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Abstract
Drinfeld modular forms were introduced by D. Goss in 1980 for congruence subgroups
of GL2(Fq[T ]). They are a counterpart of classical modular forms in the function
field world. In this thesis I study Drinfeld modular forms for inner forms of GL2

that correspond to unit groups Λ⋆ of quaternion division algebras over Fq(T ) split
at the place ∞ = 1/T . I show, following work of Teitelbaum for GL2(Fq[T ]), that
these forms have a combinatorial interpretation as certain maps from the edges of the
Bruhat-Tits tree T associated to PGL2(K∞). Here K∞ denotes the completion of K
at∞. A major focus of this thesis is on computational aspects: I present an algorithm
for computing a fundamental domain for the action of Λ⋆ on T with an edge pairing,
and describe how to obtain a basis of the space of these forms out of this fundamental
domain. On this basis one can compute the Hecke action.

Zusammenfassung
Drinfeldsche Modulformen für Kongruenzuntergruppen von GL2(Fq[T ]) wurden von
D. Goss 1980 eingeführt. Sie sind ein Gegenstück zu klassischen Modulformen für
Funktionenkörper. In dieser Arbeit beschäftige ich mich mit Drinfeldschen Modul-
formen für innere Formen von GL2 die zu Einheitengruppen Λ⋆ von Quaternionen-
algebren über Fq(T ) korrespondieren, die an der Stelle ∞ = 1/T unverzweigt sind.
Ich zeige, analog zu Arbeiten von Teitelbaum für GL2(Fq[T ]), dass diese Formen eine
kombinatorische Beschreibung als gewisse Abbildungen von den Kanten des Bruhat-
Tits-Baums T zu PGL2(K∞) haben, wobei K∞ die Vervollständigung von K an ∞
ist. Ein Schwerpunkt der Arbeit liegt auf algorithmischen Aspekten: Ich beschreibe
einen Algorithmus zum Berechnen eines Fundamentalbereichs für die Wirkung von
Λ⋆ auf T mit Kantenpaarung, und zeige, wie man daraus eine Basis für den Raum
der Modulformen konstruieren kann. Auf dieser Basis kann man Hecke-Operatoren
berechnen.
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1 Introduction

Modular forms and more general automorphic forms play an important role in number
theory. For example it was recently shown by Khare and Wintenberger in [KW] that
all odd, irreducible mod p Galois representations of the absolute Galois group of Q
arise from modular forms. This answers a famous conjecture by Serre from 1975 in
the affirmative and demonstrates the importance of modular forms for arithmetic over
Q.
Consequently, in explicit number theory the development of algorithms for computing
with modular forms over Q and automorphic forms over more general number fields
became an important field of research [Cr, De, GV, GY, Ste].
We are interested in number theory over function fields. Let Fq[T ] be the polynomial
ring in one variable T over a finite field Fq, with q = pr a prime power, and K = Fq(T )
it’s quotient field. They play the role of Z and Q respectivly. There are two distinct
concepts that can be seen as analogs of modular forms in this setting. One are complex
valued automorphic forms in the sense of Jacquet-Langlands [JL]. The others are
Drinfeld modular forms, characteristic p valued functions on the Drinfeld upper half
plane Ω introduced by Goss in 1980 [Go]. The relation between these two concepts
was studied by Gekeler and Reveresat in [GR].
This thesis focusses on Drinfeld modular forms. For congruence subgroups inside
GL2(Fq[T ]) there is an extensive theory for such forms: Goss showed in [Go] that,
as in the classical case of number fields, the eigenvalues of Drinfeld Hecke eigenforms
are algebraic over K. In [Bö] Böckle attached Galois representations to cuspidal
eigenforms paralleling the construction of Deligne in the classical case. However,
unlike in the case of classical modular forms, one obtains one-dimensional Galois
representations. Teitelbaum in [Te2] gave a combinatorial describtion of Drinfeld
cusp forms. He showed that the spaces of such forms are isomorphic to spaces of
harmonic cocycles. These are certain maps from the edges of the Bruhat-Tits tree T
associated to PGL2(K∞) which satisfy a harmonicity condition and are equivariant
under the action of the congruence subgroup at hand on the tree. Here K∞ denotes
the completion of K at the place ∞ = 1/T . Such a combinatorial describtion makes
Drinfeld cusp forms accessible for explicit computations. Namely, one can compute
the Hecke action on quotients of the Bruhat-Tits tree. This approach is pursued in
[GN, Te4].
In this thesis we study Drinfeld modular forms for inner forms of GL2 that correspond
to the unit group Λ⋆ of a quaternion division algebra D split at∞, or sometimes more
general to finite index subgroups of Λ⋆. In the classical setting the Jacquet-Langlands
correspondence relates such modular forms to cusp forms for GL2 which are newforms
for Γ0(n), where n is the discriminant of D. In the case of Drinfeld modular forms, a
Jacquet-Langlands correspondence has not been worked out yet. The analytic tools
one has for automorphic forms are not available in positive characteristic. However,
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it would be a surprise if such a correspondence would not hold in this setting too.
The goals of this thesis are: To develop a theory of Drinfeld modular forms for quater-
nion algebras; to relate them, analogous to the result by Teitelbaum, to spaces of
harmonic cocycles on T and to make the Hecke action on these spaces accessible for
explicit computations. As a prerequisite to this one needs an understanding of the
quotient graph Λ⋆\T . A main difference to Drinfeld modular forms for congruence
subgroups is that in our setting the quotient graph Λ⋆\T is a finite graph.

The organisation is as follows:

In Chapter 2 we study the action of Λ⋆ on T . We will describe an algorithm for
computing a fundamental domain for this action together with an edge pairing. This
consists of the following data:

(a) a finite subtree Y ⊂ T whose image Y in Λ⋆\T is a maximal spanning tree, i.e.,
Y is a tree such that adding any edge of Λ⋆\T to it will create a cycle.

(b) for any edge ē of Λ⋆\T rY , an edge e of T connected to Y that maps to ē and
the glueing datum that connects the loose vertex of this edge via the action of
Λ⋆ to a vertex of Y . Let Y ′ be the union of Y with all such edges e.

This is an analog of a fundamental domain together with a side pairing in the sense
of [Vo]. As explained in [Se1, Chapter I.4], this data yields a presentation of the
group Λ⋆ in terms of explicit generators and relations. Moreover, the data provides a
reduction algorithm from T to Λ⋆\T and a solution to the word problem for Λ⋆.
Observing that a finite cover of Λ⋆\T is a Ramanujan graph yields a bound on the
diameter of Λ⋆\T . This in turn we use to bound the complexity of our algorithm, to
bound the size of Y ′, and to bound the size of the representatives of Y ′ in terms of a
natural height on the 2× 2-matrices over K∞. The main new result of this chapter is
the existence of an effective algorithm together with precise complexity bounds. The
results of Chapter 2 were published jointly with G. Böckle in [BB].

The purpose of Chapter 3 is to quickly recall some of the theory of Drinfeld modular
forms for congruence subgroups. We claim no originality to the material covered in
this chapter.

In Chapter 4 we study Drinfeld modular forms as well as harmonic cocycles for finite
index subgroups Γ of Λ⋆. If Γ has no p′-torsion for p′ 6= p we can interpret these forms
as sections of line bundles on the rigid analytic space Γ\Ω. Therefore we can compute
the dimension of these spaces via the Riemann-Roch theorem.
We proceed by proving a dimension formula for Drinfeld modular forms for more gen-
eral finite index subgroups Γ ⊆ Λ⋆ and for weight n > 2. This is done following the
classical case as in [Sh]. Namely we will first analyze under which conditions there are



1 INTRODUCTION 3

non-trivial meromorphic functions on Ω fulfilling the modular transformation prop-
erty. Using such a non-trivial meromorphic function, combined with an understanding
of the elliptic points of Γ\Ω, we can again apply the Riemann-Roch theorem to obtain
a dimension formula.
The main new results are Corollary 4.9 for the p′-torsion free case and the dimension
formula in Theorem 4.19. Corollary 4.9 says, that in the p′-torsion free case dimensions
of the spaces of modular forms equal the dimensions of the corresponding spaces of
harmonic cocycles. The dimension formula in Theorem 4.19 is an explicit dimension
formula in terms of the genus of Γ\Ω, for certain subgroups Γ ⊆ Λ⋆ and certain
weights and types.

In Chapter 5 we construct, following Teitelbaum, an isomorphism from the spaces of
our Drinfeld modular forms to spaces of harmonic cocycles. Sections 5.1 - 5.3 are
an adaption of the work by Teitelbaum from [Te1] and [Te2], building up on work of
Schneider [Sch2]. For the sake of completeness we give some proofs and computations
adapted to our situation, which are either not present or sketchy in the work of
Teitelbaum and Schneider. The argument for this homomorphism to be bijective uses
the fact from Chapter 4 that in the p′-torsion free case the dimensions on both sides
are equal.
We then proceed to introduce a Hecke action on both modular forms and harmonic
cocycles compatible with this isomorphism. We will also make the Hecke action on
the cocycles side explicit for computational purposes. The Hecke operators are not
given through explicit formulas as in the GL2-case. Instead we give an algorithm to
compute the necessary double coset decomposition. The algorithm we give may not
be the optimal one, it could be improved in the future.

Finally in Chapter 6 we give a construction of a basis for the space of harmonic cocycles
for certain finite index subgroups of Λ⋆. This construction uses the fundamental
domains with edge pairing from Chapter 2. From this basis we can also read of the
dimension of spaces of harmonic cocycles. We receive the dimension formulas for
spaces of modular forms from Chapter 4 in an independent way.

For technical reasons in Chapter 2, and at some other places, we restrict ourself to
the case p 6= 2. In Appendix A we discuss aspects of the even characteristic case.

Implementations of the algorithms described in this thesis, based on the computer
algebra system Magma [BCP], are available on request.
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2 Quaternion quotient graphs

This chapter studies the action of unit groups inside maximal orders of quaternion
algebras over Fq(T ) unramified at ∞ on the Bruhat-Tits tree. We will present an
algorithm that computes a fundamental domain for this action together with an edge
pairing. These are combinatorial data, that will be used in the computation of the
Hecke action on modular forms for such groups.
The results of this chapter were published jointly with G. Böckle in [BB]. Most of
Chapter 2 is almost identical with the article, although we present some things in
greater detail here. The reason for the overlap is that the contens of this chapter was
finished earlier then the rest of the thesis.
Let k = Fq, A = k[T ] and let K = k(T ) be the rational function field over k. As
usual, the infinite valuation v∞ on K is given by

v∞(
f

g
) = deg(g)− deg(f)

for f, g ∈ A, g 6= 0 and v∞(0) = ∞. Let π = 1/T be a uniformizer for this valuation
and let K∞ = k((π)) be the completion of K with respect to v∞ and O∞ its ring of
integers. Let D be a quaternion algebra over K unramified at ∞ and Λ a maximal
order of D, see Section 2.3 for details. Set Γ := Λ⋆ the group of units. Since D
is unramified at ∞, the group Γ acts on the Bruhat-Tits tree of PGL2(K∞), see
Section 2.2.
In this chapter we study the action of Γ on this tree. We exhibit an algorithm for
computing a fundamental domain for the action of Γ on T and analyze its complexity
by using the fact that the quotient graph Γ\T is close to being a Ramanujan graph.
The algorithm also yields a presentation of the group Γ and bounds on the size of
a set of generators. Over number fields a similar algorithm was investigated by J.
Voight in [Vo].

2.1 Notations from graph theory

We recall some definitions from the theory of graphs.

Definition 2.1 (a) A (directed multi-)graph G is a pair (V(G),E(G)) where V(G)
is a (possibly infinite) set and E(G) is a subset of V(G)×V(G)×Z≥0 such that

(i) if e = (v, v′, i) lies in E(G), then so does its opposite e⋆ = (v′, v, i),

(ii) for any (v, v′) ∈ V(G) × V(G), the set {i ∈ Z≥0 | (v, v′, i) ∈ E(G)} is a
finite initial segment of Z≥0 of cardinality denoted by nv,v′,

(iii) for any v ∈ V(G), the set Nbs(v) := {v′ ∈ V(G) | (v, v′, 0) ∈ E(G)} is
finite.
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(b) A subgraph G ′ ⊂ G is a graph G ′ such that V(G ′) ⊆ V(G) and E(G ′) ⊆ E(G).

(c) Suppose V(G) = {v1, . . . , vm} is finite. Then (nvi,vj
)1≤i,j≤m is called the adja-

cency matrix of G.

An element v ∈ V(G) is called a vertex, an element e ∈ E(G) is called an (oriented)
edge and an element in V(G) t E(G) is called a simplex. The oriented edges (v, v′, i)
and (v′, v, i) denote the same edge of G however with opposite orientation.

Definition 2.2 (a) For each edge e = (v, v′, i) ∈ E(G) we call o(e) := v the origin
of e and t(e) := v′ the target of e.

(b) Two vertices v, v′ are called adjacent, if there is an edge e such that {v, v′} =
{o(e), t(e)}.

(c) An edge e with o(e) = t(e) is called a loop.

For e ∈ E(G) we write e⋆ for the same edge with orientation reversed and for v ∈ V(G)
we write e 7→ v if e is any edge with t(e) = v.
Let v, v′ ∈ V(G). A path from v to v′ is a finite sequence (e1, . . . , ek) in E(G) such
that t(ei) = o(ei+1) for all i = 1, . . . , k − 1 and o(e1) = v, t(ek) = v′. The integer k
is called the length of the path (e1, . . . , ek). A graph G is connected if for any two
vertices v, v′ ∈ V(G) there is a path from v to v′. A path (e1, . . . , ek) is a path without
backtracking if for all i = 1, . . . , k− 1 we have ei+1 6= e⋆i . A geodesic from v to v′ of G
is a finite path from v to v′ without backtracking. The distance from v to v′, denoted
d(v, v′), is the minimal length of all geodesics from v to v′ or ∞ if there is no path
from v to v′. Define the diameter of a graph G as

diam(G) := max
v,v′∈V(G)

d(v, v′).

A cycle of G is a geodesic from some vertex v to itself. A graph G is cycle-free if it
contains no cycles. A tree is a connected, cycle-free graph. Note that if G is a tree,
then for each two vertices v, v′ ∈ V(G) there is exactly one geodesic between v and v′.
Any subgraph S ⊆ G which is a tree is called a subtree. A maximal subtree is a
subtree which is maximal under inclusion among all subtrees of G.

Definition 2.3 (a) For v ∈ V(G) the degree of v is defined as

deg(v) := #{e ∈ E(G) | o(e) = v}.

(b) v is terminal if deg(v) = 1.

A graph G is finite, if # V(G) <∞. Then also # E(G) <∞ since deg(v) is finite for
all vertices v ∈ V(G). A graph G is called k-regular if for all vertices v ∈ V(G) we
have deg(v) = k.
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Definition 2.4 (a) We define the first Betti number h1(G) of a finite connected
graph to be

h1(G) :=
# E(G)

2
−# V(G) + 1.

Any finite graph G can be viewed as an abstract simplicial complex, and one obtains
in this way a topological space |G|, the geometrical realization of G. The first Betti
number h1(G) is the dimension of H1(|G|,Q), so the Betti number counts the number
of independent cycles of G.

2.2 The Bruhat-Tits tree

We recall the definition of the Bruhat-Tits tree of PGL2(K∞), which is an important
combinatorial object for the arithmetic of K. The results in this section are well
known and can be found in [Se1].

Definition 2.5 The Bruhat-Tits tree T = (V(T ),E(T ) of PGL2(K∞) is defined as
follows: Two O∞-lattices L,L′ ⊆ K2

∞ are called equivalent if there is a λ ∈ K∞ with
L′ = λL. The set V(T ) is the set of equivalence classes [L] of such lattices. The
set E(T ) is the set of pairs ([L], [L′]) such that L,L′ are O∞-lattices in K2

∞ with
πL ( L′ ( L.

In particular there is at most one edge between two vertices. By [Se1, Chapter II.1]
T is the (q+ 1)-regular tree. The group GL2(K∞) acts naturally on lattice classes by
left multiplication (g, [L]) 7→ [gL]. This induces an action on T .
Let e1 = (1, 0)t, e2 = (0, 1)t be the standard basis of K2

∞. Write O2
∞ for O∞e1 ⊗

O∞e2. Since GL2(K∞) acts transitivly on bases of K2
∞ and the stabilizer of [O2

∞] is
GL2(O∞)K⋆

∞ one obtains:

Proposition 2.6 The map

ϕ : GL2(K∞)/GL2(O∞)K⋆
∞ → V(T )

A 7→
[
AO2

∞
]

is a bijection.

Our next goal is to identify the vertices in the tree with explicitly given matrices
and to see, which matrices correspond to adjacent vertices in the tree. The next two
Lemmas will help us with that. The next Lemma is basically the row-reduction to
the echelon form of a matrix in GL2(K∞), we give a constructive proof that allows
for an explicit algorithm to compute the vertex normal form of a matrix.
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Lemma 2.7 Every class of GL2(K∞)/GL2(O∞)K⋆
∞ has a unique representative of

the form (
πn g
0 1

)
with n ∈ Z and g ∈ K∞/π

nO∞.

We call this representative the vertex normal form of a matrix γ ∈ GL2(K∞) or of
the corresponding vertex ϕ(γ).

Proof: Let γ =

(
x1 x2

x3 x4

)
∈ GL2(K∞). If v∞(x3) < v∞(x4) we multiply from the

right with

(
0 1
1 0

)
to swap the columns of γ. Hence we can assume v∞(x3) ≥ v∞(x4).

Multiplying from the right with

(
1 0
−x3

x4
1

)
∈ GL2(O∞) gives

(
x1 x2

x3 x4

)(
1 0
−x3

x4
1

)
=

(
x1 − x2x3

x4
x2

0 x4

)
.

Multiplying with x−1
4 ∈ K⋆

∞ we obtain an equivalent matrix of the form(
z1 z2

0 1

)
.

Write z1 = πnε with ε ∈ O⋆∞ and multiply from the right with

(
ε−1 0
0 1

)
∈ GL2(O∞)

to obtain a matrix of the form

(
πn y
0 1

)
.

If we have (
πn a
0 1

)
=

(
πm b
0 1

)(
r s
t u

)
=

(
πmr + bt πms+ bu

t u

)

with

(
r s
t u

)
∈ GL2(O∞)K⋆

∞, we conclude from the last row u = 1, t = 0 and hence

r = 1 and m = n. The entry in the upper right corner is therefore only determined
up to πnO∞.
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Lemma 2.8 Consider the two matrices in vertex normal form

A :=

(
πn g
0 1

)
, B :=

(
πn+1 g + απn

0 1

)
with n ∈ Z, α ∈ k, g ∈ K∞/π

nO∞ and let L1 and L2 be the two lattices

L1 := AO2
∞, L2 := BO2

∞.

Then L1 ⊃ L2 and L1/L2
∼= k.

Proof: Set

v1 =

(
πn

0

)
and v2 =

(
g
1

)
.

Then L1 = 〈v1, v2〉O∞ and L2 = 〈πv1, v2 + αv1〉O∞ . Hence

L1 ⊇ L2 ⊇ πL1.

But v1 6∈ L2 and v2 + αv1 6∈ πL1, so

L1 ) L2 ) πL1

and therefore L1/L2
∼= k.

Remark 2.9 Lemma 2.8 only displays q vertices adjacent to [L1]. The missing one

is the class of

(
πn−1 g

0 1

)
O2

∞ with g now being replaced by its class in K∞/π
n−1O∞.

In Figure 1 below we have illustrated the tree together with the matrices in normal
form corresponding to vertices. The identification is clear from the previous lemma.
Note that each line in the picture symbolizes actually a whole fan expanding to the
right. The elements α ∈ k⋆, β ∈ k agree on each fan.

Write L(n, g) for the O∞-lattice 〈v1, v2〉O∞ where v1 =

(
πn

0

)
and v2 =

(
g
1

)
. Note

that L(n, g) = L(n, g′) if and only if g ≡ g′ (mod πnO∞).

Remark 2.10 For n ∈ Z, g ∈ K∞ we define

degn(g) := min{i ∈ N0|g ∈ πn−iO∞}.

Then, setting δ := degn(g), the path from L(n, g) to L(0, 0) in T is given as follows:

L(n, g) —– L(n− 1, g) —– . . . —– L(n− δ, g) = L(n− δ, 0) —

— L(sign(n− δ) · (|n− δ| − 1), 0) —– . . . —– L(sign(n− δ) · 1, 0) —– L(0, 0)

In particular the distance between L(n, g) and L(0, 0) is degn(g) + |n− degn(g)|.
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with α ∈ k⋆, βi ∈ k compatibly chosen

Figure 1: The tree T with the corresponding matrices

2.3 Quaternion algebras

We briefly recall some basics from the theory of quaternion algebras. All material
covered in this section is well known. Standard references are [JS, Kap. IX] and [Vi].
Note that for 2.11 to 2.13, K could be any field.

Definition 2.11 A quaternion algebra D over K is a central simple algebra of di-
mension 4 over K.

There is a unique anti-involution − : D → D such that γ + γ̄ and γγ̄ are in K for all
γ ∈ D. This map is called conjugation on D and we can use it to define the reduced
trace and norm of an element γ ∈ D as trd(γ) := γ + γ̄ and nrd(γ) := γγ̄.

Definition 2.12 Let a, b ∈ K⋆. We define
(
a,b
K

)
to be the K-algebra with basis

1, i, j, ij and relations

� i2 = a, j2 = b, ij = −ji for char(K) 6= 2 and

� i2 + i = a, j2 = b, ij = j(i+ 1) for char(K) = 2.

It is not hard to show, that any quaternion algebra over K is isomorphic to
(
a,b
K

)
for

some a, b ∈ K, see [Vi, Chapitere I.1] for arbitrary characteristic or [JS, Kapitel IX]
for char(K) 6= 2.
Write any γ ∈

(
a,b
K

)
uniquely as γ = λ1 + λ2i+ λ3j + λ4ij with λi ∈ K.

For char(K) 6= 2 the anti-involution is given by γ̄ = λ1 − λ2i − λ3j − λ4ij and we
compute trd(γ) = 2λ1 and nrd(γ) = λ2

1 − aλ2
2 − bλ2

3 + abλ2
4.
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For char(K) = 2 the anti-involution is given by γ̄ = λ1 + λ2(i + 1) + λ3j + λ4ij and
we compute trd(γ) = λ2 and nrd(γ) = λ2

1 + aλ2
2 + bλ2

3 + abλ2
4 + λ1λ2 + bλ3λ4.

The norm map of the quaternion algebra
(
a,b
K

)
gives us a quadratic form Qa,b :

(λ1, . . . , λ4) 7→ nrd(λ1 + λ2i+ λ3j + λ4ij).
Any quaternion algebra is either a division algebra or isomorphic to M2(K) (see [JS,
Satz 1.4, IX]) and we have the following proposition:

Proposition 2.13 Suppose char(K) 6= 2. Then the following are equivalent:

(a) D :=
(
a,b
K

) ∼= M2(K)

(b) There is an x ∈ D, x 6= 0, with nrd(x) = 0.

(c) The quadratic form Qa,b is isotropic, i.e. there are (x, y, v, w) ∈ K4r{(0, 0, 0, 0)}
with Qa,b(x, y, v, w) = 0.

(d) The equation Z2 − aX2 − bY 2 = 0 has a non-trivial solution over K.

(e) a ∈ Image(Norm(K(
√
b)/K)

(f) b ∈ Image(Norm(K(
√
a)/K)

Proof: See [JS, Satz 1.9, Chapter IX].

For char(K) = 2, the situation is different. Especially, one does not have a symmetry
in the role of a and b as in the previous proposition. For more details we refer the
reader to Appendix A where we treat the case of char(K) = 2.
Let p be a place of K.

Definition 2.14 We say that a quaternion algebra D over K is ramified at p if and
only if D ⊗K Kp is a division algebra.

Assumption 2.15 For the remainder of the thesis, we assume that D is a division
quaternion algebra which is unramified at ∞, i.e., that D is an indefinite quaternion
algebra over A. We also fix an isomorphism D∞ ∼= M2(K∞).

Lemma 2.16
(
a,b
K

)
is unramified at p if and only if Qa,b has a non-trivial solution

over Kp.
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Proof: Suppose that Qa,b has a non-trivial solution over Kp, i.e. there are elements
(0, 0, 0, 0) 6= λ1, . . . , λ4 in Kp such that Qa,b(λ1, . . . , λ4) = 0. But then γ := λ1 +λ2i+

λ3j + λ4ij is a non-zero element of
(
a,b
K

)
⊗ Kp

∼=
(
a,b
Kp

)
with nrd(γ) = γγ̄ = 0 and

hence
(
a,b
K

)
⊗Kp is not a division algebra.

On the other hand, suppose that Qa,b has no non-trivial solutions and let 0 6= γ ∈(
a,b
Kp

)
. Write γ = λ1+λ2i+λ3j+λ4ij with λi ∈ Kp. Then Qa,b(λ1, . . . , λ4) = nrd(γ) =

γγ̄ is in K⋆
p and hence γ̄/(γγ̄) is the multiplicative inverse of γ.

We define the Hilbert symbol of a pair (a, b) ∈ K2 at a place p as follows:

Definition 2.17

(a, b)Kp
:=

{
+1

(
a,b
K

)
is unramified at p

−1
(
a,b
K

)
is ramified at p.

Definition 2.18 Let a,ϖ be in A with ϖ irreducible. Define the Legendre symbol of
a and ϖ as ( a

ϖ

)
:=


1 a 6= 0 and a is a square modulo ϖ

−1 a is a non-square modulo ϖ

0 ϖ divides a.

The next Proposition is proved by adaptating to the function-field situation the proof
of [Se2, Chapter III, Theorem 1]:

Proposition 2.19 Suppose char(K) 6= 2. Write p = (ϖ) and let a = ϖαu, b = ϖβv
with u, v ∈ O⋆

Kp
, α, β ∈ Z and let ε(p) := q−1

2
deg(ϖ) (mod 2). Then

(a, b)Kp
= (−1)αβε(p)

( u
ϖ

)β ( v
ϖ

)α
.

Proof: In the proof we write (a, b) for (a, b)Kp
.

The right hand side of the equation clearly depends only on α (mod 2) and β (mod 2).
If Qa,b is isotropic, then so are Qϖ2a,b, Qa,ϖ2,b and vice versa. Hence the left hand side
also only depends on α (mod 2) and β (mod 2). Because of symmetry we only need
to consider the three cases (α, β) = (0, 0), (α, β) = (1, 0) and (α, β) = (1, 1).
Case one: (α, β) = (0, 0): Here the right hand side is 1, so we have to show that
Z2−uX2− vY 2 has a solution in Kp. But Z2−uX2− vY 2 has a solution modulo ϖ,
since all quadratic forms in at least three variables over a finite field have a non-trivial
solution (see [Se2, Chapter I.2, Cor. 2]). Since disc(Z2 − uX2 − vY 2) ∈ O⋆

Kp
, this

solution lifts to OKp
by Hensel’s Lemma.
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Case two: (α, β) = (1, 0): We must check that (ϖu, v) =
(
v
ϖ

)
, From case one

we know that (u, v) = 1, hence u ∈ Image(Norm(Kp(
√
v)/Kp) and we have ϖ ∈

Image(Norm(Kp(
√
v)/Kp) if and only if uϖ ∈ Image(Norm(Kp(

√
v)/Kp).

So (ϖu, v) = (ϖ, v) and we may assume u = 1. If v = (v′)2 is a square in Kp, then
clearly

(
v
ϖ

)
= 1 and also (v′, 0, 1) is a non-trivial solution of Z2 − ϖX2 − vY 2 = 0,

so (ϖ, v) = 1. Let v be a non-square in Kp. Since v ∈ O⋆
Kp

, this is equivalent

to
(
v
ϖ

)
= −1. Suppose Z2 − ϖX2 − vY 2 has a non-trivial solution (z, x, y). By

normalizing we can assume that (z, x, y) is primitive, i.e. (z, x, y) ∈ OKp
, and at least

one of them is in O⋆
Kp

. Suppose either z ≡ 0 (mod ϖ) or y ≡ 0 (mod ϖ). Then since

z2− vy2 ≡ 0 (mod ϖ) and v 6= 0 (mod ϖ) we obtain both z ≡ 0 (mod ϖ) and y ≡ 0
(mod ϖ) and hence ϖx2 ≡ 0 (mod ϖ2), so x ≡ 0 (mod ϖ). Therefore (z, x, y) was
not primitive. So both z and y have to be non-zero moduloϖ. Reducing z2−ϖx2−vy2

modulo ϖ we obtain
(
v
ϖ

)
= 1, which is a contradiction. So Z2 −ϖX2 − vY 2 has no

non-trivial solution, and hence (ϖ, v) = −1.
Case three: (α, β) = (1, 1):
We must check that (ϖu,ϖv) = (−1)ε(p)

(
u
ϖ

) (
v
ϖ

)
. But since Qϖu,−ϖu is isotropic we

have

ϖv ∈ Image(Norm(Kp(
√
ϖu)/Kp)⇔ −ϖ2uv ∈ Image(Norm(Kp(

√
ϖu)/Kp)

and hence
(ϖu,ϖv) = (ϖu,−ϖ2uv) = (ϖu,−uv),

so we can apply case two and see that

(ϖu,ϖv) = (ϖu,−uv) =

(
−uv
ϖ

)

=

(
−1

ϖ

)( u
ϖ

)( v
ϖ

)
= (−1)

q−1
2

deg(ϖ)
( u
ϖ

)( v
ϖ

)
.

Let D be an indefinite quaternion algebra over K. Indefinite means that D is unram-
ified at the place ∞, i.e. D ⊗K K∞ ∼= M2(K∞). Let R denote the set of all ramified
places of D.

Proposition 2.20 The number of places in R is finite and even and D is up to
isomorphism uniquely determined by R.

Proof: See [Vi, Lemme III.3.1 and Theoreme III.3.1].
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Let r be a monic generator of the ideal r :=
∏

p∈R p. The ideal r is called the
discriminant of D.
An order of D is a free A-submodule of rank 4 in D that is also a ring. An order Λ of
D is called maximal if it is not properly contained in any other order of D. For any
4 elements γ1, . . . , γ4 ∈ D let disc(γ1, . . . , γ4) := det(trd(γiγj))i,j=1,...,4. For any order
Λ of D the ideal of A generated by the set {disc(γ1, . . . , γ4) | γi ∈ Λ} is a square (see
[Vi, Lemme I.4.7], and we define the reduced discriminant disc(Λ) to be the square
root of this ideal. Since A is a principal ideal domain, for any A-basis {γ1, . . . , γ4} of
Λ the element disc(γ1, . . . , γ4) generates the ideal 〈{disc(γ1, . . . , γ4) | γi ∈ Λ}〉A. An
order Λ of D is maximal if and only if disc(Λ) = r, see [Vi, Corollaire III.5.3]. Since D
is split at infinity and since K has class number 1, a maximal order Λ of D is unique
up to conjugation, i.e. for any other maximal order Λ′ we have Λ′ = γΛγ−1 for an
γ ∈ D⋆, see [Vi, Corollaire III.5.7].
Let Λ = 〈γ1, . . . , γ4〉A and Γ := Λ⋆. Hence Γ = {γ ∈ Λ | nrd(γ) ∈ k⋆}. Since D
is unramified at K∞ we have D ⊗K K∞ ∼= M2(K∞) and we obtain an embedding
ι : D ↩→ M2(K∞). Via this embedding Γ can be identified with a subgroup of

SL2(K∞)

(
k⋆ 0
0 1

)
⊆ GL2(K∞).

The following Proposition is well known. We give a proof for the sake of completeness.

Proposition 2.21 ι(Γ) is a discrete subgroup of GL2(K∞).

Proof: The open sets {1+πnM2(O∞) | n ∈ N} form a basis of open neighbourhoods
of 1 in GL2(K∞). After shifting by 1 it suffices to show that ι(Λ) ∩M2(O∞) is finite.
To see this, let D be the unique locally free coherent sheaf of rings of rank 4 over
P1
k such that Λ ∼= Γ(A1

k,D) and such that the completed stalk at infinity satisfies
D∞ ∼= M2(O∞). Then ι(Λ) ∩M2(O∞) = H0(P1

k,D). By the Riemann-Roch Theorem
this is a finite-dimesional k-vector space.

2.4 Facts about quaternion quotient graphs

In Section 2.2 we have described the natural action of GL2(K∞) on the Bruhat-Tits
tree T . In the previous section, starting from D as in Assumption 2.15, we have
produced a discrete subgroup Γ ⊂ GL2(K∞), the unit group of a maximal order. In
this section we gather some known results about the induced action of Γ on T and
the quotient graph Γ\T . We mainly follow [Pa1].

Lemma 2.22 Let v ∈ V(T ) and γ ∈ Γ. Than the distance d(v, γv) is even.

Proof: See [Se1, Corollary of Proposition II.1].
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Proposition 2.23 Γ\T is a finite graph.

Proof: See [Pa1, Lemma 5.1].

Proposition 2.24 Let v ∈ V(T ) and e ∈ E(T ). Then Γv := StabΓ(v) is either
isomorphic to F⋆q or F⋆q2 and Γe := StabΓ(e) is isomorphic to F⋆q.

Proof: See [Pa1, Proposition 5.2].

Note that the scalar matrices with diagonal in F⋆q are precisly the scalar matrices in
Γ. They act trivially on T . Hence a stabilizer of a simplex is isomorphic to F⋆q if and
only if it is the set of scalar matrices with diagonal in F⋆q.

Definition 2.25 We call a simplex s projectively stable if Γs ∼= F⋆q and projectively
unstable if Γs ∼= F⋆q2.

Let Γ̄ be the image of Γ in PGL2(K∞), hence Γ̄ ∼= Γ/F⋆q. Then for vertices v ∈ V(T )
the stabilizer Γ̄v is either trivial or isomorphic to F⋆q2/F

⋆
q and for edges e ∈ E(T ) the

stabilizer Γ̄e is always trivial. Thus t is Γ̄-stable in the sense of [Se1, Definition II.2.9]
for Γ̄ the image of Γ in PGL2(K∞) if and only if t is projectively stable.

Corollary 2.26 Let v ∈ V(T ) be projectively unstable. Then Γv acts transitively on
the vertices adjacent to v.

Let

odd(R) :=

{
0 if some place in R has even degree,

1 otherwise

and let

g(R) := 1 +
1

q2 − 1

(∏
p∈R

(qp − 1)

)
− q

q + 1
2#R−1 odd(R)

where qp = qdeg(p). Let π : T → Γ\T be the natural projection.

Theorem 2.27 (a) The graph Γ\T has no loops.

(b) h1(Γ\T ) = g(R).

(c) For v̄ ∈ Γ\T and v ∈ π−1(v̄) we have:

(i) v̄ is a terminal vertex if and only if v is projectively unstable.
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(ii) v̄ has degree q + 1 if and only if v is projectively stable.

(d) Let V1 (resp. Vq+1) be the number of terminal (resp. degree q + 1) vertices of
Γ\T . Then

V1 = 2#R−1 odd(R) and Vq+1 =
1

q − 1
(2g(R)− 2 + V1).

Proof: See [Pa1, Theorem 5.5]

2.5 An algorithm to compute a fundamental domain

Let the notation T , Γ be as in the previous section.

Definition 2.28 ([Se1, § I.3]) Let G be a group acting on a graph X . A tree of
representatives of X (mod G) is a subtree S ⊂ X whose image in G\X is a maximal
subtree.

The following definition is basically [Se1, § I.4.1, Lem. 4], see also [Se1, § I.5.4,
Thm. 13]. Note that (a) differs from [Se1, § I.4.1, Def. 7].

Definition 2.29 Let G be a group acting on a tree X .

(a) A fundamental domain for X under G is a pair (S,Y) of subgraphs S ⊂ Y ⊂ X
such that

(i) S is a tree of representatives of X (mod G),

(ii) the projection E(Y)→ E(G\X ) is a bijection, and

(iii) any edge of Y has at least one of its vertices in S.

(b) An edge pairing for a fundamental domain Y of X under G is a map

PE := PE(S,Y) := {e ∈ E(Y) r E(S) | o(e) ∈ S} → G : e 7→ ge

such that get(e) ∈ V(S). We write PE for paired edges. To avoid cumbersome
notation, we usually abbreviate PE(Y,S) by PE.

(c) An enhanced fundamental domain for X under G consists of a fundamental
domain, an edge pairing and simplex labels Gt := StabG(t) for all simplices t
of Y.
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An edge pairing encodes that under the G-action any e = (v, v′) ∈ PE is identified
(paired) with ge = (gev, gev

′) when passing from X to G\X . Because X is a tree and
the image of S in G\X is a maximal subtree, each edge in E(Y)rE(S) has exactly one
of its vertices in V(S) and therefore PE contains exactly those edges of E(Y) r E(S)
pointing away from S. An enhanced fundamental domain is a graph of groups in the
sense of [Se1, I.4.4, Def. 8] realized inside X . Given a fundamental domain with an
edge pairing the tree S can be recovered from Y and PE.

Remark 2.30 If one barycentrically subdivides T , an alternative way to think of an
edge pairing is that it pairs the two half sides [o(e), 1

2
o(e)+ 1

2
t(e)] and [get(e), ge(

1
2
o(e)+

1
2
t(e))].

It will be convenient to introduce the following notation:

Definition 2.31 For any group G acting on a set X we define a category CG(X)
whose objects are the elements of X and whose morphism sets are defined as

HomG(x, y) := {γ ∈ G | gx = y} ⊆ G.

for x, y ∈ X. The composition of morphisms is given by multiplication in G.

In particular EndG(x) := HomG(x, x) = StabG(x).

For the remainder of this section, we assume that HomΓ(v, w) can be computed effec-
tively for all v, w ∈ V(T ). This will be verified in Section 2.7.

Algorithm 2.32 (Computation of the quotient graph)

Input: A subgroup Γ ⊂ GL2(K∞) for which there exists a routine for computing
HomΓ(v, v′) for all v, v′ ∈ V(T ) which are equidistant from [L(0, 0)].

Output: A directed multigraph G with a label attached to each simplex. The label
values on edges are either (e, 1) (preset), or (e,−1), or a pair (e, g) with e ∈ E(T ),
g ∈ Γ. The label values on vertices are either (v, 1) (preset) or (v,G) for v ∈ V(T )
and G ⊂ Γ a finite subgroup.

Algorithm:

(a) Set v0 = [L(0, 0)]. If # EndΓ(v0) = q2 − 1, replace v0 by [L(1, 0)]. If after
replacement we still have # EndΓ(v0) = q2 − 1, then terminate the algorithm
with the output the connected graph on 2 vertices and one edge and with vertex
labels EndΓ(v) for each of the two vertices v.

(b) Initialize a graph G with V(G) = {v0} and E(G) = ∅. Also, initialize lists
L := (e ∈ E(T ) | o(e) = v0), the edges adjacent to v0, and L′ := ∅. All vertices
v of T are given by a matrix in vertex normal form vnf(v).
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(c) While L is not empty:

(i) For i = 1 to #L do:

i. Let e = (v, v′) be the ith element in L.

ii. Compute EndΓ(v′).

iii. If # EndΓ(v′) = q2 − 1 then:

A. Add the vertex v′ to V(G) and e and e⋆ to E(G).
B. Store (v′,EndΓ(v′)) as a vertex label for v′.

C. Remove e from L.

iv. If # EndΓ(v′) = q − 1, then for all j < i do the following:

A. Let e′ = (w,w′) be the jth element in L.

B. Compute HomΓ(v′, w′).

C. If HomΓ(v′, w′) 6= ∅, then do the following: • Add an edge e′ from
v to w′ to E(G), as well as its opposite.
• Give e′ the label (e, ge) for some ge ∈ HomΓ(v′, w′) and give e′⋆

the label (e,−1).
• Remove (v, v′) from L and set j := i.
• Remove (w′, vnf(gev)) from L′.
• If now degreeG(w′) = q + 1, then remove (w,w′) from L.

D. Continue with the next j.

v. If at the end of the j-loop we have j = i, then:

A. Add v′ to V(G), add e and e⋆ to E(G).
B. For all adjacent vertices w 6= v of v′ in T add (v′, w) to L′.

(ii) Set L := L′ and L′ := ∅.

(d) If L is empty, return G.

Remark 2.33 One could randomly choose a vertex [L(n, g)] as v0 and replace it by
[L(n+ 1, g)], if it is projectively unstable. In this case, one would need to change the
input of Algorithm 2.32 accordingly.

Remark 2.34 The vertex label (v, 1) is used at all projectively stable vertices. For
these, the stabilizer is the center of GL2(K∞) intersected with Γ. There is no need to
store this group each time. The same remark applies to all edges labeled (e, 1).
A maximal subtree S of G consists of all vertices of G and those edges of G with edge
label (e, 1). It is completely realized within T .
The edges with label (e, g) are the edges which occur (ultimately) in PE. The edge
label (e,−1) indicates that the opposite edge has a label (e, g). It is clear that the
vertex and edge label allow one to easily construct an enhanced fundamental domain
(S,Y) with an edge pairing and labels for the action of Γ on T .
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Theorem 2.35 Suppose Γ from Algorithm 2.32 satisfies the following conditions:

(a) d(v, gv) is even for all g ∈ Γ, v ∈ V(T ),

(b) for simplices t of T either Γ̄t is trivial, or t is a vertex and Γ̄t ∼= Z/(q + 1),

(c) Γ\T is finite.

Then Algorithm 2.32 terminates and computes an enhanced fundamental domain for
T under Γ.

By the results in Section 2.4, hypotheses (a)–(c) are satisfied if Γ is the unit group of
a maximal order of a quaternion algebra D as in Assumption 2.15.

Proof: Let G be the output of Algorithm 2.32. We show that any two distinct
simplices of G have labels (t, ?) and (t′, ?) with t′ /∈ Γt and that for all simplices t of
T there is a simplex of G whose label is (t′, ?) for some t′ ∈ Γt.
For the first assertion, let v1, v2 ∈ V(T ) be distinct first entries in labels of vertices
of G and suppose that γv1 = v2 for some γ ∈ Γ r Γv1 . We seek a contradiction. In
a first reduction step we show that we may assume that v1 is projectively stable: So
suppose v1 is projectively unstable. Then since

StabΓ(v2) = γ StabΓ(v1)γ
−1, (1)

also v2 has to be projectively unstable. Hence both v1 and v2 are terminal vertices in
G. Let v′1 and v′2 be their unique adjacent vertices in G. Since v′1 is adjacent to v1,
it follows that γv′1 is adjacent to γv1 = v2. By condition (b) the stabilizer StabΓ(v2)
acts transitively on the vertices adjacent to v2. Hence there exists γ′ ∈ StabΓ(v2) with

γ′γv′1 = v′2, (2)

and so v′1 and v′2 are Γ-equivalent. If v′1 and v′2 were also projectively unstable and
therefore terminal vertices in G, then, since G is connected, G would have to be
the graph consisting of the two vertices v1, v2 and one edge connecting them. This
contradicts condition (a). Therefore v′1 and v′2 must be projectively stable and Γ-
equivalent. To conclude the reduction, observe that we cannot have v′1 = v′2, since
in this case we must have γ′γ ∈ F∗

q from (2). But γ′γ maps v1 to v2 and this would
contradict v1 6= v2.
Now suppose v1 is projectively stable. Then by equation (1) so is v2. Let v be the
initial vertex of the algorithm and let i1 = d(v, v1) and i2 = d(v, v2). We prove
the assertion by induction over i1: If i1 = 1 then also i2 = 1 because of condition
(a). Hence the vertices v1 and v2 both have the same distance 1 from v and since
HomΓ(v1, v2) = q − 1, Algorithm 2.32 with the first choice of L rules out that they
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both lie in G. This is a contradiction. The same reasoning rules out i1 = i2 for any
i1, i2 ≥ 1.
Suppose i1 > 1. By condition (a) and the previous line we may assume i1 = i2 + 2m
for some m ∈ Z≥1. Let v′1 be the vertex on the geodesic from v1 to v so that d(v, v′1) =
i1 − 1. Then by the construction of G we have v′1 ∈ G. The vertex γv′1 is adjacent
to γv1 = v2. Now observe that γv′1 does not belong to G because otherwise we could
apply the induction hypothesis to v′1, γv

′
1, using d(v′1, v) = i1−1 and d(γv′1, v) ≤ i2 +1

to obtain a contradiction.
It follows that v′2 := γv′1 6∈ G. Since by construction the geodesic from v to v2 lies
on G, we have d(v′2, v) = i2 + 1. Now by the algorithm that defines G the vertex v′2
must be equivalent to a vertex of distance i2 − 1, i.e., there are γ′ ∈ Γ, v′′2 ∈ G with
d(v′′2 , v) = i2 − 1 such that v′′2 = γ′v′2. But then we apply the induction hypothesis to
v′1, v

′′
2 and again obtain a contradiction. This concludes the proof of the first assertion

for vertices.
Suppose now that e = (v0, v1), e

′ = (v′0, v
′
1) occur as first entries in E(G), lie in the

same Γ-orbit, are distinct and occur in some edge labels of G. Let γ be in Γ with
e′ = γe. Note that not all the vertices vi and v′i must occur in vertex labels from G but
each edge must at least have one vertex that does – see step (c)(i)4.C. Suppose after
possibly changing the orientation of edges and the indices that v0 has minimal distance
from v. By construction of G the vertex v0 occurs in a vertex label. If v′0 = γv0 occurs
in a vertex label of G, then by the case already treated, we must have v0 = v′0. Since
e 6= e′ it follows that v0 is projectively unstable. But then the algorithm does not
yield an edge starting at v0 and ending at a vertex v1 with d(v, v1) > d(v, v0). This is
a contradiction.
It follows that v′0 = γv0 does not occur in a vertex label. Hence v′1 must occur in a
vertex label. By essentially the argument just given, v1 can also not occur in a vertex
label. Hence (e, γ) must be an edge label and moreover d(v, v′1) = d(v, v0) + 1 =
d(v, v′0)− 1. But then in step (c)(i)4.C of Algorithm 2.32 the edge e′ must have been
removed from the list L′ and so it cannot occur in a label of an edge of G.
We finally come to the second assertion: By construction, G defines a connected graph.
It is a subgraph of Γ\T , since we already showed that there are no Γ-equivalent
simplices in G. Moreover, at any vertex of this subgraph the degree within G and
within Γ\T is the same. Hence G defines a connected component of Γ\T . But T and
hence Γ\T are connected and thus G = Γ\T .

We further describe an algorithm to compute for any v′ ∈ V(T ) a Γ-equivalent vertex
v′′ ∈ G. This can be done in time linear to the distance from v′ to G. For this algorithm
we need the stabilizers of the terminal vertices of G and the elements γ ∈ HomΓ(vi, vj),
which we both stored as vertex and edge labels during the computation of G. We call
this algorithm the reduction algorithm. We need to be able to do the following:
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(a) Find the geodesic from v′ to v. This was discussed in Remark 2.10.

(b) Determine the extremities of a given geodesic in G. Since the vertices in G are
all stored in the vertex normal form, this can be done in constant time.

Algorithm 2.36 (The reduction algorithm)

Input: v′ ∈ V(T ) and G the output of Algorithm 2.32 with initial vertex v.

Output: A tuple (w, γ) ∈ V(G)× Γ with v′ = γw.

Algorithm:

(a) Let T0 : (v′ = vm, vm−1, . . . , v) be the geodesic from v′ to v. Let vi be the vertex
of T0 ∩ G closest to v′. Let r = m− i, this is the distance from v′ to G.

(b) If r = 0, we have v′ ∈ G. Then return (v′, 1).

(c) If r > 0, we distinguish two cases:

(i) If vi is projectively unstable, by a for-loop through the elements γ in
StabΓ(vi), find an element γ ∈ Γ such that γvi+1 is a vertex of G. Re-
place v′ by γv′ and apply the algorithm recursively to get some pair (w, γ̃)
in V(G)× Γ. Return (w, γ̃γ).

(ii) If vi is projectively stable, run a for-loop through the vertices ṽ in G ad-
jacent to vi to find the unique ṽ such that either: (i), the edge label of
the edge from ṽ to vi is of the form (e, γ) for some γ ∈ Γ with γt(e) = vi
and γo(e) = vi+1, or (ii), the edge label from vi to ṽ is of the form (e, γ)
for some γ ∈ Γ with o(e) = vi and t(e) = vi+1. In case (i), replace v′ by
γ−1v′ and apply the algorithm recursively to get some pair (w, γ̃) for γ−1v′.
Return (w, γ̃γ−1). In case (ii), replace v′ by γv′ and apply the algorithm
recursively to get some pair (w, γ̃) for γv′. Return (w, γ̃γ).

Proposition 2.37 Let v′ in T and let G be the output of Algorithm 2.32 under the
hypothesis of Theorem 2.35 with initial vertex v. Then Algorithm 2.36 computes a Γ-
equivalent vertex w of v′ and an element γ ∈ Γ with γv′ = w. It requires O(n3 deg(r)2)
additions and multiplications in Fq where n is the distance of v′ to G.

Proof: In both cases of the algorithm we find an edge label that moves v′ closer
to G. Since each step of the algorithm decreases the distance d(v′,G), the algorithm
terminates after at most n steps. From Corollary 2.63 and Proposition 2.46 it follows
that at step j one multiplies a matrix of height (j − 1)5

2
deg(r) with one of height

5
2
deg(r). Further one has to compute the vertex normal form of a matrix of height

at most (j + 1)5
2
deg(r). This takes at most (8j + 8j2)(5

2
)2 deg(r)2 operations in Fq.

Summing over j, the asserted bound follows.
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Example 2.38 In Figure 2 we give an example of the Algorithm 2.32, where q = 5

and r = T (T + 1)(T + 2)(T + 3). We start with

(
1/T 0
0 1

)
as the initial vertex v.

The adjacent vertices correspond to the matrix

(
1 0
0 1

)
, which is a terminal vertex,

and the five matrices

(
1/T 2 α1/T

0 1

)
with α ∈ F5. Using the algorithm described in

Section 2.7 we compute that

(
1/T 2 0

0 1

)
is the only projectively unstable vertex and

# HomΓ(

(
1/T 2 1/T

0 1

)
,

(
1/T 2 41/T

0 1

)
) = 4,

# HomΓ(

(
1/T 2 2π

0 1

)
,

(
1/T 2 3π

0 1

)
) = 4.

This finishes Step 1 of the algorithm, as depicted in Figure 2. In Step 2 we then
continue with the eight indicated vertices of level 3. In this case, the algorithm
terminates after 3 steps.

Step 1 Step 2

Step 3

sprojectively stable
cprojectively unstable

sc s

c

s

✲✛

❘
■

γ1

γ2

q
q
q
q

q
q
q
q

sc s

c

s

✲✛

❘
■

γ1

γ2

c

c

c

c

s
q

q

✲✛

✠
✒ ✠
✒

γ3

γ4
γ5

sc s

c

s

✲✛

❘
■

γ1

γ2

c

c

c

c

s

c

c

✲✛

✠
✒ ✠
✒

γ3

γ4
γ5

Figure 2: Example: q = 5, r = T (T + 1)(T + 2)(T + 3)
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Example 2.39 Consider K = F5(T ) and the two discriminants r1 = (T 2 + T + 1) ·
T · (T + 1) · (T + 2) and r2 = (T 2 + 2) · T · (T + 1) · (T + 2). Let Γi be the group
of units of a maximal order of a quaternion algebra of discriminant ri for i ∈ {1, 2}.
Then Γ1\T has 14 cycles of length 2, while Γ2\T has 10 cycles of length 2. Hence
these two graphs are not isomorphic. This answers a question of Papikian who asked
for an example in which the lists of degrees of the factors of r and r′ are the same
but where the graphs are non-isomorphic. This is similar to [GN, Rem 2.22] where
congruence subgroups Γ0(n) and Γ0(n

′) of GL2(A) are considered.

2.6 Concrete models for D and Λ

In Algorithm 2.32 we assumed the existence of a routine for computing HomΓ(v, v′) for
all v, v′ ∈ V(T ) which are equidistant from [L(0, 0)]. Such a routine will be described
in Section 2.7. It is based on concrete models for the pair (D,Λ) from Section 2.3.
We will describe such models here, assuming q odd. We will also describe explicit
embeddings of D into GL2(K∞).

First assume odd(R) = 1.

Lemma 2.40 Let R = {p1, . . . , pl} be a set of finite places of K with deg(pi) odd for
all i and l even, let r be a monic generator of the ideal r =

∏l
i=1 pi and let ξ ∈ k⋆\(k⋆)2.

Then
(
ξ,r
K

)
is ramified exactly at the places p1, . . . , pl.

Proof: We compute the Hilbert symbols using Proposition 2.19. For (ϖ) = p 6∈ R
we have

(ξ, r)p = (−1)0

(
ξ

ϖ

)0 ( r
ϖ

)0

= 1

and for (ϖ) = p ∈ R we have

(ξ, r)p = (−1)0

(
ξ

ϖ

)1(
r/ϖ

ϖ

)0

=

(
ξ

ϖ

)
= ξ

q−1
2

deg(ϖ) = −1,

since deg(ϖ) is odd.

Set D =
(
ξ,r
K

)
with ξ ∈ k⋆\(k⋆)2.

Lemma 2.41
Λ := 〈1, i, j, ij〉A

is a maximal order of D.
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Proof: Λ is clearly closed under multiplication and a lattice of rank 4. Hence Λ is
an order. We have to check, that Λ is maximal. This is the ideal generated by

det


trd(1) trd(i) trd(j) trd(ij)
trd(i) trd(i2) trd(ij) trd(i2j)
trd(j) trd(ji) trd(j2) trd(jij)
trd(ij) trd(iji) trd(ij2) trd(ijij)

 = det


2 0 0 0
0 2ξ 0 0
0 0 2r 0
0 0 0 −2ξr

 = −16ξ2r2.

We see, that Λ has reduced discriminant r, and hence is a maximal order.

Recall that r is monic and has even degree l. Hence there exists a square root of r in
K∞. We choose one and denote it by

√
r. The following Lemma shows that we can

effectively compute
√
r ∈ K∞ to high precissions.

Lemma 2.42 Let α be monic of even degree in A. To compute
√
α in K∞ = Fq((π))

to n digits of accuracy one requires O(n3) additions and multiplications in Fq.

Proof: Let m = deg(α). It suffices to compute the square root u of the 1-unit πmα
to n digits accuracy. This can be done by the Newton iteration in n steps starting

with the approximation u0 = 1. The k-th approximation is uk = uk−1 −
u2

k−1−π
mα

uk−1
.

From the right hand expression one only needs to compute u2
k−1−πmα which requires

n2 operations in Fq. The k-th digit past the decimal point divided by 2 has then to
be subtracted from uk−1.

Lemma 2.43 The map ι : D → M2(K∞) defined by sending i 7→
(

0 1
ξ 0

)
and j 7→(√

r 0
0 −

√
r

)
gives an isomorphism D ⊗K K∞ ∼= M2(K∞).

Proof: Since r =
∏l

i=1ϖi with ϖi ∈ A, l even and all deg(ϖi) odd, the degree of
r is even, hence we have

√
r ∈ K∞. One checks that the given matrices ι(i) and

ι(j) fulfil the relations ι(i)2 = ξ, ι(j)2 = r and ι(i)ι(j) = −ι(j)ι(i). This easily yields(
ξ,r
K∞

)
∼= M2(K∞) under ι. The isomorphism D ⊗K K∞ ∼=

(
ξ,r
K∞

)
is obvious by

construction of D.
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Now let us drop the assumption odd(R) = 1. Let l ≥ 2 be even and let R be a set of
l distinct prime ideals {p1, . . . , pl} of A. Denote by ϖi the unique monic (irreducible)
generator of pi. Set r :=

∏
iϖi and r :=

∏
i pi where the index i ranges over 1, . . . , l.

Lemma 2.44 There is an irreducible monic polynomial α ∈ A of even degree such
that (

α

ϖi

)
= −1 for all i. (3)

Any such α also satisfies
(
r
α

)
= 1.

Proof: Choose any a ∈ A such that(
a

ϖi

)
= −1

for all i. This can be done using the Chinese remainder theorem. By the strong
form of the function field analogue of Dirichlet’s theorem on primes in arithmetic
progression, [Ro, Thm. 4.8], the set {a + rb | b ∈ A} contains an irreducible monic
polynomial α of even degree. Since α ≡ a (mod ϖi) we have(

α

ϖi

)
= −1

for all i. By quadratic reciprocity, [Ro, Thm. 3.3], we deduce(ϖi

α

)
= (−1)

q−1
2

degα degϖi

(
α

ϖi

)
= −1

since deg(α) is even. But then because l is even, we find

( r
α

)
=

l∏
i=1

(ϖi

α

)
= (−1)l = 1.

Remark 2.45 In practice α is rapidly found by the following simple search:

Step 1: Start with m = 2.

Step 2: Check for all monic irreducible α ∈ A of degree m whether
(
α
ϖi

)
= −1 for

all 1 ≤ i ≤ l.

Step 3: If we found an α then stop. Else increase m by 2 and go back to Step 2.
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In the function field setting [MS] gives an unconditional effective version of the
Čebotarov density theorem. This allows us to make Lemma 2.44 effective, i.e., to
give explicit bounds on deg(α) in terms of deg(r). The following result is from [BB]
and was suggested by G. Böckle.

Proposition 2.46 Abbreviate d := deg(r). The following table gives upper bounds
on dα := deg(α) depending on q and l:

q = 3 q = 5, 7 q = 9 q ≥ 11
l ≤ 4 l = 6 8 ≤ l l ≤ 6 8 ≤ l l ≤ 4 6 ≤ l l = 2 4 ≤ l

dα ≤ d+ 7 d+ 5 d+ 1 d+ 3 d+ 1 d+ 3 d+ 1 d+ 3 d+ 1

A basic reference for the results on function fields used in the following proof is [Sti].

Proof: Let K ′ := K(
√
ϖ1, . . . ,

√
ϖl). Then K ′/K is a Galois extension with Galois

group isomorphic to {±1}l with {±1} ∼= Z/(2); it is branch locus in K is the divisor
D consisting of the sum of the (ϖk) and (possibly)∞; the constant field of K ′ is again
Fq. Denote by g′ the genus of K ′ and by D′ the ramification divisor of K ′/K. The
ramification degree at all places is 1 or 2 and hence tame because q is odd. It follows
that deg(D′) = #G/2 · deg(D).
Let π(k) denote the places of K of degree k; let πC(k) denote the places p of K of
degree k for which Frobp = (−1, . . . ,−1) ∈ {±1}l. Note that the elements of πC(k)
are in bijection to the monic irreducible polynomials α of degree k which satisfy the
conditions (3). The following two inequalities are from [MS, Thm. 1 and (1.1)] and
the Hurwitz formula, respectively:∣∣πC(k)− 1

#G
π(k)

∣∣ ≤ 2g′
1

#G

qk/2

k
+ 2

qk/2

k
+
(
1 +

1

k

)
deg(D′). (4)

∣∣qk + 1− kπ(k)
∣∣ ≤ 2g′

qk/2

k
. (5)

2g′ = −2#G+ deg(D′) + 2. (6)

After some manipulations one obtains

πC(k) ≥ 1

#G

qk + 1

k
− qk/2

k

(deg(D)

2
+ 2 +

2

#G

)
−
(
1 +

1

k

)
#G

deg(D)

2
.

To ensure that the right hand side is positive for some (even) k, it thus suffices that

f(k) := qk − qk/2
(
2l−1(deg(r) + 5) + 2

)
−
(
k + 1

)
22l−1(deg(r) + 1) > 0. (7)

We know that l is the number of prime factors of r and hence that l ≤ deg(r). There
are at most q places of degree 1 and so for small q such as 3, 5, 7, already for small l
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the degree of r must be quite a bit larger than l. For instance if l ≥ 7 and q = 3, then
deg(r) ≥ 3l − 9. Using these considerations and simple analysis on f(k), it is simple
if tedious to obtain the lower bounds in the table. We leave details to the reader.

For the rest of this section let D :=
(
α,r
K

)
.

Proposition 2.47 For α as in Lemma 2.44, the quaternion algebra D is ramified
exactly at R.

Proof: We compute the Hilbert symbols using Proposition 2.19. For (ϖ) = p 6∈ R
and ϖ not equal to α we have

(α, r)p = (−1)0
( α
ϖ

)0 ( r
ϖ

)0

= 1

and for p = (α) we have

(α, r)p = (−1)0

(
1

α

)0 ( r
α

)1

= 1.

Finally for (ϖ) = p ∈ R we have

(α, r)p = (−1)0
( α
ϖ

)1
(
r/ϖ

ϖ

)0

= −1.

Since r is a square modulo α, there are ε, ν ∈ A with deg(ε) < deg(α) and ε2 = r+να.

Proposition 2.48 Λ := 〈1, i, j, εi+ij
α
〉 is a maximal A-order of D.

Proof: We first check, that Λ is an order. Let

γ = a+ bi+ cj + d
εi+ ij

α
= a+ (b+

dε

α
)i+ cj +

d

α
ij

with a, b, c, d ∈ A be any element of Λ. Then trd(γ) = 2a and

nrd(γ) = a2 − α(b+
dε

α
)2 − rc2 + αr(

d

α
)2 = a2 − rc2 +

rd2

α
− b2α2 + 2bdεα + d2ε2

α

= a2 − rc2 − b2α− 2bdε+ d2 r − ε2

α
= a2 − rc2 − b2α− 2bdε+ d2ν
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are both in A. Since {e1, e2, e3, e4} is an K-basis of D, we conclude that Λ is an
A-lattice of D. To check that Λ is a ring, we compute

e1ei = eie1 = ei,

e2e3 = −e3e2 = ij = αe4 − εe2,

e2e4 = i
εi+ ij

α
= ε+ j = εe1 + e3,

e4e2 =
εi+ ij

α
i = ε− j = εe1 − e3,

e3e4 = j
εi+ ij

α
= −εij + ij2

α
= −εij + ir

α

= −εij + i(ε2 − αν)
α

= νi− εεi+ ij

α
= νe2 − εe4,

e4e3 =
εi+ ij

α
j = −j εi+ ij

α
= −e3e4 = −νe2 + εe4,

and

e2
1 = e1, e

2
2 = αe1, e

2
3 = re1, e

2
4 =

(εi+ ij)2

α2
=
ε2i2 − i2j2

α2
=
ε2 − r
α

= νe1.

So Λ is closed under multiplication and hence an order. To check that Λ is maximal,
we compute

det(trd(eiej)i,j=1,...,4) = det


2 0 0 0
0 2α 0 2ε
0 0 2r 0
0 2ε 0 2ν

 = 16r(αν − ε2) = −16r2

and hence the ideal generated by det(trd(eiej)i,j=1,...,4) is equal to (r2).

Since α has even degree and is monic, there exists a square root of α in K∞. We choose
one and denote it by

√
α. Again Lemma 2.42 provides an effectiv way of computing√

α ∈ K∞ up to arbitrary precission.

Lemma 2.49 The K-algebra homomorphism ι : D → M2(K∞) defined by i 7→(√
α 0

0 −
√
α

)
and j 7→

(
0 1
r 0

)
induces an isomorphism D ⊗K K∞ ∼= M2(K∞).

Proof: One verifies ι(i)2 = α, ι(j)2 = r and ι(i)ι(j) = −ι(j)ι(i) by an explicit
calculation.



2 QUATERNION QUOTIENT GRAPHS 29

2.7 Computing HomΓ(v, w)

In this section we finaly present a routine for computing HomΓ(v, v′) for all v, v′ ∈
V(T ) which are equidistant from [L(0, 0)]. We will also bound the size of the elements
which show up in HomΓ(v, v′). Let r, α, ε,Λ and D =

(
α
r

)
K and ι be as at the end of

Section 2.6. To state our result, we define a (logarithmic) height ‖ ‖ on elements of
Λ.

Definition 2.50 (a) For (λ1, . . . , λ4) ∈ A4 define

‖λ1 · 1 + λ2 · i+ λ3 · j + λ4 ·
εi+ ij

α
‖ := max

i=1,...,4
deg(λi)‖.

(b) For M a matrix or a vector with entries in K∞ define v∞(M) to be the minimum
of all the v∞-valuations of all entries.

Theorem 2.51 Suppose v, v′ ∈ V(T ) have distance n from v0 = [L(0, 0)].

(a) There is an algorithm that computes HomΓ(v, v′) in time O(n4) field operations
over Fq.

(b) All γ ∈ HomΓ(v, v′) satisfy ‖γ‖ ≤ n+ deg(α)/2.

Proof: If v = [L(l, g)] has distance n from v0, then either

l = n and degl(g) lies in {0, . . . , n} or

l ∈ {−n,−n+ 2,−n+ 4, . . . , n− 2} and degl(g) =
n+ l

2
,

see Figure 1 and Remark 2.10. Moreover the path from [L(0, 0)] to [L(l, g)] is via
L( l−n

2
, 0) if l < n and via L(n−degl(g), 0) if l = n. Set n1 := degl(g) and n2 := n−n1

if l = n and n2 = n1 − n if l < n. In Figure 1, the integers n1 and n2 ∈ Z are
the coordinates of v from the baseline toward it and along the baseline, respectively.
Moreover l = n1 + n2 and g ∈ πl−n1O∞ = πn2O∞. Similarly we define n′

1 and n′
2 for

v′ = [L(l′, g′)] which is also of distance n from v0 = [L(0, 0)].

Let now γ =

(
πl g
0 1

)
and γ′ =

(
πl

′
g′

0 1

)
be the matrices in vertex normal form

representing v and v′ respectively. By definition of HomΓ we have

HomΓ(v, v′) = γ′GL2(O∞)K∗
∞γ

−1 ∩ Γ.

Because v∞(det(γ)) = l, v∞(det((γ′)−1) = l′, v∞(det(σ)) = 0 for all σ ∈ GL2(O∞)
and v(det Γ) = {0}, we see that

HomΓ(v, v′) = π(l−l′)/2γ′GL2(O∞)γ−1 ∩ Γ,
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where we simply write π(l−l′)/2 for the scalar matrix π(l−l′)/2 · 12. By taking determi-
nants on both sides and using the fact that O∞ ∩ A = Fq, we finally obtain

HomΓ(v, v′)
•
∪ {0} = π(l−l′)/2γ′M2(O∞)γ−1 ∩ Λ. (8)

Set

C =


1
√
α 0 ε√

α

0 0 1 1√
α

0 0 r −r√
α

1 −
√
α 0 −ε√

α

 and B =


π

l′−l
2 0 g′π

−l′−l
2 0

−gπ l′−l
2 π

l′+l
2 −gg′π−l′−l

2 g′π
l−l′
2

0 0 π
−l′−l

2 0

0 0 −gπ−l′−l
2 π

l−l′
2

 .

Observe that v∞(gπ− l
2 ) ≥ n2− n1+n2

2
= n2−n1

2
≥ −n

2
and that −|l| ≥ −n. This implies

that v∞(B) ≥ −n. Similarly, using deg(ε) ≤ deg(α) and computing C−1 explicitly,

one finds v∞(C−1) ≥ −m where we abbreviate m := deg(α)
2
∈ Z≥1.

We now flatten 2 × 2-matrices in M2(K∞) to column vectors of length 4. Taking
the explicit form of the A-basis of Λ from Lemma 2.49 into account, as well as the
explicit forms of γ and γ′, the solutions to (8) are the solution of the linear system of
equations

Cλ = Bx, (9)

where λ denotes a (column) vector in A4 and x a (column) vector in O4
∞. The

equivalent form λ = C−1Bx and the above estimates on the valuations of C−1 and B
now immediately imply v∞(λ) ≥ −(n+m). In other words, the components of λ are
polynomials and ‖λ‖ ≤ n+m. This proves (b).
Next, consider (9) in the form B−1Cλ = x. Again by explicit computation, we
have v∞(B−1) ≥ −n and v∞(C) ≥ −max{deg(r),m} =: −d. Writing B−1C =∑∞

k=−dXkπ
k as a power series with Xk ∈ M4(Fq) and using the bound from (b),

equation (9) is equivalent to(∑n+d
k=−(n+m)Xkπ

−k)λ ≡ 0 (mod O4
∞).

We also expand λ =
∑n+m

k=0 λkπ
−k as a polynomial in π−1 with λk ∈ Fq4 and let Xk

and λk be zero outside the range of indices k indicated above. Then (9) becomes
equivalent to the system of linear equations(∑n+m

k=0 Xh−kλk
)

= 0, h = 0, . . . , 2n+ d+m

in the indeterminates λk and with coefficients in Fq. (Each equation has 4 linear
components.) On the one hand, this shows that we need to compute α to accuracy
n′ = 2n+d+m+1. On the other hand, we see that, using Gauss elimination, one can
solve for the unknowns in O(n′ 2) steps where each step consists of (4n′)2 additions
and (4n′)2 multiplications in the field Fq. Regarding deg(r) as a structural constant
and applying Proposition 2.46, the complexity is thus O(n4).
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Remark 2.52 Equation (8) can be interpreted in the following way: The intersec-
tion in (8) is up to change by conjugation the same as M2(O∞) ∩ π(l′−l)/2γ′ −1Λγ.
Here M2(O∞) is the unit ball in M2(K∞), a K∞-vector space of dimension 4 and
π(l′−l)/2γ′ −1Λγ is a discrete A-lattice (of rank 4) in this vector space. I.e., we need
to compute the shortest non-zero vectors of the lattice π(l′−l)/2γ′ −1Λγ with respect
to the norm given by M2(O∞). If these vectors have norm at most one, they form
HomΓ(v, v′). If their norm is larger than one, then HomΓ(v, v′) is empty. In partic-
ular, the problem can in principle be solved by the function field version of the LLL
algorithm.
However, the implemented versions of the LLL algorithm [He, Pau] need an a priori
knowledge of the precision by which α has to be computed as an element in Fq((π)).
This in turn makes it necessary to find a bound on the height of the elements in
HomΓ(v, v′), if described as a linear combination in terms of our standard A-basis for
Λ. Moreover, [He, Pau] do not give a complexity analysis for their algorithms.

Remark 2.53 We have chosen v0 as a reference vertex in Theorem 2.51 for simplicity.
Since GL2(K∞) acts transitively on T , one could work with any reference vertex.
Also, if one chooses v0 as the mid point of the geodesic from v to v′, one sees that the
complexity of an algorithm to compute HomΓ(v, v′) is O(d4) where d = d(v, v′). Note
that only vertices that are an even distance apart can have non-trivial HomΓ(v, v′),
because d(v, γv) is even for all γ ∈ Γ and v ∈ T .

Remark 2.54 Our implementation of algorithm of Theorem 2.51 uses the Gauss
algorithm and not LLL. The linear system that needs to be solved has 4n′ equations
in 4n+2 deg(α) variables with n′ as in the above proof. In practice, deg(α) ≤ deg(r),
compare Proposition 2.46. As we shall see in Proposition 2.62, see also Remark 2.64,
we have n ≤ 2 deg(r) − 2 and typically ≤ 2 deg(r) − 4. Therefore we have about
4n′ ≤ 22 deg(r) equations in about 10 deg(r) variables. Since the number of vertices
of the quotient graph is essentially qdeg(r)−3 (and q ≥ 3), already deg(r) = 10 is a
large value to compute the entire graph. Over finite fields, systems of the size just
described can be solved rather rapidly.

If odd(R) = 1, we can use the first model of (D,Λ) described in Section 2.6, which
is sometimes more convenient for computations. Let ξ ∈ F⋆q/(F⋆q)2, D =

(
ξ,r
K

)
and

Λ = 〈1, i, j, ij〉A.
Let v0 = [L(0, 0)]. Note that StabGL2(K∞)(v0) = GL2(O∞)K⋆

∞. Hence

StabΓ(v0) = GL2(O∞)K⋆
∞ ∩ Γ = GL2(O∞) ∩ Γ

and

GL2(O∞) ∩ Γ ⊇ GL2(k) ∩ Γ = {a
(

1 0
0 1

)
+ b

(
0 1
ξ 0

)
| a, b ∈ k, (a, b) 6= (0, 0)}.
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Hence the vertex v0 is projectively unstable, GL2(k)∩Γ = StabΓ(v0) and v0 represents
a terminal vertex of Γ\T .
Let v1 be the vertex [L(1, 0)]. If v1 would be projectively unstable, then v1 would also
represents a terminal vertex of Γ\T , and since v0 and v1 are adjacent in T this would
imply that Γ\T is the graph containing two vertices and one edge connecting them.
In that case Vq+1 = 0. From the formulas in Theorem 2.27 one sees that this happens
precisly when R consists of two degree 1 places, compare also [Pa1, Corollary 5.8].
If Vq+1 6= 0, then v1 has to be projectively stable. Hence we can use v1 as the initial
vertex for the algorithm 2.32. We already checked that v0 is unstable. The other
vertices adjacent to v1 are [L(2, απ)] for α ∈ k, see Lemma 2.8. These are the vertices
we need to compare in the first step of the algorithm 2.32. Generally, Lemma 2.8
implies that in the n-th step of the algorithm we need to compare vertices of the form
[L(n, g(π))], where g ∈ k[T ] with deg(g) < n and g(0) = 0. The next Proposition
implies that we can do this in time O(n2).

Proposition 2.55 (a) Given v = [L(n, g(π))] and v′ = [L(n, g′(π))] as above there
is an algorithm that computes HomΓ(v′, v) in time O(n4) field operations over
Fq.

(b) All γ ∈ HomΓ(v, v′) satisfy ‖γ‖ ≤ n.

Proof: Since this proposition is just a slight variant of Proposition 2.51 we ommit
a proof here.

2.8 Presentations of Γ and the word problem

From a fundamental domain for the action of Γ on T together with a side pairing one
obtains a presentation of Γ as an abstract group. This has been explained in [Se1,
Chapter I.4] interpreting Γ as the amalgam of the stabilizers of the vertices of Γ\T
along the stabilizers of the edges connecting them. Compare also [Pa1, Thm. 5.7].

Lemma 2.56 ([Se1, I.4.1, Lem. 4]) Let G be a group acting on a connected graph
X and Y a fundamental domain for the action of G on X with an edge pairing PE.
Then G is generated by

{ge ∈ e ∈ PE} ∪ {StabG(v) | v ∈ V(S)}.

The relations among the generators of the previous lemma are given by [Se1, § I.5,
Thm. 13] and are based on the construction of the fundamental group π(Γ,Y ,S)
in [Se1, p. 42]. For the group Γ considered here, all non-terminal vertices v of S
have stabilizer F∗

q which lies in the center of Γ. The results just quoted therefore
considerably simplify and yield:
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Proposition 2.57 Let (Y ,S, (ge)e∈PE) be a fundamental domain with an edge pairing
for (Γ, T ) as provided by Algorithm 2.32. For each terminal vertex v ∈ V(S), let gv
be a generator of StabΓ(v). Then Γ is isomorphic to the group generated by

{g0} ∪ {gv | v terminal in V(S)} ∪ {ge the edge-label | e ∈ PE}

subject to the relations

gq−1
0 = 1, gq+1

v = g0 for all terminal v, [ge, g0] = 1 for all e ∈ PE .

In particular g0 lies in the center of Γ, as it should.

Example 2.58 In Example 2.38 the group Γ is generated by

{g0, gv1 , . . . , gv8 , g1, . . . , g5}

with relations
g4
0 = 1, g6

vi
= g0, [g0, gi] = 1.

The word problem with respect to this set of generators was already solved by the
reduction Algorithm 2.36, compare [Vo, Remark 4.6].

2.9 Complexity analysis and degree bounds

In this section we will analyze the complexity of Algorithm 2.32 and obtain some
bounds on the size of generators of Γ. We start by bounding the diameter of the
graph Γ\T . The idea of using the Ramanujan property to obtain complexity bounds
was inspired by [KV, Conj. 6.6]. A standard reference is [Lu].

Definition 2.59 A k-regular connected graph G is called a Ramanujan graph if for
every eigenvalue λ of the adjacency matrix of G either λ = ±k or |λ| ≤ 2

√
k − 1.

Proposition 2.60 ([Lu, Prop 7.3.11]) Let G be a k-regular Ramanujan graph on
n ≥ 3 vertices.1 Then

diam(G) ≤ logk−1(4n
2).

Let

one(R) :=

{
1 if some place in R has degree one,

q(q − 1) otherwise.

1The proof in [Lu] requires at least one eigenvalue λ of the adjacency matrix with |λ| ≤ 2
√

k − 1
and hence n ≥ 3. Also, the assertion is obviously wrong for n = 2 and k large.
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Lemma 2.61 There is a covering of G := Γ\T by a q + 1-regular Ramanujan graph
G̃ with

# V(G̃) =
2 one(R)

(q − 1)2

∏
p∈R

(qp − 1).

Proof: Recall the definitions and formulas for V1 and Vq+1 from Theorem 2.27. If
one(R) = 1, we can choose a degree 1 place p0 ∈ R. If not we choose an arbitray
degree 1 prime p0. Let Γ(p0) be the full level p0 congruence subgroup in Γ. By [LSV,
Thm. 1.2] we know that G̃ := (Γ ∩ Γ(p0))\T is a Ramanujan graph. Observe that
(Γ ∩ Γ(p0))\Γ ∼= F∗

q2 if p0 ∈ R, which has cardinality q2 − 1, and (Γ ∩ Γ(p0))\Γ ∼=
GL2(Fq) otherwise, which has cardinality one(R)(q2− 1). By analyzing the growth of
the stabilizers from Γ ∩ Γ(p0) to Γ, we observe that

1

one(R)
# V(G̃) = V1 + (q + 1)Vq+1

=
(
V1 +

q + 1

q − 1
V1 +

2(q + 1)

q − 1
(g(R)− 1)

)
=

2

(q − 1)2

∏
p∈R

(qp − 1).

Proposition 2.62 Suppose V(Γ\T ) ≥ 3. Then

diam(Γ\T ) ≤ 2 deg(r) + 2(2 logq(2) + 1− logq(q − 1)).

Proof: Let G = Γ\T and G ′ be the covering from Lemma 2.61. Then

diam(G) ≤ diam(G ′)
2.60

≤ 2 logq(# V(G ′)) + logq(4)
2.61

≤ 2 logq

( 2q

q − 1

∏
p∈R

(qp − 1)
)

+ logq(4)

≤ 4 logq(2) + 2 logq(
q

q − 1
) + 2 logq

(∏
p∈R

qp
)

= 2(2 logq(2) + 1− logq(q − 1)) + 2 deg(r).

Corollary 2.63 With ‖ ‖ as in Definition 2.50, the group Γ is generated by the set

{γ ∈ Γ | ‖γ‖ ≤ deg(α)/2 + 2 deg(r) + 2(2 logq(2) + 1− logq(q − 1))}.

Proof: By Proposition 2.57, the group Γ is generated by the vertex and edge labels
of the quotient graph from Algorithm 2.32. By Proposition 2.51 these labels gt have
norm ‖gt‖ ≤ deg(α)/2 + n, where n is the distance in Γ\T between the initial vertex
and the labeled vertex. In particular, n ≤ diam(Γ\T ).
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Remark 2.64 If one(R) = 1, we can obviously subtract 2 + 2 logq(q − 1) from the
diameter in Proposition 2.62 and subsequently from the bounds in Corollary 2.63. In
the other case we expect this to be possible as well. This should follow by replacing
Γ(p0) by

Γ̃1(p0) := {γ ∈ Γ | γ ≡
(

1 ⋆
0 ⋆

)
(mod p0) in GL2(Fq)}.

Unfortunately we could not find this analog of [LSV, Thm. 1.2] for a congruence
subgroup other than Γ(p) in the literature although it seems likely to hold.
If this was indeed true, we would obtain the improved bound

diam(Γ\T ) ≤ 2 deg(r) + 4 logq(2)− 4 logq(q − 1).

For q > 19 it gives diam(Γ\T ) ≤ 2 deg(r)− 4. The nice feature of this last bound is
that it was assumed in many concrete examples that we have computed.

Proposition 2.65 Algorithm 2.32 computes the quotient graph Γ\T in time

O((# V(Γ\T ))2 diam(Γ\T )5)
2.27
= O(q2 deg(r)−6 · deg(r)5)

in terms of operations over Fq.

Proof: According to Prop 2.51, comparing two vertices in the algorithm can be done
in time O(n4), where n is always less or equal then diam(Γ\T ). The list of vertices
in each step of the algorithm is always shorter than the cardinality of V(Γ\T ), so in
each step the number of comparisons is bounded by (# V(Γ\T ))2. The number of
steps is bounded by diam(Γ\T ) and the result follows.
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3 Modular forms for function fields

We want to quickly recall the theory of Drinfeld modular forms for congruence sub-
groups Γ ⊂ GL2(A). By a theorem of Teitelbaum from [Te2] these forms can be
related to harmonic cocycles, which are combinatorial objects defined on the tree T .
In this chapter we introduce the Drinfeld upper half plane, Drinfeld modular forms
and harmonic cocycles. We will also define Hecke actions on both the sides of Drinfeld
modular forms and of harmonic cocycles. The theorem of Teitelbaum then gives an
isomorphism between the vector spaces of Drinfeld modular forms and that of har-
monic cocycles. In [Bö] it is checked, that this isomorphism is also compatible with
the Hecke actions on both sides.

3.1 Drinfeld modular curves

For z ∈ K∞ we write |z| for the absolute value on K∞ such that |T | = q. Let C∞ be
the completion of a fixed algebraic closure of K∞. Then | | extends uniquely to C∞.
The Drinfeld upper half plane Ω is defined as a set by Ω := P1(C∞) r P1(K∞). It is
the analogue of the classical upper half plane H = {z ∈ C | =(z) > 0}. The group
GL2(K∞) acts on Ω via fractional linear transformations. Let T be the Bruhat-Tits
tree of PGL2(K∞) from 2.5. There is a natural reduction map ρ : Ω→ T compatible
with the actions of GL2(K∞) on Ω and T , see [Bö, Prop. 3.7]. Via ρ we can equip Ω
with the structure of a rigid analytic space such that for each edge e = (v, v′) ∈ E(T )
the inverse image V (e) = ρ−1(e r {v, v′}) will be a rigid analytic open annulus. In
particular, we have an open covering of Ω by open annuli of the form V (e). See [Bö,
Section 3] or [GR, Section 1] for more details.
Let G := GL2(A). For N ∈ A we define

Γ(N) := {γ ∈ G | γ ≡
(

1 0
0 1

)
mod N}.

Definition 3.1 (a) A subgroup Γ ⊆ GL2(K∞) is called an arithmetic subgroup for
G if there exists an N ∈ A such that Γ(N) ⊆ Γ and [Γ : Γ(N)] <∞.

(b) The level of an arithmetic subgroup Γ for G is the maximal N ∈ A with the
property from (a).

Note that an arithmetic subgroup for G is commensurable with G.

Proposition 3.2 Let v ∈ V(T ) and γ ∈ Γ for Γ an arithmetic subgroup for G. Then
d(v, γv) is even.
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Proof: Choose a group Γ(N) of finite index in Γ. Then {1} = det(Γ(N)) is of finite
index in det(Γ), hence det(Γ) is finite. Since all finite subgroups of K⋆

∞ are contained
in k⋆, we have det(Γ) ⊆ k⋆, and hence for all γ ∈ Γ we have v∞(γ) = 0. Then the
result follows from [Se1, Corollary of Proposition II.1].

Proposition 3.2 implies that an arithmetic subgroup Γ of GL2(K∞) acts without in-
version on T . The resulting quotient space Γ\T will be a graph in the sense of
Definition 2.1.

Definition 3.3 (a) A half line of some graph G is a sequence (vi)i∈N ⊆ V(G) such
that for all i ≥ 1 the vertices vi−1 and vi+1 are adjacent to vi and for all i 6= j
we have vi 6= vj.

(b) Two half lines (vi)i∈N, (v
′
i)i∈N are equivalent if there exist j, j′ ≥ 0 such that

vi+j = v′i+j′ for all i ∈ N.

(c) An end of G is an equivalence-class of half lines.

In Lemma 2.8 we essentially showed that the ends of T are in bijection with P1(K∞).
To see this, let v0 = L(0, 0). Then since T is a tree, each end has a unique representa-
tive starting with v0. We showed in Lemma 2.8 that the vertices of T with distance n
to v0 are in bijection with P1(O∞/π

nO∞). Hence the ends of T are in bijection with
the projective limit lim←−n∈N P1(O∞/π

nO∞) ∼= P1(O∞) ∼= P1(K∞).

Definition 3.4 (a) An end of T is called rational if it corresponds to an element
of P1(K) under the above bijection.

(b) The equivalence classes of rational ends of T modulo Γ are called the cusps of Γ.

Hence the cusps of Γ are in bijection with Γ\P1(K). In the following we identify the
cusps with this set.
The following result describing the structure of Γ\T is [Se1, Theorem II.2.9] or can
also be found in this formulation as [Bö, Theorem 3.21].

Theorem 3.5 Let Γ be an arithmetic subgroup for G. Then Γ\T is the union of
a finite connected subgraph Y and subgraphs Δx for each cusp x of Γ such that the
following assertions hold:

(a) Each Δx is a half line of Γ\T and can be represented by a half line of T whose
corresponding end is in the equivalence class of the cusp x.

(b) For cusps x 6= x′ the graphs Δx and Δx′ are disjoint.

(c) Let x = (vx,i)i∈N. Then Y ∩Δx consists only of the vertex vx,0.
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3.2 Drinfeld modular forms

Let Γ be an arithmetic subgroup for G. For n, l ∈ N,

(
a b
c d

)
= γ ∈ GL2(K∞) and

f : Ω→ C∞ set
(f |

n,l

γ)(z) := f(γz)(det(γ))l(cz + d)−n.

Following Gekeler [Ge3] and Teitelbaum [Te2] we define:

Definition 3.6 A rigid analytic function f : Ω→ C∞ is a modular function of weight
n and type l for Γ if f |

n,l

γ = f for all γ in Γ.

As in the case of classical modular forms, we must require an additional condition
on these functions regarding their behavior at the cusps to obtain an interesting
arithmetic theory. To this end, we first need to define an analogue of exp(2πiz),
which plays the role of a uniformizer at infinity.
Let (0) 6= a be an ideal of K. Then

eL(z) := z
∏
a∈a
a 6=0

(1− z

a
)

is a rigid analytic function on Ω, which is Fq-linear and invariant under translations by
a ∈ a, see [Ge, I.2.1]. Let x be a cusp for Γ. Since GL2(K) acts transitively on P1(K)
there is a γ ∈ GL2(K) such that γ∞ = x. Let U(x) := StabΓ(x). Then γ−1U(x)γ
fixes the cusp ∞. Let U(x)′ be the maximal p′-torsion free subgroup of U(x), i.e. the
maximal subgroup H ⊂ U(x) such that all torsion elements in H have order a power
of p. Then γ−1U(x)′γ consists of translations of the form z 7→ z + b with b ∈ a for
some fractional almost ideal a of A, see [Bö, page 35]. Define t(x,Γ) := e−1

a for this
ideal a.
If f is a modular function of weight n and type l for Γ, then by definition and since all
λ ∈ U(x)′ have det(λ) = 1, it follows that (f |

n,l

γ)(z) = (f |
n,l

γ)(λz) for all λ ∈ U(x)′.

Hence the function f |
n,l

γ has a Laurent series expansion in the uniformizer t(x,Γ) of

the form
f |
n,l

γ =
∑
i∈Z

ait(x,Γ)i

with ai ∈ K.

Definition 3.7 (a) A modular function f : Ω → C∞ is a Drinfeld modular form
for Γ of weight n and type l if for all cusps x of Γ and γ ∈ GL2(K) with γ∞ = x
the Laurent Series expansion of f |

n,l

γ has ai = 0 for all i < 0.
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(b) If additionaly a0 = 0 in all expansions from (a), then f is called a Drinfeld cusp
form for Γ of weight n and type l.

We write Mn,l(Γ) for the space of Drinfeld modular forms for Γ of weight n and
type l and Sn,l(Γ) for the space of cusp forms. These are vector spaces over C∞ with
pointwise addition and scalar multiplication.

One can define an action of Hecke operators Tp for p a maximal ideal in A. We will
give an ad-hoc definition of such Hecke operators here. For simplicity we assume
p 6= (T ). For a more systematic exposition see [Bö, 6.2]. Let pp be a generator of p

with pp ≡ 1 (mod T ), define y =

(
pp 0
0 1

)
and let Ep be the set of polynomials of

degree less than deg(p).

Definition 3.8 For f ∈Mn,l(Γ) define

Tp(f)(z) = pl−np

pnpf(ppz) +
∑
b∈Ep

f((z + b(1− pp))/pp)

 .

By [Bö, Proposition 6.2 and Exampe 6.13] the operators Tp are linear operators on
the space Mn,l(Γ). Furthermore they preserve the subspace Sn,l(Γ) of cusp forms.
Moreover, we have TpTq = TqTp for all ideals p, q in A. Hence there are modular
forms which are simultanous eigenvectors for all operators Tp, p ∈ A. Such a form is
called an eigenform.

3.3 Automorphic forms vs. modular forms

In the function field setting described here, there are two different concepts that
replace classical modular forms, one being the rigid-analytic C∞-valued functions
described in Section 3.2. The other concept is that of C or Ql-valued functions on
some adele group, which can be interpreted as automorphic forms in the sense of
Jacquet-Langlands as in [JL]. For classical modular forms there is no such distinction.
The relation between these two concepts has been worked out in [GR, Section 6.5].
Loosely speaking, those Drinfeld modular forms of weight 2 and type 1, which are
double cuspidal, meaning that in Definition 3.7 we additionaly require that a1 = 0 for
all such expansions, are the reduction modulo p of automorphic forms.
In this thesis we restrict ourself to working with Drinfeld modular forms. These
objects are in some ways less rigid than their classical counterparts. For example there
are counterexamples for multiplicity one, meaning that there are distinct eigenforms
having the same system of eigenvalues. See [Go, Section 2] for an explicit example. It
is an open question whether multiplicity one might hold for fixed weight or even only
for weight 2.
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Compare also the discussion in the introduction to [GR].

3.4 Harmonic cocycles

In [Te2] Teitelbaum gave a description of Drinfeld modular forms in terms of so called
harmonic cocycles on T . These are functions from the oriented edges of T taking
values in certain vector spaces. We will start by introducing these spaces.
Let F/K∞ be a field. We shall define for n ≥ 2 a representation of GL2(K∞) on the
space

Vn,l(F ) = Hom(Symn−2(Hom(K2
∞, F )), K∞)⊗K∞ F.

If X and Y denote the dual basis of the standard basis of K2
∞, then the space

Symn−2(Hom(K2
∞, F )) is the space of homogeneous polynomials over F in X,Y of

degree n − 2. Hence to define an action of GL2(K∞) on an element f ∈ Vn,l(F ) ex-
plicitly, it suffices to define it at the values of f at monomials of the form X iY n−2−i.
Following Teitelbaum [Te3] we define

(γ ·n,l f)(X iY n−2−i) := det(γ)1−l · f((aX + bY )i(cX + dY )n−2−i)

for γ =

(
a b
c d

)
∈ GL2(K∞). This extends by linearity to a well-defined action of

GL2(K∞) on Vn,l(F ).

Definition 3.9 Let V be a vector space on which GL2(K∞) acts and let Γ be any
subgroup of GL2(K∞).

(a) A map κ : E(T ) −→ V is an V -valued harmonic cocycle, if

(i) For all v ∈ V(T ) we have
∑
e 7→v

κ(e) = 0.

(ii) κ(e⋆) = −κ(e) for all e ∈ E(T ).

(b) A map κ : E(T ) −→ V is called Γ-equivariant, if for all γ ∈ Γ we have κ(γe) =
γ κ(e).

(c) Let Char(Γ, V ) be the space of Γ-equivariant harmonic cocycles with values in V .

(d) Let Char
n,l (Γ) := Char(Γ, Vn,l(K∞)).

The set Char
n,l (Γ) is a vector space over K∞ with addition and scalar multiplication

defined pointwise. We let GL2(K∞) act on Char
n,l (Γ) by

(γ, κ) 7→ γ · κ : E(T )→ Vn,l(K∞) , e 7→ γ−1 ·n,l κ(γe).
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Let Γ be an arithmetic subgroup for G of level N . Our next goal is to define Hecke
operators Tp on Char

n,l (Γ) for p ∈ A irreducible with (N, p) = 1. Let

Γ0(p) :=

{(
a b
c d

)
| b ≡ 0 (mod p)

}
and let πp : (Γ ∩ Γ0(p))\T → Γ\T be the natural projection. For κ ∈ Char

n,l (Γ) let
π⋆p(κ) := κ ◦πp be the pullback of c along πp. For κ : E(T )→ V let

Φp(κ)(e) :=

(
p 0
0 1

)−1

·n,l κ(
(
p 0
0 1

)
e)

and for κ ∈ Char
n,l (Γ ∩ Γ0(p)) let

trp(κ)(e) :=
∑

δ∈(Γ∩Γ0(p))\Γ

δ−1 κ(δe).

Note that trp is independent of the choice of representatives of Γ ∩ Γ0(p))\Γ.

Definition 3.10 For κ ∈ Char
n,l (Γ) define Tp κ(e) := trp ◦Φp ◦ π⋆p(κ)(e).

One has to check that in this way one obtains a well-defined linear operator on Char
n,l (Γ).

For this we refer to [Bu, Section 3.1] for more details. The following diagram visualizes
the definition of the operator Tp:

Char
n,l (Γ ∩ Γ0(p))

Φp //

π⋆
p(κ)

33

Char
n,l (Γ ∩ Γ0(p))

trp

��

Φp◦π⋆
p(κ)

$$
Char
n,l (Γ)

κ

66

π⋆
p

OO

Char
n,l (Γ)

Tp(κ) // V

An important result from [Te2] relates Drinfeld cusp forms with spaces of harmonic
cocycles. It allows one to compute the Hecke action on cusp forms explicitly.

Theorem 3.11 Suppose n ≥ 2. Then there is an isomorphism of Hecke-modules
Sn,l(Γ)→ Char

n,l (Γ)⊗ C∞.

Proof: As an isomorphism of C∞-vector spaces, this is [Te2, Theorem 16]. The
compatibility with the Hecke action is checked in [Bö, Proposition 6.15].

The aim of Chapter 5 will be to obtain an analogues result for the setting outlined in
Chapter 4.
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4 Quaternionic modular forms

In this section we develop the theory of Drinfeld modular forms for finite index sub-
groups Γ inside the unit group of a maximal order of a quaternion division algebra.
The main goal of this section will be to compute the dimensions of the spaces of such
modular forms. In the case of Γ being p′-torsion free we will show that they equal the
dimensions of spaces of harmonic Γ-equivariant cocycles.

4.1 The setup

Let D be a quaternion algebra over K unramified at ∞ with discriminant R, Λ a
maximal order and Γ ⊆ Λ⋆ a finite index subgroup. We identify Γ with its image
under the embedding ι : Λ⋆ → GL2(K∞) from Proposition 2.21. For n, l ∈ N let Ln,l
be the line bundle on Ω which is as a set C∞ × Ω having a GL2(K∞) action defined
by

γ · (w, z) := ((cz + d)−n det(γ)lw, γz)

for γ ∈ GL2(K∞), w ∈ C∞, z ∈ Ω. Let ω := L2,1 and abbreviate ωΓ = Γ\ω for the line
bundle on Γ\Ω obtained as the quotient by the action of Γ. For the existence of this
quotient line bundle see Proposition 4.13.
Let X = Γ\Ω and let π : Ω→ X denote the quotient map. Note that we also wrote π
for the quotient map π : T → Γ\T by abuse of notation. The quotient space X carries
the structure of a rigid analytic space induced from the rigid analytic structure on Ω.
X is the rigid-analytic space associated to a smooth, projective curve over K∞, see
[Pu, Theorem 3.3]. The reduction map ρ : Ω→ T descends to a map π⋆ρ : X → Γ\T
such that the diagram

Ω
ρ //

π

��

T
π

��
X

π⋆ρ
// Γ\T

commutes. For the genus of X one has the formula

g(X) = h1(Γ\T ) = g(R), (10)

see [Pa1, Theorem 2.7].
Let ΩΩ, respectivly ΩX , be the sheaf of differentials on Ω, respectivly X. Since Ω is
a rigid analytic space of dimension 1, every differential in Γ(Ω,ΩΩ) = ΩΩ(Ω) is of the
form f(z)dz with f ∈ OΩ. Since

d(γz) =
det(γ)

(cz + d)2
dz
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for γ =

(
a b
c d

)
∈ GL2(K∞), the action of GL2(K∞) on Ω via fractional linear

transformations induces an action on ΩΩ(Ω) given by the formula

γ⋆f(z)dz =
det(γ)f(γz)

(cz + d)2
dz

for f(z)dz ∈ ΩΩ(Ω).

Definition 4.1 We define the space of quaternionic modular forms of weight n and
type l for Γ as the set of rigid analytic holomorphic functions f : Ω→ C∞ such that

f = f |
n,l

γ

for all γ ∈ Γ.

Note that, unlike in the case of arithmetic subgroups for GL2(A), we have no additional
condition at cusps of Γ. This is due to the fact that X itself is already compact.

Lemma 4.2 There is an isomorphism

ΩX
∼= ωΓ.

Proof: From the definition of ω we see that ωΓ is isomorphic to the functions f : Ω→

C∞ such that f(z) = det(γ)
(cz+d)2

f(γz) for all γ =

(
a b
c d

)
∈ Γ. Sending f to f(z)dz and

observing that ΩX consists of those differentials f(z)dz such that γ⋆f(z)dz = f(z)dz
for all γ ∈ Γ we obtain the claimed isomorphism.

This lemma also implies that Γ(X,ΩX) is isomorphic to the space of quaternionic
modular forms of weight 2 and type 1 for Γ.

4.2 Dimension formulas, the p′-torsion free case

Definition 4.3 We say that Γ is p′-torsion free if for all γ ∈ Γ the order of γ is
either ∞ or a power of p.

In the case of p′-torsion free subgroups of Λ⋆, the line bundles Ln,l descent to line
bundles on X. This makes the computation of dimMn,l(Γ) a direct application of
the Riemann-Roch theorem.

Lemma 4.4 If Γ is p′-torsion free, then Γ\Ln,l is a line bundle on X for all n, l ∈ N.
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Proof: Since the condition is local, we need to check it on open affinoids U ⊂ Ω.
Further, since there is a covering of Ω by open affinoids Uv := ρ−1(v) for v ∈ V(T )
we can check the condition on some open affinoid Uv. By Proposition 2.24 and since
Γ ⊆ Λ⋆ is p′-torsion free, we know that Γv = StabΓ(v) = {1}. So locally at Uv the
sheaf Γ\Ln,l is Γv\(C∞ × Uv) = C∞ × Uv and hence a line bundle.

Note that det(Γ) ⊆ det(Λ⋆) ⊆ F⋆q is a finite group of order coprime to p. This means
that if Γ is p′-torsion free, then det(Γ) = {1}. Hence in that case

Ln,l = Ln,l′ (11)

for all integers l, l′ ∈ N.
The following proposition follows directly from the definition of the line bundle Ln,l
and from Lemma 4.4.

Proposition 4.5 Let Γ be p′-torsion free. Then Mn,l(Γ) is isomorphic to the space
of global sections Γ(X,Γ\Ln,l) = H0(X,Γ\Ln,l).

Using this interpretation of modular forms as sections of line bundels we can compute
the dimensions of the spaces of modular forms directly via the Riemann-Roch theorem.

Proposition 4.6 Suppose that Γ is p′-torsion free. Then for n, l ∈ N with n ≥ 2 we
have

dimMn,l(Γ) =

{
g(X) for n = 2,

(g(X)− 1)(n− 1) for n > 2.

Proof: Denote g := g(X). For any sheaf L on X let χ(L) denote the Euler-Poincare
characterstic of L, that is

χ(L) := h0(X,L)− h1(X,L).

Let ω̃ = L1,0. By Lemma 4.4 ω̃ descends to a line bundle ω̃Γ = Γ\ω̃ on X. By
definition and Equation 11 we have ω̃⊗2

Γ = ωΓ. Then from Serre duality we know that

χ(ω̃Γ) = h0(X, ω̃Γ)− h1(X, ω̃Γ) = h0(X, ω̃Γ)− h0(X, ω̃∨
Γ ⊗ΩX)

= h0(X, ω̃Γ)− h0(X, ω̃−1
Γ ⊗ ω̃

⊗2
Γ ) = h0(X, ω̃Γ)− h0(X, ω̃Γ) = 0.

The Riemann-Roch theorem then implies for any line bundle L on X that h0(L) =
h1(L) + 1− g + deg(L), so that deg(ω̃Γ) = g − 1 and hence

deg(ω̃⊗n
Γ ) = n deg(ω̃Γ) = n(g − 1).
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So if n ≥ 3 then deg(ω̃⊗n
Γ ) > deg(ΩX) = deg(ω̃⊗2

Γ ). This implies deg((ω̃⊗n
Γ )∨⊗ΩX) < 0

and hence by Serre duality

h1(X, ω̃⊗n
Γ ) = h0(X, (ω̃⊗n

Γ )∨ ⊗ΩX) = 0.

Then we compute

dimMn,l(Γ) = h0(X, ω̃⊗n
Γ ) = 0 + (1− g) + n(g − 1) = (n− 1)(g − 1).

If n = 2 we obtain again by Serre duality h1(ω̃⊗2
Γ ) = h1(ΩX) = h0(OX) = 1 and so

dimM2,l(Γ) = h0(X, ω̃⊗2
Γ ) = 1 + 1− g + 2(g − 1) = 2− g + 2g − 2 = g.

Our next goal is to show that this dimension equals the dimension of Char
n,l (Γ). These

spaces were definied in Definition 3.9.

Proposition 4.7 Let V be a vector space on which GL2(K∞) acts. Suppose that Γ
is p′-torsion free. Then

dimChar(Γ, V ) = dimV · (g(X)− 1) + dimVΓ

where VΓ = V/{(γ − 1)V |γ ∈ Γ}.

Proof: Let T0 := V(T ) and T1 := E(T ) and δ : T1 → T0, e 7→ t(e). Since Γ is
p′-torsion free, Proposition 2.24 implies that Z[Ti] are free Z[Γ]-modules for i ∈ {1, 2}.
Then we have a resolution of Z by free Z[Γ]-modules

0←− Z←− Z[T0]
δ←− Z[T1]←− 0.

By tensoring this resolution over Z[Γ] with V we obtain an exact sequence

0←− H0(Γ, V )←− Z[T0]⊗Z[Γ] V
ϕ←− Z[T1]⊗Z[Γ] V ←− H1(Γ, V )←− 0.

By definiton Char(Γ, V ) can be identified with Kern(ϕ) = H1(Γ, V ). Since Z[Ti] are
free Z[Γ]-modules for i ∈ {1, 2} we have

dim(Z[Ti]⊗Z[Γ] V ) = dimV · (#(Γ\Ti)).

Since H0(Γ, V ) ∼= VΓ, we obtain

dimChar(Γ, V ) = dimVΓ + dimV · (#(Γ\T1)−#(Γ\T0))

which is equal to dimVΓ + dimV · (g(X)− 1) by Euler’s formula.
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Next we will compute for V = Vn,l(C∞) the covariant space VΓ explicitly. Let
C∞[X,Y ]n−2 be the space of homogeneous polynomials in X, Y of degree n− 2 with
GL2(K∞) acting on C∞[X,Y ]n−2 by

γ · f(X, Y ) = det(γ)1−lf((aX + cY ), (bX + dY ))

for γ =

(
a b
c d

)
∈ GL2(K∞) and f ∈ C∞[X,Y ]n−2. Then

(det(γ)1−l ⊗ Symn−2(C2
∞))Γ = C∞[X,Y ]Γn−2.

Lemma 4.8 Let Γ be p′-torsion free and V = Vn,l(C∞). Then

dimVΓ =

{
1 for n = 2

0 for n > 2.

Proof: V2,l(C∞) is by definition just C∞ with GL2(K∞)-action given by multiplica-
tion with det(γ)1−l. Since det(Γ) = {1} if the group Γ is p′-torsion free, the action of
Γ on C∞ is trivial. This implies (V2,l(C∞))Γ = V2,l(C∞) = C∞.
Now let n > 2, l ∈ N. By dualizing and [Bö, Lemma 5.21] we have dimVΓ =
dim(V ⋆)Γ = {v⋆ ∈ V ⋆ | γv⋆ = v⋆ for all γ ∈ Γ} for any Z[Γ]-module V where V ⋆

denotes the linear dual of V . Hence

dim(V2,l(C∞)Γ) = dim((det(γ)1−l ⊗ Symn−2(C2
∞))Γ) = C∞[X, Y ]Γn−2

By Proposition 2.57 and since Γ has finite index in Λ⋆ there exists non-torsion ele-
ments in Γ, and we can choose two such element γ1 and γ2 with γ1γ2 6= γ2γ1. Af-

ter base change with an element of GL2(K∞) we can assume that γ1 =

(
a 0
0 a−1

)
for some a ∈ K ′

∞ r F̄q where K ′
∞/K∞ is some quadratic extention. Let B =

(bi,j)i,j=0,...,n−2 = Symn−2(γ1). Then bi,j = 0 for i 6= j and bi,i = an−2−2i. There

exists an f ∈ C∞[X, Y ]
〈γ1〉
n−2 with f 6= 0 if and only if there is an eigenvector of B

with eigenvalue 1. Hence if n is odd, it follows that C∞[X,Y ]
〈γ1〉
n−2 = {0} and so also

C∞[X,Y ]Γn−2 = {0}.
If n is even, then an−2−2( n−2

2
) = 1, so X

n−2
2 Y

n−2
2 is an eigenvector for the eigenvalue 1

and
C∞[X, Y ]

〈γ1〉
n−2 = C∞X

n−2
2 Y

n−2
2 .

Let u, v be the two eigenvectors of γ2. They correspond to linear forms u(X, Y ) and
v(X,Y ) ∈ C∞[X,Y ]1. Let C = Symn−2(γ2). Then the eigenvectors of C are uivn−2−i

for i ∈ {0, . . . , n− 2}. Now if C∞[X,Y ]
〈γ1,γ2〉
n−2 6= {0}, this would imply, that B and C
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have a common eigenvector for the eigenvalue 1. Let λ, λ−1 be the eigenvalues of γ2.
Then as above we conclude that the eigenvalues of C are λn−2−2i for 0 ≤ i ≤ n − 2
and hence the eigenvector for the eigenvalue 1 has to be u

n−2
2 v

n−2
2 . Then u

n−2
2 v

n−2
2

and X
n−2

2 Y
n−2

2 are linear dependent. So

u(X,Y )
n−2

2 v(X, Y )
n−2

2 = ξX
n−2

2 Y
n−2

2

for some ξ ∈ C⋆
∞. This implies u = µX and v = νY or u = µY and v = νX for some

µ, ν ∈ C⋆
∞. By changing the role of u and v we can assume that u = µX and v = νY .

But then γ2 =

(
µ 0
0 ν

)
and hence γ2 commutes with γ1, which contradicts our choice

of γ1 and γ2. Hence C∞[X, Y ]
〈γ1,γ2〉
n−2 = {0} and so also C∞[X, Y ]Γn−2 = {0}.

Corollary 4.9 Suppose Γ is p′-torsion free. Then for all n, l ∈ N we have

dimChar(Γ, Vn,l(C∞)) = dimMn,l(Γ).

Proof: If n > 2, then by Proposition 4.6 we have dimMn,l(Γ) = (n− 1)(g(X)− 1).
By Proposition 4.7 and Lemma 4.8 and by observing that dimVn,l(C∞) = n − 1, we
get

dimChar(Γ, Vn,l(C∞)) = dim(Vn,l(C∞))·(g(X)−1)+dimVn,l(C∞)Γ = (n−1)(g(X)−1).

If n = 2, then by Proposition 4.6 we have dimM2,l(Γ) = g(X). By Proposition 4.7
and Lemma 4.8 we have

dimChar(Γ, V2,l(C∞)) = 1 · (g(x)− 1) + 1 = g(X).

4.3 Meromorphic modular functions

Next we need to study the general case of Γ possibly having p′-torsion. In this sec-
tion we will answer the question, for which pairs of integers n, l there are non-trivial
meromorphic functions from Ω to C∞ having the right modular transformation prop-
erty for the group Γ. As in the classical case carried out in [Sh], the existence of
such a non-trivial function will be used for computing the dimensions of the spaces of
modular forms. In this and the following section we follow ideas of Shimura.

Definition 4.10 Let An,l(Γ,C∞) be the space of rigid analytic meromorphic functions
f : Ω→ C∞ such that

f = f |
n,l

γ

for all γ ∈ Γ.
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The goal of this section is to give an answer to the question for which integers n, l the
spaces An,l(Γ,C∞) are non-trivial. Let L := # det(Γ) and w := #(F⋆q ∩ Γ). Hence
w = 1 for a p′-torsion free group Γ and w = q − 1 for Γ = Λ⋆. If w is even, then
w
2
|L, otherwise w|L. Note that if l ≡ l′ (mod L) then An,l(Γ,C∞) = An,l′(Γ,C∞) and
Mn,l(Γ) =Mn,l′(Γ).

Lemma 4.11 A0,l(Γ,C∞) 6= {0} if and only if 2l ≡ 0 (mod w).

Proof: If l = 0, then A0,0(Γ,C∞) consists of the meromorphic functions on the
algebraic curve Γ\Ω and hence is non-trivial.
If 2l is not a multiple of w, then necessarily w 6= 1. Let γ ∈ F⋆q ∩ Γ with ord(γ) = w.

Then γ =

(
d 0
0 d

)
for some d ∈ F⋆q and hence for all f ∈ A0,l we have f(z) = d−2lf(z)

for all z ∈ Ω. If f(z) 6= 0, this would imply d = 1 which contradicts ord(γ) = w 6= 1.
Hence f(z) = 0 for all z ∈ Ω.
Now let 2l be a multiple of w and let

Γ0 := {γ ∈ Γ | det(γ) ∈ det(Γ ∩ F⋆q)}.

Hence Γ/Γ0 is cyclic of order L/(w
2
) if w is even and of order L/w if w is odd. We have

a covering of algebraic curves Γ0\Ω→ Γ\Ω with Galois group Γ/Γ0. This implies that
the space of meromorphic functions A0,0(Γ0,C∞) is a Galois extention of A0,0(Γ,C∞)
with Galois group Γ/Γ0. By the normal basis theorem of Galois theory it follows that

A0,0(Γ0,C∞) = A0,0(Γ,C∞)[Γ/Γ0] = Fq[Γ/Γ0]⊗Fq A0,0(Γ,C∞).

Let Γ̂/Γ0 be the group of all characters χ : Γ/Γ0 → F⋆q. To χ ∈ Γ̂/Γ0 define as in [Wa,
Section 6.3]

eχ :=
1

|Γ/Γ0|
∑

σ∈Γ/Γ0

χ(σ)σ−1 ∈ Fq[Γ/Γ0] ⊆ A0,0(Γ0,C∞).

Then the elements eχ are idempotents of the group ring Fq[Γ/Γ0] and as in loc. cit.
by the properties of eχ one obtains a decomposition

Fq[Γ/Γ0] =
⊕

χ∈[Γ/Γ0

eχFq[Γ/Γ0]

which induces a decomposition

A0,0(Γ0,C∞) =
⊕

χ∈[Γ/Γ0

eχA0,0(Γ,C∞).
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By the definition of Γ0, each character χ ∈ Γ̂/Γ0 is induced by a character

det i : Γ
det−→ F⋆q

α 7→αi

−→ F⋆q

for some i ∈ {1, . . . , L} such that the diagram

Γ
deti

//

��

F⋆q

Γ/Γ0

χ

>>|||||||||||||||||

commutes. Conversely, deti defines such a χ if and only if deti(Γ0) = {1}, so if and
only if # det(Γ0)|i. But # det(Γ0) = # det(Γ ∩ F⋆q) equals w

2
if w is even or equals w

if w is odd. In that case eχA0,0(Γ,C∞) = A0,i(Γ,C∞). In particular all components
A0,i(Γ,C∞) of the decomposition are isomorphic and hence non-empty.

Lemma 4.12 If f ∈ A0,0(Γ,C∞), then for the derivative f ′(z) := df(z)
dz

one has
f ′ ∈ A2,1(Γ,C∞).

Proof: For γ =

(
a b
c d

)
one computes dγz

dz
= (cz + d)−2 det(γ). Since for f ∈

A0,0(Γ,C∞) one has f(γz) = f(z) for all γ ∈ Γ it follows that

f ′(z)

f ′(γz)
=

df(z)

df(γz)

dγz

dz
=

df(z)

df(z)
(cz + d)−2 det(γ) = (cz + d)−2 det(γ)

and hence f ′ ∈ A2,1(Γ,C∞).

Proposition 4.13 For even weight n one has An,l(Γ,C∞) 6= {0} if and only if n ≡ 2l
(mod w).

Proof: From the definition of An,l(Γ,C∞) it is clear that for f1 ∈ An1,l1(Γ,C∞) and
f2 ∈ An2,l2(Γ,C∞) one has f1 · f2 ∈ An1+n2,l1+l2(Γ,C∞) and 1

f1
∈ A−n1,−l1(Γ,C∞).

Now choose any non-constant meromorphic function f ∈ A0,0(Γ,C∞). If f = gp

for some meromorphic function g : Γ\Ω → C∞, then also g ∈ A0,0(Γ,C∞). Hence
w.l.o.g. we can assume that f is not a p-th power, so f ′ 6= 0. Note that A0,0(Γ,C∞)
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is finitly generated over C∞, so that for no non-constant f ∈ A0,0(Γ,C∞) we can have
fp

−n ∈ A0,0(Γ,C∞) for all n ∈ N.
Then Lemma 4.12 implies that the spaces A2,1(Γ,C∞) is non-trivial and by the above
this implies that the spaces A2i,i(Γ,C∞) are non-trivial for all i ∈ Z.
Suppose that n ≡ 2l (mod w). By the above we can choose a non-zero
f1 ∈ An,n

2
(Γ,C∞). Further since 2l−n ≡ 0 (mod w) by Lemma 4.11 we can choose a

non-zero f2 ∈ A0,l−n
2
(Γ,C∞). Then 0 6= f1 · f2 ∈ An,n

2
+l−n

2
(Γ,C∞) = An,l(Γ,C∞). On

the other hand suppose n 6≡ 2l (mod w) and 0 6= f ∈ An,l(Γ,C∞). Choose a non-zero
g ∈ An,n

2
(Γ,C∞). Then 0 6= f

g
∈ A0,l−n

2
(Γ,C∞). This contradicts Lemma 4.12.

This answers the question whether An,l(Γ,C∞) 6= {0} for even n. Next we will remark
on the case of n odd.

Remark 4.14 −1l :=

(
−1 0
0 −1

)
∈ Γ if and only if w is even.

Proof: If −1l ∈ Γ, then by Lagranges theorem 2 = ord(−1l)| ord(F⋆q ∩ Γ) = w. If w

is even choose γ a generator of F⋆q ∩ Γ. Then γ
w
2 = −1l.

If −1l ∈ Γ, then for any f ∈ An,l(Γ,C∞) with n odd one has f(z) = −f(z) for all
z ∈ Ω, hence f = 0. This implies that for w even and n odd we haveAn,l(Γ,C∞) = {0}
for all l ∈ Z. If Γ = Λ⋆, then for odd q we have w = q − 1 is even. Hence for odd
q if Γ is the unit group of a maximal order, then there are no non-trivial modular
forms for Γ of odd weight. For w = 1, i.e. in the p′-torsion free case, we already saw
in Proposition 4.6 that there are non-trivial modular forms for arbitrary n ≥ 2 in
Mn,l(Γ).
If Γ ⊂ Λ⋆ is more general or if q is even, the space An,l(Γ,C∞) could be non-trivial.
Alas we can not adapt the proof for odd n of Proposition [Sh, 2.15] from the classical
theory of modular forms for the complex upper half plane H. In this proof one makes
use of the fact that if f : H → C is a meromorphic function such that for each
z ∈ H the pole or vanishing order ordf (z) is even, then f is a square, i.e. there is
a meromorphic function g : H → C such that g2 = f . This fact fails to be true for
rigid analytic meromorphic functions from Ω→ C∞. Consider for example functions
f ∈ OΩ(Ω)⋆, so meromorphic functions from Ω → C∞ such that ordf (z) = 0 for all
z ∈ Ω. There is a canonical exact sequence

0→ C⋆
∞ → OΩ(Ω)⋆

r→ H(T ,Z)→ 0

where H(T ,Z) denotes the space of Z-valued harmonic cocycles with GL2(K∞) acting
trivially on Z. The map r is a logarithm map so that for f, g ∈ OΩ(Ω)⋆ with g2 = f
one has r(f) = 2r(g), compare [GR, 1.7] where the map r is made explicit. As a
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concrete example consider the harmonic cocycle κ ∈ H(T ,Z) which is zero outside of
the line {[L(m, 0)] | m ∈ Z}, and ±1 on ([L(m, 0)], [L(m+1, 0)]) depending on wether
m is even or odd. Then any preimage of κ under r has ordf (z) = 0 for all z ∈ Ω but
is not a square of a meromorphic function g : Ω→ C∞.
We will postpone the question for which n, l ∈ Z with n odd we haveAn,l(Γ,C∞) 6= {0}
to Corollary 6.12. There we will show that the statement of Proposition 4.13 is also
true for n odd.

4.4 An explicit dimension formula

In this section, we give an explicit dimension formula forMn,l(Γ) for certain Γ ⊂ Λ⋆

of finite index. Namely, we assume that Γ ⊆ Λ⋆ has the properties

StabΓ(v) ∼= {1} or F⋆q or F⋆q2 for all v ∈ V(T )

and thus
StabΓ(e) ∼= {1} or F⋆q for all e ∈ E(T ).

This ensures, that only vertices of degree q + 1 or degree 1 occur in the quotient
graph Γ\T . This assumption holds for Γ = Λ⋆ by Proposition 2.24 and also for the
p′-torsion free case. Note that our assumption on Γ implies ω = #(Γ∩F⋆q) ∈ {1, q−1}.
Furthermore, in this section we assume q to be odd and n > 2. We follow the methods
for classical modular form as treated in [Sh, Chapter 2].

Definition 4.15 (a) A point z̄ ∈ X is called elliptic if for any z ∈ Ω with π(z) = z̄
one has StabΓ(z) ) (F⋆q ∩ Γ).

(b) The order of an elliptic point z̄ is defined as # StabΓ(z)/w for any z ∈ Ω above
z̄.

Note that if two points z and z′ are Γ-equivalent their stabilizers are conjugate. Hence
the definition does not depend on the choice of a point z above z̄. Before we can state
and prove the dimension formula, we need two lemmata on elliptic points of X.

Lemma 4.16 There are at most 2#R odd(R)(Λ⋆ : Γ) elliptic points of X.

Proof: For each edge e ∈ E(T ) we have StabΛ⋆(e) ∼= F⋆q. Hence via the commutative
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diagram

Ω
ρ //

π

��

T

π

��
X

π⋆ρ
//

π′

��

Γ\T

π′

��
Λ⋆\Ω π′⋆

// Λ⋆\T

an elliptic point z̄ ∈ X gets send via π⋆ρ to a vertex v̄ ∈ V(Γ\T ) with StabΓ(v) ∼= F⋆q2
for any v ∈ π−1(v̄). These are the vertices v ∈ Γ\T such that degree(π′(v)) = 1. By
Theorem 2.27 there are precisly 2#R−1 odd(R) many vertices of degree 1 in Λ⋆\T , and
hence at most 2#R−1 odd(R)(Λ⋆ : Γ) vertices in Γ\T with degree(π′(v)) = 1.
Let v̄ ∈ V(Γ\T ) be of degree 1 and z̄ ∈ X an elliptic point with π⋆ρ(z̄) = v̄. Let
〈γ〉 = StabΓ(v) for some v ∈ π−1(v̄). By conjugating with a matrix of GL2(K∞) we
can assume StabΓ(v) = F⋆q2 . An element a + bγ ∈ StabΓ(v) is then mapped to the
matrix

a1l + b

(
0 1
ξ 0

)
under the embedding F⋆q2 ↩→ GL2(Fq) ↩→ GL2(K∞), where ξ is some non-square
element in F⋆q. Now if b 6= 0 the equation

az + b

bξz + a
=

(
a b
bξ a

)
z = z

is equivalent to ξz2 = 1, hence z ∈ F⋆q2 r F⋆q. Since K∞ ∩ Fq2 = Fq this implies
z ∈ C∞ rK∞, and there are exactly two solutions to this equation in C∞.

Remark 4.17 The proof of Lemma 4.16 shows that there are exactly twice as many
elliptic points of X than terminal vertices of Γ\T .

To a function f ∈ An,l(Γ) one can associate a divisor on X in the following way. For
P ∈ X we define vP (f) as follows: Choose any lift P̃ of P to Ω and set e = StabΓ̄(P̃ ) =
StabΓ(P̃ )/ω. Choose a map λ : P1(C∞)→ P1(C∞) sending P̃ to 0, let t = λ(z)e and
put vP (f) = vt,P̃ (f) = vP̃ (f(t)). Then we define div(f) to be the formal sum

div(f) =
∑
P∈X

vP (f)P.
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Lemma 4.18 Let P1, . . . , Pr be the elliptic points of X of order e1, . . . , er and 0 6=
f ∈ A2n,n(Γ,C∞). Set η := f(z)dzn. Then

div(f) = div(η) + n(
r∑
i=1

1− 1

ei
)[Pi]

and

deg(div(f)) = nb(2g − 2) +
r∑
i=1

(1− 1

ei
)c.

Proof: We have η ∈ A0,0(Γ,C∞), hence η can be viewed as a meromorphic function
on X. Let P ∈ X and G = StabΓ(P̃ ) for P̃ any lift of P to Ω.
If P is an elliptic point of X of order e, then as in the proof of Lemma 4.16 there are
two fixpoints {z0, z1} ⊂ C∞ of G both not lying in K∞. W.l.o.g. we can assume that
z0 is a lift of P . Hence the map

λG := λz0,z1 : P1(C∞) → P1(C∞)

z 7→ z − z0

z − z1

is well-defined and has λG(z0) = 0 and λG(z1) = ∞. Therefore we can choose t =
λG(z)e. One computes

dt

dz
=

dλG(z)e

dz
= eλG(z)e−1 dλG(z)

dz
.

and hence vt,z0(dt/dz) = 1
e
(e − 1) = 1 − e−1. Therefore vP (η) = vP (f(z)dzn) =

vP (f) + n(e−1 − 1).
If P is a non-elliptic point of X, then G = F⋆q ∩Γ and hence e = 1 and vP (f) = vP (η).
Hence

div(f) = div(η) + n(
r∑
i=1

1− 1

ei
)[Pi]

and since deg(div(dz)) = 2g − 2 the second formula also holds.

We are now able to give an explicit dimension formula for certain pairs of n, l.

Theorem 4.19 Let r be number of elliptic points of X and g = g(X). Let n > 2 and
l ∈ Z with n ≡ 2l (mod w).

(a) If w = 1 then dimMn,l(Γ) = (n− 1)(g − 1).
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(b) If w = q − 1 then n is even. If l ≡ n
2

(mod q − 1) then

dimMn,l(Γ) = (n− 1)(g − 1) + r

⌊
n

2
(1− 1

q + 1
)

⌋
.

Proof: (a) If w = 1, then StabΓ(s) = {1} for all simplices s of T . Hence as in the
proof of Lemma 4.4 we know that Γ\Ln,l is a line bundle on X and we can compute
the dimension ofMn,l(Γ) just as in the proof of Proposition 4.6.

(b) Since q is odd, the condition n ≡ 2l (mod q − 1) forces n to be even. By Propo-
sition 4.13 we can choose 0 6= F0 ∈ An,l(Γ,C∞). Any F ∈ An,l(Γ,C∞) can then be
written as F = fF0 with some unique f ∈ K := A0,0(Γ). Set B := div(F0). From the
definition ofMn,l(Γ) and since div(f1f2) = div(f1) + div(f2), we know that

dimMn,l(Γ) = {f ∈ An,l(Γ,C∞) | div(f) ≥ 0}
= {f ∈ K | div(f) ≥ −B}
= {f ∈ K | div(f) ≥ −[B]}
= l([B])

where [B] denotes the integral part of the divisor B, see [Sh, page 45] for a definition,
and l([B]) denotes the dimension of the Riemann-Roch space of the divisor [B].
As in [Sh, page 37-38] one constructs a graded algebra

D =
∞∑

n=−∞

Difn(X)

such that for each ξ ∈ Difn(X) one has naturally defined a divisor div(ξ) on X with
deg(div(ξ)) = n(2g − 2) for 0 6= ξ ∈ Difn(X). If l ≡ n

2
(mod q − 1) we have an

isomorphism An,l(Γ,C∞)→ Difn/2(X) given by f 7→ f(z)(dz)n/2.
We can then apply Lemma 4.18 to obtain

deg([B]) =
n

2

(
(2g − 2) + r

⌊(
1− 1

q + 1

)⌋)
,

where we used our assumption on Γ, which implies that all elliptic fixpoints have order
q + 1. For n > 2 this shows that deg([B]) − (2g − 2) > 0 and hence we can use the
Riemann-Roch theorem to conclude that

l([B]) = deg([B])− g + 1 = (n− 1)(g − 1) + r

⌊
n

2
(1− 1

q + 1
)

⌋
.
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Remark 4.20 If l ≡ n
2
+ q−1

2
(mod q−1), the map given in the proof of Theorem 4.19

betweenAn,l(Γ,C∞) and Difn/2(X) is not well-defined. Hence the proof fails to work in
this situation. In Corollary 6.14 plus Lemma 6.15 we will obtain an explicit dimension
formula for the space of harmonic cocycles that holds also for l ≡ n

2
+ q−1

2
. We will show

in Chapter 5 that the spaces of harmonic cocycles and modular forms are isomorphic.
Hence we obtain a dimension formula forMn,l(Γ) with l ≡ n

2
+ q−1

2
(mod q− 1) later

at this point.
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5 An analogue of a result of Teitelbaum

We keep the notation from Chapter 4. Recall that Γ ⊆ Λ⋆ is a finite index subgroup
andMn,l(Γ) is the space of quaternionic Drinfeld modular forms of weight n and type
l for Γ. The goal of this chapter is to construct an isomorphism betweenMn,l(Γ) and
the space of harmonic cocycles Char

n,l (Γ). This is done via the residue map, studied
in Section 5.1. In Section 5.2 and Section 5.3 we construct an explicit inverse of
the residue map given by integration against the Poisson kernel. This is done in
order to show that the residue map actually gives an isomorphism. Furthermore, in
Section 5.4, we will introduce an action of Hecke operators on both sides and show
that the residue map isomorphism is compatible with the action of Hecke operators.
We also explain how to explicitly compute this Hecke action on cocycles.
The results and methods in Sections 5.1-5.3 are analogues to the work of Teitelbaum
in [Te1] and [Te2] where he constructed similar isomorphisms for p-adic modular
forms and Drinfeld modular forms for congruence subgroups. We follow his work
quite closely, without always giving references. For the sake of completeness and
readability we prove all statements and give the necessary computations. The results
in [Te1] and [Te2] are sometimes rather sketchy.
Throughout this chapter n is an integer with n ≥ 2.

5.1 The residue map

Let e = (v, v′) be an oriented edge of T . Recall that the inverse image V (e) :=
ρ−1(er {v, v′}) under the reduction map ρ : Ω→ T is an open annulus. In particular
it is isomorphic to the standard open annulus

V := {z ∈ Ω | q > |z| > 1}.

Definition 5.1 An orientation of an open annulus W is an equivalence class of iso-
morphisms w : W → V where two such isomorphism w,w′ are equivalent if we have
|w′ ◦ w−1(z)| = |z| for all points z ∈ V .

An open annulus has precisly two orientations. For example, on V one has the iden-
tity and the map z 7→ T

z
representing the two different orientations of the standard

annulus.
For fdz a rigid analytic differential on V (e) we can choose an isomorphism v between
V (e) and V respecting the orientation on e. In this way one obtains an expansion of
fdz as a rigid analytic differential of the form

fdz =
∑
n∈Z

anv
ndv

with ai ∈ C∞. The isomorphism v is not unique, however the coefficient a−1 in the
above expansion does not depend on the choice of v [Se4, page 25].
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Definition 5.2 Define Rese fdz = a−1 in the above expansion of fdz.

Remark 5.3 If one changes the orientation on V (e) then by [FvdP, page 23] the sign
of Rese fdz changes. Hence

Rese⋆ fdz = −Rese fdz. (12)

Using the residue map one can construct harmonic cocycles in Char
n,l (Γ). Throughout

this chapter let n ≥ 2. Recall that an element κ ∈ Char
n,l (Γ) is a map

κ : E(T )→ Vn,l(C∞) = (det)l−1 ⊗K∞ Hom(Symn−2(Hom(K2
∞, F )), K∞).

To specify such a map κ, it suffices to define its value κ(e) evaluated at monomials of
the form X iY n−2−i where i runs from 0 to n − 2 and X, Y are the dual basis of the
standard basis of K2

∞.

Definition 5.4 Let f ∈Mn,l(Γ). Define for e ∈ E(T ) and i ∈ {0, . . . , n− 2}

Res(f)(e)(X iY n−2−i) = Rese z
if(z)dz.

Following [Te2, Definition 10] we have the following proposition.

Proposition 5.5 The assignment f 7→ Res(f) gives a well-defined homomorphism
from Mn,l(Γ) to Char

n,l (Γ)⊗K∞ C∞.

Proof: By the rigid analytic residue theorem from [FvdP, Theorem 2.2.3] and since
zif(z)dz is a rigid analytic differential on Ω it directly follows that for v ∈ V(T ) we
have ∑

e 7→v

Res(f)(e)(X iY n−2−i) =
∑
e 7→v

Rese z
if(z)dz = 0.

By Equation 12 one has Res(f)(e⋆) = −Res(f)(e) for all e ∈ E(T ).

To check the Γ-equivariance, let γ =

(
a b
c d

)
∈ Γ and note that Resγe(ω) = Rese γ

⋆ω

for any rigid analytic differential ω ∈ Γ(Ω,ΩΩ). For ω of the form f(z)dz this action
was given by

γ⋆f(z)dz =
det(γ)f(γz)

(cz + d)2
dz.



5 AN ANALOGUE OF A RESULT OF TEITELBAUM 58

Evaluating it at a monomial of the form X iY n−2−i and using that f = f |
n,l

γ one

computes

Res(f)(γe)(X iY n−2−i) = Resγe z
if(z)dz

= Rese γ
⋆zif(z)dz

= Rese det(γ)(az + b)i(cz + d)i−2f(γz)dz

= Rese det(γ)1−l(az + b)i(cz + d)n−2−if(z)dz

= det(γ)1−l Rese(az + b)i(cz + d)n−2−if(z)dz

= det(γ)1−l Res(f)(e)((aX + bY )i(cX + dY )n−2−i)

= (γ ·n,l (Res(f)(e))(X iY n−2−i).

The fact that Res is a homomorphism follows from the formulas Rese(ω1 + ω2) =
Rese(ω1) + Rese(ω2) and Rese(λω1) = λRese(ω1) for λ ∈ C∞ and ωi rigid analytic
differentials in Γ(Ω,ΩΩ), see the remark on page 223 of [Sch2].

5.2 Measures

Let An be the ring of functions from P1(K∞) to C∞ which are locally analytic for
all x 6= ∞ and have pole order at most n − 2 at ∞ and let Pn ⊆ An be the subring
of locally polynomial functions of degree less than or equal n − 2. in one variable
x over K∞. Here locally polynomial means that for every f ∈ Pn there is a finite
open cover {Ui} of P1(K∞) such that on each Ui the function f can be expressed as
a polynomial. We endow An with the Fréchet topology, see [Col, 1.8.1] for details.
Finally let Pn ⊆ Pn be the space of globally polynomial functions on P1(K∞) of degree
less than or equal n− 2.
Let B = {U ⊂ P1(K∞) | U compact open}. For U ∈ B we denote by χU the charac-
teristic function for U that takes the value 1 on U and 0 on P1(K∞) r U .

Definition 5.6 (a) A measure on Pn is a linear map µ̃ ∈ Hom(Pn, K∞). For
f ∈ Pn, U ∈ B write ∫

U

f(x)µ̃(x) = µ̃(f)χU .

(b) A measure on An is a continous linear map µ ∈ Homcont(An, K∞). For f ∈
An, U ∈ B write ∫

U

f(x)µ(x) = µ(f)χU .



5 AN ANALOGUE OF A RESULT OF TEITELBAUM 59

To each edge e ∈ E(T ) let U(e) be the set of ends of T which have a representative
containing e. Then by the identification of the ends of T with P1(K∞) we can identify
U(e) with a compact open subset of P1(K∞). Clearly U(e) ∩ U(e⋆) = ∅ and U(e) ∪
U(e⋆) = P1(K∞). The following Proposition is a direct consequence of the fact that
the measures on A we consider are continuous. It can be found as [Te1, Proposition
9, (5)].

Proposition 5.7 Let µ be a measure on An.

(a) Let e ∈ E(T ) with ∞ ∈ U(e) and f ∈ An with Laurent expansion at ∞ of the
form f(x) =

∑n−2
i=−∞ anx

n converging on U(e) r {∞}. Then∫
U(e)

f(x)dµ =
n−2∑
i=−∞

ai

∫
U(e)

xidµ.

(b) Let e ∈ E(T ) with∞ 6∈ U(e), r ∈ U(e) and f ∈ An with Taylor series expansion
at r of the form f(x) =

∑∞
i=0 ai(x− r)i converging on U(e). Then∫

U(e)

f(x)dµ =
∞∑
i=0

ai

∫
U(e)

(x− r)idµ.

Starting from harmonic cocycles we can construct measures. We will begin by con-
structing measures on Pn and show later that these measures extend in a unique way
to measures on An. Let κ ∈ Char

n,l (Γ) and define a measure µ̃κ on Pn by setting formally∫
U(e)

xidµ̃κ(x) = κ(e)(X iY n−2−i) (13)

for e ∈ E(T ) and i ∈ {0, . . . , n − 2}. Extend this definition to Pn by linearity. This
assignment completely defines a measure µ̃κ on Pn, since the open compact discs U(e)
form a basis for the topology on P1(K∞).
For v ∈ V(T ) let {e1, . . . , eq+1} be the q + 1 edges e with t(e) = v. Then by the
definition of U(e) one has U(e1) = U(e⋆2)∪ · · · ∪U(e⋆q+1). To see that µ̃κ is a measure,
one checks, using the harmonicity of κ, that∫

U(e1)

xidµ̃κ(x) = κ(e1)(X
iY n−2−i) = −

q+1∑
i=2

κ(ei)(X
iY n−2−i)

=

q+1∑
i=2

κ(e⋆i )(X
iY n−2−i) =

q+1∑
i=2

∫
U(e⋆

i )

xidµ̃κ(x).
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Also since P1(K∞) = U(e) ∪ U(e⋆) for any e ∈ E(T ), one has∫
P1(K∞)

xidµ̃κ(x) =

∫
U(e)

xidµ̃κ(x) +

∫
U(e⋆)

xidµ̃κ(x)

= κ(e)(X iY n−2−i) + κ(e⋆)(X iY n−2−i) = 0

and hence ∫
P1(K∞)

f(x)dµ̃κ(x) = 0 for all f ∈ Pn. (14)

Lemma 5.8 For γ =

(
a b
c d

)
∈ Γ and e ∈ E(T ) one has

∫
U(γe)

f(x)dµ̃κ(x) = det(γ)1−l
∫
U(e)

f(γx)(cx+ d)n−2dµ̃κ(x)

for all f ∈ Pn.

Note that since (cx+ d) occurs in the numerator of γx, the right hand side is always
a polynomial of degree at most n− 2.

Proof: One computes∫
U(γe)

xidµ̃κ(x) = κ(γe)(X iY n−2−i) = γ ·n,l κ(e)(X iY n−2−i)

= det(γ)1−l κ(e)((aX + bY )i(cX + dY )n−2−i)

= det(γ)1−l
∫
U(e)

(γx)i(cx+ d)n−2dµ̃κ(x)

and then the claim follows by linearity.

The following lemma is an adaption to our situation of the lemma on page 227 from
[Sch].

Lemma 5.9 Let γ =

(
a b
c d

)
∈ Γ, e ∈ E(T ) and r ∈ K∞ such that γr 6= ∞, i.e.

cr + d 6= 0. Then for 0 ≤ i ≤ n− 2 one has∫
U(γe)

(x− γr)idµ̃κ(x)

=

{
det(γ)i+1−l(cr + d)n−2−2i

∑n−2−i
j=0

(
n−2−i
j

)
(r + d

c
)−j
∫
U(e)

(x− r)i+jdµ̃κ(x) if c 6= 0,

det(γ)i+1−ldn−2−2i
∫
U(e)

(x− r)idµ̃κ(x) if c = 0.
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Proof: First observe that

γx− γr =
ax+ b

cx+ d
− ar + b

cr + d
=

det(γ)(x− r)
(cx+ d)(cr + d)

. (15)

Using this we compute∫
U(γe)

(x− γr)idµ̃κ(x)
5.8
= det(γ)1−l

∫
U(e)

(γx− γr)i(cx+ d)n−2dµ̃κ(x)

(15)
= det(γ)1−l

∫
U(e)

(
det(γ)(x− r)

(cx+ d)(cr + d)

)i
(cx+ d)n−2dµ̃κ(x)

= det(γ)1−l+i(cr + d)−i
∫
U(e)

(cx+ d)n−2−i(x− r)idµ̃κ(x)

For c = 0, this proves the claim. For c 6= 0 we use the binomial expansion.

det(γ)1−l+i(cr + d)−i
∫
U(e)

(cx+ d)n−2−i(x− r)idµ̃κ(x)

= det(γ)1−l+i(cr + d)−i
∫
U(e)

cn−2−i((x− r) + (r +
d

c
))n−2−i(x− r)idµ̃κ(x)

= det(γ)1−l+i(cr + d)−icn−2−i
n−2−i∑
j=0

(
n− 2− i

j

)
(r +

d

c
)n−2−i−j

∫
U(e)

(x− r)i+jdµ̃κ(x)

= det(γ)1−l+i(cr + d)n−2−2i

n−2−i∑
j=0

(
n− 2− i

j

)
(r +

d

c
)−j
∫
U(e)

(x− r)i+jdµ̃κ(x)

The measures µ̃κ constructed from harmonic cocycles fulfill a certain boundedness
condition. This condition is crucial for extending µ̃κ to a measure onAn. For e ∈ E(T )
let

τ(e) =

{
diam(U(e)) = supx,y∈U(e) |x− y| if ∞ 6∈ U(e)

diam(U(e⋆))−1 if ∞ ∈ U(e).

Remark 5.10 If∞ 6∈ U(e), x ∈ U(e) and y ∈ P1(K∞)rU(e) then by the ultrametric
triangle inequality we have τ(e) < |x− y|.

Definition 5.11 (a) A measure µ̃ on Pn is called bounded if there exist a constant
C > 0 such that for all 0 ≤ i ≤ n− 2 and all e ∈ E(T ) with ∞ 6∈ U(e) and for
all r ∈ U(e) one has ∣∣∣∣∫

U(e)

(x− r)idµ̃(x)

∣∣∣∣ < Cτ(e)i−(n−2)/2
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and for all e ∈ E(T ) with ∞ ∈ U(e), 0 6∈ U(e) one has∣∣∣∣∫
U(e)

xidµ̃(x)

∣∣∣∣ < Cτ(e)−i+(n−2)/2.

(b) Let M̃eas
b

n,l(Γ) denote the set of bounded measures µ̃ on Pn such that∫
P1(K∞)

f(x)dµ̃(x) = 0

for all f ∈ Pn and such that for all γ =

(
a b
c d

)
∈ Γ, e ∈ E(T ) and all f ∈ Pn

one has ∫
U(γe)

f(x)dµ̃(x) = det(γ)1−l
∫
U(e)

f(γx)(cx+ d)n−2dµ̃(x).

Since the sum of two bounded measures and a scalar multiple of a bounded measure

are still bounded, the set M̃eas
b

n,l(Γ) is a subspace of the space of all measures on Pn.
In particular, it carries the structure of a K∞-vector space. Following [Te2, Lemma
6] we prove the following proposition.

Proposition 5.12 If κ ∈ Char
n,l (Γ), then µ̃κ ∈ M̃eas

b

n,l(Γ).

Proof: The measure µ̃κ has the correct transformation property by Lemma 5.8 and
it vanishes on globally polynomial functions by Equation (14). It remains to show
that µ̃κ is bounded.
Let {e1, . . . , eh} be a set of representatives of the edges of Γ\T with ∞ 6∈ U(ei).
This set is finite, since Γ\T is a finite covering of Λ⋆\T which is a finite graph by
Proposition 2.23. W.l.o.g. we can assume that det(Γ) = {1}. If not, we replace Γ by
a finite index subgroup Γ′ with det(Γ′) = {1} and work with the representatives of
the edges of Γ′\T . This is still a finite covering of Λ⋆\T .

Now let e ∈ E(T ) with ∞ 6∈ U(e) and r ∈ U(e). Choose γ =

(
a b
c d

)
∈ Γ and

1 ≤ g ≤ h such that e = γeg. Observe that, since r ∈ U(e) but ∞ 6∈ U(e),

|γ−1r +
d

c
| = |γ−1r − γ−1∞| ≥ τ(eg). (16)

Next we will show that
τ(eg) = τ(e)|cγ−1r + d|2. (17)
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For this choose s ∈ U(e) with |r − s| = τ(e). Then

τ(eg) = τ(γ−1e) = |γ−1r − γ−1s|

=

∣∣∣∣ dr − b−cr + a
− ds− b
−cs+ a

∣∣∣∣
=

∣∣∣∣ det(γ)(r − s)
(−cr + a)(−cs+ a)

∣∣∣∣
=

|r − s|
|(−cr + a)2|

= τ(e)|cγ−1r + d|2

For c 6= 0 we deduce ∣∣∣∣∫
U(e)

(x− r)idµ̃κ(x)
∣∣∣∣

5.9
=

∣∣∣∣∣det(γ)i+l−1(cγ−1r + d)n−2−2i

n−2−i∑
j=0

(
n−2−i

j

)
(γ−1r+

d

c
)−j
∫
U(eg)

(x− γ−1r)i+jdµ̃κ(x)

∣∣∣∣∣
≤ |cγ−1r + d|n−2−2i n−2−i

max
j=0

∣∣∣∣γ−1r +
d

c

∣∣∣∣−j
∣∣∣∣∣
∫
U(eg)

(x− γ−1r)i+jdµ̃κ(x)

∣∣∣∣∣
(16),(17)

≤ τ(eg)
n−2

2
−iτ(e)i−

n−2
2

n−2−i
max
j=0

τ(eg)
−j

∣∣∣∣∣
∫
U(eg)

(x− γ−1r)i+jdµ̃κ(x)

∣∣∣∣∣
= Cτ(e)i−

n−2
2

for a constant C > 0 independent of the choice of γ and r.
For c = 0 we deduce ∣∣∣∣∫

U(e)

(x− r)idµ̃κ(x)
∣∣∣∣

5.9
= |dn−2−2i|

∣∣∣∣∣
∫
U(eg)

(x− r)idµ̃κ(x)

∣∣∣∣∣
(17)

≤ τ(eg)
n−2

2
−iτ(e)i−

n−2
2

∣∣∣∣∣
∫
U(eg)

(x− r)idµ̃κ(x)

∣∣∣∣∣
= Cτ(e)i−

n−2
2

for a constant C > 0 independent of the choice of γ and r.
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This proves the first bound. For the second bound let e ∈ E(T ) with ∞ ∈ U(e) and
0 6∈ U(e). Then by Equation 14 and by what we have just shown we have∣∣∣∣∫

U(e)

xidµ̃κ(x)

∣∣∣∣ =

∣∣∣∣∫
U(e⋆)

xidµ̃κ(x)

∣∣∣∣ ≤ Cτ(e⋆)i−(n−1)/2 = Cτ(e)−i+(n−1)/2

for some constant C > 0.

Proposition 5.13 The map

ψ̃ : Char
n,l (Γ)→ M̃eas

b

n,l(Γ), κ 7→ µ̃κ

is an isomorphism of K∞-vector spaces.

Proof: The well-definedness of ψ̃ is Proposition 5.12. The injectivity of ψ̃ and the
assertion that ψ̃ is a homomorphism are clear from the definition of µ̃κ in Equation 13.

For the surjectivity, let µ̃ ∈ M̃eas
b

n,l(Γ) and define for e ∈ E(T )

κµ̃(e)(X
iY n−2−i) =

∫
U(e)

xidµ̃(x).

We will show that κµ̃ ∈ Char
n,l (Γ). For the harmonicity observe that for e ∈ E(T ) and

v ∈ V(T ) one has

κµ̃(e
⋆)(X iY n−2−i) =

∫
U(e⋆)

xidµ̃(x) = −
∫
U(e)

xidµ̃(x) = −κµ̃(e)(X iY n−2−i)

and ∑
e 7→v

κµ̃(e)(X
iY n−2−i) =

∑
e 7→v

∫
U(e)

xidµ̃(x) =

∫
P1(K∞)

xidµ̃(x) = 0.

For the Γ-equivariance one computes for γ ∈ Γ and e ∈ E(T )

κµ̃(γe)(X
iY n−2−i) =

∫
U(γe)

xidµ̃(x)

= det(γ)1−l
∫
U(e)

(γx)i(cx+ d)n−2dµ̃(x)

= (γ ·n,l κµ̃(e))(X iY n−2−i).

This implies κµ̃ ∈ Char
n,l (Γ) and since by definition of ψ̃ we have ψ̃(κµ̃) = µ̃ it follows

that ψ̃ is surjectiv.
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We also need to integrate more general thean locally polynomial functions still hav-
ing bounded pole order at infinity. For this we need to show that the measures µ̃κ
we constructed extend to certain measures on An. We first introduce the space of
measures to which µ̃κ extends.

Definition 5.14 Let Measn,l(Γ) be the K∞-vector space of measures µ on An such
that

(a) For all f ∈ Pn one has ∫
P1(K∞)

f(x)dµ(x) = 0.

(b) For all f ∈ An, e ∈ E(T ) and γ =

(
a b
c d

)
∈ Γ one has

∫
U(γe)

f(x)dµ = det(γ)1−l
∫
U(e)

f(γx)(cx+ d)n−2dµ.

Remark 5.15 Both Definition 5.14(b) and Lemma 5.8 can be expressed as an equiv-
ariance of a measure. Namely in both cases one has

d(µ · γ) = det(γ)1−l(cx+ d)n−2dµ.

Proposition 5.16 Let µ ∈ Measn,l(Γ). Then there is a constant C > 0 such that for
all e ∈ E(T ) with ∞ ∈ U(e), 0 6∈ U(e) and for all −∞ < i ≤ n− 2 one has∣∣∣∣∫

U(e)

xidµ

∣∣∣∣ ≤ Cτ(e)−i+(n−2)/2

and for all e ∈ E(T ) with ∞ 6∈ U(e) and for r ∈ U(e) and all i ≥ 0 one has∣∣∣∣∫
U(e)

(x− r)idµ
∣∣∣∣ ≤ Cτ(e)i−(n−2)/2.

Proof: The proofs of Lemma 5.9 and Proposition 5.12 only used the invariance of
the measure at hand under the Γ-action and the fact that the measure vanishes for
global polynomials. These properties are just part (a) and (b) of Definition 5.14.
Hence the proofs can be adapted to measures in Measn,l(Γ) and so we obtain the
claimed bounds also for rational functions having pole order at most n− 2 at ∞.
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The extention of bounded measures µ̃ ∈ M̃eas
b

n,l(Γ) to measures in Measn,l(Γ) is guar-
anteed by a theorem of Amice-Velu and Vishik in the form given in [Te2, Proposition
7]. We omit the proof here.

Theorem 5.17 Let µ̃ ∈ M̃eas
b

n,l(Γ). Then there is a unique measure µ ∈ Measn,l(Γ)
such that for all f ∈ Pn and e ∈ E(T ) one has∫

U(e)

f(x)dµ(x) =

∫
U(e)

f(x)dµ̃(x).

In the situation of Theorem 5.17 we say that µ is an extention of µ̃ to An. By the
uniqueness asserted in the theorem and since by Proposition 5.16 every measure on
An restricts to a well-defined measure on Pn, we see that the spaces Measn,l(Γ) and

M̃eas
b

n,l(Γ) are isomorphic. Hence we obtain:

Corollary 5.18 The isomorphism ψ̃ : Char
n,l (Γ) → M̃eas

b

n,l(Γ) extends to an isomor-

phism ψ : Char
n,l (Γ)→ Measn,l(Γ).

5.3 The Poisson Kernel

Lemma 5.19 Let z ∈ Ω, x ∈ K∞ and γ =

(
a b
c d

)
∈ GL2(K∞). Then

(cx+ d)n−2

γz − γx
=

(cz + d)n

det(γ)(z − x)
+ Pz,c,d(x)

where Pz,c,d(x) ∈ K∞[x, z] is a polynomial in x of degree degx(Pz,c,d(x)) ≤ n − 2
depending on z, c and d.

Proof:

(cx+ d)n−2

γz − γx
(15)
=

(cx+ d)n−1(cz + d)

det(γ)(z − x)
.

To complete the proof substract

(cz + d)n

det(γ)(z − x)
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and observe that the difference is equal to

(cz + d)

det(γ)(z − x)
((cx+ d)n−1 − (cz + d)n−1)

=
(cz + d)

det(γ)(z − x)

(
((cx+ d)− (cz + d))

n−2∑
i=0

(cx+ d)i(cz + d)n−2−i

)

=
−c(cz + d)

det(γ)

n−2∑
i=0

(cx+ d)i(cz + d)n−2−i.

Following closely [Te1, Theorem 3] we proof the following theorem.

Theorem 5.20 Let µ ∈ Measn,l(Γ)⊗K∞ C∞. Then

f(z) =

∫
P1(K∞)

1

z − x
dµ(x) ∈Mn,l(Γ).

Proof: Since for any z ∈ Ω the function x 7→ 1
z−x is in An for all n ≥ 2 we can

integrate 1
z−x against dµ. Hence we obtain a well-defined function f : Ω → C∞ in

this way. We have to show that f fulfills f = f |
n,l

γ for all γ ∈ Γ and that f is rigid

analytic.

For the first assertion let γ =

(
a b
c d

)
∈ Γ. Then

f(γz) =

∫
P1(K∞)

1

γz − x
dµ(x)

=

∫
P1(K∞)

1

γz − γx
dµ(γx)

5.15
= det(γ)1−l

∫
P1(K∞)

(cx+ d)n−2

γz − γx
dµ(x)

5.19
= det(γ)−l(cz + d)n

(∫
P1(K∞)

1

z − x
dµ(x) +

∫
P1(K∞)

det(γ)Pz,c,d(x)

(cz + d)n
dµ(x)

)
5.14(a)

= det(γ)−l(cz + d)nf(z)

and hence f = f |
n,l

γ.

It remains to show that f is rigid analytic. For that let A be a connected affinoid
domain in Ω. Then A is of the form

A = P1(C∞) r
m∪
i=1

Bi
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with finitely many open discs Bi = B(ai, ri) = {x ∈ C∞ | |x − ai| < ri} with centers
ai ∈ P1(K∞) and radii ri ∈ R>0. We can assume Bi ∩ Bj = ∅ for i 6= j, because if
this is not the case, then either Bi ⊆ Bj or Bj ⊆ Bi and we can omit one of the discs.
Let Ui = Bi ∩ P1(K∞). W.l.o.g. we choose ai = ∞ for that disc Bi having ∞ ∈ Bi.
Then Ui ⊆ P1(K∞) is compact open and Ui ∩ Uj = ∅ for i 6= j. The collection
{Ui | i = 1, . . . ,m} is a covering of P1(K∞) by distinct compact open subsets, since

P1(K∞) ⊆ (P1(C∞) r A) =
m∪
i=1

Bi.

Set

fi(z) =

∫
Ui

1

z − x
dµ(x).

Then by definition and since the Ui cover P1(K∞) disjointly we have f =
∑m

i=1 fi. Let
ei be the edge of T such that U(ei) = Ui.
If ai 6= ∞, then we have ∞ 6∈ U(ei). We expand 1

z−x as a Taylor series around ai in
the form

1

z − x
=

∞∑
j=0

1

(z − ai)j+1
(x− ai)j

converging for z ∈ P1(C∞) rBi and x ∈ U(ei). Then by Proposition 5.7(b) one has

fi(z) =

∫
Ui

1

z − x
dµ(x) =

∞∑
j=0

1

(z − ai)j+1

∫
U(ei)

(x− ai)jdµ(x)

and by Proposition 5.16 this series converges uniformly on the complement of Bi.
Hence fi is rigid analytic on P1(C∞) rBi.
If ai =∞, we have 0 6∈ U(ei). Expand 1

z−x as a Laurent series around ∞ as

1

z − x
=

∞∑
j=0

−zj 1

xj+1

converging for z ∈ P1(C∞) rBi and x ∈ U(ei). Then by Proposition 5.7(a) one has

fi(z) =

∫
Ui

1

z − x
dµ(x) =

0∑
j=−∞

−z−jxj+1

and by Proposition 5.16 this series again converges uniformly on the complement of
Bi. Again we see that fi is rigid analytic on P1(C∞) rBi.
Since f =

∑m
i=1 fi, we see that f is rigid analytic on A =

∩m
i=1(P1(C∞) r Bi). Since

Ω can be covered by connected affinoid domains, f is rigid analytic on all of Ω.
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Corollary 5.21 The map

ϕ : Measn,l(Γ)⊗ C∞ →Mn,l(Γ), µ 7→
(
f : Ω→ C∞, z 7→

∫
P1(K∞)

1

z − x
dµ(x)

)
is a well-defined homomorphism of C∞-vector spaces.

The following diagram sums up the maps we constructed.

Mn,l(Γ) Res // Char
n,l (Γ)⊗K∞ C∞

ψ⊗id

xxrrrrrrrrrrrrrrrrrrrrrr

Measn,l(Γ)⊗K∞ C∞

ϕ

ccHHHHHHHHHHHHHHHHHHH

Next, still following [Te1], we will observe that the residue map is a left inverse for
ϕ ◦ψ⊗ id. This will be essential for showing that the residue map is an isomorphism.

Proposition 5.22 For κ ∈ Char
n,l (Γ) we have

Res(ϕ(ψ ⊗ id(κ⊗1))) = κ .

Proof: Let e ∈ E(T ) and 0 ≤ i ≤ n− 2. We need to show that

κ(e)(X iY n−2−i) = Res

(∫
P1(K∞)

1

z − x
dµκ(x)

)
(e)(X iY n−2−i)

= Rese

(∫
P1(K∞)

zi

z − x
dµκ(x)

)
.

The residue on the right can be directly read of the Taylor series expansions in the
proof of Theorem 5.20, in the particular case that A is the closure of the open annulus
V (e), distinguishing the case ∞ 6∈ U(e) or ∞ ∈ U(e). In both cases they equal to∫

U(e)

xjdµκ(x) =

∫
U(e)

xjdµ̃κ(x) = κ(e)(X iY n−2−i).
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We have an action of GL2(K∞) both onMn,l(Γ) and on Char
n,l (Γ)⊗K∞ C∞. The next

lemma shows that the residue map is equivariant under this action.

Lemma 5.23 Let f : Ω→ C∞ be a rigid analytic function and γ ∈ GL2(K∞). Then

Res(f |
n,l

γ)(e) = γ−1 ·n,l Res(f)(γe).

Proof:
γ ·n,l Res(f |

n,l

γ)(e)(X iY n−2−i)

= det(γ)1−l Res(f |
n,l

γ)(e)((aX + bY )i(cX + dY )n−2−i)

= det(γ)1−l Rese(f |
n,l

γ)(z)(az + b)i(cz + d)n−2−idz

= det(γ)1−l Rese f(γz) det(γ)l(cz + d)−n(az + b)i(cz + d)n−2−idz

= Rese f(γz)

(
az + b

cz + d

)i
det(γ)

(cz + d)2
dz

= Resγe f(z)zidz

= Res(f)(γe)(X iY n−2−i)

Theorem 5.24 For all n ≥ 2 and for l ∈ N the residue map

Res :Mn,l(Γ)→ Char
n,l (Γ)⊗K∞ C∞

is an isomorphism with inverse given by

ϕ ◦ (ψ ⊗ id) : Char
n,l (Γ)⊗K∞ C∞ →Mn,l(Γ).

Proof: From Proposition 5.22 it follows that the residue map is surjective for all
Γ ⊆ Λ⋆. If in addition Γ is p′-torsion free, then by Corollary 4.9 we have equal
dimensions on both sides, and hence the residue map is an isomorphism with inverse
given by ϕ ◦ (ψ ⊗ id).
Now if Γ is not p′-torsion free, we can choose a finite index subgroup Γ′ ⊆ Γ which
is p′-torsion free. E.g. choose any p ∈ Fq[T ] with n 6∈ R and such that under the
embedding ι : Γ ↩→ GL2(Kp) one has ι(Γ) ⊆ GL2(Op). Then we let Γ′ be the full
level p congruence subgroup in Γ, so the inverse image under ι of the kernel of the
reduction modulo p from GL2(Op) to GL2(Fp). So

Γ′ = {γ ∈ Γ | γ ≡
(

1 0
0 1

)
(mod pM2(Op))}.
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This is a p′-torsion free finite index subgroup of Γ. Then by what we have just shown
Mn,l(Γ

′) ∼= Char
n,l (Γ

′)⊗K∞ C∞. Furthermore we have

Mn,l(Γ) =Mn,l(Γ
′)Γ/Γ′

= {f ∈Mn,l(Γ
′) | f = f |

n,l

γ for all γ ∈ Γ/Γ′}

and

Char
n,l (Γ) = Char

n,l (Γ
′)Γ/Γ′

= {κ ∈ Char
n,l (Γ

′) | κ(γe) = γ · κ(e) for all γ ∈ Γ/Γ′, e ∈ E(T )}.

Because Res : Mn,l(Γ
′) → Char

n,l (Γ
′) ⊗K∞ C∞ is Γ-equivariant by Lemma 5.23, it

follows that it defines an isomorphismMn,l → Char
n,l (Γ)⊗K∞ C∞ with inverse given by

ϕ ◦ (ψ ⊗ id).

5.4 Hecke operators

In this section we introduce an action of Hecke operators on Mn,l(Γ). This will be
done in the usual way as a sum over certain double coset decompositions. We then
translate this Hecke action to the side of harmonic cocycles, where one can explicitly
compute these operators.

5.4.1 Hecke operators on Mn,l(Γ)

Definition 5.25 Let α ∈ GL2(K∞) and f ∈ Mn,l(Γ). Write the double coset ΓαΓ
as a finite disjoint union ∪jΓβj. Then we define the double coset operator as

f [ΓαΓ]n,l =
∑
j

f |
n,l

βj.

This operator does not depend on the choice of the decomposition of ΓαΓ. For if
∪Γβ′

j = ΓαΓ = ∪Γβj are two distinct decompositions and suppose that Γβj = Γβ′
j,

then there is an γ ∈ Γ with βj = γβ′
j and hence

f |
n,l

βj = f |
n,l

γβ′
j = f |

n,l

γ |
n,l

β′
j = f |

n,l

β′
j.

Lemma 5.26 For f ∈ Mn,l(Γ) and α ∈ GL2(K∞) the double coset operator f 7→
f [ΓαΓ]n,l induces an endomorphism of Mn,l(Γ).

Proof: Let γ ∈ Γ and ΓαΓ = ∪jΓβj. Then the set ∪jΓβjγ is another decomposition
of ΓαΓ and hence by the above

f [ΓαΓ]n,l |
n,l

γ =
∑
j

f |
n,l

βjγ = f [ΓαΓ]n,l.

The linearity is clear from the definition of [ΓαΓ]n,l.
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LetHn,l(Γ) be the subalgebra of End(Mn,l(Γ)) generated by all double coset operators
for all α ∈ GL2(K∞). The Hecke operators we will consider in this section form a
commutative subalgebra of Hn,l(Γ). To define them we need some further notation.
Let n E A be an ideal with (n, r) = 1 and let Λ(n) ⊆ Λ be an full level n order in
Λ. Since K = Fq(T ) has class number 1, by [Vi, Corollaire 5.7] two different Eichler
orders of level n differ only by elements of D⋆. Suppose that Λ(n)⋆ ⊆ Γ ⊆ Λ⋆.
Let p E A be a prime ideal with p - nr. By strong approximation [Vi, Theorème
III.4.3], there is an element γp ∈ Λ(n) such that nrd(γp) generates p. Via the embed-
ding Λ ↩→M2(K∞) we view γp as an element of GL2(K∞).

Lemma–Definition 5.27 The double coset operator [ΓγpΓ]n,l does not depend on the
choice of γp ∈ Λ(n). We define Tp to be the operator [ΓγpΓ]n,l for any γp ∈ Λ(n) with
(nrd(γp)) = p.

Proof: Let ι : D ↩→ D⊗KKp
∼= M2(Kp) be the natural embedding. Since p does not

divide n, the completion of Λ(n) at p is isomorphic to M2(Op). If γp and γ′p are in Λ(n)
with (nrd(γp)) = (nrd(γ′p)) = p, then (det(ι(γp))) = (det(ι(γp))) = p. So ι(γ′pγ

−1
p ) ∈

GL2(Op) and since γ′pγ
−1
p is in D, we have γ′pγ

−1
p ∈ D ∩ ι−1(GL2(Op)) = Λ(n)⋆. That

means there is a γ ∈ Λ(n)⋆ ⊆ Γ with γp = γγ′p. This implies [ΓγpΓ] = [Γγ′pΓ].

As in [GV, page 6], the double coset space ΓγpΓ decomposes into #P1(Op/p) =
#P1(kp) many left Γ-cosets. By the above it follows that there are elements {γa ∈ Γ |
a ∈ P1(kp)} with

Tp(f) =
∑

a∈P1(kp)

f |
n,l

γpγa (18)

for f ∈Mn,l(Γ).
The Hecke-algebra ofMn,l(Γ), denote by H′

n,l(Γ), is the subalgebra of Hn,l(Γ) gener-
ated by the operators Tp for all prime ideals p ∈ A coprime to nr.

Remark 5.28 Let p, p′ E A be two different prime ideals coprime to nr. As in
[Bö, Proposition 6.6] one shows that TpTp′ = Tp′Tp. Hence H′

n,l(Γ) is a commutative
subalgebra of Hn,l(Γ).

5.4.2 Hecke operators on Char
n,l (Γ)

We can formally translate the action of the Hecke algebra to Char
n,l (Γ)⊗K∞ C∞ using

the residue map and integration against the Poisson kernel.

Definition 5.29 Let κ ∈ Char
n,l (Γ) ⊗K∞ C∞ and p E A a prime ideal coprime to nr.

We define
Tp(κ) = Res(Tp(ϕ(ψ ⊗ id(κ)))).
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Remark 5.30 Since Res and ϕ◦(ψ⊗ id) are mutual inverses, for the above definition
of a Hecke action on Char

n,l (Γ)⊗K∞ C∞, the map Res becomes an isomorphism of Hecke
modules.

This means that in order to compute the action of Hecke operators on quaternionic
modular forms, one can as well compute on the side of harmonic cocycles. To do this,
we need to make the action of Hecke operators on harmonic cocycles more explicit.

Proposition 5.31 Let κ ∈ Char
n,l (Γ), p E A a prime ideal coprime to nr and {γa} ⊂ Γ

for a ∈ P1(kp) the elements from Equation (18). Then

Tp(κ)(e) =
∑

a∈P1(kp)

γ−1
a γ−1

p κ(γpγae). (19)

Proof: For e ∈ E(T ) one computes

Tp(κ)(e) = Res(Tp(ϕ(ψ(κ))))(e)

= Res

 ∑
a∈P1(kp)

(ϕ(ψ(κ)) |
n,l

γpγa)

 (e)

=
∑

a∈P1(kp)

Res

(
(ϕ(ψ(κ)) |

n,l

γpγa)

)
(e)

5.23
=

∑
a∈P1(kp)

γ−1
a γ−1

p Res(ϕ(ψ(κ)))(γpγae)

5.24
=

∑
a∈P1(kp)

γ−1
a γ−1

p κ(γpγae).

5.4.3 Explicit embeddings at p

Our next goal is, to describe how one can compute the elements γpγa from the dou-
ble coset decomposition of ΓγpΓ. For this, we need an explicit describtion of the
embedding D ↩→M2(Kp) for places p where D splits.
Let (ϖ) = p 6∈ R be a place of K. Then D splits at p, i.e. D ⊗K Kp

∼= M2(Kp)
where Kp is the completion of K at the place p. Let Op be the ring of integers of Kp

and kp its residue field. In this section we shortly explain how to obtain an explicit
embedding ϕp : D ↩→ M2(Kp) for such a place p. By explicit we mean that we give
rules to compute approximations for the values of ϕ(i) and ϕ(j). The results in this
section are well known. More details on this question can be found in [Vo2].
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Definition 5.32 The square symbol is defined as

{
α

p

}
=


1 α ∈ (K⋆

p )
2,

−1 α 6∈ (K⋆
p )

2 and ordp(α) even ,

0 α 6∈ (K⋆
p )

2 and ordp(α) odd .

The square symbol can be computed effectivly by reducing to the Legendre symbol
from Definition 2.18. See [Vo2, Section 5] for more details.

Lemma 5.33 Suppose D =
(
a,b
K

)
. Then p 6∈ R if and only if one of the following

holds:{
a

p

}
= 1 or

{
b

p

}
= 1 or

{
−ab
p

}
= 1 or

{
a

p

}
=

{
b

p

}
=

{
−ab
p

}
= −1.

Proof: See [Vo2, Proposition 5.5].

If p 6∈ R, then according to Proposition 2.13 the equation Z2 − aX2 − bY 2 = 0 has a
non-trivial solution over Kp.

Lemma 5.34 If Z2 − aX2 − bY 2 has a non-trivial solution (z0, x0, y0) over Kp with

either z0 or x0 or y0 equal to 0, than either
{

−ab
p

}
= 1 or

{
b
p

}
= 1 or

{
a
p

}
= 1

respectivly.

Proof: Suppose first that z0 = 0, hence −ax2
0 − by2

0 = 0. Multiplying with b yields

−abx2
0 − b2y2

0 = 0 hence −ab =
y20b

2

x2 =
√

y0b
x

is a square.

If x0 = 0 we have z2
0 − by2

0 = 0, hence b =
√

z0
y0

is a square. Likewise if y0 = 0 then

a =
√

z0
x0

is a square.

Lemma 5.35 (a) If
{
a
p

}
= 1, then

i 7→
(√

a 0
0 −

√
a

)
and j 7→

(
0 1
b 0

)
provides an embedding of D ⊗Kp ↩→M2(Kp).
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(b) If
{
b
p

}
= 1, then

i 7→
(

0 1
a 0

)
and j 7→

(√
b 0

0 −
√
b

)
provides an embedding of D ⊗Kp ↩→M2(Kp).

(c) If
{

−ab
p

}
= 1, then

i 7→
(

0 1
a 0

)
and j 7→

(
0 −

√
−ab
a√

−ab 0

)
provides an embedding of D ⊗Kp ↩→M2(Kp).

(d) If
{
a
p

}
=
{
b
p

}
=
{

−ab
p

}
= −1, let (z0, x0, y0) be a solution of Z2−aX2− bY 2 in

Kp with z0, x0, y0 6= 0. Let x := x0

z0
and y := y0

z0
. Set e0 := 1, e1 := xi+ yj, e2 :=

k, e3 := e1e2. Then e0, . . . e3 is a basis of D ⊗Kp and

e1 7→
(

1 0
0 −1

)
and e2 7→

(
0 1
−ab 0

)
provides an embedding of D ⊗Kp ↩→M2(Kp).

Proof: One has to check that the given matrices fulfill the relations from Defini-
tion 2.12. If all three symbols are −1, one first checks that e0, . . . , e3 form another
basis of D with the relations e2

1 = 1, e2
2 = −ab and e3 = e1e2 = −e2e1. Note also that

ax2 + by2 = 1. Hence D ⊗Kp
∼=
(
a,b
Kp

)
∼=
(

1,−ab
Kp

)
.

To obtain an explicit embedding, we first compute the symbols
{
a
p

}
,
{
b
p

}
and

{
−ab
p

}
.

If one of these symbols equals 1, we use Newton iteration to compute the square root
in Kp as a Laurent series in the variable p. For this, if x ∈ Kp is a square root and
e = ordp(x), let x0 := xϖ−e and let y0 be a solution of y2

0 ≡ x0 mod p. Then we start
with y0ϖ

−e/2 as a first approximation.
If all three symbols are −1, we have to search for a non-trivial solution of Z2 −
aX2 − bY 2 over the residue field kp. By Lemma 5.34 we know that such a solution
exists. To find it, we first compute a solution mod p. Then this solution can be
lifted using Hensels Lemma. More explicitly, set x0 := x̃0, y0 := ỹ0 and z0 := z̃0u

with u =
√

1 + ( 1
z̃20

(ax2
0 + by2

0)− 1). The square-root exists in Kp since
√

1 + x has a
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convergent Taylor series expansion for char(Kp) 6= 2 and vp(x) ≥ 1. Note that u is a
1-unit in Kp. The images of i and j are then obtained from

1
i
j
k

 =


1 0 0 0
0 xa 0 −y
0 yb 0 x
0 0 1 0



e0

e1

e2

e3

 .

Remark 5.36 Note that in all cases the embedding ϕp : D ↩→M2(Kp) obtained from
Lemma 5.35 has the property ϕp(< 1, i, j, ij >A) ⊂ M2(Op). Hence for odd(R) = 1
this embedding sends Λ into M2(Op). Moreover, Λp

∼= M2(Op) where Λp denotes
the completion of Λ at p. If odd(R) = 0 we can twist ϕp with a suitable element
γ of GL2(Kp) to obtain a concrete realization of the isomorphism Λp

∼= M2(Op)

as well. For this, if

(
a b
c d

)
is the image of εi+ij

α
under ϕp, we can take γ =

diag(p−min(vp(a),vp(b),vp(c),vp(d))).

5.4.4 Computing the double coset decomposition

To evalute Equation (19) on cocycles, one needs to compute the elements γpγa from
the double coset decomposition of ΓγpΓ. As in [GV, Chapter 5] one has a bijection

P1(kp)→ {γpγa | a ∈ P1(kp)}

given by sending the point a = (x : y) ∈ P1(kp) to a generator λa of the left ideal

Ia := Λ(n)ϕ−1
p

((
x y
0 0

))
+ Λ(n)ϖ

where ϖ is a generator of p. These generators then necessarily have (nrd(λa)) = p.
Using the explicit embedding ϕp from Section 5.4.3 one finds generators of Ia as an A-
module. As in [KV, Lemma 4.9] one shows that any element γ ∈ Ia with (nrd(γ)) = p

will generate Ia. One way to obtain such an element is to enumerate elements of Ia
until we find one having the correct reduced norm.

Remark 5.37 The approach of enumerating elements of Ia works in practice for
primes p of small degree. For primes p of larger degree, one could use a form of the
LLL-algorithm. However, the LLL-algorithm presented in [He] or [Pau] computes a
basis of Ia with minimal polynomial degree, where instead we need to minimize the
reduced norm of the generators. It is unclear, how these two norms are related. In
practice, minimizing the polynomial degree seems to work in most cases. We intend
to investigate this further in the future.
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6 A basis of the space of harmonic cocycles

In this chapter we present a construction of a K∞-basis of the space Char
n,l (Γ), on which

one can compute the Hecke action. The basis will be explicit for computations and
we will construct it out of an enhanced fundamental domain for T under Γ. These
fundamental domains are computed using Algorithm 2.32. As in Section 4.4 we need
to assume that Γ ⊆ Λ⋆ has the property

StabΓ(v) ∼= {1} or F⋆q or F⋆q2 for all v ∈ V(T )

and hence
StabΓ(e) ∼= {1} or F⋆q for all e ∈ E(T ).

This assumption was made to ensure that only vertices of degree q + 1 or degree
1 occur in the quotient graph Γ\T . Recall that our assumption on Γ implies ω =
#(Γ ∩ F⋆q) ∈ {1, q − 1}.

6.1 Preliminaries

Recall that an enhanced fundamental domain for the action of Γ on T is a triple
((Y ,S),PE = PE(S,Y), {StabΓ(t) | t a simplex of Y}) where S ⊂ Y ⊂ T are subtrees
such that

(a) Under the projection π : T → Γ\T the image π(S) is a maximal subtree of
Γ\T ,

(b) E(Y) ∼= E(Γ\T ) and

(c) any edge of Y has at least one of its vertices in S.

The edge pairing PE is a map from {e ∈ E(Y r S) | o(e) ∈ S} to Γ such that
PE(e)t(e) ∈ V(S) for all e. In Figure 3 we give an example of an enhanced fundamen-
tal domain for D/F5(T ) the quaternion algebra ramified at {T, T + 1, T + 2, T + 3}
and Γ = Λ⋆ for Λ a maximal order in D. This continues Example 2.38. In the figure
the subtree S ⊂ Y consists of those edges of Y , which do not carry a name and are
not labeled with a matrix of Γ.

Remark 6.1 If we have two different enhanced fundamental domains for the action
of Γ on T given by ((Yi,Si),PE(Yi,Si), {StabΓ(t) | t a simplex of Yi}) for i ∈ {1, 2},
then there is a bijection ϕ : Y1 → Y2 such that all simplices t of Y1 are Γ-equivalent
to its image ϕ(t). Note that ϕ is not necessarily an isomorphism in the category
of graphs. The stabilizers of the simplices of Y1 and Y2 are then Γ-conjugates. For
e ∈ E(Y1 r S1) with o(e) ∈ S1 the value of the edge pairing PE(Y1,S1)(e) is unique
up to elements of the stabilizer of the edges, hence up to elements of F⋆q ∩ Γ. So the
values of PE(Y1,S1) and PE(Y2,S2) differ by elements of F⋆q ∩ Γ.
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Figure 3: An example of an enhanced fundamental domain

Definition 6.2 (a) Let E(Γ\T )reg = {e∈E(Γ\T ) | deg(o(e)) = deg(t(e)) = q + 1}
and E(Γ\T )term = E(Γ\T ) r E(Γ\T )reg.

(b) Let Char
n,l (Γ)reg = {κ ∈ Char

n,l (Γ) | κ(e) = 0 for all e ∈ π−1(E(Γ\T )term)}.

Note that in a lot of cases, for example if Γ is p′-torsion free or if odd(R) = 0, then
E(Γ\T )term = ∅ and hence Char

n,l (Γ) = Char
n,l (Γ)reg. We start by observing that the

values of Γ-equivariant cocycles have to be invariant under the action of F⋆q ∩ Γ.

Lemma 6.3 Let κ ∈ Char
n,l (Γ). Then κ(e) ∈ Vn,l(K∞)F

⋆
q∩Γ for all e ∈ E(T ).
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Proof: Let e ∈ E(T ). Then by Proposition 2.24 one has StabΓ(e) = F⋆q ∩ Γ. So for
γ ∈ F⋆q ∩ Γ and κ ∈ Char

n,l (Γ) one has γ κ(e) = κ(γe) = κ(e), hence the value of κ at e
has to be invariant under the action of F⋆q ∩ Γ.

Lemma 6.4 For all n ≥ 2 and all l ∈ Z one has

Vn,l(K∞)F
⋆
q∩Γ =

{
{0} if n 6≡ 2l (mod ω),

Vn,l(K∞) if n ≡ 2l (mod ω).

where ω = #(F⋆q ∩ Γ).

Proof: The group F⋆q ∩Γ is cyclic, let γ =

(
a 0
0 a

)
be a generator. Then ord(γ) = ω

and
Vn,l(K∞)F

⋆
q∩Γ = Vn,l(K∞)〈γ〉

= {ϕ ∈ Vn,l(K∞) | γ ·n,l ϕ = ϕ}
= {ϕ ∈ Vn,l(K∞) | γ ·n,l ϕ(X iY n−2−i) = ϕ(X iY n−2−i) ∀ 0 ≤ i ≤ n− 2}
= {ϕ ∈ Vn,l(K∞) | det(γ)1−lϕ((aX)i(aY )n−2−i) = ϕ(X iY n−2−i) ∀ 0 ≤ i ≤ n− 2}
= {ϕ ∈ Vn,l(K∞) | an−2lϕ(X iY n−2−i) = ϕ(X iY n−2−i) ∀ 0 ≤ i ≤ n− 2}
= {ϕ ∈ Vn,l(K∞) | an−2lϕ = ϕ}.

If n 6≡ 2l (mod ω), this set equals {0}. If n ≡ 2l (mod ω), we have no condition on
ϕ.

With regard to Theorem 5.24 the previous lemma can be viewed as the cocycle side
version of Proposition 4.13. The assertion of Proposition 4.13 also holds for odd n.
This will be shown in Corollary 6.12.

6.2 The case of weight n > 2

Let us assume n > 2. Our first goal is, to give an explicit description of Char
n,l (Γ)reg

in this case. For this, we need an improved version of Lemma 4.8, where we showed
that Vn,l(C∞)Γ = {0}. Let us start with a simple observation.

Lemma 6.5 Let γ ∈ GLm(V ) for some m. Then V 〈γ〉 = {0} if and only if V〈γ〉 = {0}.

Proof: If V 〈γ〉 6= {0} then 1 is an eigenvalue for γ. Then 1 is also an eigenvalue of
the transpose of γ, and hence also V〈γ〉 = (V ⋆)〈γ〉 6= {0}.
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In the proof of Lemma 4.8 we worked only with two non-commuting matrices γ1, γ2 ∈ Γ
of infinite order. The matrices used in the edge pairing of an enhanced fundamental
domain have this property. Also, the proof was purely algebraic and works with C∞
replaced by K∞. Hence combined with Lemma 6.5, we obtain the following statement.

Lemma 6.6 Let ((S,Y),PE(S,Y), {Gt | t a simplex of Y}) be an enhanced fundamen-
tal domain for T under Γ. Let g = g(Γ\Ω),

{ei | i = 1, . . . , g} = {e ∈ E(Y r S) | o(e) ∈ S}

and γi = PE(S,Y)(ei).

(a) If n is odd, then Vn,l(K∞)
F⋆

q∩Γ

〈γi〉 = {0} = Vn,l(K∞)F
⋆
q∩Γ×〈γi〉 for all 1 ≤ i ≤ g.

(b) If n is even, then dimVn,l(K∞)
F⋆

q∩Γ

〈γi〉 = dimVn,l(K∞)F
⋆
q∩Γ×〈γi〉 = 1 for all 1 ≤ i ≤

g.

Lemma 6.6 suggests that the construction of an explicit basis for Char
n,l (Γ) will differ

depending on n even or odd. We start with the easier case n odd.

Lemma 6.7 Let ((S,Y),PE(S,Y), {Gt | t a simplex of Y}) be an enhanced fundamen-
tal domain for T under Γ. Let g = g(Γ\Ω),

{ei | i = 1, . . . , g} = {e ∈ E(Y r S) | o(e) ∈ S}

and γi = PE(S,Y)(ei). Let n > 2 be odd. To each v ∈ Vn,l(K∞)F
⋆
q∩Γ and each

ei ∈ {e2, . . . , eg} there is a unique cocycle κ(v,ei) ∈ Char
n,l (Γ)reg with κ(v,ei)(ei) = v

and κ(v,ei)(e
′) = 0 for all e′ ∈ E(Y r S ∪ {e1, e

⋆
1, ei, e

⋆
i }).

Proof: Note that a maximal subtree of Γ\T necessarily contains E(Γ\T )term, hence
ei ∈ π−1(E(Γ\T )reg). We have g(Γ\Ω) > 1 by Theorem 2.27. By Lemma 6.6 we have

Vn,l(K∞)
F⋆

q∩Γ

〈γ1〉 = {0}. For 1 ≤ j ≤ g let Pj ⊆ S be the unique path connecting o(ej)

and γt(ej) and P ′
j ⊆ S be the unique path connecting o(e1) and o(ej). For κ(v,ei) to

satisfy κ(v,ei)(e
′) = 0 for all e′ ∈ E(Y r S ∪ {e1, e⋆1, ei, e⋆i }) it is sufficient to require

κ(v,ei)(ej) = 0 for all 2 ≤ j ≤ g with j 6= i. By harmonicity this implies κ(v,ei) ≡ 0
on E(S r (P1 ∪ Pi ∪ P ′

i)). Suppose that κ(v,ei)(e1) = w. Then by the Γ-equivariance
κ(v,ei)(γ1e1) = γ1w and κ(v,ei)(γiei) = γiv. Since by Lemma 2.22 the distance between
o(e1) and o(γe1) and the distance between o(ei) and o(γei) in T are even, for κ(v,ei) to
be harmonic v and w have to fulfil the relation γiv−v+γ1w−w = 0 if d(o(e1), o(ei)) is
even or γiv− v−γ1w+w = 0 if d(o(e1), o(ei)) is odd. See Figure 4 for an illustration.

Since by assumption Vn,l(K∞)
F⋆

q∩Γ

〈γ1〉 = {0} there is a unique w fulfilling this equation.

Hence κ(v,ei) is uniquely determined on all of Y and using E(Γ\T ) ∼= E(Y) this extends
to a unique Γ-equivariant cocycle from E(T ) to Vn,l(K∞)F

⋆
q∩Γ.
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Figure 4: Illustration of a possible assingment of values for E(Y)

Proposition 6.8 Let ((S,Y),PE(S,Y), {Gt | t a simplex of Y}) be an enhanced fun-
damental domain for T under Γ and Bn,l a basis of Vn,l(K∞)F

⋆
q∩Γ. Let g = g(Γ\Ω),

{ei | i = 1, . . . , g} = {e ∈ E(Y r S) | o(e) ∈ S}

and γi = PE(S,Y)(ei). Let n > 2 be odd. The image of the map

ψ : {ei | 2 ≤ i ≤ g} × Bn,l → Char
n,l (Γ)reg : (ei, v) 7→ κei,v

is a basis of Char
n,l (Γ)reg where κei,v is the unique cocycle from Lemma 6.7.
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Proof: Since the cocycles κe,v for different e are linearly independent, the images
ψ(e, v) and ψ(e′, v′) are linearly independent for all e ∈ {ei | 2 ≤ i ≤ g} and v ∈ Bn,l.
Let κ ∈ Char

n,l (Γ)reg. By Lemma 6.3 we have κ(e) ∈ Vn,l(K∞)F
⋆
q∩Γ for all e ∈ E(T ).

Then using Lemma 6.7 we can substract linear combinations of cocycles from the set
ψ({ei | 2 ≤ i ≤ g} × Bn,l) to assume that κ(e) = 0 for all e ∈ E(Y r (S ∪ e1, e⋆1)).
Let κ(e1) = v. Then as in the proof of Lemma 6.7 we must have γ1v − v = 0, hence
v ∈ Vn,l(K∞)F

⋆
q∩Γ×〈γ1〉, which equals {0} by Lemma 6.6. This implies κ(e) = 0 for all

e ∈ E(Y) and so by the Γ-equivariance of κ we have κ ≡ 0.

We now treat the case n > 2 even. Before we construct an explicit basis, we need the
following lemma.

Lemma 6.9 Let ((S,Y),PE(S,Y), {Gt | t a simplex of Y}) be an enhanced fundamen-
tal domain for T under Γ and Bn,l a basis of Vn,l(K∞)F

⋆
q∩Γ. Let g = g(Γ\Ω),

{ei | i = 1, . . . , g} = {e ∈ E(Y r S) | o(e) ∈ S}

and γi = PE(S,Y)(ei). Let n be even and l ∈ Z with n ≡ 2l (mod ω). Let V =
Vn,l(K∞)F

⋆
q∩Γ. Then for all i, j ∈ {1, . . . , g} with i 6= j the subspaces (1 − γi)V and

(1− γj)V of V are transversal.

Proof: Let Γ′ = 〈γi, γi〉 ⊆ Γ. Then as in the proof of Lemma 4.8 one has

VΓ′ = V/〈(γ − 1)v | v ∈ V, γ ∈ Γ′〉 = {0}.

Now if γ ∈ Γ′ with γ = γ′γ′′ then

(γ − 1) = (γ′γ′′ − 1) = (γ′γ′′ − γ′′) + (γ′′ − 1)

hence for v ∈ V we have

(γ − 1)v = (γ′ − 1)(γ′′v) + (γ′′ − 1)v.

It follows, that

〈(γ − 1)v | v ∈ V, γ ∈ Γ′〉 = (γi − 1)V + (γj − 1)V.

By Lemma 6.6 we know that (γi − 1)V and (γj − 1)V are both n − 2-dimensional.
Since V = (γi− 1)V + (γj − 1)V is n− 1-dimensional, they have to be transversal.
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In the case of n odd, we could construct a basis out of cocycles that vanish on ej for all
j 6= {1, i} for some fixed i ∈ {2, . . . , g(Γ\Ω)}. In the case of n even, this construction
does not work. Instead, we have to work with cocycles vanishing outside e1, e2 and ei
for some fixed i ∈ {3, . . . , g(Γ\Ω)}. Note that g(Γ\Ω) is always greater or equal 2. In
the following Proposition we describe the construction of a basis for n even.

Proposition 6.10 Let ((S,Y),PE(S,Y), {Gt | t a simplex of Y}) be an enhanced fun-
damental domain for T under Γ and Bn,l a basis of Vn,l(K∞)F

⋆
q∩Γ. Let g = g(Γ\Ω),

{ei | i = 1, . . . , g} = {e ∈ E(Y r S) | o(e) ∈ S}

and γi = PE(S,Y)(ei). Let n > 2 be even and l ∈ Z with n ≡ 2l (mod ω). Then there
is an explicit basis of Char

n,l (Γ)reg with (n− 1)(g − 1) many elements.

Proof: Let V = Vn,l(K∞)F
⋆
q∩Γ. Choose V 1 ⊆ V such that Kern(γ1−1) is complemen-

tary to V . Then by Lemma 6.9 we can choose v2 ∈ V such that (γ2−1)v2+(γ1−1)V 1 =
V .
Then as in the proof of Lemma 6.7 one can show that for all 3 ≤ i ≤ g and for all
w ∈ V there exists an unique κ ∈ Char

n,l (Γ)reg with κ(ej) = 0 for all j 6= {1, 2, i},
κ(ei) = w, κ(e2) ∈ K∞v2 and κ(e1) ∈ V 1.
Let V 2 = {v ∈ V | (γ2 − 1)v ∈ (γ1 − 1)V }. This set has codimension 1 in V by
Lemma 6.9. Then again as in the proof of Lemma 6.7 one shows that for all w ∈ V 2

there exist a unique v ∈ V 1 such that there is a unique κ ∈ Char
n,l (Γ) with κ(e1) = v,

κ(e2) = w and κ(ei) = 0 for all i ≥ 3.
Finally one shows that for all v ∈ V 〈γ1〉 there is a unique κ ∈ Char

n,l (Γ) with κ(e1) = v
and κ(ei) = 0 for all i ≥ 2.
In total we constructed (g− 2)(n− 1) plus (n− 2) plus 1 linear independent cocycles.
These cocycles form a basis of Char

n,l (Γ)reg.

Since by Theorem 5.24 the residue map provides an isomorphism between Mn,l(Γ)
and Char

n,l (Γ)⊗K∞ C∞, we obtain a generalization of the dimension formula from Propo-
sition 4.6, which was valid for the p′-torsion free case. Note that in that case one has
F⋆q ∩ Γ = {1}.

Corollary 6.11 For n > 2 and Γ ⊆ Λ⋆ of finite index one has

dimChar
n,l (Γ)reg = dimVn,l(K∞)F

⋆
q∩Γ · (g(Γ\Ω)− 1).

Using this we can now generalize to arbitrary n ∈ Z Proposition 4.13, which we
previously could only proof for even n.
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Corollary 6.12 For all n, l ∈ Z one has An,l(Γ,C∞) 6= {0} if and only if n ≡ 2l
(mod ω).

Proof: It suffices by Proposition 4.13 to consider odd integers n. If n > 2 and n ≡ 2l
(mod ω), then by Corollary 6.11 we have

dimMn,l(Γ)
Thm. 5.24

= dimChar
n,l (Γ)⊗K∞ C∞ ≥ dimChar

n,l (Γ)reg ⊗K∞ C∞ > 0

and hence there are non-zero elements inMn,l(Γ) ⊂ An,l(Γ,C∞). Now let n = 1 and
l ∈ Z with 1 ≡ 2l (mod ω). By Proposition 4.13 we know that there is an 0 6= f1 ∈
A−2,−1(Γ,C∞) and by the above we know that there is an 0 6= f2 ∈ A3,l+1(Γ,C∞).
Hence 0 6= f1 · f2 ∈ A−2+3,−1+l+1(Γ,C∞) = A1,l(Γ,C∞).
If n < 0 and l ∈ Z with n ≡ 2l (mod ω). Then −n ≡ −2l (mod ω), so by the above
there is an 0 6= f ∈ A−n,−l(Γ,C∞). Hence 0 6= 1/f ∈ An,l(Γ,C∞).

On the other hand if n 6≡ 2l (mod ω) and f ∈ An,l(Γ), choose γ =

(
α 0
0 α

)
a generator

of F⋆q ∩ Γ. So ord(α) = ord(γ) = ω and f(z) = f |
n,l

γ(z) = α2l−nf(z) and hence f = 0.

What remains for the case n > 2 is to give a description of the non-regular harmonic
cocycles. We sum this up in the following theorem. For γ ∈ Γ let Nγ : Vn,l(K∞) →
Vn,l(K∞) be the operator v 7→

∑q
i=0 γ

iv. If γ is a generator of StabΓ(v) for π(v) a
terminal vertex of Γ\T then since γ has order q + 1 on Vn,l(Γ)F

⋆
q∩Γ we have

(γ − 1)Vn,l(K∞)F
⋆
q∩Γ ∈ Kern(Nγ)

and
Kern(Nγ)/(γ − 1)Vn,l(K∞)F

⋆
q∩Γ ∼= Ĥ0(StabΓ̄(v), Vn,l(K∞))

where Ĥ0 denotes the 0-th Tate homology group, see [Se3, Chapter VIII] for a defini-
tion. Since Vn,l(K∞) is a projective StabΓ̄(v)-module, by Proposition 1 of loc. cit. it

follows that Ĥ0(StabΓ̄(v), Vn,l(K∞)) = {0} and hence Kern(Nγ) = (1− γ)Vn,l(K∞).

Theorem 6.13 Let n > 2 and Γ ⊆ Λ⋆ of finite index. Then

Char
n,l (Γ) ∼= Char

n,l (Γ)reg ⊕
⊕

e∈E(Γ\T )term
deg(t(e))=1

(1− γ)Vn,l(K∞)F
⋆
q∩Γ

where e′ is any edge in π−1(e) and γ is a generator of StabΓ̄(e′).
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Proof: Let ((S,Y),PE(S,Y), {Gt | t a simplex of Y}) be an enhanced fundamental
domain for T under Γ, g = g(Γ\Ω),

{ei | i = 1, . . . , g} = {e ∈ E(Y r S) | o(e) ∈ S}

and γi = PE(S,Y)(ei). Let e ∈ E(Γ\T )term with deg(t(e)) = 1, e′ ∈ π−1(e′), γ a
generator of StabΓ̄(e′) and let v ∈ (1− γ)Vn,l(K∞)F

⋆
q∩Γ = Kern(Nγ). We can suppose

that e′ ∈ Y , otherwise we replace e′ by its unique Γ-equivalent edge in Y and v by
a Γ-translate of v. Then as in the proof of Lemma 6.7 for n odd or Proposition 6.10
for n even we can construct a unique cocycle κe,v ∈ Char

n,l (Γ) with κe,v(e
′) = v and

κe,v(ei) = 0 for all i ≥ 2 if n is odd or i ≥ 3 if n is even. For this cocycle to be
harmonic it is necessary and sufficient that

0 =
∑

ẽ 7→t(e′)

κe,v(ẽ) =
∑

γ′∈StabΓ̄(e′)

γ′ κe,v(e
′) =

q∑
i=0

γi κe,v(e
′) = Nγ(κe,v(e

′)) = Nγ(v).

To obtain a closed formula for the dimension of Char
n,l (Γ), it remains to compute the

dimension of (1− γ)Vn,l(K∞)F
⋆
q∩Γ for γ a generator of StabΓ̄(e′). Clearly

dim(1− γ)Vn,l(K∞)F
⋆
q∩Γ = dimVn,l(K∞)F

⋆
q∩Γ − dim Kern(1− γ)|Vn,l(K∞)F

⋆
q∩Γ

and dim Kern(1 − γ) is the dimension of the eigenspace for the eigenvalue 1 in
Symn−2(γ). To compute this, we can assume that after base change γ ∈ F⋆q2 ↩→

GL2(F̄q) ⊆ GL2(C∞) is of the form

(
z 0
0 zq

)
for some z ∈ F̄q with ord(z) = q2 − 1

and hence the dimension depends on the multiplicity sq,n,l of the eigenvalue 1 of
Symn−2(γ)⊗det1−l. Note also that by Lemma 6.4 dimVn,l(K∞)F

⋆
q∩Γ equals 0 if n 6≡ 2l

(mod ω) and n− 1 if n ≡ 2l (mod ω). We summarize this in the following:

Corollary 6.14 Let n > 2 and set

ereg(Γ) = #{e ∈ E(Γ\T )term | deg(t(e)) = 1}.

Then

dimChar
n,l (Γ) =

{
0 if n 6≡ 2l (mod ω)

(n− 1)(g(Γ\Ω)− 1) + ereg(Γ)(n− 1− sq,n,l) if n ≡ 2l (mod ω).

Recall that for Γ = Λ⋆ Theorem 2.27 implies ereg(Γ) = 2#R−1 odd(R). If ω = 1, then
ereg(Γ) = 0. We will give an explicit formula for sq,n,l in the case q odd and ω = q− 1.
In that case the condition n ≡ 2l (mod q − 1) implies that n is even.
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Lemma 6.15 Let q be odd and n, l ∈ Z with n ≥ 2 and 2l ≡ n (mod q − 1). Then

sq,n,l =


1 + 2

⌊
n−2

2(q+1)

⌋
if l ≡ n

2
(mod q − 1),

2
⌊
n−1+q
2(q+1)

⌋
if l ≡ n

2
+ q−1

2
(mod q − 1).

Proof: First note that 2l ≡ n (mod q − 1) implies l ≡ n
2

(mod q−1
2

), so l is either

congruent n
2

(mod q − 1) or congruent n
2

+ q−1
2

(mod q − 1).

For γ =

(
z 0
0 zq

)
we compute

Symn−2(γ)⊗ det 1−l = diag(zn−2, zn−3zq, . . . , z1z(n−3)q, z(n−2)q)z(q+1)(1−l)

and hence sq,n,l equals the number of i ∈ {0, . . . , n− 2} with

ziz(n−2−i)qz(q+1)(1−l) = 1.

Since z has order q2 − 1, this amounts to counting the number of i ∈ {0, . . . , n − 2}
with

i+ (n− 2− i)q + (q + 1)(1− l) ≡ 0 (mod q2 − 1).

Now

i+(n−2− i)q+(q+1)(1− l) =

(
−i+ n− 2

2

)
(q−1)+

(
(1− l) +

(n
2
− 1
))

(q+1).

If l ≡ n
2

(mod q− 1), then
(
(1− l) +

(
n
2
− 1
))

(q+1) ≡ 0 (mod q2− 1) and hence we
need to count the number of i ∈ {0, . . . , n− 2} with i ≡ n−2

2
(mod q + 1). There are

precisely 1 + 2
⌊

n−2
2(q+1)

⌋
many such i.

If l ≡ n
2

+ q−1
2

(mod q − 1), then
(
(1− l) +

(
n
2
− 1
))

(q + 1) ≡ q−1
2

(mod q2 − 1)

and hence we need to count the number of i ∈ {0, . . . , n − 2} with i ≡ n−2
2

+ q−1
2

(mod q + 1). There are 2
⌊
n−1+q
2(q+1)

⌋
many such i.

By Theorem 5.24, the dimension formula obtained in this way should be equal to the
one computed in Theorem 4.19 using divisors on Γ\Ω and the Riemann-Roch theorem.
To convince ourself, that these two formulas coincide, we need the following lemma.

Lemma 6.16 For m ≥ 2 an integer and q ∈ N we have⌊
(m+ 1)(1− 1

q + 1
)

⌋
= m−

⌊
m

q + 1

⌋
.
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Proof: If m = j(q + 1), then the right hand side equals j(q + 1)− j = jq = m − j
and the left hand side equals⌊(

j(q + 1) + 1
) q

q + 1

⌋
=

⌊
jq(q + 1) + q

q + 1

⌋
= jq +

⌊
q

q + 1

⌋
= jq.

Now for any m with j(q + 1) ≤ m < (j + 1)(q + 1) the right hand side equals m− j.
We also have j(q + 1) < m+ 1 ≤ (j + 1)(q + 1) and hence j < m+1

q+1
≤ j + 1. So⌊

(m+ 1)(1− 1

q + 1
)

⌋
− (m− j) =

⌊
j + 1− (m+ 1)(1− 1

q + 1
)− (m+ 1)

⌋
=

⌊
j + 1− m+ 1

q + 1

⌋
= 0,

and so the left hand side also equals m− j.

By Remark 4.17 we saw that there are precisly twice as many elliptic points in Γ\Ω
than there are terminal vertices in Γ\T . Hence in order for our dimension formula
from Theorem 4.19 to match the formula from Corollary 6.14 we have to show that

2ereg(Γ)

⌊
n

2
(1− 1

q + 1
)

⌋
= ereg(Γ)

(
n− 2− 2

⌊
n− 2

2(q + 1)

⌋)
.

This follows from Lemma 6.16 with m = n−2
2

.

6.3 The case of weight n = 2

In the case of weight n = 2, the coefficient module

V2,l(K∞) = Hom(Sym0(Hom(K2
∞, F )), K∞)

is isomorphic to K∞ with the action of GL2(K∞) given by (γ, z) 7→ det(γ)1−l · z.
For the case l = 1 we can give a description of a basis of Char

2,1 (Γ). In that case
GL2(K∞) acts trivially on K∞.

Lemma 6.17 Char
2,1 (Γ) = Char

2,1 (Γ)reg

Proof: Let κ ∈ Char
2,1 (Γ) and e ∈ π−1(E(Γ\T )term). Let v be the extremity of e having

deg(π(v)) = 1. Then by Proposition 2.24 and by our assumption on Γv = StabΓ(v)
we know that Γ̄v ∼= F⋆q2/F

⋆
q
∼= Z/(q+1) and that Γ̄v operators transitivly on the edges

leaving v. Hence

0 =
∑
e′ 7→v

κ(e′) =
∑
γ∈Γ̄v

κ(γe) =
∑
γ∈Γ̄v

γ κ(e) = (q + 1)κ(e) = κ(e)

and so κ vanishes on all edges in π−1(E(Γ\T )term). This implies κ ∈ Char
2,1 (Γ)reg.
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Proposition 6.18 Let ((S,Y),PES,Y , {Gt | t a simplex of Y}) be an enhanced fun-
damental domain for T under Γ, g = g(Γ\Ω) and

{ei | i = 1, . . . , g} = {e ∈ E(Y\S) | o(e) ∈ S}.

(a) To each v ∈ K∞ and for all 1 ≤ i ≤ g there is a unique cocycle κei,v ∈ Char
2,1 (Γ)

with κ(ei) = v and κ(ej) = 0 for all j 6= i.

(b) The image of the map

ψ : {ei | 1 ≤ i ≤ g} → Char
2,1 (Γ) : ei 7→ κei,1

is a basis of Char
2,1 (Γ).

Proof: (a) If κ ∈ Char
2,1 (Γ) satisfies κ(ei) = v and κ(ej) = 0 for all j 6= i, then κ is

uniquely determined on all of Y and hence by Γ-equivariance on all of T . This proves
the uniqueness. κ is also well-defined, since

κ(γei)− κ(ei) = γv − v = v − v = 0.

(b) Follows directly from (a).

As an immediate consequence we obtain the following corollary.

Corollary 6.19 dimChar
2,1 (Γ) = g(Γ\Ω)

Remark 6.20 If l 6≡ 1 (mod L), the action of Γ on V2,l(K∞) by multiplication with
det(γ)1−l is non-trivial. We can not give an describtion of a basis of Char

2,l (Γ) directly on

Γ\T . One way to get by this problem is to replace Γ with Γ′ := {γ ∈ Γ | det(γ)1−l =
1}. If 2 ≡ 2l (mod ω), this is an index 2 subgroup of Γ. The subgroup Γ′ acts trivially
on V2,l(K∞) and hence on Γ′\T one has an explicit description of Char

2,l (Γ) similar to

the one given in Proposition 6.18. One then obtains Char
2,l (Γ) as the Γ/Γ′-invariant

subspace of Char
2,l (Γ′).

To compute the dimension of the space of harmonic cocycles in this case one would
need to analyze the ramification behaviour of the covering Γ′\T → Γ\T and than use
the Hurwitz formula. We choose to omit the details here.
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A Some remarks on char(K) even

In the case q even, the tools needed for the results in Section 2.3 and Section 2.6 are
substantially different. Once one finds models for (D,Λ) as in Section 2.6, everything
developed in Section 2.5 and Section 2.7 can be adapted. If q is even and D =

(
a,b
K

)
with a, b ∈ K⋆ is a quaternion algebra, then the subfield K(

√
b) ⊆ D is an inseparable

extension of K once b 6∈ (K⋆)2, but D ⊇ K(i) with i2 + i + a = 0 is a separable
Artin-Schreier extension of K, compare Definition 2.12. This asymmetry in the role
of a and b indicates that a formula like Proposition 2.19 for the ramification of D has
to look quite different in the even characteristic case.
Division algebras over K can be constructed in a systematic way as cyclic algebras,
we quickly recall this construction here, following mainly [Ja, Chapter 8].
Let Br(K) denote the Brauer group of K, that is the group of similarity-classes
of finite-dimensional central simple algebras over K, where two such algebras A,B
are similar if there are positive integers m and n such that Mm(A) ∼= Mn(B). We
write [A] for the similarity class of A. Multiplication in this group is defined by
taking tensor products over K, the similarity class of K is the unit element, and since
A ⊗K Aop ∼= Mn(K) with n = dimK(A) we see that every element [A] of Br(K) has
[Aop] as an inverse.
Let F be an extension field of K. Then we have a natural map ϕ : Br(K) → Br(F )
sending [A] to [A⊗K F ]. We define Br(K,F ) := Kern(ϕ).
Let F/K be a finite Galois extension of degree n with G := Gal(F/K) and let ψ ∈
Z2(G,F ⋆) be a 2-cocycle. Let A be the F -algebra with basis {us | s ∈ G} and
multiplication

(
∑
s∈G

λsus)(
∑
s∈G

µsus) =
∑
s,t∈G

ψ(s, t)λss(µt)ust. (20)

We write A = (F,G, ψ) and call A the crossed product of F and G with respect to ψ.

Theorem A.1 A = (F,G, ψ) is a central simple algebra over K of dimension n2.

Proof: See [Ja, Theorem 8.7].

If F/K is a cyclic extension with G = 〈s〉, then we can choose ψ to be the map

ψγ(s
i, sj) :=

{
1 if 0 ≤ i+ j < n

γ if n ≤ i+ j ≤ 2n− 2.

for some γ ∈ K⋆, see [Ja, Section 8.5]. We write A = (F, s, γ) and call A the cyclic
algebra defined by F/K, the generator s of G and γ ∈ K⋆.
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Theorem A.2 (a) [A] = [(F, s, γ)] is independent of the choice of the element γ
from K⋆/NormF/K(F ⋆).

(b) The map γ : NormF/K(F ⋆) 7→ [(F, s, γ)] defines an isomorphism between the
groups F ⋆/NormF/K(F ⋆) and Br(K,F ).

Proof: See [Ja, Theorem 8.14].

Example A.3 Let a ∈ K⋆ be any element such that F := K[x]/(x2 + x + a) 6∼= K.
Then F/K is an Artin-Schreier extension, so it is cyclic of degree 2 and G = Gal(F/K)
is generated by s : r = λ1x + λ2 7→ (λ1 + 1)x + λ2. Choose any b ∈ K⋆. Then ψb is
given by the following values:

(1, 1) (s, 1) (1, s) (s, s)
ψb 1 1 1 b

Let A = (F, s, b). Then as an additive group

A = Fu1 ⊕ Fus ∼= Ku1 ⊕Kus ⊕Kxu1 ⊕Kxus.

We compute a multiplication table using formula (20):

u1 us xu1 xus

u1 u1 us xu1 xus
us us bu1 xus + us bxu1 + bu1

xu1 xu1 xus xu1 + au1 xus + aus
xus xus bxu1 aus abu1

Hence the map given by u1 7→ 1, us 7→ j, xu1 7→ i and xus 7→ ij defines an isomor-
phism A ∼=

(
a,b
K

)
.

We fix an a ∈ K⋆ such that F := K[x]/(x2 + x + a) is a cyclic degree 2 extension of
K with Galois group G = {s}. Then by Example A.3 for any b ∈ K⋆ we obtain the
quaternion algebra

(
a,b
K

)
as the cyclic algebra (F, s, b).

Let v be a finite place of K and let ϖv denote the corresponding monic irreducible in
k[T ].

Proposition A.4 If F/K splits at v, then (F, s, b) is unramified at v.
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Proof: By Example A.3 we have D := (F, s, b) =
(
a,b
K

)
. Hence Dv := D ⊗K Kv

∼=(
a,b
Kv

)
. If F/K splits at v, then x2 + x+ a has a solution over Kv. That means there

is an α ∈ Kv such that α2 + α+ a = 0, and also (α+ 1)2 + α+ 1 + a = 0. Hence the

map ϕ :
(
a,b
Kv

)
→ M2(Kv) defined by i 7→

(
α 0
0 α+ 1

)
and j 7→

(
0 1
b 0

)
provides an

embedding of Dv into M2(Kv). Since both Dv and M2(Kv) are of dimension 4 over
Kv we have Dv

∼= M2(Kv) and hence D is unramified at v.

Proposition A.5 If F/K is non-split at v, then (F, s, b) is unramified at v if and
only if b ∈ NormFv/Kv(F

⋆
v ).

Proof: Let D := (F, s, b). Since F/K is non-split at v, the extension Fv/Kv is
a degree 2 Galois extension and it is clear from the construction of D that Dv =
(Fv, s, b). Theorem A.2 applied to the extension Fv/Kv implies that [Dv] = [Kv] if
and only if b ∈ NormFv/Kv(F

⋆
v ). If [Dv] = [Kv] then there are n,m ∈ N such that

Mn(Dv) ∼= Mm(Kv). But since Dv is central simple over Kv, we have Dv
∼= Mn′(Δ)

with Δ a division algebra over Kv. Hence Mm(Kv) ∼= Mn(Dv) ∼= Mnn′(Δ). This is
only possible if Δ = Kv. SinceDv is of dimension 4 overKv this impliesDv = M2(Kv).
On the other hand if Dv

∼= M2(Kv) then clearly [Dv] = [Kv].

If F/K is non-split at v, then Fv/Kv is a degree 2 extension of local fields. If this
extension is unramified, we have an easy criterion to decide whether some b ∈ K⋆

v is
in NormFv/Kv(F

⋆
v ):

Proposition A.6 Suppose F/K is unramified at v. Then b ∈ NormFv/Kv(F
⋆
v ) if and

only if v(b) ≡ 0 (mod 2).

Proof: Since Fv/Kv is unramified it is an extension of residue fields. Hence we can
assume w.l.o.g. that Kv

∼= Fq((T )) and Fv ∼= Fq2((T )) for some prime power q. Then

Image(NormFv/Kv(F
⋆
v )) = T 2ZFq[[T ]]⋆

which implies the Lemma.
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As a consequence to the above propositions we see that a cyclic algebra is only ramified
at a finite number of places, a fact we already know by Proposition 2.20:

Corollary A.7 Let v be a finite place of K such that v(a) = 0 = v(b). Then
(
a,b
K

)
is

unramified at v.

Proof: Since v(a) = 0, the extension Fv/Kv either splits or is unramified. In the
first case by Proposition A.4 we know that

(
a,b
K

)
is unramified at v. In the second case

we know by Proposition A.6 that b ∈ NormFv/Kv(F
⋆
v ) and hence by Proposition A.5

that
(
a,b
K

)
is unramified at v.

Remark A.8 In fact, for a ∈ K and v a place of K where x2 + x+ a is non-split, we
have Fv/Kv is unramified if and only if v(a) ≥ 0.

Following [Con, Definition2.1] we define the Artin-Schreier symbol.

Definition A.9 For ϖ ∈ k[T ] monic irreducible and f ∈ k[T ] we define the Artin-
Schreier symbol

[f,ϖ) :=

{
0 if f ≡ x2 + x (mod ϖ) for some x ∈ k[T ],

1 otherwise.

For f ∈ k it is an easy task to evaluate the Artin-Schreier symbol [f,ϖ).

Proposition A.10 [Con, Theorem 3.8] For f ∈ k, ϖ ∈ k[T ] monic irreducible we
have

[f,ϖ) ≡ Tracek/F2(f) deg(ϖ) (mod 2).

We need to be able to decide whether F/K is split or non-split at a given place v.
We fix an uniformizer πv of Kv. Let α denote the Laurent series expansion in πv of a
at the place v. Then F/K is split at v if and only if the equation x2 + x = α has a
solution in Kv. Before we can give a criterion we need a lemma.

Lemma A.11 Let k ∈ N. Then x2 + x = α + π−2k has a solution in Kv if and only
if y2 + y = α+ π−k has a solution in Kv.

Proof: Suppose there is an x ∈ Kv such that x2 + x = α + π−2k. Set y := x+ π−k.
Then

y2 + y = (x+ π−k)2 + x+ π−k = x2 + x+ π−2k + π−k = α+ π−k.
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This Lemma allows us to replace α with an α′ such that the principal part of α is
zero or v(α) is odd. The next two propositions treat these cases.

Proposition A.12 Suppose α ∈ Kv has principal part zero and let α0 denote the
constant coefficient of α. Then x2 + x = α has a solution in Kv if and only if
[α0, ϖv) = 0.

Proof: First suppose α0 = 0. Then by Proposition A.10 we have [0, ϖv) = 0, hence
we have to show that x2 + x = α has a solution in Kv. Set x :=

∑
n≥0 α

2n
. Because

v(α) > 0 this sum converges and x2 =
∑

n≥1 α
2n

. Hence x2 + x = α20
= α.

Now suppose α0 6= 0. Let α′ = α − α0. By the above there is an y ∈ Kv such that
y2 + y = α′. Hence x2 + x = α has a solution in Kv if and only if x2 + x = α0 has a
solution in Kv. But this is equivalent to [α0, ϖv) = 0.

Proposition A.13 Let α ∈ Kv with non-zero principal part and suppose v(α) is odd.
Then x2 + x = α has no solution in Kv.

Proof: Suppose there is an x ∈ Kv with x2 + x+ α = 0 and let v(α) = 2m+ 1 with
m ≤ 0. Then v(x2 + x) = 2m+ 1, hence v(x) = m+ 1

2
6∈ Z, which is a contradiction.

The previous propositions can be applied to obtain concrete models for (D,Λ) as in
Section 2.6. In this appendix we restrict ourself to the case odd(R) = 1.

Proposition A.14 Let R = {p1, . . . , pl} be a set of finite places of K with deg(pi)
odd for all i and l even, let r be a monic generator of the ideal r =

∏l
i=1 pi and

let ξ ∈ k⋆ with Tracek/F2(ξ) 6= 0. Then D :=
(
ξ,r
K

)
is ramified exactly at the places

p1, . . . , pl.

Proof: Let F := K[x]/(x2 + x+ ξ). By Proposition A.12 and Proposition A.10 the
extension Fv/Kv is split at every finite place v of even degree, hence by Proposition A.4
we know that D is unramified at every finite place of even degree. At a finite place
v of odd degree we know that Fv/Kv is non-split, but since v(ξ) = 0 we also know
that Fv/Kv is unramified. Hence by Proposition A.6 we have r 6∈ NormFv/Kv(F

⋆
v ) if

and only if v is one of the places p1, . . . , pl. So by Proposition A.5 D has the claimed
ramification property at all finite places.
At the infinite place D has to be unramified since by Proposition 2.20 the number of
ramified places of D is even.
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Let D :=
(
ξ,r
K

)
as in the previous Proposition and Λ := 〈e1 := 1, e2 := i, e3 := j, e4 :=

ij〉A throughout the remainder of this appendix.

Proposition A.15 Λ is a maximal order of D.

Proof: It is clear that Λ is an order of D. We compute the square of the reduced
discriminant of Λ as the ideal generated by

det(trd(eiej)i,j=1,...,4) = det


0 1 0 0
1 1 0 0
0 0 0 r
0 0 r 0

 = r2.

Hence disc(Λ) = r and so Λ is maximal.

Lemma A.16 Set ε = T deg(r)/2ξ−q/2. Then there is an α ∈ K∞ such that

(
α

ε
)2 +

α

ε
+ (ξ +

r

ε2
) = 0.

Proof: Since deg(r) is even we have ε ∈ K. By the definition of ε we have v∞(ξ +
r
ε2

) ≥ 1, hence by Proposition A.12 there is an x ∈ K∞ such that x2 + x = ξ + r
ε2

and
so α := xε does the job.

Fix α and ε as in the previous Lemma throughout the remainder.

Proposition A.17 The map ι : D → M2(K∞) defined by i 7→
(

0 ξ
1 1

)
and j 7→(

α ξε+ α
ε α

)
gives an isomorphism of D ⊗K K∞ ∼= M2(K∞).

Proof: As in Lemma 2.43 we have to check that ι(i) and ι(j) fulfil the relations from
Definition 2.12. We have

ι(i)2 =

(
0 ξ
1 1

)2

=

(
ξ 0
0 ξ

)
+

(
0 ξ
1 1

)
= ξι(1) + ι(i)

and

ι(j)2 =

(
α ξε+ α
ε α

)2

=

(
α2 + ξε2 + αε 0

0 α2 + ξε2 + αε

)
= rι(j)

by the choice of α and ε. Finally we have

ι(i)ι(j) =

(
0 ξ
1 1

)(
α ξε+ α
ε α

)
=

(
ξε ξα

α+ ε ξε

)
=

(
α ξε+ α
ε α

)(
1 ξ
1 0

)
= ι(j)(ι(i) + ι(1)).
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We can compute the first n coefficients of α in K∞ = k((π)) in O(n3) field operations
over Fq by Newton iteration, or alternativly we can use the constructive proof of
Proposition A.12.
Let v0 := [L(0, 0)]. We have

StabΓ(v0) = GL2(O∞)K⋆
∞ ∩ Γ ⊇ {a

(
1 0
0 1

)
+ b

(
0 ξ
1 1

)
| a, b ∈ k, (a, b) 6= (0, 0)}.

Hence the vertex v0 is projectively unstable and π(v0) is a terminal vertex of Γ\T .
Let v1 := [L(1, 0)]. As in the case of q odd and odd(R) = 1 we distinguish the
cases Vq+1 = 0 or Vq+1 6= 0. In the first case v1 is also projectively unstable, π(v1) a
terminal vertex of Γ\T and Γ\T consists of one edge connecting two terminal vertices.
In the other case v1 is projectively stable and we use it as the initial vertex for the
algorithm 2.32. Hence Lemma 2.8 implies that in the n-th step of the algorithm we
need to compare vertices of the form [L(n, g(π))], where g ∈ k[T ] with deg(g) < n and
g(0) = 0. As in Propostion 2.51 we can do this in O(n4). We omit the proof here.

Proposition A.18 (a) Given v = [L(n, g(π))] and v′ = [L(n, g′(π))] as above there
is an algorithm that computes HomΓ(v′, v) in O(n4) field operations over Fq.

(b) All γ ∈ HomΓ(v′, v) satisfy ‖γ‖ ≤ n.
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