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Zusammenfassung

Hintergrund: Wissenschaftler der pharmazeutischen Industrie und der akademi-

schen Forschung arbeiten gemeinsam an der Erforschung der grundlegenden Ursa-

che einer Erkrankung auf zellulärer Ebene bis hin zum zugelassenen neuen Medika-

ment. Analysen der Wirkungsweise (mode of action) neuer Substanzen sind unter

zunehmenden Sicherheits- und Nutzenanforderungen ein immer wichtiger werden-

der Beitrag in der Entwicklung eines neuen Wirksto�s. Dabei wird zwischen den

E�ekten am gewünschten Zielprotein (on-target) und den E�ekten an möglicherwei-

se unbekannten Zielproteinen (o�-targets) unterschieden. Häu�g ist das Wissen über

diese E�ekte sehr begrenzt. Da die Wirkung hauptsächlich durch Wechselwirkun-

gen von Proteinen oder Signalkaskaden vermittelt wird, ist ihre Untersuchung auf

der Basis von Proteininteraktionsnetzwerken (PI-Netzwerke) ein vielversprechender

Ansatz. Die Menge an verfügbaren biologische Daten aus verschiedensten Quellen

steigt stetig an. Die Integration dieses Wissens ist wichtig, um ein tieferes Verständ-

nis der zugrundeliegenden Biologie zu erlangen. Häu�g werden Genexpressionsstu-

dien von erkranktem Gewebe und/oder wirksto�behandelten biologischen Proben

durchgeführt, um die Wirkungsweise neuer Wirksto�e unter Berücksichtigung von

transkriptionellen Änderungen verstehen zu können.

Status quo: Die Wirkungsweise von Substanzen kann analysiert werden, indem die

Teile von Proteininteraktionsnetzwerken untersucht werden, in denen aufgrund von

Wirksto�behandlung Änderungen zu beobachten sind. Mathematische oder graph-

theoretische in silico Methoden, die interessante Teile von Netzwerken identi�zieren,

�nden weit verbreiteten Einsatz. Fragestellungen reichen dabei von der Ermittlung

stark vernetzter Subgraphen über die Identi�zierung kürzester Wege bis hin zur

Berechnung von Subgraphen oder Modulen, die bestimmte Zielfunktionen optimie-

ren. Entsprechende Algorithmen können auf biologische Fragestellungen angewandt

werden, um beispielsweise konditionsresponsive Subnetzwerke in verschiedensten Ar-

ten von biologischen Netzwerken zu identi�zieren. Gegenwärtige Methoden, die zur

Analyse der Wirkungsweise eingesetzt werden können, befassen sich hauptsächlich

mit der Detektion von Subnetzwerken, in denen Informationen aus dem Bereich der

funktionellen Genomik angereichert sind, z.B. Anreicherung an deregulierten Genen.

Diese Methoden vernachlässigen die Existenz von regulatorischen Mechanismen auf

post-transkriptionaler und auch post-translationaler Ebene wie miRNA-Interferenz



oder Protein-Phosphorylierung. Auÿerdem detektieren gängige Methoden häu�g re-

lativ groÿe Module. Dabei deckt ein solches Modul möglicherweise mehrere Prozesse

gleichzeitig ab, beispielsweise sowohl on- als auch o�-target E�ekte. Zur Detektion

und Interpretation von Einzele�ekten innerhalb eines biologischen Systems wäre es

hilfreich, kleinere Module identi�zieren zu können.

Einige frühere Arbeiten fokussieren sich auf die Vorhersage und Gewichtung von Pro-

teininteraktionen unter Berücksichtigung von vorhandenem Wissen. In den meisten

Fällen werden die Interaktionen dabei bezüglich eines als Gold-Standard betrachte-

ten Datensatzes gewichtet. Da unser Wissen über die Rolle von Genen und Proteinen

nach wie vor sehr unvollständig ist, gibt es keinen Gold-Standard, der die Realität

exakt widerspiegelt. Des Weiteren sind gegenwärtig verwendete Gewichtungsmetho-

den häu�g weder einfach zu verwenden noch einfach zu interpretieren. Eine ideale

Gewichtung sollte die einfache Integration zusätzlicher Datenquellen und deren in-

dividuelle Gewichtung basierend auf Expertenwissen ermöglichen.

Vorgehen & Ergebnisse: In der vorliegenden Arbeit werden Genexpressionsdaten

analysiert, die der Aufdeckung von on- und o�-target E�ekten verschiedener Wirk-

sto�e zur Inhibition von TGF-βR1 dienen sollen. Um eine verlässliche Basis für die

Datenanalyse zu scha�en, werden im ersten Teil der Arbeit verschiedene Aspekte

zur Auswahl einer geeigneten Normalisierungsmethode vorgestellt. Unter deren Be-

rücksichtigung wird schlieÿlich eine optimale Normalisierungsstrategie gewählt.

Um die Wirkmechanismen der verschiedenen Substanzen zu analysieren, wird ein

Verfahren vorgeschlagen, das die Interaktionen zwischen Proteinen mittels verschie-

dener Evidenzien gewichtet. Die Relevanz der Proteine wird dabei nicht nur über

die Expression ihrer kodierenden Gene sondern auch durch ihre Beziehung zu an-

deren Proteinen bewertet. Dadurch werden Analysen über die Genexpressionsebene

hinaus erweitert. Die Bewertung dieser Beziehungen erfolgt über die Gewichtung

der Proteininteraktionen. Dazu werden Informationen über molekulare Funktionen,

biologische Prozesse, zelluläre Kompartimente, Transkriptionsfaktorbindestellen und

literaturbasierte Kon�denzwerte integriert, um die entsprechenden Kanten im Netz-

werk zu gewichten. Expressionsdaten dienen als Ankerpunkt der Analysen, um das

Netzwerk schlieÿlich in den biologischen Kontext zu transferieren.

Des Weiteren wird in dieser Arbeit eine neue Methode zur Extraktion von Modulen

aus gewichteten PI-Netzwerken entwickelt, modEx. Mittels der durch modEx ex-

trahierten Module ist es möglich, Einzele�ekte innerhalb des biologischen Systems



abzugreifen.

Für den vorliegenden Expressiondatensatz kann gezeigt werden, dass die vorgeschla-

gene Kantengewichtung der weit akzeptierten STRING-Gewichtung überlegen ist.

Darüber hinaus können unter Verwendung von modEx Module extrahiert werden,

die den zugrundeliegenden biologischen Mechanismus besser repräsentieren als Mo-

dule, die durch das gängige jActiveModule identi�ziert werden.

Die vorgestellten Methoden werden verwendet, um den Wirkungmechanismus, d. h.

sowohl die on- als auch o�-target E�ekte verschiedener Wirksto�e zu analysieren.

Es kann gezeigt werden, dass dadurch ein fokussierterer Blick auf die E�ekte der

Wirksto�e möglich ist als durch gegenwärtige state-of-the-art Analysen eines Gen-

expressionsdatensatzes.





Abstract

Background: Scientists in pharmaceutical as well as academic research work to-

gether to solve the challenging puzzle from the basic causes of disease at the level

of genes, proteins and cells up to a marketed new drug. Analyses of mode of ac-

tion (MoA) of new chemical entities (NCEs) are a very important step in the de-

velopment of new drugs. One distinguishes between e�ects induced by modulating

the compounds' actual target protein (on-target e�ects) and e�ects induced by ad-

ditional, possibly unknown targets (o�-target e�ects). Quite often knowledge about

either of these e�ects is limited. Since MoA is mainly triggered by the interplay of

proteins or signaling cascades, investigating the change and subsequent in�uence of

the changed molecules in a protein interaction (PI) network is a promising initial

step to further analyses. As more and more data from diverse sources becomes avail-

able, the integration of this knowledge is important for generating a deeper insight

into biology. In addition, expression experiments based on disease tissue and/or

compound treatment are frequently conducted to get insight into transcriptional

changes that could explain compounds' MoA.

Status quo: MoA could be analyzed by investigating those parts of a PI network

that show changes based on compound treatment. Mathematical or graph theoret-

ical in silico methods to identify interesting parts of a network based on di�erent

criteria are widely used. Criteria range from detection of highly connected sub-

graphs to subgraphs maximizing weights assigned to parts of the network under

investigation. These methods can be transferred to biology and can be used to, e. g.

identify condition responsive subnetworks on various types of molecular networks.

Present questions addressed mainly focus on the detection of subnetworks enriched

in information from functional genomics, e.g. di�erentially expressed genes. They

neglect the existence of distance regulatory functions on the post-transcriptional as

well as post-translational level like miRNA interference or protein phosphorylation.

Further, available methods usually detect relatively large modules. It is easily possi-

ble that more processes, i. e. the on- and several o�-target e�ects, are covered by one

larger module. Thus, the individual e�ects are di�cult to detect and interpret. To

be able to derive individual e�ects, it is necessary to reveal small modules that are

related to the individual e�ects present in the biological system under investigation.

Previous works focus on predicting and weighting interactions between proteins



based on prior knowledge. In most cases interactions are weighted according to

a gold standard which always depends on the current knowledge. Our knowledge

about the role of genes/proteins is far from complete and still accumulating and

evolving, thus, a gold standard does not re�ect reality. Present scoring methods

lack ease of use as well as ease of interpretation of scoring function to describe the

pairwise relatedness of proteins. Further, an ideal score should be highly �exible by

allowing easy integration of newly gained knowledge and it should o�er the possi-

bility to di�erentially weight individual evidence based on expert knowledge.

Methods & Results: In this work, I made use of a gene expression data set in-

vestigating the inhibition of the TGF-β signaling pathway by di�erent compounds

targeting TGF-βR1. To gain a sound basis for follow-up analyses, di�erent aspects

of how to select the best suited normalization procedure for the underlying expres-

sion data are proposed in the �rst part of this thesis.

To analyze compounds' MoA, I propose a method that weights interactions between

proteins based on di�erent kinds of evidence. In this method, the relevance of the

proteins is based on the biological relatedness to other possibly not deregulated

protein coding genes. Thereby, analyses are expanded beyond transcriptional dereg-

ulation. To elucidate the biological relatedness, information on molecular function,

biological processes and cellular compartment, information on transcription factor

binding sites and literature-based con�dence scores are integrated for weighting the

edges between proteins. To transfer the network into the biological context of inter-

est, expression experiments are used as anchoring points for the analyses.

Further, I introduce modEx, a method to extract small modules out of a weighted

protein interaction network. Modules extracted using modEx re�ect the individual

e�ects present in the biological system under investigation.

For the expression data set used, the proposed edge scoring is shown to be superior

to the widely accepted STRING scoring. Furthermore, modEx extracts modules

that represent the underlying mechanism better than jActiveModule, a commonly

used subgraph extraction method. These newly proposed approaches are applied to

elucidate the MoA, i. e. the on- as well as o�-target e�ects, of compounds. They

are shown to grant a more focused view on the e�ects of compounds than current

state-of-the-art methods applied for the analysis of gene expression data.
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Chapter 1

Background

Scientists in pharmaceutical as well as academic research work together to solve the

challenging puzzle of basic causes of disease at the level of genes, proteins and cells

up to a marketed new drug. This drug in the ideal case inhibits or reverses the

disease progression or at least treats the symptoms of the disease to relieve patients

of their su�ering. Researchers work to identify and validate disease related target

molecules, discover and optimize the right new chemical or biological entity (NCE

or NBE, respectively) to interact with that molecule, test for safety and e�cacy and

gain approval to get the new drug into clinical practice. This whole process takes

10 to 15 years with an estimated average cost for research and development (R&D)

of a successful drug in the range of $800 million to $1 billion. This number includes

the cost of the thousands of failures: For every 5,000 - 10,000 compounds that enter

the R&D pipeline, ultimately only one receives approval. [3, 4]

In this chapter, I �rst give an overview over the drug development process in

Section 1.1, reveal the importance of analyses of compounds' mode of action in

Section 1.2, summarize the objective of this thesis in Section 1.3, and describe the

structure of this thesis in Section 1.4.

1.1 Drug Development Process

The development of a new drug can be split into two phases, namely drug discovery

and clinical trials. This section gives a short introduction into both. A schematic

overview of the complete process together with expected times needed for the indi-

1
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vidual steps is given in Figure 1.1.

1.1.1 Drug Discovery Process

Pre-discovery

The basis of every drug development process is the sound understanding of the

disease mechanisms to treat. This could for example be achieved by linking an

induced disease state to altered gene expression in diseased versus healthy samples.

Next, the role of the respective proteins, how they interact with each other in living

cells, and how this ultimately leads to the disease is investigated. This knowledge

provides the basis for revealing the relevant pathomechanisms. However, even with

new tools and insights, this research takes many years of work and quite often leads

to abrupt ends.

Target Identi�cation

Once researchers gain enough understanding of the underlying disease, a target is

selected. A target is commonly a single molecule, in most cases a protein, which is

involved in the mechanism of a particular disease. To achieve a desired e�ect, it is

critical that researchers pick a druggable target. A biological entity is druggable if

its behavior can be modulated by a drug molecule thereby achieving a desired e�ect

like for example inhibition of enzymatic activity.

New approaches that are applied for identifying this type of target are text-

and data mining [5�8]. In text mining, literature is screened by computational

approaches. Applied methods range from investigating co-occurrences of words, for

example a gene mentioned together with the disease of interest, to more sophisticated

methods like natural language processing (NLP) which are capable of �reading� the

text in a human like fashion. By data mining di�erent kind of information sources

are integrated. Applying text mining as well as data mining, the list of possible

targets could be narrowed down, ultimately leading to a handful of targets. In the

following, these targets need to be validated.
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Target Validation

After a target has been identi�ed on a more or less theoretical basis, researchers

need to prove the positive e�ect of modulating the target towards the healthy state.

By conscientious target validation dead ends can be identi�ed early in the pipeline.

Thereby costly failures of projects in later phases are prevented. State of the art

methods for target validation range from gene expression analysis, siRNA screen-

ing, use of tool compounds, image analysis like high content screening [9] or tissue

array investigations [10] to studies using viral vectors [11] or genetically modi�ed

mice [12�15]. siRNAs, for instance, could be used to mimic the e�ects of compounds

inhibiting the protein encoded by the siRNA's target transcript. A further example

in this regard is target validation using Adeno-associated virus (AAV) [16]. AAV

infects humans and some other primate species. Only inducing a very mild immune

response, is currently not known to cause disease. The virus speci�cally integrates

its genome into that of the host cell. Thus, it is a very attractive approach to cre-

ate viral vectors for the over-expression of genes, thereby elevating the level of the

respective proteins. Targets like E3-ligases, leading to the ubiquitination and subse-

quent degradation of target proteins, could be validated using such an approach. If

the enrichment of proteins leads to the desired e�ect, the target would be validated.

After successful validation of a target, a lead has to be identi�ed that modulates the

respective target in the desired way.

Lead Identi�cation

The main goal of lead identi�cation is to �nd a chemical, a so called �lead compound�

or simply �lead�, that may act on the target to alter the disease. This molecule con-

stitutes the initial sca�old for the new drug.

High-throughput screening (HTS) is the most common way that leads are found.

Advances in robotics and computational power allow researchers to test hundreds

of thousands of compounds against a target. The compounds present in screening

pools cover a wide range of the chemical space. Many successful drugs are derived

from naturally occurring molecules. Penicillin which is produced by the fungus Peni-

cillium when its growth is inhibited by stress [17] is possibly the most prominent

example. But also butylscopolamine and acetylsalicylic acid which are the active
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ingredients for Buscopan R© [18, 19] and Aspirin R© [20], respectively, constitute very

successful drugs of natural origin. Thus, parts of compounds present in libraries for

HTS are �nature product-like� [21, 22]. Based on the results of HTS, several lead

compounds are usually selected for further study.

Besides HTS, in �rational design� detailed structural knowledge of the targets' ac-

tive site can be used by chemists to design molecules that interact with this site. Ad-

ditionally, in de novo synthesis by computational chemistry sophisticated computer

modeling is used to predict what type of molecule could be used as a lead. Typically

the 3D-structure of at least the target protein's active site has to be resolved in ad-

vance, again, either by computational modeling or by X-ray crystallography [23�25].

After a lead has been successfully identi�ed, this structure is subsequently opti-

mized towards di�erent parameters during lead optimization.

Lead Optimization

Compounds that were selected in the initial screening are optimized or altered in

order to maximize e�cacy, speci�city and period of impact while at the same time

minimizing side e�ects and toxicity. Based on their chemical and physical properties

and the resulting biological e�ects researchers try to infer the behavior of leads to

minimize the failure rate in a later stage of the drug development process.

The structure activity relationship (SAR) describes the relationship of the lead's

structure to its pharmacodynamic as well as pharmacokinetic properties. Physical

and chemical properties are used to quantify the structure activity relationships

(QSAR). Pharmacodynamic refers to mechanism of the drug at the target, pharma-

cokinetic to its distribution in the organism and in which concentration the drug and

its metabolites are present. Pharmacokinetic is described in terms of LADME/Tox

parameters which characterize the compound with regard to liberation, absorption,

distribution, metabolism, elimination, and toxicity: Liberation refers to the release

of the active ingredient from the drug, absorption to the entering into the blood

stream, distribution to the circulation to the proper site of action, metabolism to

the decomposition, elimination to the excretion of the drug and toxicity to potential

or real toxicity. Resorption and bioavailability are closely linked to LADME/Tox
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parameters. They describe the uptake of substances into the blood and the frac-

tion of active ingredients available to the organism, respectively. For an optimal

resorption and bioavailability and thereby for a better e�cacy and duration of e�ect

the lipophilicity, the size of the molecule and the related metabolic stability of a

molecule are decisive. Quite often leads fail in early stages due to low bioavailabilty

and due to toxic metabolites. Thus, LADME parameters are taken into account

in early stages. The most famous parameters which are considered with respect

to LADME are probably Lipinski's rule of �ve. Analyzing the properties of about

2,250 compounds of the Derwent World Drug Index (WDI) Lipinski et al. were able

to summarize properties that were common to 90% of the compounds [26]. Lip-

inski assumes that as soon as more than one property is not met by a compound

the success rate gets relatively low since absorption and permeability are decreased.

However, Lipinski's rule of �ve should be considered as guidelines, not as hard rules.

LADME/Tox studies are performed in living cells, in animals and via computa-

tional models. They help researchers prioritize lead compounds early in the discov-

ery process. Technologies such as magnetic resonance imaging and X-ray crystal-

lography, along with powerful computer modeling capabilities support chemists to

design chemical structures to optimize LADME/Tox properties. Additionally, the

molecules are changed to minimize possible interactions with other molecules, thus

reducing the potential for side e�ects.

Di�erent variations or analogues of the initial leads are designed and tested. The

resulting compounds represent the candidate drugs that enter pre-clinical testing.

Pre-clinical Testing

Regulatory institutions require extremely thorough testing before the candidate drug

can be studied in humans. To meet these high standards, scientists carry out in-

depth in vitro and in vivo tests to understand how the drug works and what its

safety pro�le looks like in pre-clinical tests.

After starting with 5,000 up to 10,000 compounds (Figure 1.1), between one and

�ve molecules will be studied in clinical trials. Di�erent authorities around the

world are in charge of approving drugs for clinical testing and marketing. The most
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in�uential ones are probably the U.S. Food and Drug Administration (FDA) [27],

the European Medicines Agency (EMA) [28] and Japan's Ministry of Health, Labour

and Welfare (MHLW) [29]. Great e�orts are made by the International Conference

on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for

Human Use (ICH) to harmonize the process of registration. Thus, in the following

I focus on the guidelines as set by the FDA, which can be found on the respective

web page [27]. Guidelines set by other institutions are, by and large, comparable.

Investigational New Drug (IND) Application and Safety

The goals of the IND are to provide enough information to permit FDA reviewers to

determine whether the drug is safe enough to start �rst human trials. Basis for this

application are all results gathered during the pre-clinical work in the drug discovery

process: the candidate drug's chemical structure, how it is thought to work in the

body, a listing of any side e�ects and manufacturing information. Additionally, the

IND also provides a detailed clinical trial plan.

1.1.2 Clinical Trials

To provide con�dent results, drug trials are generally placebo-controlled, randomized

and double-blinded.

• Placebo-controlled: Some subjects will receive the new drug candidate and

others will receive a placebo. In some instances, the drug candidate may be

tested against another treatment rather than a placebo.

• Randomized: Each of the study subjects in the trial is assigned randomly to

one of the treatments.

• Double-blinded: Neither the researchers nor the subjects know which treat-

ment is being delivered until the study is over.

Such a study design provides the best evidence of a direct relationship between the

drug and its e�ect on the disease.

The number of subjects participating in a trial has to be carefully considered:

On the one hand, the more subjects take part in the study, the more likely real

e�ects are detected. On the other hand, the more subjects are investigated, the
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Figure 1.1: Drug Development Process. The di�erent phases as well as the

compounds left for consideration and the approximate time necessary for each phase

are displayed. Additionally, the number of participants in the clinical trials are listed.

This �gure was taken from [3,4].

more expensive and di�cult is the trial. Additionally futility has to be taken into

account. It is unethical to expose unnecessary many people to the unavoidable risk

of clinical trials as long as the e�ects of the drug candidate is not ensured.

The Phases of Clinical Trials

Recently, the FDA has established the Phase 0 trial, which allows researchers to

test a very low drug dose in a small cohort of volunteers to quickly identify drug

candidates that are ine�ective. Thereby, costs and lengths of clinical trials can be

e�ciently reduced.

In Phase 1 trials the candidate drug is tested in a bigger cohort of volunteers for

the �rst time. These studies are usually conducted with about 20 to 100 healthy

volunteers. The main goal of a Phase 1 trial is to discover if the drug is safe in

humans. Researchers look at the pharmacokinetics and the pharmacodynamics of

a drug. People participating in these trials are at any time monitored thoughtfully.

Based on these trials, the safe dosing range is determined and it is decided whether

the drug should be pushed forward to the next phase.
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In Phase 2 trials researchers evaluate the candidate drug in about 100 to 500

patients su�ering from the disease, and examine possible short-term side e�ects.

This phase could also be split up into Phase 2a and 2b. Phase 2a would investigate

e�cacy and dosage in a small group of patients. Based on these results, Phase 2b

could be optimally designed for a larger group of patients. During Phase 2 mecha-

nism and e�cacy as well as optimal dose strength and schedules are investigated to

optimally design a Phase 3 trial.

In Phase 3 trials researchers study the drug candidate in about 1,000-5,000 pa-

tients to generate statistically signi�cant data. This phase is key in determining

whether the drug is e�ective and safe. Phase 3 trials are both the most expensive

and the most time-consuming trials.

During all clinical phases researchers are conducting many other critical stud-

ies like investigations for large scale production. Further, the complex application

required by the authorities for approval of the new drug has to be prepared.

New Drug Application (NDA)

The goals of the NDA are to provide enough information to permit FDA reviewers

to reach the following key decisions:

• Whether the drug is safe and e�ective and whether the bene�ts of the drug

outweigh the risks.

• Whether the package insert is appropriate and what it should contain.

• Whether the methods used in manufacturing the drug and the controls used

to maintain the drug's quality are su�cient.

If the review is positive, the new drug gets approved.

Post-marketing phase

Even if a new drug has been approved and is already marketed, it is still monitored

with respect to detection, assessment, understanding and prevention of adverse ef-

fects as well as the patients overall satisfaction related to the treatment. This process

is called pharmacovigilance. Surveys are conducted and information is collected to
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further evaluate the drug. The most important aim is to identify possible hazards

associated with drugs as soon as possible to prevent unnecessary harm to patients.

1.2 Mode of Action

Analyzing mode of action (MoA) of compounds or new drugs is one of the most

important but also probably the most di�cult part during the drug development

process. Negligent analyses of mode of action can easily lead to costly late failures

of compounds, in the worst case constituted by severe e�ects observed in patients as

it was the case for torcetrapib, a cholesteryl ester transfer protein (CETP) inhibitor.

At the time P�zer discontinued its so-called ILLUMINATE (Investigation of Lipid

Level Management to Understand its Impact in Atherosclerotic Events) trial, the

company already had spent $800 millions on R&D. Analyses of the clinical trial led

to the suggestion of adverse events that may have been responsible for an observed

increase in mortality rate of patients treated with torcetrapib in combination with

atorvastatin (82) compared to patients only treated with atorvastatin (51) [30]. Since

research on compounds targeting CETP was and is still going on at other companies,

it has indeed been con�rmed in animal experiments that an o�-target mechanism

of torcetrapib increases blood pressure [31]. Further, in rats, torcetrapib was shown

to be associated with an increase in plasma levels of aldosterone and corticosterone

and, in vitro, with an release of aldosterone from adrenocortical cells. The increase

in blood pressure was not mediated by the increased levels of steroids but was shown

to be dependent on intact adrenal glands. In later studies the o�-target e�ect of

torcetrapib could be further narrowed down to be related to an increase in the expres-

sion of the alpha subunit 1C from the voltage-gated L -type Ca2+ channel [32]. By

siRNA mediated knockdown of L-type Ca2+ channel subunits alpha 1C and alpha

1D, Clerc et al. [32] could show the decrease of aldosterone and aldosterone syn-

thase (CYP11B2). Thereby, they provided a mechanistic link between torcetrapib

and aldosterone that is related to activation of the L -type Ca2+ channel. In rats,

torcetrapib has been shown to induce a potent hypertensive e�ect mediated by the

L-type Ca2+ channel. Clerc et al. conclude that steroidogenic and hypertensive side

e�ects of torcetrapib may be linked and involve voltage-gated L-type Ca2+ channels.
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Additional to this prominent example, analyses of Thomson Reuters Life Sciences

Consulting reveals 83 failures during phase 3 trials and submissions for the period

from 2007 to 2010 [33]. Main reasons for these failures were lack of e�cacy (66%)

and safety issues (21%). Large proportion of failures are observed for drugs with

novel machanism of action that at the same time are located in areas of high unmet

medical needs. Such indication areas face reasearchers with challenging science as

well as put high competitive pressure on companies to �ll their pipelines with com-

pounds that turn to account. To achieve fast success, companies are willing to take

higher risk and move forward their compounds although they only display marginal

statistical signi�cance. Additionally, indication areas like cancer tempt researchers

to prematurely try to reposition drugs/targets from one cancer type to another

without su�ciently testing the relevance of the mechanism of action. Examples are

sunitinib (P�zer) in hepatic cancer and bevacizumab (Genentech/Roche) in gastric

cancer.

Success rates can be improved only by relying on high quality scienti�c evidence,

by fully testing mechanism and by thoughtful planning of clinical studies with well

de�ned end-points. This could lead to higher failure rates in early phases but at

the same time would save money that would better be invested into other drug can-

didates, which may in the end lead to a sound pipeline containing more promising

drugs.

To validate a compound it is most important to know as much as possible about

its mode of action. Mode of action of compounds can be broadly split into two

classes, the on- as well as the o�-target e�ects. An on-target e�ect is an e�ect in-

duced through the direct interaction, i.e. inhibition or activation, of the compound

with the intended target molecule. On the contrary, an o�-target e�ect is an e�ect

induced by the unwanted interaction of the compound with a di�erent molecule

than the target. Although these e�ects are generally unwanted, there are exam-

ples for which o�-target e�ects of existing drugs show potential for new indications.

Example are Nel�navir [34, 35] or Xenical [36]. However, there are of course many

examples were undesired o�-target or adverse e�ects led to failure or in the worst

case even withdrawal of drugs. Examples for expensive failure in Phase 3 studies

have been described previously. A prominent example for a withdrawal is rofecoxib
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(Vioxx R©) which has been withdrawn from the market in 2004 based on early re-

sults of the APPROVe (Adenomatous Polyp PRevention On Vioxx) trial with the

primary aim of evaluating the e�cacy of rofecoxib for the prophylaxis of colorectal

polyps [37, 38]. This study con�rmed a higher risk for cardiovascular events (i.e.

heart attack and stroke) only after 18 months of chronic use of the drug. Each phar-

maceutical company wants to avoid such dramatic failures. First, they potentially

harm patients, second, they are bad for reputation, and patients possibly lose trust

in drugs marketed by the respective companies no matter how safe they are.

1.3 Objective of the Thesis

The aim of this thesis is to develop a method that supports researchers in focusing

the drug development process by revealing unpromising directions as early as pos-

sible. This could be achieved by analyzing mode of action and potential side e�ects

by incorporating existing prior biological knowledge. By supporting the analyses

of mode of action and by �ltering for more promising drug candidates in early

phases, the process is not only more focused but also cheapened and more human-

ized. Dramatic failures due to lethal adverse events as well as animal experiments

for unpromising compounds can hopefully be prevented.

To analyze compounds' mode of action, one important step is the understanding

of cellular mechanisms induced by the drug candidate. Possibilities to survey these

cellular processes include gene expression analyses or investigation of protein levels.

For the drug development process it is of importance to conduct high-throughput

experiments which help to get an understanding of underlying cellular processes.

Gene expression analyses are commonly conducted at the very beginning of the

drug development process. By analyzing such data, researchers try to explain the

biological causes and consequences of transcriptional changes.

For gene expression measurements using microarrays, normalization of the data

has to be performed to minimize systematic e�ects that are not constant between

di�erent samples of an experiment and that are not due to the factors under investi-

gation (e.g. treatment, time). Optimal selection of a normalization method heavily

depends on the nature of the experiment. Factors like comparability and quality
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of single runs play a major role. It has been shown that the normalization method

used may in�uence further downstream analysis to a great extend [39], and thus,

has to be carefully chosen based on the actual data. Therefore, the �rst part of this

thesis is concerned with the decision on an optimal normalization procedure for the

experiment under investigation. Based on the normalized data, genes di�erentially

expressed between distinct conditions like diseased versus healthy or compound-

treated versus untreated cells can be detected.

Algorithms analyzing di�erentially expressed genes with respect to the biological

process the genes are associated with have been studied thoroughly [40�51]. Based

on di�erentially expressed genes, these methods search for gene sets or modules of

genes that are related to the biological process studied in the expression experi-

ment. Such approaches are state-of-the-art methods that could be used to analyze

compounds' mode of action based on gene expression data. In the second part of

this thesis, some of these well established methods were considered in basic state-

of-the-art in silico analyses of gene expression data. Expression pro�les of several

compounds are investigated with respect to their biological characteristics as poten-

tial drugs.

One challenge in the interpretation of the data is that regulation does not only

occur on the transcriptional level. Additionally, compound e�ects are mediated by

binding of compounds to proteins and subsequently in�uencing related regulatory

networks within the organism. Discovering key proteins as well as their meaning in

a broader biological context is one of the most promising ways to answer questions

with respect to the mode of action. As more and more data from diverse sources

become available, the integration of this knowledge is important for generating a

deeper insight into biology. Existing methods for the analysis of gene expression

data only make very limited use of prior knowledge. To my knowledge, so far no

method exists that e�ciently integrates prior knowledge with data from functional

genomics to elucidate the mode of action of compounds. To help closing this gap,

the third part of this work is concerned with a mathematical model for the devel-

opment of a new knowledge mining approach.

In the fourth part I focus on the development of an algorithm to identify modules
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of genes/proteins that help explaining the mode of action by utilizing the previously

proposed knowledge mining approach.

Finally, in the last part of this work, the newly developed methods are compared

to existing ones, and analyzed with respect to possible advantages and improve-

ments.

1.4 Overview of the Thesis

After having given the basic background and objective in this chapter, I give a brief

overview of the layout for the remaining main part of my thesis:

In Chapter 2, I review existing knowledge related to this thesis:

In Section 2.1, TGF-β-signaling, the biological system used throughout this work,

is described. In the remaining sections of that chapter, I give an overview of work

available in the �eld of computational biology that could be helpful for the analysis

of mode of action: Section 2.2 describes existing methods for data integration, Sec-

tions 2.3 and 2.4 give an overview of gene based analyses that can give insight into

underlying biological processes.

In Chapter 3, the methods used throughout this thesis are described, Chapter 4

summarizes results applying these methods:

All laboratory work described in Section 3.1 has been conducted by Dr. Patrick Baum

in the scope of his PhD thesis [52]. It is mentioned here for completeness. These ex-

perimental data have been used to assess the new methods developed in the present

work with respect to the analysis of mode of action.

In Section 3.2 methods used to select an optimal normalization procedure for the

TGF-β gene expression data are described. Respective results are presented in Sec-

tion 4.1 and discussed in Section 5.1. This part of my thesis has been published in

BMC Genomics [53].

In Section 3.3, I describe how we derived on- and o�-target signatures and intro-

duce available methods for the analysis of di�erentially expressed genes. Results
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applying these methods are presented in Section 4.2 and are part of a PLoS One

publication [54].

In Section 3.4, I describe di�erent data sources and how they can be used to mea-

sure the biological relatedness for pairs of proteins. Section 3.4.6 states the �nal

formula (Equation 3.30) to integrate the data. In Section 3.5 modEx, the newly

proposed module extraction method, is introduced. modEx is a heuristic that could

be applied to solve di�erent optimization problems. These problems are stated in

Section 3.5.2, their complexity is analyzed in Section 4.5.2. Weighted protein inter-

action networks constitute the input to modEx. Weights of the networks used in

the presented use cases have been calculated by the newly proposed data integration

method (Section 3.4.6). Section 3.6 states possibilities of how to assess the signi�-

cance of extracted modules. In Sections 4.3, the newly proposed approaches are �rst

assessed using TGF-β signaling (Section 4.3.2) and �nally use cases of how they can

be applied to complement the analysis of MoA are given based on two exemplarily

selected compounds inhibiting TGF-β signaling (Section 4.3.3).

Section 3.7 explains how the newly proposed integration method and modEx are

compared to widely accepted approaches, namely STRING [55] and jActiveMod-

ule [48]. The comparisons to these approaches is described in Section 4.4.

Results are discussed in Chapter 5. Sections 5.2 and 5.3 evaluate the general

�ndings for the newly proposed data integration method and for modEx, respec-

tively. Assessments of the methods with respect to TGF-β signaling and analysis

of mode of action are discussed in Section 5.4. This section also comments on the

comparison to STRING and jActiveModule.

Finally, I conclude my work in Chapter 6 and give a perspective on possible future

work.



Chapter 2

Literature Review

In this chapter, I give an overview of existing approaches related to this thesis.

In Section 2.1, I describe the biological system used for the underlying experi-

ments [52, 54]. In the remaining sections, I review work available in the �eld of

computational biology that could be helpful for the analysis of mode of action.

Section 2.2 describes existing methods for data integration, Section 2.3 gives an

overview of gene expression analyses which could be applied to get insight in the

underlying biological processes.

2.1 Biological System Used

2.1.1 TGF-β Signaling

The transforming growth factor β (TGF-β) family is composed of structurally re-

lated cytokines which e�ect processes like morphogenesis of many organs and tissues

as well as proliferation, di�erentiation, migration and apoptosis of many di�erent

cell types [59]. Examples are TGF-β1, TGF-β2, TGF-β3, the family of activins and

nodal. The basic TGF-β signaling system consists of two receptor serine/threonine

protein kinases (TGF-β receptor types I and II, TGF-βR1 & R2) and the SMAD pro-

teins. Figure 2.1 schematically displays the pathway in a simpli�ed way, a more bio-

logical representation is given in Appendix A.1. Components of this pathway, which

is brie�y summarized in the following, have been studied extensively [59, 61�64].

Prior to activation of TGF-β signaling, factors like SARA (SMAD Anchor for

15
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Figure 2.1: Schematic representation of the TGF-β signaling pathway. Ba-

sic molecular events involved in TGF-β signaling via SMAD proteins. At least three,

and perhaps four to �ve amino acid residues of TGF-βR1 must be phosphorylated to

fully activate the protein [56�58]. For simplicity, only one P is depicted per TGF-βR1

to indicate overall phosphorylation/activation. Also for the the SMAD2/3 complexe,

we only depict one P, though the activation is achieved through two phosphoryla-

tions of two amino acid residues in both, SMAD2 and SMAD3 [59, 60]. A more

detailed, biological representation is displayed in Appendix A.1. TF: Transcription

factor, P: Indicates phosphorylation, i.e. activation.

Receptor Activation) recruit the regulated SMADs (R-SMADS) into proximity of

the TGF-β receptor kinases. Signaling is initiated by binding of a TGF-β ligand

dimer to TGF-βR2. The activated TGF-βR2 in turn recruits TGF-βR1 to build a
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heterotetrameric complex with the ligand dimer [61]. The serine/threonine kinase

region of TGF-βR2 catalyzes the phosphorylation of serine residues of TGF-βR1.

Activated TGF-βR1 further propagates the signaling by phosphorylation and subse-

quent activation of SMAD2 and SMAD3, the R-SMADS. Phosphorylation induces

a conformational change of R-SMADs which leads to dissociation from the receptor

complex and SARA. The free and phosphorylated R-SMADs have a high a�nity to

form heteromeric complexes with common-mediator SMAD (co-SMAD), SMAD4.

These phosphorylated R-SMAD/SMAD4 complexes enter the nucleus where they

partner with other transcription factors resulting in cell-state speci�c modulation of

transcription (Figure 2.1) [64].

TGF-β signaling is regulated at several levels. First, the access of the R-SMADs

to activated TGF-βR1 is controlled by SARA. Second, the E3 ubiquitin ligase,

SMAD ubiquitination regulatory factor-2 (SMURF2), attacks cytoplasmic R-SMADs

which leads to proteasomal degradation of R-SMADs. Third, SMAD7, the in-

hibitory SMAD (I-SMAD), acts antagonistically and inhibits receptor mediated

activation of R-SMADs. It also associates with SMURFs to form the SMAD7-

SMURF complex after TGF-β stimulation and ubiquitinates the receptors on the

cell surface or endosomal membranes; these are then targeted for degradation in pro-

teasomes and lysosomes [65]. The oncoprotein c-Ski functions as a direct antagonist

of TGF-βR1 [66]. Further, STRAP1 enhances the inhibitory activity of SMAD7 by

binding to TGF-βR1 and SMAD7 [67]. Another level of control of the SMAD path-

way is via the regulation of nuclear accumulation of SMADs, by the Ras-extracellular

signal kinase (ERK) pathway. SnoN (SKIL) constitutes a self-regulatory mechanism

of TGF-β signaling. Expression of SnoN is activated by TGF-β signaling. On the

one hand, SnoN regulates TGF-β signaling by binding to SMADs to block tran-

scriptional activation. On the other hand, nuclear R-SMAD-SMURF complexes

recruit transcriptional repressors SnoN for ubiquitin-mediated degradation and thus

down-regulate the repressor. Thus, TGF-β signaling causes degradation of SnoN,

releasing SMADs to regulate transcription, but also activates expression of SnoN to

down-regulate SMAD signaling at later times [67].

There are also non-SMAD mediated signaling events [68]. For instance, TGF-βR1

can mediate JNK signaling by interacting with E3 ubiquitin ligase TRAF6 and sub-
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sequent activation of TAK1 and the MKK3/4, a mitogen activated protein kinase ki-

nase complex, to trigger TAK1-p38/JNK pathway-dependent apoptosis [69,70] (Ap-

pendix A.1).

2.1.2 Diseases Related to TGF-β Signaling

Malfunctions within the TGF-β signaling pathway may result in cancer, �brosis and

diverse hereditary disorders [71�73]. During cancerogenesis the function of TGF-β

has been shown to be dependent on the tumor state [74�76]. On the one hand,

TGF-β acts as tumor suppressor by inhibiting the proliferation of normal epithelial,

endothelial haematopoietic cells, and early epithelial cancer cells. In early cancers,

for instance, cells are still subject to TGF-β-mediated growth inhibition. On the

other hand, once tumorgenesis has been initiated tumor cells escape this growth

control and produce high levels of TGF-β resulting in promoted tumor growth

and metastasis. Dumont et al. [76] revealed that induction of epithelial mesenchy-

mal transition (EMT) leads to repression of CDH1 through histone deacetylation.

Longterm silencing is maintained by subsequent promoter hypermethylation. Fur-

ther, Chou et al. [75, 77, 78] could show that such epigenetic e�ects contribute to

the disruption of TGF-β signaling in ovarian cancer. Agents that inhibit epigenetic

modifying enzymes like DNA methyltransferases and Histone deacetylases are in-

vestigated as cancer therapies [78]. Since activation of TGF-β signaling can induce

EMT trough epigenetic silencing, blocking TGF-β signaling could possibly reverse

the epigenetic modi�cations thereby preventing or even reversing EMT. Indeed this

could be achieved for a mesenchymal breast cancer cell line [79].

Fibrosis, goblet cell hyperplasia and smooth muscle thickening are implications of

diseases like asthma, chronic obstructive pulmonary disease (COPD), and idiopathic

pulmonary �brosis (IPF) [80,81]. Among other growth factors and cytokines, TGF-β

is highly expressed in �brotic tissues and up-regulates the expression of adhesion

molecules required for the recruitment of monocytes and neutrophils which both

initiate in�ammatory responses. Furthermore, TGF-β plays a pivotal role in the

biosynthesis and turnover of extracellular matrix (ECM) proteins like collagens,

�bronectin and proteoglycans, thereby contributing to �brosis and smooth muscle

cell proliferation [82].
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Figure 2.2: Therapeutic groups for drugs targeting TGF-βR1 or TGF-β.

Displayed are the percent of drugs investigated in di�erent therapeutic groups. In total,

Thomson Reuters' Integrity returns 78 drugs targeting TGF-βR1 or TGF-β which are or

have been tested (June 2011). 68 are reported to be in the phase of biological testing, 9 are

listed under pre-clinical testing, and even one, Fresolimumab [83], a monoclonal antibody

against TGF-β1-3, has entered Phase 2.

2.1.3 Conclusion

TGF-β signaling is a relatively well studied pathway with high therapeutic potential.

Clearly, inhibition of TGF-βR1 holds promise for the treatment of �brotic diseases

and cancer. This is also re�ected by Integrity [84] as displayed in Figure 2.2. Several

small molecules inhibiting TGF-βR1 have been proposed [1]. Some of them have

been sucessfully applied to prevent tumor progression in human cancer [85, 86].

Most known TGF-βR1 inhibitors occupy similar positions in the ATP pocket of the

TGF-βR1 kinase domain. As these are domains conserved in several kinases [87�89],

this approach holds potential for cross reactivity between o�-target kinases and the

compounds. Boehringer Ingelheim provided a set of 7 compounds which target the

ATP binding cassette of TGF-βR1, one of the initial components of the pathway.

Since patents are held for these compounds, we are granted freedom to operate. This

is the ideal pre-requisite to be able to conduct an in-depth and thorough analysis of

mode of action for both, on- as well as o�-target e�ects. We do so by �rst using state-

of-the-art methods and in a later step develop new computational methodologies that
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could be applied to support and streamline necessary follow up wet-lab experiments

in future projects.

2.2 Existing Methods for Data Integration

As more and more diverse and even high throughput technologies get available, more

and more data is generated that could help to explain biological processes. These

data usually originate from di�erent sources like proteomics and genomics. To be

able to conduct computational analyses that make use of diverse data, the integra-

tion of this knowledge is an important step. In this section, I give an overview of

existing methods for data consolidation and integration.

All the methods described in this section are based on protein interactions. A pro-

tein interaction refers to two proteins that either show a direct physical interaction

or that are functionally associated in a biological system. We do not refer to ge-

netic linkage which in contrast describes the tendency of genetic loci to be inherited

together. In a theoretical setting, protein interactions are commonly represented as

graphs.

De�nition 2.2.1. Graph theoretical representation of protein interactions.

Protein interactions can be represented as an undirected graph G=(V,E).

The set of nodes/vertices V refers to the proteins/genes, additionally,

each pair of interacting proteins {vi, vj}⊆V , {i, j}∈N is represented by

an undirected edge evi,vj ∈E.

As each protein is encoded by a gene, I do not strictly di�erentiate between these

two terms and, in the graph representations, use them interchangeably throughout

the thesis. Further, the terms graph and network are used interchangeably.

Based on these graphs, additional data could be integrated. This could be done

by giving di�erent weights to the edges of the graph based on prior knowledge.

De�nition 2.2.2. Edge-weighted graph.

An edge-weighted graph is a pair (G,ω), where G = (V,E) is an undi-

rected graph and ω : E → R is a weighting function assigning a weight

ω(vi, vj) to all evi,vj ∈ E.
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The weighting function ω could for example describe the probability of a real

physical interaction or the degree of biological relatedness, i.e. the functional asso-

ciation, of two connected proteins based on prior knowledge.

Various approaches for the integration of heterogeneous data sources have been

applied to the prediction of protein function as well as for the generation of function-

ally linked gene networks. The �rst ones have been proposed by Marcotte et al. [90]

and Yanai et al. [91], applying the intersection or the union of distinct sets of evi-

dence, respectively. More sophisticated approaches have been, for example, proposed

by von Mering et al. [55], by Lee et al. [92, 93], and by Linghu et al. [94, 95]. They

are described in more detail in Sections 2.2.5 to 2.2.7.

2.2.1 iRefIndex

Multiple databases/repositories exist that contain information about protein inter-

actions. Interaction data for a single protein could be spread across these databases.

Razick et al. [96] propose a method to consolidate the information of di�erent pro-

tein interaction databases. They integrated data from BIND [97, 98], BioGrid [99],

DIP [100], HPRD [101,102], IntAct [103,104], MINT [105], MPact [106], MPPI [107]

and OPHID [108]. Based on the primary sequence of the respective proteins as well

as their taxonomy identi�ers, a unique key for a protein interaction as well as for

each participant protein is generated. Thus, the same key is only generated for

identical pairs of protein sequences and taxonomy identi�ers. Thereby, it is possi-

ble to �lter for redundant information contained in the di�erent protein interaction

databases. The resulting interaction Reference Index (iRefIndex) is provided in

PSI-MITAB 2.5 [109], via a queryable web server (iRefWeb) as well as via a plug-in

(iRefScape) for Cytoscape [110] and via a web service. Based on this data, a graph

G describing a consolidated set of protein iteractions can be derived.

2.2.2 Michigan Molecular Interactions (MiMI)

MiMI [111, 112] provides access to knowledge and data that was merged and inte-

grated from numerous databases. Each repository for protein interaction data has

its own data format, molecule identi�er, and supplementary information. Molecules

that may have di�erent identi�ers but represent the same entity are merged. Thus,
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MiMI allows the user to retrieve information from di�erent databases at once, high-

lighting complementary and contradictory information. Because the merge process

is an automated process, and no curation occurs, any errors in the original data

sources will also exist in MiMI.

MiMI gives access to the following information:

• Information on genes like Gene Ontology annotations [113], interactions, lit-

erature citations, compounds, and annotated text extracted through NLP.

• Link-outs to tools to analyze overrepresented MeSH terms for genes of interest,

read additional NLP-mined text passages, and explore interactive graphics of

networks of interactions

• Link-outs to PubMed and NCIBI's MiSearch interface to PubMed for better

relevance rankings

• Querying by keywords, genes, lists or interactions

The MiMI database lists genes together with supplementary information like inter-

actions, Gene Ontology information, Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways [114,115] the gene occurs in and relevant publications.

Data in MiMI can be accessed in three di�erent ways, via a web-interface, via

a web-service, and as PSI-MITAB formatted �at �le. The PSI-MITAB �les only

represent a subset of the data available in MiMI. While UniProt and RefSeq iden-

ti�ers are included for each interactor, provenance is only included for parts of the

interactions. Pathways and metabolomics data is not included at all. To visualize

interactions of interest, a Cytoscape plug-in is available.

2.2.3 PINA

The Protein Interaction Network Analysis (PINA) [116,117] system is an integrated

platform for protein interaction network construction, �ltering, analysis, visualiza-

tion and management. It integrates protein-protein interaction data from six public

curated databases and aims to supply a complete, non-redundant protein interac-

tion dataset for six model organisms. PINA allows users to either edit the networks

generated from the public data, or combine them with uploaded private interactions

to build more complete protein-protein interaction networks. Moreover, it provides
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a variety of built-in tools to �lter and analyze the network for gaining more focused

insight. These analyses include enriched GO term and KEGG pathways identi�ca-

tion, topology feature calculation, identi�cation of topologically important proteins

in the interaction network, and identi�cation of common interacting proteins. Net-

works can be �ltered based on annotation or based on the semantic similarity score

between annotated GO terms of interacting proteins.

Interaction networks can be downloaded in GraphML format, PSI-MITAB for-

mat or PINA tab-delimited format, complete and annotated lists of protein-protein

interactions (PPI) for the di�erent organisms can be obtained in PSI-MITAB for-

mat. Registered users can save protein interaction networks generated from user

query or the output of the analysis tool on the server for further analysis.

2.2.4 Distributed Annotation System for Molecular Interac-

tions (DASMI)

DASMI [118] is based on the decentralized client-server architecture of the Dis-

tributed Annotation System [119] and consists of a data exchange speci�cation,

interaction data servers, and visualization clients. DASMI provides a collection of

protein-protein interaction datasets and domain-domain interaction datasets. Addi-

tionally, two systems can be used to assess the con�dence of interactions: FunSim-

Mat and Domain support. FunSimMat calculates the similarity of genes based on

their GO annotations. Domain support is based on domain interactions that have

been derived from crystal structures or were computationally predicted.

For deriving the data, a web server, DASMIweb [120], can be used. It is also

possible to perform queries in batch mode. Finally, DASMI o�ers the possibility to

integrate interaction data from PSI-MI XML �les.

2.2.5 STRING

One of the �rst and most popular methods for data integration was proposed by

von Mering et al. [121]. They introduced a Search Tool for the Retrieval of In-

teracting Genes/Proteins (STRING). In the underlying database, information on

possible protein-protein associations is aggregated. This database does not only
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focus on direct protein-protein interactions but also links functionally associated

pairs of proteins. Version 8.3 of STRING covers about 2.5 million proteins from

630 organisms. Protein interactions are scored and weighted by a quantitative in-

tegration of predictions based on genomic context, high-throughput experiments,

co-expression and previous knowledge as available in protein interaction databases

and literature as sources. For each individual source k, raw scores are calculated

and benchmarked against a set of trusted true associations taken from KEGG as

a gold standard. A predicted association {vi, vj} is counted as a true positive as-

sociation if the respective proteins vi and vj occur in the same KEGG pathway.

The true positive rate referred to as con�dence score S̃k(vi, vj) generally represents

the probability of �nding the linked proteins within the same KEGG pathway. Un-

der the simplifying assumption of independence for the di�erent sources used, the

k individual scores for a pair of proteins vi, vj are combined in a naïve Bayesian

fashion:

Svi,vj = 1−
∏
k

(1− S̃k(vi, vj)),

were k refers to the k-th source and S̃k(vi, vj) to the con�dence score derived based

on the k-th source. Svi,vj and the respective protein pairs {vi, vj} can then be used

to de�ne an edge weighted graph G = (V,E) with edge weights ω(evi,vj) = Svi,vj

(see De�nition 2.2.2, page 20).

2.2.6 Log Likelihood Score as Method to Integrate Hetero-

geneous Data Sources

The method proposed by Lee et al. [92,93] is based on Bayesian statistics applying a

log likelihood score (LLS). Based on each data set to integrate, an odds ratio is cal-

culated. The odds ratio represents the likelihood that a pair of genes is functionally

linked. If P (L|E) represents the probability that two genes {vi, vj} are functionally
linked given a dataset E, P (L̄|E) gives the probability that the two genes {vi, vj}
are not linked, and P (L) is the unconditional probability that two genes vi, vj are

functionally linked, then the odds ratio (OR) that a given pair of proteins vi, vj is

functionally linked is given by:

OR(L,E) =
P (L|E)/P (L̄|E)

P (L)/P (L̄)
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Here, P (L)/P (L̄) represents the prior odds. It is estimated by the number of gene

pairs with a shared functional annotation divided by the number of gene pairs

without any shared function based on a single source of functional annotation, e.g.

KEGG. P (L|E)/P (L̄|E) represents the posterior odds. It is estimated by the num-

ber of gene pairs that share functional annotation and that are supported by the

given evidence E divided by the number of gene pairs that do not share functional

annotation based on the given evidence E. To create an additive score such that

linkage information OR(L,E) calculated based on di�erent evidence E can be com-

bined, the log likelihood score is �nally calculated as LLS = ln(OR(L,E)), where

ln is the natural logarithm.

To combine di�erent kinds of evidence, Lee et al. propose to link the LLS scores

calculated for each evidence using a weighted sum [92, 93]. This weighted sum is

based on a Bayesian approach as it already had been used by Jansen et al. [122],

by von Mering et al. [55], or by Troyanskaya et al. [123]. Bayesian approaches

assume independence for the individual data sets to integrate. As this can not

be generally assumed for biological data, in contrast to these previous methods,

Lee et al. propose an heuristic modi�cation of the strict Bayesian approach. The

resulting weighted sum (WS) incorporates the relative weighting of the data and

captures simple aspects of their relative independence either in an exponential [92]

WSvi,vj =
n∑
d=1

LLSd
Dd−1

,

or in a linear manner [93]

WSvi,vj = LLS0 +
n∑
d=1

LLSd
D · d

, for all LLS ≥ T.

LLSd represents the LLS based on a single data set d, where d = 1, ..., n, D ∈ [1,∞)

represents the degree of dependence between the di�erent data sets, and d is the

rank index of the n log likelihood scores for the given gene pair vi, vj. D is chosen

such that it optimizes the accuracy and coverage on a benchmark, e.g. KEGG. T is

used as a threshold to exclude noisy low scoring LLS. The calculated WSvi,vj can

be used to derive an edge-weighted protein interaction graph G = (V,E) with edge

weights ω(evi,vj) = WSvi,vj (see De�nition 2.2.2, page 20). The authors could show

that both methods perform better compared to the naïve Bayesian approach and
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successfully applied them to score probabilistic functional networks for yeast.

2.2.7 Functional Linkage Network

Linghu et al. [94, 95] apply machine learning techniques to combine various data

sources to construct so-called functional linkage networks. In these edge-weighted

networks nearest neighbors are likely to be functionally related. They use such

networks either to assign function to unannotated proteins [94] or to prioritize disease

genes [95].

2.2.8 Conclusion

Drawbacks of MiMI, PINA and DASMI in our opinion are that all the information

that can be downloaded is only listed and not used to describe the associations of

pairs of genes or proteins like it is the case for STRING. They are appropriate to

obtain �rst information on a gene but are not so much useful for deeper follow-up

analyses where the association between di�erent genes and the related biological

processes are of interest. The advantage of DASMI and PINA over MiMI are the

availability of con�dence scores, which could be used as a basis for further data

integration.

iRefIndex provides a sound basis for protein interaction data which I will use as

one source of data in this thesis. It does not integrate any additional information,

however, this is also out of the scope of the index. To our knowledge, STRING con-

stitutes the most comprehensive set of protein-protein associations available. Thus,

we decided to integrate it in our analyses.

The drawback of the described approaches by LLS [92, 93] and STRING [55] to

score pairs of proteins are that they combine di�erent scores in a Bayesian fashion,

for which independence of the individual scores is a prerequisite. This does often

not hold true for most biological data. Although Lee et al. [93] try to overcome this

hurdle by utilizing their weighted sum approach, it is still an issue when combining

evidence which possibly is not independent from each other.
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For many machine learning techniques it is rather di�cult to judge where the

calculated scores originate from. In contrast, I focus on developing a transparent

method for scoring. Thereby, it should be possible to judge how sound the score

is with respect to biology. Moreover, we always need a gold standard to perform

machine learning or to calculate LLS or STRING scores. Our knowledge about the

role of genes/proteins is far from complete and still accumulating and evolving, thus

the gold standard, a set of true positives and true negatives, is not the complete

truth. A method independent from such a preliminary truth would be bene�cial

to be as unbiased as possible. Further, it is cumbersome to extend the described

scores by personal data as for example derived by wet-lab experiments. None of

the proposed methods makes it possible to easily integrate speci�c knowledge about

the biology under investigation; expert biologists would possibly like to give higher

weights to certain evidence.

In summary, we are seeking for an easy to use as well as easy to interpret scor-

ing function to describe the pairwise relatedness of proteins. This score should be

independent from a gold standard, highly �exible by allowing easy integration of

newly gained knowledge and it should o�er the possibility to di�erentially weight

individual evidence.

2.3 Existing Methods to Resolve Processes A�ected

by Gene Expression Changes

Methods that, based on gene expression experiments, could be used to identify

condition responsive subnetworks out of various types of molecular networks already

exist [48�51, 124, 125]. These methods focus on the detection of subnetworks or

modules that are enriched in deregulated genes. Thus, I refer to them as module

detection methods. Among the most widely used are for example jActiveModule [48],

the method proposed by Cabusora et al. [125], GXNA [50] and the methods proposed

by Guo et al. [49] and Dittrich et al. [51].

De�nition 2.3.1. Subnetwork/Module.

Let G = (V,E) be an undirected graph. A graph G′ = (V ′, E ′) is a

subgraph of G if and only if V ′ ⊆ V , E ′ ⊆ E and for all evi,vj ⊆ E ′ ⇒
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{vi, vj} ⊆ V ′.

A subgraph does not need to have all possible edges present in E. If a subgraph

has every possible edge, it is referred to as an induced subgraph:

De�nition 2.3.2. Induced subgraph/module.

Let G = (V,E) be a graph and let V ′ ⊆ V be a subset of vertices of G.

The subgraph of G induced by V ′ is the subgraph G′ = (V ′, E ′) such that

for all {vi, vj} ⊆ V ′, evi,vj ∈ E ⇔ evi,vj ∈ E ′. That is, G′ contains all

the edges of G that connect elements of V ′ ⊆ V .

De�nition 2.3.3. Node-weighted graph.

A node-weighted graph is a pair (G,ω), where G = (V,E) is an undirected

graph and ω : V → R is a weighting function assigning a weight ω(v)

to every node v ∈ V .

Usually the module identi�cation tasks are formulated as optimization problems.

The objective function is based on a subnetwork or module score evaluating the sig-

ni�cance of di�erential expression [48,50,51,125,126] and/or co-expression [49,127].

Based on an edge- and/or node-weighted graph (De�nitions 2.2.2, page 20, and 2.3.3,

page 28, respectively), subnetworks optimizing the objective function are usually de-

termined by heuristic searches or exact solutions using integer linear programming.

In this section, I brie�y describe the existing approaches and summarize their

pros and cons thereby concluding why further development is necessary.

2.3.1 jActiveModule

jActiveModule was proposed by Ideker et al. [48]. It constitutes one of the most

widely used and accepted module identi�cation methods. In this approach, nodes,

i.e. proteins, of a protein-protein and protein-DNA interaction network are weighted

according to p-values derived by di�erential expression analysis. To get an additive

weight, the inverse of the normal cumulative distribution function (CDF) Φ is used

to transform the p-values pi for node vi: zi = Φ−1(1 − pi). Thus, lower p-values

correspond to higher zi. Based on these zi Ideker et al. propose to optimize modules

G′ = (V ′, E ′) with respect to zG′ = 1√
k

∑
vi∈V ′ zi, where |V

′| = k. To determine
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whether the score of the network is higher than what would be expected randomly,

a z-score transformation is used. Gene sets of size k are randomly sampled and zG′

is computed for each of the sampled gene sets to estimate the mean µk and the

standard deviation σk for random G′s. Then the transformed score

sG′ =
zG′ − µk
σk

(2.1)

is N(0, 1) distributed and the values calculated for di�erent modules G′ are compa-

rable.

Input: A node-weighted graph G = (V,E), a number n of iterations, and

a temperature function Tj which decreases with increasing j.

Output: An working subgraph Gw of G and its highest-scoring component

G′ = (V ′, E ′).

01 randomly set every node v ∈ V as active with probability 0.5

02 for j = 1 . . . n do

03 randomly pick a node v ∈ V and invert its state

04 identify the highest scoring component sG′,j of Gw

05 if sG′,j > sG′,j−1 do

06 keep the state of v

07 else

08 keep the state of v with probability p = e(sG′,j−sG′,j−1)/Tj

09 done

10 done

11 return Gw and its highest-scoring component G′.

Figure 2.3: Algorithm proposed by Ideker et al. Brief description of the al-

gorithm as implemented in the Cytoscape plugin jActiveModule. Throughout the

algorithm, an `active/inactive' state is associated with each node. Gw denotes the

working subgraph induced by the active nodes. At each iteration j, sG′,j denotes

the score sG′ (Eq. 2.1, page 29) for the highest-scoring component of Gw. Tj denotes

the temperature that is decreasing with increasing j.
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The authors provide an NP-hardness proof for a simpli�ed variant of their central

search problem, namely for Maximum Weight Connected Subgraph. Since

NP-hard problems are computationally expensive, they propose a simulated anneal-

ing algorithm to optimize their score. Simulated annealing (SA) refers to the way

in which a metal cools and freezes into a minimum energy structure during the an-

nealing process. In analogy to the annealing process, SA is a heuristic technique for

trying to �nd the global optimum of an objective function that may possess sev-

eral local optima. Probabilistically accepting worse solutions allows the algorithm

to �explore� more of the possible space of solutions, thereby escaping local optima.

p = e−∆/T is the probability with which worse solutions are accepted. T , by analogy

with the original application known as the system temperature, is a control pa-

rameter which decreases over time, i.e. wi each iteration, and ∆ is calculated as the

change of the objective function. SA is used in the implementation of jActiveModule

as brie�y summarized in Figure 2.3.

2.3.2 Rajagopalan and Agarwal

Rajagopalan and Agarwal propose an improvement over the jActiveModule algo-

rithm (see Section 2.3.1) [124]. They argue that about half the nodes in the

network have positive scores zi. This leads to the generation of arbitrarily large

modules. By introducing a parameter β to reduce the number of nodes with pos-

itive zi, smaller modules are generated in general. For highly connected networks,

however, extracted modules stay large. According to the authors, the higher the

degree of a node, the more likely one of the neighbouring nodes has a high positive

zi which in turn leads to larger modules. Thus, based on the degree of a node, the

authors introduce an edge penalty to further reduce the scores for highly connected

nodes. Thereby, they �nally achieve smaller subnetworks.

In brief, Rajagopalan and Agarwal propose the following heuristic to extract

subnetworks:

1. Group nodes with positive score into subnetworks using breadth-�rst search.

2. Merge subnetworks via non-positive nodes if this produces a higher score.

3. Apply a �nal pruning step. This step checks whether removal of nodes with a

small positive individual score increases the overall score.
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2.3.3 Cabusora et al.

Cabusora et al. [125] base their analysis on a network derived from protein inter-

actions, metabolic reactions and co-expressed genes. As an example they use in-

formation available for Mycobacterium tuberculosis. Gene expression data for drug

treatment and respective controls are used to score the network. In contrast to

Ideker et al. [48], Cabusora et al. calculate scores for the edges and not for the

nodes.

Let vi and vj be two gene products in the network that are connected by an

edge evi,vj . Further, let pi be the p-value derived for vi or let Pi be the vector

of p-values for gene vi in case multiple p-values are available. The weight zi,j of

edge evi,vj is then either calculated as the product probability pi,j = pi · pj or as
the empirical correlation pi,j = cor(Pi, Pj) in case multiple p-values are available.

Following Ideker et al., Cabusora et al. transform these values into an additive weight

zi,j = Φ−1(1−pi,j). The objective function which is to be optimized for a subnetwork

G = (V ′, E ′) states:

zG′ =
1√
m

∑
evi,vj∈E′

zi,j , where m = |E ′|.

As already proposed by previous approaches, this score is normalized towards ran-

domly sampled subnetworks of size n: sG′ =
zG′−µn
σn

.

The general idea of the algorithm is to calculate the k shortest paths between

selected seed nodes. Brie�y, it works as follows:

1. Integers k and l as well as seed nodes (in their exemplary study, Cabusora

et al. use the most signi�cantly deregulated genes) are chosen as input to the

algorithm.

2. Shortest, second-shortest, third-shortest,... up to the kth-shortest path be-

tween all pairs of seed nodes with restricted maximal path length l are calcu-

lated.

3. G′ is composed of all edges and nodes that are on the paths calculated in 2..

Based on subnetwork G′, zG′ is calculated as previously de�ned.
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This approach guarantees a best scored subnetwork for a set of seed nodes. To obtain

an optimized set of seed nodes for a better scoring sub-network Cabusora et al.

propose a heuristic. They reduce the problem by �nding best scoring pathways

between pairs of seed nodes selected based on a rank-weighted random distribution.

Again, the shortest pathway between these nodes is identi�ed, subnetwork scores

are calculated and the node pair recorded. After convergence to highest scoring

pathways, a sub-network G′ and its corresponding score sG′ is computed using nodes

with the highest pathway score.

2.3.4 ToPNet

Hanisch and Sohler [128,129] developed a framework called ToPNet. It o�ers several

possibilities to analyze biological networks, e.g. navigating the network based on the

neighborhood of a gene (iterative exploration). I will brie�y describe the application

of Hanisch's and Sohler's pathway queries and signi�cant area search, since these

are related to the methods I am focusing on.

Signi�cant area search

A signi�cant area search is performed in the following way:

1. Select seed nodes, e.g. based on a gene expression experiment.

2. Greedily expand around this seed node by including the most signi�cant neigh-

bors.

3. Determine the signi�cance of the selected gene sets using Fisher's inverse χ2

method [130].

Pathway queries

These kinds of queries are XML-based and allow for complex and at the same time

speci�c queries which could also take into account gene expression data, gene anno-

tation like GO, information on transcriptional regulation, and so forth. Following

example is given by Sohler et al. [128]: �We look for kinases that are directly con-

nected to both Fus3 and Kss1. Fus3 and Kss1 must be connected via at most one

additional protein to a transcription factor that regulates genes that are di�eren-

tially expressed in knockout experiments.� In their publication they also display an

XML template which is used to perform a similar query.
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2.3.5 Graph Based Iterative Groups Analysis (GiGA)

Breitling et al. [131] include GO annotation as evidence into their analysis. They do

this by introducing �evidence graphs�, bipartite graphs which contain two kinds of

nodes, one for genes and one for the associated �evidence�. Such a graph is converted

into a simple graph by introducing edges between all pairs of genes that share the

same evidence node and subsequently removing all evidence nodes. Additional to

this graph, a list of genes ranked according to absolute fold change is used to label the

genes in the graph with their corresponding ranks in that list. All genes that are not

contained in the list are removed from the graph. In short, the algorithm proposed

by Breitling et al. [131] works as follows: First, nodes that are of lower rank (have

higher fold change) than all their neighbours are selected as seed nodes. These

seed nodes are iteratively extended to include their most signi�cant neighbours,

and p-values based on the cumulative hypergeometric distribution are calculated

for the extended modules in each iteration. The extension is stopped either after

all nodes reachable from the actual module are included or after a maximum size

is reached. For each modules generated in this way, that module is selected as

�regulated neighbourhood� that yielded the smallest p-value.

2.3.6 MATISSE and CEZANNE

In 2007 Ulitsky et al. proposed a method for Module Analysis via Topology of

INteractions and Similarity SEts (MATISSE) [132]. The method can be based on

any interaction network G = (V,E). In their publication they show results based on

a protein-protein and protein-DNA interaction network for Saccharomyces cerevisiae

as well as on a protein-protein interaction network for human. Additional to the

network G, the algorithm takes a symmetric similarity matrix S as input. The

entries sij of S describe the similarity between genes i and j. This similarity can,

for example, be calculated as the Pearson correlation between the respective gene

expression patterns. S is further used to calculate an edge weight. Ulitsky et al.

de�ne two co-expressed genes as mates. Each edge in the network is weighted

using the log-likelihood score of the adjacent genes being mates compared to not

being mates. By this means, they de�ne the similarity graph GS = (Vsim, E
S) with

Vsim ⊆ V and ES = (Vsim × Vsim). Based on this input, the algorithm tries to

detect jointly active connected subnetworks (JACS). JACS are de�ned as disjoint
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sets U1, U2, ..., Um that induce connected subgraphs in G and heavy subgraphs in

GS. Since this problem is NP-hard, the authors propose several heuristics which are

all split into three phases:

1. Detection of small, high-scoring gene sets as seeds.

2. Improvement of the seed.

For optimizing the seeds identi�ed using one of the previous heuristics a greedy

approach is used. All seeds are optimized simultaneously either by addition

of an unassigned node to an existing JACS, removal of a node from a JACS,

exchange of a node between JACSs, or merge of two JACSs. The algorithm

keeps those moves that improve the overall score of the solution and that main-

tain the connectivity of the JACSs. If no such move exists, nodes ∈ V \ Vsim
are removed as long as they do not disconnect any of the JACS. As soon as

no nodes can be removed, the algorithm terminates.

3. Filtering based on signi�cance.

Empirical similarity scores as well as empirical p-values are calculated for

JACS by randomly sampling gene groups of the same size. Based on these

p-values and the average similarity scores, the JACS are �ltered to obtain the

most relevant ones.

In 2009 the same authors proposed an improvement over MATISSE [133]. The

di�erence betweenCo-Expression ZoneANalysis usingNEtworks, CEZANNE, and

MATISSE is that for CEZANNE every edge e ∈ E is weighted by the probability

p(e) ∈ [0; 1] that the edge, i.e. the interaction, exists. The authors applied their

method to a network and con�dence values for S. cerevisiae which were based on

puri�cation enrichment (PE) scores [134]; this score measures the likelihood of ob-

served experimental results given the hypothesis that an interaction is genuine rel-

ative to the likelihood of the same results if the interaction is not real. The overall

aim is to detect modules that are q-connected and have a maximum co-expression

score. A set of vertices U ⊆ V is called q-connected if for all U ′ ⊂ U the probability

that at least one edge connects U ′ with U \ U ′ is ≥ q. The problem is solved in

three steps similar to the MATISSE algorithm with the di�erence that during the

optimization step the q-connectivity has to be maintained. The authors showed that

q-connectivity is ful�lled as long as the weight of every minimum cut of the module
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under consideration exceeds T = −log(1 − q). The signi�cance of the optimized

modules is again determined based on empirically derived p-values.

2.3.7 GXNA

Gene eXpression Network Analysis (GXNA) is a method for module extraction that

has been proposed by Nacu et al. [50]. The authors make use of gene interaction data

available from EntrezGene [135] and KEGG [114] and combine it with expression

data. They propose several methods to score sets of genes V ′, i.e. subnetworks

G′ = (V ′, E ′) of the gene interaction network. The scores are based on the t-statistic

Tgi which is used to calculate the di�erential expression for gene gi.

1. Averaging the test statistics:

(a)

f1(G′) =
1

k

k∑
i=1

Tgi , where k = |V ′|.

(b) To take into account modules that contain both, up- and down-regulated

genes the absolute value of the t-statistic can be applied

f2(G′) =
1

k

k∑
i=1

|Tgi | , where k = |V ′|.

2. Averaging gene expression:

(a) Calculate group expression

Sj(G
′) =

k∑
i=1

Xgij

where Xgij refers to the expression level of gene i in sample j.

(b) To take into account modules that contain both, up- and downregulated

genes, the authors propose to include signs in the group expression for-

mula

Sj(G
′) =

k∑
i=1

εi ·Xgij

where εi = −1 if the t-statistic for gene i is negative.
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Based on these values, the t-statistic is calculated for G′:

f3(G′) = (µ1 − µ0)/
√
σ2

1/n1 + σ2
0/n0,

where µ0 and σ0 are the mean and the standard deviation of Sj(G′) for samples

of the control group, respectively. Analogously, µ1 and σ1 are the mean and

the standard deviation of the treatment group.

To extract modules, Nacu et al. propose two basic ideas, the ball B(x, r) and an

adaptive subgraph search. Both ideas are based on seed nodes that can be arbitrarily

selected. In their publication, Nacu et al. sequentially select each gene as seed node.

The ball: Compute score f(G′) for G′ = B(v, r) where B(v, r) describes the ball

centered at node v with radius r. That is, the subgraph G′ is composed of all

nodes that are connected to v by a path of length ≤ r and the edges induced

by these nodes.

Adaptive subgraph search: The basic idea is to start with a seed node v and

gradually expand around it. The authors propose two di�erent approaches for

expansion:

1. Randomly pick a vertex with higher probability assigned to vertices that

yield higher scores.

2. Pick a vertex such that the present subgraph has maximal score f(G′)

(greedy search).

The algorithm stops either after G′ reaches a prede�ned size or when f(G′)

can no longer be increased.

For nodes of a high degree, B(v, r) is not very selective and rather unspeci�c. This

problem is addressed by adaptive search algorithms. The adaptive search algorithm

as described in the �rst approach (1.) is slower, and since greedy search described

in the second approach (2.) works reasonably well, the authors propose to use the

latter method for speed and simplicity.

2.3.8 Guo et al.

In the approach proposed by Guo et al. [49], protein interactions from HPRD [101]

and DIP [100] as well as gene expression data have been used. Proteins without
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gene expression data are deleted. In this method gene expression data is used

to weight the edge e(x,y) between directly connected proteins x and y by the co-

variance of the respective expression vectors X and Y : ω(e(x,y)) = cov(X, Y ) =

cor(X, Y ) ·σ(X) ·σ(Y ), where cor(X, Y ) is the Pearson correlation of X and Y and

σ(X) and σ(Y ) their standard deviations.

Based on the edge-weighted network, Guo et al. use the following score for sub-

networks: T (G′) =
∑

e∈E′ ω(e). After standardizing this score using a z-score trans-

formation based on 10,000 randomly sampled edge sets E ′rand with |E ′rand| = k, the

objective function is given by S(G′) = T (G′)−µk
σk

. Here, µk is the mean of the 10,000

values for T (G′rand) and σk their standard deviation. Following Ideker et al., they

solve the optimization problem using simulated annealing. Default output is the

best module contained in the optimized solution.

2.3.9 Dittrich et al.

Dittrich et al. [51] solve the module extraction problem by integer linear program-

ming. They transform the underlying optimization problem already stated by

Ideker et al. as the Maximum-Weight Connected Subgraph Problem (MWCS) to the

well studied Price Collecting Steiner Tree Problem (PCST). Ljubi¢ et al. [136] pro-

posed an integer linear programming algorithm which is currently the fastest to solve

PCST. This algorithm is applied by Dittrich et al. to solve the MWCS to optimality.

The input to their algorithm are protein interactions as provided by HPRD [101].

The proteins, i.e. the nodes present in the respective network are weighted by aggre-

gated p-values derived from gene expression data. To show the applicability of their

method, Dittrich et al. used a gene expression data set from di�use large B-cell lym-

phoma [137] together with survival information from the respective patients. They

aggregate p-values derived from di�erential expression analysis comparing two tu-

mor subtypes and p-values derived from analysis of survival times using Cox regres-

sion [138] used to analyze the survival data. For combining the p-values, Dittrich

et al. developed an additive score where positive values represent interesting genes

and negative values denote background noise.
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2.3.10 ClustEx

ClustEx proposed by Gu et al. [139] makes use of protein-protein interaction data

taken from HPRD [101]. Additionally, they utilize gene expression data. Only

genes present on the microarray are used in the analysis. The overall aim is to de-

tect groups of di�erentially as well as co-expressed genes that are closely connected.

To detect the responsive gene modules, �rst, di�erentially expressed genes are

identi�ed. In a second step, the correlation of expression levels X and Y for genes

x and y are used to weight the edges present in the protein interaction network:

ω(ex,y) = |cor(X, Y )| .

Based on this weight, the distance between two interacting proteins x, y is calculated

as

dist(x, y) = 1− ω(ex,y) = 1− |cor(X, Y )| .

Based on dist(x, y), shortest paths are calculated between pairs of di�erentially

expressed genes. The di�erentially expressed genes are then clustered based on the

lengths of the shortest paths. Based on this clustering, genes are separated into

gene groups. To connect the di�erentially expressed genes, all genes on the shortest

paths between the di�erentially expressed genes were added such that a connected

sub-network is generated. Then the subnetwork was extended by one step, i.e. edge,

in the whole gene network. To �nally obtain the responsive gene-module, the genes

contained in each of these groups need to be connected to a subnetwork. The authors

do that by using all genes and edges on the 10 shortest paths between all the pairs

of the di�erentially expressed genes in the extended sub-network.

2.3.11 Pandora

Although they only look at information available for yeast, Zhang et al. [140] are

the only ones who go beyond the use of interaction networks. Similar to previous in-

teraction networks, they make use of protein protein interactions but also of genetic

interactions, information on domain-domain interactions and GO annotations [113].

Since in contrast to the previously mentioned methods they want to predict path-

ways and not functional modules, they want to limit the genetic interactions that

occur in a pathway. Thus, genetic interactions are assigned a weight of 0. All other
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kind of interactions are assigned a score of 1. By investigating the GO annotations

for genes applying a method proposed by Wang et al. [141] (explained in more detail

in Section 3.4.2, pages 64 �.), they calculate a similarity score for pairs of gene prod-

ucts. Thus, for each pair of proteins, Zhang et al. derive scores based on di�erent

kinds of interactions as well as the GO-similarity score. Taking the average of the

scores for each pair of proteins results in the �nal weight for the edge connecting

these two proteins in the interaction network. A cuto� is applied to this score and

only edges passing that cuto� are used to predict biological pathways in yeast.

The prediction is based on network topology. Topological similarity is calculated

using the Jaccard coe�cient [142] for neighboring proteins. Similar proteins are

summarized to pathways.

2.3.12 Conclusion

Table 2.1 gives an overview of di�erent characteristics for the methods brie�y re-

viewed in this section.

Apart from ToPNet and Pandora, all methods described in this section focus on

the detection of gene modules that are enriched in deregulated genes. Since nu-

merous processes are regulated by, for example, post-transcriptional modi�cations

one objective of this thesis is to expand the analysis beyond the transcriptional

level. Most important when analyzing mode of action is the biological interplay of

proteins. Therefore, we also want to incorporate further evidence with respect to

common biological mechanisms.

ToPNet [128, 129], as an example, allows to query for GO annotations of the

molecules contained in the network. Based on these queries, subnets are detected.

ToPNet o�ers the possibility to perform speci�c queries that make it possible to in-

tegrate previous knowledge. To be able to formulate such queries, knowledge about

what is interesting and possibly even some knowledge on the biological process of

interest is needed. Thus, de novo analyses of mode of action and especially identi�ca-

tion of o�-target e�ects is probably di�cult to perform using ToPNet. Further, only

very speci�c questions are answered and it seems impossible to answer a question

like �what are the o�-target e�ects of the compound under investigation?� Apart
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from that, ToPNet seems to be no longer available.

Some methods like those described in Sections 2.3.3, pages 31 f. and 2.3.9 try

to derive only one huge module to explain the biological process re�ected by the

expression data. Further, Gu et al. state �As observed in previous studies and in our

analysis, a big module usually dominates the responsive process [48, 49]� [139]. We

argue that mode of action is induced by several processes that in general in�uence

each other. Even if an analysis results in multiple networks, it is easily possible

that more than one process, i.e. the on- and several o�-target e�ects, are covered by

one larger module. Thus, the individual e�ects are di�cult to detect and interpret.

By deriving small modules, it is more likely to be able to separate di�erent e�ects

represented in the biological system under investigation. Otherwise, it is impossible

to understand the biological processes taking place and how they relate to each other.

Most of the existing approaches focus on protein/gene interaction in combina-

tion with expression data. Approaches that go beyond this and integrate further

data rarely exist. Pandora integrates di�erent kinds of data but at the same time

does not make use of expression values. This is due to the fact that the purpose

of the method is to detect complete pathways or networks like for example present

in KEGG, but not to derive small modules explaining processes present in a gene

expression experiment. GiGA does integrate expression data, protein interactions

and GO annotations. But still the integrated GO information is only translated to

edges in a network for which the methods still tries to derive modules solely based

on deregulated genes.

The major drawback of the present methods is that they focus on di�erentially

expressed genes. They neglect the vast amount of biological data that could be

used to support the analyses especially with respect to the fact that not all genes

are regulated on the transcriptional level. Thus, I aim at developing a method

that constitutes a combination of approaches like jActiveModule, making use of

protein interaction data and gene expression data, and Pandora, that integrates

additional data sources. By doing so, it will be possible to extract small modules

that help revealing the e�ects present in the expression experiment. This method will

exemplarily be applied to a gene expression experiment conducted for the analyses
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of compounds' mode of action.

2.4 Analyzing Groups of Genes

Given the outcome of a biological experiment like gene expression measurements,

we are interested in the biological processes that are related to the experiment. One

of the most prominent approaches to interpret such data is to make use of prede-

�ned gene groups. Such gene groups provide more biological knowledge compared

to looking at individual genes, thereby o�ering the possibility of a more meaning-

ful interpretation in the biological context. Groups of genes can be de�ned based

on di�erent sources, e.g., based on pathways as de�ned by KEGG, Reactome, or

BioCarta. A second source are Gene Ontology terms. Here, groups of genes can

be determined by genes annotated with the respective term or any of its children

in the hierarchy (explained in more detail on pages 44 �.). Further possibilities are,

e.g. groups based on the chromosomal region in which the genes are located, genes

associated with a special disease, or groups de�ned based on literature relevant to

the biological research question under investigation.

By identifying prede�ned groups of genes a�ected by the gene expression ex-

periment it is possible to relate the underlying experiment to a biological process

like the signaling cascades of a potential o�-target. In Section 2.4.1 I focus on over-

representation analyses conducted using Fisher's exact test [130], GSEA [40,41], and

topGO [43]. Further, I provide a brief introduction into more holistic approaches

that do not separate the analysis of di�erential expression from gene set analysis in

Section 2.4.2.

2.4.1 Gene Set Enrichment

The basic idea of gene set enrichment analyses is to �rst de�ne a measure for in-

teresting genes. This could be for example fold changes and/or p-values for genes

analyzed in an expression experiment. In a second step, these interesting genes are

compared to prede�ned groups of genes related to a certain biological process. If

interesting genes are over-represented in a special prede�ned group, the related pro-

cess will very likely be relevant for the underlying expression experiment.
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One of the simplest tests to investigate over-representation is Fisher's exact

test [143], which has been widely used with respect to gene expression analy-

ses [43, 144, 145]. Fisher's exact test is a count-based method as it solely is based

on a count of genes meeting a speci�c criterion. Given a set of K genes identi�ed

as interesting, for example genes exceeding a certain threshold of a gene-associated

score; Fisher's exact test calculates the signi�cance of the overlap between a prede-

�ned group of genes of size M and the K interesting genes with respect to the total

number of genes N . A more detailed explanation is given in Section 3.6.2 (page 75.

Count based approaches require that a set of genes is selected by some de�nite

criterion (hard thresholding). Thus, any information on the genes outside of this

set is not used. In contrast, methods utilizing all gene scores or gene ranks derived

based on an experiment exist. One of the most prominent ones possibly is GSEA, the

Gene Set Enrichment Analysis as �rst applied by Mootha et al. [40] and described

in detail by Subramanian et al. [41]. GSEA can be divided into two steps. First,

gene-wise measures like di�erential expression are calculated for all N measured

genes and respective genes gi are ranked accordingly to form L = (g1, g2, ..., gN). In

their publication, Subramanian et al. [41] rank genes according to their correlation

rj to a pro�le of interest. Second, labels are assigned to genes gj indicating whether

they belong to a gene group of interest S or not, i.e. gj ∈ S or gj ∈ S̄ = N \ S,
respectively. Walking down the ranked list L, two running enrichment scores (ES)

are calculated:

ESS(l) =
∑
gj∈S
j≤l

|rj|p

NS

, where NS =
∑
gj∈S

|rj|p

ESS̄(l) =
∑
gj∈S̄
j≤l

1

N −m
, where m = |S|

The authors propose to set p = 1. If one wants to penalize sets of genes S for lack

of coherence, p < 1 could be appropriate. The �nal ES is de�ned as the maximum

deviation of ESS(l) − ESS̄(l) from 0, i.e., ES = max |ESS(l)− ESS̄(l)|. If the

maximum value for ES is higher than expected randomly, the group is enriched

with interesting genes. The signi�cance is calculated based on a phenotype-based

permutation test. This is essentially a test for deviation from a uniform distribution.

Drawback of permutation tests is their low power.
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topGO is a Bioconductor package implemented by Alexa et al. [43]. They propose

a gene set enrichment framework especially applicable to ontology structures like the

Gene Ontology (GO) [113]. Figure 2.4 displays a small part of the GO hierarchy

which is explained in the following.

De�nition 2.4.1. Directed acyclic graph (DAG).

A directed acyclic graph (DAG) is a graph G = (V,E) with directed

edges eu→v = (u, v) that contains no path that starts and ends at the

same vertex. The root nodes R ∈ V of a DAG are de�ned as the

nodes where no edge starts, R = {r ∈ V |@ v ∈ V : er→v}. The leave

nodes L ∈ V of a DAG are de�ned as all nodes where no edge ends,

L = {l ∈ V |@ v ∈ V : ev→l}.

De�nition 2.4.2. Ontology.

An ontology is a set of de�ned terms or vocabularies that are given hier-

archical relationships to one another. It can be represented as a directed

acyclic graph (DAG). GO, for instance, provides a set of terms to de-

scribe the properties of proteins.

In the case of GO, the terms are used to describe and annotate proteins with

respect to their molecular function (MF), the biological processes (BP) they are

involved in, and the cellular component (CC) they occur in. Each of these three

classes, MF, BP and CC, builds a separate DAG exactly containing one root node

r. Genes associated with special attributes are assigned to the respective ontology

term which in turn is represented by a vertex/node in the DAG. The ontologies

resemble a hierarchy, ancestor terms (De�nition 2.4.3) are less specialized than their

descendants (De�nition 2.4.4). With respect to GO, whenever we refer to a term

of the ontology, we refer to a node/vertex in the respective DAG. In an ontology,

each gene/protein which is associated with a term is also mapped to all its ancestor

terms.

De�nition 2.4.3. Ancestors of node v.

For a DAG G = (V,E), the ancestor set Vancestor(v) ⊆ V of any node

v consists of all nodes vi that are reachable from v via a directed path

P = (ev→v1 , ev1→v2 , ..., evi−1→vi). That is, all nodes on any path to the

root node of the DAG are ancestors of v.
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Biological Process 
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Response to Endogenous 
Stimulus 

Cellular Response to 
Endogenous Stimulus 

Response to Stimulus 

Response to Epidermal 
Growth Factor Stimulus 

Response to Lipoprotein 
Stimulus 

Cellular Response  to TGF-β 
Stimulus 

Response to High Density 
Lipoprotein Stimulus 

Cellular Response to 
Epidermal Growth Factor 

Stimulus Cellular Response to 
Lipoprotein Stimulus 

Cellular Response to 
Hormone Stimulus Cellular Response to High 

Density Lipoprotein 
Stimulus 

High Density Lipoprotein 
Mediated Signaling 

Figure 2.4: DAG representing parts of the Gene Ontology. Displayed is

a DAG (De�nition 2.4.1, page 44) representing a small part of the Biological Process

hierarchy of the Gene Ontology. The node highlighted in red indicates the root node

(De�nition 2.4.1, page 44), blue nodes are the leaf nodes (De�nition 2.4.1, page 44), and

the node highlighted in orange is the lowest common ancestor (De�nition 2.4.7, page 46)

of, e.g. the nodes �High Density Lipoprotein Mediated Signaling� and �Cellular Response

to Hormone Stimulus�, two of the leaf nodes. At the same time, it is a parent node

(De�nition 2.4.6, page 46) of the leaf nodes �Cellular Response to Epidermal Growth

Factor Stimulus�, �Cellular Response to Hormone Stimulus�, and �Cellular Response to

TGF-β Stimulus� as well as of the node �Cellular Response to Lipoprotein Stimulus�.

Analogous to an ancestor, we de�ne the term descendant:

De�nition 2.4.4. Descendants of node v.

For a DAG G = (V,E) the descendant set Vdescendant(v) ⊆ V of any node

v consists of all nodes vi that v is an ancestor of. That is, all nodes on

any path leading from the leaves to v are descendants of v.

A more speci�c set of descendants is referred to as children:

De�nition 2.4.5. Children of node v.
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For a DAG G = (V,E) the set of children Vchildren(v) for a node v ∈ V
consists of all nodes vi ∈ V of which v is a direct ancestor. That is,

Vchildren(v) = {vi ∈ V |evi→v ∈ E}.

Analogous, parent term is de�ned:

De�nition 2.4.6. Parent of node v.

For a DAG G = (V,E) the set of parents Vparent(v) of a node v ∈ V

consists of all nodes vi ∈ V of which v is direct descendant. That is,

Vparent(v) = {vi ∈ V |ev→vi ∈ E}.

In later sections, the term lowest common ancestor is used in the context of DAGs

representing ontologies:

De�nition 2.4.7. Lowest common ancestor (LCA).

The lowest common ancestor of two nodes u, v in a DAG G = (V,E) is

denoted as LCA(u, v). It is de�ned as the node with the maximum path

length from the root, i.e., the lowest node in G that has both u and v as

descendants (u or v are allowed to be a descendant of itself).

Not every gene is necessarily annotated to a leave node in the ontology. Due to

the interleaved structure of ontologies, calculation of enrichment is statistically even

more sophisticated than for other gene sets. In their proposed methods, Alexa et al.

consider this special structure to �nd those terms in an ontology that show an

enrichment in signi�cant genes. Besides count-based tests like the Fisher's exact

test and tests based on gene scores or ranks of genes like GSEA, they additionally

implemented a test that is directly based on the gene expression data. Such tests are

sometimes referred to as holistic approaches. In contrast to tests like Fisher's exact

test or GSEA which at least require two separate steps, the gene-wise calculation of

a score and the test for over-representation, holistic approaches perform the whole

analyses in one go.

2.4.2 Holistic approaches

Methods that combine the analysis of di�erential expression and detection of en-

riched gene sets in one step are globaltest and GlobalANCOVA. These methods
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are therefore also referred to as holistic approaches. Applying these methods, it is

possible to consider small but consistent changes in expression. The methods try

to answer the question whether the global expression pattern X of a group of genes

signi�cantly relates to some clinical variable of interest Y like disease status or sur-

vival taking into account covariates C like time, dose, age or sex.

globaltest has been proposed by Goeman et al. [42,44]. This test was developed

for predicting clinical outcomes Y based on the expression pattern of a group of

genes X and covariates C. The hypothesis

H0 : P (Y |X,C) = P (Y |C)

is tested to decide whether gene expression X does improve the prediction for the

phenotype Y .

GlobalANCOVA has been introduced by Mansmann and Meister [45,146] and fur-

ther developed by Hummel et al. [46, 47]. In contrast to globaltest, it tries to

uncover the in�uence of the observed phenotype Y on the gene expression X:

H0 : P (X|Y,C) = P (X|C).

2.4.3 Conclusion

Several methods exist that are capable to reveal biological processes related to a

gene expression experiment. Except for Fisher's exact test, all methods are based

on a measure/score present for each individual gene. The most prominent one prob-

ably is GSEA. Holistic approaches directly combine the analysis of expression with

the detection of enriched gene sets. In contrast to other methods, they are capable

of considering small but consistent changes in expression.

Changes in gene expression are not necessarily the only indicator to infer mode of

action and, thus, should be considered in conjunction with further biological criteria.

Processes mediated through protein interactions as for example frequently present

in signaling cascades are essentially neglected by all enrichment methods. These

methods treat networks with potentially complex topology as an unstructured set of

genes. Further, they do not take into account feedback by transcriptional regulation.
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Such feedback can for example also be represented by protein interactions. Existing

knowledge about proteins and their relation to one another is disregarded.



Chapter 3

Methods

3.1 TGF-β Gene Expression Data

All laboratory work described in this section has been conducted by Dr. Patrick

Baum in the scope of his PhD thesis [52]. It is described here for completeness,

more details can be found in [52]. Primary data analysis has been performed in a

cooperative manner. Further, he kindly provided the experimental data to validate

the new methods developed in the present work.

3.1.1 Cell Culture and NCE Treatment

HaCaT cells were cultured under standard conditions [147]. Cells were seeded in

24-well plates and grown overnight to a con�uence of approximately 70%. Cells

were starved for 3 hours in DMEM without addition of fetal calf serum (FCS).

Five BI compounds, in the following referred to as BI1 to BI5, and two competitor

substances, Ex1 and Ex2, with inhibitory potency towards TGF-βR1 kinase were

used as NCE. Details about the synthesis, design, and structure of the molecules can

be found in Roth et al. [1]. BI1 to BI5 belong to the chemical class of indolinones,

Ex1 and Ex2 to the class of pyridopyrimidinones. Cells were pre-incubated with

increasing NCE concentrations (0.0032, 0.016, 0.08, 0.4, 2, 10µM) for 15 min and

subsequently stimulated with 5 ng/ml of TGFβ1 (R&D Systems) and incubated

for 2, 4, or 12 hours. As controls, cells where either left untreated or treated with

DMSO (solvent of compounds) and either stimulated with 5ng/ml of TGF-β1 or not

stimulated and incubated for 2, 4, or 12 hours. NCE treatments were conducted in

triplicates, respective controls in quadruples.

49
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3.1.2 RNA Extraction

RNA isolation was carried out using a MagMAXTMExpress-96 Magnetic Parti-

cle Processor and the MagMAXTM-96 Total RNA Isolation Kit according to the

manufacturer's protocol. Total RNA concentration was quanti�ed by �uorescence

measurement using SYBR Green II (Invitrogen) and a Synergy HT reader (BioTek)

as previously described [148]. The RNA quality was characterized by the quotient

of the 28S to 18S ribosomal RNA electropherogram peak using an Agilent 2100

bioanalyzer and the RNA Nano Chip (Agilent).

3.1.3 BeadChip Hybridization of RNA Samples

Illumina TotalPrep RNA Ampli�cation Kit (Ambion) was used to transcribe 200ng

total RNA according to the manufacturer's recommendation. A total of 700ng of

cRNA was hybridized at 58◦C for 16 hours to Illumina HumanHT-12 v3 Expres-

sion BeadChips (Illumina). BeadChips were scanned using an Illumina BeadArray

Reader and the BeadScan Software (Illumina). On the HumanHT-12 v3 each gene

of the human genome is represented by at least one probe. The raw data is accessible

as MIAME compliant entry at Array Express [149] (E-MTAB-265).

3.1.4 qRT-PCR

Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted for

eight genes (CDKN1A, CDKN2B, HAND1, JUNB, LINCR, RPTN, SERPINE1,

and TSC22D1) known to be deregulated at at least one time point by TGF-β stim-

ulation. mRNA expression levels of the eight genes were determined by qRT-PCR

analysis using a 7900HT Fast Real Time PCR System (Applied Biosystems) and the

Universal Probe Library System (Roche). Gene speci�c forward and reverse primer

sequences were designed using the Universal Probe Library Assay Design Center

(Roche). Total RNA was transcribed into cDNA using the High Capacity cDNA

Reverse Transcription Kit (Applied Biosystems) according to the manufacturer's

instructions. qRT-PCR was carried out in a �nal volume of 1µl in three replicates

for each cDNA sample. Levels of RNA polymerase II were used for normalization

of the data. The ∆∆CT method [150] was used to relatively quantify mRNA levels

of samples stimulated with TGF-β1 compared to untreated controls.
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3.2 Normalization

For gene expression measurements using microarrays, normalization of the data has

to be performed in order to minimize systematic e�ects that are not constant be-

tween di�erent samples of an experiment and that are not due to the factors under

investigation (e.g. treatment, time). Optimal selection of a normalization method

depends on the nature of the experiment. Factors that in�uence the choice are for

example the array technology used (e.g. one/two color, oligo or cDNA probes), the

design of the experiment (e.g number of replicates or experimental conditions) and

whether accuracy or stability is an issue (bias/variance trade-o�). In this regard

factors like comparability and quality of single runs play a major role. It has been

shown that the normalization method used may in�uence further downstream anal-

ysis to a great extend [39], and thus has to be carefully chosen based on the actual

experiment.

In this section, we describe the methods used to select an optimal normalization

procedure for the TGF-β gene expression data described in the previous section.

Respective results are presented in Section 4.1 and discussed in Section 5.1. This

part of my thesis has been published in BMC Genomics [53].

3.2.1 Data Processing

Data has been processed with BeadStudio version 3.0 and the R Language and En-

vironment for Statistical Computing (R) 2.7.0 [151, 152] in combination with Bio-

conductor 2.2 [153]. The Bioconductor lumi package [154] has been used for quality

control. Twenty-�ve combinations of background correction, transformation, and

normalization methods were calculated either with methods o�ered by BeadStudio,

with methods available in the lumi package, or with a combination of BeadStudio

and lumi methods. Table 3.1 on page 53 summarizes the individual pre-processing

steps for each of the combinations investigated. The following two paragraphs give

some details on the availability of the di�erent methods.

BeadStudio Pre-Processing

The normalizations executed by Illumina BeadStudio were applied to the expres-

sion values on the original scale. In cases where background adjustment has been
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performed, the standard background normalization o�ered by Bead-Studio (indi-

cated by bg_∗) which may lead to negative values has been used. noBg_noNorm

and bg_noNorm refer to the raw and to the background corrected data, respectively.

Cubic Spline, Rank Invariant, and Average methods were used for normalization

and are referred to as ∗_cubicSpline, ∗_rankInvariant, and ∗_Average, respec-
tively. Details about these normalization methods can be found in the BeadStudio

Gene Expression Module User Guide [155]. Finally, expression values were log2-

transformed.

R Pre-Processing

To be able to log2-transform the expression data, negative values which can re-

sult from BeadStudio background normalization have to be transformed to pos-

itive scale. This is achieved by forcePositive (forcePos) [154] or rma back-

ground adjustment [156] available through the lumiB() function of the lumi package

(bgAdjust.affy) [154]. In case the lumiT() function is used for log2 transfor-

mation, forcePos is automatically conducted to transform negative values. noBg

implies that the background normalization available in BeadStudio has not been

applied. For transforming the data, a simple log2-tranformation (log) or variance-

stabilizing transformation (vst) [157] was used. The latter applies a function that

is asymptotically identical to log2(x), but has been shown to keep variance con-

stant under reasonable error models [157]. Data was normalized using quantile

normalization (quantile) [158], robust spline normalization (rsn) [154], local re-

gression (loess) [159], or variance stabilization and normalization (vsn) [160]. vst

as well as vsn can handle negative values in the data. Thus, neither forcePos nor

rma was applied as pre-processing for any of those two methods to not unnecessarily

modify the values. All methods used are implemented in the R packages affy [161],

vsn [160], or lumi [154].

3.2.2 Statistical Measures

In the following, the statistical measures used to select an appropriate normalization

method as described in Section 4.1 are brie�y summarized. Unless otherwise noted,

all statistical calculations were performed using R.
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Table 3.1: Summary of pre-processing steps used for the 25 di�erent nor-

malization procedures. For background correction BeadStudio's background normaliza-

tion was applied [162]. This can lead to negative values. To be able to log2-transform the data,

background-correction of rma [156] or forcePos [154] is used to shift the data to positive scale.

Alternatively, data was transformed using (vst) [157] which is capable of dealing with negative val-

ues. Data was normalized using quantile, loess, or rsn [154]. vsn [160] renders transformation

of the data unnecessary.

Name Background Correction Transformation Normalization

bg_average BeadStudio log2 average

bg_cubicSpline BeadStudio log2 cubicSpline

bg_forcePos_log_loess BeadStudio + forcePos log2 loess

bg_forcePos_log_quantile BeadStudio + forcePos log2 quantile

bg_forcePos_log_rsn BeadStudio + forcePos log2 rsn

bg_noNorm BeadStudio + forcePos log2 -

bg_rankInvariant BeadStudio log2 rankInvariant

bg_rma_log_loess BeadStudio+rma log2 loess

bg_rma_log_quantile BeadStudio+rma log2 quantile

bg_rma_log_rsn BeadStudio+rma log2 rsn

bg_vsn BeadStudio - vsn

bg_vst_loess BeadStudio vst loess

bg_vst_quantile BeadStudio vst quantile

bg_vst_rsn BeadStudio vst rsn

noBg_average - log2 average

noBg_cubicSpline - log2 cubicSpline

noBg_log_loess - log2 loess

noBg_log_quantile - log2 quantile

noBg_log_rsn - log2 rsn

noBg_noNorm - log2 -

noBg_rankInvariant - log2 rankInvariant

noBg_vsn - - vsn

noBg_vst_loess - vst loess

noBg_vst_quantile - vst quantile

noBg_vst_rsn - vst rsn
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Signal-to-Noise Ratios

One aim of normalization is to minimize, for each gene, the within-group variability

while maximizing the between-group variability, also referred to as mean sum of

squares within (MSQwithin):

MSQwithin =
1

N − k

k∑
i=1

ni∑
j=1

(xij − x̄i)2 (3.1)

and mean sum of squares between (MSQbetween):

MSQbetween =
1

k − 1

k∑
i=1

ni(x̄i − x̄)2, (3.2)

respectively. Here, k represents, for a given gene, the number of groups, ni the size

of group i, x̄i the mean expression level of group i, x̄ the total mean, N the total

number of observations, and xij the jth value in group i. The aim is to maximize

MSQbetween

MSQwithin

(3.3)

which follows an F-statistic with (k−1;N−k) degrees of freedom. This test has been

used to derive results described in Section 4.1.1 (Figures 4.1 - 4.4, pages 82 �.). As a

reference, arti�cial group means x̄ = 6, x̄ = 6, and x̄ = 7, k = 3, n1 = n2 = n3 = 4,

and x̄ = (x̄1+x̄2+x̄3)
3

were used. This results in an MSQbetween of 1.33 which is in-

dicated in Figures 4.3 and 4.4 by a grey dashed line. The FDR-corrected [163]

p-values for the F-statistic were summarized using their empirical cumulative dis-

tribution function (Figure 4.1, page 83).

Pseudo-ROC Curves

One of the main uses of expression arrays is the identi�cation of genes that are

di�erentially expressed under various experimental conditions. A typical identi�ca-

tion rule �lters genes with p-values and/or fold change exceeding a given threshold.

Given a set of known true positives (TP) and false positives (FP), receiver opera-

tor characteristic (ROC) curves o�er a graphical representation of both speci�city

and sensitivity for such a detection rule. ROC curves are created by plotting the

true positive rate (sensitivity) against false positive rate (1-speci�city) obtained at

each possible threshold value. Since we are only sure about TPs, we made use

of so-called pseudo-ROC curves [164]. 20 genes that are known to be deregulated
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by TGF-β were selected as TPs (SERPINE1, SERPINE2, CDKN1A, CDKN2B,

SMAD7, VASN, JUNB, BAMBI, CTGF, SOX18, TGM2, MMP10, MMP2, THBS1,

TGFBI, IGFBP7, IL1R1, ACTN1, MYC, NOTCH1). True negatives (TNs) were

randomly sampled from the set of transcripts remaining when subtracting the TPs

from all transcripts. As threshold values, we used FDR-adjusted p-values [163] of an

F-statistic (Eq. 3.3) based on the sample groups for untreated and TGF-β stimulated

HaCaT cells at 2 hours.

log2 Ratios, Residual Standard Deviation, and p-Values

log2 ratios, respective residual standard deviation, and p-values used in Chapter 4

were calculated using linear models in combination with the moderated t-statistic

as supplied by the limma package [165].

Regression Analysis of Fold Change values and qRT-PCR Measurements

To get an overall impression of the goodness-of-�t of the fold change levels detected

using the di�erent normalization methods, an orthogonal regression, i.e. total least

squares, was applied. This method is appropriate since both variables, the normal-

ized and the qRT-PCR results, depend on each other; it is not possible to categorize

them as dependent and independent variable as it would be necessary for stan-

dard linear regression. For the two dimensional case, with the normalized and the

qRT-PCR results being the two dimensions, the orthogonal regression can be calcu-

lated using the princomp() function as available in the basic R environment. This

method is applied in Section 4.1.2, pages 96 f..

3.3 Di�erential Expression Analysis and Gene Set

Enrichment

In this section, I describe the methods used in analysis of di�erential gene expression

data.

3.3.1 Di�erential Expression

Based on the results of Section 4.1 the data has been log2-transformed and nor-

malized using robust spline normalization (rsn) referred to as log_rsn. Details
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are described in Section 3.2.1, pages 51 f.. Linear models (Bioconductor package

limma) [165] were used to calculate log2 ratios, the resulting p-values were FDR-

corrected [163].

3.3.2 TGF-β Signature

To de�ne genes deregulated by TGF-β signaling, three sequential �ltering steps were

applied to the log2 transformed expression values of each time point separately:

i) The �rst �ltering is based on the comparison of TGF-β-stimulated cells against

untreated cells using linear models as described in Section 3.3.1 (FDR-corrected

p-value < 0.01 and |log2 ratio| ≥ 0.5).

ii) A linear model was applied to the dose groups of each compound to extract

all genes which are signi�cantly deregulated (FDR-corrected p-value < 0.01)

by at least one concentration compared to the respective control (cells treated

with TGF-β and DMSO but no compound). Here, concentrations are treated

as categorical variables.

iii) To detect genes with a dose-dependent deregulation, the likelihood ratio test

statistic for monotonicity (R package IsoGene [166]) was used. Treating concen-

trations as ordinal variables, IsoGene performs an isotonic regression based on

the replicates for each concentration resulting in regression values µ1, µ2, ..., µ6

for each gene and each compound treatment. Only genes that are signi�cantly

regulated by at least one compound with |µ1 − µ6| ≥ 1 and an FDR-corrected

p-value < 0.01 for monotonicity were included in further analysis. Additionally,

µ1− µ6 has to be > 0 if TGF-β treatment induced down-regulation, and < 0 if

TGF-β treatment induced up-regulation. Thereby, those genes that are most

likely deregulated in a dose dependent manner are selected.

For each time point the genes that passed all three �lters constitute the �nal TGF-β

signature.

3.3.3 Inferring the O�-Target Signature

In order to detect transcripts that are deregulated due to o�-target e�ects of the com-

pounds, unstimulated cells (wotgf class) as well as TGF-β-stimulated cells (tgf

class) were considered. Since the IC50 of all NCEs lies between 0.08µM and 2µM,
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Figure 3.1: Comparisons used to infer the o�-target signatures. Expression

intensities for an arbitrary gene are indicated by ∗ for compound concentrations of 0µM ,

0.08µM , and 2µM . Horizontal dotted lines are used to indicate the di�erent expression

intensities. The woftg class comparisons d11, d12, and δ1 are calculated based on com-

parisons of the indicated expression intensities (red dashed lines). Comparisons for the

TGF class are calculated accordingly.

these two concentrations were considered for o�-target analysis. For the wotgf

class, the NCE-treated samples at 0.08µM as well as at 2µM were compared to

untreated cells. Additionally, the 2µM samples were compared to the respective

0.08µM samples. These comparisons are denoted by d11, d12, and δ1, respectively

(Figure 3.1). The same comparisons were made based on the tgf class and are

denoted by d21, d22 and δ2, respectively. Signi�cant up- and down-regulation was

de�ned based on FDR-corrected [163] p-value (p.adj) < 0.01 and |log2ratio| ≥ 1,

where p-values and log2ratios were calculated using linear models [165]. Based on

these nomenclatures and values, the following boolean variables are de�ned:

dxy,up =

{
1 , if log2ratio(dxy) ≥ 1 and p.adj(dxy) < 0.01

0 , else
,

dxy,down =

{
1 , if log2ratio(dxy) ≤ −1 and p.adj(dxy) < 0.01

0 , else
,

dxy,sig =

{
1 , if |log2ratio(dxy)| ≥ 1 and p.adj(dxy) < 0.01

0 , else
,
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δ1,up 

1 δ1,down 

d12,up d11,down 

0 d11,up 

1 d12,down 

0 log2ratio(δ1)>-1 

1 0 

d12,down 

0 

log2ratio(δ1) ≥1 

d12,up 

1 0 

 δ1,up=1 

 1 

d12,down 

d12,up 

0 

log2ratio(δ1)≥1 

1 0 log2ratio(δ1)>-1 

1 0 
         yes 
         no 

Figure 3.2: Decision tree to calculate wotgfup. Displayed is the decision tree to

decide whether a gene belongs to the wotgfup-class or not. d11, d12, and δ1 are calculated

as described in Figure 3.1 and Eq. 3.4. A mathematical representation of the decision

tree for wotgfup is given in Eq. 3.5. wotgfdown, tgfup, and tgfdown are calculated

accordingly (compare Eq. 3.6, 3.7, and 3.8, respectively).

δx,up =

{
1 , if log2ratio(δx) ≥ 1 and p.adj(δx) < 0.01

0 , else
,

δx,down =

{
1 , if log2ratio(δx) ≤ −1 and p.adj(δx) < 0.01

0 , else
. (3.4)

where x, y ∈ {1, 2}. x = 1 refers to the wotgf class, x = 2 to the tgf class,

y = 1 refers to the comparison of 0.08µM to 0µM , and y = 2 to the comparison of

2µM to 0µM . Figure 3.1 indicates the comparisons based on exemplary expression

intensities for an arbitrary gene.

Transcripts that are up- or down-regulated by compound treatment (wotgfup

and wotgfdown, respectively) or by TGF-β stimulation together with compound

treatment (tgfup and tgfdown, respectively) were detected based on the described

comparisons as follows: a transcript belongs to the class wotgfup if either δ1 in-

dicates signi�cant up-regulation (δ1,up == 1) or if it does not indicate signi�cant

down-regulation (δ̄1,down == 1) but d11, d12, and δ1 indicate an increasing course of

expression intensity for higher compound concentrations. That is, if δ̄1,down holds
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true, �ve di�erent trends render up-regulation:

1. d11 and d12 both indicate signi�cant up-regulation (d11,up == d12,up == 1);

2. d11 indicates signi�cant down-regulation but log2ratio(δ1) ≥ 1, thereby show-

ing an increasing trend of expression for increasing compound concentrations;

3. d11 indicates signi�cant up-regulated and log2ratio(δ1) > −1, allowing for a

small but not signi�cant decreasing trend for increasing compound concentra-

tion;

4. d12 indicates signi�cant down-regulated and log2ratio(δ1) ≥ 1;

5. d12 indicates signi�cant up-regulated and log2ratio(δ1) > −1.

On the one hand, as soon as one of d11 or d12 indicates signi�cant up-regulation

(cases 3 and 5), a small amount of noise, i.e. a small trend towards down-regulation,

was allowed by claiming log2ratio(δ1) > −1. On the other hand, as soon as one of

d11 or d12 indicate down-regulation (cases 2 and 4), we are more strict by claiming

log2ratio(δ1) ≥ 1 to call a transcript as being up-regulated.

In a more formal fashion, transcripts up-regulated within the wotgf class are

de�ned as follows:

wotgfup =



δ1,up ∨
[δ̄1,down ∧ ((d11,up ∧ d12,up)

∨ (d11,down ∧ d̄12,sig ∧ log2ratio(δ1) ≥ 1)

∨ (d11,up ∧ d̄12,sig ∧ log2ratio(δ1) > −1)

∨ (d̄11,sig ∧ d12,down ∧ log2ratio(δ1) ≥ 1)

∨ (d̄11,sig ∧ d12,up ∧ log2ratio(δ1) > −1))]


(3.5)

The mirrored method was used to detect wotgfdown and the analogous methods

are used to detect tgfup and tgfdown based on the cells stimulated with TGF-β.

Figure 3.2 shows an exemplary decision tree based on which it is possible to de-

cide whether a gene belongs to class wotgfup. Analgous trees can be derived for
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wotgfdown, tgfup, and tgfdown based on the following formulas:

wotgfdown =



δ1,down ∨
[δ̄1,up ∧ ((d11,down ∧ d12,down)

∨ (d11,down ∧ d̄12,sig ∧ log2ratio(δ1) < 1)

∨ (d11,up ∧ d̄12,sig ∧ log2ratio(δ1) ≤ −1)

∨ (d̄11,sig ∧ d12,down ∧ log2ratio(δ1) < 1)

∨ (d̄11,sig ∧ d12,up ∧ log2ratio(δ1) ≤ −1))]


(3.6)

tgfup =



δ2,up ∨
[δ̄2,down ∧ ((d21,up ∧ d22,up)

∨ (d21,down ∧ d̄22,sig ∧ log2ratio(δ2) ≥ 1)

∨ (d21,up ∧ d̄22,sig ∧ log2ratio(δ2) > −1)

∨ (d̄21,sig ∧ d22,down ∧ log2ratio(δ2) ≥ 1)

∨ (d̄21,sig ∧ d22,up ∧ log2ratio(δ2) > −1))]


(3.7)

tgfdown =



δ2,down ∨
[δ̄2,up ∧ ((d21,down ∧ d22,down)

∨ (d21,down ∧ d̄22,sig ∧ log2ratio(δ2) < 1)

∨ (d21,up ∧ d̄22,sig ∧ log2ratio(δ2) ≤ −1)

∨ (d̄21,sig ∧ d22,down ∧ log2ratio(δ2) < 1)

∨ (d̄21,sig ∧ d22,up ∧ log2ratio(δ2) ≤ −1))]


(3.8)

The �nal o�-target signature was de�ned based transcripts for which the following

formula holds true:

(tgfup ∧wotgfup) ∨ (tgfdown ∧wotgfdown)∨

(tgfup ∧wotgfdown) ∨ (tgfdown ∧wotgfup). (3.9)

The pro�les of the respective transcripts can be assigned to di�erent categories:

TGFup ∧WOTGFup: additive or bipolar on- and o�-target e�ect or common o�-

target e�ect,

TGFdown ∧WOTGFdown: additive or bipolar on- and o�-target e�ect or common

o�-target e�ect,

TGFup ∧WOTGFdown: inverse or bipolar on- and o�-target e�ect, and
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TGFdown ∧WOTGFup: inverse or bipolar on- and o�-target e�ect.

Bipolar on- and o�-target e�ects describe gene expression pro�les for which the

direction of regulation depends on the concentration range, i.e. it is possible that

a compound induces expression at lower concentrations whereas expression again

decreases at higher concentrations or vice versa.

3.3.4 Gene Set Enrichment Analysis

Based on the on- and o�-target signatures, standard Ingenuity Pathway Analyses

(IPAs) [144] were conducted. In these analyses, gene sets de�ned by the Ingenuity

Knowledge Base are tested for enrichment of deregulated genes using Fisher's ex-

act test. Additionally, gene sets de�ned by KEGG pathways as annotated by the

Bioconductor package KEGG.db version 2.2.11 were tested for enrichment of genes

contained in the TGF-β signature (Section 3.3.2). As KEGG is not freely available

to the pharmaceutical industry, no compound related analyses were conducted using

KEGG. The gene sets were hierarchically clustered based on the calculated p-values

using manhattan distance and complete linkage as distance measures between gene

sets and clusters. Results are presented in Section 4.2.3 pages 106 �..

3.4 A New Approach for Data Integration

In this section, I describe the individual evidence that has been used to calculate

edge weights ω(vi, vj) for PPI networks (De�nition 2.2.2). Respective networks are

used in Sections 4.3 and 4.4. How individual measures are weighted is highly �exible

and should be chosen according to the research objective and in close cooperation

with biologists familiar with the experimental setting and background.

3.4.1 Protein Interaction Data

iRefIndex

The protein interaction network was generated based on iRefIndex [22]. PSI-MITAB

formatted interactions for human were taken from the publicly available version of

release 5 (9606.mitab.06042009.txt.zip), which consolidates information taken from

six di�erent Protein interaction databases (BIND [33,34], BioGRID [35,36], IntAct
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[37], MINT [38], MPPI [39] and OPHID [40]). For generating the underlying protein

interaction network, all binary interactions were used. This resulted in a network of

10, 321 nodes and 57, 811 edges. The respective proteins were represented by their

UniProt Accessions.

3.4.2 Scoring Similarity of Genes Based on Gene Ontology

(GO)

In contrast to most previous approaches as described in Section 2.3, our method

takes into account the similarity of the GO annotation of two nodes that are adja-

cent in a protein interaction network. Similarity scores described in this section are

calculated based on the directed acyclic graph representing the ontology. Details

on GO have been given in Section 2.4.1, De�nitions 2.4.2 - 2.4.4, and Figure 2.4 on

pages 44 �..

To our knowledge, Wu et al. [167] �rst integrated GO annotations to derive func-

tional modules. Using a Bayesian approach, they combine results for the analyses

of phylogenetic pro�les, gene neighborhoods, and GO annotations. The combined

information is used to measure the strength of gene functional relationship based on

which functional modules present in Escherichia coli were predicted.

Let us assume two genes/proteins, g1 and g2 represented by nodes in an inter-

action graph are annotated by two sets of GO terms, GO1 and GO2, respectively.

Below, I �rst describe several approaches to derive similarity scores sim(go1, go2)

for a pair of GO-terms go1 ∈ GO1 and go2 ∈ GO2 (pages 62 �.). In a second

step, I introduce di�erent possibilities to calculate the similarity of two sets of GO-

term, sim(GO1, GO2), based on the similarity calculated for a pair of GO-terms

sim(go1, go2). sim(GO1, GO2) can be used as a score for the similarity of two

genes/proteins Sim(g1, g2) (pages 65 f.).

Resnik's Measure [168,169]

Resnik proposes a similarity score that is based on the information content (IC).

The IC takes into account the frequency of occurrence of any ontology term in

the ontology, i.e. how often the respective term is annotated to a gene/protein
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compared to the maximum possible usage of that term. The more frequent a term

occurs, the lower its information content is. Thus, in case of a unique root of the

ontology tree, p(root) = 1. The respective information content ICroot is de�ned as

−log p(root) = 0. Analogous, for any other term go, ICgo = −log p(go). Based on

the IC, the similarity of two terms go1, go2 is calculated. The more information two

terms share, the higher is their similarity sim(go1, go2):

simResnik(go1, go2) = maxgo∈S(go1,go2)(−log p(go)), (3.10)

where S(go1, go2) is the set of common ancestors of terms go1 and go2. Thus,

the information content of their lowest common ancestor (LCA, De�nition 2.4.7)

quanti�es the similarity of two terms:

simResnik(go1, go2) = −log p(LCA(go1, go2)). (3.11)

Lin's Measure [170]

The measure proposed by Lin is also based on the IC. In contrast to Resnik's de�-

nition of similarity, Lin normalizes the similarity of two terms go1, go2 with respect

to the sum of the IC of the individual terms:

simLin(go1, go2) = maxgo∈S(go1,go2)
2 · log p(go)

log p(go1) + log p(go2)
(3.12)

Rel [171]

Rel, the similarity measure proposed by Schlicker et al. additionally weights the mea-

sure proposed by Lin according to its relevance. The relevance of a term decreases

with increasing frequency of occurrences, the similarity is weighted with 1− p(go):

simRel(go1, go2) = maxgo∈S(go1,go2)

(
2 · log p(go)

log p(go1) + log p(go2)
· (1− p(go))

)
(3.13)

Jiang's and Conrath's Measure [172]

Jiang and Conrath de�ne a semantic distance

Dist(go1, go2) = IC(go1) + IC(go2)− 2 · IC(LCA(go1, go2)). (3.14)

The distance is an inversion of the similarity, thus, Yu [173] implements the similarity

as

simJC(go1, go2) = 1−min(1, d(go1, go2)), (3.15)
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where

d(go1, go2) = log p(go1) + log p(go2)− 2 · log p(LCA(go1, go2)). (3.16)

GOViz

GoViz was implemented by Andreas Bonertz with support from Dr. Benedikt Brors

in the course of a trainee at the Computational Biology group of the former The-

oretical Bioinformatics department at the DKFZ. The R-package was provided by

Dr. Benedikt Brors. Making use of the GOstats package, similarity of the GO an-

notations of two genes is calculated as the path length of the intersection graphs

induced by the annotations [174]. GoViz does not take into account the semantic

similarity of the GO terms assigned to a pair of genes but only the depth of the

common annotations.

Wang's Measure [141]

Wang et al. state that the methods described so far were developed for natural lan-

guage taxonomies [168�170,172]. All these methods base their similarity scoring on

the information content present in a term. They neglect that the speci�city of a

GO term is determined by the information inherited from its ancestors, thus, the

location within the GO graph has to be taken into account. That is why they pro-

pose a new method to measure the semantic similarity of a GO term. Based on the

calculated semantic similarity scores, they developed a new algorithm to measure

the similarity of genes with respect to their GO annotation.

DAGgo = (Tgo, Ego) represent the GO term go. Tgo is the set of GO terms, i.e.

nodes, in DAGgo containing go as well as all its ancestor terms; Ego refers to all

edges induced by Tgo. To calculate the semantic value of go, the authors de�ne a

so-called S-value calculated for any term t ∈ Tgo in the ontology:

Sgo(t) =

{
1 : t = go

max{γet→t′
· Sgo(t′)|t′ ∈ Vchildren(t)} : t ∈ Tgo, t 6= go

, (3.17)

where γet→t′
is the semantic contribution factor for edge et′→t ∈ EA linking term t′

with its parent term t. Based on the S-values, the semantic value of GO term go is



65 3.4. A New Approach for Data Integration

given by

SV (go) =
∑
t∈Tgo

Sgo(t). (3.18)

The semantic similarity of GO terms go1 and go2 which induceDAGgo1 = (Tgo1 , Ego1)

and DAGgo2 = (Tgo2 , Ego2), respectively is then calculated by

simWang(go1, go2) =

∑
t∈Tgo1∩Tgo2

(Sgo1(t) + Sgo2(t))

SV (go1) + SV (go2)
. (3.19)

Calculate the similarity of genes based on their GO annotations

Similarity of genes based on GO annotations can either be calculated with respect

to the cellular component (CC) in which the proteins encoded by the genes are lo-

cated in, with respect to the biological process (BP) in which the genes/proteins are

involved in, or with respect to the molecular function (MF) of the encoded proteins.

CC, BP, and MF are described by three separate DAGs in the GO.

Wang et al. propose the following formula to calculate the semantic similarity

sim(go,GO) between GO term go and a set of GO terms GO = {go1, go2, ..., gok}

sim(go,GO) = max1≤i≤k(SGO(go, goi)). (3.20)

Now, given genes g1, g2 annotated by GO term sets GO1 = {go11, go12, ..., go1m} and
GO2 = {go21, go22, ..., go2n}, respectively, their similarity Sim(g1, g2) is de�ned as

sim(GO1, GO2), i.e. the similarity of GO1 and GO2. Wang et al. [141] propose the

following formula to calculate Sim(g1, g2)

sim(GO1, GO2) =

∑
1≤i≤m(sim(go1i, GO2)) +

∑
1≤i≤n(sim(go2i, GO1))

m+ n
(3.21)

This method is used in the Bioconductor package GOSemSim [173].

Schlicker et al. propose similar methods:

SimAvg(g1, g2) =
1

2

(∑
1≤i≤m(sim(go1i, GO2))

m
+

∑
1≤i≤n(sim(go2i, GO1))

n

)
(3.22)
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SimMax(g1, g2) = max

(∑
1≤i≤m(sim(go1i, GO2))

m
,

∑
1≤i≤n(sim(go2i, GO1))

n

)
(3.23)

In cases were the GO annotation for one gene product only matches a subset of

the GO annotations of the second gene product, SimMax is superior to SimAvg

for similar gene products. Since GO1 and GO2 are not necessarily equal in length

and generally di�er in terms,
∑

1≤i≤m(sim(go1i,GO2))

m
and

∑
1≤i≤n(sim(go2i,GO1))

n
are not

necessarily equal. In case one of the gene products g1 or g2 is annotated incom-

pletely, this could lead to arti�cially low
∑

1≤i≤m(sim(go1i,GO2))

m
or

∑
1≤i≤n(sim(go2i,GO1))

n
.

Taking the average as in SimAvg(g1, g2) would then lead to a lower value than us-

ing SimMax(g1, g2). Such situations can occur if the annotation for the �rst gene

product are not complete or if the second gene product is multi-functional [171].

SimMax is, for example, implemented in the R-package GOSim [175].

Implementations of GO Similarity Scores

R packages GOSemSim [173], GOSim [175], and GOstats [176] were used to weight the

protein pairs according to their GO annotations. First, I made use of the mgoSim

function implemented in the GOSemSim package [173], retrieved the GO annotations

of the proteins using biomaRt [177] and �ltered them by ignoring GO terms with ev-

idence codes NAS, IEA, ND (non-traceable author statement, inferred from electronic

annotation and no biological data available, respectively) and those which had not

assigned any evidence code. Similarities for the annotations were calculated based

on the methods proposed by Resnik (Eqs. 3.10 and 3.11, page 63) [178], Jiang and

Conrath (Eqs. 3.14-3.16, pages 63 f.) [172], Lin (Eq. 3.12, page 63) [170], Schlicker

(Eq. 3.13, page 63) [171], and Wang (Eqs. 3.17-3.19, pages 64 f.) [141]. The similarity

of two genes based on their GO-annotations is calculated using Eq. 3.21.

Next, I made use of the method mgeneSim, also implemented in the GOSemSim

package. Swiss-Prot Identi�ers were mapped to EntrezGene IDs using the pack-

age org.Hs.eg.db, and similarities were calculated using the methods proposed by

Resnik (Eqs. 3.10 and 3.11, page 63) and Wang (Eqs. 3.17-3.19, pages 64 f.) without

�ltering for speci�c evidence codes. Again, the similarity of two genes based on their

GO-annotations is calculated using Eq. 3.21.
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According to Smialowski [179], I utilized the GOSim package [175] which, amongst

others, also implements the method from Resnik (Eqs. 3.10 and 3.11, page 63) but

o�ers di�erent options for comparing and summarizing GO-Terms. To compute the

similarity of a pair of proteins, the method getGeneSim was used with default pa-

rameters but setting similarityTerm = �Resnik�. Thereby, Eq. 3.23 (page 66) is

applied to calculate the similarity of two genes based on their GO annotations.

Finally, I used GOViz [174] that calculates the similarity score as the length of

the longest path in the intersection graph induced by the GO annotations of the

two genes under consideration (page 64).

3.4.3 Scoring Similarity of Genes Based on Promoter Regions

Information on transcription factor binding sites was taken from the ElDorado

database using the Gene2Promoter large scale analysis [180] which is part of the

Genomatix Genome Analyzer (GGA) [181]. Based on the binding site motif (weight

matrix) of transcription factor TF and the sequence of the promoter region of gene

G, a matrix similarity score scoreTF (G) was calculated using MatInspector [182,183].

A perfect match of the transcription factor's binding site motif to a region in the

promoter gets a score of 1.0, a good match usually has a score > 0.8 [180].

A score, scoreTF (X, Y ), is calculated based on the set of transcription factors

TF(X) and TF(Y ) predicted to regulate the protein-coding genes X and Y , re-

spectively. The higher this score, the more similar are the promoter regions of X

and Y . Using a Tanimoto-based approach, di�erent possibilities were implemented

to calculate scoreTF (X, Y ):

1. Calculation of the score is based on the sum over the matrix similarity scores

predicted for transcription factors regulating both, gene X and gene Y . This

sum is divided by the sum over the scores for the union of the predicted

transcription factor binding sites of both genes:

scoreTF,1(X, Y ) =

∑
TF∈(TF(X)∩TF(Y ))(scoreTF (X) + scoreTF (Y ))∑
TF∈(TF(X)∪TF(Y ))(scoreTF (X) + scoreTF (Y ))

(3.24)
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2. scoreTF,1(X, Y ) is multiplied by the number of common transcription factors:

scoreTF,2(X, Y ) = |TF(X) ∩TF(Y )| · scoreTF,1(X, Y ) (3.25)

Results based on using all predicted transcription factor binding sites were com-

pared to those that are predicted with a matrix similarity score > 0.8 referred to as

cuto�_08. This �nally results in four possibilities to calculate scoreTF (X, Y ).

3.4.4 Scoring Similarity of Genes Based on Literature

For each recorded protein interaction iRefIndex provides a con�dence score. This

score is based on the number of PubMed publications supporting the respective

interaction. Within iRefIndex the con�dence scores are given in the following format:

lpr|hpr|np. lpr refers to the lowest number of distinct interactions that any PubMed

reference supporting the respective protein interaction contains. That is, a small

value of lpr indicates a low throughput experiment for validating an interaction,

whereas larger values of lpr indicate high throughput experiments; hpr refers to the

highest number of interactions that any PubMed reference supporting the respective

protein interaction contains; np is the total number of references supporting the

respective interaction. For details I refer the reader to the original publication [96]

and to the README for iRefIndex MITAB 4.0. Since we want to give higher

con�dence to interactions that are supported by a low-throughput experiment and

more publications, the calculation of the con�dence score is based on lpr and np.

The following formula was used to calculate a con�dence for the edge representing

the interaction in our network:

scoreconf (X, Y ) =

√
np

lpr
(3.26)

Since np and lpr are only available for protein interactions present in iRefIndex,

scoreconf (X, Y ) was only applied to iRefIndex-based but not to the STRING-based

networks.

3.4.5 Scoring Similarity of Genes Based on Expression Data

In Sections 4.3.1 (pages 111 �.) and 4.3.2 (pages 114 f.), I make use of the gene

expression data derived from TGF-β1-stimulated as well as unstimulated cells mea-
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sured in four biological replicates at 2, 4 and 12 hours after stimulation. In Sec-

tion 4.3.3 (pages 116 f.), I considered data derived from untreated as well as treated

cells. For the treated cells, I focused on cells stimulated with TGF-β1 and ei-

ther treated with di�erent concentrations of BI1 or BI4, or not treated with any

compound. By applying the methods described in this section together with the

algorithm described in Section 3.5 to compound-treated cells, I demonstrate how

these methods can support the analysis of compounds' mode of action.

For each edge e{X,Y } in the protein interaction network G = (V,E) connect-

ing protein coding genes X and Y a score scoreexp(X, Y ) is calculated based on

the underlying gene expression experiment. I compared 9 di�erent possibilities for

weighting the interactions. They are either based on correlation or on co-variance

(as for example also used by Guo [49]) of vectors x and y. x and y contain values

derived based on two conditions either looking at three di�erent time points (2, 4,

12 hours) or for one timepoint (2 hours). In Sections 4.3.1 (pages 111 �.) and 4.3.2

(pages 114 f.) the two conditions are TGF-β1-stimulated and unstimulated cells, in

Section 4.3.3 (pages 116 f.) data derived from untreated as well as compound-treated

cells is considered.

1. Weighting based on correlation (cor): Pearson correlation is calculated based

on the

(a) log2 ratios of two conditions,

(b) mean of replicate values for the normalized expression values of both

conditions, or

(c) normalized expression values of both conditions for all replicates

at the di�erent time points measured (2, 4, 12 hours):

scoreexp(X, Y ) = cor(x, y) (3.27)

2. Weighting based on covariance (cov): The covariance is calculated based on

the

(a) log2 ratios of the two conditions for the respective gene pair (X,Y) at the

di�erent time points measured (2, 4, 12 hours),
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(b) mean of the replicate values of the normalized expression values of both

conditions at the di�erent time points measured (2, 4, 12 hours), or

(c) normalized expression values of both conditions for all replicates at the

di�erent time points measured (2, 4, 12 hours) and at 2 hours.

scoreexp(X, Y ) = cov(x, y) = cor(x, y) · sd(x) · sd(y) (3.28)

Since a negative covariance/correlation could hint at pairs of proteins exhibiting

related biological contexts (e.g. inhibitor and activator), the absolute value of the

correlation/covariance was taken.

The score may be weighted by a factor ωexp:

scoreexp,weighted(X, Y ) = ωexp · scoreexp(X, Y ) (3.29)

Two di�erent approaches have been applied to calculate 3.29: scoreexp(X, Y ) was

calculated based on method (1a) and two di�erent possibilities to calculate ωexp were

considered:

3. For focusing on changes occurring at a speci�c time point ωexp is set to the

average of |log2ratios| at the time point of interest (in our case 2 hours, since

this is the time frame for which expression changes directly induced through

TGF-β-signaling are observed).

4. To assign higher weights to genes that show a change in di�erential expression

over time, ωexp is set to the average of the standard deviations of log2 ratios

across all time points (in our case 2,4, and 12 hours) for X and Y .

To test the weighted scoring, we applied (3) and (4) using the correlation of log2

ratios across the three time points as scoreexp(X, Y ).

In total, nine di�erent ways of calculating scoreexp were compared: Three of them

are based on correlation (1a-c), four are based on covariance (2a-c, 2c was applied

for measures at all 3 time points as well as for measured at 2hours), and two are

based on weighting scoreexp (Eq. 3.29).
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3.4.6 Combining the Individual Similarity Scores

For each edge, a linear combination over all individual scores is calculated to make

up the �nal edge score:

scoreedge =
n∑
i=1

aisi, with (3.30)

ai ∈ [0,∞) and si ∈ {scoreGO, scoreTF , scoreconf , scoreexp, ...}.

Since this weighting function is highly �exible, additional information can easily be

added. All scores but those obtained based on the gene expression experiment are

normalized between 0 and 1. To weight all evidence equally, ai = 1 ∀ i. With four

di�erent methods used for scoring the transcription factors, nine di�erent methods

scoring gene expression data, and ten di�erent methods to score GO, 360 combina-

tions of methods are considered. In Section 4.3.1 (pages 111 �.), I describe how one

of the possible combinations was selected. Based on this combination all further

analyses presented in this thesis have been conducted. In principle, the weighting

factors ai can be adjusted according to the research objective and in close coop-

eration with biologists. More important scores should be given a higher weight.

3.5 modEx - A New Approach for Extraction of

Protein Modules

Based on the methods presented in the previous sections, di�erent data types are

integrated into a protein interaction network to obtain an edge- and node-weighted

graph G = (V,E). The log2 ratios or fold changes of a gene expression experiment

are assigned as node weights. By the methods presented in Section 3.4, information

on biological processes, molecular functions, cellular components, transcription fac-

tor binding sites, literature and on correlation or covariance of the gene expression

is translated to edge weights scoreedge as described by Eq. 3.30 on page 71.

In Section 3.5.1, I de�ne some graph-theoretical problems that can be posed by

networks weighted as described in the previous paragraph. Solving the problems on

this basis, it is possible to shed some light on the underlying biology, like for example
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the mode of action of compounds. In Section 4.5.2 (pages 134 �.) the NP-hardness

of these problems is proven.

In Section 3.5.2 (pages 73 f.) I propose a heuristic, modEx, that could be used

to solve the previously de�ned problems. After validation on a biological basis in

Section 4.3.2, this method is applied in Section 4.3.3 to identify modules that help to

elucidate the biological processes a�ected in the gene expression experiments under

investigation (pages 114 f.).

3.5.1 Formal Problem De�nitions

In the following, I introduce some graph-theoretical problems that could be posed to

resolve biological questions based on edge weighted graphs. All problem de�nitions

are constrained with respect to a set of vertices that have to be part of the solution

and/or to the number of vertices contained in the solution. Generally speaking, all

objective functions aim at maximizing the edge weight of the solution:

De�nition 3.5.1. The vertex Constrained Maximum Edge weight Con-

nected Graph (vCMECG) problem.

Input: An undirected graph G = (V,E) with weight function ω : E → [0,∞),

and a positive integer s.

Task: Find a connected subgraph G′ = (V ′, E ′) with |V ′| = s such that

Ω(G′) =
∑
e∈E′

ω(e) (3.31)

is maximized.

De�nition 3.5.2. The k-vertex Constrained Maximum Edge-Weight Con-

nected Graph (k-vCMECG) problem.

Input: An undirected graph G = (V,E) with weight function ω : E → [0,∞),

Vk ⊆ V with |Vk| = k, and a positive integer s.

Task: Find a connected subgraph G′ = (V ′, E ′) with Vk ⊆ V ′ and

|V ′| = s such that

Ω(G′) =

∑
e∈E′ ω(e)

|V ′|
(3.32)

is maximized.
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Considering a network scored as described in Section 3.4.6, Vk could for example

be chosen based on the set of k strongest deregulated genes observed in the un-

derlying gene expression experiment. As a solution for k-vCMECG, the subgraph

G′ = (V ′, E ′) could then help to explain and understand the biological context of

the k deregulated genes. In general, any set of genes for which the biological context

is in question could be used as Vk.

De�nition 3.5.3. The k-vertex/edge Constrained Maximum Edge-Weight

Connected Graph (k-veCMECG) problem.

Input: An undirected graph G = (V,E) with weight function ω : E → [0,∞),

and Vk ⊆ V with |Vk| = k and a positive integer s.

Task: Find a connected subgraph G′ = (V ′, E ′) such that Vk ⊆ V ′,

|V ′| = s, and

Ω(G′) =

∑
e∈E′ ω(e)

|E ′|
(3.33)

is maximized.

Since we are not only interested in identifying one module but in detecting as

many modules as are necessary to investigate the underlying processes, we consider

a special case of the k-vCMECG problem, namely the 1-vCMECG problem:

De�nition 3.5.4. The 1-vertex Constrained Maximum Edge-Weight Con-

nected Graph (1-vCMECG) problem.

Input: An undirected graph G = (V,E) with weight function ω : E → [0,∞),

a seed vertex vi ∈ V , and a positive integer s.

Task: Find a connected subgraph G′i = (V ′, E ′) with vi ∈ V ′ and |V ′| = s

such that

Ω(G′i) =

∑
e∈E′ ω(e)

|V ′|
(3.34)

is maximized.

3.5.2 Heuristic Approaches to Solve the 1-vCMECG Problem

modEx starts with seed nodes selected on the basis of the gene expression ex-

periment to analyze. Out of the signi�cantly deregulated genes (FDR-adjusted

p-value < 0.01), the i mostly deregulated are selected as seed nodes. Starting
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at those nodes, the networks are expanded in the direction of the heaviest edge.

Depending on whether one is interested in sparse or dense networks, either only the

heaviest edges are returned or the subgraph induced by the selected nodes (De�ni-

tion 2.3.2, page 28) is extracted. The modules extracted in this work all represent

induced subgraphs.

A number of variations with respect to how the extraction of graph G′i around

the i-th seed node (De�nition 3.5.4) is performed and how the algorithm terminates

can be applied. Following procedures were investigated:

(1) Apply greedy search and stop after a pre-de�ned number of nodes have been

extracted.

(2) Apply greedy search and stop as soon as an optimum for Ω(G′i) is reached.

(3) Use simulated annealing optimizing Ω(G′i).

(4) Reapply (1), (2) or (3), starting with di�erent seed nodes until a pre-de�ned

number of connected components is extracted.

If necessary, methods (2) and (3) can be combined with (1) in order to avoid

extracting undesired large networks. The results presented in this work are all

based on (3) combined with (1) by stopping simulated annealing as soon as more

than 50 nodes were extracted. Details on this decision are given in Section 5.3 on

page 142.

3.6 Statistical Measures Used

3.6.1 Quanti�cation of Extracted Modules

To quantitatively compare the modules extracted from the protein interaction graphs,

we compared them to modules extracted from randomized graphs. Nodes of the

network were permuted 500 times and edge weights were recalculated based on

these permutations. Based on the permuted graphs, modules were extracted by

applying approach (3) combined with (1) using 50 nodes as the limit for module

sizes (page 74). For each of the 500 modules, Ω(G′i) (Eq. 3.34, page 73), in connec-

tion with the random graphs referred to as Ω(G′i,rand), was calculated.
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P-Value Calculation Based on Z-Score Transformation

Assuming a normal distribution for the Ω(G′i,rand) values obtained by the ran-

dom networks, the corresponding parameters µrand and σrand were estimated by

mean(Ω(G′i,rand)) and sd(Ω(G′i,rand)). Given that Ω(G′i) of the real network follows

the same distribution, a z-score transformation is performed:

zi =
Ω(G′i)− µrand

σrand
(3.35)

Then, zi follows a N(0, 1) distribution. Based on this, the probability P (x ≥ Ω(G′i))

of randomly observing network scores ≥ Ω(G′i) can be calculated for the extracted

modules. In the following, I refer to this probability as �z-score based p-value�.

P-Value Calculation Based on Approximative Permutation Tests

As the Ω(G′i,rand) values not strictly follow a normal distribution, p-values were

additionally calculated using an approximation-based approach. The probability of

randomly observing a score ≥ Ω(G′i) is calculated as the relative frequency of how

often Ω(G′i,rand) ≥ Ω(G′i) is observed, referred to as �approximative permutation test

based p-value�.

3.6.2 Gene Set Enrichment Using Fisher's Exact Test

Fisher's Exact Test

Given N as the total number of genes as, for example, available on a microarray or

all genes present in an organism. M is the number of genes in the gene group to test

for enrichment. We are interested in how probable it is to have x genes of the K

most interesting genes in this group. This can be displayed in a 2 × 2 contingency

table.

Table 3.2: 2× 2 contingency table.

∈ gene group /∈ gene group

∈ genes of interest x K-x K

/∈ genes of interest M-x (N-M)-(K-x) N-K

M N-M N
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Fisher showed that the probability of obtaining such a set of values under the

null hypothesis is given by the hypergeometric distribution

P (X = x|N,M,K) =

(
M
x

)
+
(
N−M
K−x

)(
N
K

)
Thus, the p-value for the enrichment is obtained by

P (X ≥ x|N,M,K)

In Section 4.4 (pages 124 f.) and 4.4.1 (pages 124 f.), gene sets are ranked according

to p-values and inverse ranks of TGF-β signaling are used to compare di�erent

results.

3.7 Comparison to Existing Approaches

jActiveModule

jActiveModule [48] is a Cytoscape plugin aiming at the identi�cation of modules

(subnetworks) exhibiting signi�cant changes in di�erential gene expression experi-

ments (see Section 2.3.1, pages 28 �.). It o�ers a greedy search as well as a simu-

lated annealing approach to detect these modules. To achieve results that can be

compared to results derived by our approach, we utilized the FDR-adjusted p-values

obtained by comparing the TGF-β-stimulated HaCaT cells to the unstimulated cells

after 2, 4, and 12 hours. Not all proteins contained in the network are represented

by probes on the microarray used to measure gene expression. In case the protein

coding gene is not represented, three di�erent options have been investigated:

1. No p-values are assigned (no-pval).

2. 1 is assigned as p-value, 0 as log2 ratio (def-pval).

3. Only the subnet of the iRefIndex-based network is kept that contains proteins

for which genes are represented on the chip (sub-net).

Labels in parenthesis are used in Section 4.4.2 (pages 126 f.) and Section 4.4.3

(pages 127 �.) to refer to these di�erent approaches.
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STRING Based Protein Interaction Network

STRING [55, 121, 184] is a database of known and predicted protein interactions.

The interactions include direct (physical) and indirect (functional) associations; they

are derived from four sources: Genomic context, high-throughput experiments, co-

expression, and previous knowledge. STRING quantitatively integrates interaction

data from these sources for a large number of organisms, and transfers information

between these organisms where applicable. STRING version 8.3 covers 2, 590, 259

proteins from 630 organisms. Since the gene expression experiment under consid-

eration is based on a human cell line (Section 3.1), I only made use of associations

for human (taxonID: 9606) resulting in a network composed of 17, 078 nodes and

1, 236, 215 edges. Associations stored in STRING have di�erent con�dence scores

ranging from 0-1000. Based on �lters applied to these con�dence scores, three sep-

arate analyses were conducted. Using protein associations with a con�dence score

≥ 400 results in a network containing 15, 858 nodes and 408, 619 edges, using only

highly con�dent associations with a score > 700 in 12, 692 nodes and 176, 595 edges,

and applying a �lter with a score ≥ 848 in 10, 331 nodes and 120, 337 edges. Us-

ing our scoring method, we recalculated the scores for the edges contained in the

STRING-based networks. They are referred to as STRINGmod. Networks based

on the original scoring are referred to as STRINGorg. Since a cuto� of 848 ap-

proximates the size of the iRefIndex-based network, results presented in Section 4.4

are all based on this cuto�. For easier readability, in the main text of this thesis,

STRINGorg refers to the original STRING network with 848 applied as cuto� for

the edge scores; analogous, STRINGmod refers to the same network but with edge

weights recalculated using the scoring method introduced in Section 3.4.6 (Eq.3.29,

page 70). In the Appendix, we explicitly state the results for di�erent cuto�s used

for STRINGorg and STRINGmod.
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Results

This study is based on gene expression analyses described in Section 3.1. An opti-

mal normalization method was selected for the expression data to be able to derive

the TGF-β signature as well as the NCE's o�-target e�ects. To reveal the biologi-

cal context of the signatures, the gene expression pro�les have been clustered, and

gene set enrichment analyses were performed. Further, I applied the approaches

developed in the scope of this thesis to derive compounds' mode of action. De-

rived in silico results were validated by cell biological experiments. The results are

presented in [52�54], and I refer the reader to these references; here, I address the

methodological aspects of this work.

This chapter is structured as follows: In Section 4.1, I describe how the optimal

normalization method for our data set has been selected. This has been published

in Schmid and Baum et al. [53]. Based on the normalized data, I describe the in sil-

ico analyses using state-of-the-art methods in Section 4.2. This section is part of

a PLoS One publication by Baum and Schmid et al. [54] and of the PhD thesis of

Dr. Patrick Baum [52]. In Section 4.3, I apply the new data integration method,

introduced in Section 3.4, in combination with modEx, introduced in Section 3.5,

to suggest the mode of action (MoA) of given compounds. In short, interaction

evidence from gene expression measurements, transcription factor binding sites and

information from GO annotation is integrated. This information translates into edge

weighted graphs, which allow the extraction of subnetworks based on protein inter-

actions exhibiting high con�dence. Applying this approach I generated hypotheses

on mechanism-related actions of compounds inhibiting TGFβ-R1. In silico gen-

79
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erated hypotheses about modulation of certain signaling pathways by selected in-

hibitors could be con�rmed by cell biological experiments. Finally, in Section 4.4, we

compare our newly proposed approaches to others and show that they bene�cially

complement these.

4.1 Selecting an Appropriate Normalization Method

A plethora of di�erent normalization methods has been proposed for microarray

experiments [154, 156�162]. Di�erent microarray technologies require di�erent nor-

malization procedures, and even for the same technology, di�erent methods are

employed depending on the number of genes being di�erently expressed and on the

extent of their changes.

To estimate the performance of a normalization method, and to compare com-

peting methods, one measures both, their in�uence on the variance of the data, e. g.

the degree of heteroscedasticity or the ability to discriminate between known groups,

and the bias, i. e. how far a given measure like fold change (ratio of expression in

condition 2 over expression in condition 1) deviates from the truth. Typically, this

is a trade-o�, so methods that yield nearly unbiased estimates of the fold changes

have high variance on this estimation, and vice versa.

Scores that give a measure of either variance or bias require a gold standard, i. e.

that the truth on expression of certain genes or their fold change is exactly known.

This can be obtained by orthogonal methods of gene expression measures, e. g.

quantitative real-time polymerase chain reaction (qRT-PCR). Since it is not possi-

ble to obtain this truth for all genes, or even a signi�cant fraction of those present

on a microarray, assumptions have to be made with regard to di�erential expression.

In Section 4.1.1 di�erent pre-processing methods were evaluated by analyzing the

variance of the resulting gene expression intensities via various statistical measures:

• Plot of ANOVA p-values versus MSQbetween (page 84),

• Boxplots of mean sum of squares (MSQs) between and within groups (pages 85 �.),

• Density functions of MSQs between and within groups (pages 87 �.),
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• Volcano plots for pairwise group comparisons (pages 89 f.),

• Residuals versus mean or minimal expression levels (pages 90 �.),

• Scatterplots of pairwise replicate expression levels (pages 92 f.), and

• Pseudo-ROC curves (pages 93 f.).

Some of these have already been used in other studies [185].

In addition to the variance, in Section 4.1.2 bias of the expression intensities is

investigated. Fold changes derived from resulting gene expression intensities were

compared to fold changes based on quantitative measurements of RNA abundance

as determined by qRT-PCR. Thereby, it is possible to evaluate the pre-processing

methods with respect to their bias. To compare di�erent normalization methods,

the following scores are employed:

• Correlation of fold changes based on expression intensities and fold changes

based on qRT-PCR measures (pages 95 f.) and

• Slope of regression between fold changes based on expression intensities and

fold changes based on qRT-PCR measures(pages 96 f.).

Normalization corrects for two di�erent e�ects: background and scaling. Back-

ground means a global (or sometimes local) signal that adds to each value and is

due to light scattering, auto-�uorescence or cross-hybridization. Scaling is neces-

sary since the amount of RNA used for hybridization, labeling rate and quantum

yield cannot be as precisely controlled as required. However, all these factors re-

duce (or amplify) the signal by a linear factor that can be estimated. In addition,

some normalization methods (e. g. variance-stabilizing-normalization (vsn) [160] or

variance-stabilizing-transformation (vst) [157]) employ a variance-stabilizing trans-

formation that will make the variance constant across the entire range of intensities,

provided that the underlying model of variance-intensity relationship holds true.

Since the total setup of the expression experiment is relatively complex, the analy-

sis has been focused on the TGF-β-stimulated and control samples measured at three

time points (2 hours, 4 hours, 12 hours) in four replicates. Thereby, a consistent sub-

set is used as representative for the whole data set based on which a normalization
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method has been selected. Twenty-�ve di�erent ways of pre-processing the expres-

sion data have been investigated. For a detailed overview of the normalization proce-

dures I refer the reader to Section 3.2 and Table 3.1 on page 53. In brief, �rst either

background normalization from BeadStudio [162] (bg_∗) or no background modi�ca-

tion (noBg_∗) has been applied. In a next step, the data was transformed using either

log2-transformation (log) or variance-stabilizing transformation (vst) [157]. Since

BeadStudio's background normalization can lead to negative values, the data had to

be transformed to contain only positive values by using either the background correc-

tion of rma [156] or forcePos [154] to be able to apply log2-transformation. In a last

step, the data was normalized using quantile, loess, or rsn [154] normalization.

Alternatively, the transformation steps were skipped and vsn [160] or the normal-

ization methods supplied by BeadStudio (average, rankInvariant, cubicSpline)

were used for normalization.

Pre-processing methods were scored from −2 to 2 based on how well they match

the required criteria for the di�erent analyses described in this section. A com-

plete overview of the scores assigned and the �nal ranking is given in Section 4.1.3,

Figure 4.12.

4.1.1 Analyses of Variance Based on Expression Intensities

One basic assumption of gene expression pre-processing methods is that the majority

of genes do not change their expression under di�erent conditions. Additionally,

expression intensities of replicates should be very similar in contrast to the expression

of transcripts between di�erently treated sample groups. Based on these principles,

we looked at di�erent statistical measures to identify the method best suited for our

dataset with respect to variance.

Distribution of F-test Statistics

A good normalization method should minimize the variation within a biological con-

dition, i. e. within a group of replicates. Furthermore, the variation within a group

should be smaller than the variation between groups. The F-statistic measures the

variation between replicates in comparison to the variation between conditions or

groups [186, 187] (Eq. 3.3, page 54). Results for the F-statistic based on the gene
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Figure 4.1: Cumulative Distribution Functions of F-test p-values. Cumula-

tive Distribution Functions (CDFs) of FDR-corrected F-test p-values (Eq. 3.3, page 54)

were calculated based on the gene expression measured for untreated HaCaT cells cultured

for 2, 4, and 12 hours. Each of the three groups is composed of four replicates. Displayed

are the results obtained for the di�erent pre-processing methods used. The vertical red

dashed line indicates the commonly chosen p-value cut-o� of 0.05. The insert displays

the obtained results over the whole range of values from 0 to 1 on both axes. Assuming

that only few genes are di�erentially expressed across the di�erent time points bg_noNorm

(orange dashed line) outperforms the other normalization procedures.

expression measured for the untreated HaCaT cells cultured for 2 hours, 4 hours,

and 12 hours are displayed in Figure 4.1.

Four BeadStudio normalization methods (noBg_average, noBg_rankInvariant,

bg_rankInvariant, bg_average) show cumulative distribution functions that are
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clearly above those obtained based on all other pre-processing methods. Apply-

ing neither background correction nor any normalization method (noBg_noNorm,

Figure 4.1, light gray dashed line) results in a data set producing less transcripts

with adjusted p-values < 0.02 than other pre-processing methods. With decreasing

signi�cance of the adjusted p-values, more pre-processing methods produce fewer

p-values of higher signi�cance than noBg_noNorm. Based on the data set used, we

expect only a small subset of the transcripts to be signi�cantly deregulated. Since

for bg_noNorm (Figure 4.1, orange dashed line) compared to other pre-processing

methods the fewest genes would be detected as being di�erentially expressed, i. e.

showing a relatively high variation between compared to within group variability,

this method seems to provide the best results. The remaining pre-processing meth-

ods for which the CDFs are running between that of bg_noNorm and bg_average

perform relatively similar and equally well.

P-Values versus MSQbetween

Assuming a stable variance over the within group measurements, the higher the vari-

ance between the groups (Eq. 3.2, page 54) compared to the within group variance

(Eq. 3.1, page 54), the higher the respective −log10(p − value) should be. When

plotting these parameters, an appropriate normalization method should result in

smoothly increasing values with not much scattering around the �tted curve. Fig-

ure 4.2 displays the −log10(p − value) against the respective variance between the

control groups at time points 2 hours, 4 hours, and 12 hours for three of the pre-

processing methods, an overview of all results is given in [53].

Normalizations re�ecting the described properties are for example noBg_vsn,

noBg_cubicSpline, noBg_log_rsn, and noBg_vst_rsn. All of the normalizations

performed on rma background corrected data as well as bg_vsn display a relatively

high −log10(p−value) for a relatively high proportion of low between group variabil-

ity values leading to a high scattering of observations in these regions. Using, for

example, the rank invariant normalization of BeadStudio (noBg_rankInvariant)

the p-values for the low between group variability tend to be relatively small. This

could lead to an overestimation of di�erentially expressed genes when �ltering solely

based on p-values.
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Figure 4.2: −log10(p−values) againstMSQbetween whereMSQbetween ≤ 5.

MSQbetween (mean sum of squares between groups, Eq. 3.2, page 3.2) was calculated based

on the gene expression measured for the three control groups, namely untreated HaCaT

cells cultured for 2, 4, and 12 hours. Each of the groups had been measured in four repli-

cates. Results of three exemplary pre-processing methods of di�erent quality are shown.

bg_rma_log_loess exhibits the most unfavorable behavior of the three. The p-values show

a high variability over the whole range of MSQbetween and even for small MSQbetween val-

ues there are many relatively high −log10(p − values). Though for noBg_rankInvariant

the p-values show less variability in general, especially for small MSQbetween values there

are more as well as higher −log10(p − values). In contrast, noBg_log_rsn exhibits less

varying p-values and does not assign as many small p-values to low MSQbetween regions.

The blue line represents a loess-curve �tted to the values. This curve takes uniformly larger

values for noBg_rankInvariant and noBg_log_rsn than for bg_rma_log_loess indicating,

on average, smaller p-values for the same MSQbetween value. Thus, quality values of −1,

0, and 2 are assigned to bg_rma_log_loess, noBg_rankInvariant, and noBg_log_rsn, re-

spectively. For an overview of all di�erent normalization methods and their quality scores,

see Figure 4.12 and [53].

Boxplots of MSQbetween and MSQwithin

Distributions of between- (MSQbetween, Eq. 3.2) and within-group (MSQwithin,

Eq. 3.1) variances and their relation to each other are further indications for normal-

ization performance. If genes are not di�erentially expressed, MSQbetween should be

comparable to MSQwithin. For genes that are di�erentially expressed, MSQbetween

is supposed to be higher than MSQwithin. Figure 4.3 displays the boxplots for

MSQbetween (red) and MSQwithin (blue) values. Since we expect some genes to

be di�erentially deregulated across the di�erent time points under consideration,

quantiles of MSQwithin values should lie below the corresponding quantiles of the
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Figure 4.3: Boxplots of MSQwithin (blue) and MSQbetween (red). Mean sum

of squares (MSQs) were calculated based on the gene expression measured for the three

sample groups analyzed, namely untreated HaCaT cells cultured for 2, 4, and 12 hours

(Eqs. 3.1 and 3.2, page 54). Results obtained for the di�erent pre-processing methods used

are displayed. The gray dashed line indicates the expected value for the MSQbetween of

1.33 based on 6, 6, and 7 as measurements for the group means of four replicates for three

time points (Eq. 3.2, page 54).

MSQbetween values. For the di�erentially expressed genes, within group variance

should be smaller than between group variance, whereas for the genes not di�eren-

tially expressed, the respective MSQbetween and MSQwithin values should show no

great di�erence. Small interquartile ranges (IQRs) of MSQwithin are indicative for

a comparable variability between genes.

To judge the distributions, MSQbetween was calculated for arti�cial group means

of log2 expression values for three time points based on four replicates. The group

means used were (6, 6, 7) which resulted in anMSQbetween of 1.33 (Eq. 3.2, page 54),

indicated by a dashed gray line in Figure 4.3. The mean expression values of the

arti�cial groups have been chosen such that they exhibit a log2 ratio of 1 when

group 3 is compared to group 1 or group 2, re�ecting a relevant di�erence between

those groups. A good normalization method should result in similar expression

values for replicates and thus in small MSQwithin values hardly crossing this arti-
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�cial MSQbetween. Additionally, since we limited the whole data set to expressions

measured for untreated HaCaT cells across time, we expect only few genes to be dif-

ferentially expressed. Thus, only a few genes are assumed to result in anMSQbetween

above the arti�cial threshold of MSQbetween = 1.33.

Almost all boxplots representing MSQwithin of background normalized data

(bg_*) result in outliers crossing the arti�cial MSQbetween, only those trans-

formed using vst do stay below. Compared to other pre-processing methods,

noBg_vst_loess, noBg_log_loess, and bg_vst_loess show a relatively wide IQR

for both, MSQbetween and MSQwithin. Methods that meet the described be-

havior are bg_vst_quantile, bg_vst_rsn, noBg_log_quantile, noBg_log_rsn,

noBg_noNorm, noBg_vsn, noBg_vst_quantile, and noBg_vst_rsn. They show a

low within group variability for which the quantiles generally exhibit lower values

than the quantiles of the between group variabilities.

Density Functions of MSQbetween and MSQwithin

Density functions of MSQbetween and MSQwithin should exhibit clear di�erences.

This fact renders density functions of MSQbetween and MSQwithin an additional op-

tion for investigating these values. Within group variability should be smaller than

between group variability and most of the genes should show a between group vari-

ability similar to the within group variability, i. e. are not di�erentially expressed.

Thus, the mode of MSQwithin should be smaller than the mode of MSQbetween and

the peak of the function for MSQwithin is supposed to be higher than the peak

for MSQbetween. Lean MSQwithin functions, on the one hand, re�ect a comparable

within group variability for many genes. On the other hand, broader MSQbetween

functions indicate that at least some of the genes, i. e. the di�erentially expressed

ones, show a higher between than within group variability. Ideal characteristics of

density functions as described here are very similar to the characteristics of ideal

boxplots mentioned in the previous section. In contrast to density functions, box-

plots give a very rough idea about the distribution of the values, also depicting

outliers. Density functions deliver a more detailed view of how the values are dis-

tributed across di�erent ranges.

Figure 4.4 displays density functions of MSQwithin (blue) and MSQbetween (red)
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Figure 4.4: Density plots ofMSQwithin (blue) andMSQbetween (red). Mean

sum of squares were calculated based on the gene expression measured for the three

sample groups analyzed, namely untreated HaCaT cells cultured for 2, 4, and 12 hours

(Eqs. 3.1 and 3.2, page 54). Each of the groups is composed of four replicates. The gray

dashed line indicates the expected value for the MSQbetween of 1.33 based on 6, 6, and

7 as measurements for the group means of four replicates for three time points. Three

examples of di�erent quality are shown. Based on the noBg_vst_loess pre-processing

the MSQwithin values show a strong bimodal distribution, for the bg_rma_log_rsn pre-

processing the distribution is highly skewed. The distributions for noBg_log_rsn based

values re�ect the desired behavior. The quality values assigned are −2, 0, and 2, for

noBg_vst_loess, bg_rma_log_rsn, and noBg_log_rsn, respectively. For an overview of

the distributions for all pre-processing methods and their respective plots, see [53] or Ap-

pendix B Figure B.1.

for three of the pre-processing methods, a complete overview is given in [53]. In par-

ticular density plots representing the normalization methods noBg_log_quantile,

noBg_log_rsn, and noBg_vsn come close to the desired behavior. Unexpectedly the

density functions of MSQwithin generated by bg_vst_loess, noBG_log_loess, and

noBg_vst_loess are bimodal. One reason for bimodal density functions could be a

group of transcripts exhibiting higher variability compared to other transcripts. In

general, it is expected that the data shows a consistent variability. Having the oppor-

tunity to choose between normalization methods resulting in unimodal or bimodal

density functions for MSQwithin, normalization methods leading to a unimodal dis-

tribution should be favored. A small overlap of the functions like for the values

generated by the noBg_average normalization (Appendix B Figure B.1) would in-

dicate the unlikely event that most of the genes show a higher between than within

group variability, i. e. are di�erentially expressed. Under the assumption of constant
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expression of most transcripts, this normalization method is not adequate.

Volcano Plots

Volcano plots are a standard visualisation of results for microarray di�erential ex-

pression analysis. They are generated by plotting −log10(p − value) versus the

respective log2 ratios. The former measures the signi�cance of the change, while the

latter (ratio of mean intensity in group 1 over mean intensity in group 2) measures

the extent of this change. Due to the tendency of larger log2 ratios being connected

to more signi�cant −log10(p − values) a volcano like shape is generated. Again

using untreated HaCaT cells cultured for 2, 4, and 12 hours, pairwise comparisons

(4 hours compared to 2 hours, 12 hours compared to 2 hours, and 12 hours com-

pared to 4 hours) using a moderated t-statistic were performed to calculate log2

ratios and p-values (Section 3.2.2, page 55, [165]). Our aim is to detect normal-

ization procedures yielding as correct estimates of log2 ratios as possible combined

with as informative p-values as possible. As mentioned above, higher log2 ratios

should tend to have higher −log10(p − value). The loess �ts of the log2 ratios and

−log10(p− value) pairs (black curves) of the volcano plots shown in Figure 4.5 shall

neither be too �at nor too narrow and the scatter of the p-values for speci�c log2

ratios should not be too large.

All volcano plots based on rma background corrected data show undesired char-

acteristics. The �tted curves are rather �at, i. e. even for high absolute log2 ratios

the −log10(p − value) are relatively low. Additionally, the −log10(p − value) for

similar log2 ratios tend to scatter extremely. Some plots, e.g. for bg_average,

bg_noNorm, bg_rankInvariant, and noBg_rankInvariant, show an asymmetri-

cal relation between p-values for negative and positive log2 ratios. Especially

noBg_rankInvariant exhibits a bias towards small negative log2 ratios for which

the respective −log10(p − value) seems to be relatively high. In this region the

�tted curve shows a very steep, linear course. Volcano plots generated for all

other methods are similar to what would be expected. Still they di�er in the vari-

ance of the p-values and in that some of the �tted curves show a �atter shape

than others. This re�ects the fact that some normalization methods generate

a smaller variance than others, resulting in lower fold changes but more signif-

icant p-values. Ultimately, a method with a reasonable trade-o� between fold
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Figure 4.5: Volcano plots. log2 ratios and p-values for the comparison of untreated

HaCaT cells at 4 hours compared to 2 hours, 12 hours compared to 2 hours, and 12 hours

compared to 4 hours were calculated based on the gene expression measured. Three ex-

amples of di�erent qualities are displayed showing the −log10(p− value) against log2 ratio

comparing 4 hours to 2 hours. The black line represents a loess-curve �tted to the values.

Quality values assigned to bg_rma_log_rsn, noBg_log_loess, and noBg_log_rsn are −2,

0, and 2, respectively. Pre-processing using bg_rma_log_rsn yields a very �at volcano like

shape with p-values exhibiting a high degree of scattering, i. e. log2 ratios are overesti-

mated and at the same time p-values are not very accurate. In contrast, noBg_log_loess

better represents the expected range of log2 ratios (not many genes are assumed to heavily

change their expression between the di�erent time points), but compared to noBg_log_rsn

p-values still are not very accurate, i. e. show a high degree of scattering for equivalent log2

ratios. For a complete overview of all methods and all comparisons, see [53].

change and variance has to be chosen, and cut-o� parameters for interesting genes

have to be de�ned accordingly. Volcano plots that best re�ect the desired prop-

erties in the context of our experiment were generated by noBg_log_quantile,

noBg_log_rsn, and noBg_vsn. They show the least scattering of values around

the �tted curves, but, as indicated by the steep �tted curves, they probably un-

derestimate fold changes. Plots produced by noBg_cubicSpline, noBg_log_loess,

noBg_vst_loess, noBg_vst_quantile, noBg_vst_rsn, bg_forcePos_log_loess,

bg_forcePos_log_quantile, bg_forcePos_log_rsn, bg_vst_quantile, and

bg_vst_rsn also ful�ll the above mentioned criteria, but show more scattering.

Residual Standard Deviation Against Mean and Minimum of Gene Ex-

pression Levels

In an optimally normalized experiment the residual standard deviation of �tted gene

expression intensities should be low and independent of the expression levels, i. e.
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Figure 4.6: Residual standard deviation against expression intensities. Stan-

dard deviation of the residuals (residual sd) observed for gene expression intensities are plot-

ted against minimum (upper row) and mean (lower row) expression intensity of each tran-

script. The blue line represents a loess-curve �tted to the values. bg_rma_log_quantile

exhibits very high deviation of residuals in ranges of lower expression intensities, whereas

noBg_vst_rsn shows homogeneous and low deviations of residuals over the whole range

of expression intensities. Compared to noBg_vst_rsn, residual standard deviations tend

to be a bit higher and less homogeneous in small ranges of expression intensities when

noBg_cubicSpline is used for pre-processing. Thus, scores of -2, 0, and 2 are assigned

for bg_rma_log_quantile, noBg_cubicSpline, and noBg_vst_rsn, respectively. For an

overview of all methods, see [53].

the variance over the di�erent expression levels should be stable. This is prerequi-

site for many statistical methods, like for example linear model �tting and moderate

t-statistics [165], that are utilized for analyzing gene expression data.

As indicated in Figure 4.6, all of the methods without background normalization

(noBg_*) show a moderate or low variance in regions of no or hardly-to-measure

expression. In contrast, nearly all of the background corrected methods (bg_*) re-

sult in high and, compared to the other methods, instable variance in the range of

low intensity values. Extreme examples especially are rma background corrections

and bg_vsn normalization procedures. An exception are those methods that use

background normalization in conjunction with variance-stabilizing transformation
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Figure 4.7: Scatterplots between replicates. After application of di�erent nor-

malization methods, expression values for the respective replicates at 12 hours are plotted

against each other. bg_vsn as well as noBg_vst_rsn display a symmetrical distribution

of expression values around the main diagonal (orange line), with bg_vsn exhibiting more

scattering values especially obvious in regions of low expression. The scatterplot based

on bg_vst_loess is slightly bended towards the upper diagonal based on a bias to higher

values in the expression values for replicate 4. Scores of −2, 1, and 2 are assigned to

the scatterplots based on bg_vsn, bg_vst_loess, and noBg_vst_rsn, respectively. For an

overview of all methods, I refer the reader to [53].

(bg_vst_*), which in contrast to other procedures using background corrections per-

form especially well. Methods which perform best with respect to variance stabiliza-

tion across all expression levels are bg_vst_loess, bg_vst_quantile, bg_vst_rsn,

noBg_vst_loess, noBg_vst_quantile, and noBg_vst_rsn.

Scatterplots of Expression Values

Scatterplots are an easy and straightforward visualisation tool for judging the com-

parability of replicates. They clearly show whether high variances are to be expected

and, if this is the case, in which range of the expression data. Figure 4.7 displays

the expression values of replicates plotted against each other. The results con-

�rm our previous �ndings. Some of the methods, for example bg_rma_log_loess,

bg_rma_log_quantile, bg_rma_log_rsn, and bg_vsn, show high variance espe-

cially in the range of lower expression. Plots generated based on these proce-

dures exhibit high variability between replicates. Some of the methods like for

example bg_noNorm, bg_vst_loess, and noBg_average lead to asymmetric scat-
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terplots indicating a bias in the expression values and a higher variability between

replicates. Methods that perform well in stabilizing the variance across di�erent

expression levels, for example bg_vst_quantile, bg_vst_rsn, noBg_vst_loess,

noBg_vst_quantile, and noBg_vst_rsn, could also be con�rmed by the scatter-

plots. Additionally to those, noBg_cubicSpline and noBg_rankInvariant exhibit

symmetric scatterplots with a very low degree of variance between replicates.

Pseudo-ROC Curves

In order to compensate for missing spike-in and dilution data, a pseudo-ROC ap-

proach [164] mimicking the presence of true negatives has been conducted. True

positives were selected from bona �de target genes of TGF-β, thus they are ex-

pected to change in expression upon stimulation of TGF-β signaling (Section 3.2.2,

page 54). The pseudo-ROC curve for each normalization method is a linear trans-

formation of the true ROC curve. Common single number summaries used to score

and compare ROC curves - the area under the curve (AUC) or the sensitivity at

a given false positive rate - are area or distance based. They are reduced by this

transformation, but to the same degree for every curve. Aiming at the validation

of normalization methods with respect to their ability to generate data exhibiting

a good sensitivity to speci�city ratio, expression intensities derived from TGF-β-

treated versus untreated cells at 2 hours were compared. Based on the AUC of the

pseudo-ROC curves (Figure 4.8), all normalization methods perform relatively well

in delivering values suited for separating true positives from true negatives. To as-

sign quality values to the ROC curves, the AUC values were sorted and subsequently

allocated to three bins of sizes 5, 18, and 2. Finally the bins were assigned qual-

ity values of −1, 0, and 1, respectively (Figure 4.12). bg_rankInvariant performs

best with an AUC of 0.9102, whilst bg_vst_loess performs worst with an AUC of

0.8403.

4.1.2 Analyses of Bias Based on qRT-PCR

qRT-PCR has been performed for mRNAs from eight genes that are known to be

deregulated by TGF-β signaling to a varying degree, namely CDKN1A, CDKN2B,

HAND1, JUNB, LINCR, RPTN, SERPINE1, and TSC22D1. By this means, it is

possible to compare the results of the normalization methods to values that re�ect
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Figure 4.8: Pseudo-ROC curves based on adjusted p-values. Pseudo-ROC

curves were calculated for the di�erent pre-processing methods. FDR-adjusted p-values

[163] of an F-statistic (Eq. 3.3, page 3.35) comparing the expression intensities measured

for untreated and TGF-β-stimulated HaCaT cells cultured for 2 hours were used. Each of

the two groups is composed of four replicates. (TPR: true positive rate, FPR: false positive

rate, AUC: area under the curve).

the real abundance of the respective mRNA in the cells. Thus, it was possible to

evaluate the accuracy of the di�erent pre-processing methods with respect to their

bias. To guarantee that the comparisons of the normalization methods are not

biased towards certain intensities, the mRNAs used in qRT-PCR experiments were

chosen such that the respective signals on the chips cover a broad range of expression

intensities.
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Figure 4.9: Pearson correlation of log2 ratios for di�erent normalization

methods and qRT-PCR. Correlations of log2 ratios were calculated for di�erently pre-

processed gene expression data from BeadChip arrays and qRT-PCR based results. On the

x-axis, pre-processing methods are ranked according to their correlation to qRT-PCR. The

dashed red lines indicate the cut-o�s used for assigning quality score between −2 (≤ 0.9)

and 2 (≥ 0.96).

Correlation Analysis of Fold Changes

Based on the di�erent normalization procedures for the gene expression experiment

and based on the qRT-PCR measurements, Pearson correlations of the respective

fold changes measured for TGF-β-stimulated versus untreated cells at 2, 4, and

12 hours were calculated. Figure 4.9 displays the ranked correlation coe�cients de-

scribing the relation between the di�erent normalization methods and the qRT-PCR

results. Quality values were assigned based on correlation cuto�s. A value of 2 is

assigned to correlation coe�cients ≥ 0.96, a value of 1 to coe�cients between 0.96

and 0.94, a value of 0 to coe�cients ≤ 0.94 and ≥ 0.92, a value of −1 to coef-

�cients between 0.92 and 0.9, and a value of −2 to correlation coe�cients ≤ 0.9

(Figure 4.12).

Values derived from most of the methods not utilizing background correction

(noBg_*) show a lower correlation to the qRT-PCR results than expression intensities
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Figure 4.10: Orthogonal regression between qRT-PCR and normalization

based log2 ratios. Regression of log2 ratios was conducted based on di�erent normaliza-

tion methods (y-axis) against qRT-PCR (x-axis). Equations and the respective regression

lines are displayed in red. The gray dashed line indicates the main diagonal. Compared to

qRT-PCR, log2 ratios as calculated based on noBg_rankInvariant and noBg_log_loess

pre-processing are overestimated in the lower and underestimated in higher ranges of log2

ratios. This over- and underestimation is more extreme for noBg_rankInvariant (intercept

= 0.177, slope = 0.542) than for noBg_log_loess (intercept = 0.109, slope = 0.658). Data

pre-processed using bg_rma_log_loess hardly over- or underestimates the data (intercept

= −0.276, slope = 0.965). This results in scores of −2, 0, and 2 for noBg_rankInvariant,

noBg_log_loess, and bg_rma_log_loess, respectively. An overview of the results for all

pre-processing methods is given in [53].

that are background corrected (bg_*). An exception in this regard are methods that

are based on vst transformation (bg_vst_*). These three methods are amongst

the six methods resulting in the lowest correlation coe�cient values. Correlation

coe�cients exhibiting high values are delivered by methods introducing BeadStudio's

background correction combined with either rma background correction and log2-

transformation (bg_rma_log_*), cubic spline normalization (bg_cubicSpline), or

variance stabilizing normalization (bg_vsn).

Regression Analysis

To investigate the linear relationship between fold changes as determined by gene

expression data and qRT-PCR, a linear regression analysis was performed by min-

imizing the sum of squares of the Euclidean distance of points to the �tted line

(�orthogonal regression�, Figure 4.10). This method was chosen because there is no
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Figure 4.11: Results of orthogonal regression. Ranking of slope (A) and inter-

cept (B) of the orthogonal regression lines as exemplary displayed in Figure 4.10. For the

slope, quality scores are assigned from −2 to 2 as indicated by the red dashed lines.

clear assignment of dependent and independent variables (Section 3.2.2, page 55).

Figure 4.11 displays the ranking of the di�erent methods according to the slopes of

the orthogonal regressions. Following rules apply for results of these analyses: The

closer the slope is to 1, the better the respective normalization method re�ects the

qRT-PCR results in a linear manner. In this situation the deviation of the inter-

cept from 0 indicates a constant under- or overestimation of the change of mRNA

abundance across the whole range of fold changes. An intercept < 0 stands for

an underestimation and an intercept > 0 for an overestimation of fold changes. In

the case that the slope deviates from 1 the di�erence between qRT-PCR based fold

changes and normalized expression based fold changes depends on the size of the

fold change. Here, on the one hand, an intercept near 0 implies a continuous over-

(slope > 1) or underestimation (slope < 1). Depending on the slope, an intercept

deviating from 0, on the other hand, indicates overestimation for a certain range of

values and underestimation for another range of values. Regardless of the intercept,

the most relevant point in our case is that the scatterplots are generally linear, with

low variability and a slope close to 1.

In accordance to previous results, all expression values that are transformed using

vst together with noBG_rankInvariant result in slopes that exhibit the largest

deviation from 1. Fold changes calculated based on rma background correction and

log2-transformation (bg_rma_log_*) best �t the qRT-PCR results (Figure 4.11).
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Figure 4.12: Heatmap of quality scores assigned for the di�erent pre-

processing methods. Displayed are the quality scores for the di�erent pre-processing

methods given for the analyses conducted. Quality scores range from −2 (bad) to 2 (good).

The values in parentheses display the sum over the single quality scores for the respective

pre-processing procedures. Based on this sum, the pre-processing method �nally used to

normalize the expression data has been chosen. Manhattan distance and complete link-

age algorithm were used for clustering. Methods evaluating the bias (slope of regression,

correlation to qRT-PCR) are clearly separated from methods evaluating the variance. Pre-

processing procedures that perform best based on the sum over quality scores are located

at the top of the heatmap.

4.1.3 Summary

After evaluating each of the twenty-�ve normalization procedures and assigning

scores ranging from -2 to 2, the methods were clustered based on the scores as-
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signed for the considered quality measures. Methods evaluating the bias (slope of

regression, correlation to qRT-PCR) are clearly separated from methods evaluating

the variance. Pre-processing procedures that perform best based on the sum over

quality scores are located at the top of the heatmap (Figure 4.12). The bottom part

of the heatmap is dominated by background normalized data sets which, on average,

score worse than those that have not been background normalized. Based on the

sum over the individual scores, the pre-processing method used to normalize the

expression data has been chosen. As can be seen in Figure 4.12, noBg_log_rsn and

noBg_log_quantile achieve the same overall score. Based on the results presented

in this section, noBg_log_rsn was selected as the �nal normalization method for

further analysis. A detailed discussion on this decision is given in Section 5.1.

4.2 Evaluating New Chemical Entities by State-of-

the-Art Approaches

In this section, I describe how the expression data for the seven NCEs (Section 3.1.1)

can be analyzed by applying state of the art approaches. Five BI compounds, BI1

to BI5, belonging to the chemical class of indolinones, and two competitor sub-

stances, Ex1 and Ex2, belonging to the chemical class of pyridopyrimidinones, with

inhibitory potency towards TGF-βR1 kinase have been used. As we are interested

in revealing MoA of the NCEs, two e�ects are of interest, the on- and the o�-target

e�ect. On-targets are those proteins, that are intended to be hit, i. e. in our case

inhibited, by the compound. The compounds used in this study bind to the ATP

pocket of the TGF-βR1 kinase domain. Thereby binding of ATP as well as phos-

phorylation of proteins downstream in the signaling cascade is prevented and, thus,

signal transduction is inhibited. In contrast to on-targets, o�-targets are all those

proteins that are hit/modulated by the compound in addition to the intended tar-

get. ATP pockets are domains highly conserved among kinases, leading to a high

potential of o�-target activities [87�89]. E�ects caused by on- and o�-target activi-

ties of compounds are referred to as on- and o�-target e�ects, respectively.

In Section 4.2.1 the on-target signature is derived. As the NCEs under investiga-

tion were designed to inhibit TGF-βR1, the on-target signature refers to those genes

that are deregulated by TGF-β signaling. The degree of deregulation should depend
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on compound treatment in a dose dependent manner. Genes of this signature should

further be regulated in opposite directions for TGF-β-stimulated cells compared to

unstimulated cells and compound treated plus TGF-β-stimulated cells compared to

TGF-β-stimulated cells. Based on the genes contained in this signature, KEGG

pathways are checked for enrichment of those genes.

In Section 4.2.2 an o�-target signature is derived for each of the seven NCEs. An

NCE's o�-target signature is composed of that set of genes that is deregulated due

to o�-targets of the respective NCE. Di�erent gene sets were checked for enrichment

of o�-target signature genes in Section 4.2.3.

4.2.1 E�ects Related to TGF-β Signaling - On-Target Signa-

ture

In order to gain a deeper insight into the TGF-β biology we �rst identi�ed genes that

are di�erentially expressed comparing TGF-β1-stimulated to unstimulated HaCaT

cells. To unravel the time-dependent e�ects of TGF-β treatment, HaCaT cells were

stimulated with TGF-β1 for 2, 4, and 12 hours. While immediate early genes that

are directly regulated by the TGF-β pathway are detected at 2 hours post stimu-

lation, more and more secondary e�ects linked to TGF-β signaling are found after

4 and/or 12 hours. Additionally, genes that are directly linked to TGF-β signaling

pathway should be regulated in a dose dependent manner with respect to compound

treatment. Thus, to avoid arbitrary fold change cut-o�s we do not only make use

of the TGF-β1-stimulated compared to untreated cells, but also consider the com-

pound treated cells to derive a TGF-β signature.

Two criteria were applied to identify TGF-β signature genes (Section 3.3.2): First,

genes that were signi�cantly deregulated (p-value ≤ 0.01) in a basic comparison of

TGF-β-stimulated versus unstimulated cells were selected for further analysis (Sec-

tion 3.3.2: i, page 56). 1046, 1949 and 5725 genes (6525 non-redundant genes) were

found to be regulated 2, 4 and 12 hours after stimulation. In a second step, these

genes were proven to be a�ected in a dose-dependent manner in the opposite direc-

tion to the TGF-β-e�ect by NCE treatment after TGF-β stimulation using a like-

lihood ratio test statistic for monotonicity [166] (Section 3.3.2: ii+iii, page 56). By
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Figure 4.13: Venn diagram for the on-target TGF-β signature The list of

genes 446, 772 and 1,932 genes were identi�ed as the NCE-dependent on-target TGF-β

signature 2, 4, and 12 hours after NCE treatment and TGF-β stimulation.

this means these genes can be separated from potential compound related o�-target

e�ects. All transcripts identi�ed for each NCE were merged to a common signature

of TGF-β dependent genes (Section 3.3.2, page 56). Thereby, the identi�cation of

a common on-target signature focused on minimizing the amount of false positive

and false negative genes. The Venn diagram displayed in Figure 4.13 depicts the

number of genes that were identi�ed 2, 4, and 12 hours after stimulation: 446 genes

(2 hours), 772 genes (4 hours) and 1932 genes (12 hours), respectively. A compre-

hensive list of genes assigned to the TGF-β signature, i. e. the on-target signature,

can be found in [54].

Subsequently, the genes comprising the TGF-β signature were checked for en-

richment in certain gene sets. Gene sets from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) [114, 188] corresponding to 201 di�erent pathways were used.

Applying Fisher's exact test resulted in 16 di�erent signaling pathways which were

signi�cantly enriched by genes that are deregulated upon TGF-β stimulation. By

clustering the respective p-values these 16 pathways could be divided into four groups

that correspond to the time frame of a�ectedness (Figure 4.14).

Not surprisingly, the TGF-β signaling pathway itself as well as directly a�ected

pathways like WNT and p53 signaling were signi�cantly regulated by the treatment

of TGF-β (cluster 1). In cluster 2, signaling by MAPK, cytokines, ErbB, Shh, as well

as apoptosis are strongly a�ected immediately early upon TGF-β stimulation. The

modulation is reduced at later time points (4 and 12 hours), when more secondary
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Figure 4.14: Gene set enrichment analysis using KEGG pathways. En-

richment analysis using Fisher's exact test resulted in 16 signi�cantly a�ected gene

sets/signaling pathways. Clustering of −log10 p-values using complete linkage and man-

hattan distance resulted in four major clusters: immediate early a�ected pathways (cluster

2), permanently a�ected pathways with emphases at early (cluster 1) and late time points

(cluster 4) or late established events (cluster 3). The color code de�nes the signi�cance

determined by Fisher's exact test.

e�ects, such as DNA polymerase, actin cytoskeleton, amino acid metabolism, gap

junction, and tight junction signaling become apparent (cluster 3). The activation

of these pathways in combination with the modulation of the cell cycle and cell

communication activity (cluster 4) seem to relate to phenotypic consequences of

TGF-β stimulation.

4.2.2 Inferring the O�-Target E�ects

After the identi�cation of the TGF-β signature (on-target signature) as well as the

related pathways, we tried to identify the NCEs' o�-target e�ects. This was done

by �rst deriving an o�-target signature solely based on gene expression as described

in Section 3.3.3. Second, the genes of the respective signatures were checked for
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enrichment within gene sets describing molecular functions and canonical pathways

as de�ned by Ingenuity Pathway Analysis software [144].

Each compound treatment resulted in a unique gene expression signature of regu-

lated genes. These signatures are composed of the cellular response to two di�erent

stimuli, i. e. TGF-β1 and NCE stimulation. Thereby, elucidating the e�ects based

on NCE treatment is more demanding since both TGF-β, i. e. on-target as well as

o�-target e�ects occur. We also observed interaction e�ects of the vehicle (DMSO)

with the NCEs. The e�ects of the di�erent stimuli overlap and also interfere with

each other constraining a clear signature resolution. The pro�le of a given gene may

therefore be dependent on which e�ect prevails and thus, dose-dependency might

no longer be observed [52, 54]. That is why we had to come up with a de�nition

of the o�-target signature that allows a certain degree of variability by avoiding a

stringent cuto�. Details on how the �nal o�-target signature is derived are described

in Section 3.3.3. By applying the described strategy, we empirically observed a good

trade-o� between false positives and false negatives in the o�-target signatures.

In a �rst approximation, the NCE treatment phenotypes were determined as

the total of all regulated genes (p-value < 0.01 and |log2ratio| ≥ 1) comparing

NCE-treated and TGF-β-stimulated cells to DMSO control-treated and TGF-β-

stimulated cells. This analysis was done separately for each of the tested compounds

at each concentration. Subsequently, the di�erent phenotypes obtained after 2 hours

NCE treatment were clustered to unravel similarities between the di�erent signa-

tures (Figure 4.15). The early time point allowed focusing on primary a�ected genes

that were altered as direct response to the treatment. Hierarchical clustering clearly

revealed two major clusters separating the group of indolinones (BI1 to BI5) from

the pyridopyrimidinones (Ex1 & Ex2). Thus, the classical concept of chemotypes

determining biological pro�les of NCEs holds true in this case. More details about

the in�uence of chemotypes and di�erent side chains are given [52]. Additional to

the separation based on chemotypes, clusters also depend on high and low dose of

the compound.

Identifying a particular o�-target based on this approach is di�cult. Further anal-

yses were therefore performed to separate the compounds' o�-target e�ects from the
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Figure 4.15: Hierarchical clustering of genes di�erentially expressed due

to NCE treatment. 4,314 genes were found to be signi�cantly deregulated (|LR| ≥ 1

and p − value < 0.01) by at least one NCE. The di�erent treatment groups were hier-

archically clustered according to the correlation coe�cients of the respective genes using

complete linkage. The �ve indolinones (BI1-BI5) are grouped and separated from the two

pyridopyrimidinones (Ex1 & Ex2). Additionally, clusters show grouping by high vs. low

dose treatment. The indolinone BI1 separates from the other class members.
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treatment signatures. As mentioned above, not all o�-target e�ects can be identi�ed

through dose dependent correlation. Reasons for this are overlapping, inverse, and

additive e�ects [54]. Hence, o�-targets can only be identi�ed based on NCE-treated

samples in presence and absence of the TGF-β stimulus. In brief, all regulated genes

(p-value < 0.01 and |log2ratio| ≥ 1) identi�ed by comparing compound-treated cells

(either 0.08µM or 2µM) to DMSO-treated controls were selected. Genes were con-

sidered once the regulation was observed during compound treatment upon TGF-β

stimulation as well as without TGF-β stimulation. Thereby, it was ensured to select

only drug o�-target and TGF-β independent alterations. A more detailed descrip-

tion on how these genes are identi�ed is given in Section 3.3.3 on pages 56 �.. All

genes that matched the described criteria were allocated to the o�-target signature

of the respective NCE after 2, 4, and 12 hours. Based on this analysis, huge di�er-

ences in the amount of o�-target genes were observed. While treatment with BI1

deregulated 2, 752 genes at all time points, BI3 deregulated only 973 genes. Slightly

more o�-target genes were identi�ed for the indolinones BI2, BI4 and BI5 (1, 050,

1, 064 and 1, 100, respectively). The pyridopyrimidinones regulated 1, 347 (Ex1) and

1, 306 (Ex2) genes. The largest o�-target increase over time was seen for Ex1 and

Ex2 with almost four times more genes being regulated comparing the 12 hours to

the 2 hours time point. In contrast, the amount of o�-targets for the �ve indolinones

was at a maximum doubled within this period.

In summary, looking at the o�-target signatures in general, the indolinones except

for BI1 appear more favorable compared to the pyridopyrimidinones at later points

in time. Among the indolinones, BI2 to BI5 deregulate fewer genes than BI1 at

all points in time. This also con�rms di�erences in structure-activity relationships

observed by Roth et al. [1] for di�erences in substitution positions of certain residues

of BI1 compared to BI2 to BI5. They demonstrate that indolinones such as BI1

showed a less favorable selectivity pro�le compared to indolinones such as BI2 to

BI5. Among the indolinones, BI3 appears to be the most attractive compound when

merely looking at the o�-target analysis.
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Figure 4.16: Compound pro�les. Every circle represents one of the seven pro�led

compounds. The size of each circle corresponds to the number of o�-target genes (in

red). The relative amount of on-target gene numbers are shown in blue. As described

in Section 4.2.1 and displayed in Figure 4.13, the on-target signature is composed of 446,

772, and 1,932 genes at 2, 4 and 12 hours, respectively. The relative amount of on- and

o�-target genes can easily be seen. Whereas BI1 has both, the highest net amount of

o�-targets as well as the highest relation of o�- compared to on-targets, Ex1 and Ex2 lie

between BI1 and BI2 to BI5. BI2 to BI5 constitute the better compounds with respect to

both, number of o�-targets, which should be low, as well as relation between number of

o�- compared to number of on-targets.

4.2.3 Mode of Action Analysis Using Existing Approaches

Di�erent in silico strategies can be applied to analyze the o�-target signatures of

the compounds in order to generate hypothesis about their mode of action. As

di�erent criteria have been combined to derive the o�-target signature, there is no

homogeneous and consistent value/measure assigned to the genes contained in this

signature that is appropriate to conduct enrichment analysis which rely on measures

assigned for each individual gene (see Section 2.4.1). Thus, we decided to conduct

enrichment analysis based on Fisher's exact test which does not depend on any

measures assigned to the genes but is purely count-based (Section 3.6.2).

Gene Set Enrichment

Initially, the genes from the 12 hours o�-target signatures were assigned to their

molecular function using Ingenuity Pathway Analysis. Since we were interested in
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-log10(p-value)

Figure 4.17: Clustering of gene set enrichment results for o�-target genes

of all seven NCEs after 12 hours treatment. Using Fisher's exact test, an

enrichment test was conducted based on the molecular function gene sets as de�ned by the

Ingenuity Knowledge Base [144]. For each gene set, a p-value was obtained. Displayed is

the clustering of gene sets signi�cant for o�-targets of at least one compound. Clustering

was calculated based on the −log10(p − values) using complete linkage and manhattan

distance.

long term events, this analysis was focused on a late time point. Hierarchical cluster-

ing of the functions based on the respective −log10(p-values) resulted in one major

cluster for both pyridopyrimidinones and in one for the indolinones (Figure 4.17).

The genes regulated by the indolinones are distributed in more classes; genes

involved in Vitamin and Mineral Metabolism, Cellular Compromise, Nucleic Acid-

and Amino Acid Metabolism are exclusively regulated by the indolinones. In accor-

dance with the structure-activity �ndings mentioned before, within the indolinone

subcluster, BI1 stands apart from the four other indolinones and BI2 and BI3 as

well as BI4 and BI5 are grouped in one cluster, respectively. The genes additionally

regulated by BI1 are involved in RNA Post-Transcriptional Modi�cation, Energy

Production, Cellular Response to Therapeutics and in RNA Tra�cking. Half of
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the molecular functional classes identi�ed are regulated by all compounds. How-

ever, this does not necessarily mean that the same genes are regulated since the

categories are rather generally de�ned, such as Cell Cycle or Cellular Growth and

Proliferation. Furthermore, di�erent NCEs reach far higher signi�cance scores for

some categories than others caused by the higher amount of regulated genes in the

respective biological process, e.g. both pyridopyrimidinones regulate a huge amount

of genes involved in Cell Death and Cellular Growth and Proliferation.

In order to get a better understanding of the compounds' MoA Ingenuity Path-

way Analysis was used to further analyze the o�-target signatures. We found

39 (2 hours), 38 (4 hours) and 51 (12 hours) canonical signaling pathways signi�-

cantly enriched with o�-target genes of at least one of the NCEs (Fisher's exact test,

−log10(p − value) > 2). While immediate early a�ected processes can be found 2

hours after compound treatment, the e�ect of the compounds manifests during late

phases. A hierarchical clustering of the pathway analysis representing the 12 hours

results is displayed in Figure 4.18. Again the indolinones are separated from the

pyridopyrimidinones, indicating that both compound classes share not only a com-

mon mode of action like TGF-β inhibition, but also generate a distinct a�ection of

other pathways by their speci�c o�-target function. BI1 results in 5 signi�cantly

ranked pathways and the smallest overlap among the indolinones. BI3 a�ects 15

signaling pathways almost exclusively involved in di�erent cancer pathways. This

could hint at carcerogenicity of this NCE. The indolinones BI2 and BI4 regulated

genes that are signi�cantly enriched in only 4 (BI2) and 2 (BI4) signaling pathways,

respectively. However, pathways such as the Aryl Hydrocarbon Receptor Signaling

and the LPS/IL-1 mediated inhibition of RXR function are also signi�cantly ranked

high for up to six compounds at all three time points, indicating a more general e�ect

like a xenobiotic response to NCE treatment rather than a true compound speci�c

e�ect. The highest numbers of signi�cantly a�ected pathways are found for the two

pyridopyrimidinones with 24 (Ex1) and 28 (Ex2). Additionally, genes involved in 29

out of the 51 signaling pathways are exclusively regulated by Ex1 or Ex2 treatment.

Con�rming previous �ndings, 12 out of the 51 identi�ed pathways are related to tox-

icity and cell death. These 12 pathways reach highest signi�cance scores for either

Ex1 or Ex2 with 8 being solely a�ected by the two pyridopyrimidinones indicating

a cytotoxic mode of action for both of them. Besides cytotoxicity, these two NCEs
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deregulate genes involved in in�ammatory processes like IL6 signaling, ERK/MAPK

signaling and p38 MAPK signaling. A more detailed discussion also considering de-

velopment of pathway signi�cance over time is given in Baum and Schmid et al. [54].

Experimental Validation

Results from in silico analyses strongly implied di�erent induced phenotypes after

treatment with speci�c NCEs. The accuracy of the gene set enrichment based �nd-

ings were experimentally validated. Results can be found in [52,54].

4.3 A New Approach for the in Silico Analyses of

Mode of Action

In Sections 3.4 and 3.5 I introduced a new method to score the protein interac-

tions in a network along with a new module extraction method called modEx. As

more and more information on genes and proteins becomes available, it is impor-

tant to integrate and combine this knowledge in biological network-based analyses.

By this means supporting evidence for real interactions is accumulated. At the

same time the shared biological context and the functional association of a pair of

molecules will be highlighted. The results presented in this section are based on

iRefIndex (Section 3.4.1) as an underlying network. In addition to deriving mod-

ules or subnetworks solely based on di�erential expression, the proposed knowledge

mining approach enables us to identify modules relevant for the experimental con-

ditions under investigation including proteins that are not necessarily regulated on

the mRNA level. The relevance of proteins is based on their biological relatedness

which is re�ected by a weighting scheme. Information on Gene Ontology annota-

tion (Section 3.4.2) and predictions of common transcription factor binding sites

(Section 3.4.3) are integrated for weighting the edges between pairs of proteins (Sec-

tion 3.4.6). For iRefIndex-based networks, additionally a con�dence score based on

literature was used (Section 3.4.4) to appropriately increase the edge weights. To

transfer the network into the biological context of interest, the expression experi-

ments introduced in Section 3.1 were exemplary used as anchoring points for the
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Figure 4.18: Results of gene set enrichment based on canonical pathways as

de�ned by the Ingenuity Knowledge Base. Ingenuity pathway analysis (Fisher's

exact test) was conducted for the o�-target genes of all seven NCEs after 12 hours. Result-

ing −log10(p − values) for the 51 signi�cantly ranked canonical signaling pathways were

clustered using complete linkage and manhattan distance. O�-target genes of BI3 show

strong enrichment in 10 cancer signaling pathways (red arrows). Ex1 and Ex2 o�-target

genes play a role in 12 pathways involved in cytotoxicity or cell death (gray arrows) and

in 5 pathways involved in in�ammation (green arrows).
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analyses as described in Section 3.4.5.

This section is structured as follows: As there are several options to score the

di�erent measures used to calculate edge weights, in Section 4.3.1 an optimal com-

bination of evidence is selected. IUsing these results, in Section 4.3.2 the proposed

data mining approach together with modEx is evaluated on a biological basis. In

Section 4.3.3, I apply the newly proposed approaches to analyze compounds' mode

of action with respect to on- and o�-target e�ects. The analyses are based on ex-

pression data for BI1 and BI4. To show the bene�ts of my approach in contrast to

approaches only incorporating gene expression data, I compare it to jActiveMod-

ule 2.3.1 in Section 4.4. In the same Section, I additionally compare how di�erent

networks used as input a�ect the results obtained by modEx.

4.3.1 Choosing a Reasonable Combination of Evidence

In Section 3.4, in total 360 possible combinations were proposed that could be used

to calculate an edge weight (Section 3.4.6, page 71). Since con�dence scores based

on literature are only available for iRefIndex based networks, the best combination

of methods was selected independent of this measure. To decide which method is

best suited for integration a ROC curve based approach was used. The main idea

is to identify that combination of scoring methods that best distinguishes biologi-

cally more related pairs of proteins from less related ones. One would assume that

proteins which physically interact are more likely biologically related than randomly

sampled pairs of proteins. As true positives (TPs), i. e. biologically related proteins,

all proteins that interact based on the iRefIndex network were used. As true neg-

atives (TNs), i. e. less likely and less probable biologically related pairs of proteins,

randomly sampled pairs of proteins of the iRefIndex network that were not con-

nected by an edge were selected. This approach is comparable to a pseudo-ROC

approach [53, 164]. The pseudo-ROC curve for each of the 360 combinations of

scoring methods is a linear transformation of the true ROC curve. Common single

number summaries used to score and compare ROC curves - the area under the

curve (AUC) or the sensitivity at a given false positive rate - are area or distance

based, and thus reduced by this transformation, but to the same degree for every

curve. Thus, even if there are pairs selected as TN though they are TP this artifact

occurs in each of the pseudo-ROC curves and it is still possible to compare them
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Figure 4.19: Results of the pseudo-ROC analysis for di�erent combinations

of evidence. Displayed are the values of the top ten Area Under the Curve (AUC) re-

sults for the comparison of the real to a node permuted iRefIndex graph based on di�erent

combinations of evidence (Section 3.4). The combination of methods that best separate

scores for TP (real) from TN (random) edges and, thus, yields the highest AUC, is given

by scoreexp(2c2/4/12h), scoreTF (2cutoff08), scoreGO. It is obtained by combining the covari-

ance of the replicates across the three time points (scoreexp(2c2/4/12h), Method 2c, page 70),

the calculation of scoreTF using Eq. 3.25 (page 68) only considering matrix scores > 0.8

(scoreTF (2cutoff08)), and scoreGO by using the Resnik method (page 62) as implemented in

the GOSemSim package without �ltering GO annotations for evidence codes (page 66). Fol-

lowing abbreviations are used for remaining individual measures used: scoreexp(2b2/4/12h):

covariance across the three time points, Method 2b, page 70; scoreTF (2): calculated us-

ing Eq. 3.25, page 68, considering all matrix scores; scoreexp(2a2/4/12h): covariance of the

log2ratios of the two conditions, i. e. TGF-β-stimulated compared to untreated cells, across

the three time points, Method 2a, page 2; scoreexp(2c2h): covariance of the replicates

across measured 2 hours after stimulation, Method 2c, page 70; scoreTF (1): calculated

using Eq. 3.24, page 67, considering all matrix scores.

based on their AUC. Based on the measures given in the previous section and anal-

ogous to the TPs, edge scores, scoreedge, for the TNs were calculated for each of the

360 combinations. Next, the AUC for the pseudo-ROC curves for the real (TP) and
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Figure 4.20: Density distribution and boxplots of edge scores. Comparison of

edge scores as obtained for the TP (real) compared to the TN (random) edges using the

best combination of methods based on the AUCs displayed in Figure 4.19. According to

the density functions and boxplots, scores for the real protein interactions are, on average,

higher than those for the random interactions.

random (TN) edges for each of the possible 360 combinations were calculated. Based

on the ranking of the AUC values for the pseudo-ROC curves, the combination used

for the �nal analysis was chosen.

Figure 4.19 displays AUC values for the ten highest ranking combinations of meth-

ods. The best AUC is obtained for scores based on the covariance of the expression

values for the replicates over all time points (Method 2c, page 70) in combination

with GOSemSim Resnik without �ltering for evidence codes (Section 3.4.2, page 66)

and applying scoreTF,2 only considering matrix scores > 0.8 for transcription factor

weighting (Eq. 3.25, page 68). A comparison of edge score distributions and boxplots

for the TP (real) and TN (random) edge scores as given in Figure 4.20 clearly shows

higher scores obtained for real protein interactions in contrast to random pairs of

proteins.
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Figure 4.21: Result of gene set enrichment based on Fisher's exact test.

Based on gene expression for TGF-β1-stimulated cells, modEx was used to extract 10

modules. Fisher's exact test was conducted on gene sets as obtained by Reactome pathways

for the union of these modules. Signi�cantly enriched gene sets showing p-values < 1 ·10−7

are displayed. Detected pathways show a clear link to TGF-β signaling.

4.3.2 Biological Evaluation by TGF-β Stimulation Experi-

ment

In order to show the principle applicability of our approach, I �rst utilized an easy to

interpret gene expression experiment comparing TGF-β-stimulated against unstim-

ulated HaCaT cells at 2, 4, and 12 hours after stimulation [54]. Brie�y speaking, an

iRe�ndex based network was scored using the best combination of evidence selected

in the previous section, with covariance for adjacent proteins calculated based on

gene expression values for the two conditions (TGF-β-stimulated and unstimulated)

across the three time points. Based on the weighted PPI network, ten networks were

extracted using modEx (Section 3.5.2) and selecting the 10 strongest deregulated,

signi�cant genes as seed nodes (adjusted p − value < 0.01). Table 4.1 displays the

probabilities for obtaining these networks by chance calculated by the statistical

measures described in Section 3.6.1. For biological evaluation, gene set enrichment

analysis by Fisher's exact test [143] was conducted based on the nodes (proteins)
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Table 4.1: Overview of modules extracted based on TGF-β stimulation

experiment. Displayed are di�erent measures for modules extracted based on TGF-β-

stimulated cells compared to unstimulated cells using modEx (Section 3.5.2). The p-values

indicate the probability of observing the respective score Ω(G′i) or a higher one for the i-th

extracted module of the random graphs. The module ranking column indicates the order

for the extracted modules according to z-score based p-values and Ω(G′i).

Net

No. i
Seed node log2 ratio#

Module

ranking
Ω(G′

i)
§

z-score

p-value+

approx.

p-value+

1 VASN 5.4 10 2.203 0.032 0.044

2 SERPINE1 5.34 4 2.76 0.001 0.01

3 CTGF 3.94 9 2.258 0.029 0.036

4 JUN 3.48 2 3.159 <0.001 0

5 TGM2 3.39 8 2.233 0.025 0.04

6 FOSB 3.13 3 3.022 <0.001 0

7 BHLHE40 3.06 7 2.53 0.006 0.016

8 CDKN2B 3 1 4.533 <0.001 0

9 SMAD7 2.87 5 2.658 0.004 0.004

10 SOX18 2.85 6 2.507 0.006 0.014

Union∗ 2.786 <0.001 0

#log2 ratio comparing TGF-β-stimulated cells to unstimulated cells after 2 hours.
§ Ω(G′i) is calculated using Eq. 3.34.
+Approximative permutation test (approx.) and z-score based p-values refer to the probabilities

calculated based on 500 random graphs (Section 3.6.1).

∗Union refers to the network as obtained by the union of the ten individual nets extracted.

contained in the union graph of the ten networks extracted. Results are displayed

in Figure 4.21. Proteins contained in the extracted networks show a signi�cant en-

richment in gene sets related to TGF-β signaling. It is well known that TGF-β

signaling plays a major role in controlling the cell cycle as well as reorganization of

the extracellular matrix. Additionally, our �ndings are con�rmed by a signi�cant

enrichment in BMP-signaling, a signaling pathway induced by the BMP receptor

which also belongs to the TGF-β receptor superfamily, and TGF-β signaling itself.
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4.3.3 Analyses of Compounds' On- and O�-Target E�ects

To investigate whether it is possible to detect on- and o�-target e�ects of compounds

based on the proposed method, I used expression data derived from human HaCaT

cells treated with inhibitors of TGFBR1 [54]. In what follows, I focus on two com-

pounds which are referred to as BI1 and BI4. HaCaT cells were stimulated with

TGF-β and either treated with 2µM (lowest concentration above IC50, [1,54]) of the

respective compound or not treated with compound. Gene expression of stimulated

and compound-treated HaCaT cells was compared to the gene expression of TGF-

β-stimulated cells after a time span of 2 hours. Out of the genes with FDR-adjusted

p values < 0.01, ten seed nodes were chosen based on log2 ratios. In contrast to

the covariance used above, covariance between the expression pro�les of two genes

was calculated across 2, 4 and 12 hours for �ve di�erent compound concentrations

(0.0032, 0.016, 0.08, 0.4, 2µM) measured in triplicates and the control group mea-

sured in quadruples. Remaining scores were calculated as described for the TGF-β

stimulation experiment. By applying modEx, modules were extracted based on the

ten seed nodes selected.

On-Target E�ects

Considering the union of the ten modules, connected components were identi�ed.

Figure 4.22 displays one connected component extracted based on TGF-β-stimulated

compared to unstimulated cells (Figure 4.22 A) and one connected component ex-

tracted based on TGF-β-stimulated cell compared to cells stimulated with TGF-β

and treated with BI4 (Figure 4.22 B). Seed nodes that led to the connected com-

ponents displayed were JUN and FOSB (Figure 4.22 A) or FOSB, JUN, and JUNB

(Figure 4.22 B). As displayed in Tables 4.1 and 4.2, the individual extracted modules

based on these seed nodes had a p-value ≤ 0.002, i. e. modules with the respective

scores are very unlikely to be observed by chance. An on-target e�ect of compounds

can be detected by inversion of the TGF-β e�ect. This is the case for networks

extracted based on BI4 treatment (Figure 4.22). Genes that are up-regulated by

TGF-β stimulation (red) are down-regulated by compound treatment (green).

Networks extracted based on BI1 treatment do not exhibit as strong on-target

e�ects (Figure 4.23). Compared to results obtained for BI4 (Figure 4.22), for BI1
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Figure 4.22: modEx results demonstrating on-target e�ect of BI 4.Compari-

son of networks extracted based on TGF-β-stimulated compared to unstimulated (A) and

BI4-treated and TGF-β-stimulated compared to TGF-β-stimulated (B) cells. Red indi-

cates up-, green down-regulation of the respective genes, diamond-shaped nodes indicate

seed nodes. The on-target e�ect of BI4 inverting the TGF-β stimulation can directly be

seen by the opposite regulation of many of the genes contained in the extracted modules.

an as clear inversion of the direction of deregulation cannot be observed. For BI4,

two nearly identical modules have been extracted basesd on TGF-β-stimulated (Fig-

ure 4.22A) and based on compound treatment (Figure 4.22B). For BI1, the module

displayed in Figures 4.24A and 4.24B shows the densest enrichment in genes which

due to their direction of deregulation hint at on-target e�ects. But at the same time

it contains genes that are neither strong nor signi�cantly deregulated but are direct

o�-targets of BI1 (Appendix F). Figure 4.24C displays the module extracted based

on TGF-β1-stimulation that exhibits the greatest overlap to the latter module with

respect to the proteins contained. Compared to BI4 (Figure 4.22), the overlap of

Figures 4.24A and 4.24C is not as striking with regard to on-target e�ects.

O�-Target E�ects

For investigating o�-target e�ects, �rst, results obtained for expression data as mea-

sured based on BI1-treated and TGF-β1-stimulated cells were analyzed. In a sec-

ond step, the same analysis was done using data from BI4-treated and TGF-β1-

stimulated cells. To focus the analysis towards o�-target e�ects, only those seed

nodes were used that are not signi�cantly de-regulated (FDR-adjusted p-value≥ 0.01)

in the opposite direction when comparing TGF-β-stimulated to unstimulated cells



4. Results 118

Table 4.2: Overview of modules extracted based on BI4 treatment. Dif-

ferent Measures for modules extracted based on BI4-treated and TGF-β-stimulated cells

compared to just TGF-β-stimulated cells using modEx (Section 3.5.2) are summarized.

The p-values indicate the probability of observing the respective average edge score Ω(G′i)

or a higher one for the i-th extracted module of the random graphs.

Net

No. i
Seed node log2 ratio# Ω(G′

i)
§

z-score

p-value+

approx.

p-value+

1 SERPINE1 -4.43 2.06 0.031 0.038

2 VASN -3.88 1.955 0.074 0.072

3 FOSB -3.29 2.41 0.004 0.016

4 CTGF -3.23 2.034 0.045 0.044

5 JUN -3.15 3.57 <0.001 0

6 CYR61 -3.08 2.025 0.041 0.038

7 SCGB1A1 2.87 2.428 0.003 0.01

8 SKIL -2.76 2.372 0.003 0.006

9 KRT1 2.71 1.649 0.238 0.178

10 JUNB -2.67 3.089 <0.001 0.002

Union∗ 2.359 <0.001 0

#log2 ratio comparing BI4-treated and TGF-β1-stimulated cells to TGF-β1-stimulated cells after

2 hours.
§ Ω(G′i) is calculated using Eq. 3.34.
+Approximative permutation test (approx.) and z-score based p-values refer to the probabilities

calculated based on 500 random graphs. (Section 3.6.1)

∗Union refers to the network as obtained by the union of the ten individual nets extracted.

after 2 hours.

Table 4.3 summarizes the results obtained for the �rst ten extracted networks

based on the BI1 data, i. e. based on the comparisons of BI1- and TGF-β1-treated

compared to TGF-β1-treated cells; Figure 4.25 displays the results of Fisher's exact

test conducted for one of the most signi�cant networks extracted (Net No. 8). In

contrast to the results described in the analysis of on-target e�ects (pages 116 f.)
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A: Nodes are colored according to log2 ratios of expression

values based on BI1 and TGF-β1 treatment compared to

the respective control.

B: Nodes are colored according to log2 ratios of expression

values based on TGF-β-treated compared to untreated cells

Figure 4.23: Union graph extracted based on BI1 treatment. Displayed is

the union graph of the 10 graphs extracted based on the mostly deregulated genes in BI1-

treated and TGF-β1-stimulated compared to TGF-β1-stimulated cells. Diamond-shaped

nodes represent the seed nodes. Triangular purple-framed nodes represent wet-lab validated

direct o�-targets of BI1. Green indicates down-, red up-regulation. The more intense the

colors, the stronger the respective genes are deregulated. In contrast to Figure 4.22 which is

based on BI4, for BI1 we can not see an as obvious inversion of the direction of deregulation

when comparing Sub�gure A and Sub�gure B.

the results for BI1 do not show any direct connection to TGF-β signaling. Instead,

the modules detected by modEx method are enriched in di�erent signaling cascades
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A: Nodes are colored ac-

cording to log2 ratios of

expression values based on

BI1- plus TGF-β1-treated

cells compared to the re-

spective control.

B: Nodes are colored ac-

cording to log2 ratios of

expression values based on

TGF-β1-treated compared

to untreated cells.

C: Nodes are colored

according to log2 ra-

tios of expression val-

ues based on TGF-β1-

treated compared to un-

treated cells.

Figure 4.24: Subgraph of union graphs extracted based on BI1 treat-

ment (A&B) or TGF-β (C) stimulation. Sub�gure A displays the connected

component out of the union graph in Figure 4.23 that contains most of the direct o�-

targets of BI1 and at the same time best could be linked to on-target e�ects compared

to other connected components. Diamond-shaped nodes represent the seed nodes. Tri-

angular purple-framed nodes in A&B represent wet-lab validated direct o�-targets of BI1

(Appendix F. Green indicates down-, red up-regulation. The more intense the colors, the

more the respective genes are deregulated. Sub�gure B depicts the same subgraph but

with nodes colored according to the deregulation observed in TGF-β-treated compared to

untreated cells. In contrast to Figure 4.22 which is based on BI4, for BI1 we can not see an

as obvious inversion of the direction of deregulation. Sub�gure C shows one connected

component of the union graph derived based on expression data for TGF-β1-treated com-

pared to untreated cells. Out of all components in the union graph this component yields

the highest overlap with genes in Sub�gure A.

triggered by kinases which could be con�rmed as direct BI1 o�-targets in wet-lab

experiments (Figure 4.25, Appendix Tables F.1-F.3, pages 170 �.) [54]. It could be

shown that BI1 inhibits all three FGF receptor kinases. In line with this observa-

tion highest signi�cant scores are obtained for gene sets describing FGFR signaling.
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Figure 4.25: Result of gene set enrichment based on Fisher's exact test.

Based on gene expression for BI1-treated and TGF-β1-stimulated cells, modEx was used

to extract 10 modules. One of the most signi�cant modules (Net No. 8, Table 4.3) was used

in the enrichment analysis. Fisher's exact test was conducted based on gene sets as ob-

tained by Reactome pathways for genes contained in Net No. 8. Displayed are signi�cantly

enriched gene sets with p-values < 2 · 10−6. Compared to random networks, the network

extracted using our method is very unlikely to be observed randomly (p-value < 0.001, Ta-

ble 4.3). Additionally, it shows highly signi�cant enrichment for genes related to signaling

pathways regulated by various o�-target kinases such as FGFR signaling (Appendix Ta-

bles F.1-F.3, pages 170 �.) [54].

Furthermore BI1 inhibits the neurotrophic tyrosine kinase, receptor 1 (NTRK1 also

referred to as TRKA). Again gene sets involved in TRKA signaling itself as well

as its ligand NGF were identi�ed. In addition the signaling pathway component

GAB1, a known activator of PI3 kinase signaling [189], was detected by our analy-

sis. Finally, BI1 inhibits MEK1 (MAP2K1) that acts as a mitogen-activated protein

(MAP) kinase kinase and is involved in the integration of multiple biochemical sig-

nals including insulin receptor signaling (IRS) and epidermal growth factor receptor

(EGFR) signaling [190]. Both related gene sets were identi�ed by our approach.

Compared to BI1, for BI4 o�-target e�ects are not as evident. Again, seed

nodes for modEx have been chosen such they do not exhibit an inverse deregula-

tion compared to TGF-β1-stimulated cells. Figure 4.26 displays the results for the
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Table 4.3: Overview of modules extracted for the o�-target analysis of BI1.

Displayed are results for modules extracted based on BI1-treated and TGF-β1-stimulated

cells compared to TGF-β1-stimulated cells using modEx (Section 3.5.2). The p-values

indicate the probability of observing the respective average edge score Ω(G′i) score or a

higher one for the i-th extracted module of the random graphs.

Net

No. i
Seed node log2 ratio# Ω(G′

i)
§

z-score

p-value+

approx.

p-value+

1 KRT1 3.59 1.71 0.208 0.149

2 VWF 3.52 2.78 <0.001 0.016

3 SCGB1A1 3.44 1.969 0.06 0.101

4 PLA2G10 3.12 1.814 0.124 0.112

5 HSP90AA1 -3.07 3.105 <0.001 0

6 GBP2 2.9 2.187 0.031 0.053

7 TRIM31 2.78 2.104 0.049 0.037

8 ABP1 2.77 2.987 <0.001 0

9 RGS2 -2.75 2.181 0.025 0.027

10 ARL4A -2.75 5.043 <0.001 0

Union∗ 2.588 <0.001 0

#log2 ratio comparing BI1-treated and TGF-β1-stimulated cells to TGF-β1-stimulated cells after

2 hours.
§ Ω(G′i) is calculated using Eq. 3.34.
+Approximative permutation test (approx.) and z-score based p-values refer to the probabilities

calculated based on 500 random graphs. (Section 3.6.1)

∗Union refers to the network as obtained by the union of the ten individual nets extracted.

Fisher's exact test conducted based on proteins contained in the module extracted

for SCGB1A1. This module is one of the most signi�cant ones (approximative p-

value = 0.01, Table 4.2, page 118) as well as one of the few ones for which gene sets

could be linked to direct o�-targets of BI4. The respective gene sets hint at PDGF

and MAPK related signaling events, PDGF as well as di�erent MAP-kinases could

be con�rmed as direct BI4 o�-targets (Appendix F, Table F.5, page 174). Looking

at the union graphs extracted based on BI1 and BI4, enriched gene sets for BI1 hint
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Figure 4.26: O�-target e�ects observed for BI4. Fisher's exact test was conducted

based on gene sets as obtained by Reactome pathways for genes contained in a network

extracted using SCGB1A1 (P11684) as seed node (p-value = 0.003, Table 4.2). Displayed

are signi�cantly enriched gene sets with p-values < 0.05, page 118. Compared to BI1, for

BI4 gene sets hinting at o�-target e�ects are much rarer to observe. Genes contained in

the subnetwork extracted show enrichment in PDGF and MAPK related signaling events.

These kinases have been con�rmed as direct o�-targets of BI4 (Appendix F, Table F.5,

page 174).

at more o�-target e�ects than those detected for BI4. For BI4, TGF-β-signaling is

even the fourth most signi�cant. In summary, this all hints at compound BI4 being

much �cleaner�, i. e. being more speci�c for TGF-βR1, than compound BI1. This

could be con�rmed by the kinase screen exhibiting much more direct o�-targets for

BI1 than for BI4 (Appendix F, pages 169 �.).
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4.4 Comparison to Existing Approaches

Results derived using the proposed approach do not only depend on the extraction

procedure, modEx, but also on the underlying network and the edge scoring. Thus,

to further evaluate the method, I �rst conducted analyses based on three di�erent

protein networks, namely iRefIndex, STRING, which I refer to as STRINGorg, and

STRING with recalculated edge weights (Eq. 3.30, page 71), which I refer to as

STRINGmod (see Secion 3.7, page 77 for details). Second, I compared the modules

derived using our approach to modules derived using jActiveModule [48] (see Sec-

tion 3.7, page 76, for more details).

To compare the results based on di�erent networks and scoring methods, gene ex-

pression data derived from cells stimulated with TGF-β1 compared to unstimulated

cells was used. Thus, the modules extracted should in the ideal case be enriched in

genes linked to TGF-β signaling. Nodes of jActiveModule instances are weighted

according to the FDR-corrected p-values calculated for the comparisons of TGF-β1-

stimulated compared to unstimulated cells at 2, 4, and 12 hours (see Section 3.3.1,

page 55). Edges of modEx instances are weighted based on the method selected

in Section 4.3.1 as summarized on page 113. Gene expression data of TGF-β1-

stimulated and unstimulated cells across 2, 4, and 12 hours was used to calculate

scoreexp (Eq. 3.28, page 70). log2ratios and FDR-corrected p-values (Section 3.3.1,

page 55) comparing gene expression of TGF-β1-stimulated to unstimulated cells at

2 hours were used to select seed nodes. This setting is equivalent to the setting used

in Section 4.3.2 were this data set was used to evaluate the new approaches.

4.4.1 Comparison Between iRefIndex and STRING

modEx was applied to di�erent networks, a complete overview of the results is given

in Appendix C, Tables C.1 - C.3 (pages 157 �.). Based on the proteins contained in

the extracted modules Fisher's exact test was conducted and gene sets were ranked

according to the respective p-values (Figure 4.27). Results displayed are based on

KEGG gene set. An equivalent analysis has also been conducted using Reactome

gene sets. Results for the latter one are summarized in Appendix Table C.2 on

page 159.
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Figure 4.27: Comparison of STRING and iRefIndex networks. Displayed are

gene set enrichment results for the modules derived when applying modEx to networks with

edges weighted according to the best combination of evidence (Section 4.3.1, Figure 4.19,

page 112) using expression values obtained by a comparison of TGF-β1-stimulated cells to

unstimulated cells after 2, 4 and 12 hours. modEx was applied to iRefIndex, STRINGorg

and STRINGmod. For the iRefIndex network, these modules have already been used in the

scope of the analyses of Section 4.3.2 and are summarized in Table 4.1 on page 115. Based

on KEGG de�ned gene sets, Fisher's exact test was conducted for the proteins contained

in the extracted modules (indicated by their seed nodes on the x-axis), their union graph

as well as for the maximal connected component (max conComp), i. e. that connected

component of the union graph containing the most nodes. Results of this enrichment

analysis are displayed in Table C.3 on page 160. For comparing the results, the reciprocal

ranks of the TGF-β signaling gene set for the di�erent modules were used. The gene

sets were ranked according to p-values. Focusing on networks based on single seed nodes,

STRINGmod is superior to both, iRefIndex as well as STRINGorg. When considering unions

of the individually extracted modules, iRefIndex yields the best results.

On average, the best results are obtained based on STRINGmod. For six of the
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ten extracted networks TGF-β signaling is ranked second when STRINGmod is used

as an underlying network (Figure 4.27, orange bars). Five of them even exceed the

STRINGorg as well as the iRefIndex based results. In only two cases (SERPINE1 and

BHLHE40), the iRefIndex based results (blue bars) clearly outperform the STRING

based results. For three of the ten extracted networks (CDKN2B, SMAD7, SOX18),

iRefIndex slightly outperforms STRINGmod. STRINGorg (green bars) outnumbers

STRINGmod in only one case (SMAD7) and iRefIndex in four cases (VASN, CTGF,

JUN, FOSB). For the union graph as well as for the maximal connected component

of the union graph, STRINGorg yields the worst results. Here, the best results

are obtained by iRefIndex, though it only slightly outperforms STRINGmod for the

union graph (rank two versus rank eight). Thus, when focusing on networks based on

single seed nodes, STRINGmod is superior to both other networks. When considering

unions of the individually extracted modules, iRefIndex yields the best results.

4.4.2 Results for jActiveModule

Since jActiveModule does not make use of any edge scores, I did not compare results

based on di�erent scoring methods. As it already has been done for the compari-

son between iRefIndex and STRING, �rst, a module search was performed; second,

Fisher's exact test was conducted based on the proteins contained in the identi�ed

modules comparing them to prede�ned gene sets. By this means, it was possible to

compare results obtained for the di�erent extraction methods as well as for di�er-

ent protein networks. Again, I focus on results as obtained based on KEGG gene

set here. Results for Reactome based analysis are summarized in Appendix Ta-

bles D.2 and D.5 pages 163 f..

jActiveModule o�ers di�erent search options. Using default parameters, greedy

search, simulated annealing, and simulated annealing with hub �nding switched on

were applied. Simulated annealing alone did not return any modules, simulated

annealing with hub �nding returned modules, but none of the returned modules

showed a signi�cant enrichment (p-value < 0.01) with genes related to TGF-β sig-

naling (Appendix D, Tables D.2 and D.3, page 163). Thus, in what follows, I focus

on results derived using greedy search (referred to as greedyDef).

When applying jActiveModule, a search for modules active across di�erent time
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points was performed, i. e. the method was applied to p-values derived for TGF-β1-

stimulated cells compared to unstimulated cells after 2, 4, and 12 hours. Based on

these p-values, jActiveModule tries to detect modules active at any of these time

points. Since the �ve detected modules are only active for the 12 hours expression

data, further analyses exclusively refer to this time point. Modules are ranked from

1 to 5 based on their scores sG′ (Eq. 2.1, page 29).

First, I investigated results of jActiveModule based on di�erent networks, namely

STRING and iRefIndex (Figure 4.28, Appendix D Tables D.3 and D.6, pages 163 �.).

Two of the three highest ranking modules are based on iRefIndex, one is based on

STRINGorg. The TGF-β signaling gene set ranks sixth (module2, sub-net) and

nineth (module5, no-pval) or eighth (module3, def-pval) based on iRefIndex or

STRINGorg, respectively. Even though the best rank is obtained by the iRefIndex

network, the STRINGorg networks more often result in higher ranks. Nevertheless

these ranks are very low with the highest rank of eight for module3 (def-pval) and

all remaining ranks below �fteen. Thus, it is di�cult to say which of the networks

is superior to others when using jActiveModule.

4.4.3 Comparison Between modEx and jActiveModule

To get a more detailed impression of the di�erence between jActiveModule and

modEx results, I next compared them based on the underlying protein networks.

iRefIndex as well as STRING were used as di�erent networks. Additionally, for

STRING di�erent cut-o�s were applied to the native edge score. A complete

overview of the comprehensive analysis is given in Appendix C, Tables C.1- D.6.

Modules extracted using modEx are ranked from 1 to 5 according to their p-value

and according to ω(G′i) (Table 4.1, page 115, �Module ranking� column), modules de-

rived using jActiveModule are ranked according to their scores sG′ (Eq. 2.1, page 29).

In the following, I summarize the quintessence of these analysis based on enrichment

analysis conducted using KEGG pre-de�ned gene sets. A complete overview of the

KEGG-based results is given in Appendix Table C.3, page 160 for modEx and in

Tables D.3 and D.4, pages 163 f. for jActiveModule. Again, the respective results

for Reactome-based analysis can be found in Appendix C, Tables C.2, page 159 for

modEx, and in Appendices D, D.2 and D.5, pages 163 f. for jActiveModule.
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Figure 4.28: Comparison of jActiveModule results for STRING or

iRefIndex networks. Displayed are the results for the individual modules derived

when applying jActiveModule to networks with nodes weighted according to p-values ob-

tained by a comparison of TGF-β1-stimulated cells to unstimulated cells after 2, 4 and 12

hours. To compare jActiveModule derived modules to modEx derived modules the latter

ones are ranked from 1 to 5 according to their p-value and their score ω(G′i) (Table 4.1,

page 115, �Module ranking� column). In case the protein coding genes are not represented

on the microarray used to measure gene expression either no p-values are assigned to the

respective genes (no-pval, left part of the plot), 1 is assigned as default p-value (def-pval,

middle part of the plot), or only the subnet induced by the genes represented on the mi-

croarray is used in the analysis (sub-net, right part of the plot) (Section 3.7, page 76).

Gene set enrichment results are ranked according to p-values and reciprocal ranks are used

for visualization (y-axis). The best rank is obtained by the iRefIndex network, but the

STRINGorg networks more often result in higher ranks. These ranks are very low with the

highest rank of eight for module3 (dark-green bar, def-pval) and all remaining ranks below

�fteen. Nevertheless, there is no clear evidence for one network being superior to the other

when using jActiveModule.

iRefIndex Used as an Underlying Network

Figure 4.29 displays the comparison of modEx to jActiveModule based on the

iRefIndex. module5 extracted using modEx results in TGF-β signaling being ranked
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Figure 4.29: Comparison of jActiveModule and modEx results based on

iRefIndex networks. Displayed are the results for the individual modules derived

when applying the methods to networks weighted according to a comparison of TGF-β1-

stimulated cells to unstimulated cells after 2, 4, and 12 hours. In case the protein coding

genes are not represented on the microarray used to measure gene expression either no

p-values are assigned to the respective genes (no-pval, left part of plot), 1 is assigned as

default p-value (def-pval, middle part of plot), or only the subnet induced by the genes

represented on the microarray is used in the analysis (sub-net, right part of plot) (Sec-

tion 3.7). Enrichment analysis was conducted for the individual modules extracted and

gene sets ranked according to p-values. For the �ve best modules extracted, the reciprocal

ranks for the TGF-β signaling gene set are plotted along the y-axis. This gene set should

be ranked high, as we used expression data from TGF-β1-stimulated cells for which this

signaling pathway is switched on. Since modEx results in TGF-β signaling being ranked

�rst for module5 and since modEx based ranks are consistently higher than jActiveModule

ranks for three of the �ve modules, modEx based modules are considered more informative.

�rst. Thus, and since modEx based ranks are higher than jActiveModule ranks in all

cases except of module2 and module3, modEx based modules are considered more

informative.
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STRING used as an underlying network

As it already has been shown in Section 4.4.1 that STRINGmod is superior to

STRINGorg and as the di�erence in edge scoring is only relevant for modEx but not

for jActiveModule, STRINGmod was used in this �nal comparison. With STRINGmod

as underlying protein network, the di�erences in performance of jActiveModule and

modEx are even clearer (Figure 4.30). Still, for one module, module4 (orange),

jActiveModule outperforms modEx, however the ranks for this module are very low

with 20, 34, and 22 for no-pval, def-pval and sub-net, respectively. Thus, these re-

sults can hardly directly be linked to TGF-β signaling. In all other cases, modEx

performs better than jActiveModule with respect to this signaling pathway. For

three of the modules, module2 (blue), module3 (green), and module5 (purple) the

TGF-β signaling gene set is even ranked second for modEx derived modules. This,

on the one hand, con�rms the results of the previous section (Figure 4.27), indicat-

ing that using STRINGmod is superior to using iRefIndex. On the other hand, it

shows that modEx is superior to jActiveModule in cases where we want to derive

modules that are not only enriched with deregulated genes but also are related to

the underlying biological process.

4.5 Complexity Analysis

In Section 3.5.1 I introduced some optimization problems that could be posed in

the analysis of weighted protein-protein interaction networks. In this section, I

will analyze these problems with respect to their computational complexity. The

computational complexity of a problem can be measured by the resources needed

to solve it (see [191�193] for more details). In general, computational complexity

theory aims at a classi�cation of problems into respective complexity classes. In

the following, I brie�y introduce the two complexity classes P and NP from clas-

sical complexity theory. Based on this, I subsequently prove the NP-hardness of

vCMECG, k-vCMECG, k-veCMECG, and 1-vCMECG as introduced in De�-

nitions 3.5.1 to 3.5.4 on pages 72 f..

The most prominent classes in classical complexity theory are P and NP. P stands

for polynomial time, this class contains all problems that can be solved in polynomial
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Figure 4.30: Comparison of jActiveModule and modEx results based on

STRINGmod network. Displayed are the results for the individual modules derived

when applying the methods to networks weighted according to a comparison of TGF-β1-

stimulated cells to unstimulated cells after 2, 4, and 12 hours. In case the protein coding

genes are not represented on the microarray used to measure gene expression either no

p-values are assigned to the respective genes (no-pval, left part of plot), 1 is assigned as

default p-value (def-pval, middle part of plot), or only the subnet induced by the genes

represented on the microarray is used in the analysis (sub-net, right part of plot) (Sec-

tion 3.7). Enrichment analysis was conducted for the individual modules extracted and

gene sets were ranked according to p-values. For the �ve best modules extracted, the

reciprocal ranks for the TGF-β signaling gene set are plotted along the y-axis. As expres-

sion data from TGF-β1-stimulated cells was used, TGF-β signaling should be ranked high.

jActiveModule outperforms modEx for only one module, namely for module4 (orange). As

the ranks for this module are very low with 20, 34, and 22 for no-pval, def-pval and sub-

net, respectively, these results would hardly be directly linked to TGF-β signaling. In all

other cases, modEx performs better than jActiveModule. For three of the modules, mod-

ule2 (blue), module3 (green), and module5 (purple) the TGF-β signaling gene set is even

ranked second for modEx derived modules. Thus, modEx is superior to jActiveModule

using STRINGmod as an underlying network.
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time. NP stands for nondeterministic polynomial time and describes a complexity

class of problems for which it is possible to guess, i. e. nondeterministically �nd a

solution in polynomial time. Given a solution for a problem in NP, it is possible to

test its correctness in polynomial time. It is widely believed that P is not equal to

NP implying that there are problems in NP that are not in P. This leads to NP-hard

problems. Within the considered framework, showing that a problem is at least as

hard as another problem is done by a many-one reduction de�ned as follows.

De�nition 4.5.1. many-one reduction.

Let A and B denote two problems. The problem A many-one reduces to

B if there is a polynomial-time computable function f such that for an

instance x of problem A denoted as x ∈ A

x ∈ A⇔ f(x) ∈ B.

That means, a many-one reduction is a reduction which converts instances of a

decision problem A into instances of a decision problem B, formally written as

A ≤m B. If A ≤m B, any algorithm that solves instances of B can be applied to

solve instances of A in the time needed for the algorithm to solve B plus the time

needed for the reduction and with the maximum space needed for the algorithm plus

the space needed for the reduction. As A is known to be NP-hard and A ≤m B,

B is NP-hard, otherwise it would contradict A being NP-hard. [192, 194, 195]. A

problem is NP-hard if all problems from NP many-one reduce to it. An NP-hard

problem belonging to NP is NP-complete. Hence, the class of NP-complete problems

comprises a large set of equivalent problems for which presumably no polynomial-

time algorithms exist.

4.5.1 Problems Related to vCMECG

In this section, I introduce some well known graph theoretical problems that are

closely related to the problems I introduced in Section 3.5. These methods provide

the basis for the NP-hardness proof given in Section 4.5.2.

De�nition 4.5.2. Complete Graph.

A complete graph is a graph G = (V,E) where each pair of nodes {vi, vj} ∈ V

is connected by an edge e{vi,vj}.
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De�nition 4.5.3. Clique Problem.

Input: An undirected graph G = (V,E) and a positive integer s.

Task: Is there a complete graph G′ = (V ′, E ′) with V ′ ⊆ V and E ′ ⊆ E

consisting of s vertices.

This problem is well known to be NP-complete [196].

De�nition 4.5.4. Steiner Tree Problem.

Input: An undirected graph G = (V,E), a weight function ω : E → [0,∞),

and a set of terminal nodes R ⊆ V , l ∈ [0,∞).

Task: Find a tree T = (VT , ET ) with R ⊆ VT such that

Ω(T ) =
∑
e∈ET

ω(e) ≤ l

The Steiner Tree Problem is known to be NP-complete [196].

The problems given in Sections 3.5 are all related to the maximum edge-weight

connected graph (MECG) and the constrained maximum edge-weight connected

graph (k-CMECG) problems as described by Li et al. [197]:

De�nition 4.5.5. Maximum edge weight connected graph (MECG).

Input: An undirected graph G = (V,E), a weight function ω : E → [0,∞)

and a positive integer s.

Task: Find a connected subgraph G′ = (V ′, E ′) with |E ′| = s such that

Ω(G′) =
∑
e∈E′

ω(e)

is maximized.

De�nition 4.5.6. k-constrained maximum edge weight connected graph

(k-CMECG).

Input: An undirected graph G = (V,E), a weight function ω : E → [0,∞)

and Ek ⊂ E with |Ek| = k, and a positive integer s.

Task: Find a connected subgraph G′ = (V ′, E ′) with |E ′| = s and

Ek ⊆ E ′ such that

Ω(G′) =
∑
e∈E′

ω(e)

is maximized.
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The authors provide an NP-hardness proof of this problems and propose an integer

linear programming algorithm to solve it.

The main di�erence between these and our problem de�nitions is that Li et al.

center their analyses around edges only, while we want to incorporate both, edges and

vertices. Instead of s edges (De�nition 4.5.5) we look for s nodes (De�nition 3.5.1,

page 72), instead of �xed edges Ek (De�nition 4.5.6), we consider �xed vertices

Vk (De�nition 3.5.2, page 72), and �nally, instead for optimizing
∑

e∈E′ ω(e) (Def-

inition 4.5.5-4.5.6), we either optimize with respect to the number of edges |E ′|
(De�nition 3.5.3, page 73) or with respect to the number of vertices |V ′| (De�nition
3.5.2, page 72) contained in the subgraph G′. Thus, our problem de�nitions are

even more complex than those given by Li et al..

4.5.2 NP-hardness of vCMECG and Related Problems

Using the technique of many-one reduction [198,199], I provide NP-hardness proofs

for vCMECG(De�nition 3.5.1, page 72), k-vCMECG (De�nition 3.5.2, page 72),

k-veCMECG (De�nition 3.5.3, page 73) and 1-vCMECG (De�nition 3.5.4, page 73).

Theorem 4.5.7. vCMECG is NP-hard.

Proof. Clique ≤m vCMECG: Given a Clique instance (G=(V,E),s), construct

an instance of vCMECG by using the same graph with weight one for every edge

and let s also denote the number of vertices of the connected subgraph. Then, G

has a clique of size s if and only if in the new graph there is a connected subgraph

with s vertices and s · (s− 1)/2 edges, that is, with w(G′) = s · (s− 1)/2.

⇒ Clique ≤m vCMECG.

Theorem 4.5.8. k-vCMECG is NP-hard.

Proof. Steiner Tree ≤m k-vCMECG: Given a Steiner Tree instance, G =

(V,E), ω : E → 1, R ⊆ V , and l. Construct an instance of k-vCMECG,

G′ = (V ′, E ′), Vk, and s as follows:

Add a degree-one vertex to every terminal and set the weight of the corresponding

new terminal edge ω(e) to ω(e) = |E| = m. The weights of all remaining edges are
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set to zero. Vk is identi�ed with R. We obtain G′ = (V ′, E ′) with |V ′| = |V | + |R|,
|E ′| = |E|+ |R|, Vk=R, s = l + |R|.
Now, the following is easy to prove: k-vCMECG instance has a solution of size at

least mk/(l+k+1) if and only if the Steiner Tree instance allows for a Steiner

Tree of size at most l.

Since taking a non-terminal edge to the solution the overall sum is decreased, as

few of these edges are to be taken. Thus, the optimal solution of the k-vCMECG

instance is given by the Steiner Tree of the terminals R plus the new terminal

edges. The denominator of the solution for the k-vCMECG instance resolves to

(l+k+1) as this problem is optimizing the weight of the solution with respect to the

number of nodes which, in trees, is equal to the number of edges + 1. Equally, the

optimal solution for the Steiner Tree is given by the solution for k-vCMECG

by erasing all terminal edges.

⇒ Steiner Tree ≤m k-vCMECG.

Theorem 4.5.9. k-veCMECG is NP-hard.

Proof. Steiner Tree ≤m k-veCMECG: Given a Steiner Tree instance, G =

(V,E), ω : E → 1, R ⊆ V , and l. Construct an instance of k-veCMECG,

G′ = (V ′, E ′), Vk, s as follows:

Add a degree-one vertex to every terminal and set the weight of the corresponding

new terminal edge ω(e) to ω(e) = |E| = m. The weights of all remaining edges are

set to zero. Vk is identi�ed with R. We obtain G′ = (V ′, E ′) with |V ′| = |V | + |R|,
|E ′| = |E|+ |R|, Vk=R, and s = l + |R|.
Now, the following is easy to prove: k-veCMECG instance has a solution of size

at least mk/(l+ k) if and only if the Steiner Tree instance allows for a Steiner

Tree of size at most l.

Since taking a non-terminal edge to the solution the overall sum is decreased, as few

of these edges are to be taken. Thus, the optimal solution of the k-veCMECG in-

stance is given by Steiner Tree of the terminals R, plus the newly added terminal

edges. The denominator of the solution for the k-veCMECG instance resolves to

(l + k) as this problem is optimizing the weight of the solution with respect to the

number of edges which is given by the size of the solution of the Steiner Tree plus

the number of newly added terminal edges. Equally, the optimal solution for the

Steiner Tree is given by the solution for k-veCMECG by erasing all terminal



4. Results 136

edges.

⇒ Steiner Tree ≤m k-veCMECG.

Theorem 4.5.10. 1-vCMECG is NP-hard.

Proof. Steiner Tree ≤m 1-vCMECG: Given a Steiner Tree instance, G =

(V,E), ω : E → 1, R ⊆ V , and l. Construct an instance of 1-vCMECG,

G′ = (V ′, E ′), V1 = vseed, s as follows:

Set vseed to an arbitrary terminal vertex. Add a degree-one vertex to the terminal

vertex selected as vseed and set the weight of the corresponding new edge ω(e) to

ω(e) = |E| = m. The weight of all remaining edges are set to zero. We obtain

G′ = (V ′, E ′) with |V ′| = |V |+ 1, |E ′| = |E|+ 1, vseed ⊆ R, and s = l + 1.

Now, the following is easy to prove: 1-vCMECG instance has a solution of size

at least m/(l + 1) if and only if the Steiner Tree instance allows for a Steiner

Tree of size at most l.

Since taking a non-terminal edge to the solution the overall sum is decreased, as

few of these edges are to be taken. Thus, the optimal solution of the 1-vCMECG

instance is given by the Steiner Tree of the terminals R plus the new terminal

edge added to vseed, i.e. to one of the terminals out of |R|. The denominator of the

solution for the 1-vCMECG instance resolves to (l+1) as this problem is optimizing

the weight of the solution with respect to the number of nodes which, in trees, is

equal to the number of edges + 1. Equally, the optimal solution of the Steiner

Tree is given by the solution for 1-vCMECG by erasing the terminal edge.

⇒ Steiner Tree ≤m 1-vCMECG.
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Discussion

Based on gene expression data obtained by genome-wide methods, we want to un-

derstand the biological processes a�ected by TGF-β1 stimulation with or without

simultaneous treatment with inhibitors of the TGFBR1 kinase domain. Present

methods focus on determining di�erentially expressed genes. Based on these genes,

gene set enrichment analyses are conducted or small modules are extracted out of

protein interaction networks. Such methods neglect the vast amount of prior bio-

logical knowledge available in the public domain. This data should be used to add

information to the analyses especially with respect to the fact that not all genes

are regulated on the transcriptional level. I presented a method, that combines

approaches like jActiveModule, making use of protein interaction data and gene ex-

pression data, and Pandora, which integrates additional data sources. As a result, I

have been able to extract small modules that helped revealing the e�ects present in a

given expression experiment. I exemplarily applied this method to a gene expression

experiment conducted for the analyses of compounds' mode of action. Applying my

approach proved useful to reveal o�-target e�ects, too. The results from my analysis

could be con�rmed by wet-lab experiments. I showed that the proposed data inte-

gration method is superior to STRING-based scoring for the biological processes and

genes that are a�ected in our experiment. Interaction modules derived by modEx

are more informative than the modules derived by jActiveModule. In this chapter,

I will discuss the results presented in Chapter 4.

137
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5.1 Normalization

In order to put subsequent analyses on a reliable basis, it is important to select

appropriate pre-processing methods for a given data set based on the experimental

setup used [39]. If sample sizes of the di�erent groups are relatively small, it is crucial

to achieve a homogeneous variance for the groups. On the contrary, if sample sizes

are large, variances can be estimated reliably and one should focus on calculating

unbiased fold changes. Since the sample sizes for the current data set are rather

small (three to four replicates per group), a stable variance is more important than

an exact representation of the fold change. In general, the data should be normalized

without too much reducing real variations. Figure 4.12 on page 4.12 summarizes

the quality measures for all methods we investigated, demonstrating the background

for the �nal choice. Clustering of the quality scores assigned reveals two major

tendencies based on background normalization.

(i) Background normalized data (bg_*) tend to better re�ect the real fold changes,

i. e. show less bias.

(ii) Pre-processing without background normalization (noBg_*) leads to a more

homogeneous variance.

This could be explained by accurately de�ned, constant experimental conditions

across all experiments. As they have been conducted in parallel, this possibly led

to a relatively consistent background level across all samples. Thus, background

correction would introduce additional variation.

Methods combining background normalization with vst (bg_vst_*) constitute

an exception. Here, vst leads to a better stabilization of variance while introduc-

ing more bias. As vst estimates an additional o�set for the background based on

the data [157], noBg_vst_* and bg_vst_* pre-processing methods lead to approxi-

mately similar results.

As shown in Section 4.1, there are several pre-processing methods resulting in

nearly equal quality. Therefore, it is not possible to give a well-de�ned rationale for

using only one speci�c method. After excluding the methods that clearly violate

the imposed criteria, the decision is still subjective. It depends, e. g. on whether one
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would like to account for a good estimate of fold changes or a small and homoge-

neous variance. With the analyses and criteria described here, a recommendation on

the pre-selection of appropriate methods is provided. For the data set under study,

we intended to achieve a low and homogeneous variance. Therefore, I provided

extensive statistics investigating variance. If focus was on a good estimate of fold

change, the researcher should account more for statistics investigating this measure.

Correlation to results from qRT-PCR or slope and intercept of the regression be-

tween qRT-PCR data and gene expression fold changes are examples of analyses that

could be of higher interest in this context (Section 4.1.2, pages 93 �.). With regard

to variance, best suited for the data set analysed here are noBg_log_quantile and

noBg_log_rsn. Although log2-transformation in combination with quantile normal-

ization has been reported to perform relatively well by Du et al. [154] and Dunning et

al. [200,201], due to my analyses we decided to make use of robust spline normaliza-

tion (rsn). Quantile normalization preserves the rank order of genes but intensities

are transformed discontinuously since intensity values of di�erent microarrays are

forced to follow the same distribution. Spline normalization, in contrast, provides a

continuous mapping. rsn combines the positive features of quantile normalization

and spline interpolation. Due to properties of quantile normalization the rank order

of genes is preserved and due to the spline normalization intensities are transformed

in a continuous manner [154, 202]. Surprisingly, the use of vst as recommended

by Dunning et al. [201] and by Du et al. [154, 157, 202] and the combination of

vst with rsn as successfully used by Du et al. [202] did not perform as well as

expected. Reasons for this could be the di�erent experimental setups (two repli-

cates per group in the Barnes study [203] used for validation of vst, compared to

three to four replicates in our setup) or the use of a newer Illumina chip technology,

namely HumanHT-12 v3 chips, in our experiment. vst has been validated based on

a pre-released version of the Human-Ref-8 v1 Expression BeadChip that contained

19 (25% quantile) to 30 (75% quantile) beads per probe. On the HumanHT-12 v3

chips an average of only 15 beads per probe is available. Since vst makes use of

those technical replicates, this could lead to a slightly worse performance on the new

chip generation. In general, vst still performs well in stabilizing the variance but is

outperformed by noBg_log_quantile, noBg_log_rsn, and noBg_vsn in re�ecting

the expression values as measured by qRT-PCR. When restricting to methods im-

plemented in BeadStudio, in accordance with Dunning et al. [200,201] who advised
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against the use of background normalization, I recommend using the cubic spline

method without background normalization (noBg_cubicSpline). As displayed in

Figure 4.12, noBg_cubicSpline outperforms all other BeadStudio normalization

methods. Spike-in or dilution data is frequently used for evaluating di�erent nor-

malization methods [157, 185, 200, 201, 204]. If no such data is available for the

microarray chip type used, its advisable to perform qRT-PCR measurements for

genes covering di�erent spectra of expression intensities in order to obtain a mea-

sure for judging the quality of pre-processing methods. Thereby, it becomes possible

to determine how well di�erent normalization methods are able to re�ect the real

changes in expression intensities across di�erent expression levels.

In summary, we provide statistical measures based on which researchers can de-

cide on the best suited pre-processing scenario for their own experimental design. It

is also possible to estimate the bias of log2 ratios obtained from normalized data. In

conjunction with the measures for the variability of the data the basis for weighing

well measured changes versus low and homogeneous variance is delivered, and by

this means selecting an appropriate normalization method is feasible.

5.2 Data Integration

In Section 3.4, I proposed a scoring function to describe the pairwise relatedness of

proteins, which is both, easy to use and easy to interpret. This score is highly �exible

by allowing integration of prior knowledge and by o�ering the possibility to di�er-

entially weight individual evidence. Prior knowledge of protein interactions (Sec-

tion 3.4.1) is enriched by information on BP, MF, and CC as annotated by the

Gene Ontology (Section 3.4.2) and the similarity of promoter regions (Section 3.4.3).

Literature-based evidence (Section 3.4.4) and gene expression data (Section 3.4.5)

were integrated as well. By these data sets, I claim to obtain more informative edge

scores than STRING (Section 2.2.5), which does neither make use of GO nor of

transcription factor binding site information. Further, neither STRING- nor LLS-

(Section 2.2.6) or Pandora- (Section 2.3.11) based scoring methods o�er the pos-

sibility to extend the score for data derived in an experiment, like we exemplarily

did for the gene expression data (Section 3.4.5). Introducing weighting factors ai

(Equation 3.30, page 71) o�ers a possibility to weight individual evidence accord-
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ing to biological expert knowledge. As I could show in the analyses conducted in

Sections 4.3.2 and 4.3.3 meaningful results are achieved by weighting the individual

scores by setting ai = 1 for all evidences used. Thus, the method can also be used

in an unbiased fashion, if no expert knowledge is available.

I compared di�erent options of how the individual evidence could be integrated.

By applying a pseudo-ROC based approach, I decided for the best combination with

respect to a set of known physical protein-protein interactions present in iRefIndex

that are most likely to represent real functional associations of proteins. This ap-

proach su�ers, however, from the same drawback as all methods referring to a gold

standard like STRING or LLS, namely the still limited biological knowledge (high

number of false negative �ndings).

In the presented applications, I claim that our data integration method is supe-

rior to STRING-based scoring. This can be explained by the fact that I integrated

GO, arguably the currently best annotated and most comprehensive annotation of

genes and their products with respect to both, the biological processes they a�ect

and their function. The �rst to integrate Gene Ontology annotations to derive

functional modules were Wu et al. [167]. Using a Bayesian approach, they combine

results for the analyses of phylogenetic pro�les, gene neighborhoods and Gene Ontol-

ogy annotations. The combined information is used to measure the strength of gene

functional relationship based on which functional modules present in Escherichia

coli were predicted. The method was not designed to reveal the e�ects present in

a speci�c experiment under investigation. GO is also integrated in Pandora (Sec-

tion 2.3.11) but the aim of Pandora is to derive complete pathways, but not small

modules.

All of the approaches integrating prior knowledge depend on the quantity and

quality of the available knowledge. If this knowledge is limited, their performance

will be limited as well. It thus makes sense to combine di�erent sources like STRING

or LLS annotations using the presented integration approach. The scores based on

STRING and LLS could easily be added as a further data source using Equation 3.30.

Alternatively, modEx (Section 3.5) or other available analyses could be performed

based on each of the di�erently scored interaction networks, and the results could
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be interpreted separately to help in understanding the underlying biology.

5.3 modEx

Based on the methods presented in Section 3.4, di�erent data types are integrated

into a protein interaction network to obtain an edge- and node-weighted graph

G = (V,E). In Section 3.5.1, I de�ned some graph theoretical problems that could

be posed based on networks weighted using the described approach. Solving the un-

derlying questions on this basis, it is possible to get biological insight, for example

on the mode of action of compounds. By the data integrated, I do not only focus

on deregulated genes but consider the functional relatedness of the proteins based

on additional previous knowledge. In contrast, most other module extraction meth-

ods discussed in Section 2.3 are heavily based on information from gene expression

pro�ling (Table 2.1, page 2.1). In Section 3.5.2 I introduced modEx to heuristi-

cally solve the 1-vertex Constrained Maximum Edge-Weight Connected

Graph (1-vCMECG) problem (De�nition 3.5.4). modEx is applied in Section 4.3.3

to identify modules that help to elucidate the biological processes a�ected in the

gene expression experiments under investigation. Many of the previously described

methods try to derive one main module that is a�ected by the deregulated genes.

jActiveModule, for instance, reports the highest scoring component Gw (Figure 2.3)

as �signaling or regulatory circuit of high biological interest� [48]. I, in contrast,

argue that changes in gene expression could be induced through di�erent processes,

thus, we want to look for several modules that could help to elucidate these pro-

cesses. The actual implementation of jActiveModule returns not only the highest

scoring component but all signi�cantly active components. Still, these are rather

large and for the comparison analyses conducted, only �ve modules were returned

(Section 4.4.2, pages 127 �.). There, I could show that modEx results are still supe-

rior in linking the biological experiment to the speci�c processes. Since we do not

know a priori how many processes are a�ected by compound treatment (on- as well

as possibly several o�-target e�ects), we do not know how many subgraphs we are

looking for. Some of the nodes in the protein interaction network may belong to

several processes/modules simultaneously. This has also not been taken into account

by previous approaches. The newly proposed approach looks for dense networks to

more likely derive subnetworks containing proteins/genes (nodes) that are relevant
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in the same biological context. Thus, the score is optimized relative to the num-

ber of nodes and the node-induced subgraph represents our result. To detect all

modules necessary to investigate the underlying processes, modEx solves a special

case of the k-vCMECG problem (De�nition 3.5.2), namely the 1-vCMECG (Def-

inition 3.5.4) problem. By solving this problem for di�erent seed nodes, vseed, it is

possible to extract modules that are related to the di�erent underlying processes.

In the analyses described in Sections 4.3.2 and 4.3.3, the 10 strongest deregulated

genes of the underlying gene expression experiment were selected as vseeds. Thereby,

it is possible to detect interesting processes that agree with experimental �ndings.

It would also be possible to re-apply modEx until all genes that are de�ned to be

di�erentially expressed based on a speci�c cuto� are contained in at least one of the

extracted modules. Thereby it is possible to generate a result that very likely covers

all actually a�ected processes by at least one of the modules.

The optimization problem, as described in the methods section, is related to the

Constrained Maximum Edge-weight Connected Graph Problem, which

has been shown to be NP-hard [197]. By proving the NP-hardness, a theoretical

justi�cation for the use of a heuristic is given. Additional to the theoretical jus-

ti�cation, seen from a biological point of view, it could be reasonable to solve the

problem in a non-optimal way:

• The theoretical problem would look for one subnetwork that optimizes the

objective function. The biological system under investigation could be a�ected

in several biological processes which could be independent from each other.

Thus, it is more biologically relevant to look for several subnetworks.

• We do not know all protein interactions, thus, the graph underlying the prob-

lem already su�ers from incorrectness. Thus, it is to question whether a correct

solution for the incorrect protein interaction network stays correct knowing all

correct protein interactions.

• The correctness of the complete protein interaction network does not only

depend on our biological knowledge but also on the state of the biological

system under consideration. Thus, components of the network may not be

present under a speci�c condition, or may change in a time-dependent manner.
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I �rst applied a greedy search as heuristic algorithm. Since the extracted modules

were very small, simulated annealing was used instead. This resulted in modules

of adequate size. Another more empirical reason why simulated annealing could

be bene�cial is that missing prior knowledge could lead to arti�cial optima. This

could be due to edges that score low based on the lacking knowledge. With com-

plete knowledge they possibly would score high and lead to a higher Ω(G′i) (De�ni-

tion 3.5.4). By applying simulated annealing instead of a simple greedy search or

exact algorithms, we have the chance to overcome local optima, while at the same

time tolerating a certain degree of nescience. At the same time, we take the risk

of a fuzzy solution containing proteins that are not closely related to the a�ected

biological process. Since our current knowledge is rather limited for many biological

areas, I argue that it is better to allow for some false positive proteins than to miss

some important relationships in an optimal solution. False negative relationships are

a greater concern than false positive �ndings since false positives can be identi�ed

in downstream wet-lab validation. False negatives in contrast are more di�cult to

detect in follow-up experiments.

5.4 Analysis of Compounds' Mode of Action Using

modEx

I presented the combination of an edge scoring method and an extraction method for

the analysis of biological e�ects based on gene expression experiments. Using this

approach, it is possible to detect on- as well as potential o�-target e�ects of com-

pounds. For the TGF-β experiment under consideration, these e�ects have been

validated by wet-lab experiments [54]. Since we investigated e�ects mediated by

kinase inhibitors which usually are propagated through direct protein-protein inter-

actions, I decided to use iRefIndex as underlying network for data integration. In

Section 4.4.1 I have shown that it could be bene�cial to use STRING with an ad-

justed edge scoring. This could lead to even better results, especially in cases where

the biological e�ects are not necessarily dependent on direct protein interactions. I

could also demonstrate that for our application modEx is superior to jActiveMod-

ule. The extracted modules show higher relation to the biological process under

investigation. Additionally, the modules are much smaller than the ones found by

jActiveModules. Thus, they can be analyzed in more detail and, if necessary, even
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manually.

By applying the annotation and extraction methods proposed, it was possible

to derive protein interactions that are meaningful in the biological context un-

der consideration. I exemplarily showed this by investigating gene expression of

TGF-β1-stimulated cells compared to unstimulated cells. Modules extracted based

on this experiment should be related to TGF-β signaling. When conducting Fisher's

exact test based on gene sets prede�ned by Reactome and KEGG, the signi�cantly

enriched gene sets obtained by using the newly proposed method can directly be

linked to TGF-β signaling (Figure 4.21).

In addition, I was able to detect on- as well as o�-target e�ects of TGF-β receptor

1 kinase-inhibiting compounds that could be con�rmed by wet-lab kinase-screens.

Networks extracted based on BI4 expression data reveal direct on-target e�ects

(Section 4.3.3, Figure 4.22). O�-target e�ect for BI4 are very rarely observed in the

networks (Figure E.2). In contrast, networks extracted based on data from experi-

ments involving other compounds are enriched with di�erent signaling cascades. By

kinase-screens it could be con�rmed in wet-lab experiments that kinases triggering

the detected signaling cascades are direct o�-targets of the respective compounds

(Appendix F). Exemplary results for these o�-target e�ects are shown for BI1 (Sec-

tion 4.3.3, Figures 4.25 and E.1). Looking at the on-target e�ects of BI1, it is shown

in Figures 4.23 and 4.22 that these are not as pre-dominant as for BI4 (Figure 4.22).

These in silico �ndings identify BI1 as the less favorable compound exhibiting more

o�-target e�ects than BI4. This is re�ected by the wet-lab �nding [52,54].

The quality of modules derived by the proposed method strongly depends on the

underlying network used. By comparing results derived using di�erent networks

as well as di�erent edge scores, I could show that STRINGmod outperforms the

iRefIndex based network as well as STRINGorg (Section 4.3, Figure 4.27).

Since di�erent methods have been proposed for identifying active modules within

a protein network, I compared modEx to one of the most prominent methods, jAc-

tiveModule. Ad for modEx, �ndings indicate that using STRINGmod as input to

jActiveModule is superior to using iRefIndex (Section 4.4.2, Figure 4.28). Further,
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I could show that modEx is superior to jActiveModule in cases were we want to de-

rive modules that are not only enriched with deregulated genes but also are related

to the underlying processes (Section 4.4.3, Figures 4.29 and 4.30). One reason for

this is the fact that not all genes relevant for a biological processes are regulated

on the transcriptional level. Thus, to shed light on the biological process or mecha-

nism of interest, the bene�t of my method is the integration of knowledge that goes

beyond di�erential expression. Along these lines, the reason for STRING outper-

forming iRefIndex is that STRING not only considers physical protein interactions

but also functionally related proteins. By weighting the resulting edges I introduced

a measure for the likeliness of the relations. One probable reason for my weighting

scheme outperforming the native STRING weighting is that, based on GO biological

process or the cellular component, additional prior knowledge about the relatedness

is integrated. Obviously, I cannot claim that my scoring performs better than the

STRING scoring for processes for which we do not have any additional prior knowl-

edge. For these cases, it could be bene�cial to combine the scoring method with

the �nal STRING score by using the latter one as an additional term in the linear

combination (Equation 3.30). The results derived could be used complementarily to

results based on either the original STRING scoring or my scoring, or both. Thus,

modEx could be applied even with limited or no evidence to elucidate the biological

processes under investigation.

One major advantage of the proposed method is its �exibility with respect to

weighting single pieces of evidence. Based on the research objective and in close

cooperation with experts in the biological context, the scores can be individually

weighted and optimized. Furthermore, it is easy to extent the score to further

evidence of relatedness.

The proposed method can also be used to complement other biological analyses.

Identi�cation and validation of new drug targets may serve as an example in this

regard. To identify new targets, proteins that are known to be related to the dis-

ease under investigation could serve as seed nodes for modEx. Resulting modules

could then be further analyzed for interesting intervention points. In cases proteins

that are already targets in a di�erent indication area are contained in the extracted

modules, target repositioning is an option. As soon as potent compounds are avail-

able, even trying to reposition the drug would be applicable. Similarly, basic in



147 5.4. Analysis of Compounds' Mode of Action Using modEx

silico validation of targets is possible. For validating a target, the respective protein

would be selected as seed node based on which a module is subsequently extracted.

This module then can be a starting point for further analyses to con�rm the indi-

cation area or to check for potential side e�ects or drawbacks of the target under

consideration.





Chapter 6

Conclusion & Future Work

In this work, I �rst proposed a way to select the best suited normalization procedure

for the underlying expression data. Thereby, downstream analyses are founded on a

sound basis. The proposed statistical measures can easily be used for other expres-

sion experiments to guide the selection of an appropriate normalization procedure.

To analyze compounds' MoA, I introduced a method that weights interactions

between pairs of proteins based on di�erent kinds of evidence. As underlying net-

works, iRefIndex [96] and STRING [55] were exemplarily used. In general, other

types of networks could be used as additional sources for protein interaction. I did

not make use of protein interactions provided by CORUM [205], DIP [206], and

HPRD [102] since these were not freely available. In principle these data could be

easily added.

The relevance of proteins is based on the biological relatedness to other possi-

bly non-deregulated protein-coding genes. Thereby, I expand the analysis beyond

transcriptional deregulation. To elucidate the biological relatedness, information

on molecular function, biological processes and cellular compartment, information

on transcription factor binding sites and literature-based con�dence scores are in-

tegrated for weighting the edges between pairs of proteins. Integration of pheno-

typic information as, for example, taken from the mammalian phenotype ontol-

ogy [207,208], human phenotype ontology [209] or disease ontology [210�212] could

be bene�cial. Thereby, it could be possible to further improve my method and

make it even more valuable for biological analysis. As the proposed information is

149
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represented as ontologies, it would be possible to apply the methods used in the

present work to integrate GO. Other information that could be integrated are, e. g.

information on miRNA targets [213] or information on phosphorylation sites [214].

To transfer the network into the biological context of interest, expression experi-

ments are used as anchoring points for the analyses. For all the methods proposed,

instead of using correlation/covariance of gene expression over time to calculate

scoreexp (Equations 3.27 - 3.29) it is also possible to use correlation/covariance of

di�erent dosages or over di�erent treatments or combinations of both. What is used

depends on the biological question.

Further, I introduced modEx, a method to extract small modules out of a weighted

protein interaction network. These modules hint at the MoA of the compounds used

in our expression experiment. In my analyses, ten networks were extracted based

on the strongest deregulated genes. This is a very pragmatic approach. A more

comprehensive analysis would determine the number of networks to extract based

on the actual data. One possibility could be to extract networks until all genes that

are deregulated based on a prede�ned cuto� (e.g. p-value < 0.01 and |log2 ratio|>1)
are contained in the extracted modules. Thereby, it would be more likely to explain

all e�ects present in the experiment under investigation.

I show that for the expression data set used, the proposed edge scoring is supe-

rior to the STRING scoring. It would be worth investigating how the results are

changed if the native STRING score is used as further evidence in our edge score

(Equation 3.30). Finally, I could show that modEx extracts modules that better

represent the underlying mechanism than jActiveModule. In this work, modEx is

only compared to jActiveModule. It would be interesting to compare this method

to further available approaches like GXNA, ClustEx or Matisse. The disadvantage

of ClustEx is that is has very long run times and Matisse is only available for aca-

demically funded work.

One huge challenge that holds for all methods that return a subnetwork or a set

or list of genes is how to further analyze these genes. As long as the network or list is

small (<20 genes), one labor-intensive possibility is to manually go through the list
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and try to explain the biological process based on the individual genes in the list. I

proposed to use a very standardized method, gene set enrichment based on Fisher's

exact test. Drawback of gene set enrichment is that results are based on pre-de�ned

gene sets which are very likely incomplete based on our current knowledge and de-

rived results are at most as good as the annotations. Further, it is not possible to

detect new relationships. To close this gap, further research is needed in this regard.

Scientists of di�erent disciplines are working together to continuously improve and

deepen our constantly increasing understanding of biology. By this means, results

derived by analyses as described in the present work are also permanently improving.

As more and more prior knowledge is available, developments in the direction of data

mining and data integration has to be done to �nd optimal ways to make use of this

tremendous knowledge. Further, new or improved methods to extract the relevant

parts of information have to be developed. With the present work, I contributed

to the initial development of such methods. By further advancing research in these

directions, it will get more and more possible to elucidate di�erent kinds of biological

processes and to successively solve the secrets of life.





Appendix A

TGF-β Signaling

Figure A.1: Biological representation of the TGF-β signaling pathway. Dis-

played are the most important molecular events involved in TGF-β signaling via

SMAD proteins and via TRAF6, an exemplary SMAD independent way. Pathway

illustration was taken from Ingenuity Knowledge Base [144] library of canonical

signaling pathways.
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Figure B.1: Density plots of MSQwithin (blue) and MSQbetween (red).

MSQs were calculated based on the gene expression measured for the three sample

groups analyzed, namely untreated HaCaT cells after 2, 4, and 12 hours. The grey

dashed line indicates the expected value for theMSQbetween of 1.33 based on 6, 6, and

7 as measurements for the group means of four replicates for three time points. Three

examples of di�erent quality are shown.
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Table C.3: Results of gene set enrichment by Fisher's exact test based on

KEGG. Fisher's exact test was conducted based on KEGG prede�ned gene sets for

modules extracted by modEx based on STRINGorg, STRINGmod, and iRefIndex networks

(Table C.1). Displayed are p-values/ranks of KEGG TGF-β signaling gene set for p-

values < 1. Di�erent cuto�s were applied to the original STRING network, �rst, to

approximate the size of iRefIndex, and, second, to exclude FP associations. The size of

iRefIndex is best approximated using 848 as cuto�. As mentioned in Section 3.7, page 77,

data referring to this cuto� was used in the main part of this thesis.

Con�dence score used as cuto� for edges

STRINGorg STRINGmod iRefIndex

seed node ≥ 848 ≥ 900 ≥ 848 ≥ 900

VASN <0.0001/ 6 nnp 0.0002/ 2 nnp 0.0852/ 14

SERPINE1 - - - 0.0002/ 2 <0.0001/ 6

CTGF <0.0001/ 4 <0.0001/ 3 0.0002/ 2 <0.0001/ 2 0.0784/ 14

JUN <0.0001/ 5 <0.0001/ 5 0.0002/ 2 0.0002/ 2 -

TGM2 - - 0.0003/ 2 0.0003/ 2 0.112/ 16

KANK4 nnp nnp nnp nnp nnp

FOSB 0.1065/ 48 0.1194/ 48 0.0002/ 2 0.0001/ 2 -

BHLHE40 - - - 0.0251/ 8 <0.0001/ 2

CDKN2B 0.0063/ 16 0.008/ 16 0.036/ 16 0.0383/ 13 0.0715/ 11

SMAD7 <0.0001/ 1 <0.0001/ 1 0.0001/ 2 0.0002/ 2 <0.0001/ 1

SOX18 - nnp 0.039/ 15 nnp 0.0007/ 13

IER3 NA <0.0001/ 15 NA - NA

SKIL NA <0.0001/ 6 NA 0.0002/ 2 NA

union graph <0.0001/ 24 <0.0001/ 27 0.0003/ 8 <0.0001/ 4 <0.0001/ 2

conComp <0.0001/ 23 <0.0001/ 26 0.0005/ 2 0.0006/ 2 <0.0001/ 2

nnp: node not present; due to reduction of edges isolated nodes occur. These were removed

since it is useless to take them as seed nodes.

NA: nodes were not treated as seed nodes, since more signi�cant nodes are still present

(not nnp).

Union graph: Union graph refers to the network as obtained by the union of the ten individual

nets extracted.

conComp: Connected component containing most seed nodes.
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Table D.2: Results of gene set enrichment by Fisher's exact

test based on Reactome. P-values and ranks of Reactome TGF-β

signaling gene set based on Fisher's exact test conducted for modules

identi�ed by jActiveModule in the iRefIndex network (Table D.1).

no-pval def-pval sub-net

greedyDef greedyDef greedyDef simAnnHub

Module1 4 · 10−4/94 7 · 10−4/128 −/−+ −/−+

Module2 4 · 10−4/81 0.2354/289 1 · 10−4/20 −/−+,#

Module3 3.6 · 10−3/139 −/−+ 0.0984/197 −/−+

Module4 4.3 · 10−3/168 −/−+ 0.0962/242 −/−+,#

Module5 2 · 10−4/95 −/−+ 0.0138/117 −/−+,∗

+ p-value>0.5, #subnet active at 2h, 4h, 12h, ∗active at 4h and 12h,

all others only active at 12h.

Table D.3: Results of gene set enrichment by Fisher's exact

test based on KEGG. P-values and ranks of KEGG's TGF-β sig-

naling gene set based on Fisher's exact test conducted for modules

identi�ed by jActiveModule in the iRefIndex network (Table D.1).

no-pval def-pval sub-net

greedyDef greedyDef greedyDef simAnnHub

Module1 1.5 · 10− 6/14 7.3 · 10−3/45 0.24/57 0.23/36

Module2 2.0 · 10−4/28 0.16/55 5.5 · 10− 6/6 0.03/4

Module3 2.4 · 10−3/44 0.12/29 1.8 · 10−3/36 1/219

Module4 3.3 · 10−3/43 0.01/33 1.6 · 10−3/30 1/222

Module5 4.2 · 10− 7/9 1/248 3.4 · 10−4/18 0.02/6

all subnets are only active at 12h.
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Table D.4: Results of jActiveModule based on

STRING. Nodes of jActiveModule instances were weighted

according to the FDR-corrected p-values calculated for the

comparisons of TGF-β1-stimulated compared to unstimu-

lated cells at 2, 4, and 12 hours (see Section 3.3.1, page 55).

Displayed are the modules detected in the STRING network

(cuto� of 848) using jActiveModule (nodes/edges/score).

Subsequently, the respective modules are used in gene

set enrichment analysis using Fisher's exact test (Ta-

bles D.5 and D.6).

no-pval def-pval sub-net

greedyDef greedyDef greedyDef

Module1 367/1882/19.0 998/5988/24.6 348/1628/19.1

Module2 387/2001/18.9 1009/7716/23.5 370/1844/18.8

Module3 361/1860/18.9 909/6734/23.4 373/1788/18.7

Module4 363/1825/18.8 938/6953/23.3 357/1618/18.5

Module5 395/2225/18.8 1012/7358/23.3 379/1874/18.4

all subnets are only active at 12h.

Table D.5: Results of gene set enrichment by Fisher's

exact test based on Reactome. P-values and ranks of

Reactome TGF-β signaling gene set based on Fisher's exact

test conducted for modules identi�ed by jActiveModule in the

STRING network (Table D.4).

no-pval def-pval sub-net

greedyDef greedyDef greedyDef

Module1 1.38 · 10−6/113 3.83 · 10−4/102 3.20 · 10−4/137

Module2 1.57 · 10−6/126 1.12 · 10−6/68 8.93 · 10−7/67

Module3 3.54 · 10−8/98 2.00 · 10−5/75 2.14 · 10−5/77

Module4 1.62 · 10−3/243 2.05 · 10−5/77 3.42 · 10−4/103

Module5 3.43 · 10−9/96 6.28 · 10−3/202 4.31 · 10−4/122

all subnets are only active at 12h.
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Table D.6: Results of gene set enrichment by Fisher's

exact test based on KEGG. P-values and ranks of

KEGG's TGF-β signaling gene set based on Fisher's exact

test conducted for modules identi�ed by jActiveModule in the

STRING network (Table D.4).

no-pval def-pval sub-net

greedyDef greedyDef greedyDef

Module1 2.08 · 10−10/22 8.52 · 10−8/37 7.60 · 10−8/17

Module2 4.28 · 10−11/15 2.07 · 10−11/38 2.23 · 10−9/27

Module3 1.76 · 10−9/19 4.81 · 10−21/8 2.21 · 10−11/16

Module4 1.93 · 10−11/20 1.12 · 10−9/34 1.16 · 10−8/22

Module5 4.09 · 10−9/22 1.04 · 10−16/18 1.95 · 10−7/30

all subnets are only active at 12h.
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Appendix E

O�-Target Analysis

E.1 Gene Sets Enriched for Union Graphs

Figure E.1: Gene sets enriched for proteins contained in the union graph of

BI1. O�-target analysis of BI1 was conducted as described in Section 4.3.3, pages 117 �..

Gene sets like MAPK and ErbB signaling can be directly linked to o�-targets con�rmed in

wet-lab experiments (Appendix Table F). Though TGF-βR1 is the intended primary target

of BI1, only indirect hints like Focal adhesion or Cell junctions hint at TGF-β signaling.
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Figure E.2: Gene sets enriched for proteins contained in the union graph of

BI4. O�-target analysis of BI4 was conducted as described in Section 4.3.3, pages 117 �..

Only genes which do not exhibit an inverse change compared to TGF-β1 stimulation, the

desired e�ect of the compound, were selected as seed nodes. Still, the connection of the

selected nodes to TGF-β related genes seems to be strong such that TGF-β signaling is

one of the most signi�cant gene sets (p-value < 4 · 10−10). As for BI1, additional gene

set hinting at con�rmed o�-target e�ects are present. Examples are MAPK singaling and

VEGF singaling (compare Appendix Table F).



Appendix F

Compounds' Wet-Lab Target

Validation

F.1 Kinase Screen BI1

Results of kinase screen for BI1 are summarized in Tables F.1 to F.3

F.2 Kinase Screen BI4

Results of kinase screen for BI4 are summarized in Tables F.4 to F.6
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