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On the phase diagram of QCD

Abstract

In this thesis we study two flavour Quantum Chromodynamics (QCD) with the Functional
Renormalisation Group (FRG). We compute the QCD phase diagram at imaginary and real
chemical potential in the chiral limit. We introduce dual order parameters which originate
in the matter sector but are sensitive to center symmetry breaking. For real and imaginary
chemical potential we find that the chiral and the confinement–deconfinement transitions
agree. At vanishing chemical potential we obtain for the chiral transition Tc = 181 MeV
and for the confinement–deconfinement crossover Tc ≈ 178 MeV. The dual density and the
Polyakov loop agree within the percent level. At imaginary chemical potential the phase dia-
gram shows the expected Roberge–Weiss periodicity. This constitutes the first calculation of
the QCD phase diagram at imaginary chemical potential in the chiral limit. At real chemical
potential our results agree with lattice, DSE and FRG model studies. Then we compare the
Yang–Mills (YM) and the glue Polyakov loop potential and match the temperature scales as
the matter contributions to the gauge dynamics do not alter the form of the potential but the
temperature scale. We use the translation of the two temperature scales in a Polyakov Quark
Meson model, where we study the order parameters and the thermodynamic observables. The
Polyakov loop potential thus approximates the glue dynamics instead of the YM dynamics.
We find very good agreement for the thermodynamic observables with lattice results.

Zum Phasendiagramm der QCD

Kurzfassung

In dieser Arbeit untersuchen wir Quantenchromodynamik (QCD) mit der Funktionalen
Renormierungsgruppe (FRG). Dazu berechnen wir das Phasendiagramm der QCD mit imagi-
närem und reellem chemischem Potenzial mit zwei masselosen Quark flavour. Wir führen
duale Ordnungsparameter ein, die aus dem Materiesektor der QCD stammen, aber sensitiv
auf die Brechung von Zentrumssymmetrie sind. Unsere Resultate zeigen, dass sowohl für
imaginäres als auch reelles chemisches Potenzial der chirale und der confinement–deconfine-
ment Phasenübergang übereinstimmen. Bei verschwindendem chemischem Potenzial finden
wir für den chiralen Phasenübergang eine kritische Temperatur von Tc = 181 MeV und für
den confinement–deconfinement crossover eine Übergangstemperatur von Tc ≈ 178 MeV. Der
Polyakov loop und die duale Dichte stimmen sehr gut überein. Das Phasendiagramm mit
imaginärem chemischem Potenzial zeigt die erwartete Roberge–Weiss Periodizität und ist
die erste Rechung mit verschwindenden Quarkmassen. Unsere Ergebnisse für das Phasendi-
agramm mit rellem chemischem Potenzial stimmen mit DSE und FRG Modellrechnungen
überein. Zum Schluss vergleichen wir das Polyakov loop Potenzial von Yang–Mills (YM) und
glue Rechnungen. Die Form des Potenzials ändert sich kaum, dafür allerdings die Temper-
aturskala. Wir verwenden die Temperaturskalenanpassung in einem Polyakov Quark Meson
Modell, in dem wir die Ordnungsparameter und die thermodynamischen Größen berechnen.
Die Ergebnisse stimmen sehr gut mit Gitter Resultaten überein.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is the quantum field theory of the strong interaction of

the standard model describing the microscopic correlations in nuclear and elementary particle

physics. Its intrinsic properties are currently explored at colliders like the LHC at CERN,

RHIC at Brookhaven and are planned at FAIR at Darmstadt and NICA at Dubna.

At microscopic scales, that is at very high energies, the degrees of freedom of QCD are

quarks and gluons. Additionally to Quantum Electrodynamics (QED) the fermions (quarks)

and the gauge fields (gluons) carry colour charge. These supplementary degrees of freedom

eventually give rise to the self-interactions of the gluons and the formation of bound states

consisting of three identical fermions that are only distinguished by their colour charge. In

the ultraviolet regime (UV), i.e. at high energies, the coupling strength of the interactions

between the quarks and the gluons is very small and it increases towards lower energies, i.e.

in the infrared (IR). This behaviour is called asymptotic freedom [1, 2] as the interaction

strength between the quarks and gluons becomes arbitrarily small for high energies. In the

IR regime they are bound in macroscopic states and it is not possible to observe a single

quark or gluon. In fact these macroscopic confined objects are colour charge neutral bound

states called hadrons.

Through the Higgs mechanism all fundamental and massive particles of the standard

model acquire their mass. However the two lightest quarks, the u and the d, which also con-

stitute protons and neutrons, obtain only very small masses of about 3− 5 MeV. Therefore

the Higgs mechanism does not account for the large neutron and proton masses of about

1 GeV. Consequently another mechanism is responsible for the masses of the hadrons. In

the UV, quarks exhibit chiral symmetry which is dynamically broken for increasing coupling

strength due to the formation of bound states. This spontaneous breaking of chiral symmetry

is the mechanism that gives rise to the hadron masses. It is an example why understanding

the phase transitions of QCD is crucial for our comprehension of elementary particle physics.

In collider experiments the fundamental processes of QCD are studied. They aim at the

transition between the deconfined high temperature plasma phase, the Quark Gluon Plasma

(QGP), see e.g. [3–6], and the hadronic phase at low temperatures. First hints from RHIC

7



8 1. Introduction

Figure 1.1: A sketch of the QCD phase diagram [9]. At high temperatures and chemical

potentials quarks and gluons are deconfined whereas at low temperatures and densities they

are bound in hadrons.

opened the discussion to whether the QGP is strongly coupled [7]. Up to then it was expected

to be weakly coupled with basically freely moving quarks and gluons similar to the photons

and electrons in the QED plasma. So far, this issue has not been resolved but is under

investigation at the LHC. Most importantly the properties of the phases and the critical

temperature of the transition are studied.

The transition between the deconfined QGP and the confined hadronic phase does not

only occur at vanishing density but persists also for larger densities. One can plot the phase

boundary as a function of temperature and chemical potential, resulting in the QCD phase

diagram. This can be probed by collider experiments. The LHC and RHIC study small

chemical potential, see Fig. 1.1, and NICA and FAIR investigate the structures of the phase

diagram at large chemical potential. It is believed that the trajectory of the early universe

cooling down stayed close to the temperature axis, so at very small chemical potential, un-

dergoing the QCD transition at about Tc ≈ 180 MeV and ending in the hadronic (nuclear)

phase at low temperatures and small densities. Compact objects such as neutron stars are

very dense but cold objects. Thus they are located close to the chemical potential axis at

small temperatures and high chemical potential. The strong interactions are thought to play

a crucial role in their composition and life-cycle, see e.g. [8] and references therein. Therefore

an understanding of the QCD phase diagram and its properties is crucial to understanding

the processes in elementary particle physics.

The large coupling strength in the IR is also the reason for the break down of pertur-

bation theory, which expands in powers of the coupling αs. At about ΛQCD ≈ 200 MeV

the perturbative ansatz for the strong coupling runs into a Landau pole, predicting its own

failure. Consequently non-perturbative methods have to be used to study QCD. This is also

part of the reason why QCD has not been solved.
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A non-perturbative ansatz is to calculate QCD on a lattice. There one has to introduce a

finite lattice spacing and a finite space-time extension as the calculations are done numerically

on each lattice point using Monte–Carlo sampling techniques. Lattice QCD has proven to

be very successful, e.g. in determining the hadron particle spectrum [10]. Unfortunately it is

still not fully understood how to extrapolate to the continuum and finite-size effects as well

as large quark masses, which have to be introduced due to the problems of implementing

chiral symmetry on a discrete lattice, still play a major role, see e.g. [11–17]. Another

obstacle is non-zero chemical potential, where due to the complex fermionic determinant, no

interpretation of the weight of the generating functional in terms of a probability is applicable

and hence Monte–Carlo methods cannot be utilised. This is called the sign-problem of lattice

QCD [18, 19] and probably the second reason why QCD has not yet been fully understood.

Low temperature effective models, like the Quark–Meson (QM) model and the Nambu-

Jona–Lasinio (NJL) model [20, 21] capture the characteristics of the matter sector of QCD

well – like chiral symmetry breaking, but fail to describe confinement which is triggered by

the glue dynamics. This has the consequence that their range of validity concentrates on

low temperatures and larger chemical potentials where the dominant characteristics stem

from the matter sector of QCD. A way to incorporate confinement is to additionally include

an ansatz for the effective potential of the order parameter of the gauge sector of QCD,

the Polyakov loop. The models are therefore called the Polyakov–Quark-Meson (PQM) and

Polyakov–Nambu-Jona–Lasinio (PNJL) models [22–26]. However in QCD both, the gauge

and the matter sector, couple to each other. This has the consequence that characteristics

like the critical temperature of the QCD phase boundary is shifted which is unfortunately

hard to include in model studies. Additionally they suffer from parameter dependence and

use a fit to the thermodynamics of lattice QCD with infinitely heavy quarks which does not

represent the correct thermodynamics with dynamical quarks.

Non-perturbative approaches that do not suffer from the sign problem and do not neces-

sarily exhibit the parameter dependence are Renormalisation Group (RG) studies. They can

incorporate bound state formation naturally through the rebosonisation technique [27–33].

The aim is to deduce the behaviour of the hadrons, i.e. the macroscopic degrees of free-

dom from the interactions of the quarks and gluons, i.e. the microscopic degrees of freedom.

Unlike in perturbation theory, where one integrates out all momentum modes in the same

step, this is done gradually. Here the idea is very similar to Kadanoff’s block spin transfor-

mation [34], where one averages over a block of spins, keeping the effective information in a

resulting effective spin. This is then done again with the resulting effective spins of several

blocks repeatedly until the desired macroscopic scale is reached. This way, the relevant in-

formation is transported to the next scale until one arrives in the IR. This idea was extended

to the continuum by Wegner [35] and Wilson [36, 37], integrating out fluctuations in small

momentum shells yielding a flow equation for the theory. The formulation in terms of the

effective average action is given by the Wetterich equation [38] and this particular formulation

in terms of functionals is therefore called the Functional Renormalisation Group (FRG). It

can be applied to a broad variety of theories and does not rely on weak coupling strengths.
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For reviews and its applications in QCD and effective models, non-equilibrium gauge theories,

ultra cold atoms, atomic and nuclear physics and quantum gravity, see e.g. [31, 39–67]. In

this thesis we make use of the FRG to gain insight into the phase diagram of QCD.

The Wetterich equation is an exact equation and it allows to incorporate chemical po-

tential in QCD studies. It also includes the full back-coupling and the dynamics of the two

sectors of QCD, namely the gauge and the matter sector. Due to its formulation all quan-

tum fluctuations are included step-wise and it also incorporates all non-perturbative effects.

However this comes at the price of choosing a suitable truncation, see Subsec. 3.2.1, where it

must be chosen such that all relevant physical information is self-consistently contained.

This thesis is organised as follows. Chapter 2 gives a short introduction to QCD and the

QCD phase diagram. We discuss the order parameters of the chiral and the confinement–

deconfinement phase transition and their effective potentials. In Chapter 3 we derive the flow

equation of the FRG from the generating functional of QCD and explain its properties. Then

we introduce rebosonisation, which dynamically enables bound state formation during the

flow from the bare action in the UV to the full quantum effective action in the IR. Chapter 4

is a technical chapter where we explain our truncation and give the propagators and vertices

we use in our computations. Then we derive the rebosonised flow equations for the couplings

and anomalous dimensions, at vanishing and non-zero chemical potential and temperature. In

Chapter 5 we introduce imaginary chemical potential and discuss the resulting properties of

the extended QCD phase diagram. We introduce new order parameters for the confinement–

deconfinement phase transition, the dual order parameters, and show our findings for the

pressure difference, the dual quark mass and the pion decay constant. Subsequently we discuss

the properties of the effective potential of the gauge sector, the Polyakov loop potential, at

imaginary chemical potential. We show the order parameters, the chiral condensate, the

dual density and the Polyakov loop at vanishing chemical potential in the chiral limit for

two flavours. Our results show that the transitions agree within the width of the crossover

and we find a chiral critical temperature of Tc ≈ 178 MeV and a crossover temperature of

Tc = 181 MeV. We plot the phase diagram at imaginary chemical potential, showing the

phase boundary for the chiral and the confinement–deconfinement phase transition. This is

the first calculation of the QCD phase diagram at imaginary chemical potential in the chiral

limit from first principles. In Chapter 6 we discuss results at vanishing temperature and

chemical potential for the masses of the matter sector and compute the QCD phase diagram

for real chemical potential. Our results show that both the chiral and the confinement–

deconfinement transition agree. The results also compare very well to DSE and FRG PQM

model studies. Then we compare the YM and the glue Polyakov loop potential and match

the temperature scales. This is applied in a PQM model with an logarithmic ansatz for the

effective potential. We present the order parameters and the thermodynamic observables of

the system and find that they agree very well with lattice results. Thus the translation of the

two temperature scales can aid model studies to incorporate glue dynamics. The last chapter

concludes this thesis with a short summary.
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Chapter 2

Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the quantum field theory of the strong interaction. At

high energy scales QCD exhibits asymptotic freedom [1, 2] as the coupling strength becomes

arbitrarily small, see Fig. 2.1. Its intrinsic scale is ΛQCD ≈ 200 MeV, where perturbation

theory, the expansion in powers of the coupling αs, predicts a divergent coupling strength, it

runs into a Landau pole.

QCD   (   ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

s (Q)

1 10 100Q [GeV]

Heavy Quarkonia
e+e–  Annihilation
Deep Inelastic Scattering

July 2009

Figure 2.1: Summary of experimental data of αs as a function of energy scale Q fitted with

4−loop predictions of perturbation theory [74].

In QCD as opposed to QED, the fermions, quarks, as well as the gauge fields, gluons, carry

colour charge and due to the self-interactions of the gluons the strong force is of short range.

The degrees of freedom at high energies are massive quarks and massless gluons whereas at

low energies they are confined in colourless composite massive bound states, hadrons. The

relatively small quark masses of the u and d quark of about 3 − 5 MeV from the Higgs

mechanism do not account for the comparatively large meson masses like the pions, which

are composed of the u and d quark and have masses of about 140 MeV, and the even much

13



14 2. Quantum Chromodynamics

bigger masses for the other mesons and baryons. The generation of these hadron masses

cannot be explained by the Higgs mechanism, but by the dynamical (spontaneous) breaking

of chiral symmetry which is an intrinsic property of the quark fields at high energies.

At low energies there are no free quarks and gluons, i.e. coloured objects but only confined

colour charges in colour-neutral objects as the energy needed to separate two quarks rises

proportional to their distance. Consequently one can also picture a phase at very high energies

and densities where quarks and gluons are deconfined. This is called the Quark Gluon Plasma

(QGP).

2.1 The QCD action

QCD is the non-Abelian Quantum Field Theory of the strong interaction. Its microscopic

degrees of freedom are the quarks (fermions) and the gluons (gauge fields). The microscopic

action in d = 4 Euclidean momentum space is given by

S =

∫
d4p

(2π)4

{
1

4
F aµνF

a
µν + ψ̄fi

(
i /Dij + imψ δij

)
ψfj

}
, (2.1)

where the gauge fields are given in the adjoint representation of the SU(Nc = 3) gauge group

and the quarks are composed of two Weyl spinors in the fundamental representation. The

field strength tensor and the Dirac operator in momentum space are given by

F aµν =
i

g
[Dµ, Dν ] = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν (2.2)

i /Dij = iγµ(Dµ)ij = γµ(pµ δij + gAaµt
a
ij), (2.3)

where in the adjoint representation the colour (gauge group) degrees of freedom range from

a = 1, . . . , N2
c − 1, so in total there are 8 colour degrees of freedom, as there are eight

generators which are given by

(ta)ij =
(λa)ij

2
. (2.4)

The λa are the Gell–Mann matrices, see App. A.3. They are 3× 3 unitary traceless Hermi-

tian matrices. The indices i, j refer to the fundamental representation of SU(3) and range

therefore from 1, . . . , 3. The quark fields are Dirac spinors which are composed of two Weyl

spinors and can thus be written in terms of an independent left and right handed part

ψ =

(
ψL
ψR

)
, ψ̄ =

(
ψ̄R, ψ̄L

)
. (2.5)

Additionally, the quarks carry also flavour degrees of freedom, ranging f = 1, . . . , Nf , where

QCD has six flavours Nf = 6. The Greek indices above stand for the Lorentz degrees of

freedom and range in Euclidean space from µ = 0, . . . , 3. We use Hermitian Dirac γ-matrices

which obey the anti-commutation relation

{γµ, γν} = 2δµν14. (2.6)
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The generators defined in Eqn. 2.4 determine the structure constants appearing in the field

strength tensor via the commutation relation and the trace in group space

[ta, tb] = ifabctc (2.7)

Tr tatb =
1

2
δab. (2.8)

Note that in full QCD all fields, masses, couplings and wave function renormalisations of

Eqn. (4.1) are scale dependent, for a better readability we dropped the subscript k.

2.2 The phase diagram of QCD

Similar to the phase diagram of water, one can draw a phase diagram of quarks and gluons

where the phase boundary as a function of temperature and density or chemical potential

is shown, see Fig. 1.1. The temperatures and densities of QCD cover a wide range, from

the matter surrounding us to the early and hot state of the universe or the dense states of

neutron stars. The phase diagram of full QCD has so far not been calculated which is due

to the coupling strength of αs and the intrinsic properties of the quarks. For reviews on the

QCD phase diagram see e.g. [75–80].

At high temperatures and densities the degrees of freedom of QCD are quarks and gluons

which are deconfined in the Quark Gluon Plasma and the matter sector of QCD exhibits

chiral symmetry. At low temperatures and densities the quarks and gluons are confined in

hadronic bound states and chiral symmetry is broken. Naturally one would expect these

phase transitions for vanishing chemical potential to occur around the intrinsic scale of QCD,

ΛQCD ≈ 200 MeV.

For infinitely heavy quarks QCD reduces to a SU(3) Yang–Mills theory and exhibits cen-

ter symmetry at low temperatures which is broken at high temperatures. Lattice QCD studies

find a first order transition at about Tc ' 270 MeV [81]. Including physical quark masses,

the symmetry only holds approximately and so the transition is weakened to a crossover,

see e.g. lattice and DSE calculations of the phase transitions at vanishing temperature and

chemical potential with non-vanishing quark masses [82–86]. For 2 + 1 quark flavours with

physical masses, the transition temperature is about Tc ≈ 150 − 200 MeV [87, 88]. This

picture is also found by Renormalisation Group studies, see e.g. for 2 + 1 flavours with phys-

ical quark masses [86]. For one and two flavours in the chiral limit, chiral symmetry is not

explicitly broken and hence one expects a second order chiral transition and a crossover for

the confinement-deconfinement transition, see [68, 84, 85, 89].

For non-vanishing chemical potential it is suggested by Renormalisation Group and model

studies [24, 84–86, 90–96] that the crossover ends at a second order critical point and continues

in a first order line towards smaller temperatures to the chemical potential axis. However the

exact picture after the critical endpoint is under strong debate as large Nc calculations expect
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a triple point instead of the second order endpoint and that the chiral and the deconfinement

transition separate and another phase, the so-called quarkyonic phase appears [97]. Also the

location of the conjectured endpoint is not clear, as it strongly depends on all parameters of

the model and very strongly on the back-coupling of the gauge sector to the matter sector

and the masses of the mesonic degrees of freedom [90, 91, 98–100].

In Ref. [101] it is argued from experimental data that at vanishing chemical potential the

chemical freeze-out temperature is close to or serves as an upper bound on the critical tem-

perature of the chiral and confinement–deconfinement transition temperature. Whether or

not their arguments hold is not yet clear, as they find a first order transition and no crossover

which is not confirmed by lattice [102], FRG [68] and DSE [84–86] studies. However they find

a critical temperature of Tchem = 176 MeV which agrees with lattice and RG findings within

the estimated errors of the theoretical and experimental studies. Up to now it is not fully

clear how to compare the very different definitions of the transitions, as even the definitions

within the RG and within the lattice communities differ.

At low temperatures and non-vanishing chemical potential, hadrons begin to form and

for large chemical potential dominate the mesonic degrees of freedom as the energetic costs

of producing a baryon decrease with increasing chemical potential. For densities smaller than

normal nuclear matter density small droplets appear and for increasing density undergo a

first order transition to the liquid matter phase just when the density equals the normal

nuclear matter density. The transition is weakened for increasing temperature so that the

first order line ends approximately at 10 − 20 MeV in a second order point and then turns

into a crossover at higher temperatures.

For lower temperatures and larger chemical potentials, the location of the phase bound-

aries is not so clear. Baryonic degrees of freedom definitely play a dominant role [80, 103]

and as of now they haven’t been included in Nc = 3 RG studies. However there are results

for Nc = 2 RG [103, 104], model [105, 106] and lattice studies [107–109], where the relativis-

tic crossover from a Bose–Einstein condensate (BEC) to a Bardeen–Cooper–Schriefer (BCS)

phase have been investigated. The baryons in Nc = 2 are then simply given by the condensate

of two quarks and are therefore bosons. They find that there is no critical endpoint [103].

From there baryons in Nc = 3 QCD then are the next step.

For very large chemical potentials and close to zero temperature weak coupling methods

are applicable for the ground state of QCD, and in analogy to electrons in metal in QED,

quarks in very dense matter exhibit colour superconductivity [8, 77, 110–114]. These phases

might appear in extremely dense objects such as neutron stars or possibly quark stars, how-

ever this is at the moment under investigation.

The coupling strength and the importance of the long range interactions make the QCD
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phase diagram hard to access. Perturbative methods lose their predictability already at high

temperatures as non-trivial thermal fluctuations come into play.

At vanishing and imaginary chemical potential, lattice QCD is applicable, for a review

see e.g. [115]. There one discretises QCD on a lattice with spacing a and volume V and use

Monte Carlo importance sampling techniques to obtain quantities like the critical tempera-

ture Tc of the phase transition or the thermodynamic quantities. This method captures well

the microscopic dynamics of QCD, however one has to perform two extrapolations, one is

the continuum limit a→∞ and the other is the thermodynamic limit V →∞. This renders

the results with statistical errors stemming from the importance sampling and systemati-

cal errors from the extrapolations. Unfortunately at non-zero chemical potential one faces

the so-called sign problem, as the fermionic determinant at finite real chemical potential is

complex so that no interpretation in the sense of probabilities is possible [18, 19]. This can

only be circumvented by a purely imaginary chemical potential which renders the fermionic

determinant real.

In general, quarks are hard to include in lattice calculations due to the controversy of

implementing chiral symmetry on a discrete lattice. Nowadays, there are calculations with

very light quarks, however they are very costly in terms of computing power and time, see

e.g. [116, 117]. At vanishing chemical potential lattice studies show that the phase transi-

tion is a crossover and, depending on different definitions of such a crossover temperature,

different implementations of the quarks and different lattice spacings and volumes, they find

a critical temperature of about Tc ≈ 150− 200 MeV [82, 87, 118–120].

A way to circumvent the sign problem is to study models which capture the matter sector

well and self-consistently but then have more difficulties to incorporate confinement. The big

advantage is that a non-vanishing chemical potential is easily included and poses no problems

in the calculations. For high chemical potential and low temperatures the matter sector of

QCD plays the dominant role over the gauge sector. Here models are a very effective tool

to capture QCD like behaviour, see e.g. for (P)QM/(P)NJL [20–26, 79, 80, 90–92, 121–127]

studies. However for smaller chemical potential and higher temperatures the gauge sector

plays a very dominant role which is not captured by the models.

Complementary to lattice one can approach QCD with the RG. This has the advantage

that one does not have to discretise the theory and then later take the infinite volume and

thermodynamic limit and chiral fermions are easy to implement. One can also include a

chemical potential without having to deal with the sign-problem as RG studies usually do

not utilise Monte-Carlo methods. The RG provides methods to approach the QCD phase

diagram from an analytical side, valid for all temperatures and chemical potentials. The

question arising1 is where to truncate the infinitely many coupled differential equations, see

Sec. 3.2.1. This has to be chosen carefully and in such a manner that the subset of equations

1There is no such thing as a free lunch.
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is self-consistant and incorporates all relevant physical aspects. So the RG is applicable for

all temperatures and chemical potentials being able to incorporate the dynamics of the glue

and the matter sector of QCD in a fully coupled manner for all coupling strengths. For a

study of the QCD phase boundary of one flavour in the chiral limit see [89], for two flavours

see [68, 85] and for Nf = 2 + 1 with physical quark masses see [86].

2.3 The chiral phase transition

For massless quarks, the matter sector of QCD exhibits an exact global U(Nf )L × U(Nf )R

flavour symmetry. This symmetry is broken explicitly by non-vanishing quark masses as such

mass terms mix left and right handed quarks. The two lightest quarks, the u and the d

quark, are almost massless compared to all other quarks, so that the chiral limit with Nf = 2

seems a reasonable approximation. The chiral limit guarantees that the left and the right

handed parts of the quark fields can be treated independently and QCD is invariant under

an exchange of the left and right handed fields. We can decompose this flavour symmetry

into its components

SU(2)L × SU(2)R × U(1)L × U(1)R. (2.9)

One can now associate conserved currents with these symmetries, where the sum of the left

and right handed currents results in the vector currents and the difference gives the axial

currents. Therefore we can rewrite Eqn. (2.9) in terms of the vector and axial symmetries

SU(2)V × SU(2)A × U(1)V × U(1)A. (2.10)

The U(1)V vector symmetry corresponds to baryon number conservation, whereas the U(1)A

subgroup corresponds to the chiral anomaly. The SU(2)V symmetry corresponds to isospin

symmetry and is only broken by non-vanishing quark masses. In the following we see that the

spontaneous breaking of the SU(2)A symmetry gives rise to pseudoscalar Goldstone bosons,

which are the pions.

The SU(2)L×SU(2)R symmetry is spontaneously broken down to SU(2)V by a non-zero

value of the chiral condensate: In the vacuum, the energy cost of creating an extra quark–

anti-quark pair for massless quarks is small, so that the vacuum can also be thought of as

a condensate of quark–anti-quark pairs. Of course they must have zero total and angular

momentum, so that the condensate can only contain combinations of the form left handed

quark and right handed anti-quark or vice versa. The condensate then is

〈ψ̄ψ〉 = 〈ψ̄LψR + ψ̄RψL〉. (2.11)

From this we see immediately that the vacuum mixes the two quark helicities which allows

the u and d quarks to obtain effective masses as they pass through the vacuum although

they themselves are massless. These effective masses break the SU(2)L × SU(2)R symmetry

to SU(2)V . This means that whenever 〈ψ̄ψ〉 6= 0, chiral symmetry is spontaneously broken.

Hence the chiral condensate serves as an order parameter for the chiral phase transition.
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Through the Hubbard Stratonovich transformation [128, 129] one can relate it to the sigma-

meson

〈σ〉 = − ih

m2
σ

〈ψ̄ψ〉. (2.12)

In the UV, i.e. at high temperatures and chemical potentials, chiral symmetry holds and it

is broken spontaneously (or dynamically) at low temperatures and chemical potentials. The

N2
f − 1 massless Goldstone bosons associated with the spontaneous symmetry breaking are

for Nf = 2 the pions. In the case of non-zero quark masses, the symmetry is not exact and

hence the Goldstone bosons have also non-vanishing masses. Due to the breaking of SU(Nf )A

symmetry, the pions are pseudoscalars.

2.4 The effective potential

In the case of two massless quark flavours, QCD falls into the O(4) universality class [130, 131].

Through the spontaneous breaking of the global SU(Nf )A symmetry, the Goldstone bosons

appear. These are associated with oscillations in the tangential direction of the effective

potential in the ground state whereas the radial direction gives rise to a massive bound state,

the sigma-meson. In this case, for two quark flavours, the effective potential is given by a

Mexican hat type potential. If the minimum of the potential φ0 acquires a non-vanishing

expectation value, the O(4) symmetry is broken and we are left with the O(3) symmetry

reflected by the trough of the potential where the pions live. One can picture a second order

phase transition as a continuous deformation of a potential that looks like an x2-potential

into a Mexican hat potential, where the minima continuously move away from zero. So the

minimum φ0 is the order parameter, as it vanishes in the symmetric phase and has a non-zero

value in the broken phase. From the arguments above it is precisely given by the oscillations

in the radial direction and hence by the mass of the sigma-meson. The potential is in our
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Figure 2.2: The effective potential of the matter sector for the symmetric (left panel) and the

broken phase (right panel). To showcase we set φ0 = 0.5. A second order transition corre-

sponds to a continuous deformation from the symmetric to the symmetry broken potential.
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Figure 2.3: The minimum of the effective potential as a function of temperature. At tem-

peratures above the phase transition in the symmetric phase the order parameter vanishes,

below in the symmetry broken phase it has a non-zero value.

truncation, see Sec. 4.1, given by

Usym(φ2) =
m2
σ

2
φ2 +

λσ
8
φ4

Ubro(φ2) =
λσ
8

(φ2 − φ2
0)2 (2.13)

where the scalar field is composed of the pions and the sigma-meson φ = (σ, ~π)T . Eqn. (2.13)

corresponds to the two potentials given in Fig. 2.2 in 2 dimensions, think of cutting through

the higher dimensional potentials in the radial direction.

2.5 The confinement–deconfinement phase transition

For infinitely heavy quark masses, the gauge sector of QCD shows a different symmetry, a

global center symmetry, as QCD reduces in this case to a pure SU(Nc) gauge theory. The

symmetry is broken in the presence of dynamical quarks. A center transformation is given

by

U−1
z (0, ~x)Uz(β, ~x) = z, (2.14)

where Uz(t, ~x) is a gauge transformation, β = 1/T and z is an element of the center

Z(SU(Nc)) ≡ ZNc of the gauge group. The elements z are given by z = 1 e2πiθz from

the condition det(z) = 1 which means that the sum with respect to the angle θz vanishes∑
θz
e2πiθz = 0, note that θz = k/Nc where k takes integer values 0, . . . , Nc − 1, as there are

Nc elements that belong to the set of center elements. For SU(3) the angle θz takes the values

θz = 0, 1/3, 2/3. It follows immediately that any observable that transforms non-trivially
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Figure 2.4: Sketch of the Polyakov loop. The time direction is curled up and has length

β = 1/T .

under center transformations, i.e. that is sensitive to center transformations, can serve as an

order parameter for center symmetry as it vanishes in the symmetric phase and it does not

vanish in the broken phase. One example is the Polyakov loop 〈L〉 where the Polyakov loop

variable L(~x) is given by

L(~x) =
1

Nc
TrP eig

∫ β
0 dtA0(t,~x), (2.15)

where P stands for path ordering, the trace is evaluated in the fundamental representation

and A0 is the zero component of the gauge field. One can picture the Polyakov loop as

an infinitely heavy quark moving only in the time direction, which is periodic in Euclidean

time with length β, see Fig. 2.4, as L(~x) is related to the operator that generates a static

quark [132]. The Polyakov loop variable L is not invariant under center transformations,

L→ zL, (2.16)

which has the consequence that the vev of L, the Polyakov loop 〈L〉, vanishes in the symmetric

phase and is non-zero in the broken phase, see e.g. [133]. Moreover, the Polyakov loop is

proportional to the free energy of a quark Fq
2

〈L〉 ∼ e−βFq (2.17)

so if the energy one needs to insert a quark into the theory is infinite, the Polyakov loop

vanishes which means that the theory is confining. If the free energy is finite, the Polyakov

loop does not vanish and we are in the deconfined phase. So we can link center symmetry

and confinement.

In contradistinction to lattice QCD we compute L[〈A0〉]. The expectation value of the

Polyakov loop used in lattice calculations 〈L〉ren involves a non-trivial renormalisation factor

which amounts to 〈L〉ren being larger than 1 for some temperature range. In Ref. [134–136],

they showed that in Polyakov gauge 〈A0〉 is sensitive to topological defects which are related

to confinement. Using the Jensen inequality, L[〈A0〉] ≥ 〈L[A0]〉, L[〈A0〉] is an upper bound

on 〈L[A0]〉 and we have L[〈A0〉] ≤ 1 in the broken phase. In the symmetric phase L[〈A0〉]
vanishes strictly [137].

2Actually it is related to half of the free energy of a quark-antiquark pair Fqq̄ which is separated by an

infinite distance.
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2.6 Non-zero temperature

At non-zero temperature, the (imaginary) time axis is compactified on a torus with circum-

ference β = 1/T , breaking the O(4) symmetry to O(3). This means that the zero components

of the momenta are periodic and singled-out by the heat bath. This has two immediate con-

sequences: the propagator of the gauge fields have now one component proportional and one

perpendicular to the heat bath and the formalism for the zero-component of the momenta,

which are now periodic, changes. One uses therefore the Matsubara formalism, where the

integral over the zero-component of the momentum, which is now periodic with period [0, β],

is replaced by the sum over all Matsubara frequencies.

Due to their intrinsic characteristics, the fermions have anti-periodic boundary conditions

and therefore have odd Matsubara frequencies, the bosons have periodic boundary conditions

and hence even Matsubara frequencies

p0 → νn =

{
2nπT bosons

(2n+ 1)πT fermions
, n ∈ Z.

So then we replace the integral at vanishing temperature over 4d momentum space with a

sum over the zero-direction and a 3d integration∫
d4p

(2π)4
→ T

∞∑
n=−∞

∫
d3p

(2π)3
. (2.18)

At infinite temperature, i.e. T →∞, QCD reduces to a purely spatial theory as the circum-

ference of the torus reduces to β = 0, the symmetry is given by R3. This can easily be seen

by considering the propagators. E.g. the 4d quark and gluon propagators, which we derive

in detail in the following chapter, are proportional to

G4d
ψ̄ψ ∼

1

T 2 + ~p2 +m2
ψ

or G4d
AA ∼

1

T 2 + ~p2
(2.19)

so for T → ∞ they vanish due to their proportionality to the inverse temperature. We can

also relate the 3d propagators to the 4d, as the temporal integration gives a contribution

proportional to β = 1/T , we find G3d ∼ T G4d, and hence as G4d ∼ 1/T the 3d propagators

obtain some non-vanishing value for T →∞. This also means that at infinitely high temper-

atures we enter the perturbative regime but with a 3d version of QCD3.

So for large temperatures we expect to be able to use perturbative methods to describe

QCD. This can be done e.g. by using a weak coupling expansion in powers of g, where

the zeroth order gives a free gas of quarks and gluons, this is called the ideal QGP. The

next orders, up to g5 have been calculated so far [138, 139], but only converge poorly due to

thermal fluctuations which strongly depend on the momentum scale considered. Even though

the weak coupling expansion seems justified at such temperatures, the thermal fluctuations

3Perturbation theory of 4d QCD is found for infinite energy E →∞.
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and the 3d theory complicate the picture, see e.g. [140–142]. At temperatures close to the

phase transition, about (1− 2)Tc, the predictive power using the weak coupling expansion is

lost. Here, the system enters the strongly coupled regime.

2.7 The Polyakov loop potential

2.7.1 The perturbative effective potential for the gauge fields

The order parameter potential, i.e. the effective potential, for a pure SU(Nc) gauge theory is

given in one-loop perturbation theory by the Weiss potential [143, 144] which is valid at high

temperatures4. It shows that the ZNc symmetry is broken and indicates that it is restored

at low temperatures. A simple description of the potential is given in Polyakov gauge, where

the zero-component of the gauge field is rotated into the Cartan subalgebra and the time

derivative of A0 vanishes, ∂0A0 = 0. The potential is given for a SU(N) gauge theory in

d = 4 dimensions by

V
SU(N)

Weiss (ϕm)

T 4
= −

N2
c−1∑
m=1

∞∑
n=1

2 cos(nϕm)

n4π2
, (2.20)

where the ϕm denote the eigenvalues of the Hermitian matrix φaT a = g β Aa0T
a in the adjoint

representation and β = 1/T is the inverse temperature5. The components of φa lie only in

the Cartan directions. E.g. for SU(3) a convenient choice is

g β A0 = ϕ3
λ3

2
+ ϕ8

λ8

2
, (2.21)

where the λj are the Gell-Mann matrices and are given in App. A.3 and the eigenvalues then

are the ϕm. E.g. the SU(3) Weiss potential only depends on the two directions ϕ3 and ϕ8

and it is given as the sum over the potential in the ϕ3-direction and the ϕ8-direction. For

SU(2) Eqn. (2.7.1) simplifies to [143]

V
SU(2)

Weiss (ϕ)

T 4
= −

∞∑
n=1

4 cos(nϕ)

n4π2
, (2.22)

where ϕ = gβA0 and ϕ ∈ [0, 2π]. Here, the minima are located at ϕ = 2πn with n ∈ Z and

the potential is invariant under ϕ→ 2π − ϕ, so obeys Z2 symmetry, see Fig. 2.5.

The order parameter, the Polyakov loop, is given in Polyakov gauge by

L(~x) = cos

(
gβA0(~x)

2

)
, (2.23)

so that for ϕ = 2πn its expectation value is finite and thus breaks the Z2 symmetry spon-

taneously. Remember that also ϕ = gβA0, which means that at high temperatures, where

4Although it is commonly called Weiss potential it was also computed in [144] and hence should be called

Gross–Pisarski–Yaffe–Weiss potential. Despite this we stick to the convention and call it Weiss potential in

the following.
5In the following we use the abbreviation Aa0T

a = A0.
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Figure 2.5: The SU(2) Weiss potential [143]. Here we plot one period. The minima are

located at 0 and 2π. The potential is valid at high temperatures in the perturbative regime

for small coupling g.

g is small, the potential is deconfining as the symmetry is broken. For T → 0 and large

coupling strength the separation between the minima decreases until both minima are at the

same point ϕ = π and the Polyakov loop vanishes and the symmetry is restored. Because the

derivation of the Weiss potential is based on perturbation theory, one can only deduct the

potential at high temperatures and for small coupling strength. The full potential has to be

derived in a non-perturbative ansatz where one can then make a statement about the form

of the potential for all temperatures and couplings.

2.7.2 The non-perturbative Polyakov loop potential

The non-perturbative effective potential, the Polyakov loop potential, was derived with the

FRG in [145, 146] and the studies of the YM potential were extended to higher SU(N) groups

and also included Sp(2) and E(7) [147]. At high temperatures the non-perturbative Polyakov

loop potential agrees with the Weiss potential and it is also valid at low temperatures, where

it shows the symmetry restoration of the SU(N) gauge theory. It is directly derived from

the effective action [146]

V [L(A0)] =
Γ[A0]

Ω
, (2.24)

where Ω is the space-time volume and V [L(A0)] is evaluated with a constant background field

A0. Note that we compute V [L(〈A0〉)], see Sec. 2.5. The input for the potential are the ghost

and gluon propagators, which in QCD have contributions from the matter sector, see Fig. 4.3.

This changes (lowers) the phase transition temperature compared to pure Yang–Mills theory.

From the minima of the Polyakov loop potential the Polyakov loop is calculated.

In QCD the effective potential contains contributions from the glue sector and the matter
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Figure 2.6: The non-perturbative SU(2) Polyakov loop potential from Yang–Mills theory for

various temperatures.

sector

V [L(A0)] = Vglue[L(A0)] + Vferm[L(A0)], (2.25)

which couple back to another. Note also that they do not exhibit the same periodicity, due

to the properties of the fermionic fields, the fermionic potential has double the period of the

glue potential.
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Figure 2.7: The SU(2) Polyakov loop in Yang–Mills theory. The Polyakov loop was obtained

from the minima of the Polyakov loop potential given in Fig. 2.6, where we show here only

the temperature range around the phase transition.
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In Fig. 2.6 we show the non-perturbative Polyakov loop potential for various temperatures

for Yang–Mills theory. Low temperatures correspond to the lower curves, the IR regime,

high temperatures to the upper curves, where it approaches its asymptotic form, the Weiss

potential in the UV. In between the phase transition occurs. There the potential is flat. One

can follow the continuous deformation by looking at the minima. The phase transition occurs,

when both minima are together in the center. Fig. 2.7 shows the corresponding Polyakov loop

around the critical temperature. Because we consider SU(2) YM theory, the phase transition

is of second order.



Chapter 3

The Functional Renormalisation

Group

We want to deduce the physical behaviour of macroscopic objects such as hadrons from

the interactions of fundamental microscopic degrees of freedom such as quarks and gluons.

The key idea originates in the block-spin transformation of Kadanoff [34], where only the

relevant information at a (momentum) scale is kept and transported to the next. Therefore

consider a lattice of many spins and split them into smaller lattices, then average over the

spins contained in the smaller lattices. One obtains again a lattice of spins, now the effective

spins, which can again be split into sub-lattices and averaged over and so on. This means

that starting at microscopic scales one step-wise approaches macroscopic scales, keeping only

information that is relevant at the scale considered. This idea of integrating out degrees of

freedom was adapted by Wegner and Houghton [35] and Wilson [36, 37], where they applied

this to the Hamiltonian of the theory. So instead of integrating over all momenta at the same

time one only integrates out one momentum shell after the other. Therefore one can include

all fluctuations up to this scale and also carry only the relevant information to the next.

Hence a large coupling strength does not cause problems. The concept was formulated in a

functional approach by Wetterich [38] and this is the form we apply in this thesis. For reviews

on the FRG see [31, 39–44]. In this chapter we follow the ideas of [39] in the derivation of

the flow equation.

3.1 The effective action

A Quantum Field Theory (QFT) is uniquely defined by the set of all n-point correlation

functions. These can be obtained by taking the variation of the generating functional Z[J ]

with respect to the fields. The generating functional Z[J ] of a field ϕ(x) in the path integral

formulation, here in Euclidean space-time, is given by

Z[J ] =

∫
Dϕe−S[J ]+

∫
J ·ϕ (3.1)

27
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where the integral is regularised in the UV with a cutoff ΛUV and S[ϕ] is the classical

action and J(x) the source. The n-point correlation functions determine the behaviour of

the theory at any given point in space-time. The Schwinger functional W [J ] is the logarithm

of Z[J ] and contains only the connected n-point correlation functions of the theory. A

Legendre transform yields the effective action Γ[φ], the generating functional of all one particle

irreductible correlation functions. The field φ(x) = 〈ϕ(x)〉J stands for the classical field

around which the quantum fields fluctuate, this means that all quantum fluctuations are

included. The effective action reads

Γ[φ] = sup
J

(∫
J · φ−W [J ]

)
. (3.2)

For any φ there exists a J = Jsup = J [φ] for which
∫
J · φ−W [J ] approaches its supremum.

This definition of Γ[φ] guarantees that it is convex, i.e. the second derivative with respect

to the field is positive, δ2Γ
δφ2 ≡ Γ(2) ≥ 0. Note that Γ contains all quantum fluctuations, it’s

the quantum effective action. To obtain the quantum equation of motion, one has to take

the variation of Γ with respect to the field φ(x), so δΓ
δφ(x) = J(x). The effective action is the

starting point for the derivation of the one particle irreducible n-point correlation functions

such as the propagator or the vertices to which we come back later.

3.2 The Wetterich equation

We can study how a theory, specified by the effective action Γ, behaves at a certain (momen-

tum) scale. The interesting facets of a theory like QCD are not its static properties but its

characteristics at changing scales. In the case of QCD it is the transition from the funda-

mental degrees of freedom, the quarks and gluons to the composite hadronic bound states.

Therefore we need a technique that enables us to capture the transition when we ’zoom-out’

of the considered theory and study it at various scales.

A QFT is described by the effective action Γ[φ] and can be expanded in terms of basis

functionals Fn[φ] with coefficients gn

Γ[φ] =
∑
n

gnFn[φ]. (3.3)

There are infinitely many coefficients gn which are all orthogonal to each other and they

constitute all possible couplings of a theory. The couplings themselves are not static but

depend on (momentum) scale k. One can therefore imagine a space that is spanned by all

infinitely many scale dependent couplings of a theory. One point in this space then describes

an effective action at a certain scale. We can then imagine further that a line in this space

corresponds to the change of the theory with respect to the momentum scale. We can draw

a trajectory starting in the UV with the microscopic action, the bare action, to the IR where

we recover the full quantum effective action, see Fig. 3.1.
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Figure 3.1: Example of a flow of a theory in theory space. Theory space is spanned by all

(infinitely many) scale dependent couplings of a theory. In the UV the theory is described

by the bare action, in the IR it is given by the full quantum effective action.

A language of describing QCD at all momentum scales is provided by the flow equation

of the effective action describing the trajectory in theory space. This equation describes,

how a theory, e.g. QCD, changes if one changes the momentum scale. The restrictions we

impose on such an equation is that in the UV, where we start the flow, the bare action Sbare

describes the microscopic physics, and in the IR we approach the full quantum action Γ

Γk→ΛUV ' Sbare, Γk→0 = Γ. (3.4)

Here we introduced the effective average action Γk it depends on the momentum scale k.
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Figure 3.2: Γk interpolates between S at microscopic scales and Γ[φ] at macroscopic scales.

The red regime is suppressed by the regulator.

To derive the flow equation we have to ensure that we only integrate out momentum modes

that are higher than the momentum scale k, such that the underlying microscopic physics

are decoupled from the macroscopic physics, see Fig. 3.2. For example in QCD the exact

information about quark-gluon interactions in the UV is not relevant for IR QCD since the

latter is governed by hadronic degrees of freedom. We only need to take the relevant infor-

mation to the next scale. To ensure this, we need to introduce a regulator function into the

path integral which cuts off the momentum modes below the scale k. Instead of integrating

over the whole space (over all momentum modes) at once, like e.g. in perturbation theory,

we only integrate out small momentum shells.
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To derive the flow equation, first we consider the scale dependent generating functional

Zk
1

Zk[J ] =

∫
Dϕe−S[ϕ]−∆Sk[ϕ]+

∫
Jϕ, (3.5)

where

∆Sk[ϕ] =
1

2

∫
ddq

(2π)d
ϕ(−q)Rk(q)ϕ(q) (3.6)

is the regulator term that suppresses momenta lower than k and Rk is the regulator function

and also the source now depends on momentum scale, compare with Eqn. (3.1). We can then

perform a modified Legendre transformation and obtain the effective average action

Γk[φ] = sup
J

(∫
Jφ−Wk[J ]

)
−∆Sk[φ]. (3.7)

The regulator function Rk must satisfy a number of criteria to guarantee that the constraints

given in (3.4) are fulfilled. So Rk must ensure IR regularisation, meaning that the effective

propagator which we define in the following remains finite at macroscopic scales, so that no

divergencies occur. This means that

lim
q2/k2→0

Rk(q) > 0. (3.8)

Second, Rk must vanish as k goes to zero, as the full quantum effective action must be

obtained in the IR, hence

lim
k2/q2→0

Rk(q) = 0. (3.9)

And last as k approaches the UV cutoff ΛUV , the initial boundary condition, the classical

field configurations and the bare action must be given. This means that the regulator term

must vanish from the scale dependent generating functional (3.5), as the scale dependent

effective action approaches with k → ΛUV the bare action Sbare. For this we need

Rk →∞ for k → Λ. (3.10)

In the following we abbreviate the scale derivative k d
dk with ∂t so that t = ln k

ΛUV
. Taking the

scale derivative of Γk we find that ∂tΓk[φ] is proportional to the integral over all momenta,

the scale derivative of the regulator function ∂tRk(q) and the full connected propagator. To

work out what the full connected propagator is, we look at the modified equation of motion,

including the regulator term, and we find that the regulator term changes the original equation

of motion by an additional term proportional to the regulator function times the field φ

δΓk[φ]

δφ(x)
= J(x)− (Rkφ)(x). (3.11)

Then the full propagator is the second variation of Γk[φ] with respect to the fields, which

is then the original solution changed by an additional term proportional to the regulator

1In the following derivation we consider only scalar fields, see [31] for arbitrary fields.
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k2 p2

k2

2 k2

Figure 3.3: Example of a regulator function Rk(p
2) (blue) and its scale derivative ∂tRk(p

2)

(red). The regulator shown here is Rk(p
2) = p2 (p2/k2)m−1

e(p
2/k2)m−1

.

function. This we can rearrange such that we can see immediately the full propagator, which

is given by the variation of the field with respect to the source

δJ(x)

δφ(y)
=

δ2Γk[φ]

δφ(x)δφ(y)
+Rk(x, y) ≡

(
Γ

(2)
k [φ] +Rk

)
(x, y). (3.12)

An example of the regulator function and its scale derivative is shown in Fig. 3.3. It is peaked

around p2 = k2, meaning that these are the important contributions weighted by ∂tRk in the

flow. Furthermore it has a finite value for p2/k2 → 0 and it vanishes for k2/p2 → 0 while for

k → ΛUV the bare action is retrieved as both Rk and ∂tRk vanish.

Eqn. (3.12) also leads to the following identity 2

1 = (Γ
(2)
k [φ] +Rk)(x, y) ·G(2)

k,c(x, y). (3.13)

Then we can take the scale derivative of the effective average action, see Eqn. (3.11), and

insert the propagator given in Eqn. (3.12) and the identity of Eqn. (3.13) and obtain the flow

equation for the effective average action, the Wetterich equation [38]

∂tΓk[φ] =
1

2

∫
ddq

(2π)d
∂tRk(q)

(
Γ

(2)
k [φ] +Rk

)−1
. (3.14)

It can be rewritten in terms of operator traces such that its one-loop structure becomes clear

∂tΓk[φ] =
1

2
STr

1

Γ
(2)
k [φ] +Rk

∂tRk (3.15)

We can also express it in terms of diagrams, where the propagator is represented by the line

and the regulator insertion is symbolised with the crossed circle

2Remember that δφ(x)
δJ(y)

= δ2Wk[J]
δJ(x)δJ(y)

= G
(2)
k,c(x, y).
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∂tΓk[φ] = 1
2 STr

This is an exact equation which describes the complete QFT and solving the flow equation

is equivalent to solving the path integral. However, all operators respecting the symmetry of

the Lagrangian are generically included by quantum fluctuations and have therefore running

couplings. This means that the Wetterich equation describes infinitely many coupled differ-

ential equations. Of course only few theories exist which can be solved exactly. For all other

cases one must choose a subset of equations that includes all relevant physical information

in a systematic way. This will be discussed in the next subsection. The solution to the

Wetterich equation also corresponds to one trajectory in theory space. Using different regu-

lator functions simply means that the trajectory is changed, however the initial and the final

state, the bare action in the UV and the full quantum effective action in the IR do not change.

The one-loop form has great advantages, one ’only’ has to calculate one-loop diagrams

to obtain the flow equations of the scale dependent couplings of the theory, no further loops

are required. But remember that all propagators and vertices are scale and momentum

dependent, so this is already a challenge. The one-loop structure is a consequence of ∆Sk

being quadratic in the field φ coupled to the source. It is also possible to recover perturbation

theory if one expands Γk in a one-loop expansion

Γk = S + ~Γ1-loop
k +O(~2) (3.16)

and sets Γ
(2)
k = S(2) such that the flow equation is

∂tΓ
1-loop
k =

1

2
STr

(
∂tRk(S

(2) +Rk)
−1
)
. (3.17)

The procedure to derive the flow equations is mostly straightforward, however subtleties

like the Grassmanian nature of fermions can difficult the derivation. First, one chooses a

suitable truncation, see Subsec. 3.2.1. Then one needs to determine all flow equations of the

scale dependent quantities within the truncation, like couplings, wave function renormalisa-

tions, etc. The left hand side of the flow equation (3.15) is specified by the scale derivative

of the theory, e.g. for QCD this is Eqn. (2.1) in a vertex expansion (3.21). Then one needs

to project onto the desired coupling or wave function renormalisation by applying derivatives

with respect to momenta, fields or projection operators. The same is done with the right

hand side of the flow equation (3.15), where the derivatives act on the loops, e.g. a derivative

with respect to a field adds an external leg to a diagram connected to the loop by a vertex.

This means that taking two derivatives with respect to a field, one obtains a loop with two

external legs. Equating the left hand side and the right hand side we find the flow equation.

In calculating the derivatives with respect to the fields, one needs to treat bosonic and

fermionic fields differently due to the Grassmanian nature of the fermions. The general
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description for taking a derivative is

δ

δφc
Gab = −ηcaGai ηci Γcij ηjkGkb + ηcaGab η

c
a

δ

δφc
, (3.18)

where a ’metric’ appears every time two fields are commuted, which accounts for minus signs

appearing when two fermions are interchanged. The ’metric’ is given by

(ηab )ij = (−1)abδij , (3.19)

where a and b stand for the fermion number. If a and b are fermionic fields, η is equal to −1,

and if both or one of them is bosonic, η is equal to 1. Then we only need to take care when

we commute a field or a derivative through a vertex

δ

δφc
Γa1...an = Γca1...an + Γa1...an

(
n∏
i=1

ηcai

)
δ

δφc
. (3.20)

3.2.1 Truncation

Eqn. (3.15) describes infinitely many coupled partial differential equations, which means that

apart from some special cases, there is no exact solution. One therefore has to find a system-

atic non-perturbative approximation. One way to do this is to restrict the space of operators

to a finite dimensional subspace. This is called the method of truncations. Therefore the

truncation should capture all relevant physical information about the considered system.

There are several ways to choose a sensible truncation, however there are next to no ways to

prove that the neglected equations give only small errors. It is therefore of great importance

to compare objects such as the propagators with other methods. E.g. in QCD it is sensible to

compare the thermodynamics and propagators at imaginary and vanishing chemical potential

with lattice QCD studies. One can then estimate the quality of the truncation and perform

calculations at real chemical potential, where lattice QCD cannot be applied. It would be

very beneficial to compare results obtained from two different truncations, however this is in

most cases very time consuming. The guideline of a truncation should be that it is chosen in

a systematic and physically sensible way where one incorporates the general information one

has about the relevant interactions.

One example of a truncation is the vertex expansion, which we also utilise in this thesis.

In this case one expands the scale dependent effective action in powers of the fields

Γk[φ] =

∞∑
n=0

1

n!

∫
ddx1 . . . d

dxn Γ
(n)
k (x1, . . . , xn)φ(x1) . . . φ(xn). (3.21)

where the expansion coefficients Γ
(n)
k are the full vertices.

Another example is the operator or derivative expansion, where one expands in powers

of the derivative of the fields, i.e. their mass dimension. E.g. if we have a scalar field theory

we obtain

Γk[φ] =

∫
ddx

{
Uk(φ) +

1

2
Zk(φ) (∂µφ)2 +O

(
(∂µφ)4

)}
, (3.22)
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where the first term gives the effective potential Uk(φ). All terms which do not vanish for

constant fields are included in the effective potential. The coefficient of the second term is

the scale dependent wave function renormalisation.

3.3 Dyson–Schwinger equations

Here we briefly introduce the Dyson–Schwinger equations (DSE), as some results for the

Yang–Mills propagators we utilise later on were obtained with a combination of FRG and

DSE equations. The DSE are the equations of motion of the Greens functions of a theory.

They are also exact and are derived from

e−Γ[φ] =

∫
Dϕe(−S[φ+ϕ])+

∫ δΓ[φ]
δφ

ϕ
, (3.23)

where we used that the expectation value of ϕ vanishes and that the measure is translational

invariant. Now we can take a derivative with respect to φ so that we find

δΓ

δφ
=

〈
δS

δϕ

〉
. (3.24)

These are the Dyson–Schwinger equations. Further derivatives amount to an infinite tower

of coupled integro-differential equations for the vertices. Like the Wetterich equation, the

DSE describe physics at all scales and hence are a non-perturbative way of solving the path

integral. However finding a suitable truncation, especially a closed set of equations that

captures all relevant physical information proves more difficult than with the FRG approach

as they also contain more than one-loop diagrams which additionally difficults the derivations.

For a review on the DSE see e.g. [148].

3.4 Dynamical hadronisation

In QCD, the microscopic degrees of freedom are distinctively different from the macroscopic

degrees of freedom. In the UV they are given by the quarks and gluons whereas in the IR these

are the hadrons. The bound state formation occurs due to the strong interaction of the quarks

induced by the gluons. The transition happens smoothly when changing the momentum scale.

Therefore it is not sensible to use a description in terms of quarks and gluons when looking

at IR scales or a description in terms of hadrons when considering microscopic physics. We

can incorporate the transition to hadrons naturally by using rebosonisation or also called

dynamical hadronisation [27–33]. It has been successfully applied in e.g. [28, 29, 50, 68, 89].

3.4.1 Partial bosonisation

To explain partial bosonisation, we follow the line of arguments of Ref. [39]. The bosons

we are considering in the following are mesons and hence built from quark–anti-quark pairs.

Therefore we need to find a transformation description that tells us how to transform two
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fermions into a boson. This is achieved by applying a Hubbard–Stratonovich transforma-

tion [128, 129], where in the case of QCD the mass of the meson is related to the Yukawa

coupling and the four-fermion interaction of the quarks. The four-fermion interactions are

created by exchange of gluons at the leading one loop order∫
x

λψ
2

[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2

]
, (3.25)

where the four-fermion coupling is proportional to α2
s, see the last diagram in Fig. 3.4. The

two terms in Eqn. (3.25) have the same quantum numbers as the sigma-meson and the pions.

So in principle we can write down a mixed fermionic-bosonic action by introducing a scalar

field interacting with the quarks through a Yukawa coupling and including in the original

purely fermionic action an four-quark interaction term. The translation amounts to∫
x

λψ
2

[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2

]
=

∫
x

m2
σ

2

(
φ2
)

+

∫
x
ih
(
ψ̄(τ · φ)ψ

)
, (3.26)

where τ · φ = σ+ iγ5~τ~π and φ = (σ, ~π) and the τ j are the Pauli matrices, see App. A.2. The

Hubbard–Stratonovich transformation then relates the mass of the scalar field to the Yukawa

and the four-fermion coupling

λψ =
h2

m2
σ

. (3.27)

For a four-fermion coupling λψ greater than the critical coupling λψ,cr, the effective potential

of the bosons acquires a non-zero minimum with a non-vanishing vacuum expectation value

for the scalar field 〈φ〉. One can then relate 〈φ〉 again to a description in terms of fermions

so that it is proportional to the chiral condensate 〈ψ̄ψ〉

σ = − ih

m2
σ

ψ̄ψ and π =
h

m2
σ

ψ̄γ5τψ. (3.28)

A non-vanishing expectation value for 〈ψ̄ψ〉 means that the chiral symmetry is broken and a

fermion mass is dynamically generated mψ ∼ h〈φ〉. For λψ < λψ,cr the vacuum expectation

value of the bosonic field is zero 〈φ〉 = 0 and there is no generation of fermion mass and hence

no spontaneous breaking of chiral symmetry.

QCD does not contain four-fermion self-interactions at a microscopic level as it is pertur-

batively non-renormalisable and hence λψ|k=Λ = 0, however contributions to the flow of λψ

are created through gluon exchange between the quarks, so that a flow of the four-fermion

coupling is generated, see Fig. 3.4 for the diagrams. As in our case only the last diagram of

Fig. 3.4 contributes, the scale beyond which chiral symmetry breaking sets in is controlled by

the strength of the strong coupling αs. After performing the Hubbard–Stratonovich transfor-

mation at the scale k, our microscopic degrees of freedom are transformed into macroscopic

degrees of freedom and all λψ interactions are transformed to Yukawa interactions. Unfor-

tunately, performing the next RG step, new gluon-induced quark interactions are produced

which cannot be neglected. One has to apply the bosonisation at each RG step to obtain

consistent solutions, this means that we have to bosonise the theory on all scales, this is

called rebosonisation.
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Figure 3.4: Contributions to the flow of the four-fermion coupling ∂tλψ. All diagrams but

the last, the box diagrams, do not contribute for λψ = 0, however they are generated during

the flow.
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Figure 3.5: Bosonisation. The fundamental interactions generate these box-digram contribu-

tions which contribute to the flow of the four-fermion coupling. The first arrow symbolises

one RG step, i.e. ’zooming out’. Then the Hubbard–Stratonovich transformation is per-

formed, where the contribution from the four-fermion coupling is transformed to an exchange

of a scalar coupled via two Yukawa-type interactions to the fermions.

3.4.2 Rebosonisation

A way to resolve our problem that contributions proportional to ∂tλk are generated, is to

introduce a scale dependence for the bosonising field which is a scalar boson. Its flow can

in principle depend on all fields of the system. What we want in the end is the flow of the

effective average action depending on the new scale dependent field, but evaluated such that

further field dependencies are suppressed (which we denote here with |φ)

∂tΓk[φ]
∣∣
φ
, (3.29)

where the rebosonised field is φ̂k[ϕ̂] and we have φ = 〈φ̂k〉. Later on we want a description in

terms of a scalar σ and a pseudo-scalar field ~π where φ = (σ, ~π). The generating functional

is then given by

e−Γk[φ] =

∫
Dϕ̂ e−S[ϕ̂, ˆ̄ψ,ψ̂]−∆Sk[φ̂k,

ˆ̄ψ,ψ̂]+
δ(Γk+∆Sk)

δφ
(φ̂k−φ)+∆Sk[φ]

, (3.30)

where we integrate over the field ϕ̂ and include the source J and the regulator term ∆Sk[φ]

J =
δ (Γk + ∆Sk)

δφ
and ∆Sk[φ] =

1

2
φR̂kφ. (3.31)

Lets have a closer look at Eqn. (3.30). The last term on the rhs is the regulator term which

actually stems from the lhs, depending only on φ. The first term on the rhs is the standard
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action depending on the field of integration and all other scale dependent fields. The second

term on the rhs is the standard regulator term matching the action. In the third term we

coupled the regulator to the scale dependent fields and the fourth term is simply the source

term which also couples to scale dependent fields. In the end we want a description in terms

of the σ and the ~π fields and we know that φ = (σ, ~π), hence the flow of the field φ̂k can be

expressed in terms of the fields ψ̄ψ and φ̂k, with some functions Ȧk and Ḃk which we still

need to determine
˙̂
φk = Ḃkφ̂k + Ȧkψ̄ψ. (3.32)

In the last term only the expectation values ψ = 〈ψ̂〉 and ψ̄ = 〈 ˆ̄ψ〉 appear. The field φ̂k

depends on ϕ̂: φ̂k = φ̂k[ϕ̂] with the initial condition that φ̂ΛUV = ϕ̂ at the UV scale ΛUV .

Now we can derive the scale derivative of the effective average action

∂

∂t

∣∣∣
φ
Γk[φ] =

1

2
˙̂
Rk〈φ̂2

k〉+ R̂k〈 ˙̂
φkφ̂k〉 −

δΓ

δφ
〈 ˙̂
φk〉 −

δ∆Sk[φ]

δφ
〈 ˙̂
φk〉 − ∂t∆S[φ], (3.33)

where the first and the second term are the standard flow and the third and fourth term stems

from Eqn. (3.31). The last term is obtained from the lhs. Now we use the full propagator

given by Ĝk =
[
δ2Γ
δφ2 + R̂k

]−1
and we define

〈 ˙̂
φk〉 ≡ φ̇k, (3.34)

which is motivated by the relation that φ = 〈φ̂k〉 and the scale derivative of the expectation

value of
˙̂
φk which is

〈 ˙̂
φk〉 = Ḃk〈φ̂k〉+ Ȧkψ̄ψ

= Ḃkφk + Ȧkψ̄ψ

≡ φ̇k. (3.35)

We also make use of

〈 ˙̂
φkR̂kφ̂k〉 =

(
Ĝ
δ

δφ

∣∣∣∣
ψ

+ φ

)
R̂k〈 ˙̂

φk〉

=

(
Ĝ
δ

δφ

∣∣∣∣
ψ

+ φ

)
R̂kφ̇k

= ĜR̂kḂk + φR̂kφ̇k, (3.36)

where we can remove one field from the expectation value by employing

〈ϕ1 . . . ϕn〉J =

(
δ

δJ1
+ φ1

)
〈ϕ2 . . . ϕn〉J (3.37)

and we use that a variation with respect to the source J is given by the propagator and a

variation with respect to the field φ, δ
δJ = G δ

δφ . The last term of Eqn. (3.36) cancels the
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term −φR̂kφ̇k appearing in the flow of the effective action. Then we find for the rebosonised

flow

∂

∂t

∣∣∣
φ
Γk[φ] =

1

2
˙̂
Rk

(
Ĝk + φ2

)
+ R̂k

〈
(Ḃkφ̂k + Ȧkψ̄ψ)φ̂k

〉
− δΓ

δφ

(
Ḃkφ+ Ȧkψ̄ψ

)
(3.38)

−R̂kφ
(
Ḃkφ+ Ȧkψ̄ψ

)
− 1

2
˙̂
Rkφ

2, (3.39)

which can be simplified by using the relations above to

∂

∂t

∣∣∣
φ
Γk[φ] =

1

2

(
˙̂
Rk + 2R̂kḂk

)
Ĝk −

δΓ

δφ

(
Ḃkφ+ Ȧkψ̄ψ

)
. (3.40)

Because we want to adapt the non-rebosonised flow equations, Eqn. (3.40) tells us how we

have to change them. In detail this means that we have to modify the regulator terms of

the scalar part of our flows, i.e. we have to translate ηφ → ηφ − 2Ḃk(p) so that the standard

scale derivative of the scalar regulator appearing on the rhs of the flow equation receives an

additional contribution. Indeed, the additional term proportional to Ḃk(p) is very small as it

is multiplied with Rk and hence suppressed in the flow. However, neglecting the latter could

cause errors and it is not expensive to include it. Eqn. (3.40) also tells us that we have to add

the last term to receive the rebosonised equations. An example is given in Sec. 4.3, where we

study QCD at vanishing temperature and vanishing chemical potential in a vertex expansion

up to third order utilising rebosonisation. The results are given in Sec. 6.1.



Chapter 4

Setting the stage

In this chapter we explain our approximation to QCD using RG techniques. It contains all

technical details specific to our setup. The results are presented in the following chapters.

4.1 Truncation

In the following sections we derive the propagators, regulators, vertices and the flow equa-

tions for the couplings and anomalous dimensions within a FRG truncation. We use a vertex-

expansion in the matter sector and include vertices up to order three. In the gauge sector we

also apply a vertex expansion but up to fourth order and we work in Landau gauge.

The two flavour Nf = 2 QCD effective average action for 4-dimensional Euclidean space-

time with three colours Nc = 3 at finite temperature T and quark chemical potential µ in

our truncation is

Γk =

∫
d4x

{
1

4
F aµνF

a
µν

}
+

∫
d4x

{
Zψ ψ̄

(
i /D + i

mψ

Zψ
+ iµγ0

)
ψ + ih

(
ψ̄(τ · Φ)ψ

)
+
λψ
2

[
(ψ̄ψ)2 − (ψ̄γ5~τψ)2

]
+

1

2
Zσ(∂µΦ)2 + U(Φ2)

}
. (4.1)

We include mesonic degrees of freedom through the scalar field Φ = (σ, ~π)T . It contains the

sigma-meson σ and the three pion fields πj . In the effective average action we have used the

short hand notation for

τ · Φ = σ + iγ5~τ~π, (4.2)

where the τ j are the Pauli matrices, see App. A.2. Here, the Dirac operator in momentum

space and the field strength tensor are

i /D = γµ(pµ + gAaµt
a) (4.3)

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (4.4)

Furthermore we include an effective potential for the scalar field U(Φ2) from which we derive

the order parameter for the chiral phase transition, the minimum of the effective potential

39
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σ0. The matter sector also contains a kinetic term with a wave function renormalisation for

the scalar field Zσ. We couple the quark fields ψ and ψ̄ to the mesons through a Yukawa

coupling h and include a four-fermion interaction term which we utilise later when applying

the rebosonisation technique. Note that at the UV scale, λψ and h vanish1. The quark fields

themselves couple through the strong coupling g =
√

4παs to the gluons, the gauge fields. We

also incorporate a non-vanishing quark chemical potential µ. The glue dynamics are captured

in the first term of the effective average action which includes also the ghost fields which are

obtained after using the Faddeev–Popov method in deriving the gauge field propagators, see

Subsec. 4.2.2.

Given the diagrammatic expression of the Wetterich equation (3.2), we can now express

our truncation (4.1) in terms of 1-loop digrams containing the full propagators, see Fig. 4.1.

The first two loops make up the glue sector, the last two the matter sector. In principle, one

can study the two sectors separately, which is done in model calculations for the pure matter

sector for small temperatures and larger chemical potentials. Cutting off the matter sector,

one is left with pure Yang–Mills theory (only gluon and ghost degrees of freedom, so a pure

SU(3) gauge theory) which has been studied thoroughly on the lattice and with the RG. This

plays the dominant role at vanishing chemical potential, however, already the coupling of the

quarks to the gluons via the vacuum polarisation of the gluon and its feedback to the full glue

sector changes characteristics such as the critical temperature of the phase transition. The

full coupling of the matter sector to the glue sector plays also a significant role at non-zero

chemical potential.

Here we couple both sectors such that each propagator feeds-back either directly, like the

quark to the gluon, or indirectly, like the quark to the ghost, see Fig. 4.1. The type of back-

coupling is only determined through the allowed interactions, i.e. there is no 3-point quark–

ghost interaction but there is a 3-point quark–gluon and a 3-point ghost–gluon interaction.

This becomes more clear when we derive the propagators and show the connection, see

Figs. 4.3 and 4.6. We want to emphasise that it is important to include the back-coupling

of the two sectors as it changes the propagators and hence determines the scale of the phase

transition and the strength of the coupling αs. Also the temperature scale of the effective

potential of the glue sector is changed, see Sec. 6.3.

The effective potential of the matter sector in our truncation is given by

U(Φ2) =
m2
σ

2

(
Φ2 − σ2

0

)
+
λσ
8

(
Φ2 − σ2

0

)2
, (4.5)

where we use a Taylor expansion up to fourth order in the fields Φ. The potential includes

a scalar coupling λσ and a scale dependent mass mσ. σ0 stands for the minimum of the

effective potential and vanishes in the symmetric phase. The general form of the potential in

the symmetric and the broken phase are given in Fig. 2.2. The masses for the scalar fields are

1Indeed our initial conditions have non-vanishing but very small values for the Yukawa coupling and the

four-fermion coupling for numerical reasons, see App. C.3.
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∂tΓk[φ] = 1
2

− − + 1
2

Figure 4.1: Diagrammatic representation of the flow of Eqn. (4.1). The flow contains a glue

part (first two loops), the full gluon and the full ghost propagators, and a matter part (the

last two loops), the quark and the meson propagators. The circle with the cross denotes the

flow of the regulator, which ensures that modes below the momentum scale k are cut off. The

system is highly coupled as fluctuations feed back into each other. In the following section

this is shown explicitly.

then given by the eigenvalues of the second derivative matrix of the potential. It is useful to

write down the potential in the symmetric and the broken phase separately for the derivation

of the masses

Usym(Φ2) =
m2
σ

2
Φ2 +

λσ
8

Φ4 (4.6)

Ubro(Φ2) =
λσ
8

(Φ2 − σ2
0)2, (4.7)

where we can now read-off the pion and the sigma masses in the symmetric phase

M2
π = 2

∂Usym

∂Φ2

∣∣
Φ2=0

= m2
σ (4.8)

M2
σ = (

∂Usym

∂Φ2
+ 4Φ2 ∂

2Usym

∂Φ2∂Φ2
)
∣∣
Φ2=0

= m2
σ, (4.9)

from symmetry arguments it is clear that the masses for the scalars are degenerate in the

symmetric phase as the symmetry has not been broken. In the broken phase the masses are

no longer degenerate as the radial and the tangential direction are no longer symmetric to

each other and we find for the chiral limit

M2
π = 2

∂Ubro

∂Φ2

∣∣
Φ2=σ2

0
= 0 (4.10)

M2
σ = (

∂Ubro

∂Φ2
+ 4Φ2 ∂

2Ubro

∂Φ2∂Φ2
)
∣∣
Φ2=σ2

0
= λσσ

2
0. (4.11)

The quark masses obtain a dynamical mass through the Yukawa interactions, so that in the

chirally broken phase the total mass is given by the sum of the Higgs and the dynamical

mass. Due to chiral symmetry breaking the sigma obtains a mass. In the chiral limit, i.e. for

vanishing quark mass mψ, the pions are massless. In summary we find the following masses

for the matter sector within our truncation of QCD
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symmetric broken

M2
ψ = m2

ψ M2
ψ = (mψ + σ0h)2

M2
σ = m2

σ M2
σ = λσσ

2
0

M2
π = m2

σ M2
π = 0.

For practical use we introduce dimensionless and RG invariant quantities, which are

denoted with a bar (except for κ)

κ =
σ2

0 Zσ
2k2

, m̄2 =
m2

Zk2
, h̄2 =

h2

ZσZ2
ψ

, λ̄σ =
λσ
Z2
σ

, λ̄ψ =
λψ
Z2
ψ

k2, T̄ =
T

k
, µ̄ =

µ

k
,

(4.12)

where the corresponding wave function renormalisations for the masses have to be chosen

accordingly. We use this notation in the flow equations.

4.2 Propagators, regulators, vertices and other tools

Now we derive the tools we need to find the flow of the couplings and wave function renormal-

isations, that is we need the two- and three-point correlation functions, i.e. the propagators

and vertices.

As shown in section 3.2, the propagator Gk[φ] is a matrix depending on all fields specified

in the effective average action

Gk[φ] =
(

Γ
(2)
k [φ] +Rk

)−1
, (4.13)

where the explicit expression of Γ
(2)
k – and of course also the corresponding regulator –

depends on the fields. We do not need to calculate all entries of Gk, as we set the remaining

fields after two field derivatives to zero. Only the quark–anti-quark, the gluon and the ghost

propagator are left over and all other ’mixed’ propagators vanish as they do not reflect our

particle spectrum. In the following we determine the quark–anti-quark propagator Gψψ̄ and

the gluon and ghost propagators GAA and Gcc̄.

4.2.1 The quark propagator and the quark-gluon vertex

The quark propagator

For the propagator of the quarks we only need to know the second derivative of the effective

action with respect to ψ̄ and ψ and the regulator function we wish to use. The quarks carry

flavour, spinor and colour degrees of freedom, but are diagonal in colour space and are given

in the fundamental representation.
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First, we need to determine Γ
(2)

ψψ̄,k
, which is directly determined from the effective ac-

tion (4.1)

Γ
(2)

ψψ̄,k
=

δ2Γk

δψgjβδψ̄
f
iα

=
[
Z⊥ψ (/q)αβ + imψδαβ + i µ(γ0)αβ

]
δijδfg + ih (τ · Φ)fgαβ δij , (4.14)

where i, j are the group indices (colour), f, g are the flavour indices and the greek letters

stand for the spinor degrees of freedom. Here we can also distinguish between the momentum

components parallel and perpendicular to the heat bath, if we introduce the four momentum

qµ =

Z
‖
ψ

Z⊥ψ
q0, ~q

 . (4.15)

For vanishing temperature and chemical potential, there is no heat bath, so Z
‖
ψ = Z⊥ψ = Zψ,

and this is also reflected in the four momentum.

Then we have to choose the regulator Rψψ̄. Within the restrictions of Rk given in

Eqns. (3.8)-(3.10), it is up to our liking to choose it such that it simplifies our numerics.

There are several ways to implement the regulator function: non-zero temperature and also

non-zero chemical potential break the O(4) symmetry, in this case the calculations simplify

when using a regulator function that also distinguishes between the zero component and the

vector component of the momentum. Likewise for vanishing temperature and also vanishing

chemical potential it seems wise to implement a 4d regulator, respecting the O(4) symmetry.

Note that vanishing temperature but non-vanishing chemical potential also breaks the O(4)

symmetry, there it is not so clear what the smartest choice of a regulator function is.

At non-zero temperature and chemical potential we use a 3d regulator

R3d
ψψ̄(~q) = Z⊥ψ (/~q)αβ rψ

(
~q2

k2

)
δfgδij (4.16)

and hence the scale derivative is

∂tR
3d
ψψ̄(~q) = Z⊥ψ (/~q)αβ

(
∂trψ − η⊥ψ rψ

)
δfgδij . (4.17)

From now on we drop the flavour and colour indices except where needed for an improved

readability. One can again choose the shape function rψ such that it suits best the calcu-

lations. It determines the rapidity, i.e. the shape of the cutoff function, of the momentum

modes. In some cases it is convenient to implement an exponential cutoff, as it falls off very

quickly, sometimes it is more beneficial to use an optimised regulator as it amounts to the

shortest path in theory space [149]. We chose the optimised regulator with

rψ(x) =

(
1√
x
− 1

)
θ(1− x), (4.18)

where x = ~q2/k2 and we find for the scale derivative

∂trψ(x) =
1√
x
θ(1− x). (4.19)
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Then we add both, Γ(2) and Rk and invert them to obtain the propagator Gψψ̄. In doing so

we want to keep all dependence on the γ-matrices in the numerator (remember that we have

to take the trace later on in the flow equation). We then find for the 3d propagator

G3d
ψψ̄ =

(
Z
‖
ψγ0(q0 + iµ) + Z⊥ψ /~q(1 + rψ) + iMψ,k

)
·[

(Z
‖
ψ)2(q0 + iµ)2 + (Z⊥ψ )2~q2(1 + rψ)2 +M2

ψ,k

]−1
. (4.20)

The 4d regulator and its scale derivative we implement at vanishing temperature and

non-vanishing chemical potential are

R4d
ψψ̄(q) = Z⊥ψ /q rψ

(
q2

k2

)
, (4.21)

∂tR
4d
ψψ̄ = Z⊥ψ /q

(
∂trψ − η⊥ψ rψ

)
, (4.22)

and the resulting propagator is

G4d
ψψ̄ =

(
Z⊥ψ /q(1 + rψ) + Z

‖
ψγ0iµ− iMψ,k

)
·[

(Z
‖
ψ)2(q0(1 + rψ) + iµ)2 + (Z⊥ψ )2~q2(1 + rψ)2 +M2

ψ,k

]−1
. (4.23)

Note that there are different ways of including the chemical potential in the regulator, see

App. C.1 for more details.

Also at non-zero temperature and chemical potential it can be of advantage to implement

a 4d regulator, see e.g. [150, 151]. As a 4d exponential regulator falls off very quickly and

hence can simplify full momentum dependent numerical computations drastically. In general,

Γ
(2)

ψψ̄
obtains flow contributions from the glue sector of QCD, where the ghost contributions

enter through the gluon propagator, see Fig. 4.2. In the next subsection we discuss the gauge

field propagators. The flow of Γ
(2)

ψψ̄
is important as it is directly related to the anomalous

dimension ηψ which is given by

ηψ = −∂tZψ
Zψ

, (4.24)

which, of course, can be parallel or perpendicular to the heat bath. The full flow of Γ
(2)

ψψ̄
in

our truncation is given by Fig. 4.2, although we did not compute if with the full momentum

dependence.

The quark-gluon vertex

For the quark-gluon interactions we include a simple ansatz for the vertex, the quark-gluon

vertex. It can be determined straight forward from the effective action

Γ
(3)

Aψψ̄
=

δ3Γk

δAaµδψ
g
jβδψ̄

f
iα

= +g Z
1/2
A (ta)ij

(
Z
‖
ψγ0

Z⊥ψ ~γ

)
αβ

δfg. (4.25)

The vertex contains in contradistinction to perturbation theory the field strength renormali-

sations of the gluon and the quark and the coupling g is scale dependent and related to the
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∂tΓ
(2)
ψψ̄ = +

Figure 4.2: Flow of Γ
(2)

ψψ̄
. The quark propagator is given by the solid lines, the gluon propa-

gator is symbolised with the curly lines and the black dots stand for the quark-gluon vertex.

The circle with the cross symbolises the flow of the regulator. At the level of our truncation

only the gluon fluctuations contribute. One can see how the glue sector feeds back to the

matter sector by the gluon propagator.

strong coupling via g =
√

4παs. We neglect any further contributions from the running of

the vertex, see e.g. [152, 153].

4.2.2 Propagators from the glue sector

The propagators of the glue sector are not as easily determined as the quark propagator.

One needs to be very careful already at the level of quantising the gauge fields. For vanishing

temperature the fully momentum dependent propagators [150, 151] including the vacuum

polarisation of the gluon propagator through the quarks is used. At non-zero temperature we

utilise the Yang–Mills propagators from [154] where we add to and back-couple the vacuum

polarisation of the gluon [89, 155]. The implicit temperature dependence is neglected, however

it is to a first approximation negligible compared to the explicit temperature dependence

through the Matsubara frequencies [146].

The gauge field propagator

Here, we briefly describe the general derivation of the gauge field propagators, see [150–152]

for a complete derivation and also e.g. [156, 157] for introductory books on the quantisation

of the gauge fields.

The problem that arises when deriving the gluon propagator is that the Lagrangian of the

gauge sector of QCD is unchanged under certain local gauge transformations in configuration

space, so an infinite amount of physically equivalent configurations is integrated over in the

integration measure of the Lagrangian giving rise to a diverging integral. What is needed

are those configurations, that correspond to the physically non-equivalent ones and are hence

only given once. Therefore one fixes the gauge at each point in space and inserts in a smart

way a 1 into the path integral that singles out the desired configurations. One can then

perform the integration and obtains a bosonic gauge propagator that now depends on the

gauge parameter ξ, which is up to our liking to choose. In this work we set ξ = 0, which is

called Landau gauge. The advantage is that the gauge field then only contains a transverse

part. At the same time the insertion of the 1, which is called the Faddeev–Popov [158] trick,
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introduces new fields with interesting properties, as they are anti-commuting scalar fields in

the adjoint representation, meaning that they are fermions but obey the wrong spin-statistics,

which has the consequence that they are not physical particles and that’s why they are called

ghosts. Hence they do not appear as external legs in Feynman diagrams and do not cor-

respond to physical particles but their fluctuation contributions are very important to the

other propagators. E.g. in our ansatz for the running of the strong coupling αs they play a

crucial role, see Subsec. 4.2.3.

The gluon propagator is given by

GAA =
[
Z
‖
Aq

2
0 + Z⊥A~q

2(1 + rA)
]−1

Π⊥µν + ξ
[
q2

0 + ~q2(1 + rA)
]−1

Π‖µν , (4.26)

where in Landau gauge, ξ = 0, the longitudinal part vanishes. Additionally it is diagonal

in colour space. The zero component of the momentum at finite temperature is given by

the bosonic Matsubara frequencies, see Sec. 2.6. Although the propagator in Landau gauge

is purely transversal, at finite temperature it splits into a part that is longitudinal and one

that is transversal to the heat bath. So if ξ 6= 0 this means that it has a transversal and a

longitudinal part that themselves have at non-vanishing temperature also a longitudinal and

a transversal part with respect to the heat bath. The regulator shape function introduced

here is a 3d optimised cutoff function given by

rA(x) =

(
1

x
− 1

)
θ(1− x) (4.27)

with x = ~q2/k2 and the complete regulator then reads

RA = Z⊥A~q
2rA

(
~q2

k2

)
Π⊥µν +

1

ξ
~q2rA

(
~q2

k2

)
Π‖µν , (4.28)

with the transverse and longitudinal projectors

Π⊥µν = δµν −
pµpν
p2

(4.29)

Π‖µν = 1δµν −Π⊥µν =
pµpν
p2

. (4.30)

For later use we specify here the 3d projectors which can be directly read off the 4d projectors

Π⊥,3dµν =

(
δµν −

pµpν
p2

)
(1− δµ0)(1− δν0) (4.31)

Π‖,3dµν = 1δµν −Π⊥,3dµν . (4.32)

We can ask now how the wave function renormalisation ZA, which is closely connected to

the gluon propagator, changes with momentum scale k. The gluon self-interacts and hence

there are many diagrams one has to take into account when calculating the flow of the gluon

propagator, see Fig. 4.3 for the contributions within our truncation. The dressing function

p2/Γ
(2)
AA as a function of momentum is shown in Fig. 4.4. The result agrees well with the

lattice results.
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∂tΓ
(2)
AA = −2 − 2

−1
2 +

Figure 4.3: Flow of Γ
(2)
AA. The gluon propagator is given by the curly lines, the ghost by the

dashed and the quark propagator is symbolised by the solid line. All propagators are the full

propagators and the circle with the cross stands for the flow of the scale dependent regulator

ensuring that only modes above k are integrated over. The matter sector of QCD couples

back to the glue sector through the vacuum polarisation of the gluon through the quark. This

contribution is derived in the next subsection and plays a major role for QCD as this is the

link between the two sectors.
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FIG. 1: Momentum dependence of the gluon (left panel) and ghost (right panel) 2-point functions at vanishing temperature.
We show the FRG results from Ref. [8] (black solid line) and from lattice simulations from Ref. [6] (red points).

ZC(p2 → 0) → 0 it can be shown that there is a unique
scaling solution, [31, 32]. Then the two exponents are
related and obey the sum rule

0 = κA + 2κC +
4 − d

2
, (9)

in d dimensional spacetime [4, 28, 31]. Possible solutions
are bound to lie in the range κC ∈ [1/2 , 1], see [28]. For
the truncation used in most DSE and FRG computation,
we are led to

κC = 0.595... and κA = −1.19... , (10)

being the value for the optimised regulator [5]. The reg-
ulator dependence in FRG computations leads to a range
of κC ∈ [0.539 , 0.595], see [5]; for a specific flow, see [33].
These results entail the KOGZ confinement scenario: the
gluon is infrared screened, whereas the ghost is infrared
enhanced with κC > 1/2.

In turn it can be shown that for non-vanishing ZC(0)
the gluon propagator tends to a constant in the infrared,
p2ZA(p2) → m2, for related work see e.g. [8, 34, 35, 36,
37, 38, 39]. Note that the gluon propagator then does
not correspond to the propagator of a massive physical
particle. Instead, we observe clear indications for posi-
tivity violation in the numerical solutions for the gluon
propagator related to gluon confinement, [8, 41]. Still the
gluon decouples from the dynamics as does a massive par-
ticle, hence the name decoupling solution. The value of
ZC seems to be bounded by its perturbative value from
above, and the gluon mass parameter is bounded from be-
low [8]. The qualitative infrared behaviour is then given
by the infrared exponents

κA = −1 , and κC = 0 . (11)

We emphasise that even though the infrared exponents
for the scaling solution (10) and the decoupling solution
(11) are rather different, the propagators do only differ
in the deep infrared. It has been suggested in [8] that

the infrared boundary condition is directly related to the
global part of the gauge fixing, and hence to different
resolutions of the Gribov problem. Indeed in [29] the
infrared boundary condition has been implemented di-
rectly as a global completion of the gauge fixing. Note
also, that for Landau gauge Yang-Mills with standard
local BRST invariance the requirement of global BRST
singles out the scaling solution. The existence of such
a formulation on the lattice has been shown recently in
[42]. In summary the results are affirmative for the above
interpretation and are supported by results in the strong-
coupling limit [30] for different implementations of lattice
Landau gauge.

In turn, it has been also shown in a series of works
that an infrared condition also is present in Landau gauge
Yang-Mills with the horizon function, e.g. [35, 36, 37, 38].
The latter introduces an explicit (or soft) breaking of
BRST invariance as it restricts the functional integral
to the first Gribov region. Still this does not fix global
gauge degrees of freedom as also the first Gribov region
contains infinite many gauge copies. The possibility of a
scaling solution in this framework hints at the validity of
Zwanziger proposal: full BRST invariance is recovered in
the thermodynamic limit if the path integral is restricted
to the fundamental modular domain with only one gauge
copy.

In summary a consistent picture has emerged with
nicely relates all current results. The confirmation of
this picture certainly would provide further insight to
the confinement mechanism. For the present work, we
simply note that the scaling solution is singled out by
global BRST invariance which allows the construction
of a physical Hilbert space from gauge fixed correlation
functions. Nonetheless, the whole one-parameter family
provides consistent gauge-fixed correlation functions of
Yang-Mills theory and physical observables should be in-
sensitive to the parameter choice. In the present work,
we can test this statement.

We proceed by extending the Landau-gauge propa-
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We show the FRG results from Ref. [8] (black solid line) and from lattice simulations from Ref. [6] (red points).

ZC(p2 → 0) → 0 it can be shown that there is a unique
scaling solution, [31, 32]. Then the two exponents are
related and obey the sum rule

0 = κA + 2κC +
4 − d

2
, (9)

in d dimensional spacetime [4, 28, 31]. Possible solutions
are bound to lie in the range κC ∈ [1/2 , 1], see [28]. For
the truncation used in most DSE and FRG computation,
we are led to

κC = 0.595... and κA = −1.19... , (10)

being the value for the optimised regulator [5]. The reg-
ulator dependence in FRG computations leads to a range
of κC ∈ [0.539 , 0.595], see [5]; for a specific flow, see [33].
These results entail the KOGZ confinement scenario: the
gluon is infrared screened, whereas the ghost is infrared
enhanced with κC > 1/2.

In turn it can be shown that for non-vanishing ZC(0)
the gluon propagator tends to a constant in the infrared,
p2ZA(p2) → m2, for related work see e.g. [8, 34, 35, 36,
37, 38, 39]. Note that the gluon propagator then does
not correspond to the propagator of a massive physical
particle. Instead, we observe clear indications for posi-
tivity violation in the numerical solutions for the gluon
propagator related to gluon confinement, [8, 41]. Still the
gluon decouples from the dynamics as does a massive par-
ticle, hence the name decoupling solution. The value of
ZC seems to be bounded by its perturbative value from
above, and the gluon mass parameter is bounded from be-
low [8]. The qualitative infrared behaviour is then given
by the infrared exponents

κA = −1 , and κC = 0 . (11)

We emphasise that even though the infrared exponents
for the scaling solution (10) and the decoupling solution
(11) are rather different, the propagators do only differ
in the deep infrared. It has been suggested in [8] that

the infrared boundary condition is directly related to the
global part of the gauge fixing, and hence to different
resolutions of the Gribov problem. Indeed in [29] the
infrared boundary condition has been implemented di-
rectly as a global completion of the gauge fixing. Note
also, that for Landau gauge Yang-Mills with standard
local BRST invariance the requirement of global BRST
singles out the scaling solution. The existence of such
a formulation on the lattice has been shown recently in
[42]. In summary the results are affirmative for the above
interpretation and are supported by results in the strong-
coupling limit [30] for different implementations of lattice
Landau gauge.

In turn, it has been also shown in a series of works
that an infrared condition also is present in Landau gauge
Yang-Mills with the horizon function, e.g. [35, 36, 37, 38].
The latter introduces an explicit (or soft) breaking of
BRST invariance as it restricts the functional integral
to the first Gribov region. Still this does not fix global
gauge degrees of freedom as also the first Gribov region
contains infinite many gauge copies. The possibility of a
scaling solution in this framework hints at the validity of
Zwanziger proposal: full BRST invariance is recovered in
the thermodynamic limit if the path integral is restricted
to the fundamental modular domain with only one gauge
copy.

In summary a consistent picture has emerged with
nicely relates all current results. The confirmation of
this picture certainly would provide further insight to
the confinement mechanism. For the present work, we
simply note that the scaling solution is singled out by
global BRST invariance which allows the construction
of a physical Hilbert space from gauge fixed correlation
functions. Nonetheless, the whole one-parameter family
provides consistent gauge-fixed correlation functions of
Yang-Mills theory and physical observables should be in-
sensitive to the parameter choice. In the present work,
we can test this statement.

We proceed by extending the Landau-gauge propa-

Figure 4.4: The gluon dressing function at vanishing temperature and chemical potential.

The plot is taken from [146], FRG data from [154] and lattice data from [159]. The plot

shows that the results for the pure Yang–Mills FRG gluon dressing function agrees very well

with the lattice results.
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Vacuum polarisation of the gluon

The vacuum polarisation of the gluon has already been calculated in Ref. [89] in a one-loop

RG improved approximation and is given by

∆ηAq =
Nf√

1 + M̄2
ψ

4

3

1

4π
αs

1− 1

1 + e
−2πiθ+

√
1+M̄2

ψ
−µ̄

T̄

− 1

1 + e
2πiθ+

√
1+M̄2

ψ
+µ̄

T̄

 . (4.33)

The equation we derive here has been studied simultaneously in the same truncation by F.

Rennecke, see [160]. Here we give the full results within our truncation and at finite chemical

potential and temperature and also include wave function renormalisations parallel Z
‖
ψ and

perpendicular Z⊥ψ to the heat bath, renormalising the zero and the vector component of the

momentum.

−2

Figure 4.5: The vacuum polarisation of the gluon through the quark.

We implement the 3d regulator given by Eqn. (4.16). To determine the vacuum polarisa-

tion of the gluon, i.e. ∆η⊥Aq , we must project onto the lhs of the flow of Γ
(2)
AA

∂tΓ
(2)
AA =

(
Ż
‖
Aω

2
n + Ż⊥A~p

2
)

Π⊥,3dµν δab +
1

ξ
Π‖,3dµν δabp2, (4.34)

where the ωn are the bosonic Matsubara frequencies and we want to project onto the trans-

verse component relative to the heat bath (as we are in Landau gauge there is only the

standard transverse part of the propagator but there is a transverse and a longitudinal com-

ponent with respect to the heat bath) and there we want the flow of the wave function

renormalisation proportional to the vector component of the momentum. So we have to per-

form two derivatives with respect to the momentum p at vanishing momentum. Dividing by

the negative of the wave function renormalisation we are left with the desired contribution

to the anomalous dimension, i.e. the vacuum polarisation of the gluon by the quarks. The

rhs is simply given by the same manipulations we have just performed on the lhs and which

we then apply to the diagram given in Fig. 4.5.

So we have to derive the rhs of

∆η⊥Aq = − 1

4(N2
c − 1)

1

Z⊥A

{
∂2
p

(
Π⊥,3dµν δab

[
−2

])∣∣∣∣
p=0

}
. (4.35)

and actually all we have to do is to calculate the quantity in the curly brackets. The trace
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over the group indices gives a factor Tr(tata) = C2(Nc)Nc and in flavour space we have

Tr(1f ) = Nf . More details of the calculation are given in App. C.2. The result for Z
‖
ψ =

Z⊥ψ = Zψ is given by

∆ηAq =
2

15

1

(2π)2
Nf g

2 T̄
∑
n

(
3Ḡ2

ψψ̄(2ηψ − 3)− 4Ḡ3
ψψ̄(3ηψ − 8)− 8Ḡ4

ψψ̄

)
, (4.36)

where Ḡ−1
ψψ̄

= q̄2
0 + 1 + M̄2

ψ and q̄0 is given by the dimensionless fermionic Matsubara fre-

quencies. We have checked that our result agrees with perturbation theory in the limit of

k → ΛUV and with the result of [89] also for intermediate momenta for ηψ = 0. Note that

Eqn. (4.36) contains only dimensionless and RG invariant quantities.

The ghost propagator

For the ghost propagator one derives the standard Feynman rules, see e.g. [156]. For the RG

propagator see e.g. [153]

Gcc̄ = − 1

ZC p2
δab. (4.37)

The flow of Γ
(2)
cc̄ is given in our truncation by Fig. 4.6, where the gluon quantum fluctu-

ations couple to the ghost propagator. Indirectly, in QCD, the quark couples via the gluon

propagator to the ghost propagator. The result for the dressing function of the ghost p2/Γ
(2)
C

is shown in Fig. 4.7. It agrees for intermediate and large momenta with the lattice results. We

discuss the discrepancy at very low momenta in Subsec. 4.2.2, however they are not relevant

for physical observables as at these scales all relevant information has already been integrated

out.

∂tΓ
(2)
cc̄ = + − 1

2 +

Figure 4.6: Flow of Γ
(2)
cc̄ . Here, the gluon (curly lines) and ghost (dashed lines) fluctuations

contribute to the flow and the quark dynamics enter through the full gluon propagator, see

Fig. 4.3. The lines are the full propagators and the circle with the cross symbolises the flow

of the regulator function and cuts off momentum modes below the scale k.

The IR behaviour of the propagators

We briefly explain the discrepancy of the RG and the lattice propagators in the IR. At the

moment there is a lively discussion [161], whether or not the gluon and ghost propagators

exhibit a scaling (the gluon propagator vanishes and the ghost propagator is enhanced in the

IR) [154, 162–167] or decoupling (ghost and gluon propagators are finite and behave mass-like

in the IR) [154, 166, 168–171] behaviour at momentum scales that actually are not relevant
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FIG. 1: Momentum dependence of the gluon (left panel) and ghost (right panel) 2-point functions at vanishing temperature.
We show the FRG results from Ref. [8] (black solid line) and from lattice simulations from Ref. [6] (red points).

ZC(p2 → 0) → 0 it can be shown that there is a unique
scaling solution, [31, 32]. Then the two exponents are
related and obey the sum rule

0 = κA + 2κC +
4 − d

2
, (9)

in d dimensional spacetime [4, 28, 31]. Possible solutions
are bound to lie in the range κC ∈ [1/2 , 1], see [28]. For
the truncation used in most DSE and FRG computation,
we are led to

κC = 0.595... and κA = −1.19... , (10)

being the value for the optimised regulator [5]. The reg-
ulator dependence in FRG computations leads to a range
of κC ∈ [0.539 , 0.595], see [5]; for a specific flow, see [33].
These results entail the KOGZ confinement scenario: the
gluon is infrared screened, whereas the ghost is infrared
enhanced with κC > 1/2.

In turn it can be shown that for non-vanishing ZC(0)
the gluon propagator tends to a constant in the infrared,
p2ZA(p2) → m2, for related work see e.g. [8, 34, 35, 36,
37, 38, 39]. Note that the gluon propagator then does
not correspond to the propagator of a massive physical
particle. Instead, we observe clear indications for posi-
tivity violation in the numerical solutions for the gluon
propagator related to gluon confinement, [8, 41]. Still the
gluon decouples from the dynamics as does a massive par-
ticle, hence the name decoupling solution. The value of
ZC seems to be bounded by its perturbative value from
above, and the gluon mass parameter is bounded from be-
low [8]. The qualitative infrared behaviour is then given
by the infrared exponents

κA = −1 , and κC = 0 . (11)

We emphasise that even though the infrared exponents
for the scaling solution (10) and the decoupling solution
(11) are rather different, the propagators do only differ
in the deep infrared. It has been suggested in [8] that

the infrared boundary condition is directly related to the
global part of the gauge fixing, and hence to different
resolutions of the Gribov problem. Indeed in [29] the
infrared boundary condition has been implemented di-
rectly as a global completion of the gauge fixing. Note
also, that for Landau gauge Yang-Mills with standard
local BRST invariance the requirement of global BRST
singles out the scaling solution. The existence of such
a formulation on the lattice has been shown recently in
[42]. In summary the results are affirmative for the above
interpretation and are supported by results in the strong-
coupling limit [30] for different implementations of lattice
Landau gauge.

In turn, it has been also shown in a series of works
that an infrared condition also is present in Landau gauge
Yang-Mills with the horizon function, e.g. [35, 36, 37, 38].
The latter introduces an explicit (or soft) breaking of
BRST invariance as it restricts the functional integral
to the first Gribov region. Still this does not fix global
gauge degrees of freedom as also the first Gribov region
contains infinite many gauge copies. The possibility of a
scaling solution in this framework hints at the validity of
Zwanziger proposal: full BRST invariance is recovered in
the thermodynamic limit if the path integral is restricted
to the fundamental modular domain with only one gauge
copy.

In summary a consistent picture has emerged with
nicely relates all current results. The confirmation of
this picture certainly would provide further insight to
the confinement mechanism. For the present work, we
simply note that the scaling solution is singled out by
global BRST invariance which allows the construction
of a physical Hilbert space from gauge fixed correlation
functions. Nonetheless, the whole one-parameter family
provides consistent gauge-fixed correlation functions of
Yang-Mills theory and physical observables should be in-
sensitive to the parameter choice. In the present work,
we can test this statement.

We proceed by extending the Landau-gauge propa-

3

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5  3  3.5  4

p2  / 
!

A(2
)  (p

)

p [GeV]

Lattice
FRG

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5  3  3.5  4

p2  / 
!

C
(2

)  (p
)

p [GeV]

Lattice
FRG

FIG. 1: Momentum dependence of the gluon (left panel) and ghost (right panel) 2-point functions at vanishing temperature.
We show the FRG results from Ref. [8] (black solid line) and from lattice simulations from Ref. [6] (red points).

ZC(p2 → 0) → 0 it can be shown that there is a unique
scaling solution, [31, 32]. Then the two exponents are
related and obey the sum rule

0 = κA + 2κC +
4 − d

2
, (9)

in d dimensional spacetime [4, 28, 31]. Possible solutions
are bound to lie in the range κC ∈ [1/2 , 1], see [28]. For
the truncation used in most DSE and FRG computation,
we are led to

κC = 0.595... and κA = −1.19... , (10)

being the value for the optimised regulator [5]. The reg-
ulator dependence in FRG computations leads to a range
of κC ∈ [0.539 , 0.595], see [5]; for a specific flow, see [33].
These results entail the KOGZ confinement scenario: the
gluon is infrared screened, whereas the ghost is infrared
enhanced with κC > 1/2.

In turn it can be shown that for non-vanishing ZC(0)
the gluon propagator tends to a constant in the infrared,
p2ZA(p2) → m2, for related work see e.g. [8, 34, 35, 36,
37, 38, 39]. Note that the gluon propagator then does
not correspond to the propagator of a massive physical
particle. Instead, we observe clear indications for posi-
tivity violation in the numerical solutions for the gluon
propagator related to gluon confinement, [8, 41]. Still the
gluon decouples from the dynamics as does a massive par-
ticle, hence the name decoupling solution. The value of
ZC seems to be bounded by its perturbative value from
above, and the gluon mass parameter is bounded from be-
low [8]. The qualitative infrared behaviour is then given
by the infrared exponents

κA = −1 , and κC = 0 . (11)

We emphasise that even though the infrared exponents
for the scaling solution (10) and the decoupling solution
(11) are rather different, the propagators do only differ
in the deep infrared. It has been suggested in [8] that

the infrared boundary condition is directly related to the
global part of the gauge fixing, and hence to different
resolutions of the Gribov problem. Indeed in [29] the
infrared boundary condition has been implemented di-
rectly as a global completion of the gauge fixing. Note
also, that for Landau gauge Yang-Mills with standard
local BRST invariance the requirement of global BRST
singles out the scaling solution. The existence of such
a formulation on the lattice has been shown recently in
[42]. In summary the results are affirmative for the above
interpretation and are supported by results in the strong-
coupling limit [30] for different implementations of lattice
Landau gauge.

In turn, it has been also shown in a series of works
that an infrared condition also is present in Landau gauge
Yang-Mills with the horizon function, e.g. [35, 36, 37, 38].
The latter introduces an explicit (or soft) breaking of
BRST invariance as it restricts the functional integral
to the first Gribov region. Still this does not fix global
gauge degrees of freedom as also the first Gribov region
contains infinite many gauge copies. The possibility of a
scaling solution in this framework hints at the validity of
Zwanziger proposal: full BRST invariance is recovered in
the thermodynamic limit if the path integral is restricted
to the fundamental modular domain with only one gauge
copy.

In summary a consistent picture has emerged with
nicely relates all current results. The confirmation of
this picture certainly would provide further insight to
the confinement mechanism. For the present work, we
simply note that the scaling solution is singled out by
global BRST invariance which allows the construction
of a physical Hilbert space from gauge fixed correlation
functions. Nonetheless, the whole one-parameter family
provides consistent gauge-fixed correlation functions of
Yang-Mills theory and physical observables should be in-
sensitive to the parameter choice. In the present work,
we can test this statement.

We proceed by extending the Landau-gauge propa-

Figure 4.7: The ghost dressing function. Plot taken from [146], FRG data from [154] and

lattice data from [159]. The result agrees very well with the lattice calculations, the deviations

in the IR are under strong debate but do not influence the physics at hand.

for physical objects. The debate ranks around the question whether only one solution is valid

or whether both are as they may correspond to different types of completions of Landau gauge

in the IR, see [172] for an overview. We emphasise that this dispute does not influence the

results of any observable presented here or elsewhere. However it influences the understanding

of the confinement mechanism [154, 173]. For more details see e.g. [152, 153, 174, 175] and

references therein.

4.2.3 The running coupling αs

There are several ways to implement a non-perturbative running of the strong coupling αs. In

general it receives non-perturbative contributions from the wave function renormalisations of

the ghost or the quark and the gluon. Its behaviour in the IR then depends on the behaviour

of the propagators in the IR. In our case we implement the coupling defined in [162, 163] for

our calculations at finite temperature and chemical potential and we include the propagators

that exhibit scaling behaviour.

The strong running coupling αs receives contributions from the ghost and gluon wave

function renormalisation as a result of the non-renormalisation theorem of the ghost-gluon

vertex in Landau gauge [162, 163] and can therefore be expressed as the bare coupling at

some UV scale and a factor proportional to the wave function renormalisations of the ghost

and the gluon

αs(k) =
g2

4π

1

ZAk(p = k)Z2
Ck

(p = k)
, (4.38)

where the fully coupled wave function renormalisations of the glue sector enter. For pure
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Yang–Mills theory, cf. Figs. 4.3, 4.6 without the vacuum polarisation of the gluon through

the quark, Fig. 4.8 shows the behaviour of αs(k). Including quark fluctuations, so having the

full glue wave function renormalisations, αs is smaller as ZA is larger.

0.001 0.01 0.1 1 10 100
k [GeV]

0

1

2

3

4

pure Yang-Mills
2-loop pert. theory
QCD (FRG) at T=0=µ

α
s
(k

)

Figure 4.8: αs as a function of momentum for perturbation theory, Yang–Mills theory and

Nf = 2 QCD at vanishing temperature and chemical potential. The perturbative solution

diverges at ΛQCD ≈ 200 MeV.

Fig. 4.8 shows that the dynamical region is roughly around 300 MeV to 4 GeV, it runs

into a fixed point in the IR [176–178] and it shows asymptotic freedom in the UV. The be-

haviour in the IR is determined solely by the scaling behaviour of the propagators and has no

physical consequences. For comparison, if the decoupling propagators are implemented, the

coupling goes to zero in the IR. Looking at αs at all momentum regimes, the intermediate

momentum region is of most importance for the dynamics of the interactions and physics.

In the UV, quantum fluctuations do not play a role as perturbation theory is matched. The

exact IR behaviour depends on the choice of propagators, but at this scales, all fluctua-

tions have already been integrated out and all the relevant information is already included.

This also means that the dynamical region of about 300 MeV-4 GeV is really crucial for QCD.

Including the back-coupling of the matter sector onto the gauge sector, we add the quark

contribution of the anomalous dimension of the gluon to its glue contributions (this also

includes the glue propagators which also receive contributions from the matter sector). We

can now study the effects of an imaginary chemical potential θ, see Chap. 5, on the strong

coupling. As imaginary chemical potential acts as a momentum shift in the quark propagator,

its effects are small on αs which therefore depends only indirectly on θ, see Fig. 4.9. We also

show the dependence on real chemical potential µ which exhibits a mass-like behaviour, and

hence has a bigger effect on the coupling, see Fig. 4.10.
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Figure 4.9: αsk(θ) as a function of momentum and imaginary chemical potential for Nf = 2

QCD at vanishing temperature.
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Figure 4.10: αsk(µ) as a function of momentum and real chemical potential for Nf = 1 QCD

at vanishing temperature. Figure taken from [155].
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4.3 Flow equations for the couplings and anomalous dimen-

sions

4.3.1 Flows for vanishing temperature and chemical potential

Now we can determine the flow equations of the couplings and wave function renormalisa-

tions. For non-zero temperature and quark chemical potential they were derived by J. Braun

in [89]. Here we reprint them for vanishing temperature and zero chemical potential. The

corresponding threshold functions can be found in App. B.1, where we used a 4d optimised

regulator. In this subsection we specify only the flow equations, in the next section we derive

then the fully rebosonised equations.

Flow of the Yukawa coupling

The beta function for the Yukawa coupling squared is proportional to the triangle diagrams

with an incoming (pseudo) scalar and two outgoing quarks. Between the quarks a (pseudo)

scalar, i.e. pion or sigma, or a gluon is exchanged. We find for the flow of the Yukawa

coupling

∂th̄
2 = (2ηψ + ησ)h̄2−4 v(d) h̄4

{
(N2

f − 1)L
(FB)
1,1 (M̄2

ψ, M̄
2
π ; ηψ, ησ)−L(FB)

1,1 (M̄2
ψ, M̄

2
σ ; ηψ, ησ)

}
− 8(3 + ξ)C2(Nc) v(d) g2 h̄2 L

(FB)
1,1 (M̄2

ψ, 0; ηψ, ηA) (4.39)

and the corresponding threshold functions can be found in App. B.1. The gauge coupling g

is determined by g2 = αs 4π. The dimensional prefactor v(d) is given by

v(d) =
1

2d+1πd/2Γ(d2)
. (4.40)

Flow of the four-quark coupling

The flow for the four-quark coupling is proportional to the box diagrams with two incoming

and two outgoing quarks. Two gluons or two (pseudo) scalars are exchanged. The flow of

the four fermion interaction reads

∂tλ̄ψ = −6 g2 (Nc + 2)(Nc − 1)
C2(Nc)

N2
c

v(d)L
(FB)
1,2 (M̄2

ψ; ηψ, ηA)

+

(
2

Nc
+ 1

)
v(d)L

(FB)
1,1,1 (M̄2

ψ, M̄
2
π , M̄

2
σ ; ηψ, ησ). (4.41)

Flow of the scalar coupling and mass

For the scalar coupling and mass we print the equations in the symmetric and in the broken

phase separately. Then the correct description in terms of masses and other couplings can

be read-off the equations. The flow equations were derived from the diagrams contributing

to the effective potential of the matter sector.
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In the symmetric regime, the flow of the scalar coupling λ̄σ and the scalar mass m̄σ are

given by

∂tm̄
2
σ ≡ ∂tε = (ησ − 2)ε− (2(N2

f − 1) + 6) v(d) λ̄σ l
B
1 (M̄2

σ ; ησ)

+8NcNf v(d) h̄2 lF1 (M̄2
ψ; ηψ) (4.42)

∂tλ̄σ = 2ησ λ̄σ + (2(N2
f − 1) + 18) v(d) λ̄2

σ l
B
2 (M̄2

σ ; ησ)

−8NcNf v(d) h̄4 lF2 (M̄2
ψ; ηψ). (4.43)

The threshold functions are the ones stemming from the effective potential, see App. B.1. In

the broken regime the scalar couplings are

∂tκ = −(ησ + 2)κ+ 6 v(d) lB1 (M̄2
σ ; ησ) + 2 (N2

f − 1) v(d) lB1 (M̄2
π ; ησ)

−8NcNf v(d)
h̄2

λ̄σ
lF1 (M̄2

ψ; ηψ) (4.44)

∂tλ̄σ = 2ησ λ̄σ + 2(N2
f − 1) v(d) λ̄2

σ l
B
2 (M̄2

π ; ησ)

+18 v(d) λ̄2
σ l
B
2 (M̄2

σ ; ησ)− 8NcNf v(d) h̄4 lF2 (M̄2
ψ; ηψ). (4.45)

Note that κ describes the dimensionless flow of the minimum of the effective potential.

Flow of the anomalous dimensions

The flow equations for the anomalous dimension of the scalars and the quarks are derived by

expanding the rhs of the flow equation for the truncation up to second order in the fields and

taking the limit of vanishing outer momentum, one can project onto the scalar and quark

anomalous dimension, see [89] for the quark anomalous dimension ηψ and [30, 89, 179, 180]

for the scalar anomalous dimension ηφ.

The anomalous dimension for the mesons is

ησ = 4 v(d)κ λ̄2
σM2,2(M̄2

π , M̄
2
σ ; ησ) + 4NcNf v(d) h̄2

{
M4(M̄2

ψ; ηψ)

+κh̄2M2(M̄2
ψ; ηψ)

}
, (4.46)

and for the quarks we have

ηψ = 2 v(d)C2(Nc) g
2
{

(3− ξ)M1,2(0, M̄2
ψ; ηψ, ηA)− 3(1− ξ)M1,2(0, M̄2

ψ; ηψ, ηA)
}

+ 4 v(d) h̄2
{
M1,2(M̄2

ψ, M̄
2
σ ; ηψ, ησ) + (N2

f − 1)M1,2(M̄2
ψ, M̄

2
π ; ηψ, ησ)

}
, (4.47)

where we use the convention that η = −∂tZ
Z .

From Eqn. (4.39)-(4.47) it is clear that they are a system of coupled partial differential

equations, and they have to be solved simultaneously. Before we can study the results, we

derive the rebosonised equations, using Eqn. (3.40) from Subsec. 3.4.2.



4.4 Rebosonised flow equations 55

4.4 Rebosonised flow equations

The rebosonised equations to the flow equations above have been derived previously, see [30,

89], however in a different manner. Compare e.g. chapter E from Ref. [89]. Here we give a

different derivation. Hence the rebosonised equations differ from the ones obtained in [30, 89].

To obtain the rebosonised equations for the couplings and the anomalous dimensions we

express the flow of the field Φ = (σ, ~π) with the truncation given in (4.1)

Φ̇k = Ȧk
Zψ

k2Z
1/2
σ

ψ̄ψ + ḂkΦk, (4.48)

where we normalised it such that it is dimensionless and RG invariant. The functions Ȧk

and Ḃk are the first and the second transformation function which we need to determine in

the following. To derive them, we use two approximations that are physically sensible, first

we demand that the rebosonised flow of the four-fermion coupling vanishes, cf. section 3.4.2,

and that it vanishes at the initial scale. This means also that it vanishes for all scales. Second

we assume that the rebosonised flow of the Yukawa coupling does not depend explicitly on

the outer momentum p. We incorporate these two conditions in the following.

We can express the rebosonised flow of the four fermion coupling as the standard flow and

an additional term stemming from 4.48 inserted into the truncation given in 4.1. We find

λ̇ψ
∣∣
φ

= ∂tλψ − 2ihȦ
Zψ

k2Z
1/2
σ

, (4.49)

where we denote the standard flow for the four-fermion coupling derived earlier with ∂tλψ

and the final rebosonised flow is given by the full flow evaluated at fixed fields. Now we use

the physical sensible constraint that ˙̄λψ
∣∣
φ

= 0 which also implies that λ̄ψ = 0 and we find for

the dimensionless equation

˙̄λψ
∣∣
φ

= ∂tλ̄ψ − 2ih̄Ȧ+ 2λ̄ψ(1 + ηψ). (4.50)

Now we can determine the first transformation function Ȧk. We use that ˙̄λψ
∣∣
φ

= 0 and arrive

at the equation for the first transformation function

Ȧ = −i∂tλ̄ψ
2h̄

. (4.51)

For the rebosonised flow of the dimensionful Yukawa coupling we find

iḣ
∣∣
φ

= ∂t(ih)−
(
m2
σ + λσσ

2
0 + Zσp

2
)
Ȧ

Zψ

k2Z
1/2
σ

− i hḂ, (4.52)

which is translated to the dimensionless rebosonised flow

˙̄h
∣∣
φ

= ∂th̄+ h̄

(
1

2
ησ + ηψ

)
+ i

(
m̄2
σ + 2λ̄σκ+

p2

k2

)
Ȧ− h̄Ḃ. (4.53)
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We use a Taylor expansion in Ḃ so that Ḃ(p) = Ḃ0 + Ḃ1p
2 + . . . and assume that h and Ȧ

do not depend on the outer momentum p,

∂p2
˙̄h(p)

∣∣
φ

= 0, and ∂p2Ȧ(p) ' 0 (4.54)

and find for the first moment of the second transformation function

Ḃ1 =
∂tλ̄ψ

2h̄2

1

k2
, (4.55)

as we choose Ḃ0 = 0, which seems to be the simplest case. Then we find for the flow of the

Yukawa coupling (evaluated at p2 = 0)

˙̄h
∣∣
φ

= ∂th̄+ h̄

(
1

2
ησ + ηψ

)
+
(
m̄2
σ + 2λ̄σκ

)
iȦ︸︷︷︸

∂tλ̄ψ/(2h̄)

, (4.56)

where the first and the second term of the rhs of Eqn. (4.56) are the standard flows and the

third accounts for the rebosonisation.

With this we have determined both equations for the transformation functions and we

can determine the rebosonised flow equations for the other couplings. The rebosonised flow

of the wave function renormalisation of the meson is given by

Żσ
∣∣
φ

= ∂tZσ −
(
m2
σ + λσσ

2
0

)
Ḃ1, (4.57)

and its anomalous dimension is

ησ
∣∣
φ

= − Żσ
Zσ

∣∣
φ

= −ησ +
(
m̄2
σ + 2λ̄σκ

)
Ḃ1k

2. (4.58)

So it also receives a contribution to from the renormalised flow.

All other flow equations for the couplings do not change and are given by Eqns. (4.42),

(4.43), (4.44), (4.45) and (4.47). Hence

ηψ
∣∣
φ
≡ − Żψ

Zψ

∣∣
φ

= ηψ, (4.59)

˙̄λσ
∣∣
σ=σ0

= ˙̄λσ (4.60)

∂tm̄
2
σ

∣∣
φ

= ˙̄m2
σ, (4.61)

∂tκ
∣∣
φ

= − 1

λσσ2
0

∂σU̇(Φ2)
∣∣
σ=σ0

= ∂tκ. (4.62)

4.5 Stability of the rebosonised flows

With the rebosonised flows derived in the last section, we also checked that they are stable

against a variation of the initial scale ΛUV , see Fig. 4.11, and for a fixed ΛUV we varied the
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initial conditions of the other couplings, see Fig. 4.12. We find stable flows for all couplings.

Here we show exemplary the flow of the Yukawa coupling.

Fig. 4.11 shows that the system always drives the Yukawa coupling back to the stable

solution, however it also shows that choosing ΛUV somewhat smaller than 5 GeV also changes

the results in the IR as there is not enough momentum left to relax to the stable solution. In

this regime the dynamics of the system are influenced by the deviation of the flow. Similar

behaviour is also found for the other couplings. One should therefore choose ΛUV above or

equal to 5 GeV.

Fig. 4.12 shows the variation of the other initial conditions at fixed UV scale. The flow of

the Yukawa coupling and the other couplings is also stable. We varied the initial conditions

over a wide range of orders of magnitude and always obtain the correct result. However one

must be careful not to choose an initial value for the Yukawa coupling that is so large that it

forces the system deeply into the broken phase at already at the UV scale ΛUV .
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Figure 4.11: Flow of the Yukawa coupling with various initial scales. All parameters except

for ΛUV are specified as in Eqns. (C.11), (C.12), (C.13) and (C.14) in App. C.3.

4.6 Flow equations at non-vanishing temperature and chemi-

cal potential

At non-zero temperature and chemical potential we included the flow of the ground state

of the effective potential of the matter sector, ∂tκ, the scalar coupling ∂tλσ and the gauge

field background A0 as a function of temperature and imaginary chemical potential. We also

calculated the scale dependent pressure. Their flow equations at non-zero temperature and



58 4. Setting the stage

h
(k

)

k[GeV]

0.01 0.1 1 10 100

10

15

�UV�90 GeV, Ε�100, ΛΣ�0.001, h�0.001
�UV�90 GeV, Ε�10, ΛΣ�0.001, h�0.001
�UV�90 GeV, Ε�4.89, ΛΣ�0.001, h�0.01
�UV�90 GeV, Ε�4.89, ΛΣ�0.001, h�0.1
�UV�90 GeV, Ε�4.89, ΛΣ�0.001, h�1
�UV�90 GeV, Ε�4.89, ΛΣ�0.001, h�0.001

initial conditions

Figure 4.12: Flow of the Yukawa coupling with various initial conditions. The IR value of h

does not change and the system is stable.

non-vanishing real and imaginary chemical potential are given by

∂tκ = −2κ+ 2
κ

M̄2
σ

·

·
{

6 v(d− 1)λσ l
B
1 (M̄2

σ , T̄ ; 0, Zσ) + 2(N2
f − 1) v(d− 1)λσ l

B
1 (M̄2

π , T̄ ; 0, Zσ)

−8 v(d− 1)h2Nf

∑
EVi

lF1 (M̄2
ψ, T̄ , µ̄,EVi; 0, Zψ)

} (4.63)

∂tλσ = 18 v(d− 1)λ2
σ l
B
2 (M̄2

σ , T̄ ; 0, Zσ) + 2 (N2
f − 1) v(d− 1)λ2

σ l
B
2 (M̄2

π , T̄ ; 0, Zσ)

−8 v(d− 1)h4Nf

∑
EVi

lF2 (M̄2
ψ, T̄ , µ̄,EVi; 0, Zψ)

 (4.64)

∂tc = −c 3. (4.65)

Note that due to the gauge field background and imaginary chemical potential, we included

here a sum over the eigenvalues, which are given in App. A.3.1. The flow equation for the

pressure is given by

∂tp = −T̄−d
(

2 v(d− 1)

{
lBtherm(M̄2

σ , T̄ ; 0, Zσ) + (N2
f − 1) lBtherm(M̄2

π , T̄ ; 0, Zσ)

}

−8 v(d− 1)Nf

∑
EVi

lFtherm(M̄2
ψ, T̄ , µ̄,EVi; 0, Zψ)

)
. (4.66)

The threshold function associated with its flow are also given in App. B.2.
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4.7 Determining the QCD anomalous dimensions for the flow

at T 6= 0 6= µ

In the next steps we want to calculate the contribution of ∆ηAq to ηC from the propagators

from [154]. In addition to the calculation at imaginary chemical potential we want to find

the already fully coupled solutions for the anomalous dimensions of the ghost and the gluon.

Therefore we determine the expressions for them in QCD given in terms of the YM and the

quark contribution. We then have a set of coupled equations that is solved simultaneously

with the other flow equations. The gluon anomalous dimension is given by

ηA(k2) = ηAQCD(p2)

∣∣∣∣
YM, p2=k2

+ ∆ηAq(k
2). (4.67)

where

ηAQCD

∣∣∣∣
YM

= ηAA + ηAC . (4.68)

Her we denoted all contributions from gluon loops with the subscript A and the ghost con-

tribution to the gluon anomalous dimension with the subscript C, see e.g. Figs. 4.6, 4.3. So

actually the gluon propagator depends on the QCD gluon and ghost propagators. So we can

rewrite αs in terms of the pure YM and the full QCD contributions

αs = αsYM
ZAYMZ

2
CYM

ZAZ2
C

. (4.69)

So then we can express the anomalous dimension of the ghost in this fashion

ηC = ηCYM ·
αs
αsYM

· 4− ηA − ηC
4− ηAYM − ηCYM

(4.70)

Now we need to determine ηAA and ηAC for the gluon and we find

ηAA = ηAAYM ·
2− ηA

2− ηAYM
· αs
αsYM

(4.71)

ηAC = ηACYM ·
2− ηC

2− ηCYM
· αs
αsYM

. (4.72)

The flow equation for the coupling is then given by

α̇s = αs (ηA + 2ηC) . (4.73)

In summary we find for the anomalous dimensions of the ghost and the gluon

ηC = ηCYM ·
αs
αsYM

· 4− ηA − ηC
4− ηAYM − ηCYM

(4.74)

ηA = ηAA + ηAC + ∆ηAq , (4.75)

which depend solely on αs and the YM input. This means that we can reorganise equa-

tions (4.74), (4.75) and (4.73) such that ηA and ηC are only functions of αs.
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Figure 4.13: Matching the full momentum flow of ηAC with ΛUV = 10 GeV.

Next we want to normalise the ηAQCD
∣∣
YM

input given by the flow contributions fAC and

fAA so that

fAQCD |YM = fAA + fAC with ηAQCD |YM = −fAQCD |YM
ZAQCDk

2
. (4.76)

where, of course the total flow is given by the individual contributions pA =
fAA
fAYM

and

pC =
fAC
fAYM

yielding pA + pC = 1. This amounts to

ηAAYM = pA · ηAYM (4.77)

ηACYM = pC · ηAYM . (4.78)

We then normalise the flow contributions such that in the IR fAC agrees with ηAYM and in

the UV we find ηCYM and obtain

pC ≡
#fAC + norm.

fAYM
, (4.79)

where the factor # and the constant norm. is obtained by fitting to the functions. Further

we find

pC · ηAYM =
#fAC + norm.

ZAYMk
2

= ηACYM (4.80)

pA · ηAYM = ηAYM −
#fAC + norm.

ZAYMk
2

= ηAAYM . (4.81)

The normalisation is shown in Fig. 4.13, where the flow matches ηAYM in the IR and ηCYM
in the UV.



Chapter 5

The phase diagram at imaginary

chemical potential

The physical quark masses vary over a wide range, from a few MeV up to 102 GeV, see

Tab. 5.1. Consequently the lighter quarks contribute more to the dynamics of QCD as the

heavy quarks. The two lightest quarks are the u and the d and are compared to all other

quarks nearly degenerate and massless. Moreover one could also argue that the s belongs to

the light quarks, as the remaining c, b and t are much heavier in comparison. It is therefore

a reasonable approximation to study QCD with Nf = 2 or Nf = 2 + 1 flavours. This also

agrees with the intrinsic scale of QCD, ΛQCD, which is around 200 MeV. The order of this

scale is the important dynamical regime of QCD. It is also the regime, where the QCD phase

transition takes place.

u c t

1-3 MeV 1 GeV 170 GeV

d s b

4-5 MeV 100 MeV 4 GeV

Table 5.1: The rounded quark masses from [181] . The u and the d quark are nearly degenerate

and together with the s they are much lighter than the other three quarks.

At vanishing chemical potential but non-zero temperature one can depict the confine-

ment–deconfinement and the chiral phase transitions as functions of the three light quark

masses, see Fig. 5.1 and Ref. [182].

In the Nf = 3 chiral limit QCD exhibits at high temperatures exact chiral symmetry

which is broken at low temperatures and the phase transition is a first order transition.

As seen by lattice simulations, see e.g. [76] and references therein, the area of first order

transition is extended from the chiral limit to an area for a number of quark masses. For

infinitely heavy quarks and Nf = 3, QCD is a pure SU(3) gauge theory. Here one finds a

first order confinement–deconfinement transition [147, 183]. Inbetween, the transitions soften

61
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to crossovers, and the first order regions end in second order lines. The point with physical

quark masses seems to lie in the crossover area [80, 86, 87, 91, 183, 184].

Nf = 2

Nf = 1

∞

ms crossover

1st

N f
=

3

pure YM

0

∞

mu, md
0

2nd
chiral

2nd

deconfinement

1st

1st

phys.
point

Figure 5.1: A sketch of the phase transitions for vanishing chemical potential in the quark

mass plane, the so-called Columbia plot [182]. The first order regions are coloured in green,

the second order transition lines are indicated with the blue lines and the white area stands

for the crossover region. In the lower left corner all three quark masses are equal and vanish,

so there we find the chiral limit with Nf = 3. The upper left corner has only two dynamical

quarks with equal masses, so we find the Nf = 2 chiral limit. In the upper right corner all

quark masses are equal but infinite, hence we are left with a pure SU(3) gauge theory and

no dynamical quarks. In the lower right corner we find only one dynamical massless quark

flavour, so Nf = 1 in the chiral limit. On the diagonal all quarks have the same mass which

is greater than zero and smaller than infinity appart from the corners and as we go away

from the diagonal we have all possibilities for Nf = 1 + 1 + 1 or if we walk along a parallel

to the mu, md axis Nf = 2 + 1.

Extending this picture to non-zero chemical potential, one obtains a three dimensional

plot. The second order transition lines now become critical surfaces and the physical point

becomes a line. To determine the order of the phase transition in the QCD phase diagram

spanned by temperature and chemical potential, it is crucial to know in which direction the

critical surface bends.

If it bends away from the physical line, there will be no first order transition in the phase

diagram with physical quark masses so one only observes a crossover when increasing the

chemical potential. This is called the non-standard scenario and is depicted in Fig. 5.2.

On the other hand, if the critical surface bends towards the physical line, it pierces it and

the line possibly stays in the first order area. This means that at low chemical potentials

one observes a crossover, then a second order point followed by a first order transition line.

This is called the standard scenario, see Fig. 5.3, as lattice calculations indicate a crossover
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(right) curvature. If the physical point is in the crossover region for µ = 0, a finite µ chiral
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region expands with µ. Note that for heavy quarks, the first-order region shrinks with µ,

cf. Sec. 5.5. Lower panel: phase diagrams for fixed quark mass (here Nf = 3) corresponding

to the two scenarios depicted above.

5.3 Critical point for fixed masses: reweighting and Taylor
expansion

Reweighting methods at physical quark masses get a signal for a critical point at
µE

B ∼ 360 MeV (Fodor and Katz, 2004). In this work L3 × 4 lattices with L = 6 − 12
were used, working with the standard staggered fermion action. Quark masses were
tuned to mu,d/Tc ≈ 0.037, ms/Tc ≈ 1, corresponding to the mass ratios mπ/mρ ≈
0.19, mπ/mK ≈ 0.27, which are close to their physical values. A Lee-Yang zero analysis
was employed in order to find the change from crossover behaviour at µ = 0 to a first
order transition for µ > µE . This is shown in Fig. 5.3. For a crossover the partition
function has zeroes only off the real axis, whereas for a phase transition the zero moves
to the real axis when extrapolated to infinite volume. For a critical discussion of the
use of Lee-Yang zeros in combination with reweighting, see (Ejiri, 2006). A caveat of
this calculation is the observation that the critical point is found in the immediate
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Figure 5.2: The non-standard scenario. The Columbia plot (left panel) for non-zero chemical

potential and the corresponding phase diagram (right panel) both taken from Ref. [115].

The physical line does not pierce the critical surface as the first order regime shrinks with

increasing chemical potential and as a result there is no critical endpoint and first order phase

transition in the phase diagram.

at small chemical potentials and model studies which are valid at finite chemical potential

and small temperatures indicate a first order transition, see e.g. [93] and [80] and references

therein.

At the moment it is not clear which of these scenarios is realised in nature and whether

the critical surface changes from bending outwards to inwards and vice versa, it could even

change several times resulting in more than one second order point or simply shifting the

location of the second order point to high values of the chemical potential.

One can now imagine extending the Columbia plot not only in the real chemical potential

direction but also in the imaginary chemical potential direction, by using the square of chem-

ical potential as a variable. The critical second order surface at µ2 < 0 stores information

about the behaviour at µ2 > 0 as the two are smoothly connected, see Fig. 5.4. At least for

small to moderate chemical potentials one should be able to deduce the bending of the phase

boundary.

With the FRG approach, we can study the phase diagram at imaginary and vanishing

chemical potential and compare to lattice studies. The comparison with lattice QCD cal-

culations at imaginary and zero chemical potential gives an estimate of the quality of our

approximation. In future analyses this can then be used to give constraints to lattice estimates

and expansions for real chemical potential.
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tuned to mu,d/Tc ≈ 0.037, ms/Tc ≈ 1, corresponding to the mass ratios mπ/mρ ≈
0.19, mπ/mK ≈ 0.27, which are close to their physical values. A Lee-Yang zero analysis
was employed in order to find the change from crossover behaviour at µ = 0 to a first
order transition for µ > µE . This is shown in Fig. 5.3. For a crossover the partition
function has zeroes only off the real axis, whereas for a phase transition the zero moves
to the real axis when extrapolated to infinite volume. For a critical discussion of the
use of Lee-Yang zeros in combination with reweighting, see (Ejiri, 2006). A caveat of
this calculation is the observation that the critical point is found in the immediate

Figure 5.3: The standard scenario. The Columbia plot for non-zero chemical potential and the

phase diagram taken from Ref. [115]. The second order point appears due to the intersection

of the critical surface and the physical line. For larger chemical potential we stay in the first

order regime.
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Figure 2: 3d phase diagram. The vertical axis is (µ/T )2, so that real and imaginary chemical potentials
are above and below the µ = 0 plane, respectively. The “bottom plane” corresponds to the Roberge-Weiss
transition value µ/T = i"/3. The thicker red lines are tricritical. Tricritical points marked “2” and “3” have
been identified for the Nf = 2 [14] and Nf = 3 [15] theories, respectively. The object of the present study is
the blue line in the “backplane”ms = ! (Nf = 2) joining two tricritical points.

assumption of continuity of the tricritical lines can be checked directly by numerical simulations,
since there is no sign problem for imaginary µ .

Now, as (µ/T )2 is varied between zero and the Roberge-Weiss value −("/3)2, the Columbia
plot must change from Fig. 1 (left) to Fig. 3 (right). Assuming continuity of the critical surfaces
at imaginary µ , which again can be checked by numerical simulations, the resulting 3-dimensional
phase diagram is that of Fig. 2. The two red surfaces (“chiral” and “deconfinement”) are critical.
They are bounded by lines, among which the following are tricritical: (i) the two lines in the
(µ/T )2 = −("/3)2 Roberge-Weiss plane; (ii) the line in the mu,d = 0 chiral plane. Note that the
Nf = 2 (i.e. ms = !) “backplane” contains two tricritical points on the chiral critical surface: one
in the Roberge-Weiss plane, the other on the mu,d = 0 vertical axis (see Fig. 2). The location of the
latter is related to the value of the tricritical strange quark mass.

4. Tricritical scaling

In the vicinity of a tricritical point, scaling laws apply. The phase diagram is similar to that of
a metamagnet, with two external fields: H , which respects the symmetry, and H† which breaks it
(like a staggered and an ordinary magnetic field), depicted Fig. 4 (left). The three surfaces S0,S+,S−
indicate first-order transitions. They meet at a line of triple points L# , depicted by a solid line. They
are bounded by second-order transition lines, depicted by dotted lines. All four lines meet at the
tricritical point (Tt ,Ht).

4

Figure 5.4: The Columbia plot including chemical potential squared. Imaginary chemical

potential corresponds to µ2 < 0 and real chemical potential is plotted for µ2 > 0. The plot

was taken from Ref. [185].
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5.1 The Roberge–Weiss phase transition

At imaginary chemical potential θ, which is related to real chemical potential µ by θ = −iµβ
with β = 1/T , the QCD phase diagram looks qualitatively different than at real chemical

potential. QCD shows a periodicity of 2π/N in θ [186]: Following the line of arguments of

Ref. [186], the partition function of QCD with imaginary chemical potential is given by1

Z[θ] =

∫
DψDψ̄DA exp

{∫
x
ψ̄(i /D + im− γ0θ/β)ψ +

1

4
F aµνF

a
µν

}
. (5.1)

It follows then with the gauge transformations that the fields ψ and Aµ transform as

ψ → Uψ, Aµ → UAµU
−1 − i

g
(∂µU)U−1, (5.2)

where U ∈ SU(N) and U(β, x) = e2πik/NU(0, x) with k ∈ N. This means that the transfor-

mations U are periodic up to the center elements e2πik/N . The action and the measure in

eq. (5.1) are periodic under such a transformation, however the boundary conditions of the

quarks are not

ψ(β, x) = e2πik/Neiθψ(0, x). (5.3)

Inserting (5.3) into the partition function (5.1) one obtains the periodicity in θ

Z[θ] = Z

[
θ +

2πk

N

]
. (5.4)

This is called the Roberge–Weiss (RW) periodicity. Quantities that are related to the partition

function such as the chiral condensate show this periodicity.

Furthermore at high temperatures the free energy shows discontinuities at θ = 2π(k +
1
2)/N and none at low temperatures, this is called the RW phase transition. The Polyakov

loop, which is not invariant under the center transformation (5.2) with θ → θ+2πk/N , can be

modified such that it respects this periodicity 〈L〉(θ) = 〈L〉eiθ. Then one can study the these

transitions by looking at 〈L〉(θ). The Polyakov loop shows discontinuities at θ → θ+ 2πk/N ,

signaling first order transitions, however they are transitions in the first order transitions,

however they are transitions in the phase of the Polyakov loop and not the usual deconfine-

ment transition [187]. Hence they are called Polyakov loop RW transitions.

One can now sketch a phase diagram for µ2: for imaginary chemical potential it shows

the periodically occurring Polyakov loop RW transitions which connects smoothly to real

chemical potential, see Fig. 5.5. The RW endpoint is a first order point in the limit for

small and large quark masses and weakens for intermediate. The second order transitions

end in the first order transitions in the vicinity of the RW endpoint (Polyakov loop RW

transitions) [188–193].

1Note that here in contradistinction to the following chapters the factor 2π does not appear in the partition

function so that the periodicity we derive is given by Eqn. (5.4). In the rest of this thesis we use the definitions

2πθ = −iµβ such that the partition function is periodic under θ → θ + k
N

. We utilise this redefinition for an

improved readability.
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Figure 5.5: A sketch of the QCD phase diagram including chemical potential squared µ2. For

µ2 > 0, the picture is the same as in Fig. 1.1, for µ2 < 0, the phase transitions end in the

RW endpoints and are followed by the RW phase transition for the Polyakov loop.

5.2 Dual order parameters

As introduced in Sec 2.5, the Polyakov loop serves as an order parameter for the confine-

ment–deconfinement phase transition as it is sensitive to center transformations and it is

connected to the free energy of a quark, where a non-vanishing value of 〈L〉 signals center

symmetry breaking. This also means that any observable that transforms non-trivially under

center transformations serves as an order parameter, as it vanishes in the symmetric phase

and it is non-zero in the broken phase. This has been studied in [194–197], where the

spectral properties of the Dirac operator have been related to the expectation value of the

Polyakov loop. The relation stems from the observation that, in contradistinction to the

gauge fields, the periodicity properties of the quark fields change under application of a

gauge transformation Uz,

ψUz(t+ β, ~x) = −zψUz(t, ~x) . (5.5)

We can generalise the condition (5.5) such that it is enclosed in boundary conditions that

depend on an angle θ

ψθ(t+ β, ~x) = −e2πiθψθ(t, ~x) . (5.6)

Here all possible boundary conditions for the quark fields are included, especially the ones

given by (5.5) with the center phases z = 1l e2πiθz and θz = 0, 1/3, 2/3 for SU(3). The quarks

with the boundary conditions in (5.6) can be rewritten in terms of physical quarks with

anti-periodic boundary conditions

ψθ(x) = e2πθi t/βψ(x) with ψ(x) = ψθ=0(x) . (5.7)

This means that for vanishing angle θ we retrieve the physical quarks. Later, when we con-

sider a phase diagram, where we vary θ, we actually look at different theories where the
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difference stems from the different phases θ of the quarks. This means that only for vanish-

ing θ we recover QCD, for all other values of θ we find a theory similar to QCD but with the

quarks having boundary conditions that are not the physical ones. In the next steps we show

that introducing this angle is formally the same thing as introducing an imaginary chemical

potential [68], and see also [69].

Due to the periodicity in θ, see Eqn. (5.7), general observables that depend on the quark

fields Oθ = 〈O[ψθ]〉 can be represented in a Fourier decomposition,

Oθ =
∑
l∈Z

e2πilθOl , (5.8)

where we call the moments Ol dual observables. A center transformation (5.5) can be rewrit-

ten as a shift in θ → θ+ θz, and implies that the moments Ol change under a center sensitive

gauge transformation Uz into zlOl. Therefore every moment Ol with l ∈ Z and l mod Nc 6= 0

has to vanish in the center-symmetric phase as it is proportional to a sum over the center

elements z ∑
z∈Z

zl = Ncδl mod Nc,0. (5.9)

One example for a dual observable is Lθ = e2πi θ〈L〉, which reflects the boundary conditions

(5.6). The observables Oθ can either be evaluated in QCD with anti-periodic quarks [194–

197], or in QCD at imaginary chemical potential, QCDθ, with quarks having θ-dependent

boundary conditions [68].

In summary, the moments Ol 6≡ 0 with l mod Nc 6= 0 are order parameters for the

confinement–deconfinement phase transition for both, QCD and QCDθ. In particular the

first moment O1 is an order parameter for all Nc,

Õ =

∫ 1

0
dθ e−2πiθOθ , (5.10)

so one example is the dual Polyakov loop which is in QCD 〈L〉.

Now we consider QCDθ. Its generating functional is given by

Zθ[J ]=

∫
dAdψθdψ̄θ e−S[A,ψθ,ψ̄θ]+

∫
Jφθ , (5.11)

with the θ-dependent fields φθ = (A,ψθ, ψ̄θ, ...) and the source J = (JA, η̄, η, ...). The dots

stand for the ghost and composite hadronic fields, see e.g. [31, 60]. Here, S denotes the

standard QCD action, see Eqn. (2.1), and includes a Dirac action with θ-dependent quark

fields ∫
ψ̄θ (iD/ + im)ψθ =

∫
ψ̄

(
iD/ + im− 2π

1

β
γ0θ

)
ψ . (5.12)

The rhs of Eqn. (5.12) is simply the Dirac action with an imaginary chemical potential θ

which is related to real chemical potential µ = 2πi θ/β, see Eqn. (5.1). If θ takes one of the
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center values θz, we can define ψUz = ψθz with the transformations Uz as in (5.5) and an anti-

periodic quark field ψ. The center phases θz can now be absorbed in center transformations

of the gauge field A → AU
†
z . If we look at the generating functional Zθ, we find that for

vanishing current J it obeys the RW periodicity [186], see also [198–201],

Zθ[0] = Zθ+1/Nc [0] , (5.13)

which on the other hand also means that the symmetry is broken if a source term propor-

tional to J is present. Furthermore, any observable that depends on the quark fields, Oθ
in QCDθ is RW-symmetric for vanishing current J = 0. Hence only the center-symmetric

Fourier coefficients ONcl are non-zero, whereas all other vanish identically: Ol ≡ 0 for l 6= Ncl

and we are not able to see a phase transition. This means that if RW periodicity is not

somehow broken explicitly, all Ol vanish. And the introduction of a non-vanishing current

JA for the gauge field breaks the RW-symmetry, and leads to Ol 6= 0 for l mod Nc 6= 0. This

is implemented e.g. by a θ-independent gauge-field background ϕ.

So we find that the dual observables with l mod Nc 6= 0 are order parameters for con-

finement. One simple and easily accessible confinement order parameter in QCDθ is the dual

density

ñ[φJ ] ≡
∫ 1

0
dθ e−2πiθnθ = iβ

∫ 1

0
dθ e−2πiθ lnZθ[J ] , (5.14)

where φJ = 〈φ〉J . The density nθ is the derivative of the partition function with respect to

the chemical potential 2π θ/β,

nθ[φJ ] =

∫
d4x 〈ψ̄γ0ψ〉θ =

β

2π
∂θ lnZθ[J ] . (5.15)

On the rhs of Eqn. (5.14) we have integrated by parts and used that Z0[J ] = Z1[J ]. Eqn. (5.14)

tells us that the dual density ñ[φ] is proportional to the first moment of the grand canonical

potential Z1(J) in the presence of a gauge field background ϕ so with explicitly broken RW

symmetry. We now perform integration by parts and obtain the fermionic pressure difference

∆P (T, θ) = P (T, θ) − P (T, 0), see Fig. 5.6. At θ = 1/2 it shows a maximum in the direc-

tion of imaginary chemical potential for all temperatures, as θ differs here maximally from

zero. Here it grows proportional to T 3 as it is proportional to the first moment of the grand

canonical potential and the integrated θ-dependence is expected to be leading order. Fig. 5.6

shows also that the pressure difference at low temperatures no longer depends on imaginary

chemical potential or the boundary conditions of the quark fields, as it is completely flat [202].

This means that at low temperatures the difference between the boundary conditions of the

quarks does not play a role.

The above analysis for the dual density extends to general observables Oθ[φJ ]. They give

observables in different theories distinguished by the boundary condition. Hence the order

parameters Õ in (5.10) in the presence of a fixed background φJ = 〈φ〉J vanish only if QCDθ

is in the center symmetric phase for all boundary conditions. Therefore e.g. the pressure
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Figure 5.6: The pressure difference ∆P (T, θ) as a function of temperature and imaginary

chemical potential.

difference, see Fig. 5.6, does not vanish everywhere.

However, the transition temperature in QCD, Tconf = Tconf(θ = 0), is a lower bound for

Tconf(θ), which can be seen in Fig. 5.11. Thus, the dual phase transition temperatures T̃conf

are identical with the physical one, T̃conf = Tconf .

Some interesting properties of dual order parameters can be accessed analytically. To that

end it is convenient to study observables in terms of the quantum effective action 3.2. The

current J is given by the derivative of the effective action with respect to φ, so J = δΓ[φ]/δφ,

and vanishes on the equations of motion with the θ-dependent mean value φ̄θ = φJ=0. For

example, the dual density (5.14) is then given by

ñ[φ] = −iβ
∫ 1

0
dθ e−2πiθΓ[φ] . (5.16)

As discussed above for φ = φ̄θ, the dual observables vanish so that ñ[φ̄θ] = 0. This follows

from the RW-symmetry of Γ[φ̄θ] which is a consequence of that of Zθ. For its direct proof it is

sufficient to examine Γ[φ] for constant gauge field configurations A0 in the Cartan subalgebra.

The θ-dependence of the effective action Γ[φ] is found in the sums of terms with fermionic

Matsubara frequencies, so in the zero component of the Dirac action,

iD0 − 2πTθ = 2πT

((
n+

1

2
− θ
)
13 +

βgA0

2π

)
, (5.17)

where here the background field A0 is spanned by the three- and the eight-direction in the

Cartan subalgebra for Nc = 3

βgA0

2π
=
ϕ3

2π

λ3

2
+
ϕ8

2π

λ8

2
. (5.18)

The λ3 and λ8 are the Gell-Mann matrices in the fundamental representation, see App. A.3.

Most of the θ-dependence can be reabsorbed in a θ-dependent gauge field A0(θ). Where



70 5. The phase diagram at imaginary chemical potential

Figure 5.7: The pion decay constant as a function of imaginary chemical potential and

temperature. The value θ = 0 corresponds to QCD at vanishing chemical potential. The

periodicity in θ is apparent. fπ vanishes above the transition and is finite below.
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Figure 5.8: The dual quark mass parameter as a function of temperature and imaginary

chemical potential. The RW symmetry is not broken, hence it does not vanish everywhere

above the phase transition.
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Eqn. (5.17) then reads

2πT

(n+
1

2

)
13 +

1

4π


ϕ3 + ϕ8√

3
− 2(2π)θ 0 0

0 −ϕ3 + ϕ8√
3
− 2(2π)θ 0

0 0 −2ϕ8√
3
− 2(2π)θ


 .

(5.19)

We then use the substitutions ϕ̂3 = ϕ3 + 3(2π)θ and ϕ̂8 = ϕ8 +
√

3(2π)θ. Then we find the

simple expression

2πT

(n+
1

2

)
13 +

1

4π


ϕ̂3 + ϕ̂8√

3
− 6(2π)θ 0 0

0 −ϕ̂3 + ϕ̂8√
3

0

0 0 −2ϕ8√
3


 . (5.20)

We can extend this to general Nc and it is now clear that the RW-symmetry is explicit in

the Matsubara frequencies

2πT

(
n+

1

2
+

1

4π
Φi −Nc δi1 θ

)
, i = 1, ..., Nc , (5.21)

where the Φi’s are the eigenvalues of the matrix ϕ̂ = 2βgA0(θ): the shift θ → θ + θz is

absorbed in a center gauge transformation of the ϕi’s as well as in a shift of the Matsubara

sum

θ → θ + θz (5.22)

ϕ3 → ϕ3 + 3(2π)θz (5.23)

ϕ8 → ϕ8 + 3(2π)θz. (5.24)

Under this combined transformation the ϕ̂i’s are invariant and so is the effective action. In

particular we conclude from the above that any expansion scheme based on fixed field variables

ϕ̂i is form-invariant under the transformation θ → θ + θz. Moreover, the observables Oθ[φ̄θ]
are invariant, and therefore also Õ[φ̄θ] ≡ 0. In turn, observables Õ[φ] with θ-independent

gauge field background ϕ are order parameters for confinement as such a background explic-

itly breaks the RW-symmetry. In particular this includes Õ[φ] with ϕ = ϕ̄ = ϕ̄θ=0 and ϕ = 0.

One can then find simple observables Õ[φ] which follow directly from the vertices Γ(n)[φ]

in QCDθ. This includes the dual density (5.16) as well as the dual chiral condensate with

Oθ[φJ ] =
∫
d4x 〈ψ̄θψθ〉J for either ϕJ = ϕ̄θ=0 and for ϕJ = 0. The first case with ϕ̄ relates to

the lattice computations in QCD of dual order parameters [194–196]. The latter choice has

been used implicitly in [197, 203].

An even simpler observable is the dual quark mass parameter M̃ with

Mθ[φ] ∼ tr Γ
(2)

ψ̄ψ
[φ](p = 0). (5.25)
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The specific choice Mθ[φ̄θ] is directly related to the pion decay constant fπ in QCDθ, see

Fig 5.8. Due to the presence of a fixed background field it does not vanish in the broken and in

the symmetric phase. At θ = 1/2 closely above the phase transition it increases proportional

to
√
T and then linearly as the quarks effectively have bosonic Matsubara frequencies at

θ = 1/2. At θ = 0 the dual quark mass is zero above the transition. For vanishing current

it is related to the pion decay constant in QCD: the slice of the 3D plot at θ = 0 is the

(normalised) line shown in Fig. 5.9.

Another example is the modified Polyakov loop variable Lθ = e2πi θL with Lθ = 〈Lθ〉 and

L−θ[ϕ] =
1

Nc

Nc∑
i=1

e2πi( 1
4π

Φi[ϕ̂]+Ncδi1θ) . (5.26)

L−θ is invariant under θ → θ + θz at fixed ϕ̂. Hence, the Fourier coefficient O−1 vanishes,∫ 1
0 dθ〈L〉 = 0, which leads to L̃[φ̄θ] = 0. In turn, L̃[φ̄] = L[ϕ̄] simply is the Polyakov loop

variable introduced in [137, 146] as an order parameter for confinement.

The representation of the Polyakov loop in (5.26) leads to an interesting observation: in

quenched QCD the Oθ are given by sums from i = 1 to i = Nc of terms which only depend

on θ via the Matsubara frequencies (5.21). Thus, any observable Õ in (5.10) obeys

Õ[φ] =

∫ 1

0
dθ e−2πiθOθ[0]L[ϕ] = Õ[0]L[ϕ] , (5.27)

for θ-independent gauge field background ϕ and vanishing quark and mesonic backgrounds.

In (5.27) we have used that the Φi[ϕ]-dependence of the Matsubara sums can be redistributed

to the phase factor by shifting θ → θ + Φi[ϕ]/(4π) in each term. In fully dynamical QCDθ

the factorisation (5.27) only holds approximately.

5.3 RW invariance of the Polyakov loop potential

Also the non-perturbative Polyakov loop potential shows the RW invariance under the shift

θ → θ + θz. As before in the zero component of the Dirac term this shift can be absorbed

in the gauge fields. The Polyakov loop potential is given by a component from the glue

sector and one from the matter sector, see Eqn. (5.28). This means that in addition to the

eigenvalues of the zero component of the Dirac operator in the fundamental representation

we also need them in the adjoint representation. The Dirac operator there is given by a

8× 8 matrix with bosonic Matsubara frequencies, see App. A.3.1. Then we can express the

Polyakov loop potential

VPL = Vglue

[
±ϕ̂3 + 3(2π)θ,± ϕ̂3 +

√
3ϕ̂8

2
+ 3(2π)θ,± ϕ̂3 −

√
3ϕ̂8

2

]

+Vferm

 ϕ̂3 + ϕ̂8√
3

2
+ 3(2π)θ,

−ϕ̂3 + ϕ̂8√
3

2
,− ϕ̂8√

3

 , (5.28)

with the RW transformation given in Eqn. (5.24) we find that the potential is invariant.
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5.4 Results – The phase diagram

In our calculation of the phase diagram at imaginary chemical potential we use the truncation

given in Sec. 4.1, where we include the back-reaction of the matter sector on the gauge sector

through the vacuum polarisation from Refs. [89, 155]. The propagators for the pure Yang–

Mills theory are the ones given in Subsec. 4.2.2, where temperature is explicitly included

through the Matsubara sums. We also included a tiny explicit symmetry breaking term in the

effective potential of the matter sector Ubreak = −cσ, simplifying our calculations significantly

but without effecting the results. The initial conditions were chosen in the UV at the initial

scale ΛUV , see App. C.4. We implemented the threshold functions given in App. B.2. There,

we assumed the Yukawa coupling to be non-zero but constant and the four-fermion coupling

and its flow to vanish. The wave function renormalisation of the quark stays very close to

1 for all momenta, so we assume that Zψ = 1. We also set the anomalous dimension of the

scalar fields to zero. The strong coupling αs includes the full propagators from QCD within

our approximation 4.1 and is given in Subsec. 4.2.3. The quarks are coupled to the gluon

propagator (which also enters the running coupling αs) via the anomalous dimension

ηA = ηAYM + ∆ηAq . (5.29)

At vanishing chemical potential we consider the order parameters of the chiral and the

deconfinement phase transition, the Polyakov loop, the dual density and the pion decay

constant, see Fig. 5.9. Above Tc = 181 MeV the pion decay constant vanishes and chiral
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Figure 5.9: The pion decay constant, the dual density and the Polyakov loop as functions of

temperature, χL = ∂TL, χdual = ∂T ñ.

symmetry is restored. The dual density ñ[φ̄] and the Polyakov loop L[ϕ̄] both show a peak in

their temperature derivative at Tc ≈ 178 MeV. This provides a non-trivial consistency check
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of our approximation as the Polyakov loop is computed from gluonic correlation functions,

whereas the dual density is computed from matter correlation functions. We find that the

chiral and the deconfinement transition agree within a few MeV. The comparison of the

Polyakov loop L[ϕ̄] and the normalised dual density ñ[φ̄]/ñ[0], see Fig. 5.10, shows that

the factorisation (5.27) holds also in QCD approximately. Both, the dual density and the

Polyakov loop differ only on the percent level, which is another consistency check for our

approximation. The critical temperatures for the chiral and the confinement–deconfinement

temperatures for Nf = 2 in Landau gauge in the chiral limit agree well within the widths of

the crossover with lattice results, see e.g. [199, 204, 205].
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Figure 5.10: Comparison of the Polyakov loop and the dual density. Figure taken from [206].

Fig. 5.7 displays the pion decay constant as a function of imaginary chemical potential

and temperature, which is proportional to the quark mass parameter Mθ evaluated at φ̄θ,

see Fig. 5.8. Here, in Fig. 5.7, the RW symmetry is not broken. For T > Tc,χ fπ(θ) vanishes

and it is non-zero below Tc,χ. Due to the chiral limit we find a second order transition. For

vanishing temperature it approches 90 MeV. Fig. 5.11 is a plot of the QCD phase diagram

at imaginary chemical potential. The chiral and the deconfinement transition agree within

the width of the temperature derivative of the Polyakov loop throughout the phase diagram.

The deconfinement transition occurs at lower critical temperatures than the chiral transition.

This was also found by lattice computations [200, 207, 208]. In the PNJL, see e.g. [191], the

lattice results have been reproduced by adjusting model parameters connected to an eight

quark interaction. In our approach to QCD with imaginary chemical potential, the coinciding

temperatures are a result solely due to the interplay of quantum interactions and have not

been adjusted by hand. A first guess suggests that this is also the case at real chemical

potential. An estimate of the corresponding quantum fluctuations within a PQM model also

leads to coinciding critical temperatures at real chemical potential [90, 91, 100]. Also recent

DSE results support this picture [84–86].
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Figure 5.11: The QCD phase diagram at imaginary chemical potential. The grey band

represents the width of the susceptibility of the Polyakov loop. The dashed line gives the

crossover temperature, the solid line stands for the chiral phase transition. Black dots indicate

the endpoints of the Polyakov loop RW transitions.
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Chapter 6

The QCD phase diagram at real

chemical potential

In the last chapter we presented the first results on µ = 0 at non-zero temperature. In this

chapter we apply the fully rebosonised flow equations and determine the masses of the matter

sector at vanishing temperature and chemical potential. Next, we show preliminary results

on the QCD phase diagram at real chemical potential. Then we compare the Yang–Mills

and the glue Polyakov loop potential and explain how the matching of the YM and the glue

temperature scales improve model studies, like the PQM model. Therefore we present results

for the thermodynamic observables and compare them to lattice results.

6.1 Vanishing temperature and chemical potential

At vanishing temperature and vanishing chemical potential we study Nf = 2 QCD in the

chiral limit given by the truncation in Eqn. (4.1). Here we make use of the fully rebosonised

equations given in Sec. 4.3 and utilise the threshold functions given in App. B.1. Our initial

conditions at vanishing chemical potential and temperature are given in App. C.3. Note

that we do not fix the pion decay constant, but only match the coupling αs to the 2-loop

perturbative result in the UV. We apply the rebosonisation technique from Subsec. 3.4.2.

Apart from the coupling in the UV, we do not fix any other values. Here, the gluon and ghost

propagators are fully momentum dependent [152]. It is an upgrade of the setup we utilised

at real chemical potential, see Sec. 6.2. Before incorporating non-vanishing temperature

and quark chemical potential, we calculate the pion decay constant and the quark mass

in the IR. The running of the coupling αs is derived from the corresponding decoupling

propagators [152], so that in the IR the coupling must vanish.

6.1.1 Results

At vanishing chemical potential and temperature we find the pion decay constant to be

fπ = 62.6 MeV, the quark mass Mψ = 461.3 MeV and the σ-mass Mσ = 194 MeV [70].

Although these values deviate from the physical ones we emphasise that this is work in

77



78 6. The QCD phase diagram at real chemical potential

0 0.2 0.4 0.6 0.8 1
k [GeV]

0

0.1

0.2

0.3

0.4

0.5
m

Figure 6.1: The quark mass as a function of momentum scale k at vanishing temperature
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the IR. The data was obtained in [152].
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progress. The definitions we used here are

fπ = σ0, Mψ = hσ0 and Mσ =
√
λσσ0, (6.1)

evaluated in the IR. All couplings and masses strongly depend on the strong coupling αs, see

the flow equations in Sec. 4.3, such that e.g. a small change in the normalisation leads to a

large change in the results. For the values above we utilised the YM coupling from [152], see

Fig. 6.2. For k → 0, αs also vanishes, as the ghost and gluon propagators exhibit a decoupling

behaviour in the IR. Fig. 6.1 shows the scale dependent quark mass which is non-zero in the

chiral symmetry broken phase and it vanishes the symmetric phase. We find stable flows

for the couplings and anomalous dimensions where we show exemplarily the scale dependent

Yukawa coupling in Fig. 4.11 and 4.12. The figures show that if we vary the initial conditions

in the UV, the result in the IR does not change. Especially changing the initial UV scale,

ΛUV , yields interesting properties: the flow of the Yukawa coupling is driven to the solution

when ΛUV varies from 2 − 90 GeV, however if ΛUV is smaller, the flow cannot drive the

system completely back to the correct solution as not enough momentum is left. This causes

errors in the flow of the other couplings, as the mid-momentum regime is very important for

the dynamics of the system. Therefore it is necessary to choose ΛUV above 2 GeV, at least

when keeping the initial conditions for the other couplings fixed. In Fig. 4.12 we keep ΛUV

fixed and change the other initial conditions and we also find very stable flows.

6.2 Finite µ and T

We study real chemical potential with two degenerate quark flavours in the chiral limit given

by the truncation in Eqn. (4.1) and we include the momentum dependent wave function

renormalisations [154] with the quark vacuum polarisation in the anomalous dimension of

the gluon, see Sec. 4.7. We implement the same initial conditions as with imaginary chem-

ical potential, see App. C.4. First we tried to include also a scale dependent gauge field

background ϕ, however we find that the change to the results is minimal compared to the

numerical effort, as the effective potential, the Polyakov loop potential, only builds up late

in the flow, see Fig. 6.3. The small oscillations are due to the 3d regulator function but have

little impact on the results. Therefore we drop the scale dependence of ϕ. Note that it still is

temperature dependent. We fit the flow contribution of the ghost to the gluon propagator to

the ones obtained earlier. We match them such that in the IR it coincides with the anoma-

lous dimension for the gluon and in the UV with the anomalous dimension of the ghost, see

Fig. 4.13. The flow includes the scale dependent scalar coupling λσ, the minimum of the

effective potential κ and the trivial running of the symmetry breaking parameter c, the flow

equations are given in Sec. 4.6. The Yukawa coupling has a non-vanishing value at ΛUV but

does not flow and is adjusted such that in the IR the pion decay constant is 90 MeV and the

quark mass is 300 MeV. We match αs at 10 GeV to the perturbative value. We do not match

any other quantities, in particular we do not fit to thermodynamics from the lattice or else.

The contraints on the Yukawa coupling amounts to bosonising the system in the UV.
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Figure 6.3: The longitudinal (left panel) and the transversal (right panel) component of the

scale dependent effective potential for SU(2). The final form of the potential builds up late

in the flow.

6.2.1 Results

We show the Nf = 2 phase diagram in the chiral limit at real quark chemical potential, see

Fig. 6.4. The chiral and the confinement–deconfinement transitions seem to agree within

the width of the deconfinement crossover. Interestingly, the chiral transition seems to lie

above the confinement–deconfinement transition, however this picture has not been clari-

fied [71]. We find good agreement with DSE calculations [84–86] and FRG PQM model

calculations [91, 100] for the critical temperatures of the transitions, see Fig. 6.5. From our

preliminary results we estimate that if a critical endpoint exists, it seems to lie at larger

chemical potential. Further analyses involving the full temperature (this includes the explicit

and implicit temperature dependence) and momentum dependent propagators are necessary

to support or disprove this guess [209]. Lattice calculations, see e.g. [210], DSE [84, 85] and

PQM [91] results shown in Fig. 6.5 support this estimate.

Fig. 6.5 is an overlay of results for the QCD phase diagram from DSE [84], FRG model

[91] and our FRG [71] calculations. All results display the chiral and the confinement–decon-

finement transitions. The gray band stands for the width of the confinement–deconfinement

crossover from Ref. [91] and within this width and also the width we find, see Fig. 6.4, the

transitions agree. As mentioned before, all results estimate a critical endpoint at larger quark

chemical potential.

6.3 Comparison of the glue and the Yang–Mills Polyakov loop

potential

6.3.1 Matching the temperature scales

Models like the PQM or PNJL usually fit the dynamical glue sector at vanishing chemical po-

tential and temperature to the Yang–Mills lattice thermodynamics and use the temperature



6.3 Comparison of the glue and the Yang–Mills Polyakov loop potential 81

0 0.02 0.04 0.06 0.08 0.1
! [GeV]

0

0.2

0.4

0.6

0.8

1

Tdeconf(!)/Tdeconf(0)
T "!#/T "$#
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agreement. Here both the chiral and the confinement–deconfinement transitions are shown.
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obtain the full QCD potential. For the translation of the temperature scales only the glue

potential is relevant.

dependency of the Polyakov loop for the Polyakov loop potential. The form of the Yang–Mills

(only ghost and gluon contributions, so the pure gauge sector without any quark or matter

contributions to the propagators) and the glue (contains also the vacuum polarisation of the

gluon by the quarks and its feed-back to the ghosts) potential does not change, however the

temperature scales do. The problem is that both scales, the Yang–Mills and the glue scale

are very different. Parameters like the number of flavours and the chemical potential are one

of two examples that change the pure gauge (Yang–Mills) scale. It is therefore beneficial for

model studies to fit to the ansatz for the Polyakov loop potential to the glue scale. This was

anticipated in [90] where the authors use a phenomenological HTL approximation to model

the differences in the scales.

The Polyakov loop we implement depends on the expectation value of the zero component

of the gauge field, L[〈A0〉], and is an upper limit via the Jensen inequality to the expectation

value of the Polyakov loop variable which depends on the zero component of the gauge field,

〈L[A0]〉, see Sec. 2.5. The Polyakov loop potential was derived in Sec. 2.7, where the pure

Yang–Mills potential stems from [146] and the full glue potential was utilised in [68, 72]. In

the current approximation the Yang–Mills Polyakov loop potential shows a phase transition

at Tc = 276 MeV [146], whereas the glue potential shows a phase transition at Tc = 203

MeV [72]. To determine the scale factor translating the Yang-Mills temperature scale to the

glue temperature scale, we can look at the form of the potentials, see Fig. 6.6.

Although the temperature scales differ, the form of the effective potential for the gauge
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sector of QCD does not, see Fig. 6.6. We can use this property to fit the YM to the glue

potential. Therefore we define the reduced temperatures

tglue =
T − T glue

cr

T glue
cr

and tYM =
T − TYM

cr

TYM
cr

, (6.2)

where we find for the critical temperatures T glue
cr = 203 MeV [72]1 and TYM

cr = 276 MeV

[146]. Then the comparison of the forms of the potential yields the translation of the two

temperature scales

tYM(tglue) ≈ 0.57 tglue, (6.3)

which can now serve as input for model studies. Note that this approximation holds only

for small to moderate temperatures. At high temperatures the slope of Eqn. (6.3) saturates,

where the potentials reach their asymptotic perturbative form, the Weiss potential, see Sub-

sec. 2.7.1. Fig. 6.6 shows the comparison of the YM (light colours) and glue (dark colours)

potential for various reduced temperatures t. The similarities of the form is apparent.

6.3.2 Results for the thermodynamics of a PQM model

We utilise the results for the change in the YM temperature scale in a PQM model with

an logarithmic ansatz for the Polyakov loop potential [73]. Similar calculations have been

performed in [211], where lattice propagators were utilised.

In the PQM model the Polyakov loop Φ(~x) and its Hermitian conjugate Φ̄(~x) are given

by

Φ(~x) =
1

Nc
〈Tr L(~x)〉, Φ̄(~x) =

1

Nc
〈Tr L†(~x)〉. (6.4)

One can then construct an ansatz for the effective potential such that it captures confinement

properties for pure SU(3) YM theory. Usually the parameters of the model are fitted to the

results of the Polyakov loop and the thermodynamic observables of lattice results in pure YM

theory [126, 212, 213]. Here the effective potential is given by a logarithmic ansatz

U(Φ, Φ̄, T )

T 4
= −1

2
a(T ) ΦΦ̄ + b(T ) log

[
1− 6 ΦΦ̄ + 4

(
Φ3 + Φ̄3

)
− 3

(
ΦΦ̄
)2]

(6.5)

where the explicit temperature dependency enters through the functions

a(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

(6.6)

and

b(T ) = b3

(
T0

T

)3

. (6.7)

The parameters have been adjusted to the lattice results [214, 215] of the Polyakov loop and

the equation of state and are obtained from Ref. [213]. We then use the change in temperature

1Note that this is not the critical temperature obtained from the full QCD effective potential but only the

contribution stemming from the glue part of the potential.
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scale from YM to glue, see Eqn. (6.3) which also contains the back coupling of the matter

sector to the pure YM sector, see e.g. Fig. 4.3,

UYM(Φ, Φ̄, TYM)

T 4
YM

=
Uglue(Φ, Φ̄, Tglue)

T 4
glue

. (6.8)

The grand canonical potential of the Nf = 2 + 1 PQM model further contains also a contri-

bution from the quark-meson potential and the quarks. Where the mesonic potential is given

by [99, 216]. The quark contribution contains a coupling to the mesons via terms proportional

to the Yukawa coupling and a coupling to the glue sector through terms proportional to the

Polyakov loop [99, 216].
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Figure 6.7: The order parameters from the PQM model with the glue temperature scale. The

left panel shows the subtracted chiral condensate ∆l,s and the right panel shows the Polyakov

loop variable as functions of temperature normalised with the confinement–deconfinement or

the chiral critical temperature. Both do not change drastically when one includes the glue

temperature scale (orange solid lines), however they are smoother compared to the pure YM

results (red dashed curves). The lattice data (grey) was taken from [217]. ∆l,s is defined as

the fraction of the difference of the non-strange and the strange chiral condensate at non-zero

temperature divided by the same difference at zero temperature.

The thermodynamic observables we study in the following are pressure p, entropy density

s and energy density ε and are derived from the grand canonical ensemble Ω = −T lnZ/V ,

where Z is the partition function and V is the volume and are given by

p = −Ω (6.9)

s = −∂Ω

∂T
(6.10)

ε = Ω + Ts. (6.11)

The results are shown in Figs 6.7, 6.8 and 6.9. The glue temperature scaling does not have a

big effect on the order parameters of the chiral and the confinement–deconfinement transition,
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Figure 6.8: The left panel shows the entropy s/T 3 and the right panel shows the pressure

p/T 4 as functions of temperature normalised with the chiral critical temperature. The lattice

data stems from [217] and is given by the grey solid line. The red dashed curve utilises the

pure YM temperatures in the Polyakov loop potential whereas the orange solid line includes

the new improved glue temperature scaling. The new results agree very well with the lattice

results.
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Figure 6.9: The energy density ε/T 4 as a function of temperature normalised to the chiral

critical temperature. The energy density with the adjusted glue temperature (orange solid

line) is in very good agreement with the lattice results (grey solid line).

however they are smoother than the pure YM results. The difference between the YM and

the glue temperature scaling however does influence the thermodynamic observables. The

entropy, the pressure and the energy density are in very good agreement with the lattice

results. The results are improved significantly compared to the YM results.
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Chapter 7

Conclusion

In this thesis we studied QCD with two degenerate massless quark flavours with the Func-

tional Renormalisation Group at imaginary and real chemical potential. The aim was to

investigate the chiral and the confinement–deconfinement transitions and their interplay in

the QCD phase diagram.

To this end we derived the order parameters for both transitions, the chiral condensate

for the matter sector of QCD and the Polyakov loop for the gauge sector. The information

about the dynamics of the system is stored in the effective potentials from which the order

parameters are derived, so the mesonic potential for the matter sector and the Polyakov loop

potential for the gauge sector.

Due to the non-perturbative nature of QCD we applied the Functional Renormalisation

Group. The flow of the effective average action is described by the Wetterich equation. Our

ansatz included a vertex expansion up to third order in powers of the fields. The FRG is an

ideal method to study the QCD phase diagram as it can in principle scan all temperatures and

chemical potentials and has no difficulties at large coupling strengths or light quark masses.

The rebosonisation technique enables the theory to form bound states naturally during the

flow from the UV to the IR. We derived the general equations in Chap. 3.

In Chap. 4 we derived all technical details for our calculation. We specified the truncation

which includes in the matter sector the sigma meson, the pions and the quarks, and the ghosts

and gluons in the gauge sector. We coupled both through the full propagators containing the

back-reaction of the others and solved the flow equations for the couplings and anomalous

dimensions simultaneously. One key ingredient was the running of the strong coupling αs

which also captured the vacuum polarisation of the quark to the gluon propagator. In this

chapter we also derived the flow equations and their rebosonised versions for all couplings

within our truncation at zero and non-zero temperature and chemical potential.

In Chap. 5 we studied QCD at imaginary and vanishing chemical potential and non-zero

temperature. To this end we derived the properties of the QCD phase diagram at imaginary

chemical potential and suggested new order parameters, the dual order parameters, that actu-

ally stem from the matter sector of QCD but are sensitive to the confinement–deconfinement

transition. We showed that imaginary chemical potential is formally the same as gener-
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alised boundary conditions for the quark fields. Then we computed the order parameters,

the Polyakov loop, the dual density and the pion decay constant at vanishing and imaginary

chemical potential. At zero chemical potential we found a second order chiral transition and

a critical temperature of Tc = 181 MeV. For the confinement–deconfinement crossover we

computed the susceptibilities of the Polyakov loop and the dual density and found that both

peak at about Tc ≈ 178 MeV. Furthermore we calculated the deviation of the Polyakov loop

and the dual density and found that they agree on the percent level. The critical tempera-

tures also agreed within the width of the confinement–deconfinement crossover with lattice,

DSE and FRG PQM model studies. Finally we computed the phase diagram at imaginary

chemical potential and we found that for all values of the imaginary chemical potential the

transitions agree. The phase diagram displays the Roberge–Weiss periodicity. The phase

boundaries also agree with lattice studies.

In Chap. 6 we first used the rebosonised flow equations and included the anomalous di-

mensions for the scalar field and the quarks to determine the values of the masses of the

matter sector in the IR, like the dynamical quark mass and the mass of the sigma-meson

at vanishing temperature and chemical potential. We found very stable flows for the cou-

plings, like the Yukawa and the scalar coupling, when we varied the initial conditions or the

initial UV scale. We embeded the Yang–Mills coupling αs obtained from a fully momen-

tum dependent FRG YM study [152]. Unfortunately we also found that a small change in

the normalisation changes the results as all flow equations for the couplings depend on it,

especially the masses of the matter sector. Nevertheless the results are the first obtained

with two degenerate massless flavours in QCD with the FRG in the chiral limit utilising the

full rebosonised equations. Then we showed the phase diagram at real chemical potential

for small to moderate values of the chemical potential where we combined the propagators

obtained by [154] with the quark vacuum polarisation of the gluon. We also found that a

scale dependence of the gauge field background does not affect the IR results of the effective

potential, as it only builds up late in the flow. A comparison of our results for the chiral and

the confinement–deconfinement transitions with DSE and FRG PQM model studies shows

very good agreement. From these data a first estimate for the location of the critical end-

point in the QCD phase diagram suggested that it lies at larger chemical potential. Next

we compared the Yang–Mills and the glue effective potentials of the gauge sector of QCD.

We found that the form of the potentials hardly changes, however the temperature scales do.

We matched the potentials and fit the reduced temperatures, such that we could translate

the YM temperatures to the glue temperatures. Then we utilised this in a PQM model to

improve the gauge dynamics. So instead of the YM scaling of the temperatures we used the

glue scaling in an logarithmic ansatz for the effective potential for the Polyakov loop. We

compared the results for the order parameters and the thermodynamic quantities such as the

pressure, the entropy and the energy density and we found that the order parameters exhibit

only small changes however the thermodynamic observables match the lattice results very

well. This simple adaption of the glue temperature scale in the effective potential can thus

improve model studies significantly.
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The results we presented here are all in very good agreement with other non-perturbative

methods. The next steps contain the fully momentum and temperature dependent propa-

gators in the gauge sector and the corresponding strong running coupling αs. Apart from a

study of very light quarks, including the physical quark masses and going to Nf = 2 + 1 are

very interesting thus leading to a map of the Columbia plot with FRG data. Another big step

is including baryonic degrees of freedom, which are important at large chemical potential.

This can be done in a similar fashion as it has already been done in Ultra Cold Atoms by

the formation of trions. It seems that the combined effort will solve the mystery of the QCD

phase diagram.
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Appendix A

Notations and Conventions

A.1 Units

All units are natural units, where

~ = kB = c = 1. (A.1)

This implies that 1 meter and 1 Kelvin are

1 m ≈ 5.1 · 1012 MeV−1 (A.2)

and

1 K ≈ 8.6 · 10−11 MeV. (A.3)

This also means that a phase transition of about 200 MeV corresponds to a temperature

of 2.3 · 1012 K which easily exceeds the core temperature of the sun which is about 106 K.

The proton has a size of about 1 fm= 10−15 m, the quarks and gluons are point-like in the

standard model, so below 10−18 m. It is therefore necessary to go to extremely high energies

in order to probe the phase transition of QCD in colliders or one can study it in the early

universe (which is currently out of reach).

A.2 Dirac Algebra

We use the standard convention for the Hermitian γ-matrices. Due to a non-vanishing chem-

ical potential or non-zero temperature, one has to pay attention to the Dirac traces, as some

γ-matrices have dimension 4 and some have dimension 3. To do more elaborate calculations

involving traces over more than six γ-matrices, it is advisable to utilise a CAS like Fleq [152],

which can also take care of the different dimensions involved. So the anti-commutator for the

d = 4 Hermitian γ-matrices in Euclidean space-time is given by

{γµ, γν} = 2δµν14, (A.4)

which are

γµ =

(
0 −iτµ
iτµ 0

)
, γ5 =

(
12 0

0 −12

)
,

with γ5 = γ1γ2γ3γ0, τµ = (i12, τ
j) and the τ j are the standard Pauli matrices, see App. A.3.
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A.3 Generators and representations

The SU(N) gauge group can be described in several irreducible representations. Two of them

are the fundamental and the adjoint representation, both having different dimensions. The

dimensions are related by the Casimir operators

dfundC fund
2 (N) = dadjC fund(N). (A.5)

For any matrices in the fundamental representation the trace of the generators of the SU(N)

is given by

Tr tatb = C(N) δab. (A.6)

And one finds in the fundamental representation for the Casimirs

C(N) =
1

2

C2(N) =
N2 − 1

2N
(A.7)

and its dimension is dfund = N . In the adjoint representation the Casimirs are given by

C(N) = N = C2(N) (A.8)

with the dimension dadj = N2 − 1. For the structure constants one obtains

facdf bcd = C2(N)δab. (A.9)

The SU(2) generators in the fundamental representation are given by the Pauli matrices

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0

0 −1

)
,

and in SU(3) they are given by the Gell–Mann matrices in the fundamental representation.

Here we give the 3- and the 8-direction

λ3 =

 1 0 0

0 −1 0

0 0 0

 , λ8 =
1√
3

 1 0 0

0 1 0

0 0 −2

 .

In the adjoint representation the two generators in SU(3) are given by the 8× 8 matrices

0 i 0 0 0 0 0 0

−i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 i
2 0 0 0

0 0 0 − i
2 0 0 0 0

0 0 0 0 0 0 − i
2 0

0 0 0 0 0 i
2 0 0

0 0 0 0 0 0 0 0


,



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 i
√

3
2 0 0 0

0 0 0 − i
√

3
2 0 0 0 0

0 0 0 0 0 0 i
√

3
2 0

0 0 0 0 0 − i
√

3
2 0 0

0 0 0 0 0 0 0 0


.



A.3 Generators and representations 93

A.3.1 Eigenvalues of the Dirac operator in the fundamental and adjoint

representation

The eigenvalues of the zero component of the Dirac operator including imaginary chemical

potential in the fundamental representation in the 3- and 8-direction are given by

EVfund
i =

{
1

2

(
6(2π)θ + ϕ̂3 +

ϕ̂8√
3

)
,
1

2

(
−ϕ̂3 +

ϕ̂8√
3

)
,
1

2

(
−2ϕ̂8√

3

)}
. (A.10)

In the adjoint representation we find for the zero component of the Dirac operator

iD0 =

2πT


n18 +

1

2π



0 −ϕ3 0 0 0 0 0 0

ϕ3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −ϕ3

2 −
√

3ϕ8

2 0 0 0

0 0 0 ϕ3

2 +
√

3ϕ8

2 0 0 0 0

0 0 0 0 0 0 ϕ3

2 −
√

3ϕ8

2 0

0 0 0 0 0
√

3ϕ8

2 − ϕ3

2 0 0

0 0 0 0 0 0 0 0




.

Then we apply the same transformation as in the fundamental representation, see Eqn. (5.24)

and we find for the eigenvalues of the glue part of the Polyakov loop potential

EVadj
i =

{
ϕ̂3 + 3(2π)θ,

ϕ̂3 +
√

3ϕ̂8

2
+ 3(2π)θ,

ϕ̂3 −
√

3ϕ̂8

2

}
. (A.11)
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Appendix B

Threshold functions

B.1 Threshold functions for T = 0 = µ

These are the threshold functions for vanishing temperature and vanishing chemical poten-

tial. The letter B stands for boson and F for fermion, the number of space-time dimensions

is d = 4.

The threshold functions for the anomalous dimensions are

M2(M̄2
F ; ηF ) =

(
1 + M̄2

F

)−4
(B.1)

M4(M̄2
F ; ηF ) =

(
1 + M̄2

F

)−4
+

1− ηF
d− 2

(
1 + M̄2

F

)−3 −
(

1

4
+

1− ηF
2d− 4

)(
1 + M̄2

F

)−2
(B.2)

M1,2(M̄2
F , M̄

2
B; ηF , ηB) =

(
1− ηB

d+ 1

)
(1 + M̄2

F )−1(1 + M̄2
B)−2 (B.3)

M2,2(M̄2
B1, M̄

2
B2; ηB) =

(
(1 + M̄2

B1)2(1 + M̄2
B2)2

)−1
. (B.4)

For the Yukawa coupling we find

L
(FB)
1,1 (M̄2

F , M̄
2
B; ηF , ηB) =

2

d
(1 + M̄2

F )−1(1 + M̄2
B)−1

{(
1− ηF

d+ 1

)
(1 + M̄2

F )−1

+

(
1− ηB

d+ 2

)
(1 + M̄2

B)−1

}
(B.5)

L
(FB)
1,2 (M̄2

F ; ηF , ηB) =
2

d
(1 + M̄2

F )−2

{(
1− 2ηB

d+ 2
+

ηF
d+ 1

)
+2(1 + M̄2

F )−1

(
1− ηF

d+ 1

)}
, (B.6)

and the flow of the four fermion coupling is proportional to

L
(FB)
1,1,1 (M̄2

F , M̄
2
B1, M̄

2
B2; ηF , ηB) =

2

d
(1 + M̄2

F )−2(1 + M̄2
B1)−1(1 + M̄2

B2)−1 ·

·
{(

(1 + M̄2
B1)−1 + (1 + M̄2

B2)−1
)(

1− ηB
d+ 2

)
+
(
2(1 + M̄2

F )−1 − 1
)(

1− ηF
d+ 1

)}
.(B.7)
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For the effective potential we have

lBn (M̄2
B; ηB) =

2(δn,0 + n)

d

(
1− ηB

d+ 2

)
(1 + M̄2

B)−n+1 (B.8)

lFn (M̄2
F ; ηF ) =

2(δn,0 + n)

d

(
1− ηF

d+ 1

)
(1 + M̄2

F )−n+1. (B.9)

For the rebosonised equations, the substitution ησ → ησ − 2Ḃ1p
2 with Ḃ1 =

∂tλ̄ψ
2h̄2

1
k2 has to

be made in all of the above functions.

B.2 Threshold functions for finite T and µ

At finite temperature and chemical potential we use a 3d optimised regulator and we imple-

ment the threshold functions for the effective potential in the following way [89]

lB0 (M̄2
B, T̄ ; ηB, ZB) =

2

d− 1

1√
1 + M̄2

B

(
1− ηB

d+ 1

) 1
2 + nB(T̄ , M̄2

B)√
ZB

(B.10)

lF0 (M̄2
F , T̄ , µ̄, ϕ̂; ηF , ZF ) =

1

d− 1

1√
1 + M̄2

F

(
1− ηF

d

)
·

·1− nF (T̄ , M̄2
F , µ̄, ϕ̂)− nF (T̄ , M̄2

F ,−µ̄,−ϕ̂)

ZF
, (B.11)

where the Bose–Einstein nB and the Fermi–Dirac nF distributions are given by

nB(T̄ , M̄2
B) =

1

e

√
1+M̄2

B
T̄ − 1

(B.12)

nF (T̄ , M̄2
F , µ̄, ϕ̂) =

1

e

√
1+M̄2

F
T̄

− µ̄
T̄
−2π i ϕ̂ + 1

(B.13)

The threshold functions for n larger than 0 are obtained by derivatives with respect to the

masses

lB1 = −∂M̄2
B
lB0 (B.14)

lF1 = −∂M̄2
F
lF0 (B.15)

and so on for all higher n. For the pressure the threshold functions are

lBtherm(M̄2
B, T̄ ; ηB, ZB) =

2

d− 1

1√
1 + M̄2

B

(
1− ηB

d+ 1

)
nB(T̄ , M̄2

B)√
ZB

(B.16)

(B.17)

lFtherm(M̄2
F , T̄ , µ̄, ϕ̂; ηF , ZF ) =

1

d− 1

1√
1 + M̄2

F

(
1− ηF

d

)
·

·nF (T̄ , M̄2
F , µ̄, ϕ̂)− nF (T̄ , M̄2

F ,−µ̄,−ϕ̂)

ZF
. (B.18)



Appendix C

Details of the setup and initial

conditions

C.1 4d regulators at T = 0 and µ 6= 0

For implementing a 4d regulator we basically have two choices, where the first does not

depend on the chemical potential,

R
4d,(#1)

ψψ̄
(q) = Z⊥ψ /q rψ

(
q2

k2

)
, (C.1)

and the second one does

R
4d,(#2)

ψψ̄
(q) = Z⊥ψ (/q + iγ0µ) rψ

(
q2

k2

)
. (C.2)

Let’s have a closer look at the regulators and see how their differences influence the resulting

propagators. The zero component of the momentum of the second regulator is shifted by the

chemical potential, which is not the case for the first one. Then the scale derivatives are

∂tR
4d,(#1)

ψψ̄
= Z⊥ψ /q

(
∂trψ − η⊥ψ rψ

)
(C.3)

∂tR
4d,(#2)

ψψ̄
= Z⊥ψ (/q + iγ0µ)

(
∂trψ − η⊥ψ rψ

)
, (C.4)

with the final propagators

G
4d,(#1)

ψψ̄
=

(
Z⊥ψ /q(1 + rψ) + Z

‖
ψγ0iµ− iMψ,k

)
·[

(Z
‖
ψ)2(q0(1 + rψ) + iµ)2 + (Z⊥ψ )2~q2(1 + rψ)2 +M2

ψ,k

]−1
, (C.5)

G
4d,(#2)

ψψ̄
=

(
Z⊥ψ (/q + iγ0µ)(1 + rψ)− iMψ,k

)
·[

(Z⊥ψ )2(/q + iγ0µ)2(1 + rψ)2 +M2
ψ,k

]−1
. (C.6)

This means that the second regulator shape function also cuts off chemical potential, whereas

the first does not. The first one does not distinguish a chemical potential from the zero

component of the momentum, which the second one does. This can be used to simplify the

Dirac traces. Already the non-zero chemical potential breaks the O(4) symmetry and this

could in principle lead to an imaginary result of the Dirac traces.
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C.2 Details on the quark vacuum polarisation of the gluon

Here we give some more details to the calculation of the vacuum polarisation of the gluon

propagator by the quarks and the result for Z
‖
ψ 6= Z⊥ψ . Therefore we evaluate the digram given

in Fig. 4.5. We obtain for the digram before evaluating the integrations and the Matsubara

sum with the 3d regulator specified in (4.16) for non-zero temperature and chemical potential

−16 g2C2(Nc)NcNf Z
⊥
Ak
T
∑
n

∫
d3q

(2π)3

(
G̃ψψ̄(q0, ~q)

)2
G̃ψψ̄(q0 + p0, ~q + ~p) ·

·
(
∂trψ − η⊥ψ,krψ

)
·

·
[

(Z
‖
ψ)2(Z⊥ψ )4 q2

0

(
1 + r~q+~pψ

) 1

~p2
(~q · ~p) ~p · (~q + ~p)

−2 (Z
‖
ψ)2(Z⊥ψ )4 q0(q0 + p0)

(
1 + r~qψ

)
~q2

− (Z⊥ψ )6
(

1 + r~qψ

)2 (
1 + r~q+~pψ

)
~q2 1

~p2
(~q · ~p) ~p · (~q + ~p)

−2 (Z⊥ψ )4
(

1 + r~qψ

)
M2
ψ ~q

2

− (Z⊥ψ )4
(

1 + r~q+~pψ

)
M2
ψ

1

~p2
(~q · ~p) ~p · (~q + ~p)

]
(C.7)

where p is the loop momentum. Note that all couplings are dimensionful. And we defined

G̃ψψ̄(q0, ~q) =

 θ
(
k2 − ~q2

)
(Z
‖
ψ)2(q0 + iµ)2 + (Z⊥ψ )2k2 +M2

ψ,k

+
θ
(
~q2 − k2

)
(Z
‖
ψ)2(q0 + iµ)2 + (Z⊥ψ )2~q2 +M2

ψ,k

 .

(C.8)

Now we have to perform the derivatives ∂2
p , integrate and set p = 0. It is useful to utilise the

integrations in Ref. [155] in App. C. Note that the functions r~q+~pψ and G̃ψψ̄(q0 + p0, ~q + ~p)

depend on p. Then we find for the result

−16 g2C2(Nc)NcNf Z
⊥
Ak

1

(2π)2
T
∑
n[

1

5
(Z
‖
ψ)2(Z⊥ψ )4 q2

0 k
3 (Ĝψψ̄)3 (−3 + 2η⊥ψ )

+
14

15
(Z
‖
ψ)2(Z⊥ψ )6 q2

0 k
5 (Ĝψψ̄)4

+
1

5
(Z⊥ψ )6 k5 (Ĝψψ̄)3 (3− 2η⊥ψ )

+
2

5
(Z⊥ψ )6 k7 (Ĝψψ̄)4

+
14

15
(Z⊥ψ )4M2

ψ k
5 (Ĝψψ̄)4

+
1

5
(Z⊥ψ )4M2

ψ k
3 (Ĝψψ̄)3(−3 + 2η⊥ψ )

]
. (C.9)

Here we used the shorthand

Ĝψψ̄ =
[
(Z
‖
ψ)2(q0 + iµ)2 + (Z⊥ψ )2k2 +M2

ψ,k

]−1
. (C.10)
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C.3 Initial conditions at T = 0 = µ

For vanishing temperature and chemical potential we chose the following initial conditions

for the couplings

ΛUV = 10 GeV (C.11)

ε(ΛUV ) =
m2
σ

k2
= 4.89 (C.12)

h(ΛUV ) = 0.001 (C.13)

λσ(ΛUV ) = 0.001, (C.14)

The scalar and the Yukawa coupling cannot be set to 0 exactly, as they would otherwise not

start to flow but remain at 0. We have varied the initial conditions and the results are stable,

see Fig. 4.12. We have also varied the initial momentum scale ΛUV , the flow is fast driven to

the stable solution, the results in the IR hardly change. However one has to be careful not

start too far in the IR as the flow cannot relax fast enough below k = 2 GeV, see Fig. 4.11.

C.4 Initial conditions at finite T and imaginary chemical po-

tential

At finite temperature and imaginary chemical potential we use the following initial conditions

ΛUV = 10 GeV (C.15)

αs(MZ0) = 0.1184 (C.16)

ε(ΛUV ) = 0.37803 (C.17)

h(ΛUV ) = 10/3 (C.18)

λσ(ΛUV ) = 300, (C.19)

which have been chosen such that in the IR in the chiral limit we have

mψ = 0.3 GeV (C.20)

fπ = 0.09 GeV. (C.21)

Note that in contradistinction to the initial conditions specified in C.3, we include a small

symmetry breaking parameter c, which simplifies our numerical effort such that we bosonise at

the initial scale k = ΛUV and then keep the flow of the Yukawa coupling and the four-fermion

coupling at zero.
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So long, and thanks for all the fish [218]1

1Excerpt from Wikipedia: ”So Long, and Thanks for All the Fish is the fourth book of the Hitchhiker’s

Guide to the Galaxy ”trilogy” written by Douglas Adams. Its title is the message left by the dolphins when

they departed Planet Earth just before it was demolished to make way for a hyperspace bypass, as described

in The Hitchhiker’s Guide to the Galaxy.”


