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Abstract

Actin-driven motility of eucaryotic cells plays a crucial role in many biological pro-
cesses and has therefore been under intense experimental and theoretical investigation
throughout several decades. In [10], we introduced a minimal model for the preparation
of movement in a symmetric resting cell on a flat substrate. This system consists of
at least four hyperbolic conservation laws describing the evolution of densities of actin
filament tips and at least one parabolic equation for the actin monomer concentration.
For this coupled hyperbolic-parabolic system, we shall now formulate a free boundary
problem to allow for actual motion of the cell.

For this model with some specific boundary conditions, we will show short time well
posedness and present several mechanisms by which the solutions might break down for
large times. In particular, possible blow-up phenomena are described and investigated,
both analytically and numerically. Moreover, we discuss how the cease of existence of
solutions can be interpreted physically as the emergence of actin polymerization fronts.

Finally, different possible boundary conditions are presented, and their biological
meanings are explained.

We furthermore reformulate the model under certain assumptions and derive a system
of two parabolic equations describing the motion of two interacting species of filaments
moving in opposite directions. This simplified model is investigated in part II where we
ask for stability of particular steady states and construct traveling wave solutions. The
existence of the latter can also be found in simulations, and we will discuss the type and
velocity of the evolving wave profiles.

Particular attention will be paid to the remarkable differences between different types
of nonlinearities describing the mutual interaction. Of special interest are the deviations
from the predictions about stability and the traveling wave solutions obtained from the
linearization of the model around its equilibria. These predictions are met quite well by
some versions of the nonlinear terms whereas for others they are missed significantly.
We are thus dealing with a quite minimalistic system of reaction advection diffusion
equations whose behavior cannot be predicted by linearization but strongly depends on
the particular nonlinearity.
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Abstract

Aufgrund der großen Bedeutung für eine Vielzahl biologischer Prozesse ist die aktin-
getriebene Bewegung eukaryotischer Zellen seit mehreren Jahrzehnten Gegenstand in-
tensiver experimenteller und theoretischer Forschung. Unter anderem wurde in [10] ein
minimales Modell für die Polarisation des Aktinzytoskeletts einer symmetrischen, ruhen-
den Zelle auf einer ebenen Fläche vorgestellt, die sich auf einen äußeren Anstoß hin darauf
vorbereitet, sich in Bewegung zu setzen. Dieses System besteht aus mindestens vier hy-
perbolischen Erhaltungsgleichungen für die Dichten der Enden von Aktinfilamenten und
mindestens einer parabolischen Gleichung für die Konzentration der Aktinmonomere.
Für dieses gekoppelte hyperbolisch-parabolische System wollen wir nun ein Problem mit
freiem Rand herleiten, um der Zelle tatsächliche Bewegung zu erlauben.

Für dieses Problem mit einer spezischen Form der Randbedingungen soll zunächst
die Wohlgestelltheit für kurze Zeiten gezeigt werden. Des weiteren werden wir einige
Mechanismen beleuchten, die zum Zusammenbruch der Lösungen für große Zeiten führen
können, wobei insbesondere die analytische und numerische Untersuchung von räumlich
beschränkten Explosionen dieser Lösungen in den Blick genommen wird. Ferner werden
wir erklären, wie der Kollaps der Lösungen als Ausbildung von Polymerisationsfronten
physikalisch zu verstehen ist.

Schließlich werden wir noch weitere Randbedingungen vorstellen und deren biologi-
sche Interpretation beleuchten.

Außerdem werden wir das gegebene Modell unter gewissen Annahmen zu einem Sy-
stem aus zwei parabolischen Gleichungen reduzieren. Diese beschreiben die Bewegung
zweier sich in entgegengesetzter Richtung bewegender und miteinander interagierender
Sorten von Filamenten. Dieses reduzierte Modell soll in Teil II hinsichtlich der Stabilität
bestimmter stationärer Zustände und des Auftretens wandernder Wellenfronten analy-
siert werden. Letztere werden auch in Simulationen beobachtet, und wir werden sowohl
Form als auch die Geschwindigkeiten der auftretenden Wellen untersuchen.

Spezielles Augenmerk wird auf den Einfluss des nichtlinearen Interaktionsterms auf
das Stabilitätsverhalten sowie auf die Art und Geschwindigkeit der wandernden Wellen
zu legen sein. Von besonderem Interesse sind die Abweichungen für bestimmte Nichtli-
nearitäten von den Vorhersagen, die sich aus der Linearisierung des Systems an seinen
Gleichgewichtspunkten ergeben. Für gewisse Formen des nichtlinearen Terms stimmt
das beobachtete Verhalten der Lösungen mit diesen Vorhersagen sehr gut überein, wäh-
rend sich für andere Formen deutliche Unterschiede zeigen. Wir haben es also mit einem
minimalistischen System von Reaktions-Advektions-Diffusionsgleichungen zu tun, de-
ren Verhalten nicht ohne weiteres durch die Linearisierung vorhergesagt werden kann,
sondern vielmehr stark von der speziellen Gestalt der Nichtlinearität abhängt.
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Chapter 1

Introduction

1.1 The actin cytoskeleton

Practically all eucaryotic cells express some types of the proteins actin and myosin.
Actin is a highly conserved protein with a molecular weight of approximately 43 kDa

which can be found as monomer (globular or G-actin) or in elongated, helical polymers
called filaments (F-actin). In addition, actin is an ATPase and thus occurs in three basic
states, namely ATP -bound, ADP+Pi-bound and ADP -bound. Filamentous actin often
forms meshworks by binding to crosslinker proteins and plays a vital role in shaping cells
as part of the so called cytoskeleton. Red blood cells, for example, maintain there shape
by a thin actin cortex directly underneath their plasma membrane.

Actin filaments are polar, meaning that their ends have very different properties. At
the so called barbed end the affinity to (ATP -bound) actin monomers is high and under
physiological conditions new monomers are readily added. At this end the filament
therefore typically grows. Upon being incorporated into a filament the actin monomer
quickly hydrolyses its ATP and after some time of aging releases the inorganic phosphate
Pi to become ADP -bound. At the pointed end of a typical actin filament we thus find
ADP -actin and the affinity to monomers is low. Since, in addition, ADP -actin readily
dissociates from a filament, the latter preferentially shrinks at its pointed end.

These polymerization and depolymerization processes are tightly controlled by a
large variety of actin related proteins which, for example,

• cap filament tips to inhibit association or dissociation of monomers (capping, e.g.
CapZ),

• bind to actin monomers to enhance or reduce their binding affinity to filament tips
(sequestration, e.g. profilin, thymosin-β4),

• bind to actin filaments and produce branching sites at which new barbed ends
emerge (branching, e.g. ARP2/3),

• or weaken the bonds in ADP -F-actin which leads to faster depolymerization (sev-
ering, e.g. ADF/cofilin).

A good overview of the mechanisms controlling the actin turnover in vivo can be found
in the review paper [2] and the references therein.
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In contrast to actin of which very few and similar variants are known, myosin denotes
a whole family of motor proteins having different shapes and sizes. Alone in humans
over 40 different myosin subtypes can be found. Common to all of them is a conserved
head domain binding to actin filaments and walking along them towards the barbed
ends. The single steps are accomplished by conformational changes which are again
driven by the hydrolysis of ATP . Depending on the subtype, there may be different tail
domains attached to this head which can carry a variety of cargos by binding to different
substrates. Some of the myosins tend to form dimers or even filamentous polymers.

The most prominent member of the myosin family is myosin II which occurs for
example in muscle fibres where it forms filaments by attaching the tail domains of several
monomers to each other. Each of these monomers has two heads and thus can bind to
two actin filaments simultaneously. Due to the arrangement of these head domains the
actin filaments being bound to one myosin II monomer are oriented to opposite directions
and thus by walking along both of them the myosin makes them slide along each other
into the direction of their pointed ends. This relative movement can be very fast and in
the particular case of skeleton muscles leads to muscle contraction.

For a single actin filament the described mechanisms allow for a treadmilling behav-
ior. Under certain physiological conditions the growth velocity at the barbed end may
be as large as the shrinkage velocity at the pointed end such that the total length of the
filament does not change. However, the filament will be displaced towards its barbed
end just by growing and shrinking. This shift may be counteracted by myosin motors
walking along this filament and being anchored somewhere else − say, at other parts of
the cytoskeleton − and thereby pulling it backwards. If this pull back velocity equals
the polymerization speed then the whole filament does not move at all but is constantly
regenerated. This situation is depicted in figure 1.1. Note that each polymerization step
and each step of a myosin motor costs one ATP equivalent of energy.

Figure 1.1: Treadmilling of a typical
actin filament (red) with two myosin mo-
tors (green) attached to it. The red ar-
row denotes the displacement velocity due
to polymerization and depolymerization,
the green arrow stands for the pull back
velocity.

As similar processes go on in most eucaryotic cells we can state that the before
mentioned actin meshwork is under permanent reconstruction.

1.2 Actin driven cell motility

The growth of barbed ends of actin filaments together with the myosin driven contraction
of actin fibres is able to drive the directed motion of cells. This cell motility plays a
crucial role in a large variety of biological functions a short selection of which is presented
in the following list.
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• During wound healing, fibroblasts use their actin cytoskeleton to crawl into the
wound where they can start their repair work.

• Axonal growth cones of neurons are driven by actin polymerization and guide the
axon to its destination.

• Amebae crawl along various kinds of substrates to haunt and digest bacteria. The
same mechanism is used by macrophages of the human immune system which hunt
for invading microorganisms in the body.

• Cancer cells often show an enhanced motility allowing the tumor to penetrate the
surrounding tissue and eventually form metastases.

In order to move or just maintain its shape, the cell has to coordinate actin poly-
merization and depolymerization as well as the binding of actin filaments to other parts
of the cytoskeleton in a very sophisticated fashion. This is, among others, accomplished
by the control mechanisms already mentioned above.

We will here only model the actin turnover at the filament tips explicitely, but we
allow for variations of the reaction parameters in order to account for these regulation
mechanisms. The particular effect of explicitely modeling barbed end capping as an
example of polymerization modulation has already been discussed in [10].
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Part I

Formulation and Analysis of the
Free Boundary Problem
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This first part is devoted to the examination of the full free boundary problem for
the model derived in [10]. This basic system is comprised of four hyperbolic conservation
laws describing the densities of actin filament tips and a parabolic equation for the actin
monomer concentration. In chapter 2 we start with briefly recalling the derivation of the
governing equations and describe how the boundary conditions are obtained. Then we
calculate first estimates for the monomer concentration and resulting bounds on the end
velocities in chapter 3. We will explicitely compute bounds for the boundary velocity and
the concentration of monomers and show that the total actin amount remains conserved.

The analysis of the well posedness in chapter 4 starts with the examination of the
linearized system with the monomer equation being decoupled from the equations for
the filament end densities. We first investigate in section 4.1 well posedness for the case
of constant coefficients and under the assumption of the hyperbolic part being strictly
hyperbolic.

For the construction of a solution we require three steps. First, we find a unique solu-
tion to the parabolic free boundary problem for the monomer density and the boundary
curves assuming given filament end densities. This solution is found as the fixed point of
an appropriate operator which is shown to be a contraction for sufficiently small times.
Then, using the method of characteristics, the hyperbolic equations for the filament tips
are solved explicitely for given monomer concentration which only enters the velocity
fields of the conservation laws. Finally, the estimates obtained for the solutions to both
of these decoupled problems allow the construction of another contraction operator –
again for sufficiently small times – whose unique fixed point is the solution to the full
problem with constant coefficients.

Since the dynamics of the actin cytoskeleton strongly depend on regulatory mech-
anisms we also work out the differences arising in case the coefficients are varying in
space and time. As long as the variation of the parameters is sufficiently smooth only
the constants in the estimates for the solutions are affected and the time for which we
can assert the existence of smooth solutions becomes smaller in the variable coefficient
case.

In section 4.3 we also discuss the loss of strict hyperbolicity when at least two end
velocities coincide. In that case, we will still find weak solutions by very similar argu-
ments as in the strictly hyperbolic case. The main difference lies in the spaces where we
look for solutions and the resulting estimates.

Then we are concerned with the problem of blow-up of the solutions in finite time
in chapter 5. We shall discuss the possibility of degeneration of the end densities to
measure valued solutions and the concomittant blow-up of the spatial derivative of the
monomer density in the interior of the domain. For the full problem we find a partic-
ular type of exact solutions with Dirac measure valued end densities and continuous,
piecewise smooth monomer concentration. Moreover, we investigate the hyperbolic limit
system without monomer diffusion and find some particular solutions with jumps in the
monomer density. The biological relevance of these types of solutions as describing fronts
of polymerizing actin filaments will be discussed as well.

We will finally give alternative boundary conditions leading to a problem with fixed
boundary in chapter 6. Here, we find size structured equations for the end densities at
the boundary.

In the end of this part, chapter 7 provides some numerical simulations for the system
which shall demonstrate some of the behaviors being predicted by the analysis of the

7



prior chapters. In particular, some illustrations of the blow-up phenomena will be given.
We shall for instance observe that the predicted δ-peaks in the end densities indeed
emerge from smooth initial data within finite time. This phenomenon will be discussed
as the emergence of actin polymerization fronts.
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Chapter 2

Formulation of the Free
Boundary Problem

2.1 Derivation and reformulation of the model equa-
tions

2.1.1 The original model

We briefly recall the ideas and notation that led to the model presented in [10]. From
the biological point of view we consider a symmetric cell resting on a flat substrate.
Upon some stimulus, this cell shall then be polarized into a particular direction. This
leads to a well defined spatial axis along which the whole system is supposed to evolve.

Figure 2.1: Sketch of a polarizable cell on a flat substrate. Left : symmetric unpolarized cell,
right : polarization of the cytoskeleton upon some stimulus at the right edge. Actin filaments
(red : right oriented, blue: left oriented) are depicted as arrows with arrow heads as barbed
ends and bullet heads as pointed ends.

Inside the cell we consider actin monomers described by a concentration a and
straight actin filaments whose barbed and pointed ends are given by densities B and
P , respectively. Having a well defined spatial direction x we can distinguish between
so called right and left oriented filaments. Here, a filament is called right oriented if its
barbed end points to the right. The end densities are divided into right and left oriented
as well and we find four distinct densities Br, Pr, Bl, and Pl.

9



Figure 2.2: Treadmilling
of a typical actin filament
(red) with two myosin motors
(green) attached to it. The red
arrows denote the polymeriza-
tion speed δκB(a − aB) at the
barbed end and the depoly-
merization speed δκP (aP − a)
at the pointed end, respec-
tively. The green arrow shows
the myosin-driven retrograde
flow velocity vR.

For the filament tips we derived a velocity as a combination of the myosin-driven
retrograde flow velocity and the growth or shrinkage speed due to polymerization or
depolymerization (cf. figure 2.2). The former is denoted by vR and assumed to be
constant. For the polymerization speed we consider first order reaction kinetics for the
addition or removal of monomers to or from the filament tip, respectively.

As being described in the introduction, barbed ends show a high affinity to monomers
and show fast reaction kinetics. These properties are reflected by a low critical concen-
tration aB and a high reaction rate constant κB . Given a local monomer concentration
a, the mean polymerization rate is then given by

κB(a− aB).

We note that for a < aB this rate is negative and then accounts for depolymerization.
If we now denote the average length change of a filament upon addition of one monomer
by δ we obtain a polymerization velocity of

vpol,B = δκB(a− aB). (2.1)

For right oriented barbed ends, this velocity is counted in positive x-direction. The
myosin driven retrograde flow velocity acts in the opposite direction and we obtain as
velocity for right oriented barbed ends

vB(t, x, a(t, x)) = −vR + δκB(t, x)(a(t, x)− aB(t, x)). (2.2)

Very similarly we derive the pointed end velocity to be

vP (t, x, a(t, x)) = −vR − δκP (t, x)(a(t, x)− aP (t, x)) (2.3)

where κP < κB is the reaction rate constant for (de-)polymerization at pointed ends
and aP > aB is the corresponding critical concentration.

For symmetry reasons, the velocities for the left oriented filament tips are the same
but with opposite sign. These filament tip speeds will act as velocity field for hyperbolic

10



conservation laws describing the densities of right and left oriented barbed and pointed
ends.

The monomers are assumed to undergo diffusion with constant diffusion coefficient
D and to react with the filament tips according to the polymerization rates given above
yielding a reaction diffusion equation for the monomer concentration.

In [10], an additional capping protein was introduced which can bind to barbed
ends and prevent them from any interactions with actin monomers. This resulted in
an additional reaction diffusion equation for the capping protein itself and two more
conservation laws for the densities of capped barbed ends of either orientation. Moreover,
the barbed end equations were supplemented by additional reaction terms taking into
account the transition of active to capped barbed ends by capping and vice versa by
dissociation of the capper from the filament.

These additional features do not change the basic character of the system and we
therefore stick to the most basic version for the analysis.

After a certain rescaling (for details, please refer to [10]) this leads to the following
model for the actin cytoskeleton of a motile cell:

∂tBr = −∂x (vB(a)Br) (2.4a)

∂tBl = ∂x (vB(a)Bl) (2.4b)

∂tPr = −∂x (vP (a)Pr) (2.4c)

∂tPl = ∂x (vP (a)Pl) (2.4d)

∂ta = D∂xxa+R(a,Br, Bl, Pr, Pl) (2.4e)

with the reaction term in the monomer equation being given by

R(a,Br, Bl, Pr, Pl) = −δκB(a− aB)(Br +Bl)− δκP (a− aP )(Pr + Pl). (2.5)

This system is now given in the space-time domain

QT := {(t, x) | 0 < t < T, x ∈ Ωt ≡ (r(t), l(t))} (2.6)

where l(t) and r(t) describe the moving boundaries of the domain which are subject to
the initial conditions

l(t) = 0 and r(t) = L

and whose evolution will be derived in section 2.2.
System (2.4a - 2.4e) shall also be equipped with non-negative initial conditions sat-

isfying
supp(Br(0, ·) +Bl(0, ·) + Pr(0, ·) + Pl(0, ·)) = [0, L]. (2.7)

This condition means, that the total density of filament tips is strictly positive almost
everywhere in the initial spatial domain, and in particular there are filament tips in each
neighborhood of the initial boundary.

2.1.2 Reformulation of the model and basic assumptions

As the most basic form of interaction of the cytoskeleton with the cell membrane one
might consider a very soft membrane exerting no forces onto the filaments. Their tips
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will thus just move with their free velocity.
To formulate the system itself and the boundary conditions in a more concise way

we rewrite the densities and velocities as

u1 := Bl and λ1 := −vB ≡ vR − δκB(a− aB) (2.8a)

u2 := Pr and λ2 := vP ≡ −vR − δκP (a− aP ) (2.8b)

u3 := Pl and λ3 := −vP ≡ vR + δκP (a− aP ) (2.8c)

u4 := Br and λ4 := vB ≡ −vR + δκB(a− aB). (2.8d)

Although we will often assume the reaction parameters aB/P and κB/P to be constant
we give the following conditions on the parameters for the case that they are variable in
space and time.

Condition 2.1.1. The parameters satisfy:

(i) vR and δ are positive constants

(ii) κB , κP , aB , and aP (denoted as variable parameters) may in general depend on
(t, x) and:

a) belong to C0+1([0, T ]; C∞(R)).

b) are positive, bounded and bounded away from zero. In particular,

inf
t,x

aB(t, x) =: aB > 0 (2.9)

sup
t,x

aP (t, x) =: aP <∞. (2.10)

(iii)

sup
t,x

aB(t, x) =: aB < aP := inf
t,x

aP (t, x) (2.11)

(iv)

sup
t,x

(κB(t, x)(aP (t, x)− aB(t, x))) >
vR
δ
. (2.12)

This condition guarantees that the velocity of right oriented barbed ends can take
positive values.

We can now rewrite system (2.4a - 2.4d) in the compact form

∂tu+ ∂x(Λ(a)u) = 0 (2.13)

where u = (u1, u2, u3, u4)T and Λ = diag(λ1, λ2, λ3, λ4). Assuming sufficiently smooth
parameters and monomer density a, system (2.13) may be equivalently rewritten in
transport form

∂tu+ Λ∂xu = f(u) ≡ −∂xΛu. (2.14)

The equation for the monomers can also be rewritten in a more concise form:

∂ta−D∂xxa = −cua+ c̃u ≡ R(a, u) (2.15)

12



where
c ≡ (c1, c2, c3, c4) = δ(κB , κP , κP , κB) (2.16)

and
c̃ ≡ (c̃1, c̃2, c̃3, c̃4) = δ(κBaB , κPaP , κPaP , κBaB) (2.17)

Remark 2.1. If in addition to condition 2.1.1, the reaction parameters κB/P , aB/P

are constant such that for some a = ass the equality

vB(a
ss) = 0 = vP (a

ss) (2.18)

holds, then the characteristic velocities λα(a) . . .

(I) . . . vanish if and only if a = ass.

(II) . . . satisfy λ1(a) < λ2(a) < 0 < λ3(a) < λ4(a) if and only if a > ass.

(III) . . . satisfy λ4(a) < λ3(a) < 0 < λ2(a) < λ1(a) if and only if a < ass.

2.2 Formulation of the boundary conditions

2.2.1 Boundary conditions for the hyperbolic equations

From the hyperbolic equations in transport form (2.14) we can easily read off the char-
acteristic curves for the respective filament end densities uα. Noting that the velocity
matrix is diagonal we deduce the position of the αth characteristic curve yα starting at
time t = 0 in ξ ∈ [0, L] to be given by the initial value problem

ẏα(t; ξ) = λα(t, yα(t; ξ)) yα(0; x0) = ξ (2.19)

or equivalently by the Volterra type integral equation

yα(t; ξ) = ξ +

∫ t

0

λα(τ, yα(τ ; ξ))dτ. (2.20)

As a first approximation we assume a very soft membrane exerting no force on the
filament ends and being displaced by any filament growing against it. This is modeled
by a domain boundary moving freely with the outermost characteristic curves for the
end densities. Let us therefore define the space-time domain

QT = {(t, x) | 0 < t < T, l(t) < x < r(t)} (2.21)

where the left and right boundary curves are given by

l(t) := min
α=1,...,4

lα(t) ≡ min
α=1,...,4

yα(t; ξαl ) (2.22)

r(t) := max
α=1,...,4

rα(t) ≡ max
α=1,...,4

yα(t; ξαr ). (2.23)

Here, the initial points are given by

ξαl = inf {x ∈ (0, L) | uα(0, x) > 0} (2.24)

ξαr = sup {x ∈ (0, L) | uα(0, x) > 0} (2.25)
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That is, the boundary curves r and l are just the characteristic curves emerging from
the boundary points of the initial domain Ω0 = (0, L) as long as we assume that each of
the points 0 and L belongs to the support of at least one initial datum (which we always
will, cf. section 2.3).

We also define the characteristic domains for each individual end density by

Qα
T := {(t, x) | 0 < t < T, lα(t) < x < rα(t)} , α = 1, . . . , 4 (2.26)

and notice that

QT =
4⋃

α=1

Qα
T .

Let us furthermore introduce the notation

Ωt := {x ∈ R | l(t) < x < r(t)} ≡ {x ∈ R | (t, x) ∈ QT } , t ∈ [0, T ] (2.27)

and
Ωα

t := {x ∈ R | lα(t) < x < rα(t)} , t ∈ [0, T ] (2.28)

for the spatial cross sections of QT and Qα
T , respectively. Finally, let us denote by αr(t)

and αl(t) the leading and trailing characteristic family at time t, respectively, namely
that α defining the edge motion:

rαr (t) = max
α=1,...,4

rα(t) (2.29)

lαl(t) = min
α=1,...,4

lα(t). (2.30)

Note that these αr and αl are not necessarily unique for all times t. In the case of
nonuniqueness we will under abuse of notation denote the set of all α’s satisfying the
above equalities by αr(t) and αl(t).

�

�

� �

�

�

�

Figure 2.3: Decomposition of QT without (left) and with (right) crossing boundary curves.
Colored curves designate the outer characteristics of the different end densities u1, . . . , u4. The
supports of the initial data are [0, L]

We now have to specify boundary conditions for each characteristic curve entering the
domain QT from its lateral boundary. These are precisely those characteristics having
not the smallest or largest velocity at the left or right boundary, respectively. As no
filament ends are supposed to enter the domain from the outside, these will simply be
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zero conditions.
In practice we will consider a characteristic boundary value problem on a decomposed

domain domain where each end density uα is only considered on its characteristic domain
Qα

T . Then, the lateral boundary coincides with the outer characteristic curve of the
respective density and we only need to integrate the corresponding values along this
characteristic without imposing any further boundary values.

The domain QT can thus be decomposed as indicated in figure 2.3 into

• A = {(t, x) | 0 < t < T, maxα lα(t) < x < minα rα(t)}

• B = {(t, x) | 0 < t < T, l(t) < x < maxα lα(t)}

• C = {(t, x) | 0 < t < T, minα rα(t) < x < r(t)}.

Now, to the subdomain A no characteristics enter from the lateral boundary and
solving the hyperbolic part of the model system on this domain simply corresponds to
solving the appropriate Cauchy problem. The subdomains B and C are fan shaped
characteristic domains in the sense of [18], chapter 4, paragraph 1.

By diagonality of the velocity matrix Λ we do not have to consider specific interface
conditions along the characteristic curves inside B and C. It is sufficient to put each of
the end densities to zero outside its characteristic domain.

Remark 2.2. In case of constant reaction parameters satisfying the hypotheses of re-
mark 2.1, the characteristic boundary curves of the different end densities cannot cross
as long as a(t, x) − ass has a sign in B and C, respectively. This situation is depicted
in figure 2.3 on the left.

For completeness, the right picture in figure 2.3 shows an example for the decom-
position of QT where the characteristic boundaries for the different end densities cross
each other.

2.2.2 Boundary conditions for the parabolic equation

For the reaction diffusion equation describing the monomer concentration we assume that
monomers are reflected at the membrane and thus simply impose zero flux conditions
on the lateral boundary of QT . In particular, we assume that G-actin can neither leave
nor enter the cell through the membrane.

Notation. Adapting the nomenclature in [19] we use the following names for the
parts of the boundary ∂QT of the space-time domain.

• the parabolic boundary

PQT :=
{
(t, x) ∈ ∂QT | ∀ε > 0 : Cylε(t, x) ∩ (R1+1\QT ) �= ∅

}
where the parabolic cylinder around a point (t, x) is defined as

Cylε(t, x) :=
{
(s, y) ∈ R1+1 | s ≤ t, max{

√
t− s, |x− y|} < ε

}
≡

{
(s, y) ∈ R1+1 | s ≤ t, t− s < ε2, |x− y| < ε

}
.

(2.31)

Here, the value
|(t, x)− (s, y)|P := max{

√
t− s, |x− y|}
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shall be called the parabolic distance between the space-time points (t, x) and
(s, y), and the parabolic cylinder is just a semiball of radius ε beneath (t, x) with
respect to this distance. The parabolic boundary is therefore that part of the
boundary across which a parabolic equation can carry information into the do-
main and we have to provide this information by specifying initial and boundary
conditions.

• the top (or open) boundary

T QT := ∂QT \PQT .

Here, information can only leave the domain as locally QT lies below T QT .

• the base (or bottom)

BQT :=
{
(t, x) ∈ PQT | Cylε(t+ ε2, x) ⊂ QT for some ε > 0

}
which in our case coincides with

QT ∩ {t = 0}.

That means that all information emerging from this boundary is locally trans-
ported into the domain QT and we have to provide initial conditions.

• the lateral boundary
LQT := PQT \BQT .

In our case, this part of the boundary is given by the outer characteristic curves
of the hyperbolic part:

LQT = {(t, l(t)) | 0 < t < T} ∪ {(t, r(t)) | 0 < t < T}.

This lateral boundary receives information from the interior of the domain QT

and simultaneously sends information into that domain via parabolic equations.
We therefore have to provide boundary conditions which couple these information
flows.

• the corners
CQT := (BQT ∩ PQT )\BQT .

A space-time domain with the respective parts of the boundary being indicated is
shown in figure 2.4.

Given the velocities of the boundary as above, we can now write the no flux conditions
on the lateral boundary LQT as:

D∂xa(t, l(t))+ l̇(t)a(t, l(t)) = D∂xa(t, r(t))+ṙ(t)a(t, r(t)) = 0 ∀ t ∈ (0, T ). (2.32)

To this end we should note that the boundary velocity can be expressed in terms
of the monomer concentration itself and the model parameters. We thus in fact have
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Figure 2.4: Sketch of a typ-
ical space-time domain. The
respective parts of the domain
boundary are indicated, and
a parabolic cylinder of radius
r is sketched for two bound-
ary points. Note that beneath
(T, y) there is some parabolic
cylinder which has no point
in common with the exterior
of QT whereas any parabolic
cylinder beneath (t, x) reaches
beyond the boundary of QT .

nonlinear boundary conditions of the form

D∂xa(t, l(t)) + ϑ(t, l(t)) a(t, l(t)) + κ(t, l(t)) a(t, l(t))2 = 0 (2.33)

D∂xa(t, r(t)) + ϑ(t, r(t)) a(t, r(t)) + κ(t, r(t)) a(t, r(t))2 = 0 (2.34)

where κ is either of ±δκB or ±δκP , and ϑ is the sum of ±vR and either of ±δκBaB or
±δκPaP .
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2.3 Formulation of the initial conditions

On the base
BQT = QT ∩ {t = 0} = {(0, x) | 0 ≤ x ≤ L} (2.35)

of QT we have to specify initial conditions for the end densities as well as for the
momomer concentration. Let us denote them by

a(0, x) = a0(x) for 0 ≤ x ≤ L (2.36)

uα(0, x) = uα
0 (x) for 0 ≤ x ≤ L α = 1, . . . , 4. (2.37)

Now for reasons of compatibility with the boundary conditions we shall most often
require the following assumptions.

Condition 2.3.1. (Initial conditions for the hyperbolic equations)

1. For α = 1, . . . , 4 assume uα
0 ∈ C1((0, L)) ∩ C0+1([0, L]).

2. For α = 1, . . . , 4 assume uα
0 (x) ≥ 0 for x ∈ [0, L].

3. For each α = 1, . . . , 4 assume:

uα
0 (0) = 0 = uα

0 (L). (2.38)

4. If λα(a(0, 0)) = minβ=1,...,4 λ
β(a(0, 0)) then assume the existence of an ε > 0 such

that
uα
0 (x) > 0 on (0, ε). (2.39)

5. If λα(a(0, L)) = maxβ=1,...,4 λ
β(a(0, L)) then assume the existence of an ε > 0

such that
uα
0 (x) > 0 on (L− ε, L) (2.40)

The last two conditions are motivated by physical considerations. As the outermost
characteristic curve is supposed to support the membrane, the corresponding density of
filament tips in each arbitrarily small neighborhood of the boundary should be positive.

The first condition can be without loss of physical relevance strengthened to

uα
0 ∈ C∞([0, L]).

For the parabolic equation we require the following conditions.

Condition 2.3.2. The initial conditions for the parabolic equation satisfy

1. aB(0, x) ≤ a(0, x) ≤ aP (0, x) for each x ∈ [0, L]

2. compatibility with the boundary conditions at the left corner point:

D
d

dx
a(0, 0) + l̇(0)a(0, 0) = 0
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3. compatibility at the right corner point:

D
d

dx
a(0, L) + ṙ(0)a(0, L) = 0

The first condition ensures that the initial monomer concentration lies in its natural
range between the critical values aB and aP that will be derived in section 3.2. The
other conditions ensure the compatibility at the corners of QT (cf. [16]) and are required
if we want to hope for classical solutions.

2.4 Steady states for the free boundary problem

At this point, we shall make some remarks about steady state solutions to the problem
established in this chapter. We first note that we can distinguish different notions of
steady states corresponding to different behaviors of the modeled cell.

1. By a strong steady state we shall denote a solution (u, a) : [0, L]→ R4 × R to the
stationary problem

d

dx
(Λ(a(x))u(x)) = 0 (2.41)

D
d2

dx2
a(x) = −R(a(x), u(x)) (2.42)

posed in (0, L) and equipped with the boundary conditions

u(0) = 0 = u(L) a′(0) = 0 = a′(L). (2.43)

This solution is called a physical strong steady state if it is non-negative and satisfies
the following conditions

• For each x ∈ [0, L] the filament density is non-negative:∫ x

0

u2(y)− u4(y)dy ≥ 0,

∫ x

0

u1(y)− u3(y)dy ≥ 0.

• Each of the boundaries is supported by at least one appropriate end density.
That is, there exists some ε > 0 such that

u1(δ) + u2(δ) > 0 and u3(L− δ) + u4(L− δ) > 0

whenever δ ∈ (0, ε).

Such a steady state corresponds to a non-moving cell of constant size whose cy-
toskeleton is in a dynamic equilibrium.

2. By an exterior steady state we mean a solution (u, a, r, l) to the full problem that
satisfies ṙ(t) = l̇(t) ≡ 0 throughout the considered time interval [0, T ]. This
corresponds to a resting cell with global internal reorganization of the cytoskeleton
and possible polarization.
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3. An interior steady state will be a solution (u, a) to the stationary problem posed
in point 1 on the whole real line. These do not correspond to any physical state
of the cell but are mere mathematical tools to study the behavior of the solutions
in the interior of the space-time cylinder. We note at this point that we will
occasionally allow weak and even measure valued solutions to be interior steady
states. Solutions with point measures for the hyperbolic equations may well be
understood by thinking of sharp fronts of filament tips at some point in the cell.

4. A moving steady state shall be a solution (u, a, r, l) of the full initial boundary
value problem with the property that l̇(t) = ṙ(t) ≡ v �= 0. This type of steady
state should not be mixed up with the typical notion of steady state solutions in
mathematics but is nevertheless quite useful as it accounts for a cell with an active
cytoskeleton moving at constant speed.

5. Finally, a moving interior steady state is a (generalized) traveling wave solution
(u, a) to the Cauchy problem corresponding to (2.13), (2.15) on the whole real
line, that is, a solution of the type

u(t, x) = U(x− ct), a(t, x) = A(x− ct).

Again, we allow for measure valued solutions for u and weak solutions for a.

2.4.1 Strong steady states

This type of steady state corresponding to a resting cell with stationary cytoskeleton has
already been investigated in [10] where we found a particular class of time independent
solutions with homogeneous monomer concentration a ≡ ass. We recall that for these
solutions to exist, the reaction parameters had to satisfy the compatibility condition

κB(a
ss − aB) = κP (aP − ass) (2.44)

for some ass ∈ (aB , aP ) which then is the steady state monomer concentration. Both of
these expressions had in addition to be equal to vRδ

−1 in order to make all end velocities
vanish.

The end densities in these states have to satisfy the pointwise condition

u1 + u4 = u2 + u3 (2.45)

which guarantees that the reaction term R(a, u) vanishes for a equalling the steady state
concentration ass. Apart from that and the usual physicality and regularity conditions,
the end distributions can be chosen freely.

2.4.2 Interior steady states

When talking about interior steady states we mainly think of weak solutions a ∈
H1,loc(R; [0,∞)) of the stationary problem (2.42) together with measure valued solu-
tions u ∈M+(R) of (2.41), both on the whole real axis. The obvious reason to consider
this type of solutions is the idea of polymerization fronts of filament tips as being ob-
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served at the interface between the leading lamellipodium and the lamella of motile cells,
as for example being observed experimentally by Ponti et al in [26].

Let us explain the relevance of these states by the following instructive example.
We consider a cytoskeleton existing of a certain number of right oriented filaments, all
of them having the same length l0 and located at the same position. In mathematical
terms, this filament distribution corresponds to a number of left oriented pointed ends
at some position x0,

u2 = b0δx0

and the same number of right oriented barbed ends at x0 + l0,

u4 = b0δx0+l0

where δx0 denotes the Dirac measure concentrated at x0.
The corresponding monomer concentration may then be given by

a(x) =

⎧⎪⎪⎨
⎪⎪⎩
a0P in (−∞, x0]

a0P +
a0
B−a0

P

l0
(x− x0) in (x0, x0 + l0)

a0B in [x0 + l0,∞)

(2.46)

where a0B and a0P are the concentrations at which the velocities of barbed and pointed
ends, respectively, are zero (cf. section 3.1). These concentrations may be different for
general reaction parameters, and we will for this example assume a0P > a0B , the case
which is depicted in the right graph of figure 3.1.

According to our ideas of the cytoskeleton, the pointed ends at position x0 perma-
nently produce monomers at rate

δκP (aP − a0P )b0

which are consumed by the barbed ends at position x0 + l0 at the rate

δκB(a
0
B − aB)b0.

By the definitions of a0B and aP0 , both of these rates are equal to vRb0.
As monomers are produced at one point and consumed at another one, they have to

be transported from x0 to x0 + l0. The only way for monomers to move is by diffusion,
and the diffusive flux is given by

−D∂xa =
D

l0
(a0P − a0B)

throughout the interval (x0, x0+l0). Since this flux clearly has to balance the production
at pointed ends and the consumption at barbed ends, we obtain a relation between the
height b0 and the distance l0 of the peaks:

b0l0 =
D

vR
(a0P − a0B) =

D

vR
(aP − aB)−

D

δ

κB + κP

κBκP
. (2.47)

For symmetry reasons we may add the mirror image of the described distributions,
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Figure 2.5: Sketch of measure valued interior steady states. The monomer density a (black
line) is given by a0

B for large |x|, by a0
P for small |x| and linearly interpolated in between. The

end densities are Dirac measures, sketched as red and blue bars for pointed and barbed ends,
respectively.

namely the same number of left oriented filaments of length l0 with pointed ends located
at −x0 and barbed ends concentrated at −x0 − l0. This particular situation is sketched
in figure 2.5.

One may argue that this situation does not fit with our understanding of the pullback
velocity vR being caused by myosin motors pulling filaments along one another. However,
we can easily adapt this steady state by interchanging the positions of left and right
oriented pointed ends, respectively, to obtain an overlap of actin filaments as indicated
in figure 2.6.

Figure 2.6: Sketch of measure valued interior steady states with overlapping filaments and
myosin motors (green) between them. The black line denotes the monomer concentration,
the red and blue bars denote the Dirac measures for the pointed and barbed end densities,
respectively.
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Moving interior steady states

We may also think about this type of steady states with a given shape moving at con-
stant velocity v0. We therefore ask for two Dirac measures p0δx0+v0t and b0δx0+v0t+l0

describing the end densities Pl and Br, respectively. Moreover, the monomer density
should be given by constant states on {x ≤ x0+v0t} and {x ≥ x0+v0t+l0}, respectively,
and in between by a constant profile of the shape a(t, x) = A(x− v0t). That is, we want
the monomer concentration to be of the form

a(t, x) =

⎧⎪⎪⎨
⎪⎪⎩
al for x ≤ x0 + v0t

A(x− v0t) for x0 + v0t < x < x0 + v0t+ l0

ar for x ≥ x0 + v0t+ l0.

(2.48)

Here, the asymptotic densities ar and al are determined by the requirements

−vP (al) = v0 = vB(ar).

v

a

v

-v

max

R

ar

v
R

v
0

al

Figure 2.7: Filament end velocities vB (red)
and −vP (blue) depending on the monomer
density a. Given a velocity v0 between 0 and
vR, the figure shows how to determine the
asymptotic densities ar and al. For parameter
values as indicated in this graph, the difference
al−ar will always be positive if v0 is. It should
be noted that for different parameter settings
and sufficiently small v0, this difference may
also become negative.

Writing the velocity v0 as a multiple of the retrograde flow velocity,

v0 = θvR

with |θ| ∈ (0, 1] we obtain the following values for the asymptotic monomer densities

al = aP −
vR
δκP

(1− θ) = a0P +
vR
δκP

θ (2.49)

ar = aB +
vR
δκB

(1 + θ) = a0B +
vR
δκB

θ. (2.50)

These values in fact only depend on the model parameters and the velocity the profile
is supposed to move at. Figure 2.7 shows how the asymptotic densities are obtained from
the velocity and why in general not all velocities are admissable.

The next observation is that upon the profile moving, the total number of monomers
changes at rate

v0(al − ar).

This has to be balanced by the net production or consumption of monomers at the
filament ends:

θ(al − ar) = (1− θ)p0 − (1 + θ)b0. (2.51)
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Thus, we can express one of the peak heights for the ends in terms of the other one,
say p0 in terms of b0:

p0 =
1

1− θ
(θ(al − ar) + (1 + θ)b0)

=
1

1− θ

(
θ(aP − aB)−

θvR
δ

(
1− θ

κP
+

1 + θ

κB

))
+

1 + θ

1− θ
b0.

We observe that for positive velocity v0 = θvR and if the difference al−ar is positive
(which will be the case for standard parameters, cf. figure 2.7), the number of pointed
ends has to be larger than that of barbed ends.

It remains to calculate the distance of the peaks and the profile for the monomer
density in between. The latter is done by plugging the ansatz a(t, x) = A(x− v0t) into
the monomer equation (2.15) and recalling that the reaction term vanishes due to the
absence of filament ends outside the peaks. Therefore, A as a function of

ξ := x− v0t− x0

satisfies the ordinary differential equation

v0A(ξ) +DA′(ξ) = C1 (2.52)

where C1 is a constant of integration to be determined by the boundary conditions. The
general solution to this equation is given by

A(ξ) = C2 exp

[
−θvR

D
ξ

]
+

C1

θvR
.

This leads to the following values for the integration constants

C2 =
A(0)−A(l0)

1− exp
[
− θvR

D l0
]

C1 = θvR

(
A(0)− A(0)−A(l0)

1− exp
[
− θvR

D l0
]
)
.

Asking for continuous monomer densities we may impose the particular boundary
conditions

A(0) = al and A(l0) = ar.

and subsequently obtain the following shape of the monomer profile

A(ξ) = al −
al − ar

1− exp
[
− θvR

D l0
] (1− exp

[
−θvR

D
ξ

])
. (2.53)

This profile, together with indicated Dirac peaks for the end densities Br and Pl,
is sketched in figure 2.8.

Moreover, we know that the total flux of monomers into or out of the interface curves

x0 + v0t and x0 + v0t+ l0
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� Figure 2.8: Sketch of a moving steady
state profile with positive velocity v0. The
monomer concentration is drawn in solid,
grey ; the positions and masses of the
Dirac peaks for right oriented barbed ends
(solid, black) and left oriented pointed ends
(dashed, black) are shown as well.

(from both sides) has to be balanced by the consumption or production of monomers in
these boundaries. This imposes two additional conditions:

θvRal −DA′(0)− θvRA(0) = (1− θ)vRp0

θvRar −DA′(l0)− θvRA(l0) = (1 + θ)vRb0.

We calculate the derivative of A to be

A′(ξ) = −C2
θvR
D

exp

[
−θvR

D
ξ

]

= −θvR
D

A(0)−A(l0)

1− exp
[
− θvR

D l0
] exp [−θvR

D
ξ

]

and in particular at the boundary points:

DA′(0) = −(A(0)−A(l0))θvR
1

1− exp
[
− θvR

D l0
]

DA′(l0) = −(A(0)−A(l0))θvR
1

exp
[
θvR

D l0
]
− 1

.

Again, for a continuous monomer concentration, we find

(al − ar)θ = (1− θ)p0

(
1− exp

[
−θvR

D
l0

])

(al − ar)θ = (1 + θ)b0

(
exp

[
θvR
D

l0

]
− 1

)
.

From the latter equality we may infer that l0 shall be given by

l0 =
D

θvR
log

[
1 +

al − ar
b0

θ

1 + θ

]
. (2.54)

The other flux condition together with the actin mass conservation condition (2.51)
yields the same result.

We can also ask how the shape of the profile depends on the parameters. A good
measure for the deviation from a linear interpolation is the weighted difference of the
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derivatives A′(0) and A′(l0):

|A′(0)−A′(l0)|
|A′(0) +A′(l0)|

=

∣∣∣∣ 1

1−exp
[
− θvR

D l0
] − 1

exp
[

θvR
D l0

]
−1

∣∣∣∣∣∣∣∣ 1

1−exp
[
− θvR

D l0
] + 1

exp
[

θvR
D l0

]
−1

∣∣∣∣
.

Now we use the particular value of the distance l0 given by (2.54) and plug the argument
of the logarithm into the above ratio:

|A′(0)−A′(l0)|
|A′(0) +A′(l0)|

=

al−ar

b0
θ

1+θ

2 + al−ar

b0
θ

1+θ

=
θ(al − ar)

2(1 + θ)b0 + θ(al − ar)
.

We conclude that we shall find an approximately linear profile of the monomer density
if

• the velocity is small as compared to the retrograde flow velocity (corresponding to
θ � 1), or

• the difference al − ar is small as compared to the number b0 of filament ends.

The former effect is consistent with the perfectly linear profile obtained for the limit
case of a standing profile (θ = 0), the second one will become later in an instant.

Finally, we mention that we will deal with another type of interior steady states which
we only consider locally in space. This state will be given by a shock in the monomer
densities violating even the mild regularity assumptions on a stated at the beginning of
this subsection. We will discuss these states in chapter 5 on gradient blow-up for the
monomer density.

2.4.3 A note on dimensional analysis of the model

In equation (2.54) we observe that the distance l0 does not change at all if we increase
or decrease the number b0 of barbed ends and the diffusion coefficient D by te same
factor. To make this observation more rigorous we will briefly check how our model
system could be brought into dimensionless form and deduce the connection between
the diffusion coefficient and the typical end densities.

We note that it is sufficient to consider the monomer equation together with the
equations for one type of barbed and one type pointed ends since all parameters are
already contained therein. As basic physical quantities we identify space and time

t = Tτ and x = Xξ

and two types of dimensionless entities which are given as densities, namely monomers
a = Aα and filament tips, Br = Bβ and Pl = Bπ. Applying these formal transforma-
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tions to the equations (2.4a), (2.4d) and (2.15), we find the system

∂τβ + ∂ξ

((
− T

X
vR +

δκBT

X
(Aα− aB)

)
β

)
= 0

∂τπ + ∂ξ

((
T

X
vR +

δκPT

X
(Aα− aP )

)
π

)
= 0

(∂τ − ∂ξξ)α+ TδκB

(
α− aB

A

)
Bβ + TδκP

(
a− aP

A

)
Bπ = 0.

With the natural choices

X =
D

vR
, T =

D

v2R
, and A = aB ,

where we chose the characteristic drift velocity to be vR, this leads to the following
dimensionless system

∂τβ + ∂ξ ((−1 + γ(α− 1))β) = 0 (2.55)

∂τπ + ∂ξ ((1 + γρ(α− σ))π) = 0 (2.56)

(∂τ − ∂ξξ)α = −γ(α− 1)β − γρ(α− σ)π (2.57)

if we in addition define the non-dimensional parameters

γ =
δκBaB
vR

. . . ratio of typical polymerization and retrograde flow velocities

ρ =
κP

κB
, σ =

aP
aB

. . . ratios of pointed vs. barbed end kinetics

and take the characteristic end density to be

B =
vR
D

aB =
1

X
aB

which also explains why the monomer profile is nearly linear for the number of filament
ends being large as compared to the monomer density.

Recalling that in the derivation of the model we scaled the end densities by a factor
of δ in order to more conveniently calculate the filament density (cf. [10]) we conclude
that the characteristic true end density b = δB scales as

b =
δvR
D

aB =
δ

X
aB .

That means that the typical invariance under a change in the diffusion coefficient and
a concommitant rescaling of the characteristic time and length scales is in our case not
granted since these scaling constants also occur in the relative densities of filament tips
and monomers.

We see in particular that a variation of the diffusion coefficient does not change
the behavior of the system at all if simultaneously all end densities are varied by the
same factor and all other quantities are left unchanged. We will recover this finding
in simulations as well. To put it differently that means that increasing the diffusion
coefficient has the same effect as decreasing the end densities relative to the typical
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monomer density.
This behavior can also be understood from physical considerations. By increasing the

diffusion coefficient we increase the mobility of the monomers and the interaction of these
with the filament tips is a relatively weakened as a driver of the monomer dynamics. If
however simultaneously there are more filament ends present there influence is increased
again. If we now note that the hyperbolic equations for the end densities neither see
a change of the diffusion coefficient nor a variation of the end densities by a constant
factor we can draw the same conclusion as from the formal calculations given above.

These considerations allow for the investigation of the dimension free model rather
than the original one. For the numerical simulations in chapter 7 we will nevertheless
use the model in its dimensional form in order to explicitely see the effect of changing
the parameters within their physiological range.
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Chapter 3

General Estimates for the
Solutions

We begin this chapter by introducing the notion of a smooth solution to the free bound-
ary problem established in chapter 2.

Definition 3.0.1. Assume conditions 2.1.1. By a smooth solution (or classical solu-
tion) of problem (2.14), (2.15) we denote a pair

(u, a) ∈ C1
b

(
QT ; [0,∞)

n)× (C2x,1t
b (QT ; (0∞)) ∩ C1x,0t(QT ; (0,∞))

)
such that u satisfies (2.14) and a satisfies (2.15) in QT which is given by (2.21).

In the above definition we denoted by C2x,1t
b (QT ) the space of bounded continuous

functions in QT having bounded continuous derivatives up to order two with respect to
the spatial variable x and of first order with respect to time t. Similarly, C1x,0t(QT )

denotes the space of continuous functions on the closure QT having continuous first
derivatives with respect to space up to the boundary.

Remark 3.1. Note that for physical reasons we will only consider solutions for which
the left boundary is determined by the characteristic curves of u1 or u2 (corresponding
to Bl and Pr, respectively) and for which the right boundary is given by u3 or u4 (i.e., Pl

or Br). With αr and αl defined by (2.29) and (2.30), respectively, this can be expressed
by:

∀t ≥ 0 : αl(t) ∩ {1, 2} �= ∅, αr(t) ∩ {3, 4} �= ∅. (3.1)

The physical interpretation is that the barbed ends of left oriented filaments have to be
closer to the left boundary than their corresponding pointed ends, and similarly the barbed
ends of right oriented filaments should be further to the right than right oriented pointed
ends.

We will refer to such solutions as physical solutions.
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3.1 Characteristic velocities

In remark 2.1 we already noted that for special reaction parameters all characteristic
velocities are either zero or mutually different, depending on the value of the monomer
density a. We will now give an overview of all possible combinations. First notice that
by definition we always have

− λ1(t, x) = vB(a(t, x)) = λ4(t, x) (3.2)

λ2(t, x) = vP (a(t, x)) = −λ3(t, x). (3.3)

This observation leaves us with the following cases.

1. 0 �= |vB | �= |vP | �= 0. In that case the hyperbolic part has four distinct eigenvalues
given by ±vB and ±vP , and is thus strictly hyperbolic. This is the generic case
whereas all other cases require a particular value of the monomer concentration.

2. vB = vP �= 0. That means we find two distinct, double eigenvalues ±vB = ±vP
with the corresponding eigenspaces being simply 〈e2, e4〉 and 〈e1, e3〉. This case
occurs if the monomer concentration satisfies

a(t, x) = ass :=
κB(t, x)aB(t, x) + κP (t, x)aP (t, x)

κB(t, x) + κP (t, x)
. (3.4)

3. Either vB = 0 or vP = 0. That is, 0 is a double eigenvalue with associated
eigenspace being either 〈e1, e4〉 or 〈e2, e3〉, and there are two further single
eigenvalues of mutually opposite sign. The corresponding values of the monomer
density are given by

vB = 0 : a(t, x) = a0B := aB(t, x) +
vR

δκB(t, x)
(3.5)

vP = 0 : a(t, x) = a0P := aP (t, x)−
vR

δκP (t, x)
. (3.6)

4. vB = −vP �= 0. Then we have two double eigenvalues ±vB with 〈e3, e4〉 and
〈e1, e2〉 as corresponding eigenspaces, respectively. This will be true for the
monomer concentration

a(t, x) = aBP :=
2 vR

δ + κB(t, x)aB(t, x)− κP (t, x)aP (t, x)

κB(t, x)− κP (t, x)
. (3.7)

5. vB = vP = 0. In that case there is only one eigenvalue of multiplicity four with
the whole R4 as eigenspace. This case can only occur if the reaction parameters
satisfy the compatibility condition

aB(t, x) +
vR

δκB(t, x)
= aP (t, x)−

vR
δκP (t, x)

(3.8)

where both sides have to equal a(t, x). The compatibility condition (3.8) can be
rewritten to

κB(t, x)κP (t, x)
aP (t, x)− aB(t, x)

κP (t, x) + κP (t, x)
=

vR
δ
. (3.9)
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Figure 3.1: Characteristic velocities vB (red) and vP (green) in dependence of the monomer
concentration a for parameters satisfying (left) or not satisfying (left) the compatibility condi-
tion (3.8). The slopes of the lines are κB and −κP , respectively. Note that by lemma 3.3, the
dynamics are bound to the dashed rectangle.

Remark 3.2. Provided the initial and boundary conditions are appropriate, the char-
acteristic velocities are uniformly bounded by:

−vR ≤ vB(t, x)

≤ δ sup
t,x

(κB(t x)(aP (t, x)− aB(t, x)))− vR

≤ δ sup
t,x

κB(t, x)(aP − aB)− vR,

and

−vR ≤ vP (t, x)

≤ δ sup
t,x

(κP (t x)(aP (t, x)− aB(t, x)))− vR

≤ δ sup
t,x

κP (t, x)(aP − aB)− vR,

respectively. This is obvious from the boundedness of a between aB and aP (cf. lemma
3.3). In particular, we can state

−vmax ≤ λ1, . . . , λ4 ≤ vmax

where we introduced the maximal possible velocity

vmax := max

{
vR, δ sup

t,x
κB(t, x)(aP − aB)− vR

}
. (3.10)

For given compatible (in the sense of (3.8)) parameters, the characteristic velocities
vB and vP behave as indicated in figure 3.1 on the left whereas the right diagraph shows
the case of incompatible parameters allowing no eigenvalue of multiplicity four.

Since vB and vP are affine functions of a and since κB is always assumed to be larger
than κP , the values of ass, a0B , a0P , and aBP are always unique for any fixed set of
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parameters.

3.2 Reaction term and monomer density

Given any values for the monomer densities u1, . . . , u4 ≥ 0 we can calculate for the
reaction term in the monomer equation (2.4e):

R(aP (t, x), u) = −δκB(t, x)(aP (t, x)− aB(t, x))(u
1 + u4) ≤ 0. (3.11)

where we denoted by u = (u1, . . . , u4)T the vector of the end densities and used condition
2.1.1 to obtain the sign. Likewise, we find

R(aB(t, x), u) = −δκP (t, x)(aB(t, x)− aP (t, x))(u
2 + u3) ≥ 0. (3.12)

Both of the last two inequalities are strict if the end densities are such that u1 + u4 �= 0

and u2 + u3 �= 0, respectively.
Furthermore, we can estimate the reaction term to be bounded by

|R(a, u)| = δ
∣∣κB(aB − a)(u1 + u4) + κP (aP − a)(u2 + u3)

∣∣
≤ δmax

{
κB(a− aB)(u

1 + u4), κP (aP − a)(u2 + u3)
}

(3.13)

≤ 2δ sup
t,x

κB(aP − aB) sup
t,x

max
α
|uα|

whenever a is bounded between aB and aP .
We readily obtain the following estimate for the monomer density a.

Lemma 3.3. Assume, the parameters to satisfy

vR
δ

< inf
t,x

κB(t, x)(aP − aB) (3.14)

vR
δ

< inf
t,x

κP (t, x)(aP − aB). (3.15)

Let (u, a) be a smooth, physical solution to (2.14), (2.15) with initial conditions satis-
fying

aB = inf
t,x

aB(t, x) ≤ a(0, x) ≤ sup
t,x

aP (t, x) = aP (3.16)

and moving boundary conditions as specified in section 2.2. Then a satisfies

aB ≤ a(t, x) ≤ aP for each (t, x) ∈ QT . (3.17)

Proof. (I) As the solution is considered to be continuous it suffices to show that a

cannot grow if it equals aP or shrink if it is aB . Assume first, a takes the value aP
in some point (t̄, x̄) inside QT ∪ Ω0 where t̄ is such that there is no smaller time
t at which a attains this value. Then by continuity we infer that a(t̄, x) ≤ aP for
each x ∈ Ωt and it follows ∂xxa(t̄, x̄) ≤ 0. Then, by equation (2.15) we calculate

∂ta(t̄, x̄) = D∂xxa(t̄, x̄) +R(aP , u(t̄, x̄)) ≤ 0. (3.18)
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The value of a can thus not increase any further. By continuity again, we also
obtain that a ≤ aP on ΩT .

A completely analogous calculation shows the lower bound for a where we note
that ∂xxa ≥ 0 at local minima.

(II) Consider now the case that a takes the value aP on the lateral boundary of the
domain QT . Then, the sign of the second spatial derivative is not known but
we still can employ the boundary conditions and use our knowledge about the
speed of the boundary. If the point in question belongs to the left boundary, say
a(t̄, l(t̄)) = aP , we calculate the possible characteristic speeds as

λ1(t̄, l(t̄)) = vR − δκB(t̄, l(t̄))(aP − aB(t̄, l(t̄)))

≤ vR − inf
t,x

κB(t, x)(aP − aB)

and

λ2(t̄, l(t̄)) = −vR − δκP (t̄, l(t̄))(aP − aP (t̄, l(t̄)))

≤ −vR.

Note that only these characteristic velocities are of interest as we are dealing
with physical solutions. The first of those is negative by the hypothesis on the
parameters, the second is negative anyway. From the boundary conditions (2.32)
we thus derive

∂xa(t̄, l(t̄)) > 0

which implies a to be larger than a(t̄, l(t̄)) = aP in some spatial neighborhood of
(t̄, l(t̄)). That contradicts part (I) of the proof.

Similarly, assume the point where aP is attained to belong to the right boundary,
say (t̄, r(t̄)). There, the boundary velocity is given by

λ4(t̄, r(t̄)) = −vR + δκB(t̄, r(t̄))(aP − aB(t̄, r(t̄)))

≥ −vR + inf
t,x

κB(t, x)(aP − aB)

or

λ3(t̄, r(t̄)) = vR + δκP (t̄, r(t̄))(aP − aP (t̄, r(t̄)))

≥ vR.

Now both of them are positive and thus by (2.32) the derivative ∂xa(t̄, r(t̄)) is
negative which again yields a contradiction to (I).

If a takes the value aB at the point (t̄, l(t̄)) on the left lateral boundary, then we
compute the possible velocities as

λ1(t̄, l(t̄)) = vR − δκB(t̄, l(t̄))(aB − aB(t̄, l(t̄)))

≥ vR,
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λ2(t̄, l(t̄)) = −vR − δκP (t̄, l(t̄))(aB − aP (t̄, l(t̄)))

≥ −vR + δ inf
t,x

κP (t, x)(aP − aB).

These are both positive and the boundary conditions imply negativity of the deriva-
tive ∂xa(t̄, l(t̄)). This in turn implies that a has to take smaller values than aB in
the vicinity of the boundary which again contradicts (I).

Finally, the case where a attains the value aB on the right lateral boundary is
treated analogously.

Remark 3.4. It is obvious from the proof of the lemma that the assertion remains valid
if the conditions (3.14) and (3.15) are only assumed to hold pointwise. So we can weaken
them to

∀(t, x) ∈ QT :

{
vR

δ < κB(t, x)(aP − aB(t, x))
vR

δ < κP (t, x)(aP (t, x)− aB).
(3.19)

Plugging the bounds on the monomer density into the reaction term R we readily
find the following bound on the reaction term which has already been computed under
the assumption of a being bounded between aB and aP .

Corollary 3.5. Under the hypotheses of lemma 3.3, the reaction term R(a, u) in the
monomer equation (2.15) satisfies the following uniform estimate:

− 2δ‖κB‖C0

(
aP − aB

)
‖u‖C0 ≤ R(a(t, x), u(t, x)) ≤ 2δ‖κP ‖C0

(
aP − aB

)
‖u‖C0 .

(3.20)
Here, the C0-norm of the end density vector u is defined relative to the maximum norm
on R4:

‖u‖C0 := sup
t,x

max
α=1,...,4

|uα(t, x)|. (3.21)

We can furthermore give a gradient estimate for the monomer density a at the
boundary.

Corollary 3.6. Let (u, a) be a smooth, physical solution of the free boundary problem
(2.14), (2.15), (2.22), (2.23), and (2.32) with compatible initial conditions. Then, for
each (t, x) ∈ LQT , the spatial derivative of the monomer density a satisfies:

|∂xa(t, x)| ≤
vmax aP

D
. (3.22)

Proof. This follows directly from the bound |a| ≤ aP from lemma 3.3 and the boundary
conditions.
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Chapter 4

Existence and Uniqueness of
Solutions

4.1 The strictly hyperbolic case with constant coeffi-
cients

Let us first assume that the reaction parameters are constant throughout the whole
space-time domain and satisfy:

0 < aB < aP (4.1)

0 < κP < κB , (4.2)

vR
δ

< κP (aP − aB), (4.3)

and
aP ≥ aB + 2

vR
δ
. (4.4)

We recall that the first two of these conditions reflect the biophysical reality by
stating that

1. at barbed ends, monomers are polymerized at much lower surrounding concentra-
tions than at pointed ends and

2. the reaction kinetics at barbed ends are way faster than at pointed ends.

The third condition (4.3) ensures that the characteristic velocity of the pointed ends can
take positive values. This is needed to allow for the pointed end velocity to vanish for
some a0P ∈ (aB , aP ). Finally, the last condition (4.4) guarantees the existence of some
aBP ∈ (aB , aP ) such that for larger monomer concentrations the barbed ends move
faster than the pointed ends (|vB | > |vP |) (cf. figure 3.1, right). All of these conditions
are satisfied under typical physiological conditions.

We wish to start with the strictly hyperbolic case indicated in figure 2.3 where the
characteristic velocities satisfy

λ1 < λ2 < 0 < λ3 < λ4 (4.5)
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throughout the whole domain. By conditions (4.1)-(4.4) this will be the case for all
monomer densities a > amin where

amin := max{a0P , a0B , aBP } (4.6)

lies between aB and aP .
We now equip system (2.13), (2.15) with initial data u(0, ·) satisfying condition 2.3.1

and a(0, ·) satisfying condition 2.3.2. In addition, we assume the following natural
conditions which will in particular ensure strict hyperbolicity of the hyperbolic part at
the boundary.

Condition 4.1.1. 1. There exists ε0 > 0 such that

u3(0, x) = u4(0, x) = 0 on (0, ε0)

and
u1(0, x) = u2(0, x) = 0 on (L− ε0, L).

These conditions tell us that initially, the left boundary is only supported by Bl or
Pr and the right boundary only by Br or Pl which ensures that the initial data are
physical in the sense of remark 3.1.

2. There exists ε1 > 0 such that

|a(0, 0)− aBP | > ε1 and |a(0, L)− aBP | > ε1.

This condition assures that initially, the velocities of the ends directly at the bound-
ary are different.

We start with some results stating existence and uniqueness for the single components
a, u, r, and l of the solution supposed the others are given.

4.1.1 Existence and uniqueness for the parabolic equation

Assuming the boundary curves
l, r : [0, T ]→ R

and the end densities
u1, . . . , u4 : QT → [0,∞)

are given, the monomer equation reduces to a linear equation

∂ta(t, x)−D∂xxa(t, x)− ϕ(t, x)a(t, x) = f(t, x) (4.7)

with coefficient function

ϕ(t, x) = δ(κB , κP , κP , κB)

⎛
⎜⎜⎝
u1

u2

u3

u4

⎞
⎟⎟⎠ ≥ 0
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and right hand side

f(t, x) = δ(κBaB , κP aP , κP aP , κBaB)

⎛
⎜⎜⎝
u1

u2

u3

u4

⎞
⎟⎟⎠ ≥ 0.

This problem is given on

QT = {(t, x) | 0 < t < T, l(t) < x < r(t)}

and equipped with boundary conditions

D∂xa(t, l(t)) + l̇(t)a(t, l(t)) = 0 (4.8)

D∂xa(t, r(t)) + ṙ(t)a(t, r(t)) = 0 (4.9)

and initial conditions
a(0, ·) =: a0 : [0, L]→ [0,∞). (4.10)

We will now derive a priori estimates for the solution a of the parabolic equation
(4.7) in the closure of the space-time domain QT . In chapter 3 we already showed in
lemma 3.3 the boundedness of the solution a by

aB ≤ a(t, x) ≤ ap. (4.11)

Using the notation introduced in appendix A.1 we can cite theorem 4.31 from [19].

Proposition 4.1. Let β ∈ (0, 1) and l, r : [0, T ]→ R of class C1+ 1+β
2 be given such that

l(t) < r(t) for each t ∈ [0, T ]. Assume

D +max
{
‖l̇‖

C
1+β
2

, ‖ṙ‖
C

1+β
2

}
≤ DB1, (4.12)

for some constant B1 and
ϕ, f ∈ C0+β,P (QT ).

Then, there exists a constant C, depending only on

D,B1, ‖ϕ‖C0+β,P , β, and QT = {(t, x) | 0 < t < T, l(t) < x < r(t)}

such that for each solution a ∈ C2+β,P (QT ) of (4.7), (4.8), (4.9) on QT with initial
conditions

a0 ∈ C2+β([0, L]; [0,∞))

satisfying the compatibility conditions 2.3.2 we have:

‖a‖C2+β,P ≤ C (‖a‖C0 + ‖f‖C0+β,P + ‖a0‖C2+β ) . (4.13)

Proof. We slightly adapt the proof from [19] by making some notes on the changed
hypotheses.
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(I) We have to note that the coefficients l̇ and ṙ in the boundary conditions (4.8) and
(4.9), respectively, are given on the respective boundary and may be extended to
all of [0, T ] × R by just letting them be independent of x and find that for these
extended velocities vl, vr we have:

‖vl‖C1+β,P = sup
0≤t≤T

|l̇(t)|+Höl 1+β
2
(l̇) (4.14)

‖vr‖C1+β,P = sup
0≤t≤T

|ṙ(t)|+Höl 1+β
2
(ṙ). (4.15)

(II) We note that our domain is not degenerate since in fact, r(t)−l(t) remains bounded
away from zero by continuity.

The parabolic boundary of our domain is not differentiable at the corner points
(0, 0) and (0, L). This is repaired by the compatibility conditions for the initial
and boundary condtitions at these points (cf. theorem 5.3 in chapter IV of [16]).

In [19], it is required that the parabolic boundary is of class C2+β which in our
case translates into BQT belonging to some hyperplane {(t, x) | t = t0} and LQT

being locally the graph of some function of class C2+β,P so that QT locally lies on
one side of that graph. The former condition is clearly true as BQT = {0}× (0, L).

The latter reduces in one space dimension into the lateral boundary curves r and l

being continuously differentiable with derivatives ṙ and l̇ being Hölder continuous
with exponent β

2 . Here, we recall that ‖ · ‖C2+β,P is defined by (A.16), and in our
one dimensional case only the temporal derivatives matter. Using now

HölP,β(f) = sup
t,s

|f(t)− f(s)|√
|t− s|β

for functions only depending on time, we arrive at the exponent β
2 . This regularity

is encoded in the hypothesis l, r ∈ C1+ 1+β
2 ⊂ C1+ β

2 .

(III) The conditions on the coefficient function ϕ and the right hand side f are explicitely
stated, and the leading order coefficient is just the constant diffusion coefficient D.

(IV) The transversality assumption on the boundary condition in our one dimensional
case reduces to the simple condition D > 0 together with the lateral bound-
ary curves being nowhere horizontal which is granted by the boundedness of the
boundary velocities (cf. point (II)).

Remark 4.2. (i) The requirement of the boundary velocities ṙ and l̇ being continuous
cannot be relaxed if we wish the monomer density to be continuously differentiable up to
the boundary. To see that, assume that, say, ṙ jumps at t = t0 from v−r to v+r . Then,
the boundary curve r is still Lipschitz at this point but a continuously differentiable
solution a had to satisfy

(D∂x + v−r )a(t0, r(t0)) = lim
t↗t0

lim
Σt�x→r(t)

(D∂x + ṙ(t))a(t, x) = . . .

· · · = lim
t↘t0

lim
Σt�x→r(t)

(D∂x + ṙ(t))a(t, x) = (D∂x + v+r )a(t0, r(t0))
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which contradicts the jump v−r �= v+r . Thus, the above reasoning does not work in case
of a switch of the boundary velocity.

(ii) The compatibility conditions for the initial and boundary conditions are particu-
larly simple since the right hand side of the boundary conditions vanishes.

For completeness, we give a second theorem, corresponding to theorem 4.30 in [19],
that states a similar estimate for C1+β,P -solutions under weaker conditions on the
boundary curves.

Proposition 4.3. Let β ∈ (0, 1) and l, r : [0, T ] → R of class C1+ β
2 be given such that

l(t) < r(t) for each t ∈ [0, T ]. Assume ϕ, f ∈M1,2+β with

‖ϕ‖M1,2+β
≤ C1.

Assume further
D +max

{
‖l̇‖

C0+
β
2
, ‖l̇‖

C0+
β
2

}
≤ DB1 (4.16)

for some B1 > 0. Then, there exists a constant C, depending only on

D,B1, C1, β, and QT = {(t, x) | 0 < t < T, l(t) < x < r(t)}

such that for each solution a ∈ C1+β,P
(
QT

)
of (4.7), (4.8), (4.9) on QT with initial

conditions
a0 : [0, L]→ [0,∞)

satisfying the compatibility conditions 2.3.2 we have:

‖a‖C1+β,P ≤ C (‖a‖C0 + ‖ϕ‖M1,2+β + ‖a0‖C1+β ) . (4.17)

Note that in the previous proposition, the norm ‖a‖C0 is bounded from above by aP
for our particular problem. In particular, the right hand side of the given estimate does
not contain any dependence on the solution a at all.

Finally, we use adapted versions of theorems 5.18 and 5.19 from [19] to deduce exis-
tence and uniqueness of solutions to the parabolic problem under different assumptions
on the coefficient functions, the right hand side, and the boundary velocities.

Theorem 4.4. (cf. thm. 5.19 in [19]) Let β, γ ∈ (0, 1), let

l, r ∈ C1+ β
2 ([0, T ])

be given, assume l(t) < r(t) for each t ∈ [0, T ], set

QT = {(t, x) | 0 < t < T, l(t) < x < r(t)}.

Assume
ϕ ∈ C0+γ,P

(
QT

)
and f ∈ C0+γ,P

(1−β) (QT ),

and let finally the initial conditions

a0 ∈ C1+β([0, L])

39



satisfy the compatibility conditions 2.3.2.
Then, the problem

(∂t −D∂xx − ϕ(t, x))a(t, x) = f(t, x) in QT ,

(D∂x + l̇(t))a(t, l(t)) = 0 for 0 < t < T,

(D∂x + ṙ(t))a(t, r(t)) = 0 for 0 < t < T,

a(0, x) = a0(x) for 0 < x < L

has a unique solution a, this solution belongs to C2+γ
(−1−β)(QT ) and satisfies

|a|(−1−β)
2+γ ≤ C

(
|f |(1−β)

0+γ + ‖a0‖C1+β

)
(4.18)

where C is a constant depending only on

D, max
{
‖l‖

C1+
β
2
, ‖r‖

C1+
β
2

}
, γ, β, and T.

Proof. We only have to explain why the hypotheses of theorem 5.19 in [19] are satisfied.

(I) The assumption on PQT relies on the boundary curves being of class C1+ β
2 which

is stronger than C0+ 1+β
2 . The uniform transversality of the boundary gradient

operator D∂x to the lateral boundary LQT follows as well, since the boundary
velocities are necessarily bounded. More precisely, the transversality in one space
dimension simply reduces to the condition that

D2 + (l̇(t))
2

(
resp. D2 + (ṙ(t))

2
)

is bounded away from zero and bounded from above. This boundedness and the
Hölder continuity of the boundary velocities also lead to the estimate for the
coefficients of the boundary operator from above.

(II) The conditions on the coefficient functions and the right hand side of the parabolic
equation are explicitely stated. The same is true for the initial conditions and in
particular for the compatibility conditions at the corner points.

For better readability we explicitely write out the relevant norms in the hypothesis
and the assertion of the theorem and make some remarks on the requirements that arise
for the solution u of the hyperbolic part.

The boundary velocities shall be Hölder continuous of exponent β
2 . We note that

at least the boundedness of these velocities which is crucial for the behavior of the
boundary operator

D∂x + v·

has already been established in section 3.1. There we found that the velocities are
bounded by vmax which only depends on the reaction parameters and the retrograde
flow velocity vR.

For the coefficient function ϕ = cu we only require uniform parabolic Hölder con-
tinuity of exponent γ which is readily implied by Lipschitz continuity of u.
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The right hand side f = c̃u is assumed to belong to the weighted Hölder space
C0+γ

(1−β)(QT ). Noting that
1− β + γ > 0

we can in fact also assume the right hand side to belong to the smaller space C0+γ(QT ).
Again, the Lipschitz continuity of the end densities u is sufficient to guarantee the
global Hölder continuity of f to any exponent.

The assertion that the solution a belongs to C2+γ
(−1−β) implies the estimate

‖∂xa‖C0 ≤ (diamQT )
γ
C
(
|f |(1−β)

0+γ + ‖a0‖C1+β

)
. (4.19)

The previous theorem requires quite mild assumptions on the functions involved.
However, the assertion is not sufficient to expect sufficiently smooth boundary velocities
since the Hölder continuity of ∂ta and ∂xa at the boundary is only granted up to rescaling
the space-time by the parabolic distance to the boundary. This drawback is overcome
by the following theorem that in turn requires stronger assumptions on the boundary
curves and the coefficient functions.

Theorem 4.5. (cf. thm. 5.18 in [19]) Let β ∈ (0, 1) and

r, l ∈ C1+ 1+β
2 ([0, T ])

be given such that l(t) < r(t) for each t ∈ [0, T ]. Let furthermore

ϕ, f ∈ C0+β,P
(
QT

)
,

and let the initial data
a0 ∈ C2+β([0, L])

satisfy the compatibility conditions 2.3.2.
Then, there exists a unique solution a ∈ C2+β,P

(
QT

)
to the problem

(∂t −D∂xx − ϕ(t, x))a(t, x) = f(t, x) in QT ,

(D∂x + l̇(t))a(t, l(t)) = 0 for 0 < t < T,

(D∂x + ṙ(t))a(t, r(t)) = 0 for 0 < t < T,

a(0, x) = a0(x) for 0 < x < L,

and there exists a constant C > 0 depending only on

l, r, D, β, and ‖ϕ‖0+β,P

such that
‖a‖C2+β,P ≤ C (‖f‖C0+β,P + ‖a0‖C2+β ) . (4.20)

Proof. Again, most of the hypotheses of theorem 5.18 in [19] are trivially fulfilled. The
interesting ones are again those on the (lateral) boundary and the boundary conditions.
These follow again as in the proof of proposition 4.1.
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4.1.2 Existence and uniqueness of the boundary curves

We now turn our attention to the regularity of the boundary velocities once the solution
a to the monomer equation is assumed to be given and of certain regularity. To this
end, we note that the end velocities are affine functions of the monomer density.

For the following calculations we will still use constant coefficients but not without
noting that sufficiently small and smooth variations only change the constants in the
results. We also still assume to be in the strictly hyperbolic case so that the boundary
curves are given by

l : [0, T ]→ R, l̇(t) = λ1(a(t, l(t))) for t ∈ (0, T ), l(0) = 0 (4.21)

r : [0, T ]→ R, ṙ(t) = λ4(a(t, r(t))) for t ∈ (0, T ), r(0) = L. (4.22)

Assuming the monomer density a to be prescribed we can prove the following basic
lemma.

Lemma 4.6. Assume the monomer density a to be given on all of

E+
T := [0, T ]× R

and of class C2+β,P . Then, any function g : [0, T ]→ R given by

ġ(t) = c1a(t, g(t)) + c2

g(0) = x0

is of class C2+ β
2 ([0, T ]).

Proof. Let us denote by A the parabolic Hölder norm of the given monomer density
a:

A := ‖a‖C2+β,P .

Let us further denote by M the following upper bound for the absolute velocity:

M := |c1|‖a‖C0 + |c2|.

Clearly, ġ is continuous since a is differentiable with bounded derivatives and there-
fore globally Lipschitz continuous. As a preliminary estimate we readily deduce

|g(t)− g(s)| ≤ ‖ġ‖C0 |t− s|
≤ M |t− s|.

Moreover,
g̈ = c1(∂ta+ ġ∂xa) = c1(∂ta+ (c1a+ c2)∂xa)

is continuous as well and moreover satisfies the following estimate for any t, s ∈ [0, T ]:

|g̈(t)− g̈(s)|
|c1|

≤ |∂ta(t, g(t))− ∂ta(s, g(s))|+M |∂xa(t, g(t))− ∂xa(s, g(s))|

+|c1|‖∂x‖C0 |a(t, g(t))− a(s, g(s))|
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≤ HölP,β(∂ta)|(t, g(t))− (s, g(s))|βP
+M

(
‖∂xxa‖C0 |g(t)− g(s)|+Hölt, 1+β

2
(∂xa)|t− s|

1+β
2

)
+|c1|A (‖∂ta‖C0 |t− s|+ ‖∂xa‖C0 |g(t)− g(s)|)

≤ Amax
{
|t− s|

β
2 ,M |t− s|

}
+A M

(
M |t− s|+ |t− s|

1+β
2

)
+|c1|A2 (|t− s|+M |t− s|)

≤ C
(
|t− s|+ |t− s|

1+β
2 + |t− s|

β
2

)
.

Since we deal with a bounded time interval [0, T ] we can by appropriately adjusting the
constant C conclude the Hölder continuity of g̈ to the exponent β

2 :

|g̈(t)− g̈(s)| ≤ C|t− s|
β
2 for any t, s ∈ [0, T ] (4.23)

which is the asserted regularity.

If we assume weaker regularity for the monomer density, we still find sufficiently
strong regularity for the boundary curves as is shown in the following corollary.

Corollary 4.7. Given bounded
a ∈ C1

(
E+

T

)
with bounded derivatives, any curve g being defined as in lemma 4.6 is continuously
differentiable with Lipschitz continuous first derivative and thus belongs to C1+1([0, T ]).

Proof. The proof relies on a short version of the calculations in the proof of lemma 4.6.
Using now

A := ‖a‖C1 and M := |c1|‖a‖C0 + |c2|

we calculate for the derivative ġ:

|ġ(t)− ġ(s)|
|c1|

≤ ‖∂ta‖C0 |t− s|+ ‖∂xa‖C0 |g(t)− g(s)|

≤ A(1 +M)|t− s|

and the Lipschitz constant for ġ is therefore bounded from above by, say M(1+M).

4.1.3 Existence and uniqueness for the hyperbolic part

We assume now to be given a sufficiently smooth monomer density A and want to
consider the problem

∂tu+ ∂x (Λ(A)u) = 0 (4.24)

where according to the notation introduced in chapter 2, u = (u1, . . . , u4)T is the vector
of end densities and Λ is the diagonal velocity matrix. The velocities now only depend
on t and x indirectly via the given monomer density A since we deal with the constant
coefficient case.
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We observe that system (4.24) consists of four mutually decoupled, linear hyperbolic
equations, and we thus can treat each of the equations separately. The velocities λα

depend affinely on the given function A and therefore inherit its regularity.
The boundary conditions pose no problems at all. In fact, we have to distinguish

two cases for the αth equation at any given boundary point (t, x):

1. The velocity of the right (respectively left) boundary is larger (respectively smaller)
than the characteristic velocity λα(t, x). In that case the characteristic curves enter
the domain and the boundary values are put to zero.

2. The boundary velocity equals the characteristic velocity. Then we deal with a
characteristic boundary and as we assume the initial conditions to be zero at the
initial boundary points the value of the solution at such a point will be zero as
well.

We can thus simply consider the Cauchy problem in

E+
T := (0, T )× R

for each of the hyperbolic equations where we just extend the initial conditions by zero
and the coefficient functions λα by smooth continuation in space. The precise form of
this continuation does not matter as the solution uα vanishes throughout E+

T \QT . In
particular, for any continuously differentiable extension Ā of the monomer density A we
can calculate as spatial derivatives from inside QT :

lim
QT�(t,x)→(t0,x0)∈LQT

∂x(u(t, x)Ā(t, x)) = lim
QT�(t,x)→(t0,x0)∈LQT

A(t, x)∂xu(x)

+ lim
QT�(t,x)→(t0,x0)∈LQT

∂xA(t, x)u(t, x)

= A(t0, x0)0 + 0∂xA(t0, x0) = 0,

where we used the assumption
A ∈ C1x,0t(QT ).

Coming from outside the domain QT , the product Āu vanishes identically and thus the
spatial derivative of Āu is continuous across LQT .

In the following discussion we will often follow the ideas from [18] where hyperbolic
systems are considered. Here, due to the decoupling of our system we can deal with
scalar equations. We thus introduce the following transport form of our equations:

∂tu
α(t, x) + λα(t, x)∂xu

α(t, x) = −∂xλα(t, x)uα(t, x) =: μα (t, x, uα(t, x)) (4.25)

which will be equipped with initial conditions

uα(0, x) = uα
0 (x) (4.26)

with uα
0 ∈ C1(R) having support in [0, L]. Let us define

Mα
0 := ‖uα

0 ‖C0(R) ≡ sup
x∈R

|uα
0 (x)| (4.27)

Mα
1 :=

∥∥∥∥ d

dx
uα
0

∥∥∥∥
C0(R)

. (4.28)
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We recall the equation for the characteristic curve (t, yα(t; ξ)) emerging from the
point (0, ξ) to be

d

dt
yα(t; ξ) = λα(t, yα(t; ξ)). (4.29)

Assuming the coefficient function λα to be continuously differentiable with respect to
the space variable with

‖λα‖C1x,0t (QT ) ≡ sup
(t,x)∈QT

(|λα(t, x)|+ |∂xλα(t, x)|) = Mα
2 <∞ (4.30)

we conclude that the characteristic curve passing through any point (t, x) ∈ QT is a
uniquely determined differentiable curve and thus to each point (t, x) we find a unique
point ξα(t, x) such that

yα(t; ξα(t, x)) = x.

More pictorally, (0, ξα(t, x)) is the point on the x-axis from which the αth characteristic
curve passing through (t, x) emerges.

Proposition 4.8. Assume
A ∈ C2x,1t([0,∞)× R)

to be bounded with bounded derivative ∂xA.
Then the Cauchy problem for equation (4.24) with compactly supported continuously

differentiable initial data has a unique solution which is continuously differentiable in all
of [0,∞)× R. The components uα of this solution can be explicitely written as

uα(t, x) = uα(0, ξα(t, x)) exp

[
−
∫ t

0

∂xλ
α (τ, yα(τ ; ξα(t, x)))dτ

]
=: (Sαuα)(t, x). (4.31)

Proof. The elementary proof of this proposition can be found in various standard text-
books. We refer to [23] where this particular form can be found as theorem 6.3. We only
note that the velocity matrix is diagonal and has the same regularity and boundedness
properties as A. In particular, the crucial Lipschitz continuity with respect to the
spatial variable follows directly from the boundedness of the first spatial derivative.

Note that from the representation formula (4.31) in proposition 4.8 we immediately
deduce that the solution remains non-negative whenever the initial data are, which we
clearly assume since we deal with physical densities.

4.1.4 A priori estimates for the hyperbolic equations

Let us now derive some a priori estimates for the solutions uα to the equations (4.25).
We start with an estimate for the characteristic curves. Given any two points (t, x)

and (t, y) in E+
∞ with the same time we find for the distance of the points where the

characteristic curves through these points emerge:

|ξα(t, x)− ξα(t, y)| ≤ |x− y| exp
[
‖∂xλα‖

C0
(
E+

t

)t
]

(4.32)
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which follows by applying Grönwall’s inequality to the evolution of the characteristic
curves emerging in neighboring points. More precisely, let

d(τ) := yα(τ ; ξα(t, x))− yα(τ ; ξα(t, y))

denote the distance between the characteristics passing through (t, x) and (t, y) measured
at time τ . Then, the evolution of this distance is given by

ḋ(τ) = λα(τ, yα(τ ; ξα(t, x)))− λα(yα(τ ; ξα(t, y))),

and this derivative is bounded by

|ḋ(τ)| ≤ ‖∂xλα‖
C0

(
E+

t

) |yα(τ ; ξα(t, x))− yα(τ ; ξα(t, y))| ≤ ‖∂xλα‖
C0

(
E+

t

) |d(τ)|.

This is now the equation to which Grönwall’s inequality in differential form can be
applied with integration backward in time from t to 0.

We use this result to estimate the spatial Lipschitz constant for the solution uα

at time t and thus an upper bound for the spatial derivative of the C1-function uα.
Before deriving this bound we first calculate the supremum norm of uα over temporally
bounded strips E+

T . This is achieved by estimating the representation (4.31) for the
solution of (4.25):

uα(t, x) = uα
0 (ξ

α(t, x)) exp

[
−
∫ t

0

∂xλ
α (τ, yα(τ ; ξα(t, x)))dτ

]

≤ ‖uα
0 ‖C0 exp

[
t sup
(τ,z)∈E+

t

|∂xλα(τ, z)|
]
.

We thus find:
‖uα‖

C0(E+
T )
≤ exp

[
T‖∂xλα‖

C0(E+
T )

]
Mα

0 . (4.33)

In order to estimate the spatial derivative we calculate for any t ∈ (0, T ] and x, y ∈ R:

|uα(t, x)− uα(t, y)| =

∣∣∣∣ uα
0 (ξ

α(t, x)) exp

[
−
∫ t

0

∂xλ
α (τ, yα(τ ; ξα(t, x)))dτ

]

−uα
0 (ξ

α(t, y)) exp

[
−
∫ t

0

∂xλ
α (τ, yα(τ ; ξα(t, y)))dτ

]∣∣∣∣

≤ |uα
0 (ξ

α(t, x))− uα
0 (ξ

α(t, y))| exp
[
t sup
(τ,z)∈E+

t

|∂xλα(τ, z)|
]

+ |uα
0 (ξ

α(t, y))|
∣∣∣∣exp

[
−
∫ t

0

∂xλ
α (τ, yα(τ ; ξα(t, x)))dτ

]

− exp

[
−
∫ t

0

∂xλ
α (τ, yα(τ ; ξα(t, y)))dτ

]∣∣∣∣ .
For the last term we use the basic inequality

|er − es| ≤ er|e0 − es−r| ≤ ere|r−s||r − s|
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which is true for arbitrary real numbers r and s and find

|uα(t, x)− uα(t, y)| ≤ Lip[uα
0 ] |x− y| exp [2t‖∂xλα‖C0 |]

+ ‖uα
0 ‖C0 exp [3t‖∂xλα‖C0 |]×

×
∫ t

0

|∂xλα (τ, yα(τ ; ξα(t, x)))− ∂xλ
α (τ, yα(τ ; ξα(t, y)))|dτ.

The integral in the last line is bounded by∫ t

0

‖∂xxλα‖C0 |x− y| exp [‖∂xλα‖C0τ ]dτ ≤ ‖∂xxλα‖C0 |x− y|t exp [t‖∂xλα‖C0 ] (4.34)

We note that the norm ‖∂xλα‖C0 may be assumed to be positive since otherwise
all the integrals would vanish and the whole equation for uα would degenerate to a
transport equation with constant velocity field.

Putting the estimates together we obtain

|uα(t, x)− uα(t, y)|
≤ (Lip[uα

0 ] + ‖uα
0 ‖C0‖∂xxλα‖C0 exp[2t‖∂xλα‖C0 ]t) exp [2t‖∂xλα‖C0 ] |x− y|.

We thus find as an upper bound for the spatial Lipschitz constant and thus the
partial derivative of uα in E+

T with respect to space:

|∂xuα(t, x)| ≤ (Mα
1 +Mα

0 ‖∂xxλα‖C0 exp[2T‖∂xλα‖C0 ]T ) exp [2T‖∂xλα‖C0 ] . (4.35)

Let us now deduce a bound for the partial derivative uα with respect to time. This
will be used to write down a simple form for the C1-norm of uα. To obtain the Lipschitz
bound with respect to time we consider two points (t, x) and (s, x) and estimate the
difference

|u(t, x)− u(s, x)|.

For notational convenience, we assume without loss of generality s < t. From the
point (s, x) we follow the αth characteristic curve until time t where we end up at some
point (t, y), and in general y will be different from x. However, we know that x and y

are close by one another if s and t are close enough:

|x− y| ≤ ‖λα‖
C0

(
E+

t

)(t− s).

Then, we use the triangle inequality to compute

|uα(t, x)− uα(s, x)| ≤ |uα(t, x)− uα(t, y)|+ |uα(t, y)− uα(s, x)|
≤ (Lip[uα

0 ] + ‖uα
0 ‖C0‖∂xxλα‖C0 exp[2t‖∂xλα‖C0 ]t) exp [2t‖∂xλα‖C0 ] |x− y|

+ uα(s, x)

∣∣∣∣exp
[
−
∫ t

s

∂xλ
α(τ, yα (τ ; ξα(s, x)))dτ

]
− 1

∣∣∣∣ .
In order to estimate the second term on the right hand side we note that for ζ ∈ R

the exponential satisfies
|eζ − 1| = |ζ|eθζ ≤ |ζ|e|ζ|
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for some θ ∈ [0, 1] which in our case implies∣∣∣∣exp
[
−
∫ t

s

∂xλ
α(τ, yα (τ ; ξα(s, x)))dτ

]
− 1

∣∣∣∣ ≤ (t− s)‖∂xλα‖C0 exp [(t− s)‖∂xλα‖C0 ] .

(4.36)

We obtain

|uα(t, x)− uα(s, x)|
≤ ((Lip[uα

0 ] + ‖uα
0 ‖C0‖∂xxλα‖C0 exp[2t‖∂xλα‖C0 ]t) exp [t‖∂xλα‖C0 ] ‖λα‖C0

+‖uα
0 ‖C0‖∂xλα‖C0) exp [t‖∂xλα‖C0 ] (t− s).

For arbitrary 0 ≤ s, t ≤ T we finally find

|uα(t, x)− uα(s, x)|
≤ (Lip[uα

0 ]‖λα‖C0 + ‖uα
0 ‖C0 (‖∂xxλα‖C0 exp[2T‖∂xλα‖C0 ]T‖λα‖C0 + ‖∂xλα‖C0))×

× exp[2T‖∂xλα‖C0 ] |t− s|.

Using again the continuous differentiability we thus find as upper bound for the time
derivative of the solution uα in E+

T :

|∂tuα| ≤ (Mα
1 ‖λα‖+Mα

0 (‖∂xxλα‖‖λα‖ exp[2T‖∂xλα‖]T + ‖∂xλα‖)) exp[2T‖∂xλα‖]
(4.37)

with ‖ · ‖ standing for ‖ · ‖C0 .

Adding up the estimates (4.33), (4.35), and (4.37) we find a bound for the C1-norm
of the solution uα to the Cauchy problem for equation (4.25) for times t ∈ [0, T ]:

‖uα‖
C1

(
E+

T

) ≤ exp [2T‖∂xλα‖]× (4.38)

× (Mα
0 (1 + ‖∂xλα‖) + (Mα

1 +Mα
0 ‖∂xxλα‖ exp[2T‖∂xλα‖]T )(1 + ‖λα‖))

with ‖ · ‖ denoting the C0(E+
T )-norm.

Returning to the specific equations, we can now as well estimate the norms of the
velocity λ and the growth term ∂xλ in terms of the given monomer concentration A and
its spatial derivative. We recall that we are in the case of constant reaction coefficients
and thus need not consider their derivatives. Assuming the given density A to satisfy
aB ≤ A ≤ aP we can estimate (cf. remark 3.2):

max
α=1,...,4

‖λα‖
C0

(
E+

T

) ≤ max {vR, δκB (aP − aB)− vR} =: vmax (4.39)

and likewise

max
α=1,...,4

‖∂xλα‖
C0

(
E+

T

) ≤ δκB‖∂xA‖C0
(
E+

T

) ,

max
α=1,...,4

‖∂xxλα‖
C0

(
E+

T

) ≤ δκB‖∂xxA‖C0
(
E+

T

)

and note that the first of these bounds (4.39) is completely independent of the function
A and only depends on the parameter values.
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Introducing furthermore the abbreviation

E0(t) := exp[δκBt‖∂xA‖C0 ]

the resulting estimates for the solution u and its derivatives now read:

‖u‖C0 ≤ E0(T )M0 (4.40)

‖∂xu‖C0 ≤ E0(2T )(M1 +M0δκB‖∂xxA‖E0(2T )T ) (4.41)

‖∂tu‖C0 ≤ E0(2T ) (M1vmax + δκBM0 (T‖∂xxA‖E0(2T )vmax + ‖∂xA‖)) (4.42)

and finally for the full C1-norm:

‖u‖C1 ≤ (M0(1 + δκB‖∂xA‖) + (M1 +M0δκB‖∂xxA‖TE0(2T ))(1 + vmax)) E0(2T ).
(4.43)

In all of the equations (4.40) - (4.43), the norm used on R4 can be taken to be the
maximum norm

|u|∞ = max
α=1,...,4

|uα|

(corresponding to the estimates on the single components uα) or the sum norm

|u|1 = |u1|+ · · ·+ |u4|.

The constants M0 and M1 are then taken to be

M0 = max
α=1,...,4

Mα
0 , M1 = max

α=1,...,4
Mα

1

or

M0 =
4∑

α=1

Mα
0 , M1 =

4∑
α=1

Mα
1 ,

respectively.

4.1.5 Existence and uniqueness for the parabolic free boundary
problem

Trying to put pieces together we summarize the results obtained so far.

1. The monomer density a is bounded between aB and aP whenever it is of class
C2x,1t and if its initial conditions respect this bound (cf. lemma 3.3).

2. The boundary velocities l̇ and ṙ are bounded between −vmax and vmax whenever
the monomer density obeys the bound from point 1 (cf. remark 3.2).

3. For β ∈ (0, 1), given boundary curves of class C1+ 1+β
2 , end densities U of class

C0+β,P and initial conditions a(0, ·) ∈ C2+β , we obtain a solution a for the
parabolic boundary value problem which is of class C2+β,P (cf. theorem 4.5).

4. If the monomer density is of class C1, then the resulting boundary curves are of
class C1+1([0, T ]) (cf. corollary 4.7).
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5. Given a prescribed monomer distribution A of class C2x,1t we obtain solutions uα

for the hyperbolic equations which are of class C1 and obey certain Lipschitz
bounds on each bounded time interval [0, T ] (cf. proposition 4.8 and estimates
thereafter).

We are going to use a standard fixed point argument relying on the compactness of
the embeddings

C1+1 ↪→↪→ C1+ 1+β
2

C2+β,P ↪→↪→ C2x,1t ↪→ C1

C0+1 ∩ C1 ↪→↪→ C0+β,P

for any β ∈ (0, 1) and particular bounds on the embedding constants.
The main difficulty to overcome is the matching of the boundary curves with the

domain QT the functions have to be defined on. As already noted in subsection 4.1.4, the
hyperbolic part causes no problem at all since we deal with trivial boundary conditions
for those end densities with support being bounded away from the boundary and with
characteristic boundary conditions for the end densities supporting the boundary. More
precisely, the supporting end densities follow the boundary curves determined by the
parabolic equation and do not interfere with the boundary conditions since their value
at the boundary remains zero if it is supposed to be so initially.

To circumvene these troubles we use a front fixing method similar to chapter 5 in
[4] and rather write the parabolic equation on a fixed domain (τ, ξ) ∈ (0, T )× (0, L) by
using the coordinate transformation

τ = t, ξ = L
x− l(t)

r(t)− l(t)
. (4.44)

The derivatives are then transformed into

∂x → L

r − l
∂ξ, ∂xx → L2

(r − l)
2 ∂ξξ

∂t → ∂τ −
L

(r − l)
2

((
l +

r − l

L
ξ

)
(ṙ − l̇) + rl̇ − lṙ

)
∂ξ

= ∂τ −
L

r − l

(
ξ

L
(ṙ − l̇) + l̇

)
∂ξ

which gives rise to the following initial boundary value problem for the rescaled density

ã(τ, ξ) = a(τ, x(τ, ξ)) :

∂τ ã−
L2D

(r − l)
2 ∂ξξã−

L

r − l

(
ξ

L
(ṙ − l̇) + l̇

)
∂ξã+ ϕ̃ã = f̃ (4.45)

in (0, T )× (0, L), equipped with initial conditions

ã(0, ξ) = a0(ξ) on [0, L] (4.46)
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and boundary conditions

DL∂ξã(τ, 0) + l̇(r − l)ã(τ, 0) = 0 (4.47)

for τ ∈ (0, T ).

DL∂ξã(τ, L) + ṙ(r − l)ã(τ, L) = 0 (4.48)

The henceforth only virtual boundary curves are again given by the usual initial
value problems, namely

l̇(τ) = λ1(ã(τ, 0)), l(0) = 0 (4.49)
˙̃r(τ) = λ4(ã(τ, L)), r̃(0) = 0. (4.50)

where we used the abbreviation r̃ := r(· − L). The reason is that r̃ can be said to be
small in C1+ 1+β

2 if the curve r is close to its initial value L and if its velocity ṙ together
with the Hölder constant Höl 1+β

2
(ṙ) are small. We will occasionally mix the notation

for r̃ and r if only the velocity is concerned which should not cause any confusion since
we always have ˙̃r = ṙ.

We can now proceed as before by assuming the boundary curves l and r, which
now serve as variable coefficients in the equation and in the boundary conditions, to be
given and sufficiently smooth. For those, we easily find a unique solution to the initial
boundary value problem (4.45) - (4.48).

As we are now dealing with a true space-time cylinder Q̃T = (0, T )× (0, L) we may
adapt theorem 5.3 from chapter IV in Ladyženskaja’s book [16]. Putting l = β ∈ (0, 1)

therein and using the notation established in appendix A.1, we formulate the following
theorem.

Theorem 4.9. Let β ∈ (0, 1), let l, r : [0, T ] → R be given of class C1+ 1+β
2 such that

for some d > 0 it is
r(t)− l(t) > d for each t ∈ [0, T ].

Assume further that ϕ and f belong to C0+β,P
(
QT

)
and that the initial condition a0 ∈

C2+β([0, L]) satisfies the compatibility condition 2.3.2.
Then, there exists a unique solution ã to problem (4.45) - (4.48), this solution belongs

to C2+β,P
(
Q̃T

)
, and there exists a constant C > 0, depending only on

T, β, ‖r − L‖
C1+

1+β
2

, ‖l‖
C1+

1+β
2

, ‖ϕ‖C0+β,P , L, and D

such that
‖ã‖C2+β,P ≤ C (‖f‖C0+β,P + ‖a0‖C2+β ) . (4.51)

Proof. All the hypotheses of theorem 5.3, chapter IV in [16] are fulfilled if we are able to
show that the rescaled coefficients have the required regularity. First, we note that the
spaces Hk+β, k+β

2 introduced in [16] are the same as Ck+β,P which we borrowed from
[19] in appendix A.1 and that the respective norms are equivalent.

To see that, we observe that the respective norms differ from one another in only
two points. The first one is the constriction in Ladyženskaja’s definition of the Hölder
constants to points that are no more than a fixed distance �0 apart but this is for
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bounded domains easily repaired by scaling the norms with

diamQT +
√
T .

The second difference in the definition of the Hölder constants is that Ladyženskaja
separates the spatial from the temporal modulus of continuity for all relevant deriva-
tives whereas Lieberman combines both of them in the constant HölP,β for the highest
derivatives. However, splitting up this constant into a spatial and a temporal contribu-
tion (with exponents β and β

2 , respecitvely) is easily achieved by the triangle inequality
and the resulting norms differ from one another at most by a factor of 2.

We start with checking the hypotheses on the coefficient functions and the right hand
side in the equation itself.

• The leading order coefficient
L2

(r(τ)− l(τ))
2

is positive, bounded and bounded away from zero as long as r− l remains bounded
away from zero; and in that case, this coefficent has the same regularity as r and l

with respect to time. Moreover, it is independent of the space variable ξ. We thus
find it to be of higher regularity than C2x,1t which is more than sufficient.

• The second coefficient

L

(r − l)
2

((
l +

r − l

L
ξ

)
(ṙ − l̇) + rl̇ − lṙ

)
=

L

r − l

(
ξ

L
(ṙ − l̇) + l̇

)

contains algebraic combinations of r, l, ṙ, and l̇ and therefore inherits their regular-
ity with respect to time − again as long as the denominator r− l remains bounded
away from zero. The dependence on the space variable ξ is affine and therefore
smooth. Combining these observations we obtain a regularity of class C1+β,P .

• The coefficient function ϕ̃ and the right hand side f̃ are of equal regularity, we
therefore treat them together. They are obtained from the original functions ϕ

and f by composition with the coordinate transformation:

ϕ̃(τ, ξ) = ϕ(t(τ, ξ), x(τ, ξ)) = ϕ

(
τ, l(τ) +

r(τ)− l(τ)

L
ξ

)

and analogously for f̃ .

To match the assumptions in theorem 5.3, chapter IV in [16], we require the
functions ϕ̃ and f̃ to belong to C0+β,P . The uniform continuity is obvious and we
therefore can concentrate on the Hölder continuity:

|ϕ̃(τ, ξ)− ϕ̃(σ, η)| =

∣∣∣∣ϕ
(
τ, l(τ)− r(τ)− l(τ)

L
ξ

)
− ϕ

(
σ, l(σ)− r(σ)− l(σ)

L
η

)∣∣∣∣
≤ 2HölP,β(ϕ)

(
|τ − σ|

β
2 +

∣∣∣∣l(τ)− r(τ)− l(τ)

L
ξ − l(σ) +

r(σ)− l(σ)

L
η

∣∣∣∣β
)

due to ϕ being of class C0+β,P by assumption. The second term can be estimated
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as follows:∣∣∣∣l(τ)− r(τ)− l(τ)

L
ξ − l(σ) +

r(σ)− l(σ)

L
η

∣∣∣∣
≤ |l(τ)− l(σ)|+ 1

L
|(r(τ)− l(τ))(ξ − η)|+ |η|

L
|(r(τ)− l(τ))− (r(σ)− l(σ))|

≤ ‖l̇‖C0 |τ − σ|+ ‖r − L‖C0 + ‖l‖C0 + L

L
|ξ − η|+

(
‖ṙ‖C0 + ‖l̇‖C0

)
|τ − σ|

≤ 2‖l̇‖C0 |τ − σ|+ ‖ṙ‖C0 |τ − σ|+
(
1 +

‖r − L‖C0 + ‖l‖C0

L

)
|ξ − η|

= C1 |τ − σ|+ C2 |ξ − η|.

Since β < 1 and since we can restrict ourselves to |τ − σ| < 1 and |ξ − η| < 1

(otherwise, the constants are multiplied by max{‖l‖C0 +‖r − L‖C0 , T}), this leads
to theestimate

|ϕ̃(τ, ξ)− ϕ̃(σ, η)| ≤ 2HölP,β(ϕ)
(
(1 + Cβ

1 )|τ − σ|
β
2 + (C2|ξ − η|)β

)
≤ C3

(
|τ − σ|

β
2 + |ξ − η|β

)
≤ C3 |(τ, ξ)− (σ, η)|βP

which is precisely the required Hölder condition. The very same calculation
clearly holds with f replacing ϕ.

For the initial conditions, there is nothing to do since the coordinate transformation
is the identity at t = τ = 0.

It remains to investigate the coefficients in the boundary conditions. The transver-
sality condition is still valid since DL is constant and positive. The coefficients l̇(r − l)

and ṙ(r − l) of the zeroth order terms are constant in space, and with respect to time
they have the same regularity as ṙ which is assumed to belong to C0+ 1+β

2 . In terms of
parabolic Hölder norms this again translates to C1+β,P as required.

Remark 4.10. We note that the assertion of the theorem remains valid if the boundary
conditions (4.49) and (4.50) are changed to

DL∂ξã(τ, 0) + l̇(r − l)ã(τ, 0) = g(τ, 0) (4.52)

for τ ∈ (0, T ).

DL∂ξã(τ, L) + ṙ(r − l)ã(τ, L) = g(τ, L) (4.53)

with g being of class C1+β,P . It is only necessary to adapt the compatibility conditions
for the initial and boundary conditions at the corner points (0, 0) and (0, L) (unless g

vanishes there), and in the assertion of the theorem, estimate (4.51) has to be changed
to

‖ã‖C2+β,P ≤ C (‖f‖C0+β,P + ‖a0‖C2+β + ‖g‖C1+β,P ) . (4.54)

This is immediately clear from the original formulation of theorem IV.(5.3) in [16].

53



We note that the hypotheses of theorem 4.9 are precisely the same as those of theorem
4.5. It may therefore be expected that the analogue of corollary 4.7 is also true, and
indeed we find the following lemma.

Lemma 4.11. Assume the transformed monomer concentration ã to be given and of
class C1 on [0, T ] × [0, L]. Then, the boundary curves l and r defined by (4.49) and
(4.50), respectively, are of class C1+1([0, T ]).

Proof. The proof is even more obvious as in the setting with moving boundary. The
initial value problem (4.49) for l now directly shows the following Lipschitz estimate
for l̇:

|l̇(τ)− l̇(σ)| ≤ δκB |ã(τ, 0)− ã(σ, 0)| ≤ δκB‖∂ta‖C0 |τ − σ| (4.55)

and the very same estimate is true for ṙ.

At this point we also give a particular a priori estimate for the boundary curves that
will be useful in what follows.

Corollary 4.12. Given ã ∈ C1([0, T ]× [0, L]) the boundary curves satisfy the following
estimates:

‖l‖C0 ≤ (δκBaB + vR + δκB‖ã‖C0)T (4.56)

‖l̇‖C0 ≤ δκBaB + vR + δκB‖ã‖C0 (4.57)

Lip(l̇) ≤ δκB‖∂tã‖C0 . (4.58)

If, in addition, ã satisfies the standard estimate from lemma 3.3, then the constant

δκBaB + vR + δκB‖ã‖C0

appearing in the first two equations can be replaced by vmax which is given by (4.39).
The same estimates also hold for r̃ = r − L where in (4.56), l has to be replaced by

r − L.

A priori estimates for the monomer denstiy

We first note that the proof of lemma 3.3 remains valid for our rescaled equation if
the coefficient function ϕ and the right hand side f are given in the form ϕ = cU and
f = c̃U with c and c̃ being composed of the reaction parameters as in (2.16) and (2.17)
and with the components of U being non-negative. Of course, we assume that the given
end densities U are parabolically Hölder continuous as indicated in the hypotheses of
theorem 4.9 and vanish on the lateral boundary.

The reason why the same proof for this estimate still works is that the first order
term in (4.45) does not contribute to the calculations in the proof of lemma 3.3 since at
local extrema the gradient necessarily vanishes.

For the bounds on ã at the boundary we need some additional assumptions on the
boundary velocities. Let us recall that we deal with the strictly hyperbolic case where
we assume the initial monomer density to be bounded from below by aBP + ε and
therefore expect the boundary velocities to satisfy l̇ < 0 and ṙ > 0. Imposing this as
assumption on l and r, the boundary part of the proof of lemma 3.3 still can be used
without changes.
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We will use the uniform bound

aB ≤ ã(τ, ξ) ≤ aP for each (τ, ξ) ∈ [0, T ]× [0, L] (4.59)

to derive further a priori estimates on the solution ã to problem (4.45) - (4.48).
The next point is the derivation of a bound for |∂ξã| that translates directly into a

bound on |∂xa| if the distance r− l of the boundary curves remains bounded away from
zero.

We start by noting that under the assumption of bounded boundary velocities l̇ and
ṙ, the spatial derivative at the lateral boundary obeys the uniform estimates

|∂ξã(τ, 0)| ≤ |l̇|(r(τ)− l(τ))

DL
|ã|

≤
‖l̇‖C0

(
L+ (‖l̇‖C0 + ‖ṙ‖C0)T

)
DL

aP (4.60)

|∂ξã(τ, L)| ≤
‖ṙ‖C0

(
L+ (‖l̇‖C0 + ‖ṙ‖C0)T

)
DL

aP (4.61)

where we already used the boundedness of ã and the assumption

r − l ≥ d > 0.

To obtain a global bound for ∂ξã we employ theorem 11.5 in [19].

Lemma 4.13. Given a maximal boundary velocity V let

T ≤ L

4V
,

let boundary curves
l, r ∈ C1+ 1+β

2 ([0, T ])

and end densities U ∈ C0+β,P be given such that

‖l̇‖C0 , ‖ṙ‖C0 ≤ V (4.62)

l̇(τ) ≤ 0 ≤ ṙ(τ) for each τ ∈ [0, T ]. (4.63)

Then, the solution
ã ∈ C2+β,P ([0, T ]× [0, L])

of problem (4.45) - (4.48) satisfies

‖∂ξã‖C0 ≤ C

(
max

{√
V

LD
,
2V

D
+

√
A1

D

}
+

3V

2D
aP

)
(4.64)

where A1 is given by
A1 = δκB(aP − aB) max

α=1,...,4
‖uα‖C0 (4.65)

and C only depends on aP − aB.

Proof. We have to check the hypotheses of theorem 11.5 in [19]. With the notation and
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numbering therein we first note that by theorem 4.9, our solution ã is indeed of class
C2+β,P up to boundary and therefore belongs to C2x,1t and in particular, ∂ξã belongs
to C0([0, T ]× [0, L]).

We furthermore note that due to the sign of the boundary velocities on the one hand
and by their boundedness and the bound on T on the other hand, we have

L ≤ r − l ≤ 3

2
L.

Moreover, the coefficient function ϕ̃ is always non-negative. Concerning the conditions
[19].(11.25a-d) in [19] we put

μ =
9

2
and λ0 = min

{
4

9
,
1

D

}

to show the validity of the hypotheses.

1. Inequality [19].(11.25a) is void since our highest order coefficient

L2

(r − l)
2D

is independent of ξ, ã, and ∂ξã, and therefore the left hand side of this inequality
vanishes. We also note that by our assumptions, the scaled diffusion coefficient
satisfies

4D

9
≤ L2D

(r − l)
2 ≤ D (4.66)

which already shows that with the choice of λ0 as above we can satisfy [19].(11.25d).
(The lower bound in the previous equation is called λ in [19], the upper one Λ)

2. Inequality [19].(11.25b) is true for any

|p| ≥ P1 =

√
V

LD

which gives the first term on the right hand side of (4.64). To see this we calculate
the left hand side of this inequality to be

− ϕ̃+
ṙ − l̇

r − l
≤ 2V

L
. (4.67)

The right hand side is for

|p| ≥ P1, μ =
9

2
, and λ =

4D

9

bounded from below by

2Dp2 ≥ 2D
V

LD
=

2V

L
(4.68)

which shows the validity of [19].(11.25b).
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3. For inequality [19].(11.25c) we calculate the left hand side to be

|p|
∣∣∣∣∣ L

(r − l)
2

((
l +

r − l

L
ξ

)
(ṙ − l̇) + rl̇ − lṙ

)∣∣∣∣∣
+

∣∣∣∣∣ L

(r − l)
2

((
l +

r − l

L
ξ

)
(ṙ − l̇) + rl̇ − lṙ

)
p+ ϕ̃ã− f̃

∣∣∣∣∣
≤ 2|p| L

(r − l)
2 (r − l)|ṙ − l̇|+ sup

τ,ξ
|ϕ̃ã− f̃ |

≤ 4V |p|+ 2M1

where we used the bound (3.13) to estimate ϕ̃ã − f̃ under the assumption of ã

being bounded between aB and aP . The right hand side of [19].(11.25c) can for

|p| ≥ P2 =
2V

D
+

√
M1

D

be estimated from below by

9

2

4D

9
p2 ≥ 2D|p|P2 = 2D|p|

(
2V

D
+

√
M1

D

)

≥ 4V |p|+ 2D P2

√
M1

D
≥ 4V |p|+ 2M1

and the inequality is shown. Note that P2 is the second term in the maximum in
inequality (4.64).

Recalling now that the spatial derivative along the boundary is bounded by

V (L+ 2V T )

2D
aP =

3V

2D
aP

and that the total oscillation oscã is simply given by at most aP − aB , we arrive at
estimate (4.64) as an adapted form of inequality [19].(11.27).

Remark 4.14. The whole proof remains literally the same if the hypothesis

T ≤ L

4V

is dropped. The only difference is the upper bound on r − l which is always given by
L+ 2V T . We therefore only would have to change some of the constants.

However, we included this hypothesis since it allows to apply the same proof with
only minor changes to other initial conditions. Another possible strictly hyperbolic case
is given by assuming the monomer density to be strictly smaller than aBP . In that case,
the boundary velocities would be given by λ2(ã) and λ3(ã), respectively, and these are
now directed inwards. If we now assume these velocities to be absolutely bounded by some
constant V , the condition T ≤ L

4V guarantees the value r − l to be larger than L
2 and

in particular bounded away from zero. This is not only required for the proof of lemma
4.13 to work but also for the validity of theorem 4.9 where the value r − l occurs in the
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denominators of the coefficients.

The final estimate we require is concerned with the temporal derivative of a along
the lateral boundary. This in turn will allow us to find bounds on the variation of the
boundary velocities.

Construction of a solution to the parabolic free boundary problem

We now want to continue with our fixed point argument. For β ∈ (0, 1), we introduce
the following spaces.

XT := C1+ 1+β
2 ([0, T ])× C1+ 1+β

2 ([0, T ])× C2x,1t([0, T ]× [0, L]) (4.69)

and
YT := C1+1([0, T ])× C1+1([0, T ])× C2+β,P ([0, T ]× [0, L]) (4.70)

equipped with the following norms:

‖(l, r̃, ã)‖XT
:= ‖l‖

C1+
1+β
2

+ ‖r(·)− L‖
C1+

1+β
2

+ ‖ã‖C1 (4.71)

‖(l, r̃, ã)‖YT
:= ‖l‖C1+1 + ‖r(·)− L‖C1+1 + ‖ã‖C2+β,P (4.72)

with all the spaces on the right hand side having [0, T ] or [0, T ]× [0, L] as domains.
The reason why we chose different Hölder exponents for the boundary curves in

XT and the monomer density in YT will become obvious during the estimates. Basically,
the gap between β or 1

2 (1 + β) on the one hand and 1 on the other hand is required to
derive a contraction principle.

We furthermore define the operator

A : XT � (l, r̃, ã) �→ (l′, r̃′, ã′) ∈ XT (4.73)

by saying that

1. l′ and r̃′ are the solutions of (4.49) and (4.50), respectively, with ã plugged into
the right hand sides, and

2. ã′ is the solution of the initial boundary value problem (4.45) - (4.48) with l and
r̃ as given boundary curves.

We are now going to show that for sufficiently well-behaved given initial conditions
a0, the operator A : XT → XT is a strict contraction on some closed bounded subset of
XT for sufficiently small T .

More precisely, let a0 ∈ C2+β([0, L]) satisfy the required compatibility conditions
2.3.2 which we rewrite in the following shape

D
d

dx
a0(0) + γl.1 a0(0)

2
+ γl,2 = 0 (4.74)

D
d

dx
a0(L) + γr,1 a0(L)

2
+ γr,2 = 0 (4.75)

where γr/l,i are constants depending on the parameters δ, vR, κB/P , and aB/P . We
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observe that the boundary velocities by continuity now satisfy

vl0 := l̇(0) = γl,1a0(0) + γl,2 (4.76)

vr0 := ṙ(0) = γr,1a0(L) + γr,2. (4.77)

The bounded set we consider shall be given by

BT =
{
(l, r, ã) ∈ XT

∣∣∣ ‖r − L‖C0 ≤ ε1, ‖ṙ − vr0‖C0 ≤ ε2, Höl 1+β
2
(ṙ) ≤ Λ1,

‖l‖C0 ≤ ε1, ‖l̇ − vl0‖C0 ≤ ε2, Höl 1+β
2
(l̇) ≤ Λ1,

aB ≤ ã(τ, ξ) ≤ aP , ‖ã‖C2x,1t ≤ Υ1,

l(0) = 0, r(0) = L, l̇(0) = vl0, ṙ(0) = vr0, ã(0, ·) = a0

}
(4.78)

for some ε1, ε2,Λ1,Υ1 > 0 to be determined later. We first show that for appropriate
parameters, the operator A maps BT into itself.

Lemma 4.15. Fix β ∈ (0, 1), let a0 ∈ C2+β([0, L]) be given with

‖a0‖C2+β =: M2. (4.79)

For given Λ1 > 0 define T ∗ to be the positive solution of

max{|vr0|, |vl0|}T ∗ + Λ1 (T ∗)1+
1+β
2 =

L

4
(4.80)

where vl0 and vr0 are given by (4.76) and (4.77), respectively.

For T ∈ (0, T ∗] put

ε2(T ) = Λ1 T
1+β
2 (4.81)

V̄ (T ) = max{|vr0|, |vl0|}+ ε2(T ) (4.82)

ε1(T ) = V̄ (T )T. (4.83)

Let furthermore
ϕ̃, f̃ ∈ C0+β,P ([0, T ∗]× [0, L])

be given with norms

‖ϕ̃‖C0+β,P ([0,T∗]×[0,L]) =: A2 (4.84)

‖f̃‖C0+β,P ([0,T∗]×[0,L]) =: A3 (4.85)

Let Ĉ(T ) be the constant C from equation (4.51) in theorem 4.9 with

‖l‖
C1+

1+β
2

= ‖r − L‖
C1+

1+β
2

= ε1(T
∗) + V̄ (T ∗) + Λ1

and
‖ϕ‖C0+β,P = A2.
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Put
Υ1(T ) := Ĉ(T ) (A3 +M2). (4.86)

Now define BT ⊂ XT by (4.78) with ε1/2 and Υ1 replaced by ε1/2(T ) and Υ1(T ), respec-
tively.

Then, there exists T1 ∈ (0, T ∗] such that for each T ∈ (0, T1], the operator A from
(4.73) maps BT into (a compact subset of) itself.

Proof. Assume we are given (l, r, ã) ∈ BT . We will show that for sufficiently small T the
image

(l′, r′, ã′) = A(l, r, ã)

also belongs to BT . That is, we have to show that this solution satisfies

1. (l′, r′, ã′) ∈ XT . This is clear since A maps XT into YT which compactly embeds
into XT . That is also the reason why A can be asserted to map BT into a compact
subset of itself.

2. the required conditions at τ = 0. These are automatically fulfilled by continuity.

3. ‖l′‖C0 ≤ ε1(T ) and ‖r′ − L‖C0 ≤ ε1(T ).

4. ‖l̇′ − vl0‖C0 ≤ ε2(T ) and ‖ṙ′ − vr0‖C0 ≤ ε2(T ).

5. Höl 1+β
2
(l̇′) ≤ Λ1 and Höl 1+β

2
(ṙ′) ≤ Λ1.

6. ‖ã′‖C2x,1t ≤ Υ1(T ).

Before showing the claims 3-6, we note that Ĉ(T ), ε1(T ), ε2(T ), and Υ(T ) do not
increase as T decreases, and are therefore bounded by

Ĉ(T ) ≤ C∗ = Ĉ(T ∗)

ε1(T ) ≤ ε∗1 = ε1(T
∗)

ε2(T ) ≤ ε∗2 = ε2(T
∗)

Υ1(T ) ≤ Υ∗1 = Υ1(T
∗).

We furthermore note that the constant C obviously does not increase as

‖ϕ‖C0+β,P , ‖l‖
C1+

1+β
2

, and ‖r̃‖
C1+

1+β
2

decrease and that for the restrictions of ϕ̃ and f̃ to [0, T ]× [0, L] and the restrictions of
r and l to [0, T ] with T ≤ T ∗, the relevant norms are not larger than those for the larger
domains corresponding to T ∗.

We show the claims 3, 4, and 5 only for l′, the proves for r′ are practically the same.
We start with point 5 which will provide the basis for 3 and 4.

By corollary 4.7 we have

Lip(l̇′) ≤ δκB‖∂tã‖C0 ≤ δκB‖ã‖C2x,1t

≤ δκBΥ
∗ (for T ≤ T ∗)
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and therefore

Höl 1+β
2
(l̇′) ≤ Lip(l̇′)T

1−β
2 ≤ δκBΥ

∗T
1−β
2 .

Choosing

T ≤ T1 = min

{(
Λ1

δκBΥ∗

) 2
1−β

, T ∗
}

we obtain the desired bound on the Hölder constant of l̇′.
We proceed with the bound on the velocity l̇′ itself:

|l̇′ − vl0| ≤ Höl 1+β
2
(l̇′)T

1+β
2

≤ Λ1T
1+β
2 if T ≤ T1.

With the same automatism we obtain for the supremum norm of l′:

|l′| ≤ ‖l̇′‖C0T

≤ V̄ (T )T = ε1(T ).

We see that as soon as we found claim 5 to be valid, the claims 3 and 4 are satisfied
just by the choice of ε1 and ε2.

Not too surprisingly, point 6 follows by the definition of Υ1(T ). By theorem 4.9 we
have

‖ã′‖C2x,1t ([0,T ]×[0,L]) ≤ ‖ã′‖C2+β,([0,T ]×[0,L])

≤ C(T, β, ε1(T ) + V̄ (T ) + Λ1, A2, L,D) (A3 +A1)

≤ Ĉ(T ) (A3 +M2) = Υ1(T ).

To establish a contraction principle, let now (l1, r̃1, ã1) ∈ BT and (l2, r̃2, ã2) ∈ BT be
given and assume

‖(l2 − l1, r2 − r1, ã2 − ã1)‖XT
≤ ω.

This immediately implies

Höl 1+β
2
(ṙ2 − ṙ1) +Höl 1+β

2
(l̇2 − l̇1) ≤ ω

‖ṙ2 − ṙ1‖C0 + ‖l̇2 − l̇1‖C0 ≤ ωT
1+β
2

‖r2 − r1‖C0 + ‖l2 − l1‖C0 ≤ ωT 1+ 1+β
2 .

We also deduce some further estimates that will become useful for later calculations.
Introducing the notation Li(τ) := ri(τ)− li(τ) for i = 1, 2 and τ ∈ [0, T ] we can compute

|(L1(τ)− L2(τ))− (L1(σ)− L2(σ))| ≤ ωT
1+β
2 |τ − σ|

|(L̇1(τ)− L̇2(τ))− (L̇1(σ)− L̇2(σ))| ≤ ω|τ − σ|
1+β
2

|L2(τ)L2(σ)− L1(τ)L1(σ)| ≤ ωT 1+ 1+β
2 Lmax(T )

61



where
Lmax(T ) := sup

τ∈[0,T ]

r(τ)− inf
τ∈[0,T ]

l(τ) ≤ L+ 2V̄ (T )T

denotes the largest possible value for the virtual domain length.

Given such (l1, r̃1, ã1) and (l2, r̃2, ã2), the difference

(λ, �, w) := A(l2, r̃2, ã2)−A(l1, r̃1, ã1)

satisfies the following problems

λ̇(τ) = γl,1 (ã2(τ, 0)− ã1(τ, 0)), λ(0) = 0 (4.87)

�̇(τ) = γr,1 (ã2(τ.L)− ã1(τ, L)), �(0) = 0 (4.88)

and

∂τw =
L2D

(r2 − l2)
2 ∂ξξw +

L

r2 − l2

(
ξ

L
(ṙ2 − l̇2) + l̇2

)
∂ξw − ϕ̃w

+
L2D

(r2 − l2)
2
(r1 − l1)

2

(
(r1 − l1)

2 − (r2 − l2)
2
)
∂ξξã′1 (4.89)

+

[
L

r2 − l2

(
ξ

L
(ṙ2 − l̇2) + l̇2

)
− L

r1 − l1

(
ξ

L
(ṙ1 − l̇1) + l̇1

)]
∂ξã′1

Since we know about the existence and uniqueness of the solution ã′1 ∈ C2+β,P as
part of A(l1, r̃1, ã1), we can consider the terms containing ∂ξξã′1 and ∂ξã′1 as right hand
side F and observe that

F =
L2D

(r2 − l2)
2
(r1 − l1)

2

(
(r1 − l1)

2 − (r2 − l2)
2
)
∂ξξã′1

+

[
L

r2 − l2

(
ξ

L
(ṙ2 − l̇2) + l̇2

)
− L

r1 − l1

(
ξ

L
(ṙ1 − l̇1) + l̇1

)]
∂ξã′1

= L2DΘ∂ξξã′1 + (Σ2 − Σ1)∂ξã′1 (4.90)

belongs to C0+β,P , and we will show in an instance that it is bounded in this space. For
better readability we introduced the notation

Θ(τ) :=
(r1(τ)− l1(τ))

2 − (r2(τ)− l2(τ))
2

(r2(τ)− l2(τ))
2
(r1(τ)− l1(τ))

2

Σi(τ) :=
L

(ri − li)
2

((
li +

ri − li
L

ξ

)
(ṙi − l̇i) + ri l̇i − liṙi

)

=
L

ri(τ)− li(τ)

(
ξ

L
(ṙi(τ)− l̇i(τ)) + l̇i(τ)

)

which will regularly be used in the following calculations.

Furthermore, w satisfies trivial initial conditions

w(0, ·) ≡ 0 (4.91)
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and the boundary conditions

DL∂ξw(τ, 0) + l̇2(r2 − l2)w(τ, 0) =
[
l̇2(r2 − l2)− l̇1(r1 − l1)

]
ã′1(τ, 0) =: g(τ, 0)

(4.92)

DL∂ξw(τ, L) + ṙ2(r2 − l2)w(τ, L) = [ṙ2(r2 − l2)− ṙ1(r1 − l1)] ã′1(τ, L) =: g(τ, L).

(4.93)

Again, the solution ã′1 exists and is of class C2+β,P , and we can therefore use it to
define the inhomogeneity of the boundary conditions g in the sense of remark 4.10. We
note that g is a priori only given on the boundary curves but we can easily choose to
interpolate it linearly with respect to ξ in order to define it on all of [0, T ]× R.

Estimates for the right hand sides F and g

We want to exploit the estimate (4.51) from theorem 4.9, or rather its version (4.54)
from remark 4.10, together with the estimates in lemma 4.6 to obtain bounds for the
C0+β,P -norm of F and the C1+β,P -norm of g.

The first thing to note is that the boundary curves l and r appearing in the definitions
of F and g only depend on the time variable τ (which coincides with the true time
variable t) and therefore do not contribute directly to variations in space. Let us start
with estimating spatial changes in F .

|F (τ, ξ)− F (τ, η)| ≤ L2D

∣∣∣(r1 − l1)
2 − (r2 − l2)

2
∣∣∣

(r2 − l2)
2
(r1 − l1)

2 |∂ξξã′1(τ, ξ)− ∂ξξã′1(τ, η)|

+

∣∣∣∣ L

r2 − l2

(
ξ

L
(ṙ2 − l̇2) + l̇2

)
− L

r1 − l1

(
ξ

L
(ṙ1 − l̇1) + l̇1

)∣∣∣∣×
×

∣∣∂ξã′1(τ, ξ)− ∂ξã′1(τ, η)
∣∣

+

∣∣∣∣∣ξ ṙ2 − l̇2
r2 − l2

− ξ
ṙ1 − l̇1
r1 − l1

− η
ṙ2 − l̇2
r2 − l2

+ η
ṙ1 − l̇1
r1 − l1

∣∣∣∣∣ |∂ξã′1(τ, η)|
=: E1 + E2 + E3

where at each appearance, r1, r2, l1, l2, and all their derivatives are to be evaluated at
the argument τ .

We first estimate some quantities that appear regularly on the right hand side and
in what follows. We may start with

ri(τ)− lj(σ) ≥ (L− V̄ (τ)τ)− V̄ (σ)σ

≥ L− 2V̄ (T )T ≡ d(T ) (i, j = 1, 2; τ, σ ≤ T )

where V̄ (T ) is given by (4.82). We note that

d(T ) ≥ L

2

whenever T ≤ T ∗ with T ∗ as in lemma 4.15 which we will henceforth always assume
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even if not explicitely stated at every occurence.
The next quantity to estimate is

|(r2(τ)− l2(τ))
2 − (r1(σ)− l1(σ))

2|
≤ |r22(τ)− r21(σ)|+ |l22(τ)− l21(σ)|+ 2|l1(σ)r1(σ)− l2(τ)r2(τ)|
≤ 2rmax(T )‖r2 − r1‖C0 + 2ε1(T )‖l2 − l1‖C0

+ 2 (ε1(T )‖l2 − l1‖C0 + rmax(T )‖r2 − r1‖C0)

≤ 2(rmax(T ) + ε1(T ))ωT
1+ 1+β

2 if τ, σ ≤ T.

Here we used ε1(T ) as in lemma 4.15 and the largest possible value for the right boundary
rmax(T ) being given by

rmax(T ) := L+ V̄ (T )T.

Combining the last two estimates we find

|Θ(τ)| ≤ |(r2(τ)− l2(τ))
2 − (r1(σ)− l1(σ))

2|
(r2(τ)− l2(τ))

2
(r1(τ)− l1(τ))

2

≤ 2

d(T )
4 (rmax(T ) + ε1(T ))ωT

1+ 1+β
2 .

We now find E1 to be bounded by

E1 = L2D|Θ| |∂ξξã′1(τ, ξ)− ∂ξξã′1(τ, η)|

≤ 2
L2D

d(T )
4 (rmax(T ) + ε1(T ))HölP,β(∂ξξã′1)ωT 1+ 1+β

2 |ξ − η|β . (4.94)

In the following estimate, we assume all quantities to be evaluated at τ but we will
suppress the argument for better readability.∣∣∣∣∣ ṙ2 − l̇2

r2 − l2
− ṙ1 − l̇1

r1 − l1

∣∣∣∣∣ ≤ |(ṙ2 − l̇2)(r1 − l1)− (ṙ1 − l̇1)(r2 − l2)|
(r2 − l2)(r1 − l1)

≤ |ṙ2 − l̇2 − ṙ1 + l̇1||r1 − l1|+ |ṙ1 − l̇1||r1 − l1 − r2 + l2|
d(T1)

2

≤ Lmax(T )(‖ṙ2 − ṙ1‖C0 + ‖l̇2 − l̇1‖C0) + 2V̄ (T )(‖r2 − r1‖C0 + ‖l2 − l1‖C0)

≤ 1

d(T )
2 (Lmax(T ) + 2V̄ (T )T )ωT

1+β
2 for τ ≤ T. (4.95)

where we recall Lmax(T ) to be the maximal spatial extension of the domain.
We are now ready to estimate E3 by

E3 ≤
∣∣∣∣∣ ṙ2 − l̇2
r2 − l2

− ṙ1 − l̇1
r1 − l1

∣∣∣∣∣ |ξ − η|‖∂ξã′1‖C0

≤ 1

d(T )
2 (Lmax(T ) + 2V̄ (T )T )‖∂ξã′1‖C0ωT

1+β
2 |ξ − η| (4.96)

whenever τ ≤ T .
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To find a bound for E2 we calculate

|Σ2(τ, ξ)− Σ1(τ, ξ)|

=

∣∣∣∣ L

r2 − l2

(
ξ

L
(ṙ2 − l̇2) + l̇2

)
− L

r1 − l1

(
ξ

L
(ṙ1 − l̇1) + l̇1

)∣∣∣∣
≤ ξ

∣∣∣∣∣ ṙ2 − l̇2
r2 − l2

− ṙ1 − l̇1
r1 − l1

∣∣∣∣∣+ L

∣∣∣∣∣ l̇2
r2 − l2

− l̇1
r1 − l1

∣∣∣∣∣
=

2L

d(T )
2

(
2V̄ (T )T + Lmax(T )

)
ωT

1+β
2 . (4.97)

The resulting estimate for E2 reads:

E2 ≤
2L

d(T )
2

(
Lmax(T ) + 2V̄ (T )T

)
‖∂ξξã′1‖C0ωT

1+β
2 |ξ − η|. (4.98)

We note that for T ≤ T ∗ as in lemma 4.15, we always have

V̄ (T )T ≤ L

4

which implies

Lmax(T ) = L+ 2V̄ (T )T ≤ 3

2
L

rmax(T ) = L+ V̄ (T )T ≤ 5

4
L

d(T ) = L− 2V̄ (T )T ≥ L

2
.

Using this, we can sum up the inequalities (4.94), (4.96), and (4.98) to end up with

|F (τ, ξ)− F (τ, η)|
|ξ − η|β

≤ 2D
16

L2

(
L+ V̄ (T )T + ε1(T )

)
HölP,β(∂ξξã′1)ωT 1+ 1+β

2

+
2L

d(T )
2 (L+ 4V̄ (T )T )‖∂ξξã′1‖C0ωT

1+β
2 |ξ − η|1−β

+
1

d(T )
2 (L+ 4V̄ (T )T )‖∂ξã′1‖C0ωT

1+β
2 |ξ − η|1−β

≤ 8

(
6
DT

L
HölP,β(∂ξξã′1) + 2L1−β‖∂ξξã′1‖C0 +

‖∂ξã′1‖C0

Lβ

)
ωT

1+β
2

≤ 8

(
6
DT

L
+ L−β + 2L1−β

)
‖ã′1‖C2+β,P ωT

1+β
2 = KF,x(D,L, T ∗)‖ã′1‖C2+β,P ω

We thus found a spatial Hölder constant to the exponent β for F that becomes
small as T is getting small.

The next step is to find a temporal Hölder constant to the exponent β
2 . This is

approached by estimating the difference of the values of F at different times:
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|F (τ, ξ)− F (σ, ξ)| ≤ L2D|Θ(τ)−Θ(σ)|‖∂ξξã′1‖C0

+ L2D|Θ(σ)|HölP,β(∂ξξã′1)|τ − σ|
β
2

+ |Σ2(τ, ξ)− Σ1(τ, ξ)| Hölt, 1+β
2
(∂ξã′1) |τ − σ|

1+β
2

+ (|Σ2(τ, ξ)− Σ1(τ, ξ)− Σ2(σ, ξ)− Σ1(σ, ξ)|) ‖∂ξã′1‖C0

with Θ,Σ1, and Σ2 being defined as in (4.90). The terms

|Θ(τ)| and |Σ2(τ, ξ)− Σ1(τ, ξ)|

have already been treated in the estimate for E1 and in (4.97), respectively. We therefore
focus on

|Θ(τ)−Θ(σ)|

and the last term.
We start with the first term, again assuming τ and σ to be not larger than T which

is bounded from above by T ∗. In that case, Θ is differentiable as algebraic combination
of l and r with denominator bounded away from zero. We can therefore write

|Θ(τ)−Θ(σ)| ≤ ‖Θ̇‖C0 |τ − σ|

and estimate Θ̇ by writing the coefficient Θ as

Θ(τ) =
1

L2(τ)
2 −

1

L1(τ)
2

with the abbreviation

Li(τ) := ri(τ)− li(τ) (i = 1, 2).

The derivative of Li is clearly given by

L̇i(τ) = ṙi(τ)− l̇i(τ)

and we calculate for Θ̇ under the assumption τ ≤ T ≤ T ∗:

|Θ̇| ≤
∣∣∣∣∣−2L̇2

L3
2

+
2L̇1

L3
1

∣∣∣∣∣
=

2

L3
1L

3
2

∣∣∣−L̇2L
3
1 + L̇1L

3
2

∣∣∣
≤ 2

d(T )
6

(
|l̇2 − ṙ2| |L3

1 − L3
2|+ |l̇2 − ṙ2 − l̇1 + ṙ1|L3

2

)
.

The term |L3
1 − L3

2| is bounded by

|L3
1 − L3

2| = |(L1 − L2)
3 − L1L2(L2 − L1)| = |L1 − L2| |L2

1 + L2
2 − L1L2|

≤ ωT 1+ 1+β
2

(
Lmax(T )

2
+ Lmax(T )

2 − d(T )
2
)
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and we obtain

|Θ̇| ≤ 2

d(T )
6

(
2V̄ (T )ωT 1+ 1+β

2 (2Lmax(T )
2 − d(T )

2
) + Lmax(T )

3
ωT

1+β
2

)
≤ 64

L6

(
2V̄ (T )TL2

(
9

2
− 1

4

)
+

27

8
L3

)
ωT

1+β
2 =

352

L3
ωT

1+β
2

and consequently

|Θ(τ)−Θ(σ)| ≤ 352

L3
ωT

1+β
2 |τ − σ|. (4.99)

For the term
|Σ2(τ, ξ)− Σ1(τ, ξ)− Σ2(σ, ξ) + Σ1(σ, ξ)|

we write Σi in the more concise form

Σi(τ, ξ) =
ξL̇i(τ)− Ll̇i(τ)

Li(τ)

and can now calculate

|Σ2(τ, ξ)− Σ1(τ, ξ)− Σ2(σ, ξ) + Σ1(σ, ξ)|

≤ ξ

d(T )
4

∣∣∣L̇2(τ)L1(τ)L2(σ)L1(σ)− L2(τ)L̇2(τ)L2(σ)L1(σ)

−L2(τ)L1(τ)L̇2(σ)L1(σ) + L̇2(τ)L1(τ)L2(σ)L̇1(σ)
∣∣∣

+
L

d(T )
4

∣∣∣l̇2(τ)L1(τ)L2(σ)L1(σ)− L2(τ)l̇2(τ)L2(σ)L1(σ)

−L2(τ)L1(τ)l̇2(σ)L1(σ) + L̇2(τ)L1(τ)L2(σ)l̇1(σ)
∣∣∣ .

The first term of this sum is estimated by splitting it up into two more terms as
follows:∣∣∣L1(τ)L1(σ)(L̇2(τ)L2(σ)− L̇2(σ)L2(τ)) −L2(σ)L2(τ)(L̇1(τ)L1(σ)− L̇1(σ)L1(τ))

∣∣∣
≤ L1(σ)L2(σ)

(
|L1(τ)− L2(τ)| |L̇2(τ)− L̇2(σ)|

+L2(τ)|L̇1(τ)− L̇2(τ)− L̇1(σ) + L̇2(σ)|
)

+
∣∣∣L1(τ)L1(σ)(L2(τ)− L2(σ))L̇2(σ)− L2(τ)L2(σ)(L1(τ)− L1(σ))L̇1(σ)

∣∣∣
=: E1 + E2.

The term E1 can be estimated directly to be

E1 ≤ Lmax(T )
2
(
2ωT 1+ 1+β

2 Λ1|τ − σ|
1+β
2 + Lmax(T )ω|τ − σ|

1+β
2

)
.
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The term E2 is split up even further to

E2 ≤ |L2(τ)− L2(σ)| |L1(τ)L1(σ)L̇2(σ)− L2(τ)L2(σ)L̇1(σ)|
+|L̇1(σ)L2(τ)L2(σ)| |L2(τ)− L2(σ)− L1(τ) + L1(σ)|

≤ 2V̄ (T )|τ − σ|
(
Lmax(T )

2
ωT

1+β
2 + 2V̄ (T )Lmax(T )ωT

1+ 1+β
2

)
+2V̄ (T )Lmax(T )

2
ωT

1+β
2 |τ − σ|.

Very similarly, we obtain for the second part with l̇i in place of L̇i:∣∣∣l̇2(τ)L1(τ)L2(σ)L1(σ)− L2(τ)l̇2(τ)L2(σ)L1(σ)

−L2(τ)L1(τ)l̇2(σ)L1(σ) + L̇2(τ)L1(τ)L2(σ)l̇1(σ)
∣∣∣

≤ Lmax(T )
2
(
Λ1T

1+ 1+β
2 + Lmax(T )

)
ω|τ − σ|

1+β
2 + V̄ (T )Lmax(T )

2
T

1+β
2 ω|τ − σ|

+ 2V̄ (T )
(
Lmax(T )

2
+ V̄ (T )Lmax(T )T

)
T

1+β
2 ω|τ − σ|.

Besides some missing factors 2, this is precisely the same as the first part we esti-
mated, and we therefore use the same bound for both terms:

|Σ2(τ, ξ)− Σ1(τ, ξ)− Σ2(σ, ξ) + Σ1(σ, ξ)|

≤ (ξ + L)Lmax(T )
2

d(T )
4 ω|τ − σ|

1+β
2 ×

×
(
Lmax(T ) + 2Λ1T

1+ 1+β
2 + 4V̄ (T )|τ − σ|

1−β
2 T

1+β
2

(
1 +

V̄ (T )T

Lmax(T )

))

≤ 48

L2

(
9

4
L2 +

3

8
L2 +

3

2
L2 +

L2

4

)
T

1
2ω|τ − σ|

β
2 ≤ 210 T

1
2ω|τ − σ|

β
2 .

The temporal Hölder constant for F is therefore given by

|F (τ, ξ)− F (σ, ξ)|
|τ − σ|

β
2

≤
(
352 DT

L
‖∂ξξã′1‖C0T

1−β
2 +

48 DT

L
HölP,β(∂ξξã′1)

+8Hölt, 1+β
2
(∂xiã′1)T + 210‖∂ξã′1‖C0T

1−β
2

)
ω

≤ KF,t(D,L, T ∗)‖ã′1‖C2+β,P ω. (4.100)

We finally estimate the maximum of F by

|F (τ, ξ)| ≤ L2D |Θ(τ)| ‖∂ξξã′1‖C0 + |Σ2(τ, ξ)− Σ1(τ, ξ)| ‖∂ξã′1‖C0

≤ 48 D

L
T 1+ 1+2β

2 ω‖∂ξξã′1‖C0 + 8T
1+2β

2 ω‖∂ξã′1‖C0

≤ KF,0(D,L, T ∗)‖ã′1‖C2+β,P ω. (4.101)

Together we find as a very crude estimate for the right hand side F :

‖F‖C0+β,P ≤ KF (D,L, T ∗)‖ã′1‖C2+β,P ω (4.102)
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where KF is just the sum of the previously introduced constants from the estimates of
the maximum value and the spatial and temporal Hölder constants of F :

KF = KF,0 +KF,x +KF,t.

Very similar calculations lead to estimates for the inhomogeneity g in the boundary
conditions. We already noted that we are going to interpolate g linearly in space between
the points (τ, 0) and (τ, L) which reads

g(τ, ξ) = g(τ, 0)

(
1− ξ

L

)
+ g(τ, L)

ξ

L

=
[
l̇2(τ)(r2(τ)− l2(τ))− l̇1(τ)(r1(τ)− l1(τ))

]
ã′1(τ, 0)

(
1− ξ

L

)

+ [ṙ2(τ)(r2(τ)− l2(τ))− ṙ1(τ)(r1(τ)− l1(τ))] ã′1(τ, L)
ξ

L

=: Ξl(τ)ã′1(τ, 0)
(
1− ξ

L

)
+ Ξr(τ)ã′1(τ, L)

ξ

L
. (4.103)

For the maximum of g we readily obtain

|g(τ, ξ)| ≤ |Ξl(τ)| ‖ã′1‖C0 + |Ξr(τ)| ‖ã′1‖C0 (4.104)

and further, again assuming τ ≤ T ≤ T ∗,

|Ξr(τ)| ≤ |ṙ2(τ)− ṙ1(τ)| |r2(τ)− l2(τ)|+ |ṙ1(τ)| |r2(τ)− r1(τ)− l2(τ) + l1(τ)|

≤ T
1+β
2 ωLmax(T ) + V̄ (T )ωT 1+ 1+β

2 ≤ 7

4
LT

1+β
2 ω.

and likewise for Ξl(τ) which then leads to

‖g‖C0 ≤ 7

2
L‖ã′1‖C0T

1+β
2 ω. (4.105)

The estimate for the spatial derivative of g is particularly simple since we chose it to
be linear in space:

∂ξg(τ, ξ) ≡
g(τ, L)− g(τ, 0)

L

and we immediately have as a bound on this derivative the following:

|∂ξg(τ, ξ)| ≤
1

L
(|g(τ, L)|+ |g(τ, 0)|) ≤ 7‖ã′1‖C0T

1+β
2 ω. (4.106)

Moreover, we find the spatial variation of the derivative to vanish identically by
construction

|∂ξg(τ, ξ)− ∂ξg(τ, η)| ≡ 0. (4.107)

It remains to calculate the temporal variation of g and its spatial derivative. We
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start with

|g(τ, ξ)− g(σ, ξ)| ≤
(
1− ξ

L

)
|Ξl(τ)ã′1(τ, 0)− Ξl(σ)ã′1(σ, 0)|

+
ξ

L
|Ξr(τ)ã′1(τ, L)− Ξr(σ)ã′1(σ, L)|

≤ |Ξl(τ)− Ξl(σ)|‖ã′1‖C0 + |Ξl(σ)|‖∂tã′1‖C0 |τ − σ|
+|Ξr(τ)− Ξr(σ)|‖ã′1‖C0 + |Ξr(σ)|‖∂tã′1‖C0 |τ − σ|.

For the first terms in each of the last two lines we derive the following estimate

|Ξl(τ)− Ξl(σ)|

=
∣∣∣l̇2(τ)L2(τ)− l̇1(τ)L1(τ)− l̇2(σ)L2(σ) + l̇1(σ)L1(σ)

∣∣∣
≤
∣∣∣(l̇2(τ)− l̇2(σ))(L2(τ)− L1(τ)) + L1(τ)(l̇2(τ)− l̇2(σ)− l̇1(τ) + l̇1(σ))

∣∣∣
+

∣∣∣(l̇2(σ)− l̇1(σ))(L2(τ)− L2(σ)) + l̇1(σ)(L2(τ)− L2(σ)− L1(τ) + L1(σ))
∣∣∣

≤ Λ1|τ − σ|
1+β
2 ωT 1+ 1+β

2 + ω|τ − σ|
1+β
2 + (2 + 1)

(
ωT

1+β
2 V̄ (T )|τ − σ|

)
.

The same formula is true with r replacing l, and we obtain for the temporal Hölder
constant of g:

Hölt, 1+β
2
(g) = sup

0≤σ<τ≤T,ξ∈[0,L]

|g(ξ, τ)− g(ξ, σ)|
|τ − σ|

1+β
2

≤ 2

[
‖ã′1‖C0

(
Λ1T

3+2β
2 + 1 + 3V̄ (T )T

2−β
2

)
+

7

4
‖∂tã′1‖C0LT

2−β
2

]
ω

≤ Kg,t(L, T
∗)‖ã′1‖C2+β,P ω

whenever we make the usual assumption T ≤ T ∗. The only point to note is that the
term

V̄ (T )T
2−β
2

does not decrease as T increases. This is obvious by the definition of V̄ (T ):

V̄ (T )T
2−β
2 = max{|vr0|, |vl0|}T

2−β
2 + Λ1T

3
2

wherein both terms decrease as T does.

Similarly, we proceed for the temporal contribution to the parabolic Hölder con-
stant of ∂xg. We find

|∂ξg(τ, ξ)− ∂ξg(σ, ξ)| ≤ 1

L
|g(τ, L)− g(τ, 0)− g(σ, L) + g(σ, 0)|

≤ sup
ξ∈[0,L]

2

L
|g(τ, ξ)− g(σ, ξ)|

where the first step again reflects the linear interpolation of g with respect to space.
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Using now the results just obtained, we arrive at

HölP,β(∂ξg) = sup
0≤σ<τ≤T

|∂ξg(τ, L)− ∂ξg(σ, L)− ∂ξg(τ, 0) + ∂ξg(σ, 0)|
|τ − σ|

β
2

≤ 4

L

[
‖ã′1‖C0

(
Λ1T

4+2β
2 + T

1
2 + 3V̄ (T )T

3−β
2

)
+

7

4
‖∂tã′1‖C0LT

3−β
2

]
ω

≤ Kg,P (L, T
∗)‖ã′1‖C2+β,P ω.

Putting the single estimates together, we find the following parabolic Hölder norm
for g:

‖g‖C1+β,P ≤ Kg(L, T
∗)‖ã′1‖C2+β,P ω (4.108)

where
Kg =

7

2
L T ∗

1+β
2 +Kg,P +Kg,t. (4.109)

Having bounds on the inhomogeneities F and g and recalling that w satisfies zero
initial conditions, we will now deduce estimates for w from theorem 4.9, or rather from
remark 4.10 thereafter.

Estimates for w

As w is identically zero at τ = 0 and belongs to C2+β,P , we can estimate

|w(τ, ξ)| ≤ ‖∂τw‖C0τ ≤ ‖w‖C2+β,P τ

|∂ξw(τ, ξ)| ≤ Hölt, 1+β
2
(∂ξw)τ

1+β
2 ≤ ‖w‖C2+β,P τ

1+β
2

|∂ξξw(τ, ξ)| ≤ HölP,β(∂ξξw)τ
β
2 ≤ ‖w‖C2+β,P τ

β
2

|∂τw(τ, ξ)| ≤ |∂τw(0, ξ)|+HölP,β(∂τw)τ
β
2 ≤ ‖w‖C2+β,P τ

β
2

where we already used that by continuity of the derivatives, w satisfies its governing
equation also at τ = 0, and therefore ∂τw(0, ξ) = 0 since the right hand side vanishes at
τ = 0. This is immediately seen by noting that all the terms including w vanish due to
the initial conditions and since F (0, ξ) satisfies:

F (0, ξ) = L2DΘ(0)∂ξξã′1 + (Σ2(0, ξ)− Σ1(0, ξ))∂ξã′1 = 0

where Θ and Σ2−Σ1 vanish at τ = 0 since the boundary curves l1 and l2 (respectively r1
and r2) start at the same value 0 (respectively L) with the same velocity vl0 (respectively
vr0).

As an immediate consequence we conclude that the C2x,1t -norm of w can be made
small for small times whenever its parabolic Hölder norm is small:

‖w‖C2x,1t ≤ T ∗
2+β
2 T

β
2 ‖w‖C2+β,P .

By the estimate from remark 4.10 we know the boundedness of the latter norm by

‖w‖C2+β,P ≤ Ĉ(T ) (‖F‖C0+β,P + ‖g‖C1+β,P )

where Ĉ(T ) is the constant defined in lemma 4.15 and besides T only depends on L,
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D, Λ1, β, and the relevant Hölder norms of the initial conditions (which in this case
vanish) and the coefficient function ϕ. Moreover, it decreases with increasing T .

For the norms in the parentheses on the right hand sides we just derived the estimates
(4.102) and (4.108) where we found them to be bounded by some multiple of

ω‖ã′1‖C2+β

with factors only depending on the above mentioned parameters and moreover non-
decreasing in T . If we now choose T to be not greater than T1 which is defined in the
proof of lemma 4.15 (and by construction is at most T ∗) we can in addition assert that
this norm is bounded by Υ1.

Replacing the assumption T ≤ T ∗ by T ≤ T1 in the estimates for F and g, we
conclude:

‖w‖C2x,1t ≤ Ĉ(T1)T
2+β
2

1 (KF (T1) +Kg(T1))Υ1ωT
β
2 . (4.110)

Choosing T to be not bigger than T2 which shall be the minimum of T1 and

T̃2 =

(
1

4
Ĉ(T1)T

2+β
2

1 (KF (T1) +Kg(T1))Υ1

)− 2
β

(4.111)

we find the desired contraction property for w:

‖w‖C2x,1t ≤
ω

4
. (4.112)

Estimates for λ and �

We recall that the differences

λ = l2 − l1 and � = r2 − r1

satisfy the initial value problems (4.87) and (4.88), respectively. By the calculations in
the proof of corollary 4.7 we readily find

Lip(λ̇) ≤ δκB‖ã2 − ã1‖C2x,1t ≤ δκBω (4.113)

and literally the same estimate is obtained for Lip(�̇). Direct computations show

Höl 1+β
2
(λ̇) ≤ δκBωT

1−β
2

‖λ̇‖C0 ≤ 0 + Lip(λ̇)T ≤ δκBωT
1+ 1−β

2

≤ δκBTωT
1−β
2

‖λ‖C0 ≤ 0 + ‖λ̇‖C0T ≤ δκBT
2ωT

1−β
2 .

and consequently
‖λ‖

C1+
1+β
2
≤ δκB

(
1 + T + T 2

)
ωT

1−β
2 (4.114)

The very same estimates hold for � as well. It should be noted that we used the
initial conditions λ(0) = 0 and λ̇(0) = vl0 − vl0 = 0.
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We now assume again T to be not greater than T2 and define

T̃3 =

(
1

4
δκB

(
1 + T2 + T 2

2

))− 2
1−β

. (4.115)

Then, for
T ≤ T3 = min{T2, T̃3},

we conclude

‖λ‖
C1+

1+β
2

≤ ω

4
(4.116)

‖�‖
C1+

1+β
2

≤ ω

4
. (4.117)

The crucial point is that the time T3 does not depend on the particular pair (l1, r1, ã1),
(l2, r2, ã2) but only on the bounds on BT and the given parameters and initial conditions.

Together we find that for each T ≤ T3,

‖(λ, �, w)‖XT
≤ 3

4
‖(l2, r2, ã2)− (l1, r1, ã1)‖XT

(4.118)

and therefore the operator A is a 3
4 -contraction in BT for any T ≤ T3 and thus, by the

contraction mapping theorem, possesses a unique fixed point

(l∗, r̃∗, ã∗) ∈ BT .

We summarize our conclusion in the following theorem.

Theorem 4.16. Let β ∈ (0, 1) be given. Assume the given initial conditions a0 ∈
C2+β([0, L]) to satisfy the compatibility condition 2.3.2. Assume furthermore a0 to sat-
isfy

aBP < a0(x) < aP

for each x ∈ [0, L]. Let finally
ϕ, f ∈ C0+β,P

be given.
Then, there exists a constant Λ1 > 0 and a time T3 > 0 such that for any T ∈ (0, T3],

the problem (4.45) - (4.48), (4.49), (4.50) has a unique solution (l∗, r̃∗, ã∗) belonging to
BT as defined in (4.78).

Moreover, this solution in fact belongs to YT ∩ BT .

Corollary 4.17. By transforming everything back to physical coordinates (t, x), under
the hypotheses of theorem 4.16, we obtain for T3 as therein and any T ∈ (0, T3] the exis-
tence and uniqueness of a space-time domain QT with lateral boundary of class C1+ 1+β

2 ,
and on that domain a unique solution a∗ of the problem (4.7) - (4.9) with initial con-
ditions a0. Together, this space-time domain and the solution a∗ comprise a unique
solution to the parabolic free boundary problem.

Remark 4.18. We note that the time T3 strongly depends on the choice of β. One
might try to find an optimal β ∈ (0, 1) where optimal means that the corresponding time
T3 is as large as possible. However, this shall not be our aim at this point.
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4.1.6 Construction of a solution to the full problem

In the previous subsection we found a unique solution to the parabolic free boundary
problem describing

a) the space-time domain QT and thereby the spatial extension of the cell in depen-
dence on time, and

b) the monomer density a in that space-time domain.

Furthermore, we showed some a priori estimates for the boundary velocities and the
monomer density.

Moreover, in subsection 4.1.3, we proved the existence and uniqueness of a solution
to the hyperbolic characteristic initial boundary value problem under the assumption of
a given solution to the parabolic free boundary problem. The corresponding estimates
are given in subsection 4.1.4.

To obtain a solution to the full problem we are going to exploit once more the
contraction mapping principle, now in a space describing all quantities we are interested
in.

Following the lines of the previous subsection we consider again the transformed
system in the fixed space-time domain [0, T ] × [0, L]. On that domain we define the
spaces

VT := XT ×
(
C0+β,P

b ([0, T ]× R)
)4

(4.119)

and
WT := YT ×

(
C1

b ([0, T ]× R)
)4 (4.120)

where the subscript b means that the end densities u are required to be bounded together
with their Hölder constant, or respectively their first derivatives.

We could also have chosen the transformed end densities to be only given on the
domain QT . In that case we would have asked for these densities to vanish on the
lateral boundaries. Instead we chose them to be defined in all of [0, T ]×R by extending
them by zero outside the domain. This conveniently reflects the desired regularity at
the boundary. The major advantage of this setting is that our operator to be defined
below may now generically take values in WT for which the support of the end densities
does not coincide with the domain prescribed by the (virtual) boundary curves. The
fixed point we are going to find will however satisfy these conditions.

The spaces VT and WT shall be equipped with the norms

‖(l, r, ã, ũ)‖VT
:= ‖(l, r, ã)‖XT

+ max
α=1,...,4

‖ũα‖C0+β,P (4.121)

and
‖(l, r, ã, ũ)‖WT

:= ‖(l, r, ã)‖YT
+ max

α=1,...,4
‖ũα‖C1 , (4.122)

respectively.
As before, we assume to be given initial conditions

a0 ∈ C2+β([0, L])
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satisfying the compatibility conditions 2.3.2. In addition, we assume to have initial
conditions

u0 ∈ C1([0, L])

for the end densities which shall satisfy the conditions 2.3.1. For these, we are trying to
find a solution (l∗, r∗, a∗, u∗).

As we plan to use a contraction principle, we require a closed bounded subset of VT

on which we can define an operator having a fixed point. For sufficiently small T > 0 to
be determined later, this subset will be given by

CT =
{
(l, r̃, ã, u) ∈ BT ×

(
C0+β,P

b ([0, T ]× R)
)4 ∣∣∣ aBP ≤ ã ≤ aP , ‖∂ξã‖C0 ≤ Υ0

l̇(τ) = c11ã(τ, 0) + c12, ṙ(τ) = c41ã(τ, L) + c42 for τ ∈ [0, T ], (4.123)

max
α=1,...,4

‖uα‖C0+β,P ≤ Υ2,

suppu ⊂ [0, T ]×
[
−L

4
,
5

4
L

]
, u(0, ·) = u0, a(0, ·) = a0

}
On this set we want to define a contraction A by stating that

(l′, r̃′, ã′, u′) := A(l, r̃, ã, u) (4.124)

is composed of the solution (l′, r̃′, ã′) of the parabolic free boundary problem with initial
data a0 for the monomer density and initial values for the boundary velocities being
compatible to those where in (4.45) the coefficient functions ϕ̃ and f̃ are the transforms
of cu and c̃u, respectively. The function u′ in turn shall be the restriction to QT of
the solution to the Cauchy problem (4.24) with the velocity matrix determined by
the transform a of ã. In this case, QT shall denote the space-time domain with lateral
boundaries given by l and r = r̃ + L.

The first thing to check is that this operator maps CT into itself if only the parameters
Λ1, ε1/2, and Υ0/1/2 are chosen appropriately and if T is sufficiently small.

Lemma 4.19. Fix β ∈ (0, 1), let

a0 ∈ C2+β([0, L]) and u0 ∈ (C2
0 ([0, L]))

4

be given such that

a) a0 satisfies the compatibility condition 2.3.2 and

aBP < a0(x) ≤ aP for each x ∈ [0, L].

b) u0 satisfies the compatibility conditions 2.3.1 with u1 being positive in some interval
(0, x1) and u4 being positive in some interval (x2, L).

Define

M0 := ‖u0‖C0 , M1 :=

∥∥∥∥ d

dx
u0

∥∥∥∥
C0

, M2 := ‖a0‖C2+β , M3 :=

∥∥∥∥ d2

dx2
u0

∥∥∥∥
C0

.

Given Λ1, let ε1(T ), ε2(T ), V̄ (T ), and T ∗ be defined as in lemma 4.15. Choose some
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arbitrary, small number ε3 > 0 and define vmax by (4.39) with aP being replaced by
(1 + ε3)aP , put

Υ2 = 3

(
M0 +

(
3

2
L

)1−β

M1

)
.

Choose moreover Υ1 to be

Υ1 = Ĉ(T ∗)(M2 + K̃2Υ2)

where Ĉ(T ) is defined as in lemma 4.15 but with K2Υ2 replacing ‖ϕ̃‖C0+β (The constants
K2 and K̃2 will be specified in the proof). Put finally

Υ0 = 2Č(V̄ (T ∗), D, L, δκB(aP − aBP ), aP ,Υ2)

where Č shall denote the right hand side of estimate (4.64) in lemma 4.13 with Υ2

plugged in as upper bound for ‖u‖C0 and with aBP replacing aB as lower bound on the
monomer density.

Then, there exists T1 ∈ (0, T ∗] such that for each T ∈ (0, T1], the operator A from
(4.124) maps CT into (a compact subset of) itself.

Proof. By theorem 4.16, we find some time T3 ∈ (0, T ∗] and for each T ∈ (0, T3] a
solution (l′, r̃′, ã′) to the parabolic free boundary problem that in fact belongs to YT ,
and we already know some properties of this solution:

• l′, r̃′ ∈ C1+1([0, T ])

• ã ∈ C2+β,P (QT ) where QT is defined by its lateral boundary being given by l′ and
r̃′

• The boundary curve solutions satisfy the estimates (cf. lemma 4.15)

Höl 1+β
2
(l̇′) ≤ Λ1

‖l̇′ − vl0‖C0 ≤ ε2(T ) = Λ1T
1+β
2

‖l′‖C0 ≤ ε1(T ) = (max{vr0, vl0}+ ε2(T )).

At this point it is only crucial to choose T3 sufficiently small such that

δκBΥ1T
1−β
2

3 ≤ Λ1

which is true for T3 as in theorem 4.16 once we are given Υ1.

• The boundary velocities automatically satisfy

l̇′(τ) = c11ã
′(τ, 0) + c12 and ṙ′(τ) = c41ã

′(τ, L) + c42.

We are now going to check the bounds on the monomer density ã′. First, the C2,1-
norm of ã is bounded by its C2+β,P -norm for which theorem 4.9 yields the estimate

‖ã′‖C2x,1t ≤ ‖ã′‖C2+β,P

≤ Ĉ(T )(M2 + ‖f̃‖C0+β,P ).

76



The only things to calculate are the C0+β,P -norms of ϕ̃ (which enters Ĉ) and of f̃ .
This is easily achieved since both depend on the C0+β,P -norm of the given end density
u. We already calculated in the proof of theorem 4.9 how the Hölder constants are
affected by the transformation:

HölP,β(ϕ̃) ≤ 2HölP,β(cu)

(
(1 + (3ε2(T ))

β
+

(
1 +

2ε1(T )

L

)β
)

≤ 2HölP,β(cu)

(
(1 + (3ε∗2)

β
+

(
1 +

2ε∗2
L

)β
)

=: K2HölP,β(u)

where c is the coefficient vector defined in (2.16). Since we know in addition that the
maximum norm remains unaffected by the transformation, we can state

‖ϕ̃‖C0+β,P ≤ K2‖u‖C0+β,P ≤ K2Υ2.

Completely analogously, we obtain

‖f̃‖C0+β,P ≤ K̃2‖u‖C0+β,P ≤ K̃2Υ2.

where K̃2 differs from K2 only in the coefficient vector c being replaced by c̃ which is
given by (2.17). We note again, that by decreasing T , the constants and the norms of
the restriction of u can only become smaller.

Together with the estimate from theorem 4.9 and our particular choice of Υ1, we
immediately deduce

‖ã′‖C2x,1t ≤ Υ1,

and we conclude that (l′, r̃′, ã′) belongs to BT for each T ≤ T3.
We note that for sufficiently small T − say T ≤ T4 − we can employ the continuity

of ã′ and the boundedness of its temporal derivative to conclude that ã′ is bounded from
below by aBP if the initial conditions a0 are bounded away from aBP .

Finally, the spatial derivative of ã′ is bounded by the estimate (4.64) in lemma 4.13,
and by the construction of Č and the definition of Υ0 is automatically bounded by

‖∂ξã′‖C0 ≤ Υ0

whenever T ≤ T ∗.
We therefore found T4 > 0 such that for T ∈ (0, T4] the components l′, r̃′, and ã′

satisfy the conditions of CT .
On the other hand, proposition 4.8 guarantees a C1-solution to the hyperbolic prob-

lems (4.25) (α = 1, . . . , 4)) with a suitable extension of the back transform of ã plugged
in for the given monomer density. For this solution we found the estimates (4.40) -
(4.42). Noting now that for the back transform we have

‖∂xa‖C0 ≤
L

d(T )
‖∂xiã‖C0 ≤ 2Υ0

and

‖∂xxa‖C0 ≤
L2

d(T )
2 ‖∂ξξã‖C0 ≤ 4Υ1
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and that, for the arbitrarily chosen ε3 > 0, the extension A can be forced to satisfy

aBP − ε3 = inf
(τ,ξ)∈[0,T ]×[0,L]

ã− ε3 ≤ A ≤ sup
(τ,ξ)∈[0,T ]×[0,L]

ã+ ε3 = aP + ε3,

‖∂xA‖C0 ≤ 2(1 + ε3)‖∂ξã‖C0 ≤ 2(1 + ε3)Υ0,

‖∂xxA‖C0 ≤ 4(1 + ε3)Υ1

we can achieve the following estimates for u′:

‖u′‖C0 ≤ M0E(T ) ≤ M0E(2T ),
Hölx,β(u

′) ≤ ‖∂xu0‖C0L
1−β
max

≤ E(2T ) (M1 +M0δκB‖∂xxA‖C0E(2T )T )L1−β
max,

and

Hölt, β2
(u′) ≤ ‖∂tu0‖C0T

1− β
2

≤ T 1− β
2 E(2T )(M1vmax + δκBM0(T‖∂xxA‖E(2T )vmax + ‖∂xA‖C0))

where we introduced the notation

E(T ) = exp [2δκB(1 + ε3)Υ0T ] .

We now choose T5 > 0 sufficiently small to guarantee

exp [2δκB(1 + ε3)Υ0T5] ≤ 2,

2vmaxT
1− β

2
5 ≤

(
3

2
L

)1−β

,

and

4δκB(1 + ε3)

(
4Υ1

((
3

2
L

)1−β

T5 + T
β
2
5 vmax

)
+Υ0

)
T

1− β
2

5 ≤ 1.

This leads to the norm of u′ to be bounded by

‖u′‖C0+β,P ≤ 3M0 + 3

(
3

2
L

)1−β

M1 = Υ2.

The compactness assertion for the u component readily follows from the compactness
of the embedding

C1 ↪→ C0+β,P .

The last thing to be noted is that the support of u is determined by the support [0, L]
of the initial conditions and the outer characteristic curves whose velocity is bounded
by vmax. In particular,

suppu′ ⊂ [0, T ]×
[
−L

4
,
5

4
L

]
,

whenever 4vmaxT ≤ L which can be assumed to be true for T5 by making it sufficiently
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small.
Thus, for

T ≤ min{T4, T5},

the map A indeed maps CT into a compact subset of itself. This maximal time shall
again be denoted by T5.

The next step is the establishment of a contraction principle. We therefore assume
all initial conditions and parameters to be given as in 4.19 and choose arbitrary

(li, r̃i, ãi, ui) ∈ CT (i = 1, 2)

satisfying
‖(l2, r̃2, ã2, u2)− (l1, r̃1, ã1, u1)‖VT

≤ ω. (4.125)

The difference of the images under the map A shall be denoted by

(λ, �, w,υ) := A(l2, r̃2, ã2, u2)−A(l1, r̃1, ã1, u1) ≡ (l′2, r̃′2, ã′2, u
′
2)− (l′1, r̃′1, ã′1, u

′
1).

The differences of the boundary curves again satisfy the equations (4.87) and (4.88) and
we readily obtain some time T6 such that for each T ∈ (0, T6] estimates in analogy to
(4.116) and (4.117) hold with ω

4 replaced by ω
5 .

The difference of the monomer densities is governed by

∂τw =
L2D

(r2 − r1)
2 ∂ξξw +

L

r2 − l2

(
ξ

L
(ṙ2 − l̇2) + l̇2

)
∂ξw − ϕ̃2w

+Θ∂ξξã′1 + (Ξ2 − Ξ1)∂ξã′1 − (ϕ̃2 − ϕ̃1)ã′1 + (f̃2 − f̃1) (4.126)

where Θ and the Ξi are the same as in (4.90).
This equation only differs from (4.89) by the right hand side F containing the addi-

tional terms
(ϕ̃2 − ϕ̃1)ã′1 and (f̃2 − f̃1)

and thus being given by

F = Θ∂ξξã′1 + (Ξ2 − Ξ1)∂ξã′1 − (ϕ̃2 − ϕ̃1)ã′1 + (f̃2 − f̃1).

The initial conditions are of course again trivial, and the boundary conditions remain
the same as (4.92) and (4.93).

The existence of a unique solution w of class C2+β,P again follows from theorem 4.9
by noting that the new right hand side F is of class C0+β,P . The only term to check is

(ϕ̃2 − ϕ̃1)ã′1

but since ã′1 is even of class C2+β,P , this is clearly of the required regularity.
To obtain a contraction estimate similar to (4.112) we only need to find an estimate

for F analogously to (4.102). We thus require estimates for the new terms

(ϕ̃2 − ϕ̃1)ã′1 and (f̃2 − f̃1).
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But these are particularly simple, since by assumption we have

‖(ϕ̃2 − ϕ̃1)ã′1‖C0+β,P ≤ ‖ã′1‖C0+β,P ‖ϕ̃2 − ϕ̃1‖C0+β,P ≤ K2‖ã′1‖C2+β,P ω

‖f̃2 − f̃1‖C0+β,P ≤ K̃2ω

with K2 and K̃2 as in the proof of lemma 4.19. The other terms included different
versions of

‖ϕ̃‖C0+β,P and ‖f̃‖C0+β,P

as well but these can be uniformly bounded by K2Υ2 and K̃2Υ2, respectively.

Now we can choose some T7 > 0 which will in general be smaller than T3 but
independent of the precise value of

‖u‖C0+β,P

. With that T7 we can guarantee

‖w‖C2x,1t ≤
ω

5
(4.127)

whenever T ≤ T7.

We can now turn our attention to the difference υ of the end densities. For these,
we have the explicite representation (4.31) which allows us to write the αth component
of the difference as

υα(t, x) = u′2
α
(t, x)− u′1

α
(t, x)

= uα
0 (ξ

α
2 (t, x)) exp

[
−
∫ t

0

∂xλ
α
2 (τ, yα2 (τ ; ξ

α
2 (t, x))) dτ

]

− uα
0 (ξ

α
1 (t, x)) exp

[
−
∫ t

0

∂xλ
α
1 (τ, yα1 (τ ; ξ

α
1 (t, x))) dτ

]
.

Here, the subscripts 1 and 2 refer to the characteristic curves and velocities according
to the monomer densities ã1 and ã2, respectively. We will frequently use some estimates
on the difference of these characteristics. We start with calculating an upper bound for

d(t) := |yα2 (t; ξα2 (t0, x0))− yα1 (t; ξ
α
1 (t0, x0))|.

We note that the derivative of d is bounded by

|ḋ(t)| = |λα
2 (t, y

α
2 (t; ξ

α
2 (t0, x0)))− λα

1 (t, y
α
1 (t; ξ

α
1 (t0, x0)))|

≤ |λα
2 (t, y

α
2 (t; ξ

α
2 (t0, x0)))− λα

1 (t, y
α
2 (t; ξ

α
2 (t0, x0)))|+ ‖∂xλ1‖C0d(t)

≤ 2δκB(ω +Υ0d(t)),

and d satisfies the initial condition d(t0) = 0.

It follows that

d(t) ≤ ω

Υ0
(exp[2δκBΥ0|t− t0|]− 1)

≤ 2δκB |t− t0| exp[2δκBΥ0|t− t0|]ω ≤ 2δκBTE(T )ω,
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and for the particular value t = 0 this turns into:

|ξα2 (t, x)− ξα1 (t, x)| ≤ 2δκBTE(T )ω.

For the quantities

di(t) := |yαi (t; ξαi (t0, x0))− yαi (t; ξ
α
i (t0, y0))|

we calculate

di(t) ≤ |x0 − y0|+
∫ t

t0

|λα
i (τ, y

α
i (τ ; ξ

α
i (t0, x0)))− λα

i (τ, y
α
i (τ ; ξ

α
i (t0, y0)))|dτ

≤ |x0 − y0|+
∫ t

t0

‖∂xλα
i ‖C0di(τ)dτ.

By Grönwall’s inequality we deduce

di(t) ≤ exp [‖∂xλi‖C0 |t− t0|] |x0 − y0| ≤ E(T )|x0 − y0|.

Similarly, we find an upper bound for the quantity

d(t) := |yα2 (t; ξα2 (t0, x0))− yα1 (t; ξ
α
1 (t0, x0))− yα2 (t; ξ

α
2 (t0, y0)) + yα1 (t; ξ

α
1 (t0, y0))|

by the following considerations.
In the following calculations we will occasionally suppress the upper index α, always

keeping in mind that the basic shape of the characteristic velocities is the same for all
end densities. We would like to estimate d by regarding each characteristic curve as a
function of the starting point

yi(t; ξi(t0, x0)) =: yi(t, x0)

for a moment and calculate

d(t) ≤ sup
x

∣∣∣∣ ddx (y2(t, x)− y1(t, x))

∣∣∣∣ |x0 − y0|.

The time t is regarded as a parameter and the common initial time t0 is suppressed
to avoid an overloaded notation.

To calculate the derivative of y2 − y1 we use the integral representation

yi(t, x0) = x0 +

∫ t

t0

λi(τ, yi(τ, x0))dτ

and write the derivative of the difference as

d

dx
(y2 − y1)�(t,x0)

= lim
h→0

1

h

∫ t

t0

(λ2(τ, y2(τ, x0 + h))− λ2(τ, y2(τ, x0))

−λ1(τ, y1(τ, x0 + h)) + λ1(τ, y1(τ, x0))) dτ
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= lim
h→0

1

h

∫ t

t0

(
∂xλ2�(τ,y2(x0)) (y2(τ, x0 + h)− y2(, τ, x0)) + O(|h|)

−∂xλ1�(τ,y1(x0)) (y1(τ, x0 + h)− y1(, τ, x0)) + O(|h|)
)
dτ.

Here, we already used that

|yi(τ, x0 + h)− yi(, τ, x0)|

grows like |h| for small h and that λi is twice continuously differentiable with respect to
its second argument. We note that the integrand tends to zero as h → 0 and does so
uniformly in τ ∈ [0, T ] by our previous estimates.

We interchange integration and limit to obtain

d

dx
(y2 − y1)�(t,x0)

=

∫ t

t0

(
∂xλ2�(τ,y2(x0))

d

dx
y2(τ, x0)− ∂xλ1�(τ,y1(x0))

d

dx
y1(τ, x0)

)
dτ

and estimate∣∣∣∣ ddx (y2 − y1)�(t,x0)

∣∣∣∣
≤
∫ t

t0

((
|∂xλ2�(τ,y2) − ∂xλ2�(τ,y1)|+ |∂xλ2�(τ,y1) − ∂xλ1�(τ,y1)|

) d

dx
y2(t, x0)

+
∣∣∂xλ1�(τ,y1)

∣∣ ∣∣∣∣ ddxy2(τ, x0)−
d

dx
y1(τ, x0)

∣∣∣∣
)
dτ

≤ |t− t0| (‖∂xxλ2‖C0 · 2δκBE(|t− t0|) + 1)ω + ‖∂xλ1‖C0

∫ t

t0

∣∣∣∣ ddx (y2 − y1)�(τ,x0)

∣∣∣∣ dτ
Using again Grönwall’s inequality, we find∣∣∣∣ ddx (y2 − y1)�(t,x0)

∣∣∣∣ ≤ (
8δ2κ2

BE(T )Υ1 + 1
)
E(T )|t− t0|ω

and consequently

|yα2 (t; ξα2 (t0, x0))− yα1 (t; ξ
α
1 (t0, x0))− yα2 (t; ξ

α
2 (t0, y0)) + yα1 (t; ξ

α
1 (t0, y0))|

≤
(
8δ2κ2

BE(T )Υ1 + 1
)
E(T )|t− t0||x0 − y0|ω

We note that particularly for t = 0 we obtain

|ξα2 (t0, x0)− ξα1 (t0, x0)− ξα2 (t0, y0) + ξα1 (t0, y0)|
≤
(
8δ2κ2

BE(T )Υ1 + 1
)
E(T )t0|x0 − y0|ω

with the ξα denoting the points in space where the respective characteristic curves
originate.
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The absolute value of υ is bounded by

|υ(t, x)| ≤ |u0(ξ2(t, x))− u0(ξ1(t, x))| exp [T‖∂xλ2‖C0 ]

+ |u0(ξ1(t, x))|
∣∣∣∣exp

[
−
∫ t

0

∂xλ2 (τ, y2(τ ; ξ2(t, x))) dτ

]

− exp

[
−
∫ t

0

∂xλ1 (τ, y1(τ ; ξ1(t, x))) dτ

]∣∣∣∣
≤ M1 ‖λ2 − λ1‖C0T exp[T‖∂xλ2‖C0 ]

+M0 exp[T‖∂xλ2‖C0 ]

∫ t

0

|∂xλ2 (τ, y2(τ ; ξ2(t, x)))− ∂xλ1 (τ, y1(τ ; ξ1(t, x)))| dτ×

× exp

[∫ t

0

|∂xλ2 (τ, y2(τ ; ξ2(t, x)))− ∂xλ1 (τ, y1(τ ; ξ1(t, x)))| dτ
]

where we again suppressed the index α.

The integral in the last term is bounded by∫ t

0

|∂xλ2 (τ, y2(τ ; ξ2(t, x)))− ∂xλ1 (τ, y1(τ ; ξ1(t, x)))| dτ

≤ T (‖∂xxλ2‖C02δκBT exp[2δκBΥ0T ]ω + ‖∂xλ2 − ∂xλ1‖C0)

≤ 2δκB (2δκBΥ1TE(T ) + 1)ωT.

The resulting bound on υ is:

|υ(t, x)| ≤ Kυ,0(T )ωT (4.128)

where the constant Kυ,0 is given by

Kυ,0(T ) = 2δκBE(T )
(
M1 +M0K̃0(T ) exp[2δκBK̃0(T )ωT ]

)
with

K̃0(T ) = (2δκBΥ1TE0(T ) + 1) .

We note that Kυ,0(T ) increases in T and can therefore be bounded from above by the
fixed constant Kυ,0(T7) where T7 is the maximal time we allowed for the bound on w.

In order to find an estimate for the spatial Hölder constant of υ we introduce the
following notation

Ui(z) := u0(ξi(t, z))

Ii(z) := exp

[
−
∫ t

0

∂xλi(τ, yi(τ ; ξi(t, z)))dτ

]

for i = 1, 2 and z = x, y.

The spatial variation of υ can now be written as

|υ(t, x)− υ(t, y)| ≤ |U2(x)(I2(x)− I1(x)) + (U2(x)− U1(x))I1(x)

− U2(y)(I2(y)− I1(y)) + (U2(y)− U1(y))I1(y)|

83



≤ |U2(x)− U2(y)||I2(x)− I1(x)|+ |U2(x)− U1(x)||I1(x)− I1(y)|
+ |U2(y)||I2(x)− I1(x)− I2(y) + I1(y)|+ |U2(x)− U1(x)− U2(y) + U1(y)||I1(y)|

=: E1 + E2 + E3 + E4.

We start with the term E1 and compute for

di(τ) := |yi(τ ; ξi(t, x))− yi(τ ; ξi(t, y))|

the bound
|ḋi| ≤ δκBΥ0di

and then, by Grönwall’s inequality and the initial conditions di(t) = |x− y|,

di(τ) ≤ |x− y| exp[2δκBΥ0|τ − t|] ≡ |x− y|E(|τ − t|).

It follows:
|U2(x)− U2(y)| ≤M1|x− y|E(T ).

The second factor of E1 has already been estimated during the derivation of (4.128),
and we obtain

E1 ≤ 2δκBK̃0(T ) exp[2δκBK̃0(T )ωT ]E(2T )M1|x− y|ωT = K̃E1(T )|x− y|ωT.

Concerning E2 we already found a bound for the first factor, and for the second
factor we calculate

|I1(x)− I1(y)|

≤ E(T ) exp
[
T‖∂xxλ1‖C0 sup

τ
d1(τ)

]
T‖∂xxλ1‖C0 sup

τ
d1(τ)

≤ E(T ) exp[2δκBTΥ1|x− y|E(T )] 2δκBTΥ1|x− y|E(T )
≤ K̃I(T )T |x− y|

with K̃I(T ) being decreasing in T . We note that the term |x − y| in the exponent is
bounded from above by

Lmax =
3

2
L

for T ≤ T ∗. As an upper bound for E2 we therefore find

E2 ≤ (2δκB)
2E(3T )M1Υ1 exp [2δκBΥ1E(T )|x− y|T ] |x− y|ωT 2

= K̃E2(T )|x− y|ωT.

We now turn to E3 which we estimate in the following shape

|I2(x)− I1(x)− I2(y) + I1(y)| =
∣∣ea2 − ea1 − eb2 + eb1

∣∣
=
∣∣(ea2 − eb2

) (
1− ea1−b1

)
− eb2

(
ea1−a2 − eb1−b2

)∣∣
≤
∣∣ea2 − eb2

∣∣ e|a1−a2||a1 − a2|
+ e|b2(a1−a2)|e|b1−b2−a1+a2||b1 − b2 − a1 + a2|.
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where we used the abbreviations

ai :=

∫ t

0

∂xλi(τ, yi(τ ; ξi(t, x)))dτ (i = 1, 2)

bi :=

∫ t

0

∂xλi(τ, yi(τ ; ξi(t, y)))dτ (i = 1, 2).

The only part we have not yet estimated is the term

|b1 − b2 − a1 + a2| ≤
∫ t

0

|∂xλ1(τ, y1(τ ; ξ1(t, y)))− ∂xλ2(τ, y2(τ ; ξ2(t, y)))

−∂xλ1(τ, y1(τ ; ξ1(t, x))) + ∂xλ2(τ, y2(τ ; ξ2(t, x)))| dτ

≤ T‖∂xxλ2 − ∂xxλ1‖C0 |y2(τ ; ξ2(t, x))− y1(τ ; ξ1(t, x))

− y2(τ ; ξ2(t, y)) + y1(τ ; ξ1(t, y))|
≤ 4δκBT‖ã2 − ã1‖C2x,1t (|y2(τ ; ξ2(t, x))− y2(τ ; ξ2(t, y))|

+|y1(τ ; ξ1(t, x))− y1(τ ; ξ1(t, y))|)
≤ 4δκBTω · 2E(T )|x− y|.

Together with the estimates found before we calculate

E3 ≤M0

(
K̃I(T )|x− y| T exp

[
K̃λ(T )ωT

]
K̃λ(T )ωT

+exp
[
2δκB

(
Υ1TK̃λ(T ) + 4E0(T )|x− y|

)
ωT

]
· 8δκBE(T )|x− y|ωT

)
≤ K̃E3(T )|x− y|ωT

with
K̃λ(T ) := 2δκB(2δκBΥ1E(T )T + 1).

For the term E4 we only need to compute

|u0(ξ2(t, x))− u0(ξ1(t, x))− (u0(ξ2(t, y))− u0(ξ1(t, y)))|

=

∣∣∣∣ ddxu0(x0)(ξ2(t, x)− ξ1(t, x))−
d

dx
u0(y0)(ξ2(t, y)− ξ1(t, y))

∣∣∣∣
≤
∣∣∣∣ ddxu0(x0)−

d

dx
u0(y0)

∣∣∣∣ |ξ2(t, x)− ξ1(t, x)|

+

∣∣∣∣ ddxu0(y0)

∣∣∣∣ |ξ2(t, x)− ξ1(t, x)− ξ2(t, y) + ξ1(t, y)|

≤M3|x− y|2δκBE(T )ωT +M1

(
8δ2κ2

BE(T )Υ1 + 1
)
E(T )T |x− y|ω

≤ 2δκBE(T ) (M3 + (4δκBΥ1 + 1)M1)T |x− y|ω,

and we finally find

E4 ≤ 2δκBE(2T ) (M3 + (4δκBΥ1 + 1)M1)T |x− y|ω
= K̃E4(T )|x− y|ωT.
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The spatial Hölder constant for υ is therefore bounded by

|υ(t, x)− υ(t, y)|
|x− y|β

≤
(
K̃E1(T ) + K̃E2(T ) + K̃E3(T ) + K̃E4(T )

)
Lmax(T )

1−β
ωT

≤ Kυ,x(T )ωT (4.129)

where Kθ,x(T ) is bounded from above by, say

(
K̃E1(T7) + K̃E2(T7) + K̃E3(T7) + K̃E4(T7)

)(3

2
L

)1−β

whenever T ≤ T7.

It remains to find a bound on the temporal Hölder constant of θ. We therefore
estimate

|υ(t, x)− υ(s, x)| = |u′2(t, x)− u′1(t, x)− u′2(s, x) + u′1(s, x)|.

We split this quantity up into one part where we go along the characteristic curves
from (t, x) to (s, yi(s; ξi(t, x))) =: (s, yi(s)) and a second part where we pass from these
points to (s, x). This expands the term to estimate into

|υ(t, x)− υ(s, x)| ≤
∣∣∣∣u′2(t, x)

∫ s

t

∂xλ2(τ, y2(τ))dτ − u′1(t, x)
∫ s

t

∂xλ1(τ, y1(τ))

∣∣∣∣
+ |υ(s, y2(s))− υ(s, x)|+ |u′1(s, y2(s))− u′1(s, y1(s))|.

The latter two terms we already estimated in similar form:

|υ(s, y2(s))− υ(s, x)| ≤
(
K̃E1(T ) + K̃E2(T ) + K̃E3(T ) + K̃E4(T )

)
ωT |y2(s)− x|

≤
(
K̃E1(T ) + K̃E2(T ) + K̃E3(T ) + K̃E4(T )

)
ωTvmax|t− s|

=: K̃υ,t,1(T )ω|t− s|

|u′1(s, y2(s))− u′1(s, y1(s))| ≤ ‖∂xu′1‖C0 |y2(s)− y1(s)|
≤ E(2T ) (M1 + 4δκBΥ1E(2T )M0T ) 2δκBE(|t− s|)|t− s|ω
≤ 2δκBE(3T ) (M1 + 4δκBΥ1E(2T )M0T ) ω|t− s|
=: K̃υ,t,2(T )ω|t− s|.

The remaining term is bounded by∣∣∣∣u′2(t, x)
∫ s

t

∂xλ2(τ, y2(τ))dτ − u′1(t, x)
∫ s

t

∂xλ1(τ, y1(τ))

∣∣∣∣
≤
∣∣∣∣
∫ t

s

∂xλ2(τ, y2(τ))− ∂xλ2(τ, y1(τ)) + ∂xλ2(τ, y1(τ))− ∂xλ1(τ, y1(τ))dτ

∣∣∣∣ |u′2(t, x)|
+ |t− s|‖∂xλ1‖C0 |υ(t, x)|

≤ |t− s|(‖∂xxλ1‖C0 sup
τ
|y2(τ)− y1(τ)|+ ω)M0E(T ) + 2δκBΥ0|t− s|Kυ,0(T )ωT

≤
(
(8δ2κ2

BΥ1TE(T ) + 1)M0E(T ) + 2δκBΥ0Kυ,0(T )T
)
ω|t− s| =: K̃υ,t,3(T )|t− s|ω.
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Adding the three terms up, we arrive at the following bound on the temporal Hölder
constant of υ

|υ(t, x)− υ(s, x)|
|t− s|

β
2

≤ Kυ,t(T )ωT
1− β

2

with
Kυ,t(T ) = K̃υ,t,1(T ) + K̃υ,t,2(T ) + K̃υ,t,3(T )

being non-decreasing in T .
The parabolic Hölder norm of υ can now be estimated by

‖υ‖C0+β,P ≤ ‖υ‖C0 +Hölx,β(υ) +Hölt, β2
(υ) (4.130)

≤
(
Kυ,0(T )T

β
2 +Kυ,x(T )T

β
2 +Kυ,t(T )

)
ωT 1− β

2 ≤ Kυ(T7)ωT
1− β

2 .

At this point we could plug T7 as upper bound on the time into the constant since all
the constants

Kυ,0T
β
2 , Kυ,xT

β
2 , and Kυ,t

are increasing in T .
It is now easy to find some time T8 ∈ (0, T7] such that for each T ≤ T8, the parabolic

Hölder norm of the component υα satisfies

‖υα‖C0+β,P ≤
ω

5
.

For such times we therefore have

‖(λ, �, w,υ)‖VT
≤ 4

5
ω (4.131)

and our operator is indeed a contraction.

Remark 4.20. The above estimate works if the norm of υ is assumed to be the maximum
of the norms of the components υα. If we instead used the sum norm, the time T8 would
have to be chosen such that

‖υα‖C0+β,P ≤
ω

20
.

On the other hand, the constants K̃2 and K2 in lemma 4.19 would be smaller by a factor
of 2 in case of the sum norm as compared to the case with the maximum norm.

We can now formulate the main theorem of this part.

Theorem 4.21. Given β ∈ (0, 1) and initial data

u0 ∈ C2([0, L]) and a0 ∈ C2+β([0, L])

satisfying the compatibility conditions and the bounds of lemma 4.19, let all quantities
be defined as in lemma 4.19 and its proof.
Then, there exists some time T8 > 0 being smaller than T3 from theorem 4.16 and
depending only on

β, L, D, M0, . . . M3, vR, δ, κB/P , aB/P , and min
x∈[0,L]

(
a0(x)− aBP

)
87



such that for each T ∈ (0, T8], the operator A defined by (4.124) is a 4
5 -contraction on

VT . In particular, the full problem (4.45), (4.47), (4.48), (2.13), (4.49), (4.50) has a
unique solution (l∗, r̃∗, ã∗, u∗) in VT that actually belongs to WT .

Corollary 4.22. The solution (l∗, r̃∗, ã∗, u∗) found in theorem 4.21 corresponds to a
unique solution (l∗, r∗, a∗, u∗) to the full problem (2.15), (2.32), (2.13), (2.22), (2.23)
equipped with the initial conditions u0, a0. This solution exists for the same time T8 and
satisfies similar estimates.

4.2 Notes on the strictly hyperbolic case with variable
coefficients

It should not be too surprising that the results from the previous section remain valid if
the reaction rates κB/P and the critical concentrations aB/P are allowed to vary in space
and time. These variations of the reaction parameters may be modulated by additional
regulatory proteins and may serve as the manifestation of the external stimulus leading
the cell to polarization and driving it into motion. How these proteins can be distributed
asymmetrically throughout the cell and thereby lead to spatially and temporally variable
reaction parameters has been investigated for instance in [22].

Of course, we will have to require certain regularity assumptions. The reaction
parameters enter the following coefficient functions of the equations.

• the velocities λα of the hyperbolic part. In particular, the derivatives of the ve-
locities change their shape and also depend on lower derivatives of the monomer
density a. For the velocity of right oriented barbed ends we obtain

∂xλ
4(t, x) = δ (∂xκB(t, x) a(t, x) + κB(t, x)∂xa(t, x)− ∂x(κB(t, x)aB(t, x)))

∂xxλ
4 = δ (∂xxκB a+ 2∂xκB∂xa+ κB∂xxa− ∂xx(κBaB))

∂tλ
4 = δ (∂tκB a+ κB∂ta− ∂t(κBaB)) .

If we deal with (small) differences of velocities for different prescribed monomer
densities we have to take care of the more complicated behavior:

|∂xλ2 − ∂xλ1| ≤ δ max
m=B,P

(‖∂xκm‖C0‖a2 − a1‖C0 + ‖κm‖C0‖∂xa2 − ∂xa1‖C0)

≤ δ max
m=B,P

‖κm‖C2x,1t ‖a2 − a1‖C2x,1t

|∂xxλ2 − ∂xxλ1| ≤ δ max
m=B,P

(‖∂xxκm‖C0‖a2 − a1‖C0

+ ‖∂xκm‖C0‖∂xa2 − ∂xa1‖C0 + ‖κm‖C0‖∂xxa2 − ∂xxa1‖C0)

≤ δ max
m=B,P

‖κm‖C2x,1t ‖a2 − a1‖C2x,1t
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and

|∂tλ2 − ∂tλ1| ≤ δ max
m=B,P

(‖∂tκm‖C0‖a2 − a1‖C0 + ‖κm‖C0‖∂ta2 − ∂ta1‖C0)

≤ δ max
m=B,P

‖κm‖C2x,1t ‖a2 − a1‖C2x,1t

• the zeroth order coefficient ϕ = cu in the monomer equation. Its parabolic Hölder
constant in terms of the end densities u now depends on the variations of the
coefficients encoded in c as well and is changed to

Hölβ,P (cu) = sup
(t,x)�=(s,y)

|(c(t, x)− c(s, y))u(t, x) + c(s, y)(u(t, x)− u(s, y))|
|(t, x)− (s, y)|βP

≤ Hölβ,P (c)‖u‖C0 + ‖c‖C0Hölβ,P (u).

• the right hand side f = c̃u in the monomer equation. We find the same estimate
as for ϕ and only note that c̃ is composed of products κBaB and κP aP rather than
κB and κP alone as in c.

• in the equations for the boundary velocities. The respective estimates take the
form

|l̇(t)− l̇(s)| = δ
∣∣κB(a− aB)�(t,l(t)) − κB(a− aB)�(s,l(s))

∣∣
≤ δvmax(‖κB‖C0‖a‖C1 + ‖κB‖C1‖a‖C0 + ‖κBaB‖C1)|t− s|.

The variations in the coefficients thus only affect the constants in the estimates from
the previous section. Since the most regular function we used in the definition of the
spaces XT and VT , respectively, is the monomer density which is required to be of class
C2x,1t we shall assume the coefficients κB/P and aB/P to belong to C2x,1t

b (E∗∞).
As we deal with the strictly hyperbolic case, we also have to take care of variations

in the quantity aBP which we recall to be given by (3.7):

aBP (t, x) =
2vR

δ + κB(t, x)aB(t, x)− κP (t, x)aP (t, x)

κB(t, x)− κP (t, x)
.

If we want a to lie between aBP and aP we shall assume aP − aBP to be bounded
away from zero. This is granted if we require

2δκB(t, x)(aP (t, x)− aB(t, x))− 2vR ≥ A0 > 0.

By continuity of both, the monomer density a and the reaction parameters, we can now
assert that if a is initially bounded away from aBP this will also be true for sufficiently
small positive time.

We finally recall that the general bounds on the monomer density, the velocities,
and the reaction term in chapter 3 have been derived for variable reaction coefficients
satisfying certain assumptions.

Without carrying out the precise calculations corresponding to those from the pre-
vious section, we can state the following corollary of theorem 4.21.
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Corollary 4.23. Assume to be given β ∈ (0, 1), coefficient functions κB , κP , aB , aP ∈
C2x,1t

b (E+
∞), and initial conditions

u0 ∈ C2([0, L]) and a0 ∈ C2+β([0, L])

satisfying the compatibility conditions 2.3.1, condition b) in lemma 4.19, 2.3.2, and the
following general conditions

a)

inf
t>0,x∈R

(κB(t, x)− κP (t, x)) > 0,

b)

2δ inf
t>0,x∈R

κB(t, x)(aP (t, x)− aB(t, x))− 2vR > 0,

c)

a0(x) ≤ aP (0, x) for each x ∈ [0, L],

d)

min
x∈[0,L]

(a0(t, x)− aBP (0, x)) > 0.

Then, there exists some time T9 > 0 such that for each T ∈ (0, T9], the problem (2.15),
(2.32), (2.13), (2.22), (2.23) equipped with the initial conditions u0, a0 possesses a
unique solution (l∗, r∗, a∗, u∗) belonging to

C1+1([0, T ])× C1+1([0, T ])× C2+β,P (QT )×
(
C1(QT )

)4
where QT is given by (2.21). The time T9 only depends on β, D, L, vR, δ, the relevant
norms of the reaction parameters and the initial conditions, and on the bounds from the
hypotheses a), c), and d). The norms of l∗, r∗, a∗, and u∗ in the respective spaces only
depend on the same quantities and in addition on the choice of T ∈ (0, T9].

4.3 The loss of strict hyperbolicity

For the strictly hyperbolic case we required the monomer density to be bounded between
the values aBP and aP . This is a very strong condition and can only be assured for small
times. It would therefore be useful to relax this assumption by allowing the crossing of
characteristic curves.

In the interior of the domain the loss of strict hyperbolicity does not change the
situation at all since there are no interactions of the end densities among each other
and we do not have to consider any transition conditions where the characteristic curves
intersect. In particular, proposition 4.8 does not require any hypotheses on the strict
hyperbolicity.

We therefore have to consider the case of crossing characteristics on the boundary.
In general, if the leading characteristic curve switches we obtain a jump in the boundary
velocity. The boundary curves can thus only be expected to be Lipschitz continuous.

Let us concentrate on the left boundary as the case of the right boundary is just the
mirror image. Let us furthermore only deal with physical solutions, meaning that in
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Figure 4.1: Possible boundary velocities
for the left boundary depending on the
monomer concentration. Red : −vB(a),
blue: vP (a). It should be noted that the
slopes and the position of the endpoints on
the abscissa may vary if the coefficients are
variable.

some neighborhood of the left boundary the densities of right oriented barbed and left
oriented pointed ends vanish. That means, we only have to consider the end densities
u1 and u2 with the characteristic velocities being λ1 = −vB and λ2 = vP , respectively.

The particular monomer concentration to take care of is the value aBP given by
(3.7). At this particular value, both end velocities of interest coincide, at lower values of
a, λ2 is smaller than λ1 and therefore takes the lead, and at higher concentrations, the
leading characteristic velocity is λ1. We refer to figure 4.1 for a sketch of the dependence
of the relevant velocities on the monomer density.

Figure 4.2: Possible behavior of the left boundary curve (thick line) around a point (t0, l(t0))
where the outer characteristics of u1 and u2 cross. Different colors stand for different charac-
teristic families, blue: l1(t), red : l2(t). Inside the grey circles, a zoom into the vicinity of the
crossing points is shown. Picture (a) corresponds to case 1. Note that case 2.a) has a similar
shape with colors being exchanged. Pictures (b) and (c) sketch the situation of cases 2.b) and
2.c), respectively.

Recalling that we assumed the parameters to satisfy

δκP (aP − aB) > vR

in order to allow for a positive pointed end velocity vP , we conclude that the value aBP

is such that
λ1(aBP ) = λ2(aBP ) > 0.

A jump in the boundary velocity may occur in the following ways which are sketched
in figure 4.2.

1. The leading characteristic curve is the one corresponding to Bl = u1 and at t = t0
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the outer characteristic curve corresponding to Pr = u2 takes over the lead. Then,
necessarily λ2 < λ1 − or equivalently a ≤ aBP − in some parabolic cylinder

Cylr(t0, l(t0)) ∩QT

below (t0, l(t0)). Since both characteristic velocities are positive for such values of
a, we have the following situation.

The membrane is supported by the leading left oriented barbed ends which retract
at velocity λ1 > 0. Behind that, the leading right oriented pointed ends retract
at lower velocity λ2 and are caught up by the membrane at time t = t0. We may
without loss of generality assume that

lim
t↗t0

a(t, l(t)) � aBP (t0, l(t0))

since otherwise the characteristic velocities would coincide and there was no jump
to be expected.

2. The leading characteristic curve is the one corresponding to Pr = u2 and at t = t0
is replaced by the outer characteristic curve corresponding to Bl = u1. In any case
we can state that a(t, x) ≥ aBP in some cylinder below (t0, l(t0)) but we cannot
assert anything about the signs of the characteristic velocities. In fact, we have to
consider three generic cases:

a) Both types of ends shrink:

0 < lim
t↗t0

λ1(a(t, l(t))) < lim
t↗t0

λ2(a(t, l(t))).

b) The barbed ends grow whereas the pointed ends shrink:

lim
t↗t0

λ1(a(t, l(t))) < 0 < lim
t↗t0

λ2(a(t, l(t))),

c) Both characteristic curves grow outwards:

lim
t↗t0

λ1(a(t, l(t))) < lim
t↗t0

λ2(a(t, l(t))) < 0,

Of course, equality of one of the velocities to zero cannot be excluded.

If we assume that the solution to our full problem exists up to time t = t0 and
possesses the regularity asserted in the previous section, we may consider the problem
we are dealing with as a free boundary problem with initial conditions at t = t0. However
we are now in the situation that the compatibility conditions 2.3.2 will be violated at
the point (t0, l1).

We recall that our boundary conditions were derived by stating that there shall be no
flux of monomers across the boundary. This is also recovered from the weak formulation
of the initial boundary value problem for (4.45) on the fixed saptial domain (0, L).

To define the appropriate initial conditions at t = t0 we put

a1(ξ) := lim
τ↗t0

ã(τ, ξ)
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and observe that by construction a1 belongs to C2+β([0, L]).
For the fixed domain problem with initial conditions a1 at τ = t0 < T we classically

have the weak formulation

0 =

∫ T

t0

∫ L

0

−∂τψ ã+
DL2

(r − l)
2 ∂ξψ∂ξã− ψ Ξ(τ, ξ)∂ξã+ ψ(ϕ̃ã− f̃)dξdτ

+

∫ L

0

ψ(t0, ξ)a1(ξ)dξ +

∫ T

t0

L

r − l

[
ψ(τ, L)ṙ(τ)ã(τ, L)− ψ(τ, 0)l̇(τ)ã(τ, 0)

]
dτ

for each ψ ∈ C∞([t1, T ] × [0, L]) which vanishes on {T} × [0, L]. We can now formally
integrate the term

ψΞ(τ, ξ)∂ξã

once by parts with respect to ξ:∫ T

t0

∫ L

0

−ψΞ∂ξãdξdτ

=

∫ T

t0

∫ L

0

∂ξ(ψΞ)ãdξdτ −
∫ T

t0

ψ(τ, L)Ξ(τ, L)ã(τ, L)− ψ(τ, 0)Ξ(τ, 0)ã(τ, 0)dτ.

Recalling the particular shape of Ξ we obtain

Ξ(τ, 0) =
L

r(τ)− l(τ)

(
0

L
(ṙ(τ)− l̇(τ)) + l̇(τ)

)
=

L

r(τ)− l(τ)
l̇(τ)

Ξ(τ, L) =
L

r(τ)− l(τ)

(
L

L
(ṙ(τ)− l̇(τ)) + l̇(τ)

)
=

L

r(τ)− l(τ)
ṙ(τ)

∂ξΞ(τ, ξ) ≡ ṙ(τ)− l̇(τ)

r(τ)− l(τ)
,

and see that in particular, the boundary terms in the weak formulation are canceled.
We end up with the following shape

0 =

∫ T

t0

∫ L

0

−∂τψ ã+ ∂ξψ

(
DL2

(r − l)
2 ∂ξã+ Ξã

)
+ ψ

((
ϕ̃+

ṙ − l̇

r − l

)
ã− f̃

)
dξdτ

+

∫ L

0

ψ(t0, ξ)a1(ξ)dξ. (4.132)

This in turn is just the weak formulation of the homogeneous Neumann boundary
problem for the equation

∂τ ã−
L

r − l
∂ξ

(
DL

r − l
∂ξã+

(
ξ

L
(ṙ − l̇) + l̇

)
ã

)
+

(
ϕ̃+

ṙ − l̇

r − l

)
ã− f̃ = 0. (4.133)

which in fact is the same as (4.45).
To understand the effect of the incompatibility of the boundary and initial conditions,

it is therefore sufficient to consider the heat equation with homogeneous Neumann
boundary conditions and initial data having non-zero spatial derivatives at the corner.

More precisely, in our original problem (4.7), (4.8), (4.9), we could have neglected
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the terms ϕa and f since both are assumed to be uniformly Hölder continuous and ϕ

is moreover non-negative. These terms only affect the regularity of the solution in the
way that it is only of class C2+β,P rather than C∞ as we have seen in subsection 4.1.1.

The first order term
Ξ(τ, ξ)∂ξã

is just the one emerging from the moving boundary and has been seen to have no effect
of reducing the regularity of the solution to less than C2+β,P . This remains true since
the boundary velocities l̇ and ṙ are still uniformly Hölder continuous up to the kinks
in the boundary which are our new corner points of the domain.

The only remaining source of irregularity for the solution is therefore indeed the vio-
lation of the compatibility conditions on the initial and boundary values at the corners.

Let us therefore consider the auxiliary problem

∂ta(t, x)−D∂xxa(t, x) = 0 (4.134)

in (0, T )×(0, L) with homogeneous Neumann boundary conditions and initial conditions

a(0, x) = a1(x) in [0, L]

with a1 ∈ C2+β([0, L]).
The unique bounded, continuous solution to this problem is given by

a(t, x) =
b0
2

+
∞∑

n=1

bn exp

[
−n2π2

L2
Dt

]
cos

[nπ
L

x
]

(4.135)

with

bn =
2

L

∫ L

0

a1(x) cos
[nπ
L

x
]
dx , n = 0, 1, 2, . . .

being the cosine - Fourier coefficients of a1.
Now we observe that a defined in that way is uniformly continuous and bounded on

[0, T ]× [0, L] and that also its spatial derivative ∂xa is bounded although not continuous
on the corner points. Moreover, the solution is smooth in (0, T ]× [0, L] with integrable
derivatives ∂ta and ∂xxa satisfying

sup
x
(|∂ta(t, x)|, |∂xxa(t, x)|) ∼

1√
t

as t ↘ 0 with proportionality factor depending on D, L, and the initial conditions
a1, in particular on their behavior at the boundary points 0 and L. The strength of
the incompatibility − that is, the deviation of the initial spatial derivative from that
required by the boundary condition − is bounded by∣∣∣∣ ddxa1(t0, l1)− ∂xa�BC

∣∣∣∣ ≤ 1

D
|vB(a(t0, l1))− vP (a(t0, l1))|. (4.136)

What is most important is the observation that both, ∂ta and ∂xxa belong to
Lp(0, T ; L∞(0, L)) for any p ∈ [1, 2).

For the behavior in the interior we can employ the original equation (4.7) to conclude
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that a ∈ C2+β(Q′) for any Q′ being compactly included in QT .
If we therefore assume to be given Hölder continuous (exponent β) end densities

and Hölder continuous (exponent 1+β
2 ) boundary curves, we conlcude that we find a

uniformly continuous monomer density with bounded first spatial derivative and inte-
grable (weak) first temporal and second spatial derivatives.

Moreover, if the boundary curves have derivatives which are piecewise C
1+β
2 , this

monomer density will in fact be of class C2+β,P over the whole domain except possibly
at times t∗ where the boundary velocities are discontinuous. One might call this property
piecewise (in time) smoothness and write for a suitable extension ā(t, ·) of a(t, ·) to all
of R as discussed in subsection 4.1.6

ā ∈ C0([0, T ]× R) ∩ C1((0, T )\N ;C2(R))

whereN is the collection of discontinuity points of the boundary curves which is assumed
to be finite and in particular of Lebesgue measure zero. We note that even if this
assumption is dropped we can still assert

ā ∈ C0([0, T ]× R) ∩ L∞(0, T ;C0+1(R)).

Turning our attention to the boundary curves we find initial value problems of the
form

l̇(t) = cl,1(t)a(t, l(t)) + cl,2(t) =: vl(t, l(t)) for t ∈ [0, T ), l(0) = 0 (4.137)

ṙ(t) = cr,1(t)a(t, l(t)) + cr,2(t) =: vr(t, r(t)) for t ∈ [0, T ), r(0) = L. (4.138)

These can be solved in the sense of Carathéodory since the vector fields v = vl, vr
satisfy

1. For each t ∈ [0, T ], the function v(t, ·) is globally Lipschitz continuous on R with
uniform (in t) Lipschitz constant.

2. v is globally bounded: v ∈ L∞((0, T )).

These properties in particular imply that the velocities are Carathéodory func-
tions which assures the existence of absolutely continuous solutions. Their uniqueness
is granted due to the uniform Lipschitz bound on the velocities with respect to x.
Moreover, since the velocities are globally uniformly bounded, the solutions are not only
absolutely continuous but even globally Lipschitz continuous with Lipschitz constant
bounded by ‖vr/l‖L∞ which we already know to be at most vmax. Apart from the dis-
continuity points of the coefficient functions cl,i and cr,i (i = 1, 2) the boundary curves
are moreover differentiable with continuous derivatives since a has been found to be
continuous.

We finally ask for the end densities and again consider the Cauchy problem upon
if necessary extending the given monomer density to all of [0, T ]× R. By the theory of
DiPerna and Lions (cf. [5]) these Cauchy problems for u1, . . . , u4 have unique solutions
in the space of Radon measures for velocity fields λα belonging to L1(0, T ;W

1,loc
∞ (R)).

Since our velocity fields are globally bounded, uniformly continuous and even have
globally bounded classical spatial derivatives, these measure valued solutions μα

t are for
each t ∈ [0, T ] absolutely continuous with respect to the Lebesgue measure on R and
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we can even calculate their (Radon-Nikodym-) density by (4.31) which we necessarily
find to be continuous.

Moreover, we can employ the estimates from subsection 4.1.4 with one minor adap-
tation. Namely, if we only assume the given velocity field λ to belong to

L∞(0, T ;W 1
∞(R)) ∩ Lp(0, T ;W

2
∞(R))

we have a different estimate for the integral∫ t

s

∂xλ(τ, y1(τ)− ∂xλ(τ, y2(τ)dx.

Instead of (4.34) we now use the following estimate:∫ t

s

|∂xλ(τ, yα(τ ; ξα(t, y))− ∂xλ(τ, y
α(τ ; ξα(t, x)))|dτ

≤
∫ t

s

‖∂xxλ(τ, ·)‖L∞ |x− y| exp[‖∂xλ‖L∞(t− τ)]dτ

≤ C|x− y||t− s|q exp[|t− s|‖∂xλ‖L∞ ] for any q ∈
(
0, 1− 1

p

)

with the constant C only depending on

p, ‖∂xxλ‖Lp(0,T ;L∞), and q.

We therefore in fact obtain estimates very similar to (4.40), (4.41), (4.42), namely

‖u‖L∞ ≤ E0(T )M0 (4.139)

‖∂xu‖L∞ ≤ E0(2T )(M1 +M0C1E0(2T )T q) (4.140)

‖∂tu‖L∞ ≤ E0(2T )
(
M1vmax + δκBM0

(
C2T

qE0(2T )vmax + ‖∂xA‖L∞
))

(4.141)

with q as indicated above and C1, C2 only depending on

p, ‖∂xxλ‖Lp(0,T ;L∞), and q.

In particular, the solution u is differentiable in both, space and time, with bounded
derivatives and thus Lipschitz continuous. Moreover, the precise values of the constants
C1, C2 do not pose a problem since they are multiplied by terms T q which can be made
small by choosing T appropriately small. We therefore can find an upper bound on the
derivatives of u which is independent of the particular values for p, q, and the Lp-norm
of ∂xxλ.

We remark that if we assume the monomer density (that is, the velocity fields) to
have continuous spatial derivatives with discontinuities only along isolated Lipschitz
continuous, piecewise continuously diffentiable curves Γ, we can even employ the weak
formulation of the conservation laws to deduce explicite regularity assertions on the end
densities.

Let us more precisely assume the velocity field λ to be of class C1+1x,0+1t in (0, T )×
Rn except for some isolated curves as indicated above. We choose one of them, call
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it Γ and write it as disjoint union of two pieces Γ1 and Γ2 which may without loss of
generality be assumed to be connected such that Γ1 is the graph of a curve which is
nowhere tangent to a line {t = const} and Γ2 is nowhere tangent to a line {x = const}.

Now we choose some test function

φ ∈ C∞c ((0, T )× R)

with support D containing some part Γ(D) of Γ and such that D is bounded away from
all other curves where λ is of lower regularity. We partition the support of φ into

D = D1 ∪D2 ∪ Γ(D)

where D1 and D2 are the connected components of D\Γ as indicated in figure 4.3.

Figure 4.3: Domain of integra-
tion around a curve Γ = Γ1 ∪ Γ2

and partition of D into D1 and
D2.

Formally differentiating the equation with respect to x and interchanging the differ-
entiations in the first term reads

∂t(∂xu) + ∂x(∂x(λu)) = 0 (4.142)

and in weak form tested against φ (whose support should be assumed to contain no
points (0, x)):

0 =

∫
D

(∂xu∂tφ+ ∂x(λu)∂xφ)dxdt

=

∫
D1

(∂xu∂tφ+ ∂x(λu)∂xφ)dxdt+

∫
D2

(∂xu∂tφ+ ∂x(λu)∂xφ)dxdt.

We note that the integral makes sense since both, λ and u, are known to be continuous
with first spatial derivatives belonging to L∞. Now, we assumed that in the interiors of
D1 and D2, both have even Lipschitz continuous spatial derivatives and are Lipschitz
continuous with respect to time. Inside D1 and D2, equation (4.142) is assumed to be
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satisfied almost everywhere and we conclude:

0 =

∫
D1

(∂t(∂xu φ) + ∂x(∂x(λu)φ)− φ(∂txu+ ∂xx(λu))dxdt

+

∫
D2

(∂t(∂xu φ) + ∂x(∂x(λu)φ)− φ(∂txu+ ∂xx(λu))dxdt

=

∫
D1

div

(
∂x(λu)φ

∂xu φ

)
dxdt+

∫
D2

div

(
∂x(λu)φ

∂xu φ

)
dxdt.

We can now apply the divergence theorem and recall that φ vanishes on ∂D together
with all its derivatives. Moreover, we denote by λi, ui the values of λ, u, respectively, in
Di (i = 1, 2). Then, we calculate

0 =

∫
Γ

((∂x(λ2u2)− ∂x(λ1u1))φdt− (∂xu2 − ∂xu1) φdx) .

Now we split this integral up into integrals over Γ1 and Γ2 and denote by [f ] := f2−f1
the jump of the function f across Γ. We pointed out that Γ1 is (locally) the graph of
a Lipschitz continuous, piecewise differentiable function t = t(x), and we denote the
derivative by

dt

dx
=: μ.

Analogously, Γ2 can be written as a function x(t) whose derivative shall be denoted by

dx

dt
=: ν.

Using these notations we calculate

0 =

∫
Γ1

(μ[∂x(λu)]− [∂xu])φ dx+

∫
Γ2

([∂x(λu)]− ν[∂xu])φ dt

Since φ was arbitrary and we can in particular choose it in a way such that D∩Γj = ∅
for either j = 1, 2, we conclude

(ν − λ)[∂xu] = u[∂xλ] along Γ2 (4.143)

(1− μλ)[∂xu] = μu[∂xλ] along Γ1. (4.144)

We should note that the partition of Γ into Γ1 and Γ2 does not lack some ambiguity.
The only restriction on the choice of Γ1 and Γ2 is that Γ1 should nowhere be parallel to
the t-axis and Γ2 should not contain parts parallel to the x-axis. However, at all other
parts of Γ a switch from the notation of Γ1 to that of Γ2 yields

ν =
1

μ

(both being neither zero nor infinite). Under this equality, we easily see that (4.144)
turns into (4.143).

If we assume the possible lines of discontinuities of ∂xλ to be of the type {t = const}
we observe that (4.144) with μ = 0 yields in fact continuity of ∂xu across these lines.
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To solve the initial value problem starting at a time t0 where the outer characteristic
curves cross we therefore may use similar arguments as in subsection 4.1.6. Here, the
spaces VT and WT have to be replaced by Ṽt0,T and W̃t0,T which are given by the
following definitions.

The given boundary curves are assumed to belong to the space

C1+β0([t0, T ])

with β0 ∈
(
1
2 , 1

)
being some given number.

The given monomer density − or rather its spatial extension to [0, T ]× [lmin, rmax] −
belongs to

C0([t0, T ]× [lmin, rmax]) ∩ L∞(0, T ;W 1
∞(lmin, rmax)) ∩ Lp0(0, T ;W

2
∞(lmin, rmax))

where p0 ∈ [1, 2).
For the given end densities we merely assume as before regularity according to

C0+β0,P (Qt0,T ).

The image space W̃t0,T shall be composed of the following spaces. The boundary
curves belong to

C1+β1([t0, T ])

with β1 satisfying β1p0 < 1 and β1 > β0. The former condition assures boundedness
of the norm in the image space and the second one guarantees that, for small T − t0,
the distance of two curves from the image space is small in the preimage space by the
Hölder scale from remark A.1.

The (extension of the) monomer density lies in

C0(Qt0,T ) ∩ L∞(t0, T ;W
1
∞(lmin, rmax)) ∩ Lp1(t0, T ;W

2
∞(lmin, rmax))

where the exponent p1 is required to satisfy p0 < p1 < 2. As the solution is bounded in

Lp1(t0, T ;W
2
∞(lmin, rmax)) for any p1 < 2,

the Lebesgue scale guarantees that the distance of two appropriate solutions is small
in

Lp0

(
t0, T ;W

2
∞(lmin, rmax)

)
by calculating∥∥∥t �→ ‖a1(t, ·)− a2(t, ·)‖W 2∞

∥∥∥
Lp0

≤ (T − t0)
p1−p0
p0p1

∥∥∥t �→ ‖a1(t, ·)− a2(t, ·)‖W 2∞

∥∥∥
Lp1

.

Finally, for the end densities we obtain solutions in the space

W 1
∞([t0, T ]× [lmin, rmax]).

Again, the Hölder scale between β0 and 1 allows for smallness of differences of
solutions in the pre-image space for small differences of the given data and small T − t0.
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We therefore find again a contraction for sufficiently small T−t0 where a lower bound
of T depends on the parameters β0/1, and p0/1, in particular on

1−
(

1

p0
− β1

)
and

p1 − p0
p1p0

.

Of course, it is possible to find parameters β0/1 and p0/1 satisfying all the conditions
above. A possible choice would be

β0 =
5

8
β1 =

2

3

p0 =
5

4
p1 =

15

8
.
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Chapter 5

Interior Gradient Blow Up and
Shock Formation

We are now going to investigate the possibility of singularities forming in the interior of
the domain by

a) blow-up of the spatial derivative ∂xa of the monomer density, or

b) mass concentration of filament ends in Dirac measures.

The latter type of discontinuity already showed up in the discussion of interior steady
states in section 2.4 where we also indicated the possibility of states with jumps in the
monomer density.

Besides being useful for the investigation of the well posedness of our model for long
times we recall these solutions to be of biological relevance as well. The accumulation
of filament tips in a very narrow region in space and their eventual collapse into an
concentrated measure describes nothing else than the emergence of a sharp front of
polymerizing filaments. It is therefore only natural to ask for the occurance of such
solutions.

We start with the investigation of two limiting cases.

5.1 The limiting case of rapid diffusion

Let us first consider the case of rapid diffusion so that any inhomogeneities in the
monomer distribution equilibrate instantaneously. This formally corresponds to set-
ting the diffusion coefficient D in the eqution for the monomers to ∞. This equation
consequently reduces to

∂xxa(t, x) = 0. (5.1)

5.1.1 Rapid diffusion in a fixed domain

Let us start with a toy model where we assume the cell to occupy a fixed domain with
filament ends being located away from the boundary.

Using the equation ∂xxa = 0 together with the no-flux conditions on the boundary
we conclude a homogeneous distribution of monomers at any instant of time, and we call
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this value A(t). The total amount of G-actin in the cell is now simply given by A(t)L.
This entity is governed by an ordinary differential equation capturing the polymerization
kinetics at all filament ends throughout the domain:

L
d

dt
A = δ

∫ L

0

c̃(t, x)u(t, x)− c(t, x)u(t, x)A(t)dx. (5.2)

Note that the right hand side is nothing else than the spatial integral over the reaction
term

R(A(t), u(t, x)).

In the case of constant reaction parameters c and c̃, this reduces to a simple linear
equation with constant coefficients:

d

dt
A = − δ

L
CA(t) +

δ

L
C̃ (5.3)

where

C := c

∫ L

0

u(t, x)dx and C̃ := c̃

∫ L

0

u(t, x)dx

are indeed constants since the integrals are nothing else than the conserved L1-norm of
the end densities.

The equation for A is solved by

A(t) =

(
K0 +

C̃

C
exp

[
δC

L
t

])
exp

[
−δC

L
t

]

=

(
A(0)− C̃

C

)
exp

[
−δC

L
t

]
+

C̃

C
. (5.4)

We see the (uniform) monomer concentration approaching some equilibrium value
C̃/C at an exponential rate. If in addition, the reaction parameters are assumed to
satisfy 2.1.1 and the compatibility condition from remark 2.1, and if we assume an
initially symmetric cell satisfying∫ L

0

u1(0, x)dx =

∫ L

0

u2(0, x)dx =

∫ L

0

u3(0, x)dx =

∫ L

0

u4(0, x)dx (5.5)

then the constant C̃/C is just the steady state monomer concentration ass. In that case,
the monomer concentration approaches its steady state value which implies asymptot-
ically vanishing velocities of the filament tips. Without the compatibility condition
the end velocities may be different from zero at the asymptotically reached monomer
concentration.

Let us also note that for this limiting case we do not require the pointwise condition
on the end densities

Br +Bl = Pr + Pl

known from the discussion of strong steady states in section 2.4 to sustain a homogeneous
monomer density.
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5.1.2 Rapid diffusion for the free boundary problem

If the boundary curves evolve according to (2.22) and (2.23) we also have to consider the
nontrivial no-flux conditions given by (2.32). However, setting D to infinity, we obtain
homogeneous Neumann boundary conditions as well.

Now, in case of a moving boundary, the total monomer concentration is given by

(r(t)− l(t))A(t)

and evolves according to

d

dt
((r(t)− l(t))A(t)) + CA(t) = C̃.

with C and C̃ being the integrals defined above. For these we should note that the
conservation of the number of filament tips of either type does not rely on the domain
having a fixed estension but is also granted for the free boundary case.

Since we know the evolution of the boundary curves r and l in terms of A to be given
by

l̇(t) = κl(t)A(t) + kl(t)

ṙ(t) = κr(t)A(t) + kr(t)

we obtain an integro-differential equation for the global monomer density A:(
L+

∫ T

0

κ(τ)A(τ) + k(τ)dτ

)
Ȧ(t) + (C + k(t))A(t) + κ(t)A(t)2 = C̃ (5.6)

where the coefficient functions

κ(t) := κr(t)− κl(t) and k(t) := kr(t)− kl(t)

are determined by the end densities evolving according to the linear transport equation

∂tu+ Λ(A(t))∂xu = 0. (5.7)

We therefore find smooth solutions as long as the factor

L+

∫ T

0

κ(τ)A(τ) + k(τ)dτ = r − l

does not vanish. These solutions are in particular characterized by end densities of
constant shape as the velocity fields in their governing equations are independent of the
spatial variable.

5.2 The limiting case of vanishing diffusion

If the monomers are assumed not to diffuse their density is again governed by ordi-
nary differential equations but now there is one for each space point. We arrive at the
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pointwise equation

d

dt
a(t, x) = −c(t, x)u(t, x)a(t, x) + c̃(t, x)u(t, x) (5.8)

which can be solved to

a(t, x) = exp

[
−
∫ t

0

c(τ, x)u(τ, x)dτ

]
×

×
(
a(0, x) +

∫ t

0

exp

[
−
∫ τ

0

c(σ, x)u(σ, x)dσ

]
c̃(τ, x)u(τ, x)dτ

)
.

(5.9)

Assuming the kinetic coefficients encoded in c and c̃ to be independent of time and
introducing the notation

U(t, x) :=
∫ t

0

u(τ, x)dτ,

this solution can be rewritten to

a(t, x) = exp [−c(x)U(t, x)]
(
a(0, x) + c̃(x)

∫ t

0

exp [−c(x)U(τ, x)]u(τ, x)dτ
)
. (5.10)

This can be directly plugged into the hyperbolic part of the system where it makes the
indirect coupling between the single hyperbolic equations clearly visible:

∂tu
α(t, x) = −∂x (λα(t, x, a(t, x))uα(t, x)) (5.11)

= − exp [−c U(t, x)]
(
a(0, x) + c̃

∫ t

0

exp [−c U(τ, x)]u(τ, x)dτ
)
∂xu

α

− δ∂xk
αuα

− δ∂xκ
α exp [−c U(t, x)]

(
a(0, x) + c̃

∫ t

0

exp [−c U(τ, x)]u(τ, x)dτ
)
uα

− δκα∂x

(
exp [−c U(t, x)]

(
a(0, x) + c̃

∫ t

0

exp [−c U(τ, x)]u(τ, x)dτ
))

uα.

Here the reaction parameters have been written in the following abbreviated form:

k := (κBaB , κPaP ,−κPaP ,−κBaB)
T

and
κ := (−κB ,−κP , κP , κB)

T
.

Alternatively, we may write the system

∂tu+ Λ(a)∂xu = −∂xΛ(a)u (5.12)
d

dt
a = R(a, u) (5.13)

as completely hyperbolic one. We note that the velocities λα have the shape

±vR + δκαa+ δkα
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with possibly variable coefficients κ and k. We thus calculate

∂xλ
α(a) = δκα∂xa+ δ∂xκ

αa.

The system can therefore be rewritten to

∂t

⎛
⎜⎜⎜⎜⎜⎝
u1

u2

u3

u4

a

⎞
⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎝
λ1(a) 0 0 0 −δκ1u1

0 λ2(a) 0 0 −δκ2u2

0 0 λ3(a) 0 −δκ3u3

0 0 0 λ4(a) −δκ4u4

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ∂x

⎛
⎜⎜⎜⎜⎜⎝
u1

u2

u3

u4

a

⎞
⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎝
δ∂xκ

1au1

δ∂xκ
2au2

δ∂xκ
3au3

δ∂xκ
4au4

R(a, u)

⎞
⎟⎟⎟⎟⎟⎠ = 0

The eigenvalues of the coefficient matrix are clearly given by

λ1(t, x, a), λ2(t, x, a), λ3(t, x, a), λ4(t, x, a), and 0,

and the corresponding eigenvectors can be chosen to be the usual unit vectors.
The system can now be written in standard form by adding to each equation for

u1, . . . , u4 a multiple of the last equation:⎛
⎜⎜⎜⎜⎜⎝
1 0 0 0 m1

λ1

0 1 0 0 m2

λ2

0 0 1 0 m3

λ3

0 0 0 1 m4

λ4

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ ∂tU +

⎛
⎜⎜⎜⎜⎜⎝
λ1 0 0 0 m1

0 λ2 0 0 m2

0 0 λ3 0 m3

0 0 0 λ4 m4

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ∂xU =

⎛
⎜⎜⎜⎜⎜⎝
r1

r2

r3

r4

r5

⎞
⎟⎟⎟⎟⎟⎠ (5.14)

where we used the following abbreviated notation

mα = δκαuα , α = 1, . . . , 4

rα = −δ∂xκαauα +
mα

λα
R(a, u) , α = 1, . . . , 4

r5 = R(a, u).

We note that this is only valid if neither of the characteristic velocities λ1, . . . , λ4

vanishes at any point which for example of the special parameter values satisfying (3.8)
is true if the system for the end densities u1, . . . , u4 is strictly hyperbolic.

Using the notation of [18] we can check the hypotheses of theorem 4.1. in chapter 1
therein. Noting that the bound

aB ≤ a(t, x) ≤ aP

remains valid due to the sign of the reaction term R, we conclude that also the velocity
bounds

−vmax ≤ λα ≤ vmax, α = 1, . . . , 4

are still true. If we therefore prescribe C1([0, L])-data at time t = 0, we find a strongly
determinate domain to be given by

Qmin,T = {(t, x) | 0 ≤ t ≤ T, vmaxt ≤ x ≤ L− vmaxt} (5.15)
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whenever 2vmaxT ≤ L.

If the initial data satisfy
‖uα‖C0([0,L]) ≤M0

then an appropriate extended domain in the sense of theorem 4.1 in [18] is

ET =

{
(t, x, ξ) | (t, x) ∈ Qmin,T , max

i=1,...,5
|ξi| ≤ max{M0, aP }

}
.

We now check the hypotheses:

1) The coefficient matrix ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 m1(t,x,u)
λ1(t,x,a)

0 1 0 0 m2(t,x,u)
λ2(t,x,a)

0 0 1 0 m3(t,x,u)
λ3(t,x,a)

0 0 0 1 m4(t,x,u)
λ4(t,x,a)

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

is clearly nonsingular and depends smoothly on t, x, u, and a as long as the veloc-
ities λα do not vanish which can only be guaranteed for certain values of a. This
can be circumvened by replacing a by the new variable ã = a− ā where ā is some
monomer concentration for which there exists ε > 0 such that

λα(t, x, a) �= 0 for each α = 1, . . . , 4, (t, x) ∈ Qmin,T , and ā− ε ≤ a ≤ ā+ ε.

Then we may choose initial conditions for ã in[
ā− ε

2
, ā+

ε

2

]
and conclude that as long as the monomer density changes continuously in time,
the nonsingularity of the coefficient matrix is granted for sufficiently small times.

2) The λl in the theorem are just the characteristic velocities which are in our case

λ1(t, x, a), . . . , λ4(t, x, a), and 0.

These are clearly smooth in t and x if the coefficients κB/P and aB/P are which
we always assume to be the case. The same is true for their partial derivatives
with respect to u1, . . . , u4 (which vanish identically as the equations themselves
are semilinear) and the one with respect to a which is simply given by δκα.

The right hand sides r1, . . . , r5 consist of terms δ∂xκ
αauα which are well behaved

if κB/P are smooth, and the terms

δκαuα

λα

which satisfy all the conditions whenever we are away from zeros of the velocities
λ1, . . . , λ4. The right hand side of the last equation is just R(t, x, a, u) which is
smooth in all of its arguments.

3) The initial conditions can be chosen to be continuously differentiable on [0, L].
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We conclude that we find a C1 solution of the problem in Qmin,T for sufficiently small
T . Translated into the terms of the boundary value problem this means that there are
no discontinuities of either the densities or their derivatives emerging instantaneously in
the interior of the domain.

For larger times we expect the emergence of shocks whose shape we will investigate
in the following.

To do so we will deal with the corresponding Riemann problem, that is, we consider
data

(u1
r, u

2
r, u

3
r, u

4
r, ar)

T on (0,∞) and (u1
l , u

2
l , u

3
l , u

4
l , al)

T on (−∞, 0) (5.16)

for the problem in its original form

∂t

⎛
⎜⎜⎜⎜⎜⎝
u1

u2

u3

u4

a

⎞
⎟⎟⎟⎟⎟⎠+ ∂x

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
λ1(a) 0 0 0 0

0 λ2(a) 0 0 0

0 0 λ3(a) 0 0

0 0 0 λ4(a) 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
u1

u2

u3

u4

a

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0

0

0

0

R(a, u1, u2, u3, u4)

⎞
⎟⎟⎟⎟⎟⎠

(5.17)
and ask for shocks emerging from x = 0 at time t = 0.

In particular, the data on either side have to be homogeneous solutions of the system,
that is

R(al, u
1
l , u

2
l , u

3
l , u

4
l ) = 0 = R(ar, u

1
r, u

2
r, u

3
r, u

4
r). (5.18)

For α = 1, . . . , 4 let us denote by λα
l/r the values λα(al/r) of the characteristic veloc-

ities on the left and right side of the expected shock curve, respectively.

It should be noted that these considerations are only concerned with the possible
existence of this type of solutions. We do not show whether they also evovle from
smooth data. In particular, recalling that the Dirac measures for the end densities
are to be interpreted as polymerization fronts, we do not assert here that these fronts
develop from generic initial states of the resting cell. Moreover, recall that we are here
in the fully hyperbolic setting without monomer diffusion.

The question of the actual emergence of polymerization fronts from smooth initial
conditions in the original hyperbolic parabolic setting will be addressed by numerical
simulations in chapter 7.

5.2.1 Shocks for two end species

Let us start with a specific example. We assume that u1 = u2 ≡ 0, that is, we only have
right oriented barbed and left oriented pointed ends. This may be justified by assuming
that the corresponding right oriented pointed and left oriented barbed ends are located
far to the left of the shock curve under consideration. If we now ask for a shock we have
to assume al > ar since then the characteristic velocities on the right side are smaller
than those on the left side. This is necessary for the characteristics to run into the shock
curve which in that case will have an intermediate speed.
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The conditions for the reaction term to vanish on both sides of the shock now read

κB(al − aB)u
4
l = κP (aP − al)u

3
l (5.19)

κB(ar − aB)u
4
r = κP (aP − ar)u

3
r (5.20)

Extreme monomer densities

The easiest possible situation emerges if we assume al = aP and ar = aB . Then, (5.19)
and (5.20) yield u3

r = u4
l = 0 whereas u4

r and u3
l are some positive constants which have

to be determined. Let the shock curve be given by x = S(t), and let us denote its speed
by s(t) = Ṡ(t). We furthermore deduce that the characteristic velocities are given by:

λ3
l = vR λ3

r = vR − δκP (aP − aB)

λ4
l = −vR + δκB(aP − aB) = vmax λ4

r = −vR.

In particular, both velocities are positive in the left half space and negative in the
right one so that we can find shock speeds s for which all characteristic curves corre-
sponding to the end densities run into the shock.

We have now to determine what is going on there. Since there are constantly filament
ends entering the shock from both sides which do not leave again, there will be an
accumulation of finitely many filament ends at the shock position. The number of tips
being found there depends on the shock velocity and the densities u3

l , u4
r:

u3(t, x) = u3
l χ{x<S(t)} + u3

l

∫ t

0

(
λ3
l − s(τ)

)
dτ δS(t)

= u3
l χ{x<S(t)} + u3

l (vRt− S(t)) δS(t)

u4(t, x) = u4
rχ{x>S(t)} + u4

r

∫ t

0

(
s(τ)− λ4

r

)
dτ δS(t)

= u4
rχ{x>S(t)} + u4

r (vRt+ S(t)) δS(t)

where δS(t) denotes the Dirac measure with respect to the spatial variable x with mass
concentrated at the shock position at time t. We note that this type of shocks with
Dirac measures at the shock position are also referred to as δ-shocks and have recently
been studied for certain nonlinear systems of conservation laws. For instance, in [28]
the emergence of such solutions is investigated via viscosity methods. Here we will most
often simply refer to these solutions as shocks since we do not have classical shocks and
therefore shall not expect any confusion to be generated.

These ends are constantly producing or consuming monomers and the rate of pro-
duction or consumption has to be balanced by the flux of monomers into or out of the
shock. The latter is given by

−s(t)(al − ar) = −s(t)(aP − aB)

where a positive sign corresponds to monomers being taken up by the shock. The
production rate due to pointed ends in the shock depends on the shock velocity which
is the velocity the filament tips in the shock are moving at. This velocity corresponds
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to some hypothetical monomer concentration as(t) at S(t) given by

s(t) = λ3(as(t)) = vR − δκP (aP − as(t)) (5.21)

or equivalently

as(t) =
s(t)− vR + δκP aP

δκP
. (5.22)

Similarly, we find a hypothetical monomer concentration as(t) corresponding to the
barbed ends in the shock and given by

as(t) =
s(t) + vR + δκBaB

δκB
. (5.23)

This allows us to write the corresponding parts of the reaction terms and thus the
monomer production rate due to pointed ends and the consumption rate due to barbed
ends as

δ (vR − s(t)) (vRt− S(t))u3
l (5.24)

and
− δ (vR + s(t)) (vRt+ S(t))u4

r, (5.25)

respectively. As creation or destruction of mass is impossible, the fluxes have to balance
each other which leads to

0 = (vR − s(t)) (vRt− S(t))u3
l − (vR + s(t)) (vRt+ S(t))u4

r − s(t)(aP − aB).

Recalling that s(t) is just the speed of the shock curve x = S(t) we write Ṡ rather
than s and obtain an ordinary differential equation for the shock position S:

0 = (dS − vRΣt) Ṡ − (aP − aB)Ṡ − vRΣS + dv2Rt (5.26)

with abbreviated notations

d := u3
l − u4

r and Σ := u3
l + u4

r.

This equation is equipped with the initial condition S(0) = 0 which we chose to be the
point where the discontinuity is located in the data.

In case u3
l = u4

r we immediately obtain the trivial solution S(t) ≡ 0 corresponding
to a standing shock. By the Picard-Lindelöf theorem this solution is unique and
independent of the precise value of u3

l = u4
r.

The fronts we are interested in are moving ones corresponding to the actin fronts
already discussed in subsection 2.4.2 and being observed as lamellipodium-lamella in-
terface in [26].

Since these moving fronts cannot be observed for equal densities of barbed and
pointed ends we therefore consider the case u3

l �= u4
r and rewrite the ODE (5.26) for

the shock curve to

Ṡ(t) = vR
dvRt− ΣS(t)

aP − aB + vRΣt− dS(t)
=: F (t, S(t)), (5.27)

109



recall that S(0) = 0 and require |Ṡ(t)| < vR since the shock cannot move faster than
the free velocities of the ends on either side.

Given this condition and using the trivial observation Σ − d > 0, we see that the
denominator of F will always be bounded from below by aP − aB > 0. In particular,
the right hand side satisfies on the cone

C := {(t, S) | t ≥ 0, |S| ≤ vRt}

the following estimate

F (t, x)− F (t, y)

= vR
(dvRt− Σx)(aP − aB +ΣvRt− dy)− (dvRt− Σy)(aP − aB +ΣvRt− dx)

(aP − aB +ΣvRt− dx)(aP − aB +ΣvRt− dy)

= vR
(aP − aB)Σ + (Σ2 − d2)vRt

(aP − aB +ΣvRt− dx)(aP − aB +ΣvRt− dy)
(y − x) ∀ (t, x), (t, y) ∈ C

We know the denominator to be larger than (aP − aB)
2 on C and see the numerator

to be positive and bounded for bounded t. We thus deduce the Lipschitz continuity
of F with respect to its second argument and therefore the local existence of a unique
solution.

Let us next investigate the behavior of the flux F on the boundaries of the cone C:

F (t, vRt) = vR
(d− Σ)vRt

aP − aB + (Σ− d)vRt
< 0 for t > 0

F (t,−vRt) = vR
(d+Σ)vRt

aP − aB + (Σ + d)vRt
> 0 for t > 0.

Moreover, we find the nullcline of F to lie in the interior of this cone

F (t, S) = 0 ⇐⇒ S =
d

Σ
vRt < vRt

and observe that

1. for fixed t > 0, F (t, ·) is a decreasing function on (−vRt, vRt) since

d

dS
F (t, S) =

−Σ(aP − aB) + (d2 − Σ2)vRt

(aP − aB + vRΣt− dS)
2

is strictly negative, and

2. F is bounded between −vR and vR on the cone C. More precisely, for any t > 0,
we have

max
−vRt≤S≤vR

F (t, S) = F (t,−vRt) < vR

and
min

−vRt≤S≤vR

F (t, S) = F (t, vRt) > −vR,

and as t grows to infinity, the maximum approaches vR from below whereas the
minimum approaches −vR from above.
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We conclude that once a solution curve (t, S(t)) has a point (t0, S(t0)) in the interior
of the cone C, it cannot leave this cone anymore. If in addition, we are in the smaller
cone {

0 ≤ S ≤ d

Σ
vRt

}
,

we will remain there since F (t, 0) ≥ 0 and F (t, d
ΣvRt) = 0. Moreover, this region is also

an attractor with its basin of attraction containing the sector

{(t, S) | t > 0, S ≤ vRt}.

This follows from the flux F (t, S) being bounded from below by some positive number
for S < 0 so that the system is always driven towards positive S. From the other side,
F is negative for

d

Σ
vRt < S < vRt

and therefore, the system will be caught up by the line

x =
d

Σ
vRt.

To assert the existence of a unique shock curve S, we only have to check that the
system initially does not start with a velocity larger than vR. To do so, we linearize the
system around t = S = 0 and find the following approximate equation for small times:

Ṡ(t) =
vR

aP − aB
(dvRt− ΣS(t)) +O(t2, S2).

Neglecting the higher order terms, this can now be explicitely solved with the initial
condition S(0) = 0, and the solution is given by

S(t) =
d(aP − aB)

δΣ2

(
vRΣ

aP − aB
t+ exp

[
− vRΣ

aP − aB
t

]
− 1

)

=
dv2R

aP − aB

t2

2
+O(t3). (5.28)

We can also calculate the derivative of this approximate solution to be

Ṡ(t) = vR
d

Σ

(
1− exp

[
− vRΣ

aP − aB
t

])
.

This clearly lies between

− d

Σ
vR and

d

Σ
vR,

and therefore, the solution starts off into the cone C. We therefore find a unique shock
curve x = S(t).

Now we ask for the asymptotic shock velocity. Suspecting the shock speed Ṡ to
converge to some constant value s for large times − which is supported by the numerical
solution to the initial value problem for S − we make the ansatz S(t) ∼ st for large
t. Since we know that this asymptotic velocity cannot be larger than vR we can then
neglect the constant term aP − aB in the denominator of the right hand side for large t
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to compute

s← Ṡ(t) ∼ vR
dvRt− Σst

vRΣt− dst

which has the roots

s =

(
Σ

d
±
√

Σ2

d2
− 1

)
vR

and again by noting that the velocity cannot be larger than vR, we conclude that the
relevant root is the one with the negative sign. The asymptotic velocities computed in
that way also coincide perfectly with the ones found by numerical solutions of the initial
value problem for S for large times. Having found an asymptotically constant shock
speed is also an a posteriori justification of the ansatz S(t) ∼ st.

Figure 5.1: Asymptotic shock
speed in units of vR, depending
on the ratio μ = u4

r/u
3
l . line:

calculated by (5.29), bullets:
obtained from simulations of
the ordinary differential equa-
tion (5.27).

Note, that the asymptotic velocity only depends on the ratio of u3
l and u4

r rather
than on the ablosute values. More precisely, writing u4

r := μu3
l with μ ∈ (0, 1), we find

s =

(
1 + μ

1− μ
±
√

(1 + μ)
2

(1− μ)
2 − 1

)
vR. (5.29)

This relation is sketched in figure 5.1.

We furthermore find that the time which is needed to reach the asymptotic velocity
strongly depends on both, μ and the absolute value values of u3

l and u4
r. The latter con-

nection becomes immediately clear from (5.27) by recalling that the asymptotic velocity
is approximately reached when the term

vRΣt− dS(t)

dominates the zero order term aP − aB . We are therefore not surprised that for large
values of both end densities, the asymptotic velocity is approached faster than for small
ones.

The former dependence of the transient time on μ may not be as obvious but if we
recall that μ being close to 1 leads to small asymptotic velocities we observe that the
term

vRΣt− dS(t)

also becomes large as Σ and d are of comparable size and S(t) is much smaller than vRt.
In figure 5.2 we provide an impression of both effects.
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Figure 5.2: Shock velocity over time for different end densities. Left : u3
l = 10000 μm−2,

u4
r = 1000 μm−2 (dashed), u4

r = 8000 μm−2 (solid); right : u3
l = 105 μm−2, u4

r = 10000 μm−2

(dashed), u4
r = 80000 μm−2 (solid).

Noncritical monomer densities

Let us now consider a slightly more general situation by assuming the monomer density
on one side of the shock to be different from the critical concentrations, say aB < ar <

al = aP . We still have u4
l = 0 but no longer u3

l = 0. However, this value is coupled to
u4
r by (5.20). We now have as characteristic velocities:

λ3
l = vR λ3

r = vR − δκP (aP − ar)

λ4
l = −vR + δκB(ap − aB) λ4

r = −vR + δκB(ar − aB).

For the number of filament tips being captured by the shock we consequently find:

u3(t, x) = u3
l χ{x<S(t)} + u3

rχ{x>S(t)} +
(
u3
l (vRt− S(t)) + u3

r

(
S(t)− λ3

rt
))

δS(t)

u4(t, x) = u4
rχ{x>S(t)} + u4

r

(
S(t)− λ4

rt
)
δS(t).

Note that in case λ3
l < Ṡ(t), there is no gain of pointed ends in the shock from the

left side but rather a loss as pointed ends leave the shock at rate (λ3
r− Ṡ(t))u3

l . This loss
has now to be balanced by the inflow from the right or can for some time be fed from
the pointed ends being already accumulated in the shock. For constant shock velocities
we thus obtain some Rankine-Hugoniot conditions for the shock speed and the end
densities on the left and right side, respectively.

This allows us to compute the rates of production and consumption of monomers by
the filament tips in the shock to be

δ(vR − s(t))
(
u3
l (vRt− S(t)) + u3

r

(
S(t)− λ3

rt
))

(5.30)

and
− δ(s(t) + vR)(S(t)− λ4

rt)u
4
r, (5.31)

respectively.
The ordinary differential equation describing the evolution of the shock curve S is

113



now given by

0 =
(
u3
l − u3

r − u4
r

)
ṠS +

(
λ3
ru

3
r − vRu

3
l + λ4

ru
4
r

)
tṠ

−(al − ar)Ṡ +
(
u3
r − u3

l − u4
r

)
vRS +

(
vRu

3
l − λ3

ru
3
r + λ4

ru
4
r

)
vRt

(5.32)

We find the trivial solution S(t) ≡ 0 to exist if the last term vanishes independently
of t, that is, if

0 = vRu
3
l − λ3

ru
3
r + λ4

ru
4
r

= vRu
3
l +

(
2δκP (aP − ar)− vR

(
1 + κP (aP−ar)

κB(ar−aB)

))
u3
r.

(5.33)

Since both densities u3
r/l have to be positive, we require the following relation to be

satisfied by ar:

M := vR

(
1 +

κP (aP − ar)

κB(ar − aB)

)
− 2δκP (aP − ar) > 0. (5.34)

This is not a too strong restriction as we see from the following reformulation of the
same quantity:

M = vR + κP (aP − ar)

(
vR

κB(ar − aB)
− 2δ

)
. (5.35)

If ar is sufficiently close to aB this is clearly true. However, given some value of u3
l ,

as ar approaches aB from above, the corresponding value for u3
r approaches zero which

is consistent with the observations for the case ar = aB .
We conclude that there exists some a0 > aB such that for each ar ∈ (aB ,min{aP , a0})

a standing shock is possible. For any such ar there is one degree of freedom left which
can be used to choose either of the values u3

l , u3
r, or u4

r, and the remaining two values
are then computed by (5.20) and (5.33).

Let us now check for possible shocks of constant but nonzero speed. Let us denote
this speed by

s = Ṡ(t) ≡ const.

and rewrite the ODE for the shock curve as:

0 =
(
[λ3u3 + λ4u4] + [u3 − u4]vR

)
st− [u3 + u4]s2t+ ([λ4u4 − λ3u3])vRt− (aP − ar)s

(5.36)
where [f ] = fr − fl denotes the jump of f across the shock. This can only be satisfied
for arbitrary t > 0 if either ar = aP (which can be excluded) or s = 0, and it follows
that no shocks of constant, nonzero velocity exist in that setting.

Let us finally consider the generic situation aB < ar < al < aP . The conditions
(5.19) and (5.20) now require one of the following nontrivial cases:

1. u3
l = u4

l = 0 and u3
r, u

4
r > 0

2. u3
l , u

4
l > 0 and u3

r = u4
r = 0

3. u3
l , u

4
l > 0 and u3

r, u
4
r > 0.
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The characteristic velocities are generalized to:

λ3
l = vR − δκP (aP − al) λ3

r = vR − δκP (aP − ar)

λ4
l = −vR + δκB(al − aB) λ4

r = −vR + δκB(ar − aB).

We continue with case 1 according to the already known procedure. The densities of
pointed and barbed ends are now

u3(t, x) = u3
rχ{x>S(t)} + u3

r

(
S(t)− λ3

rt
)
δS(t)

and

u4(t, x) = u4
rχ{x>S(t)} + u4

r

(
S(t)− λ4

rt
)
δS(t),

respectively.
The actin balance across the shock yields the following equation for the shock curve:

0 = −
(
u3
r + u4

r

)
ṠS +

(
λ3
ru

3
r + λ4

ru
4
r

)
tṠ

− (al − ar)Ṡ +
(
u3
r − u4

r

)
vRS −

(
λ3
ru

3
r − λ4

ru
4
r

)
vRt,

(5.37)

and we find as condition for a standing shock S ≡ 0:

λ3
ru

3
r = λ4

ru
4
r (5.38)

which together with the expressions for the characteristic velocities and (5.20) formally
yield:

a±r =
aB + aP

2
+

vR
2δ

κP − κB

κBκP

±

√(
vR
2δ

κP − κB

κBκP

)2

+

(
aB + aP

2

)2

+
vR
2δ

κBaP − κPaB
κBκP

(5.39)

as possible values of the monomer density. We easily see that all the terms under the
square root are positive and thus the solutions are real. It can be furthermore shown
that both roots lie between aB and aP if in addition to standard assumptions on the
parameters the following are true:

1. In case
κB ≤ (3 + 2

√
2)κP (5.40)

the parameters satisfy:

κBκP (aP − aB) >
vR
δ

(
κB + κP

2
+
√
κBκP

)
. (5.41)

2. In case
κB > (3 + 2

√
2)κP (5.42)

it is sufficient to require
δκP (aP − aB) > vR (5.43)

which is precisely the condition that λ3 can take negative as well as positive values.
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We remark that the second case is the physiological one being discussed in [10] but
that the first case cannot be excluded. In fact, in vitro measurements indicate a ratio of
κB ≈ 25κP as measured in [25] but in vivo this situation can be changed dramatically,
for example, by depolymerizing agents like ADF/cofilin (cf. [1]).

Given one of the values for ar from (5.39) and any (freely chosen) positive value for
u3
r, the corresponding value for u4

r can be computed to be

u4
r =

κP (aP − ar)

κB(ar − aB)
u3
r. (5.44)

A very similar discussion applies to the second case where the end densities on the
right vanish whereas those on the left are positive. As this situation is just symmetric
to case 1 we do not carry out the detailed calculations here.

Let us now consider the case of non-vanishing end densities on either side of the
shock (case 3 above). The ODE for the shock curve now becomes

0 = −
[
u3 + u4

]
ṠS +

[
λ3u3 + λ4u4

]
tṠ

+[a]Ṡ +
[
u3 − u4

]
vRS −

[
λ3u3 − λ4u4

]
vRt

with the brackets again denoting the jump across the shock. This can be rewritten in
the familiar form

Ṡ = vR
[λ3u3 − λ4u4]t− [u3 − u4]S

[a] + [λ3u3 + λ4u4]t− [u3 + u4]S
. (5.45)

The condition for a standing shock now reads:

λ3
ru

3
r − λ4

ru
4
r = λ3

l u
3
l − λ4

l u
4
l (5.46)

which is accompanied by (5.19), (5.20) and the usual conditions on the parameters.

Assuming we prescribe the value of u3
r, say, we have now five unknowns

al, ar, u3
l , u4

l , and u4
r

and only three equations and several inequalities to determine them. Let us start with
determining three of the end densities from a given one, regardless of what the monomer
densities ar and al are. Given u3

r we can always calculate from equation (5.20):

u4
r =

πr

βr
u3
r (5.47)

where we already used some of the following abbreviations:

πr/l := κP (aP − ar/l) and βr/l := κB(ar/l − aB).

Now we can use (5.47) and (5.19) in the form

u3
l =

βl

πl
u4
l (5.48)
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and plug this into (5.46) to obtain

u4
l =

λ3
r − πr

βr
λ4
r

βl

πl
λ3
l − λ4

l

u3
r =

vR

(
1 + πr

βr

)
− 2δπr

vR

(
1 + βl

πl

)
− 2δβl

u3
r.

Using this together with (5.19) we finally compute

u3
l =

βl

πl
u4
l =

vR

(
1 + πr

βr

)
− 2δπr

vR

(
1 + πl

βl

)
− 2δπl

u3
r.

These computations were formally and only yield finite and non-vanishing end den-
sities if all coefficients are nonzero. From (5.47) we readily conclude the requirements

aB < ar/l < aP . (5.49)

The positivity of the other coefficients is equivalent to(
vR

(
1 +

πr

βr

)
− 2δπr

)(
vR

(
1 +

βl

πl

)
− 2δβl

)
> 0

and (
vR

(
1 +

πr

βr

)
− 2δπr

)(
vR

(
1 +

πl

βl

)
− 2δπl

)
> 0

which can be rewritten as two sets of inequalities.

More precisely, these conditions are fulfilled if either

1. both

2δκPκB(aP − ar)(ar − aB) > vR ( κB(ar − aB) + κP (aP − ar) )

and

2δκPκB(aP − al)(al − aB) > vR ( κB(al − aB) + κP (aP − al) )

hold, or

2. both

2δκPκB(aP − ar)(ar − aB) < vR ( κB(ar − aB) + κP (aP − ar) )

and

2δκPκB(aP − al)(al − aB) < vR ( κB(al − aB) + κP (aP − al) )

hold.

We would like to understand what these conditions mean for the parameters. The

117



second case is the easier one to evaluate as can be seen by rewriting the equations to

2δ

vR
<

1

κP (aP − ar)
+

1

κB(ar − aB)
(5.50)

2δ

vR
<

1

κP (aP − al)
+

1

κB(ar − aB)
. (5.51)

Both of these inequalities are satisfied if at least one of the terms on the right hand
side is sufficiently large. They can thus be made valid by choosing the monomer densities
ar and al sufficiently close to either aB or aP . However, the inequalities from the second
case might be violated for certain values of ar and al. In that case, there exist values
a ∈ (aB , aP ) such that

ϕ(a) := 2δκPκB(aP − a)(a− aB)− vR ( κB(a− aB) + κP (aP − a) ) (5.52)

is positive.

We already know, that in some neighborhoods of aP and aB the expression is nega-
tive:

ϕ(aB) = −vRκP (aP − aB) < 0,

ϕ(aP ) = −vRκB(aP − aB) < 0.
(5.53)

We can therefore compute

ϕ′(a) = 2δκBκP (aP + aB − 2a)− vR(κB + κP ) (5.54)

which is linear in a and thus has precisely one zero. This is given by

a∗ =
1

2

(
aP + aB −

vR
2δ

κB − κP

κBκP

)
, (5.55)

and we will show that this a∗ lies between aB and aP and that ϕ has a maximum there
and attains a positive value.

Since
ϕ′′(a) ≡ −4δκBκP < 0 (5.56)

we conclude that ϕ has a maximum at a∗. Furthermore, we find a∗ to lie between aB
and aP :

a∗ − aB =
1

2

(
aP − aB −

vR
2δ

κB − κP

κBκP

)
(5.57)

aP − a∗ =
1

2

(
aP − aB +

vR
2δ

κB − κP

κBκP

)
. (5.58)

The second value is clearly positive as both of its terms are, whereas the first value
is positive if and only if

2(aP − aB)
κBκP

κB − κP
>

vR
δ
, (5.59)
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and we can estimate:

vR
δ

< κP (aP − aB) =
κBκP

κB
(aP − aB) <

κBκP

κB − κP
(aP − aB) (5.60)

and thus aB < a∗.

We now ask whether ϕ(a∗) is positive. Plugging the value of a∗ found in 5.55 into ϕ

we obtain:

ϕ(a∗) =
1

2
δκBκP

(
(aB − aP )

2 − vR
2δ

κB − κP

κBκP
− 1

2
(aB + aP )

2

)

+
1

2
δκBκP

(
vR
2δ

(κB − κP )
2

2κ2
Bκ

2
P

− v2R
2δ2

(κB − κP )
2

2κ2
Bκ

2
P

)

− vR

(
κB − κP

2
(aP + aB)−

vR
2δ

κB − κP

2κP
− κBaB + κPaP +

vR
2δ

κB − κP

2κB

)

=
δ

4
κBκP (aP + aB)

2
+

vR
2
(κB + κP )(aP − aB)−

vR
4δ2

(κB − κP )
2

4κBκP
.

Being now concerned with the question whether this is positive, we equivalently ask
for (

aP + aB
2

)2

+ V (κB + κP )(aP − aB)− V 2

(
κB − κP

2κBκP

)2

(5.61)

to be positive. For fixed reaction parameters, this may be viewed as quadratic function
of the scaled retrograde flow velocity

V :=
vR
2δ

and rewritten to

−V 2 − 2κBκP
κB + κP

(κB − κP )
2 (aP − aB) +

(
κBκP

κB − κP

)2

(aP − aB)
2

= −(V 2 + pV + q)

which is negative for large values of |V |. It vanishes for

V± = −p

2
±
√

p2

4
− q (5.62)

and is positive for V ∈ (V−, V+).

Observing that p as well as q are negative, the root with the plus sign is positive and
in particular larger than −p

2 . We calculate:

V+ > −p

2
=

κBκP (κB + κP )

(κB − κP )
2 =

κB

κB − κP

κB + κP

κB − κP
κP (aP − aB)

> κP (aP − aB) >
vR
δ
,

the last inequality being one of our standard assumptions.

Recalling that V coded for vR

2δ we conclude that for all admissable parameter settings
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V lies between zero and V+ from which we conclude that ϕ(a∗) is always positive.
As a consequence we can assert the existence of values a± for the monomer density

satisfying
aB < a− < a+ < aP (5.63)

such that ϕ(a) is positive if and only if a lies between a− and a+.
We now recall that we are looking for shocks rather than rarefaction waves which in

our case requires more ends to be transported into the initial discontinuity than leaving
it:

λ3
l u

3
l + λ3

ru
3
r > 0 and λ4

l u
4
l + λ4

ru
4
r > 0

or in more detail:

(vR − δκP aP )(u
3
l + u3

r) + δκP (alu
3
l + aru

3
r) > 0 (5.64)

(vR + δκBaB)(u
4
l + u4

r)− δκB(alu
4
l + aru

4
r) > 0. (5.65)

Summarizing the previous computations we find the following essences:

1. There exist standing shocks with positive end densities u
3/4
r/l if and only if either

• ar ∈ (a−, a+) and al ∈ (a−, a+)
or

• ar ∈ (aB , a−) ∪ (a+, aP ) and al ∈ (aB , a−) ∪ (a+, aP )

where a± ∈ (aB , aP ) are the roots of

2δκPκB(aP − a)(a− aB)− vR ( κB(a− aB) + κP (aP − a) ) = 0 (5.66)

viewed as equation for a. In particular, these roots a± are real, lie between aB
and aP , and they are different.

2. Given monomer densities ar and al satisfying the above and given any positive
value of u3

r, the other end densities are computed by:

u4
r =

κP (aP − ar)

κB(ar − aB)
u3
r (5.67)

u4
l =

vR

(
1 + κP (aP−ar)

κB(ar−aB)

)
− 2δκP (aP − ar)

vR

(
1 + κB(al−aB)

κP (aP−al)

)
− 2δκB(al − aB)

u3
r (5.68)

u3
l =

vR

(
1 + κP (aP−ar)

κB(ar−aB)

)
− 2δκP (aP − ar)

vR

(
1 + κP (aP−al)

κB(al−aB)

)
− 2δκP (aP − al)

u3
r. (5.69)

5.2.2 Shocks without singular measures

Another issue to be addressed is the existence of shocks without singularities in the end
densities which will be the case if as many ends of either type are transported into the
shock from one side as are leaving it to the other side. In that case we have to ask for
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a (necessarily constant) shock velocity s such that (s− λ3
r) and (s− λ3

l ) have the same
sign and such that (s− λ4

r) and (s− λ4
l ) also have the same sign.

More precisely, we require

(vR − δκP (aP − al)− s)u3
l = (vR − δκP (aP − ar)− s)u3

r (5.70)

(−vR + δκB(al − aB)− s)u4
l = (−vR + δκB(ar − aB)− s)u4

r. (5.71)

In particular, we deal with non classical shocks for which the Lax entropy conditions
are not satisfied.

Of course, we still require (5.19) and (5.20) for the reaction terms to vanish on either
side. This yields four equations which are linear in u

3/4
r/l and can be written in concise

notation as⎛
⎜⎜⎝
vR − δπr − s −vR + δπl + s 0 0

0 0 −vR + δβr − s vR − δβl + s

0 πl 0 −βl

πr 0 −βr 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝
u3
r

u3
l

u4
r

u4
l

⎞
⎟⎟⎠ = 0. (5.72)

This problem has a nontrivial solution if and only if the coefficient matrix is singular,
and we therefore compute:

0
!
= det

⎛
⎜⎜⎝
vR − δπr − s −vR + δπl + s 0 0

0 0 −vR + δβr − s vR − δβl + s

0 πl 0 −βl

πr 0 −βr 0

⎞
⎟⎟⎠

= −πr det

⎛
⎝−vR + δπl + s 0 0

0 −vR + δβr − s vR − δβl + s

πl 0 −βl

⎞
⎠

+ βr det

⎛
⎝vR − δπr − s −vR + δπl + s 0

0 0 vR − δβl + s

0 πl −βl

⎞
⎠

= πr(vR − δπl − s)(vR − δβr + s)βl − βr(vR − δπr − s)(vR − δβl + s)πl.

This equation reduces to ar = al − which we exclude since we are looking for a
discontinuity in a − or:

(πrβl − βrπl)(v
2
R − s2) = δ (πrπl(βl − βr)(vR + s) + βlβr(πr − πl)(vR − s))

or equivalently:
0 = s2 − ps+ q (5.73)

with

p =
δ (κB(ar − aB)(al − aB)− κP (aP − ar)(aP − al))

aP − aB

q =
δvR (κB(ar − aB)(al − aB) + κP (aP − ar)(aP − al))

aP − aB
− v2R.
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Equation (5.73) has real roots

s± =
1

2

(
p±

√
(p2 − 4q)

)
if and only if

p2 − 4q > 0,

and these have different signs if q < 0 which is the case if

vR
δ

> κB(ar − aB)(al − aB) + κP (aP − ar)(aP − al). (5.74)

This in turn can always be achieved by choosing ar close to aB and al close to aP or
vice versa.

In addition, we have to require that for each characteristic family α = 3, 4, the shock
velocity is either larger or smaller than the characteristic velocities on both sides of the
shock − at least if we want the end densities to be positive.

Given suitable ar and al and one of the densities u
3/4
r/l , (5.72) allows us compute the

other end densities whereas from (5.73) we can calculate the shock speed.
In any case, it remains to check that for at least one root of (5.73), the other end

densities are positive.
To put everything to figures we will conclude with two numerical examples.
Example 1. Given the standard reaction parameters

κB =
5

12δ
10−4 μm s−1

κP =
5

24δ
10−5 μm s−1 =

κB

20

aB = a0B = 9600 μm−1

aP = a0P = 60000 μm−1,

let us choose the following values of the monomer density on the left and the right:

al = 50000 μm−1

ar = 10200 μm−1

and a density of left oriented pointed ends to the left of the shock of

u3
r = 10000 μm−2.

Then, we readily compute as solutions of (5.73)

s ≈
{
0.0467 μm s1

−0.0520 μm s−1
(5.75)

and for the characteristic velocities outside the shock:

λ3
l ≈ 0.0583 μm s1 λ3

r ≈ −0.0021 μm s1

λ4
l ≈ 1.167 μm s1 λ4

r ≈ −0.0417 μm s1.
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In figure 5.3 we sketch the shock curve and the characteristics for both end densities.

Since the shock speed cannot lie between the characteristic velocities of one family,
we conclude that the negative speed is to be taken. With that we can compute the other
end densities to be

u4
r =

πr

βr
u3
r = 17500 μm−2

u3
l =

λ3(ar)− s

λ3(al)− s
u3
r ≈ 4526 μm−2

u4
l =

πl

βl
u3
l ≈ 149 μm−2.

The last quantity could also have been calculated by

u4
l =

λ4(ar)− s

λ4(al)− s
u4
r

which is easily checked to yield the same result.

x

t

u³

u
4

S

x

t

u³
u

4

S

Figure 5.3: Sketch of the characteristics running through the shock curve S (black) for examples
1 (left) and 2 (right). Note that the characteristics of both families indeed run through the
shock and are merely deflected there.

Example 2. Using for a second example slightly increased reactivity and corre-
spondingly a slightly faster retrograde flow velocity, say

κB = 2κ0
B =

5

6δ
10−4 μm s−1

κP = 4κ0
P =

5

6δ
10−5 μm s−1 =

κB

10

aB = 0.5a0B = 4800 μm−1

aP = a0P = 60000 μm−1

and
vR = 0.4 μm s−1,
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let us choose the following values of the monomer density on the left and the right

al = 55000 μm−1 =
11

12
aP ,

ar = 20000 μm−1 =
1

3
aP ,

and a density of left oriented pointed ends to the left of the shock of

u3
r = 10000 μm−2.

Now, (5.73) yields as possible shock speeds

s =

{
0.6024 m s1

0.5193 m s−1
(5.76)

whereas the characteristic velocities are given by

λ3
l ≈ 0.3583 μm s1 λ3

r ≈ 0.2333 μm s1

λ4
l ≈ 3.783 μm s1 λ4

r ≈ 0.8667 μm s1.

Therefore, both shock speeds are compatible, and the situation sketched on the right
of figure 5.3 basically captures both cases if we do not request it to be to scale.

Using s = 0.6024 m s1 we obtain for the other end densities

u4
r = ≈ 2632 μm−2

u3
l ≈ 21950 μm−2

u4
l ≈ 219 μm−2,

whereas for s = 0.5193 m s−1 the latter two densities are given by

u3
l ≈ 28115 μm−2

u4
l ≈ 280 μm−2.

5.3 The effect of finite diffusion

Asking for blow-up phenomena in the full model we first have to check which type of
shocks discussed in the previous section can persist in the presence of diffusion in the
monomer equation.

We recall that for end densities exhibiting Dirac measure valued solutions we can
think of the monomer equation to be satisfied to both sides of the shock whereas at the
shock itself we have to consider certain flux conditions. Whenever the shock speed is
different from zero we would expect that the flux into or out of the shock may not only
be driven by the movement but also by a diffusive flux corresponding to non constant
monomer densities. In that case, the characteristic velocities of the filament ends become
variable near the shock and we might expect the latter to degenerate to a traveling wave
rather than a true shock.

This expectation is also supported by the simulations in chapter 7.
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Chapter 6

Alternative Boundary Conditions

Besides the free boundary problem which assumes a freely growing cytoskeleton with-
out resistance by the cell membrane we may also consider a variety of other boundary
conditions. Another particularly simple but still biophysically meaningful setting is
comprised of a fixed cell wall − described by a non-moving domain − where filament
tips may be adsorbed. This setting may reflect an in vitro experiment where the cell is
indeed confined to a box of limited size.

6.1 Adhesion at a fixed cell wall

We now consider system (2.4a) - (2.4e) on a fixed domain (0, L)×(0, T ) and prescribe the
following boundary conditions. The monomers are still reflected at the boundary, and
their flux has to balanced by the polymerization flux through the barbed and pointed
ends located at the boundary.

Filament tips approaching the membrane stop extending and accumulate as point
masses at the boundary. We thus have to couple the flux of filament ends with a partial
differential equation for the number of membrane attached tips. It should be noted that
the word attachment does not necessarily mean a chemical bond between the filament
and the membrane in this context. It only accounts for the filament tip being located
directly at the membrane. A distinction between free and membrane bound barbed ends
will be discussed later.

For obvious physical reasons we only specify these conditions for

Bl, Pr at x = 0

and
Br, Pl at x = L.

6.1.1 Definition and evolution of the boundary densities

As soon as a filament end reaches the boundary it is assumed to leave the domain (0, L)

and is counted as a filament tip of size 0 and being located at the membrane. Any
further polymerization to that filament is not accounted for by a displacement of the
tip but rather by a size change. If the filament velocity has the opposite sign then the
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filament tips at the membrane decrease in size, and as soon as their size reaches zero
they are released and reenter the domain (0, L).

We thus have to couple the partial differential equations (2.4a) - (2.4d) from within
the domain to respective size structured equations for the densities at the boundary
points. With the notation from chapter 2, the flux of filament tips to or from the
boundary is given by ±λαuα. If the velocity is directed towards the boundary, this
produces new membrane attached tips of size zero. For velocities pointing into the cell,
the number of attached ends shrinking to size zero give the boundary values for this
type of filament ends.

In order to precisely formulate the boundary conditions we first have to write down
the evolution equations for the end densities at the boundaries. We will in general
distinguish between up to three types of filament tips at the membrane:

1. Bf
r/l: free barbed ends of right/left orientation. These are barbed ends being

located at the membrane without having any chemical bonds to it.

2. Bb
r/l: bound barbed ends of right/left orientation. These are chemically attached

to the membrane which either prevents them from further polymerization or even
enhances the polymerization activity. Both effects may be mediated by different
members of a family of processive actin polymerizing motors called formins. These
can enhance the polymerization rate by approximately one order of magnitude if
the actin binding protein profilin is present. On the other hand, some formins are
reported to completely block actin dynamics at bound barbed ends in the absence
of profilin (see [27]). For obvious reasons we only consider left oriented barbed
ends at the left boundary and right oriented barbed ends at the right boundary.

3. Pr/l: (free) pointed ends of right/left orientation. Of course, the former are located
only at the left boundary, the latter ones at the right boundary.

We exemplarily discuss the case of barbed ends of right oriented filaments located
at the right boundary. Their position is clearly fixed at x = L, and we assign to them
a size z the meaning of which has to be thought of as follows. A filament tip at the
membrane may further polymerize which causes a length change of the filament. Since
the position of the tip is fixed we may assume the filament to buckle due to the length
change. We define the size of the membrane attached end to be the length by which
the filament would reach beyond the cell membrane if it was not stuck there. Since the
expected buckling of the filament presses the tip against the membrane this affects the
polymerization velocity.

On the other hand, a barbed end being bound to a polymerization motor in the
membrane may also be polymerized faster than a free one resulting in a fast change of
size. The appropriate equations to describe such a growth process are:

∂tB
f
r (t, z) + ∂z

(
vL,f
B (t, z)Bf

r (t, z)
)

= −βL
+B

f
r (t, z)f

L(t) + βL
−B

b
r(t, z) (6.1)

∂tB
b
r(t, z) + ∂z

(
vL,b
B (t, z)Bb

r(t, z)
)

= βL
+B

f
r (t, z)f

L(t)− βL
−B

b
r(t, z) (6.2)

with a growth velocity depending explicitely on the size z and implicitely on time via

• the monomer concentration a(t, L) at the boundary
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• the possible time dependence of the reaction parameters κB and aB

• in the case of bound barbed ends possibly on the polymerizing activity of the
membrane protein being attached to the filament end.

The right hand sides of (6.1) and (6.2) describe the binding and unbinding of the
filament tips from the membrane protein. The number of free binding sites is denoted by
fL, and βL

± are the binding and unbinding rates, respectively. For left oriented pointed
ends at x = L we analogously find

∂tP
L
l (t, z) + ∂z

(
vLP (t, z)P

L
l (t, z)

)
= 0. (6.3)

The F-actin binding protein at the boundary obeys the ordinary differential equation

d

dt
fL(t) = −βL

+f
L(t)

∫ ∞

0

Bf
r (t, z)dz + βL

−

∫ ∞

0

Bb
r(t, z)dz. (6.4)

Let us note that the case βL
+ = 0 represents the situation where no bonds between

filament tips and membrane proteins are formed. As a consequence, equation (6.1) then
becomes the only one of interest and its right hand side becomes identically zero.

6.1.2 Formulation of the flux condition at the boundary

With these evolution equations we can now write down the boundary conditions for the
filament tips at the right boundary as a continuity condition at x = L for Br and Pl

and at z = 0 for B
b/f
r and PL

l , respectively. We just require the flux from/to the cell
interior to balance the influx/efflux to/from the membrane at z = 0. For the pointed
ends we write this as

− vP (t, x = L) Pl(t, x = L) = vLP (t, z = 0) PL
l (t, z = 0). (6.5)

Here we assume that the boundary velocities have the same sign for the same values of
a, κP , and aP . In that case, equation (6.5) is an active boundary condition

• for Pl at x = L if the velocity of left oriented pointed ends at the right boundary
points into the cell as well as

• for PL
l at z = 0 if the growth velocity of left oriented pointed ends at the right

membrane is positive for ends of zero size.

In particular, the condition is compatible with the characteristic directions of the re-
spective partial differential equations.

If chemical bonds of barbed ends to the membrane are ignored, the same procedure
works for them as well and we obtain the boundary condition

vB(t, x = L)Br(t, x = L) = vL,f
B (t, z = 0)Bf

r (t, z = 0). (6.6)

More care has to be taken if we have a true distinction between bound and free
barbed ends at the membrane. We now have to address the question what happens to
bound barbed ends of size zero if the barbed end velocity at the boundary is negative.
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One may assume that they immediately detach without the chemical bonds holding
them back which leads to the condition

vB(t, x = L)Br(t, x = L) = vL,f
B (t, z = 0)Bf

r (t, z = 0)+vL,b
B (t, z = 0)Bb

r(t, z = 0). (6.7)

This is obviously underdetermined if vB(t, x = L) > 0, that is, if barbed ends grow
into the membrane. In that case we have to provide a rule by which the ratio between
new free and new bound barbed ends at the membrane can be determined. A plausible
choice would be that all barbed ends hitting the membrane are initially free in which
case (6.7) reduces to (6.6). Note that this choice will typically produce discontinuities in
Bf

r and Bb
r with respect to z upon any change of vB(t, x = L) from negative to positive

sign.

Another possible choice would be a continuity condition for Bf
r and Bb

r. We then
write for positive vB(t, L = 0)

vL,f
B (t, z = 0) Bf

r (t, z = 0) = ρL(t)vB(t, x = L) Br(t, x = L) (6.8)

vL,b
B (t, z = 0) Bb

r(t, z = 0) = (1− ρL(t)) vB(t, x = L) Br(t, x = L) (6.9)

where ρL is the ratio

ρL(t) = lim
z↘0

Bf
r (t, z)

Bb
r(t, z) +Bf

r (t, z)
(6.10)

with the convention 0
0 := 0 ensuring consistency. Adding up these equations leads again

to the combined equation (6.7) which still is valid for negative vB(t, x = L).

In order to preserve the number of F-actin binding proteins in the membrane the
binding site being occupied by new bound barbed ends and those becoming vacant by
detachment of bound ends have to be accounted for as source terms in the equation for
fL. This results in

d

dt
fL(t) = −βL

+f
L(t)

∫ ∞

0

Bf
r (t, z)dz + βL

−

∫ ∞

0

Bb
r(t, z)dz

− (1− ρL(t)) vB(t, x = L) Br(t, x = L).

(6.11)

For the sake of completeness we also write down the equations for the densities of
left oriented barbed ends and right oriented pointed ends at the left boundary x = 0.
We start with the evolution equations for free (Bf

l ) and bound (Bb
l ) left oriented barbed

ends and right oriented pointed pointed (P 0
r ) ends of size z:

∂tB
f
l (t, z) + ∂z

(
vL,f
B (t, z)Bf

l (t, z)
)

= −β0
+B

f
l (t, z)f

0(t) + β0
−B

b
l (t, z) (6.12)

∂tB
b
l (t, z) + ∂z

(
vL,b
B (t, z)Bb

l (t, z)
)

= β0
+B

f
l (t, z)f

0(t)− β0
−B

b
l (t, z) (6.13)

∂tP
0
r (t, z) + ∂z

(
v0P (t, z)P

0
r (t, z)

)
= 0 (6.14)

where it should be kept in mind that negative end velocities vB , vP correspond to a
motion of filament tips to the left which is compatible with negative growth velocities
v
0,f/b
B , v0P .
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For the number of binding sites at this end of the domain we write analogously to
equation (6.4)

d

dt
f0(t) = −β0

+f
0(t)

∫ ∞

0

Bf
l (t, z)dz + β0

−

∫ ∞

0

Bb
l (t, z)dz. (6.15)

The flux condition for the pointed ends reads

− vP (t, x = 0)Pr(t, x = 0) = v0P (t, z = 0)P 0
r (t, z = 0), (6.16)

and for the barbed ends we write

vB(t, x = 0) Bl(t, x = 0) = v0,fB (t, z = 0) Bf
l (t, z = 0)+v0,bB (t, z = 0) Bb

l (t, z = 0) (6.17)

or, split up into the conditions for free and bound barbed ends in case of the velocity
pointing to the outside of the cell:

v0,fB (t, z = 0) Bf
l (t, z = 0) = ρ0(t)vB(t, x = 0) Bl(t, x = 0) (6.18)

v0,bB (t, z = 0) Bb
l (t, z = 0) = (1− ρ0(t))vB(t, x = 0) Bl(t, x = 0) (6.19)

with

ρ0(t) = lim
z↘0

Bf
l (t, z)

Bb
l (t, z) +Bf

l (t, z)
. (6.20)

To account for the reaction of binding sites with barbed ends of zero size we again
extend the equation for f0 to

d
dtf

0(t) = −β0
+f

0(t)
∫∞
0

Bf
l (t, z)dz + β0

−
∫∞
0

Bb
l (t, z)dz

−(1− ρ0(t))vB(t, x = 0)Br(t, x = 0).
(6.21)

6.1.3 Growth velocities of boundary attached filaments

We have so far not yet given formulas for the growth velocities of the filament tips at
the membrane. As these are crucial model ingredients we will work them out now.

We start with the pointed ends and note that we only consider steric interactions of
those with the membrane. The pointed end growth velocity will thus be at most as large
as their free velocity (viewed in the direction to the outside of the cell) and decreases
further as z increases. One would expect that filaments cannot grow to infinite length
even if supplied with sufficiently many monomers to be polymerized. To fix notation
let us consider pointed ends of left oriented filaments at the right boundary. Their free
velocity is given by

− vP (t, L) = vR + δκP (a(t, L)− aP ) . (6.22)

If this velocity is positive then the filament tips tend to grow into the membrane, and
we assume that this growth is slowed down as the size z increases. This is considered to be
caused by slower polymerization at the filament tip being pressed against the membrane.
The effector should thus be the polymerization term κP a whereas the depolymerization
term kP := κP aP may be assumed to be independent of z. The retrograde flow velocity
will not depend on z anyway.

To put the z dependence of the polymerization into figures one may assume either
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of the following shapes:

• a sharp cut off at some finite size z0:

vLP (t, z) = vR − δkP + δκP a(t, L)

(
1− z

z0

)
χ{z<z0} (6.23)

or

• a decay to zero as z goes to infinity, say exponentially with characteristic length
z0:

vLP (t, z) = vR − δkP + δκPa(t, L) exp

[
− z

z0

]
. (6.24)

We remark that in both cases z0 is the crucial parameter entering the model due to
these boundary conditions.

Similarly, we can write down the growth velocity for right oriented pointed ends at
the left boundary based on the free velocity

− vP (t, 0) = vR + δκP (a(t, 0)− aP ) (6.25)

where the negative sign in that case has been introduced since the velocity towards the
outside of the cell has to be considered. Depending on the choice of the z dependence
of the polymerization term we obtain as growth velocity

v0P (t, z) = vR − δkP + δκPa(t, 0)

(
1− z

z0

)
χ{z<z0} (6.26)

or
v0P (t, z) = vR − δkP + δκPa(t, 0) exp

[
− z

z0

]
. (6.27)

The free barbed ends behave similarly, and with the notation kB := κBaB we obtain
for right oriented free barbed ends at the right boundary the growth velocities

vL,f
B (t, z) = −vR − δkB + δκBa(t, L)

(
1− z

z0

)
χ{z<z0} (6.28)

or
vL,f
B (t, z) = −vR − δkB + δκBa(t, L) exp

[
− z

z0

]
, (6.29)

and for left oriented barbed ends at the left boundary

v0,fB (t, z) = −vR − δkB + δκBa(t, 0)

(
1− z

z0

)
χ{z<z0} (6.30)

or
v0,fB (t, z) = −vR − δkB + δκBa(t, 0) exp

[
− z

z0

]
. (6.31)

The situation with the bound barbed ends may be somewhat trickier. Recall that
we distinguish two basic cases:

1. Barbed ends are simply attached to some membrane fixed proteins which pre-
vent any polymerization or depolymerization. Then the growth velocities at both
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boundaries are simply given by −vR.

2. Processive polymerization motors in the membrane enhance polymerization and
block depolymerization of monomers from the barbed ends. In that case the grwoth
velocity is larger than the free velocity − at least for small z. We assume for
simplicity that the polymerization is simply enhanced by some factor ζ0/L > 1

and that the polymerization rate again decreases with increasing size z. The
corresponding growth velocities are given by

vL,b
B (t, z) = −vR + δζLκBa(t, L)

(
1− z

z0

)
χ{z<z0} (6.32)

or
vL,b
B (t, z) = −vR + δζLκBa(t, L) exp

[
− z

z0

]
(6.33)

for right oriented barbed ends at the right boundary, and by

v0,bB (t, z) = −vR + δζ0κBa(t, 0)

(
1− z

z0

)
χ{z<z0} (6.34)

or
v0,bB (t, z) = −vR + δζ0κBa(t, 0) exp

[
− z

z0

]
(6.35)

for left oriented barbed ends at the left boundary.

6.1.4 Boundary conditions for actin monomers

The zero flux conditions for the monomer density a have to be adjusted to the new situ-
ation as well. The polymerization flux of the filament tips at the membrane corresponds
to the flux of monomers from or to the cell. The resulting equations are

D∂xa(t, 0) =

∫ ∞

0

v0,fB,pol(t, z)B
f
l (t, z) + v0,bB,pol(t, z)B

b
l (t, z) + v0P,polP

0
r (t, z)dz (6.36)

for the left boundary and

−D∂xa(t, L) =

∫ ∞

0

vL,f
B,pol(t, z)B

f
r (t, z) + vL,b

B,pol(t, z)B
b
r(t, z) + vLP,polP

0
r (t, z)dz (6.37)

for the right one. Here, the polymerization velocities are just the growth velocities
without the retrograde flow term vR − similar to the reaction term in the reaction
diffusion equation. In particular, the right hand sides of (6.36) and (6.37) are affine in
a(t, 0) and a(t, L), respectively. Using the expressions for the velocities from the last
subsection we can write down explicite formulas for the polymerization fluxes.

We start by noting that bound barded ends do not contribute to the monomer
turnover if we assume the first case of binding protein which prevents polymerization.
We will therefore only give the formulas for the case with polymerization enhancing
proteins since otherwise the terms including Bb

l/r simply vanish. The flux condition
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(6.36) thus can be stated more precisely as:

−D

δ
∂xa(t, 0) = −

∫ ∞

0

kBB
f
l (t, z) + kPP

0
r (t, z)dz

+ a(t, 0)

∫ ∞

0

(
κB

(
Bf

l (t, z) + ζ0Bb
l (t, z)

)
+ κPP

0
r (t, z)

)
exp

[
− z

z0

]
dz.

The term exp [−z/z0] may as well be replaced by 1 − z/z0, and in that case the
integration only runs from 0 to z0. For the right boundary we find correspondingly

D

δ
∂xa(t, L) = −

∫ ∞

0

kBB
f
r (t, z) + kPP

L
l (t, z)dz

+ a(t, L)

∫ ∞

0

(
κB

(
Bf

r (t, z) + ζLBb
r(t, z)

)
+ κPP

L
l (t, z)

)
exp

[
− z

z0

]
dz.
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Chapter 7

Numerical Simulations for the
Full Problem

In this chapter we shall introduce different numerical schemes for the full model. To
start with, we are going to focus on the question of interior blow-up and therefore do not
implement the free boundary in the first point. The basic goal of these investigations
is to get a glimpse of the formation of fronts of polymerization fronts of actin filament
tips in the interior of the cell. We shall also show that these fronts may indeed exist as
interior steady states of moving and non-moving types as predicted in section 2.4.

7.1 Idea of the discretization and different schemes

The general idea we rely on is that the dynamics of the monomers is faster than that of
the filament tips and we can therefore decouple the parabolic and hyperbolic parts from
each other in every time step.

More precisely, we always solve the reaction diffusion equation for a by an implicite
Euler scheme with central differences in space using the old values for the end densities
to determine the reaction term. Then, the new end densities are computed by an explicite
scheme with the velocities calculated from the new monomer density or an interpolation
between the new and old monomer concentration.

7.1.1 Initial and boundary conditions

As initial data for the filament tips we consider two distinct cases. The first one corre-
sponds to the case of confined collections of end densities of different types and will be
implemented by initial data with support being bounded away from the fixed domain
boundary. This will assure the filament tips to stay away from the boundary which is in
that case to be understood as some interface within the cell. It should be recalled that
we focus on the behavior in the interior and therefore zoom into some small portion of
the cell body.

The second type of initial conditions is given by plateaus of the different end densities
which extend up to the boundary of the domain at which the boundary conditions are
fixed according to that plateau value. Somewhere inside the domain the end densities
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smoothly change to a different plateau value which will most often be zero and equals
the boundary value at the other end of the fixed simulation domain. This situation
corresponds to some interior distribution of filament ends, and we now have zoomed
into some portion of the cell on whose boundaries there are still filament ends but we
do not have any changes in the end density transported into that region from the rest
of the cell.

In both cases, the initial monomer density is given as some smooth function being
approximatly constant in some neighborhood of the boundary and is forced to satisfy ho-
mogeneous Neumann boundary conditions. We may interpret this as being sufficiently
far away from any sources of strong variations in the monomer density.

7.1.2 Different integration schemes for the hyperbolic part

In [9] we used a modified Lax-Wendroff scheme to compute the evolution of the end
densities. Since this type of discretizations tends to produce artificial oscillations at the
trailing edges of moving humps they are not suitable for investigating blow-up events.
We therefore use two other schemes with complementary behavior.

On the one hand we apply a Lax-Friedrichs like scheme that smoothes every type
of shock which might possibly emerge, and on the other hand we employ a finite volume
method with upwind flux which is able to capture shocks without introducing artificial
extrema to the solution.

A scheme with artificial diffusion in the hyperbolic part

It is obvious that all densities − monomers and filament tips − together with their
spatial derivatives will remain bounded if we introduce some artificial diffusion in the
hyperbolic equations. This is automatically done by using a Lax-Friedrichs scheme
for the discretization of the transport part of the hyperbolic equations. From the step
sizes Δt and Δx in time and space direction, respectively, we can even calculate the
precise value of the artificial diffusion coefficient to be

Dnum =
Δx2

2Δt
.

Using this discretization we therefore rather than the original problem solve the
regularized problem

∂tu+ ∂x(Λu) = Dnum∂xxu

∂ta−D∂xxa = R(a, u).
(7.1)

Since the numerical diffusion coefficient tends to zero as the spatial step size does we
can invesitgate numerically the behavior of the solutions to the regularized problem as
the artificial diffusion decreases. As the Courant-Friedrichs-Levy condition

vmaxΔt <
1

2
Δx
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has to be satisfied we fix the ratio ν = Δx/Δt and obtain a numerical diffusion coefficient

Dnum =
ν

2
Δx

decreasing linearly in the step size Δx.

A finite volume scheme with upwind flux

As an alternative discretization with minimal artificial diffusion we use an upwind scheme
for the different tips. It is in general not entirely free of diffusive effects but minimizes
them to a level that is sufficient to prevent spurious numerical blow-up effects.

Contrary to the usual notation we denote the average value of u at time tk in the
grid cell (xi, xi+1) by uk

i rather than uk
i+ 1

2

. The cell average uk+1
i is then computed

according to

uk+1
i = uk

i −
Δt

Δx

(
F k
i+1 − F k

i

)
(7.2)

where F k
i denotes the numerical flux through the left face xi of the ith cell . We

choose the classical upwind flux and use the mean of the already updated and the current
monomer density:

F k
i =

{
λ
k+ 1

2
i uk

i if λk+ 1
2

i ≤ 0

λ
k+ 1

2
i uk

i−1 if λk+ 1
2

i > 0
(7.3)

with velocity

λ
k+ 1

2
i =

λ(ak+1
i ) + λ(aki )

2
.

If in particular, the difference of the monomer density on both ends of the interval
is large then we may have characteristics of opposite orientation on both faces. This
allows for shock cells into which characteristics enter from both sides

As usual for explicite schemes, the consistency of the scheme requires the CFL con-
dition

vmaxΔt <
1

2
Δx (7.4)

to be satisfied. Since the maximal velocity can be estimated from the parameters, the
step sizes in space and time can be chosen accordingly.

7.2 Numerical blow-up results

We separately discuss the results for both types of initial conditions (compactly sup-
ported end distributions in isolated peaks versus extended plateaus of filament ends)
and the different discretization schemes (Lax-Friedrichs versus upwind).

7.2.1 Isolated peaks with Lax-Friedrichs scheme

Let us start with the case of end densities being initially confined to some small region in
space which is bounded away from the boundary of the simulation domain. The type of
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discontinuities we may expect to develop from appropriate smooth data are comparable
to the interior steady states discussed in subsection 2.4.2.

The particular setting we use consists of bell shaped initial conditions for both, right
oriented barbed and left oriented pointed ends where the peaks are allowed to overlap
but the pointed ends should not be too far to the right compared to the barbed ends.
As initial monomer concentration we use a smooth distribution with high values in the
left part of the domain and low values on the right.

To put figures to it we use sine shaped humps of the type

Br(0, x) = B0

(
1− cos

[
2π

x− lB
rB − lB

]
χ[lB ,rB ]

)
(7.5)

Pr(0, x) = P0

(
1− cos

[
2π

x− lP
rP − lP

]
χ[lP ,rP ]

)
(7.6)

where

• lB/P are sufficiently far away from the left boundary, rB/P are sufficiently far away
from the right boundary.

• rB/P − lB/P are not too large in order to have concentrated initial conditions.

• B0(rB − lB) ≈ P0(rP − lP ) with precise equality if we try to find interior steady
states as in subsection 2.4.2.

Figure 7.1: An example for concen-
trated peaks of end densities as ini-
tial conditions with different num-
bers of barbed and pointed ends.
solid, black : Br, dashed : Pl, solid,
gray : a. Note that the units of the
ordinate are arbitrary.

�
�
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Moreover, we choose the initial condition for the monomer density to be of the shape

a(0, x) = ar + (ar − al)

(
1

2
− 1

π
arctan

[
x− 1

2 (ra − la)

w

])
(7.7)

where [la, ra] is the spatial domain under consideration and w determines the width of
the profile. In figure 7.1, a prototypical example of such initial data is shown.

With this type of initial conditions, the simulations using a Lax-Friedrichs scheme
for the end densities show an evolution to smooth peaks of filament ends whose sharpness
for given initial conditions increases as the spatial step size Δx is decreased. Two typical
results for a small diffusion coefficient (D = 1 μm2s−1) with different step sizes Δx are
shown in figure 7.2.

As expected, the center of the pointed end peak is located left, the one for the barbed
ends on the right. Both peaks overlap and develop rather long tails towards the left and
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Figure 7.2: Steady state distributions of monomers (black), right oriented barbed ends (blue),
and left oriented pointed ends (red) evolving from initial conditions as in figure 7.1 according to
a Lax-Friedrichs finite difference scheme with different spatial step sizes (left : Δx = 0.02 μm,
right : Δx = 0.15 μm). The diffusion coefficient is given by D = 1 μm2s−1. Note the different
scales of the ordinate axes!

right boundary, respectively. Moreover, their distance decreases with the step size and
approaches some finite value l0 as Δx tends to zero. Both, the peak heights and the
distance l in dependence on the mesh size Δx are displayed in figure 7.3.

This value l0 corresponds to that found in subsection 2.4.2 if the mass b0 is replaced
by its smoothed version ∫ rB

lB

Brdx

since the end densities are smoothed by the artificial diffusion. More precisely, we have
control over all quantities in (2.47) except l0. In the case of the simulations whose results
are shown in figure 7.3 we used the following set of parameters:

aP = 240000 μm−1 aB = 4800 μm−1

vR = 0.3 μm s−1 δ = 0.0022 μm

κB =
5

6δ
0.0001 μm s−1 κP = 0.1κB .

Moreover, the initial conditions are given by (7.5), and the total number of barbed
ends (scaled by δ) is therefore given by

b0 = B0

∫ rB

lB

1dx = B0(rB − lB).

In our particular situation we chose the following initial conditions for the simula-
tions:

D = 1 μm2s−1, B0 = 85000 μm−2, rB − lB = 8 μm

D = 3 μm2s−1, B0 = 100000 μm−2, rB − lB = 4 μm

D = 10 μm2s−1, B0 = 100000 μm−2, rB − lB = 2 μm

137



Plugging these values into (2.47), we obtain the following predicted distances between
the ends:

l0 ≈ 1 μm for D = 1 μm2s−1

l0 ≈ 5 μm for D = 3 μm2s−1

l0 ≈ 8 μm for D = 10 μm2s−1.

Comparing this to the results of the simulations we observe that the distances measured
with the Lax-Friedrichs scheme nicely converge to these values l0 as the step size
tends to zero.

The maximal peak heights of the barbed and pointed end distributions depend on
the artificial diffusion coefficient as well. More precisely, the peak heights increase with
decreasing spatial step size Δx and we observe a divergent behavior which is consistent
with the expectation of a point measure in the limit.

Here, we observe another difference to the precise states found in 2.4.2. The peak for
the barbed ends is always slightly higher and narrower than that for the pointed ends.
This can be understood if one recalls the reaction kinetics to be faster at the barbed
ends while the artificial diffusion does not distinguish between different types of ends.

Figure 7.3: Peak heights (left) and distance between peaks (right) of right oriented barbed
ends and left oriented pointed ends for different diffusion coefficients in dependence on the
spatial step size Δx.

What should also be noted is that those peaks very slowly decay as time proceeds
further which is due to a diffusive loss of filament ends through the boundary of the
spatial domain.

The monomer density keeps its monotonicity − at least if the initial values ar and al
are appropriately chosen − and attains a profile which can be interpreted as a smoothed
version of the continuous, piecewise linear shape introduced in subsection 2.4.2.

7.2.2 Isolated peaks with upwind scheme

If we use precisely the same type of initial conditions as in the previous subsection and
let the end densities evolve by the finite volume algorithm described above we observe
a behavior that may be viewed as limiting case of the Lax-Friedrichs variant as the
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artificial diffusion approaches zero. More precisely, the end densities finally concentrate
in sharp peaks which are located in a well defined distance from one another.

For the precise simulations we chose the same parameters and initial conditions as for
the Lax-Friedrichs case. In figure 7.4, the resulting profile for the case with diffusion
coefficient D = 10 μm2s−1 is shown.

Figure 7.4: Asymptotic profile of right oriented barbed end density (red), pointed end density
(blue), and ten fold monomer concentration (black) with diffusion coefficient D = 10 μm2s−1.
On the left, the whole domain is shown, the right diagraph is a zoom to the center of the
domain. The theoretical distance of the peaks is l0 ≈ 8 μm which perfectly fits to the profile.

To complete the picture concerning these types of steady states we also show the
results for a profile corresponding to a moving interior steady state which has also been
introduced in subsection 2.4.2. We chose initial conditions according to a speed of
v0 = 0.8vR and parameters as in the previous subsection. According to the calculations
in 2.4.2, this leads to asymptotic monomer concentrations of

al = aP − 0.2
vR
δκP

≈ 232800 μm−1

ar = aB + 1.8
vR
δκB

≈ 11280 μm−1,

and given b0 = 400000 μm−1 barbed ends we obtain

p0 =
1

0.2
(0.8(al − ar) + 1.8b0) ≈ 4.486× 106 μm−1.

This is large as compared to the total number of barbed ends which reflects the relatively
large velocity of 0.8vR.

The corresponding predicted distance between the peaks can be found to be

l0 =
D

0.8vR
log

[
1 +

al − ar
b0

0.8

1.8

]
≈ 9.17 μm.

This is rather small, and we expect an approximately linear profile for the monomer
density given by (2.53). This is in fact the kind of solution we obtain by the simulations
whose results are depicted in figure 7.5. We note that according to the simulations the
peaks are not of point measure type.

Recalling the notes on the dimension free version of the model in subsection 2.4.3
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Figure 7.5: Moving profile with large end densities and correspondingly small distance of the
peaks. Left : the steady profile moving at a measured velocity v0,meas ≈ 0.235 μm s−1. Note
that the peaks are not as sharp as predicted! Right : To understand the motion of the profile,
the positions of the peaks and the distance between them is plotted against time. We note that
the distance is constant from t = 120 s on, and attains a value of 8.9 μm. The black line is a
linear fit to the motion of the pointed end peak.

this approximately linear shape of the monomer density should not come as a surprise as
large end densities have been seen to have the same effect as small diffusion coefficients.
We therefore might already have expected an approximately linear profile.

To see that the monomer profile is indeed exponential between the two peaks we
perform the same simulation with the very same parameters but a given number b0 =

10000 μm−1 of barbed ends for which the number of pointed ends is

p0 ≈ 976080 μm−1.

Figure 7.6: Moving profile with small end densities and correspondingly large distance of the
peaks at different instances of time (left : 200 s, right : 320 s). Note the exponential monomer
profile between the peaks!

Now, we find the expected distance between the peaks to be larger, namely

l0 ≈ 99.3 μm
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and we may expect a wider and more convex profile which is in fact observed in figure 7.6.
The exponential profile for the monomer concentration we found by direct caluclation
in subsection 2.4.2 and depicted in figure 2.8 is perfectly recovered by the simulations.
However, the peaks in the end densities are not as pronounced as one might expect.
They rather attain a certain shape which is maintained and travels through space at a
measured velocity of

v0,meas ≈ 0.235 μm s−1

as can be seen from figure 7.7.

Figure 7.7: Peak positions and distance
between the peaks over time for small
end densities and correspondingly large
distance. Again, the black line pro-
vides a linear fit of the position of the
pointed end peak which yields a veloc-
ity that nicely fits the expected one of
v0 = 0.24 μm s−1. Note moreover, that
the distance between the peaks equili-
brates at approximately 99 μm!
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7.2.3 Plateau shaped data with Lax-Friedrichs scheme

We now consider the second type of initial conditions indicated above. These consist of
a monomer distribution which is very similar to the previous one (and may in fact be
chosen as precisely the same).

Figure 7.8: An example for plateaus of end
densities as initial conditions with different
plateau heights of barbed and pointed ends.
red : Br, blue: Pl, black : a. Note that the
units of the ordinate are arbitrary.
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A very different situation now applies to the end densities which are assumed to
be plateau shaped. More precisely, the density of left oriented pointed ends shall be
constant from the left boundary of the computational domain and then smoothly drop
to zero somewhere in the center of the domain. This drop may again be accomplished
by means of a sine shaped shoulder.

Similarly, the right oriented barbed end density is assumed to be constant from the
right boundary to the center of the domain and drops to zero there as well. Here, the
supports of the initial end densities may or may not overlap. The former case is sketched
in figure 7.8.

So, how does the evolution of such initial conditions look like?
As to be expected, the monomer concentration tends to aP in the left part of the

domain and approaches aB in the right part. This in particular yields both end plateaus
moving towards the center of the domain and the filament ends accumulating there. The
result are growing peaks of barbed and pointed ends, the former having its maximum
to the right of the latter one. Both peaks typically overlap.

Again, the peaks become higher and narrower as the step size and thus the numerical
diffusion in the hyperbolic part is decreased.

The drop of the monomer density from aP to aB in the center of the domain now
becomes significantly steeper as the artificial diffusion in the end equations is reduced.
Four typical patterns evolving from the initial conditions of the type shown in 7.8 are
sketched in figure 7.9. In this figure, it should be paid attention to the peak heights of
the end densities. As comparison the monomer density on the left of the shock may be
used.

The peak heights obviously depend much more on the spatial step size − and thus
on the (artificial) diffusion of filament ends − than on the actual diffusion coefficient for
the monomers. In fact, they diverge as Δx tends to zero which is depicted in figure 7.10.

The positions where the peaks first occur clearly depends on the initial conditions,
but we observe that their distance quickly decreases in the beginning of the simulation.
As the mass concentrated in the peaks grows, for the case without natural and artifi-
cial diffusion, we would expect this distance to decrease toward zero and possibly even
reaching this value. This situation would correspond to a shock with discontinuity in
the monomer density as predicted for the system without diffusion in subsection 5.2.1.
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Figure 7.9: Shape of the monomer distribution (black, 100-fold increased for better visibility),
and right oriented barbed (red) and left oriented pointed (blue) end densities after a simulation
time of 1000 s for different diffusion coefficients using a Lax-Friedrichs scheme for the end
densities. The spatial step size was chosen as Δx = 0.02 μm. Top, left : D = 1 μm2 s−1,
top, right : D = 1 μm2 s−1 with Δx = 0.15 μm as comparison, bottom, left : D = 3 μm2 s−1,
bottom, right : D = 10 μm2 s−1.

In our situation with artificial diffusion, the simulations show the peak distance to
equilibrate at some finite value for large times. This value depends on both, the diffusion
coefficient in the monomer equation and the spatial steps size of the numerical scheme
which codes for the artificial diffusion in the end equation.

Having a closer look at figure 7.11 we still observe a linear decrease as the spatial
step size Δx tends to zero. As this distance is a measure for the width of the smoothed
shock we would expect it to be zero in the absence of artificial diffusion of filament ends
if we dealt with a real jump in the monomer density. Strikingly, as in the case of isolated
peaks, the extrapolated distance for Δx → 0 is not zero but rather a finite value that
increases with the diffusion coefficient D in the monomer equation.

A linear extrapolation of the distances between the maxima after a simulation time
of 1000s to vanishing step size yields the following values:

d0 = (0.032± 0.006) μm for D = 1 μm2s−1

d0 = (0.096± 0.007) μm for D = 3 μm2s−1

d0 = (0.321± 0.007) μm for D = 10 μm2s−1.

These numbers indicate that the distances not only decrease linearly with respect
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Figure 7.10: Peak heights of the end dis-
tributions after t = 1000 s for different dif-
fusion coefficients D depending on the spa-
tial step size of the simulation. Note that
the height seems to diverge as Δx tends to
zero.

to the artificial diffusion of filament tips but as well with respect to the diffusion coef-
ficient D of the monomers. This gives rise to the conjecture that the gradient of the
monomer density remains bounded (although becoming very large) as soon as diffusion
is present. We recall that in the previous subsection we observed a similar linear rela-
tionship between the peak distance for the isolated peaks on the diffusion coefficient.
This behavior was in good agreement with the dimensional analysis in subsection 2.4.3.
For the plateau shaped data considered here we were not able to make any predictions
on the peak distance.

We might therefore not talk about shocks in the classical sense but rather consider
these solutions as some kind of smoothed shock profiles as indicated in section 5.3.

Figure 7.11: Distance between the maxima of barbed and pointed end distributions evolving in
time for fixed D = 1 μm2 s−1 and three values of Δx (left) and for different diffusion coefficients
and step sizes after t = 1000 s (right). On the left, the term symmetric refers to equal plateau
values for Br and Pl whereas asymmetric means a fivefold higher plateau value for Pl than for
Br.

Besides the distances between the peaks which are a measure for the damping effect
of the diffusion we may also ask for the positions of the peaks in space. In subsection
5.2.1, we deduced that in case the plateau values of Pl and Br are different, we would
have to expect moving shocks. For equal plateau heights, in contrast, we were led to
expect a standing shock.

In fact, if the plateau height for Br and Pl coincide, we observe very slowly moving
profiles. It should be noted that the velocity is not actually zero which should be an
effect of the articficial diffusion in the end equations introduced by the numerical scheme.
In fact, this nonzero velocity may be viewed as wave speed of something similar to a
traveling wave. It should though be noted that the actual situation does not precisely
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Figure 7.12: Movement of the peaks for plateau shaped data with equal (left) and different
plateau heights (right) with diffusion coefficient D = 1 μm2s−1, retrograde flow velocity vR =
0.3 μm s−1 and reaction rates slightly increased compared to the standard case. The plateau
value for Pl is in both cases 105 μm−2, that for Br is the same on the left and 20000 μm−2 on
the right. Note the different scales of the ordinates!

fit into the framework of traveling waves since the end density peaks are permanently
growing rather than being constant in shape and height.

Taking initial conditions with a ratio μ of the plateau values close to zero, the velocity
of the peaks is much larger. From figure 7.12, we can estimate the velocity for the case
μ = 0.2 a velocity of v ≈ 0.045 μm s−1 whereas the measured velocity for μ = 1 can be
calculated to be approximately 0.0045 μm s−1. We will find more precise figures for the
velocities from the simulations using the upwind scheme in the following subsection.

A final interesting observation is that the distance between the barbed and the
pointed end peak do not seem to be significantly affected by the asymmetry in the
plateau heights as becomes clear from figure 7.11.

7.2.4 Plateau shaped data with upwind scheme

We finally discuss the evolution of plateau shaped initial conditions as introduced in the
previous subsection if we use the upwind finite volume scheme.

As in the Lax-Friedrichs case, the monomer concentration tends to aB and aP in
the right and left part of the domain, respectively. In between we observe a very sharp
drop in the monomer density.

The end densities develop sharp, delta like peaks at the interface between the plateaus
whose permanent growth is fed by the filament ends being transported towards the center
with retrograde flow velocity vR. As the peaks grow, the distance between the barbed
and pointed end peaks initially decreases and thereby, the gradient of the monomer
density strongly increases.

Two particular examples of such a solution are shown in figure 7.13. Obviously, the
profiles are sharper for the smaller diffusion coefficient D = 1 μm2s−1 than for the larger
value of D = 10 μm2s−1 (note the different scales for the space variable).

However, we do not find a particular dependence of the peak distance on the diffusion
coefficient on the diffusion coefficient in case of these standing shocks. On the contrary,
the peaks of the very sharp end density profiles are located in the same grid cell. More
precisely, we performed simulations for diffusion coefficients ranging from 0.1 μm2s−1
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Figure 7.13: Examples of shock like solutions with plateaus in the end densities obtained by
simulations using the upwind scheme for the end equations. Left : symmetric plateau values
4 × 105 μm−2, diffusion coefficient D = 10 μm2s−1, Δx = 0.06 μm, Δt = 0.0003 s. Right :
asymmetric plateau values (μ = 0.5), diffusion coefficient D = 1 μm2s−1, Δx = 0.02 μm,
Δt = 0.0001 s. Notice that the densities are plotted on a logarithmic scale in order to capture
both, the peaks and the plateaus!

to 30 μm2s−1 at a spatial step size of Δx = 0.01 μm and always found both peaks to
be located within these 0.01 μm. This is in strong contrast to the results obtained by
the Lax-Friedrichs scheme.

What we in fact observe are wider humps at the base of the peaks for larger diffusion
coefficients. That means that the Dirac-delta shaped peaks sit on top of wider profiles
above the plateau levels which also carry more mass. Moreover, the filament tips also
invade the region beyond the shock position more strongly if the diffusion coefficient is
increased. These effects are accompanied by a monomer concentration showing smoothed
approximation to the jump profile predicted for the fully hyperbolic system. Without
being surprised we find that this smoothing effect is stronger the higher the diffusion
coefficient is.

Figure 7.14: Positions of (left) and distances between (right) the barbed and pointed end peaks
for shock like solutions with plateau for D = 1 μm2s−1. Shown is the evolution of both values
over time for different values of the ratio μ between the plateau values for Br and Pl. The
colored lines on the left indicate the motion of the profile at asymptotically constant velocity
for values of 0.05, 0.1, and 0.2 for the ratio μ

Again, we can ask for the movement of these shock like profiles depending on the
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height of the plateaus for the barbed and pointed end densities. In figure 7.14, we
depicted the temporal evolution of both, the peak positions and their respective dis-
tance over time for standard parameters and a rather small diffusion coefficient of
D = 1 μm2s−1. Depending on the ratio μ between the plateau values we can esti-
mate the following asymptotic velocities of the profile:

v = 0.0055 = 0.055vR for μ = 0.5

v = 0.0139 = 0.139vR for μ = 0.3

v = 0.0242 = 0.242vR for μ = 0.2

v = 0.0427 = 0.427vR for μ = 0.1

v = 0.058 = 0.58vR for μ = 0.05.

These figures are not precisely the values we computed in subsection 5.2.1 but the
qualitative relationship between μ and the velocity is recovered. More precisely, we
observe that v is a monotonuously decaying, concave function of μ, and the velocities
indeed lie between the retrograde flow velocity and 0. Also the order of magnitude of
the velocities is as predicted although the monomer diffusion seems to slightly decrease
them. This effect is obviously larger the closer μ is to 1.

We note that in contrast to the non-moving profiles obtained for equally high plateaus
of barbed and pointed ends, we now find the peaks to be located at a finite distance
from one another, and this distance is seen to increase with the velocity v.

This may also solve the seeming inconsistency between the results concerning the
peak distances obtained from both types of simulations. We recall that in case of equal
plateau values, the Lax-Fridrichs scheme suggested a finite distance between the
barbed and the pointed end peak even in the limit of vanishing artificial diffusion whereas
the finite volume scheme showed both peak positions to coincide. Now, we found that
the distance between the peaks becomes nonzero whenever the whole profile is moving.
Since the peaks indeed moved also for symmetric data under the effect of arbitrarily
small artificial diffusion this may explain why also their distance is smaller.

Thinking of the situation in terms of viscosity limits leads to the following interpre-
tation. The regularized system (7.1) with symmetric data seems to exhibit some type
of generalized traveling wave solutions describing the transition from the left state

(Pl = B0 > 0, Br = 0, a = aP )

to the right state
(Pl = 0, Br = B0, a = aB)

via a profile of growing peaks moving at finite velocity and exhibiting very sharp but still
bounded peaks in the end densities. As the regularizing artificial diffusion coefficient
Dnum is decreased to zero these profiles cease to exist and are replaced by the Dirac
delta shaped peaks at a fixed and moreover coinciding position in space.

As opposed to the discussion of traveling wave profiles for the reduced model in the
second part we observe the velocity of the profiles for the regularized system not to
tend towards zero as the artificial diffusion is decreased. On the contrary, figure 7.12
indicates a velocity being roughly independent of the artificial diffusion coefficient. If the
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regularizing term is completely removed which corresponds to the finite volume scheme
this velocity should drop to zero and the accompanying finite distance between the peaks
does so as well.
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Chapter 8

Summary and Discussion I

Starting from the minimal cytoskeleton model deduced in [10] to investigate the po-
larization of a cell at rest we now formulated a free boundary problem that actually
allows for movement of the cell. For the analysis and the simulations we imposed the
simplest possible boundary condition corresponding to a membrane that does not exert
any forces on the filaments so that any movement of leading filament tips results in a
displacement of the boundary. The actin monomers are still supposed to be reflected at
the membrane.

For the resulting moving boundary problem we showed well posedness for sufficiently
small times if the initial and boundary conditions satisfy certain compatibility conditions.
In particular, we were led to assume strict hyperbolicity for the end equations at least
at the boundary in order to assure sufficient smoothness of the solutions. In that case
we were able to prove the existence of solutions in the classical sense by employing
a contraction principle and deduced certain estimates for the derivatives in suitable
Hölder spaces.

After having treated the whole system with constant coefficients we saw that smooth
variations of those did not substantially change the solvability. This is important since
the actin dynamics in motile cells are regulated via a variety of mechanisms some of
which drastically change the reaction rates and the critical monomer concentrations for
the polymerization and depolymerization at the filament tips.

In case the strict hyperbolicity of the hyperbolic part cannot be assured we have to
work with weak solutions of the problem but can still show local in time well posedness
under rather mild assumptions. Also in that case the contraction mapping principle was
the core element of the proof.

However, we were not able to show global well posedness since we could not exclude
the possibility of blow-up or shock phenomena. From the hyperbolic equations we might
have expected the development of Dirac measure type solutions corresponding to sharp
fronts of filament tips moving at the same speed. The occurance of these measure valued
solutions of the hyperbolic equations cannot be excluded to be accompanied by jumps
in the monomer concentration − a phenomenon referred to as gradient blow-up for
parabolic equations. This is a quite striking observation as all of the equations are in
themselves linear and only contain bilinear coupling terms.

We also discussed the physical interpretation of these measure valued solutions for
the hyperbolic equations as polymerization fronts of actin filaments. Precise pictures of
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this correspondence are provided in subsections 2.4.2 and 5.2.1.
In fact, we did find exact solutions containing two types of δ-shocks. The first type

consists of Dirac measure valued solutions for the end densities and a continuous,
piecewise smooth monomer profile with isolated jumps in the first spatial derivative.
These profiles have been deduced as stationary or moving patterns.

The second type of shocks we found consists of at least two Dirac peaks of filament
tips at coincident position and of non-zero plateaus of the filament densities aside the
shock. These profiles could be constructed in a way as to make the monomer concen-
tration jump at the very position of the peaks but now, this concentration could only
be viewed as piecewise solution of the parabolic equation since even for weak solutions
we would have to require continuity and at least weak differentiability with respect to
space. The existence of this type of shocks could hence only been shown for the purely
hyperbolic system being obtained by formally putting the diffusion coefficient D in the
parabolic equation to zero.

The question of whether any of these two shock type solutions could evolve from
smooth initial data could not be addressed analytically, and we therefore performed
some numerical simulations to investigate solutions which are at least close to these
shocks.

In fact, we found the first type of fronts with continuous monomer concentration
to evolve from a variety of suitable initial conditions and could even recover nicely the
parameters of these solutions like the distance of the different peaks in dependence on
the mass of the point measures and the model parameters.

The second type of shocks did not occur in the simulations but from analyzing the
behavior of the numerical solutions we found that the diffusion seems to prevent the
discontinuity in the monomer concentration. In fact, the predicted Dirac measures
for the end distributions indeed develop but their location does only coincide for non-
moving profiles, and around these peaks the monomer density shows a large but still
finite gradient.

Combining these two observations we may propose that the model allows for sharp
fronts of polymerizing filament tips but that the profiles corresponding to those fronts
are still weak solutions of the system. In particular, the suspected gradient blow-up in
the parabolic equation does not seem to happen.

Nevertheless, the expected fronts of filament tips moving to one direction can be
observed in the simulations as very sharp peaks in the filament densities. We note that
our model is based on continuum limits and thus would lose its validity for discontinuous
monomer densities. We can therefore use it to investigate the emergence of these sharp
fronts but for the later stages of the evolution another model should be established.
Similar arguments are for example known for blow-up phenomena in chemotaxis models
as being discussed in [13].

To this end we should note that there is a reasonably large class of initial conditions
and parameters for which we do not observe such concentration phenomena even over
quite long simulation times. The front formation discussed above is therefore indeed
dependent on both, the initial state of the cytoskeleton and the reaction kinetics which
are regulated by additional control mechanisms.
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Part II

Formulation and Analysis
of a Reduced Model
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In this second part of this thesis, we are going to derive and analyze a simplified model
for the motion of the filaments at constant monomer density. Trying to get a glimpse of
how our cytoskeleton model might react to additional diffusion and mutual alignment of
filaments we derive in chapter 9 a model of two evolution equations for the total density
of filaments and for the difference between right and left oriented filament densities.
If being concerned with a finite spatial domain we additionally provide appropriate
boundary conditions.

In chapters 10 and 11 we will discuss possible steady states of the system in a confined
domain and investigate their stability against small perturbations. First, we linearize
the system around these steady states in chapter 10 and will find linear stability criteria
depending on the domain size and the model parameters which are the diffusivity and
the strength of mutual alignment. Then we will ask for stability in terms of the energy
method by employing an appropriate energy functional in chapter 11. We shall find
that the precise shape of the alignment term determines whether both stability concepts
yield the same stability criteria.

Considering the system on an infinite spatial domain, we may ask for solutions of
traveling wave type which would correspond to fronts of filaments moving at constant
speed and resembling steady motion of the system. This is done in chapters 13 and 14
where we explicitely find certain traveling waves for some reduced systems and then con-
clude the existence of traveling wave profiles for the full system by singular perturbation
theory. In particular, depending on the model parameters we will discuss possible wave
speeds and their relationship to the asymptotic states of the waves.

Finally, some simulations of the simplified system on bounded and on practically
infinite domains are performed. On finite domains with boundary effects, we investigate
the behavior of the system equipped with initial data close to the symmetric equilibrium,
and the results are compared with the calculations from chapters 10 and 11.

Simulations on large spatial domains allow us to examine which of the predicted trav-
eling wave solutions do in fact occur for our system. We observe two particular wave
types, one given by saddle-node orbits in the phase space, and another one given by
saddle-saddle connections. Together with pure diffusion fronts, several of these traveling
waves can occur jointly to form different polarization patterns. Moreover, we will espe-
cially discuss the observed wave speeds and their connection to the model parameters.
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Chapter 9

Derivation of the Reduced Model

9.1 General derivation

We recall the model (2.4a) - (2.4d), (2.15) for the cytoskeleton and now want to derive
a reduced model that helps us understanding the effect of certain variations in the end
equations such as diffusive behavior of filament tips and mutual alignment of filaments.

In order to get rid of the parabolic equation we make some strong assumptions on the
behavior of monomers. Some of them are certainly not precisely met by the biological
reality. However, we would like to note that the simplified model to be derived here is
not intended to describe the cytoskeleton in vivo itself but rather the behavior of the end
densities under certain settings with the goal to draw some conclusions for the original
model. We will for instance find traveling wave solutions which motivate us to look for
smoothed versions of the shock solutions found in subsections 2.4.2 and 5.2.1.

The precise simplifications to be made are the following ones.

1. Assume the monomer supply to be unlimited such that the monomer concentration
a is constant over space and time. In that case we can omit the fifth equation. This
assumption may be justified biologically if we assume rapid diffusion and arbitrary
supply of monomers.

2. Assume further that for this particular monomer density the velocities for barbed
and pointed ends coincide, vB = vP =: v. Without loss of generality we may set
v = 1.

3. Assume the filaments to be very short, so that we have Br = Pr =: ur and
Bl = Pl =: ul

This allows us to write a very simple system of equations describing the densities
ur, ul of right and left oriented filaments, respectively, which in the following for obvious
reasons will occasionally also be called particles:

∂tur + ∂xur = 0

∂tul − ∂xul = 0

These equations shall be assumed to be valid for x ∈ (0, L) and t > 0. To provide
boundary conditions we will assume that the particles turn around as soon as they
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encounter a wall and thus obtain

ur(t, x) = ul(t, x) for x ∈ {0, L}.

This system could of course be solved explicitely but since we are interested in the
effect of additional diffusion and alignment we shall proceed with the introduction of
these mechanisms into the model.

Using the Kac trick we may readily rewrite the system to

∂tu+ ∂xw = 0

∂tw + ∂xu = 0

where we introduced the total particle density u = ur+ul and the difference w = wr−wl

between right and left oriented filaments. This difference shall also be called polarization.

The boundary conditions translate into

w(t, x) = 0 for x ∈ {0, L}. (9.1)

This system may be extended by dissipation of the difference w and mutual alignment
of particles the mechanisms of which will be discussed more closely in section 9.2. By
naively putting the dissipation into the equation for w we obtain the following system

∂tu+ ∂xw = 0 (9.2a)

∂tw + ∂xu = ε∂xxw + f(u,w). (9.2b)

Note that the retranslated form of this system is

∂t

(
ur

ul

)
+

(
1 0

0 −1

)
∂x

(
ur

ul

)

= ε
2

(
1 −1
−1 1

)
∂xx

(
ur

ul

)
+ 1

2

(
f(ur + ul, ur − ul)

−f(ur + ul, ur − ul)

) (9.3)

with the diffusion matrix being only positive semidefinite. Positive definiteness may be
reached by adding an arbitrarily small diffusion term δ∂xxu to the equation for the total
density u. This model will in general still not preserve positivity of the partial densities
ur and ul even if the reaction term f is well behaved. Moreover, it is hard to explain the
biophysical meaning of this term beyond stating that it is an approximation to describe
filaments randomly changing their direction.

This drawback is overcome by considering simple diffusion of the particles of either
type, corresponding to the replacement of the diffusion matrix in 9.3 by a multiple of
the identity matrix. From a biological point of view, this diffusion of filaments should
in fact be expected if they are particularly short as we are assuming here.

The resulting model reads

∂tu+ ∂xw = ε∂xxu (9.4a)

∂tw + ∂xu = ε∂xxw + f(u,w) (9.4b)
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Although model (9.2) does not guarantee positivity of the partial densities ur and
ul, it is still of some interest from the mathematical point of view and provides some
insights which are also useful to understand the behavior of model (9.4) in situations
where analysis for the latter is not possible anymore. Since model (9.4) can also be
understood to describe a polarizable medium having a certain density u of some physical
quantity and a corresponding polarization w, we will investigate the properties of this
model as well.

We note that both systems, (9.2) and (9.4), as well as their interpolates

∂tu+ ∂xw = θε∂xxu

∂tw + ∂xu = ε∂xxw + f(u,w),
(9.5)

with θ ∈ (0, 1) are special cases of the following class of diffusion advection problems:

∂t

(
u

w

)
+ ∂x

(
w

u

)
= ∂x

(
B∂x

(
u

w

))
+ F (u,w) (9.6)

9.2 Properties of the alignment term

The nonlinear right hand side f is supposed to describe the mutual alignment of particles
encountering each other in opposite direction. If the density of right and left moving
particles are equal then none of them will be able to overcome the other and in that case
the alignment term shall vanish:

f(u, 0) = 0 ∀ u ∈ [0,∞) (9.7)

indicating that on average as many left moving filaments are turned into right oriented
ones as vice versa.

Furthermore, if all particles move in the same direction there will be no further
alignment, thus we obtain

f(u,±u) = 0 ∀ u ∈ [0,∞). (9.8)

Given a particular total density, say u = 1, we will consider the following three cases
of nonlinearities whose cut in a u = const plane is shown in figure 9.1.

1. The bistable sublinear case:

f(1, w) = αw(1− w2). (9.9)

The terminology sublinear means that the linearization of this function around
w = 0 overestimates the absolute value of f . This version of the alignment term
assumes that the aligning effect of an individual filament on the ones coming from
the opposite direction is strongest when there are equally many right and left
oriented filaments. This may be the case if we assume alignment to be due to
single encounters of two filaments moving in opposite direction and one turning
around the other by steric interactions.
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Figure 9.1: Different dependence of the nonlinearity f on the polarization w for fixed u =
1. left : sublinear bistable f according to (9.9), middle: sublinear bistable f according to
(9.10), right : tristable f , according to (9.12). The black lines in the first two graphs show the
linearization ∂wf(1, 0) w. Note that for u �= 1, the outer zeros of f are given by ±u rather than
±1.

2. The bistable superlinear case:

f(1, w) = αw(1 + νw2 − (ν + 1)w4) (9.10)

or
f(1, w) = αw(1 + ν|w| − (ν + 1)w2) (9.11)

with some ν > 1. In practice, ν will typically be chosen to be of the order of
magnitude of 10. For this superlinear right hand side, the linearization around
w = 0 underestimates the absolute value of f . This term should be understood
to describe cooperative effects of the alignment mechanism in the sense that those
filaments being in majority can collectively turn around the ones coming from the
opposite direction by joining forces. Thus, the alignment power of each individual
particle is increased if it has as many collaborative partners. We would expect such
a behavior if the possible turning of any arbitrarily chosen filament is assumed to
be due to the interaction with several opposingly moving ones at a time rather
than multiple encounters of single ones.

3. The tristable case:

f(1, w) = αw(1− w2)(w2 − λ2) (9.12)

or
f(1, w) = αw(1− |w|)(|w| − λ) (9.13)

with some parameter λ ∈ (0, 1), typically being small compared with 1. In that
case the term f even describes dealignment for small values of the polarization w.
That means that close to the equilibrium state the system locally tends towards
this equilibrium by itself. This alignment term is of rather small physical relevance
but is used to illustrate the effect of the alignment term in the chapters 10 and 11
concerning the stability analysis.

In all of these cases, α is a positive parameter which we will call the strength of
alignment.
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Chapter 10

Linear Stability Analysis

In this chapter we are going to investigate the linear stability of the non-polarized
homogeneous steady state characterized by w = 0 for both systems, (9.2) and (9.4). In
sections 10.2 and 10.3 we will start with the linear stability analysis for the respective
models. Here, the perturbations of the homogeneous steady state are assumed to be
of similar shape for u and w, that is, we only consider perturbations, where both, the
density and the polarization, have the same Fourier modes. In section 10.4 we will
compare the stability behavior of both models. Finally, in section 10.5, the stability
against perturbations with different modes for u and w are discussed.

10.1 Preliminary calculations and remarks

For either system (9.2) or (9.4) we consider the constant equilibrium state

(u(t, x), w(t, x)) ≡ (ū, w̄)

satisfying the boundary conditions (9.1) and f(ū, w̄) = 0. Such a pair will be called a
homogeneous steady state. Due to the boundary conditions we necessarily find w̄ = 0,
that is, we will be dealing with an equilibrium where the densities of right and left
oriented particles are equal and the total density takes some certain fixed value ū > 0.

At this state, the derivative Fu := ∂uf(ū, 0) and any higher derivative with respect
to u necessarily vanish by (9.7). For the linearization of the equations around the
homogeneous steady state we thus only need to consider the derivative

Fw := ∂wf(ū, 0)

with respect to w.

The linearization of the system (9.2) around this steady state reads

∂tũ+ ∂xw̃ = 0 (10.1a)

∂tw̃ + ∂xũ = ε∂xxw̃ + Fww̃. (10.1b)
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whereas system (9.4) has the following linearization:

∂tũ+ ∂xw̃ = ε∂xxũ (10.2a)

∂tw̃ + ∂xũ = ε∂xxw̃ + Fww̃. (10.2b)

Considering perturbations of the form

ũ = aq exp [σqt] exp [ıqx] (10.3a)

w̃ = bq exp [σqt] exp [ıqx] (10.3b)

the linearized systems lead to the algebraic equations

σa+ ıqb = 0 (10.4a)

σb+ ıqa = −εq2b+ Fwb (10.4b)

or

σa+ ıqb = −εq2a (10.5a)

σb+ ıqa = −εq2b+ Fwb, (10.5b)

for the respective models (9.2) and (9.4).
We only explicitely investigate linear stability of the designated steady state for

alignment terms satisfying Fw ≥ 0 – that is, the bistable ones. In fact, if the derivative
Fw is negative then the diffusion and the nonlinearity tend to drive any sufficiently
small perturbation to zero, and we necessarily obtain linear stability. We immediately
conclude that the tristable alignment term leads to the homogeneous steady state being
unconditionally linearly stable.

Thus the case of Fw being non-negative is the interesting one since here alignment
and diffusion are in competition.

10.2 Linear stability analysis for model (9.2)

We start with analyzing the system (10.4a), (10.4b) and find that we have to distinguish
two cases:

Case 1: σ = 0. From (10.4a) find
qb = 0

whereas (10.4b) yields

qa = 0 and εq2b = Fwb.

That allows only the situations

a = b = 0 (no perturbation at all)
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or
q = b = 0

which corresponds to a homogeneous displacement of the total density level to a
new steady state w̄ = 0, ū+ a.

This observation reflects the obvious ambiguity of the chosen steady state. It
should be clear from physical considerations that adding or deducting a certain
amount of (evenly oriented) particles will only lead to a new steady state the
system will not evolve away from − at least if the addition or deduction is done
homogeneously. The important information we obtain from this case is that a ho-
mogeneous change of the total density u without alteration of the zero polarization
is the only possible perturbation the system will neither counteract nor enhance.

Case 2: σ �= 0. In that case (10.4a) yields

a = − ıqb

σ

which may be plugged into (10.4b) to find

σb+
q2b

σ
+
(
εq2 − Fw

)
b = 0. (10.6)

We now have to consider the following subcases:

Subcase 2a) b = 0. This in turn leads to

a = − ıq · 0
σ

= 0

and we obtain no perturbation at all.

Subcase 2b) b �= 0. Then we can divide (10.6) by b to find a quadratic equation for the
growth rate σ:

σ2 +
(
εq2 − Fw

)
σ + q2 = 0

having the solutions

σ± =
1

2

(
(Fw − εq2)±

√
(εq2 − Fw)2 − 4q2

)
. (10.7)

For these solutions we observe different behaviors depending on the perturb-
ing wave number q.

I. Purely imaginary roots − indicating oscillations around the underlying
steady state − are found for precisely one nonzero wavelength:

q2 =
Fw

ε
, =⇒ σ± = ±ıFw

ε
.

II. Purely real solutions are observed if the discriminant

D ≡
(
εq2 − Fw

)2 − 4q2
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is positive. We compute the zeros of D:

0 =
(
εq2 − Fw

)2 − 4q2

= q4 − 2

ε2
(εFw − 2)q2 +

F 2
w

ε2

and find

q2± =
1

ε

((
Fw −

2

ε

)
± 1

ε

√
F 2
w −

4Fw

ε
+

4

ε2
− Fw

)

=
1

ε

⎛
⎝(Fw −

2

ε

)
± 2

√
1
ε2 − Fw

ε

⎞
⎠ ,

and the respective wave numbers are

q±,1 = ±

√
2
√
1 + Fwε+ εFw + 2

ε2
∈ R (10.8)

q±,2 = ±

√
−2
√
1 + Fwε+ εFw + 2

ε2
∈ R. (10.9)

The roots σ± are not real if and only if

q+,1 < |q| < q+,2. (10.10)

III. We finally check the sign of the real part Reσ of the growth rate which
will tell us the actual stability behavior. We already observed that only
for the wave numbers

q2 =
Fw

ε
and q = 0

the roots of (10.6) are purely imaginary. We easily see that Reσ > 0 if
and only if q2 < Fw

ε . We further note that the critical wave number

qcrit =

√
Fw

ε

lies in the region of oscillating perturbations, that is

q+,1 ≤ qcrit ≤ q+,2 (10.11)

with equality being only possible in the degenerate case Fwε = 0 which
corresponds to either vanishing diffusion or (at least to first order) van-
ishing nonlinearity.

Remark 10.1. If the velocity v of the particles is different from one the condition for
the real part of σ is not affected at all as v only enters the discriminant. In place of
(10.6) we obtain

σb+ q2v2
b

σ
+ (εq2 − Fw)b = 0
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which in case b ̸= 0 has the solutions

σ± =
1

2

(
Fw − εq2 ±

√
(Fw − εq2)2 − 4q2v2

)
. (10.12)

The imaginary part of σ now becomes nonzero between the wave numbers

q1 =
1

ε

√
−2v

√
Fwε+ v2 + εFw + 2v2 (10.13)

and
q2 =

1

ε

√
2v
√
Fwε+ v2 + εFw + 2v2. (10.14)

Again, both of these wave numbers are real and strictly positive whenever none of
the parameters Fw, ε, and v does vanish. We note that the range of wave numbers
resulting in genuinely complex growth coefficients σ increases with v for any given pair
of ε and Fw. In figure 10.1 we depicted the values of the square roots depending on v

and a := εFw.

Figure 10.1: Scaled critical wave numbers εq1/2 depending on the particle velocity v (right)
for fixed a = 0.5 (blue), a = 1 (red), and a = 2 (yellow), and depending on the parameter
a = εFw (right) for fixed v = 0.5 (blue), v = 1 (red), and v = 2 (yellow).

Using the boundary conditions we find that actually only a discrete set of wave
numbers has to be considered. Besides the trivial perturbation

q = 0, b = 0, a ∈ [−ū,∞)

that pushes the given steady state to a qualitatively equivalent one with a different total
number of particles only perturbations with wave numbers

qk =
kπ

L
for k ∈ N

are allowed. The interesting one is the smallest of these numbers, namely q1 = π
L

corresponding to a wavelength of 2L.
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Figure 10.2: Growth rate σ
plotted versus wave number
q for Fw = 1, ε = 0.5.red :
Reσ+, blue: Reσ−, green:
Imσ− = − Imσ+.

If this minimal wave number lies in the region of stability, i.e. if

π

L
>

√
Fw

ε

then all sufficiently small, non-homogeneous perturbations are predicted to decay by the
linear stability analysis.

In figure 10.2, the dependence of the roots σ± on the wave number q is shown for
fixed values of Fw and ε. Obviously, the real part of σ+ is decreasing for q ∈ [0, qcrit]

from which we infer that whenever we have q1 ≤ qcrit this is automatically the most
unstable mode in the sense that Reσ+(q1) > Reσ+(qk) for any integer k ≥ 2.

We summarize our findings in the following proposition.

Proposition 10.2. For the system (9.2) in (0, L)× (0,∞) with boundary conditions

w(0, t) = 0 = w(L, t) ∀t ≥ 0

let us assume ε > 0 and condition (9.7).

(i) Then the steady state

w ≡ 0, u ≡ ū ≥ 0

is linearly stable against perturbations with the same wave number for u and w if
and only if either

(a)
Fw := ∂wf(ū, 0) < 0

or

(b) Fw ≥ 0 and

q1 =
π

L
>

√
Fw

ε
= qcrit

.

(ii) If there are multiple unstable wave numbers qk = kπ
L then always the minimal one

q1 exhibits the fastest growth. In particular, no mode selection can be expected.
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10.3 Linear stability analysis for model (9.4)

We now turn our attention to the system (9.4) and its linearization (10.5) which we
rewrite to

(σ + εq2)a+ ıqb = 0 (10.15a)

(σ + εq2)b+ ıqa = Fwb. (10.15b)

Before starting the exact calculations we remark that for the same reasons as above
we only need to consider wave numbers qk = kπ

L for k ∈ N0 and can thus concentrate on
non-negative values for q. We now consider three cases.

Case 1: q = 0. This corresponds to a homogeneous perturbation and by the boundary
conditions implies b = 0. The only remaining condition is now

σa = 0

which allows arbitrary homogeneous perturbations a of the total density u with
σ = 0 or no perturbations at all (a = b = 0) if σ shall be different from zero.

Case 2: q �= 0 and σ + εq2 = 0. These conditions directly imply σ < 0 and from (10.15a)
we readily infer b = 0. Plugging this into (10.15b) we also obtain a = 0.

Case 3: q �= 0 and σ + εq2 �= 0. This is now the truly interesting case where we can plug

a = − ıqb

σ + εq2
(10.16)

obtained from (10.15a) into (10.15b) to find(
σ +

q2

σ + εq2
+ εq2 − Fw

)
b = 0.

In case b = 0, (10.16) immediately yields a = 0 and there is no perturbation at all.
We thus may assume b �= 0 and find the following quadratic equation for σ

0 = σ2 + (2εq2 − Fw)σ + q2
(
1 + ε(εq2 − Fw)

)
having the solutions

σ± =
1

2

(
Fw − 2εq2 ±

√
F 2
w − 4Fwεq2 + 4ε2q4 − 4(q2 − ε2q4 + εq2Fw)

)
=

1

2

(
Fw − 2εq2 ±

√
F 2
w − 4q2

)
.

(10.17)

For these roots we make the following observations:

(a) Real roots exist if F 2
w ≥ 4q2 which is equivalent to

q ≤ |Fw|
2

.
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(b) The real part of σ+ is positive if one of the following is fulfilled

• Fw > 2εq2. Then the root

σ+ = Fw − 2εq2 +
√
F 2
w − 4q2 ≥ Fw − 2εq2

is clearly positive.

• Fw ≤ 2εq2 and
Fw − 2εq2 +

√
F 2
w − 4q2 > 0.

In that case, the radicand

D = F 2
w − 4q2

needs to be positive to ensure that the root
√
D can contribute to the

real part. This case reduces to

(2εq2 − Fw)
2 < F 2

w − 4q2.

Equality holds if either q = 0 or

q =

√
εFw − 1

ε
.

We now easily find out that σ+ is positive if

q <

√
εFw − 1

ε

where we already used that only positive wave numbers are of interest to
us.

Together we find that Reσ+ is positive if and only if

q < max{ql, qu} = max

{√
Fw

2ε
,
Re
√
εFw − 1

ε

}
(10.18)

where

ql

{
<

>

}
qu ⇐⇒ εFw

{
>

<

}
2. (10.19)

In fact, for εFw = 2 we have√
Fw

2ε
=

√
εFw − 1

ε
=

1

ε
=

Fw

2
. (10.20)

Remark 10.3. The effect of nontrivial velocities v �= 1 is similar to that in system
(9.2). The linearized equations in case

q �= 0 �= σ + εq2 and (a, b) �= (0, 0)
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now yield the equation

0 = σ2 + (2εq2 − Fw)σ + q2
(
v2 + ε(εq2 − Fw)

)
having the solutions

σ± =
1

2

(
Fw − 2εq2 ±

√
F 2
w − 4q2v2

)
. (10.21)

For the question of linear stability we only have to consider the case F 2
w > 4q2v2 where

the discriminant can affect the sign of the real part of σ+. This is only of interest if in
addition Fw < 2εq2, since otherwise this root has always a positive real part. We find

(2εq2 − Fw)
2
< F 2

w − 4v2q2

from which we deduce

q <

√
εFw − v2

ε
. (10.22)

Note that in the range of parameters under consideration the right hand side is real. We
regain as stability condition

q < max {ql, qu} (10.23)

where

ql =

√
Fw

2ε

is the same as before but now qu is determined by (10.22). The transition between the
ranges of validity of ql and qu now lies at εFw = 2v2.

We finally note that in any case Reσ+(q) attains its maximum Fw +
√

F 2
w at q = 0

and that this maximum is only positive if Fw is. In particular, linear instability of the
homogeneous steady state (ū, 0) on finite domains is only possible for Fw > 0.

We conclude that again, only the bistable cases of our standard alignment terms
can produce linear instability. Since, in addition, Reσ+ decreases with increasing q we
conclude that the smallest wave number is the least stable one. We finally note that
now the critical wave number not necessarily lies in the region where Imσ is different
from zero but only in case εFw < 2.

The analogue of proposition 10.2 is

Proposition 10.4. For the system (9.4) in (0, L)× (0,∞) with boundary conditions

w(0, t) = 0 = w(L, t) ∀t ≥ 0

assume ε > 0 and (9.7).

(i) The steady state
w ≡ 0 u ≡ ū ≥ 0

is linearly stable against perturbations with the same modes for u and w if and
only if either

(a)
Fw := ∂wf(ū, 0) < 0
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or

(b) Fw ≥ 0 and

q1 =
π

L
>

{ √
εFw−1

ε√
Fw

2ε

}
if εFw

{
>

<

}
2 (10.24)

(ii) If there are multiple unstable wave numbers qk = kπ
L then always the minimal one

q1 exhibits the fastest growth. In particular, no mode selection can be expected.

�� ��

��

� �

Figure 10.3: Growth rate σ according to the linearization of system (9.4) plotted versus wave
number q. red : Reσ+, Blue: Reσ−, green: Imσ− = − Imσ+.

10.4 Comparison between the models

We want to conclude the previous two sections by pointing out some commonalities and
differences of the considered models. In figure 10.4, the critical wave numbers for both
models are plotted against Fw for an exemplary, fixed ε and vice versa.

We start with the common features of both models:

• In both cases, the homogeneous steady state u = ū, w = 0 is linearly stable
whenever

Fw ≡ ∂wf(ū, 0) < 0.

This does not come as a surprise as the diffusion term together with the homoge-
neous boundary conditions for w always tends to drive any perturbation to zero.
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Figure 10.4: left : Critical wave number qcrit depending on Fw at ε = 0.5, right : qcrit depending
on ε at Fw = 2.0. red: for model (9.2), green: for model (9.4)

If now Fw < 0 then also the alignment term will tend to dealign the particles for
sufficiently small values of |w| so that any small perturbation will become extinct.

• The largest real part of the growth rate σ always decreases with increasing wave
number q ≥ 0. This results in the smallest allowed wave number to be the least
stable mode. In particular, any unstable perturbation containing this mode in its
Fourier expansion, will show strongest growth of this mode and finally end up
with maximal wavelength.

• For any set of parameters Fw > 0, ε > 0, we obtain purely real growth rates if q
is sufficiently small.

Possibly more interesting are the differences between the models:

• In case of model (9.2) we find a vanishing imaginary part of σ also if the wave
number q is sufficiently large, whereas for model (9.4) the imaginary part grows
to infinity as q does.

• For all Fw > 0, ε > 0, the critical wave number qcrit is larger for model (9.2) than
for model (9.4). This is easily seen by direct computation:

Case 1: εFw ≤ 2. √
Fw

ε
>

√
Fw

2ε
.

Case 2: εFw > 2. √
Fw

ε
=

√
εFw

ε2
>

√
εFw − 1

ε
.

However, we find that the limiting behavior for strong alignment Fw →∞ at fixed
ε > 0 is the same:

lim
Fw→∞

(√
Fw

ε
−
√
εFw − 1

ε

)
=

1√
ε

lim
Fw→∞

(√
Fw −

√
Fw −

1

ε

)
.

More precisely, the critical wave number always grows as

qcrit ∼
√

Fw

ε
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for large Fw. Similarly, letting the diffusion coefficient grow to infinity yields

lim
ε→∞

√
Fw

ε√
εFw−1

ε

= lim
ε→∞

√
εFw

εFw − 1
= 0.

• For model (9.2) the growth rate σ(qcrit) at the critical wave number always has a
non-vanishing imaginary part. In case of model (9.4) this is only true for εFw < 2.

10.5 Different modes for u and w

The stability analysis of the previous sections assumes that the particle density u and
the polarization w are perturbed by the same mode q. However, the perturbations of u
and w can in general be different from one another. We will thus consider the following
type of perturbations in place of (10.3):

ũ = ak exp [σkqt] exp [ıkx]

w̃ = bq exp [σkqt] exp [ıqx]
(10.25)

with different wave numbers k and q for u and w, respectively.

10.5.1 Stability for model (9.2)

We now have to investigate the following system of equations:

σa+ ıqb = 0 (10.26a)

σb+ ıka = −εq2b+ Fwb, (10.26b)

for which we distinguish the following cases.

1. σ = 0. This case leads to qb = 0 which can be achieved by

a) q = 0. Plugged into the second equation this leads to Fwb = 0 and ak = 0. The
first of these conditions leads to b = 0 and the second one tells us that the
perturbation of u is either identically zero (a = 0) or homogeneous (k = 0).

b) b = 0. This again leads to ak = 0 which allows at most homogeneous perturbations
of u.

As before, we conclude that the only perturbation the system does not react to
consists of a homogeneous change in the total density without altering the polar-
ization at all.

2. σ �= 0. This allows us to rewrite the first equation to

a = − ıqb

σ

which in the second equation yields

σ2 + (εq2 − Fw)σ + qk = 0.
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This has the roots

σ± =
1

2

(
Fw − εq2 ±

√
(εq2 − Fw)

2 − 4kq

)
(10.27)

which have both negative real part if and only if Fw < εq2. We thus recover the
stability criterion from section 10.2.

We conclude that for model (9.2) the linear stability analysis does not change if the
perturbations of u and w have different wave numbers.

10.5.2 Stability for model (9.4)

The respective linearized system in terms of the parameters of ansatz (10.25) now reads

σa+ ıqb = −εk2a (10.28a)

σb+ ıka = −εq2b+ Fwb. (10.28b)

Again, the usual distinction of cases is made:

1. σ = 0. This immediately leads to qb = 0 and k2a = 0. From the latter we conclude that
only homogeneous perturbations of u are possible in that case whereas the first
condition plugged into the second equation necessarily leads to b = 0.

2. σ �= 0. We now can rewrite (10.28a) to

a = − ıqb

σ + εk2

which can be put into (10.28b) to find

σ2 +
(
ε
(
k2 + q2

)
− Fw

)
σ + kq + εk2

(
εq2 − Fw

)
= 0.

The roots of this equation can be written in the form

σ± =
1

2

(
Fw − ε(k2 + q2)±

√
F 2
w + ε(k2 − q2)(2Fw + ε)− 4kq

)
. (10.29)

The upper root σ+ has positive real part if

a) Fw > ε(k2 + q2) which corresponds to the condition Fw > 2εq2 from section
10.3. If we allow for homogeneous perturbations of the particle density u (i.e.,
k = 0), the condition for linear stability reduces to

q1 =
π

L
>

√
Fw

ε
(10.30)

which is the same as for model (9.2). For perturbations of u without homo-
geneous contribution, the minimal wave number is

k1 =
π

L
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and the stability condition is the same as in section 10.3:

π

L
>

√
Fw

2ε
. (10.31)

b) Fw < ε(k2 + q2) and at the same time

kq + εk2
(
εq2 − Fw

)
< 0.

Since k, q, and ε are non-negative, the latter can only be true if εq2 − Fw is
less than zero. This in turn is a contradiction to the first requirement and we
can thus exclude this possibility.

We therefore find as stability criterion for this system again

Fw < 2ε
π2

L2
,

but now for arbitrary values of the product Fwε.

We can therefore merge propositions 10.2 and 10.4 into

Proposition 10.5. For either system, (9.2) or (9.4), posed in (0, L) × (0,∞) with
boundary conditions

w(0, t) = 0 = w(L, t) ∀t ≥ 0

assume ε > 0 and (9.7).

(i) The steady state
w ≡ 0 u ≡ ū ≥ 0 (10.32)

is linearly stable against arbitrary small perturbations if and only if either

(a)
Fw := ∂wf(ū, 0) < 0

or

(b) Fw ≥ 0 and

q1 =
π

L
>

√
Fw

ε
·
{
1 in case of (9.2)
1√
2

in case of (9.4)
. (10.33)

(ii) If there are multiple unstable wave numbers qk = kπ
L then always the minimal one

q1 exhibits the fastest growth. In particular, no mode selection can be expected.

This proposition gives rise to the question whether we can find a single stability
criterion for both systems and maybe even for their interpolates. We will clarify that in
the following subsection.
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10.5.3 Results for intermediate models

To close this chapter we are now going to discuss the interpolates (9.5) of systems (9.2)
and (9.4). Plugging the Fourier ansatz into these models we obtain

σa+ ıqb = −θεk2a (10.34a)

σb+ ıka = −εq2b+ Fwb. (10.34b)

The subsequent calculations are very much the same as for system (9.4) with the
small difference that at every occurance k2 has to be replaced by θk2. We thus find the
stability condition to be

Fw < ε(θk2 − q2)

and excluding changes in the total particle number this yields linear stability if

π

L
>

√
Fw

(1 + θ)ε
. (10.35)

Denoting the diffusion coefficient in the equations for u and w by εu and εw, respec-
tively, we can rewrite this condition to

π

L
>

√
Fw

εu + εw
. (10.36)
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Chapter 11

Nonlinear Stability Analysis

We now ask for nonlinear stability of the homogeneous steady state

(u = ū, w = 0)

in dependence on the parameters ε, Fw, and L. The conditions to be found will be
compared with those from the linear stability analysis. Throughout this section we
assume that we only deal with classical solutions of the respective models. In particular,
we assume w to be twice differentiable with respect to the spatial variable x, and we
assume u to be once or twice differentiable with respect to x for systems (9.2) or (9.4),
respectively.

11.1 Nonlinear stability for model (9.2)

An appropriate energy functional to investigate model (9.2) is given by the plain L2-
energy

E(t) =
1

2

∫ L

0

w2 + (u− ū)
2
dx. (11.1)

Multiplying the second equation of (9.2) by w, integrating over (0, L), and noting
that

∂xu = ∂x(u− ū) and ∂tu = ∂t(u− ū)

we find
1

2

d

dt

∫ L

0

w2dx+

∫ L

0

w∂xudx = ε

∫ L

0

w∂xxwdx+

∫ L

0

w f(w)dx (11.2)

The second integral on the left hand side of (11.2) can be integrated by parts to
obtain∫ L

0

w∂xudx = −
∫ L

0

(u− ū)∂xwdx =

∫ L

0

(u− ū)∂t(u− ū)dx =
1

2

d

dt

∫ L

0

(u− ū)
2
dx

(11.3)
where in the second step we used the first equation of (9.2).

The first integral on the right hand side of (11.2) is integrated by parts as well and
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we find:

d

dt
E(t) =

1

2

d

dt

∫ L

0

w2 + (u− ū)
2
dx = −ε

∫ L

0

(∂xw)
2
dx+

∫ L

0

wf(w)dx

≤ − ε

C1

∫ L

0

w2dx+

∫ L

0

wf(w)dx

(11.4)

where

C1 =
L2

π2

is the squared Poincaré constant for the domain (0, L).
We consider now the particular alignment terms introduced in (9.9), (9.10), and

(9.12).

1. Bistable, sublinear: f(w) = αw(1 − w2). For this type of f , (11.4) takes the
form:

d

dt
E(t) ≤ −επ2

L2

∫ L

0

w2dx+ α

∫ L

0

w2dx− α

∫ L

0

w4dx

≤
(
α− επ2

L2

)∫ L

0

w2dx.

(11.5)

The right hand side is not bigger than zero if and only if

α

ε
≤ π2

L2
(11.6)

which is precisely the condition we found for linear stability in part (ii) of proposi-
tion 10.2. Since the Poincaré constant is optimal and arbitrary smooth perturba-
tions are to be allowed we can conclude that for this particular type of alignment,
linear and nonlinear stability coincide.

2. Bistable, superlinear: f(w) = αw(1 + νw2 − (ν + 1)w4). Now (11.4) becomes

d

dt
E(t) ≤ −επ2

L2

∫ L

0

w2dx+ α

∫ L

0

w2 + νw4 − (ν + 1)w6dx

=

(
α− επ2

L2

)∫ L

0

w2dx+ αν

∫ L

0

w4dx− α(ν + 1)

∫ L

0

w6dx.

(11.7)

We observe that the second term on the right hand side is now non-negative and
dominates the third one for small absolute values of w. Thus for any perturbation
w, no matter how small, we always find some

α <
επ2

L2

such that the right hand side is positive. Even more strikingly, if

α =
επ2

L2
,
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then the right hand side will be (strictly) positive for sufficiently small pertur-
bations w not vanishing identically. We conclude that for superlinear alignment
terms, nonlinear stability is genuinly stronger than linear stability.

3. Tristable f(w) = αw(1− w2)(w2 − λ2). Here we obtain

d

dt
E(t) ≤ −επ2

L2

∫ L

0

w2dx+ α

∫ L

0

−λ2w2 + (λ2 + 1)w4 − w6dx

≤ −
(
αλ2 +

επ2

L2

)∫ 2

0

w2dx+ α

∫ L

0

w4(λ2 + 1 + w2)dx.

(11.8)

In that case, the first term on the right hand side is always negative for all pa-
rameter settings and dominates the second, higher order term for sufficiently small
values of w. That is, the right hand side is strictly negative for all sufficiently small
perturbations w not vanishing identically, and we conclude that for this form of f
we have unconditional nonlinear stability.

The difference between the sublinear and the superlinear bistable case can also be
understood by a heuristic argumentation. In the sublinear case we have for small w:

|f(w)| ≤ Fw|w| = α|w| (11.9)

such that for small perturbations the strongest tendency to align is present at w = 0,
and precisely at that value the linear stability analysis operates. That explains why
linear stability can imply nonlinear stability which investigates small neighborhoods of
the steady state value. In contrast, for f being superlinear we have

|f(w)| > Fw|w| (11.10)

for sufficiently small |w| > 0. Now the tendency to align increases as w deviates from
zero, and this effect naturally cannot be captured by the linear stability analysis whereas
the nonlinear exploration is sensitive to this superlinear growth.

11.2 Nonlinear stability for model (9.4)

To investigate nonlinear stability of the homogeneous steady state

(u = ū, w = 0)

for (9.4) we will again employ the energy functional (11.1):

E(t) =
1

2

∫ L

0

(u(x, t)− ū)
2
+ w(x, t)

2
dx.

Now we multiply the first equation of (9.4) by (u − ū) and the second equation by
w, integrate over (0, L) and add both equations up to:

d

dt
E(t) +

∫ L

0

(u− ū)∂xw + w∂xudx = ε

∫ L

0

(u− ū)∂xxu+ w∂xxwdx+

∫ L

0

wfdx.

(11.11)
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The integral on the left hand side vanishes due to the boundary conditions:∫ L

0

(u− ū)∂xw + w∂xudx =

∫ L

0

(u− ū)∂xw − ∂xw (u− ū)dx+ 0.

Next, we note that the reflecting boundary conditions also imply ∂xu to be zero at
the boundary points so that we can integrate the first integral on the right hand side of
(11.11) to obtain

d

dt
E = −ε

∫ L

0

(∂x(u− ū))
2
+ (∂xw)

2
dx+

∫ L

0

wfdx. (11.12)

We end up with

d

dt
E ≤ −ε

∫ L

0

(∂x(u− ū))
2
dx− ε

∫ L

0

(∂xw)
2
dx+

∫ L

0

wfdx

≤ −επ2

L2

∫ L

0

w2dx+

∫ L

0

wfdx. (11.13)

We have to take into account that there are possible perturbations of w that do not
change u at all. Thus, we cannot expect the first integral in (11.13) to be strictly positive
for arbitrary small perturbations. It follows that the nonlinear stability analysis for this
model yields precisely the same results as for model (9.2).

We summarize the results in the following corollary.

Corollary 11.1. For either system, (9.2) or (9.4), posed in (0, L)×(0,∞) with boundary
conditions

w(0, t) = 0 = w(L, t) ∀t ≥ 0

assume ε > 0 and (9.7).

(i) If the nonlinearity f is bistable and sublinear in w (cf. (9.9)) then nonlinear and
linear stability of the homogeneous steady state

(w ≡ 0, u ≡ ū)

coincide. More precisely, this state is linearly and nonlinearly stable if and only if

α

ε
<

π2

L2
.

(ii) If the nonlinearity f is bistable and superlinear in w (cf. (9.10)) then nonlinear
stability of the homogeneous steady state

(w ≡ 0, u ≡ ū)

implies its linear stability but the converse implication always fails.

(iii) In case of the tristable alignment term (∂wf(ū, 0) < 0, cf. (9.12)), the homoge-
neous steady state

(w ≡ 0, u ≡ ū)

is always linearly and nonlinearly stable.
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We should not forget to remark that, in fact, the first integral in (11.13) will become
positive as we allow any perturbation of our homogeneous state to evolve in time. It
may therefore be expected that we obtain an additional stabilizing contribution from
this term which might induce stability even for larger alignment strengths than predicted
by the corollary. We will discuss this effect when we investigate the stability behavior
by simulations in section 15.2.
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Chapter 12

Generalization to Alignment
Terms Depending on the Total
Particle Density

12.1 Basic assumptions on the alignment term

In section 9.2, we only considered the dependence of the alignment terms f on the
polarization w for fixed values ū of the total density. Moreover, we assumed that the
zeros of f are besides w = 0 given by w = ±ū.

We now want to consider also the u - dependence of the alignment term and allow
for zeros w = ±Λu with Λ �= 1. The following properties for f shall always be assumed:

1. We require f to be continuous throughout its domain of interest

Q :=
{
(u,w) ∈ R2 | u ≥ 0, w ∈ [−u, u]

}
.

In fact, we will most often consider such f that are continuously differentiable in
the interior of Q and at least differentiable up to ∂Q.

2. To ensure that the states (w = 0, u = const.) are stationary we require

f(u, 0) = 0 for each u ≥ 0. (12.1)

3. For any u ≥ 0 we assume the existence of at least one w ∈ (0, u] satisfying

f(u,w) = f(u,−w) = 0. (12.2)

4. To prevent the solutions of the purely hyperbolic system (without diffusion) from
growing pointwise to infinity we further assume f to change its sign for large values
of u (at fixed w

u ) or at least to approach zero sufficiently fast as u grows to infinity.
A physical explanation for this requirement is the following crowding effect. The
higher the total density of particles in one place the harder it is to turn them
around.

178



5. We finally assume f to be an odd function of w for any given value of u. This
represents the symmetry of the model with respect to interchanging the roles of
"left" and "right"

In the sequel we will encounter the following parameters

α > 0 . . . measures the strength of the alignment

Λ ∈ (0, 1] . . . determines (outer) stable equilibria of f

λ ∈ (0,Λ) . . . determines possible additional equilibria (in the tristable case),

of which α and λ are already known from section 9.2. The parameters λ and Λ will
typically satisfy λ2 � Λ2 ≈ 1.

We present now some special examples of right hand sides.

1. Hard cut off. Here we consider such types of f for which w f becomes negative
for large u. More precisely, we assume that there exists some c > 0 such that

wf(u,w) ≤ 0 for u2 + w2 ≥ c2.

(a) We start with an alignment term corresponding to the sublinear bistable case
introduced in (9.9). We consider

fh,1(u,w) := αw

(
Λ2 − w2

u2

)(
c2 − (u2 + w2)

)
(12.3)

The case Λ = 1 corresponds to (9.9) where the stable equilibria of f are
given for w = ±u − corresponding to all particles being oriented in the same
direction.

(b) An alignment term corresponding to the bistable superlinear case (9.10) is

fh,2(u,w) := αw

(
Λ2 + ν

w2

u2
− (ν + 1)

w4

Λ2u4

)(
c2 − (u2 + w2)

)
. (12.4)

As in section 9.2 we can alternatively consider

f̃h,2(u,w) := αw

(
Λ + ν

|w|
u
− (ν + 1)

w2

Λu2

)(
c2 − (u2 + w2)

)
. (12.5)

Again, we recover (9.10) for Λ = 1. Recall that ν > 1 is another parameter,
typically being of the order of magnitude of 10.

(c) The tristable case (9.12) can be generalized to

fh,3(u,w) := αw

(
Λ2 − w2

u2

)(
w2

u2
− λ2

)(
c2 − (u2 + w2)

)
, (12.6)

and a similar shape is reached by setting

f̃h,3(u,w) := αw

(
Λ− |w|

u

)( |w|
u
− λ

)(
c2 − (u2 + w2)

)
. (12.7)
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2. Soft decay. We now consider |f | decreasing to zero exponentially as u grows to
infinity. This is done by replacing the term (c2− (u2+w2)) by an exponential one.
The rate of decline will be denoted by β > 0. We summarize the corresponding
forms of f which correspond to the ones above.

(a) The sublinear bistable alignment term now reads

fs,1(u,w) := αw

(
Λ2 − w2

u2

)
exp

[
−β2u2

]
(12.8)

(b) The superlinear bistable version is

fs,2(u,w) := αw

(
Λ2 + ν

w2

u2
− (ν + 1)

w4

Λ2u4

)
exp

[
−β2u2

]
(12.9)

or

f̃s,2(u,w) := αw

(
Λ + ν

|w|
u
− (ν + 1)

w2

Λu2

)
exp

[
−β2u2

]
(12.10)

(c) And finally, the tristable case reads

fs,3(u,w) := αw

(
Λ2 − w2

u2

)(
w2

u2
− λ2

)
exp

[
−β2u2

]
(12.11)

or
f̃s,3(u,w) := αw

(
Λ− |w|

u

)(
|w|
u
− λ

)
exp

[
−β2u2

]
. (12.12)
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Figure 12.1: Left : fh,1 with α = 0.5,Λ = 1, c = 2
√
2. Right : fs,1 with α = 2,Λ = 1, β2 = 1

The figures 12.1 - 12.3 exemplarily show the alignment strength f in dependence on
its natural variables ur and ul rather than u and w. Note that the upper right quadrant
in the ur - ul - plane coincides with Q. We further note that the sets u = const. are
the straight lines of slope −1 in the ur - ul - plane whereas the sets w = const.u are the
straight lines of positive slope passing through the origin.
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Figure 12.2: Left : fh,2 with α = 0.1,Λ = 1, c = 2
√
2, ν = 10. Right : fs,2 with α = 2,Λ =

1, β2 = 1, ν = 10
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Figure 12.3: Left : f̃h,3 with α = 2.5,Λ = 0.95, λ = 0.1, c = 2
√
2, ν = 10. Right : f̃s,3 with

α = 10,Λ = 0.95, λ = 0.1, β2 = 1

We finish this section pointing out that all of the above indeed satisfy the properties
required in the beginning of this chapter and in section 9.2, in particular:

• f = 0 on {w = 0} = {ur = ul},

• f = 0 on {w2 = Λ2u2} =
{
ul =

1±Λ
1∓Λur

}
, and

• in the tristable case we have additionally f = 0 on {w2 = λ2u2} =
{
ul =

1±λ
1∓λur

}
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12.2 Effects on linear stability

We immediately see that for the alignment terms introduced in section 12.1, the deriva-
tive Fw = ∂wf(ū, 0) strongly depends on the value of ū. We start with computing the
partial derivatives of the above types of f with respect to u and w. To shorten the
notation we introduce

C2 := c2 − (u2 + w2) and E := exp
[
−β2u2

]
and start with the sublinear bistable type:

∂ufh,1 = −2αw

u

(
Λ2u2 − (C2 + u2)

w2

u2

)

∂wfh,1 = α

(
Λ2(C2 − 2w2)− (3C2 − 2w2)

w2

u2

)

∂ufs,1 = −2αw

u

(
Λ2β2u2 − (1 + β2u2)

w2

u2

)
E

∂wfs,1 = α

(
Λ2 − 3

w2

u2

)
E .

For the superlinear bistable terms we obtain:

∂ufh,2 = −2αw

u

(
Λ2u2 + ν(c2 − w2)

w2

u2
− (ν + 1)(2c2 − w2)

w4

Λ2u4

)

∂wfh,2 = α

(
Λ2(C2 − 2w2) + ν(3C2 − 2w2)

w2

u2
− (ν + 1)(5C2 − 2w2)

w4

Λ2u4

)

∂uf̃h,2 = −2αw

u

(
Λu2 +

ν

2
(C2 + 2u2)

|w|
u
− (ν + 1)(C2 + u2)

w2

Λu2

)

∂wf̃h,2 = α

(
Λ(C2 − 2w2) + 2ν(C2 − w2)

|w|
u
− (ν + 1)(3C2 − 2w2)

w2

Λu2

)

and

∂ufs,2 = −2αw

u

(
Λ2β2u2 + ν(1 + u2β2)

w2

u2
− (ν + 1)(1 + β2u2)

w4

Λ2u4

)
E

∂wfs,2 = α

(
Λ2 + 3ν

w2

u2
− 5(ν + 1)

w4

Λ2u4

)
E

∂uf̃s,2 = −2αw

u

(
Λβ2u2 +

ν

2
(1 + 2β2u2)

|w|
u
− (1 + ν)(1 + β2u2)

w2

Λu2

)
E

∂wf̃s,2 = α

(
Λ + 2ν

|w|
u
− 3(ν + 1)

w2

Λu2

)
E .

To make the derivatives of the tristable alignment terms at least a little more readable
we introduce the additional abbreviations

l2 := λ2 + Λ2 and l̃ = λ+ Λ.
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This allows us to write

∂ufh,3 = 2α
w

u

(
Λ2λ2u2 − l2(C2 + u2)

w2

u2
+ (2C2 + u2)

w4

u4

)

∂wfh,3 = −α
(
Λ2λ2C2 − l2(3C2 − 2w2)

w2

u2
+ 5(C2 + w2)

w4

u4

)

∂uf̃h,3 = 2α
w

u

(
λΛu2 − l̃(C2 + 2u2)

|w|
u

+ 2(C2 + u2)
w2

u2

)

∂wf̃h,3 = −α
(
(C2 − 2w2)λΛ− 2l̃(C2 − w2)

|w|
u

+ (3C2 − 2w2)
w2

u2

)

∂ufs,3 = 2α
w

u

(
λ2Λ2β2u2 − l2(1 + β2u2)

w2

u2
+ (2 + β2u2)

w4

u4

)
E

∂wfs,3 = −α
(
λ2Λ2 − 3l2

w2

u2
+ 5

w4

u4

)
E

∂uf̃s,3 = 2α
w

u

(
λΛβ2u2 − 1

2
l̃(1 + 2β2u2)

|w|
u

+ (1 + β2u2)
w2

u2

)
E

∂wf̃s,3 = −α
(
λΛ− 2l̃

|w|
u
− w2

u2

)
E .

We first notice that all the derivatives indeed exist throughout Q and are continuous
in its interior. At the steady state values

(w = 0, u = ū > 0)

we further observe that all the partial derivatives with respect to u vanish, since they
contain a factor w. This is in fact no surprise as we already knew that f ≡ 0 along the
line w = 0.

Let us now compute the particular values of ∂wf at (ū, 0). For the sublinear bistable
alignment terms these derivatives are given by

∂wfh,1(ū, 0) = αΛ2(c2 − ū2) (12.13)

∂wfs,1(ū, 0) = αΛ2 exp
[
−β2ū2

]
. (12.14)

For the different versions of the superlinear bistable alignment terms we obtain

∂wfh,2(ū, 0) = αΛ2(c2 − ū2) (12.15)

∂wf̃h,2(ū, 0) = αΛ(c2 − ū2) (12.16)

∂wfs,2(ū, 0) = αΛ2 exp
[
−β2ū2

]
(12.17)

∂wf̃s,2(ū, 0) = αΛexp
[
−β2ū2

]
. (12.18)

We note that for the standard versions fh,2 and fs,2, these values which just represent
the parameters Fw are the very same as for the corresponding sublinear alignment terms.
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In particular, they do not depend on ν at all.
Finally, the tristable alignment terms yield

∂wfh,3(ū, 0) = −αΛ2λ2(c2 − ū2) (12.19)

∂wf̃h,3(ū, 0) = −αΛλ(c2 − ū2) (12.20)

∂wfs,3(ū, 0) = −αΛ2λ2 exp
[
−β2ū2

]
(12.21)

∂wf̃s,3(ū, 0) = −αΛλ exp
[
−β2ū2

]
(12.22)

The computations conducted in chapter 10 and in particular proposition 10.5 remain
valid in that case. However, now the term Fw = ∂wf(ū, 0) not only depends on the
parameters α, Λ, and λ but also explicitly on ū. We note that the values Fw above differ
from their counterparts from chapter 10 only by the factors:

• Λ2 or Λ, respectively, emerging from the adjustment of the outer zeros of f from
±u to ±Λu. We would also encounter these factors if we neglected the dependence
of f on u.

• (c2 − ū2) or exp
[
−β2ū2

]
describing the dependence of f on u.

Significantly, the sign of Fw changes for the hard cut off versions of f as ū exceeds c.
This does not happen for the versions with exponential decay where Fw always has the
same sign as its counterpart in chapter 10. We conclude that the exponentially decaying
types of alignment terms exhibit qualitatively the same linear stability behavior of the
homogeneous steady state (w = 0, u = ū), and we can even recover the numerical values
by choosing ū appropriately. But even for the cut-off form of f we recover the linear
stability analysis from chapter 10 if the steady state density ū is smaller than c. This
would clearly be the usual choice since c is supposed to bound u from above.

From the physical point of view the soft box versions are preferable over the hard box
ones since it is not clear how at high densities of filaments the majority shall be turned
around by the minority while at low densities this does not happen. A crowding effect
where the relative power of both populations remains the same but the total amount
of turning relative to the density decreases as there is less free space seems much more
physically feasible. We will therefore for future considerations and in particular for
the simulations in chapter 15 most often use the exponentially decaying versions of the
alignment terms.

12.3 Effects on nonlinear stability

The abstract calculations for the nonlinear stability analysis remain the same as in
chapter 11.

Recall first that for model (9.2) we found

d

dt
E(t) ≤ −επ2

L2

∫ L

0

w2dx+

∫ L

0

wf(w)dx (12.23)

from the energy estimates in chapter 11.
For the sake of easier computability we will investigate the effect of the hard box

versions of the alignment term but not without noting that in the regime of u2 + w2
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being bounded away from 0 and c2 there is no qualitative difference between hard and
soft crowding terms.

We only have to reconsider the term∫ L

0

wfdx

where as before we need not make a difference between w and the perturbation w̃. We
start with the sublinear bistable case:

wfh,1(ū+ ũ, w) = α
w2

(ū+ ũ)
2

(
Λ2(ū+ ũ)

2 − w2
)(

c2 − ((ū+ ũ)
2
+ w2)

)

= α

(
Λ2w2 − w4

(ū+ ũ)
2

)(
c2 − ((ū+ ũ)

2
+ w2)

)
. (12.24)

Keeping in mind that we would like to start with a steady state with ū2 being
bounded away from zero and from c2 we find that for C0-small perturbations we can
assume

c2 − ((ū+ ũ)
2
+ w2) ≥ 0

and conclude∫ L

0

wfh,1(ū+ ũ, w)dx

=

∫ L

0

α

(
Λ2w2 − w4

(ū+ ũ)
2

)(
c2 − ((ū+ ũ)

2
+ w2)

)
dx

≤ αΛ2

∫ L

0

w2
(
c2 − ((ū+ ũ)

2
+ w2)

)
dx

≤ αΛ2

(
(c2 − ū2)

∫ L

0

w2dx− 2ū

∫ L

0

ũw2dx−
∫ L

0

w2(ũ2 + w2)dx

)

≤ αΛ2(c2 − ū2)

∫ L

0

w2dx− 2αΛ2ū

∫ L

0

ũw2dx.

The first term in the last line is just

Fw

∫ L

0

w2dx

where Fw = ∂wfh,1(ū, 0). This we already had in chapter 11. But now we have an
additional term of which we cannot determine the sign since we do not know anything
about the sign of ũ. As estimate for the growth of the energy functional E we have:

dE

dt
≤
(
αΛ2(c2 − ū2)− επ2

L2

)∫ L

0

w2dx+ 2αΛ2ū

∫ L

0

|ũ|w2dx. (12.25)

We can only assert that for sufficiently small perturbations (ũ, w), the second term
is small in comparison to the first one. However, we do not find an estimate as sharp as
in (11.6) and thus cannot assert that linear stability implies nonlinear stability in this
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case. The obvious reason is that the linear stability analysis misses the dependence of
f on u.

The next case to be considered is the superlinear bistable one. Let us compute∫ L

0

wfh,2(ū+ ũ, w)dx

=

∫ L

0

αw2

(ū+ ũ)
2

(
Λ2(ū+ ũ)

2
+ νw2 − (ν + 1)

w4

(ū+ ũ)
2

)(
c2 − ((ū+ ũ)

2
+ w2)

)
dx

≤ αΛ2(c2 − ū2)

∫ L

0

w2dx+ αν(c2 − ū2)

∫ L

0

w4

(ū+ ũ)
2 dx

− 2αū

∫ L

0

ũw2(Λ2 + ν
w2

(ū+ ũ)
2 )dx.

Again we find terms corresponding to those from chapter 11 and an additional term
with unknown sign. But for this case we still recover the qualitative finding that non-
linear stability is not implied by linear stability.

The last case we want to discuss is the tristable one. Here we find∫ L

0

wfh,w(ū+ ũ, w)dx

= α

∫ L

0

w2

(ū+ ũ)
4

(
Λ2(ū+ ũ)

2 − w2
)(

w2 − λ2(ū+ ũ)
2
)(

c2 − ((ū+ ũ)
2
+ w2)

)
dx

≤ −αΛ2λ2

∫ L

0

w2
(
c2 − ((ū+ ũ)

2
+ w2)

)
dx+

∫ L

0

O(w4)dx.

Noting that for sufficiently small perturbations the term(
c2 − ((ū+ ũ)

2
+ w2)

)
remains bounded away from zero we see the higher order terms are small compared with
the first integral. Thus we still find unconditional nonlinear stability for the tristable
alignment term.

As already observed in chapter 11 the nonlinear stability analysis for both models,
(9.2) and (9.4), yield the same stability results.
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Chapter 13

Traveling Wave Solutions to the
Auxiliary Problem

We will now ask for traveling wave solutions to our first reduced model (9.2). These
traveling waves are to be understood as fronts of aligned filaments moving in a particular
direction at a fixed speed. This may remind the reader of the polymerization fronts dis-
cussed in subsections 2.4.2 and 5.2.1 and being observed experimentally at lamellipodia
and lamella of moving cells (cf. [26]).

For this first model we shall explicitely prove the existence of such waves. Moreover,
we will find particular critical wave speeds depending on the precise parameters and on
the type of the nonlinearity.

13.1 Derivation of the system of ordinary differential
equations

Our goal is now to find solutions of the types

u(t, x) = U(x− ct)

w(t, x) = W (x− ct)
(13.1)

where c is the velocity of the traveling wave and U and W describe the wave profile.
This type of solutions has to be considered on the whole real line as spatial domain but it
should be noted that this fact does not mean that the problem is spatially unbounded. By
neglecting the boudnary we only assume that the evolving patterns are small compared
to the domain size and are located away from the boudnary.

Plugging the ansatz (13.1) into (9.2) and writing ξ := x − ct we find the following
system of ordinary differential equations:

−cU ′(ξ) +W ′(ξ) = 0

−cW ′(ξ) + U ′(ξ) = εW ′′(ξ) + f(U,W )
(13.2)

or with the abbreviation Φ = (U, W )T :

187



ε

(
0 0

0 1

)
Φ′′(ξ) +

(
−c 1

1 −c

)
Φ′(ξ) =

(
0

f

)
. (13.3)

Multiplying the second equation of (13.2) by c we obtain

− εcW ′′(ξ)− c2W ′(ξ) + cU ′(ξ)

= − εcW ′′(ξ) + (1− c2)W ′(ξ) = cf(U,W ) (13.4)

where we used the first equation of (13.2) to replace cU ′ by −c2W ′.
Assuming that f is independent of u we thus have obtained a second order ordinary

differential equation for W .

Remark 13.1. Note that for c �= 0 we also obtain an equation for W even if f depends
on u, but now with an additional constant of integration C:

− εcW ′′(ξ) + (1− c2)W ′(ξ) = cf

(
W + C

c
,W

)
(13.5)

We also note that this is the generic case as c = 0 would correspond to a standing rather
than a traveling wave.

Putting V := W ′ ≡ −cU ′ we finally obtain a diagonalized system of first order
equations:

W ′ − V = 0

V ′ − 1

ε

(
1

c
− c

)
V = −1

ε
f

(13.6)

where we already assumed c �= 0.

13.2 Special velocities

(1) c = 0. We immediately see from the first equation in (13.2) that W (ξ) ≡ W0 = const.
The second equation then just reads

U ′(ξ) = f(U,W0)

which is now a first order equation for U . In the simplest case where we consider
f to be independent of u this leads to

U(ξ) = U0 + f(W0)ξ.

This is unbounded and has no chance to converge to some finite values as ξ → ±∞
unless f(W0) = 0 in which case we recover the homogeneous steady states we
already discussed in chapter 10.

(2) c = ±1. In that case we have from the first equation of (13.2)

U ′(ξ) = ±W ′(ξ) =⇒ U(ξ) = ±W (ξ) + C
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for some constant C whereas (13.4) simply reads

W ′′(ξ) = −1

ε
f.

This may be more intriguing as it looks!

For all other values of c we obtain the following form of (13.4):

W ′′(ξ) + μW ′(ξ) = −1

ε
f (13.7)

where the parameter

μ :=
1

ε

(
c− 1

c

)
satisfies

μ

{
<

>

}
0 ⇐⇒ c ∈

{
(−∞,−1) ∪ (0, 1)

(−1, 0) ∪ (1,∞)

}
. (13.8)

Remark 13.2. If the particle velocity v differs from 1 then the second order equation
for the wave profile W in case c �= 0 reads

−εcW ′′(ξ) + (v2 − c2)W ′(ξ) = cf
(v
c
(W + C), W

)
.

Obviously, the nonzero special velocities are given by c = ±v, and the parameter μ takes
the form

μ̃(v) =
1

ε

(
c− v2

c

)
.

Remarkably, the intervals of constant sign of μ̃ are now (−∞,−v), (−v, 0), (0, v),
(v,∞). At c = ±v, μ̃ vanishes, whereas the singularity at c = 0 is preserved. The effect
of this will become clear later.

13.3 Linearization around the equilibria

For the case c = 0 there is nothing to do so that we may assume throughout this section
that c �= 0. We thus consider the equation

W ′′(ξ) + μW ′(ξ) +
1

ε
f = 0 (13.9)

with
μ =

1

ε

(
c− 1

c

)
as above. As alignment term we first consider the sublinear bistable case independent
of u which is given by

f(w) = αw(Λ2 − w2), (13.10)

having zeros at W = 0 and W = ±Λ. Linearizing around these zeros yields:

1. W = 0. Here we find as linearized equation

W ′′ + μW ′ +
Fw

ε
W = 0
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where we used the known abbreviation

Fw = ∂wf |w=0= αΛ2.

The characteristic eigenvalues of this equation are

ν1,± = −μ

2
±
√

μ2

4
− Fw

ε
= −μ

2
±
√

μ2

4
− αΛ2

ε
. (13.11)

We have to distinguish two cases:

a) μ2ε ≥ 4Fw. Then the roots are real and both have the opposite sign of μ. If strict in-
equality holds, then both roots have strictly the opposite sign of μ and we
find a node at W = W ′ = 0 in the W −W ′-plane (recall system (13.6)). The
condition for the roots to be real can be rewritten as

1

ε

(
c− 1

c

)2

= εμ2 ≥ 4Fw (13.12)

or equivalently
c4 − (4Fwε+ 2)c2 + 1 ≥ 0

which has the squared roots

c2± = 2Fwε+ 1± 2
√
Fwε(Fwε+ 1). (13.13)

We thus obtain 4 critical velocities

± c∗ = ±
√
2Fwε+ 1− 2

√
Fwε(Fwε+ 1) (13.14)

±c∗ = ±
√
2Fwε+ 1 + 2

√
Fwε(Fwε+ 1). (13.15)

which are real whenever Fw ≥ 0, and in case Fw > 0 satisfy 0 < c∗ < 1 < c∗.
If we now recall the special form (13.10) of f and abbreviate

a := Fwε = αΛ2ε

we may rewrite this to

±c∗ = ±
√
2a+ 1− 2

√
a(a+ 1)

±c∗ = ±
√
2a+ 1 + 2

√
a(a+ 1) = ± 1

c∗
.

(13.16)

We should note that the critical velocity c∗ arises in the same manner as
the minimal traveling wave speed for the Fisher-KPP equation (cf. [32]).
However, in our case, wave patterns oscillating around the trivial steady state
W = 0 cannot be excluded since the polarization is allowed to take values of
any sign. At this point we should note that the oscillations will always be of
a form that ensures positivity of the single particle densities.

b) μ2ε < 4Fw. Now the roots have non vanishing imaginary part, and have the real parts
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Figure 13.1: Critical wave velocities c∗

(upper branch) and c∗ (lower branch) in
dependence on the product a = εFw.
The space between the curves is for-
bidden if we seek monotone wave pro-
files as such c would lead to non-real
eigenvalues.

Re ν± = −μ
2 . We thus obtain a spiral point whose stability depends on the

sign of μ.

In both cases, the corresponding eigenvectors may be represented as

η1,± =

⎛
⎜⎜⎝−

εμ
2Fw

∓
√(

εμ
2Fw

)2
− ε

Fw

1

⎞
⎟⎟⎠ =

⎛
⎜⎝

ε
Fw

ν1,∓

1

⎞
⎟⎠ (13.17)

or in the special case of f being given by (13.10):⎛
⎜⎝−

εμ
2aΛ2 ±

√(
εμ

2αΛ2

)2 − ε
αΛ2

1

⎞
⎟⎠ (13.18)

2. W = Λ. We define W̃ := W − Λ and
F̃w := ∂wf |w=Λ

to find the linearized equation

W̃ ′′ + μW̃ ′ +
F̃w

ε
W̃ = 0

where for f given by (13.10) the derivative is F̃w = −2αΛ2.

The characteristic eigenvalues are the same as for W = 0 with F̃w replacing Fw:

ν2,± = −μ

2
±
√

μ2

4
+

2αΛ2

ε
. (13.19)

Both of them are real and have opposite signs so that we obtain a saddle at
(W = Λ,W ′ = 0) in the W −W ′-plane. The corresponding eigenvectors are now
given by

η2,± =

⎛
⎜⎝

ε
F̃w

ν2,∓

1

⎞
⎟⎠ =

⎛
⎜⎜⎝

ε
4αΛ2

(
μ±

√
μ2 + 8αΛ2

ε2

)

1

⎞
⎟⎟⎠ (13.20)
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3. W = −Λ. Putting now W̃ = W +Λ we find exactly the same linearization here as for W = Λ

which is just a consequence of f being an odd function of w. In particular, the
states (W = ±Λ,W ′ = 0) are connected to W = W ′ = 0 along flow lines of the
same shape.

Remark 13.3. The dependence of the critical velocities c∗ and c∗ solely on the product
εFw is most easily appreciated if we write the alignment term as f = αf0 where f0

determines the shape of the alignment term and α its strength. We can now rescale both,
the time and space variables in the original equations by α:

t→ t̃ =
t

α
and x→ x̃ =

x

α
.

This scaling does not change any velocities and the resulting system reads

∂t̃u+ ∂x̃w = 0

∂t̃w + ∂x̃u = αε∂x̃x̃w + f0(u,w),
(13.21)

and the only remaining parameter is just this product εα.

13.4 Existence of heteroclinic orbits

To find heteroclinic orbits connecting the equilibria of system (13.6) we analyze the
behavior of the vector field

Φ =

(
V

−μV − 1
εf(W )

)
(13.22)

in the W -V -plane and in particular in the triangles which are bounded by the W -axis and
the lines through the equilibria being spanned by the eigenvectors of the linearization.

We start with the case c > 1 and the pair W1 = 0, W2 = Λ of equilibria. Expecting
an orbit connecting the point

(W2 = Λ, V = 0)

to the point
(W1 = 0, V = 0)

we are interested in the stable manifold of the fixed point at W2. The triangle we want
to show invariance for is thus given by the corner points (0, 0)T , (W2, 0)

T and (W s, V s)
T

which is given as the intersection of the straight lines through (0, 0)
T and (W2, 0)

T along
the eigenvectors η1,− and η2,+, respectively. This triangle is shown in figure 13.2.

Using the given values for the eigenvectors of the linearization we compute the (not
normalized) inner normal to the eigenspace corresponding to the eigenvector η1,+ at
(0, 0)

T as

n1 =

(
1,− ε

Fw
ν1,−

)
, (13.23)

and the normal to the unstable eigenspace at (W2, 0)
T reads

n2 =

(
−1, ε

F̃w

ν2,−

)
. (13.24)

192



�

��
�

��

��

Figure 13.2: Invariant domain in phase plane for waves connecting W2 = U2 to (W1 = 0, U1)
with velocity c > c∗. The colored arrows denote the inner unit normals (blue: n1 on the line
corresponding to the eigenvector η1,+ at the origin, red : n2 along the unstable eigenspace of
the linearization at (W2, 0)

T , green: n0 along the W -axis), the black arrows indicate the flow
field along the boundary of the invariant triangle. Magenta arrows indicate the remaining
eigenvectors. The curve V ′ = 0 is sketched as yellow curve.

Along the positive W -axis the field Φ has vanishing W -component and the V com-
ponent is

−1

ε
f(W ) < 0

and the vector field clearly points into the triangle in question.

Along the unstable eigenspace attached to the point (W2, 0)
T we compute

n2Φ = −V − ε

F̃w

ν2,−

(
μV +

1

ε
f(W )

)

> −V − ε

F̃w

ν2,−

(
μV − 1

ε
F̃w(W −W2)

)

= −V
(
1 +

ε

F̃w

ν2,− (μ− ν2,−)
)

= − V︸︷︷︸
<0

⎛
⎜⎜⎜⎝1 +

ε

F̃w

ν2,−︸ ︷︷ ︸
>0

⎛
⎜⎜⎜⎝3

2
μ+

√
μ2

4
− F̃w

ε︸ ︷︷ ︸
>0

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ > 0

where we used

• 0 < f(W ) < −F̃w(W −W2) for W ∈ (0,W2),

• W = W2 +
ε
F̃w

ν2,−V along the unstable eigenspace, and

• μ > 0 since c > 1.
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Finally, along the line corresponding to η1,− at (0, 0)
T we compute

n1Φ = V +
ε

Fw
ν1,−

(
μV +

1

ε
f(W )

)

> V +
ε

Fw
ν1,−

(
μV +

Fw

ε
W

)
(13.25)

= V

(
1 +

ε

Fw
ν1,− (μ+ ν1,−)

)

= V

(
1 +

ε

Fw

(
−μ

2
−
√

μ2

4
− Fw

ε

)(
μ

2
−
√

μ2

4
− Fw

ε

))

= V

(
1− ε

Fw

(
μ2

4
−
(
μ2

4
− Fw

ε

)))
= 0

where now it has been used that

• ε
Fw

ν2,− < 0,

• W = ε
Fw

ν1,−V along the line in question, and

• f(W ) < FwW for any W > 0 which is at least true for the sublinear bistable
alignment term f1(w) = αw(Λ2 − w2).

We have hereby shown the positive (forward) invariance of the proposed triangle un-
der the flow of the system. The same computations furthermore show that the unstable
manifold of the point (W2, 0)

T lies between the corresponding unstable eigenspace and
the W -axis at least for small negative values of W −W2. Since there cannot be any
fixed point in the interior of the investigated triangle, the unstable manifold of the point
(W2, 0)

T has to reach the point (0, 0)
T and we have established the desired heteroclinic

orbit.

The calculations for the other possible waves are very similar. We will briefly show
how the invariant domains look like and how their invariance is shown.

For waves of velocity c > c∗ connecting the state (W3 = −Λ, 0)T to (0, 0)
T we may

choose the triangle being bounded by the negative W -axis, the line corresponding to the
eigenvector η1,+ at the origin and the unstable eigenspace at outer equilibrium point.
The inner normals can be written as

n0 = (0, 1), n1 =
(
−1, ε

Fw
ν1,−

)
, n3 =

(
1,− ε

F̃w

ν3,−

)

and we compute

n0Φ = −μV − 1

ε
f(W )

> 0 for V = 0,W < 0,
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along the relevant part of the W -axis,

n1Φ = −V − ε

Fw
ν1,−︸︷︷︸
<0

⎛
⎜⎝μV +

1

ε
f(W )︸ ︷︷ ︸

>FwW=εν1V

⎞
⎟⎠

> −V
(
1− ε

Fw

(
μ

2
+

√
μ2

4
− Fw

ε

)(
μ− μ

2
−
√

μ2

4
− Fw

ε

))
= 0,

along the face corresponding to the eigenvector η1,+, and finally

n3Φ = V +
ε

F̃w

ν3,−︸ ︷︷ ︸
>0

⎛
⎜⎜⎝μV +

1

ε
f(W )︸ ︷︷ ︸

>F̃w(W−W3)=εν3,−V

⎞
⎟⎟⎠

> V

⎛
⎜⎜⎝1 +

ε

F̃w

ν3,− (μ+ ν3,−)︸ ︷︷ ︸
≥0 f. c>c∗

⎞
⎟⎟⎠

≥ V > 0,

from which again positive invariance of the triangle follows.

We are next concerned with velocities c ∈ (0, c∗) and waves connecting the non-
polarized W = 0-state to the fully right aligned W = W2 = Λ-state. Our invariant
triangle now lies in the upper right quadrant of the W -V -plane and is bounded by the
positive W -axis, the line given by the eigenvector η1,− at the origin and the stable
eigenspace at the point (W2, 0)

T . The non-normalized inner normals to these faces of
the triangle read

n0 = (0, 1), n1 =
(
1,− ε

Fw
ν1,+

)
, n2 =

(
−1, ε

F̃w

ν2,+

)
.

We now check for negative (backward) invariance by computing

n0Φ = −μV − 1

ε
f(W ) < 0

along the W -axis,

n1Φ = V +
ε

Fw
ν1,+

⎛
⎜⎝μV +

1

ε
f(W )︸ ︷︷ ︸

<FwW=εν1,+V

⎞
⎟⎠

< V

(
1− ε

Fw

(
μ

2
−
√

μ2

4
− Fw

ε

)(
μ− μ

2
+

√
μ2

4
− Fw

ε

))

= V

(
1− ε

Fw

(
μ2

4
− μ2

4
+

Fw

ε

))
= 0,

along the line corresponding to the eigenvector ν1,+, and along the line being determined
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by the the eigenvector ν2,+ we find

n2Φ = −V − ε

F̃w

ν2,+︸ ︷︷ ︸
>0

⎛
⎜⎜⎝μV +

1

ε
f(W )︸ ︷︷ ︸

<F̃w(W−W2)=εν2,+V

⎞
⎟⎟⎠

< −V

⎛
⎜⎝1 +

ε

F̃w

ν2,+ (μ+ ν2,+)︸ ︷︷ ︸
<0

⎞
⎟⎠

≤ −V < 0.

For the last calculation we used that for 0 < c < 1 the parameter μ becomes negative
and that ν2,+ is smaller than −μ if in addition c < c∗. We thus have found negative
invariance of the triangle, and we conclude by time reversion that the left branch of the
stable manifold at the saddle (W2, 0)

T can only come from the origin.

The last case we will treat explicitely is the one of a wave with speed c ∈ (0, c∗)
connecting the W = 0-state with the state W = W3 = −Λ. The triangle of interest
is now bounded by the negative W -axis, the line given by the eigenvector η1,− at the
origin and the stable eigenspace of the linearization at the point (W3, 0)

T .

The inner normals are now

n0 = (0,−1), n1 =
(
−1, ε

Fw
ν1,+

)
, n2 =

(
1,− ε

F̃w

ν2,+

)
,

and the usual computations

n0Φ = μV +
1

ε
f(W ) < 0,

n1Φ = −V − ε

Fw
ν1,+

(
μV +

1

ε
f(W )

)

< −V
(
1 +

ε

Fw
ν1,+(μ+ ν1,+)

)

= −V
(
1− ε

Fw

(
μ

2
−
√

μ2

4
− Fw

ε

)(
μ− μ

2
+

√
μ2

4
− Fw

ε

))
= 0,

and

n3Φ = V +
ε

F̃w

ν3,+

(
μV +

1

ε
f(W )

)

< V︸︷︷︸
<0

⎛
⎜⎜⎜⎝1 +

′
ε

F̃w

ν3,+︸ ︷︷ ︸
<0

(μ+ ν3,+)︸ ︷︷ ︸
<0

⎞
⎟⎟⎟⎠ < 0

again establish negative invariance of this triangle.

The cases with negative wave speeds will not be dealt with explicitely here, since
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they are precise mirror images of those cases treated above.

Figure 13.3: Sketch of possible
traveling waves as heteroclinic orbits
in the W -W ′-plane. The variable U
has to be considered as third dimen-
sion and U has to be calculated by
U = U1+

W
c

. The colors code for the
admissable velocities for these waves:
c < −c∗ < c < 1 < −c∗ < c < 0 <
c < c∗ < 1 < c < c∗ < c. Dashed ar-
rows denote orbits whose existence is
not shown, solid arrows correspond
to orbits which are known to exist.

If the wave velocity lies in the oscillatory regime, |c| ∈ (c∗, c∗), then we cannot
conclude the existence of heteroclinic orbits by means of invariant domains. That means,
that for such c we cannot assert the existence of heteroclinic orbits connecting any of
the totally aligned states with the symmetric state W = 0. The possible non-existence
of this type of orbits on the other hand allows for the existence of orbits connecting the
different totally aligned states W = ±U with each other via a saddle-saddle connection.

Since there is no particular symmetric state involved in this picture it makes no sense
to express the value of these states in terms of U1. However, the equation

U =
1

c
(W + C)

with some constant C still has to be satisfied. We can therefore express the constant C

in terms of the state W2 = U2 as

C = (c− 1)U2

and thus compute

−W3 = U3 =
c− 1

c+ 1
U2 (13.26)

from which we conclude that due to the requirement that U shall be positive these orbits
can only exist for |c| ∈ (1, c∗).

More precisely, there may exist an orbit connecting the state

W2 = U2 > 0

to the state
W3 = −U3 = −c− 1

c+ 1
U2

for −c∗ < c < −1 and an orbit connecting the state

W2 = U2 > 0

to the state
W3 = −U3 = −c− 1

c+ 1
U2
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for 1 < c < c∗.

Figure 13.4: Illustration of the possible
emergence of a heteroclinic orbit connect-
ing the state U2 = W2 to the state −W3 =
U3 = (c − 1)U2/(c + 1). The saddle-node
connection existing for c > c∗ (below, for
c � c∗) turns into a spiral which may ap-
proach the stable manifold of the saddle
at W3 as c is decreased (above) and may
finally merge with it to form the saddle-
saddle orbit. The small arrows indicate
the stable and unstable eigenspaces of the
linearizations.

�

�

�

�

How this latter additional orbit will emerge for a certain wave velocity is sketched
in figure 13.4. Once the node at W = V = 0 has turned into a spiral, the trajectory
between the saddle at W2 and this point will have to cross the W -axis. For a very
particular velocity c it might do so at the appropriate counterpart equilibrium

−W3 =
c− 1

c+ 1
W2

of opposite polarization and the saddle-saddle connection comes into existence.
All non-oscillatory heteroclinic orbits which are known to exist or whose existence

cannot be excluded are shown in figure 13.3.

Remark 13.4. We remark that here the value of the particle velocity v enters via the
dependence on μ. Condition (13.12) for the eigenvalues of the linearization around the
symmetric steady state to be real reads

1

ε

(
c− v2

c

)2

≥ 4εFw (13.27)

and leads to the critical velocities

± c̃∗(v) = ±
√

2a+ v2 − 2
√

a (a+ v2) (13.28)

±c̃∗(v) = ±
√

2a+ v2 + 2
√

a (a+ v2) = ± v2

c̃∗(v)
(13.29)

where a denotes the product
a = ε∂wf |W=0 .

These critical velocities show a similar behavior as for v = 1. In particular, as a

tends to zero, both of them tend to v. To give an impression for the dependence of the
curves c̃∗(a; v) and c̃∗(a; v) on a for different values of the velocity v, figure 13.5 shows
them for v = 0.5 and v = 2.5.

Example. Let us briefly discuss the particular parameter setting

α =
1

3
, Λ = 1, ε = 1
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Figure 13.5: Dependence of c̃∗ (black, upper branch) and c̃∗ (gray, lower branch)
depending on a = εFw for particle velocities v = 0.5 (left) and v = 2.5 (right).

to make the values computed above a little bit more accessible. We first find as critical
velocities

c∗ =

√
2

3
+ 1− 2

√
4

9
=

1√
3

c∗ =

√
2

3
+ 1 + 2

√
4

9
=
√
3.

We can now choose for example the velocities

c1 = 1 +
√
2 >

√
3 = c∗

c2 =
√
2− 1 <

1√
3
= c∗

to obtain corresponding values of μ being

μ1 = 2 and μ2 = −2

For the eigenvalues of the linearized problem at W = 0 we now find

ν±,1 = −1±
√

2

3
< 0 for c = c1

ν±,2 = 1±
√

2

3
> 0 for c = c2

and conclude that the origin is a stable node for c = c1 and an unstable node in case of
c = c2. More generally, we find a stable node at zero whenever c > c∗ and an unstable
one whenever 0 < c < c∗.

The corresponding eigenvectors take the form

η±,1 =

(
−3±

√
6

1

)
=

(
−3

(
1∓

√
2
3

)
1

)
for c = c1
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η±,2 =

(
3±

√
6

1

)
=

(
3
(
±
√

2
3

)
1

)
for c = c2

The linearization around W = ±Λ = ±1 yields the eigenvalues

ν̃±,1 = −1±
√

5

3
for c = c1

ν̃±,2 = 1±
√

5

3
for c = c2.

and corresponding eigenvectors

η±,1 =

⎛
⎜⎝

3
2 ±

√
20
3

1

⎞
⎟⎠ =

⎛
⎜⎝

3
2

(
1±

√
5
3

)
1

⎞
⎟⎠ for c = c1

η±,2 =

⎛
⎜⎝−

3
2 ±

√
20
3

1

⎞
⎟⎠ =

⎛
⎜⎝−

3
2

(
1∓

√
5
3

)
1

⎞
⎟⎠ for c = c2

In figure 13.6, we sketched the flow field of system (13.6) in the W -W ′-plane for the
parameters chosen above and positive velocities.

We summarize the results in the following proposition.

Proposition 13.5. Consider system (9.2) on R× (0,∞) with

f(u,w) = αw(Λ2 − w2)

and parameters α,Λ, ε > 0. Let c∗ > 1 and c∗ ∈ (0, 1) be defined by (13.14) and (13.15),
respectively. Then, the system allows traveling wave solutions of the following four types:

1. fast waves traveling to the right with velocity c > c∗ > 1, connecting one of the
states w = ±Λ, u = ± 1

c +C with the state w = 0, u = C for some constant C ≥ 1
c

2. slow waves traveling to the right with velocity 0 < c < c∗ < 1, connecting the state
w = 0, u = C with one of the states w = ±Λ, u = ± 1

c +C for some constant C ≥ c

3. slow waves traveling to the left with velocity −c∗ < c < 0, connecting one of the
states w = ±Λ, u = ∓ 1

c +C with the state w = 0, u = C for some constant C ≥ − 1
c

4. fast waves traveling to the left with velocity c < −c∗ < −1, connecting the state
w = 0, u = C with one of the states w = ±Λ, u = ∓ 1

c + C for some constant
C ≥ − 1

c

Remark 13.6. We finally note that by gluing together a slow and a fast wave, both
traveling into the same direction with some plateau in between, we obtain a traveling
hump of increasing width.
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Figure 13.6: Flow fields for system (13.6) with parameter values ε = 1,Λ = 1, α = 1
3
. Above:

μ = 2 (c =
√
2+ 1), below: μ = −2 (c =

√
2− 1). Red : Orbit connecting the stationary points.

The blue dotted arrows indicate the eigenvectors of the linearizations around the equilibria.
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13.5 Alignment terms depending on particle density

13.5.1 Equilibria of the system and compatible wave speeds

If we now allow f to depend on u then according to remark 13.1 we have to solve

W ′′(ξ) + μW ′(ξ) +
1

ε
g(W ) (13.30)

or equivalently the system

W ′ = V

V ′ = − 1
εg(W ) −μV

(13.31)

where
g(W ) := f

(
W + C

c
,W

)
.

Our first goal will thus be to find the zeros of g. With the sublinear bistable form of
f we find for example

0 = gs,1(W ) ≡ fs,1

(
W + C

c
,W

)

= αW

(
1−

(
cW

W + C

)2
)
exp

[
−β2

c2
(W + C)2

]

where we have put Λ to one for simplicity of the calculations and recalling the fact that
Λ = 1 corresponds to the natural case that the stable equilibria of f are just the totally
aligned states W = ±U rather than W = ±ΛU . More precisely, for Λ = 1, the equilibria
correspond to the symmetric state

ur = ul =
1

2
U1

and the totally aligned states

(ur = 0, ul = U3 = −W3 > 0) and (ur = U2 = W2 > 0, ul = 0).

We note that gs,1 diverges at W = −C. We will see in an instant that C is determined
by c and the value of U at the trivial equilibrium W = 0. The divergence of gs,1 stems
from that of fs,1 as u approaches 0 along a path not belonging to the set {w ∈ [−u, u]}.
Since we do not look for solutions in the regime |W | > U this divergence is not an
obstacle to our computations. The exponential term is always positive so that the zeros
are given by

1. W1 = 0, U1 > 0, from which we deduce C = cU1, and we find the point of
divergence of gs,1 at W∗ = −cU1. If we choose U1 = 1, we obtain C = c.

2. W2 = U2. This yields

W2 =
W2 + C

c
=

W2 + cU1

c
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and thus
U2 = W2 = U1

c

c− 1
. (13.32)

We require U2 ≥ 0, and since U1 > 0 we obtain as admissible velocities for this
case:

c ∈ (−∞, 0) ∪ (1,∞).

It should be noted that U2 tends to infinity as c approaches 1 from above. We
also note that for c > 1 we have W∗ < 0 so that the divergence of gs,1 cannot take
place between W1 = 0 and W2 > 0 whereas for c < 0 we have

c

c− 1
< −c

which now assures that the equilibrium value W2 lies between 0 and W∗.

3. W3 = −U3. We now find

cU3 = W3 + C = −U3 + cU1

or
−W3 = U3 = U1

c

c+ 1
, (13.33)

which allows the following velocities to assure nonnegativity of U3:

c ∈ (−∞,−1) ∪ (0,∞), (13.34)

where again U3 grows to infinity as c approaches −1 from below. As in case 2 we
find the critical point W∗ for no admissible c lying between W1 = 0 and W3.

We conclude that we always find one fixed point at W = 0. If |c| > 1, we find two
more equilibria whereas for 0 < |c| < 1 there is only one further equilibrium.

Remark 13.7. We note that the equilibria are completely independent of ε!

13.5.2 Linearization around the equilibria

If we ask now for the linearization around the asymptotic states (Ui,Wi) (i = 1, 2, 3) we
have to compute the derivatives of g at the particular values Wi.

For the sublinear bistable alignment term with exponential decay we obtain

g′s,1(W ) = α

(
1− c2W 2

(C +W )
2

(
1 +

2C

C +W

)
+ 2β2

(
W 3

C +W
− W (C +W )

c2

))
E

where now E is an abbreviation for

E = exp

[
−β2

c2
(W + C)2

]
.

Inserting the equilibrium values computed above, we obtain the following values.

1. At W1 = 0 we find
g′s,1(0) = α exp

[
−β2U2

1

]
(13.35)
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Figure 13.7: Null clines of V ′ = −μV − 1
ε
gs,1(W ) in W -V -phase space. Parameters: α = ε =

2.0, β2 = 2, U1 = 1, leading to c∗ ≈ 1.94. Colors code for the signs of V ′ and W ′: green:
W ′ > 0, V ′ > 0, pale green: W ′ < 0, V ′ > 0, pale red : W ′ > 0, V ′ < 0, red : W ′ < 0, V ′ < 0.
left, from top: c = − 1

3
∈ (−c∗, 0), c = − 4

5
∈ (−1,−c∗), c = − 6

5
∈ (−c∗,−1), c = −4 < −c∗.

right, from top: c = 1
3
∈ (0, c∗), c = 3

4
∈ (c∗, 1), c = 3

2
∈ (1, c∗), c = 3 > c∗.
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which is completely independent of the velocity c and always positive.

2. At W2 = U2 = U1
c

c−1 we have

g′s,1

(
U1

c

c− 1

)
= −2αc− 1

c
exp

[
−β2 c2

(c− 1)
2U

2
1

]
. (13.36)

Note that this is negative for the admissible values of c for this point.

3. At W3 = −U3 = −U1
c

c+1 we finally find

g′s,1

(
−U1

c

c+ 1

)
= −2αc+ 1

c
exp

[
−β2 c2

(c+ 1)
2U

2
1

]
. (13.37)

This is again negative for the allowed values of c.

Let us now examine the linear stability of the found equilibria. As in section 13.3 we
write

μ =
1

ε

(
c− 1

c

)
to obtain

W ′′ + μW ′ = −1

ε
g(W ) = −1

ε
f

(
W + C

c
,W

)
(13.38)

and from this the linearizations around the equilibria Wi:

W̃ ′′ + μW̃ ′ = −1

ε
g′(Wi)W̃ (13.39)

where W̃ = W −Wi. If we abbreviate Gi := g′(Wi) we readily rewrite equation (13.11)
for the eigenvalues of the linearized equation at W1 = 0 to

ν1,± = −μ

2
±
√

μ2

4
− G1

ε
= −μ

2
±
√

μ2

4
− αE1

ε
(13.40)

where we used the additional abbreviation

E1 = exp
[
−β2U2

1

]
.

We observe that the behavior of the eigenvalues now depends on the steady state
value of U . Again, we are looking for real roots and thus have to require

μ2

4
≥ Gi

ε

which now translates into

1

ε

(
c− 1

c

)2

≥ 4α exp
[
−β2U2

1

]
. (13.41)

In contrast to the case of f being independent of U , this inequality can now be
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fulfilled for any given c ∈ R\{−1, 0, 1} if U1 is only chosen large enough, namely:

U2
1 > − 1

β2

(
2 log

[∣∣∣∣c− 1

c

∣∣∣∣
]
− log[4αε]

)
(13.42)

which is trivially fulfilled if the right hand side is negative. In figure 13.8, we show the
dependence of the right hand side of (13.42) on positive c and the product αε and note
that the picture is symmetric with respect to the αε-axis. If we are conversely given
an asymptotic equilibrium value U1 at W1 = 0 we obtain again four critical velocities,
depending on αε and U1 in the following way:

± c∗ = ±

√√√√1 + 2αε exp[−β2U2
1 ]

(
1 +

√
exp[β2U2

1 ]

αε
+ 1

)
(13.43)

±c∗ = ±

√√√√1 + 2αε exp[−β2U2
1 ]

(
1−

√
exp[β2U2

1 ]

αε
+ 1

)
= ± 1

c∗
. (13.44)

1

1

2

2

3

3

4

4

5

5
6

67
78 89 9

0 1 2 3 4
0

1

2

3

4

ΑΕ

c

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

4.25 4.5
0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

2.5

ΑΕ

U1

Figure 13.8: Left : minimal required value of U2
1 depending on c and the product αε. In the

white regions, the right hand side of (13.42) is negative so that any value of U1 > 0 is allowed.
Right : critical velocity c∗ depending on U1 and the product αε. In both cases: β = 1.

Again, if the eigenvalues ν1,± are real, both have the same sign and we obtain a node
whose stability depends on the wave speed c:

ν1,±

{
>

<

}
0 ⇐⇒ μ =

1

ε

(
c− 1

c

){
<

>

}
0 ⇐⇒ c ∈

{
(−∞,−1) ∪ (0, 1)

(−1, 0) ∪ (1,∞)

}
. (13.45)

To summarize the behavior of the eigenvalues in dependence on the wave speed c

and the product a = εg′(W̄ ) we show a bifurcation diagram in figure 13.9.
Just for completeness we note that in case of non-real eigenvalues, the sign of their

real parts again only depends on the sign of μ and we obtain a spiral point with stability
depending on whether |c| is bigger or smaller than 1.
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(0 0)

(0 0)

a

c

Figure 13.9: Behavior of the
eigenvalues of the linearization
at equilibria depending on a =
εg′(W̄ ) and wave speed c. The
signs of the real parts of the
eigenvalues are indicated for each
region where parentheses are
used to indicate a pair of com-
plex conjugate eigenvalues.

Asking for the eigenvalues of the equilibrium at

W2 =
c

c− 1
U1

we obtain

ν2,± = −µ
2
±
√
µ2

4
− G2

ε
= −µ

2
±

√√√√µ2

4
+ 2

α

ε

c− 1

c
exp

[
−β2

c2

(c− 1)
2U

2
1

]
. (13.46)

We recall that this equilibrium can only exist if the velocity satisfies

c ∈ (−∞, 0) ∪ (1,∞)

which assures the positivity of the radicand and yields two real eigenvalues of opposite
sign.

Similarly, we find at
W3 = − c

c+ 1
U1

the eigenvalues

ν3,± = −µ
2
±
√
µ2

4
− G3

ε
= −µ

2
±

√√√√µ2

4
+ 2

α

ε

c+ 1

c
exp

[
−β2

c2

(c+ 1)
2U

2
1

]
(13.47)

which are again real and of opposite sign for each velocity c that allows the existence of
this equilibrium.

We finally note that the eigenvectors of equation (13.38) at the equilibrium point Wi

can be written as −
εµ
Gi
±
√(

εµ
2Gi

)2
− ε

Gi

1


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which is the same as ⎛
⎜⎝

ε
Gi

νi,∓

1

⎞
⎟⎠ (13.48)

corresponding to the eigenvalues νi,±.
Let us summarize the behavior of the eigenvalues in the different regimes of figure 13.9

and in particular upon crossing the lines where the character of the equilibria changes.

1. We start with a = εg′(W̄ ) > 0, that is, with the inner equilibrium W = 0 where
the derivative of the alignment term with respect to W is positive.

• Starting at large positive wave speeds c > c∗(a) we are in region IV and
observe two real negative eigenvalues. We are thus dealing with a stable node
in this parameter regime.

• Crossing the line c = c∗(a) we enter region III where 1 < c < c∗(a) and there is
a pair of complex conjugate eigenvalues with negative real part, corresponding
to a stable spiral point.

• As c decreases further and passes through one, the real part of the complex
conjugate pair changes sign and we encounter a Hopf bifurcation with bifur-
cation parameter 1−c. Whether this bifurcation is subcritical or supercritical
depends on the higher order terms of the alignment term f . This can be seen
by defining

ω0 :=

√
g′(0)
ε

and Ṽ := ω−1
0 V

and rewriting system (13.31) in the form

d

dξ

(
Ṽ

W

)
=

(
− 1

ε

(
c− 1

c

)
Ṽ − 1

ω0ε
g(W )

ω0Ṽ

)

=

(
0 −ω0

ω0 0

)(
Ṽ

W

)
+

(
− 1

ε

(
c− 1

c

)
Ṽ + ω0W − g(W )

ω0ε

0

)

=:

(
0 −ω0

ω0 0

)(
Ṽ

W

)
+

(
φ(Ṽ ,W )

0

)
.

We already recognized that

(W = 0, U = U1 > 0)

is an equilibrium point of the system whose linearization at this point has at
the parameter value c = 1 a pair of purely imaginary eigenvalues ±ıω0 which
are nonzero as long as g′(0) > 0. For bilinear alignment terms this condition is
always satisfied. We furthermore know that the real part of these eigenvalues
for c �= 1 is given by

1

ε

(
1

c
− c

)
and thus the pair crosses the imaginary axis transversally as c passes through
one. We compute the first Lyapunov coefficient l1(0) to be zero (cf. appendix
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B) at the bifurcation point and therefore, the bifurcation is degenerate.

That periodic orbits cannot exist for c different from one can also be deduced
from physical considerations. Recalling the equation

Ẅ + μẆ +
1

ε
g(W ) = 0

for W and noting that μ = 0 if and only if c = ±1 we observe that we deal
with an equation describing an anharmonic oscillator which exhibits periodic
orbits only in case of vanishing dissipation μ = 0.

It should also be noted that a global bifurcation takes place at c = 1 since
the positive equilibrium point characterized by

W2 = U2 =
c

c− 1
U1

vanishes to W = ∞ as c approaches one from above and is not present
anymore for c < 1.

The flow field in the W -V -space for different c close to one is visualized in
figure 13.10. It can be seen that there will always be a heteroclinic orbit
connecting the equilibria at

W = W3 = − c

c+ 1
U1

and the trivial equilibrium W = 0.

• Passing through the line c = c∗(a) we enter region I where we have a > 0 and
0 < c < c∗(a). Here, the eigenvalues are real again and now are positive. We
thus find an unstable node.

• Decreasing the wave speed further towards zero, one of the positive, real
eigenvalues will decrease to zero whereas the other one diverges to +∞ with
order O(c−1).

• For negative speeds c we observe the symmetric behavior with all signs of the
eigenvalues switched.

2. Let us now briefly discuss the behavior of the eigenvalues for a < 0 which corre-
sponds to the linearization around the outer equilibria

W = ±U �= 0.

For any c > 0 we are in region V and there are two real eigenvalues of opposite
sign and we therefore deal with a saddle. The negative eigenvalue will tend to zero
as c does while the positive one grows to +∞. as c passes through zero, both of
these eigenvalues change their sign, and the saddle is recovered also for negative
speeds.

3. Let us finally discuss the behavior close to the c-axis. We will assume that the
derivative g′(W̄ ) is fixed and examine the behavior of the eigenvalues as ε decreases
to zero.
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• Let us start with the case g′(0) > 0, c > 1. That is, we choose a fixed velocity
larger than one and look at the linearization around the inner equilibrium
W = 0. Starting at large values of ε we are in region III with a pair of
complex conjugate eigenvalues with negative real part of increasing size. As ε
decreases we reach the line c = c∗(εg′(0)) and the eigenvalues merge and for
further decreasing ε become distinct, real and negative as we enter domain
IV. One of those now decreases and tends to −∞ at rate O(ε−1). The other
one increases but remains bounded away from zero tending to some finite
negative value.

• Doing the same procedure for fixed g′(0) > 0 and c ∈ (0, 1) we start in region
II with an unstable focus with a pair of complex conjugate eigenvalues with
positive real part. Passing through the line c = c∗(εg′(0)) these eigenvalues
become real and positive to give rise to an unstable node. As ε tends to zero,
the larger of these eigenvalues tends to +∞ at rate O(ε) whereas the smaller
one remains bounded and approaches a finite positive value.

• Approaching the c-axis along the curve c = c∗(εg′(0)) for fixed g′(0) > 0 we
have a double negative eigenvalue which is given by

ν±(ε) = − 1

2ε

(
c∗(εg′(0))− 1

c∗(εg′(0))

)

= − 1

2ε

1 + 2εg′(0) + 2

√
εg′(0) + ε2g′(0)2 − 1√

1 + 2εg′(0) + 2

√
εg′(0) + ε2g′(0)2

= −1

2

2g′(0) + 2
√

g′(0)
ε + g′(0)2√

1 + 2εg′(0) + 2

√
εg′(0) + ε2g′(0)2

= −
√

g′(0)
ε

and therefore diverges to −∞ at rate O(ε−
1
2 ). The previous computation

particularly shows that decreasing both, the alignment strength encoded in
g′(0) and the diffusion coefficient ε, at the same rate leads in the limit to a
finite negative eigenvalue which would give rise to a stable node.

• Approaching the c-axis from the right along the line c = 1 there is a pair of
purely imaginary eigenvalues having the values

±ı
√

g′(0)
ε

.

We therefore may obtain as possible limits 0, ±ı∞, or ±ı · const., depending
on the way the limit a ↘ 0 is established. In the particular case of letting ε

go to zero while holding α constant, this pair of eigenvalues gives rise to ever
faster oscillatory behavior.

Remark 13.8. The effect of particle velocities v �= 1 now enters not only the parameter
μ but also the right hand side g. We recall that the alignment term now reads

g(w) = f
(v
c
(W + C), W

)
.
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Figure 13.10: Flow field of system (13.31) in the W − V -plane. Parameters: α = 0.2, ε = 0.2,
U1 = 1.0, leading to c∗ ≈ 1.17, c∗ ≈ 0.85, sublinear alignment term (12.8). Left : flow field
around the equilibria at W = 0 and W = W3 = − c

c+1
for c = 1.5 > c∗, c = 1.2 & c∗,

1 < c = 1.1 < c∗, 1 . c = 1.01 < c∗, c∗ < c = 0.99 . 1 (from top), right : flow field around
W = 0 and W = − c

c+1
U1 for c∗ < c = 0.9 < 1, c = 0.82 . c∗, c = 0.6 < c∗, and for

completeness the whole flow field with all equilibria and the zoom around W = W2 = c
c−1

U1

for c = 1.1, the latter two without exponential term for better visualization (from top). The
heteroclinic orbits and the absence of periodic orbits can be easily seen in each of the images.
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Clearly,
(U := U1,W = 0)

is an equilibrium state, and we conclude that the constant of integration C takes the
value

C =
c

v
U1.

The other equilibria are given by

W2 = U2 =
c

c− v
U1 and −W3 = U3 =

c

c+ v
U1.

The derivative of gs,1 (corresponding to f = fs,1) with respect to W is

g′s,1(W )

= α

(
1 +

c2

v2
W 2

(W + C)
2

(
2W

W + C
− 3

)
− 2β2W (W + C)

(
v2

c2
− W 2

(W + C)2

))
E

where E denotes the exponential term

E = exp

[
−β2 v

2

c2
(W + C)

2

]
.

Putting W to zero we find the following value

g′s,1(0) = α exp
[
−β2U2

1

]
which is the same as observed for v = 1.

At the outer equilibria W2 = U2 and W3 = −U3 we calculate

g′s,1(W2) = α
(
1 +

(
2
v

c
− 3

))
exp[−β2U2

2 ]

= −2αc− v

c
exp

[
−β2 c2

(c− v)
2U

2
1

]

and

g′s,1(W3) = −2α
c+ v

c
exp

[
−β2 c2

(c+ v)
2U

2
1

]
.

It remains to calculate the critical wave speeds c∗ and c∗. These are given by

± c̃∗(U1, v) = ±

√√√√v2 + 2a

(
1 +

√
1 +

v2

a

)

= ±

√√√√v2 + 2εα exp [−β2U2
1 ]

(
1 +

√
1 +

v2 exp [β2U2
1 ]

εα

)

=
1

c̃∗(U1, v)
. (13.49)
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We observe a similar symmetry as for v = 1 but now the forbidden velocities are ±v.

13.5.3 Phase plane analysis

To conclude the existence of heteroclinic orbits we are now going to analyze the behavior
of system (13.31) in the W -V -phase plane as already done for the alignment term without
dependence on U in section 13.4.

We now choose a different invariant triangle which is still bounded by the positive
W -axis and the line corresponding to the eigenvector η1,+ at (0, 0)T but now by the line
{W = W2} rather than the unstable eigenspace of the linearization around (W2, 0)

T .
That this does not make a difference becomes immediately clear if we recall that the
outer equilibria are always saddles and thus by the special form of the eigenvectors,
the stable eigenspaces are always given by lines of positive slope whereas the unstable
eigenspaces have negative slope. The situation is indicated in figure 13.11.

�

��
�

Figure 13.11: Invariant domain in phase plane for waves connecting W2 = U2 to (W1 = 0, U =
U1) with velocity c > c∗(U1). The colored arrows denote the inner unit normals (blue: n1 on
the line corresponding to the eigenvector η1,+ at the origin, red : n2 on the line {W = W2},
green: n0 on the W -axis), the black arrows indicate the flow field along the boundary of the
invariant triangle. Magenta arrows indicate the remaining eigenvectors, the yellow curve shows
V ′ = 0.

For the invariance along the first two segments we can employ the computations from
section 13.4 with Fw being replaced by G1 if we can establish the estimate

g(W ) < G1W for 0 < W < W2.

We do so by calculating

g(W ) = αW

(
1−

(
cW

W + cU1

)2
)

︸ ︷︷ ︸
<1 f.e.W>0

exp

[
−β2

c2
(W + cU1)

2

]
︸ ︷︷ ︸
<exp

[
− β2

c2
c2U2

1

]
f.e. W>0

< αW exp
[
−β2U2

1

]
= G1W.

(13.50)

Along the line {W = W2} we observe that the inner normal is given by n2 = (−1, 0)
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and that we are in the lower half space and thus

n2Φ = −V > 0

along that line. Again, we conclude the existence of a heteroclinic orbit connecting
(W2, 0)

T to the origin.
The modifications for the remaining cases are very similar, and we will not treat

them in detail here.

A note on superlinear alignment terms

If we consider system (9.2) with a superlinear alignment term, the estimate in (13.25)
fails since G is no longer bounded by its linearization around W = 0. Still trying to find
an appropriate invariant domain we shall look for a line V = −G̃1W with G̃1 > 0 such
that along this line, the vector field points towards the half plane above the line, that is

(μ− G̃1)G̃1W − 1

ε
g(W ) > 0 for each W ∈ (0,W2)

Let us for example consider the alignment term f̃2,s and omit the exponential term
for these calculations as it only makes the alignment term smaller for positive particle
densities. Thus, any estimate we obtain in the following also holds in the case with
exponential crowding term.

We therefore have to check whether the following term remains positive for all W ∈
(0,W2):

ϕ(W ) := G̃1(μ− G̃1)−
α

ε
− α

ε

cW

W + cU1

(
ν − (ν + 1)

cW

W + cU1

)
.

In order to guarantee positivity for small W we first have to require

G̃1(μ− G̃1)−
α

ε
≥ 0

and deduce that we have to seek G̃1 within the range of the eigenvalues:

0 <
μ

2
−
√

μ2

4
− α

ε
≤ G̃1 ≤ μ

2
−
√

μ2

4
− α

ε
< μ. (13.51)

That these eigenvalues are real and positive is clear since we are in the velocity range
c > c∗.

The next observation is that ϕ has precisely one local minimum between 0 and W2

which is determined by

0 = ϕ′(W ) − α

ε

c2U1

(W + cU1)
2

(
ν − 2(ν + 1)

cW

W + cU1

)
.

For cU1 +W > 0, this equation is equivalent to

ν(W + cU1)− 2(ν + 1)cW = 0
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and has the solution

Wmin =
cν

2(ν + 1)c− ν
U1

(
<

c

c− 1
U1 ≡W2

)
.

We are therefore on the safe side if we can assure that ϕ(Wmin) is not smaller than
zero. We first calculate

cWmin

Wmin + cU1
=

νc2U1

(2(ν + 1)c− ν)
(

cν
2(ν+1)c−νU1 + cU1

)
=

νc

ν + (2(ν + 1)c− ν)

=
ν

2(ν + 1)

and plug this into ϕ:

ϕ(Wmin) = G̃1(μ− G̃1)−
α

ε
− α

ε

ν

2(ν + 1)

(
ν − (ν + 1)

ν

2(ν + 1)

)

= G̃1(μ− G̃1)−
α

ε
− α

ε

ν2

4(ν + 1)
.

This has to be non-negative,

0 ≤ −G̃2
1 + μG̃1 −

α

ε

(
1 +

ν2

4(ν + 1)

)

which is true if G̃1 lies between the roots

μ

2
± 1

2

√
μ2 − 4

α

ε

(
1 +

ν2

4(ν + 1)

)
.

This condition is just a further refinement of (13.51).
In order to find such a G̃1 we have to require the positivity of the discriminant and

obtain

εμ2 ≥ 4α

(
1 +

ν2

4(ν + 1)

)
which is just another version of (13.12) with Fw = α being replaced by the larger value

α

(
1 +

ν2

4(ν + 1)

)
.

In particular, we obtain the same shape for the critical velocity as in (13.16), namely

c∗sup =

√
1 + 2asup + 2

√
asup(asup + 1) (13.52)

but now with asup being given by

asup = αε

(
1 +

ν2

4(ν + 1)

)
(13.53)
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rather than a = αε.
For the other types of waves connecting non-polarized with totally aligned states, we

can do similar calculations yielding similar results.
We should finally note, that the condition c > c∗sup is a sufficient condition for the

existence of a heteroclinic orbit for the superlinear alignment term. We have not checked
for more complicated boundaries of a possible invariant domain than just a triangle.
That means, that we cannot exclude the existence of such orbits for all velocities c

between c∗ and c∗sup but we hope that it became clear that the superlinearity of f

requires c to be genuinly larger than c∗ for such f .
Example 1. Let us again consider a numerical example. We choose

ε = α = 2 β = 1 U1 = 3
4
.

and as velocity c = 4.
From these we obtain the following values:

c

c− 1
=

4

3
,

c

c+ 1
=

4

5
, μ =

15

8

and as equilibria apart from W1 = 0:

W2 = U2 = 1 and W3 = −U3 = −3

5
.

The derivatives of gs,1 at these equilibria are

G1 = 2 exp

[
− 9

16

]
, G2 = −3 exp[−1], G3 = −5 exp

[
− 9

25

]

yielding the eigenvalues

ν1,± = −15

16
±
√

225

256
− exp

[
− 9

16

]
≈

{
−0.38
−1.49

ν2,± = −15

16
±
√

225

256
+

3

2
exp[−1] ≈

{
0.26

−2.13

ν3,± = −15

16
±
√

225

256
+

5

2
exp

[
− 9

25

]
≈

{
0.68

−2.56
.

The corresponding eigenvectors are approximately given by

at W1 :

(
−2.62

1

)
and

(
−0.67

1

)

at W2 :

(
3.87

1

)
and

(
−0.47

1

)
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at W3 :

(
1.47

1

)
and

(
−0.39

1

)
.

We obtain possible waves connecting either of the states

U2 = W2 = 1 or U3 = −W3 =
3

5

with the state
(U1 =

3

4
,W1 = 0),

shown at the top of figure 13.12.

Example 2. Let us as second example consider a wave speed c = 1
4 and an equilibrium

value U1 = 5
4 with the other parameters given as above. The derived parameters are

now
c

c− 1
= −1

3
,

c

c+ 1
=

1

5
, μ = −15

8
.

We note that the second equilibrium does now not exist within the allowed range of
values for U and W whereas the third one is given by

−W3 = U3 =
1

4
.

Furthermore we compute the derivatives at the remaining fixed points as

G1 = 2 exp

[
−25

16

]
and G3 = −20 exp

[
− 1

16

]
,

the resulting eigenvalues of equation (13.38) as

ν1,± ≈
{
1.76

0.12
and ν3,± ≈

{
5.37

−3.50

and finally the approximate corresponding eigenvectors as

at W1 :

(
0.57

1

)
and

(
8.38

1

)

and

at W3 :

(
0.33

1

)
and

(
−0.50

1

)
.

For this parameter setting we only obtain one possible wave connecting now the state

(U1 =
5

4
,W1 = 0)

with the state
U3 = −W3 =

1

4
.
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Figure 13.12: Flow fields for system (13.30) with g = gs,1 and parameter values ε = α = 2, β =
1. Top: μ = 15

8
(c = 4), U1 = 3

4
, Bottom: μ = − 15

8
(c = 1

4
), U1 = 5

4
. Red : Orbit connecting the

stationary points. The blue dotted arrows denote the eigenvectors of the linearizations.
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We conclude with a proposition summarizing the above results:

Proposition 13.9. Consider system (9.2) on R× (0,∞) with

f(u,w) = αw

(
1− w2

u2

)
exp

[
−β2u2

]
and parameters α, ε > 0. Given U1 > 0 set

c∗(U1) :=

√√√√1 + 2αε exp[−β2U2
1 ]

(
1 +

√
exp[β2U2

1 ]

αε
+ 1

)

Then, the system allows traveling wave solutions of the following types:

1. Fast waves traveling to the right with velocity c > 1, connecting either of the states

U = W = U1
c

c− 1
or U = −W = U1

c

c+ 1

with the state (U = U1,W = 0) if c and U1 satisfy

c > c∗(U1).

2. Slow waves traveling to the right with velocity c ∈ (0, 1), connecting the state
(U = U1,W = 0) with the state

U = −W = U1
c

c+ 1

if c and U1 satisfy

0 < c <
1

c∗(U1)
.

3. Slow waves traveling to the left with velocity c ∈ (−1, 0), connecting the state

U = W = U1
c

c− 1

with the state (U = U1,W = 0) if c and U1 satisfy

−1 < c < − 1

c∗(U1)
.

4. Fast waves traveling to the left with velocity c < −1, connecting the state (U =

U1,W = 0) with either of the states

U = W = U1
c

c− 1
or U = −W = U1

c

c+ 1

if c and U1 satisfy
c < −c∗(U1).
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13.6 Constructing a solution by gluing together trav-
eling wave solutions

Let us now try to construct an approximate solution to (9.2) on R × (0,∞) and with
f = fs,1 consisting of two humps, one traveling to either direction and both increasing
in width.

Since the asymptotic state as x→ ±∞ should be of the type

(U = U1,W = 0)

with the same U1, according to proposition 13.9 there is only one pattern to be expected:

1. The front of the right hump traveling with velocity c1 > 0, connecting the state

U3 = −W3 =
c1

c1 + 1
U1

with the state (U = U1,W = 0).

2. The rear of the right hump traveling with velocity c2 ∈ (0, 1), connecting the state

W = 0, Ũ1 =
c2 + 1

c2
U3, W = 0

with the state (U,W ) = (U3,−U3).

3. The rear of the left hump traveling with velocity c3 ∈ (−1, 0), connecting the state

W2 = U2 =
c3

c3 − 1
Ũ1

with the state (Ũ1, 0).

4. The front of the left hump traveling with velocity c4 < −1, connecting the state
(U1, 0) with the state (U2, U2) which implies

U2 =
c4

c4 − 1
U1.

We furthermore note, that monotone wave patterns require in addition

c1 > c∗(U1) c2 <
1

c∗(Ũ1)

c3 > − 1

c∗(Ũ1)
c4 < −c∗(U1).

Example 1 - a symmetric pattern. Using parameters α = ε = 2, β = 1 as
above, we choose as asymptotic particle density at infinity U1 = 3

4 . This leads to a
critical velocity of

c∗ =

√√√√√1 + 8 exp

[
− 9

16

]⎛⎝1 +

√
exp

[
9
16

]
4

+ 1

⎞
⎠ ≈ 3.32.
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To obtain a symmetric solution (which is not at all necessary but convenient) let us
furthermore assume c1 = −c4 and c2 = −c3. The following choices are admissible in the
sense that they allow for monotone traveling wave solutions:

• c1 = 4 = −c4. This leads to the following values of U2 and U3:

U2 =
c4

c4 − 1
U1 =

−4
−5

3

4
=

3

5

U3 =
c1

c1 + 1
U1 =

4

5

3

4
=

3

5
.

• c2 = 1
2 = −c3. We find consistently:

Ũ1 =
c3 − 1

c3
U2 =

− 3
2

− 1
2

3

5
=

9

5
=

3
2
1
2

3

5
=

c2 + 1

c2
U3.

For the computations we note that the parameters μ are given by:

μ1 =
1

ε

(
c1 −

1

c1

)
=

15

8
= −μ4

−μ2 = −1

ε

(
c2 −

1

c2

)
=

3

4
= μ3.

The wave profiles shown below are computed numerically by integrating equation
(13.30) along the heteroclinic orbit from the saddle (U2, U2) or (U3,−U3) to the node
(U1, 0) or (Ũ1, 0), respectively. That is, (13.30) is supplemented with initial conditions
W (ξ0) = Wi and W ′(ξ0) = 0.

Of course, for waves emerging from an unstable node at W = 0 and ending at the
saddle along the stable manifold of the latter we have to integrate the equation backward
in ξ. We also should note that in fact, we cannot start exactly at the saddle (Ui,Wi) but
have to shift the start value by some small δ towards 0 and calculate W ′(ξ0) according
to the eigenvectors obtained from the linearization around the respective saddle.

We finally choose the values ξ0 in such a manner as to ensure that the waves are
located in the appropriate order along the ξ-axis. The precise calculations are:

1. For the first wave front we choose find as starting point W (ξ0,1) = − 3
5 +δ and note

that the appropriate heteroclinic orbit emerges from the saddle along its unstable
manifold and ends at the stable node in 0. For the eigenvector corresponding to
the positive eigenvalue at W3 we already computed in the example above:(

1.47

1

)
.

We thus choose as initial conditions

W (ξ0) = −
3

5
+ δ and W ′(ξ0) =

δ

1.47
.

In figure 13.13, we show the wave pattern for this particular traveling wave solution.
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Figure 13.13: A traveling wave for system (9.2) connecting the states W = −U = − 3
5

and
W = 0, U = 3

4
at a velocity of c = 4. Left : Wave pattern for W . Right : Corresponding values

of Ur (green) and Ul (magenta).

2. The rear of the right hump is a wave front connecting the unstable node at (Ũ1, 0)

with the saddle at (U3,−U3). We now have to compute the eigenvalues

G3 = −2αc2 + 1

c2
exp

[
− c22

(c2 + 1)
2 Ũ

2
1

]
= −12 exp

[
− 9

25

]
,

ν3,± = −μ2

2
±
√

μ2
2

2
− G3

ε
=

3

8
±
√

9

64
+ 6 exp

[
− 9

25

]
≈
{
2.46

−1.71
,

and finally as eigenvector corresponding now to the negative eigenvalue:⎛
⎜⎝

ε
G3

ν3,+

1

⎞
⎟⎠ ≈

⎛
⎝−0.29

1

⎞
⎠ .

The appropriate initial conditions are thus

W (ξ0,2) = −
3

5
+ δ and W ′(ξ0,2) = −

δ

0.29
.

3. At the rear of the left hump we have a wave connecting the state (U2, U2) with
the state (Ũ1, 0). We now calculate:

G2 = −2αc3 − 1

c3
exp

[
− c23

(c3 − 1)
2 Ũ

2
1

]
= −12 exp

[
− 9

25

]
,

which is the same as G3 from the previous wave.

The eigenvalues of the linearized system at (U2,W2) are thus given by:

ν2,± = −μ3

2
±
√

μ2
3

2
− G2

ε
= −3

8
±
√

9

64
+ 6 exp

[
− 9

25

]
≈
{
1.71

−2.46
,
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and an eigenvector corresponding to the positive eigenvalue is⎛
⎜⎝

ε
G2

ν2,−

1

⎞
⎟⎠ ≈

⎛
⎝0.29

1

⎞
⎠ .

We will thus choose as initial conditions

W (ξ0,3) =
3

5
− δ and W ′(ξ0,3) = −

δ

0.29
.

4. The front of the left hump is treated completely complementarily to the front of
the right hump. That is, our initial conditions are now given by

W (ξ0,4) =
3

5
− δ and W ′(ξ0,4) = −

δ

1.47
.
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Figure 13.14: An approximate solution to (9.2) at some time t0 constructed from four traveling
waves. Velocities: c = ±4 at the outer fronts, c = ± 1

2
at the rears. Left : Wave pattern for U

(blue) and W (red). Right : Corresponding values of Ur (green) and Ul (magenta).

We finally have to choose the start points ξ0,i according to the width of the wave
fronts. This is effectively done by starting always at ξ = 0 and shifting the individual
waves afterwards.

In figure 13.14, we show an example of the resulting pattern at some given instant t0.
Such a solution can be understood as some kind of contraction taking place in the center
of the pattern. Here a high total density of non-aligned particles accumulates whereas
in the moving humps totally aligned particles move at lower density towards the central
region. We end up with an increasing region of high density and two recruitment zones
moving outwards and also increasing in width.

Example 2 - a slightly asymmetric pattern. Let us now show an example of
such a traveling wave solution with an asymmetric shape. This may be suspected to
develop from asymmetric initial variations of the homogeneous steady state

(U = U1,W = 0).
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Here, we only show the possible existence of such a solution. However, we should already
note that the simulations in chapter 15 will provide evidence that only very special wave
speeds are selected and we therefore do not find such asymmetric patterns in the full
simulations since the asymmetry is connected to a difference between the velocities of
the right and left moving fronts.

We now choose ε = α = 0.2 and an asymptotic particle density of U1 = 1. This
yields a critical wave speed of

c∗ =

√
1 + 0.08 exp[−1]

(
1 +

√
e

0.04
+ 1

)
≈ 1.097.

We may now choose the velocities closer to 1, say

c1 =
5

4
, c2 =

3

4
, c3 = −4

5
.

The last velocity has now to be determined from the requirement U1 = 1 as asymptotic
state as ξ → −∞. We calculate the respective values of interest to us. The right-most
wave front has the parameters:

μ1 = 5

(
5

4
− 4

5

)
=

9

4

U3 =
5
4

5
4 + 1

1 =
5

9

G3 = −2 · 0.29
5
exp

[
−25

81
1

]
= −18

25
exp

[
−25

81

]
,

and the resulting eigenpairs are given by

ν3,± = −9

8
±
√

81

64
+

18

5
exp

[
−25

81

]
=

{
0.85

−3.10

η3,+ =

(
1.5

1

)

where we have written η3,+ for the eigenvector corresponding to the positive eigenvalue.
At the rear of the right hump we compute

μ2 = −35

12
, Ũ1 =

35

27
, G3 = −14

15
exp

[
−25

81

]

ν3,± ≈
{
3.82

−0.90
, η3,− ≈

(
−1.11

1

)
.

For the slow wave front traveling to the left we find

μ3 =
9

4
, U2 =

140

243
, G2 = − 9

10
exp

[
−19600

59049

]

ν2,± ≈
{
1.00

−3.25
, η2,+ ≈

(
1.00

1

)
.
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For the fourth wave we have first to compute the wave speed from the requirement

1 = U1 =
c4 − 1

c4
U2 =

c4 − 1

c4

140

243

and find

c4 = −140

103
≈ −1.36 , μ4 = −8991

2884
≈ −3.1175, G2 = −243

350
exp

[
−19600

59049

]

ν2,± ≈
{
3.78

−0.66
, η2,− ≈

(
−0.78

1

)
.
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Figure 13.15: An approximate solution to (9.2) at some time t0 constructed from four slightly
asymmetric traveling waves. Velocities (from left to right): c4 = − 140

103
, c3 = − 4

5
, c2 = 34, c1 =

54. Left : Wave pattern for U (blue) and W (red). Right : Corresponding values of Ur (green)
and Ul (magenta).

The resulting pattern is shown in figure 13.15 and can be seen to be very similar to
the one obtained in example 1.

Example 3 - a strongly asymmetric pattern. Again we use α = ε = 0.2 and
U1 = 1 but now velocities

c1 =
5

4
, c2 =

1

2
, c3 = − 9

10
.

The values to be computed are now:

• At the front of the right hump:

μ1 =
9

4
, U3 =

9

5
, G3 = −18

25
exp

[
−25

81

]

ν3,± ≈
{
0.85

−3.10
, η3,+ ≈

(
1.17

1

)
.
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• At the rear of the right hump:

μ2 = −15

2
, Ũ1 =

5

3
, G3 = −6

5
exp

[
−25

81

]

ν3,± ≈
{
8.05

−0.55
, η3,− ≈

(
−1.83

1

)
.

• At the rear of the left hump:

μ3 =
19

18
, U2 =

15

19
, G2 = −38

45
exp

[
− 18225

130321

]

ν2,± ≈
{
1.46

−2.52
, η2,+ ≈

(
0.69

1

)
.

• At the front of the left hump:

c4 = −15

4
, μ2 = −209

12
, G2 = −38

75
exp

[
−225

361

]

ν2,± ≈
{
17.49

−0.08
, η2,− ≈

(
−12.88

1

)
.

�600 �400 �200 0 200 400 600

�0.5

0.0

0.5

1.0

1.5

Ξ

u w

�600 �400 �200 0 200 400 600
0.0

0.2

0.4

0.6

0.8

1.0

Ξ

ur ul

Figure 13.16: An approximate solution to (9.2) at some time t0 constructed from four strongly
asymmetric traveling waves. Velocities (from left to right): c4 = − 15

4
, c3 = − 9

10
, c2 = 12, c1 =

54. Left : Wave pattern for U (blue) and W (red). Right : Corresponding values of Ur (green)
and Ul (magenta).

The resulting strongly asymmetric wave pattern is drawn in figure 13.16. Concerning
the stability and hence the emergence of such a solution from perturbations of the
homogeneous steady state the same reasoning as for the slightly asymmetric case applies.
That means, that the selection of particular wave speeds prevents these patterns to
emerge in simulations,

Apart from such solutions constructed from traveling waves glued together at their
asymptotic states we can also construct the other types of traveling waves mentioned in
proposition 13.9. As an example let us consider parameters α = ε = β = Λ = 1 and an
asymptotic state U1 = 1. We would now like to construct a traveling wave of positive
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velocity c connecting some state W2 = U2 to this asymptotic state. Choosing as velocity
c = 4 we find

μ =
15

4
, U2 = W2 =

4

3
, G2 = −3

2
exp

[
−16

9

]

ν2,± =

{
0.07

−3.82
, η2,+ =

(
15.10

1

)
.

We observe a very small eigenvalue indicating that the trajectory will be run through
very slowly in the beginning. In figure 13.17 where the resulting wave pattern is drawn
this slowness is reflected by the large interval along the ξ-axis.
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Figure 13.17: Traveling wave profile for W (left) and Ur,l (right) for a wave connecting the
state W = U to the state W = 0 with parameters as indicated in the above example.

From this type of wave we cannot even construct a plateau like solution where the
wave obtained above is glued together with one traveling to the left, since for the latter
one we would require U2 < U1 which would be a contradiction to having U1 = 1 as
asymptotic state.

We finally note that the existence of such waves of positive polarization W2 penetrat-
ing into a non-polarized state W = 0 does not rely in a crucial way on the exponential
decay term in f . To see that, consider instead of fs,1 the unbounded alignment term

f1(U,W ) = αW

(
1− W 2

U2

)
(13.54)

or, after replacing U by 1
c (W + C),

g1(W ) = αW

(
1− (cW )

2

(W + C)
2

)
.

Its derivative is computed to be

g′1(W ) = α

(
1− c2W 2

(W + C)
3 (W + 3C)

)
= α

(
1− c2W 2

(W + C)
3 (W + 3C)

)
(13.55)

whereas the zeros remain the same as for gs,1. At these critical points the derivatives
now read
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• at W1 = 0:
G1 = α (13.56)

• at W2 = U2 = c
c−1U1:

G2 = α

(
1− c2W 2

(W + C)
2

W + 3C

W + C

)

= −α 2C

W + C
= −2αc− 1

c
.

(13.57)

where in the last step we additionally used C = cU1.

• at W3 = −U3 = − c
c+1U3:

G3 = −2αc+ 1

c
. (13.58)

Again, the precise steady states may be obtained by fixing the value of U1. With
the notation from section 13.5 we arrive at the following possible eigenvalues of the
linearizations around the steady states:

ν1,± = −μ

2
±
√

μ2

4
− G1

ε
= −μ

2
±
√

μ2

4
− α

ε
(13.59)

ν2,± = −μ

2
±
√

μ2

4
− G2

ε
= −μ

2
±
√

μ2

4
+ 2

c− 1

c

α

ε
(13.60)

ν3,± = −μ

2
±
√

μ2

4
− G3

ε
= −μ

2
±
√

μ2

4
+ 2

c+ 1

c

α

ε
. (13.61)

We immediately observe that the points (U2, U2) and (U3,−U3) are saddles whereas
the point (U1, 0) is a node whenever

μ2

4
>

α

ε

which is the case if and only if |c| /∈ [c∗, c∗] with c∗ and c∗ given by (13.16) with a = αε.
We observe that the critical velocities do not depend on the chosen value of U1 as it was
the case for fs,1 with exponential term.

13.7 Oscillating (quasi-) waves

Recall that the condition of |c| being larger than c∗(U1) or smaller than c∗ = 1/c∗ was
due to the requirement that the eigenvalues of the linearized equations around the steady
states should be real. This is necessary for obtaining monotone wave fronts.

One may ask whether there are possibly also wave patterns which are not monotone
but oscillate into or out of their asymptotic states. We note that the eigenvalues at
states of the type W2 = U2 or W3 = −U3 are automatically real whenever the velocity
is such that these steady state values satisfy U > 0. Non-real eigenvalues can thus only
occur around the state (W1 = 0, U1 > 0) where oscillations of small amplitude do not
cause the density of any type of particles to locally drop below zero.
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This allows for formal traveling wave solutions to the system having oscillating tails
at the non-polarized states. We will again construct such solutions by gluing together
several of these wave trains but note that we were not able to find oscillating wave
patterns in the simulations as they appear to be unstable. Again, this does not tell us
that these solutions do not exist.

Example 1 - a pattern of waves with oscillations. We choose as parameters
α = ε = β = 1 and as asymptotic density U1 = 1. The resulting critical velocity is now

c∗ =

√
1 +

2

e

(
1 +

√
e+ 1

)
≈ 1.78

and we deliberately choose as velocity for the front c1 = 8
7 < c∗. This yields the following

parameters:

μ1 =
15

56
, −W3 = U3 =

8

15
, G3 = −15

4
exp

[
− 64

225

]
.

As eigenvalues of the linearized system at the steady states we now find:

ν1,± ≈ −0.13± 0.59ı , ν3,± =

{
1.55

−1.82
.

To obtain appropriate initial conditions we compute in addition the eigenvector at
the state −W3 = U3 corresponding to the positive eigenvalue:

η3,+ =

(
0.64

1

)
.

We show this wave train in figure 13.18.
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Figure 13.18: Oscillating (quasi-) traveling wave solution for (9.2) connecting the state −W =
U = 8

15
with the state W = 0, U = 1 at velocity c = 8

7
. left : Wave pattern for W . right :

Corresponding values of Ur (green) and Ul (magenta).

To complete the picture we continue constructing an approximate solution to (9.2)
by adding three further waves. Let us choose as velocities c2 = 8

13 and c3 = − 3
4 . For
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the second wave we find the following parameters:

μ2 = −105

104
, Ũ1 =

7

5

G1 = exp

[
−49

25

]
, G3 = −21

4
exp

[
− 64

225

]

and as eigenvalues of the linearizations around the asymptotic states:

ν1,± ≈
{
0.84

0.17
, ν3,± ≈

{
2.56

−1.55
.

We note that all the eigenvalues are now real and thus we deal with a genuine and in
particular monotone traveling wave at this point. Finally the eigenvector at the state
−W3 = U3 corresponding to the negative eigenvalue is found to be

η3,− ≈
(
−0.65

1

)
.

For the third wave we compute

μ3 =
7

12
, U2 = W2 =

3

5
, G2 = −14

3
exp

[
− 9

25

]

and the eigenvalues

ν1,± ≈ −0.29± 0.24ı , ν2,± ≈
{
1.54

−2.12

and as eigenvector corresponding to the positive eigenvalue at W2 = U2:

η2,+ ≈
(
0.65

1

)
.

We finally have to compute the parameters for the last wave. We first find c4 = − 3
2

and from that the parameters

μ4 = −5

6
, G2 = −22

5
exp

[
− 50

121

]
,

the eigenvalues

ν1,± ≈ 0.42± 0.44ı , ν2,± ≈
{
2.35

−1.52

and as appropriate eigenvector at the state U2 = W2

η2,− ≈
(
−0.66

1

)
.
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Figure 13.19: An approximate solution to (9.2) at some time t0 constructed from one traveling
wave and three oscillating (quasi-) waves. Velocities (from left to right): c4 = − 3

2
, c3 =

− 3
4
, c2 = 8/13, c1 = 8/7. Left : Wave pattern for U (blue) and W (red), right : corresponding

vales of Ur (green) and Ul (magenta).

We note that for the third and fourth wave train we find complex eigenvalues at the
W = 0 - state which turns us to expect oscillations close to this state. The resulting
pattern of all four waves glued together is shown in figure 13.19. Note the oscillations
at all the wave trains except for the second one. We furthermore emphasize that the
strength of the oscillations obviously increases with the ratio

| Im ν1|
|�ν1|

.
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Chapter 14

Traveling Wave Solutions to the
Full Probelm

Let us now consider solutions of the type

u(t, x) = U(x− ct)

w(t, x) = W (x− ct)
(14.1)

for model (9.4). We obtain a system of ordinary differential equations of the form

−cU ′(ξ) +W ′(ξ) = εU ′′(ξ)

−cW ′(ξ) + U ′(ξ) = εW ′′(ξ) + f(U,W )
(14.2)

The first equation of (14.2) can be integrated once to yield

εU ′(ξ) = −cU(ξ) +W (ξ) + C, (14.3)

where C is a constant of integration to be determined. Putting again V (ξ) := W ′(ξ) we
can now derive from the second equation of (14.2):

εV ′ ≡ εW ′′ = −cW ′ + U ′ − f(U,W )

= −cV +
1

ε
(−cU +W + C)− f(U,W )

(14.4)

and finally obtain the following system of three ordinary differential equations of first
order:

U ′(ξ) = − c
εU(ξ) + 1

εW (ξ) +C
ε

W ′(ξ) = V

V ′(ξ) = − c
ε2U + 1

ε2W − c
εV + C

ε2 − 1
εf(U,W ).

(14.5)

We ask for equilibria of this system and immediately find from the first two equations
under the assumption of c being different from zero, V = 0 and

− cU +W + C = 0 (14.6)
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which may be used in the third equation of (14.5) to find the conditions

0 = f(U,W ) = f

(
W + C

c
,W

)
= g(W ). (14.7)

We thus recover the problem of finding the zeros of f which may now be viewed as
curves in the V = 0 - plane. Given the sublinear bistable version of the alignment term

f(U,W ) = fs,1(U,W ) = αW

(
1− W 2

U2

)
exp

[
−β2U2

]
(14.8)

we find f to vanish along the lines {W = 0} and {W = ±U}. The same equilibria are
found for the superlinear bistable version of f as well − always given Λ = 1.

14.1 Linearization around the equilibria

The linearization of system (14.5) around the steady state (U = U1, W = 0) reads as
follows:

Ũ ′ = − c
ε Ũ + 1

εW̃

W̃ ′ = Ṽ

Ṽ ′ = − c
ε2 Ũ + 1

ε

(
1
ε − g′(0)

)
W̃ − c

ε Ṽ

(14.9)

or in concise form⎛
⎝ Ũ ′

W̃ ′

Ṽ ′

⎞
⎠ =

1

ε

⎛
⎝−c 1 0

0 0 ε

− c
ε

1
ε − g′(0) −c

⎞
⎠
⎛
⎝ Ũ

W̃

Ṽ

⎞
⎠ =: A

⎛
⎝ Ũ

W̃

Ṽ

⎞
⎠ (14.10)

where Ũ , W̃ , Ṽ denote the deviations of U, W, V from their equilibria:

Ũ = U − U1 , W̃ = W − 0 = W , Ṽ = V − 0 = V. (14.11)

The corresponding characteristic polynomial takes the form

det(ν• −A) = ν3 + 2
c

ε
ν2 +

1

ε2
(
c2 − 1 + εg′(0)

)
ν +

c

ε2
g′(0). (14.12)

Linearizing around a state of the form

(U = U2, W = W2 = U2)

yields the equation⎛
⎝ Ũ ′

W̃ ′

Ṽ ′

⎞
⎠ =

1

ε

⎛
⎝−c 1 0

0 0 ε

− c
ε

1
ε − g′(W2) −c

⎞
⎠
⎛
⎝ Ũ

W̃

Ṽ

⎞
⎠ =: A

⎛
⎝ Ũ

W̃

Ṽ

⎞
⎠ . (14.13)

After some simple calculations under the assumption that ε is positive, the charac-
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teristic equations turn out to have the shape

0 = εν(εν + c)
2
+ (εg′(W̄ )− 1)(εν + c) + c. (14.14)

Solving for the scaled eigenvalues εν, the roots can be written down explicitly but are
rather hard to analyze. Furthermore, the three dimensional system (14.5) does not allow
for the deduction of closed heteroclinic orbits by simple analysis of the linearizations
around the equilibria. We will therefore try to find such orbits by showing their existence
for the model without diffusion and viewing this one as normally hyperbolic limit of the
full system (9.4) which is done in the following subsection.

If we, however, know that at least for small ε the heteroclinic orbits corresponding to
the wave profiles persist, we can still ask for the nature of the eigenvalues. Generically
there will be three distinct ones, and our wave profiles can be monotone in U and W if
all of them are real. Oscillatory behavior will emerge if two of them collapse into one
and then form a pair of complex conjugate roots of the characteristic equation. The
third one will of course always be real.

It is immediately obvious that the critical velocities will again only depend on the
product

a = εg′(W̄ ),

and we can at least plot the sum of the imaginary parts

| Im[ν1]|+ |�[ν2]|+ |�[ν3]|

to find the curves c∗(a) and c∗(a). This is done in figure 14.1.

Figure 14.1: Illustration of the critical velocities c∗ and c∗ for the system with full diffusion.
The eigenvalues of the linearization are real in the shaded region whereas in the white region
two of them have non-vanishing imaginary part. Left : a ∈ (−3, 3), c ∈ (0, 4), right : a ∈
(0, 3), c ∈ (−4, 4).

Without knowing the precise functional relationship between a and the critical ve-
locities we can observe the following properties:

1. Due to invariance under spatial reflection the picture is necessarily symmetric with
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respect to c = 0.

2. For negative values a which are found at the outer equilibria W = ±U , all eigen-
values are real no matter what value is assumed by the wave speed c. These are
therefore always hyperbolic points as already was the case for system (9.2).

3. As soon as a becomes positive there emerges a neighborhood of |c| = 1 which is
prohibited. As in the case for system (9.2), the derivatives

d

da
c∗(a) and

d

da
c∗(a)

seem to diverge as a approaches zero from above.

4. In contrast to the observations in chapter 13, there are no monotone waves with
|c| < 1 anymore if a becomes larger than 1. In particular the relation c∗ = 1/c∗

does not hold anymore.

5. The critical velocity c∗ behaves like

c∗ ≈ 1 +
√
2a (14.15)

to leading order in a > 0. In fact, for a < 3 which is the region shown in figure
14.1, this approximation works so well that it is hard to see the difference by eye.

Asking in addition for the real parts of the eigenvalues we find another critical velocity
ĉ depending on a > 0. Recalling the calculations from section 13.5 we note that this
velocity now plays the role of c = 1 for which the stability of the symmetric state W = 0

changed.
Now, the real part of the pair of complex conjugate eigenvalues changes sign at

c = ±ĉ(a) which is in good pproximation given by

ĉ =

{√
1− a

2 if a ∈ (0, 2)

0 otherwise.
(14.16)

In the following discussion we will see how that affects the existence of certain waves.
Taking into account all possible combinations of real and imaginary parts we obtain

the bifurcation diagram for the dependence of the eigenvalues on c and a as shown in
figure 14.2. More precisely, the signs of the real parts of εν are plotted in the a-c-plane.
We will now briefly discuss the behavior of the eigenvalues across the bifurcation curves
in figure 14.2.

1. We start with the negative a-axis and recall that

a = εg′(W̄ )

is only negative at the outer equilibria W = ±U . Here, we always deal with saddle
points, that is, we have three (distinct) real eigenvalues of different signs. More
precisely, we have one eigenvalue of positive sign, one of negative sign, and a third
one which has the opposite sign of the wave speed c.
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Figure 14.2: Bifurcation diagram for the eigenvalues of the linearizations around the
steady states (U1, 0), (U2, U2), (U3,−U3) depending on the wave speed c and the value
a = ε∂W f(Ū , W̄ ). Note that a is positive at the point (U1, 0) and negative at the other
two equilibria.

2. We now turn our attention to the region 0 < a < 1 which corresponds to the
situation at the interior equilibrium

(W = 0, U = U1)

in case of small α and ε, or − if using the damped alignment term with exponential
decay − to a large density U1. Phenomenologically speaking, this is the case of
weak diffusion and alignment strength, and we may expect a behavior which is
dominated by the advection terms.

What we indeed observe is a situation very similar to that from figure 13.9 for
model (9.2) with the special role of c = 1 being now replaced by c = ĉ(a) and with
an additional real eigenvalue having the same sign as c. Starting at large velocities
c > c∗(a) there are three distinct negative eigenvalues, one of them approaching
zero as c increases the others growing approximately linearly with large c. We thus
deal with a stable node in this parameter regime.

As c approaches c∗ from above, the larger two of these real eigenvalues merge and
form a pair of complex conjugate eigenvalues, still with negative real part, and the
stable node turns into a stable focus. This corresponds to the oscillating waves
discussed for model (9.2) in section 13.7.

Further decreasing c we approach the value ĉ(a) at which the pair of complex
conjugate eigenvalues passes through the imaginary axis. For c ∈ (c∗(a), ĉ(a)) the
equilibrium state W = 0 thus has a one dimensional stable manifold corresponding
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to the third eigenvalue which is still negative and a two-dimensional unstable
manifold on which trajectories spiral away from that point.

For still smaller c we observe that at c = c∗(a) the imaginary part of the complex
conjugate pair shrinks to zero and both become real and distinct again, both
remaining positive as long as c is positive. As the third eigenvalue is still negative
we obtain a saddle with a one-dimensional stable and a two-dimensional unstable
manifold.

As finally c approaches zero, one of the two positive eigenvalues passes through
zero whereas the other one approaches ν0(a) ∈

(
0, 1

ε

)
and upon sign change of c

also changes it sign to become −ν0(a). The third eigenvalue in turn approaches
ν0 from below and switches its sign as well. This results in two negative real
eigenvalues and a third, positive eigenvalue for c ∈ (−c∗, 0).
Further decreasing c simply yields a mirror image of the behavior discussed so far
as each of the eigenvalues depends oddly on c.

3. As diffusion or alignment strength are increased to values resulting in a ∈ (1, 2),
the critical velocity c∗(a) becomes zero, and there are no values of c left where
the inner equilibrium is a saddle. The behavior for large c remains the same as
for a ∈ (0, 1), and the same is true for the passages of c through c∗(a) and ĉ(a).
For decreasing c towards zero we see, that the (positive) real part of the pair of
complex conjugate eigenvalues reaches a maximum and then shrinks again to reach
zero as c does. The value of this maximum as well as the value of c where it is
reached decreases for a getting closer to 2.

The third eigenvalue also approaches zero as c does, and consequently all real parts
of the eigenvalues pass transversally through zero as c goes through zero.

4. For even larger values of a, corresponding to fast diffusion and strong alignment,
also the critical velocity ĉ(a) becomes zero. For a > 0 we thus only have the
regimes of nodes − stable for c > c∗(a), unstable for c < −c∗(a) − and foci −
stable for c ∈ (0, c∗(a)), unstable for c ∈ (−c∗(a), 0).
As c passes through zero, all real parts of the eigenvalues smoothly and transver-
sally pass through zero and do so with the opposite sign change of c.

5. Let us now consider the behavior of the eigenvalues while approaching the c-axis.
Letting a go to zero corresponds to decreasing the diffusion coefficient to zero or
changing the alignment term f in a way that it vanishes around the equilibria at
least to linear order in W .

The first case ε→ 0 is particularly delicate as we can only control the product of
the eigenvalues with ε whereas the eigenvalues themselves (or at least one of them)
explode with ε−1. This limit corresponds to the transition from the full model (9.4)
to its hyperbolic limit case. We will first discuss the situation of approaching a = 0

from positive values along lines c = const. which corresponds to investigate the
situation around the inner equilibrium W = 0.

• For c > 1 there is a region of small positive a where all scaled eigenvalues εν

are real and negative. One of them goes to zero with O(a) whereas the others
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remain negative. In that case, we thus obtain one finite, negative eigenvalue
and two diverging ones as ε decreases to zero at fixed g′(0).

• For c ∈ (0, 1) we have one negative eigenvalue exploding to −∞ and two
positive eigenvalues one of whom remains bounded and the other one diverges
to +∞ as ε goes to zero.

• Along the line c = 1, we have a pair of complex conjugate eigenvalues with
negative real part whose scaled versions approach zero linearly as a goes to
zero. The real parts of the eigenvalues themselves therefore tend to some
finite negative value. The imaginary part of the scaled eigenvalues tends to
zero as a does, but only with order O(

√
a), and thus in the limit ε → 0 the

rate of oscillations explodes.

• An interesting way to approach the c-axis is along the curve c = c∗(a) which is
suspected to be the regime of stable waves. Along this line we have a negative
double eigenvalue and another one which is also negative. The simple one
will diverge as the axis is approached by letting ε tend to zero, and does so
as O(ε−1). The double eigenvalue also diverges but does so at a lower rate,
namely O(ε−

1
2 ). If the limit a→ 0 is accomplished by decreasing the diffusion

coefficient ε and the alignment strength g′(0) simultaneously in a way such
that ε−1g′(0) approaches some finite value then the double eigenvalue also
tends to some finite limit.

Let us now consider the case of negative a corresponding to the linearization around
the outer equilibria. Now we have for arbitrary positive wave speeds c one positive
and two negative eigenvalues. As a approaches 0 from below their behavior is the
following.

• In case c > 1 the positive scaled eigenvalue goes linearly into zero whereas the
negative ones tend to some finite negative values. For ε→ 0 at fixed g′(W̄ ),
we thus have two eigenvalues diverging to −∞ and another one tending to
some finite positive value.

• Along the line c = 1 , there is one negative scaled eigenvalue being bounded
away from zero and thus giving rise to an exploding eigenvalue tending to −∞
with order O(ε−1) as ε tends to zero. There are furthermore two scaled eigen-
values approaching zero from opposite sides, both at rate O(

√−a). These
correspond to exploding eigenvalues as well, but at lower rate O(ε−

1
2 ), one of

them to +∞, the other one to −∞.

• For c ∈ (0, 1) we still have one negative scaled eigenvalue being bounded
away from zero and thus diverging to −∞ at rate O(ε−1) as ε goes to zero.
Furthermore there is a positive eigenvalue showing the same behavior. Finally
we find a negative scaled eigenvalue tending to zero at linear rate thus giving
rise to an eigenvalue tending to a finite negative value as ε shrinks to zero.

How the eigenvalues are located in the complex plane is shown in figure 14.3.
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Figure 14.3: Sketch of the eigenvalues of the linearization of the full traveling wave system in
the complex plane for different values of a = εg′(W̄ ) and c. Disks correspond to positions of
eigenvalues, squares refer to infinite values. pink stands for a double eigenvalue (red and blue),
grey for a triple eigenvalue. The parameter regimes are: (a): a > 0, 0 < c < c∗(a) (region I
in figure 14.2), (b): a > 0, c∗(a) < c < ĉ(a) (region II), (c): a > 0, ĉ(a) < c < c∗(a) (region
III), (d): a > 0, c > c∗(a) (region IV), (e): a < 0, c > 0 (region V), (f): a ∈ (0, 1), c = 0, (g):
a ∈ (0, 1), c = c∗(a), (h): a ∈ (0, 2), c = ĉ(a), (i): a > 0, c = c∗(a), (j): a ≥ 1, c = 0, (k):
a < 0, c = 0, (l): a = 0, c > 1, (m): a = 0, c ∈ (0, 1). Note in (a) - (c) that c∗(a) = 0 for
a > 1 and ĉ(a) = 0 for a > 2

A note on the interpolate systems

Let us briefly review the calculation of the critical velocities for the interpolate systems
(9.6) which we shall rewrite as

∂tu+ ∂xw = θε∂xxu (14.17a)

∂tw + ∂xu = ε∂xxw + f(u,w) (14.17b)

where θ is some number between 0 and 1.
The linearization of the resulting system of ordinary differential equations around

the symmetric equilibrium w ≡ 0 reads⎛
⎝ Ũ ′

W̃ ′

Ṽ ′

⎞
⎠ =

1

ε

⎛
⎝− c

θ
1
θ 0

0 0 ε

− c
θε

1
θε − g′(0) −c

⎞
⎠
⎛
⎝ Ũ

W̃

Ṽ

⎞
⎠ (14.18)

where we reused the notation introduced above.
The resulting characteristic equation can again be written in terms of rescaled eigen-

values εν and then reads

0 =
(
εν +

c

θ

)
(εν + c) εν +

(
εα− 1

θ

)(
εν +

c

θ

)
+

c

θ2
. (14.19)

Its roots have a rather complicated shape but we can plot the region where all of
them are real. This is done in figure 14.4 for different values of θ. Looking closely at
the graphs in the bottom row of this figure, we see that the upper critical velocity c∗

slightly increases with θ.
More significant is the change in the maximal value a for which there exist velocities
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Figure 14.4: Critical velocities for the interpolate systems (14.17) for θ = 0.1 (left), θ = 0.5
(middle), and θ = 0.9 (right). The scales reach from 0 to 3 for a = εg′(W̄ ) (except top left :
from 0 to 10) and from −8 to 8 (top left), −4 to 4 (top middle and right), and 0 to 4 (bottom
row) for c, respectively. For θ = 0.1, we additionally indicated in black the region where all
eigenvalues are real.

c ∈ (−1, 1) leading to real eigenvalues. For θ = 1, we found this maximal amax to be 1,
and examining the graphs, we observe it to behave like θ−1. In particular, amax converges
to infinity as θ tends to zero which is compatible with the case θ = 0 corresponding to
(9.2) and being investigated in chapter 13.

14.2 Traveling waves for the hyperbolic system

If we consider the limiting case of model (9.2) or (9.4) with vanishing diffusion ε = 0,
we obtain the hyperbolic system

∂tu+ ∂xw = 0

∂tw + ∂xu = f(u,w).
(14.20)

Asking for solutions of constant shape we plug the ansatz

u(t, x) = U(x− ct) ≡ U(ξ)

w(t, x) = W (x− ct) ≡W (ξ)
(14.21)

into this system and deduce the following system of ordinary differential equations

− cU ′(ξ) +W ′(ξ) = 0 (14.22)

−cW ′(ξ) + U ′(ξ) = f(U,W ). (14.23)
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We start with the consideration of standing waves corresponding to a wave speed
c = 0. We then obtain W ≡ W̄ = const. and the second equation reduces to

U ′ = f(U, W̄ ). (14.24)

For any nonlinearity f with exponential decay term, this equation only has the
single equilibrium U = |W̄ | which is the minimal allowed value for U . Furthermore,
the right hand side tends to zero as U tends to infinity but we cannot construct a wave
profile of reasonable width from that. Recall that we observed the same effect during
the construction of traveling waves for system (9.2) in chapter 13. We will thus again
consider c �= 0 in what follows.

Integrating (14.22) we obtain

cU = W + C

for some constant C. We use this to replace U ′ and U in (14.23) to find(
1

c
− c

)
W ′ = g(W ) := f

(
W + C

c
,W

)
(14.25)

from which we immediately see that − again in analogy with the construction for (9.2)
− the wave speed cannot be taken to be ±1, or rather ±v where v denotes the particle
velocity, since otherwise the left hand side vanishes.

As we assume asymptotic states of the type

(W ≡ 0, U ≡ U1)

we find the constant C to be C = cU1 and can compute

g(W ) = f

(
W + cU1

c
,W

)
. (14.26)

Choosing for example fs,1 as alignment term we obtain

gs,1(W ) = αW

(
1−

(
cW

W + C

)2
)
exp

[
−β2 (W − cU1)

2

c2

]
(14.27)

whose zeros and therewith the equilibria of (14.25) are just the usual

W1 = 0, W2 = U2 =
c

c− 1
U1, −W3 = U3 =

c

c+ 1
U1 (14.28)

where the second one only exists for wave speeds

c ∈ (−∞, 0) ∪ (1,∞)

and the third one only for
c ∈ (−∞,−1) ∪ (0,∞)

which again perfectly corresponds to the situation from chapter 13 with the particular
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critical velocities
c∗ = c∗ = 1.

There, by (13.15), c∗ had been seen to behave like

c∗ =
√

1 +O(
√
ε) (14.29)

for small diffusion coefficients ε.
At this point we should also recall that for model (9.2) there were indeed wave profiles

for any velocity c /∈ {−1, 0, 1} if we allowed for non-monotone waves.
Concerning the stability of the equilibria we observe precisely the same stability

behavior. This is seen by just noting that the linearization around the W = 0 - state is
given by

W ′(ξ) =
c

1− c2
g′(0)W (14.30)

and that we already computed for the bistable alignment term

g′s,1(0) = α exp[−β2U2
1 ] > 0 (14.31)

and thus have the same stability condition for this equilibrium, namely:

(U1, 0) is
{

stable
unstable

}
if and only if

{
c ∈ (−1, 0) ∪ (1,∞)

c ∈ (−∞,−1) ∪ (0, 1)
. (14.32)

As we are in one dimension the other equilibria have the opposite stability properties
of the inner one, and we obtain the same kind of waves as in proposition 13.9. We
note, that now the orbits connecting the equilibria in phase space are just observed as
intervals on the W -axis whereas in chapter 13 these orbits where seen in the W −W ′-
plane as some kind of deformed W -axis. In both cases the phase space is completed by
additionally considering the U -component of the trajectory which is quite simple as it
depends algebraically on W .

However, for the hyperbolic situation we are at least able to draw the complete phase
portrait since we only have to deal with a total of two variables.

The possible wave trains can be summarized as follows.

1. For c > 1 there are waves connecting the fully left polarized state

W = W3 = −U3 = − c

c+ 1
U1

to the non-polarized state (W = 0, U = U1) and waves connecting the non-
polarized state (W = 0, U = U1) to the fully right polarized state

W = W2 = U2 =
c

c− 1
U1.

2. For 0 < c < 1 there are waves connecting the non-polarized state (W = 0, U = U1)

to the fully left polarized state

W = W3 = −U3 = − c

c+ 1
U1.
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Figure 14.5: Phase portrait for system (14.22), (14.23). Left : corresponding to a symmetric
pattern (c3 = −c2, c4 = −c1), right : corresponding to an asymmetric pattern. The yellow
lines are the three components of the equilibrium set {f = 0}. The arrows denote possible
traveling fronts for different velocities c. Note, that starting from the point (W,U) = (0, U1)
and going along all arrows subsequently, we arrive at a solution of the system which is composed
of four traveling wave solutions being glued together at their asymptotic states (cf. section 13.6,
figure 13.14 for the symmetric case, figure 13.16 for the asymmetric case). In fact, the same
picture may be obtained by projecting the heteroclinic orbits for system (13.6) accompanied
by cU ′ = V from the W −W ′ − U phase space to the W − U -plane.

3. For −1 < c < 0 there are waves connecting the fully right polarized state

W = W2 = U2 =
c

c− 1
U1

to the non-polarized state (W = 0, U = U1).

4. For c < −1 there are waves connecting the fully right polarized state

W = W2 = U2 =
c

c− 1
U1

to the non-polarized state (W = 0, U = U1) and waves connecting the non-
polarized state (W = 0, U = U1) to the fully left polarized state

W = W3 = −U3 = − c

c+ 1
U1.

What happens if the wave speed c approaches the critical values ±1? In that case
the coefficient

c− 1

c

tends to zero and the derivative W ′ takes large values wherever g(W ) does not vanish.
We therefore expect a solution close to some shock profile. Of course, the stability of
the asymptotic states switches as c goes through ±1 and we may expect the following
behavior.

c↘ 1. The wave train connecting the fully right polarized state to the symmetric one will
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become an approximate (weak) solution of the Riemann problem with data

u(0, x) =
1

2
U1χ{x<x0} + U1χ{x>x0}

w(0, x) = −1

2
U1χ{x<x0}

(14.33)

which corresponds to the following situation in terms of the individual particle
densities ur and ul:

ur(0, x) =
1

2
U1χ{x>x0}, ul(0, x) ≡

1

2
U1. (14.34)

c↗ 1. The wave profile should approach some weak solution of the corresponding Rie-
mann problem with data

u(0, x) = U1χ{x<x0} +
1

2
U1χ{x>x0}

w(0, x) = −1

2
U1χ{x>x0}

(14.35)

or in terms of the individual densities:

ur(0, x) =
1

2
U1χ{x<x0}, ul(0, x) ≡

1

2
U1. (14.36)

14.3 The hyperbolic model as hyperbolic limit

The striking analogies between the previous section and the findings in chapter 13
strongly suggest that system (9.4) exhibits very similar wave patterns. This expectation
is also supplemented by simulations of the full systems of partial differential equations
which are discussed in detail in chapter 15. Here we only point out that system (9.4)
with diffusion coefficient ε behaves very similar to system (9.2) with diffusion coefficient
put to 2ε.

This intuition can be made rigorous by using the theory of transversal heteroclinic
orbits developed in [7] and [30]. We therefore rewrite (14.2) to

U ′(ξ) := Z(ξ)

W ′(ξ) = V (ξ)

εZ ′(ξ) = V (ξ)− cZ(ξ)

εV ′(ξ) = Z(ξ)− cV (ξ)− f(U(ξ),W (ξ)).

(14.37)

being defined on M× R with

M =
{
(U,W,Z, V )T ∈ R4 | U > 0, |W | < U

}
(14.38)

where the conditions U > 0, |W | < U translate into the conditions ur/l > 0.
The reduced system obtained by setting ε to zero is precisely the one we deduced for

the hyperbolic model (14.20) and given by (14.25) supplemented by

cU = W + C.
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This system acts on the set

S :=

{
(U,W,Z, V )T ∈M

∣∣∣ V =
c

1− c2
f(U,W ), Z =

1

1− c2
f(U,W )

}
(14.39)

The layer problem is obtained by setting ε to zero in the corresponding fast problem

U ′(τ) := εZ(τ)

W ′(τ) = εV (τ)

Z ′(τ) = V (τ)− cZ(τ)

V ′(τ) = Z(τ)− cV (τ)− f(U(τ),W (τ)).

(14.40)

which is just (14.37) rewritten in the new variable τ = ε−1ξ.

Thus, the layer problem reads

U ′(τ) = 0 = W ′(τ)
Z ′(τ) = V (τ)− cZ(τ)

V ′(τ) = Z(τ)− cV (τ)− f(U(τ),W (τ))

(14.41)

and reduces to a simple linear system with constant coefficients by using

U ≡ Ū , W ≡ W̄ , F := −f(Ū , W̄ )

as notation. This linear system reads

d

dτ

(
Z

V

)
+

(
c −1
−1 c

)(
Z

V

)
=

(
0

F

)
. (14.42)

For the extended fast system which is (14.40) supplemented by ε′ = 0, let us denote
the right hand side by Φ and compute its linearization to be

DΦ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 ε 0 Z

0 0 0 ε V

0 0 −c 1 0

−∂Uf −∂W f 1 −c 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ (14.43)

which, for ε = 0 has the trivial eigenvalues λ1,2,3 = 0 and the nontrivial ones λ4,5 =

−c± 1. The corresponding eigenvectors can be chosen to be

η1,2,3 =

⎛
⎜⎜⎜⎜⎜⎝

1

0
1

c2−1∂Uf
c

c2−1∂Uf

0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝
−∂W f

∂Uf

0

0

0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝
0

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎠ , η4 =

⎛
⎜⎜⎜⎜⎜⎝

0

0

−1
1

0

⎞
⎟⎟⎟⎟⎟⎠ , η5 =

⎛
⎜⎜⎜⎜⎜⎝
0

0

1

1

0

⎞
⎟⎟⎟⎟⎟⎠ . (14.44)
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or even easier

η1,2,3 =

⎛
⎜⎜⎜⎜⎜⎝
1

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝
0

1

0

0

0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝
0

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎠ , η4 =

⎛
⎜⎜⎜⎜⎜⎝

0

0

−1
1

0

⎞
⎟⎟⎟⎟⎟⎠ , η5 =

⎛
⎜⎜⎜⎜⎜⎝
0

0

1

1

0

⎞
⎟⎟⎟⎟⎟⎠ . (14.45)

We find that DΦ has its maximal possible rank 2 whenever |c| is different from one
and that the nontrivial eigenvalues are real and have

• both positive sign if c < −1,

• different signs if −1 < c < 1, and

• both negative sign if c > 1.

In particular, for |c| �= 1, the whole invariant manifold S for the layer problem is
normally hyperbolic and we conclude that for sufficiently small ε > 0, system (9.4)
exhibits traveling wave solutions of the types discussed.

Proposition 14.1. Assume the nonlinearity f to be of the form fs,1 or fs,2 given by
(12.8) or (12.9), respectively, with α > 0, Λ = 1, and β ≥ 0. Then, for each

c ∈ R\{−v, 0, v}

there exists ε0(c), depending also on α, β, v, and the shape of f , such that for any

ε ∈ (0, ε0(c)),

the system

∂tu+ v∂xw = ε∂xxu

∂tw + v∂xu = ε∂xxw + f

exhibits at least one traveling wave solution with wave velocity c. Depending on the value
of c, this solution connects the asymptotic states

a) W = 0 to W = U for c < −v.

b) W = U to W = 0 for −v < c < 0.

c) W = 0 to W = −U for 0 < c < v.

d) W = −U to W = 0 for c > 1.

Here, v denotes the filament velocity.

We can now nicely interpret the behavior of the eigenvalues for the full problem (9.4)
as ε tends to zero which has been discussed in section 14.1. Those eigenvalues which
had been found to remain finite in the limit are those we also find for the hyperbolic
system, namely with positive sign for c ∈ (−1, 0) ∪ (1,∞) and with negative sign for
c ∈ (−∞,−1) ∪ (0, 1). The other ones which were observed to explode to infinity as ε

decreases to zero are seen to describe the evolution of the fast system which becomes
infinitely fast in the limit.
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14.4 System (9.2) as hyperbolic limit of system (9.4)

Going via the interpolate systems (14.17), we can also view the traveling wave system
(13.31) corresponding to system (9.2) as the reduced system of (14.5) which corresponds
to traveling waves for (9.4), now viewed for fixed ε and taking θ as perturbation param-
eter.

In terms of the first order systems, we have

U ′ = Z (14.46a)

W ′ = V (14.46b)

V ′ = − c

ε
V +

1

ε
Z − 1

ε
f(U,W ) (14.46c)

θZ ′ = − c

ε
Z +

1

ε
V. (14.46d)

Putting θ to zero we indeed obtain (13.6) as reduced system by integrating the last
equation and plugging it into the third one. The full system (14.5) corresponds to θ = 1.
Although the theory used in the previous section also works out in this situation it only
yields persistence of the heteroclinic orbits − and thereby of traveling wave profiles −
found in chapter 13 for small values of θ. Without knowing about the precise meaning
of the term “small“ we cannot assert the existence of particular traveling wave solutions
for system (9.4).

14.5 Diffusion fronts

Let us very briefly note that there is another type of wave like pattern the system can
produce. If there are only particles of one orientation the alignment terms with Λ = 1

vanish and any initial pattern undergoes a translation with the respective particle speed
superimposed by diffusive spreading as described by the linear equation

∂tur/l ± ∂xur/l = ε∂xxur/l. (14.47)

Considering any monotone initial conditions containing only one type of particles
with saturation at x → ±∞ we thus obtain a monotone front moving with velocity
1 or −1 and increasing in width. Such a front can possibly connect a fully polarized
asymptotic state with the trivial state u = 0.

This type of pseudo-wave pattern allows us to construct solutions having the asymp-
totic state

(W = 0, U = U1 > 0)

at x→ ±∞ into which two totally aligned humps invade which leave behind a depletion
zone. More precisely, there may be a wave front with speed c1 > c∗ traveling to the
right and connecting the state

U2 = W2 =
c

c− 1
U1

to the state
(W = 0, U = U1)
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being followed by a trailing diffusive pseudo-wave front of speed 1 along which U = W

grows from zero to U2.
In physical terms, these two profiles are the front and rear of a hump consisting only

of right oriented particles that moves to the right and grows in width at the rate c1− 1.
This hump has a mirror image with left oriented particles moving to the left with

speed c2 < −c∗ at the front and c = −1 at the rear. The interpretation in terms
of filament densities is the following. If this type of solution builds up from certain
perturbations of the non-polarized state (W ≡ 0, U ≡ U1) we found a setting where a
large bulk of left oriented filaments moves to the left in a coordinated way, the same
happens with right oriented filaments moving to the right, and in between there is a
growing region without any filaments being present. We will indeed find this type of
solutions in the simulation in section 15.3. Moreover, we find asymmetric solutions with
only one hump running into one direction corresponding to a directed movement of the
center of mass of the whole system as should be expected for a moving cell.
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Chapter 15

Numerical Simulations for the
Reduced Model

15.1 The numerical scheme

To solve the systems (9.2) and (9.4) as well as there interpolates numerically we first
transform them back to the natural variables ur and ul and write the respective problem

(∂t + ∂x)ur =
εu + εw

2
∂xxur +

εw − εu
2

∂xxul +
1

2
f(ur + ul, ur − ul)

(∂t − ∂x)ul =
εu + εw

2
∂xxul −

εw − εu
2

∂xxur −
1

2
f(ur + ul, ur − ul)

which is then solved by a an explicite finite volume scheme. For notational convenience
let us introduce the values

ε+ :=
εu + εw

2
and ε− :=

εw − εu
2

.

To discretize the first order space derivatives we use for obvious reasons an upwind
flux. The second order terms contribute with their gradients to the flux, and we compute
them by the difference of the values in the adjacent cells.

We briefly sketch the precise scheme for the right moving particles. The equations
for the left moving ones are obtained by symmetry. First, let us write uk

r,i for the value
of ur at time tk = kΔt in the cell Ωi = (xi, xi+1) with xi = iΔx. We consider an interior
cell Ωi at time tk and compute the numerical flux through the end point xi.

The contribution from the first order term is simply given by the influx from the left:

F k
r1,i = uk

r,i−1.

From the diffusive terms we obtain a contribution of

F k
r2,i = −

ε+
Δx

(uk
r,i − uk

r,i−1)−
ε−
Δx

(uk
r,i − uk

r,i−1). (15.1)

In addition, we have the alignment term f that is evaluated in each cell separately.
Adding up the flux and the reaction terms we find the following evolution operator for
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the density of right oriented filaments

uk+1
r,i = uk

r,i +
Δt

Δx

(
F k
r,i − F k

r,i+1

)
+

Δt

2
f(uk

r,i − uk
l,i, u

k
r,i − uk

l,i)

=

(
1− Δt

Δx

)
uk
r,i +

Δt

Δx
uk
r,i−1 + ε+

Δt

Δx2 (u
k
r,i+1 − 2uk

r,i + uk
r,i−1)

− ε−
Δt

Δx2 (u
k
l,i+1 − 2uk

l,i + uk
l,i−1).

(15.2)

15.2 Simulations on small domains and stability

From chapters 10 and 11 we recall the conditions for the linear and nonlinear stability
of the homogeneous non-polarized steady state

(w ≡ 0, u ≡ u1 = const).

Here, we will use simulations for both models with different alignment terms and initial
conditions to provide a picture of what happens to small but also to larger perturbations
of the homogeneous steady state.

Starting from any physically relevant initial conditions − meaning that

u(0, x)− |w(0, x)|

should be non-negative at each point x − we observe that the system approaches one of
the following two asymptotic behaviors.

Either, every inhomogeneity is leveled out and the solution decays to the steady state(
w ≡ 0, u ≡

∫ L

0

u(0, x)dx

)
,

or the solution develops a nontrivial asymptotic state which flips back and forth. Both
behaviors are sketched in figure 15.1.

Figure 15.1: Evolution of the polarization w for system (9.4), alignment term fs,1, data (15.3),
and parameters L = 1, T = 10, ε = 0.1,Λ = 0.95, β =

√
2. Left : growth for strong alignment

(α = 1.5), right : decay for weak alignment (α = 1.0). Note the different scales of the w-axes,
both initial conditions are precisely the same.

For the simulations shown in figure 15.1, we used the following type of initial condi-

250



tion
w(0, x) = −h sin

[
3π

x

L

]
χ(L

3 , 2L3 ) (15.3)

with the total particle density u being kept constant. The latter means that the pertur-
bation of the non-polarized state is achieved by turning around some existing filaments
without adding or removing anything.

One may now suspect that the asymptotic shape of this flipping state shall depend
on the shape of the initial conditions. However, this is not the case for generic data.
Whenever the Fourier series of the initial data contains a first mode contribution, then
the system quickly develops a single sine shaped hump which is not surprising as the
first mode has been calculated to be the least stable one. Only if the initial data are
solely comprised of higher modes, then the smallest of those is selected as asymptotic
shape.

To investigate the precise shape of the nontrivial asymptotic state we introduce the
following quantities.

�������	
����	���

�	���
��
���
����	

��	���������
�

����

����

�
�
�
��

� �� ��

����

����

�

���

���

�

���
��

Figure 15.2: Illustration of the concept of the temporal envelope of the total polarization W
(left) and spatiotemporal envelope of the polarization w (right).

Definition 15.2.1. As the total polarization W : [0, T ] → R we define the spatial
integral of the (local) polarization w:

W (t) :=

∫ L

0

w(t, x)dx. (15.4)

As the temporal envelope of the total polarization (or short: envelope of the polarization)
we define temporal evolution of the local maxima of W as indicated in figure 15.2.

The temporal envelope of the polarization allows us to precisely measure whether
an initial perturbation decays towards the homogeneous steady state or approaches
some nontrivial state flipping back and forth. The spatiotemporal envelope which is
introduced in figure 15.2 provides a good impression of the shape of this flipping state.

15.2.1 Stability for system (9.2)

We start with the investigation under which conditions perturbations of the homoge-
neous steady state decay and in which situations they grow and achieve the asymptotic
state flipping back and forth. These behaviors shall be denominated computational
stability and computational instability, respectively.
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The first observation we already expected concerns the critical alignment strength
αcrit. For any given initial data and any bistable shape of the alignment term f we
find a well defined value of αcrit which increases with the diffusion coefficient ε = εw
and characterizing the border between stability and instability. More precisely, we find
some αcrit such that for α < αcrit, the total polarization W tends to zero as time
tends to infinity whereas for α > αcrit, the temporal envelope of the total polarization
approaches some finite value for large times. The latter case means that the solution
tends to a nontrivial flipping state as described above.

Both, the rates of exponential decay or growth and the size of the possibly reached
nontrivial asymptotic state, depend on the precise shape of the alignment term and the
difference α − αcrit. The precise relationships for different alignment terms are shown
in figures 15.3 and 15.4.

From the calculations in chapter 10 we know that the switch of stability happens in
the oscillatory regime and from (10.7) we deduce that the real part of the growth rate
σ+ can be expected to behave like

Reσ =
1

2

(
Fw ± ε

π2

L2

)
. (15.5)

This linear dependence on Fw which is nothing else than α is nicely recovered by the
simulations.

Figure 15.3: Dependence of the exponential growth rate Reσ+ on the alignment strength
α close to αcrit. Yellow squares: standard sublinear alignment term according to (15.6), red
diamonds: piecewise linear alignment term according to (15.8), black stars: sharp superlinear
alignment term f̃s,2 according to (12.10) with exponential crowding term.

For superlinear alignment, the behavior cannot completely be predicted from the
linearization. For α being slightly larger than the critical value αcrit, the temporal
envelope of the total polarization grows exponentially in time but at some point, the
growth becomes superexponential until the final plateau is reached.
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Figure 15.4: Asymptotic values of the temporal envelope of the total polarization for alignment
strengths around αcrit. Left : For sublinear alignment terms, the plateau value is proportional
to
√
α− αcrit as is shown at the examples of the standard sublinear alignment term without

(red, cf. (15.6)) and with (yellow, cf. (12.8)) exponential crowding term and the piecewise
linear alignment term (blue, cf. (15.8)). In case of the latter, the plotted plateau values are
corrected by an offset value of 20.157. For superlinear alignment as given by (12.10), there are
also plateau values for α < αcrit which are reached if the initial pertubation is large enough.
The dashed red line indicates the value of αcrit.

If, in contrast, the alignment strength is slightly subcritical and the perturbation is
appropriately small, an exponential decay similar to the sublinear case is observed. The
latter behavior is not too surprising as the polarization remains very close to zero and
thus in a range where the linearization provides a good approximation to the alignment
term.

At this point, we should note that the initial behavior of the total polarization may
seemingly contradict the true result. On the one hand, for large initial polarizations and
slightly supercritical alignment strength, the nontrivial asymptotic state may exhibit
smaller polarizations than the data. In that case, the temporal envelope of the total
polarization decreases but does not approach zero.

Figure 15.5: Illustration of some transient behaviors of the temporal envelope of the total
polarization W . Left : Delayed decay to zero for subcritical alignment strengths α � αcrit

after apparent establishment of a plateau. Note the logarithmic scale for the time axis! Right :
overshoot beyond the plateau value for strongly supercritical alignment strengths. In both
cases, the alignment term was of superlinear type according to (12.10).
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One the other hand, for most shapes of the initial conditions, if the alignment strength
is only slightly smaller than its critical value, the temporal envelope of the total polar-
ization may initially increase until the eigenshape is reached and then starts to decay to
zero.

In case of superlinear alignment, we may even observe an apparently asymptotic
plateau of the temporal envelope and then a sudden decay to zero. Some of these effects
are depicted in figure 15.5.

Figure 15.6: Typical large time behavior of the temporal envelope of the total polarization W
for α being close to the critical value αcrit for sublinear alignment terms. Note the logarithmic
scales for the ordinate! Left : In case of small initial data, the envelope exponentially decays
to zero for subcritical α and exponentially grows until reaching its nontrivial final state for
supercritical α. For short times, the envelope may behave differently while the solution develops
its eigenshape. Right : If the initial polarization is large, the temporal envelope starts decaying
independently of the stability. In case of supercritical α, this decay comes to halt when the
nontrivial final state is reached whereas for subcritical alignment, the decay goes on and becomes
exponentially for large times. Parameters: εw = 0.15, L = π, Δx = 0.05, Δt = 0.004, sublinear
alignment term of type (15.6).

How the temporal envelope of the total polarization can be used to determine whether
we are in the stable or unstable regime, is enlighted by figure 15.6. Moreover, different
possible behaviors for large and small initial data become evident there. For superlinear
alignment terms and sufficiently large alignment strengths α, an additional transient
behavior may be observed. If the initial data are smaller than the asymptotic value, the
temporal envelope of the total polarization increases, reaches a maximum and after this
overshoot decays to its asymptotic value.

Let us now have a closer look at the dependence of the stability on the size of the
initial polarization. As already indicated above, we have to distinguish between sublinear
and superlinear bistable alignment terms.

1. For the sublinear versions of f , given any values of ε and L, we find a critical align-
ment strength αcrit such that for smaller α, any perturbation decays, regardless of
its size. If the actual alignment strength is larger than the critical one, then any
generic perturbation asymptotically approaches the oscillating state. The only ex-
ceptions are those initial data which do not contain the largest possible Fourier
mode. It is also notable that for different sublinear alignment terms, we find
precisely the same stability behavior. In detail, we tried the following sublinear
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alignment terms (the last of whom is in fact piecewise linear):

f(w, u) = αw

(
1− w2

u2

)
(15.6)

f(w, u) = αw

(
1− |w|

u

)
(15.7)

f(w, u) = αwχ{|w|≤u
2 } + α(1− w)χ{w>u

2 } − α(1 + w)χ{w<−u
2 }, (15.8)

and for some tests also the versions with exponential crowding term. The critical
alignment strength was found to be the same for all of these choices.

2. In case of the superlinear alignment terms, the critical alignment strength in addi-
tion depends monotonically on the size of the initial perturbation. For very small
perturbations, we find the same αcrit as for the sublinear alignment term − at least
within the considered range of accuracy. If then the height of the perturbation is
increased without changing its shape, the alignment strength at which the switch
from decay to growth occurs becomes smaller. This situation is plotted in figure
15.9. In our example with αcrit = 0.182306 and the alignment term f̃s,2 with
ν = 12, the largest alignment strength for which we found no initial perturbations
not decaying to zero was α = 0.04760244 which is only about one fourth of the
critical value (cf. figure 15.5). This ratio indicates the importance of the shape
of the nonlinearity for determining the true stability behavior as opposed to the
predictions from the linearization.

For the plot in figure 15.9 showing the dependence of the critical alignment strength
on the size of the perturbation we chose a diffusion coefficient of εw = 0.2, a domain size
of L = 5π and a perturbation of the shape

w(0, x) = 2h sin
(
π
x

L

)
(15.9)

with constant particle density u. In terms of left and right particle densities this reads

ur(0, x) =
1

2
u0 + h sin

(x
5

)
(15.10)

ul(0, x) =
1

2
u0 − h sin

(x
5

)
. (15.11)

In the particular case of figure 15.9, the total particle density u has been fixed to one in
the initial data.

Let us finally comment on some numerical subtelties. First, we note that our scheme
introduces some additional diffusion to the system whose size will depend on the nu-
merical parameters Δx and Δt. We will discuss this dependence in more detail at the
end of the next subsection where we compare the critical alignment strengths computed
in chapter 10 with those found by the simulations. The discretization of the diffusion
terms even adds artificial terms of higher order to the system. Moreover, the right hand
side f also contributes to these additional terms.

We furthermore note that boundary artefacts cannot be excluded to play a role for
very small domain size and thereby only few grid points. These are however not a major
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Figure 15.7: Dependence of the
measured critical alignment strength
on the domain size. Abscissa: do-
main length L in multiples of π (log-
arithmic scale), ordinate: critical
alignment strength αcrit scaled by
the domain length.

concern for reasonable choices of the numerical step sizes.

15.2.2 Stability for system (9.4)

With additional diffusion in the equation for the particle density u the basic features
found in the previous subsection for system (9.2) remain the same.

Figure 15.8: Dependence of the scaled critical alignment strength α0 on the diffusion coefficient
ε+ = ε

2
for (9.2) and ε+ = ε for (9.4), respectively. Parameters: L ∈ {5π, 100π}, Δt =

0.12 Δx2ε+
−1, Δx ∈ {0.05, 0.1, 0.2}.

Again, the critical alignment strength increases with the diffusion coefficient

ε = εw = εu

as to be expected. The precise relationship between ε and the scaled value

α0 := αcrit
L2

π2

is depicted in figure 15.8 for both systems, (9.2) and (9.4), and for domain sizes of 5π
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and 100π.
The initial perturbation used for these simulations was chosen to be a triangle shaped

hat function

ur,0(x) =
1

2
u0 + 2h

x

L
χ[0,L2 ]

+ 2h
(
1− x

L

)
χ[L2 ,L]

ul,0(x) =
1

2
u0 − 2h

x

L
χ[0,L2 ]

− 2h
(
1− x

L

)
χ[L2 ,L]

but different initial conditions, also with perturbations of the total particle density,
where checked to yield the same results.

As alignment term we chose the standard sublinear version given by (15.6) but as
already found in subsection 15.2.1 for system (9.2), any other sublinear alignment term
leads to the same critical alignment strengths.

By the analysis in chapter 10 we expect the scaled critical alignment strength α0

to equal ε in case of system (9.2) and 2ε for system (9.4). In fact, we find a linear
relationship between the critical alignment strength and the diffusion coefficient for
ε being not too small, and the factor of proportionality is as expected, namely one for
system (9.2) and two for system (9.4). In addition, there is some approximately constant
offset which depends on the step size of the discretization is related to the numerical
diffusion already being discussed in the previous subsection and being measured in more
detail below.

Figure 15.9: Dependence of the critical alignment strength on the size of the initial perturba-
tion (measured in multiples of the total particle density u0) at fixed shape of the perturbation
and fixed model parameters. For the sublinear alignment terms (black balls), there is no de-
pendence at all, whereas for the superlinear alignment term f̃s,2 (red squares), αcrit decreases
with increasing size of the perturbation. The zoom box shows that a perturbation size of
w = 10−4u0, corresponding to less than 0.01 % of particles being turned around, already
accounts for a change in the critical alignment strength by about 0.15%.

Moreover, we recover the dependence of the critical alignment strength on the size
of the perturbation for superlinear alignment whereas for the sublinear version, this size
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does not matter at all. This effect is shown in figure 15.9.

Concerning the observed offset which depends on the numerical step size we note
that the found relation between the measured critical alignment strength and the given
diffusion coefficients is approximately given by

αcrit,num ∼ εu + εw + const =

{
ε+ const for system (9.2)

2ε+ const for system (9.4),
(15.12)

with the approximation being good if ε is not too small compared to Δx.

As we already noted the observed offset stems from the artificial diffusion and other
superficial terms introduced by the numerical scheme. In the previous subsection we
mentioned that the numerical diffusion coefficient depends on the spatial and temporal
step sizes of the discretization. Moreover, we found the size of the spatial domain to play
a role which we attributed to possible boundary artefacts or an effect of the alignment
term and higher order terms.

Let us now analyze all the dependencies in more detail. Denoting the numerical
diffusion coefficient by Dnum we see that it enters the model as additional diffusion term
in both equations which effectively are turned into

∂tu+ ∂xw = (εu +Dnum)∂xxu

∂tw + ∂xu = (εw +Dnum)∂xxw + f(u,w)
(15.13)

where we have εu = 0 for system (9.2) and εu = ε for system (9.4), and in either case
εw = ε.

To obtain functional relationships between the model parameters and the numerical
grid sizes on the one hand and the numerical diffusion coefficient on the other hand we
measure the value of the scaled critical alignment strength α0,num obtained by the sim-
ulations depending on the different parameters we can control and ask for the difference
between α0,num and the predicted value

α0 = αcrit
L2

π2
= 2ε+.

First we find that keeping all else equal, the value of α0 increases linearly as the
temporal step size Δt is decreased to 0, and the factor of proportionality equals one:

α0,num = ᾱ0,num(ε,Δx, L)−Δt,

at least for large domains.

The dependence of α0 on the spatial step size is also in good approximation linear if
we are concerned with large spatial domains. In fact, the artificial diffusion coefficient
seems to behave like

Dnum ≈ Δx−Δt

if the domain is large enough, and the critical alignment strength therefore behaves like

αcrit,num =
π2

L2
(εu + εw +Δx−Δt).
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Figure 15.10: Dependence of the measured
scaled critical alignment strength α0,num on
the spatial step size ∆x for different values of
the diffusion coefficients εu and εw, measured
at domain size of L = 100 π and in the limit
∆t ↘ 0. Note the linear relationship with
asymptotic values being just equal to εu+εw.

This is in good agreement with the prediction for an explicite Euler scheme with
upwind flux for the plain hyperbolic system without diffusion and alignment. Here, the
artificial diffusion coefficient can be computed to be

Dnum,upwind = v2 ∆t+ v∆x

where v is the particle velocity which is one in our case.

Figure 15.11: Dependence of the measured scaled critical alignment strength α0,num in the
limit ∆t ↘ 0 (left) and the correction γ to the factor of proportionality in Dnum ∼ ∆t (right) on
the invers domain size L−1. The spatial step size was put to ∆x = 0.1, the diffusion coefficients
were chosen as ε = 0.31, 0.41, 0.5.

Not so easily appreciated is the dependence on the domain size, or rather on the
alignment strength. What is always recovered in very good approximation is a linear
dependence of the scaled critical alignment strength α0 on the time step ∆t of the shape

α0,num = εu + εw +Dnum,0 − (1− γ)∆t

where γ quickly decreases to zero as the domain length grows. The constant Dnum,0

is still independent of ∆t, grows with ∆x for fixed ε and L, and again approaches ∆x

from below as L is increased. Moreover, for fixed ∆x and L, Dnum,0 decreases as the
diffusion coefficients εu/w are increased.

In figure 15.11 we show the relationship between Dnum,0 (which in fact also includes
the higher order effects) and the domain size L for a fixed spatial step size and different
diffusion coefficients. As L is decreased towards zero we observe a relationship of the
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kind
Dnum,0 ∼ L−1.

The dependence of the correction factor γ in the linear relationship between α0,num and
Δt is also shown and we see that γ increases as the domain shrinks and approaches zero
as L grows. It is however still not clear which amount of the nontrivial dependence of
the deviation from the theoretical value α0 is induced by boundary effects and which
part is the contribution of the alignment term itself.

We conclude that at least for very small alignment strengths α, the numerical dif-
fusion coefficient of the interior scheme (that is, without boundary effects) is in good
approximation given by

Dnum = Δx−Δt (15.14)

and does not depend explicitely on ε itself. This is the artificial diffusion coefficient being
introduced by the explicite Euler scheme with upwind flux which is the predominant
discretization error for the advection dominated case αε� 1 (cf. remark 13.3).

Notably, if we put ε to zero and investigate virtually the whole system with only
the numerical diffusion everything works out as predicted. That is, the measured scaled
critical alignment strength is indeed given by Δx − Δt with deviations only for very
small domain sizes.
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15.2.3 Interpretation of the results

The most striking observation is the dependence of the stability on the size of the
perturbations for superlinear bistable alignment terms whereas for sublinear ones the
homogeneous steady state is either stable against perturbations of any size or is unstable.
This behavior can well be understood by recalling the stability results from chapters 10
and 11.

There, we found that for both models, the linear stability analysis yielded for any
values of the diffusion coefficient and the domain length a critical alignment strength
αcrit which marked the boundary between linear stability and instability.

For the sublinear versions of f , we found the same sharp stability boundary also in
the nonlinear stability analysis. Using the superlinear alignment terms we instead did
not find a sharp stability criterion and only could state that for alignment strengths
larger than αcrit, the homogeneous steady state is nonlinearly unstable.

We argued that for α being slightly smaller than its critical value there should be some
perturbations that will grow despite the predictions from the linear stability analysis.
Moreover, we suspected that the larger a perturbation is, the smaller an alignment
strength α is required to let it grow. And indeed, the simulations indicate that the
critical alignment strength for a given shape of the perturbation decreases with its height
increasing.

Thus, we find that our relatively simple system exhibits a symmetric steady state
whose stability cannot be determined from the linearization but also depends on the
higher orders of the nonlinearity.

We also recall that by the nonlinear stability analysis for system (9.4) we found a
stability bound of α0 = ε rather than α0 = 2ε as predicted by the linear stability analysis
and now observed in the simulations. This is not a contradiction as the result in chapter
11 took into account that possibly the total particle density might remain constant. The
behavior observed in the simulations is somewhat different.

According to the prediction of the linear analysis, the system tends to select the
minimal wave numbers from generic perturbations for both, the polarization and the
particle density, as this combination is the one with the largest growth rate σ. In
particular, any initial perturbation of the polarization at constant particle density will
always from the beginning on produce variations in the particle density which contribute
to the decay of the energy functional E. We have therefore reconciled with one another
the different predictions from chapters 10 and 11.
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15.3 Simulation on large domains and traveling waves

We will now consider the system on large spatial domains where the boundary conditions
do not play a role. In that situation we choose different localized initial conditions on
top of the trivial homogeneous steady state

(w ≡ 0, u ≡ U1)

and examine which type of profiles will emerge from these data. Our main concern are
traveling wave solutions emerging in the system. To assure that the homogeneous steady
state can indeed be viewed as an asymptotic state of some wave pattern we will have
to take the computational domain large enough to prevent the wave from reaching the
boundary.

Since we have not been able to deduce any assertions about the stability of traveling
wave solutions in chapters 13 and 14 we shall not expect to observe all kinds of wave
profiles described there. The only patterns which are in fact observed in simulations
should be the stable ones. We will in particular focus on the connection between the
alignment strength α and the diffusion coefficients εu and εw on the one hand and the
velocity of the evolving waves on the other hand.

15.3.1 Traveling waves for system (9.2)

Our first simulations started with initial conditions close to certain traveling wave pro-
files with well defined asymptotic states corresponding to well defined wave velocities.
A particular example for such data is sketched in figure 15.12. In this example, the
asymptotic states are chosen to be

(W1 = 0, U1 = 1)

on the right and

U3 = −W3 =
2

3

to the left. These asymptotic states would correspond to a wave velocity of c = 2.

Figure 15.12: Typical shape of initial condi-
tions for a traveling wave connecting the state
U3 = −W3 to the symmetric state W = 0.
Red : W , blue: U , green: Ur, magenta: Ul.

In fact, the system chooses its own wave velocity completely independent of the
particular data and only according to the system parameters. As an example, figure 15.13
shows the temporal development of the polarization w for different initial conditions and
different parameters.
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We observe that the resulting traveling wave profile (the jump from the plateau in
the center to that on the right) is independent of the asymptotic states encoded in the
initial data but only depends on the parameters. In particular, these right moving waves
have velocities larger than 1 which means that we work in the region above c∗.

Figure 15.13: Single wave profiles moving to the right evolving from monotone initial condi-
tions. Top: parameters corresponding to c∗ ≈ 1.1, bottom: c∗ ≈ 1.5, left : initial conditions
corresponding to c = 1.1, right : intitial conditions corresponding to c = 4. Similar colors code
for similar values of w. It is obvious that the asymptotic states of the right moving wave profile
are those corresponding to the critical velocities c∗ rather than to the initial conditions. At the
rear, a diffusion profile moving to the left connects the left asymptotic state to the initial data
on the left.

In addition, we find a secondary wave emerging to the left where the discrepancy
between the left asymptotic states of the data and of the resulting traveling wave is
corrected. These secondary waves are slower than the right moving ones and looking
closer, we observe that their velocity is precisely 1. In fact, we are not dealing with
traveling wave profiles but with the diffusion fronts discussed in section 14.5. In these
fronts, two plateaus of totally left aligned states are connected.

Using qualitatively different initial conditions we also obtain traveling wave profiles of
other types. In particular, choosing initial conditions similar to a wave profile connecting
a state of the type U2 = W2 to a symmetric one of the type W1 = 0 with U1 < U2, we
find indeed a wave of this type moving to the right and behind that again a secondary
diffusion profile which is now moving to the right at velocity 1.

Combining these different types of initial conditions one is tempted to produce a
series of wave profiles as in section 13.6. However, the construction of these profiles fails
as the waves with velocities c ∈ (−1, 1) seem to be unstable. Still, there are two types
of patterns we do observe, both of them containing diffusion fronts and a region of total
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depletion of particles in the center of the domain.

Figure 15.14: Typical initial conditions from which complex wave patterns evolve. Left :
localized increase of densities of right and left oriented particles leading to two single humps
emerging from the center of the domain, right : localized decrease of right and left oriented
particles leading to two double humps emerging from the center. Note the zoom into the center
of the spatial domain!

Figure 15.15: Typical wave patterns emerging from the initial conditions sketched in figure
15.14. Left : two single humps emerging from excess of particles as in figure 15.14 left, right :
two double humps emerging from defects of particles as in figure 15.14. In both cases, the
relevant wave patterns are shown in more detail in the zoom boxes.

1. The easiest symmetric pattern to be observed emerges from initial conditions where
we put some additional right oriented particles slightly right to the center of the
domain and some additional left oriented particles slightly left of the center (cf.
figure 15.14, left). This results in a fast wave moving to the right at c > c∗ and
connecting a totally right aligned state

U2 = W2 =
c

c− 1
U1

to the symmetric state (W = 0, U = U1), followed by a diffusion front along which
the density U = W falls from U2 to zero. A mirror image of this profile moves to
the left where at speed −c the state (W = 0, U = U1) is connected to the totally
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left aligned state
U3 = −W3 =

c

c− 1
U1 =

−c
−c+ 1

U1.

Again, this wave profile is followed by a diffusion front bringing the particle density
to the center value of zero. This type of solution has already been predicted in
section 14.5 and will be referred to as single hump solutions in what follows.

2. If in contrast, we remove some right oriented particles on the right of the center
and some left oriented particles on the left (cf. figure 15.14, right), we obtain a
slightly more complicated profile which may also be understood in physical terms.
The initially slight depletion of right oriented particles enables the majority of
opposingly traveling left oriented particles to stop even more of them until finally
a region with only left oriented particles is left.

We therefore encounter a leading wave front connecting a state of type three (that
is, W3 = −U3) to the outer symmetric state (W = 0, U = U1) and moving at speed
c ≥ c∗. This wave is followed by a second one where the left oriented particles are
met by a superior number of right oriented ones. This profile therefore connects
a state of type two (that is, U2 = W2) to the type three state behind the leading
front. The velocity of this wave lies between 1 and c∗. Recall that this type of
wave connecting type two and type three states could not be predicted but there
existence could neither be excluded (cf. the dotted yellow and cyan curves in figure
13.3). Yet, the existence of this type of waves was conjectured from the flow field
pictures in phase space in figure 13.10. At the rear, we find a diffusion front with
speed 1 behind which there are no particles left at all.

Finally, the whole pattern is repeated symmetrically on the left. We will call these
patterns double hump solutions for obvious reasons.

In figure 15.15, two typical wave patterns according to the two situations we discussed
here are shown. In that example, the solution is shown after a simulation time T = 100

for parameters εw = 0.2, εu = 0 and α = 0.6 with the superlinear alignment term

f(u,w) = αw

(
1 + 12

|w|
u
− 13

w2

u2

)
.

If we allow for asymmetric perturbations, also the resulting wave patterns can become
asymmetric. Let us consider data similar to case 1 above, but now the additional
particles are only of one orientation. We will then obtain only one traveling and growing
hump. At its rear, we have a diffusion profile at whose end there is no complete depletion
from particles but rather a totally aligned state which is connected to the symmetric
asymptotic state at the other end of the domain. An example of this phenomenon is
depicted in figure 15.16.

We shall note that the use of other alignment terms leads to different shapes of
the wave fronts but the basic pattern of single or double humps remains the same. In
particular, the steepness of the wave fronts increases with the size of α, and superlinear
alignment yields significantly sharper fronts than the sublinear f . Moreover, the time
until a stable wave pattern is established is larger for the sublinear alignment term and
for smaller values of α.
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Figure 15.16: Typical asymmetric wave pattern (right) emerging from an initial perturbation
(left) of the non-polarized state by local addition of right oriented particles. The rightmost
front is a traveling wave profile similar to that in figure 15.15 left. On the outer left, there is a
wave front corresponding to that in figure 15.15 right. The right asymptotic state of this wave
is of totally right aligned type W = U as is the left asymptotic state of the leading front on
the right. The only difference lies in the amount of right oriented particles. These two states
of the same type are connected by the diffusion profile at the rear of the right hump.

Another important finding is that the measured wave speeds and the plateau val-
ues of the asymptotic states indeed follow very precisely the predicted relationships we
summarized in proposition 13.9. This also allows us to easily determine the velocity of
a wave profile by just measuring the plateau values of the polarization in front of an
behind the wave.

15.3.2 Traveling waves for system (9.4)

For this model, we only mention that the qualitative behavior of this system is the same
as that of system (9.2) discussed in the previous subsection. Although the exact shapes
of the wave fronts and the resulting values of the velocities are slightly different, we
encounter precisely the same types of patterns from the same types of initial data as
before.

In particular, the relation between wave speed and asymptotic states are precisely
the same for this model. We therefore find good evidence for our conjecture that the full
system (9.4) inherits the properties of its hyperbolic limit systems (9.2) and (14.20) not
only for very small values of ε but in fact for a rather wide range of diffusion coefficients.

15.3.3 Dependence of wave velocities on parameters

The next step of our investigation is to find the precise relationship between the velocities
of the evolving traveling waves on the one hand and the parameter values and the type
of alignment term on the other hand. We already found that only three types of right
moving wave profiles occur in the simulations. These are

1. waves with velocity c > c∗ connecting a state of type U2 = W2 to a state of type

(W = 0, U = U1 =
c− 1

c
U2),
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2. waves with velocity c > c∗ connecting a state of type U3 = −W3 to a state of type

(W = 0, U = U1 =
c+ 1

c
U3),

3. and waves with velocity c ∈ (1, c∗) connecting a state of type U2 = W2 to a state
of type

U3 = −W3 =
c− 1

c+ 1
U2.

Before examining the relationship between the parameters and the velocities in detail
we shall note that the numerical diffusion coefficient has to be taken into account. We
already observed that the full diffusion coefficients in the models are given by

ε̃u = εu +Dnum and ε̃w = εw +Dnum,

respectively. In terms of our systems (9.2) and (9.4) this means that we will not be able
to observe the true behavior of (9.2) since with numerical diffusion this one becomes

∂tu+ ∂xw = Dnum∂xxu

∂tw + ∂xu = (ε+Dnum)∂xxw + f

which is an interpolate model of type (14.17) with

θ =
Dnum

ε+Dnum
.

For system (9.4) we obtain under consideration of the artificial diffusion effect the
system

∂tu+ ∂xw = (ε+Dnum)∂xxu

∂tw + ∂xu = (ε+Dnum)∂xxw + f

which is just the same but with slightly different diffusion coefficient ε+Dnum.

If we now recall that the artificial diffusion coefficient was found to be

Dnum = Δx−Δt

we can try to establish a linear relationship between the original and the full diffusion
coefficient by choosing the numerical step sizes as

Δx = c1ε

Δt = c2Δx

ε̃ = ε+Dnum = (1 + c1(1− c2))ε.

Applying the same idea to system (9.2) we obtain an interpolate model of type (14.17)
with

θ =
c1(1− c2)

1 + c1(1− c2)
independent of ε

267



and
ε̃ = ε(1 + c1(1− c2)).

Having these choices of the step size at hand we can check the relationship between
the observed wave velocities and the effective product

aeff = ε̃α = (1 + c1(1− c2))εα.

Figure 15.17: Velocity of the leading wave
front for system (9.2) with standard sublin-
ear alignment term depending on the align-
ment strength for different diffusion coeffi-
cients ε = 0.05 (yellow stars), ε = 0.1 (blue
balls), ε = 0.15 (red triangles), ε = 0.2
(cyan squares), ε = 0.25 (magenta crosses),
and ε = 0.3 (green triangles). Note the co-
incidence of wavespeeds for equal products
of ε and α! The highlighted examples are
a = 0.15 = 0.1 · 1.5 = 0.15 · 1 = 0.3 · 0.5
(black dashed line) and a = 0.1 = 0.05 · 2 =
0.1 · 0.1 = 0.2 · 0.5 (green line).
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The most interesting profiles are the leading fronts whose velocities we calculated
from the results of the simulations for different alignment terms.

These showed the following remarkable properties which are observed for both mod-
els, (9.2) and (9.4).

• Given any shape of the alignment term and any of the initial conditions being
discussed above, the velocities indeed only depended on the product αε and never
on both parameters individually. This nicely fits to our calculations for the critical
velocities c∗ into whose formulas only the product a = Fwε entered. This effect is
shown exemplarily in figure 15.17 for the sublinear alignment term.

• Using different sublinear alignment terms given by (15.6), (15.7), or (15.8), we
always obtain the same velocities − depending on αε, of course. This supports the
conjecture that for sublinear alignment terms, the critical velocities only depend
on the linearization.

• In case of sublinear alignment, the velocities of the leading fronts in the solutions
with one hump traveling in either direction and those of the solutions with two
humps per direction coincide for given parameters (cf. figure 15.18). Recall that
we analytically found both types of waves for the same velocity regime |c| >

c∗. In case of superlinear alignment, the fronts of the single hump solutions are
significantly faster than those of the double hump solutions. This indicates a
nontrivial dependence of the velocity on the wave profile for superlinear alignment
terms.

• The precise connection between the product a = αε for any fixed alignment term
and wave type is indeed of the shape

|c| − 1 ∝
√
a
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for small values of a. We show this relationship in figure 15.18 for different align-
ment terms and different wave types.

• Given fixed parameters α and ε, the observed wave velocities are larger for super-
linear than for sublinear alignment terms. Recall that this difference has already
been predicted by the calculations in subsection 13.5.3. The calculations conducted
there to find invariant domains in phase plane also give a glimpse why the wave
speeds are different for different wave types in case of superlinear alignment terms.
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Figure 15.18: Precise dependence of the velocities of different waves occuring in model (9.4)
for different alignment terms and different wave types on the product a = αε. The square
root scale for the a-axis has been chosen to emphasize the linear relationship between c and
a =

√
αε. Shown are the velocities of the outer fronts of single hump solutions for sublinear f

(yellow squares) and superlinear f (red diamonds), of outer fronts of double hump solutions for
sublinear (blue stars) and superlinear (black balls) alignment, and for comparison, the velocity
of the second front in double hump solutions for sublinear f (green triangles). As sublinear
alignment term the shape (15.6) is used, the superlinear term is f̃s,2 according to (12.10) without
exponential crowding term (i.e., β = 0) and ν = 12.

Let us now have a closer look how the precise values of the velocities depend on the
product αε and try to deduce connections to the numerical diffusion coefficient. For
these calculations we use fixed values of Δx and Δt and tune the alignment strength α

for different diffusion coefficients ε.
Although we do not have an analytical relationship between a = αε and the critical

velocity c∗ for the case of system (9.4), we can use the plot from figure 14.1 to graphically
obtain the value of a from c∗ and vice versa. This is used to find an effective value aeff
corresponding to given values of α, ε, Δx and Δt.

In figure 15.19, we show the measured and the predicted wave velocities for step sizes

Δx = 0.23 and Δt = 0.13Δx ≈ 0.03.

According to our investigations in section 15.2, this should lead to a numerical diffusion
coefficient of Dnum ≈ 0.2 and hence an effective diffusion coefficient εeff = ε + 0.1.
Indeed, if the diffusion coefficient ε is put to zero, we observe a very good agreement
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with the theory as the measured velocities are precisely those corresponding to a = 0.1α.
This coincidence becomes even more evident in the other graph in figure 15.19 which
shows the calculated effective value aeff together with the true value 0.1 α.

If we now choose ε different from zero, for example 0.1 or 0.2 in figure 15.19, then
we find the velocities to be smaller than predicted, in particular as α increases. This
observation provides some evidence for the conjecture that the alignment term itself has
an impact on the numerical diffusion coefficient.

Figure 15.19: Measured and predicted wave velocities (left) and effective products aeff (right)
for numerical step sizes ∆x = 0.23 and ∆t = 0.03. Shown are the measured velocities for ε = 0.0
(yellow diamonds), ε = 0.1 (blue balls), and ε = 0.2 (red crosses) against the given alignment
strength α, together with the predicted velocities c∗ (as lines) for a = α(ε+0.1). On the right,
the symbols denote the values aeff which are deduced from the measured velocities assuming
these are the critical velocities c∗. For comparison, the dashed lines show the values (ε+ 1)α.

Figure 15.20: Measured and predicted wave velocities (left) and effective products aeff (right)
for numerical step sizes ∆x = 0.2 and ∆t = 0.08. Here, the measured velocities are given for
ε = 0.0 (green squares), ε = 0.04 (yellow diamonds), and ε = 0.09 (blue balls) and ε = 0.1 (red
stars). The curves of the same colors are the predicted critical velocities for a = (ε + 0.06)α.
The symbols on the right denote again the respective effective values aeff for the measured
velocities being assumed to be the critical ones. Again, we show the values (ε+0.06)α as dashed
lines and for ε = 0.0 also the linear regression as solid green line.

Choosing different step sizes as is done for the simulations whose results are shown in
figure 15.20, we also obtain a quantitatively different behavior. The precise parameters
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are now taken to be

Δx = 0.2 and Δt = 0.4Δx = 0.08

resulting in a predicted numerical diffusion coefficient of 0.12 and a predicted effective
diffusion coefficient of εeff = ε+ 0.06.

Still the agreement of the predicted velocities with the measured ones is not too bad
for small values of α but for each value we chose for the diffusion coefficient and for all
investigated alignment strengths, the measured velocity was smaller than the predicted
one. Moreover, the deviations are significantly larger as in the previously discussed
setting. Again, the deviation increases with both, increasing α and ε.

It remains unclear why the predicted velocities are not precisely met by the simula-
tions. Possible reasons for the differences are

• numerical errors beyond the artificial diffusion term Δx −Δt, most probably in-
troduced by the discretization of the alignment term, or

• a deviation of the true critical wave speeds from the value predicted from the
linearization. This would be surprising at least in case of the sublinear alignment
term.

Still, the qualitative behavior of the wave speeds and in particular the dependence
only on the product αεeff are nicely recovered in the simulations.
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Chapter 16

Summary and Discussion II

The objective of this second part was a better understanding of the behavior of the
hyperbolic part (2.13) of our cytoskeleton model upon additional effects like diffusive
behavior and mutual alignment of filaments. Letting the monomer concentration a

be constant and making certain assumptions on the parameters we found a family of
reduced systems of two reaction diffusion equations.

This system (14.17) describes the motion of oriented particles − or particularly
short filaments − in one space dimension at a fixed velocity superimposed with diffusive
behavior and mutual alignment of right and left moving specimen. However, the final
model is not formulated in terms of right and left oriented filaments but rather in terms
of the total particle density u and the polarization w which is defined as the difference
of the densities of particles moving to the right and left, respectively.

We introduced different types of alignment whose common feature are at least three
equilibria. In particular, the alignment terms of major interest are of bistable type
and take the value zero whenever the polarization vanishes or when it takes its maxi-
mal absolute value w = ±u indicating that all particles move into the same direction.
The former equilibria we called symmetric or non-polarized states, the latter ones were
dubbed totally aligned states.

The main difference between the alignment terms we considered is their behavior for
small values of the polarization. The first type has been called sublinear, the second
one superlinear alingment where the terminology meant the dependence on w for w ≈ 0

and fixed particle density u0 > 0. The sublinear version can be interpreted as fila-
ments turning around one another by pure steric interactions between two filaments at
a time whereas the superlinear alignment term incorporates possible cooperative effects
in alignment.

This system confined to a finite spatial domain showed a continuum of homogeneous
steady states being characterized by vanishing polarization w ≡ 0 and any non-negative
particle density u ≡ u0 ≥ 0. In chapters 10 and 11 we considered the linear and nonlinear
stability of these steady states against small perturbations.

First, we found the linear stability only to depend on the size L of the spatial domain
and the ratio of the alignment strength α and the diffusion coefficient ε. It did not
depend on the type of the alignment term at all since the linearization can by definition
not distinguish between sublinear and superlinear right hand sides.

The nonlinear stability in terms of a suitable L2-energy on the contrary revealed
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a significant difference between sublinear and superlinear alignment. In case of the
sublinear alignment term, the conditions for stability were found to be precisely the
linear stability conditions whereas for the superlinear alignment terms, no sharp stability
criterion could be found. The only assertion to be made for the latter case was that
the linear stability condition is insufficient to guarantee nonlinear stability and that the
stability behavior should depend on the shape and size of the perturbation.

All these predictions have been found to be confirmed by simulations whose out-
comes are discussed in chapter 15. In particular, the dependence of the stability of the
homogeneous non-polarized state on the size of the applied perturbations has been in-
vestigated, and a nontrivial dependence has been observed for the superlinear alignment
terms. However, as the perturbations were made smaller and smaller, in the limit the
stability conditions approached those found for the sublinear alignment terms. The par-
ticular importance of the shape of the nonlinearity for the stability behavior is stressed
in subsection 15.2.3.

With a view to understanding polarization effects away from the boundary we con-
sidered the systems (9.2) and (9.4) on the whole real line as spatial domain and asked for
traveling wave solutions. These were explicitely found for the purely hyperbolic system
(14.20) without diffusion as well as for system (9.2). For system (9.4), the existence
of traveling wave solutions could be asserted at least for small diffusion coefficients by
viewing the according traveling wave system as a singular perturbation of the hyperbolic
case (14.22), (14.23).

Since all totally aligned states and all non-polarized states (with arbitrary total
densities) are equilibria of the system, there is a whole continuum of possible asymptotic
states for the traveling waves. However, in contrast to typical scalar reaction diffusion
equations, the choice of a pair of asymptotic states already fixes the velocity of the wave.

Moreover, we find critical velocities c∗ > 1 and c∗ ∈ [0, 1), depending only on the
product of linearization gw of the alignment term at w = 0 by the diffusion coefficient
ε. For wave speeds having an absolute value between c∗ and c∗ we cannot expect
monotone wave profiles connecting the non-polarized state w = 0 to any of the totally
aligned states w = ±u. For the superlinear alignment terms, these critical velocities
could not be determined explicitely but at least we could deduce upper bounds for c∗.

In fact, given two asymptotic states connected by any monotone profile as initial
conditions, the solution develops a sequence of wave profiles and diffusion fronts to
connect these asymptotic states. These profiles have particular velocities depending
on the alignment strength and the diffusion coefficient. In fact, the velocities selected
by the system depend on the parameters in a similar way as c∗ does. Waves with
velocities between −1 and 1, that is, slower than the particle velocity, are not observed
in simulations. Neither are non-monotone wave profiles which are known to be unstable
for most common reaction diffusion systems (cf. [33]).

Altogether, we obtained a rather basic reaction diffusion system describing the mo-
tion of aligning particles or alternatively a polarizable medium with stochastic equili-
bration effects.

Considering this system in a confined domain with reflecting boundary conditions, we
found the stability of the symmetric, non-polarized equilibrium to depend on the domain
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size, the diffusion coefficient and the strength of the alignment in a rather usual way.
Strikingly, the linearization around this steady state could not appropriately predict the
stability behavior in case of superlinear alignment terms. In fact, the stability was found
to be determined by the whole nonlinearity.

Without spatial confinement we found arbitrary perturbations of the homogeneous
non-polarized state to evolve into traveling profiles and eventually leading to propagating
fronts of full polarization and often depletion zones without any particles being left.

Returning to the initial question of the behavior of the hyperbolic equations (2.13)
at fixed monomer densities, these waves profiles remind us of fronts of aligned filament
ends as they are observed in lamellipodia of moving cells. This suggests to incorporate
effects like fluctuations of filament tips − by diffusion of whole filaments or by diffuse
polymerization and depolymerization − and mutual alignment of filaments − by steric
interaction or mediated by filament binding proteins such as α-actinin or fascin − into
the model.

Allowing for alignment − or, in one space dimension, flipping − of filaments requires
keeping track of the whole filaments rather than their tips. In particular, the length
must be taken into account, and in such a model, filaments have to be characterized by
their position (of one of the ends or of the center), their orientation, and their length as
additional independent variable as has for example been done in [6].
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Appendix A

Spaces for Hölder Estimates for
Parabolic Equations

A.1 Hölder spaces

Before beginning with the introduction of parabolic Hölder spaces we note that we will
occasionally encounter functions belonging to standard Hölder spaces. For that reasons
we note that whenever a function is said to belong to Ck+β with k ∈ N0 and β ∈ (0, 1],
this function is assumed to have continuous derivatives of order k with respect to any
collection of its arguments and that its derivatives of kth order are Hölder continuous
of exponent β, again with respect to all of its arguments. More precisely, we use the
following notation.

Definition A.1.1. 1. Let T > 0, β ∈ (0, 1], and k ∈ N0 be given. We define the
space Ck+β([0, T ]) by

Ck+β([0, T ]) :=

{
f ∈ Ck([0, T ]) | Hölβ

(
dk

dtk
f

)
<∞

}
(A.1)

where for g ∈ C0([0, T ]), the Hölder constant is given by

Hölβ (g) = sup
0≤s<t≤T

|g(t)− g(s)|
(t− s)

β
. (A.2)

We equip Ck+β([0, T ]) with the norm

‖f‖Ck+β([0,T ]) := ‖f‖Ck([0,T ]) +Hölβ

(
dk

dtk
f

)
(A.3)

where the Ck-norm is the sum of the supremum norms of all derivatives of f of
orders 0, . . . , k. We most often write ‖f‖Ck+β rather than ‖f‖Ck+β([0,T ]).

2. Given T > 0, β ∈ (0, 1], k ∈ N0, and a space-time domain

QT = {(t, x) | 0 < t < T, l(t) < x < r(t)} ,
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we define the space Ck+β(QT ) by

Ck+β(QT ) =
{
f ∈ Ck(QT ) | Hölβ (∂

αf) <∞ for each α of length k
}
. (A.4)

where the Hölder constant for a continuous function g is now defined by

Hölβ(g) := Hölt,β(g) +Hölx,β(g)

= sup
(t,x),(s,x)∈QT ,t �=s

|g(s, x)− g(t, x)|
|s− t|β

+ sup
(t,x),(t,y)∈QT ,x �=y

|g(t, y)− g(t, x)|
|y − x|β

.

The norm is again given by

‖f‖Ck+β(QT ) := ‖f‖Ck(QT ) +
∑
|α|=k

Hölβ (∂
αf) . (A.5)

Remark A.1. It is well known that for 0 < β1 < β2 ≤ 1 and integers 0 ≤ l ≤ k, the
spaces Ck+β2 compactly embed into Cl+β1 . We will occasionally require the embedding
constant for the case k = l = 0.

In the one dimensional case we find for g ∈ C0+β2([0, T ]) the follwing simple esti-
mate:

Hölβ1(g) = sup
0≤s<t≤T

|g(t)− g(s)|
(t− s)

β1

= sup
0≤s<t≤T

|g(t)− g(s)|
(t− s)

β2
(t− s)β2−β1

≤ Hölβ2T
β2−β1 . (A.6)

In the spatiotemporal case, we analogously obtain for g ∈ C0+β2(QT ):

Hölt,β1(g) ≤ Hölt,β2T
β2−β1 (A.7)

Hölx,β1(g) ≤ Hölx,β2L
β2−β1
max (A.8)

with
Lmax := max

t∈[0,T ]
L1(Σt)

being the maximal length of a temporal section through QT .

For more information on Hölder spaces we refer to standard textbooks on real
analysis and differential equations. A brief introduction can for instance be found in
section 4.1 of [11].

For the interior estimates we slightly adapt the notation from the monograph [19]
by Gary Lieberman concerning parabolic distances and interior Hölder norms. As we
deal with a parabolic equation the notion of Hölder continuity is slightly more involved
than in the usual definition.

We start with defining certain special subsets of R× Rn and some properties of the
domain QT .

Definition A.1.2. 1. We define the (spatial) diameter of the domain QT ⊂ R×Rn
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to be the spatial diameter of its projection to the space hyperplane 0× Rn:

diamQT := sup
(t,x),(s,y)∈QT

|x− y| (A.9)

2. Given a point (t, x) ∈ R× Rn, a set U ⊂ R× Rn and a radius R > 0 let U [X,R]

denote the intersection of U with the parabolic cylinder of radius R below (t, x):

U [X,R] = U ∩ CylR(t, x). (A.10)

For the notion of parabolic cylinders we refer to subsection 2.2.2.

Having these notations at hand we can now proceed to define the global Hölder
spaces which are used to measure the regularity of the functions in question throughout
the whole domain and up to the boundary.

Definition A.1.3. (Global Hölder spaces) Given a smooth function f ∈ C∞(QT ) and
numbers k ∈ N0, β ∈ (0, 1] we define

‖f‖Ck+β,P :=
∑

m+2j≤k

‖∂m
x ∂j

t f‖C0 + [f ]k+β + 〈f〉k+β (A.11)

where

[f ]k+β =
∑

m+2j=k

sup
(t, x), (s, y) ∈ QT

(t, x) �= (s, y)

|∂m
x ∂j

t f(t, x)− ∂m
x ∂j

t f(s, y)|
|(t, x)− (s, y)|βP

≡
∑

m+2j=k

HölP,β(∂
m
x ∂j

t f)

(A.12)

and

〈f〉k+β =
∑

m+2j=k−1

sup
(t, x), (s, x) ∈ QT

s �= t

|∂m
x ∂j

t f(t, x)− ∂m
x ∂j

t f(s, x)|
|t− t0|

1+β
2

≡
∑

m+2j=k−1

Hölt, 1+β
2
(∂m

x ∂j
t f)

(A.13)

are the parabolic and the temporal Hölder constants of the highest relevant combi-
nations of derivatives of f . A function f ∈ C0(QT ) is called (globally) parabolically
Hölder continuous with exponent β if ‖f‖C0+β,P < ∞, and it is said to be of class
Ck+β,P if ‖f‖Ck+β,P <∞.

Let us remark that for small k the sums in the definition of the Hölder norm only
contain a few terms. For example, the most commonly occuring versions are:

‖f‖C0+β,P = ‖f‖C0 +HölP,β(f), (A.14)

‖f‖C1+β,P = ‖f‖C0 + ‖∂xf‖C0 +HölP,β(∂xf) +Hölt, 1+β
2
(f), (A.15)

‖f‖C2+β,P = ‖f‖C2x,1t +HölP,β(∂xxf) +HölP,β(∂tf) +Hölt, 1+β
2
(∂xf) (A.16)
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where
‖f‖C2x,1t = ‖f‖C0 + ‖∂xf‖C0 + ‖∂xxf‖C0 + ‖∂tf‖C0 . (A.17)

To derive interior estimates the introduced Hölder norms are weighted by certain
powers of the distance to the parabolic boundary of the domain. The corresponding
definitions are as follows.

Definition A.1.4. (Weighted Hölder spaces)

1. For any point (t, x) ∈ QT we denote its parabolic distance to the parabolic boundary
PQT by

dP ((t, x)) := inf
(s, y) ∈ PQT

s ≤ t

|(t, x)− (s, y)|P . (A.18)

Given any two points (t, x), (s, y) ∈ QT write

dP ((t, x), (s, y)) := min{dP (t, x), dP (s, y)}.

2. The oscillation of a function f over the domain QT is defined to be

oscQT (f) := sup
(t,x)∈QT

f(t, x)− inf
(t,x)∈QT

f(t, x).

3. Given a function f ∈ C0(QT ) and a non-negative number b, define

|f |(b)0 := ‖dbP f‖C0 ≡ sup
(t,x)∈QT

|dP (t, x)bf(t, x)|. (A.19)

4. For f ∈ C0(QT ) and a negative real number b we define

|f |(b)0 := (diamQT )
b‖f‖C0 (A.20)

where diamQT denotes the spatial diameter of QT as defined above.

5. Given f ∈ C∞(QT ) and numbers k ∈ N0, β ∈ (0, 1], and a real number b ≥ −k−β

define the weighted Hölder norm

|f |(b)k+β :=
∑

m+2j≤k

∣∣∣∂m
x ∂j

t f
∣∣∣(m+2j+b)

0
+ [f ]

(b)
k+β + 〈f〉(b)k+β (A.21)

where in case k + β + b ≥ 0:

[f ]
(b)
k+β = sup

(t, x), (s, y) ∈ QT

(t, x) �= (s, y)

∑
m+2j=k

⎛
⎝dk+β+b

P

∣∣∣∂m
x ∂j

t f(t, x)− ∂m
x ∂j

t f(s, y)
∣∣∣

|(t, x)− (s, y)|βP

⎞
⎠ (A.22)
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and

〈f〉(b)k+β = sup
(t, x), (s, x) ∈ QT

t �= s

∑
m+2j=k−1

⎛
⎝dk+β+b

P

∣∣∣∂m
x ∂j

t f(t, x)− ∂m
x ∂j

t f(s, y)
∣∣∣

|t− s|
1+β
2

⎞
⎠ .

(A.23)
In the last two formulas we abbreviated both, dP ((t, x), (s, y)) and dP ((t, x), (s, x)),
by dP .

In case k + β + b < 0, [f ](b)k+β and 〈f〉(b)k+β are defined by

[f ]
(b)
k+β = sup

(t, x), (s, y) ∈ QT

(t, x) �= (s, y)

∑
m+2j=k

⎛
⎝dk+β+b

∣∣∣∂m
x ∂j

t f(t, x)− ∂m
x ∂j

t f(s, y)
∣∣∣

|(t, x)− (s, y)|βP

⎞
⎠ (A.24)

and

〈f〉(b)k+β = sup
(t, x), (s, x) ∈ QT

t �= s

∑
m+2j=k−1

⎛
⎝dk+β+b

∣∣∣∂m
x ∂j

t f(t, x)− ∂m
x ∂j

t f(s, y)
∣∣∣

|t− s|
1+β
2

⎞
⎠

(A.25)
with d denoting the (spatial) diameter of QT .

A function f ∈ C0(QT ) is said to belong to Ck+β
(b) (QT ) if the norm |f |(b)k+β is finite.
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Figure A.1: Illustration of
the parabolic distance for dif-
ferent points in QT . Here:
d1 = dP ((t1, x1)),
d2 = dP ((t2, x2)),
d3 = dP ((t3, x3)).

Remark A.2. The parabolic distance of a point (t, x) to the parabolic boundary is just
the radius of the largest parabolic cylinder beneath (t, x) that is completely contained in
QT . The weighted norms thus suppress large changes in the relevant derivatives close to
the parabolic boundary.
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Hölder norms for the lowest regularities

As for our purposes the cases k ∈ {0, 1, 2} are the most relevant ones we write the
explicite forms of the weighted Hölder norms for these k. The general forms are the
following:

|f |(b)0+β = |f |(b)0 + [f ]
(b)
0+β ,

|f |(b)1+β = |f |(b)0 + |∂xf |(1+b)
0 + [f ]

(b)
1+β + 〈f〉(b)1+β ,

|f |(b)2+β = |f |(b)0 + |∂xf |(1+b)
0 + |∂xxf |(2+b)

0 + |∂tf |(2+b)
0 + [f ]

(b)
2+β + 〈f〉(b)2+β .

For particular values of b and β we find for |f |(b)0+β the following:

|f |(b)0+β = ‖dbP f‖C0 + sup
(t,x)�=(s,y)

db+β
P

|f(t, x)− f(s, y)

|(t, x)− (s, y)|βP
for b ≥ 0,

|f |(b)0+β = (diamQT )
b‖f‖C0 + sup

(t,x)�=(s,y)

db+β
P

|f(t, x)− f(s, y)

|(t, x)− (s, y)|βP
for 0 > b ≥ −β,

|f |(b)0+β = (diamQT )
b‖f‖C0 + (diamQT )

b+β
sup

(t,x)�=(s,y)

|f(t, x)− f(s, y)

|(t, x)− (s, y)|βP
for b < −β.

For k = 1 we can distinguish the following cases:

|f |(b)1+β = ‖dbP f‖C0 + ‖d1+b
P ∂xf‖C0 + sup

(t,x)�=(s,y)

d1+b+β
P

|∂xf(t, x)− ∂xf(s, y)

|(t, x)− (s, y)|βP
+ sup

(t,x)�=(s,x)

d1+b+β
P

|f(t, x)− f(s, x)|
|t− s|

1+β
2

for b ≥ 0,

|f |(b)1+β = (diamQT )
b‖f‖C0 + ‖d1+b

P ∂xf‖C0 + sup
(t,x)�=(s,y)

d1+b+β
P

|∂xf(t, x)− ∂xf(s, y)

|(t, x)− (s, y)|βP

+ sup
(t,x)�=(s,x)

d1+b+β
P

|f(t, x)− f(s, x)|
|t− s|

1+β
2

for 0 > b ≥ −1,

|f |(b)1+β = (diamQT )
b‖f‖C0 + (diamQT )

(1+b)‖∂xf‖C0

+ sup
(t,x) �=(s,y)

d1+b+β
P

|∂xf(t, x)− ∂xf(s, y)

|(t, x)− (s, y)|βP
+ sup

(t,x) �=(s,x)

d1+b+β
P

|f(t, x)− f(s, x)|
|t− s|

1+β
2

for − 1 > b ≥ −1− β,
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and finally

|f |(b)1+β = (diamQT )
b‖f‖C0 + (diamQT )

(1+b)‖∂xf‖C0

+ (diamQT )
1+b+β

sup
(t,x) �=(s,y)

|∂xf(t, x)− ∂xf(s, y)

|(t, x)− (s, y)|βP

+ (diamQT )
1+b+β

sup
(t,x) �=(s,x)

|f(t, x)− f(s, x)|
|t− s|

1+β
2

for b < −1− β.

Here, as always, by ∂xf and ∂tf we denote the derivative of f with respect to
the spatial variable and the time variable, respectively, no matter at what point it is
evaluated. The term ∂xf(s, y) for example, has to be read as

(∂xf(t, x)) |(t,x)=(s,y) .

Similarly, we find for k = 2 different expressions for the cases

b > 0, b ∈ [−1, 0), b ∈ [−2,−1), b ∈ [−2− β,−2), and b < −2− β.

We only write down the following explicite expressions for those cases which are of
interest to us.

|f |(b)2+β = ‖dbP f‖C0 + ‖d1+b
P ∂xf‖C0 + ‖d2+b

P ∂xxf‖C0 + ‖d2+b
P ∂tf‖C0

+ sup
(t,x)�=(s,y)

d2+b+β
P

|∂xxf(t, x)− ∂xxf(s, y)

|(t, x)− (s, y)|βP

+ sup
(t,x)�=(s,y)

d2+b+β
P

|∂tf(t, x)− ∂tf(s, y)

|(t, x)− (s, y)|βP

+ sup
(t,x)�=(s,x)

d2+b+β
P

|∂xf(t, x)− ∂xf(s, x)|
|t− s|

1+β
2

for b > 0,

|f |(b)2+β = (diamQT )
b‖f‖+ (diamQT )

1+b‖∂xf‖+ ‖d2+b
P ∂xxf‖+ ‖d2+b

P ∂tf‖

+ sup
(t,x) �=(s,y)

d2+b+β
P

|∂xxf(t, x)− ∂xxf(s, y)

|(t, x)− (s, y)|βP

+ sup
(t,x) �=(s,y)

d2+b+β
P

|∂tf(t, x)− ∂tf(s, y)

|(t, x)− (s, y)|βP

+ sup
(t,x) �=(s,x)

d2+b+β
P

|∂xf(t, x)− ∂xf(s, x)|
|t− s|

1+β
2

for b ∈ [−2,−1)
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with all norms in the first line being the supremum norms ‖ · ‖C0 , and

|f |(b)2+β = (diamQT )
b‖f‖C0 + (diamQT )

1+b‖∂xf‖C0

+ (diamQT )
2+b‖∂xxf‖C0 + (diamQT )

2+b‖∂tf‖C0

+ sup
(t,x) �=(s,y)

d2+b+β
P

|∂xxf(t, x)− ∂xxf(s, y)

|(t, x)− (s, y)|βP

+ sup
(t,x) �=(s,y)

d2+b+β
P

|∂tf(t, x)− ∂tf(s, y)

|(t, x)− (s, y)|βP

+ sup
(t,x) �=(s,x)

d2+b+β
P

|∂xf(t, x)− ∂xf(s, x)|
|t− s|

1+β
2

for b ∈ [−2− β,−2).

A.2 Morrey spaces

We will also use the global and weighted Morrey spaces being introduced in [19] as
well. We shall therefore cite their definition and then give some explicite examples how
the according norms look like for certain values of the relevant exponents p, θ, and b.

Definition A.2.1. 1. Given f ∈ C0+1,P (QT ) and numbers p ∈ [1,∞), θ > 1 we
define

‖f‖Mp,θ
:= sup

(t,x)∈QT ,r<diamQT

(
r−θ

∫
QT [(t,x),r]

|f |pdsdy
) 1

p

. (A.26)

The function f is said to belong to Mp,θ(QT ) if this supremum is finite.

2. Given f ∈ Lloc
1 (QT ) and numbers θ ∈ [0, 3], b ≥ 3− θ we define

‖f‖
M

(b)
p,θ

:= sup
(t, x) ∈ QT

r ∈
[
0,

dP (t,x)

2

]

(
r−θdP ((t, x))

pb+θ−3

∫
Cylr(t,x)

|f |pdsdy
) 1

p

(A.27)

and say f belongs to M
(b)
p,θ(QT ) if this value is finite.

We will at some point require that cU and c̃U belong to M1,2+β or to M
(2)
1,2+β for

some β ∈ (0, 1). Let us therefore explicitely calculate the corresponding norms for a
function f :

‖f‖M1,2+β
= sup

(t,x)∈QT ,r<diamQT

(
r−2−β

∫
QT [(t,x),r]

|f(s, y)|dsdy
)

≤ sup
(t,x)∈QT ,r<diamQT

(
r−2−βr2

∫
Br(x)

|f(t, y)|dy
)

≤ (diamQT )
1−β‖f‖C0 ≤ (L+ 2Tvmax)

1−β‖f‖C0
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Figure A.2: Illustration of the region of in-
tegration for the weighted Morrey norm
∥ · ∥

M
(b)
p,θ

. The supremum is taken over all

points (t, x) ∈ QT and then the integral has
to be taken over parabolic cylinders being
bounded away from the parabolic boundary
of QT . Here d denotes the parabolic distance
dP ((t, x)) of the point (t, x) to the parabolic
boundary (the corresponding parabolic cylin-
der indicated in yellow). The integral is now
to be evaluated over all parabolic cylinders
beneath (t, x) of diameter less than d

2
, that

is, at most over the blue area.

for the global norm and

∥f∥
M

(2)
1,2+β

= sup
(t, x) ∈ QT

r ∈
[
0,

dP (t,x)

2

]
(
r−2−βdP ((t, x))

1+β

∫
Cylr(t,x)

|f(s, y)|d(s, y)

)

for the weighted version.
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Appendix B

Computation of the Lyapunov
Coefficient

In section 13.5, we noticed that the non-polarized equilibrium state

(W = 0, U = U1 > 0)

undergoes a Hopf bifurcation as the wave speed c passes through one. We stated that
the first Lyapunov coefficient l1(0) at the bifurcation point vanishes which we will now
demonstrate.

At the critical velocity c = 1 the system (13.31) reads

d

dξ

(
W

V

)
=

(
V

− 1
εg(W )

)

=

(
0 1

−ω2
0 0

)(
W

V

)
+

1

2

(
0

− g′′(0)
ε W 2

)
+

1

6

(
0

− g′′′(0)
ε W 3

)
+O(W 4)

=: A

(
W

V

)
+

1

2

(
W V

)
B

(
W

V

)
+

1

6
C

((
W

V

)
,

(
W

V

)
,

(
W

V

))
+O(W 4).

where we introduced the first order frequnecy

ω2
0 =

g′(0)
ε

. (B.1)

Here, the quadratic form B is given by

(x1, y1)B

(
x2

y2

)
=

(
0

− g′′(0)
ε x1x2

)

and the third order form C reads

C

((
x1

y1

)
,

(
x2

y2

)
,

(
x3

y3

))
=

(
0

− g′′′(0)
ε x1x2x3

)
.
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The coefficient matrix of the linear part clearly has the eigenvalues

ν0,± = ±ıω0 (B.2)

and the associated normalized eigenvectors

η± =
1√
2

(
± 1

ıω0

1

)
. (B.3)

The corresponding eigenvectors of the transposed matrix are

ζ± =
1√
2

(
±ıω0

1

)
(B.4)

and we find their complex scalar product to be 〈η+, ζ−〉 = 1.
The first Lyapunov coefficient (up to a positive factor) can therefore be computed

by

l1(0) =
1

2ω2
0

Re
[
〈ζ−, C(η+, η+, η−〉 − 2

〈
p, ηT+B(A−1ηT+Bη−)

〉
+
〈
ζ+, η

T
−B((2ıω0• −A)

−1
(ηT+Bη+))

〉]
=

1

2ω2
0

Re

[
ı

4

g′′′(0)
εω3

0

+
ıg′′(0)2

2ε2ω5
0

+
ı√
2

g′′(0)
6εω3

0

− ıg′′(0)
3εω3

0

]
(B.5)

which is indeed zero since the term in the brackets is purely imaginary.

285



List of Figures

1.1 Treadmilling I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Polarization of cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Treadmilling II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Decomposition of QT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 A typical space-time domain . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Interior steady states I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Interior steady states II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Velocities for moving steady states . . . . . . . . . . . . . . . . . . . . . 23
2.8 Moving steady state profile . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Characteristic velocities I . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Boundary velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Boundary curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3 Integration across a shock curve . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Shock velocities for plateau shaped data . . . . . . . . . . . . . . . . . . 112
5.2 Shock velocities from the ODE . . . . . . . . . . . . . . . . . . . . . . . 113
5.3 Characteristics at the shock . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1 Peak shaped initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2 Peak shaped solutions I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3 Peak height and distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.4 Peak shaped solutions II . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.5 Moving peak profiles I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.6 Moving peak profiles II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.7 Positions and distance of moving peaks . . . . . . . . . . . . . . . . . . . 141
7.8 Plateau shaped initial data . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.9 Plateau shaped profiles I . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.10 Peak height for plateau profiles . . . . . . . . . . . . . . . . . . . . . . . 144
7.11 Peak distance for plateau profiles . . . . . . . . . . . . . . . . . . . . . . 144
7.12 Peak positions for asymmetric plateau profiles . . . . . . . . . . . . . . . 145
7.13 Shock like solutions with plateau . . . . . . . . . . . . . . . . . . . . . . 146
7.14 Peak positions and distance for moving shocks . . . . . . . . . . . . . . . 146

9.1 Typical alignment terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

286



10.1 Critical wave numbers I . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
10.2 Growth rates I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.3 Growth rates II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
10.4 Critical wave numbers II . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

12.1 Sublinear alignment terms . . . . . . . . . . . . . . . . . . . . . . . . . . 180
12.2 Superlinear alignment terms . . . . . . . . . . . . . . . . . . . . . . . . . 181
12.3 Tristable alignment terms . . . . . . . . . . . . . . . . . . . . . . . . . . 181

13.1 Critical wave speeds I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
13.2 Phase plane analysis I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
13.3 Heteroclinic orbits I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
13.4 Possible emergence of a saddle-saddle connection . . . . . . . . . . . . . 198
13.5 Critical wave speeds II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
13.6 Flow fields in phase space . . . . . . . . . . . . . . . . . . . . . . . . . . 201
13.7 Null clines of V ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
13.8 Critical wave speeds III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
13.9 Bifurcation diagram I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
13.10 Computed flow fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
13.11 Phase plane analysis II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
13.12 Sketched flow fields in phase space . . . . . . . . . . . . . . . . . . . . . 218
13.13 A single wave profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
13.14 Symmetric pattern of waves . . . . . . . . . . . . . . . . . . . . . . . . . 223
13.15 Slightly asymmetric pattern of waves . . . . . . . . . . . . . . . . . . . . 225
13.16 Strongly asymmetric pattern of waves . . . . . . . . . . . . . . . . . . . . 226
13.17 A wide wave profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
13.18 A single oscillating wave . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
13.19 A pattern with oscillating waves . . . . . . . . . . . . . . . . . . . . . . . 231

14.1 Full critical wave speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
14.2 Bifurcation diagram II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
14.3 Location of the eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . 239
14.4 Critical wave speeds IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
14.5 Heteroclinic orbits for the reduced system . . . . . . . . . . . . . . . . . 243

15.1 Growth and decay of perturbations . . . . . . . . . . . . . . . . . . . . . 250
15.2 Temporal and spatiotemporal envelope . . . . . . . . . . . . . . . . . . . 251
15.3 Computed growth rates of perturbations . . . . . . . . . . . . . . . . . . 252
15.4 Plateau values of the temporal envelope . . . . . . . . . . . . . . . . . . 253
15.5 Transient behaviors of the temporal envelope . . . . . . . . . . . . . . . 253
15.6 Time evolution of the size of a perturbation . . . . . . . . . . . . . . . . 254
15.7 Critical alignment strength depending on domain size . . . . . . . . . . . 256
15.8 Computed critical alignment strength . . . . . . . . . . . . . . . . . . . . 256
15.9 Critical alignment strength depening on perturbation size . . . . . . . . 257
15.10 Dependence of the critical alignment strength on the step size . . . . . . 259
15.11 Dependence of the critical alignment strength on the domain size . . . . 259
15.12 Initial data for a single wave profile . . . . . . . . . . . . . . . . . . . . . 262

287



15.13 Single wave profiles at different speeds . . . . . . . . . . . . . . . . . . . 263
15.14 Initial data for different wave patterns . . . . . . . . . . . . . . . . . . . 264
15.15 Evolving symmetric wave patterns . . . . . . . . . . . . . . . . . . . . . 264
15.16 An asymmetric wave pattern . . . . . . . . . . . . . . . . . . . . . . . . . 266
15.17 Observed wave speeds depending on the parameters . . . . . . . . . . . . 268
15.18 Wave speeds depending on a . . . . . . . . . . . . . . . . . . . . . . . . . 269
15.19 Wave speeds and effective parameters I . . . . . . . . . . . . . . . . . . . 270
15.20 Wave speeds and effective parameters II . . . . . . . . . . . . . . . . . . 270

A.1 Illustration of the parabolic distance . . . . . . . . . . . . . . . . . . . . 279
A.2 Domain of integration for the Morrey norm . . . . . . . . . . . . . . . 283

288



Bibliography

[1] Bamburg J R, Bernstein B W, Roles of ADF/cofilin in actin polymerization and
beyond, F1000 Biol Reports 2:62 (2010)

[2] Bugyi B, Carlier M-F, Control of actin filament treadmilling in cell motility, Annu
Rev Biophys 39 (2010), 449–470

[3] Cannon J R, The one dimensional heat eqution, Addison-Wesley Publishing Com-
pany, Reading (1984)

[4] Crank J, Free and moving boundary problems, Oxford University Press, Oxford
(1984)

[5] DiPerna R J, Lions P-L, Ordinary differential equations, transport theory and
Sobolev spaces, Invent Math 98 (1989), 511–547

[6] Doubrovinski K, Kruse K, Self-alignment in systems of treadmilling filaments, Eur
Phys J E 31 (2010), 95–104

[7] Fenichel N, Geometric singular perturbation theory, J Diff Eq 31 (1979), 53–98

[8] Friedman A, Variational principles and free boundary problems, John Wiley & sons,
New York (1982)

[9] Fuhrmann J, Actin dynamics and cell motility, Diploma Thesis (2007)

[10] Fuhrmann J, Käs J, Stevens A, Initiation of cytoskeletal asymmetry for cell polar-
ization and movement, J Theor Biol 249 (2007), 278–288

[11] Gilbarg D, Trudinger N S, Elliptic partial differential equations of second order
(reprint of the 2nd ed.), Grundlehren der Mathematischen Wissenschaft 224,
Springer, Berlin Heidelberg New York (1983)

[12] Guckenheimer J, Holmes P, Nonlinear oscillations, dynamical systems, and bifur-
cations of vector fields (corrected 7th printing), Applied Mathematical Sciences
42, Springer, New York (2002)

[13] Jäger W, Luckhaus S, On explosions of solutions to a system of partial differential
equations modelling chemotaxis, Trans Amer Math Soc 329 (1992), 819–824

[14] Kawashima S, Systems of a hyperbolic-parabolic composite type, with applications
to the equations of magnetohydrodynamics, Thesis, Kyoto University (1983)

289



[15] Kuznetsov Y A, Elements of applied bifurcation theory, Springer, New York (1995)

[16] Ladyženskaja O A, Solonnikov V A, Ural’ceva N N, Linear and quasilinear equa-
tions of parabolic type (corrected reprint), Translations of Mathematical Mono-
graphs, American Mathematical Society, Providence, R.I. (1988)

[17] LeVeque R J, Finite volume methods for hyperbolic problems, Cambridge University
Press, Cambridge (2004)

[18] Li Ta-tsien, Yu Wen-ci, Boundary value problems for quasilinear hyperbolic systems,
Duke University Mathematics Series V, Duke University, Durham (1985)

[19] Lieberman G M, Second order parabolic differential equations, World Scientific
Publishing, Singapore (1996)

[20] Lunardi A, Analytic semigroups and optimal regularity in parabolic problems,
Birkhäuser, Basel (1995)

[21] MacCluer C R, Boundary value problems and Fourier expansions (Revised ed.),
Dover Publications, Mineola, NY (2004)

[22] Mori Y, Jilkine A, Edelstein-Keshet L, Wave-pinning and cell polarity from a
bistable reaction-diffusion system, Biophys J 94.9 (2008), 3684–3697

[23] Perthame B, Transport equations in biology, Birkhäuser, Basel (2007)

[24] Plastino J, Lelidis I, Prost J, Sykes C, The Effect of Diffusion, Depolymerization
and Nucleation Promoting Factors on Actin Gel Growth, Eur Biophys J 33 (2004),
310-320

[25] Pollard T D, Rate constants for the reactions of ATP- and ADP-actin with the
ends of actin filaments, J Cell Biol 103 (1986), 2747–2754

[26] Ponti A et al, Two Distinct Actin Networks Drive the Protrusion of Migrating
Cells, Science 305.5691 (2004), 1782–1786

[27] Romero S et al, Formin is a processive motor that requires profilin to accelerate
actin assembly and associated ATP hydrolysis, Cell 119.3 (2004), 419–429

[28] Shelkovich V M, The Riemann problem admitting δ-, δ′-shocks, and vacuum states
(the vanishing viscosity approach), J Diff Eq 231.2 (2006), 459–500

[29] Smoller J, Shock waves and reaction diffusion equations (2nd ed.), Springer, New
York (1994)

[30] Szmolyan P, Transversal heteroclinic and homoclinic orbits in singular perturbation
problems, J Diff Eq 92.2 (1991), 252–281

[31] Thomas J W, Numerical Partial Differential Equations (TAM 22), Springer, New
York (1995)

[32] Volpert V, Petrovskii S, Reaction-diffusion waves in biology, Physics of Life Reviews
6 (2009), 267–310

290



[33] Volpert A I, Volpert V A, Volpert V A, Traveling wave solutions of parabolic
systems (corrected reprint), Translations of Mathematical Monographs, American
Mathematical Society, Providence, R.I. (2000)

[34] Wilson C A et al, Myosin II contributes to cell-scale actin network treadmilling
through network disassembly, Nature 465.7296 (2010), 373–377

291


