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Abstract

This thesis investigates a mathematical model that tries to consider most processes
involved in bone formation and bone resorption. It takes the solid bone matrix
and the fluid phase as bone marrow into account as well as the influences of bone
cell populations on the bone remodeling cycle. The role of parathyroid hormone
and calcium homeostasis and the signaling pathways between bone cells are also
studied.
A complex mathematical model is derived which results in a free boundary problem
as bone is constantly changing its shape and architecture. We find in the model on
the macroscopic level equations for linear elasticity and Navier-Stokes equation.
On the basic unit level we study equations for diffusion and transport, chemotaxis
and partial differential equations for bone cell populations.
The general complex model for bone remodeling is then simplified and applied to
a chosen problem in orthodontics, the movement of a tooth through bone. Tooth
movement caused by braces is a possible application of our general model. Here
the equations of Biot for a porous medium, the periodontal ligament, are used and
combined with a free boundary. We use the homogenized system and are able to
derive effective equations for the displacement and pressure.
We suggest for the analysis the Rothe method and prove in this thesis the existence
of solutions for the Rothe iteration step. The full convergence proof for the free
boundary problem is a problem for itself.



Zusammenfassung

Diese Arbeit untersucht durch mathematische Modellierung die Prozesse die beim
Knochenumbau eine Rolle spielen, wobei sowohl der solide Anteil der Knochen-
matrix, als auch der flüssige Anteil des Knochenmarks berücksichtigt werden.
Darüber hinaus werden auch die Einflüsse der Knochenzellenpopulationen näher
unter die Lupe genommen. Auch die Rolle des Parathormons und des Kalzi-
umhaushalts und die Signalwege zwischen den Knochenzellen werden untersucht.
Daraus entsteht ein komplexes Modell mit einem freien Randwertproblem, da
Knochen sich ständig verändert. Im makroskopischen Modell finden wir partielle
Differentialgleichungen, die die lineare Elastiziät beschreiben, wie auch Navier-
Stokes Gleichungen. Im mikroskopischen Modell erhalten wir Gleichungen für
Diffusion, Transport und Chemotaxis, aber auch partielle Differentialgleichungen,
die die Knochenzellenpopulationen beschreiben.
Das allgemeine Modell wird dann vereinfacht und auf ein ausgewähltes Problem in
der Kieferorthopädie angewendet, der Bewegung eines Zahnes durch den Knochen.
Die Zahnbewegung ausgelöst durch eine Zahnspange ist eine mögliche Anwendung
unseres allgemeinen Modells. Hier tauchen die Biot Gleichungen für ein poröses
Medium auf, die auf das periodontale Ligament angewendet werden. Wir verwen-
den das homogenisierte System und erhalten effektive Gleichungen für die Ver-
schiebung und den Druck.
Wir benutzen dann die Rothe Methode zur Analyse des Problem und beweisen in
dieser Arbeit die Existenz von Lösungen des Rothe Iterationsschrittes. Der volle
Konvergenzbeweis des freien Randwertproblems ist ein Problem an sich, da sich
das Gebiet ständig verändert.
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1 Introduction

"What is in the marrow is hard to take from the bone.”
(Irish saying)

The above stated Irish saying gives an idea of how complicated and yet so inter-
esting the interaction between bone and bone marrow are.
Bone and its architecture has been of interest for researchers for more than a
decade now. After twenty-five years of work in skeletal anatomy, adaption, and
orthopaedics, Julius Wolff (1836-1902), a German surgeon, published his work on
bone transformation in Berlin in 1892. Today his work is known as bone remodeling
and modeling. Wolff’s work and his general view of how a limb bone’s morphology
develops has evolved into a concept known today as Wolff’s law, which is essen-
tially the observation that bone changes its external shape and internal cancellous
architecture in response to stresses acting on it.
Many contemporary investigators still ascribe to the idea that there is a Wolff’s
law, the fact that bone models and remodels in response to the mechanical stresses
it undergoes.

Bone is a dynamic, living tissue whose structure and shape continuously changes
and adjusts to changing mechanical or metabolic needs. A rigid skeleton makes
it possible to support weight and ensures protection of organs and muscles. In
addition bone also plays an important role in the maintenance of serum-mineral
metabolism, and is considered an important component of the immune system.
There are two types of bone the compact and the cancellous bone. In this thesis
we will focus on the cancellous or trabecular bone, which has a very random hon-
eycomp structure.
Cancellous bone can be interpreted as a porous medium where we have a solid
part, the mineralized bone matrix, and a fluid part, the bone marrow. Within the
mineralized part we find osteocytes, osteoclasts and osteoblasts, the bone cells,
that continuously change the structure and the strength of bone.

Throughout the literature many articles have been published about bone remod-
eling with the discussion on diverse issues. The mathematical papers either focus
on detailed processes on the cell level or concentrate on the macroscopic porous
structure.
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Introduction

Komarova (2003) develops a mathematical model that predicts a critical role for
osteoclast autocrine regulation in the control of bone remodeling.
Zumsande, et al. (2011), Ayati, et al. (2010) and Lemaire, et al. (2004) analyzed
mathematical models for bone remodeling, where the populations of osteoblasts,
osteoclasts and osteocytes and their interactions were considered.
Kroll (2000) focused on the temporal hormonal effect of the parathormone on bone
formation and resorption.
Mikelic et al. and Gilbert published various articles about the macroscopic porous
structure where the system is homogenized. [37], [38], [39], [72]
We also find assorted articles about bone remodeling where the finite element
method is used to analyze the system.
There are also various papers about the analysis of the Biot equations but the free
boundary is neglected. Badia et al. (2008, 2009) investigated the coupling of Biot-
and Navier-Stokes equations for modeling fluid-poroelastic media interaction.
The influence of calcium homeostasis on the bone remodeling process were ne-
glected in most papers and although all articles state that the bone structure is
constantly changing suprisingly, none takes the free boundary into account.

The aim of this thesis is to develop a mathematical model for cancellous bone that
combines the processes involved in bone resorption and formation together with
the fact that the domain of the bone constantly changes due to mechanical loading
and changing metabolic needs. In our model we combine porous media with bone
cell populations, signaling, piezoelectricity and influences of calcium and parathor-
mone on the bone remodeling process.
Bone is a biosystem demanding a multiscale approach. Due to its complexity,
linking the mathematical models on different scales is a challenge to mathemat-
ics which is still beyond reach e.g. for homogenization. In this investigation we
derive model equations, which describe processes on the meso-scopic level, not on
the cellular level, but on the level of a basic unit of a reticulated structure. The
equations cover the flow, reactions, signaling, diffusion, transport und mechanics
in process-depending domains.
Here we are using the approach to include in a first step all processes which might
be important to understand bone remodeling, and to reduce in a second step the
system to a less complex model system, including only those factors and features,
which are necessary to answer the given questions. We apply our model to the
porous structure of the periodontal ligament surrounding the tooth, which is ad-
jacent to the bone. The idea for this application came up in a cooperation with
Professor Dr. Lux from the orthodontic department of the Heidelberger Dental
Clinic, and during the development process, there has been active exchange be-
tween his work group and the IWR.
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Introduction

The result of this investigation can be summarized as follows:

• Derivation of a system consisting of nonlinear partial differential equations
on solution-depending domains and interfaces, modeling blood flow, the me-
chanics of the mineralized bone matrix, calcium and parathyroid hormone
concentrations and their influence on the bone remodeling process, diffu-
sion and transport of calcium ions and hormones as well as populations and
interactions between osteocytes, osteoblasts and osteoclasts, and signaling

• Derivation and mathematical analysis of a reduced system for tooth move-
ment through bone. The periodontal ligament is described with a math-
ematical model that uses the Biot equations. Our domain borders to the
bone on one side and on the tooth on the other. We assume osteoblasts and
osteoclasts to respond to pressure and tension directly.

• Suggestion of the Rothe method as a constructive approach of solutions. An
existence proof for the discretized problem is presented. A full convergence
proof for the free boundary problem will be treated in a future investigation.

The thesis is structured as follows.

Chapter two describes the biological background of bone, osteoblasts, osteoclasts
and osteocytes and the substances that are involved in the bone remodeling circle.
It also explains the complex process of calcium homeostasis and the role of the
parathormone and their connection to bone remodeling. Bone responds to me-
chanical loading as well as to metabolic needs. The signaling pathways and the
special role of the osteocytes, which have a sensing function, are also explained in
this context.

Chapter three provides a general model for resorption and adaption of bone in
response to loading and metabolic needs and the processes involved in it. It is
of great interest to develop a very general model which takes all processes into
account. We are then able to simplify the model and thus can neglect some of
the equations in the general model. Our general model is therefore applicable to
a variety of other disciplines where porous media is involved.
We consider a porous medium with fluid flow of the blood and a solid part which
is the mineralized bone matrix. The blood flow can be described with Navier
Stokes equations and the mechanics can be described with the equations of linear
elasticity. We also consider diffusion and transport processes of calcium ions and
parathormone in the fluid, in the bone matrix we also take signaling into acount.
We also look at the bone cell populations and how they influence each other. Here
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Introduction

we find equations for processes of chemotaxis. The evolution of the free boundary
is also described.
We are not able to homogenize this model because the system of equations is very
big and the aim is rather to show the applicability of this model. The general
model should rather be seen as a starting point which can be very useful for ques-
tions in other disciplines.
In the following chapter we show that our model can be simplified and used in
orthodontics.

In chapter four of this thesis we will show that it is possible to apply the gen-
eral model developed in chapter three to orthodontic tooth movement with some
simplifications. We apply our model to the porous structure of the periodontal
ligament which is adjacent to the bone.
When simplifying the model we will come across the Biot equations, which have
been a matter of interest for a long time now. We will neglect sensing and signal-
ing as we assume a direct influence of pressure and tension on the osteoblasts and
osteoclasts.
As the system of equations is much smaller than the general model presented in
chapter three we are then able to derive from the homogenized system for the
periodontal ligament effective equations for the displacement and pressure. The
domain has a free boundary at the bone side and a fixed but moving boundary at
the side of the tooth.

Chapter five presents a mathematical analysis of the simplified model with the free
boundary and the moving but fixed boundary for orthodontic tooth movement. We
use the Rothe-method to discretize the system in time and prove existence of weak
solutions with the theorems of functional analysis, e.g. the Lax-Milgram theorem.

In chapter six we give a short outlook of how our general model presented in
chapter three could be used in other disciplines where porous media is a matter
of interest. Although the system of equations is huge in the general model, it is
impossible to leave out any processes as it would make the model unuseful for
research in medicine or other disciplines with a slightly different question.

4



2 Biological background of bone

This chapter describes the structure of bone and its function in our body. As bone
is constantly rebuilding this chapter also has a closer look on this phenomenon
and the biological and chemical processes involved.

2.1 Bone classification

Bone is not a uniformly solid material, but rather has some spaces between its hard
elements. The following figure shows the two kinds of osseous tissue, compact and
cancellous or spongy bone.

Figure 2.1: Compact and cancellous bone (www.fau.pearlashes.com)

As shown in the figure above usually both structures occur together or next to
each other.
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2 Biological background of bone

2.1.1 Compact bone

The hard outer layer of bones is composed of compact bone tissue, so-called due
to its minimal gaps and spaces. Its porosity is five to thirty percent. This tissue
gives bones their smooth, white, and solid appearance, and accounts for eighty
percent of the total bone mass of an adult skeleton. Compact bone may also be
referred to as dense bone.
We find nerves, blood vessels and osteons in compact bone. It is surrounded by
the periosteum.

Figure 2.2: Structure of compact bone (www.fau.pearlashes.com)

2.1.2 Cancellous bone

Cancellous bone, synonymous with trabecular bone, alveolar bone or spongy bone,
is one of the two structures of osseous tissue that form bones. Compared to com-
pact bone, it has a higher surface area but is less dense, softer, weaker, and less
stiff. Its porosity is thirty to ninety percent. It typically occurs at the ends of long
bones, proximal to joints and within the interior of vertebrae.
Cancellous bone is highly vascular and frequently contains red bone marrow where
the production of blood cells occurs. The primary anatomical and functional unit
of cancellous bone is the trabeculae. These vertical and horizontal struts are ori-
ented along force-field lines of recurrent mechanical stress.
Trabecular bone tissue fills the interior of the bone. It has a porous random net-
work, which is composed of a honeycomb network of rod- and plate-like elements
that make the overall organ lighter and allowing room for blood vessels and mar-
row. Trabecular bone accounts twenty percent of the total bone mass.

6



2.2 Cellular structure

Bone surrounds blood in the compact bone, while blood surrounds bone in the
cancellous bone.

Figure 2.3: Structure of cancellous bone (www.fau.pearlashes.com)

2.1.3 Distribution of bone marrow

There are two types of bone marrow: the red marrow, which consists primarily
of hematopoietic tissue, and yellow marrow, which is mainly made up of fat cells.
Red blood cells, platelets and most white blood cells grow in red marrow. Both
types of bone marrow contain numerous blood vessels and capillaries. Only around
half of adult bone marrow is red. Red marrow is found mainly in the flat bones,
such as the pelvis, sternum, ribs, vertebrae, and in the cancellous material at the
ends of long bones such as the femur and humerus. Yellow marrow is found in the
medullary cavity, and the hollow interior of the middle portion of long bones. (see
figure 2.4)

2.2 Cellular structure

There are several types of bone cells constituting the bone. Osteoclasts and os-
teoblasts are located on the surface of the trabeculae whereas the osteocytes can
be found inside the bone matrix. Therefore the osteoclasts and osteoblasts have
direct contact to the bone marrow neighbouring them.
Figure 2.4 shows the location of the bone cells.

7



2 Biological background of bone

Figure 2.4: Bone marrow within cancellous bone (cooter.k12.mo.us)

Figure 2.5: Bone matrix with bone cells (www.extra.springer.com)

8



2.2 Cellular structure

2.2.1 Osteoblasts

Osteoblasts are cells that descend from osteoprogenitor cells. They are located on
the surface of osteoid seams and create a protein mixture known as osteoid, which
mineralizes to become bone. The osteiod seam is a narrow region of newly formed
organic matrix, not yet mineralized, located on the surface of a bone. Osteoblasts
also produce hormones to act on the bone itself. They cultivate alkaline phos-
phatase, an enzyme that has a role in the mineralization of bone, as well as many
matrix proteins. Osteoblasts are the immature bone cells, which form new bone.
[36]

2.2.2 Osteoclasts

Osteoclasts are the cells responsible for bone resorption or remodeling, thus they
reduce the volume of the bone mass. Osteoclasts are large cells also located on
bone surfaces. Osteoclasts mature and migrate to discrete bone surfaces. Upon
arrival, active enzymes are secreted against the mineral substrate. They move to
areas of microstructure in the bone by chemotaxis, where they then lie in a small
cavity called Howship’s lacunae. [36]

2.2.3 Osteocytes

Osteocytes originate from osteoblasts that have migrated and become trapped and
surrounded by bone matrix that they themselves produce. The spaces they oc-
cupy are known as lacunae. Osteocytes have many processes that reach out to
meet osteoblasts and other osteocytes probably for the purposes of communica-
tion. They serve different functions: formation of bone, matrix maintenance and
calcium homeostasis. They have also been shown to act as mechano-sensory re-
ceptors regulating the bone’s response to stress and mechanical load.
Osteocytes can be divided into osteoblastic osteocytes and osteolytic osteocytes.
The first ones named carry tricalcium phosphate, which is responsible for bone
growth whereas the others are able to resorb calcium from the bone matrix and
are also responsible for bone resorption.
Osteocytes can accumulate or extrude calcium, depending on their microenviron-
ment and on hormonal factors, and can therefore be considered to be ideally suited
to effect rapid changes in extracellular fluid calcium concentrations. (Matthews,
1971, 589)
Osteocytes are connected to each other through small canals called canaculi. Be-
cause of these canaculi they are able to communicate with each other. The in-
teractions between osteoclasts and osteoblasts, which guarantee a proper balance
between bone gain and loss, are known as coupling.

9



2 Biological background of bone

Figure 2.6: Osteocytes and their canaculi (www.the-scientist.com)

2.3 Molecular structure

Bone consists of the bone matrix, which is made up of an organic and an inorganic
part. The hardening of this matrix entrapping the cells is forming bone. These
cells are derived from osteoblasts and become osteocytes. The organic part, which
is made of collagen, mucopolysaccharides, and non-collagenous proteins, is of less
importance for our model. The organic part is also composed of various growth
factors, the functions of which are not fully known. One of the main things that
distinguishes the matrix of a bone from that of another cell is that the matrix in
bone is hard. The inorganic part has two major components: calcium and phos-
phorus.

2.4 Functions of bone

Bones have several main functions: mechanical, synthetic and metabolic.

2.4.1 Mechanical

Bones serve to protect internal organs and they also provide a frame to keep
the body supported. Bones with skeletal muscles, tendons, ligaments and joints

10



2.5 Bone remodeling

function together to generate and transfer forces so that individual parts of the
body can be manipulated.

2.4.2 Synthetic

Bones also play an important part in blood production. The marrow, located
within the medullary cavity of long bones and interstices of cancellous bone, pro-
duces blood cells in a process called haematopoiesis.

2.4.3 Metabolic

Bones also function as mineral storage. They act as reserves of minerals important
for the body, most notably calcium and phosphorus.
The mineralized bone matrix stores important growth factors such as insulin-like
growth factors, transforming growth factor, bone morphogenetic proteins and oth-
ers.
The yellow bone marrow acts as a storage reserve of fatty acids.
Bone also buffers the blood against excessive pH changes by absorbing or releasing
alkaline salts.
Bone tissues are also able to store heavy metals and other elements, removing
them from the blood and reducing their effects on other tissues. These can later
be gradually released for excretion.

There are different reasons why bone constantly remodels and changes. It ba-
sically adjusts to metabolic and mechanical needs. In the following we will have a
closer look at the remodeling process and the causes for this.

2.5 Bone remodeling

Even after developmental and longitudinal growth is complete, bone keeps its abil-
ity to change its internal structure by removal of old bone and its replacement with
newly formed bone in localized processes called remodeling.
Remodeling is an important property of bone that allows adaption to a changing
mechanical environment. Packets of bone are removed where the mechanical de-
mand of the skeleton is low and new bone is formed at those sites where mechanical
strains are detected.

11



2 Biological background of bone

2.5.1 Stages

The bone remodeling process can be divided into four stages. Each remodeling
process is initiated by an activation by which osteoblastic cells start to secrete
collagenase, which removes the thin layer of unmineralized bone surface. This
exposes the mineralized bone underneath to the mobile osteoclasts. During osteo-
clastic bone resorption, Howship’s lacunae are excavated. A short reversal phase,
where the cement line is formed, follows, and then bone formation normally begins.
If coupling has taken place, osteoblasts deposit new bone matrix, which is initially
unmineralized and called osteoid. When the osteoid thickness has reached approx-
imately 12-15 µm, mineralization begins from the bottom. At the termination of
each remodeling process, the bone surface is again covered by an extremely thin
layer of non-mineralized bone and a layer of flat lining cells. The bone is again
converted into a resting surface. The following figure shows the bone remodeling
cycle. [45], [59],[97]

Figure 2.7: Different phases in the bone remodeling process/cycle Hill (1998)

Bone remodeling is a complex process involving a number of cellular functions and
it is regulated by systemic hormones and by local factors.

2.5.2 Regulation

Many hormones affect bone growth and remodeling but bone also produces hor-
mones thus is itself an endocrine organ.

12



2.5 Bone remodeling

The parathyroid hormone (PTH) regulates serum calcium levels and enhances the
release of calcium from the large reservoir contained in the bones. Bone resorption,
which is also called osteolysis, is the normal destruction of bone by osteoclasts,
which are indirectly stimulated by PTH. Stimulation is not direct since osteoclasts
do not have a receptor for PTH; osteoblasts, the cells responsible for creating
bone, have receptors for PTH and so PTH rather binds to these cells. Binding
stimulates osteoblasts to increase their expression of substances, which can bind
to osteoclast precursors. The binding stimulates these precursors to fuse, forming
new osteoclasts which ultimately enhances bone resorption.
Calcitonin acts to reduce blood calcium, opposing the effects of parathyroid hor-
mone. It inhibits osteoclast activity in bones thus causing serum calcium levels to
fall.
Vitamin D is an important co-factor in the intestinal absorption of calcium, be-
cause it increases the number of calcium binding proteins, involved in calcium
absorption through the apical membrane of enterocytes in small intestine.
Until the end of puberty, estrogens are needed for maturation of the skeleton.
In women, after the menopause, taking supplemental estrogen slows up the bone
loss that so often leads to osteoporosis. The estrogen causes the osteoclasts to
self-destruct by apoptosis and in this way slows up the destruction of bone.

2.5.3 Purpose

The purpose of remodeling is to regulate calcium homeostasis, repair micro-damaged
bones, which are caused from everyday stress, but also to shape and sculpture the
skeleton during growth. According to Sherwood (2010), it keeps the skeleton ap-
propriately engineered for maximum effectiveness in its mechanical uses.

Calcium homeostasis

Bone acts as reserves of minerals important for the body, most notably calcium.
99 percent of the calcium stored in our body is found in the bones.
The process of bone resorption caused by the osteoclasts releases stored calcium
into the systemic circulation and is an important process in regulating calcium
balance. As bone formation actively fixes circulating calcium in its mineral form,
removing it from the bloodstream, resorption actively unfixes it thereby increasing
circulating calcium levels. These processes occur in tandem at site-specific loca-
tions.
A constant calcium balance is essential for our body. The body tries to maintain
a calcium concentration of about 2,4 mmol/l or 100mg/l in the blood.

A drop in the calcium level in the blood causes the parathyroid gland to produce
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2 Biological background of bone

parathyroid hormone, which has the effects that calcium is released from bone and
calcium is reabsorbed in the kidney.

Figure 2.8: Diagrammatic representation of calcium homeostasis
http://bio1152.nicerweb.com

The regulation of the calcium household depends on different factors.
The osteocyte is considered to be very important in that it responds rapidly to
stimuli. It is also anatomically capable of communicating with osteoblasts by a net
of cell processes or canaculi. Calcium gains entry from the extracellular fluid, the
bone marrow, between the osteoblasts. Osteoblasts continuously extrude calcium
into the interstitial fluid. Osteocytes can accumulate or extrude calcium, depend-
ing on hormonal factors.
Osteolysis is a term that describes bone resorption. There are two types of oste-
olysis that affect bone resorption. Which of the following types occur depends on
metabolic and mechanical influences. Osteocytic osteolysis does not change bone
mass. Osteoclastic osteolysis on the other hand changes the bone mass. It takes
place on a rather slower phase (12-24 hours). Osteoclasts break down bone and
release the minerals, resulting in a transfer of calcium from bone to the blood. In
a slow exchange, calcium is moved from the stable pool in mineralized bone into
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the plasma by means of PTH-induced dissolution of bone.

Figure 2.9: Schematic representation of fast and slow exchange of Ca++ between
the bone and the plasma. In a fast exchange, Ca++ is moved from the
labile pool in the bone fluid into the plasma by means of PTH activated
Ca++ pumps in the osteocytic-osteoblastic bone membrane. In a slow
exchange, Ca++ is moved from the stable pool in the mineralized bone
into the plasma by means of PTH induced dissolution of the bone.

Bone contains such great amounts of calcium in comparison with the total amount
in all extracellular fluids (about 1000 times as much) that even when parathyroid
hormone causes a great rise in calcium concentrations in the fluids, it is impossible
to discern any immediate effect on the bones. (Guyton, A.; Hall, J., 1996)
PTH is the main hormone involved in the fine regulation of blood calcium. It exerts
its biological actions by directly influencing the function of target cells primarily in
bone and kidney. The action of PTH on bone is to mobilize calcium from skeletal
reserves into extracellular fluids. This process caused by PTH is called osteocytic
osteolysis.
PTH stimulates the transfer of calcium from the bone fluid across the osteocytic-
osteoblastic bone membrane into the plasma. The movement of calcium out of the
labile pool across the bone membrane accounts for the fast exchange between bone
and plasma. After calcium is being pumped out, the bone fluid is replenished with
calcium from partially mineralized bone. Thus, the fast exchange of calcium does
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not involve resorption of completely mineralized bone, and bone mass is not de-
creased. Normally this exchange is much more important for maintaining plasma
calcium concentration than the slow exchange. (Sherwood, 2010)

Figure 2.10: Calcium pump while osteocytic osteolysis

Only a small part of the calcium is available for this rapid phase, which takes place
around 1-3 hours after the PTH stimulation.

2.5.4 Cell signaling

The actions of osteoblasts and osteoclasts are controlled by a number of chemical
factors that either promote or inhibit the activity of the bone remodeling cells,
controling the rate at which bone is made, destroyed, or changed in shape. The
cells also use signaling to control the activity of each other.
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2.5 Bone remodeling

Figure 2.11: Bone remodeling (coupling). Diagrammatic representation of the cou-
pling of osteoblastic bone resorption followed by osteoblastic bone
formation with cell signaling. Hill (1998)

Osteoblast stimulation

Osteoblasts can be stimulated to increase bone mass through the increased secre-
tion of osteoid and by inhibiting the ability of osteoclasts to break down osseous
tissue.
The process of laying down new bone material by osteoblasts, is called ossifica-
tion. Calcification is a process, which describes the formation of calcium-based
salts and crystals within cells and tissue. It occurs during ossification. Bone
building through the increased secretion of osteoid is stimulated by the secretion
of growth hormone, thyroid hormone and the sex hormones such as estrogens and
androgens. Osteoblasts can also be activated to secrete a number of cytokines
that assist reabsorption of bone by stimulating osteoclast activity and differen-
tiation from progenitor cells. Mainly parathyroid hormone and stimulation from
osteocytes induce osteoblasts to increase secretion of RANK-ligand, which then
stimulate increased reabsorption of bone by osteoclasts. These same compounds
also raise the secretion of macrophage colony-stimulating factor by osteoblasts,
which promote the differentiation of progenitor cells into osteoclasts, and dimin-
ishes the secretion of osteoprotegerin.
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Osteoclast inhibition

The rate at which osteoclasts resorb bone is inhibited by calcitonin and osteopro-
tegerin.
Calcitonin is produced in the thyroid gland, and can bind to receptors on os-
teoclasts to directly inhibit osteoclast activity. Osteoprotegerin is secreted by
osteoblasts and is able to bind RANK-L, inhibiting osteoclast stimulation.

2.6 Biomechanical control of bone remodeling

Mechanical loading has profound influences on bone remodeling. Disuse or lack
of loading causes an acceleration of bone turnover, with bone resorption dominat-
ing bone formation and thus a rapid loss of bone mass. This type of bone loss
is observed in astronauts who spend extended periods of time in the weightless
environment of a space station or shuttle. Overuse of bone can cause damage to
the tissue, which in turn stimulates bone remodeling. One of the important roles
of bone turnover is to continuously replace and repair damaged bone tissue. Os-
teoclasts target regions of micro damage preferentially and remove compromised
bone tissue. The damaged tissue is then replaced by new bone tissue. If damage
accumulates faster than the tissue can be repaired, larger micro cracks may de-
velop and propagate to form a stress fracture. (Robling, 2006, 463)
Bone as a living tissue has long been recognized to be capable of adapting its mass
and structure in response to the demands of mechanical loading.
In the absence of loading, bone is lost and in the presence of loading, bone is
either maintained or increased. The skeleton is unique in its ability to adaptively
remodel in response to its perception of mechanical loading or lack of loading.
Bone is deposited in proportion to the compressional load that the bone must
carry. For instance, the bones of athletes become considerably heavier than those
of nonathletes.
The osteocyte appears to be capable of transferring the intensity of strain signals
and the distribution of the strain throughout the whole bone into signals to reg-
ulate (re)modeling. (Lanyon, 1993) Adachi, Bonewald et al. claim that both the
deformation of the cell and the shear stress lead to a release of a signal to the cells
at the boundary of the bone.

2.6.1 Mechanotransduction

Mechanotransduction refers to a mechanism by which cells convert mechanical
stimulus into chemical activity.
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Figure 2.12: Mechanotransduction (Jaalouck, Lammerding, 2009)

Several biological factors have been proposed to act as cellular mechanosensors
and are schematically shown in the cell above. a: Stretch-activated ion channels
in the plasma membrane open in response to membrane strain and allow the influx
of calcium and other ions. b: In special cells, the glycocalix, on the cell surface,
can mediate mechanotransduction signaling in response to fluid shear stress. c,d:
Cell to cell junctional receptors allow cells to probe their environments. e: Force-
induced unfolding of extracellular matrix proteins, such as fibronectin, can initiate
mechanotransduction signaling outside the cell. f: Intracellular strain can induce
conformational changes in cytoskeletal elements such as filaments, crosslinkers or
motor proteins, thereby changing binding affinities to specific molecules and ac-
tivating signaling pathways. g: The nucleus itself has been proposed to act as a
mechanosensor. h: Compression of the intercellular space can alter the effective
concentration of autocrine and paracrine signaling molecules. (Jaalouck, Lam-
merding, 2009)

2.6.2 Piezoelectricity

It has not been so clear so far why calcium is moved to regions where it is needed.
Piezoelectricity is a phenomenon observed in many cristalline materials. The de-
formation of the crystal structure produces a flow of electric current as electrons
are displaced. The piezoelectric effect is created in response to force but it quickly
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reaches zero. When bone is being bent areas of convexity and concavity are cre-
ated. Areas of concavity are associated with negative charge and bone deposition
takes place. Areas of convexity are in turn associated with positive charge and
bone resorption takes place.

Figure 2.13: Areas of convexity and concavity on bending bone, P: pressure;
T:tension; M:mass

According to (Eriksson, 1976) bone is electrically charged with respect to the ex-
tracellular fluid. "Most solids when brought into contact with aqueous medium
acquire a surface electric charge. Bone is no exception. The possible charging
mechanisms are ionization, ion absorption, and ion dissolution. This separation
in charge between the solid phase and the liquid phase gives rise to a potential
difference between the solid and the liquid, called the zeta potential." (Eriksson,
1976, 295.)
The surface of the bone is "negatively charged, so that the diffuse layer is posi-
tively charged."(Eriksson, 1976, 296)
As the calcium ions are positively charged they move towards the surface, where
they pass the membrane.
Piezoelectricity in cristalline structure is shown in figure 2.13.

Figure 2.14: Mechanical force in the cellular environment. (Rubin, et al., 2006)

Skeletal loading generates deformation of the hard tissue with strain across the
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2.6 Biomechanical control of bone remodeling

cell’s fluid. There are also shear forces through canaculi, which cause drag over
cells and dynamic electrical fields because interstitial fluid flows past charged bone
crystals. As osteocytes form such a structure and we also have interstitial fluid in
the bone matrix, we can assume electrical fields in the mineralized bone structure.
It is important to note that the piezoelectric effect is only a short term phe-
nomenon, which perfectly explains the osteolytic calcium pump. Calcium is being
shifted to areas where more strength in the bone is needed.
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3 Model development

This chapter presents the differential equations that describe the biological and
chemical processes involved in bone remodeling. We are studying model equations
for processes in a porous elastic structure of cells. The following figure shows one
cell with connected fluid and solid parts. In our model the solid is the bone matrix
and the fluid is the extracellular fluid, the bone marrow.

Figure 3.1: Cell with connected fluid and solid parts (Ferrin, Mikelic, 2003)

Within the solid part we find on the microscopic level also a porous medium.

3.1 Modeling assumptions

We are including the following modeling assumptions on the macroscopic level and
on the unit cell level. We will only take the influences of calcium and parathyroid
hormone into account. We will have to neglect the influences of the other hormones.
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3.1.1 Macroscopic level

We model the blood marrow as a fluid and in the fluid we assume the following
assumptions

• incompressible fluid

• Navier Stokes equation in the fluid; with the right scaling we can also use
the Stokes equation (see 3.6)

• diffusion and transport of calcium and paratyroid hormone

It is important to not that he parathyroid hormone is being produced outside the
domains we study. We have to have a closer look at the counterbalance of the
production rate of calcium and parathyroid hormone.
The bone matrix is interpreted as a solid material and we assume the following
assumptions

• mechanics of a linear elastic medium

• small deformations of structure

• mechanical properties of the solid part depend on the calcium concentration
in the mineralized bone matrix, they are non linear and nonlocal in time

• coefficients change as a function of cumulated quantity of calcium concen-
tration

Now we have a closer look at a unit cell.

3.1.2 Unit cell level

The solid part is set up by a random spongy structure which is formed by trabec-
ulae. The solid itself can be interpreted as a porous medium as well, because in
the solid part we find lacunae, which are filled with an interstitial fluid. Within
the solid part we find osteocytes, one of the three bone cells. We will neglect the
fluid flow in the interstitial fluid.

• calcium concentration (diffusion and transport equation)

• parathyroid hormone concentration (diffusion and transport equation)

• populations of osteocytes, osteoblasts and osteoclasts (chemotaxis)

• modeling of the signals released by the bone cells free boundary problem
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3.2 Domain

The most interesting actions happen at the boundary between the solid and the
fluid part. There are two types of bone cells that act within the bone remodeling
process that are found at the interface between solid and fluid, namely osteoblasts
and osteoclasts. Mechanical loading and calcium and PTH concentration lead to
osteoblastic and osteoclastic activity on the interface between the solid and fluid
phase. Chemotactic reactions also take place at the interface between the solid
and the fluid. Chemical attractants are released into the fluid and attract the bone
cells to become active.
The piezoelectric effect will be taken into account too because it triggers the fast
exchange of calcium at the membrane.

As the boundary of the solid part is constantly changing due to the cell pro-
cesses at the boundary, we assume the problem to be a free boundary problem.
The following figure shows the free boundary.

Figure 3.2: New boundary: Blue lines represent the bone resorbed by osteoclasts
whereas the red part is the newly deposited bone

3.2 Domain

If we wanted to homogenize the system, it would necessary to assume a periodic
arrangement of the pores. However this is not the aim here.
We suppose that the solid and fluid parts are smooth and connected.
First, we define the geometrical structure inside the unit cell Ω = (0, 1)3. Our
domain is time dependent as the boundary of the interface changes constantly.
Ωs,t represents the solid part, the bone matrix, and Ωf,t = Ω\Ωs,t is the fluid part,
the bone marrow. We denote the fluid-solid interface by Γt = ∂Ωs,t ∩ ∂Ωf,t. The
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boundary of the domain Ω consists of three parts

∂Ω = I ∪O ∪ Σ̄

where I = {x1 = 0}× (0, 1)2, O = {x1 = 1}× (0, 1)2 is the inlet of the domain and
Σ̄ = ∪j=2,3({xj = 0} ∪ {xj = 1})× (0, 1)2 is the outlet of the domain.
Let [0,T] denote a time interval, with T>0.
Γt is the most interesting part in our model. As bone is constantly changing
because of the activities of osteoblasts and osteoclasts, Γt has to be considered as
a free boundary. The following figure shows one unit cell, where we skip the index
t, Ωs,t = Ωs and for Ωf,t = Ωf .

Figure 3.3: Parts of the domain in our model

3.3 Model development on the macroscopic level

On the macroscopic level we are interested in the mechanics of the solid bone
matrix and the fluid flow in the bone marrow.

3.3.1 Equations for the solid bone matrix

We suppose small deformations of the cell’s structure. It means that in the solid
part Ωs,t the equations of linear elasticity hold:

ρs
∂2w

∂t2
−∇(σ(w)) = ρsF, in Ωs,t 0 ≤ t ≤ T (3.1)

σ(w) = AD(w), (3.2)
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where w is the displacement in the solid part, ρs is the solid density, σ(w) is the
stress tensor and D(w) is the strain tensor defined by

(D(w))i,j =
1

2
(
∂wi
∂xj

+
∂wj
∂xi

), i, j = 1, 2, 3 (3.3)

In the homogenous and isotropic case, the elasticity coefficients A are given with
the help of Lamé’s coefficients λ and µ. Another possibility is to use the Young’s
modulus E and the Poisson’s coefficient ν. They relate to the Lamé’s coefficients
through

λ =
Eν

(1 + ν)(1− 2ν)

µ =
E

2(1 + ν)
.

The stress tensor has the form:

σ(w) = λ(F((Ca)MBM))∇ · (wI) + 2µ(F((Ca)MBM))D(w) (3.4)

The elasticity coefficients A depend on the concentration (Ca)MBM . They are
nonlinear and nonlocal in time; the coefficients change as a function of cumulated
quantity of the calcium stored in the mineralized bone matrix.

3.3.2 Equations for the extracellular fluid (ECF)

In the fluid part, we consider the Navier-Stokes system for a viscous and incom-
pressible fluid

ρf (
∂v

∂t
+ (v∇)v) +∇p− µf∆v = ρfF, in Ωf,t, (3.5)

∇ · v = 0, (3.6)

where ρf is the fluid density, µf is the fluid viscosity, v is the fluid velocity and p
is the fluid pressure.
We use the Navier-Stokes equation instead of the Stokes equation but we will show
later that the Stokes equation can be used with the right scaling.

3.3.3 Boundary and continuity conditions

We note that the Lagrangian coordinates are used for the structure and Eulerian
for the fluid. Hence, Ωs,t is the reference domain and the interface between the

27



3 Model development

two media evolves with the evolution of the structure. The kinematic interface
condition is the continuity of the velocity and, due to different formulations for
our media, it reads

v(x+ w(x, t), t) =
∂w

∂t
(x, t) on Γt 0 ≤ t ≤ T (3.7)

The third Newton’s law implies continuity of the contact forces. Expressing con-
tinuity of the contact forces at the interfaces requires introducing the fluid Lan-
grangian configuration uf , defined on the initial fluid configuration Ωf,t and with
values in Ωf (t), which is the fluid configuration at time t. It is defined through the
differential equation ∂uf

∂t
= v(uf (x, t), t).Then the continuity of the normal stresses

reads

(−pI + 2µfD(v))(x+ w(x, t), t) · (∇uf )−1ν = σ(w) · ν, on Γt 0 ≤ t ≤ T (3.8)

At the exterior boundary, for every t ∈ (0, T ), we suppose:

(−pI + 2µfD(v)) · (∇uf )−1e1 = (S1,S2,S3) on I ∩ Ω̄f,t (3.9)
A(F)D(w) · e1 = (S1,S2,S3) on I ∩ Ω̄s,t (3.10)

(−pI + 2µfD(v)) · (∇uf )−1e1 = 0 on O ∩ Ω̄f,t (3.11)
A(F)D(w) · e1 = 0 on O ∩ Ω̄s,t (3.12)

v = 0 and w = 0, on Σ̄ (3.13)

For simplicity, we assume that there is no flow and no deformation for t=0, i.e.,

w(x, 0) =
∂w

∂t
(x, 0) = 0, in Ωs,t (3.14)

v(x, 0) = 0, in Ωf,t. (3.15)

Using this continuity conditions, the complexity of our model system would in-
crease. We will later use simpler continuity conditions.

Next, we write down the equations describing the transport of the hormones and
substances and the equations for the concentrations of the bone cells and the
signals they release during the bone remodeling cycle.

3.4 Model development on the unit cell level

Bone, being a major reservoir of the body calcium, is under the hormonal control
of PTH (Kroll, 2000). Osteoclasts resorb bone and liberate calcium, but they
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lack receptors for PTH. The preosteoblastic precursors and preosteoblasts pos-
sess receptors for PTH, upon which the hormone induces differentiation from the
precursors to preosteoblasts and from the preosteoblasts to osteoblasts. The os-
teoblasts, consequently generate IL-6, which induces preosteoclasts to differentiate
into osteoclasts (Kroll, 2000).
Thus, bone remodeling is a continuous cycle of destruction and renewal of bone
that is carried out by teams of osteoclasts and osteoblasts (Marcus, 1994). Osteo-
clasts and osteoblasts differentiate from less mature precursors, which line bone
surfaces in an inactive state. In the bone remodeling process, osteoclasts appear
on a previously inactive surface of bone and then, they excavate a lacuna on the
surface of cancellous bone or resorption tunnel in cortical bone. Osteoclasts are
subsequently replaced by osteoblasts and finally, osteoblasts refill the resorption
cavity. After osteoblasts have laid down their protein-based matrix, known as
osteoid, they bury themselves in bony matrix, becoming osteocytes, or revert to
an inactive cell form and line the bone surfaces as surface osteocytes or resting
osteoblasts (Turner et al., 1994).
Therefore, the rate of bone deposition can be determined by the number of os-
teoblasts (B) while the rate of bone resorption can be determined by the number
of osteoclasts (C), the balance between the number and activity of osteoblasts
and osteoclasts determines whether new bone deposition or new bone resorption
occurs. An excessively deep resorption space produced by osteoclasts, or an in-
complete replenishment of the resorption space by the activation of osteoblasts can
result in bone imbalance. If a remodeling imbalance exists after the completion of
a remodeling cycle, the degree of bone loss will be exacerbated and that leads to
osteoporosis (Turner et al., 1994).
The exact signals that lead to initiation of bone remodeling are yet to be defined,
most likely sensors on the osteocytes are responsible for the initiation. On initi-
ation of remodeling, osteoclasts differentiate from their monocytic precursors and
resorb bone. Later, osteoblasts differentiate from mesenchymal precursors and
form new bone.

Chemotaxis is the phenomenon in which bodily cells, bacteria, and other single-cell
or multicellular organisms direct their movements according to certain chemicals
in their environment. This is important for bacteria to find food by swimming to-
wards the highest concentration of food molecules, or to flee from poisons. Chemo-
taxis is called positive if movement is in the direction of a higher concentration
of the chemical in question, and negative if the direction is opposite. The term
is used to denote cell movement towards or away from a chemical source, defined
as positive or negative chemotaxis. The chemical is defined as chemoattractant
or chemorepellent. Any cell motion that is affected by a chemical gradient that
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results net propagation up a chemoattractant gradient or down a chemorepellent
gradient is defined as chemotaxis.(Eisenbach, 2004) Chemotaxis is also part of the
bone remodeling process because once the osteoclasts resorb bone matrix they re-
lease a signal which recruits and attracts the osteoblasts and vice versa.
The progression of bone remodeling at each site is regulated by numerous au-
tocrine and paracrine factors. Predicting the cumulative effects of multiple factors
on bone remodeling is difficult due to the large number of effectors and the mul-
tiple actions attributed to some factors. For example, transforming growth factor
β(TGFβ) increases bone formation by a direct action on osteoblast differentia-
tion. In addition, TGFβ directly activates osteoclast formation in the absence
of osteoblasts, but inhibits osteoclastogenesis in co-cultures of osteoclasts and os-
teoblasts by decreasing expression of receptor activator of nuclear factor κB ligand
(RANKL) on osteoblasts. RANKL and osteoprotegerin (OPG) are critical regu-
lators of bone resorption, that are expressed by osteoblasts and exhibit opposite
effects on osteoclasts. Whereas RANKL is a potent stimulator of osteoclasts, OPG
prevents the interaction of RANKL with its receptor and inhibits bone resorption.
Thus, regulation of bone remodeling is complex, involving the simultaneous ac-
tions of a number of factors that affect the formation and/or resorption of bone.
(Komorova, 2003)

Figure 3.4: Interactions between osteoclasts and osteoblasts and the chemoattrac-
tants they release (Komarova, 2003)

The most complicated part for our model is the description of the remodeling
process and the calcium homeostasis involved. The following flow chart illustrates
the effects of local strain on bone formation and resorption.
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Figure 3.5: Flow chart for bone remodeling process

3.4.1 Parathyroid hormone concentration

The parathormone is secreted in the chief cells of the parathyroid glands as a
polypeptide.
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The parathyroid hormone and the calcium play a very important role when it
comes to bone remodeling. They counterbalance each other and trigger the pro-
cesses of bone resorption and bone formation.
As the blood filters through the parathyroid glands, they detect the amount of
calcium present in the blood and react by producing more or less parathyroid hor-
mone. When the calcium level in the blood is too low, the cells of the parathyroids
sense that and produce more parathyroid hormone. Once the parathyroid hormone
is released into the blood, it circulates to act in a number of places to increase
the amount of calcium in the blood (like removing calcium from bones). If the
calcium level in the blood is too high, the cells of the parathyroids produce less
parathyroid hormone (or stop producing it altogether), thereby allowing calcium
levels to decrease. This feedback mechanism runs constantly, thereby maintaining
calcium (and parathyroid hormone) in a very narrow "normal" range. In a normal
person with normal parathyroid glands, their parathyroid glands will turn on and
off dozens of times per day.
Under the presence of parathyroid hormone, bones will give up their calcium in
an attempt to increase the blood level of calcium. Under normal conditions, this
process is very highly tuned and the amount of calcium in our bones remains at a
normal high level. Under the presence of too much parathyroid hormone, however,
the bones will continue to release their calcium into the blood at a rate which is
too high resulting in bones which have too little calcium. This condition is called
osteopenia and osteoporosis and is illustrated in the bone segment on the top which
has larger "pores" and less bone mass.
When bones are exposed to high levels of parathyroid hormone for several years
they become brittle and much more prone to fractures. Another way in which
the parathyroid hormone acts to increase blood levels of calcium is through its
influence on the intestines. Under the presence of parathyroid hormone the lining
of the intestine becomes more efficient at absorbing calcium normally found in our
diet.
This process takes place outside the cell in the glands which is why the equation
is written as a boundary condition.

Equation for the PTH level

We find the parathyroid hormone in the bone matrix and in the bone marrow. On
the boundary between the solid and the fluid phase we need continuity conditions.
The equations for the rate of PTH concentration in the solid and fluid part are
assumed to take the following form:
∂P

∂t
= DP∆P − v∇P + g1(P, (Ca)ECF )− d1((Ca)C , (Ca)O, P ) in Ωf,t (3.16)
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∂P

∂t
= DP∆P + g2(P, (Ca)ECF )− d2((Ca)C , (Ca)O, P ) in Ωs,t (3.17)

(vP −DP∇P )χΩf (∇uf )−1ν = −DP∇PχΩs · ν on Γt (3.18)
PχΩf = PχΩs on Γt (3.19)

g1 depends on the PTH level and on the calcium level in the extracellular fluid and
stands for the production rate of PTH of the parathyroid gland. The last term
on the right hand side represents the fact that the hormone is removed from the
system at the rate which is proportional to its current level with the removal rate
constant d1. d1 depends on the PTH level itself, the calcium in the osteoclasts and
osteocytes. Equation (3.17) describes the processes in the extracellular fluid and
therefore we also find a diffusion and transport term in the equation.
Equation (3.18) represents the processes in the solid and the third equation the
processes on the interface.

Boundary conditions

−DP
∂P

∂n
= G

(
1

|O\Ωs,t|

∫
O\Ωs,t

(Ca)ECFO(τ − t)dx
)

on I (3.20)

P = PO on O (3.21)
P = 0 on Σ̄ (3.22)

P (0) = P0 in Ω (3.23)

G describes the counteraction of PTH and the extracellular calcium. Active os-
teoclasts resorb bone and liberate calcium. Thus the calcium level will rise. Ac-
cordingly the PTH level will decrease to counterbalance the high level of calcium
in the blood.
Equation (3.21) describes the fact, that the glands possess calcium-sensing recep-
tors. Thus the amount of PTH being produced by the glands depends on the
calcium level in the blood. This takes place with a time lack.

We note here also for the following equations that the functions gi, di would have
to be specified for the existence.

3.4.2 Calcium concentrations

Calcium is the most abundant mineral in the human body. The average adult body
contains in total approximately one kilogram, ninety-nine percent in the skeleton
in the form of calcium phosphate salts. The remaining one percent circulates in
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the blood and other body’s fluids.
The extracellular fluid contains approximately 22.5 mmol, of which about nine
mmol is in the serum. Approximately 500 mmol of calcium is exchanged between
bone and the extracellular fluid over a period of twenty-four hours.
Only ten to thirty percent of the calcium in the food is absorbed into the body.
Calcium must be broken down by the digestive system before the body can use it.
If the calcium level is too high, the kidney excretes calcium with pro-urine.
Calcium homeostasis refers to the regulation of the concentration of calcium ions
in the extracellular fluid. The following figure illustrates the influences on the
calcium concentration in the extracellular fluid.

Figure 3.6: Calcium homeostasis: Influences on calcium concentration in extra-
cellular fluid. Notations: Ca: total amount of calcium; f: force; P:
PTH; (Ca)C : calcium in osteoclasts; (Ca)B: calcium in osteoblasts;
(Ca)O: calcium in osteocytes; (Ca)ECF : calcium in extracellular fluid;
(Ca)MBM : calcium in mineralized bone matrix
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3.4 Model development on the unit cell level

Equation for the calcium level in the extracellular fluid (ECF)

The calcium is only available in the extracellular fluid and on the interface and
the other boundaries.

∂(Ca)ECF
∂t

= D(Ca)ECF∆(Ca)ECF − v∇(Ca)ECF+

g3(P, (Ca)ECF )− d3((Ca)ECF ) in Ωf,t (3.24)
∂(Ca)boundary

∂t
= g4((Ca)C)− d4((Ca)B) on Γt (3.25)

−D(Ca)ECF

∂(Ca)ECF
∂n

= g5(B, (Ca)ECF ) on Γt (3.26)

−D(Ca)ECF

∂(Ca)ECF
∂n

= g6(PO, (Ca)ECF ) on I (3.27)

(Ca)ECF = (Ca)ECFO on O (3.28)
(Ca)ECF = 0 on Σ̄ (3.29)

(Ca)ECF = Caboundary on Γt (3.30)
(Ca)ECF (0) = (Ca)ECF0 in Ωf,t (3.31)

gi, di are the production and removal rates in the different domains. Equation
(3.25) also involves diffusion and transport equations. Equation (3.26) describes
the amount of calcium available on the interface, which depend on the number of
active osteoclasts which resorb the mineralized bone matrix and liberate calcium
and on the calcium pumped to the extracellular fluid by the osteocytes and on the
PTH level.
Equation (3.28) represents the fact that when blood is pumped through the glands,
the sensors there react to high or low calcium levels with a decreased or increased
PTH secretion.
Calcium is also stored in the bone tissue.

Equation for calcium in the bone tissue

∂(Ca)MBM

∂t
= D(Ca)MBM

∆(Ca)MBM + g7(O, (Ca)MBM)− (3.32)

d5((Ca)C , (Ca)O) in Ωs,t (3.33)

−∂(Ca)MBM

∂n
= −g8((Ca)B) + d6((Ca)C) on Γt (3.34)
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3 Model development

(Ca)MBM = 0 on I,O, Σ̄ (3.35)
(Ca)MBM(0) = (Ca)MBM,0 in Ωs,t (3.36)

gi represents the birth term which depends on the total amount of calcium in the
body and the number of osteocytes. We also find a diffusion term in equation
(3.33) because calcium can be transported by diffusion. The amount of newly
formed MBM depends on the amount of calcium which the osteoblasts deposit
into the bone matrix. (3.34) The bound calcium in the MBM depends on that
factor and on the number of osteoblasts which mineralize the calcium and become
osteocytes. The amount of bound calcium in the mineralized matrix also depends
on the number of osteocytes and how much calcium is mineralized around each
osteocyte. Osteoclasts resorb the bound calcium stored in the mineralized bone
matrix. This fact is described by the last term on the right hand side.

Equation for calcium in the osteocytes

According to Adachi et al. (2009) and Rath et al. (2010) osteocytes respond to
cell deformation and stress with an increased calcium level in the osteocyte. This
increased calcium level triggers the biochemical signal to the bonecells lining the
surface. The increased mineral level also correlates with the Lamé factors of the
bone tissue which influence the bone mineral density.
Osteocytic osteolysis is caused by piezoelectric effect resulting in an elcetric field
~E, where ~E = −∇Φ:

∂(Ca)O
∂t

= D(Ca)O∆(Ca)O − div( ~E · (Ca)O)+

g9(O, (Ca)MBM , (Ca)O, F )− d7((Ca)boundary, (Ca)O) in Ωs,t (3.37)

−D(Ca)O

∂(Ca)O
∂n

= −g10((Ca)B, (Ca)O) + d8((Ca)C , (Ca)O) on Γt (3.38)

(Ca)O = 0 on I,O, Σ̄ (3.39)
(Ca)O(0) = (Ca)O,0 in Ωs,t (3.40)

The first term on the right hand side of (3.37) represents the fact that the calcium
level in the osteocytes depends on the deformation of the cell. The calcium in the
osteocytes is taken from the calcium in the interstitial fluid. If the calcium level
in the extracellular fluid is low, osteocytic osteolysis takes place, the calcium is
transported in the electric field, a diffusion term also exists. The death term on the
right hand side of (3.37) describes the fact that the calcium from the osteocytes is
pumped out to the extracellular fluid.
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3.4 Model development on the unit cell level

Equation for calcium resorbed by osteoclasts

The amount of calcium resorbed by the osteoclasts depends on the PTH level
which in turn also depends on a low calcium level in the extracellular fluid. (PTH
stimulates osteoclastic osteolysis) It also depends on the strength of the signal
released by the osteocytes that are transmitted to the osteoclasts at the surface.

∂(Ca)C
∂t

= g11(P,C, (Ca)C)− d9((Ca)boundary, (Ca)C) on Γt (3.41)

(Ca)C = 0 on I,O, Σ̄ (3.42)
(Ca)C(0) = (Ca)C,0 on Γt (3.43)

The calcium resorbed by the osteoclasts is released through the boundary into the
extracellular fluid which is described by the last term on the right hand side.

Equation for calcium deposited by osteoblasts

The amount of calcium deposited by the osteoblasts depends on the signals released
by osteocytes that travel to the surface and the calcium level in the extracellular
fluid.

∂(Ca)B
∂t

= g12((Ca)boundary, B, (Ca)B)− d10((Ca)MBM , (Ca)B) on Γt (3.44)

(Ca)B = 0 on I,O, Σ̄ (3.45)
(Ca)B(0) = (Ca)B,0 on Γt (3.46)

The birth term depends on the amount of calcium available on the boundary. The
calcium deposited into the bone matrix becomes calcium in the mineralized bone
matrix, which is described by the last term on the right hand side of the equation
(3.44).

3.4.3 Population of bone cells and signaling

We now need equations for the osteoblasts, osteoclasts and osteocytes and the
signals they send.

Equation for osteoblasts

The dynamics of the active osteoblastic population B(t) can be described by the
following equation:
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3 Model development

∂B

∂t
= ∇ · (DB∇B −B∇χ(SC)−B∇χ(SO)) + g13(B, SO, P, C)− d11(B) on Γt

(3.47)
−DB∂νB +Bχ′(SC)∂νSC +Bχ′(SO)∂νSO = 0 on I,O, Σ̄

(3.48)
B = 0 on I,O, Σ̄

(3.49)
B(0) = B0 on Γt

(3.50)

where gi is the rate of production which depends on the number of osteoblasts,
osteoclasts, the PTH level and the signal released by the osteocytes. PTH stimu-
lates the reproduction of active osteoblasts (Brown, 1991; Isogai et al, 1996). PTH
stimulates osteoblasts differentiation into immature osteoblasts but inhibits them
into more mature cells.
The second term in (3.47) represents the diffusion term and the third term de-
scribes the influence of the chemotaxis stimulated by the chemical attractant re-
leased by the osteoclasts and the fourth term the chemotaxis stimulated by the
chemical attractant released by the osteocytes.
di is the removal rate of the osteoblasts that either die or convert into osteocytes.
We now have a look at the signals released by the osteoblasts.

Equation for the chemical signal released by the osteoblasts

∂SB
∂t

= ∇(DSB∇SB) + g14(B, SB)− d12SB on Γt (3.51)

DSB∂νSB = 0 on I,O, Σ̄ (3.52)
SB(0) = SB,0 on Γt (3.53)

where gi represents the birth term, which depends on the number of osteoblasts,
DSB is is diffusion coefficient of the substances that attract C, and di is the rate
at which the signal dies.

38



3.4 Model development on the unit cell level

Equation for osteoclasts

The dynamics of the osteoclastic population can be described by the following
equation:

∂C

∂t
= ∇ · (DC∇C − C∇χ(SB)− C∇χ(SO)) + g15(C,B, SO, P )− d13(C) on Γt

(3.54)
−DC∂νC + Cχ′(SB)∂νSB + Cχ′(SO)∂νSO = 0 on I,O, Σ̄

(3.55)
C = 0 on I,O, Σ̄

(3.56)
C(0) = C0 on Γt

(3.57)

The first term in equation (3.54) stands for the production rate which depends
on the number of osteoblasts, the signal released by the osteocytes and the PTH.
The reproduction of active osteoclasts requires the production of osteoclast differ-
entiation factor (ODF) and its receptors on osteoclasts (Kroll, 2000). The more
osteoclasts mean the more ODF receptors available for the reproduction of active
osteoclasts, and thus the production depends on the number of active osteoclasts
C at the time.
Moreover, osteoclasts precursors possess RANK, a receptor that recognizes ODF
through a cell-to-cell interaction with osteoblasts, hence the rate of reproduction
depends also on the number of active osteoblastic cells B(t) at the time t.
The first term describes the diffusion term and the second term represents the
chemotaxis stimulated by the chemical attractant released by the osteoblasts. The
next part describes the random migration of osteoclasts with random motility
coefficient, as well as the directional migration in response to the spatial gradi-
ent of the chemoattractant and the signal. The chemotactic sensitivity functions
χ(SB), χ(SO) specify the ability of the osteoclasts to sense the attractant gradient.
The last part stands for the removal rate, which depends on the osteocytes.

Equation for the chemical signal released by the osteoclasts

∂SC
∂t

= ∇(DSC∇SC) + g16(C, SC)− d14SC on Γt (3.58)

DSC∂νSC = 0 on I,O, Σ̄ (3.59)
SC(0) = SC,0 on Γt (3.60)
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3 Model development

where gi represents the birth term, DSC is the diffusion coefficient of the substances
that attract B, and di is the removal rate of the signal in the system.

Equation for osteocytes

Osteocytes compose over 90-95 percent of all bone cells in the adult skeleton and
are regarded as mechanosensory cells (Adachi et al. 2009a, b), and their network
system acts as the pathway of mechanical signals from the osteocytes to the cells
on the trabecular surfaces (Adachi et al. 2009c). When bone is subjected to me-
chanical loading, bone matrix deformation produces an interstitial fluid flow in the
lacuno- canalicular system (Weinbaum et al. 1994). These cells are connected to
each other and cells on the bone surface through dendritic processes that occupy
tiny canals called canaculi. Considering that osteocytes are sensitive to fluid flow,
it is hypothesized that osteocytes respond to the fluid-induced shear stress (Wein-
baum et al. 1994) and deliver its mechanical information to the surface cells by
intercellular communication (Adachi et al. 2009c); as a result, bone formation and
resorption are regulated.
Osteocytes originate from osteoblasts and once they are dead they are resorbed
by osteoclasts which release their stored calcium.
Osteoblasts that have been trapped in the osteoids produced by other surrounding
osteoblasts are called osteocytes. Osteocytes maintain bones, they play a role in
controling the extracellular concentration of calcium and phosphate, and are di-
rectly stimulated by calcitonin and inhibited by PTH.
The dynamics of the population of osteocytes can be described by the following
equation:

dO

dt
= g17(P,B,O)− d15O in Ωs,t (3.61)

O = 0 on Γt (3.62)
O = 0 on I,O, Σ̄ (3.63)
O(0) = O0 in Ωs,t (3.64)

where the first term describes the influence of the PTH level on the reproduction
of osteocytes (as osteocytes have PTH receptors, which triggers the osteocytic os-
teolysis) and the fact that osteoblasts become osteocytes. The last term represents
the osteocytes that are removed from the system.

Equation for the biochemical signal released by osteocytes

Osteocytes probably do not respond directly to mechanical strain (deformation)
of bone tissue, but respond indirectly to extracellular fluid flow caused by loading.
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3.5 Free boundary problem

When cultured osteocytes are subjected to fluid shear stress, they release several
messengers, including prostaglandins (hormones) and nitric oxide (chemical com-
pound). (Robling et. al., 2006, 484)
Because of the strain concentrations at osteocyte lacunae, the lacunae might act
as pumps that push fluid along the canaculi when the bone tissue is loaded. Fluid
flow along cell bodies or processes produces drag force, fluid shear stress, and an
electric potential called a streaming potential (or stress-generated potential). Each
of these signals might activate bone cells, although cell culture experiments sug-
gest that cells are more sensitive to fluid forces than they are to electric potential.
The mechanical signal sensed by the osteocytes depends on the interstitial fluid
pressure p, and on the fluid induced shear stress τp, acting on the osteocyte pro-
cesses.

∂SO
∂t

= ∇(DSO∇SO) + g18(O,F, τp, SO)− d16SO in Ωs,t (3.65)

DSO∂νSO = 0 on Γt (3.66)
DSO∂νS0 = 0 on I,O, Σ̄ (3.67)

SO(0) = SO,0 in Ωs,t (3.68)

where gi is the birth term which depends on the number of osteocytes, the shear
stress, the load and the last term represents the removal rate at which the signal
vanishes. Here we have a direct influence of the signals on the surface.

3.5 Free boundary problem

The most interesting and yet complex part of the model happens at the interface
Γ between the bone matrix and the extracellular fluid. Bone is a living tissue that
changes its shape and internal architecture in response to loading and homeostatic
needs.
As the boundary of the interface between solid and fluid tissue constantly changes
due to activities of osteoclasts and osteoblasts, we have to consider a free boundary
problem here.
The boundary Γ separating the fluid and the solid evolves in time Γ = Γt. The
evolution of Γt depends on the gradient betwenn the level of calcium in the extra-
cellular fluid and the calcium available at the boundary. We denote the velocity
of this free boundary by vn and by H the curvature.

vn = (α
∂(Ca)B
∂t

+ β
∂(Ca)C
∂t

)f(H) (3.69)
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3 Model development

∂(Ca)B
∂t

= β1(−ν∇((Ca)ECF − (Ca)boundary)) on Γt (3.70)

∂(Ca)C
∂t

= β2(−ν∇((Ca)ECF − (Ca)boundary)) on Γt (3.71)

∂tS + vn|∇S| = 0 Ω (3.72)

S describes the level set function.

3.6 Weak formulation

At the interface Γt the following assumption holds:

v(x, t) =
∂w

∂t
(x, t) (3.73)

Due to this continuity of velocities at the fixed reference interface Γt and assum-
ing the initial displacements in the fluid to be zero, it is natural to introduce a
displacement function u : Ω× (0, T )→ R3 such that

v =
∂u

∂t
on Ωf,t 0 ≤ t ≤ T (3.74)

w = u on Ωs,t 0 ≤ t ≤ T. (3.75)

We start with the variational formulation for the fluid and the solid.

3.6.1 Fluid and solid

Dimensional analysis

It makes sense to write the system with no scaling. Thus we introduce dimension-
less coordinates which are defined in terms of characteristic values of the physical
parameters.
Typical values of characteristic parameters are: T is the characteristic flow time,
the characteristic domain size is L = 10−2m, the characteristic size of the elas-
tic moduli is Λ = 109 pascals, Poisson ratio ν = 0, 3, the dynamic viscosity is
µf = 0, 1 − 1kg/ms and the densities are ρf = 930kg/m3 and ρs = 2100kg/m3

(Currey, 2002). The characteristic cell size is l = 2, 5 · 10−4m. The characteristic
size of the heterogeneities is then given by ε = l\L = 2.5 · 10−2m.
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3.6 Weak formulation

The variational formulation which corresponds to the macroscopic equations is
given in (3.75). See Clopeau, et al. (2001). It is important to note here that
Clopeau et al. use the Stokes flow given in the following equation

ρf
∂uε

∂t2
− divσf,ε = ρfF

σf,ε = pI − 2µfε2D(
∂uε

∂t
)

Find uε ∈ H1(0, T ;H1
per(Ω)n) with d2uε

dt2
∈ L2(0, T ;L2(Ω)n) and pε ∈ L2(Ωε

f,t)) such
that ∫

Ω

d

dt2
ρεuε(t)ϕdx+

∫
Ωεf,t

d

dt
2µε2D(uε(t)) : D(ϕ) dx (3.76)

+

∫
Ωεs,t

AD(uε(t)) : D(ϕ) dx−
∫

Ωεf,t

pεdivϕ dx =

∫
Ω

ρεFϕdx,

where
ρε = ρf + ρs (3.77)

and

uε(0) = 0, (3.78)
∂uε

∂t
(0) = 0, (3.79)

and
div

∂uε

∂t
= 0, Ωε

f,t 0 < t < T. (3.80)

Equation (3.76) shows that the Stokes equations can be used in our model system,
as the integral vanishes when ε→ 0.

Before we start to write down the weak formulation of our problem it is important
to state that we will not define the spaces for the respective testfunctions, as we
will not analyze the problem analytically.

In our case we write for the weak formulation:∫
Ωt

d2

dt2
ρεu(t)ϕdx+

∫
Ωf,t

d

dt
2µfD(u(t)) : D(ϕ)dx+∫

Ωs,t

A(F((Ca)MBMD(u(t)) : D(ϕ)dx−
∫

Ωf,t

pdivϕdx =∫
Ωt

ρεFϕdx+

∫
I

(S1,S2,S3)ϕdS, ∀ϕ ∈ H1(Ωt) (3.81)
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3 Model development

where
ρε = ρfχΩf,t + ρsχΩs,t (3.82)

and

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0 in Ωt (3.83)

∇ · ∂u
∂t

= 0, in Ωf,t 0 ≤ t ≤ T (3.84)

Next we look at the parathyroid hormone and calcium concentrations.

3.6.2 Parathyroid hormone and calcium

Parathyroid hormone

〈∂P
∂t
, ζ〉 = −

∫
Ωt

DP∇P (t)∇ζdx+

∫
Ωf,t

∂u

∂t
(t)P (t)∇ζdx+∫

I

G
(

1

|O\Ωs,t|

∫
O\Ωs,t

(Ca)ECFO(τ − t)dx
)
ζdS+∫

Ωt

(g1(P, (Ca)ECF )χΩs,t + g2(P, (Ca)ECF )χΩf,t)ζdx−∫
Ωt

(d1(P, (Ca)ECF , CaO)χΩs,t + d2(P, (Ca)ECF , CaO)χΩf,t)ζdx (3.85)

with P = PO on O.
Next we write down the variational formulations for the calcium concentrations.

Calcium

We start with the calcium in the extracellular fluid. Extracellular Calcium

〈∂(Ca)ECF
∂t

(t), ζ〉 = −
∫

Ωf,t

D(Ca)ECF∇CaECF (t)∇ζdx+∫
Ωf,t

(
∂u

∂t
(t)(Ca)ECF (t))∇ζdx+∫

I

g6(PO, (Ca)ECF )ζdS +

∫
Γt

g5(B, (Ca)ECF )ζdS+∫
Ωf,t

g3(P, (Ca)ECF )ζdx−
∫

Ωf,t

d3(Ca)ECF ζdx (3.86)
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3.6 Weak formulation

with (Ca)ECF = (Ca)ECFO on O and (Ca)ECF = (Ca)boundary on Γt.

Calcium in the mineralized bone matrix

〈∂(Ca)MBM

∂t
(t), ζ〉 = −

∫
Ωs,t

D(Ca)MBM
∇CaMBM(t)∇ζdx+

∫
Ωs,t

g7(O, (Ca)MBM)ζdx+∫
Γt

g8((Ca)B − d6((Ca)C)ζdS −
∫

Ωs,t

d5((Ca)C , (Ca)O)ζdx (3.87)

Calcium in the osteocytes

〈∂(Ca)O
∂t

(t), ζ〉 = −
∫

Ωf,t

D(Ca)O∇CaO(t)∇ζdx−
∫

Ωs,t

~E · (Ca)Odivζdx

+

∫
Ωt,s

g9(O, (Ca)MBM)ζdx−
∫

Ωs,t

d7(Ca)ECF ζdx−∫
Γt

(d8((Ca)C)− g10((Ca)B)) ζdS (3.88)

Calcium released by osteoclasts

〈∂(Ca)C
∂t

(t), ζ〉 =

∫
Γt

g11(C, (Ca)C)ζdS −
∫

Γt

d9(Ca)boundaryζdS (3.89)

Calcium deposited by osteoblasts

〈∂(Ca)B
∂t

(t), ζ〉 =

∫
Γt

g12(B, (Ca)boundary)ζdS −
∫

Γt

d10(Ca)MBMζdS (3.90)

Next we write down the variational formulations for the bone cells.

3.6.3 Bone cells

Osteoblasts

〈dB
dt
, ζ〉 = −

∫
Γt

(DB∇SB −B∇Sχ(SC)−B∇Sχ(SO)) · ∇SζdS+∫
Γt

g13(B, SO, P, C)ζdS −
∫

Γt

d11(O)ζdS (3.91)
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Osteoclasts

〈dC
dt
, ζ〉 = −

∫
Γt

(DC∇SC − C∇Sχ(SB)− C∇Sχ(SO)) · ∇SζdS+∫
Γt

g15(C,B, SO, P )ζdS −
∫

Γt

d13CζdS (3.92)

Osteocytes

〈∂O
∂t

(t), ζ〉 =

∫
Ωs,t

g17(P,B,O)ζdx−
∫

Ωs,t

d15Oζdx (3.93)

Next we write down the variational formulations for the signals released by os-
teoblasts, osteoclasts and osteocytes.

3.6.4 Signals

Chemoattractant released by osteoblasts

〈∂SB
∂t

(t), ζ〉 = −
∫

Γt

DSB∇SSB∇SζdS +

∫
Γt

g14(B, SB)ζdS −
∫

Γt

d12SBζdS

(3.94)

Chemoattractant released by osteoclasts

〈∂SC
∂t

(t), ζ〉 = −
∫

Γt

DSC∇SSB∇ζdS+

∫
Γt

g16(C, SC)ζdS−
∫

Γt

d14SCζdS (3.95)

Signals released by osteocytes

〈∂SO
∂t

(t), ζ〉 = −
∫

Ωs,t

DSO∇SO∇ζdx +

∫
Ωs,t

g18(O,F, SO)ζdx −
∫

Ωs,t

d16SOζdx

(3.96)
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3.7 Remarks

3.7 Remarks

The equations (3.69)-(3.96) are modeling all processes, which are according to our
research relevant for bone remodeling in general: fluid-structure interaction, com-
bined with biochemistry, dynamics of cell population, mechano-sensing, signaling
pathways, chemotaxis , ion transport and piezoelectric effects (see 3.1) This ap-
proach has the advantage, that we realize what we are neglecting if we reduce
this altogether complex model system to a simpler one. Depending on the specific
question to be answered by modeling and simulation reductions will be possible.
Reduction will be necessary for mathematical and computational reasons, but also
for the proper calibration.
We are confronted with free boundary problems, which are so far beyond reach
of analytical theory, but might be accessible for computational studies. We for-
mulated the model system in variational form, with a view to applying numerical
techniques like Galerkin methods or finite elements.
Considering bone as porous structures, the derived model equations are valid on
the micro-scale and the problem arises, to derive effective equations passing to
a proper scale limit taken into account the small pore size. So far, such scale
limits have been only studied for less complex systems, recently e.g. by Jäger et
al. (2009, 2011), where just the interaction of flow, transport and reactions of
chemical substances with the mechanics of solids is considered.
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4 Application to tooth movement

The model presented in chapter three has a very fundamental character and there
are several applications in medicine for our model. Some simplifications need to
be done in order to apply our model to problems in real life. One example can be
found in orthodontics.
Orthodontic tooth movement is a unique phenomenon where a solid object (tooth)
is made to move through a solid medium (alveolar bone). Orthodontic treatment
is possible due to the fact that whenever a prolonged force is applied on a tooth
or teeth, bone remodeling occurs in the bone surrounding the tooth resulting in
its movement.
Bone remodeling is a biomechanical process responsible for making bones stronger
in response to sustained load-bearing activity and weaker in the absence of car-
rying a load. Bones are made of cells called osteoclasts and osteoblasts. Bone
remodeling works like this: increase the load on a bone and osteoclasts are created
which break it down in response to the load. Remove the load and osteoblasts
are created which form new bony cells. Repeat the process through repetitive
motion and eventually the bone density increases. Teeth are socketed in bone.
Each tooth is surrounded by a periodontal ligament (PDL) which attaches it to
the surrounding bone. The PDL is a sort of messenger between the teeth and
surrounding bony sockets. Pressure between the PDL and bone causes the bone
to create osteoclasts and breakdown the bone to restore the normal spacing be-
tween the teeth and bone. The corresponding tension on the PDL behind the
movement causes the bone to create osteoblasts, effectively building new bone
to fill in the difference and restore the normal spacing between teeth and bone.
Teeth move through alveolar or trabecular bone whether due to the normal process
of tooth eruption or due to strains generated by orthodontic appliances like braces.

4.1 Tooth movement

Adult tooth movement is a natural process. Our body has this tooth movement
mechanism in place in order to keep our teeth in proper alignment.
In order to correct malpositions of teeth, they are being adjusted by braces in
childhood and adolescence. This is called orthodontic tooth movement.
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4 Application to tooth movement

Orthodontic tooth movement is dependent on efficient remodeling of bone and cell
to cell interactions of osteoblasts and osteoclasts.

4.1.1 Tooth structure

Teeth are surrounded by gum. Under the gum tissue the periodontal ligament
(also called PDL or periodontum) encases the bottom portion of the tooth. It
can be found next to the alveolar or trabecular bone. The PDL can be seen as a
porous structure with fibres and fluid.

Figure 4.1: Section through a tooth (www.infovisual.info)

4.1.2 Braces

The application of braces moves the teeth as a result of force and pressure on the
teeth. Braces basically consist of brackets normally made of metal or ceramic that
are attached to the teeth. The arch wire which is a thin metal band runs from
bracket to bracket and puts constant pressure on the teeth.
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4.1 Tooth movement

Figure 4.2: Braces on teeth

The teeth move when the arch wire puts pressure on the teeth, in response teeth
move into their proper positions. The periodontal membrane stretches on one side
and is compressed on the other. This loosens the tooth. The bone then grows in
to support the tooth in its new position. Technically this is bone remodeling.
The following figure shows how the PDL is connected to the bone and how the
bone grows into the gap.

Figure 4.3: Orthodontic force on tooth

Osteoclastic activity takes place at the side where there is pressure and leads to
bone resorption. Osteoblastic activity occurs at the side where there is tension, as
a result we find bone formation.
The following figure shows that pressure and tension sites occur at each site, which
is the case because of the rotation component of the force.
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4 Application to tooth movement

Figure 4.4: Tension and compression region in orthodontic tooth movement
(sites.mc.ntu.edu.tw)

4.1.3 Theories for tooth movement

There are different theories for orthodontic tooth movement.

Blood flow theory

The blood flow theory goes back to Bien (1966). He proposed that tooth move-
ment occurs as a result of laterations in fluid dynamics in the periodontal ligament.
The contents of the periodontal ligament create a unique hydrodynamic condition
resembling a hydraulic mechanism. When force of short duration is applied to a
tooth, the fluid in the periodontal escapes through tiny vascular channels. When
the force is removed, the fluid is replenished by diffusion from capillary walls and
recirculation of the interstitial fluid.
When an orthodontic force is applied, it results in compression of the periodontal
ligament on the pressure side thereby creating a favorable environment for resorp-
tion. (Singh, et. al., 2007)
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4.2 Mathematical model for tooth movement

The question here is though how the laterations are communicated to the osteo-
clasts or osteoblasts because they are the cells that build or resorb bone.

Piezoelectric theory

The piezoelectric effect occurs whenever a cristalline structure is loaded. The
object is being bent and results in an electric flow.
Piezoelectric signals have two unique characteristics: a quick decay rate and the
production of an equivalent signal opposite in direction, when the force is released.
When the force is applied on a tooth, the adjacent alveolar bone bends. Areas of
concavity are associated with negative charge and cause bone deposition. Areas
of convexity with positive charge and cause bone resorption. (Singh, et. al., 2007)
As the piezoelectric effect only occurs in short term loading situations it cannot be
applied here to explain the tooth movement because the force applied by braces is
a long term force.

Pressure tension theory

Finally Schwartz proposed the pressure tension theory in 1932 and it is the most
widely accepted theory.
Whenever the tooth is subjected to orthodontic force, it results in areas of pressure
and tension. The alveolar bone is resorbed whenever the root of the bone causes
pressure on the periodontal ligament. New alveolar bone is deposited whenever
there is a stretching force on the periodontal ligament. This is caused by alter-
ations in the blood flow. These alterations cause formation and release of chemical
messengers which then leads to the activation of osteoblasts and osteoclasts.

4.2 Mathematical model for tooth movement

In our general model the trigger for bone remodeling was on the one hand force
and on the other hand calcium homeostasis. Here the situation is slightly different.

4.2.1 Modeling assumptions

In order to apply the above general model to the phenomenon of tooth movement
some simplifications have to be made.

• we assume the pressure-tension theory here, we differ between compression
sides where we have bone resorption and tension sides, where we find bone
formation
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4 Application to tooth movement

• transport and diffusion of calcium and PTH can be neglected

• we discard the partial differential equations for the osteoblasts, osteoclasts
and osteocytes

According to our modeling in chapter three we would also have to analyze the
dynamics of the osteocytes, osteoblasts and osteoclasts in this situation. How-
ever discussing with the specialists of the Dental clinic in Heidelberg, we only
obtained information on the osteoblasts and osteoclasts. In fact our medical part-
ners claimed that according to experimental studies the effects only rely on the
acitivity of osteoclasts and osteoblasts. The activity of osteocytes was not mea-
surable for them. Neglecting the possible signaling of osteocytes as mecahnical
sensors we model the direct influence of pressure and tension on the boundary.

• we assume the PDL to be a Biot-type material

• free boundary to the bone side

• fixed but moving boundary at the tooth side

It is important to state here that we assume a quasi-periodic structure within the
PDL, although the periodontal ligament has no periodic structure.
The following figure shows the fibrous structure of the PDL.

Figure 4.5: D PDL. H, I, J and K show the different kind of fibres in the PDL. C
is the alveolar bone. G and F represent the gingiva. B the tooth root
and A the cementum.(www.en.wikipedia.org)
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4.2.2 Domains

We consider the following domains

• Ωt represents the inside of the PDL which is a porous medium where Biot
equations can be assumed and which is time dependent

• ΓB describes the part of the boundary bordering the alveolar bone where
there is either tension or compression

• ΓB is a free boundary

• ΓT is the part of the boundary that borders to the tooth, it has a fixed shape
but moves with the tooth.

• Σ is the membrane that borders to the PDL, we can assume linear elasticity
there

The following figure illustrates the descriptions from above.

Figure 4.6: Description of the domain: blue Ωt PDL

As it is very complicated to find equations and conditions for Σ, we should have a
look at the horizontal section of a tooth, where we can neglect the membrane, in
order to avoid regularity problems.
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4 Application to tooth movement

Figure 4.7: Horizontal section through the tooth

4.2.3 Mathematical model

We have to differentiate between chemoattractants depending on compression or
tension. This was not the case in the other model because the piezoelectric effect
covered that. The loading we look at here, is a long term loading situation. We
assume that orthodontic tooth movement has the following components. We have
two different solid objects, tooth and alveolar bone. The boundary of this solid
objects is called the PDL.
The PDL is a heavy collagenous structure that attaches the cementum on the root
surface to the dense bony plate around it (lamina dura).
Normally, the width is 0.25 mm - 0.5mm . Histologically the PDL is composed of
cells, fibers, ground substance and tissue fluids. In the PDL we find cells which
can differentiate into osteoblasts or osteoclasts (also called cemetoclasts) due to
tension or compression situations.
The PDL space is filled with fluid, the same fluid found in all other tissues. The
fluid acts as a shock absorber. When the tooth is subjected to heavy loads, a quick
displacement of the tooth within the PDL space is prevented by the incompressible
tissue fluid. Instead, the force is transmitted to the alveolar bone, which bends in
response. The PDL is designed to resist forces of short duration. Prolonged forces
will cause remodeling of adjacent bone to occur.
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4.2 Mathematical model for tooth movement

Equations for the PDL

We suppose that the PDL can be seen as a porous medium which occupies the
domain Ω with the boundaries ΓT and ΓB. In the following we will neglect the
boundaries and try to find a mathematical description for the behavior of the PDL.
From the mathematical point of view, one can model this distribution by supposing
that it is a periodic one. This periodicity can be represented by a small parameter,
ε.
In practice, we are interested to know the global behavior of the composite mate-
rial when the heterogeneities are very very small. This means that ε is very small,
which mathematically signifies making ε tend to zero. The PDL can be seen as a
porous media and it involves two basic elements: fluid flow and fiber deformation.
Its main components are the ground substance - which is mainly fluid - and thin
fibres arranged in bundles. These two components are responsible for the trans-
mission of the forces acting on the tooth to its supporting structure. The change
in fluid pressure, which is caused by fluid injection or production, alters the stress
state of the PDL. The change in the stress state triggers the solid parts in the
PDL to change which, in turn, affects the fluid flow processes.
The Biot theory of poroelasticity has been widely used in civic, mining and
petroleum engineering, acoustic wave propagation in saturated media, and biology
for several decades. We use the Biot equations to describe the behaviour of the
periodontal ligament.
We formulate now the equations which model the process at the microscopic level.
We assume small deformations of the cell structure. This means that in the solid
part of the PDL Ωε

s the equations of linear elasticity hold.
Thus we have

ρs
∂2uε

∂t2
−∇ · (σ(uε)) = fs in Ωε

s (4.1)

where uε is the microscopic displacement, D(uε) is the strain tensor, and σ(uε) is
the stress tensor given by

σ(uε) = AD(uε). (4.2)

and D(u) is the strain tensor defined by

(D(uε))i,j =
1

2
(
∂uεi
∂xj

+
∂uεj
∂xi

), i, j = 1, 2, 3 (4.3)

In the homogenous and isotropic case, the elasticity coefficients A are given with
the help of Lamé coefficients λ and µ. Another possibility is to use the Young’s
modulus E and the Poisson’s coefficient ν. They relate to the Lamé’s coefficients

57



4 Application to tooth movement

through

λ =
Eν

(1 + ν)(1− 2ν)

µ =
E

2(1 + ν)
.

The stress tensor has the form:

σ(uε) = λ∇ · (uεI) + 2µD(uε) (4.4)

In the intercellular space Ωε
f , we consider the linearized Navier-Stokes system for

a viscous and incompressible fluid. The interface between the fibers and the liquid
is also linearized. At the inlet and outlet outer boundaries, we give the pressure
and the shear stress. At the lateral no flow and displacement is assumed.
Now we have a closer look at the dimensions of the parameters in the equations.

Dimensional analysis for the PDL

The permeability coefficient is of order 10−8/Pa · sec. (Nyashin, 2000), the poros-
ity 0, 7 (Bergomi, 2010), the Poisson ratio 0, 45 (Cattaneo, et al., 2005), and the
Young Modulus 6, 89MPa, (Basdra, Komposch, 1997)
For the interstitial fluid in the PDL we assume the mass density of blood, which
is 1025− 1150kg/m3

Kanzaki, et al. (2002) found in experiments that with a compressive force of
2g/cm2 they find about 28 osteoclasts per square mm, whereas with a force of
only 0, 5g/cm2 we find only 12 osteoclasts per square mm in the periodontal lig-
ament. They also showed that time plays an important role because these cell
densities were found after 24 hours, but after 6 hours there were only half the size.

In its dimensionless form, the fluid-structure interaction is described by means of
the microscopic displacement function uε, and the fluid pressure pε. Jäger et al.
(2011) assume the following equations:

∂2uε

∂t2
+

1

ε2
∇pε = ∆(

∂uε

∂t
) in Ωε

f , (4.5)

∇ · (∂u
ε

∂t
) = 0 in Ωε

f , (4.6)

∂2uε

∂t2
=

1

ε2
∇ · (AD(uε)) in Ωε

s, (4.7)

uεχΩεf
= uεχΩεs on Γε, (4.8)
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(− 1

ε2
∇pεI + 2D(

∂uε

∂t
) · ν =

1

ε2
AD(uε) · ν on Γε ∩ Ωε

f , (4.9)(
− 1

ε2
∇pεI + 2D(

∂uε

∂t
)

)
· e1 =

{
0 on (Γε1 ∩ Ωε

f ),
1
ε2

(Sε1,Sε2,Sε3) on (Γε2 ∩ Ωε
f ),

(4.10)

1

ε2
AD(uε) · e1 =

{
0 on (Γε1 ∩ Ωε

s),
1
ε2

(Sε1,Sε2,Sε3) on (Γε2 ∩ Ωε
s),

(4.11)

∂uε

∂t
χΩεf

+ uεχΩεs = 0 on Γ, (4.12)

uε(x, 0) = 0 in Ω (4.13)
∂uε

∂t
(x, 0) = 0 in Ω (4.14)

We can remark that the size of the elastic moduli and of the characteristic fluid
pressure is of order O( 1

ε2
), whereas the viscosity forces are of order O(1). This

scaling corresponds to the diphasic model.

We assume that the bone cells respond directly to pressure and tension in the
PDL.

Equations for the bone cell population

We also assume that the material which the osteoblasts need to form new bone is
available at all times like enzymes. The osteoclasts on the other side release bone
material from the compression side. We assume them to have the following form

ε
dB

dt
= gB(B,C,O, p)− dBB on ΓB (4.15)

ε
dC

dt
= gC(C,B, p)− dCC on ΓB (4.16)

The equations can be neglected due to the epsilon which will later tend to zero.

4.2.4 Variational formulation of the finite problem

The variational formulation will be the starting point for performing the homoge-
nization limit ε→ 0.
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4 Application to tooth movement

Find uε, satisfying for a.e. t ∈ (0, T )∫
Ω

∂ttu
εϕdx+ 2

∫
Ωεf

D(∂tu
ε(t)) : D(ϕ)dx+

1

ε2

∫
Ωεs

AD(uε(t)) : D(ϕ) =
1

ε2

∫
Γε

(Sε1,Sε2,Sε3)ϕdS

∇ · ∂tuε = 0, in Ωε
f × (0, T )

uε(x, 0) = 0, ∂tu
ε(x, 0) = 0 in Ω (4.17)

for all ϕ ∈ V . The space V is defined as follows:
V = {ϕ ∈ H1(Ω)3;∇ · ϕ = 0 in Ωε

f}

4.2.5 Two-scale convergence result

Although the PDL is a fibrous medium which has different fibres, we assume the
fibres to be arranged periodically. Belhadj et al. (2007) investigated filtration
through a fibrous medium but the Biot equations were not considered.
In the limit ε→ 0, the solution of the microscopic system (4.5)-(4.14) converge to
the unique solution of the following homogenized system of differential equations.
The effective system for the homogenized fluid-structure variables u0,u1, pf ,v, π0

consists of the homogenized equations for the structure variables

−Divy{A(t, x)(Dx(u0) +Dy(u1)} = 0 in Ω× Ys,
A(t, x)(Dx(u0) +Dy(u1)) · ν + pfχYf (y) · ν = 0 on Ωt × ∂Ys\∂Y,

u1 is Y-periodic,

−Divx
{∫

Ys

A(Dx(u0) +Dy(u1))dy

}
+ |Yf |pf (t, x) = 0 in Ωt(∫

Ys

A(Dx(u0) +Dy(u1))dy − |Yf |pf (t, x)I

)
· e1 =

{
0 on Γ1

(Sε1,Sε2,Sε3) on Γ2

u0(t, x) = 0 on Γ1,

u0(t, x) = 0 on Γ2,

coupled with the generalized Darcy’s law for the fluid variables:

∆y(∂tv) +∇yπ
0 = −∇xpf in Ω× Yf ,
divy(∂tv) = 0 Ω× Yf

v = 0 on Ω× ∂Yf\∂Y,
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v, π0 are Y-periodic,

divx

(
|Yf |∂tu0(t, x) +

∫
Yf

∂tv(t, x, y)dy

)
=

∫
Ys

divy∂tu1(t, x, y)dy in Ω

pf = 0 on ΓB,

pf = P0 on ΓT ,∫
yf

∂tvdy · ν = 0 on ΓT .

4.2.6 Derivation of the effective equations for u, p0

The system is too complicated to be used directly, thus it is important to sepa-
rate the fast and slow scales. Since our system is quasi-static, the decomposition
calculation are simpler than in the dynamic case.
According to Mikelic and Wheeler (2011) we need the following auxiliary problems:
For i, j = 1, ..., 3, find the 1-periodic vector valued functionwij ∈ H1(Ys)

3,
∫
Ys
wij(y)dy =

0, satisfying divy
{
A
(
ei⊗ej+ej⊗ei

2
+Dy(wij)

)}
= 0 in Ys

A
(
ei⊗ej+ej⊗ei

2
+Dy(wij)

)
ν = 0 on ∂Ys\∂Y

(4.18)

and find a 1-periodic vector valued function w0 ∈ H1(Ys)
3,
∫
Ys
w0(y)dy = 0, satis-

fying {
−divy {ADy(w0)} = 0 in Ys

ADy(w0)ν = −ν on ∂Ys\∂Y
(4.19)

Due to the periodicity the above equations have a unique solution with regularity
depending only on the smoothness of the geometry. With the assumption made,
wij,w0 are in H2(Ys)

3.

Thus, we decompose u1 as

u1(x, y, t) = p0(x, t)w0(y) +
∑
i,j

(Dx(u0(x, t)))i,jwi,j(y) (4.20)

∂tu1(x, y, t) = ∂tp
0(x, t)w0(y) +

∑
i,j

∂t(Dx(u0(x, t)))i,jwi,j(y)

∂t
(4.21)

The cell problem corresponding to v is

∆qi +∇πi = ei in Yf (4.22)
divyqi = 0 in Yf (4.23)

qi = 0 on Ω× ∂Yf\∂Y, (4.24)
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qi, πi are Y-periodic.

∂tv has the representation in terms of the qi, πi:

∂tv =
3∑
j=1

qj(y)(−p
0(x, t)

∂xj
). (4.25)

We substitute (4.25) and (4.20) and get

Divx

{∫
Ys

A

(
Dx(u0) +Dy

(
p0w0(y) +

∑
i,j

(Dx(u0(x, t)))i,jwi,j(y))

))
dy

}
+

|Yf |pf (t, x) = 0 in Ω

u0(t, x) = 0 on ΓT

u0(t, x) = 0 on ΓB (4.26)

and

divx

(
|Yf |∂tu0(t, x)−

∫
Yf

∑
qj(y)

p0(x, t)

∂xj
dy

)
=

∫
Ys

divy

(
∂tp0(x, t)w0 +

∑
i,j

∂(Dx(u0(x, t)))i,jwi,j(y)

∂t

)
dy in Ω (4.27)

The cell problems define the effective coefficients:

AHklij :=

(∫
Ys

A

(
ei ⊗ ej + ej ⊗ ei

2
+Dy(w

ij)

)
dy

)
kl

(4.28)

BH :=

∫
Ys

ADy(w0)dy, (4.29)

CHij :=

∫
Ys

divyw
ij(y)dy, (4.30)

Kij :=

∫
Yf

qji (y)dy. (4.31)

Furthermore we can state that CH = BH

Finally,

M0 = −
∫
Ys

divyw0(y)dy =

∫
Ys

ADy(w0) : Dx(w0) > 0 (4.32)
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Now we use that

divx{(|Yf |I − BH)∂tu} = (|Yf |I − BH) : Dx(∂tu), (4.33)

and obtain the initial boundary problem for u, p0:

−divx{AHDx(u)}+ divx{(|Yf |I − BH)p0} = 0 in Ω (4.34)
M∂tp

0 + divx{K(−∇xp
0) + (|Yf |I − BH)∂tu} = 0 in Ω (4.35)

, where M = |Yf |κco +M0 = |Yf |κco −
∫
Ys
divyw0(y)dy > 0

In order to calculate the movement of the tooth it is important to state the tooth
will move along a axis parallel to the resultant force which acts on the center of
gravity of the tooth.
The shape of the tooth section can be idealized as elliptic, which means that the
center of gravity is the point of intersection between the minor and major semi-
axis.
On the center of gravity the force of the braces act as the resistance force of the
alveolar bone.
The resultant force can be calculated as follows

fres =

∫
AΓT

fdAΓT −
∫
AΓT

(p0 + AD(σ))dAΓT (4.36)

The resultant force describes the movement of the tooth through the bone.

d2s(t)

d2t
=
fres
m

(4.37)

4.2.7 Free boundary problem

With equation (4.38) we average the boundary of the domain, which is adjacent
to the bone. The following figure illustrates the averaging over the boundary.
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Figure 4.8: Averaging the boundary of the domain adjacent to the bone

As the osteoblasts constantly form new bone when they are active and the osteo-
clasts resorb bone when they are active the part of the boundary bordering to the
PDL constantly changes.
The boundary ΓB evolves in time. The evolution of the boundary ΓB depends on
the sign of the pressure on the boundary.

dx

dt
= J

(∫
Ωt

ρ(x(t)− y)(σ(y), p(y))dy

)
ν(x(t)) (4.38)

where J is a Lipschitz continuous function. x can be defined as follows x =
ξ + sγ(ξ), where ξ is the foot and s the normal coordinate.
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free boundary problem

We now want to analyze the Biot system with the Rothe method. We now investi-
gate the free boundary problem and write for Ω = Ωt, and the index t in the other
domains and boundaries.

5.1 Existence of weak solutions of the Biot
system

We consider the problem

−divx{AHDx(u)}+ divx{(|Yf |I − BH)p} = 0 in Ωt (5.1)
M∂tp + divx{K(−∇xp) + (|Yf |I − BH)∂tu} = 0 in Ωt (5.2)

u(t, x) = 0 on ΓB,t (5.3)
u(t, x) = 0 on ΓT,t (5.4)

p = 0 on ΓB,t, (5.5)
p = P0 on ΓT,t (5.6)

with the evolution of the boundary

dx

dt
= J

(∫
Ωt

ρ(x(t)− y)(σ(y), p(y))

)
ν(x(t))

We will discretize the above full system in time and will show analytically that the
discretized problem makes sense. We assume that the boundary of the domain is
Lipschitz or C2.

The Rothe-method uses a discretization of time. It is not possible that we as-
sume a time interval of [0, T] to be given and divide this interval into intervals of
[tl, tl+1] with tl = h · ∆t and ∆t = T

N
= h. As the boundary moves it could be

possible that we end up outside the domain if h is too big. Thus we start with h
to be sufficiently small and make sure that we stay inside the domain.
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The domains change with each time step as well. The following figure shows a cross
section through the domain, where Ωl is the domain of the periodontal ligament
at time l. On the left the cross represents the tooth and the line represents the
bone. Ωl+1 is the domain at the time step l + 1. It is important to note that the
domains must stay inside the domain Ωt. Thus, we start with a sufficiently small
h to ensure that we stay inside the domain.

Figure 5.1: Crossection through the domains

We now have a closer look at the domain of the bone. The tooth could be illustrated
equivalently.

Figure 5.2: Bone domain in the Rothe Method
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5.1 Existence of weak solutions of the Biot system

The following PDEs are valid in Ωl, the functions ul and pl fulfil the PDEs only
in Ωl−1. We continue u through zero and p through P0.

The solution u shall be approximated at time tl by u(tl) ≈ ul ∈ L2(Ωl). Let t0 = 0
and t1 = h. Using finite forward discretization we get

−∇xA
HDxul+1 + (|Yf |I − BH) ∇ · pl+1 = 0 in Ωl

For simplicity, we set E = (|Yf |I − BH) and AH = A get

−∇xADxul+1 + E ∇ · pl+1 = 0 (5.7)

and

M
pl+1 − pl

h
+
divx((|Yf |I − BH)ul+1)− divx((|Yf |I − BH)ul)

h
−∇xK∇xpl+1 = 0

With the above simplifications:

M
pl+1 − pl

h
+
divx(Eul+1)− divx(Eul)

h
−∇xK∇xpl+1 = 0 in Ωl (5.8)

u(t, x) = 0 on ΓB,t

u(t, x) = 0 on ΓT,t

p = 0 on ΓB,t

p = P0 on ΓT,t

We assume that we know ul, pl and show that we can calculate ul+1 and pl+1 from
that. (5.8) can be simplified because ul, pl are known.

M
pl+1

h
+
divx(Eul+1)

h
−∇xK∇xpl+1 = M

pl
h

+
Edivxul

h

We now multiply with h and get

Mpl+1 + E divx ul+1 − h ∇xK∇xpl+1 = fl (5.9)

where fl = E divx ul +Mpl.

We also need to discretize the movement of the boundary:

xl+1 − xl
h

= J
(∫

Ωt

ρ(xl(t− y)(σ(y), p(y))dy

)
ν(xl(t))
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5 Mathematical analysis of the free boundary problem

5.1.1 Weak formulation of the discretized Biot system

Let the Hilbert spaces V1 and V2 such that:

V1 = {ϕ ∈ (H1(Ωl))
2 : ϕ = 0 on ΓB, ϕ = 0 on ΓT},

V2 = {φ ∈ (H1(Ωl))
2 : φ = 0 on ΓB, φ = P0 on ΓT}

We multiply the equations (5.7) and (5.9) with the test functions ϕ ∈ V1 and
φ ∈ V2 respectively and integrate over Ωl, to get∫

Ωl

ADxul+1 : ∇ϕ+

∫
Ωl

E ∇ · pl+1 ϕ =

∫
∂Ωl

A(∇ul+1 + (∇ul+1)∗) · νϕ ∀ϕ ∈ V1

(5.10)

with Dul+1 = 1
2
((∇ul+1) + (∇ul+1)∗), where * stands for the transpose matrix, we

get

Lemma 1: ∫
Ωl

A(∇ul+1 + (∇ul+1)∗) : ∇ϕ+

∫
Ωl

E ∇ · pl+1ϕ =∫
∂Ωl

A(∇ul+1 + (∇ul+1)∗) · νϕ ∀ϕ ∈ V1 (5.11)

and ∫
Ωl

pl+1 φ+

∫
Ωl

div (Eul+1)φ− h
∫

Ωl

K∆pl+1φ =∫
Ωl

flφ+ h

∫
∂Ωl

K∇pl+1 · νφ ∀φ ∈ V2 (5.12)

Using the divergence theorem and using Green’s formula we get

Lemma 2:

−
∫

Ωl

Eul+1 · ∇φ+

∫
Ωl

pl+1φ+ h(K∇pl+1∇φ) =∫
Ωl

flφ−
∫
∂Ωl

Eul+1 · νφ+ h

∫
∂Ωl

K∇pl+1 · νφ ∀φ ∈ V2 (5.13)
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5.1 Existence of weak solutions of the Biot system

We take the testfunction out of V2.

We have to be careful with the spaces V1 and V2 because they have to be in-
side Ωt.

We introduce the bilinear forms a, b, and c as follows and define them over Ω:

a(u, v) :=

∫
Ω

A(∇u+ (∇u)∗) : ∇v

b(v, p) :=

∫
Ω

E ∇ · p v

c(p, q) :=

∫
Ω

[p q + h K∇p∇q]

and

r1(u, v) :=

∫
∂Ω

A(∇u+ (∇u)∗) · νv

r2(fl, q) :=

∫
Ω

flq

r3(u, p, q) := −
∫

Γ

Eu · νq + h

∫
Γ

K∇p · νq.

The weak formulation of our problem is: find (ul+1, pl+1) ∈ V1 × V2 such that:

a(ul+1, ϕ) + b(ϕ, p) = r1 ∀ϕ ∈ V1,

−b(ul+1, φ) + c(pl+1, φ) = r2 + r3 ∀φ ∈ V2

That is,

Lemma 3:

a(ul+1, ϕ) + b(ϕ, pl+1) = r1 ∀ϕ ∈ V1, (5.14)
b(ul+1, φ)− c(pl+1, φ) = −r2 − r3 ∀φ ∈ V2 (5.15)

We will show that the system (5.14)-(5.15) has a unique solution.

We now investigate the bilinear forms introduced above.
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5 Mathematical analysis of the free boundary problem

5.1.2 Continuity and coercivity of the bilinear forms

Definition 1: The bilinear form a(·, ·) : V1 × V1 → R and the bilinear form
b(·, ·) : V1 × V2 → R are continuous provided that positive constants β and γ exist
such that:

|a(u, ϕ)| ≤ β‖u‖V1‖ϕ‖V1 ∀u, ϕ ∈ V1.

and

|b(u, ϕ)| ≤ γ‖u‖V1‖ϕ‖V2 ∀u ∈ V1, ϕ ∈ V2.

Definition 2: The bilinear form a(·, ·) : V1 × V1 → R is coercive provided that a
positive constant α exists such that:

|a(ϕ, ϕ)| ≥ α‖ϕ‖2
V1

∀ϕ ∈ V1.

Theorem: If the bilinear form a(·, ·) : V1 × V1 → R is continuous and coercive,
c(·, ·) : V2 × V2 → R is continuous and coercive, and b(·, ·) : V1 × V2 → R is con-
tinuous then for every f ∈ V ′1 and g ∈ V ′2

a(u, ϕ) + b(ϕ, p) = (f, ϕ)
b(u, φ)− c(p, φ) = (g, φ)

has a unique solution (u,p).

For the proof of the above theorem we need the following Theorem:

Lax-Milgram Theorem
Assume that
B : H × H → R is a bilinear mapping, for which there exist constants α, β > 0
such that

(i) |B[u, v]| ≤ α‖u‖‖v‖ (u, v ∈ H)
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5.1 Existence of weak solutions of the Biot system

and
(ii) β‖u‖2 ≤ B[u, u] (u ∈ H)

Finally, let f : H → R be a bounded linear functional on H.
Then there exists a unique element u ∈ H such that

B[u, v] =< f, v >

for all v ∈ H.

Proof. We introduce

x :=

(
u
p

)
y :=

(
ϕ
φ

)
and define for x in V1 × V2 the following norm

‖x‖2
1,Ω,α = ‖u‖2

1,Ω + α‖p‖2
1,Ω

where α is a positive constant.
Moreover we define another big bilinear form by subtracting the above two:

d(x, y) = a(u, ϕ) + b(ϕ, p)− b(u, φ) + c(p, φ)

d(x, y) is not symmetric, but coercive

d(x, x) = a(u, u) + c(p, p),

which yields

d(x, x) ≥ αa‖u‖2
1,Ω + α

αc
α
‖p‖2

1,Ω

≥ min(αa,
αc
α

)‖x‖2
1,Ω,α

Our above system of bilinear forms is equivalent to the following variational for-
mulation

(∗) d(x, y) = k(y) y ∈ V1 × V2

where k(y) = f − g.
⇒ is clear through adding the equations, but ⇐ not so obvious. With

y1 :=

(
ϕ
0

)
y2 :=

(
0
φ

)
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5 Mathematical analysis of the free boundary problem

(∗) can be o a problem with a homogenous Dirichlet boundary. Find w = x−x∗ ∈
V1 × V2, such that

d(w, y) = k̃(y) := k(y)− d(x∗, y) ∀y ∈ V1,0 × V2,0

with arbitrary x∗ =

(
u∗

p∗

)
∈ V1×V2 . The coercivity of d(., .) in V1×V2 together

with the continuity of the bilinear forms a(., .), c(., .), b(., .) secures the solvability
of the variational problem due to the Theorem by Lax-Milgram.

In order to use the above theorem in our problem, we now have to show that the
bilinear forms a(·, ·) and c(·, ·) are continuous and coercive and the bilinear form
b(·, ·) is continuous on the respective spaces, hence there exist unique solutions u
and p of the problem.
Let’s consider a(·, ·), c(·, ·) and b(·, ·) as definded before and we show that the
assumptions of the theorem are fulfilled.
Recall that:

V1 = {ϕ ∈ (H1(Ωt))
2 : ϕ = 0 on ΓB, ϕ = 0 on ΓT},

V2 = {φ ∈ (H1(Ωt))
2 : φ = 0 on ΓB, φ = P0 on ΓT}

Continuity and coercivity of a(·, ·)

First we look at the continuity.

Continuity of a(·, ·)

|a(u, ϕ)| =
∣∣∣∣∫

Ωl

A∇u : ∇ϕ+ A∇u∗ : ∇ϕ
∣∣∣∣

Using the triangle inequality

|a(u, ϕ)| ≤

∣∣∣∣∣
∫

Ωl

A
∑
i,j

∂ui
∂xj
· ∂ϕi
∂xj

∣∣∣∣∣+

∣∣∣∣∣
∫

Ωl

A
∑
i,j

∂uj
∂xi
· ∂ϕi
∂xj

∣∣∣∣∣
Thus

|a(u, ϕ)| ≤ α∗∗‖∇u‖‖∇ϕ‖+ α∗∗‖∇u‖‖∇ϕ‖
|a(u, ϕ)| ≤ 2α∗∗‖∇u‖‖∇ϕ‖
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5.1 Existence of weak solutions of the Biot system

Hence
|a(u, ϕ)| ≤ 2α∗∗‖∇u‖1‖∇ϕ‖1

Hence |a(u, ϕ)| is continuous.

Now we show the coercivity of a(·, ·).

Coercivity of a(·, ·)

a(u, ϕ) =

∫
Ωl

A(∇u+∇u∗) : ∇ϕ

and

(∇u+∇u∗) : ∇ϕ = ∇u : ∇ϕ+∇u∗ : ∇ϕ

=
1

2
[∇u : ∇ϕ+∇u∗ : ∇ϕ∗ +∇u∗ : ∇ϕ+∇u : ∇ϕ∗]

=
1

2
(∇u+∇u∗) : (∇ϕ+∇ϕ∗)

We also recall that the strain is

D(u) =
1

2
(∇u+∇u∗),

and
a(u, ϕ) =

∫
Ωl

2A(
1

2
(∇u+∇u∗)) : (

1

2
(∇ϕ+∇ϕ∗)).

Now,

a(ϕ, ϕ) ≥ α∗
∫

Ωl

(D(u))2

(Cioranescu and Donato, p. 191)

Korn’s inequality (Ciarlet, p. 291): Let Ω ⊂ R3 be an open bounded set
with piecewise smooth boundary. In addition, suppose Γ0 ⊂ ∂Ω has positive two-
dimensional measure. Then there exists a positive constant c = c(Ω,Γ0) such
that: ∫

Ω

D(v) : D(v) ≥ c‖v‖2
1 ∀ v ∈ H1

Γ(Ω).
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5 Mathematical analysis of the free boundary problem

We assumed that the measure on the boundaries ΓT ,ΓB are positive, then from
the Korn’s inequality a(·, ·) is coercive.

a(ϕ, ϕ) ≥ α‖ϕ‖2
1 ∀ϕ ∈ (H1(Ωt))

2. (5.16)

Moreover, the bilinear form a(·, ·) is symmetric. (See Appendix)

Now we show the continuity of b(·, ·).

Continuity of b(·, ·)

Recall that
b(ϕ, p) :=

∫
Ωl

E(∇p)ϕ

hence

|b(ϕ, p)| ≤ ‖E∇pl+1‖‖ϕ‖
≤ ε‖p‖1‖ϕ‖1 ∀p ∈ H1(Ω) and ϕ ∈ (H1(Ω))2. (5.17)

We show now the continuity and coervitiy of c(·, ·).

Continuity and coercivity of c(·, ·)

We start with the continuity.

Continuity of c(·, ·)
We have

c(p, φ) :=

∫
Ωl

[p φ+ hK∇p∇φ]

thus,

|c(p, φ)| ≤ ‖p‖ ‖φ‖+ hκ‖∇p‖‖∇φ‖
≤ max(1, hκ)‖p‖1‖φ‖1 ∀p, φ ∈ H1(Ωl). (5.18)

Thus c is continuous.

Coercivity of c(·, ·)
Now,

c(φ, φ) =

∫
Ωl

φ2 + hK(∇φ)2

≥ ‖φ‖2 + hκ‖∇φ‖2

≥ min(1, hκ)‖φ‖2
1 φ ∈ H1(Ωl). (5.19)
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5.2 Convergence

Thus c is coercive.

Corollary: The bilinear form a(·, ·) : V1 × V1 → R is continuous. If the measure
of the boundaries ΓB,ΓT are positive, then a(·, ·) is coercive. The bilinear forms
c(·, ·) : V2 × V2 → R is continuous and coercive, and b(·, ·) : V1 × V2 → R is con-
tinuous. Hence (5.14)-(5.15) has a unique weak solution (u, p)

Using the previous corollary we can now prove existence of the weak solutions
with Rothe’s method.

In the following part we will sketch the proof for the convergence. It is not pos-
sible to show uniqueness as it is complicated because of the moving and changing
domain.

5.2 Convergence

We now have a look at the Rothe sequences un(x, t) and pn(x, t) in the space
H1,2(I,H1,2(Ω)).
The Rothe functions are

un(x, t) = ul + (t− tnl )
(unl+1 − unl )

hn
, in Inl+1 = [tnl , t

n
l+1],

pn(x, t) = pl + (t− tnl )
(pnl+1 − pnl )

hn
, in Inl+1 = [tnl , t

n
l+1].

Proposition:

(un, pn) is pre-compact in L2(I, L2(Ω)) = L2(I × Ω) and

unj → u u ∈ L2(I,H1,2(Ω)

pnj → p p ∈ L2(I,H1,2(Ω)

for a proper chosen subsequence.
For this we need to show that un, pn are equicontinuous with respect to n.

For the convergence proof we would need the following estimates. Treating the
convergence of Rothe functions to a solution of the differential equations and the
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5 Mathematical analysis of the free boundary problem

analysis in the case of free interfaces is a challenge for future investigations.

We need to show that

h

n∑
j=1

‖δunl+1‖2 ≤ const

which means

h

n∑
j=1

‖
unl+1 − unl

h
‖2 ≤ const

Equivalently with p:

h

n∑
j=1

‖δpnl+1‖2 ≤ const

which means

h

n∑
j=1

‖
pnl+1 − pnl

h
‖2 ≤ const

It is possible to show this for a fixed domain, but for a free boundary there are
problems when integrating by parts. We will derive in the following the estimates
for the fixed domain, also to illustrate, where the difficulties in the case of free
boundaries arise.

5.2.1 A priori estimates

Here we assume the boundary to be fixed and write now Ω for the fixed domain.
For the approximate solutions of the fixed domain we can state the following

Lemma 4:

‖ul+1‖2
L2(Ω) ≤ const (1)

‖∇ul+1‖2
L2(Ω) ≤ const (2)

‖pl+1‖2
L2(Ω) ≤ const (3)

h‖∇pl+1‖2
L2(Ω) ≤ const (4)

First we recall our problem with homogeneous boundary and initial conditions.

−∇xADxul+1 + E∇ · pl+1 = 0 (1)

M

h
(pl+1 − pl) +

E

h
(divxul+1 − divxul)−∇ ·K∇xpl+1 = 0 (2) (5.20)
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5.2 Convergence

The weak formulation of this problem is: find ul+1 ∈ V ∗1 and pl+1 ∈ V ∗2 , where V ∗1
and V ∗2 are the spaces from 5.1.1 with homogenous boundary conditions, such that

−
∫

Ω

∇ADxul+1 : ϕ+

∫
Ω

E ∇ · pl+1ϕ = 0 ∀ϕ ∈ V ∗1 (5.21)∫
Ω

M(pl+1 − pl)φ+

∫
Ω

E(∇ · ul+1 −∇ · ul)φ+

∫
Ω

hK∇pl+1 · ∇φ =∫
Ω

hbl+1 · φ, ∀φ ∈ V ∗2 . (5.22)

Now we set φ = pl+1, and assume that p vanishes at the boundary.

∫
Ω

M
(1

2
|pl+1|2 −

1

2
|pl|2 +

1

2
|pl+1 − pl|2

)
+ h

∫
Ω

K∇pl+1∇pl+1 + (∗) ≤∫
Ω

αhb2
l+1 + βhp2

l+1 (5.23)

Now we have a closer look at (*):

(∗) =

∫
Ω

E(∇ul+1 −∇ul)pl+1

= −
∫

Ω

E(ul+1 − ul)∇pl+1

Using (5.21) with ϕ = ul+1 − ul we get

(∗) = −
∫

Ω

∇ADxul+1 : (ul+1 − ul) (5.24)

= −
∫

Ω

ADxul+1 : ∇(ul+1 − ul) (5.25)

=

∫
Ω

2AD(ul+1) : D(ul+1 − ul) (5.26)

Getting from (5.24) to (5.26) is only possible if integrating by part is possible,
which is not in the case in the case of a free boundary, since the equation for ul+1
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5 Mathematical analysis of the free boundary problem

holds only in Ωl. We assume a fixed boundary and continue.

(∗) =
1

2

∫
Ω

2AD(ul+1) : D(ul+1)− 1

2

∫
Ω

2AD(ul) : D(ul) +

1

2

∫
Ω

2AD(ul+1 − ul) : D(ul+1 − ul)

Now by summing from 0 to l we get

1

2
(Mpl+1, pl+1)− 1

2
(Mp0, p0) +

1

2

l∑
k=0

M(pk+1 − pk)(pk+1 − pk)+

h
l∑

k=0

(K∇pl+1,∇pl+1)+

1

2
(2AD(ul+1), D(ul+1))− 1

2
(2AD(u0), D(u0))+

1

2

l∑
k=0

2AD(uk+1 − uk) : D(uk+1 − uk) ≤

1

ε
h

l∑
k=0

b2
k+1 + εβh

l+1∑
k=1

‖pk‖2 (5.27)

Now we can show the a priori estimates from Lemma 4 because M is bounded

‖pl+1‖2 ≤ const0 + εconst1h
l+1∑
k=1

‖pk‖2

‖pl+1‖2 ≤ const

const0 depends on ε.

The other estimates follow from inequality (5.27).

Now we multiply (5.21) with l + 1 respectively l with testfunctions ul+1 − ul and
obtain by subraction

∫
Ω

2AD(ul+1 − ul) : D(ul+1 − ul) +

∫
Ω

E∇(pl+1 − pl)(ul+1 − ul) = 0 (5.28)
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Multiplying (5.22) with pl+1 − pl and we obtain

∫
Ω

|pl+1 − pl|2 +

∫
Ω

E∇(ul+1 − ul)(pl+1 − pl)+

h

∫
Ω

K∇pl+1∇pl+1 − h
∫

Ω

K∇pl+1∇pl

=

∫
Ω

hbl+1(pl+1 − pl) ≤
1

2
h2

∫
Ω

|bl+1|2 +
1

2
‖pl+1 − pl‖2 (5.29)

Add (5.28) and (5.29) and obtain with partial integration

1

2

∫
Ω

‖pl+1 − pl‖2 +
1

2
h

∫
Ω

K∇pl+1∇pl+1 −
1

2
h

∫
Ω

K∇pl∇pl+

1

2
h

∫
Ω

K(∇pl+1 −∇pl) · (∇pl+1 −∇pl) +

∫
Ω

2AD(ul+1 − ul) : D(ul+1 − ul) ≤

h2

∫
Ω

|bl|2 (5.30)

Sum up from k = 0 to l and obtain by using Poincaré’s inequality and Korn’s
inequality

l∑
k=0

‖pk+1 − pk‖2 +
l∑

k=0

‖(uk+1 − uk)‖2 ≤ const · h (5.31)

Using well-known compactness theorems we get for the problem with fixed bound-
aries convergence of subsequences. Furthermore, it can be shown with standard
arguments that the limit satisfies the original equations in a weak sense. Since
also the solutions are unique, one obtains convergence. Since we are here inter-
ested in the free boundary problem, and since we only intended to illustrate the
critical points arising in the derivation of the required estimates, we refrain from
presenting a full proof for the case of a fixed boundary.
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6 Discussion and Outlook

To investigate the influences of loading, resulting shear stress, calcium, and parathy-
roid hormone concentrations on bone formation and bone resorption this thesis
developed a model for bone remodeling and a possible application for this model
in dentistry.

We described the bone as a solid material filled with fluid bone marrow and con-
sidered both mechanical and homeostatic influences on the porous structure. Bone
is constantly changing its shape and mineral content due to changing stress condi-
tions and homeostatic needs. The most challenging and yet interesting part of the
model is the description of this phenomenon. Thus the domain where our problem
is formulated is time dependent with a free boundary.

Our model developed in chapter three has a very fundamental character and is
the first that considers not only the porous structure with population of bone
cells but also the chemical signaling and the calcium and parathormone concen-
tration in bone remodeling and the free boundary. We derived a number of partial
differential equations which combined Navier Stokes and elasticity equations with
partial differential equations that describe the bone cell populations of osteoblasts,
osteoclasts and osteocytes which control and regulate the bone metabolism. As
bone cells communicate and influence each other, we also involved equations for
the chemical reactions like chemotaxis and equations for movement and transport
due to the piezoelectrical effect. As many complex processes are involved and con-
sidered, we ended up with a huge system of equations.
This first, very complex model was presented in chapter three. A free boundary
problem was formulated in weak sense. But we were unable to prove existence
of weak solutions because the system of equations is too complex. Even simpler
sub-problems are challenges to current research.
With regard to possible applications in medicine, the model was kept on a rather
fundamental level. Hence, due to the biological complexity of hemeostasis, some
limitations exist. The most striking one is that the dependence of phosphates and
hormones on bone remodeling were neglected.
In order to apply the fundamental model to problems in medicine it is inevitable to
conduct some simplifications by means of reducing the number of equations. The
choice of the appropriate equations depends on the research questions embodied
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in the study.

In chapter four we were able to apply our general model to a problem in den-
tistry. As we were interested in tooth movement, the calcium metabolism and
parathormone exchange was of minor interest for us. Following the concepts of
our partners in medicine, we only considered the activity of the osteoblasts and
osteoclasts, assuming that they react directly to the mechanical forces. We also
assumed that the populations are in a quasi steady state depending on the local
stresses. The generation and degradation of bone are functions of the size of the
cell populations. Therefore we assumed that the velocity of the moving surface of
the bone is a functional of the local stresses. The role of the bone cells is assumed
to be similar to those of enzymes in chemical reactions. We described the peri-
odontal ligament bordering the trabecular bone as a Biot type material with a free
boundary and a moving, but fixed boundary on the tooth side. We formulated
effective equations for the dynamics of the Biot fluid and the dynamics of the free,
respectively moving boundary, using concepts and results of homogenization.

The bio-mechanics of the periodontal ligament is of great interest in medical re-
search. The model developed here can help to derive valuable information for
orthodontics. To our knowledge, free boundary problems for Biot-fluids have not
been mathematically treaded so far. In chapter five we proved the existence of the
Rothe step of the discretized problem.
It is challenging

• to prove convergence of the Rothe method of the free boundary problem.
Here the derivation of the necessary a-priori estimates of the solutions of the
Rothe iteration is an important step,

• to consider a model system in three dimension, where an additional interface,
closing the ligament and connecting tooth and bone, has to be considered.
Here new problems in modeling and analysis are arising,

• to prove the uniqueness of solutions to the free boundary problem,

• to develop numerical algorithms and simulate the model equations in realistic
situations.

The next research steps could be

• a priori estimates for u and p are needed to prove convergence

• to homogenize the model for the trabecular bone

• numerical analysis of the free boundary problem
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Our general model could also be used in studies where the research questions are
of rather pharmaceutical character.

Osteoporosis, a disease where the bones become porous and the risk of fracture
increases dramatically is of great interest to researchers who constantly try to im-
prove the treatment of this disease. The goals are to stop or slow down bone loss
and prevent bone fractures with medicines that strengthen bone. The parathy-
roid hormone plays a very important role in treatment of osteoporosis, "Human
parathyroid hormone was approved in 2004 for the treatment of severe osteoporo-
sis." (Cranney, et al. 2006) Rattanakul and Lenbury (2003) investigated the bone
response to PTH and estrogen therapy. As our model considers the influence of
parathyroid hormone on bone formation and the mineral content of bone, it could
be valuable for simulations of medical treatments in this field.

Our model could also be applicable to other research disciplines where porous
media is involved and where we find interactions between substances at the bound-
aries or transport of substances in porous media. Bio tissues and life in Bio-porous
media could also be a possible application.

Setting up a rather comprehensive mathematical model system for bone remodel-
ing, taking into account most recent empirical results, was rather time consuming
and challenging to mathematical modeling. As usual at the interface between
life sciences and mathematics more detailed questions are arising to mathematical
research.
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List of Abbreviations and
Appendix

Below, the notations used throughout the manuscript are listed. They are subdi-
vided into the chapters they are used in.

Notations used in chapter 3

Ωs,t: solid part of the domain, changes in time

Ωf,t: fluid part of the domain, changes in time

Γt: free boundary, interface between solid and fluid part

I: Inlet of the boundary

O: outlet of the boundary

Σ: upper part of the boundary

w: displacement of the solid part

f : force

ρs: solid density

σ(w): stress tensor in the solid

D(w): strain tensor

λ, µ: Lamé coefficients

E: Young modulus

ν: Poisson coefficient

v: fluid velocity

ρf : fluid density
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µf : fluid viscosity

p: fluid pressure

σ(v): stress tensor in the fluid

D(v): strain tensor in the fluid

~E: electric field

Φ: potential

H: curvature

S: level set function

MBM: mineralized bone matrix

INF: interstitial fluid in the canaculi

ECF: extracellular fluid, bone marrow

gi: birth constants or functions

dj: death or removal constants or functions

(Ca)MBM : level of bound calcium in MBM

(Ca)INF : level of calcium in interstitial fluid

(Ca)ECF : level of free calcium in extracellular fluid

(Ca)boundary: calcium available at the boundary

(Ca)O: calcium in the osteocytes

(Ca)C : calcium resorbed by osteoclasts

(Ca)B: calcium deposited by osteoblasts

P: level of PTH

B: number of active osteoblasts

C: number of active osteoclasts

O: number of osteocytes
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F: load

τp: shear stress caused by interstitial fluid flow/pressure

SC : chemical attractant released by osteoclasts

SB: chemical attractant released by osteoblasts

SO: stimulus released by osteocytes

F , G: functions

ϕ, ζ: testfunctions
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Notations used in chapter 4

P: pressure

T: tension

Ω: continuation of the domain of the PDL

Ωt: changing domain of the PDL

Ωs: solid part of the PDL (fibres)

Ωf : fluid part of the PDL

ΓB: boundary bordering on the alveolar bone, free boundary

ΓT : boundary bordering on the tooth, moving but fixed shaped

ρs: density of the skeleton

ρf : density of the fluid in the pores

v: fluid velocity

q: filtration velocity

pf : fluid pressure

u: displacement of the porous structure

λ, µ: Lamé coefficients of the PDL

σ(u): stress tensor in the PDL

D(u): strain tensor (membrane)

E: Young modulus (Biot)

ν: Poisson ratio (Biot)

uT : tooth displacement

x: displacement of the free boundary

AΓT : Area of boundary ΓT

J : function
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B,C, O: osteoblasts, osteoclasts and osteocytes

ϕ, φ: testfunctions

u0: macroscopic displacement

u1: microscopic displacement

fres: resultant force on the center of gravity of the tooth

s(t): movement of the tooth

m: mass of the tooth
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Appendix

∇u : ∇v =
∑
i,j

∂ui
∂xj
· ∂vi
∂xj

,

∇ · u =
∑
i

∂ui
∂xi

Symmetry of a(·, ·) :

a(u, ϕ) =

∫
Ω

A(∇u+∇u∗) : ∇ϕ

and
(∇u+∇u∗) : ∇ϕ =

1

2
(∇u+∇u∗) : (∇ϕ+∇ϕ∗).

Therefore

a(u, ϕ) =

∫
Ω

1

2
A(∇u+∇u∗) : (∇ϕ+∇ϕ∗)

=

∫
Ω

1

2
A(∇u : ∇ϕ+∇u : ∇ϕ∗ +∇u∗ : ∇ϕ+∇u∗ : ∇ϕ∗)

=

∫
Ω

1

2
A(∇ϕ : ∇u+∇ϕ∗ : ∇u+∇ϕ : ∇u∗ +∇ϕ∗ : ∇u∗)

=

∫
Ω

1

2
A(∇ϕ+∇ϕ∗) : (∇u+∇u∗)

=

∫
Ω

A(∇ϕ+∇ϕ∗) : ∇u

= a(ϕ, u).

Hölder’s inequality:
Let 1 < p, q < ∞ such that 1

p
+ 1

q
= 1. Then if u ∈ Lp(Ω), v ∈ Lq(Ω), it follows

that uv ∈ L1(Ω) and ∫
Ω

|u(x)v(x)|dx ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω).

Young’s inequality:
Let 1 < p, q <∞ such that 1

p
+ 1

q
= 1. Then

ab ≤ ap

p
+
bq

q
∀a, b ≥ 0.
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Poincaré-Inequality
Let Ω ⊂ Rn be an open, connected, bounded subset. Then there exists a constant
C (dependent on Ω) such that∫

Ω

|u|2 ≤ C

∫
Ω

|∇u|2 ∀u ∈ H1,2(Ω).

Korn’s inequality: Let Ω ⊂ R3 be an open bounded set with piecewise smooth
boundary. In addition, suppose Γ0 ⊂ ∂Ω has positive two-dimensional measure.
Then there exists a positive constant c = c(Ω,Γ0) such that:∫

Ω

D(v) : D(v) ≥ c‖v‖2
1 ∀ v ∈ H1

Γ(Ω).
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