences. In the present
text, we make extensive use of the Leray-Serre spectral sequence. In particular,
we employ its naturality properties. In fact, there are two sorts of such naturality
properties: On the one hand, the Leray-Serre spectral sequence is natural with re-
spect to fiberwise maps. We review this in Subsection 1.2.1. On the other hand, in
a certain sense the Leray-Serre spectral sequence behaves in a non-natural fashion:
Namely, in order to recover a (co)homology group from a convergent Leray-Serre
spectral sequence, we need to choose splittings of certain short exact sequence. In
general, it may not be possible to choose natural splittings. However, in the cases
in which we are interested, natural splittings exist. We deal with this aspect in Sub-
section 1.2.2. Both naturality properties will be exploited in later sections. For the
remainder of this chapter, all results and expressions concerning spectral sequences
are quoted from [McC01].

Recall the cohomological version of the Leray-Serre spectral sequence:

Theorem 1.2.1 (Theorem 5.2 on p. 135 in [McC01]). Let ξ = (F,X, p,A)
be a fibration with connected fiber and path connected base space. Then there is a
first quadrant spectral sequence of algebras, {E∗,∗r , dr}, converging to H∗(X) as an
algebra, with an isomorphism

(φ∗2)−1 : Ep,q2

∼=−→ Hp(A;Hq(F ;Q)).

The range of (φ∗2)−1 is the cohomology of the space A with local coefficients in the
cohomology of the fiber of ξ. This sequence is natural with respect to fiberwise maps.

If A is simply connected then π1(A) acts trivially on H∗(F ;Q), and the E2-term
can be identified as

Ep,q2
∼= Hp(A;Hq(F ;Q)).

What, precisely, does the last sentence in the theorem mean? There are two state-
ments contained here: firstly the fact that the spectral sequence is functorial in a
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certain sense, and secondly the fact that the identification of the E2-term is through
a natural isomorphism. We consider both parts in detail.

Concerning the functoriality, we need some terminology. Following [McC01,
p. 65], we denote by SpecSeq the category of spectral sequences and morphisms
thereof. We let Hurewicz fibrations with simply connected base and connected fiber
form the objects of a category Fib. Morphisms in this category are fiberwise maps.
Then we can state that the assignment

LS∗ : ξ 7→ {E∗,∗r , dr},
which assigns to a fibration ξ its cohomological Leray-Serre spectral sequence is
actually a contravariant functor from Fib to SpecSeq. Thus a fiberwise map

Ξ = (ψ,Ψ): ξ → η

of fibrations in Fib induces a morphism

{Ξ} = LS∗(Ξ) : {Ep,qr (η), dr(η)} → {Ep,qr (ξ), dr(ξ)}
of the associated spectral sequences:

η {Ep,qr (η), dr(η)}

{Ξ}

��

LS∗ //

ξ

Ξ

OO

{Ep,qr (ξ), dr(ξ)}

This functorial formulation can be found for example in [Spa66, Chapter 9].
Concerning the second part of the naturality statement, we have for any fiber-

wise map Ξ = (ψ,Ψ) ∈ HomFib(ξ, η) a commutative diagram:

Ep,q2 (η)

{Ξ}p,q2

��

(φ∗2)−1

∼=
// Hp(B(η);Hq(F (η)))

(ψ,Ψ)

��

Ep,q2 (ξ)
(φ∗2)−1

∼=
// Hp(B(ξ);Hq(F (ξ)))

Here (ψ,Ψ) is the map induced on cohomology by ψ| : F (ξ)→ F (η) and Ψ: B(ξ)→
B(η). Thus we can combine the two diagrams to obtain the following diagram with
commutative squares:

η {Ep,qr (η), dr(η)}

{Ξ}

��

Ep,q2 (η)

{Ξ}p,q2

��

(φ∗2)−1

//? _oo Hp(B(η);Hq(F (η)))

(ψ,Ψ)

��

LS∗ //

ξ

Ξ

OO

{Ep,qr (ξ), dr(ξ)} Ep,q2 (ξ)
(φ∗2)−1

//? _oo Hp(B(ξ);Hq(F (ξ)))

This is naturality of the cohomological Leray-Serre spectral sequence for fiberwise
maps.
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Analogously, naturality of the homological Leray-Serre spectral sequence can
be summarized as commutativity of the squares in the following diagram:

ξ

(ψ,Ψ)

��

{Erp,q(ξ), dr(ξ)}

{Ξ}

��

E2
p,q(ξ)

{Ξ}2p,q

��

φ2
∗ //? _oo Hp(B(ξ);Hq(F (ξ)))

(ψ,Ψ)

��

LS∗ //

η {Erp,q(η), dr(η)} E2
p,q(η)

φ2
∗ //? _oo Hp(B(η);Hq(F (η)))

1.2.2. Leray-Serre Spectral Sequences and the Recovery Problem.
We want to look at what may be called the recovery problem:

Given a convergent spectral sequence, recover its limit.

On first glance, this seems an odd question to ask; the intuition is that if one has
some objects converging to another object, then the limit of the former should be
exactly the latter. The reason that this picture does not hold up for convergence of
spectral sequences is its very definition. Firstly, convergence of a spectral sequence
is not necessarily unique. Secondly, even when convergence is unique, we recover
the desired group only up to isomorphism. The task of finding such an isomorphism
is known as “solving the extension problems”. The reason for this terminology will
become apparent later.

The requirement that the underlying filtration be bounded ensures unique con-
vergence. In this case the recovery problem reduces to the extension problems.
As we are only concerned with spectral sequences arising from bounded filtrations,
unique convergence does not concern us. Hence we will now describe the extension
problems. To do so, we must first examine how the spectral sequences with which
we are concerned arise.

A filtered differential graded module (A, d, F ∗) induces a spectral sequence by
[McC01, Theorem 2.6]. This spectral sequence converges to H∗(A, d). More specif-
ically, if we assume that the spectral sequence at hand is cohomological, then con-
vergence is by definition the fact that the map d∞ (see [McC01]) is an isomorphism

Ep,q∞
d∞
∼=
// F

pHp+q(A,d)
Fp+1Hp+q(A,d) .

Concerning the terms on the RHS, note that the filtration F ∗ of A induces a filtra-
tion of H∗(A, d) by

F lHk(A, d) = im [Hk(F lA)→ Hk(A)].

When the differential graded module (A, d) in question is understood we often omit
it from the notation by writing F lHk for F lHk(A, d). It should be noted that one
may also consider the Wang sequence of a given bundle. This is done in the proof
of Proposition 2.5.3.

Proposition 1.2.2. Let ξ = (X, p,B) be a fibration such that B ∼= Sn−c. Then
the cohomological Leray-Serre spectral sequence converges to H∗(X), and there is a
short exact sequence

0 // Fn−cHn−r i // Hn−r(X) // E0,n−r
∞

s

\\
// 0

which allows us to recover the group Hn−r(X) by choosing a splitting s. Any split-
ting induces an isomorphism

a∗ : Fn−cHn−r ⊕ E0,n−r
∞

∼=−→ Hn−r(X), (xn−c, x0) 7→ i(xn−c) + s(x0).
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Proof. As said previously, the cohomological Leray-Serre spectral sequence is
constructed according to [McC01, Theorem 2.6]. The input for this theorem is a
filtered differential graded module (A, d, F ∗). In our case, A = C∗(X) and d = ∂∗

is the usual coboundary operator. The filtration F ∗ of A = C∗(X) which induces
the cohomological Leray-Serre spectral sequence is given as

F sC∗(X) = ker[C∗(X)→ C∗(Js−1)],

with
Js = p−1(Bs).

We use a cell structure
B ∼= Sn−c = e0 ∪ en−c

on the base. So

F 0C∗(X) = ker[C∗(X)→ C∗(J−1︸︷︷︸
=∅

)] = C∗(X).

We also know that

F 0Hn−r

=im [Hn−r(F 0C∗(X))→ Hn−r(C∗(X))]

=im [Hn−r(C∗(X))→ Hn−r(C∗(X))]

=im [Hn−r(X)→ Hn−r(X)]

=Hn−r(X),

(6)

and furthermore that

F 1C∗(X) = ker[C∗(X)→ C∗(J0)]

= ker[C∗(X)→ C∗(p−1(e0))]

= F 2C∗(X) = · · · = Fn−cC∗(X).

These are the cochains in X which vanish on p−1(e0). Thus, F 1C∗(X) is equal to
C∗(X, p−1(e0)). Also,

Fn−c+1C∗(X) = ker[C∗(X)→ C∗(Jn−c+1−1)] = ker[C∗(X)→ C∗(X)] = {0}.
Then, by (6),

E0,n−r
∞

d∞−−→∼=
F 0Hn−r

F 1Hn−r

=
Hn−r(X)

im [Hn−r(C∗(X, p−1(e0)))→ Hn−r(X)]

=
Hn−r(X)

im [Hn−r(X, p−1(e0))→ Hn−r(X)]

=
Hn−r(X)

ker[Hn−r(X)→ Hn−r(p−1(e0))]
,

with the last equality being due to the long exact sequence of the pair. We note

F 1Hn−r = F 2Hn−r = · · · = Fn−cHn−r

and

Fn−c+1Hn−r = im [Hn−r({0})→ Hn−r(X)]

= {0}.

This constitutes a decreasing filtration of Hn−r such that

{0} = Fn−c+1Hn−r ⊂ Fn−cHn−r = · · · = F 1Hn−r ⊂ F 0Hn−r = Hn−r.
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Concerning the associated graded module

Gr (Hn−r, F ∗)p FpHn−r

Fp+1Hn−r Ep,n−r−p∞
d∞
∼=
oo

of Hn−r, we obtain for any p ∈ N a short exact sequence

0 // F p+1Hn−r incl // F pHn−r quot
// Gr (Hn−r, F ∗)p // 0.

Setting Gr p = Gr (Hn−r, F ∗)p, we see that this set of short exact sequence is as
follows:

0
= // Fn−c+1Hn−r = // Gr n−c+1 // 0

0
= // Fn−c+1Hn−r // Fn−cHn−r = // Gr n−c // 0

0 // Fn−cHn−r = // Fn−c−1Hn−r // Gr n−c−1 = // 0

0 // F 2Hn−r = // F 1Hn−r // Gr 1 = // 0

0 // F 1Hn−r // F 0Hn−r // Gr 0 // 0

Fn−cHn−r Hn−r E0,n−r
∞

∼= d∞

OO

Gr n−c

Splitting these sequences means solving the extension problems. In the present case,
the splittings exist because all groups involved are in fact rational vector spaces. In
fact, to obtain Hn−r = F 0Hn−r from

{Gr (Hn−r, F ∗)k ∼= Ek,n−r−k∞ | k ∈ Z}
we only need to regard the bottom split exact sequence, namely

0 // Fn−cHn−r incl // Hn−r(X)
(d∞)−1◦quot

// E0,n−r
∞

s

aa
// 0.

Any splitting s of this sequence induces an isomorphism

a∗ : Fn−cHn−r ⊕ E0,n−r
∞

∼=−→ Hn−r(X), (xn−c, x0) 7→ i(xn−c) + s(x0).

�

To complete our picture, we need to consider the homology side.

Proposition 1.2.3. Let ξ = (X, p,B) be a fibration such that B ∼= Sn−c. Then
the homological Leray-Serre spectral sequence converges to H∗(X), and there is a
short exact sequence

0 // Fn−c−1Hr−1
// Hr−1(X) // E∞n−c,r−1−n+c

//

s

__
0

which allows us to recover the group Hr−1(X) by choosing a splitting s. This split-
ting induces an isomorphism

a∗ : Fn−c−1Hr−1 ⊕ E∞n−c,r−1−n+c

∼=−→ Hr−1(X).

Proof. The proof is analogous to the cohomological version. The filtration F∗
of C∗(X) is given as

FsC∗(X) = im [C∗(J
s)→ C∗(X)].
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Thus,

F−1C∗(X) = im [C∗(J
−1︸︷︷︸

=∅

)→ C∗(X)] = {0}

F0C∗(X) = im [C∗( J0︸︷︷︸
∼=p−1(e0)

)→ C∗(X)] = C∗(p
−1(e0))

= F1C∗(X) = · · · = Fn−c−1C∗(X)

Fn−cC∗(X) = im [C∗(J
n−c︸ ︷︷ ︸
=X

)→ C∗(X)] = C∗(X).

Hence

F−1Hr−1 = im [Hr−1(F−1C∗(X))→ Hr−1(C∗(X))]

= im [Hr−1({0})→ Hr−1(X)]

= {0}
F0Hr−1 = im [Hr−1(F0C∗(X))→ Hr−1(C∗(X))]

= im [Hr−1(C∗(p
−1(e0)))→ Hr−1(X)]

= im [Hr−1(p−1(e0))→ Hr−1(X)]

= F1Hr−1 = · · · = Fn−c−1Hr−1

Fn−cHr−1 = Hr−1 = Hr−1(X).

To explain the splitting in the homological case, there are two relevant exact se-
quences. The first is induced by the composition

F0Hr−1
quot
// // F0Hr−1

F−1Hr−1

(d∞)−1

∼=
// E∞0,r−1

In fact, this sequence is

(7) 0 // F−1Hr−1
incl // F0Hr−1

(d∞)−1◦quot
// E∞0,r−1

// 0.

Analogously, there is an isomorphism

d∞ : E∞n−c,r−1−n+c

∼=−→ Fn−cHr−1

Fn−c−1Hr−1
,

which induces the bottom exact sequence:

0

��

Fn−c−1Hr−1

incl
��

Fn−cHr−1

(d∞)−1◦quot
��

E∞n−c,r−1−n+c

��

0

(8)

�





CHAPTER 2

Spheres as Base Spaces

2.1. Setting

2.1.1. Introduction. We begin with some remarks concerning notation, be-
fore introducing the setting in which we will work. By default, we will consider Sm

to be covered by two closed hemispheres D0 and D1 defined as

D0 = Sm ∩ (Rm × R≥0),

D1 = Sm ∩ (Rm × R≤0).

These intersect in an equatorial (m− 1)-sphere, as shown in the following sketch:

Figure 1. The m-sphere covered by two closed sets intersecting
at the equator.

Before we can move on to define the link bundles, we quote definition of the
desired links.

Definition 2.1.1 (Definition 1.62 on p. 71 in [Ban10]). Let ICW be the
full subcategory of CW whose objects are simply connected CW-complexes K
with finitely generated even-dimensional homology and vanishing odd-dimensional
homology for any coefficient group. We call ICW the interleaf category .

The following definition specifies the type of link bundle in which we are inter-
ested.

Definition 2.1.2. Let ξ = (N,Y, p, Sm) be a fiber bundle with

(1) N ∈ Ob ICW consisting of finitely many cells,
(2) m ≥ 2, and
(3) structure group a subgroup of HomeoCW(N), the topological group of

cellular homeomorphisms with cellular inverses of N . (We call this a
cellular structure group).

A bundle fitting this description will be called an interleaf fiber bundle over Sm.

Using the local coordinate description of a fiber bundle (cf. [Hus94]), we are
going to construct a non-trivial fiber bundle η with fiber S2 and base space S2,

13
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which is an interleaf fiber bundle over S2. Cover S2 by two closed hemispheres E1

and E2 such that E1 ∩ E2 = S1. If we denote a rotation of the plane by

Aθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
we see that

SO(2) = {Aθ | θ ∈ [0, 2π)}
acts on S2 by rotation around the x3-axis,

SO(2)× S2 → S2, (Aθ, (x1, x2, x3)T ) 7→
(

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

)(
x1
x2
x3

)
This action makes S2 a left SO(2)-space. We give a system of transition func-

tions {g11, g12, g21, g22} associated with the closed cover {E1, E2} by setting

E1 ∩ E1 = E1
g11 // SO(2), x

� g11 // id2

E1 ∩ E2 = S1
g12 // SO(2), x eiθ � g12 // Aθ

E2 ∩ E1 = S1
g21 // SO(2), x eiθ

� g21 // A−θ

E2 ∩ E2 = E2
g22 // SO(2), x � g22 // id2

Theorem 2.1.3 (Theorem 3.2 on p. 64 in [Hus94]). Let {Vi}i∈I be an open
covering of a space B, let G be a topological group, let Y be a left G-space, and let
{gi,j}i,j∈I be a system of transition functions associated with the open sets {Vi}i∈I .
Then there exists a fiber bundle η = ξ[Y ] and an atlas {(hi, Vi)}i∈I for η such that
the set of transition functions of this atlas is {gi,j}i,j∈I .

Then Theorem 2.1.3 shows that above data suffice to construct a fiber bundle
η = ξ[S2]. Carrying out the calculations suggested in the proof of Theorem 2.1.3,
one concludes that η is the fiber bundle

η = (S2,
(E1 × S2) t (E2 × S2)

(eiθ, y) ∼ (eiθ, Aθy)∀eiθ ∈ E1 ∩ E2 = S1∀y ∈ S2
,proj1, S

2)

i.e. we attach a fiber S2 to each point x ∈ E1 and to each point x ∈ E2, and we
glue the resulting trivial bundles over the equator, but with a rotation: {eiθ} × S2

is identified with {eiθ} ×AθS2.
The fiber bundle η is non-trivial. This is a consequence of a result from [Ste51]

concerning bundles over Sm in normal form. A bundle over Sm is considered to be
in normal form, if it is given in coordinate description with a closed cover consisting
of two hemispheres E1 ∩E2 = Sm−1, and if a reference point x0 ∈ Sm−1 is mapped
by g12 to e ∈ G. Steenrod calls the map g12 the characteristic map of the bundle.

Theorem 2.1.4 (Equivalence Theorem, Theorem 18.3 on p. 97 in [Ste51]). Let
η and η′ be bundles over Sm in normal form and having the same fiber and path-
connected structure group G. Let g12 and g′12 be their characteristic maps. Then η
and η′ are equivalent if and only if g12 ' g′12.

Proposition 2.1.5. The fiber bundle η is non-trivial.

Proof. The characteristic map g12 : S1 → SO(2) can be viewed as a map
g : S1 → S1, eiθ 7→ eiθ, or, in other words, as idS1 . It is clearly not homotopic
to g′12 : S1 → SO(2), eiθ 7→ id2 = e ∈ SO(2), the characteristic map of the trivial
bundle (S2, S2 × S2,proj1, S

2). Therefore η is non-trivial. �

The gluing of the total space of η involves rotations around the x3-axis only. We
can assume the cell structure of the fiber S2 to be S2 = e0∪e2 with e0 being placed
on the x3-axis, making the rotation maps cellular homeomorphisms with cellular
inverses. Thus η is a non-trivial interleaf fiber bundle over S2. Yet its homology
is that of a trivial bundle, for we have the following E2-term in the homology
Leray-Serre spectral sequence:



2.1. SETTING 15

H0(S2)

0

H2(S2)

0

...

H0(S2)

0

H2(S2)

0

...

q

p0 1 2

0

1

2

3

...

d2

We see that all differentials in the E2-term vanish, and furthermore that this is also
true of higher differentials. Therefore the interleaf fiber bundle η exhibits the same
homology as a trivial bundle. This is in accordance with Proposition 2.5.11. An
analogous result concerning the cohomology of η can be established in the same way,
confirming Corollary 2.5.8 in this case. This ends our discussion of the example.

In the present chapter, the focus is on a compact stratified topological pseudo-
manifold X which is composed of two strata,

X = Xn ⊃ Xn−c.

Accordingly, X is of dimension n while the second stratum Σ = Xn−c is the singular
set. The latter (n−c)-dimensional closed manifold. An important aspect of pseudo-
manifolds in general is the link, and in the present case this is a (c−1)-dimensional
closed manifold L. Moreover, we assume that a neighborhood UΣ of the singular
set Σ exists, which is characterized by the fact that it can be equipped with the

structure of a locally trivial fiber bundle η = (
◦

cone (L), UΣ, q,Σ). Given these data,
we aim to define for a given perversity p an intersection space IpX, and ultimately
to show that the cohomology of this space satisfies generalized Poincaré duality. In
[Ban10], the case of a trivial link bundle was treated, with just the assumption
that the fiber be a simply connected space. We assume for a moment that η is a

trivial bundle, UΣ = Σ × ◦
cone (L), and recall the definition of [Ban10]. In detail,

one subtracts the total space Σ× ◦
cone (L) from X. This yields a manifold Mn, and

the boundary of M exhibits the structure of a fiber bundle

∂M = Σ× L.
This is called the link bundle, due to the fact that its fiber is the link of X. Next,
spatial homology truncation enables the existence of a fiberwise map

Σ× t<k(L)→ Σ× L = ∂M

This map is then composed with the inclusion ∂M ↪→ M , and this composition is
called g. The procedure is completed by defining the intersection space as

IpX = cone (g) = M ∪g cone (Σ× t<k(L))

which Banagl does on [Ban10, p. 177]. Having quoted this construction, we wish
to modify it to accommodate nontrivial link bundles.

Assume therefore that η is possibly nontrivial. As in Banagl’s construction, we
remove the total space of η from X and obtain M . By assumption, the link bundle

ξ = (L, ∂M, p,Σ),
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of X may be nontrivial. Accordingly, we may not assume that ∂M is a product
and cannot rely on this to construct the fiberwise truncation of ξ, and a different
approach is necessary.

In [Ban10, Section 2.9], generalized Poincaré duality was shown to hold for the
homology of the intersection space of pseudomanifolds X such that the link L is a
simply-connected space while the link bundle is trivial, ∂M = Σ × L. We address
a similar statement of duality for a different class of pseudomanifolds: Roughly
speaking, we restrict to spheres as singular sets but allow for a controlled amount
of twist in the link bundle.

To be more precise, additionally to X being a compact, n-dimensional two-
strata pseudomanifold, our restrictions are threefold: Firstly, let the singular set
be a sphere Σ = Sn−c with n − c ≥ 2. Secondly, let the link L be oriented1 and
an object in the interleaf category ICW consisting of finitely2 many cells. Since L
is in ICW, this excludes odd-dimensional links. We can therefore assume c to be
odd. Thirdly, let the link bundle be an interleaf fiber bundle over Sn−c.

To sum up, we demand that Xn be a stratified pseudomanifold which

(1) is compact and composed of two strata, has a
(2) interleaf fiber bundle over Sn−c, n− c ≥ 2 as link bundle and
(3) an oriented link L.

To complete the overview of our setting, we introduce the intersection space
of X. For a perversity p, we set k = c − 1 − p(c). Then, following the exposition
in Subsection 2.1.2, we will obtain for ξ a fiberwisely truncated bundle ft<k (ξ) =
(L<k, ft<k (∂M), ft<k (p), B). We also obtain a commutative diagram:

L �
�

// ∂M
p

// Sn−c

L<k

µ|

OO

� � // ft<k (∂M)
ft<k (p)

//

µ

OO

B

' M

OO

(9)

Given the existence of the composition g, given as

ft<k (∂M)
µ→ ∂M

j
↪→M,

one can define the intersection space of X.

Definition 2.1.6 (Definition 2.41 on p. 177 in [Ban10]). Given the restrictions
(1), (2) and (3), above, the perversity p intersection space IpX of X is defined to
be IpX = cone (g) = M ∪g cone (ft<k (∂M)).

Notice that g – and thus in turn IpX – depends on µ.

2.1.2. Fiberwise Homology Truncation. We want to be able to apply the
process of fiberwise homology truncation to arbitrary interleaf fiber bundles over
Sm. Accordingly, let ξ = (N,Y, p, Sm) be an interleaf fiber bundle over Sm. By
[Ste51, p. 96], any fiber bundle over the m-sphere can be assumed to be given as
the row-wise pushout of the diagram

D0 ×N

��

Sm−1 ×N �
�

//incl◦αoo

��

D1 ×N

��

D0 Sm−1? _oo � � // D1

which consists of two squares representing fiberwise maps. The vertical maps are
projections to the first component. From a topological standpoint, the complexity

1It is actually not necessary to demand this, as L is a simply connected manifold.
2The finite cell structure is actually implied by the fact that L is compact.
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of the bundle is determined entirely by

α : Sm−1 ×N → Sm−1 ×N, (b, y) 7→ (b, g01(b)(y)).

This map, in turn, is specified by the choice of a clutching function

g01 : Sm−1 → HomeoCW(N).

Given k ∈ N, the fiberwise homology truncation of ξ is

ft<k (ξ) = (N<k, ft<k (Y ), ft<k (p), B),

with entries defined as follows:

• N<k = t<k(N) is the spatial homology truncation in degree k of N .
• ft<k (Y ) is defined as the double mapping cylinder of the upper row of the

diagram

D0 ×N<k

��

Sm−1 ×N<k �
�

//
incl◦α<k
oo

��

D1 ×N<k

��

D0 Sm−1? _oo � � // D1

(10)

while the base space B is defined to be the double mapping cylinder of the
lower row in the same diagram. This implies B ∼= Sm by the topological
Poincaré conjecture.

• α<k : Sm−1 × N<k → Sm−1 × N<k, (b, y) 7→ (b, t̃<k(g01(b))(y)), wherein
t̃<k denotes the lift discussed in [Ban10, Section 1.10].

Following [Ban10, Section 1.10], for a given space W , we denote by G(W ) the

group of homotopy self-equivalences W
'−→W .

Proposition 2.1.7. The clutching function of the truncated bundle,

t̃<k ◦ g01 : Sm−1 → G(N<k)

is continuous, and so is α<k.

Proof. Note that the composition

t̃<k ◦ g01 : Sm−1 → G(N<k)

is continuous by [Ban10, Theorem 1.78]. Furthermore, G(N<k) acts on N<k by
an action β : G(N<k) × N<k → N<k, (h, y) 7→ h(y). This action is continuous, see
[Fuc71, Section 7]. Thus the composition

A : Sm−1 ×N<k
(t̃<k◦g01)×idN

// G(N<k)×N<k
β

// N<k

(b, y) � // (t̃<k(g01(b)), y) � // (t̃<k(g01(b))(y))

is continuous. Accordingly, if ∆ is the diagonal map, the map

α<k = (id×A)◦ (∆× id) : Sm−1×N<k → Sm−1×N<k, (b, y) 7→ (b, t̃<n(g01(b))(y))

is continuous because it is just a product with the composition A above. �

Proposition 2.1.8. The truncated bundle ft<k (ξ) is a Dold fibration.

Proof. We want to apply Lemma 1.1.15 to diagram (10). Since all vertical
maps in this diagram are trivial Dold fibrations with fiber N<k, it remains to show
that both squares are morphisms in TopN<k . The right square is trivial, and
therefore a morphism in TopN<k . Concerning the left square: Firstly, Sm−1 is a
connected CW-complex and thus numerably contractible by [Dol63, Proposition
6.7]. Secondly, α<k is continuous, thus so is

incl ◦ α<k : Sm−1 ×N<k → D0 ×N<k
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and the left square is a fiberwise map. Lastly, the restriction of incl ◦ α<k to an
individual fiber is

α<k|N<k = t̃<k(g01(b)) : N<k → N<k,

which is an element of G(N<k) and hence a homotopy equivalence. Therefore

Proposition 1.1.13 shows that the left square is a morphism in TopN<k . Thus
ft<k (ξ) is a Dold fibration by Lemma 1.1.15. �

2.2. Maps on Mapping Cylinders

We continue to work with an arbitrary interleaf fiber bundle over Sm, say
ξ = (N,Y, p, Sm). The present section is concerned with the construction of a
“middle map” (cf. diagram (9) regarding the name)

µ : ft<k (Y )→ Y.

To construct µ, we adapt a technique from [Bau89, p. 260f] which enables the
construction of maps between mapping cones within a more general categorical
framework. We summarize it in the version for Top, then we generalize it to allow
for mapping cylinders in Top. The result will then be used to define µ. All material
in this section is quoted from [Bau89] unless noted otherwise.

Recall that for a topological space A, the cone CA on A is defined as

CA = A× I/A× {0},
while for a map g : A→ B, the mapping cone Cg is defined as

Cg =
CA t (B × {1})

(a, 1) ∼ (g(a), 1) ∀a ∈ A
.

Of course, the mapping cone could just as well have been defined as a quotient
space of CA t B, but the use of the product enables a clean way of referring to
equivalence classes within Cg in the present subsection.

Assume now that we are given a square which commutes up to homotopy,

A
g

// B × {1}

H'

X
f

//

v

OO

Y × {1}

w

OO

(11)

with a homotopy H : g ◦ v ' w ◦ f . We can define a homotopy

G : X × I → CA

from the constant map

c[a,0] : X → CA, x 7→ [a, 0]CA

to i ◦ v, with i defined as

i : A ↪→ CA, a 7→ [a, 1]CA,
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by setting G(x, t) = [v(x), t]CA. This yields a diagram

CA A?
_ioo

G'

X

v

OO

c[a,0]

RR

(12)

which commutes up to homotopy.
Suppose we are given these data, then our task is to construct a map F : Cf →

Cg. Baues uses a diagram to illustrate the situation:

CA
πg

// Cg

push

G' A
/ O

i

^^

g
// B × {1}

0�

ig

AA

H'

X

v

OO

f
//

const

MM

O o

j

~~

Y × {1}� o

if

��

w

OO

push

CX
πf

// Cf

F

OO

(13)

The map πg : CA→ Cg is defined as

πg([a, t]CA) = [a, t]Cg

with πf being defined in an analogous fashion. The map if : Y × {1} ↪→ Cf is
defined as if (y, 1) = [y, 1]Cf , and ig is defined in the same way. Analogously to i,
the map j : X ↪→ CX is the inclusion of X at the 1-end of CX.

Note that we get commutativity of the top and bottom squares for free – they
are pushout squares. Baues shows that we can get the map F : Cf → Cg by setting

(14)

{
F ◦ if = ig ◦ w
F ◦ πf = (πg ◦G) + (ig ◦H)

The “+” in equation (14) represents track addition (or addition of homotopies).
Track addition, first defined in [Bar55], is just concatenation in the case of homo-
topies H : X × I → Y . It is more complicated for higher homotopies, but these do
not concern us here.

In the present case, the track addition may be easily written explicitly. On
πf (CX) ⊂ Cf , the function F is defined as

(15) F : [x, t]Cf 7→

{
πg(G(x, 2t)), t ∈ [0, 1/2]

ig(H(x, 2t− 1)), t ∈ [1/2, 1]
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Clearly, there is a choice involved here: F assigns to the equivalence class [x, t]Cf
a value that depends on the choice of a representative (x, t) of that class. We need
to show that F is constant on each equivalence class, or, in other words, that F is
well-defined. Considering Cf , there are three cases of equivalence classes: [x, t]Cf
with t = 0, t ∈ (0, 1), and t = 1.

(1) “t = 0”: For any choice of a representative (x, 0) of [x, 0]Cf the value of F
is

F ([x, 0]Cf ) = πg(G(x, 0)) = πg(c[a,0](x)) = πg([a, 0]CA) = [a, 0]Cg

and this clearly does not depend on the choice of the representative (x, 0)
of [x, 0]Cf .

(2) “t ∈ (0, 1)”: For t ∈ (0, 1), any equivalence class [x, t]Cf contains just one
element, namely (x, t). Hence the value of F does not depend on a choice
in this case.

(3) “t = 1”: We need to show that the two definitions of F contained in
equations (14) and (15) agree. To this end, for an equivalence class [x, 1]Cf
choose two representatives, namely (x, 1) and (f(x), 1). By equation (14),
we have

F ([f(x), 1]Cf ) = ig ◦ w(f(x))

= ig((w ◦ f)(x))

= [w(f(x)), 1]Cg

and by equation (15), we have

F ([x, 1]Cf ) = ig(H(x, 1))

= ig((w ◦ f)(x)) (because H(·, 1) = w ◦ f)

= [w(f(x)), 1]Cg .

And so the two definitions of F agree. Next, consider a pair of representa-
tives (x, 1), (x′, 1) ∈ [x, 1]Cf such that x 6= x′. This implies f(x) = f(x′).
The two equations

F ([x, 1]Cf ) = [w(f(x)), 1]Cg and F ([x′, 1]Cf ) = [w(f(x′)), 1]Cg

hold, and f(x) = f(x′) implies

F ([x, 1]Cf ) = F ([x′, 1]Cf ).

Thus the value of F does not depend on the choice of a representative. We consider
the question whether F is continuous. Recall the following result concerning maps
defined on quotient spaces.

Theorem 2.2.1 (Theorem 22.2 on p. 142 in [Mun00]). Let p : X → Y be a
quotient map. Let Z be a space and let g : X → Z be a map that is constant on each
set p−1(y), for y ∈ Y . Then g induces a map f : Y → Z such that f ◦ p = g. The
induced map f is continuous if and only if g is continuous.

View Cf as the quotient space of CX t (Y × {1}) qf→ Cf . The quotient map qf
may be explained as

(16)

{
qf |CX = πf

qf |Y×{1} = if .

According to above result, we can show that F is continuous, if it is induced by a
continuous map F̃ : CXt(Y ×{1})→ Cg which is constant on the preimage (under
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qf ) of any equivalence class in Cf . The situation presents itself as a diagram.

CX t (Y × {1})
F̃

&&

qf

��

Cf
F // Cg

Set F̃ = F ◦ qf . Firstly, we have to check that F̃ |CX and F̃ |Y×{1} are continuous.
For the former map, we obtain

F̃ |CX([x, t]CX) = (F ◦ qf )|CX([x, t]CX)

= (F ◦ πf )([x, t]CX)

(14)
==== ((πg ◦G) + (ig ◦H)) [x, t]Cf

Both maps in the track addition in (15) are continuous, and they agree on the
overlap of their respective domains: For [x, 1/2]Cf , we have

πg

(
G

(
x, 2

1

2

))
= πg(G(x, 1))

(12)
==== πg((i ◦ v)(x)) = (πg ◦ i ◦ v)(x)

and

ig

(
H

(
x, 2

1

2
− 1

))
= ig(H(x, 0))

(11)
==== ig((g ◦ v)(x)) = (ig ◦ g ◦ v)(x).

So we have to show

(πg ◦ i ◦ v)(x) = (ig ◦ g ◦ v)(x) ∀x ∈ X
but this equation holds by virtue of the upper pushout square in diagram (13).
Furthermore, (x, 0) 7→ (πg ◦G) + (ig ◦H)(x, 0) is constant and thus Theorem 2.2.1

shows that the map (πg ◦G) + (ig ◦H) = F̃ |CX : CX → Cg is continuous.

For F̃ restricted to Y × {1}, we have

F̃ |Y×{1}(y, 1) = (F ◦ qf )(y, 1)

= F (qf (y, 1))

(16)
==== F (if (y, 1))

(14)
==== (ig ◦ w)(y, 1)

which is clearly continuous, since both w and ig are continuous.

Since the continuous map F̃ induces F in the sense of Theorem 2.2.1, we need
to show that F̃ is constant on the preimage (under qf ) of each equivalence class in
Cf . As noted previously, there are three types of equivalence classes [x, t]Cf in Cf ,
corresponding to t = 0, t ∈ (0, 1) and t = 1.

(1) “t = 0”: That F is well-defined implies that F̃ is constant.
(2) “t ∈ (0, 1)”: Each equivalence class contains only one element, thus there

is nothing to show.
(3) “t = 1”: The map F is well-defined and hence F̃ is constant on the

preimage of each equivalence class.

The next task is to glean a better understanding of the behavior of the map F .
Recall the boundary relations of the homotopies G and H:

H : g ◦ v ' w ◦ f, H(·, 0) = g ◦ v
H(·, 1) = w ◦ f

G : c[a,0] ' i ◦ v, G(·, 0) = c[a,0]

G(·, 1) = i ◦ v

(17)
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Clearly, Y ↪→ Cf is mapped to w(Y ) ↪→ Cg. The other part of F is not so straight-
forward. Here, the time parameter of the cylindrical part of the mapping cone is
used as an argument of the homotopies. It is perhaps better to try to explain this
visually. The path which F takes in diagram (13) is illustrated in the following
schematic:

t 0 → 1/2 = 1/2 → 1

F //
VV

G
'→ //

]]

OO

=̂

//

AA

OO

H
'→ AA

//

OO

The next sketch shows where F takes which value on the mapping cone.

Figure 2. The four arrows represent the value of F at the re-
spective base points in CX: (i) πg(G(·, 0)) = πg ◦ constpt, (ii)
πg(G(·, 1)) = πg ◦ i ◦ v = ig ◦ g ◦ v = ig(H(·, 0)), (iii) ig(H(·, 1)) =
ig ◦ w ◦ f , (iv) ig ◦ w.

The case of a map between mapping cylinders is similar to that of a map
between mapping cones. Essentially, we need a different homotopy G, and to adapt
F accordingly. Consider the following diagram, in which the spaces A,B,X, Y
and the maps f, g, v, w as well as the homotopy H and the commutativity up to
homotopy of the central square induced by H are assumed to be given:

A× I
πg

// Mg

push

G' A
/ O

i1

``

g
// B × {1}

0�

ig

@@

H'

X

v

OO

f
//

N n

j

}}

i0◦v

NN

Y × {1}� o

if

��

w

OO

push

X × I
πf

// Mf

F

OO

(18)

Note that the maps i(l) are defined as

i(l) : A ↪→ A× I, a 7→ (a, l)
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for l = 0, 1. These are just the inclusions of A at the 0-end and at the 1-end of
A× I, respectively. There is an obvious homotopy G : X × I → A× I, namely

(19) G(x, t) = (v(x), t)

Then
G : i(0) ◦ v ' i(1) ◦ v, G(·, 0) = i(0) ◦ v, G(·, 1) = i(1) ◦ v.

After above discussion of the case of mapping cones, it should be clear that setting

(20)

{
F ◦ if = ig ◦ w,
F ◦ πf = (πg ◦G) + (ig ◦H)

achieves the desired result of a continuous map. Well-definition and continuity
follow as in the case of mapping cones. For convenience, we write down the track
addition explicitly. On πf (X × I) ⊂Mf , the function F is defined as

(21) F : [x, t]Mf
7→

{
πg(G(x, 2t)), t ∈ [0, 1/2]

ig(H(x, 2t− 1)), t ∈ [1/2, 1].

We summarize this:

Proposition 2.2.2. Given a square

A
g
// B × {1}

H'

X
f
//

v

OO

Y × {1}

w

OO

which commutes up to homotopy, there is a continuous map F : Mf → Mg with
restrictions

F |X×{0} = v,

F |Y×{1} = w.

Proof. A function F may be defined as in equation (20). We have already
established that this yields a well-defined and continuous map. �

2.3. Construction of µ

Let ξ = (N,Y, p, Sm) be an arbitrary interleaf fiber bundle over Sm, and recall
from Subsection 2.1.2 the clutching function g01: For a fixed b ∈ Sm−1, there is a
cellular homeomorphism g01(b) : N → N and a natural transformation of functors

embk (N) : t<k → t<∞.

This natural transformation as well as the functor t<∞ are introduced in [Ban10,
p. 78].

Hence there is a diagram

N<k
embk (N)

//

t<k(g01(b))

��

N

[g01(b)]

��

N<k
embk (N)

// N

which commutes in HoCW. Commutativity in HoCW is equivalent to commuta-
tivity up to homotopy of the corresponding diagram in CW, for an arbitrary choice
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of representatives. We choose the canonical representatives

[g01(b)],

t<k(g01(b)) = [t̃<k(g01(b))] = [(hN ◦ g01(b) ◦ h′N )k−1],

embk (N) = [h′N ◦ incl].

Only the last choice needs an explanation, for which we direct the reader to [Ban10,
p. 78f]. The definition of the homotopy equivalence hN : N → E(N) as well as the
definition of the CW-complex E(N) can also be found in [Ban10, Section 1.9]. We
obtain a homotopy Hb : N<k × I → N such that

N<k
[h′N◦incl]

//

t<k(g01(b))

��

N

[g01(b)]

��

N<k
[h′N◦incl]

// N

commutes outright in HoCW and, for the choice of representatives given, up to
homotopy Hb in CW. We want to show that the assignment b Hb is continuous
in the following sense: We can use the assignment to construct a fiber homotopy
H : Sm−1 ×N × I → Sm−1 ×N<k. To this end, we recall from [Ban10, p. 78f] the
definition of the homotopy Hb. In the diagram

E(N)k−1
[incl]

//

[(hN◦g01(b)◦h′N )k−1]

��

E(N)
[h′N ]

//

[hN◦g01(b)◦h′N ]

��

N

[g01(b)]

��

E(N)k−1
[incl]

// E(N)
[h′N ]

// N

(22)

the left square commutes in HoCW – it commutes in CW for the choice of repre-
sentatives indicated since g01(b) is cellular. For the right square, we notice

[h′N ] ◦ [hN ◦ g01(b) ◦ h′N ] = [h′N ◦ hN ]︸ ︷︷ ︸
=[idN ]

◦ [g01(b) ◦ h′N ]

= [g01(b) ◦ h′N ],

for hN is a homotopy equivalence with homotopy inverse h′N . We obtain a homotopy

G̃ : N × I → N, G̃(·, 0) = h′N ◦ hN , G̃(·, 1) = idN .

Importantly, G̃ does not depend on b. Thus, composing

E(N)× I
h′N×id

// N × I
g01(b)×id

// N × I G̃ // N

yields a homotopy Gb : E(N)× I → N such that

Gb(·, 0) = h′N ◦ hN ◦ g01(b) ◦ h′N , Gb(·, 1) = g01(b) ◦ h′N ,
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and the square

E(N)
h′N //

hN◦g01(b)◦h′N

��

N

g01(b)

��

Gb'

E(N)
h′N // N

commutes up to homotopy Gb. We can therefore compose

(23) Hb : E(N)k−1 × I incl×id
// E(N)× I Gb // N,

and obtain

Hb(·, 0) = h′N ◦ hN ◦ g01(b) ◦ h′N ◦ incl

= h′N ◦ incl ◦ (hN ◦ g01(b) ◦ h′N )k−1.

The last equality is due to commutativity (in CW) of the left square in (22) for
the choice of representatives indicated. Furthermore,

Hb(·, 1) = g01(b) ◦ h′N ◦ incl.

This is Hb as it was defined in [Ban10].
We introduce the notation eNk for the canonical representative h′N ◦ incl of

embk (N). We cross the diagram

N<k
eNk //

t̃<k(g01(b))

��

N

g01(b)

��

Hb'

N<k
eNk // N

with Sm−1 to obtain

Sm−1 ×N α // Sm−1 ×N

H'

Sm−1 ×N<k
α<k

//

id×eNk

OO

Sm−1 ×N<k

id×eNk

OO

(24)

which commutes up to fiber homotopy H: On each fiber, there is a homotopy Hb,
and regarding equation (23) we see that these patch together continuously since Gb
is continuous in b (since g01 is). We use diagram (24) as input for Proposition 2.2.2
and obtain a map

(25) φ : Mα<k →Mα.

For convenience, we note which variable mentioned in Proposition 2.2.2 becomes
which variable in this case:
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f α<k
g α
v id× eNk
w id× eNk

Lemma 2.3.1. Let ξ = (N,Y, p, Sm) be an interleaf fiber bundle over Sm, with
clutching function g01 : Sm−1 → HomeoCW(N) determining a map

α : Sm−1 ×N → Sm−1 ×N, (b, y) 7→ (b, g01(b)(y)).

Let α<k be defined as

α<k : Sm−1 ×N<k → Sm−1 ×N<k, (b, y) 7→ (b, t̃<k(g01(b))(y)).

Then there is a fiberwise map

(φ,Φ): Mα<k →Mα,

which up to homotopy restricts to eNk on each fiber.

Proof. We would like to show that there is a map Φ: Sm−1 × I → Sm−1 × I,
making

Mα<k

φ
//

q<k

��

Mα

q

��

Sm−1 × I Φ // Sm−1 × I

(26)

a fiberwise map. (Here, q<k and q are the respective canonical projections.) We
define

Φ: Sm−1 × I → Sm−1 × I, (b, t) 7→

{
(b, 2t), t ∈ [0, 1/2],

(b, 1), t ∈ [1/2, 1].

This is clearly continuous. It remains to show the commutativity of diagram (26).
It suffices to show this for a fixed b ∈ Sm−1. We consider several cases:

(1) “t = 0”:

φ([b, y, 0]Mα<k
)

(20),(21)
======= πα(G(b, y, 0))

(19)
==== πα(i0 ◦ (id× eNk )(b, y))

= πα(i0(b, eNk (y)))

= πα(b, eNk (y), 0)

= [b, eNk (y), 0]Mα
∈ q−1(b, 0)

(27)

(2) “t ∈ (0, 1/2]”:

φ([b, y, t]Mα<k
)

(20),(21)
======= πα(G(b, y, 2t))

(19)
==== πα((id× eNk )(b, y), 2t)

= πα(b, eNk (y), 2t)

= [b, eNk (y), 2t]Mα
∈ q−1(b, 2t)

(3) “t ∈ [1/2, 1]”:

φ([b, y, t]Mα<k
)

(20),(21)
======= iα(H(b, y, 2t− 1)) ∈ q−1(b, 1)

= iα(b,Hb(y, 2t− 1)︸ ︷︷ ︸
∈N

)

= [b,Hb(y, 2t− 1), 1] ∈ q−1(b, 1).
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We see that diagram (26) commutes in all three cases, and we have shown the
lemma. �

Remark 2.3.2. The boundary relations of the fiberwise map (φ,Φ) of Lemma
2.3.1 can be determined as follows. Firstly, we note that

Φ(b, l) = (b, l) ∀b ∈ Sm−1∀l ∈ {0, 1}.
So fibers at both ends are kept in place at their base points under (φ,Φ). Secondly,
for the 1-end we have from equation (20):

φ([b, y, 1]Mα<k
) = φ ◦ iα<k(b, y) (definition of φ)

= iα ◦ (id× eNk )(b, y) (RHS square in (18))

= iα(b, eNk (y))

= [b, eNk (y), 1]Mα
.

Lastly, for the 0-end,

φ([b, y, 0]Mα<k
) = [b, eNk (y), 0]Mα

was already shown in equation (27).

What remains is to use (φ,Φ): Mα<k →Mα to create a fiberwise map

(µ,M): ft<k (ξ)→ ξ.

We will define (µ,M) to be the composition

ft<k (ξ)
(µ<k,M<k)−−−−−−−→ ξexp

(µexp,Mexp)−−−−−−−→ ξ.

The bundle
ξexp = (N,Xexp, pexp, B)

is ξ “exploded”: We use a total space

Xexp = (D0 ×N) ∪Mα ∪ (D1 ×N)/ ∼exp

with obvious gluing “∼exp” and obvious projection pexp. Then the Gluing Lemma
together with the boundary relations of (φ,Φ) tell us that we can glue the fiberwise
maps

D0 ×N<k
(id×eNk ,id)

// D0 ×N,

Mα<k

(φ,Φ)
// Mα, and

D1 ×N<k
(id×eNk ,id)

// D1 ×N,
to form the fiberwise map (µ<k,M<k) : ft<k (ξ)→ ξexp. The maps

Sm−1 ×N × I → Sm−1 ×N × {1}, (b, y, t) 7→ (b, g01(b)(y), 1),

Sm−1 ×N × {1} → Sm−1 ×N × {1}, (b, y, 1) 7→ (b, y, 1)

define a function

ι : (Sm−1 ×N × I) t (Sm−1 ×N × {1})→ Sm−1 ×N × {1}.
We use the notation “×{1}” for the base of the mapping cone to make the following
clearer. If ζ : (Sm−1×N ×I)t (Sm−1×N ×{1})→Mα is the appropriate quotient
map, then a preimage under ζ is either

ζ−1([b, y, 1]Mα
) = {(b, (g01(b))−1(y), 1) ∈ Sm−1×N×I, (b, y, 1) ∈ Sm−1×N×{1}},

or, for t ∈ [0, 1),

ζ−1([b, y, t]Mα) = {(b, y, t) ∈ Sm−1 ×N × I}.
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In both cases, ι is clearly constant on the preimage. Hence, by Theorem 2.2.1, ι
induces a continuous “collapsing” map

κ : Mα → Sm−1 ×N,
which can be used to constitute a fiberwise map:

Mα
κ //

q

��

Sm−1 ×N

proj1

��

Sm−1 × I
K=proj1 // Sm−1

Taking into account the identifications in X, the Gluing Lemma allows us to
form a continuous fiberwise map (µexp,Mexp) : ξexp → ξ by gluing the three fiberwise
maps

D0 ×N
(id×id,id)

// D0 ×N,

Mα

(κ,K)
// Sm−1 ×N, and

D1 ×N
(id×id,id)

// D1 ×N.
Thus we obtain

(µ,M) = (µexp,Mexp) ◦ (µ<k,M<k) : ft<k (ξ)→ ξ.

which is a composition of fiberwise maps and therefore fiberwise. We sum up:

Lemma 2.3.3. Let ξ = (N,Y, p, Sm) be an interleaf fiber bundle over Sm. Then
there is a fiberwise map (µ,M): ft<k (ξ)→ ξ.

2.4. Natural Transformations of Truncation Functors

Before we can examine the homology of interleaf bundles in greater detail, we
need to consider the natural transformations of functors

embn : t<n → t<∞,

pron : t<∞ → t≥n,

of [Ban10] in greater detail. For each N ∈ Ob ICW, there are canonical represen-
tatives

eNn : E(N)n−1 incl
↪−−→ E(N)

h′N−−→ N,

pNn : N
hN−−→ E(N)

proj−−→ E(N)/E(N)n−1

in CW, as stated in [Ban10].

Proposition 2.4.1. If N ∈ Ob ICW, then (for any combination of n and r)
it holds that

(1) pNn∗ : Hr(N)→ Hr(N≥n) is surjective,
(2) eNn∗ : Hr(N<n)→ Hr(N) is injective, and
(3) eN∗n : Hr(N)→ Hr(N<n) is surjective.

Proof. Concerning (1), for r ≥ n and 0 < r < n, this follows from [Ban10,
Proposition 1.75]. For r = 0, notice that N and E(N) are path connected (for N
is simply connected). As E(N) is path connected, so is N≥n = E(N)/E(N)n−1 for
any n. Thus,

H0(N) ∼= Q ∼= H0(N≥n).

But both of these groups are generated by any point in the respective space, and
thus pNn∗ is an isomorphism.

The proofs for cases (2) and (3) are analogous to [Ban10, Proposition 1.75]. �
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Corollary 2.4.2. For r < n,

eN∗n : Hr(N)→ Hr(N<n)

is an isomorphism. For other values of r, it is the zero map.

Proof. For r < n, the induced map eN∗n is a linear map of finite-dimensional
vector spaces of the same dimension,

Hr(N)
eN∗n−−→ Hr(N<n) ∼= Hr(N).

It is surjective by Proposition 2.4.1. Hence it is an isomorphism. For n ≤ r, it is a
map

Hr(N)
eN∗n−−→ Hr(N<n) = 0,

and hence the zero map. �

In the same way, one shows:

Corollary 2.4.3. For r < n,

eNn∗ : Hr(N<n)→ Hr(N)

is an isomorphism. For other values of r, it is the zero map.

Corollary 2.4.4. For r ≥ n,

pNn∗ : Hr(N)→ Hr(N≥n)

is an isomorphism. For other values of r, it is the zero map.

2.5. Homology of Interleaf Bundles

In this subsection, we show that interleaf fiber bundles over Sm have the
(co)homology of product bundles. We notice that the E2-term of the cohomo-
logical Leray-Serre spectral sequence of an interleaf bundle is the same as that of
a product bundle, and proceed to show that the former spectral sequence collapses
at the E2-term. This allows us to exploit convergence to recover the cohomology
of the total space from the E2-term. Here, collapse at the E2-term is understood
to mean the vanishing of all higher differentials. We will employ the theorem of
Leray-Hirsch to show collapse for some cases, and then proceed to show collapse
directly in the remaining cases.

Definition 2.5.1 (p. 148 in [McC01]). Let ξ = (F, Y, p,A) be a Hurewicz
fibration with inclusion i : F ↪→ Y . We say that F is totally nonhomologous to zero
in Y with respect to the ring R if the inclusion i : F ↪→ Y induces a surjective
homomorphism i∗ : H∗(Y ;R)� H∗(F ;R).

Note that this means a surjective homomorphism is induced in every degree.
The name “totally nonhomologous to zero” stems from [McC01, p. 148], while the
very same property is referred to as “totally noncohomologous to zero” (or TNCZ )
in other works, including [Mar90] and [Yam05]. Actually, TNCZ seems to be the
more commonly used term.

Theorem 2.5.2 (Leray-Hirsch, Theorem 5.10 on p. 148 in [McC01]). Let ξ =
(F, Y, p,A) be a Hurewicz fibration, with F connected, A of finite type, path connect-
ed, and for which the system of local coefficients on A is simple.

(1) Then F is totally non-homologous to zero in Y with respect to a field k if
and only if the Leray-Serre spectral sequence for cohomology of ξ collapses
at the E2-term.

(2) If F is totally non-homologous to zero in Y with respect to a field k, then
we have

H∗(Y ; k) ∼= H∗(A; k)⊗k H∗(F ; k)

as vector spaces.
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We consider only simply connected base spaces in this chapter. By [McC01,
Proposition 5.20], any bundle of groups over a simply-connected space is simple.
Accordingly, so is a system of local coefficients. The space A being of finite type
means that Hk(A) is finitely generated for all k.

As stated before, we want to use Leray-Hirsch to show that some higher differen-
tials vanish. To this end, we show that the fiber in an interleaf fiber bundle over Sm

is totally nonhomologous to zero in the total space in some cases. In fact, we show a
stronger result: Namely, we do not need to pose any requirements on the structure
group. By Theorem 2.5.2(1), the fact that the fiber is totally nonhomologous to
zero in the total space then implies the vanishing of the differentials.

In the following, dkm is the differential dkm : E0,k
m → Em,k−m+1

m .

Proposition 2.5.3. Given a fibration ξ = (N,Y, p, Sm) with N ∈ Ob ICW,
we have

(1) if m is even, then Hk(Y ) ∼= Hk(N)⊕Hk−m(N), and
(2) if m is odd, then

Hk(Y ) ∼=

{
Hk(N)/im (dkm), k even,

Hk−m(N), k odd.

Proof. We consider the Wang sequence:

k m Hk−1(N)
dk−1
m // Hk−1−m+1(N)

j
// Hk(Y )

i // Hk(N)
dkm // Hk−m+1(N)

odd odd Hk−1(N) Hk−1−m+1(N) Hk(Y ) 0 0

odd even Hk−1(N) 0 Hk(Y ) 0 Hk−m+1(N)

even odd 0 0 Hk(Y ) Hk(N) Hk−m+1(N)

even even 0 Hk−1−m+1(N) Hk(Y ) Hk(N) 0

In the first, second and fourth rows, the map i : Hk(Y ) → Hk(N) is surjective.
Accordingly, in these cases N is totally nonhomologous to zero in Y with respect to
Q, and we can invoke Leray-Hirsch (Theorem 2.5.2) to see thatH∗(Y ) ∼= H∗(Sm)⊗Q
H∗(N).

The third row treats the case of k being even while m is odd. We obtain a long
exact sequence

(28) 0→ Hk(Y )
i
↪→ Hk(N)

dkm−−→ Hk−m+1(N)
j
� Hk+1(Y )→ 0

from the first and third rows, above. From the long exact sequence (28) we get the
short exact sequence of vector spaces

0→ Hk(Y )
i
↪→ Hk(N)

dkm−−→ im (dkm)→ 0.

This splits, yielding Hk(N) ∼= Hk(Y )⊕ im (dkm), which implies

Hk(Y ) ∼= Hk(N)/im (dkm) ∼= Hk(N)/ ker(j).

Hence i : Hk(Y )→ Hk(N) is surjective if and only if dkm is the zero map. �

Given an ξ = (N,Y, p, Sm), interleaf fiber bundle over Sm, the last proof shows
that all differentials vanish if m is even. This can also be seen by examining the
spectral sequence directly (by using a method which will be introduced below), but
it is quicker to just look at the Wang sequence. We want to establish that the
differentials vanish if m is odd as well. To this end, we want to exploit naturality
of the spectral sequence with respect to certain fiberwise maps. We consider these
maps now: As noted in equation (2), for the Dold fibration ft<k (ξ) there is the
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associated Hurewicz fibration ft<k (ξ)aHf with

ft<k (Y )
ft<k (p)he

'
//

ft<k (p)
##

W (ft<k (p))

ft<k (p)Hf
yy

B

while we get from Lemma 2.3.3 a fiberwise map

Y
p

// Sm

ft<k (Y )

µ

OO

ft<k (p)
// B

' M

OO

of fibrations with path connected fiber and simply connected base. Concatenating
these diagrams, we obtain the following commutative diagram:

N �
�

// Y
p

// Sm

N<k
� � //

µ|

OO

ft<k (Y )

µ

OO

ft<k (p)
// B

' M

OO

N<k
� � //

ft<k (p)he| '

OO

W (ft<k (p))

ft<k (p)he '

OO

ft<k (p)Hf
// B

idB

OO(29)

Lemma 2.5.4. For the fiberwise restriction µ| of µ, we have

(µ|)∗ = (eNk )∗.

Proof. Considering the definition of µ, namely

µ = µexp ◦ µ<k,
we obtain µ| = µexp| ◦ µ<k|, and we have to distinguish several cases:

(1) The upper left square of (29) factors as:

N �
�

// D0 ×N �
�

// Y

N<k

µ|

OO

� � // D0 ×N<k �
�

// ft<k (Y )

µ

OO

In this case,

µ| = µexp| ◦ µ<k| = id ◦ eNk = eNk .

(2) Case (1) with “D1” substituted for “D1”.
(3) The upper left square of (29) factors as:

N
� � // Mα

// Y

N<k

µ|

OO

� � // Mα<k
� � // ft<k (Y )

µ

OO
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Consult the proof of Lemma 2.3.1 for the equations for φ: If t ∈
[
0, 1

2

]
,

then it holds that

µ([b, f, t]Mα<k
) = κ ◦ φ([b, f, t]Mα<k

)

= κ([b, eNk (f), 2t]Mα
)

= [b, g(b) ◦ eNk (f)]Y (by the definition of κ)

= [b, eNk (f)]Y .

Thus, µ| = eNk . If, on the other hand, t ∈
[

1
2 , 1
]
, then

µ([b, f, t]Mα<k
) = κ ◦ φ([b, f, t]Mα<k

)

= κ([b,Hb(f, 2t− 1), 1]Mα)

= [b,Hb(f, 2t− 1)]Y (by the definition of κ)

Now, Hb is a homotopy with

Hb(·, 1) = g(b) ◦ eNk .
We can define a homotopy µ| ' eNk by setting

H ′ : (q<k)−1(b)︸ ︷︷ ︸
=N<k

× I → N ⊂ Y, H ′([b, f, t]Mα<k
, s) = [b,Hb(f, (2t− 1)(1− s) + s)]Y .

�

Lemma 2.5.5. Let R be a ring, and let

Φ = Hom(−⊗R −,−) and Γ = Hom(−,Hom(−,−)),

be functors
R-Modop ×R-Modop ×R-Mod→ R-Mod

with arguments in the same order. Then there is a natural equivalence η : Φ→ Γ.

Proof. We have to show that for any morphisms

X X ′
f

oo

Y Y ′
g

oo

Z
h // Z ′

we can complete the diagram

Hom(X ⊗R Y, Z)

η ∼=
��

Hom(f⊗Rg,h)
// Hom(X ′ ⊗R Y ′, Z ′)

η′∼=
��

Hom(X,Hom(Y, Z))
Hom(f,Hom(g,h))

// Hom(X ′,Hom(Y ′, Z ′))

commutatively. Let i ∈ Hom(X ⊗R Y, Z) be R-linear. We set

η(i)(x) = i(x, ·) : Y → Z.

Concerning injectivity, let i, i′ ∈ Hom(X ⊗R Y,Z), and i 6= i′ but η(i) = η(i′). The
latter equation implies

∀x ∈ X : i(x, ·) = i′(x, ·),
and therefore i = i′, which is a contradiction. Therefore η is injective. To show
surjectivity, let j ∈ Hom(X,Hom(Y,Z)). We have to find η−1(j) ∈ Hom(X⊗RY, Z)
such that η(η−1(j)) = j. Setting

η−1(j) : X ⊗R Y → Z, (x, y) 7→ j(x)(y)
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proves surjectivity. Lastly, to show commutativity, let i ∈ Hom(X⊗RY,Z), x′ ∈ X ′
and y′ ∈ Y ′. Then

[Hom (f,Hom (g, h)) ◦ η( i)](x′)(y′) = [Hom(g, h) ◦ η(i) ◦ f ](x′)(y′)

= [(Hom(g, h) ◦ η(i))(f(x′))](y′)

= [Hom(g, h)(η(i)(f(x′))](y′)

= [Hom(g, h)(i(f(x′), ·))](y′)
= [h ◦ i(f(x′), ·) ◦ g](y′)

= h(i(f(x′), g(y′))),

and

[η′ ◦Hom(f ⊗R g, h)(i)](x′)(y′) = [η′ ◦ (h ◦ i ◦ (f ⊗R g))](x′)(y′)

= [η′ ◦ (h ◦ i ◦ (f(x′)⊗R g(·)))](y′)
= [η′ ◦ (h ◦ i(f(x′), g(·)))](y′)
= [η′(h(i(f(x′), g(·))))](y′)
= h(i(f(x′), g(y′))).

�

Lemma 2.5.6. Let m ≥ 2 be a natural number, and let ξ = (F, Y, p,A) be a
fibration in Fib. For the associated cohomological Leray-Serre spectral sequence
{Ep,qr , dr}, and for any coordinates (p, q), there is a natural (for morphisms in Fib)
isomorphism

S∗2 : Ep,q2

∼=→ Hp(A)⊗Hq(F ).

Proof. We have already seen that the isomorphism

φ∗2 : Ep,q2

∼=−→ HP (A;Hq(F ))

of Theorem 1.2.1 is natural in the required sense. Furthermore, there are natural
isomorphisms (with “natural” referring to an ordinary natural transformation)

Hp(A;Hq(F ))

∼=Hom(Hp(A), Hq(F )) (natural, [May99, p. 134], UCT)

=Hom(Hp(A),Hom(Hq(F ),Q)) (obviously natural)

∼=Hom(Hp(A)⊗Hq(F ),Q) (natural by Lemma 2.5.5)

∼=Hom(Hp(A)⊗Hq(F ),Q⊗Q︸ ︷︷ ︸
∼=Q

) (obviously natural)

∼=Hp(A)⊗Hq(F ) (natural, [May99, p. 136]).

Hence the composition of these natural isomorphisms with φ∗2 yields a natural (for
morphisms in Fib) isomorphism S∗2 . �

To make this naturality statement precise, consider a fiberwise map (ψ,Ψ) ∈
HomFib(ξ, η). Then naturality implies that the diagram

Ep,q2 (η)
(φ∗2)−1

//

{Ξ(ψ,Ψ)}
��

Hp(B(η);Hq(F (η)))

(ψ,Ψ)

��

∼=
// Hp(B(η))⊗Hq(F (η))

Ψ∗×(ψ|)∗

��

Ep,q2 (ξ)
(φ∗2)−1

// Hp(B(ξ);Hq(F (ξ))) ∼=
// Hp(B(ξ))⊗Hq(F (ξ))

commutes.

Proposition 2.5.7. Let ξ = (N l, Y, p, Sm) be an interleaf fiber bundle over Sm.
Then the cohomological Leray-Serre spectral sequence collapses at the E2-term.
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Proof. The fiber bundle ξ has a paracompact Hausdorff base space Sm and
is thus a fibration by [Spa66, Cor. 14 on p. 96]. Hence the proof of Proposition
2.5.3 shows that all differentials vanish if m is even.

If m is odd, we have to consider the differentials

{dkm : E0,k
m → Em,k−m+1

m | k ∈ Z}.
The Em-term is as follows:

H0(N)

...

0

Hm−1(N)

...

H l(N)

0

...

H0(N)

...

0

Hm−1(N)

...

H l(N)

0

...

q

p0 m

0

odd: m− 2

even: m− 1

l

l + 1

...

dm−1
m

The only such differentials which do not trivially vanish are dkm for 0 ≤ k ≤ l.
However, all differentials dkm for 0 ≤ k < m− 1 do vanish, because

k < m− 1⇒ k −m+ 1 < 0

implies that dkm is a map
E0,k
m → Em,k−m+1

m = 0.

It remains to consider the differentials dkm for k such that m − 1 ≤ k ≤ l. For the
remainder of this proof, we fix such a k. Recall diagram (29). Due to the naturality
of the Leray-Serre spectral sequence, the composition of fiberwise maps

Ξ = (ft<k (p)he, id) ◦ (µ,M)

induces a map of spectral sequences

{Ξ} : {Ep,qr , dr} → {Ẽp,qr , d̃r}
between the cohomological Leray-Serre spectral sequences {Ep,qr , dr}, {Ẽp,qr , d̃r} re-
lated to the cohomology of the Hurewicz fibrations ξ and

ft<k (ξ)aHf = (W (ft<k (p)), ft<k (p)Hf , S
m),

respectively. Invoking Lemma 2.5.6 for both spectral sequences, we obtain natural
isomorphisms

Ep,q2
∼= Hp(Sm)⊗Hq(N),

Ẽp,q2
∼= Hp(B)⊗Hq(N<k) ∼= Hp(Sm)⊗Hq(N<k).

(30)

But it holds that

Hp(Sm) ∼=

{
Q, p = 0,m,

0, else.
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Hence the first equation (30) reduces to

Ep,q2
∼= Hp(Sm)⊗Hq(N) ∼=

{
Q⊗Hq(N) ∼= Hq(N), p = 0,m,

0⊗Hq(N) = 0, else.

So we get the following E2-term:

H0(N)

...

H l(N)

0

...

H0(N)

...

H l(N)

0

...

q

p0 m

0

l

l + 1

Analogously, using

Hq(N<k) ∼=

{
Hq(N), q < k,

0, else,

we obtain the Ẽ2-term:

H0(N)

...

Hk−1(N)

0

...

H0(N)

...

Hk−1(N)

0

...

q

p0 m

0

k − 1

k

For q arbitrary and p = 0 or p = m, naturality of the isomorphisms (30) implies that

the map of spectral sequences {Ξ} : {Ep,qr , dr} → {Ẽp,qr , d̃r} induces commutative
squares:

Ep,q2

{Ξ}p,q2 //

∼=
��

Ẽp,q2

∼=
��

Hq(N)
(µ|◦ft<k (p)he|)∗

// Hq(N<k)

(31)

We examine the map

(µ| ◦ ft<k (p)he|)∗ = (ft<k (p)he|)∗ ◦ (µ|)∗ : Hq(N)→ Hq(N<k)

more closely. Firstly, (ft<k (p)he|)∗ is an isomorphism, because ft<k (p)he| is a ho-
motopy equivalence. Secondly, due to Lemma 2.5.4, (µ|)∗ = (eNk )∗. Corollary 2.4.2
shows that the map (eNk )∗ is an isomorphism for degrees q < k and the zero map
else.
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The map of spectral sequences {Ξ} induces for a fixed k such that m−1 ≤ k ≤ l
the following commutative diagram:

E0,k
m

{Ξ}0,km //

dkm $$

Ẽ0,k
m

d̃km

$$

Em,k−m+1
m

{Ξ}m,k−m+1
m // Ẽm,k−m+1

m

Then Ẽ0,k
m = Hk(N<k) = 0, which implies d̃km = 0. Moreover, m ≥ 2 ⇒

−m+1 ≤ −1⇒ k−m+1 ≤ k−1 = k−1 which implies Ẽm,k−m+1
m

∼= Hk−m+1(N) ∼=
Em,k−m+1
m . Therefore, considering diagram (31) and using naturality, we have

Hk(N)
0=(µ|◦ft<k (p)he|)∗

//

dkm &&

0

0

$$

Hk−m+1(N)
(µ|◦ft<k (p)he|)∗

∼=
// Hk−m+1(N)

(32)

which implies, by commutativity and by considering that the bottom horizontal
map is an isomorphism that dkm vanishes. Since we can do this for any k such that
m− 1 ≤ k ≤ l, we have shown that all differentials dkm vanish. �

Hence we have established that all differentials in the cohomological Leray-Serre
spectral sequence of an interleaf fiber bundle over Sm do in fact vanish. This will
allow us to identify the cohomology of the total space in question as the cohomology
of a product bundle.

Corollary 2.5.8. Given an interleaf fiber bundle ξ = (N,Y, p, Sm) over Sm,
we have an isomorphism

S∗ : Hq(Y )
∼=→ Hq(N)⊕Hq−m(N).

Proof. Proposition 2.5.7 implies Ep,q2 = Ep,q∞ for arbitrary coordinates p, q.
Furthermore we get from Lemma 2.5.6 an isomorphism

S∗2 : Ep,q2

∼=→ Hp(Sm)⊗Hq(N).

We form the following composition:

Hq(N)⊕Hq−m(N)
∼=��

[Q⊗Hq(N)]⊕ [Q⊗Hq−m(N)]
∼=��

[H0(Sm)⊗Hq(N)]⊕ [Hm(Sm)⊗Hq−m(N)]
∼=(S∗2 )−1⊕(S∗2 )−1
��

E0,q
2 ⊕ Em,q−m2

E0,q
∞ ⊕ Eq,q−m∞

∼=d∞⊕d∞ ��
F 0Hq(C∗(Y ))
F 1Hq(C∗(Y )) ⊕

F qHq(C∗(Y ))
F q+1Hq(C∗(Y ))

a∗ ∼=
��

Hq(Y )

Note that

d∞ : Ep,q∞
∼=−→ F pHp+q

F p+1Hp+q
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comes from the proof of [McC01, Theorem 2.6] while the isomorphism a∗ is induced
from solving the extension problems, as described in Subsection 1.2.2. At this point,
the choice of the splitting inducing a∗ is not important for our argument, but this
will change later on. �

Note that this is precisely the cohomology of a product bundle Sm×N → Sm.

Proposition 2.5.9. Given an interleaf fiber bundle ξ = (N l, Y, p, Sm) over Sm,
we have for any integer k ≥ 1 an isomorphism

Hq(ft<k (Y )) ∼= Hq(t<k(N))⊕Hq−m(t<k(N)).

Proof. By convention, if k > l, the bundle is not modified, and in this case
Corollary 2.5.8 confirms the desired result. On the other hand, if k ≤ l, we recall
- using the same terminology as in the proof of Proposition 2.5.7 - that there is an
induced map of spectral sequences

{Ξ} : {Ep,qr , dr} → {Ẽp,qr , d̃r}
between the cohomological Leray-Serre spectral sequences {Ep,qr , dr}, {Ẽp,qr , d̃r} re-
lated to the cohomology of the Hurewicz fibrations ξ and ft<k (ξ)aHf . For a param-
eter m− 1 ≤ j ≤ k − 1, we again consider the following diagram:

E0,j
m

{Ξ}0,jm //

djm $$

Ẽ0,j
m

d̃jm

$$

Em,j−m+1
m

{Ξ}m,j−m+1
m // Ẽm,j−m+1

m

(33)

Which is just:

Hj(N)
(µ|◦ft<k (p)he|)∗

∼=
//

djm &&

Hj(N)

d̃jm

&&

Hj−m+1(N)
(µ|◦ft<k (p)he|)∗

∼=
// Hj−m+1(N)

We know djm = 0 from Proposition 2.5.7, therefore d̃jm vanishes as well. Theorem
2.5.2 then shows that W (ft<k (p)) has the desired cohomology, which means that
the same holds for ft<k (Y ) 'W (ft<k (p)). �

Proposition 2.5.10. Given a fibration ξ = (F, Y, p,A) in Fib, there is a nat-
ural (for morphisms in Fib) isomorphism

S2
∗ : E2

p,q

∼=→ Hp(S
m)⊗Hq(F ).

Proof. By [McC01, Theorem 5.1], the isomorphism E2
p,q
∼= Hp(A;Hq(F )) is

natural for morphisms in Fib. Furthermore, there is an isomorphism

Hp(A;Hq(F )) ∼= Hp(A)⊗Hq(F ),

which is natural by [May99, p. 130] and the UCT. Thus the composition E2
p,q
∼=

Hp(A)⊗Hq(F ) is natural in the required sense as well. �

Completely analogously to the cohomological result above, one shows:

Proposition 2.5.11. Let ξ = (N l, Y, p, Sm) be an interleaf fiber bundle over
Sm. Then all differentials in the homological Leray-Serre spectral sequence vanish,
and the homology of the total space is trivial:

Hq(Y ) ∼= Hq(N)⊕Hq−m(N).

Furthermore, for ft<k (ξ), there is an isomorphism

Hq(ft<k (Y )) ∼= Hq(N<k)⊕Hq−m(N<k).
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2.5.1. Canonical Splittings. We now return to the setting of the pseudo-
manifold X and with link bundle ξ = (L, ∂M, p, Sm), m = n − c, described in
Section 2.1. By definition, ξ is an interleaf fiber bundle over Sm. Thus we obtain
from Lemma 2.3.3 a fiberwise map (µ,M), which fits into the following commutative
diagram:

L �
�

// ∂M
p

// Sm

L<c−k
� � //

µ|

OO

ft<c−k (∂M)

µ

OO

ft<c−k (p)
// B

' M

OO

L<c−k
� � //

ft<c−k (p)he| '

OO

W (ft<c−k (p))

ft<c−k (p)he '

OO

ft<c−k (p)Hf
// B

idB

OO

By naturality of the homological Leray-Serre spectral sequence, the fiberwise map

Ξ = (µ,M) ◦ (ft<c−k (p)he, idB)

induces a morphism of spectral sequences

{Ξ} : {Ẽrp,q, d̃r} → {Erp,q, dr}
between the homological Leray-Serre spectral sequences {Erp,q, dr} (associated with

ξ) and {Ẽrp,q, d̃r} (associated with ft<c−k (ξ)aHf):

ft<c−k (ξ)aHf

Ξ

��

{Ẽrp,q, d̃r}

{Ξ}

��

Ẽ2
p,q

{Ξ}2p,q

��

φ2
∗

∼=
//? _oo Hp(B;Hq(L<c−k))

Ξ

��

LS∗ //

ξ {Erp,q, dr} E2
p,q

φ2
∗

∼=
//? _oo Hp(S

n−c;Hq(L))

Both spectral sequences collapse, thus it is permissible to substitute 2 for ∞ in the
rightmost square to obtain the following diagram:

Ẽ∞p,q

{Ξ}∞p,q

��

∼= // Hp(B;Hq(L<c−k))

Ξ

��

E∞p,q
∼= // Hp(S

n−c;Hq(L))

(34)

The diagram

Hp(B;Hq(L<c−k))

Ξ

��

Hp(B)⊗Hq(L<c−k)

(M◦idB)∗×(µ|◦ft<c−k (p)he|)∗∼=

��

∼=oo

Hp(S
n−c;Hq(L))

∼=oo Hp(S
n−c)⊗Hq(L)
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commutes due to naturality. We concatenate it with (34) and write Ω∗ for (M ◦
idB)∗ × (µ| ◦ ft<c−k (p)he|)∗ to obtain the following diagram:

Ẽ∞p,q

{Ξ}∞p,q

��

∼= // Hp(B;Hq(L<c−k))

Ξ

��

Hp(B)⊗Hq(L<c−k)

Ω∗∼=

��

∼=oo

E∞p,q
∼= // Hp(S

n−c;Hq(L))
∼=oo Hp(S

n−c)⊗Hq(L)

The RHS square commutes by Proposition 2.5.10 while the LHS square commutes
in an obvious fashion. Take two copies of the last diagram, substitute

(p, q) = (0, r − 1)

in the first copy and
(p, q) = (n− c, r − 1− n+ c)

in the second. Then form the direct sum of these two diagrams. The result is a
diagram

Hr−1(L<c−k)⊕Hr−1−n+c(L<c−k)

Zr−1
∗ ⊕Zr−1−n+c

∗

��

∼= // Ẽ∞0,r−1 ⊕ Ẽ∞n−c,r−1−n+c

{Ξ}∞0,r−1⊕{Ξ}
∞
n−c,r−1−n+c

��

Hr−1(L)⊕Hr−1−n+c(L)
∼= // E∞0,r−1 ⊕ E∞n−c,r−1−n+c

with

(35) Zr−1
∗ ⊕ Zr−1−n+c

∗ = [(eLc−k)∗ ◦ (ft<c−k (p)he|)∗]⊕ [(eLc−k)∗ ◦ (ft<c−k (p)he|)∗].
Incidentally, the last diagram forms the top square of the diagram

Hr−1(L)⊕Hr−1−n+c(L)

∼=

��

Hr−1(L<c−k)⊕Hr−1−n+c(L<c−k)

∼=

��

Z∗⊕Z∗oo

d∞⊕d∞ ∼=

��

E∞0,r−1 ⊕ E∞n−c,r−1−n+c Ẽ∞0,r−1 ⊕ Ẽ∞n−c,r−1−n+c

d̃∞⊕d̃∞∼=

��

{Ξ}∞⊕{Ξ}∞
oo

F0Hr−1

F−1Hr−1
⊕ Fn−cHr−1

Fn−c−1Hr−1

a∗ ∼=

��

F̃0Hr−1

F̃−1Hr−1
⊕ F̃n−cHr−1

F̃n−c−1Hr−1

ã∗∼=

��

Hr−1(∂M) Hr−1(W (ft<c−k (p)))
(µ◦ft<c−k (p)he)∗

oo

(36)

in which the maps a∗, ã∗ are induced by splittings of two short exact sequences (as
explained in Subsection 1.2.2) while the notation is abbreviated by setting

FpHq = FpHq(C∗(∂M)),

F̃pHq = F̃pHq(C∗(W (ft<c−k (p)))).

Finally, we can state the aim of the present section. We want to show that is
is always possible to choose splittings such that the bottom rectangle of the last
diagram commutes.



40 2. SPHERES AS BASE SPACES

Lemma 2.5.12. Given a commutative diagram of rational vector spaces,

0 // A
f
// B

g
// C // 0

0 // A′
f ′
//

α ∼=

OO

B′
g′
//

β ∼=

OO

C ′ //

γ∼=

OO

0

such that the rows are exact, there is for any given splitting h : C → B of the
upper row a canonical choice of a splitting h′ : C ′ → B′ of the lower row. For the
isomorphisms

φ : A⊕ C
∼=−→ B,

φ′ : A′ ⊕ C ′
∼=−→ B′,

induced by these splittings, the diagram

A⊕ C

φ

��

A′ ⊕ C ′
α⊕γ
oo

φ′

��

B B′
β

oo

(37)

commutes.

Proof. Given a splitting h : C → B, we induce a splitting of the lower row by
setting

h′ = β−1 ◦ h ◦ γ : C ′ → B′.

We have

g′ ◦ h′ = g′ ◦ β−1 ◦ h ◦ γ
= γ−1 ◦ g ◦ β ◦ β−1 ◦ h ◦ γ
= γ−1 ◦ g ◦ h ◦ γ
= γ−1 ◦ γ
= id.

So h′ is indeed a splitting for the lower row. The splittings induce the aforemen-
tioned isomorphisms if we set

φ(x, y) = f(x) + h(y), φ′(x′, y′) = f ′(x′) + h′(y′).

Thus we can complete the diagram to the following:

A⊕ C

proj2

  

φ ∼=

��

0 // A
� � f

//

x 7→(x,0)

>>

B
g

// C //

h

ff 0

0 // A′
� � f ′

//

α ∼=

OO

x′ 7→(x′,0)

��

B′
g′

//

β ∼=

OO

C ′ //

γ∼=

OO

h′

xx
0

A′ ⊕ C ′

proj2

??

φ′ ∼=

OO
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Now, let (x′, y′) ∈ A′ ⊕ C ′. Then,

φ ◦ (α⊕ γ)(x′, y′) = φ(α(x′), γ(y′))

= f(α(x′)) + h(γ(y′))

and also

β ◦ φ′(x′, y′) = β(f ′(x′) + h′(y′))

= β(f ′(x′) + β−1 ◦ h ◦ γ(y′))

= β(f ′(x′)) + β(β−1 ◦ h ◦ γ(y′))

= f(α(x′)) + h(γ(y′)).

Thus diagram (37) commutes as required. �

Lemma 2.5.13. Given a commutative diagram of rational vector spaces,

0 // A
f=idA

B
g=0

// 0 // 0

0 // A′
f ′
//

α

OOOO

B′
g′
//

β

OO

C ′ //

γ=0

OO

0

such that the rows are exact, there is only one possible splitting of the top row:
0 = h : 0 → B. It is always possible to choose a splitting h′ : C ′ → B′ of the lower
row such that for the isomorphisms

φ : A⊕ 0
∼=−→ B,

φ′ : A′ ⊕ C ′
∼=−→ B′,

induced by these splittings, the diagram

A⊕ 0

φ

��

A′ ⊕ C ′
α⊕γ
oo

φ′

��

B B′
β

oo

(38)

commutes. Furthermore, β is surjective.

Proof. For x ∈ A = B, there is a x′ ∈ A′ such that α(x′) = x. But commu-
tativity of the left square implies

x = α(x′) = f(α(x′)) = β(f ′(x′)).

Therefore, β is surjective.
By the snake lemma, there is an exact sequence

0→ kerα→ kerβ → ker γ → cokerα→ cokerβ → coker γ → 0,

which reduces to the short exact sequence

0→ kerα
f ′−→ kerβ

g′−→ C ′ → 0.

We choose an arbitrary splitting h′ : C ′ → kerβ of this sequence. Then h′ is also a
splitting of

0→ A′
f ′−→ B′

g′−→ C ′ → 0.

We want to show:

∀(x′, y′) ∈ A′ ⊕ C ′ : φ ◦ α⊕ 0(x′, y′) = β ◦ φ′(x′, y′).
So,

φ′ ◦ α⊕ 0(x′, y′) = φ(α(x′), 0) = f ◦ α(x′),
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while

β ◦ φ′(x′, y′) = β(f ′(x′) + h′(y′))

= β ◦ f ′(x′) + β ◦ h′(y′)
= f ◦ α(x′) + β ◦ h′(y′).

Thus we need to show that β ◦ h′(y′) vanishes. This is true because our chosen
splitting satisfies

imh′ ⊂ kerβ.

Therefore, diagram (38) commutes. �

Lemma 2.5.14. Given a commutative diagram of rational vector spaces and
linear maps

A
f

��

C
h
∼=

//

g
??

B

the identity f ◦ g ◦ h−1 = idB holds.

Proof. For c ∈ C, we have f ◦ g(c) = h(c). For any b ∈ B, there is a
c = h−1(b) ∈ C. Thus,

∀b ∈ B : f ◦ g ◦ h−1(b) = b = idB(b).

�

Remark 2.5.15. Consider a fiberwise map of Serre fibrations, (φ, id) : η → ξ.

Denote by {Ep,qr , dr} and {Ẽp,qr , d̃r} the cohomological Leray-Serre spectral sequence
of ξ and η, respectively. Then the following diagram commutes (see [McC01, p.
65f]):

0 // F pHn

H(φ)

��

incl // F p−1Hn

H(φ)

��

(d∞)−1◦quot
// Ep−1,n−p+1
∞

φ∞

��

// 0

0 // F̃ pH̃n incl // F̃ p−1H̃n
(d̃∞)−1◦quot

// Ẽp−1,n−p+1
∞

// 0

Notice furthermore that φ∞ is the map induced by φ on the E∞-term. There is
an analogous commutative diagram for homology. We will see in the next proof
that the splittings of the exact rows in this diagram represent the solution of the
extension problems.

Proposition 2.5.16. It is possible to choose the splittings inducing the maps
a∗, ã∗ in diagram (36) such that the lower rectangle of diagram (36) commutes.
The same holds for the cohomological analog of this diagram.

Proof. By Corollary 2.4.3, we know that (eLc−k)∗ is either an isomorphism or
the zero map, depending on the degree in which homology is considered. Due to
the fact that ft<c−k (p)he| is a homotopy equivalence, the composition

(eLc−k)∗ ◦ (ft<c−k (p)he|)∗
behaves in the same way as (eLc−k)∗. Thus, there are three possible cases:

(1) “Zr−1
∗ ⊕ Zr−1−n+c

∗ = 0”,
(2) “Zr−1

∗ = 0 while Zr−1−n+c
∗ is an isomorphism”, or

(3) “both Zr−1
∗ and Zr−1−n+c

∗ are isomorphisms”.
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It is not possible for Zr−1
∗ to be an isomorphism while Zr−1−n+c

∗ vanishes. This is
due to the fact that Zr−1−n+c

∗ = 0 implies

r − 1− n+ c ≥ c− k
⇒r − 1 ≥ c− k
⇒Zr−1

∗ = 0.

In case (1), we have to show commutativity of the following diagram:

Hr−1(L)⊕Hr−1−n+c(L)

∼=
��

0

∼=
��

0oo

E∞0,r−1 ⊕ E∞n−c,r−1−n+c

d∞⊕d∞ ∼=
��

Ẽ∞0,r−1 ⊕ Ẽ∞n−c,r−1−n+c

d̃∞⊕d̃∞∼=
��

oo

F0Hr−1

F−1Hr−1
⊕ Fn−cHr−1

Fn−c−1Hr−1

a∗ ∼=
��

F̃0Hr−1

F̃−1Hr−1
⊕ F̃n−cHr−1

F̃n−c−1Hr−1

ã∗∼=
��

Hr−1(∂M) Hr−1(W (ft<c−k (p)))
(µ◦ft<c−k (p)he)∗
oo

Commutativity is obvious. In case (2), the relevant diagram is the following:

Hr−1(L)⊕Hr−1−n+c(L)

∼=
��

0⊕Hr−1−n+c(L<c−k)

∼=
��

0⊕Zr−1−n+c
∗oo

E∞0,r−1 ⊕ E∞n−c,r−1−n+c

d∞⊕d∞ ∼=
��

0⊕ Ẽ∞n−c,r−1−n+c

0⊕d̃∞∼=
��

0⊕{Ξ}2n−c,r−1−n+c
oo

F0Hr−1 ⊕ Fn−cHr−1

Fn−c−1Hr−1

a∗ ∼=
��

0⊕ F̃n−cHr−1

ã∗∼=
��

Hr−1(∂M) Hr−1(W (ft<c−k (p)))
(µ◦ft<c−k (p)he)∗

oo

(39)

To show commutativity, we need to consider the splittings. The diagram

F0Hr−1

0 // Fn−c−1Hr−1
� � i // Fn−cHr−1

quot
// Fn−c
Fn−c−1

//

s

��

0

E2
n−c,r−1−n+c

d∞∼=

OO

Ẽ2
n−c,r−1−n+c

{Ξ}2n−c,r−1−n+c=H(Ξ)∼=

OO

0 // 0
0 //

H(Ξ)

OO

F̃n−cHr−1

H(Ξ)

OO

id // F̃n−cHr−1

(d̃∞)−1∼=
OO

//

s̃=id

``
0

(40)

commutes and has exact rows. It is a homological version of Remark 2.5.15. Thus
s̃ = id is the only possible choice for the splitting of the lower row. Set

s = H(Ξ) ◦ d̃∞ ◦H(Ξ)−1 ◦ (d∞)−1.

Then,
quot ◦ s = quot ◦H(Ξ) ◦ d̃∞ ◦H(Ξ)−1 ◦ (d∞)−1 = id
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by Lemma 2.5.14. Considering commutativity of the lower rectangle in diagram
(39) as well as diagram (40), we have for (0, x) ∈ 0⊕ Ẽ∞n−c,r−1−n+c,

[0 + s] ◦ [0⊕ d∞] ◦ [0⊕H(Ξ)](0, x)
!
= H(Ξ) ◦ ã∗ ◦ [0⊕ d̃∞](0, x)

⇔ [0 + s] ◦ [0⊕ d∞](0, H(Ξ)(x))
!
= H(Ξ) ◦ ã∗(0, d̃∞(x))

⇔ [0 + s](0, d∞(H(Ξ)(x)))
!
= H(Ξ)(0 + s̃(d̃∞(x)))

⇔ s(d∞(H(Ξ)(x)))
!
= H(Ξ)(d̃∞(x))

⇔ H(Ξ) ◦ d̃∞ ◦H(Ξ)−1 ◦ (d∞)−1 ◦ d∞ ◦H(Ξ)(x)
!
= H(Ξ)(d̃∞(x))

and the latter equation clearly holds. Thus the lower rectangle commutes.
Dealing with case (3), we recall two of the underlying exact sequences. Firstly,

there is the sequence (7). This fits into a commutative diagram with exact rows:

0

0 // F−1Hr−1
� � i // F0Hr−1

(d∞)−1◦quot
// E2

0,r−1
// 0

0 // F̃−1Hr−1
� � ĩ //

H(Ξ) ∼=

OO

F̃0Hr−1

H(Ξ)

OO

(d̃∞)−1◦quot
// Ẽ2

0,r−1

{Ξ}20,r−1
∼=

OO

// 0

0

The 5-lemma shows the middle map to be an isomorphism. Secondly, the sequence
(8) fits into the following commutative diagram with exact rows:

F0Hr−1

0 // Fn−c−1Hr−1
� � i // Fn−cHr−1

quot
// Fn−c
Fn−c−1

// 0

E2
n−c,r−1−n+c

d∞∼=

OO

Ẽ2
n−c,r−1−n+c

{Ξ}2n−c,r−1−n+c
∼=

OO

0 // F̃n−c−1Hr−1
� � ĩ //

H(Ξ) ∼=

OO

F̃n−cHr−1

H(Ξ)

OO

quot
// F̃n−c
F̃n−c−1

(d̃∞)−1∼=

OO

// 0

F̃0Hr−1

(41)

Again, the 5-lemma shows the middle map to be an isomorphism. Applying Lemma
2.5.12 to (41), we see that a choice of splittings is possible such that the lower
rectangle of diagram (36) commutes in case (3). The cohomological version is shown
in an analogous fashion. �



2.5. HOMOLOGY OF INTERLEAF BUNDLES 45

Remark 2.5.17. Given the data contained in the upper rectangle of diagram
(36), Proposition 2.5.16 tells us that we may always choose splittings such that the
lower rectangle of the same diagram commutes. From now on, we will assume that
given a choice, we have chosen splittings as described in Proposition 2.5.16. For
such a choice of splittings, we denote the composition of the vertical isomorphisms
on the left side of diagram (36) by

(S∗)
−1 : Hr−1(L)⊕Hr−1−n+c(L)

∼=−→ Hr−1(∂M).

Accordingly, the inverse isomorphism S∗ is defined as well. Analogously, we denote
the composition of vertical isomorphisms on the right side by

(SW∗)
−1 : Hr−1(L<c−k)⊕Hr−1−n+c(L<c−k)

∼=−→ Hr−1(W (ft<c−k (p)).

Furthermore, by the same procedure, we obtain isomorphisms on cohomology:

S∗ : Hn−r(∂M)
∼=−→ Hn−r(L)⊕Hc−r(L)

S∗W : Hn−r(W (ft<k (p)))
∼=−→ Hn−r(L<k)⊕Hc−r(L<k).

The full version of diagram (41) used in this proof is the following:

Fn−c−1 ⊕ Fn−c
Fn−c−1

a∗ ∼=

��

proj2

$$

0 // Fn−c−1Hr−1
� � i //

x 7→(x,0)

;;

Fn−cHr−1
quot

// Fn−c
Fn−c−1

// 0

E2
n−c,r−1−n+c

d∞∼=

OO

Ẽ2
n−c,r−1−n+c

{Ξ}2n−c,r−1−n+c
∼=

OO

0 // F̃n−c−1Hr−1
� � ĩ //

H(Ξ) ∼=

OO

x̃ 7→(x̃,0)

##

F̃n−cHr−1

H(Ξ) ∼=

OO

quot
// F̃n−c
F̃n−c−1

(d̃∞)−1∼=

OO

// 0

F̃n−c−1 ⊕ F̃n−c
F̃n−c−1

∼=ã∗

OO

proj2

;;

2.5.2. Crossing and E2-terms. It is the aim of the present subsection to
show the following result:

Lemma 2.5.18. The isomorphism

S∗ ◦ (− ∩ [∂M ]) ◦ (S∗)−1
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can be written as a direct sum of isomorphisms:

Hn−r(L)

Cn−r ∼=
��

⊕
Hc−r(L)

Cc−r∼=
��

Hr−1−n+c(L)
⊕

Hr−1(L)

We refer to this behavior as crossing. Before we can give a proof, we need
several preliminary results. More specifically, there are two types of results needed.
Firstly, we show that in some special cases, the maps d∞ and d∞ are just the
identity. Secondly, we make an analysis of some E2- and E2-terms. Both types
of results are then used in the proof of Lemma 2.5.18, which consists of showing
commutativity of a diagram involving the aforementioned objects. If not mentioned
otherwise, in this entire subsection ξ = (L, Y, p,A) will be a Hurewicz fibration with
B simply connected and F connected.

As a geometric intuition, consider the situation of a trivial bundle over Sm.
Here, crossing can be shown directly by considering cells and Poincaré duality.

2.5.2.1. The Maps d∞ and d∞ and the Second Terms. The desired result follows
from a homological version of [McC01, Theorem 5.9]. Thus we need to provide
the latter result first. This is a general result on first-quadrant spectral sequences.
Consider such a spectral sequence, the ascending filtration on Hq = Hq(Y ),

{0} = F−1Hq ⊂ F0Hq ⊂ · · · ⊂ Fq−1Hq ⊂ FqHq = Hq,

and its associated graded module E∞n,q−n
∼= FnHq/Fn−1Hq. Recall that FqHq = Hq

follows from the fact that we are dealing with a first quadrant spectral sequence.
Then

E∞0,q = F0Hq/F−1Hq = F0Hq ⊂ Hq(Y ).

The modules along the left column of the E2-term of a first quadrant (homological)
spectral sequence are determined by quotients E2

0,q by the image of the incoming
differentials. Thus we have a series of quotients

E2
0,q � E3

0,q � · · ·� Eq−1
0,q � Eq0,q = E∞0,q.

Proposition 2.5.19. Given a fibration ξ = (L, Y, p,A) with A simply con-
nected, and L connected; the composite

Hq(L) ↪→ E2
0,q � E3

0,q � · · ·� Eq−1
0,q � Eq0,q = E∞0,q ↪→ Hq(Y )

is the homomorphism incl∗ : Hq(L)→ Hq(Y ).

Proof. Consider the fibrations ξ and (L,L, constpt,pt). Let g : {pt} → A be
the map g(pt) = a for some fixed a ∈ A. We obtain a fiberwise map

(L,L, constpt,pt)
(incl,g)−−−−→ ξ,

which we can visualize as a commutative diagram:

pt

g

��

L

incl

��

oo L
=oo

=

��

A Y
p

oo L
incloo

If we denote by {Er∗,∗(η)} the homological Leray-Serre spectral sequence of the
fibration η, then we get from naturality an induced mapping

{Er∗,∗(L,L, constpt,pt)} {(incl,g)}−−−−−−→ {Er∗,∗(ξ)}
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which converges to incl∞ = incl∗ at E∞. We consider the E2-terms. For the
fibration (L,L, constpt,pt), it is characterized as

E2
p,q
∼= Hp(pt;Hq(L)) ∼= Hp(pt)⊗Hq(L) ∼=

{
Hq(L), p = 0,

0, else.

H0(L)

...

Hl(L)

...

q

p0

0

l

Entries which are not noted, vanish. Thus the term consists of a single column, and
the spectral sequence collapses at this second term. The induced mapping injects
H∗(L) into H0(A;H∗(L)). Now consider how a map of spectral sequences behaves
with respect to the limit term. In our case,

incl∗ = incl∞ = H(inclq−1) = H(H(inclq−2)) = · · · = H(. . . (H(incl)))

is just the composition

Hq(L) ↪→ E2
0,q � E3

0,q � · · ·� Eq−1
0,q � Eq0,q = E∞0,q ↪→ Hq(Y ).

�

Remark 2.5.20. Given a fibration ξ = (L, Y, p,A) with A simply connected, L
connected and furthermore such that the associated homological Leray-Serre spec-
tral sequence collapses. Then incl∗ : H∗(L)→ Hq(Y ) is injective. This can be seen
by considering the composition

Hq(L) ↪→ E2
0,q � E3

0,q � · · ·� Eq−1
0,q � Eq0,q = E∞0,q ↪→ Hq(Y ).

If the spectral sequence collapses, then all surjections in this composition are equal-
ities. Hence incl∗ is injective.

This remark is the desired general result on spectral sequences. We need to
consider the E2- and E2-terms, before we can finish our analysis of the maps d∞
and d∞. Here, we specialize to an interleaf fiber bundle ξ = (L, ∂M, p, Sn−c) arising
from a link bundle as described in Section 2.1. We can describe explicitly some of
the modules in the E2-term of the associated Leray-Serre spectral sequence. Recall
from [McC01] the definition of the entries in the Er-term. These are

Ep,qr =
Zp,qr

Zp+1,q−1
r−1 +Bp,qr−1

,

with

Zp,qr = F pAp+q ∩ d−1(F p+rAp+q+1),

Bp,qr = F pAp+q ∩ d(F p−rAp+q−1).

In our case, the underlying differential graded algebra is (A, d) = (C∗(∂M), ∂∗),
and the filtration is

F p(C∗(∂M))q = ker[C∗(∂M)→ C∗(Jp−1)]∩Cq(∂M) = ker[Cq(∂M)→ Cq(Jp−1)].
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Let k ∈ N such that k ≥ 1, then Jn−c+k−1 = ∂M , and hence

Fn−c+kCq(∂M) = ker[Cq(∂M)→ Cq(Jn−c+k−1)] = {0}.
Since all sequences involved collapse, we are only interested in the E2-terms. Thus,
let r = 2, p = n− c, q = c− r. Then we have the following modules:

Zn−c,c−r2 = Fn−cCn−r(∂M) ∩ (∂∗)−1(Fn−c+2Cn−r+1(∂M)︸ ︷︷ ︸
=0

)

= ker[Cn−r(∂M)→ Cn−r(L)] ∩ ker ∂∗

= Cn−r(∂M,L) ∩ ker ∂∗,

Zn−c+1,c−r−1
1 = Fn−c+1Cn−r(∂M)︸ ︷︷ ︸

=0

∩ (∂∗)−1(Fn−c+2Cn−r+1(∂M))

= {0},

Bn−c,c−r1 = Fn−cCn−r(∂M) ∩ ∂∗(Fn−c−1Cn−r−1(∂M))

= Cn−r(∂M,L) ∩ ∂∗(Fn−c−1Cn−r−1(∂M))

= Cn−r(∂M,L) ∩ ∂∗(ker[Cn−r−1(∂M)→ Cn−r−1(L)])

= Cn−r(∂M,L) ∩ ∂∗(Cn−r−1(∂M,L)).

Thus,

En−c,c−r2 =
Zn−c,c−r2

Zn−c+1,c−r−1
1 +Bn−c,c−r1

=
Cn−r(∂M,L) ∩ ker ∂∗

Cn−r(∂M,L) ∩ ∂∗(Cn−r−1(∂M,L))

=Hn−r(∂M,L)

(42)

We know that L is TNCZ in ∂M . Thus the map

Hn−r(∂M)
incl∗−−−→ Hn−r(L)

is surjective for any r. Therefore, the long exact sequence for cohomology of the
pair (∂M,L) looks like this:

· · · 0 // Hn−r(∂M,L) �
� j∗

// Hn−r(∂M)
incl∗ // // Hn−r(L)

0 // · · ·

Thus we have a short exact sequence

0 // Hn−r(∂M,L)
� � j

∗
// Hn−r(∂M)

incl∗ // // Hn−r(L) // 0.

We would like to show:

Proposition 2.5.21.

Hn−r(∂M,L) = im [Hn−r(∂M,L)→ Hn−r(∂M)].

Proof. Let ξ represent an element of j(Hn−r(∂M,L)). Then

ξ ∈ ker[Cn−r(∂M,L)→ Cn−r+1(∂M,L)].

Furthermore,

ξ ∈ im [Cn−r−1(∂M)→ Cn−r(∂M)] ⊃ im [Cn−r−1(∂M,L)→ Cn−r(∂M,L)].

Thus, ξ also represents an element of Hn−r(∂M,L). On the other hand, let ξ be
a non-zero cocycle representing an element of Hn−r(∂M,L). Let ξ be given as a
cochain

ξ =
∑
α

mαξα, mα ∈ Q.
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If the sets {ξα | α} and

im [Cn−r−1(∂M)→ Cn−r(∂M)] \ im [Cn−r−1(∂M,L)→ Cn−r(∂M,L)]

are disjoint, then [ξ] = j([ξ]). If there is some α such that

ξα ∈ im [Cn−r−1(∂M)→ Cn−r(∂M)] \ im [Cn−r−1(∂M,L)→ Cn−r(∂M,L)],

then there exists a simplex σ ∈ Cn−r(L) such that ξα(σ) 6= 0, which is a contradic-
tion. Hence the two sets are always disjoint, and [ξ] = j([ξ]). �

Analogously, on the homology side, we have

Erp,q =
Zrp,q

Zr−1
p−1,q+1 +Br−1

p,q

,

with

Zrp,q = FpAp+q ∩ d−1(Fp−rAp+q−1),

Brp,q = FpAp+q ∩ d(Fp+rAp+q+1).

In our case, (A, d) = (C∗(∂M), ∂∗) with a filtration

Fp(C∗(∂M))q = im [C∗(J
p)→ C∗(∂M)] ∩ Cq(∂M) = im [C∗(J

p)→ C∗(∂M)].

We are interested in the case r = 2, p = 0, q = r − 1:

Z2
0,r−1 = F0Cr−1(∂M) ∩ (∂∗)

−1(F−2Cr−2(∂M)︸ ︷︷ ︸
=0

)

= Cr−1(L) ∩ ker ∂∗,

Z1
−1,r = F−1Cr−1(∂M)︸ ︷︷ ︸

=0

∩ (∂∗)
−1(F−2Cr−2(∂M))

= {0},
B1

0,r−1 = F0Cr−1(∂M) ∩ ∂∗(F1Cr(∂M))

= Cr−1(L) ∩ ∂∗(Cr(L)).

Thus,

E2
0,r−1 =

Z2
0,r−1

Z1
−1,r +B1

0,r−1

=
Cr−1(L) ∩ ker ∂∗

Cr−1(L) ∩ ∂∗(Cr(L))

= Hr−1(L).

By [McC01, p. 36f], d∞ is defined as being induced from

ker ∂∗ → H(C∗(∂M), ∂∗), ξ 7→ [ξ].

We know from equation (42) that En−r,c−r2 = Hn−r(∂M,L). Thus, in our case, d∞
is the following map:

Hn−r(∂M,L)

En−r,c−r2

d∞
��

Fn−cHn−r

im [Hn−r(∂M,L)→ Hn−r(∂M)]
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But we have seen that the last term is equal to Hn−r(∂M,L) as well. Thus, d∞
is just the identity. Using Remark 2.5.20, one can show that d∞ is the identity as
well.

2.5.2.2. The Crossing Lemma.

Lemma 2.5.22. The isomorphism

S∗ ◦ (− ∩ [∂M ]) ◦ (S∗)−1

can be written as a direct sum of isomorphisms:

Hn−r(L)

Cn−r ∼=
��

⊕
Hc−r(L)

Cc−r∼=
��

Hr−1−n+c(L)
⊕

Hr−1(L)

We refer to this behavior as crossing.

Proof. We first show that the isomorphism

S∗ ◦ (− ∩ [∂M ]) ◦ (S∗)−1

has the following restriction:

Cc−r = (S∗ ◦ (− ∩ [∂M ]) ◦ (S∗)−1)|Hc−r(L) : Hc−r(L)
∼=−→ Hr−1(L).

Let {σp} be a basis for Hp(Sn−c). (So σp 6= 0 if and only if p = 0, n− c.) Let

{ν(j)
q }j be a basis for Hq(L). Then {σp ⊗ ν(j)

q }j is a basis for Hp(Sn−c) ⊗Hq(L).
We examine what happens to the elements of this basis under the maps in question.
Consider the diagram on the next page.



σ
n
−
c
⊗
ν

(j
)

c
−
r

_ ��

�
(−
∩

[S
n
−
c
])
⊗

(−
∩

[L
])

∼ =
// σ
n
−
c
∩

[S
n
−
c
]
⊗
ν

(j
)

c
−
r
∩

[L
]

!
φ

2 ∗(
φ
∗ 2
(σ
n
−
c
⊗
ν

(j
)

c
−
r
)
∩

[∂
M

])

H
n
−
c
(S

n
−
c
)
⊗
H
c
−
r
(L

)

∼ =
φ
∗ 2

��

(−
∩

[S
n
−
c
])
⊗

(−
∩

[L
])

∼ =
// H

0
(S

n
−
c
)
⊗
H
r
−

1
(L

)

φ
∗ 2
(σ
n
−
c
⊗
ν

(j
)

c
−
r
)

E
n
−
c
,c
−
r

2
H
n
−
r
(∂
M
,L

)
H
r
−

1
(L

)
E

2 0
,r
−

1

φ
2 ∗

∼ =

OO

φ
∗ 2
(σ
n
−
c
⊗
ν

(j
)

c
−
r
)
∩

[∂
M

]

_OO

φ
∗ 2
(σ
n
−
c
⊗
ν

(j
)

c
−
r
)

E
n
−
c
,c
−
r

∞

d
∞

=
id

��

im
[H

r
−

1
(L

)
→
H
r
−

1
(∂
M

)]
E
∞ 0
,r
−

1

d
∞

=
id

��

φ
∗ 2
(σ
n
−
c
⊗
ν

(j
)

c
−
r
)
∩

[∂
M

]

φ
∗ 2
(σ
n
−
c
⊗
ν

(j
)

c
−
r
)

F
n
−
c
H
n
−
r

F
n
−
c
+

1
H
n
−
r

i∗

��

im
[H

n
−
r
(∂
M
,L

)
→
H
n
−
r
(∂
M

)]
F

0
H
r
−

1

F
−

1
H
r
−

1

i ∗ ��

φ
∗ 2
(σ
n
−
c
⊗
ν

(j
)

c
−
r
)
∩

[∂
M

]

H
n
−
r
(∂
M

)
−
∩

[∂
M

]

∼ =
// H

r
−

1
(∂
M

)

φ
∗ 2
(σ
n
−
c
⊗
ν

(j
)

c
−
r
)

�
// φ
∗ 2
(σ
n
−
c
⊗
ν

(j
)

c
−
r
)
∩

[∂
M

]

51
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In the upper right corner, the equality marked with an exclamation mark can
be seen as follows:

σn−c ∩ [Sn−c]⊗ ν(j)
c−r ∩ [L] = (σn−c ⊗ ν(j)

c−r) ∩ ([Sn−c]⊗ [L])

= (σn−c ⊗ ν(j)
c−r) ∩ φ2

∗([∂M ])

!
= φ2

∗(φ
∗
2(σn−c ⊗ ν(j)

c−r) ∩ [∂M ])

The second line uses that φ2
∗ is an isomorphism. The third line is the cup-cap

formula, which usually requires the morphism φ2
∗ to be induced from a continuous

map φ2. In fact, all that is required is a morphism of chain complexes which induces
φ2
∗. This can be seen from any proof of said formula – see e. g. [Hat01, p. 241].

Hence it holds for φ2
∗ because that morphism is induced from the morphism of chain

complexes
φ : FpCp+q(∂M)→ Cp(S

n−c;Cq(L))

as stated in [McC01, Lemma 5.24]. Therefore, the diagram on p. 51 commutes.
The map

Hn−c(Sn−c)⊗Hc−r(L)
(−∩[Sn−c])⊗(−∩[L])−−−−−−−−−−−−−→ H0(Sn−c)⊗Hr−1(L)

is an isomorphism. Thus, due to commutativity, so is Cc−r. Then, the required
crossing behavior occurs. �

2.6. Duality

Lemma 2.6.1. For any homotopy equivalence

s : L<c−k
'→ L<c−k,

the sequence

...

0

��

Hr−1(L<c−k)

(eLc−k)∗◦s∗
��

Hr−1(L)

(pLc−k)∗

��

Hr−1(L≥c−k)

0

��

Hr−2(L<c−k)

(eLc−k)∗◦s∗
��

Hr−2(L)

(pLc−k)∗
��

...

is exact.

Proof. By Proposition 2.4.1, the induced map (pLc−k)∗ is surjective in all di-

mensions, and the induced map (eLc−k)∗ is injective in all dimensions. Thus it
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remains to show exactness at Hr−1(L). We have to show

im ((eLc−k)∗ ◦ s∗) = ker(pLc−k)∗.

Consider the involved maps

(eLc−k)∗ ◦ s∗ = h′L∗ ◦ incl∗ ◦ s∗
(pLc−k)∗ = proj∗ ◦ hL∗

Let y ∈ im ((eLc−k)∗ ◦ s∗), say y = h′L∗(s∗(x)) for some x in Hr−1(L<c−k) =

Hr−1(E(L)(c−k)−1). Then

(pLc−k)∗(y) = proj∗ ◦ hL∗ ◦ h′L∗ ◦ s∗(x) = proj∗(s∗(x)) = 0,

because hL is a homotopy equivalence. Conversely, let y ∈ ker(pLc−k)∗. This implies

(pLc−k)∗(y) = proj∗ ◦ hL∗(y) = 0,

and in turn, that hL∗(y) ∈ Hr−1(E(L)(c−k)−1). Thus, with x = (s∗)
−1(hL∗(y)), we

have

(eLc−k)∗ ◦ s∗(x) = h′L∗ ◦ incl∗ ◦ s∗(x)

= h′L∗ ◦ incl∗ ◦ s∗ ◦ (s∗)
−1 ◦ hL∗(y)

= h′L∗ ◦ incl∗ ◦ hL∗(y)

= h′L∗ ◦ hL∗(y)

= y ∈ im ((eLc−k)∗ ◦ s∗).
�

Lemma 2.6.2. Let (Ai, fi)i∈Z and (Bi, gi)i∈Z be long exact sequences, and let
k ∈ Z. (The integer k will be used as an offset.) Then the sequence

· · · → Ai+1 ⊕Bi+1+k
fi+1⊕gi+1+k−−−−−−−−→ Ai ⊕Bi+k

fi⊕gi+k−−−−−→ Ai−1 ⊕Bi−1+k → · · ·
is exact.

Proof. We have to show im (fi+1 ⊕ gi+1+k) = ker(fi ⊕ gi+k). Let

(a, b) = (fi+1(a), gi+1+k(b)).

Then a ∈ im fi+1 = ker fi and b ∈ im gi+1+k = ker gi+k. Thus,

fi ⊕ gi+k(a, b) = (0, 0),

and im (fi+1 ⊕ gi+1+k) ⊂ ker(fi ⊕ gi+k). The converse statement,

im (fi+1 ⊕ gi+1+k) ⊃ ker(fi ⊕ gi+k),

is shown in an analogous fashion. Hence the sequence is exact. �

Lemma 2.6.3. For n− c ≥ 2, there is an isomorphism

Srel∗ : Hr−1(∂M, ft<c−k (∂M))
∼=→ Hr−1(L≥c−k)⊕Hr−1−n+c(L≥c−k).

Proof. We want to use [Ban10, Lemma 2.46] to show the existence of Srel∗.
Therefore, we need to show the existence of a commutative diagram of the form

• //

��

• //

��

• // • //

��

•

��
• // • // • // • // •

(43)

such that the rows are exact. The existence of the vertical map between the vector
spaces in the middle is then guaranteed by said lemma. The upper row will come
from an application of Lemma A.5 to µ, while the lower row will be provided by a
direct sum of two copies (for different degrees) of the long exact sequence of Lemma
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2.6.1. Naturality of the homological Leray-Serre spectral sequence will provide the
vertical maps.

Turning to the specific nature of the upper row, the map µ : ft<c−k (∂M)→ ∂M
induces a long exact sequence

Hr−1(ft<c−k (∂M))
µ∗
��

Hr−1(∂M)

q∗◦j1∗
��

Hr−1(Mµ, ft<c−k (∂M))

∂∗ ��

Hr−2(ft<c−k (∂M))
µ∗
��

Hr−2(∂M)

as was shown in Lemma A.5.
For the lower row, we form a direct sum of two copies of the long exact sequence

of Lemma 2.6.1, with an offset in degrees of −n+ c and with s = ft<c−k (p)he|. The
result is the following long exact (by Lemma 2.6.2) sequence:

Hr−1(L<c−k)⊕Hr−1−n+c(L<c−k)

(eLc−k)∗◦s∗⊕(eLc−k)∗◦s∗
��

Hr−1(L)⊕Hr−1−n+c(L)

(pLc−k)∗⊕(pLc−k)∗
��

Hr−1(L≥c−k)⊕Hr−1−n+c(L≥c−k)

0⊕0
��

Hr−2(L<c−k)⊕Hr−2−n+c(L<c−k)

(eLc−k)∗◦s∗⊕(eLc−k)∗◦s∗
��

Hr−2(L)⊕Hr−2−n+c(L)

Notice that the maps do actually depend on the degree. Thus the same symbol may
stand for different maps on the two summands, respectively.

In order to complete the proof we need to explain the vertical maps of diagram
(43). Recall from Remark 2.5.17 the isomorphisms S∗, SW∗, and observe that the
definition of these isomorphisms entails a choice of splittings such that diagram (36)
commutes. Letting Z∗ = Zr−1

∗ ⊕ Zr−1−n+c
∗ , we see that the square

Hr−1(ft<c−k (∂M))
µ∗ // Hr−1(∂M)

S∗∼=

��

Hr−1(W (ft<c−k (p)))

(ft<c−k (p)he)∗ ∼=

OO

SW∗ ∼=
��

Hr−1(L<c−k)⊕Hr−1−n+c(L<c−k)
Z∗ // Hr−1(L)⊕Hr−1−n+c(L)

commutes as well. We set S<∗ = SW∗ ◦ (ft<c−k (p)he)−1
∗ . Thus for any r ∈ Z

we obtain a commutative diagram consisting of rational vector spaces and exact
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columns:

Hr−1(ft<c−k (∂M))

µ∗

��

S<∗

∼=
// Hr−1(L<c−k)⊕Hr−1−n+c(L<c−k)

Z∗

��

Hr−1(∂M)
S∗
∼=

//

q∗◦j1∗

��

Hr−1(L)⊕Hr−1−n+c(L)

(pLc−k)∗⊕(pLc−k)∗

��

Hr−1(Mµ, ft<c−k (∂M))

∂∗

��

Hr−1(L≥c−k)⊕Hr−1−n+c(L≥c−k)

0⊕0

��

Hr−2(ft<c−k (∂M))

µ∗

��

S<∗

∼=
// Hr−2(L<c−k)⊕Hr−2−n+c(L<c−k)

Z∗

��

Hr−2(∂M)
S∗
∼=

// Hr−2(L)⊕Hr−2−n+c(L)

(44)

The middle rectangle commutes by virtue of the fact that the columns are exact.
The middle map

Srel∗ : Hr−1(Mµ, ft<c−k (∂M))→ Hr−1(L≥c−k)⊕Hr−1−n+c(L≥c−k)

is obtained by applying [Ban10, Lemma 2.46] to this diagram. The 5-lemma then
shows Srel∗ to be an isomorphism. �

Remark 2.6.4. A less concise statement of Lemma 2.6.3 is that the group

Hr−1(∂M, ft<c−k (∂M))

depends on c, k, n and r, as indicated in the following table:

n− c r Relation to k Hr−1(∂M, ft<c−k (∂M)) ∼=
odd even c− k > r − 2 0

r − 2 ≥ c− k > r − 1− n+ c 0
r − 1− n+ c ≥ c− k Hr−1−n+c(L)

odd c− k > r − 1 0
r − 1 ≥ c− k > r − 2− n+ c Hr−1(L)
r − 2− n+ c ≥ c− k Hr−1(L)

even even c− k > r − 2 0
r − 2 ≥ c− k > r − 2− n+ c 0
r − 2− n+ c ≥ c− k 0

odd c− k > r − 1 0
r − 1 ≥ c− k > r − 1− n+ c Hr−1(L)
r − 1− n+ c ≥ c− k Hr−1(L)⊕Hr−1−n+c(L)
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By Lemma A.7, the pair (M,∂M) and the map µ : ft<c−k (∂M)→ ∂M induce
the following exact sequence:

Hn(Mµ, ft<c−k (∂M))

i∗
��

Hn(Mg, ft<c−k (∂M))

d∗
��

Hn(M,∂M)

q∗◦j1∗◦∂∗
��

Hn−1(Mµ, ft<c−k (∂M))

i∗
��

Hn−1(Mg, ft<c−k (∂M))

(45)

Notice that ∂∗ is the connecting homomorphism of the long exact sequence of the
pair (M,∂M). Towards proving generalized Poincaré duality, it is helpful to show
the following lemma:

Lemma 2.6.5 (Lemma 2.45 on p. 181 in [Ban10]). There is an isomorphism
D< which completes the diagram

Hn−r(M)
g∗

//

−∩[M,∂M ] ∼=
��

Hn−r(ft<k (∂M))

D<∼=
��

Hr(M,∂M)
q∗◦j1∗◦∂∗ // Hr−1(Mµ, ft<c−k (∂M))

(46)

to a commutative square. Here, ∂∗ is the connecting homomorphism of the long
exact sequence of the pair (M,∂M). (There is no sign here.)

Proof. By [Ban10, Lemma 2.45], the square

Hn−r(M)
j∗

//

−∩[M,∂M ] ∼=
��

Hn−r(∂M)

−∩[∂M ]∼=
��

Hr(M,∂M)
∂∗ // Hr−1(∂M)

(47)

commutes. We construct the isomorphism D< such that

Hn−r(∂M)
µ∗

//

−∩[∂M ] ∼=
��

Hn−r(ft<k (∂M))

D<∼=
��

Hr−1(∂M)
q∗◦j1∗ // Hr−1(Mµ, ft<c−k (∂M))

(48)

commutes. To this, end, consider again the diagram

L �
�

// X
p

// Sm

L<k
� � //

µ|

OO

ft<k (X)

µ

OO

ft<k (p)
// B

' M

OO

L<k
� � //

ft<k (p)he| '

OO

W (ft<k (p))

ft<k (p)he '

OO

ft<k (p)Hf
// B

idB

OO
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this time as input for the cohomological version of Proposition 2.5.16 and Remark
2.5.17. We obtain a commutative square

Hn−r(ft<k (∂M))

(ft<k (p)he)∗ ∼=
��

Hn−r(∂M)

S∗∼=

��

µ∗
oo

Hn−r(W (ft<k (p)))

S∗W ∼=
��

Hn−r(L<k)⊕Hc−r(L<k) Hn−r(L)⊕Hc−r(L)
Z∗oo

(49)

with
Z∗ = [(ft<k (p)he|)∗ ◦ (eLk )∗]⊕ [(ft<k (p)he|)∗ ◦ (eLk )∗].

In analogy to the proof of Lemma 2.6.3, we set

S∗< = S∗W ◦ (ft<k (p)he)∗.

We want to complete the diagram

Hn−r(L)⊕Hc−r(L)
Z∗ // Hn−r(L<k)⊕Hc−r(L<k)

Hn−r(∂M)
µ∗

//

∼=−∩[∂M ]

��

∼=S∗

OO

Hn−r(ft<k (∂M))

∼= S∗<

OO

D<∼=
��

Hr−1(∂M)
q∗◦j1∗ //

∼=S∗
��

Hr−1(Mµ, ft<c−k (∂M))

Srel∗∼=
��

Hr−1(L)⊕Hr−1−m(L)
(pLc−k)∗⊕(pLc−k)∗

// Hr−1(L≥c−k)⊕Hr−1−m(L≥c−k)

(50)

commutatively, and show the ensuing map D< to be an isomorphism. The top
square is just diagram (49). It commutes. The bottom square is the upper middle
rectangle in diagram (44) and commutes as well. The idea is to use the fact that
Z∗ admits a right inverse map (Z∗)−1 to define

D< = (Srel∗)
−1 ◦ [(pLc−k)∗ ⊕ (pLc−k)∗] ◦ S∗ ◦ (− ∩ [∂M ]) ◦ (S∗)−1 ◦ (Z∗)−1 ◦ S∗<.

Commutativity of the bottom and top squares then yields the desired result.
Hence we examine the map Z∗. Consider the first component. We see from

Corollary 2.4.2 that (eLk )∗ is an isomorphism for n − r < k and the zero map else.
The same holds for the composition with the isomorphism (ft<k (p)he|)∗. Hence
we can find to any nonzero element α ∈ Hn−r(L<k) a unique nonzero preimage
ζn−r(α) ∈ Hn−r(L) under the first component of Z∗. This defines an injective map

ζn−r : Hn−r(L<k)→ Hn−r(L).

Similar considerations hold for the other component, yielding an injective map

ζc−r : Hc−r(L<k)→ Hc−r(L).

The direct sum of these maps forms an injective inverse map (Z∗)−1, and we can
thus define D< as above.

We want to show D< to be an isomorphism. Concerning injectivity, we see that
S∗ ◦ (−∩ [∂M ]) ◦ (S∗)−1 ◦ (Z∗)−1 ◦ (S∗<)−1 is injective. Thus we have to show that
(pLc−k)∗ ⊕ (pLc−k)∗, restricted to

S∗ ◦ (− ∩ [∂M ]) ◦ (S∗)−1 ◦ (Z∗)−1(Hn−r(L<k)⊕Hc−r(L<k))

=S∗ ◦ (− ∩ [∂M ]) ◦ (S∗)−1 ◦ (ζn−r(Hn−r(L<k))⊕ ζc−r(Hc−r(L<k)))
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is injective. In order to do this, we notice that Lemma 2.5.18 shows that the
isomorphism

(51) S∗ ◦ (− ∩ [∂M ]) ◦ (S∗)−1

can be written as a direct sum of two isomorphisms:

Hn−r(L)

Cn−r ∼=
��

⊕
Hc−r(L)

Cc−r∼=
��

Hr−1−n+c(L)
⊕

Hr−1(L)

Notice that this means that the components of the direct sums – as written in
diagram (50) – are interchanged by the isomorphism. This “crossing” behavior is
crucial. Heuristically, our interest in it can be justified by the fact that the maps
do in fact cross if we consider a trivial link bundle.

We still have to show injectivity of D<. To do this, we need to consider many
cases. This becomes possible only when we introduce a more efficient notation. As
an abstract representation of the diagram

Hn−r(L<k)
⊕

Srel∗◦D<◦(S∗<)−1

��

ζn−r⊕ζc−r

vv

Hc−r(L<k)

Hn−r(L)

Cn−r

&&

⊕
Hc−r(L)

Cc−r

xx

Hr−1(L)
⊕

(pLc−k)∗⊕(pLc−k)∗

((

Hr−1−n+c(L)

Hr−1(L≥c−k)
⊕

Hr−1−n+c(L≥c−k)

(52)

we can use a symbol consisting of boxes:

�

��

⊕ �

��

�oo ⊕

��

�

� ⊕ � // � ⊕ �
The boxes are drawn black (�) or white (�). A white box is drawn if and only if a
necessary condition for the vanishing of the corresponding vector space in diagram
(52) arises from the values of (and relations between) c, k, n and r. A black box
is drawn in all other cases. Thus, a vector space represented by a black box could
still vanish, the black box merely signifies that we can not infer vanishing from the
given data alone.

For example, let n be even while r is odd, and let c− k > r − 1. Then

r − 1− n+ c < r − 1 < c− k,
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which implies

r − 1− n < −k ⇔
n− r + 1 > k ⇔

n− r > k − 1⇔
n− r ≥ k

Also, c− k > r − 1 implies c− r ≥ k. Thus we get the following schematic:

�

��

⊕ �

��

�oo ⊕

��

�

� ⊕ � // � ⊕ �
which we compress to:

�
�
�
�
�
�
�
�

There is an interesting dynamic exhibited here. Roughly speaking, the four boxes
on the LHS act as a filter for the four boxes on the RHS. This fact allows us to give
the following table representing all possible cases:
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Drawing on the data of this table, we will see that D< is injective in each case.
By Corollary 2.4.4, we know that (pLc−k)∗ is an isomorphism if c − k is greater or
equal to the degree of the homology groups in question, and zero else. It can be
seen from the table that in all cases were (pLc−k)∗ vanishes, the corresponding input
data

Cp−r ◦ ζp−r(Hp−r(L<k)), p = c, n,

vanishes as well. Hence the compositions

(pLc−k)∗ ◦ Cn−r ◦ ζn−r,
(pLc−k)∗ ◦ Cc−r ◦ ζc−r

are injective, because the first two factors in each composition are injective. Finally,

D< = (Srel∗)
−1 ◦ [(pLc−k)∗ ⊕ (pLc−k)∗] ◦ S∗ ◦ (− ∩ [∂M ]) ◦ (S∗)−1 ◦ (Z∗)−1 ◦ S∗<.

is an injective linear map between vector spaces of the same dimension, and hence
an isomorphism.

Now g∗ = µ∗ ◦ j∗ while we also have a factorization

Hr(M,∂M)
∂∗ // Hr−1(∂M)

q∗◦j1∗ // Hr−1(Mµ, ft<c−k (∂M)).

Thus we can compose squares (47) and (48) to obtain a commutative square (46).
�

We now come to the main result on duality.

Theorem 2.6.6 (Theorem 2.47 on p. 183 in [Ban10]). Let X be an n-dimensional
compact, oriented, stratified pseudomanifold with one singular stratum Σ = Sn−c

of dimension n − c ≥ 2. The link L is assumed to be an object of the interleaf
category ICW, and we assume the link bundle to have a cellular structure group.
We assume X,Σ and L to be oriented compatibly. Let IpX and IqX be p- and
q-intersection spaces of X with p and q complementary perversities. Then there
exists a generalized Poincaré duality isomorphism

D : H̃n−r(IpX)
∼=→ H̃r(I

qX).

Proof. The proof is virtually the same as the proof of [Ban10, Theorem 2.47].
We obtain a diagram

Hn−r−1(M)

g∗p

��

−∩[M,∂M ]

∼=
// Hr+1(M,∂M)

λ

��

Hn−r−1(ft<k (∂M))

��

D<

∼=
// Hr(Mµq , ft<c−k (∂M))

��

Hn−r(Mgp , ft<k (∂M))

��

Hr(Mgq , ft<c−k (∂M))

��

Hn−r(M)

g∗p

��

−∩[M,∂M ]

∼=
// Hr(M,∂M)

λ

��

Hn−r(ft<k (∂M))
D<

∼=
// Hr−1(Mµq , ft<c−k (∂M))

in which the outer squares commute by Lemma 2.6.5. Using this diagram as input
for [Ban10, Lemma 2.46], we obtain a map

D′ : Hn−r(Mgp , ft<k (∂M))→ Hr(Mgq , ft<c−k (∂M)),
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which is an isomorphism by the 5-lemma. Composition yields

D : H̃n−r(IpX)
∼=−→ H̃r(I

qX).

�

2.7. Cellular Self-Homeomorphisms of CW-complexes

One demand on an interleaf fiber bundle was that the structure group should
consist of cellular homeomorphisms with cellular inverses. In this section, we show
that for certain CW-complexes, any cellular homeomorphism satisfies the demand
that its inverse be cellular.

Let Xn be a finite CW-complex, and let n be the dimension of a cell of maximal
dimension. Furthermore let f : X → X be a cellular self-homeomorphism. This
means that f is bijective, continuous, open and that

f(Xk) ⊂ Xk ∀k ∈ N.
In this setting, is f−1 also cellular? If X consists of an infinite number of cells,
f−1 is in general not cellular. Consider the following example: Take X to be the
CW-complex composed of 0-cells in correspondence to the natural numbers N, and
1-cells connecting the 0-cells corresponding to k and k + 1, for all k ∈ N.

X

•0

•1

•2

•3

•4

Define a map f : X → X by setting

f(0) = 0, f(0.5) = 1, f(1) = 2, f(2) = 3,

and so forth, with f continuous on the intervals between these points. This yields:

X Xf

•0
0.5
•1

•2

•3

•4

• 0

• 1

• 2

• 3

• 4

//

--

**

**

**

**

The map f is clearly continuous, open and bijective. It is also cellular, since f(X1) ⊂
X1 and f(X0) ⊂ X0. But the inverse f−1 maps 1 ∈ X0 to 0.5 /∈ X0, and is thus not
cellular. So the inverses of cellular self-homeomorphisms of infinite CW-complexes
are not always cellular. However, it can be shown that the inverse f−1 is always
cellular for X a finite CW-complex:

Proposition 2.7.1. Let Xn be a CW-complex with only finitely many cells,
and let f : X → X be a cellular self-homeomorphism. Then f−1 is also cellular.

Proof. The proof is by induction over skeletons. Since there are only finitely
many 0-cells and since f(X0) ⊂ X0, the restriction of f to X0 is a permutation.
Hence f−1 is clearly cellular on X0. Assume now that f−1 has been shown to be
cellular on Xk−1, for some k ≥ 1. We want to show that f−1 is also cellular on Xk.

Claim 0: If f−1 is cellular on Xk−1, then f |Xk−1 : Xk−1 → Xk−1 is bijective. To
see this, note that f |Xk−1 is the restriction of an injective map, and hence injective.
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It is also surjective: consider x ∈ Xk−1. We know that f−1 is cellular on Xk−1,

f−1(Xk−1) ⊂ Xk−1.

Hence the preimage of x under f must also lie in Xk−1. This makes f |Xk−1 surjec-
tive. Accordingly, Claim 0 holds.

Claim 1: If f−1 is cellular on Xk−1, then the image of any open k-cell under f
is contained in exactly one open k-cell. Consider an open k-cell e = ek. Note that
f(e) ⊂ Xk, because f is cellular. Claim 0 shows that

f(e) ⊂ Xk −Xk−1,

because f |Xk−1 is bijective - there is “no space left” for f(e) in the (k− 1)-skeleton.
But Xk −Xk−1 is a disjoint union of open k-cells. Accordingly, f(e) is contained
in exactly one open k-cell, for e is connected and so, in turn, is f(e) (connectedness
is a topological property). This shows Claim 1 to be true.

Claim 2: If e, e′ ∈ Xk are open k-cells such that f(e) ⊂ e′, then f |e : e → e′ is
surjective. In order to prove this, we will show that f(e) is both open and closed
in e′, which implies f(e) = e′ since e′ is connected. To see this, consider the
characteristic maps

φ, φ′ : (Dk, Sk−1)→ (Xk, Xk−1)

of e and e′, respectively. The restrictions of φ and φ′ to D̊k are homeomorphisms.
Furthermore, notice that Xk ⊂ X and e, e′ ⊂ Xk are equipped with the sub-

space topology, respectively. Thus f |Xk : Xk → X is continuous, and by further
restriction to the subspace e of Xk, we see that f |e : e → X is continuous as well.

By assumption it holds that f(e) ⊂ e′, and hence the map f̃ : e → e′, obtained by
restricting the range of f |e : e→ X to e′ is continuous.

This enables us to form a composition

F : D̊k φ−→ e
f̃→ e′

(φ′)−1

−−−−→ D̊k.

Now f̃ agrees with f on e, and hence is the restriction of an injective map. Thus it

is still injective. Since φ, φ′
−1

restricted to D̊k are both homeomorphisms, and in

particular, injective, this makes F injective. It is also continuous: Both φ and φ′
−1

are continuous, and f̃ was shown to be continuous above.
Given that F : D̊k → D̊k ⊂ Rk is both continuous and injective, an application

of the theorem on invariance of domain yields that F (D̊k) is open in Rk and hence

in D̊k, and furthermore that F is a homeomorphism. Note that

f(e) = f̃ ◦ φ(D̊k) (because f and f̃ agree on e)

= φ′ ◦ φ′−1 ◦ f̃ ◦ φ(D̊k) (because φ′ is a homeomorphism)

= φ′ ◦ F (D̊k).

The image of the open (in D̊k) set F (D̊k) under the homeomorphism φ′ is open in
e′. Thus we have shown that f(e) is open in e′.
On the other hand, ē = e∪∂e is closed in X. Hence f(ē) = f(e)∪f(∂e) is closed in
X. The fact thatX is endowed with the weak topology implies that f(ē) = f(ē)∩Xk

is closed. Hence f(ē) ∩ e′ is closed in e′, for e′ is a subspace of Xk. But

f(ē) ∩ e′ = f(e) ∩ e′ = f(e),

since f(∂e) ⊂ Xk−1.
Thus f(e) is both closed and open in the connected space e′. This implies that

f(e) is equal to e′ (for f(e) = ∅ is impossible), and Claim 2 is proven.
In particular, Claim 2 shows that no two open k-cells are mapped into the same

open k-cell. We claim that even more is true, namely that f acts by permutation on
the set of k-cells. In order to see this, note that there are only finitely many open
k-cells by assumption. Claim 1 shows that each open k-cell is mapped into exactly
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one other open k-cell, and the finite number of open k-cells ensures that each open
k-cell is the image of another open k-cell under f . Hence f is a permutation on the
set of open k-cells, and, by Claim 2, f restricts to a surjection on each open k-cell.
In other words, f(Xk − Xk−1) = Xk − Xk−1, which implies f−1(Xk − Xk−1) =
Xk − Xk−1. Combining this with the assumption that f−1(Xk−1) ⊂ Xk−1, we
know that f−1(Xk) ⊂ Xk. This is the definition of f−1 being cellular on Xk, and
the induction step is finished. �

Definition 2.7.2 (p. 56 in [FP90]). Let f : X → Y be a map between CW-
complexes. If f is cellular and takes every open cell of X onto an open cell of Y , it
is called regular.

Remark 2.7.3. Let Xn be a CW-complex with only finitely many cells, and
let f : X → X be a cellular self-homeomorphism. Then f is regular.

Accordingly, we can modify one of the conditions in Theorem 2.6.6. If the link
L ∈ Ob ICW consists of finitely many cells, we need not demand that the link bun-
dle have a structure group consisting exclusively of cellular homeomorphisms with
cellular inverses. It suffices to demand that the structure group consist exclusively
of cellular homeomorphisms.



CHAPTER 3

Non-simple Systems of Local Coefficients

3.1. Introduction

The previous chapters focused on links which could be truncated in arbitrary
degrees. Accordingly, we obtained generalized Poincaré duality for arbitrary com-
plementary perversities. We now change this viewpoint. For a given pair of com-
plementary perversities, we want to show that the homology of the intersection
space of a pseudomanifold satisfies Poincaré duality. In order to do this, we need
to be able to truncate the corresponding link in only two degrees. For the given
pair of perversities, we can thus relax our demands on links – they need only admit
truncation in the two degrees mentioned. In this setting, we are able to construct
a right inverse to

incl∗ : H∗(∂M)→ H∗(ft<k (∂M))

by means of sheaf theory. A proof of generalized Poincaré duality will then proceed
in a manner similar to the last chapter.

The existence of a right inverse to the morphism incl∗ implies the surjectivity
of incl∗. It may come as a surprise that this holds in the absence of any further
demands on the fiber bundles involved. But the proof of surjectivity of incl∗ is a
byproduct of the sheaf theoretic Ansatz pursued below.

We now proceed to introduce the links in question.

Definition 3.1.1. Let k ∈ N, and let N be a CW-complex. If in the homolog-
ical cellular chain complex (H∗(N

∗, N∗−1), d∗) the boundary map

dk : Hk(Nk, Nk−1)→ Hk−1(Nk−1, Nk−2)

vanishes, then we refer to N as k-admissible.

For a given k-admissible space N , we have

Hk−1(Nk−1) =
ker dk−1

im dk
= ker dk−1 = Hk−1(N)

while Hi(N
k−1) = Hi(N) for i < k − 1, and Hi(N

k−1) vanishes for i ≥ k. Hence
we call

t<k(N) = Nk−1

the spatial homology truncation in degree k of N . The usual shorthand N<k =
t<k(N) is employed. The spatial homology truncation is a subcomplex and as such,
a closed subspace of N .

Given two k-admissible spaces N and O, as well as a cellular map f : N → O,
we can define

t<k(f) = fk−1 : N<k → O<k.

If g ∈ HomeoCW(N), then t<k(g) is in HomeoCW(N<k). To see this, proceed as
follows:

Remark 3.1.2. (1) Truncation of k-admissible spaces preserves some home-
omorphisms. Given f ∈ HomeoCW(N), i.e. a cellular homeomorphism

f : N → N

65
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with cellular inverse, we note that

t<k(f) : t<k(N)→ t<k(N)

is injective and continuous. It must also be surjective, as cellularity of f−1

implies f−1(t<k(N)) ⊂ t<k(N). Furthermore, (t<k(f))−1 = f−1|t<k(N) is
continuous. Thus, t<k(f) is again a (cellular) homeomorphism N<k →
N<k with cellular inverse.

(2) Assuming that N is a finite CW-complex, HomeoCW(N), endowed with
the compact-open topology, is a topological group, see [Ban10, p. 86].
The same holds for any skeleton Nk, and the morphism,

t<k : HomeoCW(N)→ HomeoCW(N<k)

is a homomorphism of topological groups. In particular, it is a continuous
map.

Definition 3.1.3. Let (p, q) be a pair of complementary perversities, and let
Nn be a CW-complex. If N is both (n− p(n+ 1))- and (1 + p(n+ 1))-admissible,
then we refer to N as (p, q)-admissible.

Thus if N is (p, q)-admissible these are the two degrees in which we can truncate
the homology of N .

Definition 3.1.4. A (p, q)-admissible bundle is a fiber bundle ξ = (N,Y, p,A)
such that

(1) N is oriented, (p, q)-admissible and its CW-structure is finite,
(2) A is a closed topological manifold, and
(3) the structure group of ξ takes values in HomeoCW(N).

3.2. Cohomology with Compact Support and Cap Products

We need the Künneth theorem for cohomology with compact support.

Theorem 3.2.1. Let Mm and Nn be oriented manifolds. Then

Hi
c(M ×N ;Q) ∼=

⊕
i=p+q

Hp
c (M ;Q)⊗Hq

c (N ;Q).

Proof. The proof follows from [BT82, Exercise I.5.12]. �

Proposition 3.2.2. Let (X,Y ) be a pair of compact spaces with X being a
Hausdorff space, and let f : Y ↪→ X be an inclusion. Then f is proper.

Proof. Let K ⊂ X be a compact subset. A compact subset of a Hausdorff
space is closed. Then f−1(K) is closed in Y because f is continuous. The preimage
f−1(K) of K under f is thus a closed set in a compact space, and hence compact
itself. Thus f is proper. �

3.3. Cap Products

We need some results on homological truncations. Most of these results are
versions of results in [Ban10, Section 2.9], adapted to the setting of cohomology
with compact support and (p, q)-admissible spaces.

Proposition 3.3.1 (Lemma 2.42 on p. 177 in [Ban10]). Let N be (p, q)-
admissible and set k = n− p(n+ 1). Then the map

π∗ : Hr(N)→ Hr(N,N<k)

induced on homology by the inclusion is an isomorphism when r ≥ k, while

Hr(N,N<k) = 0

when r < k.
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We need the following result, which we obtain by replacing every occurrence of
H∗(N<k) with H∗c (N<k) (since these groups are equal for the space is compact) in
[Ban10, Proposition 2.43]. From now on, for a given k-admissible space N , we will
let z denote the inclusion N<k ↪→ N .

Proposition 3.3.2 (Proposition 2.43 on p. 178 in [Ban10]). Let Nn be an
oriented, closed, connected manifold and a (p, q)-admissible space. Let k = n −
p(n+ 1).

(1) There exists a cap product

Hn−r
c (N<k)⊗Hn(N)

∩ // Hr(N,N<n−k+1)

such that

Hn−r
c (N<k)⊗Hn(N)

∩ // Hr(N,N<n−k+1)

Hn−r
c (N)⊗Hn(N)

z∗⊗id

OO

∩ // Hr(N)

π∗

OO

commutes.
(2) Capping with the fundamental class [N ] ∈ Hn(N) is an isomorphism

− ∩ [N ] : Hn−r
c (N<k)

∼=→ Hr(N,N<n−k+1).

The cap product of Proposition 3.3.2 is defined as

∩ : Hn−r
c (N<k)⊗Hn(N)→ Hr(N,N<n−k+1),

ξ ∩ x 7→

{
π∗((z

∗)−1(ξ) ∩ x), n− r < k,

0, n− r ≥ k.
(53)

Proposition 3.3.3 (Proposition 2.44 on p. 179 in [Ban10]). Let Nn be an
oriented, closed, connected manifold and a (p, q)-admissible space. Let Us be an
oriented manifold. Let k = n− p(n+ 1).

(1) There exists a cap product

Hs+n−r
c (U ×N<k)⊗Hs+n(U ×N)

∩ // Hr(U × (N,N<n−k+1))

such that

Hs+n−r
c (U ×N<k)⊗Hs+n(U ×N)

∩ // Hr(U × (N,N<n−k+1))

Hs+n−r
c (U ×N)⊗Hs+n(U ×N)

(idU×z)∗⊗id

OO

∩ // Hr(U ×N)

incl∗

OO

(54)

commutes.
(2) Capping with the fundamental class [U × N ] ∈ Hs+n(U × N) is an iso-

morphism

− ∩ [U ×N ] : Hs+n−r
c (U ×N<k)

∼=→ Hr(U × (N,N<n−k+1))

The proof is the proof of Proposition 2.44 in [Ban10], with cohomology with
compact support substituted for singular cohomology.

3.4. Setting

We are now able to state the intention of this chapter in greater detail. Firstly,
we restrict the class of pseudomanifolds under consideration in several ways. Assume
that X is an n-dimensional, compact, stratified topological pseudomanifold with two
strata

X = Xn ⊃ Xn−c.
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Let
η = (

◦
cone (L), UΣ, q,Σ)

be a fiber bundle with total space an open neighborhood UΣ of the singular set Σ
of X. Remove the total space of η from X to obtain

(55) M = X − UΣ.

As before, M is a compact manifold-with-boundary. Assume that the link bundle

(56) ξ = (L, ∂M, p,Σ)

of X is (p, q)-admissible, and furthermore that there are open subsets U, V ⊂ Σ
such that ξ restricts to a trivial bundle over each of U and V .

To sum up, we demand that Xn be a stratified pseudomanifold which

(1) is compact and composed of two strata, has a
(2) (p, q)-admissible link bundle, which
(3) trivializes over U , trivializes over V and U ∪ V = Σ.

It follows that the link Lc−1 is (p, q)-admissible. By definition, it may be truncated
in the degrees

c− 1− p(c− 1 + 1) = c− 1− p(c),
1 + p(c− 1 + 1) = 1 + p(c).

Set k = 1 + p(c). Thus, k and c− k = c− 1− p(c) are the two degrees in which the
link admits spatial homology truncation.

Definition 3.4.1. Given ξ as in equation (56), the fiberwise homology trunca-
tion of ξ in degree s for s = k or s = c− k is the bundle

ft<s (ξ) = (L<s, ft<s (∂M), ft<s (p),Σ),

with entries defined as follows:

• L<s is the spatial homology truncation in degree s of L.
• Let {gαβ}α,β∈∆ be a transition system (in the sense of [Hus94, Definition

5.2.4]) for ξ. Then {t<s ◦ gαβ}α,β∈∆ is a transition system as well. We use
this as input for [Hus94, Theorem 3.2] and obtain a bundle ft<s (ξ) with
total space

ft<s (∂M) =
⊔

α,β∈∆

Uα × L<s/t<s ◦ gαβ .

• The map ft<s (p) is the restriction p|ft<s (∂M).

Proposition 3.4.2. For both, s = k and s = c−k, the truncated bundle ft<s (ξ)
is a fiber bundle.

Proof. It is a fiber bundle due to [Hus94, Theorem 3.2]. �

For s = k, we obtain the following commutative diagram:

L �
�

// ∂M
p

// Σ

L<k
?�

µ|=z=incl

OO

� � // ft<k (∂M)
ft<k (p)

//
?�

µ=incl

OO

Σ

So we have a composition of trivial inclusions

ft<k (∂M)
µ
↪→ ∂M

j
↪→M

which we denote
gp = j ◦ µ : ft<k (∂M) ↪→M.

The same considerations apply to ft<c−k (ξ). Analogously to [Ban10, Section 2.9],
we can now introduce the homotopy cofiber of g as intersection space.
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Definition 3.4.3 (Definition 2.41 on p. 177 in [Ban10]). Let X, (p, q), M and
L be defined as described above. Then the perversity p intersection space IpX of
X is defined to be

IpX = cone (gp) = M ∪gp cone (ft<k (∂M)).

Analogously, we set IqX = cone (gq) = M ∪gq cone (ft<c−k (∂M)).

3.5. Metric Spaces

Definition 3.5.1 (p. 261 in [Mun00]). A space W is locally metrizable if every
point x of W has a neighborhood U that is metrizable in the subspace topology.

Theorem 3.5.2 (Smirnov, e.g. Theorem 42.1 on p. 261 in [Mun00]). A space
W is metrizable if and only if it is a paracompact Hausdorff space that is locally
metrizable.

The topological manifold Σ is locally metrizable. It is also compact and hence
paracompact. We have shown that it is Hausdorff. Hence it is metric by Smirnov.

Proposition 3.5.3. The total space ft<k (∂M) is locally contractible.

Proof. In [Hur55, p. 957], there is the definition of a regular Hurewicz fi-
bration. While the details need not concern us here, the important fact is this:
By [Hur55, Theorem 3] any fibration with a metric base space is regular. Hence
ft<k (ξ) is regular. By [AF62, Theorem 4.13], a regular fibration such that each
fiber as well as the base is an absolute neighborhood retract (ANR) has a locally
contractible total space. Hence the result follows if we can show that Σ and the
fibers are ANRs.

By [Hav73, Theorem on p. 281], the metric, locally contractible n-manifold Σ
is an ANR. At each point b ∈ Σ, the fiber ft<k (p)−1(b) = L<k is a CW-complex
and hence locally contractible. The same argument from [Hav73] implies that it is
an ANR. �

3.6. Sheaf Theory

This section will collect some results and definitions from sheaf theory. Mor-
phisms of sheaves over the same base space induce morphisms on sheaf cohomology.
If the sheaves do not share the same base space, it is still possible to induce maps
on sheaf cohomology, using the following definition:

Definition 3.6.1 (Definition I.4.2 on p. 14 in [Bre97]). Given sheaves A
and B on X and Y respectively, as well as a continuous map f : X → Y , an
f -cohomomorphism g : B A is a collection of homomorphisms

g = {gx : Bf(x) → Ax}x∈X
such that for any section s ∈ B(U) the function x 7→ gx(s(f(x))) is a section of A
over f−1(U) (i.e. this function is continuous).

Note that this definition does not preclude an f -cohomomorphism from assign-
ing multiple values to the same argument. If f is injective, this does not happen.
Furthermore the f -cohomomorphism is only defined on all of B if f is surjective.
Accordingly, we see that an f -cohomomorphism B A is not in general a function
B→ A.

Remark 3.6.2. (1) Given a map f : X → Y and a sheaf B on Y , there is
a canonical f -cohomomorphism

f∗ = {f∗x} : B f∗B,

given as
f∗x : Bf(x) → (f∗B)x, b 7→ [x, b]f∗B,
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see [Bre97, p. 12-14]. Analogously, given a sheaf A on X, there is a
canonical f -cohomomorphism f∗ : f∗A A.

(2) Given a pair (X,Y ) of topological spaces such that Y is closed in X as
well as an abelian group G, the canonical inclusion

i = incl : Y ↪→ X

satisfies i∗(GX) = GY by [Har08, Section 4.4.3].
(3) Given (X,Y ) as in (2) and using (1), we see in [Bre97] that i induces a

canonical i-cohomomorphism

i∗ = {i∗y} : GX  GY = i∗(GX),

with
i∗y : (GX)i(y) → (GY )y

the morphism induced from idG. This may still fail to be a function, for i
may not be surjective.

(4) An f -cohomomorphism g induces a morphism on sheaf cohomology, which
is denoted g∗. Following [Bre97], we commit an abuse of notation: An
inclusion i as in (2) induces an i-cohomomorphism i∗, which induces a
morphism on sheaf cohomology – which is again denoted i∗, and should
not be confused with the morphism i∗ induced by i on singular cohomol-
ogy. The context will serve to clarify what the symbol i∗ denotes in each
instance.

As we often quote results from [Bre97], we need to introduce supports.

Definition 3.6.3 (Definition I.6.1 on p. 21 in [Bre97]). A family of supports
on a space X is a family Φ of closed subsets of X such that:

(1) a closed subset of a member of Φ is a member of Φ;
(2) Φ is closed under finite unions.

A family of supports Φ is said to be paracompactifying if

(3) each element of Φ is paracompact;
(4) each element of Φ has a (closed) neighborhood which is in Φ.

A trivial example is the family of all closed subsets of a space.

Remark 3.6.4. (1) In the notation of [Bre97], the family of supports
Φ used in the definition of a cohomology theory H∗ is indicated as a
subscript, H∗Φ. For example, given a sheaf A over a space X and an
injective resolution A→ I•, the i-th sheaf cohomology group is defined in
[Bre97, Definition II.2.2] as

Hi
Φ(X; A) = Hi(ΓΦ(I•)),

with
ΓΦ(Ij) = {s ∈ Ij(X) | supp s ∈ Φ}.

We mostly work with the family of all closed subsets of X, which is denoted
cld in [Bre97], and usually dropped from notation. Thus, if we quote
results from [Bre97], and write H∗, the original statement in [Bre97]
will likely be stated in terms of H∗Φ, but will be valid for Φ = cld.

(2) For a locally compact space, the family of all compact subsets c is para-
compactifying, see [Bre97].

(3) For a compact Hausdorff space, c = cld. Again, see [Bre97].

Some of the results quoted from [Bre97] require the family of supports to be
paracompactifying. Hence we need to check this.

Proposition 3.6.5. For ∂M, ft<k (∂M) and Σ, the family c = cld is paracom-
pactifying.
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Proof. The compact manifold ∂M is Hausdorff, as is its compact subspace
ft<k (∂M). The singular set Σ is a closed manifold, and hence also compact and
Hausdorff. Any compact Hausdorff space is locally compact. Thus each of the three
mentioned spaces is compact, locally compact and Hausdorff. Hence in each case,
c = cld is paracompactifying. �

Definition 3.6.6 (p. 35 in [Bre97]). A space X is said to be HLCnL (ho-
mologically locally connected) if for each x ∈ X and neighborhood U of x, there
is a neighborhood V ⊂ U of x, depending on p, such that the homomorphism

∆H̃p(V ;L)→∆ H̃p(U ;L) is trivial for p ≤ n.

When the coefficients L are clear from context, they are dropped from notation.
If X is HLCn for all n, we say that is X is HLC .

Remark 3.6.7 (p. 35 in [Bre97]). Any locally contractible space is HLC. As
is any manifold or CW-complex.

Theorem 3.6.8 (Theorem I.1.1 on p. 184 in [Bre97]). Let A be a locally con-
stant sheaf. Then there exist natural transformations of functors (of X as well as
of A)

H∗Φ(X; A)
θ−→ SH

∗
Φ(X; A)

ψ∗←−− ∆H
∗
Φ(X; A).

When Φ is paracompactifying, the groups ∆H
∗
Φ(X; A) are the classical singular

cohomology groups. If in addition to Φ being paracompactifying, X is HLC, then
both θ and ψ∗ are isomorphisms.

3.7. Duality

It is our intention to construct for a given r ∈ N a cap product

(57) Hn−1−r(ft<k (∂M))⊗Hn−1(∂M)
∩ // Hr(∂M, ft<c−k (∂M)).

In order to do so, we consider the situation described in the following diagram:

Q
Y

πY

��

i∗Q
X

yy

Q
X

πX

��

i∗oo

Y �
� i // X

ft<k (∂M) �
� i //

q=ft<k (p)

��

∂M

p

��

Σ Σ

(58)

The topmost equality is due to [Har08, Section 4.4.3]. In this diagram, com-
mutativity holds where it is defined. The topmost part involves the canonical i-
cohomomorphism Q

X
 i∗Q

X
, and accordingly commutativity of this part is not

defined.
We consider the canonical injective resolutions:

Q
X
→ I•,

Q
Y

= i∗Q
X
→ J•,

i∗i
∗Q

X
→ K•.

(59)

Since we can regard any sheaf as a complex concentrated in degree zero, the resolu-
tions I•,J• and K• double as injective resolutions of the complexes Q•

X
, i∗Q•

X
and

i∗i
∗Q•

X
, respectively. There is an induced i-cohomomorphism of resolutions

i∗ : I•  J•.
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I.e. this morphism commutes with the differentials of the resolutions. Hence it

induces a morphism Hi(X;Q•
X

)
i∗−→ Hi(Y ; i∗Q•

X
). This morphism factors. To see

this, let βX : Q
X
→ i∗i

∗Q
X

be the canonical adjunction morphism. Following

[Bre97, p. 63] we denote as i† the morphism induced on sheaf cohomology by the
canonical i-cohomomorphism i∗ : i∗i

∗Q
X
 i∗Q

X
. Then the factorization of i∗ is

as follows, see [Bre97, p. 63]:

Hi(X;Q•
X

)

i∗

��

β∗X // Hi(X; i∗i
∗Q•

X
)

i†ww

Hi(Y ; i∗Q•
X

)

(60)

One may adopt a more general definition as follows:

Definition 3.7.1 (p. 63 in [Bre97]). Let f : X → Y be a continuous map, let A
and B be sheaves onX and Y , respectively. There is a canonical f -cohomomorphism
f∗ : B  A, which induces a morphism on cohomology. The latter morphism is
denoted f†.

Theorem 3.7.2 (Corollary 4.4.19 on p. 73 in [Har08]). Assume that X is
paracompact, that Y is locally compact and Hausdorff, and that f : X → Y is a
proper map. Furthermore, let F be a sheaf on X. Then f† is an isomorphism if

Hq(f−1(y); j∗y(F)) = 0 ∀q ≥ 1∀y ∈ Y.

Here, jy : f−1(y) ↪→ X is the inclusion.

Proposition 3.7.3. Given the factorization (60), i† is an isomorphism.

Proof. For i : Y ↪→ X, we let

jx : i−1(x) ↪→ Y

be the inclusion. The inclusion i is a proper map. Thus, Theorem 3.7.2 implies the
result if

(61) Hq(i−1(x); j∗x(i∗Q
X

)) = 0 ∀q ≥ 1∀x ∈ X.
In the present case, the preimage of x ∈ X under i is either the empty set or it
contains just one element, x ∈ Y . In the first case, equation (61) is satisfied. In the
latter case, jx is the inclusion

{x} ↪→ Y.

Therefore, there are isomorphisms

Hq(i−1(x); j∗x(i∗Q
X

)) ∼= Hq({x};Q).

and the latter term vanishes for q ≥ 1. Hence i† is an isomorphism. �

We define
S• = Rp∗Q•X ,

and
T• = Rq∗Q•Y .

Then

T• = Rq∗(i
∗Q•

X
) (diagram (58))

= R(p ◦ i)∗(i∗Q•X) (diagram (58))

= Rp∗ ◦Ri∗(i∗Q•X) ([Dim08, Proposition 2.3.3])

= Rp∗(i∗i
∗Q•

X
) (Y is closed in X).
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We will introduce isomorphisms

Hi(Σ; S•)
aX−−→ Hi(X;Q),

Hi(Σ; T•)
bY←−− Hi(Y ;Q),

on p. 74. Given these isomorphisms, we would like to construct a morphism s : T• →
S• such that for the diagram

Hi(Σ; S•) ∼=
aX // Hi(X;Q)

i∗

��

Hi(Σ; T•)

s∗

OO

Hi(Y ;Q)
bY
∼=
oo

it holds that

(62) i∗ ◦ aX ◦ s∗ ◦ bY = id.

The construction will proceed as indicated in the diagram on p. 74.

Remark 3.7.4. Recall that c denotes the collection of all compact subsets of a
space. Often, the space in question may be clear from context. When this is not
so, we indicate the name of the space (say, X) by writing the family of supports of
compact subsets ofX as cX . The only deviations from this rule are the abbreviations

cU = cU×L,

c<kU = cU×L<k .
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Remark 3.7.5. Let f : X → Y be continuous, let F be a sheaf on X, let
F → I• be an injective resolution and let q ∈ N. Let furthermore f be proper, let
X be paracompact and let Y be locally compact and Hausdorff. Following [Har08,
Equation (4.29)], the higher direct image sheaves are

Rqf∗(F) =
ker(f∗(I

q)→ f∗(I
q+1))

im (f∗(Iq−1)→ f∗(Iq))
.

It holds that
Rqf∗(F) = Hq(f∗I

•),

if the RHS is defined as in [Ban10, Definition 1.3.1]. Let jy : f−1(y) ↪→ X, and let
γ : F→ G be a morphism of sheaves on X.

(f∗F)y

(f∗(γ))y

��

lim−→
U : f−1(y)⊂U

F(U) j∗yF(f−1(y)) Γ(f−1(y); j∗yF)

s7→γ◦s

��

(f∗G)y lim−→
U : f−1(y)⊂U

G(U) j∗yG(f−1(y)) Γ(f−1(y); j∗yG)

(64)

Going from left to right, the first and second equalities are explained in the proof
of [Har08, Theorem 4.4.17]. The third equality holds by definition. The diagram
commutes. This induces a map of chain complexes (cf. proof of [Har08, Theorem
4.4.17]), which in turn induces the following commutative square:

(Rqf∗(F))y

(Rqf∗(γ))y

��

Hq(f−1(y); j∗yF)

(j∗y(γ))∗

��

(Rqf∗(G))y Hq(f−1(y); j∗yG)

Fix b ∈ Σ, let
u : p−1(b)︸ ︷︷ ︸

=L

↪→ X,

recall the inclusions
i : Y ↪→ X,

z : L<k ↪→ L,

and denote the canonical adjunction morphism by

βL : Q
L
→ z∗z

∗Q
L
.

Lemma 3.7.6. There are isomorphisms of sheaves λ and κ ◦ η such that the
diagram

u∗(Q
X

) ∼=
λ //

u∗(βX)

��

Q
L

βL

��

u∗(i∗i
∗Q

X
) ∼=

κ◦η
// z∗z

∗Q
L

commutes.

Proof. We let
λ : u∗(Q

X
)
∼=−→ Q

L

be the isomorphism of sheaves described in [Har08, Section 4.4.3]. For a closed
inclusion

inclZ : Z ↪→ X

there is a functor
(−)Z : A 7→ AZ = (inclZ)∗(inclZ)∗(A),



76 3. NON-SIMPLE SYSTEMS OF LOCAL COEFFICIENTS

see [KS90, p. 93]. By [KS90, Remark 2.3.11], there is a natural transformation

η : u∗((−)Y ) ' (u∗(−))u−1(Y ).

Note that u−1(Y ) = L<k. We obtain a diagram

u∗(Q
X

) ∼=
λ //

u∗(βX)

��

Q
L

βL

��

u∗((Q
X

)Y )

∼=η

��

(u∗(Q
X

))u−1(Y ) ∼=

κ=(λ)u−1(Y )
// (Q

L
)u−1(Y )

for which we want to show commutativity. By [Ive86, Lemma 2.2], it suffices to
check this on stalks. Letting x ∈ L<k ⊂ L, the diagram becomes

Q u∗(Q
X

)x
λx=id

//

(u∗(βX))x=id

��

(Q
L

)x

(βL)x=id

��

Q

Q u∗((Q
X

)Y )x

ηx=id

��

Q ((u∗(Q
X

))u−1(Y ))x
κx=id

// ((Q
L

)u−1(Y ))x Q

and commutativity holds. For x ∈ L− L<k, the same diagram is

Q u∗(Q
X

)x
λx=id

//

(u∗(βX))x=0

��

(Q
L

)x

(βL)x=0

��

Q

0 u∗((Q
X

)Y )x

ηx=0

��

0 ((u∗(Q
X

))u−1(Y ))x
κx=0

// ((Q
L

)u−1(Y ))x 0

and commutativity again holds. �

Lemma 3.7.7. The morphism

τ<k(Rp∗(βX)) : τ<k(S•)→ τ<k(T•)

is a quasi-isomorphism.
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Proof. The diagram

Hm(S•)b
Hm(Rp∗(βX))b

oo

Hm(Rp∗(QX))b

Rmp∗(QX)b
(Rmp∗(βX))b

oo

Hm(p−1(b);u∗(Q
X

))
(u∗(βX))∗
oo

Hm(L;u∗(Q
X

))

Hm(T•)b

Hm(Rp∗(i∗i
∗Q

X
))b

Rmp∗(i∗i
∗Q

X
)b

Hm(p−1(b);u∗(i∗i
∗Q

X
))

Hm(L;u∗(i∗i
∗Q

X
))

commutes: the upper rectangle by definition, and the lower square by Remark 3.7.5
(note that p is proper). Lemma 3.7.6 shows that the diagram

u∗(Q
X

) ∼=
λ //

u∗(βX)

��

Q
L

βL

��

u∗(i∗i
∗Q

X
) ∼=

κ◦η
// z∗z

∗Q
L

commutes. As Hm(L;−) is a functor, the diagram

Hm(L;u∗(Q
X

))
∼= //

(u∗(βX))∗

��

Hm(L;Q
L

)

(βL)∗

��

Hm(L;u∗(i∗i
∗Q

X
))
∼= // Hm(L; z∗z

∗Q
L

)

commutes. From [Bre97, p. 93], we know that (βL)∗ factorizes as follows:

Hm(L;Q
L

)

z∗

))

(βL)∗

��

Hm(z−1(L); z∗Q
L

) Hm(L<k;Q
L<k

)

Hm(L; z∗z
∗Q

L
)

z†

55

The inclusion z is proper, hence z† is an isomorphism. Furthermore,

z∗ : Hm(L;Q
L

)→ Hm(L<k;Q
L<k

)

is an isomorphism for m < k, because

Hm(L;Q
L

)

z∗

��

∼= // Hm(L;Q)

z∗

��

Hm(L<k;Q
L<k

)
∼= // Hm(L<k;Q)
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commutes while
z∗ : Hm(L;Q)

∼=−→ Hm(L<k;Q), ∀m < k.

Therefore (βL)∗ is an isomorphism for m < k. Using commutativity of the
various diagrams, we can see that this implies that Hm(Rp∗(βX)) is an isomorphism
for m < k. Thus,

τ<k(Rp∗(βX)) : τ<k(S•)→ τ<k(T•)

is a quasi-isomorphism. �

Proposition 3.7.8. The canonical inclusion

ζ : τ<k(T•)→ T•

is a quasi-isomorphism.

Proof. This is easily seen from

Hm(T•)b ∼= Hm(L<k;Q).

�

Thus we obtain a commutative diagram

S•
Rp∗(βX)

// T•

τ<k(S•)
τ<k(Rp∗(βX))

//

σ

OO

τ<k(T•)

ζ

OO

which induces a commutative diagram

Hm(Σ; S•)
(Rp∗(βX))∗

// Hm(Σ; T•)

Hm(Σ; τ<k(S•))
(τ<k(Rp∗(βX)))∗

∼=
//

σ∗

OO

Hm(Σ; τ<k(T•))

ζ∗∼=

OO

in which the isomorphisms are due to [Ban07, p. 23]. Set χ = (τ<k(Rp∗(βX)))∗,
s∗ = σ∗ ◦ χ−1 ◦ (ζ∗)−1 and

(65) t∗ = aX ◦ s∗ ◦ bY .
Then equation (62) holds due to Lemma 3.7.7 and Proposition 3.7.8. In other words,
the equation i∗ ◦ t∗ = id holds. Thus t∗ is a right inverse for i∗.

Remark 3.7.9. To understand the morphism σ, consider the following diagram:

S• · · · // Sk−3 // Sk−2 // Sk−1 // Sk // · · ·

τ<k(S•)

σ

OO

· · · // Sk−3 //

∼=

OO

Sk−2 //

∼=

OO

kerdk−1 //
?�

OO

0 //

0

OO

· · ·
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Recalling the inclusions

U × L
_�

j

��

U × L<k? _
iUoo

_�

j<k

��

X Y? _
ioo

(66)

we would like to define right inverses t∗U and t∗V of i∗U and i∗V respectively. Fitting
these morphisms into the square

Hn−r
c (U × L)⊕Hn−r

c (V × L)
i∗U⊕i

∗
V //

β∗

��

Hn−r
c (U × L<k)⊕Hn−r

c (V × L<k)

β∗<k

��

t∗U⊕t
∗
V

vv

Hn−r
c (∂M)

i∗ // Hn−r
c (ft<k (∂M))

t∗

hh

in which the vertical morphisms stem from Mayer-Vietoris sequences, we need the
constructed right inverses to satisfy

(67) β∗ ◦ (t∗U ⊕ t∗V ) = t∗ ◦ β∗<k.
It suffices to construct t∗U as the construction of t∗V is similar. Note that

β∗ : Hn−r
c (U × L)⊕Hn−r

c (V × L)→ Hn−r
c (∂M)

is by definition the direct sum of morphisms

ε(j) : Hi
c(U × L;Q)→ Hi

c(X;Q),

−ε(incl) : Hi
c(V × L;Q)→ Hi

c(X;Q)

induced by the inclusions j of diagram (66) and

incl : V × L ↪→ X.

Hence we focus on the square

Hn−r
c (U × L)

i∗U //

ε(j)

��

Hn−r
c (U × L<k)

ε(j<k)

��

t∗U

zz

Hn−r
c (∂M)

i∗ // Hn−r
c (ft<k (∂M))

t∗

dd

(68)

and recall diagram (63), which was used to analyze the morphism i∗ in diagram
(68) and to define t∗. The same procedure will now be carried out for the other
morphisms in diagram (68), using diagrams akin to (63). This will ultimately enable
us to define t∗U in terms of sheaf cohomology and to show equation (67). This sheaf-
theoretic approach has an advantage over a construction of t∗U via the Künneth
theorem: equation (67) is a byproduct of the sheaf-theoretic Ansatz.

The first step will be the diagram on p. 82, addressing the morphism iU . Some
preliminary considerations are necessary. The map iU is proper, because it is the
inclusion of a closed subspace. (Cf. e.g. [May99, p. 161].)
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Remark 3.7.10. (1) We have for cX | U = {K | K ⊂ U ∧K ∈ cX} that

K ∈ cX | U ⇒
K compact

K ∈ cU .

On the other hand, K ∈ cU is certainly compact and a subset of U . Thus,
cX | U = cU .

(2) The spaces U,L and L<k are locally compact. Hence cU = cX | U ×L and
c<kU are paracompactifying by [Bre97, p. 22].

(3) Likewise, U,L and L<k are locally contractible (the first is a manifold
while the latter two are CW-complexes), and hence U × L and U × L<k
are locally contractible.

Set
l = iU : U × L<k ↪→ U × L,

V• = Rp∗(j!Q•U×L),

W• = Rp∗(j!l∗l
∗Q•

U×L).

Remark 3.7.11. The closure of the open subspace U × L is U × L. Thus

U × L = U × L ∩ U × L
is the intersection of an open subspace with a closed subspace. Hence, by [Bou66,
Proposition I.3.3.5], U × L is locally closed in X. The space X is compact and
Hausdorff, thus by [Lee00, Lemma 4.29] the open subspace U×L is locally compact
Hausdorff. By Remark 3.6.4(2), the family cU is paracompactifying, as is cX . Hence
[Bre97, Corollary II.10.2] applies to show that there are natural isomorphisms

ζ : Hi
cX |U×L(U × L;Q

X
| U × L)

∼=−→ Hi
cX (X; (Q

X
)U×L)

ζ<k : Hi
cY |U×L<k(U × L<k;Q

Y
| U × L<k)

∼=−→ Hi
cY (Y ; (Q

Y
)U×L<k)

ζ̄ : Hi
cU (U × L; l∗l

∗Q
U×L)

∼=−→ Hi
cX (X; j!l∗l

∗Q
U×L).

of sheaves on U × L.

Remark 3.7.12. As U × L is open in X, (Q
X

)U×L is a subsheaf of Q
X

. Let

η : (Q
X

)U×L ↪→ Q
X

be the corresponding inclusion. Likewise, there is the inclusion

η<k : (Q
Y

)U×L<k ↪→ Q
Y
.

Remark 3.7.13. From Theorem 3.6.8 there are natural isomorphisms

jX : Hi
cX (X;Q)

∼=−→ Hi
cX (X;Q

X
),

jU : Hi
cU (U × L;Q)

∼=−→ Hi
cU (U × L;Q

U×L) = Hi
cX |U×L(U × L;Q

X
| U × L).

The amalgam of the previous three remarks can be used to express commuta-
tivity of the diagram,

Hi
cX |U×L(U × L;Q

X
| U × L)

ζ ∼=
��

Hi
cU×L(U × L;Q)

ε(j)

��

jU

∼=
oo

Hi
cX (X; (Q

X
)U×L)

η∗

��

Hi
cX (X;Q

X
) Hi

cX (X;Q)
jX

∼=
oo

(69)
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wherein ε(j) is the morphism induced by j on cohomology with compact supports.
The coefficient sheaves satisfy

(Q
X

)U×L = (Q
X
| U × L)X (by definition in [Bre97, p. 11])

= (Q
U×L)X (due to Q

X
| U × L = Q

U×L)

= j!QU×L,

and
(Q

Y
)U×L<k = (j<k)!QU×L<k .

Hence the diagram

Hi
cX (X; j!QU×L)

η∗

��

Hi
cX |U×L(U × L;Q

U×L)
ζ

∼=
oo

η∗◦ζ
��

Hi
cX (X;Q

X
) Hi

cX (X;Q
X

)

(70)

is commutative. We are now ready to introduce the next diagram overleaf.
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We need more diagrams. But first, some preparation is required. By [Dim08,
Corollary 2.3.4] the diagram

Hi(Σ;Rp∗(j!Q•U×L)) ∼=
kU //

(Rp∗(η))∗

��

Hi(X; j!Q•U×L)

η

��

Hi
cX (X; j!QU×L)

Hi(Σ;Rp∗(Q•X)) ∼=
kX // Hi(X;Q•

X
) Hi

cX (X;Q
X

)

(71)

commutes. Note that herein we have discontinued writing the supports cX since
X is compact. Now we concatenate diagrams (69), (70) and (71) to obtain the top
diagram on p. 85. It commutes.

Proceeding analogously for the morphism ε(j<k), we obtain the diagram

Hi
cY (Y ;Q

Y
) Hi

cY (Y ;Q)
jY

∼=
oo

Hi
cY (Y ; (Q

Y
)U×L<k)

η∗<k

OO

Hi
cY |U×L<k(U × L<k;Q

Y
| U × L<k)

ζ<k

OO

Hi
c<kU

(U × L<k;Q)

ε(j<k)

OO

j<kU
∼=
oo

and the diagram

Hi
cY (Y ; i∗Q

X
) Hi

cY (Y ;Q
Y

)

Hi
cU (U × L<k; l∗Q

U×L)

η∗<k◦ζ<k

OO

Hi
cY |U×L<k(U × L<k;Q

Y
| U × L<k)

η∗<k◦ζ<k

OO

both of which commute. Recalling the inclusions

U × L
_�

j

��

U × L<k? _
l=iUoo

_�

j<k

��

X Y? _
ioo

we see that the diagram

Hi
cX (X; i∗(j<k)!l

∗Q
U×L)

i†

∼=
// Hi

cY (Y ; (j<k)!l
∗Q

U×L)

Hi
cX (X; (i ◦ j<k)!l

∗Q
U×L)

Hi
cX (X; (j ◦ l)!l

∗Q
U×L)

Hi
cX (X; j!l∗l

∗Q
U×L)

Hi
cU (U × L; l∗l

∗Q
U×L)

l†

∼=
//

ζ̄ ∼=

OO

Hi
c<kU

(U × L<k; l∗Q
U×L)

ζ<k∼=

OO

(72)
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commutes. Additionally, the diagram

Hi
cX (X; i∗i

∗Q
X

)
i†

∼=
// Hi

cY (Y ; i∗Q
X

)

Hi
cX (X; j!l∗l

∗Q
U×L)

ξ

OO

i†

∼=
// Hi

cY (Y ; (l∗Q
U×L)Y )

η<k

OO

(73)

commutes. Recall
η<k : (Q

Y
)U×L<k ↪→ Q

Y
,

and the inclusion of sheaves

j!l∗l
∗Q

U×L = (l∗l
∗Q

U×L)X

= (l∗QU×L<k)X

= ((Q
U×L<k

)U×L)X

= (Q
U×L<k

)X
ξ
↪−→ (Q

Y
)X

= i∗QY
= i∗i

∗Q
X
,

which is used in the last diagram.



H
i (

Σ
;V
• )

H
i (

Σ
;R
p
∗(
j !
Q
• U
×
L

))
∼ =k
U
//

(R
p
∗
(η

))
∗

��

H
i (
X

;j
!Q
• U
×
L

)

η
∗

��

H
i c
X

(X
;j

!Q
U
×
L

)

η
∗

��

H
i c
X
|U
×
L

(U
×
L

;Q
U
×
L

)
ζ ∼ =
oo

η
∗
◦ζ

��

H
i c
U

(U
×
L

;Q
)

ε(
j
)

��

j U ∼ =
oo

H
i (

Σ
;S
• )

H
i (

Σ
;R
p
∗(
Q
• X

))
∼ =k
X

// H
i (
X

;Q
• X

)
H
i c
X

(X
;Q

X
)

H
i c
X

(X
;Q

X
)

H
i c
X

(X
;Q

)
j X ∼ =

oo

H
i (

Σ
;T
• )

H
i (

Σ
;R
p
∗(
i ∗
i∗
Q
• X

))
∼ =k
Y

// H
i (
X

;i
∗i
∗ Q
• X

)
i† ∼ =

// H
i (
Y

;i
∗ Q
• X

)
H
i c
Y

(Y
;Q

Y
)

H
i c
Y

(Y
;Q

)
j Y ∼ =

oo

H
i (

Σ
;W

• )
H
i (

Σ
;R
p
∗(
j !
l ∗
l∗
Q
• U
×
L

))
∼ =

k
<
k

U
//

(R
p
∗
(ξ

))
∗

OO

H
i (
X

;j
!l
∗l
∗ Q
• U
×
L

)

ξ

OO

H
i c
Y
|U
×
L
<
k
(U
×
L
<
k
;l
∗ Q
• U
×
L

)

η
∗ <
k
◦ζ
<
k

OO

H
i c
Y
|U
×
L
<
k
(U
×
L
<
k
;Q

Y
|U
×
L
<
k
)

η
∗ <
k
◦ζ
<
k

OO

H
i c
<
k

U

(U
×
L
<
k
;Q

)

ε(
j <
k
)

OO

j
<
k

U ∼ =
oo

H
i c
U

(U
×
L

;l
∗l
∗ Q
• U
×
L

)

l†
∼ =OO

∼ =

ζ̄

ff
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Joining the diagram (63) with the diagrams of pages 82 and 85, we obtain the
following commutative diagram:

Hm(Σ; V•)

(Rp∗(η))∗

��

(Rp∗(j!(β
∗
U )))∗

//

aU
∼=

&&

Hm(Σ; W•)

(Rp∗(ξ))
∗

��

Hn−r
c (U × L)

l∗ //

ε(j)

��

Hn−r
c (U × L<k)

ε(j<k)

��

b<kU
∼=

77

Hn−r
c (X)

i∗ // Hn−r
c (Y )

∼=
bY

''

Hm(Σ; S•)
(Rp∗(βX))∗

//

∼=
aX

88

Hm(Σ; T•)

The outer square of the latter diagram is the inner square of the induced diagram

Hm(Σ; τ<k(V•))
(τ<k(Rp∗(j!(β

∗
U ))))∗

∼=
//

(τ<k(Rp∗(η)))∗

��

θ∗

��

Hm(Σ; τ<k(W•))

ρ∗

��

(τ<k(Rp∗(ξ)))
∗

��

Hm(Σ; V•)

(Rp∗(η))∗

��

(Rp∗(j!(β
∗
U )))∗

// Hm(Σ; W•)

(Rp∗(ξ))
∗

��

Hm(Σ; S•)
(Rp∗(βX))∗

// Hm(Σ; T•)

Hm(Σ; τ<k(S•))
(τ<k(Rp∗(βX)))∗

∼=
//

σ∗

OO

Hm(Σ; τ<k(T•))

ζ∗

OO

(74)

in which

ρ : τ<k(W•)→W•

θ : τ<k(V•)→ V•

are the canonical inclusions. Finally, we define

(75) t∗U = aU ◦ θ∗ ◦ ((τ<k(Rp∗(j!(β
∗
U ))))∗)−1 ◦ (ρ∗)−1 ◦ b<kU .

This is a right inverse for much the same reasons that t∗ is. It remains to check
that diagram (68) commutes in the desired fashion, i.e. that the equation

(76) ε(j) ◦ t∗U = t∗ ◦ ε(j<k)
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holds. Commutativity of diagram (74) is all that is required to show this:

ε(j) ◦ t∗U = ε(j) ◦ aU ◦ θ∗ ◦ ((τ<k(Rp∗(j!(β
∗
U ))))∗)−1 ◦ (ρ∗)−1 ◦ b<kU

= aX ◦ (Rp∗(η))∗ ◦ θ∗ ◦ ((τ<k(Rp∗(j!(β
∗
U ))))∗)−1 ◦ (ρ∗)−1 ◦ b<kU

= aX ◦ σ∗ ◦ ((τ<k(Rp∗(η)))∗)−1 ◦ ((τ<k(Rp∗(j!(β
∗
U ))))∗)−1 ◦ (ρ∗)−1 ◦ b<kU

= aX ◦ σ∗ ◦ ((τ<k(Rp∗(βX)))∗)−1 ◦ (τ<k(Rp∗(ξ)))
∗ ◦ (ρ∗)−1 ◦ b<kU

= aX ◦ σ∗ ◦ ((τ<k(Rp∗(βX)))∗)−1 ◦ (ζ∗)−1 ◦ (Rp∗(ξ))
∗ ◦ b<kU

= aX ◦ σ∗ ◦ ((τ<k(Rp∗(βX)))∗)−1 ◦ (ζ∗)−1 ◦ bY ◦ ε(j<k)

= aX ◦ σ∗ ◦ χ−1 ◦ (ζ∗)−1 ◦ bY ◦ ε(j<k)

= aX ◦ s∗ ◦ bY ◦ ε(j<k)

= t∗ ◦ ε(j<k)

Recall that we fixed a complementary pair of perversities (p, q), and that we
introduced the variable k. The desired cap product may now be defined.

Proposition 3.7.14 (Proposition 2.44 on p. 179 in [Ban10]). Let X be an n-
dimensional compact, oriented, stratified pseudomanifold with one singular stratum
Xn−c and (p, q)-admissible link bundle. Assume that Mn is defined as in equation
(55). There exists a cap product

Hn−1−r(ft<k (∂M))⊗Hn−1(∂M)
∩ // Hr(∂M, ft<c−k (∂M))

such that the diagram

Hn−1−r(ft<k (∂M))⊗Hn−1(∂M)
∩ // Hr(∂M, ft<c−k (∂M))

Hn−1−r(∂M)⊗Hn−1(∂M)
∩ //

i∗⊗id

OO

Hr(∂M)

π∗

OO

(77)

commutes.

Proof. From the definition of t∗ in equation (65) it follows that t∗ is a right
inverse for i∗. Accordingly, i∗ is surjective, and t∗ yields a canonical choice of
preimage under i∗. Furthermore, t∗ is injective. Given ξ ∈ Hn−1−r(ft<k (∂M)) and
x ∈ Hr(∂M), we set

ξ ∩ x = π∗(t
∗(ξ) ∩ x).

This yields commutativity of diagram (77). �

Recall our assumption that the link bundle be trivial over U and V , respectively.
On p. 89, we consider a diagram, aspects of which include:

• The horizontal isomorphisms are due to Proposition 3.3.3.
• The columns form Mayer-Vietoris sequences. Hence they are exact. To be

specific:
I Cohomology with compact support of ∂M = (U × L) ∪ (V × L).

II Cohomology with compact support of

ft<k (∂M) = (U × L<k) ∪ (V × L<k).

III Relative homology of

(∂M, ft<c−k (∂M)) =

((U × L) ∪ (V × L), (U × L<c−k) ∪ (V × L<c−k)).

IV Homology of ∂M = (U × L) ∪ (V × L).
• If the squares A,B,C and D commute, then for the cap product of Propo-

sition 3.7.14 it holds that the cap product with the fundamental class [∂M ]
is an isomorphism. We provide an outline of the proofs of commutativity.
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A: One can glean commutativity from any proof of (ordinary) Poincaré
duality.

B: We show this by using the induced nature of the cap product.
C: Commutativity is shown in much the same way as for square B.
D: Commutativity follows from commutativity of square A.



H
n
−
r

c
(U
∩
V
×

L
)

α
∗

��

i∗ U
∩
V

// H
n
−
r

c
(U
∩
V
×

L
<
k
)

α
∗ <
k

��

−
∩

[U
∩
V
×
L

]

∼ =
// H

r
−

1
(U
∩
V
×

(L
,L

<
c
−
k
))

α
r
e
l
∗

��

H
r
−

1
(U
∩
V
×

L
)

α
∗

��

π
U
∩
V
∗

oo

A

H
n
−
r

c
(U
×

L
)
⊕

H
n
−
r

c
(V
×

L
)

i∗ U
⊕
i∗ V
//

β
∗

��

H
n
−
r

c
(U
×

L
<
k
)
⊕

H
n
−
r

c
(V
×

L
<
k
)

β
∗ <
k

��

(−
∩

[U
×
L

])
⊕

(−
∩

[V
×
L

])

∼ =
// H

r
−

1
(U
×

(L
,L

<
c
−
k
))
⊕

H
r
−

1
(V
×

(L
,L

<
c
−
k
))

β
r
e
l
∗

��

H
r
−

1
(U
×

L
)
⊕

H
r
−

1
(V
×

L
)

β
∗

��

π
U
∗
⊕
π
V
∗

oo

B

H
n
−
r

c
(∂

M
)

i∗
//

γ
∗

��

H
n
−
r

c
(f

t <
k

(∂
M

))

γ
∗ <
k

��

−
∩

[∂
M

]
// H

r
−

1
(∂

M
,f

t <
c
−
k

(∂
M

))

γ
r
e
l
∗

��

H
r
−

1
(∂

M
)

γ
∗

��

π
∗

oo

C

H
n
−
r
+

1
c

(U
∩
V
×

L
)

i∗ U
∩
V

//

δ
∗

��

H
n
−
r
+

1
c

(U
∩
V
×

L
<
k
)

δ
∗ <
k

��

−
∩

[U
∩
V
×
L

]

∼ =
// H

r
−

2
(U
∩
V
×

(L
,L

<
c
−
k
))

δ
r
e
l
∗

��

H
r
−

2
(U
∩
V
×

L
)

δ
∗

��

π
U
∩
V
∗

oo

D

H
n
−
r
+

1
c

(U
×

L
)
⊕

H
n
−
r
+

1
c

(V
×

L
)

i∗ U
⊕
i∗ V
// H

n
−
r
+

1
c

(U
×

L
<
k
)
⊕

H
n
−
r
+

1
c

(V
×

L
<
k
)

(−
∩

[U
×
L

])
⊕

(−
∩

[V
×
L

])

∼ =
// H

r
−

2
(U
×

(L
,L

<
c
−
k
))
⊕

H
r
−

2
(V
×

(L
,L

<
c
−
k
))

H
r
−

2
(U
×

L
)
⊕

H
r
−

2
(V
×

L
)

π
U
∗
⊕
π
V
∗

oo

I
II

II
I

IV
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We summarize our knowledge concerning the right inverses in the following
statement.

Lemma 3.7.15. For each m ∈ N, there exist morphisms

t∗U∩V : Hm
c (U ∩ V × L<k)→ Hm

c (U ∩ V × L)

t∗U,V : Hm
c (U × L<k)⊕Hm

c (V × L<k)→ Hm
c (U × L)⊕Hm

c (V × L)

t∗ : Hm
c (ft<k (∂M))→ Hm

c (∂M)

such that

i∗U∩V ◦ t∗U∩V = id,

(i∗U ⊕ i∗V ) ◦ t∗U,V = id,

i∗ ◦ t∗ = id.

Proof. For i∗, the right inverse t∗ was defined in (65). The morphism t∗U,V is

the direct sum of the morphism t∗U , defined in equation (75), with the morphism
t∗V . The latter morphism is defined analogously to t∗U . �

Proposition 3.7.16. In the diagram on p. 89, square B commutes.

Proof. Let ξ ∈ Hn−r
c (U × L<k). Then

ε(j<k)(ξ) ∩ [∂M ] = π∗(t
∗(ε(j<k)(ξ)) ∩ [∂M ]) (by definition)

= π∗(ε(j)(t
∗
U (ξ)) ∩ [∂M ]) (by equation (76))

= j∗(π∗(t
∗
U (ξ) ∩ j∗([∂M ]))) (naturality, see [May99, p. 161])

= j∗(π∗(t
∗
U (ξ) ∩ [U × L]))

= j∗(ξ ∩ [U × L])

and one can analogously show the corresponding result regarding η ∈ Hn−r
c (V ×

L<k). Therefore, square B commutes. �

Proposition 3.7.17. In the diagram on p. 89, square C commutes.

Proof. The proof is very similar to the proof of Proposition 3.7.16. �

Proposition 3.7.18. For the cap product defined in Proposition 3.7.14, capping
with the fundamental class [∂M ] is an isomorphism

− ∩ [∂M ] : Hn−r(ft<k (∂M))
∼=−→ Hr−1(∂M, ft<c−k (∂M)).

Proof. This follows from commutativity of the diagram on p. 89 in conjunction
with the 5-lemma. �

The remainder of the argument supporting generalized Poincaré duality now
progresses as it did in the previous two chapters.

Lemma 3.7.19 (Lemma 2.45 on p. 181 in [Ban10]). There is an isomorphism
D< which completes the diagram

Hn−r(M)
g∗

//

−∩[M,∂M ] ∼=
��

Hn−r(ft<k (∂M))

D<

��

Hr(M,∂M)
∂∗ // Hr−1(∂M, ft<c−k (∂M))

(78)

to a commutative square. Here, ∂∗ is the connecting homomorphism for the long
exact sequence of the triple (M,∂M, ft<c−k (∂M)). (There is no sign here.)
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Proof. By [Ban10, Lemma 2.45], the square

Hn−r(M)
j∗

//

−∩[M,∂M ] ∼=
��

Hn−r(∂M)

−∩[∂M ]∼=
��

Hr(M,∂M)
∂∗ // Hr−1(∂M)

(79)

commutes. Thus we need to show that an isomorphism D< exists such that the
diagram

Hn−r(∂M)
µ∗=incl∗

//

−∩[∂M ] ∼=
��

Hn−r(ft<k (∂M))

D<∼=
��

Hr−1(∂M)
incl∗ // Hr−1(∂M, ft<c−k (∂M))

(80)

commutes. But this was done in Proposition 3.7.14. �

The main theorem now follows precisely as it did in the previous chapter.

Theorem 3.7.20 (Theorem 2.47 on p. 183 in [Ban10]). Let (p, q) be a pair of
complementary perversities. Let X be an n-dimensional compact, oriented, stratified
pseudomanifold with one singular stratum Σ = Xn−c of dimension n− c ≥ 2. The
link bundle is assumed to be (p, q)-admissible. Assume that there are open subsets
U, V ⊂ Σ such that U ∪ V = Σ while the link bundle restricts to a trivial bundle
over U and V , respectively. We assume X,Σ and L to be oriented compatibly. Let
IpX and IqX be p- and q-intersection spaces of X. Then there exists a generalized
Poincaré duality isomorphism

D : H̃n−r(IpX)
∼=−→ H̃r(I

qX).
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1.1. Cofibrations

A map i : A → X has the homotopy extension property (HEP) if we can fill in
the following commutative diagram:

Y
i0 //

i

��

Y × I

i×id

��

h

||
Z

X

f

??

j0 // X × I

h̃

bb

So we are given a homotopy h and an initial position f of a possible extension of h.

Definition A.1 (p. 43 in [May99]). A map i : Y → X is a cofibration if it
satisfies the homotopy extension property (HEP). This means that if h ◦ i0 = f ◦ i
in the diagram then there exists a map h̃ that makes the diagram commute.

So if (Y,X) is a pair, a given homotopy h : Y ×I → Z with given initial position

f may be extended to a homotopy h̃ : X × I → Z. For X,Y Hausdorff spaces a
cofibration i : X → Y is an inclusion with closed image.

An inclusion may be “replaced up to homotopy” by a cofibration: Given an
inclusion i : Y ↪→ X, note that there is a commutative diagram

Y
j0 //� o

i
��

Mi

r
~~

X

with maps j0 : Y →Mi, y 7→ [y, 0] and

r : Mi → X,

{
[y, t] 7→ i(y),

[x, 1] 7→ x.

Then j0 is a cofibration by [Spa66, Theorem 12, Section 4, Chapter 1]. Thus we
may replace the range of i by a homotopy equivalent space Mi ' X and obtain a
replacement of i by a cofibration j0. Regarding computations of homology groups,
this is a convenient fact, due to the next theorem.

Theorem A.2 (p. 108 in [May99]). For any cofibration i : Y → X, the quotient
map q : (X,Y )→ (X/Y, pt) induces an isomorphism

H∗(X,Y ) ∼= H∗(X/Y, pt) = H̃∗(X/Y ).

Proposition A.3. Let i : Y ↪→ X be an inclusion. Then H∗(X,Y ) ∼= H̃∗(cone (i)).

Proof. Replace i by the canonical cofibration Y →Mi, as above, and obtain

H∗(Mi, Y ) ∼= H̃∗(Mi/Y )

But Mi/Y ' cone (i) (recall that the canonical replacement cofibration j0 includes
Y at the top or 0-end of Mi) and furthermore Mi ' X. Thus we obtain

(A.1) H∗(X,Y ) ∼= H∗(Mi, Y ) ∼= H̃∗(Mi/Y ) ∼= H̃∗(cone (i))

which proves the claim. �

Suppose we are given a map f : Y → X and its homotopy cofiber (or mapping
cone) cone (f) = X ∪f cone (Y ). If f is an inclusion, then Proposition A.3 gives
information concerning the reduced homology of cone (f) in terms of the homology
of the pair (X,Y ). What about the case of f not being an inclusion? We define
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i0 : Y → Mf by y 7→ [y, 0] and let j1 be the trivial inclusion. We obtain a non-
commutative diagram

Y
f

//� p

i0   

XN n

j1~~

Mf

(A.2)

which commutes up to homotopy. A homotopy H : i0 ' j1 ◦ f may be defined as

H : Y × I →Mf , (y, t) 7→ [y, t]

This is continuous and H(·, 0) = i0, H(·, 1) = j1 ◦ f . A basic result on mapping
cones (see e.g. [Coh70]) shows i0 ' j1 ◦ f ⇒ cone (i0) ' cone (j1 ◦ f). But

cone (j1 ◦ f) = Mf ∪j1◦f cone (Y )

' X ∪f cone (Y ) (Mf ' X)

= cone (f).

To the inclusion i0 we may apply the earlier considerations regarding homology,
yielding

H̃∗(cone (f)) ∼= H̃∗(cone (j1 ◦ f)) (cone (f) ' cone (j1 ◦ f))

∼= H̃∗(cone (i0)) (i0 ' j1 ◦ f)

∼= H∗(Mf , Y ).

Thus we obtain a relationship analogous to the one in Proposition (A.3).

Lemma A.4. Let

· · ·
di+1

// Ai
di // Ai−1

di−1
// Ai−2

di−2
// · · ·

be an exact sequence of rational vector spaces. Let there be an integer i ∈ Z, a
rational vector space B, as well as linear maps f and g such that the triangle

Ai
di //

f
  

Ai−1

B

g

∼=
==

commutes. Then

· · ·
di+1

// Ai
f
// B

di−1◦g
// Ai−2

di−2
// · · ·

is an exact sequence

Proof. Exactness atAi: We have to show that im di+1 = ker f . Now, im di+1 =
ker di, so it is equivalent to show ker di = ker f . Let x ∈ ker di. Then commutativity
implies x ∈ ker g ◦ f . If x 6= 0, then g being an isomorphism implies x ∈ ker f . On
the other hand, x ∈ ker f is also an element of ker g ◦ f = ker di.

Exactness at B: We have to show that im f = ker di−1 ◦ g. Assume y = f(x) ∈
im f . Then g(y) ∈ im g◦f = im di = ker di−1. On the other hand, let y ∈ ker di−1◦g.
Then di−1 ◦ g(y) = 0 implies g(y) ∈ ker di−1 = im di = im g ◦ f and thus, y ∈ im f .

Exactness at Ai−2: We have to show that im di−1 ◦ g = ker di−2. Let x ∈
ker di−2 = im di−1. Then x ∈ im di−1 ◦ g, because g is an isomorphism. On the
other hand, x ∈ im di−1 ◦ g implies x ∈ im di−1 = ker di−2. �
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Consider the homology long exact sequence of the pair (Mf , Y ). Diagram (A.2)
fits into this sequence:

. . . // Hq(Y )
i0∗ //

f∗ %%

Hq(Mf )
q∗ // Hq(Mf , Y )

∂∗ // Hq−1(Y ) // . . .

Hq(X)

∼= j1∗

OO

An application of Lemma A.4 to this sequence yields:

Lemma A.5. Given a continuous map f : Y → X, the sequence

. . . // Hq(Y )
f∗ // Hq(X)

q∗◦j1∗ // Hq(Mf , Y )
∂∗ // Hq−1(Y ) // . . .

is exact. The analogous result in cohomology holds as well.

Given a pair (A,B) and a map f : C → B, we can form the map

incl ◦ f : C → A.

We consider the homology long exact sequence of the triple (Mincl◦f ,Mf , C):

· · ·
j∗ // Hn+1(Mincl◦f ,Mf )

∂∗ // Hn(Mf , C)
i∗ // Hn(Mincl◦f , C)

j∗ // Hn(Mincl◦f ,Mf )

The connecting homomorphism ∂∗ is induced from the connecting homomorphism
δ∗ of the long exact sequence of the pair (Mincl◦f ,Mf ). Here, the inclusions

i : (Mf , C) ↪→ (Mincl◦f , C)

j : (Mincl◦f , C) ↪→ (Mincl◦f ,Mf )

induce the maps i∗ and j∗. Notice that i includes Mf in Mincl◦f in the only way
possible, while j includes C in the 0-end of Mf . In a similar vein, the inclusion at
the 1-end,

k : (A,B) ↪→ (Mincl◦f ,Mf )

is a homotopy equivalence of pairs (i.e. the corresponding homotopy respects the
pairs). We define a map

d : (Mincl◦f , C)→ (A,B), d([x, t]Mincl◦f ) =

{
incl ◦ f(x), x ∈ C,
x, x ∈ A.

Then the triangle

Hn(Mincl◦f , C)
j∗ //

d∗ ''

Hn(Mincl◦f ,Mf )

Hn(A,B)

k∗

∼=
66

commutes because the corresponding triangle

(Mincl◦f , C)
j

//

d
&&

(Mincl◦f ,Mf )

(A,B)

k

88

commutes up to homotopy. Thus an application of Lemma A.4 yields:

Lemma A.6. Given a pair (A,B) and continuous map f : C → B, the sequence

· · ·∂∗◦k∗// Hn(Mf , C)
i∗ // Hn(Mincl◦f , C)

d∗ // Hn(A,B)
∂∗◦k∗// Hn−1(Mf , C)

i∗ // · · ·

is exact.
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We require a restatement of the last result.

Lemma A.7. Given a pair (A,B) and continuous map f : C → B, the sequence

· · ·
q∗◦j1∗◦∂∗ // Hn(Mf , C)

i∗ // Hn(Mincl◦f , C)
d∗ // Hn(A,B)

q∗◦j1∗◦∂∗

vv

Hn−1(Mf , C)
i∗ // · · ·

is exact. Notice that ∂∗ is the connecting homomorphism of the long exact sequence
of the pair (A,B).

Proof. From Lemma A.6, we get a sequence

· · ·∂∗◦k∗// Hn(Mf , C)
i∗ // Hn(Mincl◦f , C)

d∗ // Hn(A,B)
∂∗◦k∗// Hn−1(Mf , C)

i∗ // · · ·

which is exact. For n ∈ Z, consider the following diagram:

Hn+1(Mincl◦f , C)
j∗ //

d∗ ))

Hn+1(Mincl◦f ,Mf )
∂∗ //

δ∗

''

Hn(Mf , C)

Hn+1(A,B)

k∗ ∼=

OO

∂∗

''

Hn(Mf )

incl∗

::

Hn(B)

k∗

OO

This diagram commutes. Commutativity of the left triangle was shown in the proof
of Lemma A.6. The right triangle commutes by definition. The remaining part of
the diagram also commutes. �
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