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Summary 

 

The hypothesis of the cancer stem cell (CSC) suggests that neoplastic clones are 

maintained by a rare fraction of tumor cells with stem cell properties. CSCs could 

represent disseminated dormant tumor cells without clinical signs of tumor 

progression. We used a ret transgenic mouse spontaneous melanoma model, in which 

25% of transgenic mice develop skin tumors with metastases in lymph nodes (mLN), 

liver, lungs and bone marrow (BM). Mice older than 20 weeks without macroscopic 

tumors contain in the BM tyrosinase related protein (TRP)-2-specific effector memory 

CD8
+
 T cells and show no further melanoma progression. This suggests a potential 

role of dormant tumor cells in the maintenance of memory CD8
+
 T cells. We found 

that TRP-2
+
CD133

+
 melanoma cells represent less than 1.5% of all cells in primary 

skin tumors and mLN. The majority of these cells were Ki67
—

 suggesting thereby that 

these cells could remain in a dormant state. We found an increased expression of the 

major regulator for cell survival, self-renewal, and tumor growth, HIF-1 in 

TRP-2
+
CD133

+
 melanoma cells in large tumors in comparison with those in smaller 

tumors. To investigate whether TRP-2
+
CD133

+
 melanoma cells are disseminated in 

the BM of ret transgenic mice, we performed a triple immunofluorescence staining. 

We found that only 40% of mice without macroscopic tumors contained 

TRP-2
+
CD133

+
 melanoma cells in the BM. In contrast, all tumor bearing mice 

contained TRP-2
+
CD133

+
 melanoma cells. TRP-2+CD133+  melanoma cells were 

detected in 2 of 712 (0.238%) and 4 of 1285 (0.311%) disseminated melanoma cells 

in the BM of mice without and with macroscopic tumors, respectively. We confirmed 

the dormant state of TRP-2
+
CD133

+
 melanoma cells based on the negative expression 

of Ki67 and PCNA. Proteins p16 and p27, which are typically located in the nuclei of 

dormant cells, were found in the cytoplasmic compartment of TRP-2
+
CD133

+
 

melanoma cells indicating their highly malignant phenotype. Investigating the 

interaction between memory CD8
+
 T cells with disseminated melanoma cells in the 

BM, we found that TRP-2
+
Ki67

— 
melanoma cells were co-localized with memory 

CD8
+
 T cells both in mice without and with macroscopic tumors. The proportion of 

memory CD8
+
 T cells interacting with TRP-2

+
Ki67

— 
melanoma cells was lower (less 

than 15%) in the BM of these mice. Quantitative analyses revealed that although 

certain IFN--producing CD8
+
 T cells interacted either with single TRP-2

+
 melanoma 
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cells or the smallest cluster of melanoma cells (2-5 TRP-2
+
 cells), none of these T 

cells produced perforin. Only two TRP-2-specific CD8
+
 T cells produced perforin, but 

none of them were co-localized either with TRP-2
+
 melanoma cells or TRP-2

+
CD133

+
 

melanoma cells. Furthermore, memory CD8
+
 T cells located within the large cluster 

of 50 TRP-2
+
 melanoma cells were unable to produce both perforin and IFN-. These 

findings suggest that tumor microenvironment might neutralize CD8
+
 T cell reactivity. 

In conclusion, our data demonstrate the existence of a subpopulation of CD133
+
 

melanoma cells in ret transgenic mice. Dormant TRP-2
+
 melanoma cells are able to 

interact with CD8
+
 T cells in the BM of tumor-bearing mice. 
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Zusammenfassung 

 

Nach der Hypothese der Krebsstammzellen (CSC), werden neoplastische Klone 

von einem seltenen Bruchteil der Tumorzellen mit Stammzell-Eigenschaften 

beibehalten. CSCs könnten verbreitete, ruhende Tumorzellen ohne klinische 

Anzeichen einer Tumorprogression darstellen. Wir verwendeten ein ret transgen 

Spontanmelanom- Mausmodell, in dem 25% der transgenen Mäuse Hauttumore mit 

Metastasen in den Lymphknoten (mLN), der Leber, den Lungen und im Knochenmark 

(BM) entwickeln. Mäuse, die älter als 20 Wochen sind und makroskopisch keine 

Tumore entwickeln, enthalten im BM (Knochenmark) Tyrosinase verwandtes Protein 

(TRP)-2-spezifische Effektorzellen CD8
+
 T-Zellen und zeigen keine weitere Melanom 

Progression. Dies deutet auf eine potentielle Rolle der ruhenden Tumorzellen in der 

Aufrechterhaltung von Gedächtnis-CD8
+
 T-Zellen hin. Wir fanden, dass 

TRP-2
+
CD133

+
 Melanomzellen weniger als 1,5% aller Zellen in primären Tumoren 

der Haut und mLN repräsentieren. Die Mehrheit dieser Zellen waren Ki67¯, was 

darauf hindeutet, daß diese Zellen dadurch in einem inaktiven Zustand bleiben 

könnten. Im Vergleich zu kleineren Tumoren, fanden wir in TRP-2
+
CD133

+
 

Melanomzellen großer Tumore eine erhöhte Expression von HIF-1, dem wichtigsten 

Regulator für das Überleben der Zelle, Selbsterneuerung und Tumorwachstum. Um zu 

untersuchen, ob TRP-2
+
CD133

+
 Melanomzellen im Knochenmark von ret transgenen 

Mäuse verbreitet werden, führten wir eine dreifache Immunfluoreszenzfärbung durch. 

Wir fanden heraus, dass nur 40% der Mäuse ohne makroskopische Tumore 

TRP-2
+
CD133

+
 Melanomzellen im BM (Knochenmark) enthalten. Im Gegenssatz 

dazu enthielten alle tumortragenden Mäuse TRP-2
+
CD133

+
 Melanomzellen. In 

Mäusen mit und ohne makroskopische Tumore, wurden TRP-2
+
CD133

+
 

Melanomzellen in 2 von 712 (0,238%) und 4 von 1285 (0,311%) verbreiteten 

Melanomzellen im BM von Mäusen nachgewiesen. Wir bestätigten den Ruhezustand 

der TRP-2
+
CD133

+
 Melanomzellen durch die negative Expression von (oder durch 

eine fehlende Expression) Ki67 und PCNA. Die Proteine p16 und p27, welche sich 

typischerweise in den Kernen von ruhenden Zellen befinden, wurden im 

zytoplasmatischen Kompartiment von TRP-2
+
CD133

+
 Melanomzellen gefunden, was 

auf einen hoch-malignen Phänotyp hinweist. Durch eine Untersuchung der 

Wechselwirkung zwischen Gedächtnis-CD8
+
-T-Zellen mit disseminierten 
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Melanomzellen im BM (Knochenmark) fanden wir heraus, dass TRP-2
+
 

Ki67¯-Melanomzellen sowohl in Mäusen ohne, als auch in Mäusen mit 

makroskopischen Tumoren, mit CD8
+
 T-Zellen kolokalisieren. Der Anteil von 

Gedächtnis-CD8
+
-T-Zellen, welcher mit TRP-2

+
Ki67¯ Melanomzellen interagiert, 

war  im Knochenmark (weniger als 15%) dieser Mäuse geringer. Quantitative 

Analysen zeigten, dass obwohl bestimmte IFN- produzierende CD8
+
 T-Zellen, 

entweder mit einzelnen TRP-2
+
 Melanomzellen oder den kleinsten 

Melanomzell-Clustern (2-5 TRP-2
+
-Zellen) interagierten, keine der T-Zellen Perforin 

produzierten. Nur zwei TRP-2-spezifische CD8
+
 T-Zellen produzierten Perforin, aber 

keine von ihnen war weder mit  TRP-2
+
 Melanomzellen oder TRP-2

+
CD133

+
 

Melanomzellen co-lokalisiert. Außerdem konnten Gedächtnis-CD8
+
-T-Zellen, die 

innerhalb des großen Clusters von 50 TRP-2
+
 Melanomzellen lokalisiert waren, weder 

Perforin, noch IFN- erzeugen. Diese Befunde legen nahe, dass das 

Tumor-Mikromilieu die CD8
+
 T-Zell-Reaktivität neutralisieren könnte. 

Zusammenfassend zeigen unsere Daten die Existenz einer Subpopulation von CD133
+
 

Melanomzellen in ret transgenen Mäusen. Ruhende TRP-2
+
 Melanomzellen sind in 

der Lage, mit CD8
+
 T-Zellen im Knochenmark von tumortragenden Mäusen zu 

interagieren. 
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Introduction Results 

I. Introduction 

1. Tumor initiation and progression 

 

Current estimates regarding the global incidence of cancer predict that by year 

2020, the number of new cancer cases diagnosed each year will increase to 15 million 

and that the disease will be responsible for more than 12 million deaths. Despite 

recent advances in surgical techniques, radiotherapy and the development of 

molecular targeted therapies, most deaths due to cancer result from the progressive 

growth of metastases that are resistant to current therapies (1). Malignancy is a state 

that emerges from a tumor microenvironment in which the host participates in the 

induction, selection and expansion of the neoplastic cells (2). 

Malignant tumor cells recruit vasculature and stroma through production and 

secretion of stimulatory growth factors and cytokines (3-6). The hallmarks of cancer 

proposed by Douglas Hanahan and Robert A. Weinberg in 2000 and re-formulated in 

2011, elegantly summarize the multistep development of human tumors (7, 8). They 

include sustaining proliferative signaling, evading growth suppressors, resisting cell 

death, enabling replicative immortality, inducing angiogenesis, activating invasion 

and metastasis, reprogramming of energy metabolism and evading immune 

destruction. Tumors exhibit another dimension of complexity: in addition to cancer 

cells, they contain a repertoire of recruited, ostensibly normal cells that contribute to 

the acquisition of hallmark traits by creating the ‘‘tumor microenvironment’’ (8) 

 

1.1 Primary tumors 

 

Cancer cells in primary tumors have already acquired a numbers of aggressive 

functions that will remain important throughout the rest of their metastatic progression. 

These functions generally include motility, invasiveness, resistance to hypoxia and 

reactive oxygen species, survival after detachment, and evasion of immune 

surveillance (2, 9). It has been proposed that the secondary tumor formation involves 

rare cell variants that have accumulated a complete set of genetic mutations in the 

primary tumor that enables these cells to grow in a distant organ. However, this 

hypothesis has been challenged by the detection of widespread gene expression 

patterns in primary tumors that strongly predict metastatic competence. Genetically 

marked transplantable tumors in mouse mammary carcinoma models were used to 

Introduction 
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demonstrate that cancer cells can disseminate at the premalignant stage (9). 

 

1.2 Metastasis 

 

Metastasis is responsible for approximately 90% of cancer-associated mortality, 

yet it remains the most poorly understood component of cancer pathogenesis. During 

metastatic dissemination, a cancer cell from a primary tumor executes the following 

sequence of steps: It locally invades the surrounding tissue, enters the 

microvasculature of the lymph and blood systems (intravasation), survives and 

translocates largely through the bloodstream to microvessels of distant tissues, exits 

from the bloodstream (extravasation), survives in the microenvironment of distant 

tissues, and finally adapts to the foreign microenvironment of these tissues in ways 

that facilitate cell proliferation and the formation of a macroscopic secondary tumor 

(colonization) (2, 10, 11). 

Organ-specific colonization functions have been well documented in bone 

metastasis. The ability of breast cancer cells to form typical osteolytic metastases 

requires the production of osteoclast-activating factors, such as parathyroid hormone 

related protein (PTHRP), interleukin 11 (IL-11), IL-6, Tumor Necrosis Factor alpha 

( TNF-) and granulocyte-macrophage colony-stimulating factor (GM-CSF) which 

act on osteoclasts to promote the secretion of receptor activator of nuclear-factor-kB 

ligand (RANKL), which induces osteoclast formation (12). A frequent site of distant 

metastasis, the skeletal system is composed of diverse cell types. When metastatic 

breast cancer invades bone, it frequently becomes clinically noticeable by painful 

fractures due to induced hyperactivation of bone-resorbing osteoclasts. Advanced 

prostate cancer, to the contrary, predominantly involves the stimulation of bone 

depositing osteoblasts, thus resulting in a net increase in bone density and eventual 

bone-marrow displacement (13). 

Bone metastases are a frequent complication of many cancers that lead to severe 

symptoms such as bone fractures, hypercalcaemia, and intractable skeletal pain (14) 

as well as spinal cord and nerve-compression syndromes (15). It has been estimated 

that 70% of patients with progressive breast cancer and 84% of prostate cancer 

patients develop bone metastases (14, 16, 17). Bone metastasis is often classified as 

either osteolytic or osteoblastic and one of these effects is usually predominant. For 
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example, metastases from breast and lung tumors are generally osteolytic, whereas 

metastases from prostate cancer are generally osteoblastic (15, 17-20). In a mouse 

model of melanoma metastasis (B16F10 melanoma subclone), in vivo neutralization 

of RANKL by osteoprotegerin results in complete protection from paralysis and a 

marked reduction in tumor burden in bones but not in other organs (14). 

To produce metastases via the systemic circulation, tumor cells should survive in 

the circulation, adhere to the microvascular wall of distal tissues and either grow 

locally or invade the vessel wall and grow in distant organs. Accumulating evidence 

suggests that tissue-specific gradients of chemokines play an important role in 

determining the patterns of metastasis observed in some tumors. Initial reports were 

focused on the role of CXCR4 (CD184) in breast cancer after it was determined that 

CXCL12 (stromal cell-derived factor-1, SDF-1) could be constitutively expressed by 

stroma fibroblasts in target organs of metastasis (i.e. bone, liver, lungs, and lymph 

nodes). Activation of CXCR4 on breast cancer cells has been shown to stimulate a 

number of cellular responses that are critical for metastasis formation, including actin 

polymerization, pseudopodia formation, chemotaxis, synthesis of proteolytic enzymes, 

and invasion. In addition, stimulation of CXCR4 on tumor cells promotes activation 

of integrin receptors, thereby increasing the affinity of cells for microvascular 

endothelial surface. Primary tumors that predominantly express CXCR1 

(CD181/IL-8R) preferentially spread to the brain, whereas tumors that express CCR6 

(CD196) can more likely metastasize to the pleura. Expression of CCR7 (CD197) on 

breast or melanoma cells has also been shown to be an important determinant in 

mediating skin metastasis (21). 

Several studies have shown that many tumor cells mediate their adhesion to the 

vascular endothelium by using mechanism similar to those used by leukocytes (22-24). 

E-selectin is a cytokine -inducible endothelial cell glycoprotein that is responsible for 

directing the initial localization of neutrophils to inflammatory tissues. Vascular cell 

adhesion molecule-1 (VCAM-1) is an endothelial cell glycoprotein that plays an 

integral role in promoting the firm adhesion and transmigration of blood leukocytes. 

Studies examining the adhesive interactions between melanoma and endothelial cells 

suggest that melanoma cells use their surface very late activation antigen-4 (VLA-4) 

integrin to adhere to endothelial VCAM-1(25). In a spontaneous murine model of 

melanoma, VCAM-1 was selectively up-regulated in target organs (brain, heart, and 

liver) during melanoma metastasis. (21). 
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Clinical reports have implied that the spread of carcinomas takes place primary 

through the lymphatic system and that tumor of origins are more likely to disseminate 

through the blood vascular compartment. However, this assumption is difficult to 

validate because the lymphatic and vascular systems have numerous interconnections, 

and it is well accepted that disseminating tumor cells can pass from one system to 

another. Hence, the division of metastatic pathways into lymphatic spread and 

hematogenous spread is an arbitrary one. Invasive tumor cells can easily penetrate 

small lymphatic channels and then be transported in the lymph (21). 

According to the classical model of metastasis, tumor cell dissemination occurs 

late in tumor development. Only after the primary tumor has grown, tumor cells start 

to invade the local tissue, enter the blood or lymphatic vessels, and colonize new sites 

to cause metastases (2). However, evidence increasingly indicates that single tumor 

cells spread to distant sites much earlier than previously believed (26). For example, 

single disseminated tumor cells can be found in the lymph nodes or bone marrow 

(BM) of women with a history of early-stage breast cancer that have no clinical 

evidence of metastasis or tumor recurrence. Women with such dormant cancer cells 

live with an increased risk of sudden metastases, which may occur more than a decade 

after surgical excision of the primary tumor. Similarly, single melanoma cells can be 

found in the lymph nodes of patients with thin melanomas. These single dormant 

tumor cells seem to be of prognostic relevance, due to the patients can develop 

metastases after more than 10 years of surgical excision of the tumor. Nonetheless, 

more than 90% of these patients do not develop metastases for at least 10 years after 

surgery (26). 

Early tumor cell dissemination reminiscent of the events in human metastasis has 

also been analyzed by Husemann et al. in two distinct transgenic mouse strains that 

model breast cancer (27). Although these authors did not study the latency between 

tumor cell dissemination and metastatic outgrowth, they showed that, upon adoptive 

transfer, disseminated tumor cells are capable of homing to the BM and causing 

metastases. It is noteworthy that in these breast cancer models, the tumor cells tended 

to spread to the BM and the lung, whereas in the spontaneous melanoma model used 

by Eyles et al. (28) cells spread more diffusely. Importantly, in both studies apparent 

metastatic cells bore the genetic signature of the parental tumor. Understanding why 

these disseminated tumor cells fail to cause early metastasis and what events are 

responsible for tumor dormancy are key to determining whether new therapeutic 
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interventions can be developed (26).  

 

2. Malignant skin melanoma 

 

Melanoma is often considered as one of the most aggressive and 

treatment-resistant human cancers with a median overall survival of less than one year 

(29, 30). Melanoma originates from the malignant transformation of 

pigment-producing melanocytes. As in the case of most cancer types, both genetic and 

environmental factors are believed to contribute to melanomagenesis. Melanoma 

incidence is influenced by pigmentation of the population and geographical 

parameters such as latitude and altitude, indicating that ultraviolet (UV) light has a 

causal role in melanoma development (31, 32). In fact, epidemiological studies show 

that the major etiological melanoma risk factor is UV spectrum of solar radiation, 

with the highest risk associated with intermittent burning doses, especially during 

childhood (33-35). Noonan et al. have shown that UV-A but not UV-B radiation 

requires melanin pigment to induce melanoma (36). Other genetically determined host 

factors, such as fair complexion, red hair, and multiple benign or dysplastic nevi have 

been also associated with increased melanoma risk (31). 

Melanoma progression begins with the development of either dysplastic or benign 

nevi (acquired or congenital). These can progress to the radial growth phase, in which 

the growth expands laterally but remains localized to the epidermis. At this phase, 

cells are still dependent on growth factors and are not anchorage independent or 

tumorigenic (37). Progression to the vertical growth phase is hallmarked by the 

invasion into the dermis, subcutaneous tissue and upper epidermis. In the vertical 

growth phase, cells are no longer growth factor or anchorage dependent (37). Clinical 

staging of melanoma progress from an in situ growth to one increasing in the 

thickness and vertical invasion, to regional lymph-node spread and, finally, to distal 

metastases. Vertical invasion may be representative of the degree of progression and is 

often measured by the Breslow thickness, a measure of the thickness of the tumor 

from the upper layer of the epidermis to the innermost depth of invasion (37-39). 

Melanoma is widely known to be a molecularly heterogeneous disease. However, 

it has been possible only recently to identify patients with clinical relevant molecular 

signatures and assess responses to treatment in these subgroups (40, 41). A molecular 

classification system will replace conventional histological criteria, which divides 
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melanoma into four subtypes: superficial spreading, lentigo malignant, nodular, and 

acral lentiginous (42-44). A major impetus towards etiological molecular 

classification of melanoma was the identification of an oncogenic mutation in the 

serine/threonine-protein kinase B-raf (BRAF) gene in 60% of melanoma cell lines and 

short-term cultures of primary melanoma samples (42). In 2002, it was discovered 

that cutaneous melanoma is a molecularly heterogeneous disease bearing an activating 

mutation in the gene encoding for BRAF in approximately 40% to 60% of the cases 

with 90% of the mutations resulting in a substitution of valine for glutamate at amino 

acid 600 (V600E) (30, 45). Mutated BRAF leads to constitutive activation of the 

mitogen-activated protein kinase pathway (MAPK) (30, 46). MAPK pathway is 

activated in more than 80% of melanomas (47). The dysregulation of the MAPK 

pathway can also be caused by an activating mutation in the gene encoding for the 

neuroblastoma RAS viral oncogene homolog (N-Ras) which is upstream of BRAF. In 

addition, mutations in the oncogenes C-KIT, GNAQ, and GNA11, as well as 

mutations in the tumor suppressor genes PTEN (phosphatase and tensin homolog) or 

p53, and loss of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene products 

p15 and p16, have been described (29, 37, 47). Alterations of PTEN are found in up to 

55% of melanoma metastases and combined MAPK pathway/PTEN alterations have 

been found in 20-25% of melanoma cell lines (31). 

Among the most common aberrations are those affecting the CDKN2A genetic 

locus, which ultimately controls RB1 and tumor protein p53 networks. Approximately 

10% of all melanomas are hereditary. CDKN2A is the major melanoma susceptibility 

locus in familial melanoma (48, 49). In addition to increased susceptibility to 

melanoma, inactivating germline mutations at the CDKN2A locus also increase the 

risk of other cancers, particularly pancreatic adenocarcinoma (49, 50). It is estimated 

that CDKN2A mutations contribute to 10%-40% of familiar melanoma cases. 

Frequent mutations affecting the CDKN2A locus in melanoma typically target 

p16
INK4A

, suggesting an essential role for this protein in the control of cell cycle in 

melanocytes (49, 51). The gene is deleted in approximately 50% of melanomas and is 

inactivated by point mutations in approximately 9% of the tumors (51). In addition, 

the p16
INK4A

 gene is frequently silenced by promoter methylation, a process that 

interferes with gene expression. Hypermethylation has been reported to occur in 20% 

to 75% of melanomas (49, 52, 53).  

 



Introduction 

17 

The MAPK signal transduction pathway, also known as the 

RAS/RAF/MEK/MAPK pathway, plays a key role in the proliferation of most solid 

tumors, including melanoma (49, 54). The signaling cascade is initiated by growth 

factor stimulation of membrane-bound receptor tyrosine kinases followed by 

activation of RAS, a small G protein with three isoforms (H-RAS, K-RAS, and 

N-RAS). Upon activation of RAS, a complex forms between RAS and one of the 

RAF serine/threonine protein kinase isoforms ARAF, BRAF, or RAF1. Once RAF is 

activated, the signal is transduced through phosphorylation of MEK leading to the 

MAPK phosphorylation, that induces a number of mitogenic and survival processes, 

including proliferation, and protection from apoptotic cell death (49). 

Often called the guardian of the genome, p53 is one of the most frequently 

mutated genes in human cancer (49, 55-58) . It is activated by many factors, including 

cellular and oncogenic stress. As a transcription factor, p53 regulates a variety of 

genes involved in cell cycle arrest, senescence, DNA repair, and cell death (59, 60). 

Under conditions of substantial cellular stress, such as DNA damage caused by UV 

radiation, the induction and activation of p53 plays an essential role in halting cellular 

growth and initiating the repair of damaged DNA. An important mediator of the p53 

cell cycle-inhibitory function is the cell cycle-inhibitor p21
WAFI/CIPI

, which inhibits the 

complex of cyclin E and cyclin-dependent kinase 2 (CDK2) (49, 61, 62). Similar to 

the inhibition of the cyclin D-CDK4/6 complex by p16
INK4A

, inhibition of cyclin 

E1-CDK2 by p21
WAFI/CIPI

 also leads to decreased phosphorylation of RB1 and, 

consequently, cell cycle arrest at the G1/S transition point (49, 61, 63). 

In contrast to most other cancers, melanomas surprisingly display a low 

frequency of p53 mutations (9%). Although most other tumors inactivate this pathway 

directly at the level of p53, melanoma appears to rely on the inactivation at the level 

of CDKN2A and its product, p14
ARF

. Most CDKN2A mutations affect p16
INK4A

, either 

alone or in combination with p14
ARF

, suggesting that it is the principal susceptibility 

gene at this locus (42, 49). 
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3. Stem cells 

3.1 Normal Stem cells 

 

  Stem cells exist in many different somatic tissues and are important for their 

maintenance and recovery. Populations of cells that derive from stem cells are 

organized in a hierarchical fashion with the stem cell residing at the apex of the 

developmental pathway (64-66). Stem cells have three distinctive properties: 

self-renewal (i.e., cell division gives rise to one or two daughter cells that retain the 

same biologic properties as the parental cell), the capability to develop into multiple 

lineages, and the potential to proliferate (67). The combination of these three 

properties makes stem cells unique. The attribute of self-renewal is especially notable, 

because its dysregulation is highly relevant to oncogenesis and malignancy. 

Aberrantly increased self-renewal in combination with the intrinsic growth potential 

of stem cells, may account for many features of malignant phenotype (68-70). 

 

3.2  Melanocyte stem cells  

 

  Visible pigmentation of the skin, hair, and eyes providing protection from 

damage by ultraviolet (UV) (71) radiation depends primarily on the functions of 

melanocytes (72) which constitute 1% of skin cells (35). The skin is the main barrier 

to external environment and relies on melanocytes to provide photoprotection and 

thermoregulation by producing melanin which can absorb UV radiation affording to 

melanocytes to be resistant to considerable genotoxic stress (36, 73). In addition to 

carotenoids and hemoglobin, melanin is the main contributor to the pigmentation in 

the skin (74). Melanin containing granules are known as melanosomes (lysosome-like 

structures) and are exported from melanocytes to adjacent keratinocytes that receive 

and distribute melanin in the upper layers of the skin (71, 75). Melanocytic stem cells 

have been identified in the murine hair follicle (76). Melanocytes in the hair follicles 

arise from melanoblasts. Melanoblasts are derived from the embryonic pluripotent 

neural crest that is a migratory population that gives rise to multiple cell lineages, 

including neurons, glial cells of the peripheral nervous system, medullary secretory 

cells, cardiac cells, craniofacial tissues, smooth muscle cells, bone, and cartilage cells 

(71, 77, 78). Melanoblast precursors can differentiate into glial precursors and 

glioblasts can potentially differentiate into melanoblasts, which explains why many 
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markers are shared between glioma and melanoma (79, 80). 

The proliferation and differentiation of melanocytes in hair follicles are closely 

coupled with hair regeneration cycle. The follicular melanocytes comprise a stem cell 

system and melanocyte stem cells reside in the upper permanent portion of the hair 

follicles throughout the hair cycle (78, 81). Melanocyte stem cells, which are 

slow-cycling cells capable of both self-renewal and differentiation into mature 

melanocytes, are specifically localized in the bulge area. The bulge in both human and 

mouse follicles is a morphological area containing quiescent cells important for hair 

follicle cycling (82, 83). To date, the best marker for mouse hair follicle bulge cells is 

CD34 (82). When melanocyte stem cells divide, at least one stem cell remains in the 

bulge while the other daughter stem cells migrate into the hair matrix and terminally 

differentiate into melanin-producing follicular melanocytes (80). 

Numerous signaling pathways and transcription factors regulate all aspects of 

melanocyte development. These include the Wnt signaling pathway (the origin of the 

name Wnt comes from a portmanteau of Int and Wg wingless from Drosophila 

melanogaster, which is the best characterized Wnt gene) (84), the G-protein-coupled 

endothelin B receptor type B (EDNRB) and its ligand, endothelin 3 (ET3; EDN3), the 

tyrosine kinase receptor KIT and its ligand KITL (also known as stem cell factor 

SCF or mast cell growth factor MGF), the hepatocyte growth factor (HGF) and its 

ligand c-MET and the transcription factors PAX3, SOX10, and 

microphthalmia-associated transcription factor (MITF) which acts as a master 

regulator of melanocyte development (78). 

Mutations in genes that are critical for melanocyte development, such as MITF, 

Pax3, the members of the Notch pathway, and Kit impair hair pigmentation. Similarly, 

mutations in enzymes involved in melanin production such as tyrosinase (Tyr), gp75 

or tyrosinase-related protein 1 (TRP-1) and TRP-2 (also called dopachrome 

tautomerase) result in either albino mice (tyrosine mutations) or brown mice (TRP-1 

and TRP-2 mutations) (71, 80). There are two main types of melanin, red/yellow 

pheomelanin and brown/black eumelanin (71). Both melanins derive from a common 

tyrosine-dependent pathway with the same precursor, tyrosine. TRP-1 and TRP-2 

share 40%-45% identity with tyrosinase and are useful markers of differentiation (80, 

85).  
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Tyrosinase, TRP-1 and TRP-2 were shown to represent enzymatic components of 

melanosomes (75, 86, 87). The main structural component of melanosomes is 

melanocyte-associated protein 17 (Pmel-17, also known as gp100 or SILV), whose 

sorting involves adaptor protein 1A (AP1A), AP1B, AP2 and spectrin, as well as a 

chaperone-like component, melanoma-associated antigen recognized by T cells 1 

(MART-1) (88). During their maturation, melanosomes move from the perinuclear 

area towards the plasma membrane. Microtubules, dynein, kinesin, actin filaments, 

Rab27a, melanophilin, myosin Va and Slp2-a are involved in melanosome transport 

(75). 

 

4. Cancer stem cells (CSCs) 

 

  The CSC model has suggested that only small subpopulations of cancer cells 

have tumorigenic potential. CSCs exhibit properties of normal stem cells such as the 

ability of self-renewal by symmetric division, the capacity to form cell clones with a 

higher rate of differentiation and proliferation by asymmetric division (89-97). In 

general the CSC concept suggests that many tumors are hierarchically organized with 

these putative CSCs being at the top of the hierarchy (89-96). CSCs are genetically 

identical to the rest of the malignant clone, but constitute the only cell type with tumor 

propagation potential within the overall tumor population (98). Simultaneously, they 

show significant resistance to radiation and chemotherapy due to their distinctive 

properties which seem to be related to their stem-like character (99). Thus, although 

these therapies often significantly reduce the bulk of tumor cells, resistant CSCs can 

be retained in the body, leading to the frequently observed relapse and metastasis 

formation after initially successful cancer therapies (95, 99). 

Although populations of tumor cells containing CSC activity have been identified 

in various solid cancers including brain, breast, colon and prostate tumors, the search 

for reliable markers to identify CSCs is still ongoing (100, 101). It appears that 

marker expression on CSCs depends on tumor type and stage as well as on mutations 

present in each individual tumor. Moreover, the expression of certain markers on 

CSCs may not be stable within the tumor at any stage and time making it notoriously 

difficult to identify reliable general markers for CSCs in vitro or in vivo (91, 98). In 

addition, not all types of cancers are hierarchically organized and even in those that 

are, the hierarchy may flatten during tumor progression towards highly metastatic 
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“undifferentiated” cancers, in which tumor cells show CSCs properties (89, 98, 102, 

103). Diverse CSC markers haven been reported including CD20 (104, 105), CD24 

(106-109), CD34 (110), CD44 (111-114), CD166 (115), nestin (116-118), 

multidrug-resistance transporter ABCB5 (119-123) and CD271 (124, 125). 

Alternatively, JARID1B, and aldehyde dehydrogenase (ALDH) have been described 

as melanoma stem cell markers. JARID1B is a molecular marker for slowly cycling 

cells and has been associated with stem cell maintenance. In human embryonic stem 

cells, JARID1B blocks terminal differentiation and mediates cell cycle arrest. In 

melanoma, only approximately 1% of cells exhibit high expression of JARID1B (126). 

Aldehyde dehydrogenase (ALDH) enzyme activity has been identified as a stem cell 

marker in normal human hematopoietic stem cells and in multiple tumors. 

Boonyaratanakornkit et al. demonstrated that ALDH
+
 melanoma cells displayed 

robust self-renewal, whereas ALDH¯ cells showed minimal self-renewal in vitro. 

Thus, ALDH
+
 melanoma cells have enhanced tumorigenicity and superior 

self-renewal ability compared to ALDH¯ cells (127). On the contrary, Prasmiclaite et 

al. argued that ALDH phenotype is not associated with more-aggressive 

subpopulations in malignant melanoma (128). Santini et al. have shown that ALDH
+
 

melanoma cells express high levels of embryonic pluripotent stem cell factors Sox2, 

Nanog, Oct4 and Klf4 (129). CD133 has been described as the most relevant CSC 

marker, since it has been linked to tumor-initiating cells and implicated in tumor 

progression (130-133). 

A number of mechanisms have been suggested to explain the exquisite resistance 

of CSCs to radio- and chemotherapies. For example, CSCs and normal stem cells 

express various ABC transporter pumps that export small molecules (drugs) out of the 

cell (99). They also have very efficient DNA repair mechanisms and are thought to be 

located in hypoxic extracellular matrix rich niches, which would mediate resistance to 

the radiotherapy-induced DNA damage and prevent drugs from reaching sufficient 

high concentrations within CSCs (134, 135). Finally, like many normal stem cells 

CSCs may also divide only rarely or at least are transiently in a state of deep 

long-term quiescence called dormancy. Such a state would make them resistant to 

anti-proliferative and other chemotherapeutic regimens as they are not only 

non-cycling, but also require little energy or oxygen making them insensitive to 

signaling pathway inhibitors (89). 
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4.1 Regulation of cancer stem activity 

 

  CXCR3 (CD183) and CXCR4 (CD184) have been described as master regulators 

of metastasis (136, 137), whereas vascular endothelial growth factor receptor 1 

(VEGFR1) (138), and VEGFR2 (139) are essential factors to promote angiogenesis 

(140, 141). Approximately 60% of metastasis in malignant melanoma is found in 

regional lymph nodes (142). It has been demonstrated that CXCR3 plays a critical 

role in lymph nodes metastasis of melanoma (B16F10 cell line) (142), colon (143) 

and breast cancer (144). Expression of CXCR3 was found in 31 cases (33.7%) out of 

92 human colon cancer specimens from cases most of which had lymph nodes 

metastasis (145). Importantly, the patients with CXCR3
+
 colon cancer showed 

significantly shorter survivals than those without CXCR3. In addition, the patients 

with tumor double positive for CXCR3 and CXCR4 had significantly poorer 

prognosis than those with tumors positive only for CXCR4 or the double negative 

(144). Scala et al. reported that CXCR4 expression was detected in 33 out of 63 

(52.4%) metastases from cutaneous melanoma (146). The metastatic potential of 

primary melanoma is considerably higher than other primary solid tumors when 

comparing the size of primary lesion (146). 

Hypoxia, a condition of insufficient oxygen availability, occurs during normal 

development as well as tumorigenesis. Cellular responses to hypoxia are primarily 

mediated by hypoxia-inducible factors (HIFs) such as HIF-1α (147). Cancer stem 

cells are critically dependent on HIF-1α for survival, self-renewal, and tumor growth 

(148). HIF activity in a rare subset of hypoxic tumor cells such as CSCs, may enhance 

the expression or activity of specific signaling pathways such as Notch and the 

expression of transcription factors such as Oct4, Sox2, Klf4, c-Myc, ABCB 

transporters, and telomerase to promote further dedifferentiation and confer stem 

cell-like properties (148, 149). Hypoxia may increase metastatic homing by inducing 

CXCR4 expression in renal cell carcinoma (150), ovarian cancer (151), breast cancer 

(152) and lung cancer (153, 154). McCord et al. showed that hypoxia not only 

increased the fraction of CD133-positive cells, but also enhanced the stem-like 

phenotype of several cell lines (155). Soeda et al. demonstrated that hypoxia promotes 

expansion of the CD133-positive glioma stem cells through activation of HIF-1α 

(156). Propagation of the glioma-derived CSCs in hypoxia environment also led to the 

expression of cells bearing CXCR4 (156). Kim et al. found that CXCR4
+
CD133

+
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B16/F10 melanoma cells exhibit higher metastatic activity compared to 

CXCR4
¯
CD133

+ 
cells, and blockage of CXCR4 coupled with dacarbazine efficiently 

inhibited both tumor growth and metastasis (157). Kumar et al. described that 

BRAF
V600E

 mutation increases HIF-1α expression and melanoma cell survival under 

hypoxic conditions (158). It was shown that HIF-1α enhances CD39/CD73 function 

on epithelial cells to protect the epithelial barrier during hypoxia (159); it is well 

accepted today that CD39 and CD73 are potent suppressor of antitumor responses. 

Cancer exosomes were described to express CD39 and CD73, which suppress T cell 

through adenosine production (160). Thus, hypoxic microenvironments contribute to 

cancer progression by activating adaptive transcriptional programs that increase tumor 

glycolysis, promote cell survival, motility and tumor angiogenesis (148, 154). 

 

4.2 Melanoma stem cells 

 

  A subset of melanoma cells endowed with the capacity to induce tumor growth 

and metastasis has been recently identified (161, 162). These melanoma-initiating 

cells express ABCB5, conferring resistance to chemotherapy, as well as stem cell 

markers CD133, CD271 and nestin, which seem to be of functional relevance for 

melanoma-initiating cells, since the blocking ABCB5, CD271 or CD133 reduced the 

capacity of melanoma cells to metastasize (161, 162). Moreover, it has been 

demonstrated that the frequency of melanoma-initiating cells could be dramatically 

higher (102, 163, 164). 

 

4.3 CD133 as melanoma stem cell marker 

 

CD133 (Prominin-1) was the first identified member of the Prominin family of 

pentaspan membrane proteins. The specific functions and ligands of the Prominins are 

still relatively unclear, but they are distinct in their restricted expression within plasma 

membrane protrusions, such as epithelial microvilli and epididymal ductal epithelial 

sterocilia, and hence their name derives from the Latin prominere, meaning “to be 

prominent” (165). In 1997 a novel monoclonal antibody (mAb) that recognized the 

AC133 antigen (human CD133), was produced, whose restricted expression in CD34
+
 

progenitor populations from adult blood, BM and fetal liver cells implied its function 

as a marker of hematopoietic progenitor cells (166). AC133
+
 cells are believed to be 
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more primitive than CD34
+
 cells. In the same year, Weigmann et al. generated a 

murine mAb termed 13A4 and described its corresponding antigen, Prominin (167). 

Prominin was enriched in the apical microvilli of mouse embryonic and adult 

neuroepithelium and the microvillar tips of the kidney brush border cells. Human and 

mouse CD133 show only 60% identity (165). 

CD133 has been expressed in a number of CSCs identified to date in brain (168, 

169), pancreas (170), prostate (171-173), lung (174), liver (175, 176), and colon 

tumors (177, 178). In brain, CD133 is highly expressed in CSCs from 

medulloblastoma (179) and glioblastomas (180, 181) and has been used to isolate 

these CSCs and characterize their highly tumorigenic potential. However, it is not 

clear how CD133 contributes to CSC characteristics such as resistance to the therapy 

(181, 182), the ability to self-renew and the potential to differentiate (183, 184). 

CD133-positive cervical tumor cells were described to be enriched in vaccinated mice 

(185). The poor clinical outcomes of vaccination are caused by the immune-resistant 

and stem-like phenotype within the tumor microenvironment promoted by the 

transcription factor Nanog which plays an important role for self-renewal of 

embryonic stem cells (185). 

 

5. Dormant tumor cells 

 

  Cancer dormancy, mentioned first in 1864, re-emerged in 1934 (186) and was 

confirmed in 1959 (187). It has been historically defined in clinical terms, namely 

recurrence of the cancer systemically or locally a long time after removal of the 

primary tumor in a patient who has been clinically disease-free (188). Tumor 

dormancy is a phenomenon characterized by tumor cells persisting in the host for a 

long time (for months or years) as non-proliferative (189) solitary tumor cells or as 

micrometastases whose cellular proliferation is counterbalanced by apoptosis (i.e., 

tumor mass dormancy and/or angiogenic dormancy) (190). In several experimental 

models, the immune system controls dormancy (191). Consequently, tumor dormancy 

is a stage in cancer progression, in which residual disease is present but is not 

clinically apparent (190). The most exciting aspect of clinical cancer dormancy is 

resembles a chronic disease, a state of disease persistence without symptoms or signs 

unless this balance is disturbed and a relapse occurs (188). 

In the experimental settings, such as in xenograft models a “dormant” tumor can 
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be defined by its microscopic size and stable non-expanding mass. In more details, 

dormant tumors are characterized by: 

a) Tumor growth in vivo to 1 mm in diameter or less, at which time further 

expansion ceases; 

b) Inability to induce angiogenic activity due to lack of intra-tumoral microvessels, 

or active repulsion of extending blood vessels in the local microenvironment. 

These tumors are white or transparent on gross examination; 

c) Expression of equal or higher amounts of anti-angiogenic (i.e. thrombospondin-1) 

factors compared to angiogenic (i.e. vascular endothelial growth factor, VEGF 

and basic fibroblast growth factor, bFGF) proteins;  

d) Active tumor cell proliferation, apoptosis in vivo, and metabolic activity during 

the dormancy period; 

e) Inability to spontaneously metastasize from the microscopic dormant state; 

f) Harmlessness to the host until they switch to the angiogenic phenotype (192-194). 

Metastatic dormancy of melanoma has not yet received sufficient attention, most 

likely because once detectable metastasis is almost invariably fatal and, the focus has 

been on finding ways to prolong life of patients with overt recurrences. Some 

melanomas have an ability to disseminate early during primary tumor progression and 

once disseminated to remain undetected (dormant) for years. Tumor dormancy 

mechanisms can be largely grouped in two categories: dormancy of a tumor mass and 

dormancy of solitary tumor cells (195). 

Angiogenic metastatic dormancy applies to the dormancy of tumor mass. In this 

case a micro-metastatic lesion actively proliferates but it does not expand because it is 

avascular. The inability to recruit blood vessels is likely caused by the lack of 

expression of angiogenesis factors such as VEGF, and/or high expression of 

angiogenesis inhibitors such as thrombospondin (195, 196). It has been shown that 

human melanoma micrometastases are poorly vascularized and have lower rates of 

tumor proliferation as compared to melanoma macrometastases (195, 197-200). 

Disseminated predominantly solitary tumor cells isolated from BM of patients 

bearing cancers of different origins are negative for markers of proliferation such as 

proliferating cell nuclear antigen (PCNA) or Ki67, suggesting that they can enter a 

state of cellular quiescence or dormancy. It was shown that solitary melanoma cells 

(B16F10 tumor cells) which metastasized to the lungs were dormant and did not 
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express markers of apoptosis (201). The experience from preclinical models suggests 

that tumor cells can enter dormancy if certain signaling pathways are malfunctioning 

and/or activated. The most common mechanism is a G0/G1 arrest with high expression 

of p21 and p27 (195, 198-200). The BM also serves as reservoir for dormant tumor 

cells that are resistant to chemotherapeutic treatment (15). Hence, BM might be an 

important reservoir that allows for disseminated tumor cells to adapt and stay hidden 

without clinical signs of observable metastases (202). Thus, dormant tumor cells 

arrested in the BM may act as a possible source of tumor cells that can be 

systemically released in different periods, leading to the relapse in patients that 

seemed to be clinically cured (203, 204). Furthermore, it has been documented that 

leukemic cells create BM niches that causes hematopoietic stem cell (HSC) 

dysfunction by usurping normal HSCs (202). Tumor derived exosomes may induce 

the suitable pre-metastatic niche for the attraction of tumor cells to the BM (205). 

 

5.1 Dormant tumor cells and immunosurveillance 

 

The original concept of tumor immunosurveillance postulated that most 

malignant tumors that arise are eliminated via lymphocyte-mediated responses before 

they become clinically detectable (26, 206). Therefore the adaptive immunity could 

constantly inhibit the emergence of neoplastic clones and thereby act as a major 

protector from the development of cancer (188, 207). However, some investigators 

argued that tumor cells did not possess the appropriate “danger signals” needed to 

alert the immune system, whereas others suggested that the immune system would 

ignore or tolerate a developing tumor because tumor cells were too similar to the 

normal cells from which they were derived (207). 

The immune system plays at least three distinct roles in preventing cancer: (i) it 

protects the host against viral infection and hence suppresses virus-induced tumors; (ii) 

it prevents the establishment of an inflammatory environment that facilities 

tumorigenesis by eliminating pathogens and by prompt resolution of inflammation; 

and (iii) it eliminates tumor cells in certain tissues because nascent transformed cells 

often co-express ligands for activating receptors on innate immune cells and tumor 

antigens (207).  

The discovery that the immune system not only controls tumor quantity but also 

tumor quality (immunogenicity) prompted a major revision of the cancer 
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immunosurveillance hypothesis. This study revealed that tumors formed in mice that 

lacked an intact immune system were more immunogenic than similar tumors derived 

from immunocompetent mice. The notion that the immune system not only protects 

the host against tumor formation but also shapes tumor immunogenicity is the basis of 

the cancer immunoediting hypothesis (207). Cancer immunoediting process, in its 

most complex form, proceeds sequentially through three distinct phases termed 

“elimination”, “equilibrium”, and “escape” (207). 

In the elimination phase, innate and adaptive immunity work together to destroy 

developing tumors long before they become clinically apparent. If, a rare cancer cell 

variant is not destroyed in the elimination phase, it may then enter the equilibrium 

phase, in which its outgrowth is prevented by immunologic mechanisms. T cells, 

IL-12 and IFN- are required to maintain tumor cells in a state of functional dormancy, 

whereas NK cells and other cells of innate immunity are not required (208, 209). 

Editing of tumor immunogenicity occurs in the equilibrium phase. Equilibrium may 

also represent an end stage of the cancer immunoediting process and may restrain 

outgrowth of occult cancers for the lifetime of the host. However, as a consequence of 

constant immune selection pressure placed on genetically (210) unstable tumor cells 

held in equilibrium, tumor cell variants may emerge that (i) are no longer recognized 

by adaptive immunity, (ii) become insensitive to immune effector mechanisms, or (iii) 

induce an immunosuppressive state within the tumor microenvironment (207-212). 

These tumor cells may then enter the escape phase, which correspond to clinically 

apparent disease (207-212). Nanog, which is induced as a consequence of immune 

selection, enhanced the stem-like features of tumor cells and protected them from 

killing by tumor-reactive cytotoxic T cells (CTLs) (185).   

It has been described that dormant tumor cells were more resistant to apoptosis 

induced by specific CTLs because they express more B7-H1 (PD-L1 / CD274), and 

such expression was proportional to the time they had persisted in the host (191). 

These data indicate that tumor dormancy may result from a balance between host 

immune response and active mechanisms developed by tumor cells to escape from 

CTLs (191). 
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6. Melanoma-specific T cells 

 

  T cells have an essential role in protection against a variety of bacterial and 

viral infections (213, 214). The fundamental characteristic in describing a T-cell 

response is its magnitude. This is commonly represented by the frequency of 

antigen-specific T cells or the expression of a specific effector function, such as IFN- 

production (213). CD8
+
 T cells are a part of the adaptive branch of the immune 

system and key players in mediating immunity to intracellular pathogens and tumors. 

Recognition of self-antigens on cancer presents problems. First, immunity to 

cancer may not develop because of immune tolerance. Second, even when the 

immune system can recognize and respond to self-antigens, immunity may not be 

sufficient to reject cancers. Finally, if immunity to self-antigens develops, there are 

potential autoimmune sequelae (215). Therefore, it is important to keep in mind, that 

the antitumor immunity may be limited and often insufficient to destroy a rapidly 

growing neoplasma, including its CSC pool, which arises from the organism´s own 

tissue and therefore predominantly expresses self-antigens (as TRP-2) to which host 

immune cells have been tolerated (216). Identification of tumor associated antigens 

(TAA) that can be recognized by CTLs has been a major advancement in 

understanding tumor immunity. Because TAAs are self-antigens, immune responses 

against them are regulated by central and peripheral tolerance mechanisms (217). 

Generally, highly self-reactive CD8
+
 T cells are deleted during thymic development. 

However, deletion of self-reactive CD8
+
 T cells is incomplete and self-reactive CD8

+
 

T cells can escape thymic selection and persist in the periphery under the control of 

several regulatory mechanisms, including anergy, ignorance, suppression, and deletion  

(217).  

The majority of the human tumor-antigens characterized to date are derived from 

non-mutated self-proteins (85). TRP-2 is a non-mutated, self-protein (melanoma 

associated self-antigen) with a low immunogenicity that is expressed by both 

melanocytes and melanomas. It is an epitope recognized by both human and murine 

CTLs and is presented by the major histocompatibility class I haplotypes HLA-A0201 

and H-2K
b
, respectively (85, 217, 218). Vaccination with recombinant TRP-2 

protein-pulsed dendritic cells (DCs) induced TRP-2-specific CTLs and immunity 

against B16 tumor (218, 219). In addition, vaccination with TRP-2 peptide-loaded 
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DCs delayed B16 tumor growth and prolonged mouse survival (219, 220). Analysis of 

the response in treated mice revealed elevated levels of CD8
+
 T cells specific for a 

peptide consisting of residues 180-188 of TRP-2 (TRP-2180-188). There was no 

evidence of reactivity to the melanocyte antigens gp100, tyrosinase, 

MART-1/Melan-A or TRP-1 (219, 221). The development of effective antitumor 

responses is normally constrained by low-avidity, tumor-specific CTLs that are unable 

to eradicate the tumor. 

In recent years, T cell receptor transgenic (TCR-Tg) mouse models have provided 

crucial new insights into mechanisms driving vitiligo and effective melanoma 

immunotherapy. The pmel-1 CD8 TCR-Tg mouse was the first of such models, 

possessing a TCR specific for gp10025-33 in the context of D
b 

(222, 223). In addition to 

Pmel mice, a TRP-2 specific TCR-Tg mouse with specificity for TRP-2180-188 (termed 

clone 37) was more recently generated. These mice do not develop spontaneous 

vitiligo, and adoptive transfer of naïve Tg T cells fails to induce rejection of 

established B16 tumors. The low potency of these cells may be a reflection of a lower 

avidity TCR, as clone 37 was originally raised by vaccination of wild-type mice with 

murine TRP-2 (217, 222). A third model with specificity for Tyr369-277 in the context of 

HLA-A2.1 expresses the TCR from a CD8 T cell clone that was isolated following 

vaccination of albino (tyrosinase-deficient) HLA-A2.1 transgenic mice (224, 225). In 

contrast to Pmel, clone 37 mice and Tyr369-277 TCR Tg mice develop robust vitiligo 

(222). A fourth model generated in 2008 represents an MHC class II-restricted, TCR 

transgenic mouse model in which CD4
+
 T cells recognize a novel epitope in TRP-1. 

Th1 cells are the most important in tumor rejection, whereas Th17-polarized cells 

more effectively mediated destruction of advanced B16 melanoma. Their therapeutic 

effect was critically dependent on IFN- production (226). 

 

6.1 Memory T cells 

 

Memory cells have several functional properties that distinguish them from naive 

cells, such as (a) an ability to respond to lower antigen concentrations, (b) faster 

proliferation following antigenic stimulation, (c) more rapid display of effector 

functions, (d) the potential to release a broader spectrum of cytokine, and (e) a pattern 

of adhesion molecules that allows access to peripheral tissues (227, 228). Moreover, 
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memory T cells are less dependent on costimulation provided by antigen-presenting 

cells (APCs) and can divide in the periphery long after antigen stimulation, sometimes 

even without any evidence for the persistence of their cognate antigen (227). BM of 

breast cancer patients was found to contain CD8
+
 T cells specific for peptides derived 

from breast cancer-associated proteins (227). These tumor-infiltrating cells had a 

central or effector memory phenotype and produced perforin (227). Moreover, it has 

been shown a selective homing of memory T cells to human tumors which suggests 

that tumor rejection is based on the recognition of TAA on tumor cells and dendritic 

cells by autologous specifically activated central and effector memory T cells (227). 

It has been reported that tumor cell-vaccinated mice harbor in their BM small 

numbers of dormant tumor cells and also memory T cells that provide protection 

against further tumor cell challenge (229, 230). The BM of breast cancer patients was 

enriched for tumor-specific memory T lymphocytes (231). Such T cells could be 

stimulated in vitro to produce IFN-γ and to acquire antitumor cytotoxicity in vitro and 

in vivo (227). Thus, BM could be considered as a major site for long-term persistence 

of tumor-specific memory T cells and of small numbers of dormant tumor cells that 

are kept under active host immune T cell control (228). Using a ret transgenic mouse 

melanoma model, it has been shown BM of mice without macroscopic primary 

tumors contain high frequencies of CD8
+
 T cells specific for TRP-2 and showing 

mostly effector memory phenotype (232). Moreover, increased numbers of BM 

TRP-2-specific effector memory CD8
+
 T cells were also detected in transgenic 

animals older than 20 weeks with disseminated melanoma cells in the BM and lymph 

nodes but showing no visible skin tumors and no further melanoma progression (232). 

These data indicate that functionally active BM-derived melanoma-specific memory T 

cells are detectable at the phase of microscopic tumor load, suggesting that thereby 

they could control disseminated melanoma cells (232). 

Memory CD4
+
 and CD8

+
 T cells can be divided into two subsets, TCM (Central 

memory T lymphocytes) and TEM (Effector memory T lymphocytes) are defined based 

on two distinct criteria: (a) the presence of immediate effector functions and (b) the 

expression of homing receptors that allow cells to migrate to secondary lymphoid 

organs versus non-lymphoid tissues. In mouse, central memory CD4
+ 

T cells (CD4
+
 

TCM) show CD45RB
¯
 CD62L

+
 whereas effector memory CD4

+
 T cells (CD4

+
 TEM) 

show CD45RB
¯
 CD62L

¯
 phenotype. On the other hand, central memory CD8

+
 T cells 

(CD8
+
 TCM) display CD44

high
 CD62L

+
 and effector memory CD8

+
 T cells (CD8

+
 TEM) 
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display CD44
high

 CD62L
¯
 phenotype (233). 

 

7. Tumor-induced immunosuppression 

 

In earlier stages of cellular transformation, immunosurveillance can detect and 

eliminate tumor cells. However, with a progressing tumor growth, tumor variants with 

reduced immunogenicity, and/or various acquired mechanisms to corrupt the host 

antitumor response and to escape from the host immune system, arise, survive and 

grow in the host (234-236). As a result, interactions between tumor cells and host 

immune cells in the tumor microenvironment create an immunosuppressive network 

in which CSCs might actively participate in inducing the immunosuppression and 

promoting an evasion from immunosurveillance due to their malignant potential (236). 

Cancer cells display multiple immunosuppressive mechanisms to evade T cell 

responses either by avoiding immune recognition or by disabling effector T cells 

(tumor cells can develop the lack of antigen presentation leading to tolerance or T-cell 

anergy) (123). These include alterations of components of the antigen presentation 

machinery, defects in proximal TCR signaling, secretion of immunosuppressive 

and/or pro-apoptotic factors, activation of negative regulatory pathways, and specific 

recruitment of regulatory cell populations (237), such as regulatory T cells (Tregs) 

(238-240) and myeloid-derived suppressor cells (MDSC) which may secrete 

immunosuppressive factors such as IL-10, TGF-, arginase-1 and nitric oxide (NO). 

Another mechanism which is utilized by tumor cells to block antitumor immunity 

is the induction of the exhausted phenotype of activated CD8
+
 T cells through PD-L1 

(B7-H1 or CD274) expression (216, 241-243). The expression of PD-L1 has been 

reported on solid tumor cells including melanoma cells (123, 244, 245). Moreover, 

murine and human tumor cells up-regulated PD-L1 upon IFN- stimulation, which led 

to the failure of tumor eradication (246, 247). Importantly, the expression of PD-L1 

on leukemia cells has been reported as a marker of tumor dormancy (248, 249). Some 

other molecules such as CTLA-4 (CD152) (250-252), CD39 (ectonucleoside 

triphosphate), CD73 (253-255), and CCR4 (256-259), expressed on human tumor 

cells, including melanoma cells have been documented to impair anti-tumor 

responses. 
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Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) is a cell surface receptor 

that behaves as a negative regulator of the proliferation and the effector function of T 

cells. Therefore, the negative role of CTLA-4 on T-cell activation contributes to the 

physiologic termination of the immune response. CTLA-4 inhibitory function occurs 

upon interaction with its ligands CD80 (B7.1) and CD86 (B7.2), expressed on APCs, 

resulting in inhibition of IL-2, IFN-, IL-4 cytokines production, IL-2 receptor 

expression and cell cycle progression (252). It has been described that CTLA-4 is 

constitutively expressed on several tumor cell lines including breast, colon, renal, lung, 

ovarian, uterine, bladder carcinoma, neuroblastoma and melanoma and can be used to 

trigger apoptosis upon ligand interaction (252). The chemokine receptor CCR4 is 

preferentially express on certain immune cells and some hematological tumor cells 

(leukemia and lymphoma cells), which play pivotal roles in suppression of host 

immune response. The selective expression of CCR4 on Th2 and Treg cells is 

important in regulating immune balance (256). Tregs preferentially express CCR4 

compared to conventional T cells in both mice and humans (257, 260). The binding of 

CCL17 and CCL22 to CCR4 helps to guide Tregs toward DC. This interaction can 

suppress DC-mediated immune responses (257, 261). Aberrant expression of CCR4 in 

human gastric cancer contributes to tumor-induced immunosuppression (256). 

Another mechanism that is used by tumors to evade immunosurveillance is the 

generation of adenosine within the tumor microenvironment, which potently 

suppresses antitumor T cell responses (259). Adenosine within the tumor is generated 

by CD73, a membrane-bound nucleotidase that is expressed by tumor cells, 

suppressive immune subsets such as Tregs and MDSC and endothelial cells. Recent 

evidence suggests that targeted inhibition of CD73 has the potential to reduce 

tumorigenesis and metastasis, as well as to enhance the potency of T-cell-direct 

therapies (259). As CD73, CD39 is an ecto-enzyme which coordinately works with 

CD73 to degrade ATP leading to the extracellular adenosine generation in the tumor 

microenvironment. Extracellular adenosine promotes tumor growth by limiting 

antitumor T-cell immunity via adenosine receptor signaling (254, 255). 
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8. Ret transgenic mouse spontaneous melanoma model 

 

Conventional mouse melanoma models (e.g., B16) are based on the 

transplantation of tumor cells, in which the natural history of the disease is not 

comparable with the clinical situation In contrast to transplantation models, the 

recently described ret transgenic mouse model showed similarity to human melanoma 

with respect to histopathology and clinical development (232, 262, 263). Mice 

expressing the human ret proto-oncogene under the control of the mouse 

metallothionein-I (MT) promoter-enhancer in melanocytes develop spontaneously 

malignant cutaneous melanoma metastasizing to lymph nodes, lungs, brain, kidney, 

and spleen. This metastatic profile resembles that of human malignant melanoma (262, 

263). Overexpression of Ret kinase is associated with the activation of other kinases 

such as mitogen-activated protein kinase (MAPK) and c-Jun as well as matrix 

metalloproteinases located downstream of the ret kinase (262, 264-266). The 

activation of Ras-Raf pathway induces the degradation of p27. Because p27 cannot 

inhibit the activity of cyclinD1-CDK4 complexes, these complexes are able to 

phosphorylate pRb. Therefore, pRb is completely inactive and E2F transcription 

factor remains active, allowing the progression of the cell-cycle from quiescence to 

the proliferative state (267). Furthermore Raf activates cyclin D1-CDK4 complexes 

which lead to cell proliferation (268, 269). 
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II.  Aims of the study 

 

CSCs could represent disseminated dormant tumor cells without clinical signs of 

tumor progression. Disseminated dormant tumor cells in the bone marrow (BM) of 

mice without macroscopic primary skin tumor could be involved in the maintenance 

of memory CD8
+
 T cells. The objective of this work was to investigate the 

interactions between dormant tumor cells and memory T cells in the bone marrow 

(BM) of ret transgenic mice and to determine whether dormant tumor cells share 

characteristics and properties of CSCs. The following points were addressed: 

a) To examine the expression of putative cancer stem cell markers in primary tumors 

and lymph nodes metastasis. 

b) To test the localization of TRP-2
+
CD133

+
 melanoma cells in primary tumors. 

c) To investigate the immunosuppressive, metastatic and angiogenic profile of 

CD133
+
 melanoma cells. 

d) To characterize the dormant state of disseminated TRP-2
+
CD133

+
 melanoma in 

the BM. 

e) To detect the frequency of dormant melanoma cells either surrounded by or 

co-localized with memory CD4
+
 T cells and memory CD8

+
 T cells in the BM. 

f) To identify TRP-2-specific and perforin-producing CD8
+
 T cells co-localized with 

dormant melanoma cells in the BM. 

 

 

 

Aims of the study 
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III. Materials and methods 

9. Materials 

9.1 Antibodies used for flow cytometry 

 

Specificity Conjugated Clone Isotype Company 

CD133 PerCp-eFluor710 134A rat IgG1, eBioscience 

CD133 PE 134A rat IgG1, eBioscience 

CD133 FITC 134A rat IgG1, eBioscience 

CD133 Alexa Fluor 488 134A rat IgG1, eBioscience 

CD31 PE-Cy7 390 rat IgG2a, eBioscience 

CD31 FITC 390 rat IgG2a, BD 

CD31 APC MEC 13.3 rat IgG2a, BD 

CD45.2 APC-Cy7 104 mouse IgG2a, BD 

CD45.2 PerCpCy5.5 104 mouse IgG2a, BD 

CD45.2 FITC 104 mouse IgG2a, BD 

ret PE 132507 IgG1 R & D Systems 

TRP-2 purified polyclonal IgG Abcam 

CD20 PE AISB12 rat IgG2a eBioscience 

CD24 PE MI/69 rat IgG2b, eBioscience 

CD34 Alexa Fluor 647 RAM34 rat IgG2a, BD 

CD39 PE-Cy7 24DMS1 rat IgG2b, eBioscience 

CD44 PE IM7 rat IgG2b, BD 

CD44 FITC IM7 rat IgG2b, BD 

CD73 FITC AD2 mouse IgG1, eBioscience 

VEGFR2/CD309 PE Avas121 rat IgG2a, BD 

CD152/CTLA-4 PE UC10-4F10-11 armenian hamster 

IgG1, 

BD 

CD166 PE eBioALC48 rat IgG2a, eBioscience 

CD183/CXCR3 APC CXCR3-173 armenian hamster 

IgG 

Biolegend 

CD184/CXCR4 Biotin 2B11/CXCR4 rat IgG2b, BD 

CD194 /CCR4 APC 2G12 armenian hamster 

IgG 

Biolegend 

CD271 FITC MLR-2 IgG2a Stem Cell 

Biotechnologies 

CD271 Alexa Fluor 647 C40-1457 mouse IgG1,κ BD 
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CD274 /PD-L1 APC 10F.9G2 rat IgG2b, Biolegend 

ABCB5 purified polyclonal rabbit anti-mouse Rockland 

Nestin purified -------- rabbit anti-mouse Sigma 

HIF-1α CFS 241812 mouse IgG1 R & D Systems 

HIF-1 α PE 241812 mouse IgG1 R & D Systems 

Fc block 

(CD16/CD32) 

Purified 

 

2.4G2 rat IgG2b, BD 

Anti-biotin PE Streptavidin -------- -------- BD 

anti-rabbit Alexa Fluor 488 -------- -------- Invitrogene 

 

9.2 Antibodies used for immunofluorescence 

 

Specificity Conjugated Specie 

reactivity 

Clone Isotype Company 

CD133 purified rat 

anti-mouse 

134A rat 

IgG1, 

eBioscience 

TRP-2 purified rabbit anti 

mouse 

policlonal --------- Abcam 

H-2k
b
TRP-2180-188 

Dextramer 

R-PE mouse -------- -------- Immudex 

CD31 purified rat 

anti-mouse 

MEC 13.3 IgG2a, BD 

Ki67 Alexa Fluor 

647 

anti-mouse B56 IgG1 BD 

p16 purified mouse 

anti-mouse 

-------- IgG1 Abbiotec 

p27 purified mouse 

anti-mouse 

57/Kipl/p27 IgG1 BD 

PCNA purified mouse 

anti-mouse 

24/PCNA IgG1 BD 

CD4 Alexa Fluor 

647 

rat 

anti-mouse 

RM4-5 IgG2a, Biolegend 

CD8 Alexa Fluor 

647 

rat 

anti-mouse 

53-6.7 IgG2a, Biolegend 

CD44 Alexa Fluor rat IM7 IgG2b, Biolegend 
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488 anti-mouse 

CD45RB FITC rat 

anti-mouse 

C363-16A IgG2a, Biolegend 

Perforin FITC rat 

anti-mouse 

CB5.4 IgG2a Abcam 

IFN- purified rat 

anti-mouse 

R4-6A2 IgG1, eBioscience 

anti-rabbit Alexa Fluor 

488 

goat 

anti-rabbit 

-------- -------- Invitrogene 

anti-rat Alexa Fluor 

555 

goat anti-rat -------- -------- Invitrogene 

anti-rat Alexa Fluor 

594 

goat anti-rat -------- -------- Invitrogene 

anti-rabbit Alexa Fluor 

405 

goat 

anti-rabbit 

-------- -------- Invitrogene 

 

9.3 Chemicals 

 

Component Abbreviation Company Catalog number 

Bovine serum albumin BSA Sigma 7030-50G 

Dimethylsulfoxid DMSO Merck 109678 

Ethylenediaminetetra- 

acetic acid 

EDTA GIBCO 15575-098 

100% acetic acid CH3COOH Merck 100063 

Fetal bovine serum FBS PAN Biotech 3702-P260718 

Phosphate buffered saline PBS PAA H15-002 

Penicillin / Streptomycin P/S PAA P11-010 

Trypan blue solution  Sigma T8154 

Tween20  Sigma P-2287 

Goat serum  GIBCO PCN5000 

Collagenase II  Gibco 1701-015 

Collagenase IV  Gibco 17104-019 

DNAase-I  Sigma 056K7680 

Gelatin  Merck 1.04078.1000 

methanol  Merck  
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Tissue-Tek  Sakura 116600003 

acetone  Merck 1.00014.2511 

Glycine Gly, G Roth 3908.1 

Roswell Park Memorial 

Institute medium 1640 

RPMI-1640 PAA 10 236 276 001 

Fetal calf serum FCS PAA  

goat serum gs PAA  

4',6-Diamidine-2'- 

phenylindole dihydrochloride 

DAPI Roche 10236276001 

Propidium diodide PI BD 51-66221E 

SytoxRed         Invitrogene S34859 

Hoechst 33258 (blue dye)  Sigma 861405 

Superfrost-plus slides Thermo 

scientific 

J1800AMNZ 

Fluoromount-G  SoutherBiotech 0100-01 

 

9.4 Routine laboratory materials, equipment and instruments 

Devices and equipment 

 

Equipment Model Company 

Flow Cytometry FACS Canto II BD 

Fume hood STA 120 1297 Prutscher 

Refrigerator (-80 °C) HeraFreeze Heraeus 

Refrigerator (-20 °C) Premium LiebHerr 

Incubator HeraCell Heraeus 

Inverse microscope  Leica 

Fluoresce microscope DC500 Leica 

Microscope camera  Canon 

Confocal microscope DMRE Leica 

Confocal microscope LSM-710 Carls Zeiss 

Microtome RM 2125 RT Leica 

Microtome water bath HI 1210 Leica 

Microwave oven R-352 Sharp 

pH meter 766 Calimatic 
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Photometer UltroSpec 3100pro Amersham 

Laminar flow cabinet Hera Safe Thermo Electron 

Cooperation 

Container for liquid 

nitrogen 

Isotherm KGW 

Liquid nitrogen tank Biosafe MD Messer 

Timer  Oregon Scientific 

Vortex REAX top Heidolph 

Vortex Vortex Genie 2 Scientific Industries 

Balance BP 3100P Sartorius 

Water bath DC3 HAAKE / GFL 

Centrifuger Labofuge 400R Heraeus 

Centrifuger Biofuge pico Heraeus 

Centrifuger Biofuge primo R Heraeus 

Centrifuger Varifuge K Heraeus 

Centrifuger RT 7 Plus Thermo Electron 

Cooperation 

 

Routine laboratory materials 

 

Material / Instrument Model Company 

Needles 0,4x19 mm Mikrolance BD 

Needles 0,3x13 mm Mikrolance BD 

Cryo tubes Cryos Greiner 

2-20 μl, 20-200 μl, 

200-1000 μl; Pipettes with 

adjustable volumes 

 Rainin 

Coverglass 24 x 24 mm, Roth  

Tubes 15 ml / 50 ml Polypropylen Falcon Falcon 

0.5, 1.5 & 2 ml microtubes  Eppendorf 

1, 5 ml Syringes  BD 

Cell culture plates 96-well-Platte Greiner 

100 μm cell strainer Nylon BD 
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9.5 Buffers 

9.5.1 Buffers for flow cytometry 

 

To prepare single tumor cell suspensions from mLN, we used FACS buffer-1 

which contained 2mM EDTA, and 0.1% BSA in PBS without calcium and magnesium 

(PBS
without Ca/Mg

). FACS buffer-2 consisted of 2mM EDTA, 0.1% BSA, in 1X 

permeabilization buffer (eBioscience Cat. 00-8333). Both FACS buffer-1 and -2 

enable to keep single tumor cell suspensions, avoiding clump formation. We used 

Foxp3 Staining Buffer Set (cat number 00-5523). Fixation /Permeabilization 

Concentrate (Cat. 00-5123). Fixation / Permeabilization diluent (Cat. Nr. 00-5223). 

Permeabilization buffer (10X) (Cat. 00-8333). 

 

9.5.2 Buffers for immunofluorescence 

 

We prepared immunofluorescence buffer (IF-buffer) diluting 0.2% gelatin in PBS. 

IF-buffer-goat serum (IF-gs) consisted of 2% goat serum in IF-buffer. 

 

9.6 ret transgenic spontaneous melanoma mouse model 

 

Mice (C57BL/6 background), which express human ret transgene in melanocytes 

under the control of mouse metallothionein I promoter-enhancer were crossed and 

kept under specific pathogen-free conditions in the animal facility of German Cancer 

Research Center (Heidelberg, Germany). Experiments were performed in accordance 

with government and institute guidelines and regulations. The general performance of 

mice was monitored daily. Spontaneous tumor development was assessed 

macroscopically. 

 

10. Methods 

10.1 Single-cell suspension preparation 

 

Fresh tumors and lymph nodes collected from ret transgenic tumor bearing mice 

were immediately transferred into PBS with calcium and magnesium (PBS with
 Ca/Mg

) 

and briefly stored on ice. After removal of necrotic tissue and fat, tumor biopsies were 

mechanically dissociated mincing with a scalpel into small pieces and enzymatically 
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digested with 1:1 (v/v) of a fresh solution of 0.25% collagenase II, 0.25% collagenase 

IV and 0.05% DNAase-I in PBS
without Ca/Mg

 (this PBS reduces the collagenase activity) 

for 15 min at 37°C (shaking gently every 3 min). Briefly, these two specimens were 

washed with 10 ml of RPMI-10 FCS% and filtrated through 100 μm nylon mesh. 

Lysis buffer of red blood cells was not used. Lysis of red blood cells was made in the 

permeabilization step, in order to preserve cell surface antigens.  

 

10.2 Flow cytometry 

 

Single tumor cell suspensions were fixed and permeabilized with Foxp3 staining 

buffer set (fixation/permeabilization concentrate, and fixation/permeabilization 

diluent) for 30 min at 4°C. Then cell suspension was washed twice with FACS 

buffer-2 and incubated with 1L Fc block /1x10
6
 cells for 20 min at 4°C and stained 

with polyclonal / monoclonal antibodies for 40 min at 4°C. Acquisition was done by 

six-color flow cytometry using a Canto II with FACS-Diva software (Bioscience) and 

dead cell and duplex exclusion based on scatter profile. FlowJo software (Tree Star) 

was used to analyze at least 1X10
6
 events. Data were expressed as dot plots or 

histograms. 

 

10.3 Immunofluorescence 

 

CD133
+
TRP-2

+
 melanoma cells in primary skin tumors, mLN and BM 

 

Primary tumors express melanoma associated antigens like tyrosinase, tyrosinase 

related protein (TRP)-1, TRP-2 and gp100, which can be used for the melanoma 

detection. In this study, CD133
+
TRP-2

+
 melanoma cells were analyzed in primary 

skin tumors and mLN of tumor bearing mice using crysections and triple 

immunofluorescence (IF)-sequential protocol. The tissue specimens were surrounded 

and covered with Tissue-Tek and gradually frozen with isopentan up -80°C (first, 

samples were exposed with isopentan for 10 min at -20°C; second, samples in 

isopentan were placed within liquid nitrogen for 10 min at -150°C; third, samples 

embedded in tissue-Tek were exposed directly to liquid nitrogen for 10 min and 

preserved at -80°C). Consecutive cryostat sections 5 m in thickness were fixed and 

permeabilized with methanol-acetone (7:3) for 10 min at -20°C, incubated with 0.1M 
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of glycine in PBS for 30 minutes at 4°C and first blocking step with 10% goat serum 

in IF-buffer was done for 30 min at 37°C. The samples were washed twice with 

IF-buffer and stained with first primary monoclonal rat anti-mouse antibodies against 

CD133 (12 g/ml in IF-gs) overnight at 4°C, washed 5 times with IF-buffer and 

incubated with first secondary goat anti-rat antibodies labeled with Alexa-Fluor 594 

(1:500 in IF-gs) for 1h at 4°C. The samples were washed 4 times with IF-buffer and 

second blocking step with 10% goat serum in IF-buffer was done. 

 For the identification of TRP-2, the samples were incubated with second primary 

polyclonal rabbit anti-mouse antibodies against TRP-2 (1:2000 in IF-gs) for 1h at 4°C, 

washed 4 times with IF-buffer and incubated with second secondary goat anti-rabbit 

antibodies labeled with Alexa-Flour-488 (1:1000 in IF-gs) for 1h at 4°C. The samples 

were washed 4 times with IF-buffer and nuclei were stained with 

4,6-diamidino-2-phenylindole (DAPI) (1:3000 in PBS) for 3 min at room temperate 

(RT). As control we incubated the samples with first secondary goat anti-rat 

antibodies labeled with Alexa-Fluor 594 and second secondary goat anti-rabbit 

antibodies labeled with Alexa-Flour-488 as well as specimens of healthy skin and 

lymph nodes from wild type mice. Confocal microscopy was acquired using a 

confocal laser scanning microscope LSM-710 (Carl-Zeiss, Jena, Germany) under a 40 

times oil-immersion objective and data were analyzed by ZEN software (Carl-Zeiss, 

Jena, Germany).  

BM specimens were isolated from femurs by aspiration and 1x10
5
 BM cells 

/sample were prepared using cytospin technique. The specimens were fixed and 

permeabilized with methanol-acetone (7:3) for 10 min at -20°C. For CD133, TRP-2 

and nuclei staining, we performed triple IF-sequential protocol as well, such as 

described above. We analyzed in total 10
6
 BM cells per mouse from 20 mice without 

macroscopic skin tumors and 20 mice bearing macroscopic tumors. 

 

Cell cycle status of CD133
+
TRP-2

+
 melanoma cells in the BM 

 

BM samples were isolated from femurs by mechanical dissection, mounted on 

glasses through smear technique, fixed and permeabilized with methanol-acetone (7:3) 

for 10 min at -20°C. For CD133 and TRP-2 staining, we performed triple 

IF-sequential protocol as well, such as described above, with the exception of nuclei 
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which were stained with propidium iodide (1:1000 in PBS) for 10 min at the end of 

the whole staining. For the analysis of cyclin-dependent kinase inhibitors (CDKI) the 

following primary antibodies were used: mouse anti-p16 (1:50 in IF-gs) and mouse 

anti-p27 (1:100 in IF-gs). As indicators of cell cycle progression, the primary mouse 

antibodies against PCNA (1:100 in IF-gs), and mouse antibody anti-Ki67 labeled with 

Alexa Fluor 647 (1:10 in IF-gs). Isotype-matched irrelevant antibodies served as 

negative controls. For the identification of the antibodies mouse anti-p16, mouse 

anti-p27 and mouse anti-PCNA we used the secondary antibodies goat anti-mouse 

labeled with Alexa Fluor 405 (1:500 in IF-gs). The table 1 illustrates the panel of dyes 

used. 

 

Table 1. Immunoflorescence staining for the determination of the dormancy status of 

CD133
+
TRP-2

+
 melanoma cells in the BM of ret transgenic mice. 

 
 

Blood vessels staining in primary tumors 

 

To analyze the vascularization in primary skin tumors of ret transgenic mice, we 

performed cryosections and IF staining. Cryosections were prepared, fixed, 

permeabilized and preserved as described above. Then, the specimens were incubated 

with 0.1M of glycine in PBS for 30 minutes at 4°C and blocked with 10% goat serum 

in IF-buffer for 30 min at 37°C. The samples were washed twice with IF-buffer and 

stained with primary monoclonal rat anti-mouse antibodies against CD31 (1:50 in 

IF-gs) for 2h at 4°C, washed 5 times with IF-buffer and incubated with secondary goat 

anti-rat antibodies labeled with Alexa-Fluor 555 (1:250 in IF-gs) for 1.5h at 4°C. The 



Materials and methods 

44 

samples were washed 4 times with IF-buffer and nuclei were stained with DAPI 

(1:3000 in PBS) for 3 min at RT. As control we incubated the samples with secondary 

goat anti-rat antibodies labeled with Alexa-Fluor 555 as well as specimens of healthy 

skin from wild type mice. 

 

Co-localization of CD133
+
 / CD133¯ tumor cells with T cells in the BM 

 

To study the interaction between dormant tumor cells and memory T cells in the 

BM of ret transgenic mice, we used smear technique and IF staining. For CD133 and 

TRP-2 staining, we performed triple IF-sequential protocol such as described above, 

with the exception of nuclei was not stained and the secondary goat anti-rabbit 

antibodies labeled with Alexa Fluor 405 were used to detect antibodies rabbit 

anti-TRP-2. Third blocking step with 10% goat serum in IF-buffer was included and 

the samples were washed 3 times with IF-buffer. We analyzed smears from BM of 

mice without and with macroscopic primary tumors. Then, the specimens were 

stained using a multicolor IF protocol for the identification of memory T cells as 

described below. 

 

Memory CD4
+
 T cells 

 

For the identification of memory CD4
+
 T cells, the samples were incubated with 

rat monoclonal antibodies against CD45RB labeled with FITC (1:250 in IF-gs) and rat 

monoclonal antibodies against CD4 labeled with Alexa-Fluor-647 (1:250 in IF-gs) for 

1h at RT. 

 

Memory CD8
+
 T cells  

 

For the identification of memory CD8
+
 T cells, the samples were incubated with 

rat monoclonal antibodies against CD44 labeled with Alexa-Fluor-488 (1:250 in IF-gs) 

and rat monoclonal antibodies against CD8
+
 labeled with Alexa-Fluor-647 (1:250 in 

IF-gs) for 1h at 4°C (Table 2A). 
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TRP-2-specific-, perforin-producing CD8
+
 T cells 

 

The samples were incubated with rat monoclonal antibodies against CD8
+
 labeled 

with Alexa-Fluor-647 (1:250 in IF-gs), rat monoclonal antibodies against perforin 

labeled with FITC (1:500 in IF-gs) and H-2K
b
-TRP-2180-188 Dextramer labeled with 

R-PE (Table 2B). 

 

IFN--, perforin-producing CD8
+
 T cells  

 

The samples were incubated with rat monoclonal antibodies against IFN- (1:250 

in IF-gs) for 1h at 4°C, washed 4 times with IF-buffer and stained with secondary goat 

anti-rat antibodies labeled with Alexa-Flour-555 (1:500 in IF-gs) for 1h at 4°C. Briefly, 

the samples were washed 4 times with IF-buffer and stained with rat monoclonal 

antibodies against CD8
+
 labeled with Alexa-Fluor-647 (1:250 in IF-gs), and rat 

monoclonal antibodies against perforin labeled with FITC (1:250 in IF-gs) (Table 2C 

and 2D). 

 

Experimental design 

 

Table 2. Immunoflorescence staining for memory CD4
+
 and memory CD8

+
 T cells. 
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11. Statistical analysis 

 

We used software Flowjo (Version 7.2.4), Tree Star, Inc., Ashland, USA. All data 

are shown as mean ± SEM for the indicated number of independent experiments. 

Results were assessed with a Student´s t test and Mann-Whitney U test. Statistical 

analyses were performed using Graph-Pad Prism software (San Diego, USA). All 

statistical tests were two-sided. A value of p < 0.05 was considered statistically 

significant. 
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Introduction Results 

IV. Results 

 

There is an intensive debate on protocols for preparing single cell suspensions 

from primary tumor specimens for flow cytometric analysis of CSCs (103, 125, 270). 

A great majority of routine procedures consist of mechanical dissociation followed by 

enzymatic disaggregation where tumor specimens are incubated longer at 37°C 

(overnight as maximum to 0.75-2 h as minimum). Most of the enzymatic protocols 

use trypsin, which is tremendously aggressive because cleave proteins on the cells 

surface, removing the antigens that are under investigation (124, 163). Although other 

protocols use collagenase II and collagenase IV which are much less aggressive, 

tumor specimens are incubated longer (0.75-2 h) or followed by short incubation with 

low concentration of trypsin (124). Hence reliable methods are required for avoid the 

excision of antigens used as CSC markers. We applied a gentle protocol to prepare 

single tumor cell suspensions by incubating tumor tissues with collagenase II, 

collagenase IV and DNAase for a brief period of incubation at 37°C (15 minutes) 

shaking gently to ensure the preservation of antigens on the cell surface. Applying this 

protocol we obtained detection of CSCs and a higher index of live cells (more than 

95%). 

We investigated cancer stem-like cells in ret transgenic mice using CD133 

(Prominin-1), which has been widely shown to be a marker of cancer stem-like cells 

in various solid tumors, including melanomas (168-181). Freshly isolated cells from 

primary skin tumors and mLN were analyzed by FACS staining: leukocytes and 

endothelial cells were excluded using CD45.2 and CD31 staining respectively. Duplex 

exclusion and dead cells were based on scatter profile. Tumor cells where stained with 

antibodies for TRP-2, CD133, and Ki67 (proliferation marker). Fig. 1 and 2 show the 

FACS staining strategy for the analysis of CD133
+
Ki67

+
 tumor cells in primary skin 

tumors and mLN, respectively. 

The data revealed that mLN contained almost 5-fold higher numbers of 

TRP-2
+
CD133

+ 
melanoma cells in comparison with primary skin tumors (Fig 3A). We 

also found that mice with larger primary tumors have more TRP-2
+
CD133

+
 melanoma 

cells both in tumors and mLN than mice with smaller primary tumors (Fig. 3B, C). 
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Figure 1. CD133
+
 expression in primary tumors. Single-cell suspensions prepared from 

tumors of ret transgenic mice were stained with antibodies for CD45.2, CD31, TRP-2, CD133 

and Ki67 followed by flow cytometry. (A) Duplex and dead cells were excluded based on 

scatter profile, then leukocytes and endothelial cells were excluded using CD45.2 and CD31 

markers respectively. (B) Tumor cells were gated based on TRP-2
+
 cells, TRP-2

+
CD133

+
 

cells and TRP-2
+
CD133

+
Ki67

+
 subpopulations. The fluorescence minus one (FMO) controls 

were made for all dyes. Representative dot plots are shown. Tu = primary tumor. The red 

arrows indicate the flow of the dot plots. 
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Figure 2. CD133
+ 

expression in metastatic lymph nodes. Single cell suspensions prepared 

from tumors of ret transgenic mice were stained with antibodies for CD45.2, CD31, TRP-2, 

CD133 and Ki67 followed by flow cytometry. (A) Duplex and dead cells were excluded 

based on scatter profile, then leukocytes and endothelial cells were excluded using CD45.2 

und CD31 markers respectively. (B) Tumor cells were gated based on TRP-2
+
 cells, 

TRP-2
+
CD133

+
 cells and TRP-2

+
CD133

+
Ki67

+
 subpopulations. The fluorescence minus one 

(FMO) controls were made for all dyes. Representative dot plots are shown. mLN= metastatic 

lymph nodes. The red arrows indicate the flow of the dot plots. 

 

12. CD133
+
 melanoma cells are in a dormant state in larger primary skin tumors 

 

It has been reported that in melanoma patients treated with chemo- and 

radiotherapy, the emersion of tumors from residual tumor cells, which survived 

long-term in a dormant state led to tumor relapse (26, 190). We assumed that dormant 

tumor cells may share characteristics and properties with CSCs. To investigate the 

dormancy status of CD133+  melanoma cells, the proliferative marker Ki67 was used 
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to distinguish between proliferating and quiescent (dormant) melanoma cells. We 

found that CD133+  melanoma cells from primary and mLN had an equal rate of 

proliferation (Fig. 3D). Interestingly, the progression of primary tumors was 

demonstrated to be correlated with a reduced amount of CD133+  melanoma cells in 

proliferative state (checked by the expression of Ki67) (Fig. 3E). In contrast, CD133+  

melanoma cells in mLN from mice with larger primary tumors were highly 

proliferating (Fig. 3F). We conclude that CD133 is expressed by a fraction of TRP-2+  

melanoma cells (less than 1.5 %) and their dormant state is dependent on the weight 

of primary tumors. 

 

 

Figure 3. CD133
+ expression in ret transgenic mice. Single-cell suspensions prepared from 

freshly isolated primary tumors and mLN of ret transgenic mice were stained with antibodies 

for CD45.2, CD31, TRP-2, CD133, and Ki67 followed by flow cytometry. Gating strategy 

was done as described in figures 1 and 2. (A) CD133
+
 melanoma cell numbers in primary 

tumors (Tu) compared to mLN. The percentage of CD133
+
 melanoma cells was plotted 

against tumor weights in (B) primary tumors and (C) mLN. (D) CD133
+
KI67

+
 melanoma cell 

numbers in primary tumors (Tu) compared to mLN. The percentage of CD133
+
KI67

+
 

melanoma cells was plotted against tumor weights in (E) primary tumors and (F) mLN. ns= 

not statistically significant. 
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13. CD133
+
 melanoma cells are located in peripheral areas in primary tumors 

 

We performed serial cryosections of primary tumors followed of 

immunofluorescence staining for TRP-2, CD133, Ki67 and DAPI. We observed that 

CD133+  melanoma cells form clusters and seem to be predominantly located in the 

peripheral tumor areas (Fig. 4). 

 

Figure 4. Localization of CD133+melanoma cells in primary tumors of ret transgenic 

mice. Consecutive cryosections of tumors were stained with antibodies for TRP-2, CD133, 

and Ki67 and counterstained with DAPI. (A) Tumor section showing the areas (white squares) 

where CD133+melanoma cells were found. (B, C) CD133 positive cells (red), Ki67 positive 

cells (gray), and nuclei (blue). Merge showing the low rate of proliferation of CD133
+
 

melanoma cells. 
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14. CD133
+
 melanoma cells seem are localized in aberrant vascularized areas 

 

Neovascularization is critical for the tumor optimal growth, cell survival and 

efficient tumor dissemination (271, 272). CSCs may create the niche necessary for the 

maintenance of tumor cells (273, 274). Aberrant architecture of blood vessels may be 

an indicator of tumorigenicity (271, 272). To investigate the structural distribution of 

blood vessels, especially in areas where CD133+  melanoma cells are localized, we 

performed the IF staining of primary tumors using antibodies for CD31 to visualize 

the tumor vascularization. We found that aberrant blood vessels were variable in size, 

shape and branching pattern, and were not organized in conventional hierarchy of 

arterioles, capillaries and venules. These blood vessels have a predominant 

distribution in peripheral areas of tumors (Fig. 5A-C). These areas might be the niche 

for CD133+  melanoma cells within the tumor. Further experiments are needed to 

confirm these observations. 

 

 

  

 

Figure 5. Distribution of endothelial 

cells in primary tumors. Consecutive 

cryosections of tumors were stained with 

antibodies for CD31 (orange) and 

counterstained with DAPI (blue). (A) 

Tumor section showing one tumor sphere 

containing blood vessels. (B) Detail view 

of vascularized areas (green square). (C) 

Distribution of tumor blood vessels. 
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15. HIF-1 and CD271 expression in CD133
+ 

melanoma cells 

 

It has been reported that restricted oxygen conditions increase the CSC fraction 

and promote acquisition of a stem-like state (148). CSCs might critically be 

dependent on hypoxia-inducible factor 1 (HIF-1) for survival, self-renewal and 

tumor growth (148, 149). To examine the expression of HIF-1, single tumor cell 

suspensions isolated from primary skin tumors and mLN were analyzed by FACS 

staining (Fig. 6). The data revealed that mLN nodes contain elevated numbers of 

TRP-2
+
CD133

+
HIF-1

+
 melanoma cells in comparison with primary tumors (Fig. 

7A). We observed that larger primary tumors had the tendency to contain higher 

numbers of TRP-2
+
CD133

+
HIF-1

+
 melanoma cells (Fig. 7B), whereas the frequency 

of these cells was decreased in mLN from animals with larger tumors (Fig. 7C). 

Interestingly, TRP-2
+
CD133

+
HIF-1

+ 
melanoma cells had an elevated capacity to 

proliferative in primary tumors in comparison with those in mLN (Fig. 7 D). These 

findings suggest that HIF-1 plays a crucial role in the maintenance of CD133+  

melanoma cells at the beginning of the tumor formation. In fact, we observed an 

elevated number of TRP-2
+
CD133

+
HIF-1

+
 melanoma cells in smaller primary 

tumors and mLN with an increased rate of proliferation (Fig. 7 E, F). 

Figure 6. HIF-1 expression in 

CD133
+ 

melanoma cells. Freshly 

isolated melanoma cells from 

primary tumors and mLN were 

evaluated by flow cytometry. 

Endothelial cells and leukocytes were 

excluded using CD31 and CD45.2 

markers respectively and HIF-1
+ 

expression on TRP-2
+
CD133

+
 tumor 

cells and Ki67 expression on 

TRP-2
+
CD133

+
HIF-1

+
 cells were 

analyzed in (A) primary tumors and 

(B) mLN. Representative dot plots 

are shown. 
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Figure 7. HIF-1 expression in CD133
+ 

melanoma cells. Freshly isolated melanoma cells 

from primary tumors and mLN were evaluated by flow cytometry. Endothelial cells and 

leukocytes were excluded using CD31 and CD45.2 markers respectively and HIF-1
+ 

expression on TRP-2
+
CD133

+
 tumor cells and Ki67 expression on TRP-2

+
CD133

+
HIF-1

+
 

cells were analyzed. Gating strategy was done as described in figure 6. (A) CD133
+
HIF-1

+
 

melanoma cell numbers in primary tumors (Tu) compared to mLN. The percentage of 

TRP-2
+
CD133

+
 HIF-1

+ 
melanoma cells was plotted against tumor weights in (B) primary 

tumors and (C) mLN. (D) TRP-2
+
CD133

+
HIF-1

+
KI67

+
 melanoma cells in primary tumors 

(Tu) compared to mLN. The percentage of TRP-2
+
CD133

+
HIF-1

+
KI67

+
 melanoma cells was 

plotted against tumor weights in (E) primary tumors and (F) mLN. 

 

CD271 has been recently described as a melanoma stem cell marker with an 

increased tumor-initiating capacity as compared with CD271¯ tumor cells (124). 

CD271 melanoma cells have shown multipotency, self-renewal capacity, to be 

maintained in several rounds of serial retransplantations and higher metastatic 

potential (125). To address the question whether the expression of CD271 in 

TRP-2
+
CD133

+ 
melanoma cells is dependent on tumor progression, melanoma cells 
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from primary tumors and mLN were stained with antibodies for CD271, CD133, Ki67 

and TRP-2 followed by flow cytometry (Fig. 8). Lymph node metastasis displayed a 

tendency to elevate the numbers of CD133
+
CD271

+
 cells in comparison to primary 

tumors (Fig. 9A). We did not observed any correlation of tumor progression for 

TRP-2
+
CD133

+
CD271

+ 
cell numbers in primary tumors and mLN (Fig. 9B, C). 

Primary tumors were found to have an elevated number of TRP-2
+
CD133

+
CD271

+
 

melanoma cells in the proliferative state in comparison to mLN (Fig. 9D). We 

observed that TRP-2
+
CD133

+
CD271

+
 melanoma cells exhibit a stable rate of 

proliferation in both early and advanced stages of tumor progression in primary 

tumors (Fig. 9E). In addition, many TRP-2
+
CD133

+
CD271

+ 
melanoma cells exhibit a 

pronounced proliferative capacity in early stages of tumor growth in mLN (Fig 9F). 

 

 

Figure 8. CD271 expression on 

CD133
+ 

melanoma cells. Freshly 

isolated melanoma cells from 

primary tumors and mLN were 

evaluated by flow cytometry. 

Endothelial cells and leukocytes 

were excluded using CD31 and 

CD45.2 markers respectively and 

CD271 expression on 

TRP-2
+
CD133

+
 tumor cells and 

Ki67 expression on 

TRP-2
+
CD133

+
CD271

+
 cells were 

analyzed in (A) primary tumors and 

(B) mLN. Representative dot plots 

are shown. 
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Figure 9. CD271 expression on CD133
+
melanoma cells. Freshly isolated melanoma cells 

from primary tumors and mLN were evaluated by flow cytometry. Endothelial cells and 

leukocytes were excluded using CD31 and CD45.2 markers respectively and CD271 

expression on TRP-2
+
CD133

+
 tumor cells and Ki67 expression on TRP-2

+
CD133

+
CD271

+
 

were analyzed. Gating strategy was done as described in the figure 8. (A) CD133
+
CD271

+
 

melanoma cell numbers in primary tumors (Tu) compared with mLN. The percentage of 

TRP-2
+
CD133

+
 CD271

+ 
melanoma cells was plotted against tumor weights in (B) primary 

tumors and (C) mLN. (D) TRP-2
+
CD133

+
CD271

+
Ki67

+
 melanoma cell numbers in primary 

tumors (Tu) compared to mLN. The percentage of TRP-2
+
CD133

+
CD271

+
KI67

+
 melanoma 

cells was plotted against tumor weights in (E) primary tumors and (F) mLN. ns= not 

statistically significant. 

 

16. CD133
+
 melanoma cells express PD-L1, CTLA-4, CD39, CCR4, VEGF-R2, 

CXCR3, CXCR4, and CD34 

 

PD-L1 (CD274), CTLA-4 (CD152), CD39, CD73, and CCR4, have been 

documented as immunosuppressive factors expressed on tumor cells (123, 244, 245, 

250-259), CXCR3 and CXCR4 have been described as master regulators of 

metastases (136, 137), whereas VEGFR is an essential factor to promote angiogenesis 
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(138, 139). CD34 was reported as a murine melanocyte stem cell maker (82). To 

examine the immunosuppressive, metastatic and angiogenic as well as the melanocyte 

stemness profile of CD133
+
 melanoma cells, primary tumors and mLN were stained 

with respective antibodies against their antigens (Fig. 10) followed by flow cytometry. 
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Figure 10. Phenotypic analysis of CD133
+
 melanoma cells. Freshly isolated melanoma 

cells from primary tumors (Tu) and mLN were evaluated by flow cytometry. (A) Endothelial 

cells and leukocytes were excluded using antibodies for CD31 and CD45.2 respectively. 

Specimens were stained with antibodies for TRP-2. Then, PD-L1, CTL-4, CD39, CCR4, 

VEGFR2, CXCR3, CXCR4, and CD34 expression was analyzed on CD133
+
 and CD133¯ 

melanoma cells. Representative histograms of cells from primary tumors are shown. (A) 

Melanocyte stemness marker, (B) metastasis-related markers and (C) 

immunosuppression-related markers. FMO CD133 = fluorescence minus one for CD133. 

CD133¯= CD133¯melanoma cells. CD133
+
 = CD133

+ 
melanoma cells. 

 
 

The data revealed that almost all studied markers were expressed on CD133
+
 

melanoma cells much stronger than on CD133¯ tumor cells (Fig. 10). CD73 

expression was absent in both CD133
+
 and CD133¯ tumor cells. In contrast, CXCR4 

and CCR4 showed similar expression on both tumor cell subsets from primary tumors, 

whereas CXCR3 showed similar expression on both subsets from mLN. We 

concluded that CD133
+
 melanoma cells exhibit immunosuppressive, metastatic, 

angiogenic and melanocyte stemness profile which might promote the establishment 

of tumor-initiating cells in primary tumors, their progression and metastasis to lymph 

nodes and distant organs. 

 

17. Analysis of HIF-1α and CD271 expression on melanoma cells 

 

Since HIF-1 and CD271 are important markers of CSCs and tumor dormancy, 

we studied their expression on melanoma cells from transgenic mice. We stained 

single tumor cell suspensions with antibodies for HIF-1, CD271, CD133, TRP-2, 

CD31, and CD45.2 followed by flow cytometry (Fig. 11). We found that mLN 

contained higher frequencies of TRP-2
+
HIF-1

+
 melanoma cells than primary tumors 

(Fig. 12A). Larger primary tumors contain a tendency to increase the numbers of 

TRP-2
+
HIF-1

+
 melanoma cells in primary tumors (Fig. 12B), but a tendency to 

diminish the numbers of TRP-2
+
HIF-1

+
 melanoma cells in mLN (fig. 12C). 

Cumulative data shown that although TRP-2
+
HIF-1

+ 
melanoma cells both in primary 

tumors and mLN had a similar rate of proliferation (Fig. 12D), we observed a higher 

rate of proliferation of TRP-2
+
HIF-1

+
 melanoma cells in early stages of tumor 

development both in primary tumors and mLN (Fig. 12E, F). 
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Figure 11. HIF-1 expression on 

melanoma cells. Freshly isolated 

melanoma cells from primary 

tumors and mLN were evaluated by 

flow cytometry. Endothelial cells 

and leukocytes were excluded using 

CD31 and CD45.2 markers 

respectively and HIF-1 expression 

on TRP-2
+ 

tumor cells and Ki67 

expression on TRP-2
+
HIF-1  

tumor cells were analyzed in (A) 

primary tumors and (B) mLN. 

Representative dot plots are shown. 
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Figure 12. HIF-1 expression on melanoma cells. Freshly isolated melanoma cells from 

primary tumors and mLN were evaluated by flow cytometry. Endothelial cells and leukocytes 

were excluded using CD31 and CD45.2 markers respectively and HIF-1 expression on 

TRP-2
+
 tumor cells and Ki67 expression on TRP-2

+
HIF-1

+
 were analyzed. Gating strategy 

was done as described in the figure 11. (A) HIF-1
+ 

melanoma cell numbers in primary 

tumors (Tu) compared to (mLN. The percentage of TRP-2
+
HIF-1

+ 
melanoma cells was 

plotted against tumor weights in (B) primary tumors and (C) mLN. (D) TRP-2
+
HIF-1

+
Ki67

+
 

melanoma cell numbers in primary tumors (Tu) compared to mLN. The percentage of 

TRP-2
+
HIF-1

+
Ki67

+
 melanoma cells was plotted against tumor weights in (E) primary 

tumors and (F) mLN. ns= not statistically significant. 
 

Analyzing CD271 expression (Fig. 13A), we found that mLN have elevated 

numbers of TRP-2
+
CD271

+
 melanoma cells in comparison with primary tumors (Fig. 

113B). Larger primary tumors contain elevated numbers of TRP-2
+
CD271

+
 melanoma 

cells in primary tumors (Fig. 13C), but a tendency to reduce the numbers of 

TRP-2
+
CD271

+
 melanoma cells in mLN (Fig. 13D). Similar amounts of 

TRP-2
+
CD271

+
 melanoma cells shown to be in proliferative phase both in primary 

tumors and mLN (Fig. 13E). Interestingly the proliferation of these cells was 

significantly lower in advanced primary tumors (Fig. 13F). In addition, CD271
+ 

melanoma cells in mLN displayed a strong tendency to diminish their proliferation 

rate in mice with larger primary tumors (Fig. 13G). 
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Figure 13. CD271 expression on melanoma cells. Freshly isolated melanoma cells from 

primary tumors and mLN were evaluated by flow cytometry. Endothelial cells and leukocytes 

were excluded using CD31 and CD45.2 markers respectively and CD271 expression on 

TRP-2
+
 tumor cells and Ki67 expression on TRP-2

+
CD271

+
 were analyzed in (A) primary 

tumors and mLN. Representative dot plot is shown. (B) CD271
+ 

melanoma cell number in 

primary tumors (Tu) compared to mLN. The percentage of TRP-2
+
CD271

+ 
melanoma cells 

was plotted against tumor weights in (C) primary tumors and (D) mLN. (E) 

TRP-2
+
CD271

+
Ki67

+
 melanoma cell numbers in primary tumors (Tu) and mLN. The 

percentage of TRP-2
+
CD271

+
KI67

+
 melanoma cells was plotted against tumor weights in (F) 

primary tumors and (G) mLN. 
 

18. Analysis of other potential cancer stem cell markers 

 

Next we examined the expression of other potential melanoma stem cell markers 

such as CD20, CD24, CD34, CD44, CD166, nestin and multidrug resistant marker 

ABCB5, in primary skin tumors and mLN by flow cytometry (Fig. 14). We found that 

primary skin tumor cells had a higher proportion of CD20+  tumor cells in comparison 

with mLN. Concerning other CSC makers, we found that nestin was constitutively 

expressed on most melanoma cells, whereas the multidrug resistance marker ABCB5 

was expressed on around 90% melanoma cells. There were significantly more 

ABCB5+  melanoma cells in primary tumors than those in mLN. The expression of 

CD166 and CD34 was detected in small amounts of cells in primary tumor and mLN 

(less than 2.5%). 
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Figure 14. Analysis of other potential melanoma stem cell markers. Freshly isolated 

primary tumor cells (Tu) and mLN were evaluated by flow cytometry. Endothelial cells and 

leukocytes were excluded using CD31 and CD45.2 markers respectively and different cancer 

stem cell markers were analyzed. (A) CD20, (B) CD24, (C) CD34, (D) nestin, (E) ABCB5, 

(F) CD166, and (G) CD34. ns = not statistically significant. 
 

19. BM contains disseminated melanoma cells 

 

In this study, TRP-2
+
CD133+  expressing cells were analyzed in the BM of tumor 

bearing mice by double and triple immunofluorescence (IF) protocol. We analyzed 

10
6
 BM cells per mouse from 20 mice without macroscopic tumors (Fig. 15A, B) and 

20 mice bearing macroscopic tumors (Fig. 15C-D). We found that tumor bearing mice 

had more TRP-2+  melanoma cells than mice without macroscopic primary skin 

tumors (Fig. 15E). The majority of TRP-2
+
 melanoma cells were in a dormant state 

(Ki67¯) (Fig. 15F). BM cells from wild type (WT) mice were used as positive control 

for the Ki67 staining (Fig. 15F). 
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Figure 15. Disseminated 

melanoma cells in the BM of 

ret transgenic mice. TRP2+  

melanoma cells in the BM of 

mice without macroscopic 

primary tumors (A-B) and 

tumor bearing mice (C-D) 

analyzed by  IF staining. (E) 

Total amount of TRP-2
+
 

melanoma cells in mice 

without macroscopic primary 

tumors (Tg) and tumor bearing 

mice (Tu). (F) TRP-2
+
 cells 

are mostly in a dormant state 

by their negative expression of 

Ki67. WT= Ki67
+
 BM cells 

from wild type mice. 
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We identified TRP-2+CD133+  melanoma cells in mice without macroscopic 

primary tumors (Fig. 16A, B) and tumor bearing mice (Fig. 16C, D). We analyzed 10
6
 

BM cells per mouse from 20 mice without macroscopic tumors and 20 mice bearing 

macroscopic tumors and found that only 40% of mice without macroscopic tumors 

contained TRP-2+CD133+  melanoma cells in the BM. In contrast, all 20 tumor 

bearing mice contained TRP-2+CD133+  melanoma cells. TRP-2+CD133+  melanoma 

cells were detected in 2 out of 712 (0.238%) and 4 out of 1285 (0.311%) disseminated 

melanoma cells in the BM of transgenic mice without and with macroscopic tumors, 

respectively (Fig. 16E and Table 3). BM cells from wild type (WT) mice were used as 

positive control for the CD133 staining (Fig. 16F, G). Therefore, we did not observe 

any differences in the frequency of TRP-2+CD133+  melanoma cells in the BM of ret 

transgenic mice as compared to that in mLN or primary skin tumors. 

 

 

A A 
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Figure 16. Disseminated melanoma cells in the BM of ret transgenic mice. Identification 

of TRP2
+
CD133

+
 melanoma cells in the BM of transgenic mice (A-B) without macroscopic 

tumors or (C-D) bearing macroscopic tumors by IF staining. (E) Frequency of TRP2
+
CD133

+ 

tumor cells in 10
6
 BM cells in mice without macroscopic tumors (tumor free) and mice with 

macroscopic tumors (Tumor). All the pictures were done on Leica Microscope using IF lamp. 

(F) Flow cytometric analysis of CD133 expression on BM cells from wild type mouse and (G) 

using Carl-Zeiss 710 confocal microscope. CD133 (red), nuclei (blue). AF =alexa-fluor. 
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Table 3. Amount of TRP-2
+
CD133

+
 melanoma cells and TRP-2

+
 melanoma cells in the BM of mice 

without visible primary skin tumors and mice with visible primary skin tumor. 

 
 

To study a possible dormancy state of melanoma cells in the BM of ret transgenic 

mice, we checked nuclear Ki67 expression which is an indicator of cell proliferation, 

in mice with and without primary visible skin tumors (Fig. 17). We observed that 

disseminated TRP-2
+
CD133

+
 melanoma stem-like cells are in a dormant state by their 

negative expression of Ki67 in the BM of mice without and with primary tumors (Fig. 

17B). As controlled, we used BM cells from wild type mouse (WT) (Fig. 17A). 
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To corroborate the dormancy state of melanoma cells in the BM of ret transgenic 

mice, we checked several markers involved in the cell division such as p16, and p27, 

which have been described as cyclin-dependent kinase inhibitors (CDKI). In addition, 

the proliferating cell nuclear antigen (PCNA) and the Ki67 marker were analyzed (Fig. 

18). Whereas melanoma cells failed to express PCNA (Fig. 18A), they were found to 

be positive for p16 and p27 (Fig. 18B, C). We conclude that TRP-2+CD133+ 

melanoma stem-like cells are in a dormant state in the BM and present an aberrant 

expression of Ki67, p16 and p27.  

Figure 17. Disseminated 

dormant melanoma cells in the 

BM of ret transgenic mice. (A) 

CD133 expression on BM cells 

from wild type mouse (WT). (B) 

TRP-2
+
CD133

+ 
melanoma cells in 

the BM of tumor bearing mice 

(Tu). Both CD133
+
 BM cells and 

TRP-2
+
CD133

+
 melanoma cell 

are in a dormant state by their 

negative expression of Ki67. BM 

specimens prepared using 

cytospin and IF staining. Samples 

analyzed with a Carl-Zeiss 

confocal microscope LSM-710. 

CD133 (red), TRP-2 (green), 

Ki67 (pink), nuclei (blue). 
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Figure 18. Expression of dormancy markers in disseminated BM tumor cells in mice 

without macroscopic skin tumors. Immunofluorescence staining for the analysis of (A) 

PCNA, (B) p16+ , and (C) p27+  on CD133
+
 (orange), Ki67 ¯

/cyto
 (pink) melanoma cells. PI = 

propidium iodide. 
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To address the interaction between dormant tumor cells and memory T cells in the 

BM of ret transgenic mice, we analyzed smears from the BM of mice without visible 

skin tumors and with macroscopic tumors (Fig. 19 and 20). 

 

            
 

Figure 19. Memory CD8
+ 

T cells co-localized with TRP-2
+
 cells in the BM of mice 

without macroscopic tumors. Smear technique and multicolor IF staining was performed to 

analyze TRP-2 (blue), CD44 (green), CD133 (red) and CD8
+
 (pink) molecules. The white 

squares show the place of interaction between CD8
+
 T cells and TRP-2

+ 
cells.  
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Figure 20. Memory CD8
+
 T cells co-localized with TRP-2

+
 cells in the BM of tumor 

bearing mice. Smear technique and multicolor IF staining was performed to analyze TRP-2 

(blue), CD44 (green), CD133 (red) and CD8 (pink) molecules. The white squares show the 

place of interaction between CD8
+
 T cells and TRP-2

+ 
cells.  

 

We found that memory CD8+T cells (CD8+CD44
high

) were co-localized with 

TRP-2+  melanoma cells not only in tumor bearing mice (Fig. 20) but also in mice 

without macroscopic tumor (Fig. 19). Importantly, the proportion of memory CD8
+
 T 

cells interacting with TRP-2
+
 melanoma cells was around 15% out of total memory 

CD8
+
 T cells. However, we did not detect any co-localization of memory CD8

+
 T 

cells with disseminated TRP-2
+
CD133

+
 melanoma cells in the BM of both mice 

without visible primary tumors and tumor bearing mice (n=8). Moreover, we found 

that also memory CD4
+
 T cells (CD4+CD45RB

¯
) had a direct contact with TRP-2

+
 

melanoma cells but not with TRP-2
+
CD133

+
 melanoma cells in the BM of tumor 

bearing mice (Fig. 22) as well in this organ from mice without visible skin tumors 

(Fig. 21).  
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Figure 21. Memory CD4
+
 T cells co-localized with TRP-2+  cells in the BM of mice 

without macroscopic tumors. Smear technique and multicolor IF staining was performed to 

analyze TRP-2 (blue), CD45RB (green), CD133 (red) and CD8
+
 (pink). On the right picture is 

represented the merged of all four dyes. CD45RB¯CD8+  T cells were associated with TRP-2+  

single melanoma cells. The white square shows the place of interaction between CD4
+
 T cells 

and TRP-2
+ 

cells.  
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Figure 22. Memory CD4
+
 T cells co-localized with TRP-2+  cells in the BM of mice with 

macroscopic tumors. Smear technique and multicolor IF staining was performed to analyze 

TRP-2 (blue), CD45RB (green), CD133 (red) and CD4 (pink). The white squares show the 

place of interaction between CD4
+
 T cells and TRP-2

+ 
cells.  

 

20. Perforin and IFN--producing CD8
+
 T cells in the BM 

 

To investigate whether CD8
+
 T cells associated with melanoma cells can possess 

effector function producing IFN- or perforin, we analyzed smears from the BM of ret 

transgenic mice. We found IFN--producing CD8
+
 T cells co-localized with TRP-2 

melanoma cells (Fig. 23) but not with TRP-2
+
CD133

+
 cells. Interestingly, analyzing 

the BM of mice without visible skin tumors, we found that CD8
+
 T cells located 

within the large cluster of 50 TRP-2 melanoma cells were unable to produce both 

perforin and IFN- (Fig. 24). Moreover, evaluating TRP-2 specific CD8
+
 T cells by 

dextramer staining, we detected these cells in the BM failed to observe their 

co-localization with TRP-2
+
 melanoma cells (Fig. 25). These findings suggest that 

tumor microenvironment might neutralize CD8
+
 T cell reactivity. 
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Figure 23. Evaluation of perforin and IFN--producing CD8+  T cells in the BM of tumor 

bearing mice. Smear technique and multicolor IF staining was performed to analyze TRP-2 

(blue), CD45RB (green), CD133 (red) and CD8 (pink). The white squares show the place of 

interaction between CD8
+
 T cells and TRP-2

+ 
cells.  
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Figure 24. Evaluation of perforin and IFN- production in CD8+  T cells in mice without 

macroscopic primary tumors. Smear technique and multicolor IF staining was performed to 

analyze TRP-2 (blue), perforin (green), IFN- (red) and CD8 (pink). CD8+  T cells located 

within a cluster of melanoma cells were unable to produce both perforin and IFN-. 

 
 

 

 

Figure 25. TRP-2-specific CD8
+
 T cells in the BM of mice without macroscopic tumor. 

Smear technique and multicolor IF staining was performed to analyze TRP-2 (blue), Perforin 

(green), H-2k
b
-TRP-2180-188 dextramer (red) and CD8 (pink). Perforin and IFN--producing 

CD8
+
 T cells localized as single T cells. 

 

Next we analyzed the proportion of CD8
+
 T cells interacting with TRP-2

+
Ki67¯ 

melanoma cells and found that about 15% of memory CD8
+
 T cells interacted with 
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TRP-2
+
Ki67¯ melanoma cells in the BM of mice without and with primary tumors 

(Fig. 26, Table 4). Quantitative analyses revealed that although certain memory CD8
+
 

T cells interacted either with single TRP-2
+
 melanoma cells or the smallest cluster of 

melanoma cells (2-5 TRP-2
+
 melanoma cells), none display staining for perforin. 

Only two TRP-2-specif CD8
+
 T cells were able to produce perforin, but none of them 

were co-localized either with TRP-2
+
 melanoma cells or TRP-2

+
CD133

+
 cells in the 

BM of ret transgenic mice (Fig. 25). 

 

 

Figure 26. CD8
+
 T cells in the BM interacting and non-interacting with TRP-2

+
 

melanoma cells. Smear technique and multicolor IF staining was performed to analyze BM 

cells of tumor bearing mice. TRP-2 (blue), CD8
+
 T cells (red) and Ki67 (pink). The white 

arrows show the place of interaction between CD8
+
 T cells and TRP-2

+ 
cells. 
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Table 4. Interaction between TRP-2
+
 melanoma cells with CD8

+
 T cells in the BM of tumor 

bearing mice. The quantification was done from the fig. 25.  

 

 
 

 

Taken together, our data demonstrate the existence of a fraction of dormant 

CD133
+
 melanoma cells in ret transgenic mice. HIF-1 plays a central role in the 

maintenance of CD133
+
 melanoma cells at the beginning of the tumor formation. A 

subpopulation of CD133
+
 tumor cells co-expressed CD271, considered as another 

melanoma stem cell marker. CD133
+
 melanoma cells shown stronger 

immunosuppressive, metastatic, angiogenic, and melanocyte stemness profile in 

comparison with CD133


 melanoma cells, suggesting a greater biological advantage 

to evade antitumor immunity, to grow and metastasize. Disseminated TRP-2
+
CD133

+
 

melanoma cells in the BM were in a dormant state by the absence of Ki67 and PCNA 

expression and shown an aberrant expression of p16 and p27. None of the 

characterized CD8
+
 T cells (TRP-2-specific CD8

+
 T cells, perforin and 

IFN--producing CD8
+
 T cells) were co-localized with disseminated BM 

TRP-2
+
CD133

+
 melanoma cells in mice with and without primary skin tumors. 

TRP-2
+
CD133

+
 melanoma cells may not be responsible to maintain memory CD8

+
 T 

cells in the BM. 
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V. Discussion 

 

Malignant melanoma is a very aggressive metastatic tumor originating from 

melanocytes. The metastatic melanoma displays a marked resistance to conventional 

therapies resulting in disappointing clinical outcomes when currently available radio- 

and chemotherapeutic treatment strategies are applied. Furthermore, immunotherapies 

based on antibodies, adoptive T cell transfers, and vaccinations shown promising but 

still poor clinical outcomes to eradicate tumors. These results from early clinical trials 

persuaded investigators to elucidate mechanisms responsible for the failure of tumor 

eradication. The resistance to chemo- radio- and immunotherapy has been attributed 

to the presence of either CSCs or dormant tumor cells. In the present study, we 

investigated CSCs in ret transgenic mouse model of spontaneous melanoma using 

CD133 (Prominin-1), which has been used as a marker of CSCs in various solid 

tumors (130-133). 

The analysis of CSCs markers has been an extensive debate in the current 

protocols for preparing single tumor cell suspensions from primary tumor specimens 

for flow cytometry measurements due to CSC markers are expressed on very few 

tumor cells (103, 125, 270). It was stressed that aggressive protocols may remove 

antigens on the cell surface giving erroneously the impression that only very few 

tumor cells can express CSCs markers (91, 163, 275). Thus, the inclusion of 

aggressive enzymes in the dissociation procedure will result in contamination of the 

negative fraction with cells that actually express the antigen (91). Most of the 

enzymatic protocols use trypsin, which is tremendously aggressive because cleave 

several proteins on the cell surface (124, 163); although other protocols use 

collagenase which are much less aggressive, tumor specimens are also incubated 

longer (0.75-2 h) or followed by short incubation with trypsin (124). Instead of these 

aggressive methods, we used a reliable method to avoid the excision of antigens 

considered as CSC markers. Tumor cells were treated with collagenase II and 

collagenase IV for 15 minutes at 37°C to ensure the preservation of CSC markers on 

the cell surface that resulted in a high yield of live cells (more than 95%).  

Using this optimized protocol we found that primary tumors contain 

approximately 1.5% of CD133
+
 melanoma cells. Indeed, we found that the dormant 

state of CD133
+
 melanoma cells in primary tumors and mLN was dependent on the 

weight of primary skin tumors. CSCs may be responsible to initiate and propagate 
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tumors, so called tumor-initiating cells. CSCs exhibit a higher resistant to chemo- and 

radiotherapy regimens due that they remain mostly arrested in G0/G1 of the cell cycle. 

CSCs and dormant tumor cells have been distinctly defined; however both share the 

particular feature that are mostly arrested in G0/G1 of the cell cycle (189). Therefore, 

we proposed that dormant tumor cells share characteristics and properties of CSCs.  

Interestingly, immunofluorescence staining has shown that CD133+  melanoma 

cells formed smaller clusters predominantly located in peripheral tumor areas where 

these cells could reside for their maintenance (273, 274). Blood vessels are essential 

to supply the nutrients and oxygen, so tumor growth is angiogenesis-dependent (271, 

272). We found an aberrant architecture of blood vessels in peripheral areas of 

primary tumors. This finding is in agreement with other publication showing that 

vascularity of tumor varies tending to be greatest in regions of active growth, 

regularly at the periphery (276). The abnormal nature of tumors results in abnormal 

blood vessels. Tumor vessels are variable in size, shape and branching pattern and are 

not organized in conventional hierarchy of arterioles, capillaries and venules (277). 

Compared with quiescent established blood vessels, endothelial cells in angiogenic 

blood vessels can strongly proliferate (278, 279). Furthermore, although blood vessels 

within the tumors are built by existing blood vessels or by incorporation of bone 

marrow progenitor cells (277, 280), it is possible that CD133
+ 

melanoma cells in ret 

transgenic mice may differentiate into endothelial cells (vasculogenesis) to support 

the angiogenesis giving rise to aberrant blood vessels (281-283). This could be 

supported by our finding that CD133
+
 melanoma cells express VEGFR2, a receptor 

that recognizes VEGF (282, 283). Moreover, we observed that large primary tumor 

collected in ret transgenic tumor bearing mice were consistently bloody. Rapid 

endothelial cell proliferation contributes to the instability of tumor vessel walls 

leading to hemorrhage described as tumors particularly bloody (277). In addition, it 

has been recently shown that sequencing of tumor genomes from different areas of the 

same tumor reveal striking intratumoral genetic diversification which may lead to 

functional specialization among cancer cells (284, 285). The presence of CD133+  

melanoma cells in peripheral tumor areas, where aberrant blood vessels were 

localized, may indicate that these zones might be the niche for CD133+  melanoma 

cells (279, 281, 286), at least in ret transgenic melanoma model. Nevertheless, further 

experiments are needed to confirm these observations.  
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Interestingly, we found a higher rate of proliferation of CD133
+
 melanoma cells 

in mLN compared to those in primary tumors from mice with advanced tumors. These 

findings suggest that melanoma cells in mLN probably may also colonize their tumor 

of origin in the process called “tumor self-seeding” (287). Self-seeding of melanoma 

cells is mediated by aggressive circulating tumor cells and can accelerate primary 

tumor growth and angiogenesis, and could explain relationship between anaplasia, 

tumor size, vascularity, and local recurrence (12). It would be interesting to 

investigate whether CD133
+
 melanoma cells possess these self-seeding properties. We 

do not discard other mechanisms that may promote the growth of primary tumors. 

We also found that HIF-1 might play an important role in the maintenance of 

CD133
+
 melanoma cells, mainly in early stages of tumor formation where tumor cells 

are poorly vascularized and in advanced tumors where hypoxia (1% oxygen) occurred 

due to the inevitable outcome of the rapidly growing tumors (156). Restricted oxygen 

conditions increase the CSC fraction and promote acquisition of a stem-like state 

(288). Here we detected CD133
+
HIF-1

+
 melanoma cells which could be maintained 

by hypoxic conditions. In addition, we found that CD133
+
 melanoma cells displayed 

higher expression of CXCR4 than CD133¯ melanoma cells. CXCR4 is considered to 

be a master regulator of metastases (144). Furthermore, our findings are in agreement 

with data of Soeda et al. who showed that the propagation of the glioma-derived 

CSCs in a hypoxic environment led to the expansion of cells bearing CXCR4 (156). 

We suggest that HIF-1 might contribute the maintenance of CD133
+
 melanoma cells 

in ret transgenic mice by activating adaptive transcriptional programs that promote 

cell survival, motility, tumor angiogenesis and self-renewal capacity. Indeed, we 

demonstrated that CD133
+
HIF-1

+
 melanoma cells had a higher rate of proliferation 

at earliest stages of tumor progression both in primary tumors and mLN. Moreover, it 

has been shown that hypoxia induces an embryonic stem cell (ESC)-like 

transcriptional program including Oct4, Nanog, Sox2, Klf4, c-Myc in cancer cell lines 

from brain, kidney, cervix, lung, colon, liver and breast tumors (289). In hypoxic 

glioma cell line U251, Mathiel et al. observed an upregulation of CD133, a glioma 

stem cell marker accompanied by a consistent increase of Nanog and c-Myc 

expression (289). It is known that glioma (originated from glial cells) and melanoma 

(originated from melanocytes) share many cell surface markers due to both have 

arisen from melanoblasts, those precursor derived from the embryonic neural crest (71, 
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77, 78).  

It is important to note that CD271 has been recently described as an important 

CSC marker, especially in melanoma with an increased tumor-initiating capacity as 

compared with CD271¯ tumor cells (124). We found that primary tumor had an 

elevated number of TRP-2
+
CD133

+
CD271

+
 melanoma stem-like cell fraction in 

proliferative state compared to mLN. However, mLN showed elevated numbers of 

TRP-2
+
CD133

+
CD271

+
 melanoma cells in proliferative state in early stages of tumor 

progression in comparison to primary tumors. The proliferative capacity of 

TRP-2
+
CD133

+
CD271

+ 
cells is restricted in advanced tumors, where the tumor bulk is 

already well-established. In this respect, it has been reported that CD271
+
 melanoma 

cells can be multipotent and capable to establish the heterogeneity of parental tumor, 

retaining the self-renewal property.  Furthermore, CD271
+
 melanoma cells could be 

passaged more than 5 retransplantations and CD271
+
SOX10

+
 melanoma cells 

correlated with higher metastatic potential (125). We believe that CD133
+
CD271

+
 

melanoma cells might possess CSCs properties in ret transgenic tumor-bearing mice. 

Analyzing other potential cancer stem cell markers, we found that high amounts of 

tumor cells expressed CD20, nestin and ABCB5, whereas CD34 and CD166 were 

presented only on a small tumor cell subset. It has been shown that 

ABCB5-expressing melanoma cells exhibit multidrug resistance (MDR) features (119, 

123). The most common cause of MDR in human cancers is the functional expression 

of one or more ATP-binding cassette (ABC) transporters that efflux (extrusion of toxic 

substances outside the cell) anticancer drugs from the tumor cells (122, 216). Thus, 

ABCB5
+
 melanoma cells in ret transgenic mice may display MDR features.  

Since primary tumors and mLN contain CD133
+
-expressing melanoma cells, we 

addressed the question of the biologic function of these cells. It was found that 

immunosuppression-related markers (PD-L1, CTLA-4, CD39 and CCR4), 

angiogenic-related marker (VEGFR2), metastatic-related markers (CXCR3 and 

CXCR4) and melanocyte stemness-related maker (CD34) were strongly expressed on 

CD133
+
 cells as compared to CD133¯ counterparts. These findings demonstrate that 

interactions between tumor cells and host immune cells in the tumor 

microenvironment create an immunosuppressive state in which CD133
+
 melanoma 

cells might actively participate inducing the immunosuppression and promoting an 

evasion from immunosurveillance due to their malignant potential (234-236). Thus, 
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dormant CD133
+
 melanoma cells may then enter the escape phase, which correspond 

to clinically apparent disease. In the escape phase, CD133
+
 melanoma cells might 

contribute to the formation of tumor bulk.  

Once dormant / slow-cycling CD133
+
 cells evaded antitumor immunity, they 

might acquire the capacity to produce tumor cell clones to proliferate rapidly. For an 

efficient proliferation, these tumor cells require of blood vessels. Dormant termination 

of tumor cells has been reported by the overexpression of VEGF (291). Thus, the 

expression of VEGFR2 on CD133
+
 melanoma cells could promote angiogenesis. 

Furthermore, CD133
+
 melanoma cells may metastasize to distant organs through the 

expression of CXCR3 and CXCR4. We observed that CD133
+
 melanoma cells in 

primary tumors and mLN possessed a higher expression of VEGFR2, CXCR3 and 

CXR4 than CD133¯ melanoma cells. These findings explain, at least in part, why the 

metastatic potential of primary melanoma is considerably higher than that of other 

solid tumors (146). Around 60% of metastasis was reported to be located in regional 

lymph nodes in malignant melanoma (142). It was demonstrated that CXCR3 plays a 

critical role in lymph node metastasis of melanoma (B16F10 cell line) (142), and that 

CXCR4
+
CD133

+
 B16/F10 melanoma cells exhibited higher metastatic capacity than 

CXCR4
¯
CD133

+ 
counterparts (157). Moreover, patients with tumor double positive 

for CXCR3 and CXCR4 were reported to have significantly poorer prognosis than 

those with tumors positive only for CXCR4 or the double negative (144). 

Furthermore, CD133
+
 melanoma cells have a pronounced expression of the 

murine melanocytic stem cell marker CD34, providing an additional biological 

advantage to retain the melanocyte stemness phenotype and probably the machinery 

necessary to maintenance the stem-like cell character. In this regard, it would be 

interesting to investigate the expression of the typical stem cell makers such as Oct-4 

Sox-2, Kfl-4, Nanog on CD133
+
 melanoma cells in ret transgenic mice. 

In ret transgenic mouse melanoma model, a majority of mice older than 20 weeks 

without macroscopic tumors contained TRP-2-positive disseminated melanoma cells 

both in the BM and lymph nodes and showed no further melanoma progression. These 

reports argue for a potential role of dormant tumor cells in the maintenance of a 

long-term persistence of tumor antigen-specific memory T cells, which could restrict 

tumor growth in vivo (228, 232). In this study, TRP-2+CD133+-expressing cells were 

analyzed in the BM of tumor bearing mice. We found that TRP-2+CD133+  melanoma 
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stem-like cells represented only 0.238% and 0.31% from all disseminated melanoma 

cells in mice without and with macroscopic tumors, respectively.  

To study the dormancy state of TRP-2+CD133+  melanoma stem-like cells in the 

BM of ret transgenic mice, we analyzed several proteins evolved in the progression of 

the cell cycle including p16 and p27 expression which have been described as 

cyclin-dependent kinase inhibitors (CDKI) (292). We also analyzed the proliferating 

cell nuclear antigen (PCNA) and the Ki67 antigen. We observed cytoplasmic staining 

of p16. It is well-established that p16 protein acts as cell cycle inhibitor in the nucleus. 

However in breast cancer, cytoplasmic accumulation of p16 identifies a subset of 

tumor cells with accelerated proliferation (293). In addition, nuclear and cytoplasmic 

p16 overexpression in breast cancer was associated with a highly malignant 

phenotype (293). Moreover, we found membranous and cytoplasmic staining of Ki67 

in same BM single tumor cells. Cell membrane and cytoplasmic staining of Ki67 has 

been described in invasive breast carcinoma and adenoma of the thyroid gland 

associated with tumors that are high grade (294). Cytoplasmic localization of p27 was 

identified as well, providing additional evidences that CD133
+
 melanoma cells may 

be highly tumorigenic (295). These data demonstrated that TRP-2+CD133+  melanoma 

stem-like cells are in a dormant state and possess an aberrant expression of Ki67, p16 

and p27 in the BM.  

It has been reported that the BM could be a major site for long-term persistence 

of tumor-specific memory T cells that could interact with disseminated tumor cells 

(228). Here we have demonstrated direct cell-cell contact between BM TRP-2
+
 tumor 

cells and memory CD8
+
 T cells. It has been proposed that disseminated BM TRP-2

+
 

tumor cells which probably might be in a dormant state, could be responsible in the 

maintenance of TRP-2-specific memory CD8
+ 

T cells and functionally active 

TRP-2-specific, effector memory CD8
+
 T cells in ret transgenic mice without visible 

primary tumors but with disseminated tumor cells. Therefore, these cells might 

stimulate the formation of melanoma-reactive CD8
+
 T cells which restrict the growth 

of macroscopic primary tumors (232) and block the progression of metastases, 

keeping the animals in the equilibrium phase, in agreement with the 

immunosurveillance theory (207). 

Memory CD8+T cells (CD8+CD44
high

) were co-localized with TRP2+  melanoma 

cells, where the proportion of memory CD8+  T cells interacting with TRP-2+  
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melanoma cells was lower (less than 15%). These findings suggest that memory 

phenotype of CD8+  T cells might be induced by TRP-2+  melanoma cells. However 

we did not find memory CD8+  T cells co-localized with disseminated TRP-2+CD133+  

melanoma stem-like cells in the BM of mice with and without macroscopic primary 

skin tumors. In addition, we found that memory CD4+  T cells (CD4+CD45RB
¯
) had 

direct contact with TRP-2+  melanoma cells but not with TRP-2+CD133+  melanoma 

stem-like cells in the BM of mice with and without macroscopic primary skin tumors. 

Moreover, we found that none of the TRP-2-specific, perforin-producing CD8+  T 

cells were co-localized either with TRP-2+  melanoma cells or TRP-2+CD133+ 

melanoma stem-like cells in the BM of mice with and without macroscopic primary 

skin tumors. Furthermore, we could only find IFN--producing CD8+  T cells 

co-localized with TRP-2+  melanoma cells but not with TRP-2+CD133+melanoma 

stem-like cells. Interestingly, analyzing the BM of mice without macroscopic primary 

skin tumors, we found CD8+  T cells co-localized within one large cluster of TRP-2+  

melanoma cells (50 TRP-2+  tumor cells). Nevertheless these CD8+  T cells were 

unable to produce intracellularly both perforin and IFN-. These findings suggest that 

tumor microenvironment might neutralize CD8+  T cell reactivity. 

Therefore, these data indicated that none of the characterized CD8+  T cells 

(TRP-2-specific CD8
+
 T cells, perforin and IFN--producing CD8

+
 T cells) were 

co-localized with disseminated BM TRP-2+CD133+  melanoma stem-like cells in mice 

without and with primary skin tumors. We suppose that memory CD8+  T cells in the 

BM might be maintained by both single melanoma cells and the smallest cluster of 

melanoma cells. Large melanoma cell cluster may induce inactivation of CD8
+
 T cells, 

as was shown by the lack of intracellular production of IFN-. The indeterminate 

dormant phenotype of TRP-2+CD133+  melanoma stem-like cells may be a crucial 

mechanism to the maintenance of memory CD8
+ 

T cells for a long period of time. 

It has been shown that BM displays structural and functional features of a 

secondary lymphoid organ, contains follicle-like structures similar to lymph nodes or 

spleen and can initiate not only primary, but also secondary T-cell responses (296). 

Thus, cell-cell contacts between TRP-2
+
 melanoma cells and memory CD8

+
 T cells 

may stimulate secondary immune responses (which is faster and stronger than 

primary immune responses) and subsequently protective anti-tumor immunity by 

promoting melanoma-specific effector memory CD8
+
 T cells. The effector reactivity 
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of these CD8
+
 T cells may occur systemically and/or in the tumor microenvironment 

(296) and not within the BM, where they fail to produce perforin. 

Taken together, we provide evidence that CD133
+
 melanoma stem-like cells 

might modulate immune responses in primary tumors and lymph node metastasis. The 

data also suggests that HIF-1 plays a central role in the maintenance of CD133
+
 

melanoma cells. Disseminated TRP-2
+
CD133

+
 melanoma in the BM are in the 

dormant state having an aberrant expression of p16 and p27 due to their cytoplasmic 

localization. Finally, none of the characterized CD8
+
 T cells (TRP-2-specific CD8

+
 T 

cells, perforin and IFN--producing CD8
+
 T cells) were co-localized with 

disseminated BM TRP-2
+
CD133

+
 melanoma stem-like cells in ret transgenic mice. 

These results suggest that TRP-2
+
CD133

+
 melanoma cells may not be responsible to 

maintain memory CD8
+
 T cells in the BM. 
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VII. Abbreviations: 

 

A 

APC   Antigen-presenting cell 

ALDH   Aldehyde dehydrogenase. Putatite cancer stem cell marker. 

ABCB5 ATP-binding cassette sub-family B member 5 also known as 

P-glycoprotein. Putative melanoma stem cell marker 

Ab    antibody 

 

B 

BM    bone marrow 

BSA   bovine serum albumin 

B-RAF   B-Raf proto-oncogene serine/threonine-protein kinase 

B16F10   melanoma cell line from a mouse model of melanoma metastasis 

bFGF   basic fibroblast growth factor 

 

C  

CSCs   cancer stem cells 

CCL   chemokine ligand 

CTLA-4   cytotoxic T lymphocyte antigen- 4 

CCR   chemokine receptor 

CD    cluster of differentiation 

cm    centimeter 

CFS   carboxyfluorescein (similar to FITC) 

CTL   cytotoxic T lymphocyte 

°C    degree Celsius 

CD4 It serves as a co-receptor for the TCR (on T cells). Together with 

the TCR, CD4 binds to a class II MHC protein (on APCs). 

CD8 It serves as a co-receptor for the TCR (on T cells. Together with the 

TCR, CD8 binds to a class I MHC protein (on APCs). 

CD45RB It plays a critical role in TCR and BCR signaling. As T cells 

become activated and progress from naïve to memory cells, 

CD45RB expression is downregulated. 

CD62L L-selectin. It is a cell adhesion molecule found on lymphocytes. 

CXCR3 C-X-C chemokine receptor type 3. CXCR3 is able to regulate 

leukocyte trafficking. 

CXCR4 C-X-C chemokine receptor type 4. alpha-chemokine receptor 

specific for stromal-derived-factor-1 (SDF-1 also called CXCL12) 

CD20 Expressed on the surface of all B-cells beginning at the pro-B phase. 

It is considered as putative CSC marker  

CD24  Expressed at the surface of most B lymphocytes and differentiating 

neuroblasts. It is considered as putative CSC marker. 

CD31 Endothelial cell marker. It is used as indicator of vasculatization. 

CD34   Melanocyte stem cell marker (in mouse) 

CD39   ectonucleoside triphosphate 

CD44 It is a cell-surface glycoprotein involved in cell-cell interactions, 

cell adhesion and migration. CD44 expression is an indicative 

marker for effector-memory T-cells. 

http://en.wikipedia.org/wiki/Co-receptor
http://en.wikipedia.org/wiki/Co-receptor
http://en.wikipedia.org/wiki/Cell_adhesion_molecule
http://en.wikipedia.org/wiki/Lymphocytes
http://en.wikipedia.org/wiki/Chemokine
http://en.wikipedia.org/wiki/Stromal_cell-derived_factor-1
http://en.wikipedia.org/wiki/B-cells
http://en.wikipedia.org/wiki/B_lymphocyte
http://en.wikipedia.org/wiki/Neuroblast
http://en.wikipedia.org/wiki/Cell_%28biology%29
http://en.wikipedia.org/wiki/Glycoprotein
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CD73 ecto-5´-nucleotidase is a glycosyl-phosphatidylinositol-linked cell 

surface enzyme  

CD80   B7.1 expressed on antigen-presenting cells (APCs) 

CD86    B7.2 expressed on antigen-presenting cells (APCs) 

CD133   Prominin-1, putative CSCs marker 

CD152   CTLA-4 (cytotoxic T lymphocyte antigen- 4) 

CD166 Activated leukocyte cell adhesion molecule. It is considered as 

putative CSC marker 

CD271 Nerve growth factor receptor (NGFR). It is considered as putative 

melanoma stem cell marker. 

CD274   PD-L1 (programmed cell death-1). 

CDK4   cyclin dependent kinase 4 

CDKN2A  cyclin-dependent kinase inhibitor 2A 

CDK4/6   cyclin-dependent kinase 4/6 (important for cell cycle regulation) 

CDKI   cyclin-dependent kinase inhibitors 

 

 

D 

DAPI   4,6-diamidino-2-phenylindole (blue dye) 

DC    dendritic cell 

DMSO   Dimethylsulfoxid 

DNA   deoxyribonucleic acid 

DNAase -I  Deoxyribonuclease-I 

 

H 

HSC   Hematopoietic stem cell (s) 

H-2k
b
TRP-2180-188 MHC dextramers H-2K

b
TRP-2180-188 which recognize 

TRP-2-specific CD8
+
 T cells 

 

E 

EDTA   Ethylenediaminetetraacetic acid 

E2F    Elongation Factor 2 (a family of transcription factors) 

 

F 

FACS   fluorescent activated cell sorting 

FCS   fetal calf serum 

FITC   fluorescein-5-isothiocyanate 

FMO    fluorescence minus one 

FSC   forward scatter 

Fc Fragment crystallizable region. It is the tail region of an antibody 

that interacts with cell surface receptors called Fc receptors and 

some proteins of the complement system. 

 

G 

g    gram 

g    acceleration due to gravity, 

    g = 9,81m/s2 

GM-CSF  granulocyte/macrophage  colony stimulating factor 

gp100   glycoprotein 100, a melanoma-associated antigen 

G1/S   Gap / Synthesis (cell cycle phase) 

http://www.sciencedirect.com/science/article/pii/S0171933504702344
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CEsQFjAB&url=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2Fampd1%3Flang%3Den%26region%3DUS&ei=wocpUIznOOGm4gS3mIDICg&usg=AFQjCNF8Q-g_Q20N9PZB1NJZybWZlcuLog
http://en.wikipedia.org/wiki/Transcription_factor
http://en.wikipedia.org/wiki/Antibody
http://en.wikipedia.org/wiki/Fc_receptor
http://en.wikipedia.org/wiki/Complement_system
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H 

h    hour 

HIF-1   hypoxia-inducible factor 1 

HSCs   hematopoietic stem cells 

Hoechst   solution for the cell nuclear staining 

H-2K
b
 murine MHC antigen. H-2K

b
 is involved in antigen presentation to T 

cells expressing CD3/TCR and CD8 molecules. 

 

I 

IF    immunofluorescence 

IF-buffer  immunofluorescence buffer 

IF-gs   IF-buffer plus 2% of goat serum in IF-buffer 

IFN    interferon 

IFN-    Interferon alpha 

IFN-    interferon gamma 

Ig    Immunoglobulin 

IgG    Immunoglobulin isotype G 

IgG,   Immunoglobulin isotype G with a kappa light chain 

IL    Interleukin 

IL-6   Interleukin-6 

IL-10   Interleukin-10 

IL-11   Interleukin-1 

Ipilimumab  Therapeutic antibody against CTLA-4 

iPS    induced pluripotent stem cell 

 

K 

Ki67   proliferation marker 

 

L 

l    litter 

 

M 

MAA   melanoma-associated antigen 

MAPK   mitogen activated protein kinase 

mAb   monoclonal antibody 

MDSCs   myeloid-derived suppressor cells 

MEK   MAP-ERK kinase 

MART-1 Melanoma-associated antigen recognized by T cells (also known as 

Melan-A). 

MHC   major histocompatibility complex 

MITF   microphthalmia-associated transcription factor 

mLN   metastatic lymph nodes 

MDR   Multidrug resistance 

MT    mouse metallothionein-I (MT) promoter-enhancer 

M    molar (mol/l) 

ml    milliliter 

mg    milligramm 

mm    millimeter 

http://en.wikipedia.org/wiki/Hematopoietic_stem_cell
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µm    micrometer 

µg    microgramm 

μl     microliter 

ml     milliliter 

μg    microgram 

mg    milligram 

min    minute 

 

N 

nevi    Moles (Moles, also known as melanocytic nevus, plural: nevi) 

NK    natural killer cells 

NO    nitric oxide 

nm    nanometer 

 

O 

Ova    ovalbumin 

 

P 

Pen/Strep  penicillin/streptomycin 

%    percent 

pg    picogram 

PBS   phosphate buffered saline  

PE    phycoerythrin 

PD-1   programmed cell death-1 

PD-L1   Programmed cell death 1 ligand 1 (CD274 or B7-H1) 

PCNA   proliferating cell nuclear antigen 

PTEN    Phosphatase und Tensin homolog 

PTHRP   parathyroid hormone related protein 

 

R 

RANKL   receptor activator of nuclear-factor-kB ligand 

ret    human ret proto-oncogene 

rpm    revolutions per minutes 

RNA   ribonucleic acid 

RT    room temperature 

 

S 

SSC   side scatter 

 

T 

TCR   T-cell receptor 

TILs   tumor-infiltrating lymphocytes 

TGF   transforming growth factor 

TNF   tumor necrosis factor 

Treg   regulatory T cell 

TRP   tyrosinase related protein 

TRP-2180-188  TRP-2 sequence / TRP-2 peptide 

TRP-1    Tyrosinase-related protein 1 gp75)  

TRP-2   tyrosinase-related protein 2 (dopachrome tautomerase)  

TLR   Toll-like receptor 
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Tu    tumor (specimenes collected from primary tumors) 

Tyr    tyrosinase 

 

V 

VEGF   vascular endothelial growth factor 

VEGFR1, 2  vascular endothelial growth factor receptor type 1 or 2 

VCAM-1  vascular cell adhesion molecule-1 

VLA-4   very late activation antigen-4 

V600E  Mutations resulting in a substitution of valine for glutamate at 

amino acid 600 

V    volume 

v/v    volume per volume 

 

U 

UV    ultraviolet 

 

W 

WT    wild type 

Wnt Portmanteau of Int and Wg wingless in Drosophila melanogaster, 

which is the best characterized Wnt gene 
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