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Konstruktive Inversion von GPR Beobachtungen der vadosen Zone Um die Dy-
namik des Erdsystems vorherzusagen, sind Beobachtungen von Struktur und Wasser-
gehalt der vadosen Zone von groflem Interesse. Ein dafiir geeignetes Messinstrument
ist Ground Penetrating Radar (GPR). In dieser Dissertation wird die konstruktive In-
version von Oberflichen-GPR-Daten vorgestellt. Sie basiert auf einem parametrisierten
Modell von Struktur und Verteilung der dielektrischen Permittivitdt des Untergrunds.
Unter Verwendung des Modells werden GPR-Messungen durch die numerische Losung
der Maxwell-Gleichungen simuliert. Nach der Detektion von Signalen in den gemessenen
und simulierten Daten, wird das Residuum der Signallaufzeit und -amplitude iterativ
minimiert, um die Parameter des Untergrundmodells zu schitzen. Anschliefend wird
der Wassergehalt aus der dielektrischen Permittivét berechnet. Die Methode wurde auf
Messungen eines Testvolumens mit bekannter Struktur und Wassergehalt angewendet.
Ein Vergleich mit den Schitzungen zeigte eine Ubereinstimmung der Struktur von in-
nerhalb +5cm und fiir den Wassergehalt eine Abweichung von weniger als 2 % vol. Die
weitere Auswertung von Felddaten zeigte die Anwendbarkeit der Methode, wenn die
Struktur und die Permittivitdt durch Splines dargestellt werden. Weiterhin wurde eine
Zeitreihe unter der Annahme einer konstanten Struktur ausgewertet, was eine Interpre-
tation der Wasserdynamik erméglichte. Neben der Bereitstellung genauer Informationen
iiber die Wassergehaltsverteilung und Struktur des Untergrunds, gestattet die Methode
den zukiinftigen Versuch der Schitzung von hydraulischen Parametern.

Constructive Inversion of Vadose Zone GPR Observations To predict the of Earth
system dynamics, observations of the vadose zone structure and water content are of
vital interest. A suited measurement technique is ground penetrating radar (GPR). In
this dissertation, the constructive inversion of surface GPR data is introduced. It relies
on a parameterized model of the subsurface structure and distribution of dielectric per-
mittivity. With it, GPR measurements are simulated by numerically solving Maxwell’s
equations. After detecting signals in the measured and simulated data, the residuals
of the signals’ traveltime and amplitude is iteratively minimized to estimate the sub-
surface parameters. Then, water content is computed from dielectric permittivity. The
method was applied to measurements obtained on a testbed, providing ground-truth
data. A comparison with the estimation results showed an agreement for the structure
within &5 cm and for the water content, a difference less than 2 % vol. A further evalua-
tion of field data demonstrated the method’s applicability, when representing structure
and permittivity by spline functions. Additionally a time-series was evaluated with
assuming a constant structure, which enabled to interpret water dynamics. Besides
providing accurate information on water content distribution and subsurface structure,
the method allows the future attempt to estimate hydraulic properties.
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Symbols and Abbreviations

This list contains the most important symbols and notations used. Where possible,
a reference (equation and page number) is given and the units (SI) are provided in

brackets.

Lowercase Latin Symbols

Q

@)
o

VTR S B S 1]

< oy

antenna separation [m]|

vacuum speed of light [ms™!]

forward model data vector [depends]

matric head [m]
imaginary unit [-]

index i’ []

source current density [A/m?]

volume flux of water [ms™!]
circular wavenumber [m~1]
time-sample index [-]

trace index [-]

section index [-]

pressure in phase i’ [N/m?]
parameter vector [depends]
maxima index -]

poynting vector [J/m?s]
time [s]

spatial coordinate vector [m]

data vector [depends]

Uppercase Latin Symbols

Q oo

normalized amplitude [-]
magnetic flux density [T

Courant stability factor [-]

5.12

2.1

3.3
2.2

2.1
5.10
5.6
3.24

2.1
5.12

5.6
3.2
3.23

74
20

27
21

20
74
71
38

20
74

71
27
36
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S22l vzzrRR

electric displacement field [As/m?] 3.1
electric field [Vm™!] 3.3
vector potential [T m)] 3.27
gaussian filter [-] 5.2
magnetic field [Am™!] 3.3
jacobian matrix [-] 5.17
hydraulic conductivity [ms™!] 2.2
saturated hydraulic conductivity [ms™!] 2.6

number of time samples per trace [-]

number of traces per section -]

number of sections [-]

number of parameters |-]

number of maxima per trace [-]

weighted residuum [-] 5.11
sensitivity matrix [-] 5.11

signal measured by GPR devices [V]

Lowercase Greek Symbols

> D Ny

Ho
Hor

Pu

Odc

O

(2

10

Dirac delta distribution [m™!] 3.29
vacuum permittivity [Fm™!] 3.1
relative dielectric permittivity [-] 3.5
real and complex part of &, [-] 3.1
smoothing width [m] 3.39
volumetric water content [-] 2.4
wavelength [m] 5.11
vacuum permeability [Hm™!] 3.3
relative magnetic permeability [-] 3.3
charge density [Cm ™3] 3.1
density of water [kgm ™3]

electric conductivity [Sm™!] 3.3
direct current electric conductivity [Sm™!] 3.9

standard deviation of ¢ [depends]
porosity [-]
discrete wavelet function [-]

angular frequency [Hz]

27
27
44
68
27
75
21
21

74
74

45
27
27
27
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74
27
27
27
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Uppercase Greek Symbols

A
Q

Levenberg-Marquardt damping factor [-]

objective function

Gothic Symbols

m
B

set of detected events

set of parameters

Mathematical Notation

S oL Oy A

the quantity ¢ after convolution
the quantity ¢ after Fourier transform
vector quantity

a generic argument

Abbreviations and Acronyms

CMP
CO
FDTD
FFT
GPR
MEEP
WARR

common midpoint

common offset

finite difference time domain

fast Fourier transform

ground penetrating radar

MIT electromagnetic equation propagation

wide angle reflection and refraction

5.11 74
5.10 74
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1 Introduction

The essential role of water for the Earth system dynamics becomes evident by consid-
ering the amount of the total solar radiation power, which is consumed by the change
of water from solid and liquid to the gaseous phase (23 %, [Kiehl and Trenberth, 1997]).
Parts of this phase-change occurs by evapotranspiration from the vadose zone, the un-
saturated part of soils above the groundwater. Soil moisture, in turn, controls the
energy and water flux from the vadose zone to the atmosphere and is a key variable for
net primary production. Hence, natural changes of soil moisture as well as its mani-
pulation by agricultural practice, impacts the Earth system dynamics in various ways
with differing significance (section 2.2).

The attempt to predict the resulting implications relies on the understanding of
the soil moisture dynamics. Since the associated processes are highly nonlinear and
heterogeneous at multiple scales, they currently cannot be sufficiently described for
many circumstances. This raises the need for measurement techniques, which provide
quantitative information on soil moisture at different scales. Small scale descriptions
of the soil moisture dynamics, in terms of water content, are readily available, e.g., in
form of the Richards equation (2.4). On that basis, it can be claimed (section 2.3)
that a proper prediction of the water dynamics by Richards equation, relies at least
on (i) knowledge on the spatial distribution of water content at several points in time,
(ii) accurate water content information, (iii) the spatial distribution of materials, i.e., in
a first order description the subsurface stratification, (iv) quantitative information on
the boundary conditions, and (v) characterizations describing the hydraulic properties
of different materials. Although the relative importance of these aspects is depending on
the actual question to answer, each of them has to be addressed for most applications;
at least at the scale of interest or, in some cases, below.

A variety of techniques exist to observe soil moisture. These range from centimeter
scale systems, like time-domain reflectometry (TDR) probes [Robinson et al., 2003], to
remote sensing techniques, such as the soil moisture and ocean salinity (SMOS) satellite
[Kerr et al., 2001], which has a spatial resolution of several tens of kilometers. To answer
some hydrological questions, however, the intermediate-scale is relevant, which is not
satisfyingly covered by current measurement and evaluation methods [Robinson et al.,
2008a].

Hydrogeophysical measurement techniques [Rubin and Hubbard, 2005], such as ground-
penetrating radar (GPR), electromagnetic induction, and electrical resistivity tomogra-
phy, have the capability to cover the intermediate-scale, at least with respect to their
range of application. However, there is still the need for effective evaluation techniques,
which fulfill the five requirements stated before, and give an optimal trade-off between
detailed and accurate subsurface information, measurement effort, and computational
costs.
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1 Introduction

GPR employs electromagnetic waves which are emitted by a transmitter antenna,
propagate in the subsurface, and recorded by a receiver antenna. The electromagnetic
properties of the subsurface modify the signals in terms of their propagation veloc-
ity, amplitude, phase, and travelpath (section 3.2.2). For instance, spatial changes of
the electromagnetic properties can cause the reflection of a signal. By evaluating the
traveltime, amplitude, and phase of the received signals, information on the subsur-
face’ electromagnetic properties can be determined. Given that information, the water
content can be calculated by employing a petrophysical relationship (section 3.6).

There are two basically different measurement setups, which are commonly used for
GPR: (i) The application in boreholes which provides detailed information at one lo-
cation and (ii) surface GPR which is favorable to answer hydrological questions at the
intermediate scale, by being non-invasive, moveable with walking speed, and thus appli-
cable on areas up to several 1000m?. More importantly, it provides an “image” of the
subsurface structure from reflections at layer interface. This image is distorted, how-
ever, since the reflections’ traveltimes are modified by the water contained in the layers.
Several evaluation techniques are available (section 4.4) which exploit this combined
information by inversely determining the subsurface structure and electromagnetic pro-
perties. Major restrictions to these methods are that (i) simplifying assumptions on the
subsurface and the measurement process have to be made or (ii) a high data density
is necessary to drop the simplifications and thus an increased measurement effort is
involved.

In this thesis, the constructive inversion approach (section 5), being employed by
Buchner et al. [2012], is applied to multi common-offset surface GPR measurements.
The method relies on the construction of a parameterized model representing the sub-
surface geometry and dielectric permittivity. Employing this model, the GPR mea-
surements are simulated by numerically solving Maxwell’s equations (3.1)-(3.4) in two
dimensions. With a feature detection procedure, measured and simulated signals are
identified as events and their traveltime and optionally amplitude information is re-
trieved. The measured and modeled events are pairwise associated with each other by
a heuristic approach. Then, an objective function is formulated, as the summed squared
difference of the events traveltimes and amplitudes. By minimizing this objective func-
tion, an estimation problem for the parameters of the subsurface model is defined. It is
solved using a Levenberg—Marquardt routine, which was modified to handle variations
in the number of terms of the objective function, originating in the event association.

By design, the constructive inversion allows to focus on the data of interest and to
introduce a scale of interest. Both are properties which enable to constrain the parame-
ter estimation problem and to enhance the robustness of its solution. The construction
of the subsurface model also gives the possibility to include external knowledge or as-
sumptions on the properties of the subsurface structure and water content distribution.

The inversion method is tested for its performance and accuracy by evaluation a syn-
thetic and real dataset (section 6.1). Both were obtained on the ASSESS-GPR testbed,
which provides ground-truth information on geometry and water content. In section 6.2,
the applicability to real field data is demonstrated in combination with representing the
water content variability and subsurface structure by cubic spline functions. With the
same approach, a time-series of measurements is evaluated (section 6.3), assuming the
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layer structure to be temporally constant.

This thesis is structured as follows: A short introduction to the larger environmental
context and the relevance of soil moisture measurements is given in section 2. The
following section 3 provides a theoretical excursion to electrodynamic theory and phe-
nomena, which are relevant for GPR. The latter itself, is described in section 4, including
its basic principles as well as some evaluation techniques. A detailed explanation of the
constructive inversion approach is comprised in section 5 and is followed by several
applications of the method (section 6). Finally, the results are summarized and some
conclusion are drawn in section 7, while the appendix provides some less relevant details.
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2 Environmental Context

The objective of this thesis is the demonstration of a methodology which provides
quantitative access to subsurface water and structure. Both are investigated as parts of
the Earth system and it is the purpose of this section to discuss their relevance in this
system. In addition, the factors controlling subsurface water dynamics are demonstrated
and the implied requirements on measurement techniques are discussed.

2.1 The Earth System

Earth system analysis (e.g. Schellnhuber and Wen- /= Earth System ™\
zel [1998], Ehlers and Krafft [2001]) has evolved
to a scientific discipline, which permits to address Natural Earth

questions being relevant for humankind at a global
scale. Some of these questions are (i) “what are
the dominant processes influencing the dynamics
of the Earth system with respect to the existence
of individual persons and human societies?”, and
(ii) “do human societies significantly impact the
Farth system and what are the implications?” Al-
though it is not the aim of this study to address ‘

these questions to full extent, the following para-

graphs might give a glimpse of how subsurface wa- _
ter relates to them.

One description of the Earth system is its parti- ‘
tion into various spheres. Figure 2.1 provides one
option to do that when focussing at the Earth’s Anthroposphere
surface. While the geosphere includes the com- S ”
ponents which can be associated with the physi-
cal environment, the biosphere is usually treated
separately. Although, when contrasting these two
spheres to the role of humans — represented by the anthroposphere — both are combined
to the natural Earth or the biogeosphere (e.g. Kabat et al. [2004]). In general, all these
spheres cannot be treated as isolated systems, since they are interdependent and over-
lap. The separation has its origin rather in the characteristics of the elementary units,
quantities, and processes of the different spheres.

The necessary condition for maintaining the FEarth system dynamics is the energy
input, which is governed by solar radiation. The dynamics of subcomponents, for in-
stance the water cycle, depends on various factors stemming from physical, chemical,
and biological processes. For instance, 23 % [Kiehl and Trenberth, 1997] of the incoming

Figure 2.1: Partition of the Earth sys-
tem into spheres.
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2 Environmental Context

solar radiation power is consumed by the phase change of solid or liquid water to the
gaseous phase by the combination of evaporation and transpiration of plants. In addi-
tion, however, the anthroposphere also has a significant impact which can be illustrated
by two examples: (i) about 26 % of the total terrestrial evapotranspiration and 54 % of
run-off, which is geographically and temporally accessible, is used by humanity [Postel
et al., 1996]. (ii) 40 % of net production of organic compounds by the biosphere, which
is in turn depending on soil moisture, is manipulated by human activity [ Wright, 1990].

This clearly shows the relevance of water in the context of the second question raised
above.

2.2 Soil Moisture in the Hydrosphere

v
?Os Cloud Formation
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= . 0 &
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Figure 2.2: Components and processes contributing to the land part of
the hydrological cycle (after Brutsaert [2005]).

A combining aspect of all spheres in the Earth system is the cycling of different
materials. As such, Schaub and Turek [2011] name water, carbon, oxygen, nitrogen,
sulfur, phosphorus, and chlorine. As human life and the production of agricultural
goods relies crucially on the availability of water, its importance to answer the first of
the above questions is evident. The hydrosphere represents the combined mass of water
in the Earth system and hence the water or hydrological cycle is mainly associated with
it. To identify the role of soil moisture in it, this cycle is investigated in more detail
further on.

The hydrological cycle describes the exchange of water between different Earth com-
partments. More precisely, it describes the movement of water on, above, and below
the Earth’s surface. In fact, the hydrological cycle comprises several sub-cycles, e.g.,
the ones transporting water between the oceans and the atmosphere, the continents
and the atmosphere, or between all three compartments. All these cycles can be split
into sub-cycles as well, to focus on individual processes or to describe the water move-
ment in specific regions (e.g. [Bettenay et al., 1964]). Figure 2.2 gives an overview
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2.2 Soil Moisture in the Hydrosphere

of the different processes making up the so-called land part of the water movement.
Evapotranspiration, induced by the consumption of solar radiation power, can be con-
sidered as the starting mechanism. The condensation of water leads to cloud formation
which is followed by precipitation. When the latter occurs over land, the water is ei-
ther temporarily stored, directly reaches open water bodies, or contributes again to
evapotranspiration in various ways.

Soil moisture is only one of several storages of water (figure 2.2). In fact, the overall
quantity of soil moisture in the hydrological cycle is only about 0.05 % [Robinson et al.,
2008a]. Nevertheless, soil moisture significantly contributes to a variety of processes:

e Since the albedo of the soil surface depends on soil moisture, the latter changes
the fractioning between backscattered and absorbed solar radiation. This effect
can directly be observed on a sandy beach, where the decreasing brightness of the
sand is caused by the gradual increase of water content towards the sea.

e Soil moisture is relevant for the partitioning of precipitation into evapotranspira-
tion, surface run-off, infiltration, and accordingly base flow.

e Soil moisture influences the resulting energy flux to the atmosphere and its par-
titioning between latent and sensible heat, via evapotranspiration and energy
absorption at the soil surface.

e Almost every plant process is affected directly or indirectly by the supply of sub-
surface water, since water is a plant constituent, reactant, and solvent [Kramer and
Boyer, 1995]. It has, for instance, been shown that (i) soil moisture is the control
variable on dryland ecosystem structure, function, and diversity [Rodriguez-Iturbe
and Porporato, 2004] and (ii) water availability limits the net primary production
of plants in 52 % over land areas [Churkina and Running, 1998]. The latter is of
special interest for the agricultural use of soils and is one reason for the need of
irrigation.

e Frozen soil water seasonally covers a significant amount — 35 % [Kabat et al., 2004]
— of the Earth’s surface and is stored partly in permafrost soils. This percentage
is influenced by degradation of permafrost soils in response to changes in local
and global climatic conditions. In case of the Qinghai-Tibet Plateau, permafrost
degradation causes, among other factors, a drop of the groundwater table at the
source region of the Yangtze River and Yellow River [Cheng and Wu, 2007] — two
important water supplies of Eastern China. Christensen et al. [2004] also report
that permafrost degradation can lead to an increase of methane emissions, which
is an effective greenhouse gas [Lashof and Ahuja, 1990].

The above findings show that the vadose zone and the water contained in it are not only
relevant as an interface between atmosphere and groundwater, but also in the coupling
between the different spheres of the Earth system. This makes soil moisture a crucial
quantity for precipitation forecasts [Beljaars et al., 1996] and for modeling the behavior
of hydrological systems [Bronstert and Plate, 1997, Vereecken et al., 2008]. While this
raises the need for detailed knowledge on the spatial distribution and temporal evolution
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2 Environmental Context

of vadose zone water content, it also demands for the understanding of the processes
controlling this distribution, its dynamics, and spatial variability.

2.3 Water Dynamics in the Vadose Zone

To provide a proper terminology it is instructive to divide the subsurface, which is in
general a porous medium, into two regions (i) the groundwater, where water flows freely
in the pores and (ii) the vadose zone, which envelops soil and where water is bound in
pores due to capillary forces. Since the latter is also characterized by the presence of
water and air, it is also denoted as the unsaturated zone. The interface between the
two zones is the capillary fringe.

A variety of processes take place in the vadose zone. Examples include the movement
of solutes, transport of heat, mechanical stress, biomass activity, deformations as well
as restructuring, caused, for instance, by agricultural activity or erosion. One process,
however, which all the previous ones depend on, is the dynamics of soil water. Hence,
it is studied in more detail below, following Roth [2011].

The liquid volumetric water content 6 of a porous medium, is defined at the continuum
scale as the volumetric fraction of water obtained at every point in space by averaging
over a surrounding representative elementary volume. This definition, however, does
not exclude # to be a discontinuous function of space. Hence, it is more convenient to
relate the water content to a quantity which is continuous in space and to describe the
water dynamics in terms of this quantity. A suited one is, e.g., the matric head

[ Y (2.1)

Pwd

where p,, is the density of water, g the acceleration by gravity, and “matric” relates
to the rigid matrix of the porous medium. The pressure in the water and air phase is
denoted by p,, and p,, respectively. While both quantities are defined at the continuum
scale, the relation to 6 can be understood at the pore scale: The soil matrix is filled
with water and air which are separated by an interface. In an equilibrium state of
the microscopic forces, the curvature of this interface is linked to the pore geometry as
well as to the pressure difference at the interface. The actual position of the interface,
however, is not uniquely determined by the pressure difference and depends on the
history of the water distribution. Hence, the relation 6(h,,) is in general also not
unique and shows a hysteric behavior. In the following, however, this shall be neglected,
which makes 6(h,,) only material specific. It is also noteworthy that h,, is a negative
quantity in the unsaturated case, which means by definition (2.1) that p,, < p,. That
is, the water-air interface is cambered into the water phase, as, for instance, in a single
capillary.
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2.3 Water Dynamics in the Vadose Zone

With the definition of h,, and the assumption of a continuous air phase, the volume
flux of water is given by

-

Jw = —K (h) [Vhim — €] (2.2)

Here, €, is the direction of the gravitational force and K is the hydraulic conductivity.
The latter is depending on the cross-section of the water phase and the friction at the
soil matrix. Hence, it depends on the pore geometry as well as on # and with that on
hp,. Inserting 2.2 into the mass conservation equation

00 >
a + VJw = O, (23)

one obtains, after rearranging % = ;Te%‘—;”, the Richards equation:

90/(hum) Ohum 1

The solution of this non-linear partial differential equation demands for functional ex-
pressions of 8(h,,) and K (hy,). One option — which is specifically suited for numerical
solutions to (2.4) — to describe the so-called soil water characteristic 0(hy,) is the simpli-
fied van Genuchten [1980] parameterization, which is given with neglecting hysteresis
by
—1+1/n
O(hnn) = 0, + (05 — 0,) [1 + ahm]”

(2.5)

Here v < 0 and n > 1 are fitting parameters, while 85 and 6, denote the saturated and
residual water content. On the basis of (2.5) and employing the findings of Mualem
[1976] one gets

—a(1—1/n) 2
K (hm) = Ko [H [ahm]n} l1— [ahm]nl[l—i—[ahm]”]lﬂ/n] . (26)

In this equation, K denotes the saturated hydraulic conductivity and ’a’ is a parameter
which is associated with the tortuosity of the pore geometry.

The two relationships (2.5) and (2.6) are models which express the material cha-
racteristics of a porous medium with respect to water flow. Altogether, six parameters
(e.g. table 2.1) have to be determined for any material. Figure 2.3 provides examples of
0(hy,) and K (h,,) for two soil textures. Both curves reveal that the quantities entering
equation (2.4) can vary over orders of magnitude and differ significantly for the two soil
types. Consequently, the solution of Richards equation will show different behavior,
depending on the actual hydraulic properties and their spatial distribution. While the
former follows from the presence of §(h,,) and K (h,,) in equation (2.4), the latter can
be studied by the following two examples.
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2 Environmental Context
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Figure 2.3: Left: soil water characteristic retrieved from (2.5). Right:
K (hy,) given by (2.6). The curves are calculated with the parameters
provided in table 2.1.

Table 2.1: Hydraulic parameters of silt and sand [Carsel and Parrish,

1988].
0r (%] | 0s [%] | am™'] | n[]]| Ko [ms™']|al]
Silt 3.4 46 16 [1371694-1007] 05
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Figure 2.4: Temporal evolution of the water flux resulting from surface
evaporation from a homogeneous and a two layer soil.
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2.3 Water Dynamics in the Vadose Zone

Evaporation A horizontal soil of 1 m thickness is considered, which consists in one
case of silt and in the other case of a silt and a sand layer (figure 2.4). In both
cases, the initial condition of the system is given by hydrostatic equilibrium. Over
time, a constant value of h,, = —10m is assumed at the surface. This, for example,
represents the presence of dry air causing an evaporation flux. The water table is kept
fix at 1 m depth, i.e., the water table is not lowered by the water flux induced by
evaporation (the necessary recharge could be, for instance, sustained by a lake or river
in the close vicinity). Richards equation is numerically solved in one dimension, using
the HYDRUS-1D software package [Simainek et al., 2009] with the material parameters
given in table 2.1. Figure 2.4 shows the resulting j,,, which is obtained over a time span
of 30d. In the homogenous case, a temporally and spatially constant flux is approached
over time. In contrast, in the two layer case, the flux mainly occurs in the silt layer,
causing a reduction of water content in it and hence a permanent decrease in flux. The
reason between the contrasting behavior in silt and sand is the difference in K below a
value of h,, = —0.17m: At the material interface h,, = —0.5m at day 0 and decreases
over time. Thus, the contrast in K increases (figure 2.3) which has to be compensated
by |Vhn,| to establish a flux (equation 2.2) at the interface, which is in the same order
of magnitude as at the surface.

In summary, this example shows that the actual material properties and the ini-
tial state of the system control the magnitude and temporal evolution of the surface
evaporation flux.

0 0 — od
— 3d
0.2 0.2 —— 6d
_ _ 9d
£ 04 £ 0.4:Silt 12d
£ s | 15
] 0.6 ] 06 18 d
| 21d
0.8 0.8 —24d
Silt Sand ——27d
1 1 30d
0 20 40 0 20 40
Vol. Water Content [%)] Vol. Water Content [%)]

Figure 2.5: Temporal evolution of the water content distribution resul-
ting from surface infiltration into a homogeneous and a two layer soil.

Infiltration This example is almost analogue to the evaporation example, except for
two differences: (i) the domain is extended to set the water table to a fixed depth of
3m and (ii) the upper boundary condition is an infiltration flux of 2mmd~'. Again,
Richards equation is numerically solved in one dimension using the HYDRUS-1D soft-
ware package [Siminek et al., 2009] with the material parameters given in table 2.1.
The resulting water content evolution is depicted in figure 2.5. As a consequence of
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2 Environmental Context

the soil-water characteristic, 6 is larger than 26 % at the start for the homogenous case.
Afterwards, an infiltration front moves into the soil which is getting broadened over
time. The two layer example shows a significantly different behavior. First of all, at
the beginning 6 =~ 6, for the sand. Second, the water infiltrates the soil similarly to
the homogenous example, but at day 12 it reaches the layer interface. Afterwards, only
small amounts of water enter the sand, while the rest ponds upon the interface. Again,
the explanation is given by the difference in K for the two soils: The water can only
infiltrate the sand if |Vh,,| becomes large enough by ponding to compensate the differ-
ence in K. If, however, less water can infiltrate the sand than is entered by the surface
flux, the silt layer will get saturated and run-off will occur at the surface.

The infiltration example demonstrates that the appearance of ponding as well as
resulting surface run-off is determined by the material properties, the layers’ extents,
and the boundary conditions.

Although the above examples are somewhat artificial by choosing constant boundary
conditions, the magnitudes do correspond to realistic conditions averaged over a time
span of 30 days. These examples show that evaporation and infiltration from and into
soils depend on the subsurface materials and their spatial distribution. Hence, detailed
knowledge on both is necessary for any attempt to predict the water dynamics and the
system’s behavior at the surface.

So far, only horizontal layers of different materials and vertical water flux were consi-
dered. Under natural conditions, however, anisotropic vertical and horizontal variability
of material properties is to be expected. In addition, the influence of biological activity
needs to be considered and macro-pore flow has to be represented eventually. For the
three-dimensional dynamics of 6, topography changes and the implied changes of the
upper boundary conditions are relevant as well. These factors do, however, still not
weaken the following conclusions.

The above findings illustrate that an accurate description and prediction of the sub-
surface water dynamics, demands for detailed information on:

1. The spatial distribution and temporal evolution of 6.
2. Highly accurate measurements of 6, because of the sensitivity of K on h,,(0).

3. The spatial distribution of materials, i.e., most importantly the subsurface layer
structure.

4. Knowledge on the boundary conditions.
5. Material characterizations which provide 6(hy,) and K (hp,).

Information of the boundary conditions may be retrieved by meteorological and ground-
water observations. The other requirements, however, raise the need for appropriate
measurement techniques at the scale of interest. For studies on solute transport, this
scale is on the order of several meters and single-point measurement techniques like
time-domain reflectometry (TDR) are well suited in combination with outcrop investi-
gations (e.g. Roth et al. [1991]). Concerning hydrological questions, however, the scale
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of interest is several 10m and far above [Robinson et al., 2008b]. Remote sensing tech-
niques are covering this scale at the far end, although with a lack of penetration depth.
Hence, there is the need for measurement techniques, which are able to close this inter-
mediate scale gap [Robinson et al., 2008a]. Geophysical measurement techniques like
surface GPR have the potential to achieve this by efficient and non-invasive operation
of measurements. More importantly, GPR also provides information which depends on
the subsurface stratification and dielectric permittivity distribution, the latter being
directly linked to 6 (section 3.6).

It is the purpose of this study to demonstrate a novel GPR evaluation technique —
the constructive inversion of multi common-offset surface GPR measurements — which
addresses the three of the above requirements.
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3 Electrodynamics

In this section the theoretical background for the description of the GPR measurement
process is summarized. Thus, Maxwell’s equations are introduced and the implications
of material properties on electromagnetic waves are investigated in detail. Various
approaches for the solution to Maxwell’s equations are compared including different
numerical methods. After a short introduction to antennas, relevant electrodynamic
phenomena in this context are discussed. Finally, reflections at sharp interfaces and
smooth boundaries are compared and petrophysical relationships are introduced.

3.1 Maxwell’s Equations

The GPR measurement process is based on the emission of electromagnetic signals
which propagate in the subsurface. These signals are described by the electromagnetic
fields, which are composed of the electric field E, the electric displacement field 13,
the magnetic flux density B, and the magnetic field H. Maxwell’s equations provide
a quantitative description of the dynamics of these fields and for isotropic matter, the
macroscopic equations may be written as:

V-D= (3.1)

V-B= (3.2)
- 8D L

. 9B

E4+—=0. 4
V x +5‘t 0 (3.4)

Here, j represents the internal and source current density, while p denotes the internal
volume charge density — which is assumed in the following to be zero away from
any source current in the absence of a time-depending electromagnetic field (neutral
medium). Magnetic effects are neglected in the following and then H=8 /o is valid,
with pg being the vacuum magnetic permeablhty For linear, isotropic, dispersive, het-
erogenous media the relation between D and E is given by using their frequency-domain
counterparts (denoted by 3) as

~

D =c¢E. (3.5)

Here, € = ¢pe, is the dielectric permittivity of the subsurface, which is in general a
frequency dependent and a complex quantity. If the latter is relevant in following, this
is be expressed by explicitly using e/, and €/, which are the real and the imaginary part
of &,, respectively. To solve Maxwell’s equations in the time-domain, the inverse Fourier
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3 Electrodynamics

transform of (3.5) has to be employed, which introduces an integral expression. This
can only be simplified for monochromatic waves — the time-harmonic solution — or for
non-dispersive materials, for which the frequency dependency of € vanishes. For some
solutions, the electromagnetic fields are given as complex quantities. To compare them
to measured values or to investigate the solution, however, the corresponding real parts
are used instead.

3.2 Electromagnetic Parameters

For a quantitative analysis of GPR signals, in terms of their traveltime and their am-
plitude evolution when propagating through a medium, a detailed understanding of the
quantities € and o is essential. The above formulation of equations (3.1)-(3.4) would
allow a generalized formulation of ¢ which includes 0. However, since these quantities
are usually treated separately in numerical methods and in geophysical applications, a
combined formulation is only employed if necessary.

3.2.1 Microscopic Phenomena

Regarding the materials observed for of this study, three relevant microscopic processes
are influencing € and ¢ in their magnitude as well as their frequency dependency. Which
process significantly contributes at the frequency range of GPR depends on the observed
materials and needs to be determined empirically.

Temporary Molecular Polarization From a classical perspective, atomic-bound elec-
trons encounter a force in the presence of an external electric field. Since they are
bound they also encounter, in addition to friction, a counteractive force. This stems
from atomic forces which depend linearly on the electrons’ displacement. Thus in the
presence of a time-dependent harmonic external field, their kinetic behavior can be
described by a damped harmonic oscillator. The spatial displacement of the electrons
induces a dipole moment, which in turn contributes to the macroscopic polarization
of the material and with that to e,. This may be described by Drude’s formula (e.g.
Jackson [2006]) as

1
2

Zj —. (3.6)
E0Me 7 " Wi — W — W
Here, X is the number of molecules in the observed volume, e and m, the electron charge
and mass, while z; denotes the number of electrons with the same resonance frequency
wj and damping constant 7. This description also holds from a quantum-mechanical
perspective with proper definitions of zj, wj, and ;.

Unbound Charges Unbound charges can be given by electrons or, as more likely in the
subsurface, by ions. Both can be equivalently treated with respect to their impact on &,
if the different masses and damping constants are considered. Since more instructive,
electrons are treated in the following.
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3.2 Electromagnetic Parameters

The resonance frequency of bound electrons defines the magnitude of the counterac-
tive force the electrons encounter. In contrast, the fraction z, of unbound electrons does
not encounter this force, which is equivalent to wg = 0. This gives their contribution to
e, from equation (3.6), with separating the terms of the bound electrons ¢, , as

2
Xe“z,

gomew (Yo — W)

er=¢6rp+i (3.7)

The conductivity ¢ was introduced by Ohm’s law (thm = O'E) and thus describes the
charge current density of unbound electrons in the material. Hence is associated with
the result of (3.7) by

X 2
g = ¢ ZO. = UdC 5 (38)
Mme(Vo —iw) 1 —iw/v,
with the direct current conductivity for w = 0 being
X 2
Ode = -y (3.9)
Me%o

That is, conductivity contributes to dielectric permittivity with a real and imaginary
part, although the latter can be neglected for small frequencies if w < 7,, which is
the case for many materials [Jackson, 2006]. This simplification also makes ¢ approxi-
mately independent of frequency, which leads to the typical representation, given only
by o4.. However, the contribution to permittivity is still frequency dependent and thus
a potential reason for dispersive effects.

Dipole Relaxation The molecules of some substances, e.g., water and various alco-
hols, have permanent dipole moments which are not coherently aligned in general; i.e.,
the medium is not polarized at the macro-scale. If the dipole moments are exposed
to an external time-dependent electromagnetic field, however, they encounter an an-
gular momentum which aligns them parallel to the external field. Thus, the medium
gets macroscopically polarized and its dielectric permittivity is affected. However, the
alignment is not instantaneous and thus not necessarily synchronous with the exciting
external field. The phenomenon of dielectric or dipole relaxation is commonly associated
with the time-lag between the response of the dipoles to the external field [Crossley,
1971]. Since the dipole alignment is influenced by intermolecular forces as well as the
thermal motion of the molecules, one expects the relaxation process to depend on the
frequency of the external field as well as the temperature and viscosity of the observed
medium. The frequency dependency of e, for one relaxation process is macroscopically
described by the Debye model

Erw=0 — Erw=o00
: ! , 3.10
1+ iwr ( )

Er = Erw=00 +

where 7 is the process’ relaxation time. However, already Crossley [1971] reports that
this model is not appropriate for all substances because several relaxation processes
are relevant. Thus, models are preferred which describe several independent relaxation
processes or assume a distribution of relaxation times.
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The subsurface materials which were observed for this thesis, are soils consisting of
a mixture of the soil-matrix, air, and water. In the GPR frequency range, the real
part of dielectric permittivity of water (e ,,) at 20°C is high (80.2, Kaatze [1989]),
compared to that of air (¢, , = 1), and that of the soil matrix (e]. ; = 3.75 for quartz at
1 MHz [ Weast, 1973]). Since €/ of the other quantities is negligible, water dominates the
composed dielectric permittivity (e, ., section 3.6) of the mixture. Hence, the general
trend of the frequency dependency of ¢, ,, (as observed by Kaatze [1989], Buchner et al.
[1999], Nussberger [2005]), which is dominated by dipole relaxation, applies also for &, ..
For coarse materials, as sand, €, . is often neglected and &, . considered to be frequency
independent in the GPR frequency range. However, with decreasing pore size, more and
more water is in close proximity of the soil matrix and interfacial forces hinder a larger
fraction of dipole moments to get aligned in response to the external field. This results
in a downward shift of the relaxation frequency wye = 1/7 and reduces /. for smaller
frequencies [Hoekstra and Delaney, 1974, Or and Wraith, 1999]. Hence, for certain soils
as clay, the frequency dependency of /. might have to be considered and &/ increases
what can lead to a significant attenuation of electromagnetic signals.

The dipole relaxation process also shows a strong temperature dependency, which
effects €, in the GPR frequency range. Nevertheless, this effect can be corrected if
necessary, e.g., with the findings of Kaatze [1989].

3.2.2 Signal Velocity, Attenuation, and Dispersion

How ¢, and o effect an electromagnetic signal can most effectively be understood by
investigating a plane monochromatic wave propagating in a charge free (p = 0) homo-
geneous medium in which 0 = 04.. Since the wave is monochromatic, (3.5) also holds
in the time-domain for this single frequency. Then, by taking the time-derivative of
(3.3) and interchanging the derivate with the rotation operator, (3.4) can be inserted
into (3.3). After employing the equality V x V x E = V(VE) — V2E and (3.1) one
obtains the telegrapher equations

, O*E OE  0j
V?E = epio—— — + o= 3.11
EHO 5y T Tdcto 5, + Ho gy (3.11)

Assuming j = 0, this equation can be solved with the ansatz
E = Egelfri—wt) =5 (3.12)

which describes a plane monochromatic wave with the frequency w propagating in
direction €; with a velocity of v = %, while it is damped with the damping constant
a/2. By inserting the ansatz into (3.11) one finds the dispersion relation

2 O[z . 2 . Udc
B° — — +ifa = peow” (e, +i—), (3.13)
4 Eow
————
er,gi=¢. gtiel g

where the generalized relative dielectric permittivity e, , was introduced for conve-

nience. The question how a and 8 depend on &, g and el 4 1s answered by comparing
9. 9.
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the real and imaginary parts on both sides of (3.13). After some calculations one obtains

5 1/2

o — \CO“ (, [e2 e — €’r,g> (3.14)
w 1/2

= e (, [, + el + 5;7g> : (3.15)

These two relations express the commonly known fact that if 54,’79 = 0, no attenuation

is present and the signal velocity is given by cy/,/ €y g- However, if this is not the case

one has to consider that both ¢ , and &/ influence velocity as well as attenuation,
for instance if o4, # 0. Additionally, ¢, 4 is in general frequency dependent and with
that also « and f, i.e., the wave propagation velocity and signal attenuation depends
on w as well. Thus, dispersive effects occur and signals which are composed of different
frequencies will change their shape with time and distance This effect also occurs if
el r,g is determined by o4 only and og, is large: Assuming j = 0 and ¢ to be real valued,
the right hand side of equation (3.11) can be expressed as

po(e! + %)UPE, (3.16)
by replacing the time derivative by a characteristic time scale of the system (e.g. 1/w).
If 04./w > €', the term with o4, in (3.11) becomes dominant and the equation is
effectively a diffusion equation. This is the case for pure water with &/ = 80.2 at 20 °C
[Kaatze, 1989)] for a frequency of 200 MHz if og. > 1Sm™!

Equations (3.14) and (3.15), allow to estimate if dispersive effects have to be consi-
dered in pure water as well as for high conductivities and how strong signal are atten-
uated at the same time. However, for this analysis it is convenient to simplify the two
equations by replacing the square root terms with their second order taylor expansion,

e, \[eP, +e? =&,
the s1gnal velocity v = w/ ﬁ When comparing to vy, which is found for 5 = 0. The
relation of both velocities is given by

. With that, one can estimate the impact of the 6 on

- 1
vt -1 (3.17)
U //
0 1 —i_ 26’2

Now, assuming that s;f,g is only determined from direct current conductivity, one finds:
If the impact on velocity should be smaller than 1% for a 200 MHz signal propagating
in water with &/ = 80.2 at 20 °C, o4 needs to be smaller than 0.18 Sm™!; and this limit
increases linearly with frequency. On the other hand, the signal is also attenuated by
a factor e~ 2% if oy, # 0. For the above values, this causes a signal attenuation of 98 %
on 1m, which would make a GPR survey in saturated soils operationally problematic.
Thus under normal conditions, when the signal strength is sufficient, dispersive effects
induced by direct current conductivity can be neglected.

Similar effects as caused by o4, can be induced by €. The magnitude of this quantity
for water and soils in dependency on frequency and temperature is object of various
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studies (e.g. Hoekstra and Delaney [1974], Kaatze [1989], Buchner et al. [1999], Nuss-
berger [2005], Jackson [2006]). However, the results for water are diverse in the GPR
frequency range and the frequency dependency of e/ as well as the attenuation de-
pends on the soil type and its volumetric water content. Thus, the question if the
resulting attenuation has a significant impact — considering the precision of amplitude
information employed in this study — cannot uniquely be answered. Additionally, the
employed numerical solver (section 3.3.3) of Maxwell’s equations does only provide an
indirect representation of e/ via o4, which is strictly only valid for a small frequency
band. Hence, either this option is taken or, if plausible on the basis of the data and
considering precision of amplitude information, £/ is neglected.

3.3 Solutions to Maxwell’s Equations

To solve equations (3.1) - (3.4) is in general a non-trivial problem, because of the
coupling of the equations and the spatial dependency of the electromagnetic properties.
Thus analytical solutions, simplified phase-velocity approaches, as well as numerical
simulations are options. The optimal choice depends on the particular research question
and the possible system simplifications.

3.3.1 Analytical Solutions

If the electromagnetic properties can be assumed to be independent of the electromag-
netic field, equations (3.1) - (3.4) are a system of linear partial differential equations. In
this case, the superposition principle applies. It states that two solutions to the equa-
tions can be linearly combined to obtain one common solution. This can easily be veri-
fied by inserting the sum of two solutions into equations (3.1) - (3.4) and by exploiting
the linearity of the differential operators. In addition, this also allows to give any solu-
tion to the equations by its representation in an appropriate function space. By choosing
plane waves (e/*¥=“%) as the basis functions of the Fourier space, _this representation
can be retrleved for any solution by expressing all the quantltles E D B H ,j, and p
with o(%,t) = f ( t)e' i(k7—wt) 413 dw where <>(k: t) = f o(Z,w)e —i(ki—wt) 413 d¢, As-

—0o0 —0o0
suming homogeneous electromagnetic properties, inserting the integral representations
into (3.1) - (3.4) and interchanging the differential operators with the integration leads

to the equations

/ [ik - D — ple'Fi=eDdk3dw = 0 (3.18)
/ [ik - BlelFi—t) qk3dw = 0 (3.19)
/ [iF % H +iwD — o F — j]eé® =D di3dw = 0 (3.20)
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/ ik x E — iwB]e! et qk3dw = 0. (3.21)

The left hand sided of the above equations are, by definition, the inverse Fourier
transform of the terms in brackets. Since this is also holds for the right hand sides, a
set of algebraic equations is found — the Fourier transformed Maxwells equations. By
linking w and ]E\ via the electromagnetic properties, these equations show that their
solutions differ only by constants for different frequencies. Hence, it often suffices to
determine the solution to Maxwell’s equations in the frequency-wavenumber domain,
or in other words for a plane wave, and perform the inverse Fourier-transformation if
necessary. As two among many alternatives, the solution can also be obtained in the
frequency domain and by assuming a spherical wave (e.g. Sommerfeld [1909]) or in the
time-domain by employing the retarded vector potential, given in (3.28).

Although analytic closed-form solutions are very effective by being generic, they often
involve complex calculations and negligence of higher order terms when series expansion
are employed. Hence, they are also approximative to some degree and higher order
effects can be overlooked by their application (as discussed by Ott [1942]). Additionally,
for many approaches strong simplifications of the spatial distribution of electromagnetic
properties are necessary (e.g. Sommerfeld [1909], Weyl [1919], Dai and Young [1997]).
This also holds when this type of solutions are applied in the context of GPR. For
instance, for methods based on a Green’s function description of the subsurface, the
distribution of electromagnetic properties is assumed to have rotational symmetry (e.g.
Lambot et al. [2004a], van der Kruk et al. [2006], Busch et al. [2011]).

3.3.2 Traveltime and Amplitude Calculation

For an electromagnetic wave, which propagates through a medium, the “traveltime”
of the wave is given by the time which points of common phase need to cover a cer-
tain distance. For some specific cases and by formulating a dispersion relation, which
links w and k via the electromagnetic properties, the computation of this traveltime is
equivalent to solving Maxwell’s equations, also for arbitrary distributions of the elec-
tromagnetic properties. In general, however, this is only a first order solution which
delivers the shortest traveltime and higher order effects, e.g. like refracted or reflected
waves, are only provided by special methods or have to be treated explicitly.

The calculation of traveltimes and amplitude decays for electromagnetic and seismic
waves is formally analog; thus the methods which are developed for the latter can also
be employed in case of GPR. In the last decades many methods arose which are sum-
marized in the following. The most straight forward one is a ray-tracing method where
a homogeneous distribution of material properties and flat reflection interfaces are as-
sumed. This allows to directly calculate the waves’s travelpaths and traveltimes (e.g.
Gerhards et al. [2008]). More sophisticated ray-tracing methods can also be applied
to heterogeneously distributed material properties. For instance, the shooting method
[Julian and Gubbins, 1977] iteratively determines the direction in which a wave starts to
propagate, when traveling along the fastest path to the point of observation. However,
this can be more efficiently achieved by the bending method [Julian and Gubbins, 1977]
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where an initially guessed ray-path is perturbed to obtain the fastest one. Alternatively,
the fastest path can also be determined on a network of nodes [Nakanishi and Yam-
aguchi, 1986]. Other approaches are based on wavefront propagation, which has the
advantage that multiple arrivals are intrinsically captured. The wavefront propagation
can either be computed by tracking the wavefronts using finite-difference extrapolation
[Vidale, 1988] or by iteratively constructing them with local ray-tracing [ Vinje et al.,
1993]. Optionally, the propagation of wavefronts is retrieved from solving the eikonal
equation by propagating a level-set function, using the fast marching method [Sethian,
1996]. The latter method has been shown to be unconditionally stable, computationally
efficient, and able to handle velocity heterogeneities which cover more than an order of
magnitude [Rawlinson and Sambridge, 2004].

Since direct waves are of primary interest in traveltime and amplitude tomography
with borehole radar, the above methods are especially suited to efficiently solve the
involved inversion problem (e.g. applied by Tronicke et al. [2004], Girouz et al. [2007],
Goktirkler and Caglayan Balkaya [2010]). The various methods have in common that
they demand a significantly lower computation effort compared to numerical solutions
to Maxwell’s equations (section 3.3.3). However, they have the disadvantage that some
effects like head waves [ Vidale, 1988] are not covered by all methods or reflections from
interfaces have to be explicitly treated (e.g. Rawlinson and Sambridge [2004]). In addi-
tion the inclusion of amplitudes requires to represent damping, geometrical spreading,
and the radiation pattern (section 3.4) of the transmitting and receiving antenna [ Vinje
et al., 1993, Zhou and Fullagar, 2001]. The latter, however, has been shown by Holliger
et al. [2001] to be problematic in case of water-filled boreholes. This is caused by the
non-linearity of the problem, induced by the dependency of the radiation pattern on the
electromagnetic parameters which are to be determined by the inversion. In addition,
the representation of special electromagnetic effects such as wavelet shape changes (sec-
tion 3.4.3) and reflections from smooth changes of the permittivity profile (section 3.5)
have to be treated separately.

3.3.3 Numerical Solutions

Numerical solutions allow to solve Maxwell’s equations for very general problems in
terms of the spatial distribution of p and j This also holds for the electromagnetic
properties, which can even be included if being dispersive or non-linear. However,
the utilization of any numerical method involves, besides the computational effort, the
drawback of accessing only specific and approximate solutions on a limited spatial and
temporal domain.

To solve electromagnetic problems, various numerical methods are available. Among
the ones operating in the time-domain on unstructured grids are the finite-element
method [Jin, 2002], the finite-volume method [Piperno et al., 2002], and the discontinu-
ous Galerkin method [Fezoui et al., 2005]. The advantage of all these is their ability to
deal with complex geometries. However, changes of the geometry — which are inherent
in the inversion method presented here (section 5) — require a new mesh generation.
More importantly, the computational effort of the above methods can be large, com-
pared to the one of the finite-difference time-domain (FDTD), depending on the actual
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setup. For instance, a comparison of the COMSOL Multiphysics finite-element package
with the FDTD simulation software package MEEP (section 3.3.3.1) showed a compu-
tation time gain of two orders of magnitude for the latter; when considering a simple
layer geometry, a point source, and a comparable grid size. Hence, the FDTD method
is employed in the course of this study. In the next section, some aspects which are
relevant for its application will be discussed briefly.

3.3.3.1 The Finite-Difference Time-Domain method

The FDTD method, based on the algorithm of Yee [1966], is a standard method [ Taflove
and Hagness, 2000] for the solution of electromagnetic problems, also in the context of
GPR (e.g. Taflove and Hagness [2000], Lampe et al. [2003], Giannopoulos [2005]).
The solution to Maxwell’s equations is achieved by first defining a structured and in
most cases rectangular or even cubic grid with the spatial resolution Ax = Ay = Az.
Assuming non-dispersive media and ¢ to be real valued, one obtains D = ¢E from (3.5).
Then, equations (3.3) and (3.4) — the other two are intrinsically incorporated by the
algorithm — are discretized by assuming spatially constant values of all quantities on each
grid cell and by approximating the spatial and temporal derivates by taylor expansions.
By neglecting all terms higher or equal to quadratic order, linear approximations of
the derivatives are obtained; for instance as central differences. Yee [1966] showed that
using individual grids for E and B which are shifted by Ax/2 increases the robustness
of the method. Similar, the temporal update of the electromagnetic fields is obtained
in a leap-frog manner, i.e., E and B are computed with a fixed temporal discretization
At, but shifted to each other by At/2.

One important benefit of the FDTD method is that it is fully explicit in computa-
tion. Thus, no matrix inversion is necessary, which is the main reason for the gain in
computation time mentioned above. The FDTD method requires the user to define con-
stant values of the electromagnetic properties on each grid cell, which makes a special
treatment of discontinuous materials necessary (as described below and in section 5.2).
A disadvantage of the method is the necessity of a homogeneous and temporally con-
stant spatial and temporal discretization. Hence, no spatial and temporal adaptivity is
possible.

Because the computational effort decreases by a factor as high as the number of
grid cells in one-direction, the solutions are preferably obtained, as in this study, in
two-dimensions rather than in three-dimensions. For this, all quantities occurring in
equations (3.3) and (3.4) are assumed to be invariant in z-direction, which cancels all
spatial derivatives in this direction. With that, two independent systems of equations
are obtained for Ez,éx,éy and Ex,ﬁy,éz, while their solutions are identified with
the TE, and TM, mode, respectively. In the following only the TE, mode will be
considered.

Besides the domain definition, the spatial and temporal discretization have to be
chosen appropriately to achieve a sufficiently accurate solution to the actual electro-
magnetic problem with an acceptable computational effort. While an upper limit to
grid resolution is defined by the available computational resources, there are two criteria
which need to be fulfilled to address the following issues.
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Numerical Dispersion Due to the discretization of Maxwell’s equations and the repre-
sentation of the differential operators by finite differences, numerical dispersion is incor-
porated inherently. This expresses in a two-dimensional dispersion relation [ Taflove and
Hagness, 2000] linking the frequency w and wavenumber k of a plane monochromatic
wave propagating with the speed ¢ = ¢y/,/er, to the temporal and spatial discretization:

2 2 2
{cit sin (w;Atﬂ = [Alm sin (kxﬁxﬂ + [Aly sin (kyﬁy)] (3.22)
By employing the Taylor expansion to first order terms of the ’sin’ function, one can
find that (3.22) converges to the analytical dispersion relation w/c = |k| for At — 0
and Az — 0. However, this limit will not be reached in application, thus some details
of equation (3.22) are relevant: (i) The numerical phase velocity v = w/k only coincides
with ¢ in the previous limit. Figure 3.1 reveals a significant change of phase velocity
with the number of grid points per wavelength. Additionally, the results are found to
depend on the direction of propagation l;/ |l§]7 a fact which results from the presence
of k; and k, in (3.22). (ii) Figure 3.1 also shows an increase in phase velocity if the
number of grid points per wavelength is smaller than two. (iii) Taflove and Hagness
[2000] show that the application of arcsin to obtain v from (3.22) can cause k to become
complex. Besides the necessarily induced damping of the wave (section 3.2.2), this can
cause v/co > 1, as well.
For practical applications the number of grid points per wavelength should be about
10 for all frequencies significantly contributing to the computed signal.

1 XX::;§§§§§!§;

\'SI' 0.8~
Figure 3.1: Phase velocity of a circular >
monochromatic wave, depending on the - . 0
number of grid cells per wavelength. The 0.6} o
data were obtained parallel (0°) and diago- 45
nal (45°) to the grid axis by automatically 0 5 10

detecting extrema of E, at different posi-
tions.

MA X [-]

Stability To prevent unstable solutions for a given spatial resolution, the following
criterion has to be fulfilled for the Courant stability factor

[ 1 1

Here ¢ = ¢y/\/, and thus the largest value for ¢ in the spatial domain, which is ¢y
in most cases, limits A¢. The criterion (3.23) can be intuitively understood for the
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one-dimensional case for which the second summand in the root can be dropped: The
time Ax/c is necessary for a wave to propagate between two grid cells. If At is chosen
larger than this time, the algorithm attempts to propagate the wave over more than one
grid cell per time-step. However, the given discretization of the differential operators
implicates that information can only be transported between neighboring grid-cells.
Hence, the attempt cannot succeed and possibly results in an unphysical exponential
growth of the electromagnetic field with time [Taflove and Hagness, 2000]. For the
calculations performed later on, C' is always set to 0.5.

The numerical solutions to Maxwell’s equations presented in this study are all ob-
tained with MEEP [Oskooi et al., 2010], which is a FDTD simulation software package,
to which an interface for GPR modeling has been added by the author. The imple-
mentation employs central differences for the finite-difference calculation and is second
order accurate. This accuracy is achieved for output variables which are requested
at arbitrary positions, by bilinear interpolation of the variables’ values at neighboring
grid-cells. The reverse procedure, named restriction as the transpose of interpolation,
is employed by MEEP to enable the definition of point source-current densities at arbi-
trary positions. To maintain second order accuracy at discontinuities in the distribution
of electromagnetic properties a subpixel-smoothing routine, based on perturbation the-
ory, is implemented in MEEP. Farjadpour et al. [2006] demonstrate that this procedure
improves the accuracy of the FDTD solution when modeling discontinuous dielectric
materials. The resulting convergence properties of MEEP are studied in detail by Os-
kooi et al. [2009] and Oskooi et al. [2010] and the authors show that the second order
accuracy is achieved, indeed.

All calculations for this study are obtained on a structured squared grid. As boundary
conditions, the perfectly matched layers implemented in MEEP are employed and all
fields and current densities are set to zero as initial conditions.

3.4 Antenna Theory

At the core of the GPR measurement technique is the GPR antenna system, which
radiates a transient electromagnetic field into the subsurface and receives the modified
response of that field. Hence, understanding of the antenna as a part of the electrody-
namical setting and the implications of its operation at the air-subsurface interface is
crucial.

The question “what is an antenna from an electrodynamical perspective?” is answered
basically as it follows: An antenna is a conducting material at which a time-dependent
source current density j is present. The necessity of a time-dependent jbecomes obvi-
ous from (3.11). Solving the equation as an initial value problem assuming E lt=0 = 0,

the solution only becomes non-trivial if % = 0. The very general definition given above
explains the huge variety of antennas (wire, loop, array, dipole, horn, etc.) which has
evolved since electrical engineering became operationally possible. This also means,
that the different antenna designs have significant implication on the antennas’ charac-
teristics which are quantified by several properties, of which the most relevant ones are
introduced:
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3 Electrodynamics

Charge Current Distribution and Time Dependency If an excitation voltage is ap-
plied at the so-called feed point, the antenna’s design causes a specific distribution of
the source current density j In addition, the amplitude and time-dependency of the
excitation voltage determine the amplitude and time-dependency of j(a?’, t). The resul-
ting electromagnetic field can then be computed by solving equations (3.1) - (3.4) with
the function ;(i’, t) and by representing the antenna itself as a conducting body. This
computation, however, is only feasible analytically in special cases, e.g. for an infinites-
imal dipole [Jackson, 2006], else numerical simulations have to be consulted [Lampe
et al., 2003]. By determining the electromagnetic field, the actual geometry and the
resistance at the antenna body directly influence the following properties.

Figure 3.2: E—plane field patterns of three
different antenna types radiating in air [Mil- )
lard et al., 2002]: (i) A short dipole which
is small compared to the wavelength, (ii) a f
bow-tie antenna, and (iii) a dipole having r
the same length as the largest extent of the
bow-tie. The given angle corresponds to
the angle between E and the antenna’s long
axis. The crossing point between the dipole !
results and the straight line, which extends
from the circle’s center and to its borders,
gives the normalized field strength.

// short (Iigmlc -_—
linear dipole
bowtie dipole  -------

Radiation Pattern The antenna’s field or power pattern is defined as the dependency
of £, B, or the Poynting vector

S

m (E x B) (3.24)

§ =
on spherical coordinates. Since these quantities are in general complex, the real coun-
terparts are often considered instead. The usage of a real valued power pattern also
has the advantages that (i) its temporal mean can be investigated as well and (ii) the
sphere surface integral provides, by definition, the totally radiated power. To provide
intuitive access, radiation patterns are often visualized (e.g. figure 3.2) in the E- and
E—plane, which are defined as the planes containing the respective field vector and the
poynting vector.

Bandwidth and Frequency Spectrum The frequency composition of the emitted elec-
tric field is modified compared to that of the excitation voltage by (i) the antenna
geometry, (ii) by the time-derivative of j(Z,t) in equation (3.11), and (iii) the elec-
tromagnetic properties in the close surrounding of the antenna (section 3.4.2). The
resulting antenna-specific spectrum determines the bandwidth at which the antenna
operates.
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3.4 Antenna Theory

Polarization The electromagnetic field which is radiated by an antenna is polarized
and the polarization is in general depending on the distance to the antenna (e.g. in
the near-field region) and on the angle of observation. Some antennas (e.g. dipole or
bow-tie antennas) have an effective linear polarization in the far-field, which is parallel
to the antennas’ main axis. This is an advantage for the detection of objects, which
have a dominant spatial extent (e.g. pipes or cables), by their reflection signal.

An useful property of an antenna is inherently determined by the reciprocity theo-
rem (e.g. Balanis [1997]). This theorem states that for two identical antennas, which
are used as transmitter and receiver, the received signal is identical if the roles and
positions of the antennas are interchanged. Additionally, it follows from the theo-
rem that the transmitting pattern of an antenna is equal to its the receiving pattern.

far-field (Fraunhofer)

3.4.1 Near and Far-Field

near-field (Fresnel)

The space around an antenna is subdi-
vided in three zones, as indicated in fig-
ure 3.4. This distinction can be under-
stood by assuming an electrical dipole,
which is excited with a time-harmonic
charge current density with the frequency
w resulting in the dipole moment T. Solv-
ing Maxwell’s equations using a first or-
der approximation, Jackson [2006] finds
the resulting electromagnetic fields for the
dipole centered at the origin and sur- Figure 3.3: Field zones around an exemplary
rounded by a homogeneous medium with dipole antenna (black line).

= pp and ¢ = cy/\/e, as

2 .
S o owt L = a1 ?
B = N\ -+ — 2
(Z) Tro (7 x ¥)e <7“ + kr2) (3.25)
and
E(%) 1 k(7 x ) x il + 3[37(7T) — ¥ (1 — Zk) ’“] (3.26)
il i i (7 5 2)e )

with r = |Z| and 77 = Z/|Z|.

Reactive Near-Field This region can be defined as the area where kr < 1, what
makes the terms B o« 1/r? and E o 1/r3 dominate in (3.25) and (3.26), respectively.
For most antennas with a maximal extent D, Balanis [1997] estimates the reactive
near-field zone to be given for r < 0.62y/D3/\ For a dipole with D < A, the author
finds r < A\/27. In this case, the power density in the reactive near-field zone can be
computed and is a complex quantity. The imaginary part of that power density is termed
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3 Electrodynamics

the reactive power density. In general, however, the prediction of the electromagnetlc
field in the reactive near-field can be infeasible and the relation between E and B is
complicated. Observations (section 3.4.2) suggest that the presence of spatially variable
electromagnetic properties in the reactive near field zone can have a significant impact
on the resulting electromagnetic field.

Figure 3.4: E. parallel to the emitting
dipole, for different distances ’r’. The in-
finitely long dipole is embedded in a homo-
geneous medium with €, = 5 and emits a
Ricker wavelet (section A.2) with a nominal
frequency of 400 MHz. The signals are nor-
malized and temporally referenced to their
maximum amplitude. The results were ob- 0 1 2 3 4 5
tained with 2D FDTD computations. Time [ns]

Amplitude [-]

Near-Field The region between the reactive near-field and the far-field is defined as
the near-field or Fresnel zone. In this zone kr > 1 shall hold and the terms B o 1 /T
and E oc 1/72 dominate in (3.25) and (3.26), although the other terms are significant
either. Hence, the angular field distribution is dependent on r, a finding which is used
for alternative definitions of the near-field zone. As depicted in figure 3.4, however,
also the shape of an emitted signal is dependent on r. As an upper limit of the near
field region, Balanis [1997] gives r ~ 2D?/\. If other antennas are placed in the near-
field region, they can act as subsequent emitters as well as relevant energy sinks. The
electromagnetic near-field can be calculated (e.g. Sendur and Challener [2003], Streich
and van der Kruk [2007], Warren and Giannopoulos [2012]), is measurable | Yaghjian,
1986], and the far-field can be calculated on that basis, which is the purpose of near-field
radiation pattern measurements.

Far-Field This zone (also called the Fraunhofer-zone) is defined as the region where
the angular field distribution is independent of  and where the radiative terms (o< 1/7)
in (3.25) and (3.26) are large compared to the other terms. Inserting this into (3.24)
one finds that the radiated power density decays oc 1/r2. This is also dictated by energy
conservation since the totally radiated energy, obtained by integrating over a spherical
surface which increases o< r2, must not change with r. The electromagnetic far-field
can be computed for many systems and the complete antenna system together with
the distribution of electromagnetic parameters can be represented by transmission-line
models (e.g. Lambot et al. [2004b]), i.e., by Greens’ functions. Antenna coupling effects
can be neglected in the far-field zone and with that other antennas can be used to
measure the antenna’s radiation pattern independently.
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Subsurface .
Air Figure 3.5: Signals recorded between two

shielded bistatic GPR antenna pairs (In-
gegneria dei Sistemi S.p.A.) with a nomi-
nal frequency of 400 MHz and a transmitter-
receiver separation of 1.67m, operated in
transverse electric mode. The air signal was
obtained while tilting the antenna boxes by
90° around their long axis. The subsur-
face signal was recorded with the antennas
-1 mounted on-ground and stems from a re-
flecting layer interface at ca. 0.86m depth
0 2 4 6 8 in an unsaturated sandy soil at about 22 %
Time [ns] volumetric water content.

0.5

Amplitude [-]
o

3.4.2 Ground Coupling

Surface- and borehole-GPR antennas are deployed directly at the ground surface or in
boreholes. That is, in both cases the electromagnetic properties in the reactive near-field
region of the antenna possibly change with varying positions. The involved implications
have been studied by various authors, leading to the following results for surface GPR
systems:

e If an antenna is placed at the interface between vacuum and a half space with the
dielectric permittivity ¢,, its radiation pattern gets more narrow with increasing e,
[Millard et al., 2002, Diamanti et al., 2012].

e Numerical simulations show that the radiation pattern is also depending on the
distance at which an antenna is placed above a lossless dielectric half-space [Dia-
manti et al., 2012, Warren and Giannopoulos, 2012]. The authors find a decrease
of the energy radiated into the half-space with the antenna height. This finding
is relevant, since the antennas in real GPR system are also not placed directly
at the ground surface, but with a small distance. This distance is caused by the
embedding dielectric medium (figure 4.1), the antenna box, and possibly by air
gaps in case of an uneven surface.

o Millard et al. [2002] report a down-shift of the center frequency from nominal
900 MHz and 1 GHz antennas to 500 MHz and 666 MHz, respectively, when the
corresponding antennas were deployed on concrete. A similar result is also found
for the signal shown in figure 3.5 where the center frequencies are found to be
500 MHz and 320 MHz for the air and subsurface signal, respectively. This is also
expressed in the change of the wavelets’ shapes, where the dominant period of the
subsurface signal is significantly larger than the one of the air signal.

e By the reciprocity theorem, both transmitter and receiver antenna are effected.
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3 Electrodynamics

The above effects have the consequence that the ground-coupling or, more precise,
the antenna efficiency, i.e., the ratio between the input energy and the radiated en-
ergy, might be insufficient for survey purposes. Manufacturers address this problem by
(i) shielding the antenna (figure 4.1) towards air to increase the power radiated into the
subsurface (as demonstrated for instance by Diamanti et al. [2012]) and (ii) by embed-
ding the antennas into a dielectric medium which matches the dielectric permittivity
of the subsurface optimally. If the antenna system is operated off-ground (e.g. Lambot
et al. [2004b]) with the subsurface located in the far-field zone of the antenna, the com-
plete system can be described as a linear system. This is not feasible in case of borehole
or surface GPR systems. Thus, different strategies have to be followed to simulate GPR
measurements with still assuming a point dipole in the context of quantitive inversion
of GPR signals: (i) the antenna is represented effectively by estimating a source-current
function which includes all coupling effects [Ernst et al., 2007a, Busch et al., 2011] or
(ii) by referring to a reflection obtained from a point in the subsurface which can be
assumed to be in the near- or far-field [Buchner et al., 2012].

3.4.3 Radiation at a Dielectric Interface

If an antenna radiates an electromagnetic field at the interface between two lossless
media with different ¢,, the resulting electric field has characteristic features which were
studied by various authors before (e.g. Ott [1942], Annan [1973], Dai and Young [1997]).
These features have significant implications for the evaluation of GPR measurements.

Figure 3.6 shows the results for an electromagnetic pulse emitted by a dipole located
at an interface between two media with different .. The region above the interface
represents air, while the region below shall represent the subsurface or ground. Although
the results were obtained with a two-dimensional simulation, they do qualitatively also
apply for the same situation in three dimensions.

In the field distribution in graph (a) three circular waves are present: (i) One traveling
in air, which is called the direct airwave when it is observed at the air-ground interface.
(ii) The signal propagating in the middle layer and its transmitted part entering the
lower layer. (At the air-ground interface, the further is also denoted as the direct
groundwave.) (iii) Its reflected part traveling upwards in the middle layer being phase-
flipped because of the dielectric contrast at the lower interface.

In addition, two other wave phenomena are present. First, from the location where
the circular wave in air reaches the air-ground interface towards the circular wave in the
ground, the so-called head- or flank-wave is found [Ott, 1942]. Tt’s appearance can be
understood by Huygens’ principle: The circular wave in air causes subsequent circular
waves to be emitted at the air-ground interface, which constructively interfere to the
head-wave. The constructive interference is only possible since the propagation speed
in the middle layer is smaller than the one in air; with the phenomenological analogy
to bow- or shock waves observed for surface- or sonic-waves, respectively.

The second phenomenon occurs where the circular wave propagating in the middle
layer reaches the air-ground interface. Here, also subsequent circular waves are induced,
but since their propagation speed in air is larger then the one in the middle layer, they
do not constructively interfere. Hence the resulting electric field decays rapidly.
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(a) E. after 23 ns stemming from of a 400 MHz  (b) Normalized E. recorded at position 'R’ in
Ricker pulse (colored), which was emitted from graph (a). The three different wavelets stem
an infinite dipole pointing in z-direction. It is from the direct airwave (first), from the direct
located at position 'T” at the interface of media groundwave (second), and from the reflection
with different ¢, (grey). at the lower interface (third).

Figure 3.6: Electric field distribution and time-dependency obtained from two-dimensional nu-
merical simulations (FDTD). The time-evolution of the electromagnetic field distribution is
provided by the movie boundary_ radiation.mp4.

Graph (b) in figure 3.6 shows the time evolution of the E, recorded at T’ where
three distinct wavelets can be found. The first two correspond to the direct air- and
groundwave, while the third one stems from the reflection at lower interface. The shapes
of the first two wavelets are noticeably different from the third. Dai and Young [1997]
derived that the time-dependency of direct signals observed at the upper interface is
proportional to the time-dependency of the charge current density. This is not the
case if the dipole antenna is placed above the interface or in a completely homogenous
medium (e.g. equation (3.33)). However, not only the shape of the two direct wave
signals is different, also their amplitude is significantly lower compared to the third
signal; although the latter is a reflected signal. This is explained by Sommerfeld [1909]
and Annan [1973] who show that the fields directly at the interface decay oc 1/72 in
comparison to the circular waves which decay o 1/r far from the interface; dictated by
energy conservation. From graph (a) one can also observe that the circular waves decay
towards the interface and the shape transition from three extrema to two extrema is
continuous. Ott [1942] shows that this effect results from the superposition of an initial
circular wave with the reflection of the same at the interface. If the dipole antenna is
located directly at the interface, the two waves are in-phase everywhere and interfere
with the given result. However, if the source is not located at the interface or the
circular wave is for instance induced by a reflection (as can be found in the movie
boundary_radiation.mp4), the same effect is present for large distance from the point
of initial occurrence.

As a concluding remark, it should be mentioned that these effects are not predictable
with geometrical optics only, but with the inclusion of second order effects [Annan,
1973].
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The wavelet shape change is of importance for the determination of signal traveltimes
by “picking” individual wavelet features (section 4.4.1); e.g., extrema or zero-crossings.
Analyzing the data from figure 3.6 (b) one can estimate the dielectric permittivity of
the middle layer. For this the so-called time-offset (section 4.4.1) has to be determined.
This is done using the apparent traveltime of the reflection wavelet and the theoretical
prediction from ray-tracing. The correct traveltime of the direct groundwave, can be
determined by identifying the same wavelet feature and a following time-offset correc-
tion. Using this traveltime and assuming a direct travelpath, ¢, of the middle layer is
retrieved. Following this procedure by picking the first maximum of the wavelets, leads
to a deviation of about 8% for the determined e,. In contrast, using the “center of
intensity” method, proposed in this study (section 5.3), this deviation can be reduced
to 2% in the given case and theoretically to zero if the absolute values of the observed
wavelets are symmetric to time reversal.

3.4.4 2D and 3D solutions

Although two-dimensional and three-dimensional solutions to Maxwell’s equations pro-
vide conceptually similar results under certain symmetry assumptions, there are signifi-
cant quantitative differences in special cases. Since these are relevant when investigating
an infinite dipole radiating in a homogenous medium, this setup is studied in the fol-
lowing.

—

Figure 3.7: Coordinate sys- ‘ X
tem with the line (light blue)

and point (light magenta)

dipole sources.

The electromagnetic fields can be determined from the vector potential F under the
assumption p = 0 as

B=VxF AN E=-——. (3.27)

The vector potential at location ¥ and time t is related to ; by [Jackson, 2006]

71|
F(7t) /d ’_ | itz =) (3.28)

in a homogeneous medium with real &, and ¢ = ¢y/,/2,. In the above equation the term

oy
|rF=r']

expresses the retardation, i.e., the time-shift dictated by causality. To derive a
factor relating the solution of a 3D problem with the one of a 2D problem, two sources
are assumed (figure 3.7): (i) a point dipole source of infinitesimal extent and (ii) a
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line dipole source which extends infinitely in z-direction. Without loss of generality the
dipoles are assumed to be centered at the origin and the source current density is given
by

J(7t) = jod(2)d(y)s(t) [ (2)2: (3.29)
with s(t) and f(z) denoting general time and z-dependencies. Now, (3.28) translates to
B} T T iod()sy)st — =
47[' S ’77— r/|

(3.31)

_ oo / e t—\/x2+y2+(z—z/)2/6)f(2’) 5
\/:c2+y2+(z—z’)2 z

For the purpose of transforming a 2D to a 3D solution in section 5, it suffices to set
z = 0. Additionally, without the loss of generality y = 0 can be assumed and one finds

= JoMo /d’ —Va?+22)c) f(z )ez. (3.32)

F _’,
Va2 + 22

Inserting (3.32) into (3.27) it follows

E(Ft)——m dlat( Va? 4 22 /C) ( )e
’ o 41 ‘/5[72—{‘2/2 Zr

—00

(3.33)

In the case of the point source obviously f(z) = §(z). Assuming additionally s(¢) =
e equation (3.33) gives the expected monochromatic circular wave solution

E(F, £ =— zcz;(_);to 6i(wt—km)é‘z. (3.34)

In contrast, for a line source with a homogenous source current density f(z) = 1, the
following expression is found:

E(r

/2 2
. 30“0 /d st = VR ) (3.35)

Va2 + 22

This expression corresponds to the intuitive understanding of circular waves which are
emitted in-phase along the line source: at location 7 these are summed up weighted with
a factor which is proportional to the distance to the emission point and the location of
interest, i.e., the amplitude decrease in (3.34). In addition, there is a time-shift for each
contribution, which corresponds to the time the contribution takes to propagate to 7.

Inserting s(t) = ¢! and exploiting the symmetry in z-direction finally leads to the
expression

o
2o 2iwjopo €
E(T,t) = *T/dz WCZ =

iwt—i2V/x242"2 ijoluoezwt —zf V2422
z, — / dz’ Z.. (3.36)
VaZ 4 22
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This integral does not appear to be solvable with commonly available computer algebra
system, but can still be analyzed to some degree. It is apparent, that the integral is
frequency dependent in the sense that the argument of the exponential function is scaled
with the wavelength. However, to derive an expression which is able to transform from
two to three dimension this is inappropriate. Shifting the factor w/c into the roots,
substituting b = wz/c, and introducing R = wx/c equation (3.36) changes to

. ,L'wjouoeiwt o0 ,efi\/w

E(rt) =
(Tﬂ) I J \/W

g,. (3.37)

Now, the integral gives numerically equal results for all frequencies with the scaled
length R, i.e., when the coordinates are measured as multiples of wavelengths. Three
important facts can be derived for this integral. (i) Any physically meaningful solution
will be finite, hence the expression must converge to a constant for the upper limit of the
integration. Because of energy conservation this constant is necessarily zero. (ii) The
exponential function will stay in that form also in the integrated expression and the
evaluation at b = 0 leads to a factor e~*. (iii) Due to the cylindrical symmetry of
the problem, the field must decay as 1/v/R to fulfill energy conservation. Hence the
resulting expression will be oc e~ /\/R = e=™%/¢/, Jux]c = e~ /\/wz/c. Inserting
this into (3.37) and comparing to the 3D solution (3.34) leads to the result: For the
2D solution to be equal to the 3D solution it has to be multiplied with a factor, whose

dominant term is “;—“/5” This is identical, except of some constant factors, to the
conversion obtained by Bleistein [1986] for the far-field in the frequency-domain where

e—%'sign(w) ’w|\/a
V2T cr

In the frequency domain negative frequencies have to be considered and thus the abso-
lute value and the signum function are employed. An example to the correct work of
the transformation is illustrated in figure 3.8, where the slight differences between the
3D and 2D-3D curves are due to numerical errors.

The above derivation was performed for a homogenous medium without the presence
of an interface at the source location. Bleistein [1986], however, drops these assumptions
and derives that transformation (3.38) can be applied to reflections stemming from the
subsurface. Additionally, one can show with a calculation similar to the one obtained
for figure 3.8, that the transformation also holds for direct groundwave signals (defined
in section 3.4.3).

Esp = Esp

(3.38)
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2D
—2D-3D Figure 3.8: Comparison of normalized E,

0.5 —3D observed 6m from a dipole source em-
bedded in a homogeneous medium with
e, = 4 excited with a Ricker source current
charge density with a nominal frequency of
100 MHz. The 2D solution is obtained via
FDTD, the 3D solution is computed via
0 5 1'0 1'5 20 §3.33), and the 2D—3D curve is computed

. rom the 2D solution employing the trans-
Time [ns] formation (3.38).
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3.5 Reflections

Maxwell’s equations determine that reflections of electromagnetic waves occur at spatial
changes of the electromagnetic properties. Hence, this is not only the case at interfaces
but also for continuous changes of the properties. However, at an interface between two
regions with homogenous dielectric properties, all frequency components of a signal are
equally reflected. In contrast, the signal which is reflected from a continuous change
has a different frequency spectrum than the incoming signal. The reason for this is the
following: The incoming signal gets reflected at each position along the continuously
changing material. Thus, the signal observed in direction of incoming signal is the su-
perposition of all the corresponding retarded reflections. Wether the different frequency
components interfere constructively or destructively depends on their phase-shift, which
is determined by their time-shift measured in period-lengths. Hence, for a continuous
change of the dielectric properties over a certain extent, frequency components with a
period length, which is much longer than the maximal traveltime of a reflected signal,
will constructively interfere. Consequently, the reflection response for this frequency
component will be almost similar to the one from a clear interface. In contrast, for the
frequency components with a period length, which is much smaller then the maximum
traveltime, the situation is different: For a reflection stemming from one point, there will
be most likely a reflection with a 7 phase shift from another position which interferes
destructively. Hence, this frequency component contributes with smaller amplitude in
the reflected signal.

An example to this effect is given in figure 3.9, where various signals are compared,
which are reflected at different permittivity profiles. The signals are reflected from
an interface located at zp between two homogeneous regions with ¢, ;1 and €,2. The
permittivity distribution in the vicinity of the interface is smoothed with the function

Er1 if T—x9 < —C
f@) = Qepy + 2T | 2500 4 Ssin(n®0) + 1] if Jo— x| < ¢ (3.39)
€r,2 if xr—x9 > C(,

where ( is the smoothing width. The results show a clear change in the shape of the re-
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Figure 3.9: Permittivity profiles (upper left) of an interface at xy = 0.1075m smoothed by
function (3.39) with the width ¢. An infinite dipole is placed 2m from zy and excited with a
Ricker source current density with a nominal frequency of 400 MHz. Next to the dipole, the
reflected EZ (upper right) is observed. The results are obtained by FDTD simulations in 2D
with a spatial resolution Az = 5mm. Thus, the discrete permittivity distribution is visible in
the permittivity profiles. For { = 0, the profile is also not exactly a step function due to the
subpixel smoothing (section 3.3.3.1) employed by MEEP. The lower left graph shows the one
sided amplitude spectrum of E, divided by the spectrum of E, obtained with ¢=0.

flected wavelets which is best understood in the frequency domain: In agreement with
the above explanation, one finds a monotonic decrease of amplitude with increasing
frequency. In addition, the amplitude depends on (. However, we only find a mini-
mal impact when comparing the result for ( = 0 and { = 1Az, which is relevant in
section 5.2.

Detailed investigations, on how a reflected wavelet is effected by the so-called capillary
fringe and what can be determined from these reflections about the shape of the capillary
fringe, were carried out by Dagenbach [2012].

3.6 Petrophysical Relationships

Many hydrogeophysical measurement methods which utilize electromagnetic signals to
investigate the subsurface, do rather provide information on the electromagnetic para-
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meters ¢/ and o, than on hydrological quantities, such as porosity ¢ or the volumetric
water content #. Thus, petrophysical relationships linking the two classes of parameters
are employed.

In an early work, Archie [1942] related the resistivity 1/o with ¢ and 6 to improve
the evaluation of electric resistivity logs for reservoir characterization. However, for
other measurement methods which provide £, the exploitation of the latter is of more
interest. This brings up the question how the effective or composite permittivity 6;7(: of
a mixture of phases is related to the permittivities of the individual phases. There are
three different approaches to address this issue [Brovelli and Cassiani, 2008]: (i) Ef-
fective medium or mean-field theories, (ii) mixing rules (e.g. Tinga et al. [1973]), and
(iii) empirical relationships (e.g. Topp et al. [1980]). While the last approach is in
general restricted to a certain type of media and needs on-site calibration, the first
is physically based but makes strong assumptions on the geometry of the individual
phases. Hence, the second approach is favored since it is physically based and flexible.
One type of dielectric mixing formula is given by the Lichtenecker-Rother [Guéguen and
Palciauskas, 1994] equation as

et => B (3.40)

Here, n is the number of phases, ®; is the volume fraction of phase ’j’ and « is a fitting
parameter. In fact, (3.40) also holds f