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Abstract

Intrafractional lung tumor motion during the application of external beam radi-
ation therapy can be a limiting factor for the treatment outcome. Tumor motion
can cause marginal underdosage of the target volume as well as severe radiation
toxicity in the surrounding healthy tissue. This thesis consists of three parts:
The first part presents a novel method for real-time lung tumor motion estima-
tion that does not require the surgical implantation of fiducial markers. The
method utilizes fluoroscopic megavoltage x-ray images acquired with the ther-
apy beam throughout the treatment delivery and does therefore not require to
expose the patients to additional imaging dose. The algorithm is validated by
retrospective analysis of images acquired during irradiation of a dynamic chest
phantom as well as images acquired during lung SBRT treatment deliveries to
patients. The root mean square geometric error was found to be < 1mm for
phantom data and (2.141.7) mm for patient data, respectively. The second part
of this thesis describes an integrated system capable of moving the treatment
aperture in synchrony with a moving treatment target to mitigate tumor mo-
tion during radiotherapy. The system utilizes a dynamic multi-leaf collimator
tracking system to drive the treatment aperture in real-time and a special frame
grabber to allow for fast image acquisition. A linear prediction algorithm was
implemented to overcome the system latency (&~ 250 ms). The measured root
mean square geometric error was reduced from 2.4 - 3.5mm to < 1mm. In the
third part of this thesis, a concept utilizing the tumor motion estimation algo-
rithm to calculate delivered dose is presented. The concept is validated with a
dynamic chest phantom and applied in retrospect to imagery acquired during a
lung SBRT treatment. It is shown that marginal underdosage can be quantified
with a dose volume histogram (DVH) calculated from the analyzed data.






Zusammenfassung

Die interfraktionelle Bewegung von Lungentumoren wiahrend der Applikation von
externer Strahlentherapie kann ein limitierender Faktor fiir den Behandlungser-
folg sein. Tumorbewegung kann sowohl eine Unterdosierung des Zielvolumens als
auch eine schwerwiegende Uberdosierung des umliegenden gesunden Gewebes zur
Folge haben. Die vorliegende Arbeit besteht aus drei Teilen. Im ersten Teil wird
eine Methode zur bildgestiitzten Bewegungsabschatzung von Lungentumoren in
Echtzeit vorgestellt. Vorteile des Verfahrens sind die Unabhéngigkeit von im-
plantierten Markern (Pneumothorax Risiko) und die Vermeidung von zusétzlicher
Bildgebungsstahlendosis, da das Verfahren mit dem Therapiestrahl akquirierte
fluoroskopische Bildsequenzen nutzt. Die Validierung erfolgte sowohl anhand
von Bildern, die mit einem beweglichen Thoraxphantom aufgenommen wurden,
als auch anhand von Bildern, die wéahrend einer Reihe von Lungenstereotaxiebe-
handlungen aufgenommen wurden. Der Fehler (rmse) wurde fiir den Phantom-
datensatz zu < 1mm und fiir den klinischen Datensatz zu (2.1 £ 1.7) mm bes-
timmt. Der zweite Teil dieser Arbeit befasst sich mit der Implementierung und
Charakterisierung eines dynamischen, adaptiven Bestralungsystems, das durch
das Nachfiithren des Therapiestrahls in Echtzeit Bewegungen des Zielvolumens
kompensieren kann. Das System nutzt eine computergestiitzte, dynamisch ans-
teuerbare Strahlungsapertur (MLC), welche mit der Position des Zielvolumens
aus dem ersten Teil in Echtzeit angesteuert wird. Die Latenzzeit wurde gemessen
(=~ 250 ms) und durch einen linearen Vorhersagealgorithmus kompensiert. Das
System wurde mit einem mit Lungentumortrajektorien programmierten dynamis-
chen Thoraxphantom getestet. Der Fehler konnte von 2.4mm bis 3.5mm auf
unter 1 mm reduziert werden. Im dritten Teil dieser Arbeit wird der Algorithmus
vom ersten Teil eingesetzt, um nach jeder Fraktion einer Lungenstereotaxiebe-
handlung die applizierte Dosis zu berechnen. Das Konzept wurde mit einem
dynamischen Thoraxphantom validiert. Mit der retrospektiven Bildanalyse einer
Lungenstereotaxiebehandlung konnte gezeigt werden, dafl sich fraktionelle Un-
terdosierungen des Zielvolumens, etwa durch nicht optimale Patientenposition-
ierung, mit dieser Methode in Form eines Dosis-Volumen Histogramms (DVH)

quantifizieren lassen.
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1 Introduction

In this chapter a brief overview of the context of this thesis is given. In Section 1.1
the focus of this work on external beam lung cancer radiotherapy is motivated. An
introduction to the most relevant aspects of radiotherapy is given in Section 1.2
leading to stereotactic body radiation therapy which is discussed in Section 1.3.
The core problem addressed in this thesis, (intrafractional) tumor motion, is
found in Section 1.4. Finally in Section 1.6 a brief overview of the topics covered
in this thesis is given and the publications extracted from this manuscript are
disclosed.

1.1 Motivation

The American Cancer Society estimated for 2011 that over 570,000 people in
the US died from cancer, making it the second leading cause of death (after
cardiovascular diseases). Men are contributing with about 300,000 fatal cases,
slightly more than women with about 270,000 cases ACS [1]. Lung cancer is
among the types of cancer with the worst survival rates. The average five-year
relative survival rate was estimated to 15.8% for the years of 1999-2006 in the
United States and 13.2% in Germany'.

For well defined tumor volumes, radiation therapy is one of the major treatment
choices. While it may be used as the sole treatment option, it is more commonly

used in combination with chemotherapy and/or surgical removal of malignancies.

1.2 External beam radiotherapy basics

The goal of external beam radiation therapy is to limit or reduce the proliferation

of malignant/cancerous cells by delivering a sufficient dose of ionizing radiation

"While these percentages demonstrate the generally low survival rate, they can not be di-
rectly quantitatively compared as the data are collected in different studies and may therefore
also reflect different criteria of detection, data quality and treatment availability
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Figure 1.1: Estimated cancer death rates in the United States for the 10 most
common disease sites (data extracted from ACS [1]). The number of total cancer
caused deaths in the US in 2011 is estimated to be 300,430 men and 271,520
women including a total of 85600 men and 71340 women for lung cancer alone.
That makes lung cancer the largest contributor to cancer related deaths in 2011
in the US. The 10 most common disease sites are shown above in (red) for women
and in (blue) for men.

to cause substantial cell death in the irradiated tissue volume. Radiation types
used clinically for this purpose include photons, electrons, hadronic ions such as
protons or carbon and sometimes neutrons. Treatments with high energy photon
beams account for the majority of clinical cases because they are much easier
(cheaper) to generate and handle than any of the heavy particles. High en-
ergy photon beams can be generated with a linear accelerator (LINAC) in which
electrons are accelerated, resulting in a roughly monoenergetic electron beam.
Typical electron energies clinically used are in the range of 4-18 MeV. The beam
is sent through a target material with high atomic number (e.g. a tungsten alloy)
producing a continuous spectrum of Bremsstrahlung with an average energy of
roughly 1/3 of the incident nominal electron energy?. This thesis focuses only on
radiation therapy with high energy photon beams. Therefore all references are
to be seen in this context unless otherwise explicitly stated.

There are several different techniques to deliver a planned photon fluence to a

patient. However, they all share a similar workflow from diagnosis to treatment

2The photon beams are labeled by their respective maximal energy, i.e. the energy of the
generating electrons. The unit MV is used in stead of MeV (as for particles) to distinguish this
fact.
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Figure 1.2: Workflow of a typical radiotherapy treatment from diagnosis to treat-
ment delivery. The green boxes correspond to Chapter 2, Chapter 3, Chapter 4
which contain the authors research contribution in this thesis.

delivery. A flowchart of this process is depicted in Figure 1.2. In the following

sections a brief overview of the steps involved is given.

1.2.1 Treatment planning

Prior to the initiation of radiation therapy, volumetric images are acquired. Usu-
ally this includes at least a conventional 3D computed tomography (CT) to get
the anatomy and electron density distribution of the patient, but depending on
the case this can also include magnetic resonance imaging (MRI) or positron emis-
sion tomography (PET) to help distinguishing malignancies from healthy tissue.
To be able to compare anatomical structures between these imaging modalities,
they are transformed into a common coordinate system by image registration
techniques.

The volume to be irradiated as well as the volumes to be spared are contoured
on the CT in conjunction with the other imaging modalities (where necessary).
The physician’s prescription defines dose constrains to these volumes. The most
important structures used for this purpose are defined in the ICRU reports 50
and 62 [24, 25]. They are illustrated in Figure 1.3 on the right side®:

o« GTV The gross tumor volume encloses all visible parts (from the radiologic
images) of the malignancy and is considered the volume of known tumor infil-

tration.

3The volumes depicted are reflecting the definitions actually used for treatment planning at
the institution this research was conducted - there is therefore a difference to the ICRU report
definition.
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o CTV The clinical target volume encloses the suspected? tumor infiltration sur-
rounding the GTV. This is also referred to as the microscopic disease.
It has been disputed whether inclusion of suspected microscopic disease with
an additional margin actually improves tumor control and how large this mar-
gin should be (since only a pathologic examination can reliably distinguish the
penetration depth of tumor cells). For lung tumors a pathologic examination

however would bear the risk of pneumothorax.

o ITV The internal target volume encloses all positions of the GTV that are
expected to occur due to organ motion. This concept will be discussed in more
detail in Section 1.4.

o« PTV The planning target volume encloses all the previous volumes and adds
an additional fixed margin around them to account for any kind of patient
position inaccuracies on the treatment table and inaccuracies expected from
the beam alignment. The goal is to ensure that the prescribed dose to the
CTV can be actually delivered with a certain probability.

« OAR Organs at risk are critical normal anatomical structures that are par-
ticular sensitive to radiation and need to stay under a certain dose threshold.
For lung cancer this often includes the lung tissue, heart, spine, esophagus and
chest wall.

It should be noted that the definition of these volumes is operator dependent. In
two studies conducted by Van de Steene et al. [69] and Giraud et al. [20] significant
inter-observer variability in GTV delineation of lung tumors was found.

In the next step a treatment planning system (TPS) is utilized to define a beam
configuration and optimize photon fluence maps for each of these beams, so that
the superposition of all beams creates a dose distribution within the patient that
meets the constraints of the prescription to the PTV and OARs.

1.2.2 Treatment delivery with gantry and MLC

There are several types of treatment machines that incorporate a LINAC. This
thesis focuses only on the type that features a room-fixed linear accelerator and
a gantry rotating around a couch table to deliver a photon (or elecctron) fluence

from various incident angles shaped by a computer controlled beam aperture, a

4This margin is not assigned on basis of radiologic evidence but as a fixed margin.
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Figure 1.3: Common radiotherapy delivery techniques: on the (left) a setup for
3D conformal radiotherapy is shown. The gray area is the tumor, the blue an
OAR. Each beam has a flat fluence profile. IMRT may have the same beam
arrangement, but the fluence profile would be shaped non-flat to spare the (blue)
OAR while keeping the dose to the target conformal. Rotational therapy middle
delivers a shaped fluence profile while rotating in an arc around the patient. The
total volume of irradiated tissue is larger, but the dose constraints can be met at
least as well as with IMRT if not better. On the (right), the various treatment
planning margins are illustrated.

multi-leaf collimator (MLC).

There are three prominent techniques to deliver a high energy photon beam
with such as treatment machine that have been developed over time and feature
increasing complexity. They are illustrated in Figure 1.3 for comparison.

1. 8D conformal is the simplest of the modern techniques for radiotherapy deliv-
ery. A number of incident photon beam angles are defined by the treatment
planner. The superposition of these beams creates a high dose volume in the
PTV while the entry and exit paths of the individual beams imposes only
moderate dose to the surrounding normal tissue (see (left) of Figure 1.3). The
shape as well as the photon fluence intensity are optimized by the treatment

planner.

2. Intensity modulated radiotherapy (IMRT) allows the fluence maps for each
beam to be non-uniformly shaped. This can be achieved by dynamically ad-
justing the beam aperture with a multi-leaf collimator and thus to "paint" a
fluence map. This additional degree of freedom to the incident fluence allows
steeper dose gradients and more conformal dose distributions. The fluence
maps are calculated in the TPS by an algorithm iteratively optimizing a simu-
lated dose distribution in the patient to meet the dose constraints to the PTV
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and OARs.

3. Rotational therapy is a recently introduced delivery technique. It is similar
to IMRT, but the beam stays on while the gantry is rotating around the
patient and the dose rate (beam intensity) as well as the beam aperture are
modulated. This creates a delivery with more degrees of freedom to shape
individual dose distributions (see (middle) of Figure 1.3). A desirable feature
of this technique is shorter treatment time while allowing similar complexity
for the dose distribution as IMRT. A concern may be the larger volume of

normal tissue irradiated (in comparison to 3D conformal and regular IMRT).

1.3 Stereotactic body radiation therapy for lung

cancer

Stereotactic body radiation therapy (SBRT) is a type of radiation therapy that
has in recent years become a very popular treatment option for small, well local-
ized lung tumors. To distinguish stereotactic body radiation therapy from con-
ventional radiotherapy, a summary of the most important differences and their
respective implications will be given in the following:

Conventional lung cancer radiation treatment

The prescribed dose is divided into about 20-30 "fractions", i.e. the patient re-
ceives 20-30 daily treatments. Another option sometimes used to treat a minority
of lung cancers is “bis in die” (BID) fractionation, where treatments are given
twice daily separated by at least 6 hours. The rationale behind this practice
comes from radiobiology and is twofold:

(i) The time between fractions allows the repair of sublethal cell damage in
normal tissue and therefore decreases the toxicity induced by the treatment

in those cells. This is particularly important with respect to the OARs.

(ii) Radiation sensitivity is not equal in all of the phases of the mammal cell cy-
cle. Fractionation allows the cell cycles of the cancerous cells to redistribute
and thus increases the number of cancerous cells in a more radiosensitive

phase.
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Stereotactic body radiation therapy (SBRT)

The treatment course for SBRT consists of only a few fractions (typically 3-5)
with a significantly higher dose per fraction. While the total dose administered
over the treatment course is similar to a conventional treatment course, the bio-
logical equivalent dose is higher resulting in more aggressive malignant cell kill.
The concept of fewer but higher dose fractions is called hypofractionation and
has been successfully applied in intra-cranial treatments for decades. However,
a major concern with hypofractionated treatment types are the potentially high
doses to the surrounding normal (lung) tissue which can cause serious side effects
such as radiation pneumonitis® and can even become potentially fatal. There-
fore treatment margins are reduced and dose gradients are increased to keep the
dose distribution tightly bound within the PTV. However, this approach puts
additional importance on a precise patient setup on the treatment table, i.e. the
alignment of the patient’s anatomy to match the planning position defined in
the planning CT. While achieving high setup accuracies with cranial fixations is
comparatively easy to achieve® it is more challenging to set up to organs that do
not have such a well defined position within the human body (such as lung, liver,
etc.). Therefore it has only been in recent years with the emerging availability
of image guidance in the treatment room that hypofractionated treatments have
become sufficiently safe to be also applied for extra-cranial tumor locations. With
the first treatment outcome studies published in 1995 [8], it became evident that
SBRT could be a promising treatment option also for extra-cranial sites. Studies
in Germany conducted on treating cancers of the liver [22] and lung [72] as well
as studies in the United States on early stage lung tumors [67] indicated good
SBRT treatment outcomes for small and well localized lesions in the thoracic and
abdomino-pelvic cavity. An extensive review of the current state of the art in
SBRT as well as a comparison to conventional IMRT and 3D conformal treat-
ments can be found in Benedict et al. [5] and the references therein.

At first the main rationale for the use of lung SBRT was to establish an alternative
to surgical resection for normally inoperable patients (many lung cancer patients
are elderly and/or have other complicating health conditions). The promising
outcome studies have established this technique as a viable alternative treatment

5Pneumonitis = infection of the lung tissue
5The underlying assumption is that the brain is in a fixed relationship with respect to the
cranium.
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option to surgical resection for small, early stage lung tumors”. Grills et al. [21]
consider SBRT for lung tumors even as the favorable treatment option to surgical

resection showing only minimally adverse effects.

1.4 Tumor motion during radiotherapy

Tumor motion is of great concern for the accurate delivery of radiation therapy
as it affects both tumor coverage and normal tissue toxicity. While reduced
coverage can compromise the treatment outcome, normal tissue toxicity can be
particularly problematic if there are organs at risk (OAR) located immediately
adjacent to the target volume (PTV). In the context of lung tumor treatment it
is important to note that lung tissue itself is considered an OAR.

Tumor motion may be divided into two categories:

— interfractional motion denotes changes in the mean tumor location as well
as deformations of the tumor volume in between treatment days. The setup
errors made when the patient’s anatomy is aligned to the planning C'T on the
treatment table is an example for an interfractional change in tumor position.
The shrinkage of the target volume over the therapy course is an example of

deformation.

— intrafractional motion describes changes in tumor location and shape that
occur during the delivery of the treatment. Intrafractional motion due to
respiration can be substantial for thoracic and abdominal tumor sites. The
analysis of lung tumor motion range has been the objective of several publi-
cations and it was observed that superior-inferior motion amplitudes can be
in the centimeter range (Ekberg et al. [15], Chen et al. [11], Seppenwoolde
et al. [60]).

While interfractional motion causes a rigid shift of the delivered dose distribution,
intra-fraction motion causes the dose distribution to average out (blurr). Both
effects cause a deviation between planned and delivered dose.

Conventional radiotherapy tends to be less sensitive to interfractional motion
than SBRT treatments due to the relatively large number of fractions that tend
to average out errors (if one assumes that the setup errors are distributed at

"Stage I/Ila - meaning that the tumor has not metastasized and has a relatively small
volume.
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random over the course of the treatment).

While the interfractional motion may be reduced by more thorough patient setup,
the intrafractional motion is harder to account for. Particularly for lung SBRT
with its sharp dose gradients and high doses per fraction, tumor motion can
become prohibitive for treatment. Therefore intrafractional tumor motion is dealt
with from several perspectives that will be briefly described in the following

sections.

1.4.1 Accounting for motion in treatment planning

Tumor motion is often accounted for in the treatment plan by an expansion of the
volume planned to receive the full prescription dose level. The rationale behind
this strategy is that a sufficiently sized irradiated volume will contain the tumor
at all times during the treatment delivery, even in the presence of interfractional
and intrafractional motion and therefore provide full dose coverage to the tumor.

The ITV is the volume intended to mitigate intrafractional tumor motion. It
is derived from the motion range and pattern observed on volumetric images like
CT or 4DCT which are used for treatment planning. The PTV is a patient inde-
pendent fixed margin expansion to the [TV and is intended to mitigate the effect
of interfractional motion on the target dose coverage. However, it has been shown
that motion range and pattern of the tumor may vary from day to day (interfrac-
tionally) as well as during treatment delivery (intrafractionally) (Seppenwoolde
et al. [60]). For lung SBRT the escalated doses per fraction in combination with
the reduced margins constitute an increased risk of a marginal miss® which can

occur even from just one fraction.

A 4DCT depicts the temporal changes in a patient’s anatomy during respiration.
It consists of a number of CT volumes (usually 10) each resembling a different
phase of the patient’s breathing cycle. So, a simple technique to define an 1TV
from a 4DCT is to contour the union of all the breathing phases. However, a
large I'TV can mean excessive irradiation of normal tissues. As mentioned already
in Section 1.3, radiation toxicity to normal tissue can impose serious problems
such as radiation pneumonitis. Therefore, the total dose must often be lowered

in order to limit normal tissue toxicity, compromising therapeutic efficacy of the

8A marginal miss means that the tumor volume is partially (i.e. on its margin) not covered
within the treatment aperture and thus (for the treatment outcome) significantly underdosed.
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Figure 1.4: Patient in a compression plate. The stamp compresses the patient’s
abdomen which usually reduces the motion range of the internal organs. The
level of motion reduction is strongly patient dependent..

treatment.

Adaptive radiotherapy

A different approach is followed in adaptive radiotherapy (Yan et al. [74], Sonke
and Belderbos [64]). Here, the idea is to monitor the treatment delivery and
calculate from the observed motion a dose estimate for already delivered treat-
ment fractions. The already delivered dose fraction can be utilized to calculate
an updated optimized treatment plan for the delivery of the remaining fractions

and mitigate the potential for a compromised target dose in this way.

1.4.2 Strategies to reduce or compensate motion

Several methods have been proposed to control tumor motion during radiother-

apy. They may be divided into passive and active techniques:

Passive control is geared towards reducing the (residual) motion range.

— A device frequently used in clinical operation is the compression plate.
The patient’s abdomen is compressed by a stamp (the compression plate),
limiting internal organ motion. However, Murray et al. [44] and Kontrisova
et al. [34] state that the devices motion limiting capabilities are patient de-
pendent. Also, many patients find the procedure intolerable (breathing dis-

comfort, pain).
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Figure 1.4 shows a person on the treatment table with a compression plate
in place. Additionally it should be noted that planning CT images are ac-
quired with the device in place, limiting the visible motion. The residual
motion range on the treatment table therefore may not be the same as the
one observed during the imaging session.

— Another approach to reducing residual tumor motion during beam-on time
is the breath hold technique. The patient is asked to hold the breath
while the beam is on. Several groups have investigated various implemen-
tations. Most prominent is a combination with a spirometer that measures
the current lung volume to define a reproducible breathing phase. However,
particularly for lung patients with already reduced lung functionality it can
be very discomforting to hold one’s breath even for 10-20s.

Active control methods are not seeking to limit the target motion but rather
to compensate for it by adapting the treatment delivery. Therefore knowledge
of the tumor location throughout the treatment needs to be available. How to
gather this information will be discussed in the next chapter.

— For respiratory gating the treatment beam is only switched on while the
tumor is within a pre-defined position window, thus confining the motion
range impacting the treatment delivery. If the tumor moves out of this win-
dow, the treatment beam is switched off and the system waits until the tumor
returns to the window. Internal markers (Shirato et al. [62]) as well as ex-
ternal surrogates (Berbeco et al. [7]) have been used to trigger the beam
switching.

The advantage of this technique is that even patients that show a large tumor
range despite passive control methods can be treated. However, disadvan-
tages include the increased duration of the treatment delivery as well as the

limited reliability of the commercial implementations.

— During dynamic beam tracking, the tumor is followed with the radiation
beam with the help of a multi-leaf collimator (MLC) (Keall et al. [30]), while
dynamic couch tracking moves the couch to keep the tumor within the
treatment aperture (D’Souza et al. [14]). The goal for both of these tech-
niques is to keep the target volume “frozen” within the treatment aperture
despite its motion. To accomplish this, both techniques require two compo-
nents: (i) real-time knowledge of the target position and (ii) the ability to
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adapt the aperture (or couch) position in real-time accordingly.
Both components will be discussed in detail in Chapter 2 and Chapter 3,
respectively.

— Cyberknife® is an alternative radiotherapy delivery technique that is capable
of active motion compensation. Unlike the conventional room-fixed LINAC,
steering the electron beam with bending magnets through a gantry of only
one rotational degree of freedom, the Cyberknife® approach features a small
LINAC mounted on a robotic arm, allowing virtually any radiation beam in-
cident angle’. Active motion management is available with a built-in system
using external markers as well orthogonal x-ray tubes to update the motion
correlation model between external and internal positions signal. However,
due to the “dose painting” with a small diameter radiation beam an average
treatment delivery takes about two hours which is about 3-6 times as long

as a linac-based lung SBRT fraction.

For the active methods of tumor motion control robust real-time tumor localiza-
tion is needed. This will be the topic of Chapter 2.

1.5 Image guidance in the treatment room

The aforementioned implications of tumor motion have driven an increased de-
mand for improved patient setup and motion monitoring capabilities in the
treatment-room. Most radiation therapy machines in clinical use at the moment
feature two devices that allow in-room image acquisition: an on board imager
(OBI) and an electronic portal imaging device (EPID). Both can potentially be
used during treatment delivery. In the following sections a brief description of
both of these tools is given, however the EPID is discussed in greater detail
because this thesis is based exclusively on the use of this device.

1.5.1 The on-board imager

The on board imager (OBI) is a diagnostic kilovoltage (kV) x-ray tube mounted on
the gantry. Most commercially available systems have the OBI’s beam line at an

9For safety reasons this is actually limited to a pre-defined grid of positions. In this way
potential collisions from an errornous position request can be avoided.
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Figure 1.5: (left) Tllustration of a typical radiotherapy setup on a LINAC with
a gantry. The radiation beam leaves the collimator, passes through the patient
and is captured by the EPID. The arrow denotes the axis of rotation for the
gantry. (right) EPID image showing a patient’s lung tumor during SBRT delivery.
Only digital enhancement applied is a window/leveling to maximize the display
contrast within the treatment aperture.

angle of 90° with the therapeutic beam line'®. The OBI allows the capture of high
quality radiographs as well as fluoroscopy and cone-beam computer tomography
(CBCT). While it is generally possible to use the OBI during therapeutic beam-on
time, a degradation in image quality is observed from additional scatter.

1.5.2 The electronic portal imaging device

The electronic portal imaging device (EPID) captures the exit fluence of the
therapy x-ray beam after passing through the patient (see Figure 1.5 for a sketch).
Images acquired with this detector depict the patient’s anatomy in the therapy
beams-eye-view perspective making them an excellent tool for the verification of
the patient setup in the treatment room (with respect to treatment planning).

The research presented in this thesis is based on images acquired with such a
device. Therefore a brief introduction to its history, detector physics, limitations
and current state of technology as well as clinical use is given in the following
section. Relevant specifications of the EPID used in this thesis are summarized

at the end of the section.

10 A5 an exception to this the Siemens Artiste® has an OBI featuring an imaging beam line
parallel to the therapeutic beam line. However, this product has been discontinued as of early
2012.
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History of portal imaging

Before the introduction of electronic devices for megavoltage imaging, predom-
inantly film cassettes were used to acquire port images in radiotherapy. A film
cassette consists of a metallic front plate (typically &~ 1mm copper), a sheet of
radiographic film and a backplate usually made of plastic. Between front plate
and film sometimes a phosphorous material is used. The metal front plate serves a
dual purpose: it filters out the scattered electrons from the patient/couch which
would otherwise greatly reduce the image quality (provided of course that the
thickness of the plate is larger than the incident electron range in that material).
The other purpose is to serve as a build up region for the generation of secondary
electrons that can then interact with the image receptor (e.g. film). The function
of the back plate is to reduce backscatter which can also significantly reduce the
image quality (film interactions with backscattered electrons add no radiologic
information but blacken the film, potentially saturating it).

There were several disadvantages connected with film, the most important one
being the time needed to develop the film which even with fast methods is in the
range of minutes. Therefore portal films were usually not taken for every frac-
tion but rather once a week or even less. This triggered the quest for alternative
technologies allowing for immediate display of the port image. Having images
in electronic form gives also the opportunity to enhance these images by image
processing algorithms, the simplest being the adjustment of the window /level'!.
The first generation of commercialized EPID devices was available for clinical
operation in the late 1980s. These devices used a phosphorous screen that con-
verted the electrons generated in the front plate into visible light which then was
recorded by a camera. To accomodate with the limited space requirements as well
as to protect the camera electronics from the therapy beam, the camera was not
directly mounted under the phosphor screen but was focused on it via a mirror

reflecting the image.

The second generation of commercially available EPIDs entered clinical usage
in the year of 2000 and continues to be a widely applied technology in the year
of 2012. The phosphorous screen in these devices was replaced by a scintillator!?

UThe window/leveling operation constraints the mapping of the image gray values to the
display gray values by selection of an image gray value range. This enhances therefore display
contrast for the selected gray value range.

12Gee Nikl [46] for a comprehensive review for x-ray scintillators (and phosphors).
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Figure 1.6: Illustration (not to scale) of the most important layers of an ac-
tive matrix flat panel imager (AMFPI) such as the AS-1000. The front plate is
typically &~ 1 mm copper. It can shield from scatter electrons and converts the
incident megavoltage photons to secondary electrons that can then interact with
the scintillator. The photodiode converts the light generated in the scintillator
to electric charge. The thin film transistor (TFT) serves as a switch to read out
the collected charge.

and the camera has been replaced by an active matriz flat panel imager (AMFPI)
which is placed directly under the scintillator material. The AMFPI is a matrix
detector in which each pixel consists of a (discrete) hydrogen doped amorphous
silicon (a-Si:H) photodiode and a thin film transistor (TFT) as a switch to allow
readout. A simplified drawing of a pixel is shown in Figure 1.6 along with the
specifications of the EPID used in this thesis.

Image quality

The quality of MV portal images is unfavorable when compared to diagnostic
x-ray images. This is mainly due to the higher energy of the photon source'®. In
addition, the relatively large source size of the radiation beam can cause blurring
on the images.

In the following, the main reasons for the poor image quality are discussed in the
context of some quantitative measures that are commonly used for the evaluation
of “image quality”:

—  Signal to noise ratio (SNR) For medical images it has been suggested (Motz
and Danos [42]) that a signal cannot be properly distinguished from the
underlying noise if SNR < 5. There are several main contributions to the
noise level in an EPID one may expect: photon shot noise, noise from scat-

tered photons (due to objects in the beamline) and (electronic) noise from

13Diagnostic images are typically acquired at energies in the range of < 150kVp, while the
therapy beam has an energy of typically > 6 M V.
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the detector itself. Neglecting the detector noise the SNR can be written
as(Herman et al. [23]):

signal stgnal by — Py

SNR := — = =
noise \/mean(signal) \/0.5 (P + Dy + 2Dg)

(1.1)

Here @, ®, denote the primary fluences reaching the detector after traversing
anatomical structures 1 and 2, respectively and ®g denotes the scattered
fluence. Therefore the SNR improves with increasing incident photon fluence.
However, Herman et al. [23] point out that “it appears that poor image
quality is not because the image receptors do not have enough x-ray quanta
interacting in them, but because the image receptors either add additional
noise to the images or display the images so that noise in the eye-brain system
becomes important”.

—  Quantum efficiency measures the fraction of incident photons creating a sig-
nal in the detector. However, a more descriptive definition for detectability
of an object is the detective quantum efficiency (DQE) given by the ratio
of the incident to the output SNR. Currently commercially available EPIDs
(including the as1000 from Varian Medical Systems used in this thesis) have
a quantum efficiency of < 5% and a DQE < 1% (Antonuk [2]).

—  Subject contrast quantifies how distinguishable two objects are from each
other on a given image. Following the definition of Motz and Danos [42] the
portal image contrast C' may be written as:

stgnal b, — &y

C:= = 1.2
mean(signal) 0.5 (P + Py + 2Pg) (12)

From the definition it is apparent that the subject contrast is governed by
the integral photon attenuation along the beam line which is proportional to
the cross section. The inherently low subject contrast for megavoltage EPID
images is caused by the energy dependence of the photon-matter interaction
processes involved. For kV-photons (as used in diagnostic imaging), the
dominant contrast producing interaction is the photoelectric effect. For the

photoelectric cross section, o,., we have:

Z3

. (1.3)

Tpe X
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Here E denotes the incident photon energy and Z is the atomic number of

4 is much higher for bone

the material. The effective atomic number Z, ffl
(Zegr = 13.8) than for water (Z ;s = 7.42) (or soft tissue) resulting in good
contrast between these media (Khan [32]). However, because of the strong
energy dependence o,. — 0 for megavoltage photons. In this energy range
Compton scattering is the dominant interaction governing the contrast. The
compton cross section is mainly dependent on electron density, i.e. 0. & p.-
which is similar for bone and tissue (pP°"¢/p™r ~ 1.66)'° resulting in the

observed poor image contrast.

The spatial resolution is limited by the spot size of the imaging source. For mega-
voltage photon beams the spot size is typically in the range of several millimeters
since they are optimized for radiotherapy rather than for imaging purposes.

The Varian AS-1000 EPID

The imager used for all portal image acquisitions in this thesis is a Varian AS-
1000 electronic portal imaging device (EPID). It is mounted to the LINAC gantry
by a robotic arm as depicted in Figure 1.5. The following table gives a summary

of its specifications:

type as1000, Varian Medical Systems

front plate (metal) || 1mm Cu

scintillator Gdy05S : Tb (Kodak Lanex B)
image receptor 1024 x 768 AMFP
pixel spacing 392 um x 392 um

maximal frame rate || 12.86 Hz at 600MU /min and half-resolution

1.6 Outline of this thesis

This thesis is divided into three parts: in Chapter 2 an algorithm for markerless

lung tumor motion estimation from megavoltage EPID images is presented and

1The effective atomic number Zesr is defined as the average atomic number of a compound.
15p£>9ne ~ 5.55 x 10% em™ and p¥%" &~ 3.34 x 10%* cm =3 (Khan [32])
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tested on a dynamic thorax phantom as well as on EPID images acquired during
SBRT treatment delivery to lung cancer patients. In Chapter 3 this algorithm
is used to actively compensate tumor motion in real-time during radiotherapy
delivery to a phantom with a dynamic multi-leaf collimator tracking system.
Chapter 4 discusses the application of the algorithm presented in Chapter 2
to calculate delivered dose. A summary of the thesis as a whole along with

conclusions are given in Chapter 5.

Publications and notes

The research presented in this thesis was carried out at the Brigham and Women’s
Hospital (BWH) / Dana-Farber Cancer Institute (DFCI) / Harvard Medical
School in Boston, MA (USA). Chapter 3 was partially carried out at the Univer-
sity of Sydney, Australia.

Parts of this work have already been published in a peer reviewed journal (Rottmann
et al. [52]) and at international conferences in form of oral presentations (Rottmann
et al. [53; 54; 56]) and a poster (Rottmann et al. [55]). Chapter 4 has been pub-
lished in a peer-reviewed journal with the thesis author as the 2nd author [3].



2 Real-time lung tumor motion

estimation

Knowledge of the tumor location during radiotherapy treatment delivery is desir-
able for a range of applications aimed at quantifying and reducing the negative
effect of tumor motion on the treatment outcome. In this chapter an algorithm
is presented that uses 2D radiographs from beam’s-eye-view perspective to cal-

culate soft tissue displacement in real-time during radiation therapy delivery.

In Section 2.1 a review of available techniques with their respective benefits and
drawbacks is given and a motivation for the approach followed in this thesis is
given. The algorithm is described in detail in Section 2.2 and then characterized

with experimental data in Section 2.3.

2.1 Motivation

We would like to have a motion analysis tool that can provide continuous real-time
3D position, rotation and deformation data for the volume of interest without
adding any risks to the patient. However, all currently available methods make
certain compromises to these requirements. In general all of them will operate
on a discrete time metric and have a characteristic time needed for information

processing. Current methods of tumor tracking can be divided in three categories:

External surrogate: The motion of the chest/abdomen is used as a surro-
gate to approximate the motion of the target volume. The basis of this technique
is the assumption that surrogate and target motion are well correlated. However,
Ionascu et al. [27] have found that this assumption may not always be valid.
There are several systems commercially available based on this principle, all ca-
pable of real-time operation: The real-time position management (RPM) system
(Varian Medical Systems, Palo Alto, USA) tracks retroreflectors attached to the

patient’s chest with an infrared camera, the Anzai Belt system (Siemens Medi-

19
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cal, Erlangen, Germany) measures the chest expansion from respiration with the
help of a pressure sensor and Gate CT / Gate RT (Vision RT) uses 2 cameras to
reconstruct the patient’s surface in 3D.

Internal surrogate: Fiducial markers implanted in proximity of the target
volume can serve as robust and reliable internal surrogates. The underlying
assumption of a strong correlation between internal surrogate and target volume
motion as well as a stable marker location has been found to be (at least intra-
fractionally) generally valid. However, there have been studies indicating that
markers may not be stable over longer time frames. Imura et al. [26] for instance
have report that markers implanted in the bronchial tree only stayed stable for
about 1-2 weeks (which is sufficient for an SBRT course). For lung as the tar-
get site there is also a considerable risk for pneumothorax occurrence from the
implantation procedure! which may not be clinically acceptable. Kupelian et al.
[37] and Kothary et al. [35] report incidence rates of > 40% in their studies.
The position of radiopaque fiducial markers can be obtained from projection im-
ages by segmentation algorithms. Another approach uses a microscopic coil inside
the fiducial for radiofrequency detection (e.g. Calypso Inc.).

Markerless Tracking: The motion of the target volume is estimated from pro-
jection images directly, i.e. without the help of an additional surrogate. The
algorithms used may be further divided to classification algorithms and direct
tracking algorithms.

— In classification algorithms a training data set is used to identify possible
tumor locations and to build a feature set for identifying those tumor location
states in subsequent images. The actual tracking process consists then of a
classification process (SVM, regression, neural network, etc.) that tries to
assign each projection image or external surrogate location to one of the
previously defined tumor locations (Cui et al. [13], Xu et al. [73], Wu et al.
[71], Lin et al. [39]). This approach lacks the ability to adapt to changes
in the breathing pattern that cannot be described with the motion observed
during the training session (extrapolation). However, it works well for the

'The pleural cavity, i.e. the space between the lung and the chest wall is filled with a
liquid allowing the lung to expand and contract with minimal friction while not being directly
attached to the inner chest wall. If air enters the pleural cavity, for instance through puncture
from inserting fiducials with a needle, this is called pneumothoraz and can cause the collapse
of the adjacent lobe of the lung.
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application of gated treatment, where it is not necessary to know the precise

location, but rather to decide whether the target is within a predefined region.

—  For direct tracking algorithms, a set of features is extracted and localized on
each image frame. Although it may be difficult to find features suitable for
tracking, a benefit of this approach is its robustness in the presence of irreg-
ular breathing patterns. This property makes the direct tracking approach
highly desirable and therefore it is the approach used in this thesis.

The quality of the input images is crucial for the accuracy and robustness of a
tracking algorithm. When compared to kV x-ray images, MV x-ray images are
usually of inferior quality, i.e. low signal to noise ration (SNR) and low contrast
to noise ratio (CNR) resulting in a comparatively poor soft tissue contrast (cp.
Section 1.5.2). Also, the illumination level may change over time due to lung fill-
ing/emptying (Berbeco et al. [6]) and we have observed additional illumination
changes on the first few portal images of a sequence.

Both radiopaque fiducial marker tracking as well as markerless tracking rely on
projection images. Two devices that are commonly available in the treatment
room are a fluoroscopy x-ray imaging system and/or a electronic portal imaging
device (EPID). Most modern treatment machines feature both options. The fluo-
roscopic x-ray imaging system consists of an x-ray tube and a flat panel detector
mounted to the clinical linear accelerator. The EPID is a flat panel detector that
is capable of capturing the exit radiation of the treatment beam.

If projection images can only be acquired from one direction, the geometry of
the imaging setup becomes important as it determines the directions in which
no position information is available. For tumor motion monitoring purposes the
optimal setup will capture both directions of the sharp fluence gradient of the
treatment beam and will for that reason be in line with the treatment beam (Nill
et al. [47], Suh et al. [65]). This is illustrated in Figure 2.1. While kV x-ray imag-
ing has the advantage of superior image quality and a higher frame rate compared
to the commercially available MV-EPID systems there is at the time of this pub-
lication no kV-imaging equipment with beams-eye-view geometry commercially
available. There is also some concern about the additional dose associated with
kV fluoroscopic imaging. Winston et al. [70] and Murphy et al. [43] estimate a
typical entrance dose-rate of 22 mGy/min and Shirato et al. [63] report similar
surface values as well as roughly 4 mGy/min at 10 cm depth in the context of
real-time tumor tracking during SBRT. In contrast, Kilby and Savage [33] have
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Figure 2.1: Implications of the imaging geometry: The 90° imager orientation
(left) captures only one direction of steep dose falloff while the in-line setup (right)
captures both. On the (right) qualitative depth dose curves for all directions are
sketched.

shown that the additional dose to the patient from MV imaging, mainly from
low-energy backscatter from the imager, is negligible when the EPID is placed
more than 15 cm from the exit surface of the patient, a distance that is easily
exceeded in practice (we used > 50 cm).

2.2 Soft tissue localization (STiL) algorithm

The STiLL algorithm is designed to track soft tissue motion online and in real-
time? during delivery of 3D conformal radiotherapy. Throughout the treatment
continuously acquired MV-EPID images are used as input signal®. The schematic
of the clinical setup is shown on the (left) of Figure 1.5. The algorithm needs to
cope well with the inherent restrictions of using the EPID as described earlier,
i.e. image quality (low SNR and CNR), limited field of view (treatment aperture)
and low frame rate (maximally 12.86 fps (at half-resolution) with our currently
available hardware). Also, we want to be able to track independently from prior
knowledge if necessary.

To make the algorithm robust with respect to target deformations, rotations,
and partial occlusions, this thesis follows the approach of tracking multiple au-

tonomously defined feature points to estimate soft tissue motion: Given an initial

2real-time is meant here in the context of Chapter 3, i.e. with a systemic latency dt that is
smaller than the acquisition frame rate.

3In principle other 2D projection imaging modalities could actually be used as well, but we
only used beam’s-eye-view images from the portal imager.
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Figure 2.2: (a)-(c) Dynamic chest phantom, (d)-(f) Clinical data (SBRT treat-
ment). (a),(d) Example of a template and its search region. The red crosses indi-
cate the original position the yellow box the matched position and the green box
the search region. (b),(c),(e),(f) Automatically defined landmark positions (red
crosses), tracked positions (yellow crosses) and resulting tumor centroid mean
offset (red arrow). Note that the red arrow only indicates an offset, not a po-
sition. The visible streak effects are most likely due to calibration issues of the
portal imager.
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gray value image I* used as the origin and a sequence of images {I(¢;) | ¢ > 1}
acquired at times t; the the multi-region approach calculates a rigid soft tissue
displacement vector z(t;) for each image with respect to I*. The algorithm con-
sists of three parts:

(i) A feature detector finds a set of landmark candidates on the reference image
I*, ie. a set of points {pj [j = 1,..., N} each surrounded by a small
rectangular region Qp; C I* defined on the reference image I*.

(ii) A tracking algorithm identifies on each subsequent incoming image I(¢;) the
locations P; = {p;(t;)|j = 1,..., N} of all landmark candidates with respect

to their initial positions {p; |7 =1,..., N} defined on reference image I*.

(iii) To limit the impact of tracking failures, a geometric regularization is applied
to the set of new landmark candidate positions P; reducing it to a smaller set
P, C P.. The final result is the average displacement vector x(t;) =< P >.

Figure 2.2 provides sample MV-EPID images from a phantom study and from
a lung SBRT delivery. Therein landmark region, search region and landmark
displacement vectors are illustrated.

Landmark selection

In order to enable reliable tracking, each landmark region (feature), Qp;, needs
to be uniquely identifiable on all images I(¢;) at least within a small search region
Sy, (t;) C I(t;). Thus, the quality of a landmark will mainly depend on how unique
its texture/pattern is and how well its motion represents the tumor motion. For
the latter, we assume that any motion visible within the field of view will be
strongly correlated to the target volume motion. Hence one may use any moving
structure as a surrogate for the tumor motion and it is sufficient to restrict the
landmark search to a local texture analysis of the image I'* chosen to be the origin
for the tracking. To reduce noise effects on the texture analysis a median filter
and/or gaussian filter may be initially applied to I*.

The local texture is analyzed by means of a local variance filter (Roesch et al.

[51]): X )
Var(@p;) = ]\4_15%: (Qp} (&) — @p;) (2.1)

Here ij is a small region, centered around pixel p}, containing M pixels. @

*

P;
is the mean value of all pixels within Qp;. High gray value variance is taken
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Figure 2.3: Automatic landmark generation on MV-EPID images: (a) original
MV EPID image (only the window /level has been adjusted to make the tumor
visible), (b) variance filtered image with 30 local landmark candidates. Note that
the soft tissue contrast is maximal at the boundary of the tumor mass, while it
is minimal within the tumor mass.

as a measure of high local texture around pixel pj. Eq. (2.1) can be efficiently
computed when rewritten as a convolution in the spatial domain which allows
computation as a multiplication in the frequency domain. Qp; was chosen to
be the same size as the landmark regions. An example of a variance map for a
sample image is shown in Figure 2.3.

Local maxima of the variance filtered origin image are taken to be potentially
suitable landmark candidates. To reduce bunching, landmarks are constrained
to have a minimal distance between each other. The underlying assumption that
high gray value variance is uniquely correlated with important tracking struc-
tures may not always be true though. Besides noise effects, which can be reduced
by the application of an initial median or gaussian filter, sharp straight edges
can cause a problem as they show a high texture value but are not unique (cp.
aperture problem in Jahne [28]). To reduce this effect and ensure each landmark
is unique within a small neighborhood, a self similarity map based on normalized
cross correlations (NCC) is calculated for each feature point. The gaussian cur-
vature at the zero position is taken as an indicator for edginess, i.e. it is assumed,
that the similarity for a straight edge is going to be smaller than for a unique

feature.
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Each landmark consists of a small image region (),: and a surrounding search re-
gion Sp,,. To minimize computation time of the tracker and to maximize unique-
ness of the landmark, the search region is chosen to be asymmetric, i.e. the
longer side in the superior-inferior image direction where the most prominent
motion is expected. These parameters can be chosen as fixed values as long as
they can cover the entire motion range (estimated, for example, from a 4DCT,
other pretreatment imaging or generically assuming 20 mm [60]). However, for
non-coplanar fields* the search box dimensions that need to be projected to the
imager plane are assigned as (in EPID image coordinates):

]
Y
gic

Here the indices G and C stand for gantry and couch, respectively and sg; stands

Ssi - sin (¢.) - cos (¢y)

Sut €05 (6 22

for the superior-inferior motion range. An appropriate minimal value z,y < k is

assumed.

Tracker

The input for the tracking algorithm is a new image I(¢;) acquired at time t;, a
set of search window positions {s;|j = 1,..., N} and a set of landmark regions
Q(p;‘-) C I* as defined on the initialization image I*. The new landmark position
is calculated by finding the overlap position of landmark region and search region
that maximizes a given similarity measure.

There exist several similarity measures that are commonly used for the applica-
tion in 2d matched filter algorithms. We tested both Normalized Mutual Infor-
mation (NMI) and Normalized Cross Correlation (NCC). However, the NMI is
a statistical measure and therefore depends on the sample size. Our image reso-
lution is too low to allow reasonably sized templates working with this measure.
Also NMI implementations are usually significantly slower than NCC. On the
other hand NCC can be efficiently implemented to meet our time constraints.

The normalized cross correlation coefficient for a landmark region (),« and a
J

4A field is called non-coplanar if the treatment couch is rotated.
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search region Sy« is defined as:
J

S Qs (0,0) = Qe ) (S, (w=w,0—y) =5, )
V(@ (0.0) = Q) 50 (8, (=, 0-9) = 5,,)

Sneoo(r,y) = (2.3)

Here @p; is the mean value over all pixels in the landmark region and gpj is the
mean value over all pixels in the search region that overlap with the landmark
region. As recommended by Lewis [38], we precompute the mean values in the
numerator and denominator of Eq. (2.3). Then the NCC can be computed as a
simple multiplication in the frequency domain:

Snee(w,y) = FH{F(@Qy) - F(S,,)"} (2.4)

Here F(Sp,)* is the complex conjugate of the Fourier transform of the search
region Sp,,. With Eq. (2.4) the NCC is calculated for all possible pixel shifts of
the template within the search region at once, resulting in a similarity map. The
location of the maximum on this map corresponds to maximum correlation, i.e.
the best-match position. The output of the tracker is the set of displacement
vectors {p;(t;)|j=1,...,N}.

Regularization

Robust regularization is essential because tracking failures of some landmark
regions may be expected on each image for several reasons:

« landmark candidates are chosen solely based on the texture measure without
considering temporal gray value gradient, i.e. there may be landmark candi-

dates that are pinned to static structures contained in the candidate set.
« landmarks that are attached to a structure that is not unique.

« occlusion caused by the restricted field of view (landmark gets partially oc-
cluded at times when wandering outside the treatment aperture)

» unfavorable deformation that causes the landmark to lose its uniqueness within

the search window.

The regularization works as follows: once a set of initial landmark positions

{ P; | 7 =1,..., N} has been selected their relative geometric relationships are
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Figure 2.4: Tllustration of the regularization method for a case with N = 30
landmark candidates. (a) and (b) show EPID images acquired during lung SBRT
delivery of a patient. The position of each landmark candidate {pj|j =1,..., N}
on the initialization image [* is marked with a red cross and the individual
displacement vectors p;(¢;) are drawn in green. The average displacement vector
x(t;) is drawn as red arrow in the center. In (a) the displacement vectors of all
landmark candidates are shown before regularization (b) after regularization. In
(c) Aj; is depicted as color coded matrix: blue refers to small deviations, red to
large deviations.

stored as a symmetric N x N matrix

A5 = lIpito) — pj (2.5)

On each subsequent image the new landmark positions are expected to have a
similar geometric relationship to each other as on the initialization image. The
deviation from the initial relation can be calculated for ¢ > 0 as another symmet-

ric matrix:
Aij(t) = | A5 = llpi(t) — pi (D] ] (2.6)
While a certain degree of deformation and rotation are allowed, the relationship
of the landmarks should stay similar to the initialization image. This is used as
regularization criterion: the landmark with the greatest value of
Ay (t)
aj(t) = 32 (2.7)

i
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that is larger than a threshold is removed from the landmark set for the current
image and not used for calculation of the average motion trajectory. Landmarks
are iteratively removed until the values are below a threshold and we are left with
a subset {p;,|jx = 1,...,N(t;)}. Here N(¢;) is the current number of landmarks
remaining on image I(;) after regularization is applied. An example illustrating
this procedure is depicted in Figure 2.4.

From the N(¢;) remaining landmarks for image I(¢;) an average displacement
vector z(t;) is calculated which is the final output of each acquisition loop.

(1) = gy Sra (2.9

(2

Figure 2.4 gives an example illustrating the rejection of failing landmarks by
means of the regularization procedure that has been described here.

Implementation and Graphical User Interface

The STiL algorithm is implemented in Matlab® . To enhance the performance of
the tracking loop, the normalized cross correlation computation is implemented
in C++ with the help of the open source computer vision library OpenC'V. For
faster image acquisition a frame grabber with a basic C++ API was provided
by Varian Medical Systems (Palo Alto, CA, USA). It allows us to circumvent, at
least in the phantom studies, the memory restrictions imposed by the treatment
software system. The tracking loop of the STiL. algorithm can be executed in
real-time for an acquisition frequency of up to 12.86 Hz. This is discussed in
detail in Chapter 3.

Two graphical user interfaces were developed: one geared towards a retrospec-
tive interactive testing platform and one for visualization during real-time track-
ing. The first GUI allows the user to interact with all parts of the algorithm,
track tumors manually with tools developed for this study, explore each template
and its similarity map individually and interactively adjust the window/level. A
screenshot of the first GUI is shown in Figure 2.5; the second GUI is shown in
Figure 3.3.
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Figure 2.5: Graphical User Interface (GUI) used to browse tracking results and
define manual reference trajectory: (a) On the left is the original image (cropped
to the treatment aperture) shown. The green rectangle is the search region, the
reference landmark region location is marked in red, the matched one in yellow.
The colorwash on the right is the similarity map and the green cross indicates the
maximum, i.e. best matching location on the current image. (b) Manual tracking
tool. The red image is the reference image, the green one can be moved with the
mouse to match the red one. Opacity and opacity pattern can be adjusted by
the user with the mouse.
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2.3 Characterization of geometric accuracy

In order to characterize the algorithm’s accuracy it has been tested online with
a dynamic chest phantom as well as retrospectively with patient data from
SBRT treatments monitored with the EPID at the Dana-Farber Cancer Insti-
tute (Boston, USA). All data was acquired with a beam energy of 6 MV on a
Varian Trilogy TX featuring an AS-1000 amorphous silicon electronic portal im-
ager. While the hardware supports a raw resolution of 1024 x 762 pixels, data
was acquired at half resolution (512 x 382) to decrease memory requirements.
This was particularly important for image acquisition during patient treatments
because the vendor’s software did not allow the allocation of sufficiently large

image caches without system crashes.

To quantify the mean tumor centroid trajectory p{®(t) calculated by the tracking
algorithm an expert made a reference trajectory p(™ (t) by manually matching the
gross tumor volume (GTV) of a reference frame to all other frames in the portal
image sequence. Since it can be difficult (even for a human observer) to clearly
distinguish the GTV on portal images, the examiner was given the freedom to
choose any region containing visible structures of the tumor and exhibiting max-
imal motion. To measure the consistency of the verification tumor trajectory,
the set of portal images presented to the human observer included redundancies.
The standard deviation over all tumor centroid locations determined on a single
image was calculated. Also, the order in which the images were presented was
randomized to avoid any possible bias. We define the automatic tracking error
as the difference between automatic and manual position, i.e.

Aty = || p™t) - p (1) | (2.9)

and the manual tracking uncertainty as its standard deviation

A (1) = J]V(t)l—l 3 (pz(m)(t) — p(m) (t))Q (2.10)

i=1..N(t)

Here A(@(t) is the uncertainty of the tracking algorithm, A (t) is the verifi-

cation uncertainty, N(t) is the number of times image I(t) was presented to the
(m)

examiner, p;""(t) is the verification location at the i-th repetition and p(™(t) is

the average verification location over all repetitions.
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Figure 2.6: Setup for experimental verification: (a) The dynamic thorax phantom
is set up to an anterior-posterior (AP) field. (b) Example of a patient setup —
here for a right posterior-oblique (RPO) field. The (left) sides (a) and (b) shows
the beam setup as seen in the treatment planning software. the (right) sides show
the respective digitally reconstructed radiographs (DRR) with the planned MLC
leaf positions. For the patient, the I'TV contour is overlaid in blue.

The overall performance of the tracking algorithm on an entire image sequence
of N images in terms of geometry accuracy is measured by the root mean square

error:
2y (AW (5:))?

MSE =
RMS N

(2.11)

Figure 2.6 shows the experimental setup for both, dynamic thorax phantom and
patient data acquisition.

2.3.1 Geometric accuracy on phantom data

For the phantom study an anatomically realistically shaped dynamic chest phan-
tom was used (see Figure 2.7(a) and (Court et al. [12])). It consists of a torso that
has an anatomically correct inlay (bones made from solid water). To simulate
respiratory motion, the torso’s lungs are inflated/deflated with pressurized air
while a tumor mass mounted on a stick is moved in the superior-inferior direc-
tion by a separate motor. Both motions can be programmed independently. The
phantom tumor mass was modeled after the GTV extracted from a patient CT
and manufactured by rapid prototyping with a flexible resin (see Figure 2.7(b)).
The appearance of the phantom tumor in kV and MV images is very similar
to real patient images. The average CT number of the model tumor is 76 (at
120kVp), compared with 30 for the real patient (an effective difference in electron
density of 2%). Its physical density and hardness are specified as 1.3 gem ™ and
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Patient tumor Phantom tumor

Figure 2.7: (a) Dynamic chest phantom on the treatment table. The blue body
bag is used to have a more reproducible setup on the treatment table (and CT
scanner) - this device is also frequently used for lung SBRT patient setup. (b)
CT images of the original tumor and the model used in this study.
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Figure 2.8: Geometric accuracy of STiL. algorithm on phantom data: A sample
trace recorded with the dynamic thorax phantom is shown in (a). The manual
verification curve is depicted in red, with the error bars being the user variability.
The blue curve is the output of the algorithm. The absolute error is shown in
(b), the root mean square error computed to (0.8 + 0.2) mm
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27 durometers, respectively — the hardness for real tumors ranges 0-60 (Belyaev
et al. [4], Bloom et al. [9]), respectively.

While this phantom is the most realistic available, it is still an approximation
of reality due to a lack of deformation (shearing) and the relatively high tumor-
tissue contrast. However, it is an excellent tool to study the baseline performance
of the proposed tracking algorithm.

The phantom was programmed with internal / external motion data obtained
from implanted fiducial marker tracking during lung SBRT treatments at the
NTT Hospital in Sapporo, Japan (Shirato et al. [62], Berbeco et al. [7]). The
motion amplitude was in the range of 10 mm and the pixel size (at isocenter) was
0.436 mm x 0.436 mm (which represents half resolution images).

Results

A comparison of the tracking algorithm and the manual verification registration
for 42 portal images of an AP field is shown in Figure 2.8 (¢, = 0°, ¢. = 0°, 2 fps
at 800 mm vertical imager-isocenter distance). The tracking result is plotted on
the left: blue for image x and y direction together with the manual verification
in red for comparison. The error bars are derived from the standard deviation of
the repeated manual registration for each frame. The accuracy of the prospective
tracking implementation is found to be A@(t;) < 1mm with a RMSE = (0.8 +
0.2) mm.

2.3.2 Geometric accuracy on patient data

A typical lung SBRT treatment course at the Brigham and Women’s Hospital /
Dana-Farber Cancer Institute consists of 9 - 11 conformal treatment fields, some
of which may be non-coplanar. The prescription dose is either 54 Gy delivered in
3 fractions or 60 Gy delivered in 5 fractions. In all cases, 6 MV photon beams are
used. The treatment setup is accomplished in multiple steps, including patient
alignment in a stereotactic body frame, laser-guided setup of the frame to the
treatment room coordinates and registration of bony landmarks in stereoscopic
kV radiographs before a final 3D soft tissue manual registration with cone-beam
computed tomography (CBCT) is performed. During treatment delivery, the AS-
1000 EPID (Varian Medical Systems, Inc) is moved to 800 mm vertical distance
from the isocenter and operated in cine mode with half resolution at a frame rate

of 2 fps resulting in a pixel spacing of 0.436 mm in the isocenter plane. Each
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Figure 2.9: Histograms for the gantry angles (left) and couch angles (right) of the
analyzed patient data. The gantry angles ¢, # 0 denote “non-coplanar” fields.

frame is an average of four frames to enhance the signal to noise ratio (SNR).
The improvement in SNR outweighs any introduction of motion blurring. For
our study, in-treatment EPID images were successfully acquired for all treatment
fields of 9 lung SBRT treatment courses (19,942 portal images). This included
non-coplanar geometries. Although there was no pre-selection of the patients, in
order to establish a gold standard with which to compare the tracking, we only
included beam angles in the study for which an expert examiner was capable
of performing manual tracking, i.e. a minimum of visibility and motion was
required. A histogram of the beam angles and RMSE is given in Figure 2.9. 54
fractions from 34 beam angles were used for analysis with the first 40 images of
each fraction taken for verification, i.e. manual registration. A total of 2,182
images were manually registered to the respective first image in each fraction.
To minimize bias and to obtain a measure of reproducibility for the manual
registration, the images were presented in random sequence and each image was

shown 3 times.

Results

For the manual registration, a total of 6,546 portal cine EPID images (including
repeated images) were analyzed by an expert viewer. Figure 2.10 shows a sample
consisting of three fractions of an AP field with couch kick of 270°. In this
sample the tumor motion range in the superior-inferior direction is 13.1 mm
and the tracking error is < 2.3mm at all times while the average rms-tracking-
error is (0.9 £ 0.7) mm. It is apparent from Figure 2.10 that each fraction does
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Figure 2.10: Sample trace of 3 fractions for a field with ¢, = 30° and ¢, = 270°
(left): the manual tracking result taken as gold standard (red) is overlaid with the
algorithmic tracking results (blue). The error bars are the standard deviation of
the manual tracking. RMSE = (0.9 + 0.7) mm. The tracking error distribution
(normalized to unity) is shown on the (right).

not necessarily follow a similar breathing pattern. The breathing motion does
actually not have to follow any pattern at all as can be seen from Figure 2.12; the
motion range in the superior-inferior direction is 24.4 mm here. While the error
at each point in time is a good measure for accuracy validation, for dosimetric
lung SBRT verification and adaptive radiotherapy the most important measure
is the summed tracking error over time. We choose histograms to reflect this
for each field/fraction/patient as well as for all patients. Figure 2.10 (right)
shows an example for a single treatment field consisting of three fractions. In
Figure 2.11 the overall RM SFE distributions for manual tracking, no tracking at
all and automatic tracking are compared. The tracking accuracy is better than
the location uncertainty in the case of not tracking while it is not quite as good as
a human expert examiner, provided that our technique for estimating the error of
the expert examiner is appropriate. The rms tracking accuracy of the marker-less
algorithm was found to be (2.1 & 1.7) mm. Excluding the worst 9 series (out of
56) reduces the rms-error to (1.5 £ 1.1) mm. Without any tracking the rms-error
would have been (3.9 4+ 2.7) mm and the rms-uncertainty of the manual tracking
was found to be (0.9 + 0.5) mm.
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Figure 2.11: The top row shows the distribution of the rms-error from tracking
9 patients: no tracking, tracking algorithm, manual tracking (from left to right).
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Figure 2.12: An example for irregular breathing patterns (of a patient): pa-
tient 01, fractions 1 and 2. The manual tracking result taken as gold standard
(red) is overlaid with the algorithmic tracking results (blue). The error bars show
the variablility of manual tracking. The motion appears to be picked up well re-
sulting in an rms-error of (0.7 £0.2) mm. Also, notice that this is a non-coplanar

field geometry with couch angle ¢, = 270°, i.e. the superior-inferior direction is
parallel to the image x-direction.
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2.4 Discussion

There are several factors that may influence the performance of the real-time
tracking algorithm. First, we assume that any moving soft tissue within the
treatment aperture is an adequate surrogate for the tumor motion, i.e. there
could be cases in which the visible motion is not generated in the tumor plane
but above or below. As we are analyzing projection images we do not have any
depth information available. However, this may be addressed by analyzing the
pretreatment 4DCT commonly used for planning. There is good reason to be-
lieve that maximal texture appears at the border of lung tissue / tumor tissue.
Most of the fractions that failed in our study (RMSE > 3mm) did so due to
the fact that the tumor moved too far out of the aperture, resulting in an in-
sufficient number of landmarks for tracking. For these cases it would be helpful
to incorporate other information such as external surrogate tracking (e.g. Vision
RT, real-time position management (RPM), Varian Medical Systems or the Anzai
belt, Siemens Medical) or priors from the pre-treatment 4DCT and CBCT.

The accuracy of the algorithm in its current implementation also depends on the
quality of the first EPID image in the sequence. Since all subsequent images are
measured as an offset to this first image, problems with the first image may in-
troduce a systematic error. Updating the correlation may be a suitable approach
to address this problem in the future.

Another point of influence for the tracking accuracy is the parameter selection in
the algorithm, e.g. number of initially selected candidates, number of landmarks
tracked on each image (before regularization), landmark region dimensions and
search box dimensions We used one universal set of parameters for all cases to
ensure comparable results. The only parameter that is automatically adapted to
each treatment field is the search box dimensions, which are governed by Eq. (2.2).

2.5 Conclusions

We have developed a multi-region markerless lung tumor motion estimation al-
gorithm and applied it in phantom as well as in patient systems. While the
algorithm investigated works very reliably on physical phantoms with realistic
breathing motion it may not yet be applicable out of the box in a clinical sit-

uation. However, it appears to be a good candidate for further investigation if
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the hardware is improved for better image quality and higher image acquisition
frequency.
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3 Image guided radiotherapy with STiL

In Chapter 2 an algorithm for soft tissue motion estimation from continuously
acquired MV-EPID images was described. In this chapter an application to im-
age guided radiation therapy (IGRT) is presented: we integrate the soft tissue
localization (STiL) algorithm with dynamic multi-leaf collimator (DMLC) track-
ing software developed for the Varian platform (Sawant et al. [58]) and a frame
grabber device (Matroz Solios eV-CL) customized by Varian Medical Systems to
enable real-time image acquisition with their LINAC-integrated image acquisi-
tion platform (IAS3).

Section 3.1 motivates the concept of motion compensation with a dynamic multi-
leaf collimator and puts our approach to this into context with other concepts
that have already been briefly reviewed in Chapter 1. Section 3.2 gives a de-
tailed description of our experimental setup, integrating the STiLL algorithm with
the other components. Experimental evaluation of the concept using a dynamic
phantom driven by breathing traces recorded from patients during lung SBRT
delivery is presented in Section 3.3. In Section 3.4 the inherent issue of system
latencies and their impact on the geometric accuracy of motion compensation
systems is discussed in detail. A short overview of forward prediction algorithms
to overcome latencies is given and the reduction of geometric error with the lin-
ear predictor actually used for the experiment is characterized using internal and
external motion traces. Section 3.6 explores the application of the DMLC track-
ing concept in combination with a reduction of the treatment aperture during
treatment delivery to spare more healthy tissue. A chapter summary is given in

Section 3.6 and conclusions are drawn.

3.1 Introduction

Intrafractional target motion causes a blurring of the target dose distribution
which necessitates the irradiation of additional normal tissue surrounding the tu-

mor volume to achieve full dose coverage of the target and therefore local control

41
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Figure 3.1: To ensure full coverage of the target
area (GTV in gray) with the therapeutic x-ray
""""""""" beam despite the target’s motion the aperture
of the x-ray beam is opened up to the red area.
However, this also increases the dose delivered
to healthy tissue which limits the dose that can
safely be delivered without causing serious side
""""""""" effects. Therefore it would be advantageous if
one could follow the target area’s motion with
the radiation beam.

sup-inf motion

(see Figure 3.1). Thoracic and abdominal tumors often exhibit large respiratory
motion ranges in the centimeter range (Ekberg et al. [15], Seppenwoolde et al.
[60], Keall et al. [31]). At the same time stereotactic body radiation therapy
(SBRT) for non-small cell lung cancers (NSCLC) has been found to be a promis-
ing alternative treatment option to surgery (Fakiris et al. [17]), particularly for
early stage NSCLC and inoperable cases. However, due to the high doses per
fraction (cp Chapter 1.3) administered in SBRT treatments large safety margins
would be a huge concern for normal tissue radiation toxicity. As an example, to
underline the seriousness of the concern about normal tissue toxicity a phase II
clinical trial by Timmerman et al. [68|reported may serve : 8% of the patients
died in connection to radiation toxicity.

Hence, there is in this context great interest in techniques capable of mitigat-
ing (intrafractional) tumor motion. However, neither the breathhold' nor the
compression plate technique can reliably achieve a sufficient reduction of residual
tumor motion and respiratory gating has the disadvantage of greatly extending
the duration of the treatment. Beam tracking, however, can “freeze” the tumor
motion by following it with the treatment beam itself. This has been previously

proposed [30]. The procedure may be divided into two separate steps:
(i) A method for real-time target motion estimation.
(ii) A device to shift the radiation beam synchronized to the target position.

The main challenge for step (ii) was to develop a system with acceptable techni-
cal specifications concerning leaf position accuracy, velocity and response time.
There are currently 2 research platforms [66, 58] that provide real-time adjust-
ment of the treatment aperture in response to the signal of a motion capture

1See also Chapter 1 for a list of available techniques for tumor motion management.
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Figure 3.2: Data flow for the integration of frame grabber, STiL. algorithm and
DMLC tracker on the Varian platform. All non-clinically approved tools are
bundled on a separate computer that receives image data as input through a high
density connector cable and provides output in form of leaf position requests to
the MLC controller.

device.

Other publications have utilized fiducial marker tracking for step (i). Both, the
use of electromagnetically excitable markers (Calypso® ) as well as marker seg-
mentation from x-ray fluoroscopy images has been tested. However, as alluded
to in Chapter 1 implanting fiducial markers in the lung carries a high risk of
pneumothorax. Using the MV-EPID with soft tissue localization can avoid this
obstacle and can at the same time also avoid the exposure of the patient to any
additional dose since the treatment beam itself is used for imaging.

We therefore employ the STiL. algorithm described in Chapter 2 for step (i) and
a DMLC tracking system developed for the Varian platform [58] for step (ii).

?

3.2 System implementation on Varian platform

A system integrating fast image acquisition, real-time markerless image-based
target position estimation, a linear predictor and a DMLC tracking system de-
veloped for the Varian platform (Sawant et al. [58]) was built. In Figure 3.2 a
flowchart of this system is shown.

The frame grabber (Matroz Solios eV-CL) was provided by Varian Medical Sys-
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tems, Inc. together with research software (iTool) to give RAM buffer access
to their LINAC-integrated image acquisition system (IAS3). When compared to
saving the images first on disk (cp. Fledelius et al. [19], Poulsen et al. [48]), the
iTool can reduce the time AT, needed for image acquisition. The iTool research
software features both a C# and a C++ application programming interface (API)
giving programmatic access to the frame buffer. We chose the C++ API to allow
for an easy binding to the STilL component which was written in Matlab® and
C++. Acquired frames are pushed to Matlab® through a callback function that
can be assigned with the API as soon as they become available.

The STiL algorithm is embedded together with the prediction algorithm in a
Matlab® GUI to have real-time visual feedback for the user. The gui has an
interface accepting incoming frame buffers pushed over from C++. It is shown
in Figure 3.3 with the tumor model used for all phantom experiments. The
resulting target positions p(¢;) (red arrow in the figure) are fed into the predic-
tor that uses the first N, positions for training. The forward predicted position
p(t; + dts) is sent as a plain text message via User Datagram Protocol (UDP) to
the DMLC component which calculates and then requests the new leaf-positions

by communication with the MLC controller.

3.3 Characterization of implementation

The system latency and expected geometric accuracy of the integrated system, as
described in Section 3.2, are measured with the help of a programmable dynamic
phantom ( Washington University 4D phantom) using the same realistic lung tu-
mor model used in Section 2.3.1 as a phantom target. The Washington University
4D phantom consists of 3 translation stages mounted orthogonally to each other,
allowing the motion of a tray of solid water on arbitrary motion trajectories in
3 dimensions. The phantom trajectory positions are sampled at a frequency of
50 Hz, exceeding the imaging system’s maximally available frame rate of about
13 Hz. As an additional feature, an independent fourth axis can be driven to

simulate the motion of an external surrogate.

Aperture position segmentation

To evaluate latency and geometric accuracy, it is necessary to measure the target
position pg,(t) and the aperture position p,.(t) at the same time. This can be
easily done from the EPID images as they contain both, the target and the MLC
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Figure 3.3: (left) Setup used for the demonstration experiment with the Wash-
ington University 4D Phantom. The resin tumor model rests on a solid water slab
that is mounted to the motion stages of the phantom. The treatment field light
is on to show the outline of the radiation field. The tumor modeled is centered
in this field for initialization. (right) Graphical user interface (GUI) for real-
time visual feedback during tracking operation. Each green arrow corresponds
to a landmark, the red arrow to the average landmark position (which is fed to
the predictor). The window/level of the image was adjusted to let enhance the
display contrast for the tumor model.

aperture. The target position is already known and we define the MLC posi-
tion to be the geometric center of the aperture opening. To calculate aperture
position in an automated fashion, a simple segmentation algorithm is employed.
Since the gray value gradient VI(z,y) is commonly much larger at the edge of
the treatment aperture than anywhere inside the aperture, a gray value gradient
based edge detector (canny filter[10]) is used to find the rim of the treatment
aperture. A typical resulting binary image is shown in Figure 3.4. Because the
collimator leafs adjacent to the aperture cannot be completely closed for technical
reasons, the resulting gray value gradient introduces artifacts not belonging to
the treatment aperture in the canny edge. To remove this effect the original im-
age is pre-processed with a 2d gaussian filter and the binary edge image is further
processed with a labeling algorithm that allows to find 4-connected regions. The
remaining rim between outside aperture region and inside aperture region does

not contain artifacts and its pixels are used as treatment aperture delimiters (see
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Figure 3.4: Automated calculation of the treatment aperture centroid position.
On the (left) the input image with tumor model and circular treatment aperture
visible is shown. The position of the treatment aperture is calculated by first
finding the outline of the aperture with the help of an edge detector (canny
filter), then finding 4-connected regions in the resulting binary image (middle),
getting rid of any artifacts from the edge detection. If the aperture is circular, a
Taubin-fit is made to the aperture rim pixels to get center position and radius.
The input image with overplayed Taubin-fit is shown on the (right).

Figure 3.4(b)).

For circular apertures, the center of the treatment aperture can then be easily
calculated from a Taubin fit to the previously calculated treatment field edge
pixels. If the treatment aperture has a more complicated shape or is not known
up front, the aperture position can be determined as the center of the smallest
rectangular box wrapping around the aperture rim. All steps of this procedure

are demonstrated in Figure 3.4 including the circular fit.

3.3.1 System latency analysis

The geometric accuracy improvement from incorporating a prediction algorithm
depends on adequate training data. The quality of the training data relies on
the number of data samples available for training, how well the training data
represents the motion to be predicted and how accurately the look-ahead time 7
matches the system latency dt;.

To determine the look-ahead time, the system latency is measured using the
setup sketched in Figure 3.2 without the predictor. The aforementioned dynamic
phantom is employed to drive a sinusoidal motion with a cycle time of 7' = 4.5s
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and a peak-to-peak amplitude of A = 20mm in the superior-inferior direction,
i.e. in the leaf-motion direction. With respect to motion range and cycle time
this scenario is a sufficiently realistic simulation of respiratory motion observed
clinically during radiotherapy delivery. Running the system without a prediction
algorithm in place results in a shift between target position and aperture position
of the MV beam. Calculating the phase shift A¢ between a sinusoidal fit to the
target positions pg,(t;) and a sinusoidal fit to the treatment aperture position
Pmic(t;) yields the system latency:
Ao

Results

The results of the system latency measurement for our experimental implemen-
tation is shown in Figure 3.5 on the left side for an image acquisition frequency
of 12.86 Hz (and motion parallel to the MLC leafs). This setup yielded a system
latency of oty = 220 — 230 ms. The fluctuation occurred on the same treatment
machine but with several hours between measurements. The fluctuations are
most likely caused by the processor and RAM load level of the tracking com-
puter (cp. Figure 3.2).

For the measurement a constant time delay between the point of image acquisi-
tion and the mlc-leafs reaching their requested position is assumed. However, as
can be seen from the histogram on the right side of Figure 3.5, depicting the time
needed for image acquisition, this is not the case. The variation in the latencies
introduces uncertainties that may not be mitigated with a prediction algorithm,
since the predictor operates with a constant look-ahead time 7 determined by the
system latency dt,.

3.4 Prediction of Breathing Motion

For any system attempting to compensate tumor motion by image guided tar-
get tracking there is an inherent implementation specific time interval that is
needed for the process of image acquisition, position calculation and hardware
adjustment. In the context of dynamic aperture adaptation we define the system
latency dt, to be the time interval needed for the aperture position to reach a
given target position. The aperture will therefore reach the target position p(t;)

calculated from an image acquired at time t;, at time ¢ = t; + dt, introducing a
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Figure 3.5: Measurement of system latency at a frame of 12.86 Hz with a dynamic
phantom driving a sinusoidal motion in the inferior-superior direction. The mo-
tion range was set to 20 mm and the breathing cycle period to T' = 4.5s. (left)
Sinusoidal fits to tumor position (red) and aperture position (blue). The system
latency is determined by the phase shift and the frame rate. We measured values
of 0t = 220 — 230 ms. (right) Histogram of the image acquisition timing. The
second peak at 90 ms most likely comes from internal memory management.

geometric error. The magnitude of this error naturally depends on dt; and the
target velocity.
As a measure of the average geometric error over the course of a treatment de-

livery, the root mean square deviation (RMSE) is employed:

1 N

RMSE - J N : Z ( pmlc<ti) - pgtv<ti> )2 (32>

=1

Here ppc(t;) and pge,(;) are the treatment aperture and the target position at
time t;, respectively. N is the number of sample points in the motion trajectory

examined.

Latency induced geometric error estimation with patient data

To get an estimate for the system latency induced geometric error separately from
any other error contributions, we perform a simulation with a set of 3D lung tumor
traces. These trajectories were recorded with a commercial fluoroscopic real-time
tumor tracking system (Mitsubishi FElectronics Co. Ltd., Japan) that utilizes
orthogonal x-ray tubes to locate fiducial implants during long SBRT treatments
(Shirato et al. [62]). The dataset consists of 172 traces sampled at 30 Hz that
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Figure 3.6: Quantification of RMSE contribution from system latency by a sim-
ulation based on 172 breathing traces from 11 patients during radiotherapy de-
livery. The imaging frequency is chosen to be 12 Hz. (a) shows the mean RMSE
of all traces versus system latency dts. (b) shows the RMSE for each trace in-
dividually; the red bars mark which traces belong to one patient. (c) shows for
0ty = 250 ms a histogram of the RMSE from all 172 traces.
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stem from 11 patients treated for non-small cell lung cancer (NSCLC).
A time delay dt, is introduced to generate treatment aperture positions

pmlc(ti) = pgtv(ti + 5ts)a 1= ]-a ce 7N (33)

from the recorded target positions py.,(t;) by (linear) interpolation. Figure 3.6(a)
shows the latency induced geometric root mean square error (RMSE) as a function
of the total system latency dt,. As an example, the shortest latency time achieved
in our experiments (cp. Section 3.3) is dt; = 221 ms and results in an error of
RMSE = (1.840.8) mm. By comparing to the STiL performance with RMSE =
(0.8 £ 0.2)mm (cp. Section 2.3.1), this demonstrates potential significance of
latency with respect to fidelity.

However, whereas geometric errors in the target localization may be difficult to
reduce without improved imaging hardware, latency may be overcome through

the implementation of prediction algorithms.

Implementation of a prediction algorithm

To reduce the latency induced geometric error, we need to estimate for each target
position p(t;) a future target position p(t; + 7,). The underlying assumption in
finding this estimate is that the target location at time (¢; +7,) may be expressed
as a function of the N, previous target positions {p(t;) | j = (i — N,),...,i}, i.e.
we need to define an adequate prediction function

Jo o (pltny)eosp(t)) — Bt +7) (3.4)

Several techniques for constructing f, have been proposed and compared in the
literature: Sharp et al. [61] compared linear prediction (LP) with an artificial
neural network (ANN) and a Kalman filter (KF) using patient data traces as
simulation input. Considering imaging frequencies of 1-30 Hz and latencies from
33-1000 ms they found ANN and LP to give similar results and consistently
outperform KF. Ernst and Schweikard [16] proposed the use of support vector
regression (SVR) and Ruan [57] proposed a kernel density (KD) based predic-
tion algorithm. Krauss et al. [36] implemented and compared LR, ANN, SVR
and KD including extensive model parameter optimization on the same dataset
from Hokkaido mentioned before. They found the ANN algorithm to work best,
closely followed by SVR and LR and all algorithms performing far better than
KD.
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Comparing the complexities of the algorithms, we have found linear (ridge) regres-
sion to be a rather fast and simple, yet still appropriate method for construction
of f, (cp. Krauss et al. [36]). In this case the prediction function f, can be
explicitly written as

fyl@i) = a’a; + g (3.5)

if we define x; = (p(ti,Np), oo p(t) ) For practical purposes the constant
term g can be omitted if we pre-process all input data to have a mean value
of zero. Additionally we can neglect any kind of scaling differences between
training data and testing data? if all input data is normalized to have a standard
deviation of unity. The transformation is applied to each position p(¢;) in the
form of a sliding window operation using the N, previous positions to calculate
the standard deviation o; and the mean value m;

plty) = ——r (3.6)

if we use

mo= 3 MW LSS ey —m (3)

k=i—Np, ~'P (N, — 1) k=i—Np

Considering a set of N; value pairs of training data: {(&;,9;) |i=1,...,N; }
with normalized predicted positions g; = p(t;47) that may be calculated by linear
interpolation, the weight vector o can be written as an analytic expression:

a=(XTX+ )XY (3.8)

Here X = (&1,...,&n,)" € (RM xRM) is a matrix containing in each row a train-
T

ing vector x;, Y = (y}, e ,ngp) is a column vector containing the interpolated

target positions at times (t; +7) and A is the Tikhonov regularization parameter,
which helps to keep the matrix inversion also for the cases of a poorly condi-
tioned X numerically stable. There is one free model parameter (A) which can
be freely chosen. Krauss et al. [36] have found that a patient independent tuning
of prediction model parameters is generally adequate, so we follow this approach

and tune this parameter with traces that are not later used for prediction.

2This is particularly convenient if other sources of input are used in a complementary way
as for instance external surrogate data for training the model.
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Figure 3.7: Linear predictor performance on uniformly sampled patient data
traces (recorded from lung SBRT deliveries). (left) A sample tumor trajectory
(superior-inferior direction). The marked areas are from left to right: training
data used to build the model, waiting data (to allow for model calculation),
training data to train the model and finally application of the predictor. During
the last section the red line is the predicted curve shifted by the expected system
latency dts. Therefore perfect overlay with the blue curve would mean RMSE =
0. (right) The resulting root-mean-square (RMSE) error during the prediction
period: without any tracking (black/green), with tracking but without prediction
(blue) and with tracking and prediction based on models trained with internal
tumor motion data. The black stars mark the traces that were later delivered to
a dynamic phantom.

Estimated predictor performance on uniformly sampled motion traces

To estimate the geometric prediction error without any influence from other
sources of uncertainty, e.g. the measurement of the target positions p(t;), the
aforementioned prediction algorithm was tested with patient tumor trajectories
taken as ground truth. From the original 172 traces, 114 traces were selected.
The sole selection criterion was to have > 1015 sample points available. Each
trace was then divided into a training data set of length N;, a waiting time of
length N, sample points giving sufficient time to calculate the model and the
actual test data set of length N, samples during which the predictor model is
first trained for N, samples and then applied to the remaining sample points.

The following table gives an overview of the parameters used:
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Figure 3.8: A comparison for using internal tumor motion data versus external
surrogate motion data to build a linear prediction model. The RMSE for training
with internal data is depicted in blue and for training with external surrogate
data in red. The RMSE for not using any prediction at all is shown in pink
for comparison. The green/black stars denote the three trajectories used for the
physical phantom study.

parameter H frame rate ‘ T = 0t A ‘ N, ‘ N; ‘ Noyait

value | 1286 Hz | 250 ms | 0.025 | 100 | 450 | 100 | 450

A sample tumor motion trace is shown in Figure 3.7 on the left and the resulting
RMSE for all examined traces is depicted on the right. The time needed to
calculate the linear prediction model was < 150ms for all traces and (52 + 11)ms
on average, i.e. a waiting time of N,.; = 3 would be already sufficient in this
scenario to calculate the model.

It is apparent from Figure 3.7 that linear prediction can generally reduce the
geometric error introduced by a well defined system latency.

Training with an external surrogate

Using the therapy beam to acquire the data required for the prediction model
calculation may be inconvenient in clinical operation: with parameters chosen
for this study about 35 s beam-on time would be necessary. An approach to
get around this problem may therefore be to calculate the model not from EPID
images but from external surrogate data. To investigate this option the com-
plementary external surrogate data of the lung tumor trajectory data set was

utilized instead of the tumor position for training the model - everything else was
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kept as in the previous section. The result is depicted in Figure 3.7 as the dashed
pink line. While the performance is patient dependent, overall, training with
an external surrogates gives similar results as training with the internal target
position. Therefore it may be worthwhile to consider this option where direct
tumor motion data for model building is not available.

3.5 (Geometric accuracy with realistic phantom
data

To quantify the geometric accuracy of the integrated tracking system as depicted
in Figure 3.2 three lung tumor traces were selected by longest duration, largest
motion range and most irregular motion pattern. The superior-inferior motion
direction of each trace was loaded to the 4D motion phantom and a radiation
beam with a circular aperture covering the lung tumor phantom was delivered.
A photograph of the setup in the treatment room is shown in Figure 3.2. The
predictor model was trained in a separate session before with the predictor look-
ahead time set equal to the previously measured system latency (7 = dt5 on that
day). The other predictor parameters were chosen to be the same as listed in
Section 3.4. Also, the STiL algorithm was initialized ahead of the start of the
phantom to avoid too fast motion requests for the treatment aperture, potentially
triggering a beam hold, once the initialization is finished. The unreasonably fast
motion requests are due to the serial implementation of the STiL algorithm?,
i.e. the frame processing is blocked until the initialization is completed and then
catches up as fast as the operating computer permits.

A time buffer of 100 frames is given after the phantom motion is started for the
aperture to synchronize with the target motion. Thereafter the model is trained
for N, = 100 frames before prediction is started.

Results

The three sample traces investigated in this study are shown in Figure 3.9 with
their respective error histograms. The STiL algorithm operates in real-time and
provides target positions to the predictor that allow the treatment aperture to
follow the target motion in real-time keeping the aperture statically centered on
the target. The error histogram also clearly shows a shifts towards smaller errors

3Matlab® does not permit multi-threading in the version we used (2008a).
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Figure 3.9: Experimental results of the physical phantom study. Each row refers
to the delivery of one lung tumor trace. The RMSE from top to bottom are before
— prediction starts: 1.9mm — 0.9mm (top), 1.4mm — 0.6 mm (middle),
1.8mm — 0.7mm (bottom) (left column) The target position (red) and
the aperture position (blue) are plotted over time. The black/green dotted line
denotes the start of prediction. (right colummn) Error histograms for each trace
before prediction is in place (blue) and after (red). The histogram is normalized

to unity integral counts.
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once the predictor has started operation. The results are summarized in the table

below:
static beam DMLC | DMLC + LR | Static beam | static beam
A | RMSE [mm] | RMSE [mm] | RMSE [mm] v M
DMLC | DMLC + LR
1 3.4+ 3.8 1.9+ 1.9 0.9+ 0.9 55 % 27 %
2 3.2 4 3.2 14414 0.6 + 0.6 43 % 19 %
3 2.4 424 1.8+ 1.8 0.7+0.7 4 % 29 %

For the investigated traces it is shown that DMLC tracking with a linear predic-

tior can significantly reduce the residual tumor motion.

3.6 Summary and discussion

In this chapter we have consecutively stepped through the building blocks of a
real-time DMLC tracking system based on soft tissue localization from cine MV-
EPID images and demonstrated its performance on a physical dynamic phantom.

As a prerequisite, the expected system latency (dts) induced geometric (root-
mean-square) error of a perfect’ DMLC tracking system was calculated as a
function of dt, in a simulation study based on a set of 172 lung tumor trajectories
recorded from lung SBRT deliveries. Plotting the RMSE over dt, shows a sharp
increase of RMSE for small latencies. It is therefore advisable to keep the sys-
tem latency at a minimum e.g. through fast image acquisition and a high frame.
The frame rate reduces the system latency because the motion requests to the
MLC leafs are for smaller distances. For the system latency of our experimental
setup (see below, 0ty = 220 ms), we calculated an expected average RMSE of
(1.8 £0.8) mm.

In order to mitigate the residual system latency induced geometric error, a linear
prediction algorithm was implemented. It’s performance for our specific system
latency is simulated on the same lung tumor motion trajectories. The prediction

algorithm is found to reduce the residual geometric error in all 112 trajectories

4Perfect in the sense that a fixed system latency but no uncertainties from position mea-
surement or leaf-motion assumed.
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investigated and is therefore considered appropriate for the purpose of system
latency induced geometric error mitigation.

A physical implementation of the system was conducted by integrating a frame
grabber for fast image acquisition, the STiL algorithm for real-time target local-
ization, the linear predictor and a DMLC tracking(Sawant et al. [58]).

The system latency was measured (without linear prediction) using a dynamic
motion phantom driving a realistic lung tumor model on a sinusoidal motion tra-
jectory. The trajectory parameters were chosen to resemble human respiration
(20 mm peak-to-peak, T' = 4.5 s) and the motion was directed in the superior-
inferior direction, in parallel to the MLC leafs. Radiation with a circular treat-
ment aperture was delivered to the phantom and the phantom motion extracted
from cine EPID images with the STiL algorithm was tracked with the therapy
beam aperture in real-time. A system latency of dt, = 220 — 230 ms was ob-
served. We attribute the fluctuation in 6t, to CPU and RAM load fluctuations
of the tracking computer.

The motion compensation abilities of the integrated tracking system were exper-
imentally characterized with the same setup used for the latency measurement.
Instead of a generic sinusoidal motion trajectory, lung tumor trajectories recorded
from patients during SBRT deliveries were used. The motion was directed in the
superior-inferior direction and parallel to the MLC leafs.

DMLC tracking was found to reduce the residual geometric error introduced
by intrafractional tumor motion by more than 42% on average in this dynamic
phantom study. The integration of a linear predictor in order to mitigate the
geometric error induced by the system latency of t, = 220 ms can reduce the

residual geometric error to below 1 mm.

Outlook: Dynamic aperture shrinking

Shrinking the treatment aperture once tracking has been established can poten-
tially open the door to a significant reduction of normal tissue toxicities and/or
further radiation dose escalation. A qualitative retrospective simulation study
(Rottmann et al. [55]) utilizing MV-EPID images acquired from patients under-
going lung SBRT treatment for NSCLC was undertaken. To overcome the slow
sampling rate of 2 Hz, the adjustment of the aperture position was performed

with the position estimate on the same image. The feasibility of the aperture
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Figure 3.10: Simulation of aperture shrinkage during 3D conformal radiotherapy
delivery. (top) MV-EPID images were acquired during a lung SBRT delivery at
a sampling rate of 2 Hz with a Varian AS-1000 EPID. Only the pixels within the
GTV (contoured in red) were used to estimate the GTV position on the next im-
age (no prediction algorithm was used). The green arrows mark the displacements
of the individual landmarks, the red arrows the average displacement. (bottom)
Trajectory of tracking with the simulated shrunk treatment aperture from above
(~ 50% of the original (PTV) aperture area contoured in green). The aperture
is moved to the concurrently tracked position (rather than to the next one) to
overcome the long latency introduced from the low sampling rate (2 fps). For the
two positions marked in green tracking failed and the margin would need to be
increased back to PTV margins.
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shrinking concept utilizing the STiL algorithm was investigated qualitatively.
The bottom row of Figure 3.10 shows the resulting motion trajectory. Only for
the points circled in green tracking failed.

It should be pointed out that the presented strategy does not impose more over-
dosage risk to the patient than a regular treatment with the full aperture since
the motion of the GTV aperture is restricted to within the PTV area. Also, as
soon as a tracking failure would be detected, the field would be opened up back
to the PTV size.

However, the low sampling rate of 2 fps somewhat limited the ability to draw
conclusions for a realistic clinical scenario. So, further study will be required to
confirm the initial findings on imagery acquired with a higher frame rate and
to investigate efficient methods for failure detection and mitigation. Figure 3.10

shows EPID images from the simulation illustrating the concept.

3.7 Conclusions

We have demonstrated in a physical phantom study that using a soft tissue lo-
calization (STiL) algorithm to drive real-time beam aperture adaptation during
radiation delivery is feasible. Using the MV-EPID for image acquisition and a
markerless STiL algorithm to estimate tumor motion is an advantage when com-
pared to other systems that utilize an on board imager (OBI) with implanted
fiducial markers. Our approach neither adds any additional dose nor does it
expose the patient to the risk of pneumothorax from the marker implantation
procedure.

The inherent system latencies induce a geometrical error, i.e. a lag between
tumor and treatment aperture position. We demonstrate that the magnitude
of this error can be efficiently reduced by employing a simple linear prediction
algorithm. We also show that the model for this algorithm can be derived from
internal (tumor position) as well as from external (surrogate) training data.
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4 Delivered dose calculation with STiL

In this chapter a simple method for delivered dose calculation with the MV EPID
is presented. Section 4.1 motivates the calculation of delivered dose in general
and in particular using the electronic portal imaging device and the treatment
planning system. In Section 4.2, a method based on 2D tumor trajectories gen-
erated with the STiL algorithm (cp. Chapter 2) is proposed. The method is
demonstrated with a simple application to both phantom data and patient data

in Section 4.3. A summary and conclusions are given in Section 4.4.

4.1 Motivation: delivered dose vs planned dose

The clinically delivered dose may differ from the planned dose in external beam
radiotherapy. This is mainly due to setup uncertainties, interfractional changes
of patient anatomy (e.g. from tumor shrinkage due to the radiation exposure)
or intrafractional organ motion due to respiration, heart beat or bowel move-
ment (depending on the treatment site). These effects are well known and taken
into account during treatment planning by assigning enlarged treatment mar-
gins. It is generally assumed that this strategy provides sufficient dose coverage
to establish local control. If the treatment consists of about 30 fractions, ran-
domly distributed errors in the positioning of the patient on the treatment table
(setup error) may average and the effects of a very poor setup during one fraction
are less likely to compromise the treatment outcome. However, hypofractionated
treatments with only 3-5 fractions are more sensitive to uncertainties because the
dose per fraction is much higher and margins are usually kept small to minimize
normal tissue toxicity. In this context techniques for the calculation of delivered
dose are highly desirable.

Accurate dose calculation requires knowledge of the patient’s electron density
distribution throughout the treatment. However, continuous volumetric imaging

is not (yet) clinically available. Therefore some assumptions are necessary to
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address the problem with currently available equipment.

The most straight-forward approach is to use already available volumetric CT
data, which may include a 4DCT data set taken a few weeks before treatment
and daily 3D or 4D CBCT’s that are often used for patient setup and treatment
verification before and after fraction delivery. For each voxel, a displacement
vector can be calculated with the help of deformable image registration algo-
rithms, resulting in a deformation vector field (DVF) that maps each voxel from
the various CT’s to the planning CT used for dose calculation. This approach
is for example followed by Flampouri et al. [18]. This technique is suitable to
capture interfractional changes of the setup and patient anatomy. Intrafractional
motion however, cannot be directly resolved in this approach and is modeled
from the motion patterns seen during imaging sessions rather than during treat-
ment delivery. For targets within the lung, respiratory motion is a major source
of uncertainty with respect to both accurate setup to a moving target and in-
trafractional motion. To accurately describe respiration on a voxel grid, the DVF
has to become time dependent, i.e. we need to find for each voxel a displacement
trajectory DVF; ; 1 (t) that describes its motion and deformation throughout the
treatment delivery.

The only (currently) available image data during treatment delivery are kV-
fluoroscopy and MV-EPID images. While kV-fluroscopy has excellent contrast
and resolution, the portal imager captures the exit dose without adding any ad-
ditional patient dose (Kilby and Savage [33]). There have been several studies
utilizing the EPID: Nijsten et al. [45] compare the the central field dose back-
projected to a certain water equivalent depth with the planned dose taking the
dose discrepancy as an indicator for in-treatment errors. McDermott et al. [41]
and Louwe et al. [40] use the EPID information in combination with CBCT to
reconstruct 3D dose distributions.

However, all of the above studies do not utilize the tumor motion information
directly for dose calculation but rely on pre-treatment imaging alone for this part.
We therefore follow an approach that explicitly incorporates the target motion
into the delivered dose calculation.

4.2 EPID based delivered dose calculation

We monitor the treatment delivery with continuous MV-EPID imaging and

retrospectively calculate the target position throughout the treatment.
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Figure 4.1: Workflow of the 3D dose calculation procedure. The time flows from
left to right: treatment planning, delivery with EPID acquisition, linking the
planning CT coordinate system to the EPID coordinate system by manual regis-
tration, calculation of tumor motion with the STiL algorithm, fluence convolution
(cp. Eq. (4.1)) and dose calculation with the treatment planning system.
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Figure 4.2: Manual registration of the EPID sequence to the planning CT. On
the (left) a digitally reconstructed radiograph (DRR) of the patient is shown. In
the (middle) a sample EPID image of the same treatment field is shown. On the
(right) the registration tool is shown. The tool was kept quite similar to the tools
used in the clinic: it allows translational movement of an image to be registered
(green) over the reference image (red). Each beam/fraction sequence of EPID
images was registered to the planning CT in this way.

To simplify the situation, we assume the target to be static within the patient.
Then target motion can be described as a rigid body transformation of the whole
patient and delivered dose can be calculated by simply shifting the patient CT
images according to tumor motion. Considering only co-planar beam geometries,
tumor motion in the beam direction can be regarded as negligible compared to
motion in the plane perpendicular to the radiation beam. Additionally, tumor
motion parallel to the radiation beam is dosimetrically less important because of
the shallow depth dose falloff for photon beams (see Figure 2.1). In conclusion it
may be sufficient to use only two dimensional tumor trajectory information from
an isocentric plane perpendicular to the radiation beam axis to approximate the
3D tumor motion.

The procedure for calculating delivered dose is the following (cp. Figure 4.1):

i) The treatment is planned as usual and the delivery is monitored with con-
tinuous EPID imaging.

ii) The STiL algorithm is used to estimate the tumor trajectory within the
isocentric plane perpendicular to the radiation beam at N points { p; =
p(t;) | i =1,...,N } each corresponding to one portal image. The origin
is linked to the planning CT by manual registration of a reference EPID
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image I* to a digitally reconstructed radiograph (DRR) generated with the
treatment planning system (TPS) for each treatment field.

iii) The delivered dose is calculated with the clinical treatment planning system
(Eclipse by Varian Medical Systems, Palo Alto, USA) using the original plan-
ning CT. Instead of performing for each of the N target positions a separate
dose calculation and then integrating over the resulting dose distributions,
it is significantly less computationally expensive to integrate shifted fluence
maps and then calculate the delivered dose in one step. For each beam direc-
tion - identified by gantry and couch angle (g, c) - the planned fluence map
®,. = D,.(z,y) is exported in order to calculate a delivered fluence map.
The planned fluence map @, . is shifted for every time step {t;|i =1,..., N}
by the displacement vector p(t;) = ( @) pgy))T. The delivered fluence map
is then given by the integral over all partial fluence maps normalized to the

number of time steps:

1
N :

=1

(I)gc(x? y) = q)g,c(x - p;'ta Yy —= p?) (41)

The delivered fluence map ®2_(x, %) is then imported back into the TPS to

g,c
calculate the delivered dose.

4.2.1 Verification with a dynamic thorax phantom

To validate the concept, a phantom study was conducted comparing the delivered
dose calculated with the proposed method to measurements taken with 15 metal
ozide semiconductor field effect transistors (MOSFETs)! placed inside the target.
The goal of this study was to show that the calculated delivered dose exhibits a
similar dose drop off for setup errors and/or unexpected changes in motion range

that exceed ITV/PTV margin as an actual measurement.

The resin tumor model (already introduced in Section 2.3.1 and described in
detail in (Court et al. [12])) was used as the target. For this purpose it was
constructed with small fissures to hold the MOSFETS. A picture is shown on the
right side of Figure 4.3. All measurements were taken on a Novalis TX clinical lin-
ear accelerator with a CIRS dynamic thorax phantom (see left side of Figure 4.3).
The CIRS phantom can be programmed to drive the target according to arbitrary

!Standard MOSFET, Best Medical, Canada
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Figure 4.3: Experimental setup for the verification experiment with a CIRS dy-
namic thorax phantom. On the (left) the phantom is depicted on the treatment
couch of a Novalis TX treatment machine with the EPID in imaging position in
the ground. The MOSFET readout electronics are visible on the left foreground.
In the (middle) the tumor model embedded in a slab of modeling clay is shown.
This lung density inlay was custom fitted for the CIRS phantom. The cables
hanging out from the back connect the MOSFETs to the read-out electronics.
On the (right) a closeup of the resin tumor model is shown. The light stripes are
the fissures in the model made for the MOSFET.

superior-inferior motion traces. We chose a patient data trajectory recorded with
the Mitsubishi RTRT system in Hokkaido (see Chapter 2) that showed a large
superior-inferior tumor motion and set the average peak-to-peak motion range to
15mm. A planning 4DCT was taken and a 3D conformal treatment plan mim-
icking a lung SBRT treatment was created using maximum intensity projection
to define an ITV and a 5 mm margin surrounding the ITV to define a PTV (cp
(right) side of Figure 1.3). The plan consisted of 7 coplanar beams (¢. = 0°).
Since the effect of superior-inferior motion is rather small for non-coplanar fields
in beams-eye-view (slow photon depth dose curve fall-off), no fields requiring
couch rotations were applied. On a static CT, acquired with no target motion,
the 15 MOSFETs were contoured as small enclosing volumes. The measured de-
livered dose can then be defined as the average dose within these small contoured

volumes.

To avoid pushing the MOSFETS to their dose collection limit with a single SBRT
treatment delivery, the fractional dose was chosen with 200 ¢Gy to be a fraction
of a typical lung SBRT case (12-18 Gy). However, to keep the treatment deliv-
ery time similar to clinical practice the dose rate was lowered from the clinically
typical 600 MU /min to 100MU/min. The treatment duration was then ~ 25 s
of beam-on time per treatment field, which is about average for clinical SBRT
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patient treatments.

MOSFETs need to be calibrated for absolute dose readings and there are nu-
merous publications available on this topic [49, 59]. However, to verify that our
method can recover motion effects on delivered dose, it is sufficient to calibrate
against a static delivery (no tumor motion) of the prepared plan, i.e. for each
MOSFET a calibration factor ¢; is calculated and applied to the delivered doses
calculated with the TPS:

Dyps = ¢; D5

TPS

dose measured with MOSFET (4-2)

 dose calculated with treatment planning system

with ¢

The phantom was set up on the treatment table with orthogonal kV radiographs
to match the PTV to the planning CT. The following combinations of artificial

setup errors and superior-inferior motion range were chosen:

trial number 112131415

peak-to-peak motion [mm]| || 0 | 15 | 30 | 15 | 15

setup error [mm)] 0| 0| 0]10]20

During radiation delivery MV-EPID images were acquired at a frame rate of
3 Hz while the portal imager was set at an imager to source distance of I.SD =

180 ¢m, resulting in an isocenter pixel spacing of 0.43 mm.

Results

The results of the verification experiment are shown in Figure 4.4. As expected
the measured dose agrees with the calculated dose well for the measure points
that stay within the treatment aperture (PTV) at all times. For the measure-
ment points that move partially out of the PTV during radiation delivery both,
the measured as well as the calculated delivered dose show a drop off as ex-
pected. However, increasing discrepancies can be observed for increasing setup

error/motion range. There are several factors contributing to this phenomenon:

(i) The calculated delivered dose is defined as the average over a small volume
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Figure 4.4: The (left) side shows a coronal plane of the static CT with the PTV
contour drawn in pink. There are also four of the MOSFET contours visible in
this plane, the white stripes are the fissures containing the wires for the readout.
On the (right) side the measured and corrected calculated dose are shown for all
setup errors and motion ranges.

surrounding the actual point of measurement. Therefore a steep dose gradi-
ent in the vicinity of the MOSFET location may show in the average value
while it does not in the MOSFET reading.

(ii) The calculated dose is time sampled, i.e. the fluence map is only shifted

once every 333 ms, potentially accelerating the previous effect even more.

(iii) For the AAA algorithm, used to calculate the dose in the TPS (Eclipse,
Varian Medical Systems), dose deviations have been reported for beams
going through the lung (up to 7 % for 6MV photon beams (Robinson [50])).

However, in summary it has been shown with this experiment that the trend of

underdosage can be observed with both, measurement and calculation.

4.3 Example for a lung SBRT delivery

To demonstrate the delivered dose calculation method in a realistic scenario, a
lung SBRT treatment was monitored with continuous MV-EPID imaging at a
frame rate of 2 Hz. To reduce noise in the MV images, each frame was the aver-
age of 4 frames, i.e. the raw imaging frequency was 8 Hz. The patient received
a total of 60 Gy in 5 fractions to each 12 Gy delivered at 600 MU /min. The
prescription called for 90% of the PTV to receive 95% dose. A compression plate

was used in order to reduce respiratory target motion (cp. Section 1.4.2).
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Field number Gantry [°] Couch [°] images/fraction

01 225 0 41
02 285 0 54
03 315 0 99
04 30 90 36
05 340 90 41
06 30 0 37
07 90 25 44
08 90 335 38
09 160 340 37
10 180 0 36
11 110 0 39

Table 4.1: Parameters for the lung SBRT treatment used for the delivered dose
calculation demonstration

A list of the treatment fields and their configuration is given in Tab. 4.1. The
“mean-shift” is the mean tumor position relative to the planning CT’s tumor
position and can be considered as a measure of the setup error. To calculate the
mean-shift, a reference EPID image was selected from first fraction for each beam
direction; the selection criterion was solely based on maximal image quality (min-
imal motion blurring). The reference EPID was manually registered to a DRR
calculated with the TPS from the planning CT (see Figure 4.2). The Hounsfield
unit (HU) range as well as the projection volume were clipped to resemble an
MV-DRR as close as possible. The tumor trajectory was used to calculate a
delivered fluence ®2, according to Eq. (4.1).

Results

The resulting tumor trajectories are shown in Figure 4.5 for Field-01 (an AP-
field) for all fractions as a showcase. They are depicted along with dose volume
histogram (DVH) plots for the ITV at each treatment day. The DVH for the

entire treatment is shown in Figure 4.6.

As expected, the DVH is influenced by the mean-shift position of the tumor:
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Figure 4.5: In the (left) column the tumor trajectories for the AP-Field (number
01) are shown for each treatment day as a showcase. The (middle) column shows
the DRR field 01 for eeach fraction overlayed with a dose colorwash. In the (right)
column the dose volume histograms (DVH) for the internal target volume (ITV)
on each treatment day are given. The delivered dose appears to be generally
lower than the planned. On day 4 and 5 the mean-shift indicates a large setup
error, which manifests itself in a lower DVH for these days.
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Figure 4.6: Dose Volume Histogram for the entire treatment course.

in fractions 4 and 5, in particular, the patient setup position appears to be offset
from the planned position. Therefore, the ITV is not completely covered by the
prescribed dose on theses treatment days. However, the the total delivered dose
is close to the planned dose due to the better setup in the first three fractions
(cp. DVH in Figure 4.6).

4.4 Summary and conclusions

The current clinical procedures for external beam radiation therapy rely entirely
on the planning dose calculation. It is generally assumed that the dose actually
delivered to the patient matches the planned dose despite obvious problems aris-
ing from the input data used for planning, e.g. limited motion range estimation
from 4DCT (cp. James et al. [29]) and the challenging tasks of precise and re-
producible patient setup on the treatment table (while the target moves due to
respiration). Therefore the actual delivered dose to the patient may differ from
the planned one. This is particularly significant for hypofractionated treatment
protocols such as lung SBRT, delivering a complete course in only 3-5 fractions
which increases the impact of each single fraction relative to a treatment course
consisting of 30 fractions. To detect, investigate and potentially correct such
problems, a fast and convenient way of delivered dose estimation has been devel-
oped and described in this chapter.
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The STiL algorithm was employed to calculate the delivered dose for a patient’s
lung SBRT treatment, retrospectively. The procedure consists of 3 steps: in the
first step the treatment delivery is monitored with continuous MV-EPID imag-
ing. In the second step, the location of the tumor is estimated for each image,
retrospectively, resulting in 2d tumor trajectories in the plane perpendicular to
the beam direction (dosimetrically most relevant plane). In the third step, the
fluence profiles used for dose calculation in the TPS are shifted according to the
estimated tumor trajectory to simulate the tumor motion. The accumulated de-
livered fluence profile is then used in the TPS to calculate a delivered dose on
the planning CT.

To perform the does calculation with currently available equipment within a

reasonable computation time, some approximations had to be made:

(i) The patient in our model is assumed to be a rigid body, moving on the tumor
trajectory observed during the treatment delivery. As already alluded to in
the introduction to this chapter, respiration is a deformable process. In
particular, the electron density will not stay constant in a particular voxel,
thus influencing the deposited dose therein and in the surrounding voxels.

(ii) We sample the tumor motion at a relatively low frame rate (2 Hz) with
respect to the observed breathing frequency of ~ 0.2 Hz. This temporal
resolution is (via the delivered fluence map approximation) carried through
to the delivered dose calculation.

However, the strong advantage of the method investigated in this chapter is its
simplicity and clinical availability: all tools utilized are currently available in
the clinic; there is no risk to the patient arising from the method, nor do any
treatment protocols have to be modified for the data acquisition. The delivered
dose calculation can be done offline in time before the next fraction.

The accuracy of the dose calculation can be expected to improve further with
the availability of real-time volumetric imaging and/or deformable registration
techniques to account for the deformations expected from organ motion.
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Context of this thesis

Cancer has been the second leading cause of death in the United States in 2011.
Lung cancer is one of the deadliest types of cancer with a 5 year survival chance
of only about 15%. While surgical resection has classically been the standard
care for early stage non-small cell lung carcinomas (NSCLC) stereotactic body
radiation therapy (SBRT) is now considered as an even sometimes favorable alter-
native treatment option. Compared to conventional radiotherapy with photons
deliverd in about 30 treatment fractions, SBRT is delivered in only 3-5 fractions
with a much higher fractional dose, steeper dose gradients and reduced safety

margins to avoid excessive normal tissue toxicity.

Lung tumors can show large respiratory motion ranges limiting the treatment
options with SBRT. Respiration induced lung tumor motion is most significant
in the superior-inferior direction and shows hysteresis, i.e. inhale and exhale mo-
tion can be distinguished. The tumor motion range is factored into the treatment
planning by assigning an internal target volume (ITV) which encloses all tumor
positions observed during the image acquisition for treatment planning (usually
4DCT). The underlying assumption of the tumor motion during treatment deliv-
ery being similar to the motion observed for planning has been shown not to be
always valid and may compromise the dose coverage or cause increased normal
tissue toxicity. Additionally, setting up the patient on the treatment table to the
moving lung tumor target can be challenging and introduce setup errors close to
cm range.

Therefore, there is great demand for tools to monitor treatment setup and tumor

motion during 3D conformal radiotherapy delivery accurately and in real-time.

73
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Real-time lung tumor motion detection without implanted fiducial

markers

The core to this thesis was the development of a method for markerless real-time
lung tumor motion estimation that can be used during radiotherapy delivery with
photons beams. The novelty of the approach presented in this thesis is that the
algorithm utilizes the target area directly to estimate motion but at the same
time does not require implanted fiducial markers as a tracking surrogate. This is
a great advantage because it avoids the high risk of introducing a pneumothorax
with the marker implantation procedure which could be potentially fatal for the
patient.

The tumor motion is estimated from electronic portal images acquired with the
treatment beam. The beams-eye-view imaging perspective of the electronic por-
tal imaging device (EPID) brings the advantage of capturing both directions of
the steep photon fluence falloff on the field edge. Thus, the dosimetrically most
relevant motion information available from 2d projection images is captured (i.e.
the plane perpendicular to the photon beam axis). Additionally taking MV-EPID
images does not comprise any additional risk to the patient as for instance kV
fluoroscopy imaging does with its imaging dose.

The motion estimation algorithm has been validated on both phantom data
and patient data from lung SBRT treatments. For the verification on phan-
tom data a realistic breathing dynamic thorax phantom was utilized. It featured
a lung tumor insert manufactured by rapid prototyping from lung tumor con-
tours of a patient’s treatment planning CT. The phantom motion was directed
in superior-inferior direction. A lung tumor motion trajectory recorded from a
lung SBRT treatment delivery with the RTRT system in Hokkaido, Japan (uti-
lizing implanted fiducial markers) was used to drive the phantom motion. The
geometric accuracy of the tumor motion estimation was found to be better than
1 mm throughout the experiment and the root mean square error was calculated
to RMSE = (0.8 + 0.2) mm in comparison to a reference trajectory created by

manual registration.

Lung SBRT treatments were monitored with continuous MV-EPID imaging at a
frame rate of 2 Hz. The tumor motion algorithm was validated on this data in

a retrospective study: for the first 40 images of 56 beam-fractions tumor motion
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trajectories were defined manually with the help of an interactive software tool
developed for this purpose. Each image was presented 3 times in random order to
the examiner in order to establish a reference tumor trajectory and a manual reg-
istration error. The manual registration error was taken to be the standard devia-
tion of the 3 repetitions of each image and computed to RMSE = (0.940.5) mm.
The geometric error of the motion estimation algorithm relative to this reference
was found to be RMSE = (2.1 + 1.7) mm while no tracking at all resulted in an
error of RMSE = (3.9 &+ 2.7) mm.

The presented algorithm works with sub-millimeter accuracy on phantom data.
For patient data the motion recovery performance is not as good as for phantom
data yet significantly better than assuming a static target motion trajectory. The
lower geometric accuracy on patient data arises mainly from the very low soft
tissue contrast that can hardly be resembled with a tumor phantom.

The tracking accuracy depends mainly on the signal to noise ratio of the input
images which is governed by the underlying physical properties of the detector as
well as the object to be imaged. Lung tissue has a very low contrast for photons
in the megavoltage range, so the contrast can generally be assumed to be rather

weak.

While the method may not be quite ready for clinical application as an out of the
box solution yet, future improvements in the detector design have the potential
to vastly improve the accuracy and robustness of soft tissue localization with the
algorithm.

Motion compensation through dynamic treatment aperture adaptation

As an application of the STiL algorithm a combined system integrating the al-
gorithm with a dynamic multi-leaf collimator (DMLC) tracker has been built.
The system allows to keep the treatment aperture fixated on the moving tumor
during radiotherapy delivery. The system feeds MV-EPID images acquired with
a (fast) frame grabbing device to the STiL algorithm, which estimates a tumor
centroid position p(t;) in beams-eye-view coordinates. This position is fed to
the DMLC control software, that calculates the shifted leaf positions accordingly
and requests the new positions from the MLC hardware controller. The time
needed from the point of acquisition of a new image to the MLC leafs reaching
the requested target position (estimated from this image by the STiL algorithm)
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is called system latency. Due to this system latency the treatment aperture po-
sition is lagging behind the tumor position introducing a systematic geometric
error. In order to reduce this error a prediction algorithm was implemented. Lin-
ear (ridge) regression was chosen for its simplicity, speed and comparatively good
results [36]. Operating the MV-EPID imaging device at a frame rate of 12.86 Hz
(in half-resolution mode) the system latency was measured to dt, = 221ms. For
this measurement the setup consisted of a resin phantom target moving with
20 mm superior-inferior motion range and 4.5 s cycle time on a translation stage

made of solid water.

A simulation of the prediction algorithm based on the same lung tumor mo-
tion trajectories previously used to verify the the STiL algorithm showed that
the geometric error with the use of the predictor decreases when compared to the
error expected without prediction. Also, it was shown that the prediction model
can be generated from external surrogate data as well.

The concept as a whole was physically validated with a dynamic phantom ex-
periment using three of the trajectories previously employed for the simulation
study. The geometric error between measured tumor position and aperture posi-
tion showed that the system’s dynamic treatment aperture can follow the tumor
and reduce geometric errors: the error averaged over the three delivered trajecto-
ries was without any tracking calculated to RMSE = (3+3.1) mm. With tracking
applied the error reduced to RMSE = (0.7 £ 0.7) mm. Tracking without the use
of the prediction algorithm resulted in an error of RMSE = (1.7 + 1.7) mm on
average for the three tumor trajectories investigated.

We have integrated the STiL algorithm with a DMLC tracking platform and
characterized its performance. The system in its current state demonstrates the
feasibility of DMLC tracking based on markerless soft tissue localization. We
have shown that a motion error reduction can be achieved and that it can be
further improved by implementing a simple (linear) prediction algorithm. In ad-
dition we have shown that external surrogate motion may be used to train the
predictor model without significant loss of accuracy.

To make this system applicable to patients however, more research will have to
be conducted to stabilize the STiLL algorithm further and make the process of

image acquisition more robust.
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Delivered dose calculation

Tumor motion and setup uncertainties may have a significant impact on the de-
livered dose distribution. However, for lack of clinically available methods to
calculate delivered dose for moving targets the planned dose has to be used in-
stead as point of reference for treatment assessment and outcome studies.

We presented in this context a simple tool to monitor delivered dose based on 2D
tumor trajectories calculated with the STilL algorithm. The procedure consists
of 3 steps: in the first step the treatment delivery is monitored with continuous
MV-EPID imaging; in the second one the location of the tumor is estimated for
each image retrospectively resulting in 2d tumor trajectories in the plane per-
pendicular to the beam direction (dosimetrically most important plane). In the
third step the fluence profiles used for dose calculation in the treatment planning
system (TPS) are shifted according to the estimated tumor trajectory to simu-
late the tumor motion. The accumulated delivered fluence profile calculated in
this fashion is imported back into the TPS to calculate a delivered dose on the
planning CT.

We tested the procedure on the delivery of a lung SBRT treatment and cal-
culated dose volume histograms to the ITV for each treatment fraction. The
DVHs for the ITV showed that undercoverage occurs for large offsets from the
mean tumor position during two out of five treatment days.

The advantages of the method include that it only uses tools already clinically
available and the relatively fast calculation time. The latter point makes the
method potentially suitable for delivered dose calculation in between treatment
fractions in order to assess suspected errors and intervene with an adaptive ther-
apy approach.

The simplicity of the dose calculation method comes at the price of accuracy:
it has to be assumed that the patient’s breathing motion can be approximated
by a rigid body shift rather than a deformation process. However, considering
that there is no alternative method currently available working with equipment
already available in the clinic this is an excellent tool that allows to detect under-
dosage of the treatment volume as well as overdosage of the surrounding normal

tissue.
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