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Abstract

Model reduction methods in chemical kinetics are used for simplification of
models which involve a number of different time scales. Slow invariant man-
ifolds in chemical composition space are supposed to be identified. A selec-
tion of state variables serve for parametrization of these manifolds. Species
reconstruction methods are used to compute the values of the remaining
variables in dependence of the parameters. We discuss theoretical results
and numerical methods for an application of a model reduction method that
is developed by D. Lebiedz based on optimization of trajectories. The main
focus of this work is an application of the model reduction method to models
of chemical combustion. The existence of a solution of the semi-infinite op-
timization problem, which has to be solved to obtain a local approximation
of the slow manifold, is proven. A finite optimization problem for the same
purpose is presented which can be solved with a generalized Gauss–Newton
method. This method is used with an active set strategy. A filter framework
and iterations with second order correction are employed for globalization of
convergence. Families of neighboring optimization problems can be solved
efficiently in a predictor corrector continuation scheme. The tangent space of
the slow manifold can be computed by evaluation of sensitivity equations for
the parametric optimization problem. A step size strategy is applied in the
continuation scheme for efficient progress along the homotopy path. Results
of an application of the presented method are shown and discussed. The
test models range from simple test examples to realistic models of syngas
combustion in air.
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Zusammenfassung

Methoden der Modellreduktion in der chemischen Reaktionskinetik werden
zur Vereinfachung von Modellen eingesetzt, welche eine große Zahl verschie-
dener Zeitskalen beinhalten. Langsame invariante Mannigfaltigkeiten im che-
mischen Zustandsraum sollen hierfür identifiziert werden. Eine Auswahl von
Zustandsvariablen dienen als Parameter zur Parametrisierung dieser Mannig-
faltigkeiten. Speziesrekonstruktionsmethoden werden benutzt, um die Werte
der verbleibenden Variablen in Abhängigkeit von den Parametern zu be-
rechnen. Wir diskutieren theoretische Resultate und numerische Methoden
zur Anwendung einer von D. Lebiedz entwickelten Modellreduktionsmetho-
de basierend auf der Optimierung von Trajektorien mit dem Ziel dieser Ar-
beit, die Modellreduktionsmethode auf Modelle der chemischen Verbrennung
anzuwenden. Die Existenz einer Lösung des zur Berechnung einer lokalen
Approximation der langsamen Mannigfaltigkeit zu lösenden Optimierungs-
problems wird gezeigt. Ein endliches Optimierungsproblem mit demselben
Zweck wird präsentiert, welches mit einem verallgemeinerten Gauß–Newton-
Verfahren gelöst werden kann. Diese Methode wird mit einer Aktive-Mengen-
Strategie, einer Filter-Methode und Iterationen mit Korrektur zweiter Ord-
nung zur Globalisierung der Konvergenz genutzt. Familien benachbarter Pro-
bleme können effizient mit einem Prädiktor-Korrektor-Fortsetzungsschema
gelöst werden. Der Tangentialraum der langsamen Mannigfaltigkeit kann
durch Auswertung der Sensitivitätsgleichungen für das parametrische Op-
timierungsproblem berechnet werden. Eine Schrittweitenstrategie wird in
der Fortsetzungsmethode für effizienten Fortschritt entlang des Homotopie-
Pfades verwendet. Ergebnisse einer Anwendung der präsentierten Metho-
de werden gezeigt und diskutiert. Die Testmodelle reichen dabei von einfa-
chen Testbeispielen zu realistischen Modellen von Synthesegas-Verbrennung
in Luft.
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Most of mathematical models that
really work are simplifications of
the basic theoretical models and use
in the backgrounds an assumption
that some terms are small enough
to neglect or almost neglect them.

Alexander N. Gorban et al. [75]

1
Introduction

The aim of model reduction methods is the simplification of mathematical
models. Mathematical models are used, e.g. in natural sciences, to describe
processes in the language of mathematics. In this way, these processes can
be analyzed with the methods of mathematics. Simplified models allow for
a faster simulation of the model and eventually allow for more insight into
the process under consideration.

1.1 Mathematical models and model reduction
Not only natural scientists are modeling or deal with mathematical models,
but hardly any definition of a mathematical model can be found. A simple
but not rigorous definition can be found in the textbook of P. Tannenbaum
[156].

Definition 1.1.1 (Mathematical model [156])
When a mathematical structure such as a graph is used to describe and study
a real world problem we call such a structure a mathematical model for the
original problem.

A similar definition is given by E. A. Bender in [20].

Definition 1.1.2 (Mathematical model [20])
A mathematical model is an abstract, simplified, mathematical construct re-
lated to a part of reality and created for a particular purpose.

Both definitions are very general and leave it to a “user” to decide if a math-
ematical structure can be considered as a model. On the other hand, these
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Chapter 1 | Introduction

imprecise definitions make clear, that the term model reduction calls for more
explanation in the remainder.
The benefit of mathematical modeling itself is discussed in philosophy, see
e.g. [85]. In particular, the increasing computational power has amplified
the importance of simulations strongly [78].

Mathematical models in this thesis

The action of deriving a mathematical model is called mathematical mod-
eling. The phenomena which are under consideration can be divided into
three categories: things whose effects can be neglected, things that effect the
model but whose behavior the model is not intended to study, and things
the model is supposed to study the behavior of [20].
A lot of data and parameters are given with kinetic mechanisms. A model
based on such large mechanisms often includes species, reaction pathways,
etc. whose effects can be neglected. Kinetic model reduction methods aim
at removing such features to downsize the model. In this work, the models
are usually described by ordinary differential equations. The state of the
system formulated by the dependent variables of the differential equation
undergoes changes which are modeled by means of kinetic mechanisms as
the right hand side of these ordinary differential equations.
During the progress of science and mathematical modeling, amplified by the
largely increasing computational power in high performance computing, the
size of models has increased highly. Especially in combustion research, the
size of available models – the number of species and reactions involved –
increased in an extraordinary manner. Whereas only small models have
been considered in early times, current models include hundreds of species
and thousands of reactions. For example, methane combustion mechanisms
typically consist of about 30 species and 200 reactions, hexane combustion
mechanisms include 450 species and 1500 reactions, and cetane combustion
mechanisms include about 1200 species and 7000 reactions [169].
Driven by the need to use regenerative fuels, new compounds have to be
considered in the mechanisms. Biofuel is a term used for chemically different
substances: alcohols, ethers, esters, and others in dependence of the biomass
they are based on [96]. New mechanisms are created for this new type of
fuel [80].

Gain of (reduced) models

As stated before, we mainly deal with models arising in combustion science.
These models very often involve many time scales and can be extremely
large. When a technical combustion process, e.g. in an engine or in a gas
turbine, is modeled, this is usually done in a reactive flow framework. This
means, there is not only reaction but also convection and diffusion taking

2



1.1 | Mathematical models and model reduction

place in a spatial domain. Therefore, the model is usually formulated as a
set of partial differential equations [93, 173].
Such a system of partial differential equations is solved numerically on a fine
grid in the spatial domain. Yet limited by modern computer power, there is a
discrepancy between the number of species that are needed for a meaningful
simulation and the size of the spatial grid.
This is the point where kinetic model reduction methods come into play.
Roughly spoken, if it is possible to delete unimportant species and reactions
without affecting the dynamics of the simulated species considerably, the
system of partial differential equations is reduced by the number of the less
important species and reactions. This means, a system of equations for a
smaller number of species is supposed to be solved in the spatial domain,
and less reaction rates have to be computed. Consequently, much less com-
putational effort is needed.
A common aim of many kinetic model reduction methods is the identifi-
cation of so-called slow invariant manifolds (SIM) [74]. In order to achieve
this, a model reduction method is applied only to the (chemical) source term,
the term in the system of equations that represents the source of the reac-
tion. This means, we consider a (thermodynamic) system which consists
of a homogeneous mixture in the model reduction method. In the phase
space, spanned by the state variables, the desired SIM are supposed to exist.
Trajectories in the phase space relax onto these SIM of successively lower di-
mension, before they converge toward equilibrium that can be interpreted as
a zero-dimensional manifold. This behavior is related to multiple time scales
present in the system, which appear as spectral gaps in the set of eigenval-
ues of the Jacobian of the kinetic source term. The SIM represent the slow
chemistry in the sense of the slow directions tangential to the manifold. The
invariance property of the SIM is given by the fact that a trajectory started
at a point of a SIM can never leave it; trajectories started in a neighborhood
of a SIM are attracted to that SIM.
It is desirable to compute such a SIM locally for a given parametrization
and not to compute a representation of a SIM as a whole. The values for
a predefined number of species are given for parametrization of the SIM.
These represented species are often called reaction progress variables as their
value is a measure for the state of the system after the “beginning of the
reaction” (the start of a simulation) before asymptotically reaching a state
of equilibrium. The result of the model reduction method is a mapping from
the represented species (the reaction progress variables) to the unrepresented
ones. This can be found as species reconstruction in literature. Not only the
“reconstructed” values of the species in the sense of a local approximation of
a point on the SIM are of interest, but also their derivative with respect to
the reaction progress variables is needed. These are the tangent vectors of
the SIM.
The approximation of points on the SIM can be used in several applica-
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Chapter 1 | Introduction

tions. As stated before, reaction-diffusion-convection systems are very often
simplified. To achieve this, equations for unrepresented species are can-
celed. Whenever their value is needed e.g. in simulation, the model reduction
method is applied for species reconstruction. More sophisticated methods
have to be used for the treatment of reaction-diffusion interaction. An ap-
proach for using the SIM approximation in reactive flow simulations can be
found in [48].
If (spatially) homogeneous systems are modeled, the SIM approximation
can directly be used for a numerical integration of the ordinary differential
equations that describe the dynamics of the system. Fast time scales are
eliminated such that explicit integration methods are utilizable. In this con-
text, the SIM approximation can also be used for solving optimal control
problems, see [134].

1.2 Results and new contributions
New developments and results in context of a model reduction method pub-
lished by D. Lebiedz in [101] are presented in this thesis. The method is
based on the identification of special trajectories. These trajectories are spe-
cial as a mathematically formulated criterion for slowness is minimal. The
method is refined and applied to example problems in a number of publi-
cations [102, 103, 104, 135, 136, 137, 161, 175]. The aim of this thesis is a
presentation of numerical methods and considerations for the application of
this model reduction method to models of combustion processes.
A computer code is implemented in C++ for solving the semi-infinite opti-
mization problem, which identifies the SIM approximation. The solution
method is based on shooting or collocation approaches. A local (in time)
optimization problem for model reduction is presented which can be solved
with a generalized Gauss–Newton method. Globalization of convergence of
the generalized Gauss–Newton method is achieved with a filter method. Fol-
lowing the recommendation of D. Lebiedz, parameter sensitivities of the op-
timization problem are analyzed, such that the tangent space of the manifold
can be computed. This is done in context of an interior point method and
the generalized Gauss–Newton method as solution methods for optimization
problems. The sensitivities are used in a predictor corrector scheme for a
continuation method to solve families of neighboring optimization problems.
In this context, an efficient step size strategy is used based on the contraction
of the corrector. The corrector iteration here corresponds to an iteration in
the computation of a numerical solution of the optimization problem. Addi-
tionally, a proposal for an a priori computation of a suitable selection of the
reaction progress variables is made. A proof for the existence of a solution of
the optimization problem which is valid for the reduction of models describ-
ing isothermal combustion is extended to models for adiabatic systems. The
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1.3 | Outline of the thesis

implementation is tested in application to several models that range from
simple examples to realistic models of syngas combustion in air.
Parts of the results presented in this thesis are also contents of [105, 106,
107, 108, 147, 148].

1.3 Outline of the thesis
The structure of this thesis is as follows. Part I deals with theoretical con-
siderations of model equations, their solution, and reduction. Furthermore,
theoretical properties of the methods to solve and reduce these model equa-
tions are discussed. Afterward, Part II contains numerical aspects of an
implementation of the model reduction method. Results of an application
to different models are presented.
In Chapter 2, a short overview of theory for dynamical systems and existing
methods for model reduction is given. A focus lies on singularly perturbed
systems of ordinary differential equations as sample systems with known
time scale separation. The conceptual basis of slow invariant manifolds is
presented.
Chapter 3 deals with the theory of optimization. Optimality conditions
are considered as well as a presentation of theory of parametric optimization
problems. This is extended by theory of continuation methods to follow the
solution of parametric optimization problems.
An application of the model reduction method to models for combustion
processes is the aim of this thesis. Therefore, the basic equations for com-
bustion models based on chemical and physical laws are discussed in detail
in Chapter 4. Obstacles for an application of the optimization based model
reduction method to these models are identified. Solutions for the problems
are discussed.
The first part merges in Chapter 5 with a presentation of the model re-
duction method based on optimization. The presentation includes the most
important steps in the development of the method as well as the current
state. Different optimization problems are presented that can be solved to
compute an approximation of a point on the slow manifold, and the choice
of the objective functional is discussed. The existence of a solution of the
optimization problems is proven on the condition that the feasible set is
nonempty. Ideas for an improvement of the results are shown.
Solution methods for the semi-infinite optimization problem are shown in
Chapter 6. These are shooting methods with integration schemes based on
backward differentiation formulae and collocation methods based on Gauss–
Radau quadrature.
Numerical methods to compute a solution of finite nonlinear optimization
problems are discussed in Chapter 7. For a special form of constrained
least squares problems, a generalized Gauss–Newton framework with filter
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Chapter 1 | Introduction

approach for globalization and iterations for second order correction is pre-
sented. In the further course of the chapter, we restrict ourselves to interior
point methods.
Path following methods which are suitable to solve neighboring optimization
problems efficiently are presented in Chapter 8. Special attention is paid
to the step size strategy. Numerical strategies are shown that are needed in
context of the different optimization methods that serve as corrector method
in the predictor corrector scheme.
An implementation in agreement with the methods presented in this thesis
is applied to a large number of different models. The results are shown and
discussed inChapter 9. The models are simple test models with analytically
representable SIM, large test models, and realistic models for the combustion
of hydrogen and syngas, respectively, in air.
The thesis is summarized in Chapter 10, and an outlook on future research
is given.
The appendix contains reaction mechanisms for the computations where the
results are discussed in Chapter 9, an overview of the notations, flowcharts
explaining the C++ code developed with this work, and a list of external
software that is used therein.

Related publications

The method discussed in this thesis is raised, discussed, extended, and ap-
plied in a large number of articles, where the important are [101, 102, 103,
104, 105, 106, 107, 108, 135, 136, 137, 147, 148, 161, 175]. An obsolete version
of the implementation developed with this work is used for the numerical re-
sults in [161]. In this thesis, content of all articles where the author of this
thesis is coauthor (these are [105, 106, 107, 108, 147, 148] as well as our ex-
tended abstracts for the second and third International Workshop on Model
Reduction in Reacting Flows) may be used without clear citation.
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And the answer quite generally has
the form of a new system (well
posed problem) for the solution to
satisfy, although it is sometimes ob-
scured because the new system is so
easily solved that one is led directly
to the solution without noticing the
intermediate step.

Martin David Kruskal 2
Theory of dynamical systems and model

reduction methods

In this chapter, an overview of the theory of model reduction methods is
given. At first, basic theory of dynamical systems and ordinary differential
equations is shortly considered. Subsequently, the purpose of model reduc-
tion is clarified. Different methods of model reduction and their theoretical
background are shortly explained.

2.1 Theory of dynamical systems and ordinary dif-
ferential equations

We consider dynamical systems that are given in form of a system of ordinary
differential equations. The most important definitions and theorems for these
are collected in this section.

2.1.1 Basic definitions and theorems
A general definition of a dynamical system is the following one taken from
[98].

Definition 2.1.1 (Dynamical system [98])
A dynamical system is a triple (T,X, φt), which consists of a set of time
T, a state space X, and a family of evolution transformations φt : X → X
parametrized by t ∈ T and satisfying

(i) φ0 = id,

9



Chapter 2 | Theory of dyn. systems and model reduction methods

(ii) φt+s = φt ◦ φs, t, s, t+ s ∈ T.

The state space is also called phase space. In all combustion models consid-
ered in this thesis, the state of the system converges to a stable equilibrium.

Definition 2.1.2 (Fixed point/equilibrium [98])
A point z0 ∈ X is called a fixed point or equilibrium of the dynamical system
(T,X, φt) if

φtz0 = z0 ∀t ∈ T.

We only consider dynamical systems that are given as a system of ordinary
differential equations (ODE)∗.

Definition 2.1.3 (Ordinary differential equation [155])
A (system of) differential equation(s) of the form

Dz(t) = S(t, z(t)), z(t) ∈ Γ, (2.1)

where S : D → Rd, D = IT × Γ ⊂ R × Rd, d ∈ N, is at least C1, is called
(system of) ordinary differential equation(s).

It is convenient to consider autonomous (systems of) ODE only.

Definition 2.1.4 (Autonomous ordinary differential equation [155])
A (system) of ordinary differential equations Dz(t) = S(t, z(t)) is called
autonomous, if its right hand side does not explicitly depend on time t, i.e.
if it is given in the form

Dz(t) = S(z(t)), z(t) ∈ Γ.

By adding a dependent variable zd+1 := t and the differential equation
Dzd+1 = 1, any system of ODE can be transformed into an autonomous
one. The equilibria of an autonomous ODE are exactly the points z(t),
where S(z(t)) = 0. The state at some time t is given by the continuously
differentiable solution of an ODE system through an initial point (t0, z0) ∈ D.

Definition 2.1.5 (Initial value problem (IVP) [155])
An initial value problem is given as an ODE (2.1) together with an initial
condition z(t0) = z0 ∈ Γ at time t0 ∈ IT ⊂ R.

Definition 2.1.6 (Trajectory [155])
The continuously differentiable solution z(t; z0) of the IVP given in Definition
2.1.5 with initial value z0 is called trajectory through the point z0 at t = t0.

The next theorems guarantee a unique solution for IVP.
∗For the notation of derivatives, see Section B.1. Note that the operator D for differ-

entiation with respect to time t differs from the later used symbol D.
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2.1 | Theory of dynamical systems and ODE

Theorem 2.1.7 (Peano [133])
Let S(t, z) be continuous in D̄ in both arguments,

D̄ =
{

(t, z̄) ∈ R× Rd : |t− t0| 6 α, ‖z̄ − z0‖2 6 β
}
.

Then there exists a solution z(t) of the IVP given in Definition 2.1.5 with
t̄ := min(α, β/M) and M := max(z̄,t)∈D̄‖S(t, z̄)‖2 in the (time) interval
It̄ = [t0 − t̄, t0 + t̄].

Proof. See [133, 155]. �

Definition 2.1.8 (Lipschitz continuity [133])
A function S : D ⊂ Rd → Rk, d, k ∈ N, is called Lipschitz continuous if

‖S(y1)− S(y2)‖2 6 L‖y1 − y2‖2, y1, y2 ∈ D,

holds with a so-called Lipschitz constant L > 0. The function S is called
contraction if L < 1.

Theorem 2.1.9 (Picard–Lindelöf [133])
Let additionally S(t, z̄) in Theorem 2.1.7 be Lipschitz continuous with respect
to z̄, then the solution given by Theorem 2.1.7 is unique.

Proof. See [81, 133, 170]. �

There are various definitions for stability of invariant sets. We use the defi-
nition of an invariant set of [174].

Definition 2.1.10 (Invariant set [174])
A set M0 ⊂ Rn is called invariant under the vector field Dz(t) = S(t, z(t))
if for any z0 ∈M0 we have z(t; z0) ∈M0 for all t ∈ R.

The set M0 is called positively invariant set if this condition is fulfilled for
t > 0, and it is called negatively invariant set if the condition is fulfilled
for t < 0. Sometimes the notion invariant set is used instead of positively
invariant set.

Definition 2.1.11 (Lyapunov stability [174])
A set M0 ⊂ Rn is called Lyapunov stable if for all ε > 0 there exists a
δ = δ(ε) > 0 such that for all z(t; z0) with ‖M0 − z(t0; z0)‖ < δ it holds that
‖M0 − z(t; z0)‖ < ε for every t > 0.

In other words, a set M0 is Lyapunov stable if nearby trajectories do not
leave the neighborhood of M0

†.

Definition 2.1.12 ((Asymptotic) Stability [174])
An invariant set M0 ⊂ Rn is called stable if two conditions hold:
†The norm ‖ · ‖ may be any norm in Rn due to norm equivalence.

11



Chapter 2 | Theory of dyn. systems and model reduction methods

(i) For any sufficiently small neighborhood U , M0 ⊂ U , there is a neigh-
borhood V , M0 ⊂ V , such that φtx ∈ U for all x ∈ V , t > 0, and

(ii) there is a neighborhood U0 ⊃M0 such that for all x ∈ U0

φtx→M0 as t→∞.

This means, trajectories starting near the equilibrium setM0 converge toM0.
Lyapunov stability is a weaker type of stability than asymptotic stability. In
Section 2.1.2, exponentially attracting manifolds are defined, a property that
is closely related to stability.

2.1.2 Exponentially attracting manifolds
Lyapunov functions for exponentially attracting manifolds are described by
L. B. Ryashko and E. E. Shnol. We follow the results of [143] in this section.
We consider a smooth‡ autonomous ODE system. It is formulated as

Dz(t) = S(z(t)) (2.2)

with z(t) ∈ Rn and S ∈ C∞(Rn).
Let M ⊂ Rn be a compact submanifold in the following, invariant with
respect to this system, and z be a solution of the ODE. We define the distance
of a point to this manifold M as the standard definition of the distance of a
point to a set.

Definition 2.1.13 (Distance of a point to a manifold [143])
Let M be a smooth, compact submanifold in the Euclidean space Rn and
ẑ ∈ Rn. The real number

ρ(ẑ,M) = min
y∈M
‖ẑ − y‖

is called distance of ẑ to M .

Notation 2.1.14 (Tangent space and normal space [143])
Let y be a point of M . We denote the tangent space of M at y with T̃y and
the corresponding normal space with Ñy.

Definition 2.1.15 (Neighborhood [143])
A neighborhood of a manifold M is the set Uε = {ẑ ∈ Rn | ρ(ẑ,M) < ε} for
a small ε > 0.
‡In this work, the notion smooth for a function means continuously differentiable. The

notion sufficiently smooth means that the function is continuously differentiable as often
as necessary in the current context.
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2.1 | Theory of dynamical systems and ODE

Definition 2.1.16 (Exponentially attracting manifold [143])
A compact manifold M is called exponentially attracting if there is a neigh-
borhood U ofM and constants K, γ > 0 such that for all initial values a ∈ U ,
z(0) = a and t > 0 it holds that

ρ(z(t),M) 6 K exp(−γt)ρ(a,M).

Proposition 2.1.17 ([143])
Let Uε be a neighborhood of a smooth, compact submanifold M ⊂ Rn. If ε is
sufficiently small, the following statements are true:

(i) For all ẑ ∈ Uε there exists a unique y∗(ẑ) ∈ M , which is nearest, i.e.
where ρ(ẑ,M) is minimal.

(ii) All ẑ for which y∗(ẑ) = a with a ∈ Rn are in Ña. The normal spaces
Ña ∩ Uε for all a ∈M ∩ Uε are disjoint and

⋃
a∈M∩Uε(Ña ∩ Uε) = Uε.

(iii) The function ρ2 is smooth in Uε.

Proof. See [47]. �

Definition 2.1.18 (ρ2-function [143])
A function g : Rn → R is called ρ2-function, if there exist positive real
constants c1 and c2 with

c1ρ
2(z) 6 g(z) 6 c2ρ

2(z).

Proposition 2.1.19 (Lemma 1 in [143])
Let M be a compact, exponentially attracting manifold of (2.2). There exists
a nonnegative function Λ : Uε ⊂ Rn → R in a neighborhood Uε of M with
the following properties

(i) Λ(ẑ) = 0⇔ ẑ ∈M

(ii) 〈∇Λ(ẑ), S(ẑ)〉 6 0

(iii) 〈∇Λ(ẑ), S(ẑ)〉 < 0 ∀ẑ /∈M

(iv) Λ and −〈∇Λ(ẑ), S(ẑ)〉 are ρ2-functions.

Conversely: If a function Λ exists with property (iv), thenM is exponentially
attracting.

Proof. See [143]. �

Proposition 2.1.20
The function

Λ(z) :=

∫ tf

t0

ρ2(z(t)) dt

fulfills the four conditions in Proposition 2.1.19 with t0 = 0 and tf > 0 such
that K exp(−γtf) < 1

2 .

13
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Proof. See [143]. �

It is clear with Propositions 2.1.19 and 2.1.20 that there exists a function
which characterizes points on exponentially attracting manifolds.

2.2 Singularly perturbed systems
In context of kinetic model reduction methods, singularly perturbed sys-
tems of ODE are often considered. In his series of articles [49, 50, 51, 52],
N. Fenichel analyzes the existence of slow manifolds for flows and their sta-
bility properties in case of singularly perturbed systems. In the following,
the discussion is mainly based on these articles, [74], and [86].

2.2.1 Theory of singularly perturbed systems
A singularly perturbed system of ODE is a system of ODE of the form

dtzf = S1(zf , zs; ε)

dtzs = εS2(zf , zs; ε)
(2.3)

where dt denotes the derivative with respect to t. The right hand side consists
of the two functions S1 : Rnf×ns → Rnf and S2 : Rnf×ns → Rns which depend
on the variables zf(t) ∈ Rnf and zs(t) ∈ Rns and the real parameter ε. It is
assumed to be small in the sense that 0 < ε� 1 and measures the separation
of time scales. The functions S1 and S2 are assumed to be smooth and O(1).
The so-called fast variables zf change at a rate of O(1) and the slow variables
zs at a rate of O(ε).
The ODE system can be reformulated as

εdτzf = S1(zf , zs; ε)

dτzs = S2(zf , zs; ε)
(2.4)

by exchanging the independent variable t with the new variable τ = εt.
The two systems (2.3) and (2.4) are equivalent for ε 6= 0. The independent
variable t, interpreted as time, is called fast time, and τ is called slow time.
Analogously, system (2.3) is called fast and (2.4) is called slow system.
In the limit ε→ 0, the two systems behave different. System (2.3) converges
to

dtzf = S1(zf , zs; 0)

dtzs = 0.
(2.5)

This means, only zf varies whereas zs remains constant. An assumption of
that type is made when the quasi steady state assumption is applied, see the
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2.2 | Singularly perturbed systems

discussion in Section 2.4.1. System (2.4) instead converges for ε→ 0 to the
differential algebraic system

0 = S1(zf , zs; 0)

dτzs = S2(zf , zs; 0)
(2.6)

which leads to a varying value of zs(τ) on a manifold defined by all points
(z̄T

f , z̄
T
s )T which fulfill S1(z̄f , z̄s; 0) = 0. A similar assumption is used in the

partial equilibrium assumption as explained in Section 2.4.1.
If all eigenvalues of the Jacobian DzfS1 have negative real part, the implicit
function theorem guarantees existence of a continuously differentiable func-
tion h0 : K̃ → Rnf on a on open subset K̃ ⊂ Rns , that we further restrict
to a compact subset K ⊂ K̃. The graph of h0 represents the manifold along
which all solutions of (2.6) for given initial values zs(t0) evolve via the map-
ping h0(zs) = zf . The slow manifold of the slow system (2.6) is defined as
the set

W0 = {(z̄T
f , z̄

T
s )T : S1(z̄f , z̄s; 0) = 0} ⊂ Rnf+ns .

The dynamics can be described with W0 by the smaller system

dτzs = S2

(
h0(zs), zs; 0

)
.

In a number of theorems, N. Fenichel studies existence and properties of
manifolds Wε for system (2.3) or (2.4), respectively, in case ε > 0.

Theorem 2.2.1 (Fenichel’s invariant manifold theorem 1 [86])
For ε > 0 sufficiently small, there exists a manifold Wε that lies within O(ε)
of W0 and is diffeomorphic to W0.

Proof. See [49]. �

Definition 2.2.2 (Locally invariant set [86])
A set W is called locally invariant under the flow from system (2.3) if it has
a neighborhood V such that no trajectory can leave W without also leaving
V.

Theorem 2.2.3 (Existence of a mapping onto Wε [86])
For ε > 0 sufficiently small, there exists a function hε(z̄s) = z̄f defined on a
compact set K ⊂ Rns such that the graph

Wε = {(z̄T
f , z̄

T
s )T : hε(z̄s) = z̄f}

is locally invariant under the flow from system (2.3).

Proof. See [49]. �

There exists a locally invariant manifold Wε along which the slow dynamics
evolve for a finite, but sufficiently small time scale separation.

15
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Singularly perturbed systems and model reduction Singularly per-
turbed systems are special as they are in an explicit fast-slow form. Model
reduction approaches can be tested with these systems. The accuracy of the
manifold approximation given by the model reduction method in compari-
son to the analytically representable slow manifoldWε can be determined in
powers of ε.

2.2.2 Examples of singularly perturbed systems
In many applications of model reduction methods, it is not clear how a small
parameter ε in the model under consideration can be determined and how
to transform the system into a singularly perturbed form [74].
An example of a singularly perturbed system in chemical kinetics is given in
[74, p. 230]. It is similar to a Michaelis–Menten kinetic system [117]. The
small parameter ε arises in a catalytic reaction. Due to the large difference
in the concentrations of educt and catalyst, it is possible to transform the
system into a singularly perturbed form.
The model is a catalytic reaction with two steps

A + Z
k±1

 AZ

k±2

 P + Z,

where Z has the function of a catalyst and A is some substrate that reacts
to some product P. After using the rules of mass action and formulating an
ODE system in concentrations, the following nondimensionalization can be
applied: yA = cA

BA
and yZ = cZ

BZ
. Here BA is the sum of all cA, cAZ, and cP

in the system. Analogously, BZ is the sum of cAZ and cZ.
With the nondimensional mass conservation laws

yAZ = 1− yZ

yP = 1− yA −
BZ

BA
yAZ,

we arrive at a singularly perturbed system

DyA = BZ

(
−k+

1 yAyZ +
k−1
BA

yAZ

)
(2.7a)

DyZ = BA

(
−k+

1 yAyZ +
k−1
BA

yAZ +
k+

2

BA
yAZ − k−2 yZyP

)
. (2.7b)

It holds that yi > 0, i = A,P,Z,AZ. This is a singularly perturbed system
of ODE as the overall amount of catalyst is usually much lower than the
amount of educt and product: BA � BZ.
In the article [74], no concise parameters are given. We use the following
values for the rates

k+
1 = 1.0, k−1 = 0.01, k+

2 = 0.01, k−2 = 10−5;
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2.3 | Slow invariant manifolds

for the amounts of substance, we use

BA = 1.0, BZ = 10−6

in the computations, results of which are discussed in Section 9.1.3. There we
also compare the results of our model reduction method to an approximation
of the graph of the function hε.

2.3 Slow invariant manifolds
Inspired by the theory of singularly perturbed systems and observations of
the behavior of trajectories in the phase space of ODE models, many model
reduction methods are designed for the identification of slow invariant man-
ifolds.

2.3.1 Slow manifolds
It can be observed in the phase space of ODE models of e.g. combustion
or biochemical systems that trajectories bundle on hierarchically ordered
manifolds of low dimension.
It is assumed that there exists a diffeomorphism between the actual dy-
namics under consideration and an unknown singularly perturbed system.
Additionally, it is assumed that there exists a parameter ε in the unknown
singularly perturbed system that is sufficiently small such that a manifold
Wε exists. The diffeomorphic manifestation of Wε in the observed space are
the manifolds of slow motion.
A sketch of the idealistic situation can be seen in Figure 2.1. The phase
space of the ODE system as defined in Definition 2.1.1 is also called (chemi-
cal) composition space and is spanned by the dependent state variables. The
state, here also called the chemical composition, is restricted to a physically
meaningful domain which is given by the positivity of the values of the state
variables§ and several (elemental mass and/or other) conservation relations.
This effective or realizable phase space or (chemical) composition space is
depicted as a polytope whose edges are shown as blue dotted lines in Fig-
ure 2.1. Trajectories in the phase space are shown as green dashed curves.
It can be observed that these trajectories bundle hierarchically on subman-
ifolds, here shown as first bundling onto a two-dimensional manifold (red
bounded) followed by a bundling onto a one-dimensional manifold before
they converge to equilibrium.
Along its course through the phase space, the speed of a trajectory slows
down (the norm of the right hand side of the ODE system decreases) in
correspondence to the slow evolution of the solutions of singularly perturbed
§We formulate this as nonnegativity in the mathematical problem.
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2D

1D

0D

z1

z3

z2

Figure 2.1: Sketch of the phase space. The domain which is physi-
cally feasible is the interior of the blue-bounded polytope, here three-
dimensional. Within this polytope, there is a two-dimensional man-
ifold (bounded red), where trajectories (shown in green) relax onto.
The trajectories relax afterward onto the one-dimensional manifold
within the two-dimensional one. Finally, the trajectories converge to-
ward the zero-dimensional manifold: the equilibrium.

systems on the slow manifold. These manifolds are invariant sets under the
dynamics and attract nearby trajectories. Hence, these manifolds represent
the slow reaction part of the model under consideration, and it is desirable
to find a constructive representation of such manifolds, which are called slow
invariant manifolds (SIM) in literature [149, 162].
Many model reduction approaches allow for the computation of an approx-
imation of a SIM via a species reconstruction. A number of species are
selected as slow species zs. These are called reaction progress variables or
represented species. The species reconstruction method allows for a com-
putation of the fast, unrepresented species. This is analogous to the map
hε : K ⊂ Rns → Rnf , z̄s 7→ z̄f = hε(z̄s). A sketch of this species reconstruc-
tion is shown in Figure 2.2.
For illustration, two variables z2 and z1 are chosen as represented species,
and their value is given. Such a choice usually is based on experience and
defines the dimension as well as the coordinate system of the desired manifold
approximation. The value of the unrepresented species z3 is given by a model
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(r̄2, r̄1)

z1 = r2

z2 = r1

(r̄2, r̄1, z
∗
3)

z3

Figure 2.2: Sketch of the species reconstruction method. Fixed val-
ues r̄1 and r̄2 are given for the represented species z2 and z1, respec-
tively, to approximate a point on the two-dimensional manifold. The
value z∗3 of the remaining variable is computed with a model reduction
method for species reconstruction.

reduction method with species reconstruction.

2.3.2 Tangent space
Together with a SIM approximation, a representation and computation of the
tangent space of the SIM is desirable, see Figure 2.3. The tangent vectors are
needed for the usage of a reduced reaction model in a reactive flow simulation,
e.g. in the close parallel assumption (CPA) of Ren et al. [139, 141].

2.4 Methods for model reduction
In this section, an overview of important model reduction methods and meth-
ods related to the optimization based method discussed in this thesis is given.

2.4.1 Early model reduction methods
Very early model reduction approaches are the quasi steady state assumption
(QSSA) and the partial equilibrium assumption (PEA). These methods are
performed manually by a user.
In the QSSA method [30, 31, 35], certain species are assumed to be in steady
state: The rate of formation and consumption are assumed to equalize.
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(r̄2, r̄1)

(r̄2, r̄1, z
∗
3)

z2 = r1

z1 = r2

z3

dz∗3
dr1

dz∗3
dr2

Figure 2.3: Sketch of the manifold. In addition to the point on
the two-dimensional SIM, the tangent space spanned by the tangent
vectors in that point is supposed to be computed.

Therefore, the state variables which represent such species can be consid-
ered as constant. The resulting system can be considered as the system in
Equation (2.5) from singular perturbation theory. A widely known example
of an effective application of this assumption is Michaelis–Menten kinetics
[117]. The error of this method is analyzed e.g. in [145, 159].
In contrast, it is assumed in the PEA that a reaction step is in partial
equilibrium. The forward and reverse rates of the reaction are assumed to
be exactly the same [173]. Consequently, this reaction can be replaced by
an algebraic equilibrium equation.
It is shown by D. A. Goussis in his talk [76] that the PEA and the QSSA are
limit cases of leading order asymptotic. Furthermore, the QSSA is a limit
case of the PEA [76].
It is obvious that detailed expert knowledge of chemical kinetics and the
underlying dynamics is needed for the identification of steady state species
and balanced reactions. There are also implementations for an automatic
application of these methods, see e.g. [123].

2.4.2 Automatic model reduction methods
Modern numerical model reduction methods automatically compute a re-
duced model via a slow manifold, its tangent space, etc. without the need
for a detailed expert knowledge by the user.
Many of these modern techniques are explicitly or implicitly based on a
time scale analysis of the system under consideration with the purpose to
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identify a slow, invariant, and attracting manifold in the phase space. For a
comprehensive overview, see e.g. [72, 157] and references therein.

Model reduction methods based on time scale separation

A very popular method for model reduction is the intrinsic low dimensional
manifold (ILDM) method. Another powerful method is the computational
singular perturbation (CSP) method, especially because it provides tools for
an analysis of the dynamics and the reduced model, e.g. CSP pointers.
Let

Dz(t) = S(z(t))

again be the ODE system under consideration with z(t) ∈ Rn and the smooth
function S : Rn → Rn.

ILDM method U. Maas and S. B. Pope introduce the ILDM method in
their article [111] in 1992. It is very popular and widely used in the reactive
flows community, e.g. in [5, 120, 150].
A local time scale analysis is performed on the Jacobian JS of the right
hand side S of the ODE system. With a Schur decomposition, an upper
block triangular matrix is computed of the form

QT JS Q = T =


T11 T12 . . . T1n

0 T22 . . . T2n
...

...
. . .

...
0 0 . . . Tnn

 =

[
Tfast Tcoup

0 Tslow

]
.

Via the Sylvester equation [70], fast and slow submatrices can be fully de-
coupled [135]

T−1
r JS Tr = T̃ =

[
T̃fast 0

0 T̃slow

]
.

Fast time scales are assumed to be fully relaxed. This means

Dz = T−1
r,fastS(z) = 0.

Together with the parameter equation for the reaction progress variables and
additional conservation relations [135], the ILDM equations can be stated as[

T−1
r,fastS(z)

P (z, c)

]
= 0.

A drawback of this method is that a solution of the ILDM equation does
not necessarily exist. It is shown that the ILDM method in application
to singularly perturbed systems of ODE identifies the SIM to order O(ε)
[89, 142]. For recent developments and extensions of the ILDM method, see
e.g. [34] and references therein.
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CSP method The CSP method is proposed by S. Lam in 1985 [99, 100].
It is also widely used for model reduction as well as for model analysis as e.g.
in the recent publications [121] and [131]. In the two manuscripts [178, 179],
the authors reveal that the application of the CSP method improves its
approximation of the SIM of singularly perturbed systems of ODE by order
one per CSP iteration.
The basic concept of this method is a representation of the dynamical system
in a set of basis vectors locally such that fast and slow modes decouple. With
a set of basis vectors {ai}, i = 1, . . . , n, and (row) covectors {bi} (bi bj = δij
with Kronecker delta δij), the right hand side is split into fast and slow
components

S(z) = Ss(z) + Sf(z) =
m∑
i=1

aih
i +

n∑
i=m+1

aih
i,

where the vectors hk = bkS. As a result the system

Dz(t) = Ss(z(t))

describes the slow dynamics of the system constrained to the SIM described
by

Sf(z) = 0.

The crucial point is the appropriate choice of the basis vectors. Consider
the matrices A = (ai)

n
i=1 and B = (bi)ni=1. The dynamics S split into the

amplitudes Ω of S: Ω = BS with

Ω =

[
Ωf

Ωs

]
,

the fast amplitudes Ωf , and the slow ones Ωs. The amplitudes solve the ODE

DΩ = B(DS) + (DB)S = BJSS + (DB)S = ΠΩ

with
Π := BJSA+ (DB)A = BJSA−BDA.

An ideal basis A leads to a block diagonal Π such that Ωf and Ωs decouple.
Starting with an initial basis A0, one iterates

Πk = BkJSA
k −BkDAk =

[
Πk

11 Πk
12

Πk
21 Πk

22

]
and updates

Ak+1 = Ak
(
I −

[
0 (Πk

11)−1Πk
12

0 0

])(
I +

[
0 0

Πk
21(Πk

11)−1 0

])
.
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Iterative methods Other iterative methods are based on an evaluation
of functional equations that describe the central characteristics of a slow
manifold: invariance and stability. Examples are Fraser’s algorithm [43, 60,
122] and methods for generation of invariant grids [36, 37, 39, 72, 73].
Another method is proposed in [62] and analyzed in [177]. For identification
of the SIM, the equation

dm+1
t zf = 0

has to be solved – in practice iteratively –, where the vector zf(t) consists
of the fast species and dm+1

t is the (m+ 1)st derivative with respect to time
t. It is shown in [177] that the result approximates the SIM of singularly
perturbed systems of ODE up to order O(εm).

Other methods Stretching rates are studied and applied in [2, 3, 4].
The motivation to use stretching rates for model reduction purposes is ba-
sically the same as the motivation to use finite time Lyapunov exponents
and vectors which are analyzed for evaluation of time scale information in
[114, 115].
In [6, 7], the authors connect fixed points via heteroclinic orbits for identifi-
cation of one-dimensional slow manifolds.
Together with a tabulation method, the invariant constrained equilibrium
edge preimage curve (ICE-PIC) method [138, 140] is used in simulations of
reactive flows. It is shown that the manifold computed with the ICE-PIC
method has the important properties of invariance, smoothness, consistency
with physical laws, existence, uniqueness, and local computability.
The ICE-PIC method [138, 140] extends the rate-controlled constrained equi-
librium (RCCE) method [92].
Lumping techniques and sensitivity based methods are in use, too. Consider
e.g. the overview in [157].
In many applications, as e.g. in [95, 97], flamelet-generated manifolds (FGM)
are used [44, 125] which are based on tabulated data of a simulated one-
dimensional laminar flame.
The authors of [118] formulate an integer linear programming problem ex-
plicitly minimizing the number of species in the reduced model subject to a
given error constraint.

23





The subject of optimization is a
fascinating blend of heuristics and
rigor, of theory and experiment.

Roger Fletcher

3
Theory of optimization and continuation

In this work, a model reduction method is discussed which is based on the so-
lution of optimization problems. Therefore, theory of optimization problems
is presented in this chapter.

3.1 Solution theory of optimization problems
Nonlinear optimization problems with both equality and inequality con-
straints occur in the problems considered in this thesis. These can be sub-
divided into semi-infinite and finite ones.

3.1.1 Semi-infinite optimization problems
In our case, the dynamics are given as a system of ODE and enter the
optimization problem as constraints. Therefore, we only consider a special
type of semi-infinite optimization problems. In the following, the notation is
partially taken from [144] and adapted to our situation. The general semi-
infinite optimization problem (sufficient for our purposes) is given in the
form

min
z

Ψ(z) (3.1a)

subject to

Dz(t) = S(z(t)) (3.1b)
C(z(t)) > 0 (3.1c)
r(z(t∗)) = 0 (3.1d)

25



Chapter 3 | Theory of optimization and continuation

with time t ∈ [t0, tf ] ⊂ R and a point fixed in time t∗ ∈ [t0, tf ]. The state
variables z : [t0, tf ]→ Rnz are solutions (see Definition 2.1.6) of the dynamics
in (3.1b). The right hand side S : D → Rnz , D ⊂ Rnz open, is assumed to
be at least piecewise Lipschitz. The objective function is given in Bolza form

Ψ(z) :=

∫ tf

t0

L(z(t)) dt+M(z(tf)).

The Bolza objective functional is the sum of the Lagrange term
∫ tf
t0
L(z(t))dt

and the Mayer term M(z(tf)). The functions L, M , C, and r are assumed
to be at least C2. Additional parameters are introduced in Section 3.2.
Under these assumptions the solution trajectory z of the dynamics (3.1b)
through a given point z(t∗) depends continuously on the data z(t∗). An
application of a suitable discretization method to the semi-infinite optimiza-
tion problem (3.1) or an integration method to solve (3.1b) yields a finite
optimization problem, see also Chapter 6.

3.1.2 Nonlinear programming problems
In this section, the theory of finite optimization problems is considered as
presented in standard literature, as e.g. [124]. The standard (finite) nonlinear
programming (NLP) problem for our considerations is given in the form

min
x∈Rn

f(x) (3.2a)

subject to

g(x) = 0 (3.2b)
h(x) > 0 (3.2c)

with the objective function f : D ⊂ Rn → R, the equality constraints
g : D ⊂ Rn → Rn2 , and the inequality constraints h : D ⊂ Rn → Rn3 . The
three functions f , g, and h are assumed to be sufficiently smooth, which
in this section means at least C2(D). We need the notions of the following
definition in the remainder of this chapter.

Definition 3.1.1 (Basic notions)

(i) The set Ω := {x ∈ Rn | g(x) = 0, h(x) > 0} is called feasible set and
any element x̄ ∈ Ω is called feasible point.

(ii) A feasible point x̄ is called local solution or local minimizer of the NLP
problem (3.2) if there is a neighborhood U(x̄) of x̄ such that f(x̄) 6 f(x)
for all x ∈ U(x̄) ∩ Ω.

(iii) A feasible point x̄ is called strict local solution or strict local minimizer
of the NLP problem (3.2) if there is a neighborhood U(x̄) of x̄ such that
f(x̄) < f(x) for all x ∈ U(x̄) ∩ Ω, x 6= x̄.

26



3.1 | Solution theory of optimization problems

It has to be known for the characterization of a feasible point x as a potential
local solution if x is at the boundary of the feasible set, and if so, which
inequality constraints are fulfilled exactly, i.e. hi(x) = 0.

Definition 3.1.2 (Active set)
The active set (AS) at any feasible point x of (3.2) is the set of the indices
of the inequality constraints, for which hi(x) = 0 holds:

A(x) = {i | hi(x) = 0, i = 1, . . . , n3}.

The inequality constraint i is called active (in x) if i ∈ A(x); otherwise it is
called inactive (in x).

Definition 3.1.3 (Linear independence constraint qualification)
A feasible point x of (3.2) with active set A(x) is said to fulfill the linear
independence constraint qualification (LICQ) if the set of equality constraint
gradients and active inequality constraint gradients

{∇gi(x), i = 1, . . . , n2} ∪ {∇hi(x), i ∈ A(x)} (3.3)

is linearly independent.

Definition 3.1.4 (Lagrangian function)
The Lagrangian function L for the general NLP problem (3.2) is defined as

L : Rn × Rn2 × Rn3 → R
(x, λ, µ) 7→ L(x, λ, µ) := f(x)− λTg(x)− µTh(x),

where λ ∈ Rn2 and µ ∈ Rn3 are the Lagrange multipliers.

First order necessary conditions for optimality can be stated with these
preparations.

Theorem 3.1.5 (Karush–Kuhn–Tucker conditions)
Let x∗ be a local minimizer of (3.2), f , g, and h continuously differentiable,
and x∗ fulfill LICQ. Then there exist Lagrange multipliers λ∗ ∈ Rn2 and
µ∗ ∈ Rn3 such that the triple (x∗, λ∗, µ∗) satisfies the following Karush–
Kuhn–Tucker (KKT) conditions

∇xL(x∗, λ∗, µ∗) = 0 (3.4a)
g(x∗) = 0 (3.4b)
h(x∗) > 0 (3.4c)

µ∗ > 0 (3.4d)
µ∗j hj(x

∗) = 0 ∀j = 1, . . . , n3. (3.4e)

Proof. See e.g. [56, 124]. �

27



Chapter 3 | Theory of optimization and continuation

Definition 3.1.6 (KKT point)
A point (x∗, λ∗, µ∗) which satisfies all conditions (3.4) is called KKT point.

Second order necessary and sufficient conditions can be formulated with the
critical cone.

Definition 3.1.7 (Linearized feasible directions)
For a feasible point x of (3.2) and its corresponding active set A(x), the set
of linearized feasible directions is defined as

F(x) := {d ∈ Rn | dT∇gi(x) = 0, i = 1, . . . , n2; dT∇hj(x) > 0, j ∈ A(x)}.

The critical cone is a subset of all feasible directions, namely:

Definition 3.1.8 (Critical cone)
For a KKT point (x∗, λ∗, µ∗) with linearized feasible directions F(x∗), the
critical cone is defined as

C(x∗, λ∗, µ∗) := {d ∈ F(x∗) | dT∇hi(x) > 0 ∀i ∈ A(x) with µ∗i > 0}.

Theorem 3.1.9 (Second-order necessary conditions)
Let x∗ be a local minimizer of (3.2), f , g, and h twice continuously differ-
entiable, and x∗ fulfill LICQ. Let λ∗ and µ∗ be the Lagrange multipliers for
which the KKT conditions are satisfied. Then it holds

vT ∇2
xxL(x∗, λ∗, µ∗) v > 0 ∀v ∈ C(x∗, λ∗, µ∗).

Proof. See e.g. [56, 124]. �

Theorem 3.1.10 (Second-order sufficient conditions (SSC))
Let x∗ be a feasible point of (3.2) for which the KKT conditions are satisfied
with Lagrange multipliers (λ∗, µ∗). Suppose further that

vT∇2
xxL(x∗, λ∗, µ∗)v > 0 ∀v ∈ C(x∗, λ∗, µ∗), v 6= 0.

Then x∗ is a strict local minimizer for (3.2).

Proof. See e.g. [56, 124]. �

3.2 Parametric optimization
In the optimization problem for model reduction purposes which is presented
in Chapter 5, there is a parameter dependence in the equality constraints.
Therefore, we consider parametric NLP problems in the following. The basic
problem is given as

min
x∈Rn

f(x, r) (3.5a)
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subject to

g(x, r) = 0 (3.5b)
h(x, r) > 0, (3.5c)

where the objective function f : D×D̃ → R, the equality constraint function
g : D × D̃ → Rn2 , and the inequality constraint function h : D × D̃ → Rn3

depend on the parameter vector r ∈ D̃ with D ⊂ Rn, D̃ ⊂ Rnr open.
The Lagrangian function can be written as

L(x, λ, µ, r) := f(x, r)− λTg(x, r)− µTh(x, r).

First order sensitivity results are given by the following theorem of Fiacco
[55]. These results are used in context of real-time optimization, see e.g. [33],
and nonlinear model predictive control, e.g. in [53, 180].

Theorem 3.2.1 (Parameter sensitivity [55])
Let the functions f , g, and h in problem (3.5) be twice continuously differen-
tiable in a neighborhood of (x∗, 0). Let the second order sufficient conditions
hold for a local minimum of (3.5) at x∗ with r = 0 and Lagrange multipliers
λ∗, µ∗. Furthermore, let LICQ be valid in (x∗, 0) and strict complementary
slackness, i.e. µ∗i > 0 if hi(x∗, 0) = 0, i = 1, . . . , n3. Then the following
holds:

(i) The point x∗ is a local isolated minimizer of (3.5) with r = 0, and the
associated Lagrange multipliers λ∗, µ∗ are unique.

(ii) For r in a neighborhood of 0, there exists a unique once continuously
differentiable function (x(r), λ(r), µ(r)) satisfying the second order suf-
ficient conditions for a local minimum of (3.5) such that

(x(0), λ(0), µ(0)) = (x∗, λ∗, µ∗),

and x(r) is a local minimizer of (3.5) with Lagrange multipliers λ(r)
and µ(r).

(iii) Strict complementarity with respect to µ(r) and LICQ hold at x(r) for
r near 0.

Proof. See [55]. �

For different fixed values of the parameter r̄, a family of parametric opti-
mization problems (3.5) is supposed to be solved for the results presented in
Chapter 9. The aim of numerical algorithms is the computation of a root of
a function K which (basically – see also Section 8.1.1) represents the KKT
conditions

K(x, λ, µ, r̄) = 0
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in order to solve (3.5) with parameter r̄.
We are interested in the derivative of a solution (x∗, λ∗, µ∗) of the optimiza-
tion problem (3.5) with respect to the parameter. The implicit function
theorem yields for (x∗(r), λ∗(r), µ∗(r))

D(x,λ,µ)K Dr(x
∗, λ∗, µ∗) = −DrK.

This can be rewritten in a matrix equation form as

[
DxK DλK DµK

] Drx
∗

Drλ
∗

Drµ
∗

 = −DrK. (3.6)

The matrix [
DxK DλK DµK

]
is called KKT matrix. It is nonsingular if LICQ and second order sufficient
optimality conditions as stated in Theorem 3.1.10 are fulfilled.
The usage of the sensitivities Dr(x

∗, λ∗, µ∗) within a continuation method is
explained in Chapter 8.

3.3 Continuation method
In this section, we deal with the theory of continuation methods, also called
homotopy methods or embedding methods. Homotopy methods are in use
since the work of Poincaré. We mainly follow the presentation in [9] in
context of optimization methods.
The aim of homotopy methods often is to trace the zero of a function while a
parameter varies. In our context, KKT points are followed in dependence of
parameters which are the reaction progress variables. Not only a single point
as approximation of a point on the SIM needs to be computed in application
of a model reduction method but a number of neighboring points. This can
be done efficiently with a continuation method. For a family of optimization
problems, a solution of a previously solved problem can be used as initial
value for the next problem to be solved.
Consider a sufficiently smooth mapping F : Rñ → Rñ. A zero of this function
F can be computed with a Newton-like method, e.g. The contraction of
Newton’s method depends on the initial guess, which might be very poor.
The goal of continuation methods usually is to define a deformation, the
homotopy H : Rñ × R → Rñ with H(x, 0) = F (x) and H(x, 1) = G(x),
where G : Rñ → Rñ is a sufficiently smooth function with known zeros at
x1 ∈ Rñ, e.g. of a previously solved problem. The strategy is to trace an
implicitly defined curve c from a starting point (x1, 1) to the desired solution
(x̄, 0). Some preconditions have to be fulfilled to guarantee for the existence
of such a curve.

30



3.3 | Continuation method

Assumption 3.3.1 (Assumptions 2.1.1 and 2.1.2 in [9])

(i) Let H : Rñ × R→ Rñ, (x, t) 7→ H(x, t) be a sufficiently smooth map.

(ii) There exists a u0 ∈ Rñ+1 such that

• H(u0) = 0

• the Jacobian DxH(u0) has maximum rank ñ.

In this case, the implicit function theorem allows for a local parametrization
of the solution curve of H−1(0).

Lemma 3.3.2 (Lemma 2.1.3 in [9])
Under Assumption 3.3.1, there exists a smooth curve c : J → Rñ+1 with
α 7→ c(α) for an open interval J ⊂ R, 0 ∈ J such that∗

(i) c(0) = u0

(ii) H(c(α)) = 0

(iii) rank(dyH(c(α))) = ñ

(iv) dαc(α) 6= 0.

Proof. See [9]. �

It follows that dyH(c(α))dαc(α) = 0, i.e. the tangent dαc(α) spans the kernel
of dyH(c(α)). For theoretical purposes, it is helpful to parametrize the curve
with respect to arc length parameter s. That means,

‖dsc(s)‖2 = 1, s ∈ J̄

with a new interval J̄ . This is achieved by setting

ds = ‖dαc(α)‖2 dα.

To define a direction in the kernel of the matrix dyH(c(s)), the augmented
Jacobian is defined as (

dyH(c(s))
dsc(s)

T

)
,

which has full rank ñ + 1 as a direct consequence of Assumption 3.3.1 and
Lemma 3.3.2. So we can define the orientation of the curve as positive if the
determinant of the augmented Jacobian is positive and negative otherwise.
Application of the implicit function theorem to H(x(t), t) = 0 under As-
sumption 3.3.1 leads to

Dx = −DxH(x, t)−1DtH(x, t),

the Davidenko differential equation [42, 61]. The main theoretical result in
[9, Chapter 2] is the following theorem.
∗The expression dyH(y) is the derivative of H with respect to the variable y ∈ Rñ+1.
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Theorem 3.3.3 (Theorem 2.1.14 in [9])
Let zero be a regular value of H (i.e. dyH(0) has maximum rank). Then the
curve c is defined on all of R and satisfies one of the following conditions:

• The curve c is diffeomorphic to a circle.

• The curve c is diffeomorphic to the real line.

Proof. See [9]. �

In case of the optimization based model reduction method, the KKT condi-
tions play the role of the function H. The function H is regular if and only
if the KKT matrix is nonsingular which is the case if LICQ and second order
sufficient optimality conditions as stated in Theorem 3.1.10 are fulfilled.
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4
Models for combustion chemistry

In this chapter, equations to describe the chemical reactions of combustion
processes are discussed. It concludes with formulae for the description of
a combustion process via an ODE model and conservation relations in the
sense of algebraic equations. Results of a reduction of such models with the
optimization based model reduction approach described in Chapter 5 are
shown in Chapter 9.
We mainly follow the detailed discussion in [173] and [93] with a collection
of aspects important for this thesis. Lists of symbols used in this chapter are
given in Appendix B.

4.1 Basic variables and equations
In the following, important quantities and relations between them are sub-
sumed.

4.1.1 State variables
We consider a (spatially) homogeneous system. The state of this system
can be described in amount of substance of the nspec species with symbol
ns, s = 1, . . . , nspec in mole (mol) together with the temperature of the
system T in Kelvin (K).

Notation 4.1.1
The index s iterates through the species in the following. We assume bijec-
tions between the natural numbers 1, . . . , nspec and the names of the species,
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as well as between 1, . . . , nelem and the names of the chemical elements, and
another bijection between 1, . . . , ntb and the names Mi, i = 1, . . . , ntb of the
third body collision partners. Hence, numbers and names are used inter-
changeable, e.g. if H2 has number 5, we might use for the amount of sub-
stance of H2 both the symbol nH2 or equivalently n5. If indices as H2 occur
in a formula, e.g. in a sum, they should be understood as the dedicated one.

The state of the system can also be represented in other variables. In gen-
eral, the choice depends on the assumed thermodynamic environment. We
consider systems within one of the four classical standard thermodynamic
environments [74], i.e.

• isothermal and isochoric

• isothermal and isobaric

• adiabatic and isochoric (hence isoenergetic)

• adiabatic and isobaric (hence isenthalpic)

systems.
The species in the system can be described in amount of substance ns, such
that the overall amount of substance is n =

∑nspec

s=1 ns. One might also use
the mass of the speciesms = Msns with the molar massMs of species s. The
molar mass of species s can be computed by the molar mass of the chemical
elements M̄i, i = 1, . . . , nelem, and the atomic composition coefficient χi,s
with the sum Ms =

∑nelem
i=1 χi,sM̄i. The coefficient χi,s is the number of

element i in species s. The total mass of the system is m =
∑nspec

s=1 ms.
Another possibility for describing the state of our system are mole fractions
xs = ns

n and mass fractions ws = ms
m . Similarly, the mass densities of

the species ρs = ms
V can be used, such that the identity ρV = m holds

for the total mass density ρ =
∑nspec

s=1 ρs. The inverse mass densities of
the species vs = ρ−1

s are the specific volumes of the species. The partial
pressure ps = pxs can also be used to describe the system. Concentrations
cs = ns

V are typical variables used to describe chemical processes because
mass action kinetics are formulated in terms of concentration. With the
total concentration c =

∑nspec

s=1 cs, the important formula c = n
V is valid.

In the following, we prefer the representation of the state of the system in
specific moles

zs =
ns
m

=
ws
Ms

, s = 1, . . . , nspec

in mol kg−1, because it simplifies the evaluation of the ODE model and allows
for a fast computation of the other variables if the values of the conserved
quantities are known, e.g. the concentrations can be computed via

cs =
ns
V

= zs ρ, s = 1, . . . , nspec.

34



4.1 | Basic variables and equations

Another important quantity is the mean molar mass

M̄ =

nspec∑
s=1

xsMs =
m

n
=
ρ

c
=

(nspec∑
s=1

zs

)−1

. (4.1)

The conversions

wj =
Mjnj∑nspec

s=1 Msns
=

Mjxj∑nspec

s=1 Msxs

xj = M̄
wj
Mj

= M̄zj =
wj

Mj
∑nspec

s=1
ws
Ms

for j = 1, . . . , nspec are often used.
The ideal gas law is assumed to be valid in our models. It connects the
important macroscopic variables pressure p, volume V , amount of substance
n, and temperature T via

pV = nRT

with the gas constant R = 8.314 471 Jmol−1 K−1. For its value, see the
latest published version of CODATA recommended values 2006 [119]. New
experiments have lead to the more recent CODATA 2010 recommendation
R = 8.314 462 1 Jmol−1 K−1. As the combustion mechanisms used in the
following are created with the old recommendation, we use CODATA 2006
values in this work.
The ideal gas law leads to a relation between mass density ρ and pressure p

pM̄ = ρRT, (4.2)

which can be verified with the identity ρV = m and Equation (4.1).

4.1.2 Thermodynamic variables
In the following, we need the definition of thermodynamic quantities. These
are introduced in this section with the three fundamental laws of thermo-
dynamics. We consider open systems which exchange energy and matter
with their surroundings, closed systems which only exchange energy with
their surroundings, and isolated (adiabatic) systems which exchange neither
energy nor matter with their surroundings.
The first law of thermodynamics states that the sum of all energies is constant
in an isolated system [173].
This means, a change dE in the internal energy E of a system can be written
as the sum of the heat δQ transferred and the work δW done to the system

dE = δQ+ δW.
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In the cases considered in this thesis, only compression work −pdV occurs
such that the first law of thermodynamics for an isolated system can be
written as

dE + pdV = 0. (4.3)

The first law of thermodynamics can be written for closed isochoric systems
as

dE = δQ.

The enthalpy H is used for isobaric systems to describe the state of the
system. It is defined as

H = E + pV,

and this yields in differential form

dH = dE + d(pV ) = dE + pdV + V dp.

We get
dH − pdV − V dp+ pdV = dH − V dp = 0 (4.4)

with law (4.3).
In the models considered later, the heat capacity C is used. It describes the
amount of heat δQ that is needed to change the temperature of a system
by a certain amount: CdT = δQ. This depends on the thermodynamic
environment of the system, because the added heat can eventually be used
for compression (or expansion) work. With the first law of thermodynamics,
it is clear that for constant volume and pressure, respectively,

dU = δQ = CV dT

dH = δQ = CpdT

are valid.
The entropy S is defined (in thermodynamics) via the relation

dS =
δQr

T
,

i.e. the change in entropy is the heat absorbed in a process, which is carried
out reversibly, divided by the equilibrium temperature. Therefore, it holds
in an isolated system for the reversible and irreversible change in entropy
that

drS = 0

diS > 0.

This can be seen as the second law of thermodynamics. The third law
of thermodynamics states that the entropy for a perfect crystal of a pure
substance at a temperature T = 0K is zero

lim
T→0

S = 0.
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Notation 4.1.2
In the following, thermodynamic variables with a bar are molar values, e.g.

H̄ =
H

n
,

and lowercase thermodynamic variables are specific values, e.g.

h =
H

m
.

4.1.3 Equilibrium constant and Gibbs free energy
The Gibbs free energy is defined as

G := H − TS,

with enthalpy H, entropy S, and temperature T . In an isothermal process,
the change of the Gibbs free energy

∆G = ∆H − T∆S

can be calculated from the sum of the free energies of all product species mi-
nus the sum of the free energies of all educt species in the chemical reaction.
The changes ∆H and ∆S can be computed analogously.
The Gibbs free energy change of formation of a species at temperature T
in its standard form from its elements in their standard form at T is called
∆G◦f . The standard state for a gaseous species is a pressure of p◦ := 105 Pa.
Important equations are the pressure dependence of G

∂G

∂p

∣∣
T

= V

and the temperature dependence of G – the Gibbs–Helmholtz equation –

∂GT
∂T

∣∣
p

= −H
T 2
.

The equilibrium constant of a chemical reaction in terms of pressure values
and the standard Gibbs free energy of the reaction are connected via the
relation

∆G◦r = −RT lnKp. (4.5)

The definition of the equilibrium constant in terms of partial pressures can
be found in Section 4.3.1. The dependence of Kp on the temperature is given
via the famous van’t Hoff equation

d lnKp

dT
=

∆H◦r
RT 2

with the standard enthalpy of the reaction ∆H◦r .
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4.2 Conservation laws

The basis of all models considered here are physical conservation laws. The
models comprise nspec chemical species composed by nelem chemical elements.
The chemical source term obeys the law of elemental mass conservation,
which is considered in Section 4.2.1, and an energetic balance, which is pre-
sented in Section 4.2.2.

4.2.1 Mass conservation
The conservation of the total mass of each chemical element in the system
is formulated in specific moles as

ži =

nspec∑
s=1

χi,szs, i = 1, . . . , nelem, (4.6)

where χi,s is the atomic composition coefficient. There is also a restriction
on the values of the constant elemental specific moles ži which requires that
the mass fractions sum to one

nelem∑
i=1

M̄iži = 1, (4.7)

where M̄i is the molar mass of element i. This is equivalent to the conser-
vation of the total mass of the system.

4.2.2 Energy balance
The energy balance has to be considered additionally. As stated in Sec-
tion 4.1.1, we consider only systems in one of the four traditional thermo-
dynamic environments. A fixed temperature is assumed in the isothermal
cases. The adiabatic cases are discussed in the following.

Adiabatic and isochoric systems

As stated in Section 4.1.2, the first law of thermodynamics for an adiabatic
system yields

dE + pdV = 0.

In the isochoric case, dV = 0 implies the conservation of internal energy. In
practice, we can only compute the standard molar enthalpy of the species,
see Section 4.2.3. Hence, the equation for the conservation of a fixed internal
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energy Ě, which is considered in the final model, is

Ě = H − pV

= m

nspec∑
s=1

h◦s ws −
V ρRT

M̄

= m

(nspec∑
s=1

H̄◦s
Ms

ws −
RT

M̄

)

= m

(nspec∑
s=1

H̄◦s zs −
RT

M̄

)
,

where we make use of the ideal gas law. Alternatively,

ě =

nspec∑
s=1

H̄◦s zs −
RT

M̄
(4.8)

can be used for a fixed specific internal energy ě.

Adiabatic and isobaric systems

The first law of thermodynamics for an adiabatic system also states

dH − V dp = 0,

see Section 4.1.2. In the isobaric case, dp = 0 implies the conservation of
enthalpy. Thus, the equation for a fixed enthalpy Ȟ to be fulfilled in the
final model is

Ȟ = m

nspec∑
s=1

H̄◦s zs.

One could also use a fixed specific enthalpy ȟ and

ȟ =

nspec∑
s=1

H̄◦s zs. (4.9)

4.2.3 NASA polynomials

Thermodynamic quantities are necessary for a combustion model. So-called
NASA polynomials are evaluated to obtain the standard molar heat capacity
(at constant pressure), enthalpy, and entropy of the species.
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Listing 4.1: NASA polynomial coefficients for H2O for use with the
mechanism given in Section A.1.

H2O 20387H 2O 1 G 0300.00 5000.00 1000.00 1
0.02672145E+02 0.03056293E -01 -0.08730260E-05 0.12009964E -09 -0.06391618E-13 2

-0.02989921E+06 0.06862817E+02 0.03386842E+02 0.03474982E -01 -0.06354696E-04 3
0.06968581E -07 -0.02506588E -10 -0.03020811E+06 0.02590232E+02 4

Evaluation of the NASA polynomials

The parameter values representing the coefficients of the NASA polynomials
are given in a specific form. In Listing 4.1, the values for H2O taken from a
thermodynamical data set are shown. The first line in Listing 4.1 determines
the name of the species and some additional information. The last three
values are of importance. In this example Tlb = 300K, Tub = 5000K, and
Tsw = 1000K are given.
Fourteen coefficients for the NASA polynomials are given in line two to four.
We call the first seven ahigh

i , i = 1, . . . , 7, and the rest alow
i , i = 1, . . . , 7. The

temperature at which the polynomials shall be evaluated defines which set
(high or low) has to be taken. If T is between Tlb and Tsw, the numbers alow

i

have to be taken, and between Tsw and Tub, the values for high temperature
ahigh
i are used. Formulae in the following are valid for both alow

i and ahigh
i

such that we just use the notation ai, i = 1, . . . , 7.
The standard molar heat capacity at constant pressure of a certain species
at high or low temperature is computed via a five term polynomial of order
four in T

C̄◦p,s(T )

R
= a1 + a2T + a3T

2 + a4T
3 + a5T

4. (4.10)

Formulae for the computation of enthalpy and entropy can be deduced via
the integrals

H̄◦s (T ) = Ra∗6 +

∫ T

T ′=298
C̄◦p(T ′) dT ′ (4.11)

and

S̄◦s (T ) = Ra∗7 +

∫ T

T ′=298

C̄◦p(T ′)

T ′
dT ′, (4.12)

where a∗i , i = 6, 7, are chosen to be the integration constants in the formulae.
This means, the standard molar enthalpy and entropy of a species can be
computed via

H̄◦s (T )

R
= a6 + a1T +

a2

2
T 2 +

a3

3
T 3 +

a4

4
T 4 +

a5

5
T 5 (4.13)

and

S̄◦s (T )

R
= a7 + a1 ln(T ) + a2T +

a3

2
T 2 +

a4

3
T 3 +

a5

4
T 4. (4.14)
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4.2 | Conservation laws

The constants a6 and a7 are chosen such that H̄◦s (298K) = ∆H◦f (298K) is
valid and the value of the entropy S̄◦(298K) matches.
Based on enthalpy and entropy, the Gibbs free energy can be computed via

G = H − TS.

This means, the equilibrium constant for a chemical reaction is given solely
by the NASA coefficients, see also Section 4.1.3.

Transition between the branches

The use of the NASA polynomials causes a problem within the optimization
framework for model reduction. Consider e.g. the coefficients in Listing 4.2
valid for O in case of the ozone decomposition mechanism given in Table A.2.
Obviously, the switching temperature is at Tsw = 1000K again. The transi-

Listing 4.2: NASA polynomial coefficients for O for use with the
ozone mechanism given in Table A.2.

O 120186O 1 G 0300.00 5000.00 1000.00 1
0.02542059E+02 -0.02755061E -03 -0.03102803E-07 0.04551067E -10 -0.04368051E-14 2
0.02923080E+06 0.04920308E+02 0.02946428E+02 -0.16381665E-02 0.02421031E-04 3

-0.16028431E-08 0.03890696E-11 0.02914764E+06 0.02963995E+02 4

tion between the two branches of the molar heat capacity at the switching
temperature Tsw is discontinuous as depicted in Figure 4.1. We apply the idea
of [32, 151] and use the hyperbolic tangent for generating a C∞-transition.
The temperature is varied in the optimization algorithm for model reduction.
It is not important to limit the temperature between the bounds Tlb and Tub,
as the function formed by the connected polynomials is C∞(R+), except
at the switching point. However, positivity should be guaranteed for the
temperature. Otherwise some (kinetic) expressions might not be evaluable.
The temperature should be between the bounds at the solution computed
by the optimization algorithm to guarantee a valid model.
We denote the low temperature branch of the standard molar heat capacity
of species s at constant pressure with C̄ low

p,s and the high temperature branch
with C̄high

p,s (without ◦). We redefine the molar heat capacity at standard
state of species s via the convex combination

C̄◦p,s(T ) = (1− σ(T ))C̄ low
p,s (T ) + σ(T )C̄high

p,s (T ),

where σ is a sufficiently smooth transition function with parameter γ defined
by

σ : R→ (0, 1)

T 7→ σ(T ) :=
1

2
tanh[γ(T − Tsw)] +

1

2
.
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Figure 4.1: Visualization of the molar heat capacity C̄◦
p,O versus T

near a temperature value of Tsw = 1000K. The transition from the
low temperature branch (blue) to the high temperature branch (red)
is discontinuous.

This means, we use a convex combination of the two branches. As tanh is
an odd function, it holds that

1− σ(Tsw − T ) = σ(Tsw + T ),

which results in a symmetric overlay. Analogously, the branches for enthalpy
and entropy can be coupled

H̄◦s (T ) = (1− σ(T ))H̄ low
s (T ) + σ(T )H̄high

s (T )

S̄◦s (T ) = (1− σ(T ))S̄low
s (T ) + σ(T )S̄high

s (T ).

Derivatives of first and second order of the function

σ(T ) =
1

2
tanh[γ(T − Tsw)] +

1

2

are necessary in our computations. These are

dTσ(T ) =
γ

2

(
1− tanh2[γ(T − Tsw)]

)
d2
Tσ(T ) = −γ2 tanh[γ(T − Tsw)]

(
1− tanh2[γ(T − Tsw)]

)
.
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4.2 | Conservation laws

Because dTσ(Tsw) = γ
2 , we can consider γ as a parameter for the slope of

the transition function at the switching temperature. Hence, large γ mean a
steep transition, small γ a smooth one. The parameter γ = 20 for σ is used
as it leads to a reasonable compromise; see also Figure 4.2.
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Figure 4.2: Plot of the heat capacity C̄◦
p,O versus T near a temper-

ature value of Tsw = 1000K. The black curve depicts the combined
C̄◦
p (T ) that smoothly connects the low temperature branch (blue) with

the high temperature branch (red).

Implementation The hyperbolic tangent is implemented via the hyper-
bolic sine and cosine in an old version of the automatic differentiation package
CppAD [17, 18] that is used in the code developed with this thesis, see Sec-
tion 7.3. This leads to an overflow for large values of T − Tsw. As a remedy,
we use another transition function ζ with the parameter τ and its derivatives

ζ(T ) =
1

π
arctan[τ(T − Tsw)] +

1

2

dT ζ(T ) =
τ

π[1 + τ2(T − Tsw)2]

d2
T ζ(T ) = − 2τ3(T − Tsw)

π[1 + τ2(T − Tsw)2]2
.
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Resulting error The error in the physical relations between heat capacity,
enthalpy, and entropy resulting from the introduced transition function is
given as

|dT H̄◦s − C̄◦p,s| =
∣∣∣(−H̄ low

s dTσ + (1− σ)C̄ low
p,s + H̄high

s dTσ + σC̄high
p,s

)
−
(

(1− σ)C̄ low
p,s + σC̄high

p,s

)∣∣∣
=
∣∣∣(−H̄ low

s + H̄high
s

)
dTσ

∣∣∣
and

|TdT S̄
◦
s − C̄◦p,s| =

∣∣∣(−T S̄low
s dTσ + (1− σ)C̄ low

p,s + T S̄high
s dTσ + σC̄high

p,s

)
−
(

(1− σ)C̄ low
p,s + σC̄high

p,s

)∣∣∣
=
∣∣∣(−S̄low

s + S̄high
s

)
dTσ

∣∣∣ .
The function dTσ has a large influence. The maximum of dTσ is at T = Tsw.
It can be stated that the parameter γ is a trade off between a steep transition,
meaning small error in the values of heat capacity, enthalpy, and entropy
near Tsw, and a smooth transition resulting in an error in the violation of
Equations (4.11) and (4.12) near Tsw. In our implementation, we use the
value γ = 20 for σ and τ = 1000 for ζ as standard values.

4.3 Chemical kinetics
All combustion models considered here are based on mechanisms which them-
selves are based on the law of mass action. In this section, all formulae needed
for the computation of the reaction rates in dependence of the kinetic pa-
rameters are discussed. The section concludes with the computation of the
molar net chemical production rate, which is needed for the right hand side
of an ODE model as it is assembled in the following Section 4.4.

4.3.1 Mass action kinetics
It is important to distinguish between overall or net reactions and elementary
reactions. The rate of destruction of species A for the general chemical
reaction

aA + bB→ cC + dD

is of the form

−dcA

dt
= kcαAc

β
B,
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4.3 | Chemical kinetics

where k, α, and β are empirically evaluated rate constants and reaction
orders with respect to the species, respectively. In contrast, elementary
reactions proceed at molecular level as they are noted. Consider

aA + bB→ cC + dD

an elementary reaction. The rate of destruction of species A is

−dcA

dt
= kacaAc

b
B,

where the stoichiometric constants are the exponents or reaction orders. For
this reason, a chemical mechanism usually is given as a set of elementary
reactions.

General situation

A general set of elementary reactions (numbered by r) might be written in
the form

nspec∑
s=1

ν ′srXs 

nspec∑
s=1

ν ′′srXs, r = 1, . . . , nreac.

The rate of progress of reaction r is described by

qr = kf,r

nspec∏
s=1

cν
′
sr
s︸ ︷︷ ︸

=:rf,r

− kr,r

nspec∏
s=1

cν
′′
sr
s︸ ︷︷ ︸

=:rr,r

.

A third body is necessary in some reactions. In that case, the rate of progress
of reaction r is

qr =

(nspec∑
s=1

αsrcs

)(
kf,r

nspec∏
s=1

cν
′
sr
s − kr,r

nspec∏
s=1

cν
′′
sr
s

)
,

where αsr is the collision efficiency of species s in reaction r. Third bodies
often have the same collision efficiency in several reactions. Hence, symbols
for third bodies Mi are defined, and αsr is replaced by αsi if third body i
takes part in reaction r. We can define the concentration of third body Mi,
i = 1, . . . , ntb, as

cMi =

nspec∑
s=1

αsics. (4.15)

Unspecified collision efficiencies are meant to have the value 1 [171]. This is
used for all mechanisms considered in this work.
The molar chemical production rate ωs of species s is defined as

ωs =

nreac∑
r=1

νsrqr, (4.16)
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where νsr is the net stoichiometric coefficient

νsr := ν ′′sr − ν ′sr.

The chemical potential of forward and reverse reactions in equilibrium are
the same. Therefore, the equilibrium constant for reaction r can be defined
as

Kp,r :=

nspec∏
s=1

(
ps
p◦

)νsr
e

,

where the index e denotes that all values are considered in equilibrium and
the index p clarifies the constant being in terms of pressure values.
The equilibrium constants of reaction r are connected via the relation

Kc,r = Kp,r

(
p◦

RT

)νr
(4.17)

with the net change of the number of species present in the gas phase

νr :=

nspec∑
s=1

νsr.

4.3.2 Arrhenius kinetics
Rate constants strongly depend on temperature. This dependence is modeled
with a three-parameter modified Arrhenius equation

kf,r(T ) = A T b e−
Ea
RT . (4.18)

The constants A, b, and Ea are given for each reaction. For an interpretation
of the pre-exponential factor A, see e.g. [93, 173].
The reverse rate coefficient of reaction r also depends on temperature. It
can also be given in the Arrhenius form∗. Alternatively, the connection of
forward and reverse rate coefficient via the equilibrium constant is used with
the relation

kf,r

kr,r
= Kc,r.

The equilibrium constant in terms of concentrations is computed with NASA
polynomials via the following equation for Kp,r,

Kp,r = exp

(
∆S◦r,r(T )

R
−

∆H◦r,r(T )

RT

)
,

∗ In some publications, the reverse rate coefficients of Arrhenius type reactions are
computed with fitted Arrhenius parameters for the reverse reactions. We also use this
strategy in previous publications as e.g. [105, 106]. However, this is impossible in case of
pressure dependent reactions, and it may lead to inconsistent values of thermodynamic
quantities in the mass action kinetics in relation to the heat of the reaction. Therefore,
we prefer the thermodynamic approach in this thesis.

46



4.3 | Chemical kinetics

see Equations (4.5) and (4.17), where

∆H◦r,r(T ) =

nspec∑
s=1

νsrH̄
◦
s (T )

∆S◦r,r(T ) =

nspec∑
s=1

νsrS̄
◦
s (T )

are the molar reaction enthalpy and entropy, respectively. The computation
of the standard molar enthalpy H̄◦s (T ) of species s and entropy S̄◦s (T ) is
described in Section 4.2.3.

4.3.3 Troe kinetics
The reaction rate constants can also depend on pressure. A detailed discus-
sion of this issue can be found in [93, Section 9.4]. In summary, both the
low pressure rate constant k(2)

uni,0 and the high pressure constant kuni,∞ are
given in the modified Arrhenius form (4.18). These are used together with a
third body M to compute the reduced pressure (a dimensionless parameter)

pr =
k

(2)
uni,0cM

kuni,∞
,

where cM is defined as in Equation (4.15). With this parameter, the final
rate constant kf,r = kuni of reaction r is computed as

kuni = kuni,∞
pr

1 + pr
F

with a function F . To compute this F , Gilbert, Luther, and Troe [63, 158]
introduced the formula

lgF =

{
1 +

[
lg pr + c

n− d(lg pr + c)

]2
}−1

lgFc,

with a set of simplifications

c = −0.4− 0.67 lgFc

n = 0.75− 1.27 lgFc

d = 0.14

and the F-center-value

Fc = (1− a) exp

(
− T

T ∗∗∗

)
+ a exp

(
− T

T ∗

)
+ exp

(
−T

∗∗

T

)
,

which includes the four parameters a, T ∗, T ∗∗, and T ∗∗∗. These are given
for each so-called Troe reaction. In the mechanisms used here, only the Troe
form is used for pressure dependent reactions, so we skip a discussion of
other possibilities like the SRI form and its extension.
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4.4 Models for homogeneous combustion

In this section, ODE models for homogeneous combustion are contemplated.
We consider again the four classical thermodynamic environments. A ther-
modynamic Lyapunov function is known in all four cases [74]. These are

1. isothermal, isochoric systems: F
RT

2. isothermal, isobaric systems: G
T

3. adiabatic, isochoric systems : − S
R

4. adiabatic, isobaric systems: − S
R .

Here F = E−TS is the Helmholtz energy. All other quantities are introduced
in Sections 4.1.2 and 4.1.3.
We consider the state of a system given in specific moles and the conserved
quantity from energy balance. The realizable phase space of the system is
the polytope defined by the positivity of the specific moles and the linear
mass conservation (4.6). This polytope is depicted in Figure 2.1.
In all four systems, there is a unique equilibrium point in the realizable phase
space which attracts all trajectories. It is defined by the minimum of the
corresponding Lyapunov function. The proof can be found in [130].

4.4.1 Change of the mass of the species
The mass of the species in the system change in accordance to

Dms = ωs Ms V, s = 1, . . . , nspec.

This can be expressed in terms of mass fractions

Dws =
ωs Ms

ρ
, s = 1, . . . , nspec

or specific moles

Dzs =
ωs
ρ
, s = 1, . . . , nspec. (4.19)

Isothermal, isochoric systems

In isothermal systems, the value of the temperature T is used as a parameter.
The pressure p(t) can be computed with Equation (4.2) as ρ is constant in
this case and V and m are known.
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4.4 | Models for homogeneous combustion

We can reformulate the ODE for a system in this thermodynamic environ-
ment for s = 1, . . . , nspec as

ρDzs = ωs

D(ρ zs) = ωs + zsDρ

Dcs = ωs

with Dρ(t) = 0.

Isothermal, isobaric systems

In the isothermal, isobaric case, the right hand side of system (4.19) can
directly be written as

Dzs =
ωs
p

RT

M̄
, s = 1, . . . , nspec.

4.4.2 Conservation of energy
The internal energy is conserved in adiabatic, isochoric systems, because
compression work can not occur. We want to derive a differential equation
in the temperature for the energy conservation in this section.
The internal energy can be computed by specific partial internal energies of
the species

E = m

nspec∑
s=1

ws es.

It is conserved, so the chain rule yields

dtE = m

nspec∑
s=1

ws dtes +m

nspec∑
s=1

es dtws = 0.

With identities for the specific heat capacity at constant volume

dte = cV dtT

dtes = cV,sdtT, s = 1, . . . , nspec

cV =

nspec∑
s=1

wscV,s

and the ODE system for mass fractions, the differential equation for the
temperature is

dtT cV = −
nspec∑
s=1

es
ωs Ms

ρ
.
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This formula has to be reformulated using terms of molar enthalpy for com-
putation. The conversion factor between specific enthalpy hs = Hs

ms
and

molar enthalpy H̄s = Hs
ns

is the molar mass:

hs =
H̄s

Ms
, s = 1, . . . , nspec.

The analogous formula holds for the internal energy

es =
Ēs
Ms

, s = 1, . . . , nspec.

With the ideal gas law, the difference between molar enthalpy and molar
energy of species s is RT :

H̄◦s −RT = Ē◦s , s = 1, . . . , nspec.

The specific heat capacity at constant volume can be computed by the stan-
dard molar heat capacity at constant pressure and the specific moles

c◦V =
C◦V
m

=
C◦p − nR

m

=

∑nspec

s=1 nsC̄
◦
p,s − nR

m

=

nspec∑
s=1

zsC̄
◦
p,s −

R

M̄
.

The differential equation for the temperature is

DT = dtT =
−
∑nspec

s=1 Ē◦s ωs
ρcV

=
−V

∑nspec

s=1 (H̄◦s −RT )ωs

m
(∑nspec

s=1 zsC̄◦p,s −R
∑nspec

s=1 zs
) .

4.4.3 Conservation of enthalpy
In an adiabatic, isobaric system, the enthalpy is conserved as can be seen
in Equation (4.4). In analogy to the presentation in the previous section, a
differential equation for the temperature is derived.
The enthalpy is conserved. This can be written as

dt(E + pV ) = 0

dth = 0.
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As in the section before, a formulation in terms of partial quantities is needed.
Analogously, the chain rule yields

dt

nspec∑
s=1

(hsws) = 0

nspec∑
s=1

(wsdths + hsdtws) = 0.

The equation for the specific heat capacity is

dths = cp,sdtT, s = 1, . . . , nspec

cp =

nspec∑
s=1

ws cp,s =

nspec∑
s=1

zs C̄p,s.

With the differential equation for the mass fractions, we arrive at

nspec∑
s=1

ws cp,s dtT = −
nspec∑
s=1

hs
ωs Ms

ρ
.

We rearrange this equation to get

dtT = −
∑nspec

s=1 hs ωs Ms

ρ cp
,

where the unknown ρ(t) is computed with Equation (4.2). The ODE for the
temperature in case of enthalpy conserving systems is

DT = −RT
∑nspec

s=1 (H̄◦s ωs)
∑nspec

s=1 zs

p
∑nspec

s=1 (zs C̄◦p,s)
.
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5
Theory of the model reduction method

based on optimization

The idea to use an optimization approach for model reduction in the con-
text presented in this work is raised in [101]. Similar ideas exist already
before. In 1999, L. Petzold and W. Zhu introduce an optimization based
method for model reduction switching on and off different reaction pathways
[126]. Already in 1998, S. S. Girimaji introduces an optimization approach
minimizing the evolution rate of the dynamics [69].

5.1 Basic ideas of the method

D. Lebiedz introduces a model reduction method based on minimal entropy
production trajectories (MEPT) in 2004 [101]. The basic idea is that the
SIM is supposed to be characterized by maximum relaxation of the system
dynamics under given constraints of fixed reaction progress variables [148].
More general, this means that the objective function in the optimization
problem captures essential properties of a SIM [106] and should represent
the assumption that chemical forces are – under the given constraints – max-
imally relaxed along trajectories on the SIM [148]. From the inverse point
of view, this means that the remaining relaxation of chemical forces along
the trajectories is minimal while they converge toward chemical equilibrium
[105]. Hence, an appropriate characterization of maximum “slowness”, e.g.
in terms of an integral over suitably defined curvature (velocity change) of
trajectories measured in the Euclidean norm, is reasonable. The SIM is gen-
erally characterized by the property that all trajectories in its neighborhood
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converge faster to the manifold than to the attractor, the chemical equilib-
rium point [106].
The optimization problem to compute an approximation of a point on a SIM
can be written as

min
z

Ψ(z) (5.1a)

subject to

Dz(t) = S(z(t)) (5.1b)
0 = C̄(z(t)) (5.1c)

0 = zj(t∗)− zt∗j , j ∈ Ipv (5.1d)

0 6 z(t) (5.1e)

and

t ∈ [t0, tf] (5.1f)
t∗ ∈ [t0, tf] (fixed), (5.1g)

where temperature T is omitted for simplification of the discussion. The
vector z(t) = (zi(t))

n
i=1 denotes the state vector (in specific moles in a com-

bustion model). The system dynamics, e.g. chemical kinetics determined by
the reaction mechanism, are described by (5.1b) and enter the optimization
problem as equality constraints. Hence, an optimal solution z∗ of (5.1) al-
ways satisfies the system dynamics of the full ODE system; it represents a
solution trajectory of (5.1b).
Dimension and parametrization of the manifold to be computed have to be
set a priori by the user; see also the discussion in Section 5.5.1. The set
Ipv ⊂ {1, ..., n} is an index set that contains the indices of a selection of
state variables, denoted as reaction progress variables in chemical kinetics,
see Section 2.3.1. The values at time t∗ are fixed for these variables and are
used to parametrize the reduced model, i.e. the SIM to be computed. These
values are fixed via the equality constraint (5.1d) at t∗. It is clear that the
solution of the optimization problem (5.1) allows for species reconstruction
of the values z∗j (t∗), j /∈ Ipv as introduced in Section 2.3.1. Additional
constraints are collected in a function C̄ in (5.1c). These are explained later.
The objective functional in form of a Lagrange term

Ψ(z) :=

∫ tf

t0

Φ (z(t)) dt (5.2)

with a function Φ : Rn → R represents a mathematical formulation of char-
acteristic properties of a SIM. This is discussed in Section 5.2. We call the
function Φ criterion in the following as it should indicate a property which
qualifies the trajectory piece z(t), t ∈ [t0, tf ] for being on the SIM.
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5.2 | Choice of the objective functional

5.2 Choice of the objective functional
During the development of the optimization based model reduction method,
a lot of criteria Φ have been suggested. Numerical experiments with several
different objective functions Ψ are compared especially in [135] and [105],
but no clear preference can be found. We present an overview of the most
important suggestions.

5.2.1 Entropy based objective functions
The first objective function used for model reduction purposes in the pre-
sented context is raised with the method in [101], where D. Lebiedz creates
the notion minimal entropy production trajectory (MEPT). The concept is
based on choosing trajectories along which the entropy production is mini-
mal. The entropy production of an elementary reaction j (due to irreversible
processes) is defined as

diSj
dt

:= R(rf,j − rr,j) ln

(
rf,j

rr,j

)
. (5.3)

See Chapter 4 for the meaning of the symbols. The total entropy production
is the sum over the entropy production of all elementary reactions. Hence,
the criterion Φ used in the objective function (5.2) of the optimization prob-
lem (5.1) would be

ΦEP(z(t)) =

nreac∑
j=1

diSj
dt

.

Several similar objective functionals are discussed in [135] as the reparame-
trized entropy production

∑nreac
j=1

diSj
dt ‖S(z)‖2 or a version with a semi-norm,

which only respects those variables that do not serve as reaction progress
variables

∑nreac
j=1

diSj
dt ‖S(z)‖2,non-pv.

In [103], the idea to use the entropy production is extended and discussed
with the definition of entropy in a mathematical sense.

5.2.2 Curvature based objective functions
Later on, e.g. in [136], the idea is discussed that the velocity and the curva-
ture are related to the force relaxation of the system. In [136], this idea is
compared to MEPT. Comparing formula (5.3) and formula (4.16), it is clear
that there is a “similarity” between the minimization of the entropy produc-
tion on the one hand and the minimization of the chemical production rate
on the other hand.
A similar approach is raised in [65, 66, 67], where J.-M. Ginoux introduces
the flow curvature method, which identifies flow curvature manifolds. It is
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shown there that these manifolds correspond to the manifolds defined by the
graph of the map hε in singular perturbation theory, see Section 2.2.
The rate of change of the right hand side of the ODE (5.1b) is closely related
to the curvature of the trajectories as geometrical objects in the phase space;
it is the second derivative

D2z(t) = JS(z(t)) S(z(t)).

This can be interpreted as a directional derivative of the chemical source
with respect to its own normalized direction v := Dz

‖Dz‖2 = S
‖S‖2

d

dα
S(z(t) + αv)

∣∣∣
α=0

= JS(z(t))
S(z(t))

‖S(z(t))‖2
. (5.4)

The evaluation of this expression within the integral formulation of the ob-
jective functional (5.2) should be a path integral along the trajectory∫ l(tf)

l(0)
Φ(z(l(t))) dl(t),

where l(t) is the Euclidean length of the curve z at time t given by

l(t) =

∫ t

0
‖dτz(τ)‖2 dτ.

This results in the reparametrization

dl(t) = ‖Dz(t)‖2 dt.

Hence, the reparametrization cancels out ‖S(z(t))‖2 in (5.4) such that a
second choice for the criterion Φ in a notation that coincides with the general
problem (5.1) with (5.2) would be

Φ(z(t)) = ‖JS(z(t)) S(z(t))‖22. (5.5)

This can be seen as minimizing the length of a trajectory in a suitable Rie-
mannian metric. The length of a continuously differentiable curve z on a
Riemannian manifold is defined as the curve integral

L(z) =

∫
z

√
gz(Dz(t),Dz(t)) dt

with a scalar product gz on the tangent space of the curve in each point.
The choice of gz(S, S) = STJT

S JSS with the symmetric positive definite (in
case there are no conservations C̄ in (5.1c)) matrix JT

S JS leads to
√

Φ as
given in Equation (5.5). Therefore, the solution curve can be interpreted as
a geodesic, i.e. a curve which minimizes the length of a path between two
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points in a manifold. This duality of minimal velocity change and minimal
length arises naturally as a minimal curvature coincides with a minimal
distance that is covered and vice versa.

There are a lot more suggestions for objective functions in the optimization
based model reduction approach. For example, a weighting with the Shasha-
hani norm [146] improves the results for some example applications but also
leads to numerical difficulties [105]. The local curvature defined as

κ(z) :=

∥∥∥∥ D2z

‖Dz‖22
−
〈
Dz,D2z

〉
2

Dz

‖Dz‖42

∥∥∥∥
2

.

is tested as criterion Φ(z) in [105], too.

5.3 Optimization problems for model reduction
Optimization problems for model reduction of combustion models are for-
mulated in this section.

5.3.1 Semi-infinite optimization problem
In [106], it is shown that the solution of (5.1) with criterion

Φ(z(t)) = ‖JS(z(t)) S(z(t))‖22

in the objective function (5.2) identifies the SIM in case of a linear test model
and in case of the nonlinear Davis–Skodje test model (see Equation (9.2))
exactly for an infinite spectral gap or for an infinite integration horizon with
t∗ = tf and t0 → −∞. This means, the following optimization problem
should be used to reduce models of chemical combustion as discussed in
Chapter 4:

min
z,T

∫ tf

t0

Φ(z(t)) dt (5.6a)

subject to

Dz(t) = Sm(z(t), T (t)) (5.6b)
DT (t) = Se(z(t), T (t)) (5.6c)

0 = C(z(t∗), T (t∗)) (5.6d)

0 = zj(t∗)− zt∗j , j ∈ Ipv (5.6e)

0 6 z(t), T (t) (5.6f)

and

t ∈ [t0, tf] (5.6g)
t∗ ∈ [t0, tf] (fixed) (5.6h)
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with
Φ(z(t)) = ‖JSm(z(t)) Sm(z(t))‖22,

where the source term of the species Sm in (5.6b) is as in Equation (4.19).
The additional constraints in comparison to (5.1) are the evolution equation
for the temperature in (5.6c) and function C in (5.6d). The function C
comprises the conservation equations of elemental mass as in Equation (4.6)
and a conservation of temperature, of energy as in Equation (4.8), or of
enthalpy as in Equation (4.9), respectively.

5.3.2 Local optimization problem
It turned out in application that the computation of a solution of the dy-
namics (5.6b) and (5.6c) within the solution algorithm for (5.6) on the time
horizon [t0, tf ] and the computation of the derivatives needed in the opti-
mization algorithm is very time consuming. If a solution of the optimization
problem is needed in situ in an application, e.g. for the simulation of a
reactive flow with reduced chemistry, a numerical solution of (5.6) is not
computable in a reasonable time. Hence, an optimization problem replacing
(5.1) is needed that is “local in time”. It is (cf. [69])

min
z(t∗),T (t∗)

Φ(z(t∗)) (5.7a)

subject to

0 = C(z(t∗), T (t∗)) (5.7b)

0 = zj(t∗)− zt∗j , j ∈ Ipv (5.7c)

0 6 z(t∗), T (t∗) (5.7d)

with again Φ(z(t∗)) = ‖JSm(z(t∗)) S
m(z(t∗))‖22.

5.4 Existence of solutions
In [108], the authors study theoretical properties of the optimization based
model reduction method as described in the sections before. It is shown
that for linear (mass conservation) constraints there always exists a solution
of the optimization problems (5.6) and (5.7), respectively, if there exists a
feasible point.
In case of a realistic combustion model for a system in an adiabatic ther-
modynamic environment, the nonlinear internal energy conservation or en-
thalpy conservation comes into play. The proof of existence is extended to
these cases, see also [148]. The following results are valid for both (5.6) and
(5.7). The crucial point is the compactness of the feasible set, which is more
complicated to ensure in the case of nonlinear constraints.
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A simple way to guarantee compactness of the feasible set would be an upper
bound for the temperature. Together with the compactness argument for the
linear constraints [108], the compactness of the feasible set is obvious. But
it is not evident where to choose the upper cut off for the temperature.
We avoid the cut off of the temperature and make use of the definition
of the specific enthalpy via NASA polynomials. Thereby, we accept the
temperature to leave the domain where the NASA polynomials approximate
the standard molar enthalpy of the species appropriately.
As in Section 4.2.2, the specific enthalpy h of a system is given by

h =

nspec∑
s=1

H̄◦s (T ) zs, (5.8)

where nspec is the number of chemical species in the system, see Chapter 4.
That means, the phase space of the ODE system (5.6b) and (5.6c) has di-
mension nspec + 1.
The equation for the specific internal energy e is

e = h−RT
nspec∑
s=1

zs. (5.9)

The standard molar enthalpy H̄◦s (T ) of species s is a continuous function in
the temperature T . In our case, it is computed by evaluation of the NASA
polynomials. Their formula for s = 1, . . . , nspec is

H̄◦s (T )

R
= a6 + a1T +

a2

2
T 2 +

a3

3
T 3 +

a4

4
T 4 +

a5

5
T 5 (5.10)

with two sets of coefficients ai, i = 1, . . . , 6. One set is given for a tem-
perature lower than a certain switch temperature T < Tsw and one set of
coefficients for high temperature T > Tsw. The two branches are connected
at Tsw at least continuously. There are upper and lower bounds for the
temperature, where the polynomial approximation is valid. We ignore these
bounds for the following consideration.

Definition 5.4.1 (Proper map [109])
Let X and Y be topological spaces. A map, continuous or not, H : X → Y
is called proper if the preimage H−1(K) of each compact subset K ⊂ Y is
compact.

To formulate a sufficient condition for properness, we need the notion of
divergence to infinity.

Definition 5.4.2 (Divergence to infinity [109])
If X is a topological space, a sequence (xν) in X is said to diverge to infinity
if for every compact set K ⊆ X there are at most finitely many indices ν
with element xν ∈ K.
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A sufficient condition for properness is formulated in the following lemma.

Lemma 5.4.3 (Properness condition [109])
Suppose X and Y are topological spaces and H : X → Y is a continuous
map. If X is a second countable Hausdorff space and H takes sequences
diverging to infinity in X to sequences diverging to infinity in Y , then H is
proper.

Proof. See [109, p. 119]. �

Lemma 5.4.4 (Properness of h and e)
The specific enthalpy h and the specific internal energy e defined via NASA
polynomials seen as functions in T and z are proper maps.

Proof. The vector space Rnspec+1 is a second countable Hausdorff space. Any
nonconstant polynomial takes sequences diverging to infinity in Rn, equipped
with its Euclidean metric induced topology, to sequences diverging to infinity
in R. We can see h and e as polynomials of sixth degree in zs and T ,
see Equations (5.8), (5.9), and (5.10). Therefore, h : Rnspec+1 → R and
e : Rnspec+1 → R are proper maps. �

Using this information, we can extend Lemma 2.1 for existence as stated in
[108].

Lemma 5.4.5 (Compactness of the feasible set)
The feasible set at t∗

Ω = {(ẑ, T̂ ) : C(ẑ, T̂ ) = 0; ẑj − zt∗j = 0, j ∈ Ipv; (ẑ, T̂ ) > 0}

is compact.

Proof. Case 1: isothermal combustion
Equations for mass conservation together with nonnegativity of the specific
moles ẑs and fixed temperature define a polytope in Rnspec+1 which is closed
and bounded, hence (Heine–Borel theorem) compact.
Case 2: adiabatic combustion
As in the isothermal case, the variables ẑs are restricted to a compact poly-
tope due to elemental mass conservation and nonnegativity constraints. Fol-
lowing Lemma 5.4.4, the preimage of the singleton of the fixed energy or
enthalpy, respectively, is a compact subset of Rnspec+1. This subset may
only be further constrained by the polytope defined by the mass conser-
vation and nonnegativity. The intersection of the two compact subsets is
compact. �

Lemma 5.4.6 (Existence of a solution)
If the objective functional of the optimization problem (5.6) or (5.7) is a
continuous function and the feasible set is not empty, there exists a solution
of problem (5.6) or (5.7), respectively.
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Proof. Following the argumentation in [108], the semi-infinite optimization
problem (5.6) can be reduced to a finite optimization problem by construc-
tion of a continuous map (z, T )(t∗) 7→

∫ tf
t0

Φ (z(t)) dt. The feasible set Ω
is compact as seen in Lemma 5.4.5. Therefore, existence follows from the
Bolzano–Weierstrass theorem. �

5.5 Tools for analysis of the manifold
It is necessary to check if the results of the optimization problem are a
sufficient approximation of a SIM. The quality of the results can depend on
the selection of the reaction progress variables. A bad choice may cause that
a parametrization of the SIM to be approximated is not possible. Expert
knowledge of the full model in the phase space domain under consideration
is needed for a good decision.

5.5.1 Selection of the reaction progress variables
The number and also the choice of the reaction progress variables is a difficult
task. An analysis of the system dynamics can be helpful. It is based on the
time scales and an analysis of the Jacobian of the right hand side of the ODE
model.

Feasible points for analysis

A guess for a solution of the optimization problem has to be given by a user
for initialization of the computations to solve the optimization problem (5.1),
but this initial value might not fulfill the desired conservation laws C̄ = 0,
see (5.1c). The feasibility restoration phase of the generalized Gauss–Newton
method discussed in Section 7.1.3 can be used to compute a nearest point
in the Euclidean distance to the initial guess which fulfills C̄ = 0 and (if
necessary) has only nonnegative coordinates. This point z̄ can be used for
an a priori analysis.

Number of reaction progress variables

The number of reaction progress variables should be directly related to the
time scales. The (local) time scales are

τi =
1

abs(<(λi))
, i = 1, . . . , n,

where λi are the eigenvalues of the Jacobian matrix JS of the right hand side
of the dynamics (5.1b) at point z̄ in the phase space, i.e.

λi = eig(JS(z̄))i, i = 1, . . . , n.
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Small time scales τi correspond to fast directions in the phase space whereas
large time scales correspond to slow directions. There are infinite time scales
corresponding to fixed states, e.g. the temperature in isothermal systems or
the specific moles of inert nitrogen or argon. If the time scales are ordered
by size from fast to slow 0 =: τ0 6 τ1 6 · · · 6 τn, the differences

∆τi := τi − τi−1, i = 1, . . . , n,

are a measure for the gap in the time scales. In face of the theoretical results
shown in [108], a large spectral gap should be chosen. Hence, n− ι+ 1 many
reaction progress variables should be selected, where ι is the index of the
largest ∆τi. This number has to be reduced by the number of balances (e.g.
mass and energy) that the system obeys. This strategy might fail in case of
species with rates that change much.

Selection of reaction progress variables

The choice which species should serve as reaction progress variables is crucial,
as they should be chosen in a way that the a priori unknown SIM can be
uniquely parametrized. Hence, the value of the reaction progress variables
should de- or increase monotonously in time.
Another idea is proposed in [69]. S. S. Girimaji’s analysis is motivated by
the residence time of a trajectory in a volume element. A perturbation of
a trajectory is interpreted as a neighboring trajectory, and the distance of
the state vectors along the trajectories is analyzed in dependence of time.
Let the state be denoted as z̄ ∈ Rn again and the ODE Dz = S(z). It is
proposed in [69] to use the value

σ̄i(z̄) :=

[
n∑
s=1

(
∂Si(z̄)

∂z̄s

)2
]1

2

, i = 1, . . . , n,

the Euclidean norm of the i-th row of the Jacobian of S(z̄), as an indicator
for the slowness of species z̄i, i = 1, . . . , n. This means, the smaller σ̄i(z̄) is,
the better species z̄i should serve as reaction progress variable. This is only
valid for well-scaled systems. In this work and the related computer code,
the values

σ̂i(z̄) :=

[
n∑
s=1

(
1

z̄i

∂Si(z̄)

∂z̄s
− Si(z̄)

z̄2
i

)2
] 1

2

, i = 1, . . . , n, (5.11)

are used as a scaled alternative. This strategy does not guarantee for the
desired monotonous behavior of the reaction progress variable, but gives a
good advice, see the results in Chapter 9.
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5.5.2 A posteriori analysis
There are several ideas for an analysis of a SIM that usually are based on
the system dynamics. Many of these ideas can be used for an a posteriori
analysis of the results computed with a model reduction method.

Eigenvalues and timescales

As in the analysis before, the eigenvalues of the Jacobian of the right hand
side of the ODE and the real parts of their inverse values in modulus – the
time scales – can be used to judge the reasonability of an approximation of
a SIM. An approximation of a SIM should be acceptable for a large spectral
gap for the chosen number of reaction progress variables.

Singular values

The singular values of the Jacobian of the source term can also serve as a
check for a SIM approximation. The singular values

ηi := (svd(JS(z, T )))i

are the square roots of the eigenvalues of the symmetric matrix JT
S JS . They

describe the propagation of disturbances in the different directions in the
phase space. A similar gap as in the time scales should be observable.

Finite time Lyapunov exponents

Finite time Lyapunov exponents are used for model reduction purposes in
[114, 115]. This method is similar to the method for complexity reduction
described in [88]. We consider again the ODE system

Dz = S(z).

The linearized dynamics are

Dv = JS(z)v, v(t) ∈ Rn.

This ODE describes the rate of change of a disturbance v(t) in the phase
space at a point z(t). The combined evolution of (z(t), v(t)) ∈ TzRn with
a point (z0, v0) ∈ TzRn as initial value at t0 in the tangent space TzRn is
described by

(z(t), v(t)) = (z(t),W (t, z0)v0).

The disturbance v(t) is given by a linear transformation of the initial value
v0 multiplied with the sensitivity matrix

W (t, z0) =
dz(t; z0)

dz0
.
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The forward and backward finite time Lyapunov exponents at time tf with
initial time t0 = 0 are defined as

µ+(tf , z, v̄) := 1
tf

log ‖W (tf ,z0)v̄‖2
‖v̄‖2

µ−(tf , z, v̄) := 1
tf

log ‖W (−tf ,z0)v̄‖2
‖v̄‖2 .

Finite time Lyapunov exponents describe the averaged exponential rate of
growth or decay of the disturbance v̄. They can be computed via a singular
value decomposition

µ+
i (tf , z, v̄) = 1

tf
log[svd(W (tf , 0))i].

K. D. Mease et al. analyze the finite time Lyapunov exponents for gaps to
identify slow and fast directions. Lyapunov exponents and vectors are suit-
able for this task as they are independent of the current coordinate system
and metric [114, 115]. We can use this information to check if there is a large
gap in the finite time Lyapunov exponents for our computed solution.

Stretching ratio

A model reduction approach which is based on stretching ratios is discussed
in [2, 3, 4]. It is applied to models of explosive kinetics in [40, 68].
We consider the same ODE system as before with the differential equation
for the linearized system

Dv = JS(z)v, v(t) ∈ Rn.

The rate of change of the length of the disturbance v is described by

D
(
‖v‖22

)
=

2〈JS(z)v, v〉2
‖v‖22

‖v‖22.

Based on this observation, the local stretching ratio r at z̄ ∈ Rn is defined
as the ratio

r :=
ων
ωτ

of the normal stretching rate

ων(z̄) := max
‖n̂‖2=1

〈JS(z̄)n̂, n̂〉2

to the tangential stretching rate

ωτ (z̄) := 〈JS(z̄)Ŝ(z̄), Ŝ(z̄)〉2,

where Ŝ := S
‖S‖2 is the normalized right hand side. The maximum is taken

over all vectors n̂ in the normal space to the manifold in z̄. It can be
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computed with a variant of Gram–Schmidt orthogonalization. Furthermore,
the corresponding time averaged values

〈ωτ 〉(tf) = 1
tf

∫ tf

0
ωτ (z(t)) dt

〈ων〉(tf) = 1
tf

∫ tf

0
ων(z(t)) dt

can be used for analysis. The comparison of the stretching rates r for the
results of neighboring SIM point approximations can help to identify outliers.

In the Gram–Schmidt algorithm, an orthogonal decomposition of the Jaco-
bian matrix is computed of the form A = QR, A,Q,R ∈ Rn×n, where A is
the Jacobian matrix to be decomposed, Q is an orthogonal matrix, and R
is an upper triangular matrix. In the implementation, a stabilized version
of the Gram–Schmidt algorithm is used as described in [70, p. 231f.]. We
need the normalized first column of A as first column of Q. Therefore, an
accordingly adapted version of the algorithm is implemented.

5.5.3 Visual tests
“Eye inspection” can be helpful in case of test problems which consist of a
low-dimensional ODE. The SIM approximation should attract nearby trajec-
tories. This can be tested by an analysis of the course of trajectories started
in the neighborhood of the results of the optimization problem.
Furthermore, a SIM approximation should be on an invariant manifold. This
is of special importance if the approximation is used in an integration scheme
as e.g. in [48, 134]. The invariance condition defined in [74, p. 218] is related
to the consistency property defined in [105].

Definition 5.5.1 (Consistency property [105])
Suppose an optimal trajectory z̃(t) is identified by a solution of the optimiza-
tion problem (5.6) or (5.7), respectively. Take the values of the reaction
progress variables z̃j(t1), j ∈ Ipv, at some time t1 > t∗ as new fixed parame-
ter values zj(tnew

∗ ), j ∈ Ipv for the same problem (5.6) or (5.7), and solve the
optimization problem again. If the condition ẑ(tnew

∗ + t) = z̃(t∗+ t1 + t) holds
with the solution and its associated trajectory ẑ(t) of the second optimization
problem, the optimization problem with criterion Φ and its solutions z̃(t∗)
and ẑ(tnew

∗ ) are called consistent.

The consistency property is illustrated in Figure 5.1. It poses a strong de-
mand that is not a priori incorporated into the optimization problems (5.6)
or (5.7). In general, it is not fulfilled for solutions of the optimization prob-
lems as can be seen in Chapter 9.
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Figure 5.1: Illustration of the consistency property. An optimization
problem of type (5.6) or (5.7) is solved for a fixed value (here: 2) for
the reaction progress variable. Its solution defines the trajectory z̃(t)
starting from the blue circle and converging toward equilibrium (red
dot in in the coordinate origin). At a later point in time t1 > t∗, the
progress variable is fixed to the value on the trajectory z̃j(t1) (it is 1,
here), j ∈ Ipv, and the optimization problem is solved again. If the
“new” solution trajectory (the trajectory starting at the black circle)
ẑ(t) coincides with the remaining part of the previous one, we call
the objective function of optimization problem (5.6) or (5.7) and its
solutions z̃(t∗) and ẑ(tnew∗ ) shown as blue and black circle, respectively,
consistent. Otherwise (e.g. if the second solution is as the trajectory
which starts at the red circle), they are called inconsistent.
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The most likely reason for the adop-
tion of a relatively small number of
discrete intervals as the tonal mate-
rial for music is that discretization
or categorization is a typical, if not
universal, strategy used by animals
in order to reduce information over-
load and facilitate processing (. . . )

Edward M. Burns 6
Solution methods for the semi-infinite

optimization problem

The semi-infinite optimization problems (5.1) and (5.6) are solved numeri-
cally with a shooting or a collocation approach to obtain the results presented
in Chapter 9. In this chapter, we have a look at numerical quadrature. This
is the base for collocation methods. We also consider backward differentia-
tion formulae methods that can be used in a shooting approach to compute
a solution of (5.1) or (5.6), respectively.

6.1 Numerical quadrature
The aim of numerical quadrature is the numerical approximation of the value
of a definite integral of a real-valued function f : R→ R∫ b

a
f(x) dx. (6.1)

with a, b ∈ R. In the following, we follow the presentation in [155].

6.1.1 Newton–Cotes quadrature
The Newton–Cotes formulae can be obtained by replacing the integrand f in
(6.1) by a polynomial P (x). Consider an equidistant partition of the interval
[a, b] with the nodes

xi = a+ jh, j = 0, . . . , n,
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step length h = b−a
n , and the number of sub-intervals 0 < n ∈ N. Let Pn be

the interpolating polynomial of degree n or less which adopts the values of
f at xj exactly

Pn(xj) = f(xj), j = 0, . . . , n.

The Lagrange interpolation formula gives

Pn(x) =
n∑
j=0

f(xj)Lj(x), Lj(x) =
n∏

k=0, k 6=j

x− xk
xj − xk

.

With an affine parameter shift to t defined as x = a+ ht, we have

Lj(x) = φj(t) :=
n∏

k=0, k 6=j

t− k
j − k

.

This means ∫ b

a
Pn(x) dx =

n∑
j=0

f(xj)

∫ b

a
Lj(x) dx

= h

n∑
j=0

f(xj)

∫ n

0
φj(t) dt

= h

n∑
j=0

f(xj)wj

with the weights

wj :=

∫ n

0
φj(t) dt.

These weights only depend on n, are tabulated, and are suitable for numerical
quadrature up to n = 6 [155, p. 148].

6.1.2 Gaussian and Radau quadrature
Gaussian quadrature not only allows for freely chosen weights, but also the
grid of nodes xj on which the function f has to be evaluated is not necessarily
equidistant.
The general problem in case of Gaussian quadrature methods is the evalua-
tion of an integral of the real-valued function f : R→ R

I(f) =

∫ b

a
ω(x)f(x) dx

with a nonnegative weight function ω on the interval [a, b], where the bounds
can be infinite. The weight function must be measurable on [a, b]; all its
moments

∫ b
a x

kω(x)dx (for all k = 0, 1, . . . ) must exist and be finite. For any
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polynomial s(x) which is nonnegative on [a, b], relation
∫ b
a ω(x)s(x)dx = 0

has to imply s ≡ 0.
The integration formula is supposed to have the form

Ĩ(f) =
n∑
i=1

wif(xi)

where the weights wi as well as the nodes/abscissas xi have to be determined.
In general, these are constructed via orthogonal polynomials. This allows for
an exact numerical integration of polynomials of maximum possible degree.
The values of xi and wi are tabulated e.g. in [1].
Radau quadrature is a Gaussian quadrature, where ω ≡ 1 is chosen for the
weighting function and Legendre polynomials as orthogonal polynomials on
the finite interval are used. One abscissa is fixed at one end of the interval,
i.e. x0 = a. This reduces the order of the method but is beneficial if the
value f(a) is needed as well.
The values of the weights and abscissas for Radau quadrature are given in the
tables in the next section, taken from [46]. The values given there correspond
to the integration interval [a, b] = [0, 1].

6.2 Numerical solution of ODE systems
The ODE system which describes the dynamics of the model, e.g. in (5.6b)
and (5.6c), has to be solved for computing a solution of the optimization
problem (5.6). Therefore, methods for computing a numerical solution of
ODE systems are presented here. The time scale separation which is sup-
posed to be exploited in model reduction methods (see Section 2.2.1) leads
to the phenomenon of stiffness in the context of numerical solution meth-
ods for ODE. There are fast components in the solution of the ODE that
correspond to large eigenvalues of the Jacobian of the right hand side, and
there are slow components that correspond to small eigenvalues. Hence,
only implicit methods are suitable. We restrict ourselves to a presentation
of collocation methods and differentiation methods based on backward dif-
ferentiation formulae (BDF).

6.2.1 Collocation methods
Collocation methods are described e.g. in [15] and [46], where the following
presentation is taken from. We consider the autonomous scalar ODE

Dz = S(z) (6.2)

with S : R → R sufficiently smooth for simplicity. We want to compute a
solution z : R → R of the ODE with initial value z(t0) = a in the sense
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of an IVP on the time horizon [t0, tf ]. The interval is partitioned with an
equidistant grid t0 < t1 < · · · < tK = tf into K subintervals [tj , tj+1],
tj+1 − tj = h. In a collocation method, a function p is constructed which
fulfills the ODE in k nodes ci, i = 1, . . . , k on each subinterval [tj , tj+1].
In general, a polynomial of degree at most k is used. On each subinterval
j = 1, . . . ,K, k + 1 conditions

p(tj−1) = z(tj−1)

Dp(tj−1 + hci) = S(p(tj−1 + hci)), i = 1, . . . , k

are required. Usually, 0 6 c1 6 · · · 6 ck 6 1 are chosen. The polynomials
are connected at the ends of the subintervals tj via a matching condition

p(tj) = z(tj), j = 1, . . . ,K − 1.

The initial value z(t0) = a is required at the first subinterval.
This results in an s-stage implicit Runge–Kutta formula [46]. It can be
written as

p(tj−1 + hci) = z(tj−1) + h
k∑
l=1

ailkl, i = 1, . . . , s

with the coefficients

ki = S

(
z(tj−1) + h

s∑
l=1

ailkl

)
, i = 1, . . . , s.

The value of the approximated solution at the ends of the subintervals are

p(tj−1 + h) = z(tj−1) + h

s∑
l=1

blkl,

where the values of bi, i = 1, . . . , s, are computed as integrals of Lagrangian
polynomials.
The equivalence of collocation and Runge–Kutta methods (see [46]) allows to
write the coefficients of collocation methods in form of a Butcher tableau as
in Table 6.1, where the implicit Euler method is shown that corresponds to
the Gauss(–Radau) collocation method of first order. The coefficients aij are
given in the top right. The abscissas are in the left column and the weights
in the row at the bottom. The order of a collocation method is the order
of the quadrature method, that the corresponding Runge–Kutta method is
based on.
Gaussian collocation methods based on Gaussian quadrature are of high-
est order. These are also A-stable (see [46, p. 242] for the definition of
A-stability). In this work, we consider highly stiff systems. Therefore, we
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Table 6.1: Butcher tableau for the Radau collocation method of order
1. In the left column are the abscissas; at the bottom are the weights;
at the top right are the zeros (ail) of Lagrangian polynomials [46].

1 1

1

Table 6.2: Butcher tableau for the Radau collocation method of order
3 arranged in the same manner as Table 6.1 [46].

1
3

5
12

−1
12

1 3
4

1
4

3
4

1
4

prefer Gauss–Radau collocation methods as they “have stiff decay” and “are
particularly suitable for the solution of stiff initial value ODEs” [15]. Co-
efficients for three L-stable (see again [46, p. 249] for the concise definition
of L-stability) Gauss–Radau methods of order 1, 3, and 5 are given in Ta-
bles 6.1, 6.2, and 6.3, respectively, as used in our implementation.
We assume that the manifolds we approximate are exponentially attractive
in the sense of Definition 2.1.16. Therefore, it can be helpful not to use an
equidistant partitioning of the interval [t0, tf ] but to enlarge the size of the
subintervals exponentially. In order to achieve this, a factor is implemented
by which the subinterval [ti, ti+1] is larger than the preceding subinterval
[ti−1, ti], i = 1, . . . ,K − 1. This means, it is possible to concentrate many
collocation points in the beginning of the time interval, where the relaxation
phase to the SIM occurs. Less points are sufficient in the latter part of the
trajectory piece which is assumed to be relaxed onto the SIM. In this way, it
is possible to reduce the number of collocation points. However, this factor

Table 6.3: Butcher tableau for the Radau collocation method of order
5 arranged in the same manner as Table 6.1 [46].

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9
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should be handled with care as it has an exponential effect.

6.2.2 Backward differentiation formulae methods
Other popular methods for the numerical solution of stiff ODE systems are
methods based on BDF. These integration methods are a special type of
linear multistep methods for the solution of ODE, where the right hand side
of the ODE system is only evaluated at the end point of the current step
interval in each step [15, 41].
We consider again ODE (6.2). A number of R values zhi ∈ R are computed,
i = 1, . . . , R, e.g. with a starting procedure, that approximate the solution
z(ti) of (6.2) at ti. In a BDF method, a polynomial is constructed which
interpolates the last computed values zhi , i = 1, . . . , R for the fixed number
R. Additionally, the polynomial has to fulfill the ODE at a new point tn ∈ R.
This R step method has (consistency) order R. It can be written for (6.2)
as [15]

R∑
j=0

γj z
h
n−j = hβ0 S(zhn)

with coefficients γj , j = 0, . . . , R, β0, and step size h. These methods are
implicit as β0 6= 0 and solved with Newton’s method or variants of it. BDF
methods are 0-stable up to order 6 and A(α) stable, where the value of the
angle α depends on the order R.
More information can be found e.g. in [15, 82]. The implementation of
D. Skanda [151] is used for a part of the results presented in Chapter 9.

6.3 Numerical solution methods for semi-infinite
optimization problems

In this section, methods for solving the semi-infinite optimization problem
(5.6) numerically (and (5.1) analogously) are compared, which are used in
this work: single shooting, also called sequential approach, and collocation,
also called simultaneous approach. Multiple shooting is a hybrid approach
between sequential and simultaneous. We use multiple shooting only in form
of a double shooting.

Single shooting

The solution method to solve (5.6b) and (5.6c) and the solution method to
solve the optimization problem (5.6) are decoupled in the sequential – in
optimal control called direct single shooting – approach. The initial values
(z(t0), T (t0)) are used as optimization variables. Starting at t0, the ODE
system is integrated with an integration scheme. In our case of stiff ODE
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systems, a stiff ODE solver based on BDF methods is used. The integrand
in the objective function formulated as a Lagrange term, see Section 3.1.1,
is integrated itself. The value at the end point tf is evaluated in form of a
Mayer term objective functional.
The resulting nonlinear programming (NLP) problem is solved indepen-
dently. Derivatives required in the algorithm for solving the NLP problem
are computed by the ODE solver, e.g. via an internal numerical differentia-
tion (IND) scheme [22, 23].
It can be stated that the single shooting method is very effective in the cases
t∗ = t0 and t∗ = tf in problem (5.6) in case of stable ODE systems (5.6b)
and (5.6c); see the results in Chapter 9.

Collocation

Often, especially in case of instable or extremely stiff systems, it is beneficial
to use an all-at-once approach to solve (5.6). In this simultaneous approach,
the methods to solve the ODE system and to solve the optimization problem
are coupled. The state profiles are fully discretized “in time using collocation
of finite elements” [21].
As described in Section 6.2.1, polynomials are constructed for each state zs,
T with s = 1, . . . , nspec on each sub-interval [tj , tj+1], j = 1, . . . ,K that
fulfill (5.6b) and (5.6c) at the collocation points. All state variables at all
collocation points are used as optimization variables in the NLP problem.
The Lagrange term objective function is evaluated with the Gauss–Radau
quadrature of corresponding order.
Kameswaran and Biegler analyze convergence rates for Gauss–Radau collo-
cation in application to optimal control problems in [87]. Their results are
applicable in the cases considered here by omitting the control variables.

Multiple shooting

Multiple shooting is a hybrid approach combining the benefits of the se-
quential and the simultaneous approach. It is very useful for instable and
stiff systems of ODE in the constraints. It is used to solve boundary value
problems e.g. in [94] and to solve optimal control problems in [29, 128].
The interval [t0, tf ] is split into subintervals [tj , tj+1], j = 0, . . . ,M − 1, that
are usually larger than in case of the collocation approach described before.
The initial value problem to solve the ODE constraints (5.6b) and (5.6c)
with initial values z(t0), T (t0) is decomposed into M independent initial
value problems on the subintervals. We consider the scalar ODE (6.2) again.
On each subinterval [tj , tj+1], j = 0, . . . ,M − 1, the problem

Dzj(t) = S(zj(t))

zj(tj) = sj
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is solved with sj ∈ R. Continuity of the solution is assured by matching
conditions

sj+1 = zj(tj+1; si), j = 0, . . . ,M − 1

with s0 = a. These conditions are additional constraints in the resulting NLP
problem. This NLP problem has more degrees of freedom and in general is
large in comparison to the resulting NLP problem in the single shooting
approach, but sophisticated condensing strategies can be applied [24].
For the solution of the optimization problem (5.6) in case of t∗ ∈ (t0, tf),
we divide the interval into the two sub-intervals [t0, t∗] and [t∗, tf ] and apply
one matching condition. A solution method for the resulting NLP problem
is discussed in the next chapter.
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7
Numerical methods for nonlinear

programming problems

In this chapter, numerical methods for the solution of nonlinear programming
(NLP) problems are considered. We start with generalized Gauss–Newton
methods for the computation of the solution of problem (5.7). We prefer
interior point (IP) methods to solve (5.6) after suitable discretization with
a collocation method or in a shooting approach.

For results of an application of the presented methods, see Chapter 9. We
mainly adopt the notation of [124].

7.1 Generalized Gauss–Newton method

Generalized Gauss–Newton (GGN) methods can be used to solve the opti-
mization problem (5.7). GGN methods are often used to compute a numer-
ical solution of constrained least squares problems which typically have to
be solved in parameter estimation problems.

The presentation in this section mainly consists of content of [24] and the
lectures [25] and [27] by H. G. Bock as taught in winter term 2006 and
summer term 2007 at the University of Heidelberg. This section further
includes the filter method as described in [167, 168] and some ideas from
[57].
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7.1.1 Basic solution method
We consider constrained nonlinear least squares (CNLLS) problems of the
form

min
x∈Rn

1
2‖F1(x)‖22 (7.1a)

subject to

F2(x) = 0 (7.1b)
F3(x) > 0, (7.1c)

where the functions Fi : D → Rni , i = 1, 2, 3, are supposed to be at least
twice continuously differentiable in a domain D ⊂ Rn. The problem is solved
iteratively with the iterates xk+1 = xk+tkdk, where dk ∈ Rn is the increment
and tk ∈ (0, 1] the step length. Let us first assume a full step method (which
means that tk = 1 for all k).

Linearization

The increment dk ∈ Rn is computed as the solution of the linearization of
problem (7.1), which itself is a constrained linearized least squares (CLLS)
problem

min
d∈Rn

1
2‖F1(xk) + J1(xk)d‖22 (7.2a)

subject to

F2(xk) + J2(xk)d = 0 (7.2b)
F3(xk) + J3(xk)d > 0, (7.2c)

where Ji is the Jacobian matrix of Fi for i = 1, 2, 3.

Lemma 7.1.1 (Lemma 3.1.18 in [24])
The point (x∗, λ∗1, λ

∗
2) is a KKT point of the CNLLS problem (7.1) if and

only if the point (0, λ∗1, λ
∗
2) is a KKT point of the CLLS problem (7.2) at

xk = x∗.

Proof. See [24]. �

We assume that LICQ, second order sufficient optimality conditions, and
strict complementarity are valid at the solution of the optimization problems.
Hence, the active set in a neighborhood of the solution does not change. We
omit inequality constraints which can be treated with an active set strategy
in the further discussion of local convergence: Active inequality constraints
are considered as equality constraints; inactive inequality constraints are
neglected.
We make the assumption that LICQ is fulfilled and JT

1 J1 is positive definite
on the kernel of J2 in the iterate xk. Thus, there exists a solution operator
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J+(xk) : Rn1+n2 → Rn for the equality constrained problem (7.2a) subject
to (7.2b) such that d = J+F with FT := (FT

1 , F
T
2 ) [24]. This J+ is a

generalized inverse for

J :=

[
J1

J2

]
,

i.e. J+JJ+ = J+. Its explicit form is given by

J+ =
[
In 0n2

] [JT
1 J1 JT

2

J2 0

]−1 [
JT

1 0
0 In2

]
,

where In is the unit matrix of dimension n. In case of an unconstrained
optimization problem, J+ reduces to the Moore-Penrose pseudo inverse J†.
The theory of CNLLS problems is studied extensively in [24].

Solution method

In order to solve the CLLS problem (7.2), we use the following strategy as
proposed by Stoer in 1971 [25, 154]. The argument xk is omitted in the
following presentation for a clear notation. This method is chosen because
it does not require positive definiteness of JT

1 J1 on the null space of J2 in
every iterate.

Remark 7.1.2
In the optimization problems considered in this thesis, LICQ is always ful-
filled by mass and energy balances in the constraints. This can be seen via
Equation (4.6) if we assume that there are no two chemical elements that
can be found in every chemical species at the same amount, i.e.∗

∀(i, j), i 6= j, i, j ∈ {1, . . . , nelem} ∃s ∈ {1, . . . , nspec} : χi,s 6= χj,s.

All chemical species and the temperature make a contribution to the value
of the internal energy and enthalpy as can be seen in Equations (4.8) and
(4.9). These arguments ensure that LICQ holds.

First, the Jacobian matrix of the constraints is decomposed in the form
J2 = LQ with a lower triangular matrix L and an orthogonal matrix Q. In
our code, we use the LAPACK routine dgeqrf.f, which is an implementation
of efficient Householder transformations. With the matrix Q, the Jacobian
matrix J1 of F1 is transformed to J1 = [A1 A2]Q. We denote the triangular
matrix as L = [L̃ 0]. The composed Jacobian matrix J can be written as

J =

[
J1

J2

]
=

[
A1 A2

L̃ 0

]
Q.

∗See Chapter 4 and Section B.2 for the notation.
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The transformed vector increment d̃ is defined as d̃ = Qd. It can be split
into d̃T = (d̃T

1 d̃T
2 ) with d̃1 ∈ Rn2 and d̃2 ∈ Rn1−n2 . The equality constraint

(7.2b) allows to compute d̃1 via

F2 + L̃d̃1 = 0.

The remaining unknown d̃2 is the solution of the unconstrained least squares
problem

min
d̃2

1
2‖F1 +A1d̃1 +A2d̃2‖22.

There are several strategies to solve this. In our implementation, we use
the LAPACK routine dgelsy.f based on a QR decomposition. Finally, the
increment d is given as d = QTd̃.
The Lagrange multipliers λ = λ(xk) are needed together with the current
iterate, e.g. for an evaluation of a merit function or within an active set
strategy. The formula for a root of the gradient of the Lagrangian function
(of the CLLS problem) is

JT
1 J1d+ JT

1 F1 = JT
2 λ.

The residuum is defined as R1 := F1 + J1d. The resulting equation

JT
2 λ = QTLTλ = JT

1 R1

can be solved directly with the decomposed J2.

7.1.2 Local convergence
In [24], a local contraction theorem is shown. It guarantees a well-defined
iteration, convergence to the solution, a linear rate of convergence, and gives
an a priori estimate for the distance of the iterates to the solution.

Theorem 7.1.3 (Bock’s local contraction theorem [24])
Let D be a region, F : D → Rn1+n2, F = (FT

1 , F
T
2 )T ∈ C1(D), J the deriva-

tive of F , and J+ the corresponding generalized inverse. Let furthermore for
all x, y ∈ D, t ∈ [0, 1] with y − x = −J+(x)F (x) and initial value x0 ∈ D
the conditions

(1) ‖J(y)+(J(x+ t(y − x))− J(x))(y − x)‖2 6 ωt‖y − x‖22
with ω <∞

(2) ‖(J(y)+ − J(x)+)R(x)‖2 6 κ(x)‖y − x‖2
with R(x) = F (x)− J(x)J(x)+F (x) and κ(x) 6 κ < 1

(3) δ0 = κ+ ω
2 ‖∆x0‖2 < 1

with δk := κ+ ω
2 ‖∆xk‖2 < 1 and ∆xk := −J(xk)

+F (xk)
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(4) D0 :=
{
z
∣∣∣ ‖z − x0‖2 6 ‖∆x0‖2

1−δ0

}
⊂ D

be fulfilled. Then it holds:

(i) The iteration xk+1 = xk + ∆xk is well defined and remains in D0.

(ii) There exists an x∗ ∈ D0 with xk → x∗ for k →∞.

(iii) There is an a priori estimate ‖xk+j − x∗‖2 6 ‖∆xk‖21−δk δjk.

(iv) The rate of convergence is linear with

‖∆xk+1‖2 6 δk‖∆xk‖2 = κ‖∆xk‖2 + ω
2 ‖∆xk‖

2
2.

Proof. See [24]. �

The meaning of the two Lipschitz constants ω and κ is discussed in [24], too.

Curvature

In our case, the function F is C∞ in the compact feasible domain (the re-
alizable composition space with its boundary). Hence, the existence of an
ω < ∞ under optimality conditions can be proven. The value of ω can be
understood as a measure for the nonlinearity of the model. Its inverse ω−1

characterizes the region, where the linear approximation of F is sufficiently
good [24].

Incompatibility

The constant κ is called incompatibility constant. Existence of a finite κ can
be guaranteed by a similar argumentation as in case of ω. However, it is
important that κ < 1. This is the case for a small residuum R(x∗) [25]. In
case of so called large residual solutions, the GGN full step method does not
necessarily converge, but global convergence can be achieved with e.g. a line
search method based on a merit function, see Section 7.1.3.

7.1.3 Global convergence
In case the initial guess x0 is not in the local contraction region of the GGN
method, a globalization strategy has to be used. This can be based on a trust
region, a merit function, a filter, or the restrictive monotonicity test [28, 124],
which are all restrictions to the step size tk in the iteration xk+1 = xk+ tkdk.
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Merit function

Merit functions find a compromise between the desire to minimize the ob-
jective function and to fulfill the constraints. A line search is performed in
direction of the increment d to find a minimum of the merit function.
In our implementation, the `1 penalty function is used as merit function. It
is defined in the current context as

`1(x) = 1
2‖F1(x)‖22 +

n2∑
i=1

αi|F2,i(x)|+
n3∑
j=1

βj |min{0, F3,j(x)}|

with the penalty parameter vectors α ∈ Rn2 , β ∈ Rn3 . In some publications,
the authors propose to use a fixed αi = βj = τ ∈ R for all i, j. This is
an exact merit function (i.e. a minimum x∗ of `1 is also a minimum of the
corresponding CNLLS problem) if αi > |λ∗i | with the Lagrange multipliers λ∗i
at the solution for all i = 1, . . . , n2 and the same condition holds for βj with
the corresponding multipliers µj , j = 1, . . . , n3. The directional derivative
of `1(x) in direction of the increment d is given by

∂d`1(x, d) = F1(x)J1(x)d+
∑

F2,i(x)>0

αiJ2,i(x)d

−
∑

F2,i(x)<0

αiJ2,i(x)d+
∑

F2,i(x)=0

αi|J2,i(x)d|

−
∑

F3,i(x)<0

βiJ3,i(x)d+
∑

F3,i(x)=0

βi min{0, J3,i(x)d}

with Jj,i(x) the derivative of the i-th component function of Fj(x), j = 2, 3
[26].
As the Lagrange multipliers at the solution λ∗i are unknown during the iter-
ations, they have to be estimated. Two different strategies are implemented.
The maximum strategy uses the maximum absolute value of the current La-
grange multipliers λkj as proposed in [124] increased by a small parameter ε
(and the same for βki with the corresponding multipliers µi)

αki = max
j=1,...,n2

(|λkj |) + ε, i = 1, . . . , n2.

The second, “inheritance” based version includes also the old values αk−1
i of

the last iteration [26]

αki = max{|λki |, 1
2(|λki |+ αk−1

i )}+ ε, i = 1, . . . , n2,

and analogously for βki .
The line search is implemented with an Armijo-type condition [14] with
backtracking. In both cases for the choice of αki and βki , the line search
condition very often only accepts small step sizes in praxis in our experience.
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Second order correction

Many algorithms employing a step size strategy for globalization of conver-
gence suffer from the Maratos effect: As described before, the goal of the
merit function is to find a trade off between the minimization of the objective
function and the violation of the constraints. It can occur that the constraint
violation is penalized too sharply. A temporary violation could improve the
progress of the algorithm. Different strategies are possible to overcome this
effect.
In a watch dog strategy, a small fixed number of full step iterations are
performed. The progress of the algorithm is analyzed, and it is decided if
the full steps are acceptable or a reduced step size is preferable.
Another strategy to prevent the Maratos effect is a second order correction
(SOC). The SOC increment is defined as [124]

d̂ := −J2(x)T(J2(x)J2(x)T)−1F2(x+ d),

where we omit the index k of the iterates.
In the current context, the following interpretation from [124] is adequate.
Assume the full step with increment d causes a large violation of the con-
straint F2. We want to reduce this in another correction step, which means

F2(x+ d+ d̂) = 0.

We linearize the expression around the full step x+ d. This leads to

F2(x+ d+ d̂)
.
= F2(x+ d) + J2(x+ d)d̂.

As this is an underdetermined system, we use a minimal norm formulation

min
ď
‖ď‖22 (7.3a)

subject to
F2(x+ d) + J2(x+ d)ď = 0. (7.3b)

This calls for a new evaluation of the constraints F2 and the Jacobian matrix
J2. Since J2(x) is already decomposed, see Section 7.1.1, we assume that
J2(x+ d)

.
= J2(x) in problem (7.3)†.

†In our application, the nonconstant entries of J2 are given as (see Chapter 4 for the
notation)

d

dT

(nspec∑
s=1

H̄◦s zs −
RT

M̄

)
=

nspec∑
s=1

C̄◦p,s zs −R
nspec∑
s=1

zs

d

dzi

(nspec∑
s=1

H̄◦s zs −
RT

M̄

)
= H̄◦i −RT, i = 1, . . . , nspec

for isoenergetic systems, see also Equation (4.8). In case of isenthalpic systems, the
subtrahends in the two formulae fall away, cf. Equation (4.9).
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The solution of the resulting problem

min
ď
‖ď‖22

subject to
F2(x+ d) + J2(x)ď = 0

is [19]
d̂ = −J2(x)T(J2(x)J2(x)T)−1F2(x+ d).

We can recycle the decomposition J2(x) = LQ and L = [L̃ 0] from Sec-
tion 7.1.1 such that d̂ is computed as

d̂ = −J2(x)T(LLT)−1F2(x+ d)

= −J2(x)TL̃−TL̃−1F2(x+ d).

Filter method

In our experience, the merit function approach restricts the step size tk too
much in our application. The SOC strategy described in the section before
yields no reasonable improvement in our application, too. Hence, a modern
filter approach is used as an alternative to the merit function.
Filter approaches are proposed in [57] as a globalization strategy for a se-
quential quadratic programming (SQP) [129] trust region algorithm. Global
convergence results for this method are shown in [58]. Global convergence
for a filter method combined with interior point methods is shown in [160].
In [167], a filter method is presented which is applicable for globalization of
sequential quadratic programming or interior point frameworks, and global
convergence is proven. The filter approach that we use for globalization of
the GGN method is an implementation similar to the filter used in Ipopt
[167, 168].
The basic idea of a filter method is that the optimization problem is treated
as a bi-objective problem: minimize the constraint violation and minimize
the objective function. So a step is accepted when it reduces the constraint
violation or the objective function. It is clear that there should be an equi-
libration between the two “objectives” in such a way that a reduction in the
constraint violation is favorable to a reduction in the objective function.
The infeasibility measure is defined via

Θ(x) :=

n2∑
i=1

|F2,i(x)|+
n3∑
i=1

|min{0, F3,i(x)}|,

similar as in [57], and
f(x) := 1

2‖F1(x)‖22
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is a short notation for the least squares objective function. As in the original
publication [167], we accept a step length tk for the step xk + tkdk if it
provides sufficient reduction in comparison to the current iterate xk, i.e. if

Θ(xk + tkdk) 6 (1− γΘ)Θ(xk) (7.5a)

or
f(xk + tkdk) 6 f(xk)− γfΘ(xk) (7.5b)

with the two small parameters γΘ and γf , for which in the implementation
10−5 is taken.
As stated in [167], this could lead to a feasible but nonoptimal point, as
these conditions are based on the infeasibility measure in the current iterate.
Therefore, a so-called f -type switching condition is introduced [168]

fx(xk)dk < 0 and tk(−fx(xk)dk)
sf > δ(Θ(xk))

sΘ (7.6)

with the partial derivative

fx(xk) = F1(xk)J1(xk)

and constants for which the same values are used as in Ipopt [168], namely
δ = 1, sf = 2.3, and sΘ = 1.1. If condition (7.6) holds and Θ(xk) is smaller
than a certain threshold (Θmin = 10−4 in our implementation), an Armijo
type condition [14] is used. If

f(xk + tkdk) 6 f(xk) + ηf tkfx(xk)dk (7.7)

with constant ηf = 10−8 holds, the trial point xk + tkdk is also acceptable.
If a trial point xk + tkdk is acceptable for the sufficient reduction criterion
(7.5) or for (7.6) and (7.7), it still has to be acceptable to the filter for being
accepted as new iterate. The filter Fk is a set – in the implementation a list
of pairs –

Fk ⊆ {(ϑ, ϕ) ∈ R2 | ϑ > 0}.

A trial point xk + tkdk is acceptable to the filter, if it is not contained in the
filter xk + tkdk /∈ Fk. The initial filter is given with a large ϑ0 > 0 as the
half plane F0 = {(ϑ, ϕ) ∈ R2 | ϑ > ϑ0}.
Every time a point is accepted as new iterate via the sufficient reduction cri-
terion (7.5) (and the filter) and at the beginning of the feasibility restoration
phase (see the section below), the filter is updated

Fk+1 := Fk ∪
{

(ϑ, ϕ) ∈ R2 | ϑ > (1− γϑ)Θ(xk) and ϕ > f(xk)− γϕΘ(xk)
}

with the constants γϑ = 10−5 and γϕ = 10−5 which ensure sufficient progress
of the algorithm.
In our implementation, the filter method replaces the merit function ap-
proach as it shows better convergence properties.

85



Chapter 7 | Numerical methods for nonlinear programming problems

Active set strategy

For the treatment of a detailed combustion model as described in Chapter 4,
it is crucial for the iterates to be nonnegative as the model can not be
evaluated in the negative domain. The linearization of the nonnegativity
constraints x > xl := 0 ∈ Rn is given by

x+ I · d > xl. (7.8)

We use an active set (AS) strategy to deal with this inequality. The AS I
is defined as the indices of the active inequality constraints in the current
iterate. Suppose a candidate x+ td for a step violates Equation (7.8). If this
is the case, the smallest step length

tmin = min
i∈{1,...,n}\I

(
xl,i−xi
di

)
is identified such that the border of the feasible domain is precisely reached
xi + tmindi = xl,i for one index i. If the shortened step x+ tmind is accepted
by any of the ways described before, the exactly fulfilled equation is added
to the equality constraints, I = I ∪ {i}, and the shortened step is accepted
as new iterate.
If a previously accepted step does not violate any inequality constraint, it is
checked if the active set is too large. That means, if the Lagrange multipli-
ers related to one or more active inequality constraints are lower than zero
(λi < 0), one active inequality for which this is the case, e.g. the active in-
equality constraint of these with the largest Lagrange multiplier in modulus,
is deactivated in the next step.
An alternative to an active set strategy may be an inverse barrier function

P (x) = f(x) + δ

∥∥∥∥ 1

F3(x)

∥∥∥∥2

2

similar to that presented in [54] with a barrier parameter δ > 0. It could be
used for a Filter-IP-GGN method instead of the discussed Filter-AS-GGN.
However, an AS method should perform better for the problems considered in
this work than an IP method as we expect that constraints for nonnegativity
are activated only seldomly. Therefore, the effort to use a homotopy method
and to drive the homotopy parameter to zero is not justifiable.

Feasibility restoration phase

There might be the case that a candidate for an iterate xk + tkdk is not
acceptable via the criteria discussed before even after several reductions (in
the implementation: 5) of the step length tk,j = γj for j = 0, . . . , e.g. with
γ = 0.5. In this case, a feasibility restoration phase is used. The aim of a
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feasibility restoration is to find a feasible point as a new iterate xk+1 that is
“near” to xk and acceptable to the updated filter. If the feasibility restoration
phase fails, this indicates an error in the optimization model or a very bad
scaling. The goal to find a feasible point that is “near” to xk can be written
in context of GGN methods with the last accepted iterate x = xk as the
following CNLLS problem

min
x̄

1
2‖x̄− x‖

2
2 (7.9a)

subject to

F2(x̄) = 0 (7.9b)
F3(x̄) > 0. (7.9c)

We solve problem (7.9) iteratively with increments d̄ computed as solution
of a CLLS optimization problem

min
d̄

1
2‖x̄k − x+ d̄‖22

subject to

F2(x̄k) + J2(x̄k)d̄ = 0

F3(x̄k) + J3(x̄k)d̄ > 0

and initial value x̄0 := x. We define functions F̄1 := x̄k − x + d̄, F̄j := Fj ,
j = 2, 3, and their Jacobian matrices J̄1 = I and J̄j = Jj , j = 2, 3; the
considerations presented in Sections 7.1.1 and 7.1.2 are directly applicable
and matrix factorizations, e.g. of J2, can be recycled.
It would be possible to use a similar restoration phase as Ipopt [168], where
an optimization problem with a relaxed feasibility in F2(x̄) = 0 is solved

min
x̄

1
2‖F2(x̄)‖22 + δ̄

2‖x̄− x‖
2
2

subject to
F3(x̄) > 0.

A homotopy parameter δ̄ balances the desires of a feasible point and a point
that is “near” to the previous iterate. This alternative restoration phase is
not implemented, yet.

Scaling and termination

It is beneficial for the numerical stability of the algorithm to scale all vari-
ables to a similar magnitude. We assume that the starting values for the
optimization (the values given by the user for a first call or the values of the
Euler prediction within a warm start, see Section 8.1.2) are reasonable.
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An automatic scaling is implemented following the ideas of [64]. Scaling by
a diagonal matrix is considered to keep computations as simple as possible

x̃ = D−1x,

where x ∈ Rn is the original (specific moles and temperature) vector; x̃ ∈ Rn
is the scaled vector. We define the diagonal matrix D ∈ Rn×n, D = diag(d)
with d ∈ Rn for initial values x0

i 6= 0 in the current call of the optimization
algorithm as

di = 10blg(|x0
i |)c, i = 1, . . . , n,

where b·c is the floor function. Otherwise, di = 1 is used.
A scaling of the form x = Dx̃+ c with c ∈ Rn where

di = 1
2(bi − ai), i = 1, . . . , n

ci = 1
2(bi + ai), i = 1, . . . , n

with upper and lower bounds ai 6 xi 6 bi, i = 1, . . . , n, is also tested. It is
necessary for this scaling to provide realistic bounds for the species, which
is difficult for models including multiple scales.
In our implementation, the objective function is also scaled. It is beneficial
if the objective function at the solution is O(1). So the magnitude of the ob-
jective function in the previous solution is used as a guess for the magnitude
of the objective function at the solution of the next optimization problem.
Absolute convergence tolerances ε̄i, i = 1, . . . , n, and a relative convergence
tolerance ε̂ have to be specified. If the condition

|di| 6 max{ε̂ |xi|, ε̄i}

holds for all i = 1, . . . , n, the algorithm terminates at the numerical solution.

Proof of global convergence

Wächter and Biegler show global convergence of line search filter methods
in [167]. This is done for IP- and SQP-filter methods. A number of assump-
tions is necessary. They mainly ensure sufficient smoothness of all functions.
We can interpret the GGN method as an SQP method with Gauss–Newton
approximation of the Hessian of the Lagrangian. This means, the results of
[167] are directly applicable here if Hk in [167, p. 22] is Hk = J1(xk)

TJ1(xk)
in each iteration.

7.2 Interior point method
The main difference of interior point (IP) methods, also called barrier meth-
ods, see e.g. the review [59], in comparison to sequential quadratic program-
ming methods [129] is the handling of the inequality constraints. Results
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presented in Chapter 9 are partly computed with the optimization software
package Ipopt. The theory of Ipopt is published and discussed in detail in
[165, 166, 167, 168]. We have a short overview of IP methods in this section.
As it is done in [168], we consider the NLP problem

min
x∈Rn

f(x) (7.12a)

subject to

F2(x) = 0 (7.12b)
x > 0 (7.12c)

with the equality constraint function F2 : Rn → Rn2 , inequality constraints
for nonnegativity, and the objective function f : Rn → R.
Interior point methods approximate a solution of the primal dual equations,
that are the KKT conditions for problem (7.12) with a relaxed complemen-
tarity

∇xf(x)−∇xF2(x)λ− µ = 0

F2(x) = 0

diag(x)µ− δe = 0

x > 0

(7.13)

with the vector e ∈ Rn, e = (1, . . . , 1)T. The relaxation parameter δ > 0 is
driven toward zero iteratively.
On the other hand, this method can be interpreted as a barrier method,
where the optimization problem

min
x∈Rn

f δ(x) := f(x)− δ
n∑
i=1

ln(xi)

subject to
F2(x) = 0

is solved.
System (7.13) is solved with Newton’s method. The algorithm always de-
creases the homotopy parameter δ if the maximum error in the scaled equa-
tions in (7.13) is lower than a certain tolerance. An iterate is accepted as
numerical solution, if the maximum error in (7.13) with δ = 0 (the KKT
error) is lower than a user specified tolerance.
If it is impossible to solve the linear system in a Newton iteration due to (an
almost) singularity of the KKT matrix, a regularization (inertia correction)
of the KKT matrix is done. On the other hand, update formula can also
be used. Ipopt offers a limited memory Broyden–Fletcher–Goldfarb–Shanno
(BFGS) update method. The usage of the Hessian of the Lagrangian function
usually leads to faster convergence in our experience.
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Remark 7.2.1
In Ipopt, a scaling of the gradients is used. We use the default scaling only
for the objective function and for the collocation equations in the constraints
in case a collocation method is employed, see Section 6.2.1. The other con-
servation constraints are assumed to be well scaled. This scaling is also
considered in the computation of the step size in the continuation method
described in the next chapter.

Remark 7.2.2
We use the monotonic strategy for the choice of parameter δ. The value of
δ is kept constant in a hot start, see Section 8.5.

7.3 Computation of derivatives for the optimiza-
tion algorithm

As seen in previous sections, derivatives of the objective function and the
constraints with respect to the optimization variables are necessary for the
evaluation of the KKT conditions in order to solve the NLP problem. Besides
analytic differentiation, there are two basic ways for the computation of the
derivatives: finite differences and automatic differentiation.

Finite differences

Let f : R → R be the function which is supposed to be differentiated. The
one-sided (forward) difference quotient with step size h is given as

f(x+ h)− f(x)

h
=

d

dx
f(x) +O(h),

and the central difference quotient is

f(x+ h)− f(x− h)

2h
=

d

dx
f(x) +O(h2).

In both cases, a large number of valid digits are lost due to cancellation errors.
This is undesirable if one deals with systems which involve many different
time scales. Hence, we prefer automatic differentiation. Finite differences
are only used in our implementation for a cross check of derivatives.

Automatic differentiation

Automatic differentiation, sometimes also called algorithmic differentiation,
is based on the differentiation of the calculation rule of a computer code
itself. The chain rule is used to derive an algorithmic expression for the
computation of the derivative. There are two basic modes of automatic
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differentiation: forward and reverse. The forward mode is beneficial if the
range space of the function to be differentiated has a higher dimension than
the space in which its domain is located and vice versa. We use the code
CppAD [17] for automatic differentiation.
The theory of automatic differentiation is not topic of this thesis and can be
found e.g. in [79].

Imaginary finite differences

It can be useful to use imaginary finite differences [153]. This is the case
if only first order derivative information is necessary. It can be used in
our implementation for the computation of the derivative of the objective
function with respect to the optimization variables. If Ipopt [168] is used
as optimization tool, a BFGS update formula can be applied instead of an
evaluation of the Hessian matrix of the Lagrangian function. Consider the
real-valued, analytical function f : R→ R. The derivative approximation is
given as

d

dx
f(x)

.
=
=f(x+ ih)

h
,

where =(y) is the imaginary part of y ∈ C and i is the complex unit, see
[135]. In contrast to finite differences, no cancellation error is introduced
with this imaginary step.
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I must continue to follow the path I
take now. If I do nothing, if I study
nothing, if I cease searching, then,
woe is me, I am lost.

Vincent van Gogh

8
Path following

The approximation of points on the SIM, that is computed as solution of
optimization problem (5.1) introduced in Chapter 5, can be used e.g. in
computational fluid dynamics (CFD) and other applications. In this context,
a large number of approximation points of the SIM for different values of the
reaction progress variables is needed. This means, problem (5.1) has to be
solved repeatedly for varying values of zt∗j , j ∈ Ipv.
In order to achieve this, a warm start or hot start method for initialization
of the algorithm (the corrector) to solve a neighboring optimization problem
can be useful to save computation time. The initialization of the corrector
algorithm (with a predictor) is done by means of the computed solution of
the previously solved optimization problem. Together with such a warm
start method, a homotopy method with a step size control can be of benefit
to save computation time as it is shown for an example in Section 9.3.2.
Such path following or continuation or homotopy methods are considered in
this chapter. The theoretical basis of continuation methods is discussed in
Section 3.3 with the theory of parametric optimization problems.
The predictor corrector scheme and the computation of parameter sensi-
tivities of NLP problems are described in the first section of this chapter.
Afterward, the step size strategy is explained. If the sequential approach
(see Chapter 6) is used to solve the general optimization problem (5.1) or
(5.6) for SIM approximation, the computation of the tangent space of the
SIM calls for more explanation, described in Section 8.3. Finally, aspects
of the implementation of the homotopy method in the C++ code developed
together with this work are explained, such as the scaling of linear equation
systems and problems with the warm start of interior point methods.
For the presentation in this chapter, we adapt content of [9] to our purpose.
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8.1 Predictor corrector scheme
In the following, we consider the finite parametric optimization problem

min
x∈Rn

f(x) (8.1a)

subject to

0 = g(x) (8.1b)

0 = xj(i) − ri, i = 1, . . . , nr (8.1c)

0 6 x, (8.1d)

where the functions f : D → R and g : D → Rn2 are C2(D) in the open
domain D ⊂ Rn. The reaction progress variables in (8.1c) are denoted by
the parameter vector r ∈ D̃ ⊂ Rnr , ri = zt∗j(i), i = 1, . . . , nr, nr < n − n2

with the notation of Equation (5.6e), where j : {1, . . . , nr} → Ipv, i 7→ j(i)
is a bijective map to the index set Ipv ⊂ {1, . . . , n} of the reaction progress
variables and ri is the i-th component of r.
The optimization problem (8.1) can be considered in different ways in de-
pendence of the solution method to solve (5.6): In case a collocation method
is applied to solve (5.6), x corresponds to all discrete approximations of
z(ti), T (ti) at the Gauss–Radau points ti, see Section 6.2.1. Equality con-
straints other than the fixation of the reaction progress variables, e.g. from
the collocation discretization of the ODE constraints in (5.6) as described in
Section 6.2.1, are collected in the nonlinear function g. If the BDF integra-
tion method is used in a shooting approach to solve (5.6), see Section 6.3,
nonnegativity is only demanded for the optimization variables x that corre-
spond to the initial values z(t0), T (t0) in (5.6). The optimization problem
(8.1) can also be considered as the NLP problem (5.7) with the previously
described notation for the reaction progress variables, objective function,
and constraints.
In Section 3.2, the KKT conditions of the parametric optimization problem
are written in short form as

K(x, λ, µ, r) = 0 (8.2)

with the primal variables x, the dual variables λ and µ, and the parameter
vector r.

8.1.1 Parameter sensitivities
The derivative of a solution (x∗, λ∗, µ∗) of the parametric optimization prob-
lem with respect to the parameters is given via

D(x,λ,µ)K(x∗, λ∗, µ∗, r) Dr(x
∗, λ∗, µ∗) = −DrK(x∗, λ∗, µ∗, r) (8.3)

94



8.1 | Predictor corrector scheme

if second order sufficient optimality conditions, LICQ, and strict comple-
mentarity are fulfilled, cf. Theorem 3.2.1 in Section 3.2. These parameter
sensitivities are needed to derive the tangent space of the SIM that is con-
sidered in Section 2.3.2.
In the following subsection, the computation of the derivatives Dr(x

∗, λ∗, µ∗)
is described. This depends on the collocation or shooting approach employed
to solve (5.6) that leads to problem (8.1) and the solution method for (8.1).
In case of an active set method for the treatment of (8.1d), see Section 7.1.3,
function KAS replacing K in (8.2) which can be used in an optimization
algorithm to compute a numerical solution of (8.1) can be written as

KAS(x, λ, µ, r) :=


∇f(x)−∇x g(x)λ1 − ΞTλ2 − µ
g(x)

xj(i) − ri, i = 1, . . . , nr

xi, i ∈ A(x),

where only active inequality constraints are under consideration whose in-
dices are collected in the active set A(x) in x. Matrix Ξ := (ξi,m) with
i = 1, . . . , nr and m = 1, . . . , n is given via

ξi,m :=
d

dxm
(xj(i) − ri)

which yields

ξi,m =

{
1, if m = j(i),

0, else.

The Lagrange multipliers that correspond to the equality constraints in
(8.1b) are denoted λ1 ∈ Rn2 . The Lagrange multipliers corresponding to
the equality constraints for the fixation of the reaction progress variables in
(8.1c) are denoted λ2 ∈ Rnr .
In the case that an interior point method is employed to compute a solution
of (8.1) numerically, the inequality constraints (8.1d) are coupled to the
objective function via a barrier term, see Section 7.2. Consequently and
analogously to KAS, KIP can be formulated as

KIP(x, λ, µ, r) :=


∇f(x)−∇x g(x)λ1 − ΞTλ2 − µ
g(x)

xj(i) − ri, i = 1, . . . , nr

diag(x)µ− δe

(8.4)

with x, µ > 0, eT = (1, . . . , 1) ∈ Rn, and a homotopy parameter δ > 0.
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Sensitivities in the GGN method

If Newton’s method is used to find a solution of optimization problem (8.1)
representing (5.7) with an active set strategy, i.e. to compute a root of KAS,
the KKTmatrix D(x,λ,µ)K(xk, λk, µk, r) has to be available in every iteration.
This is different if a generalized Gauss–Newton method is employed.
We return to the notation used in Section 7.1: The objective function is
written as f(x) = ‖F1(x)‖22 with a function F1 : D ⊂ Rn → Rn1 , sufficiently
smooth. The constraints are given by the condition F2(x) = 0 with a function
F2 : D ⊂ Rn → Rn̄2 , n̄2 = n2 + nr + |A(x)| as

F2(x) =


g(x)

xj(i) − ri, i = 1, . . . , nr

xi, i ∈ A(x).

The Jacobian matrices of F1 and F2 are denoted as J1 and J2, respectively.
In the GGN method, one solves in every iteration the equation system[

JT
1 J1 JT

2

J2 0

] [
d
−λ

]
= −

[
JT

1 F1

F2

]
(8.5)

(where the argument xk is omitted and the symbol λ is used for all equality
and active inequality constraints); that is the KKT system of the CLLS
problem (7.2), see Section 7.1. By contrast, one solves[

Lxx −JT
2

J2 0

] [
∆x
∆λ

]
= −

[
∇xL
F2

]
(8.6)

if Newton’s method is applied to find a KKT point of the original CNLLS
problem (7.1). The derivative of the Lagrangian function of the CNLLS prob-
lem is ∇xLT = F1(x)TJ1(x)−λTJ2(x). The difference in the KKT matrices
in Equations (8.6) and (8.5) is the difference in the Hessians of the different
Lagrangian functions: In the GGN method, JT

1 J1 is used; whereas Newton’s
method applied to find a KKT point of the original CNLLS problem (7.1)
exploits

Lxx = ∇xx 1
2‖F1(x)‖22 −

n̄2∑
i=1

λi∇xxF i2(x)

= JT
1 J1 +

(
∂xJ

T
1

)
F1 −

n̄2∑
i=1

λi∇xxF i2(x),

(8.7)

where F i2 is the i-th component of F2.
This work aims at the solution of optimization problem (8.1) for model re-
duction of chemical combustion models. In this case, the constraints g, here
included in F2, represent the linear elemental mass conservation as given
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in Equation (4.6) and eventually a nonlinear energy balance, see (4.8) and
(4.9).
So the second derivative of F2 with respect to the optimization variables x
is zero besides the second derivatives of the functions in Equations (4.8) or
(4.9). If, e.g., energy conservation

g̃(z, T ) :=

nspec∑
s=1

H̄◦s zs −RT
nspec∑
s=1

zs − ě = 0 (8.8)

is considered (for the notation see Chapter 4), the following derivatives of
second order have to be computed additionally

d2

dzidzs
g̃(z, T ) = 0, ∀s, i = 1, . . . , nspec (8.9a)

d2

dT 2
g̃(z, T ) =

nspec∑
s=1

zs
d

dT
C̄◦p,s(T ) (8.9b)

d2

dTdzs
g̃(z, T ) = C̄◦p,s(T )−R, s = 1, . . . , nspec. (8.9c)

If enthalpy conservation is considered, the term −R (the difference of the
molar heat capacity at constant pressure and the molar heat capacity at con-
stant volume) falls away in (8.9c). In the case that F2 represents the conser-
vation laws of isothermal systems as described in Chapter 4, ∇xxF i2(x) = 0
holds for all i = 1, . . . , n̄2.

Remark 8.1.1
The evaluation of the cubic polynomials d

dT C̄
◦
p,s(T ) for (8.9b), see also Equa-

tion (4.10), is computed fast. Typically d
dT C̄

◦
p,s(T ) is small as the heat ca-

pacity only changes slightly in dependence of the temperature. The main
additional computational effort for the computation of the Hessian of the
Lagrangian function (8.7) of problem (7.1) is the computation of

(
∂xJ

T
1

)
F1.

This can be evaluated using automatic differentiation as a directional deriva-
tive of J1 in direction F1, see Section 7.3.

The LAPACK [13] solver dsysvx is used to solve equation system (8.3) with
the KKT matrix including the Hessian (8.7).

Sensitivities in the interior point approach

If an interior point method is used to solve (8.1), the parameter sensitivity
equation (8.3) of the barrier problem, i.e. (8.3) with K = KIP as in (8.4),
can be written as

Lxx gT
x −ΞT −In

gx 0 0 0
Ξ 0 0 0

diag(µ) 0 0 diag(x)



xr
λ1
r

λ2
r

µr

 = −


Lx,r
gr
−Inr

0

 , (8.10)
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where In is the unit matrix of dimension n.
In case of (8.1), Lx,r = 0 and gr = 0 hold. The KKT matrix is invertible if
second order sufficient optimality conditions and LICQ are fulfilled. System
(8.10) can be solved efficiently via the transformed systemLxx + diag(x)−1 diag(µ) gT

x −ΞT

gx 0 0
Ξ 0 0

xrλ1
r

λ2
r

 =

 0
0
Inr

 , (8.11)

see [124]. The parameter sensitivity of the multipliers of the inequality con-
straints is given as

Drµi = −µi
xi

Drxi, i = 1, . . . , n,

where xi, i = 1, . . . , n, are in the interior of the feasible set. If nonnegativity
constraints (8.1d) are not required in the model, the term diag(x)−1 diag(µ)
is omitted in Equation (8.11).

Remark 8.1.2
There is an open source extension of Ipopt called sIPOPT. This toolbox is im-
plemented by H. Pirnay and provides the necessary parameter sensitivities.
The theory for sIPOPT is described in [127]. However, an early implementa-
tion used derivatives of the last pre-optimal iterate of Ipopt to compute the
sensitivities.

Sensitivities in the simultaneous approach If the dynamics in the
constraints (5.1b) or (5.6b) and (5.6c), respectively, are discretized with a
collocation scheme, see Section 6.2.1, the KKT matrix of the resulting NLP
problem (8.1) is large and sparse. Also the right hand side in (8.11) is sparse.
Therefore, we use the linear solver MUMPS [12] to solve (8.11) as it is suited
for sparse equation systems.

Sensitivities in the sequential approach If the BDF integrator in the
sequential approach is used to solve the ODE (5.1b) or (5.6b) and (5.6c),
respectively, see Section 8.3, all necessary derivatives in the KKT matrix
of the resulting NLP problem (8.1) are computed via sensitivity differential
equations solved in the BDF integration algorithm. The matrices in system
(8.11) are dense in this case, and the LAPACK [13] solver dsysvx is used.

Remark 8.1.3
All linear solvers check if the KKT matrix, which has to be decomposed,
has full rank, and an error is reported otherwise. If the KKT matrix does
not have full rank, this indicates that the second order sufficient optimality
conditions as stated in Theorem 3.1.10 are not fulfilled at the computed
“solution” of (8.1), as LICQ is always fulfilled in our case, see Remark 7.1.2.
If such an error is reported, there may be trouble in the problem formulation.
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8.1 | Predictor corrector scheme

We use several possibilities for equilibration of the KKT matrix for the solu-
tion of the linear system (8.3) in case of a bad conditioning. This is described
in Section 8.4.

8.1.2 Predictor with full step
We define a curve c as a mapping from the parameter space to the space of
the primal and dual variables of (8.1)

c : D̃ ⊂ Rnr → R2n+n2

r 7→ c(r) :=

x∗(r)λ∗(r)
µ∗(r)


such that the notation coincides with the notation in Section 3.3. For each
value of the parameter r, c(r) is a local solution (x∗,T(r), λ∗,T(r), µ∗,T(r))T

of (8.1).
We assume that the vector cT(r0) = (x∗,T(r0), λ∗,T(r0), µ∗,T(r0)) for an ini-
tial r0 ∈ D̃ and its derivative with respect to r at r0 are given. We predict a
solution of (8.1) with new parameter values ri+1 to be c0

i+1 (where the index
i+ 1 denotes the iteration index)

c0
i+1 = P(ri+1, ci(ri), hi,

d
dr ci(ri)), i = 0, . . .

as a function of the old solution ci(ri), its derivative with respect to the pa-
rameters d

dr ci(ri), and a step size hi = 1 in the full step method without step
size control. The prediction c0

i+1 is used as initialization of an optimization
algorithm (the corrector) to compute a solution of (8.1) with parameter ri+1.
As the derivative d

dr ci(ri) must be computed to obtain the tangent space of
the SIM (see Section 2.3.2) with the numerical solution of (8.1), the Euler
prediction

c0
i+1 = ci(ri) + hi(ri+1 − ri)T d

dr ci(ri), i = 0, . . . (8.12)

is calculable with the main additional computational effort of one matrix vec-
tor multiplication and used in our implementation. Predictors of higher order
could be constructed based on Aitken–Neville interpolation as described in
[16] or Hermite interpolation. These strategies are not used in our imple-
mentation.

Linear step Optimization problem (8.1) has to be solved several times for
different values of the parameter r. Especially if the approximation of points
on a SIM is needed in situ in a CFD simulation, it is necessary to compute
the next point for SIM approximation fast.
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Chapter 8 | Path following

If the values rnew for the reaction progress variables, for which a SIM ap-
proximation is needed, are near (in the sense of the Euclidean distance) to
the values r∗ for which the optimization problem is already solved

‖rnew − r∗‖2 < εtol, (8.13)

it can be beneficial to save computing time and not to use the corrector algo-
rithm but to use the Euler prediction directly. In this case, it is assumed that
the SIM is only slightly curved. So there is no update for the approximation
of the tangent vectors of the SIM.
This means, we use zlin and T lin as approximation of the SIM, see also
Section 4.1 for the notation. These are defined as

zlin := z∗(t∗) + (rnew − r∗)T dz∗(t∗)

dr
(r∗)

T lin := T ∗(t∗) + (rnew − r∗)T dT ∗(t∗)

dr
(r∗),

(8.14)

where the notation is in accordance with the notation in (5.6), ri = zt∗j(i),
i = 1, . . . , nr, nr = |Ipv|, j is the bijection described in Section 8.1, and ri is
the i-th component of r. This linear approximation step is analogous to the
prediction in (8.12).

8.2 Step size strategy in the predictor corrector
method

A step size strategy is discussed in this section. It is used within the con-
tinuation method described in the section before to determine a step length
for the prediction, see also Section 3.3. The strategy is originally published
in [45] and extensively discussed and modified in [8, 9, 10]. We follow the
discussion in [9].
The aim of the step size strategy of den Heijer and Rheinboldt [45] is to
determine a desired number of corrector iterations which altogether form
the corrector step. The strategy allows for the computation of a step length
based on the contraction rate of the corrector iterations and an error model
for the corrector such that the desired number of iterations is achieved.
We denote the Euler predictor step with

c0
i+1(hi) = ci + hi(ri+1 − ri)T d

dr ci(ri), i = 0, . . . ,

and the subsequent corrector iterations as

cj+1
i (hi) = C(cji (hi)), j = 0, . . .
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8.2 | Step size strategy in the predictor corrector method

with the corrector C. It is assumed that the iterates computed in the cor-
rector iterations converge to the solution

c∞i (hi) := lim
j→∞

cji (hi) ∈ K
−1(0)

with the function K given in (8.2). Furthermore, it is assumed that the
angle between the vector of the initial value in direction of the solution
c∞i (hi)− c0

i (hi) and the tangent d
dr ci−1 is π

2 +O(hi).
The sophisticated aspect in the work of den Heijer and Rheinboldt [45] is
the error model φ. This error model estimates the error of the iterates

εj(hi) = ‖c∞i (hi)− cji (hi)‖2

via an expression of the form

εj+1(hi) 6 φ(εj(hi)).

The concise form of the error model depends on the contraction rate of
the corrector. In case of the quadratically convergent Newton method as
corrector, den Heijer and Rheinboldt [45] suggest the two error models (see
[9, p. 52])

φ1(ε) =
ε2

3− 2ε
, 0 6 ε 6 1

φ2(ε) =
ε+
√

10− ε2
5− ε2

ε2, 0 6 ε 6 1

that they derive via estimates of Newton–Kantorovitch theory. For superlin-
ear convergence (as in case of a quasi-Newton method with limited memory
BFGS update as in Ipopt [168] as corrector), the function

φ3(ε) = εp, p > 1

with p = 1 in the limit of linear convergence (e.g. in case of a GGN method
as corrector, see Section 7.1) is suggested [9, p. 53].
The contraction ω of the last computed numerical solution of optimization
problem (8.1) is the ratio of the length of the last corrector iteration to the
length of the overall corrector step after termination with a certain error
tolerance after, say, k iterations, see the next section.
We define

ω(hi) :=
‖cki (hi)− c

k−1
i (hi)‖2

‖cki (hi)− c0
i (hi)‖2

≈ εk−1(hi)

ε0(hi)
,

with cki (hi) ≈ c∞i (hi). This can be estimated with εk−1(hi) 6 φk−1(ε0(hi))
such that

ω(hi) 6
φk−1(ε0(hi))

ε0(hi)
.
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The solution ε1 of

ω(hi) =
φk−1(ε1)

ε1

is an estimate for ε0(hi). The goal is a step length h̃ such that after k̃
iterations the stopping criterion for the corrector step is fulfilled. The error
εk̃(h̃) 6 φk̃(ε0(hi)) is estimated with the solution ε2 of

φk̃(ε2) = φk(ε1).

The ratio

f2 =

(
hi

h̃

)2

≈ ε1
ε2

to compute the new step size h̃ can be derived with a Taylor series for the
distance ‖c∞i (hi)− c0

i (hi)‖2 in hi.

8.2.1 Computation of the step size ratio

The computation of the ratio f of the old step size hi to the new step size h̃ is
done in the following way. In case of quadratic convergence of the corrector
method, the contraction

ω =
‖cki (hi)− c

k−1
i (hi)‖2

‖cki (hi)− c0
i (hi)‖2

is computed. If we use Ipopt [168] as the corrector method for the solution of
the optimization problem (8.1), we use the scaling of the variables as Ipopt
does, see Section 7.2. The computation of ω is done based on the scaled
variables. Afterward, equation

φk−1(ε1)

ε1
= ω (8.15)

is solved with a Newton-bisection method as described in Section 8.2.2. The
value of ε2 is computed via

φk̃(ε2) = φk(ε1) (8.16)

with the same Newton-bisection method. The stretching ratio of the step
size is

f =

√
ε1
ε2
.

In case of superlinear convergence of the corrector method, an analytic ex-
pression for f can be evaluated directly. It is [9, p. 53]

f = ω
1−pk−k̃

2(pk−1−1) .
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In the limit of linear convergence, i.e. p→ 1, l’Hôpital’s rule yields [9, p. 54]

lim
p→1

f = ω
k̃−k

2(k−1) .

8.2.2 Newton-bisection method

In the previous section, it is stated that the nonlinear equations (8.15) and
(8.16) have to be solved. In order to find the root of a one-dimensional
function f̄ : R → R which is sufficiently smooth, a mixture of Newton’s
method and a bisection method can be used if it is known that the solution
is within a given interval, here [0, 1]. The combination of the two methods is
used to exploit the quadratic convergence of Newton’s method in its region
of contraction near the solution. On the other hand, a bisection method
converges if Newton’s method is not contracting. The method is described
in [132, p. 362ff.].
Let yk+1 = yk + ∆yk, yk,∆yk ∈ R, be the iteration step with the middle of
the given start interval y0 ∈ R as initial value. A Newton step is discarded if
it exceeds the current bisection interval or if there is not enough contraction,
i.e. if |f̄(xk)| > ∆xk−1f̄

′(xk). In that case, the current interval is bisected.

8.3 Computation of the tangent space in the se-
quential approach

As stated in Section 2.3.2, we are not only interested to approximate points
on the SIM but also to approximate the tangent space of the SIM, which is
needed e.g. in the linear approximation as defined in Equation (8.14).
Consider optimization problem (8.1) as the NLP problem that is solved in
a sequential approach (see Section 6.3) for computation of a numerical so-
lution of problem (5.6), where the ODE constraints (5.6b) and (5.6c) in
problem (5.6) are solved numerically with a BDF integration method (see
Section 6.2.2).
In that case, the parameter sensitivities of the primal optimization variables
x∗,T = (z∗(t0)T, T (t0)) at the computed solution are (combining the notation
as used in (8.1) and (5.6))

d

dr
x∗ =

d

(
z∗(t0)
T ∗(t0)

)
dr

,

where ri = zt∗j(i), i = 1, . . . , nr is the vector of the reaction progress variables
at t∗.
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The matrix product

d

(
z∗(t∗)
T ∗(t∗)

)
dr

=

d

(
z∗(t∗)
T ∗(t∗)

)
d

(
z∗(t0)
T ∗(t0)

) d

(
z∗(t0)
T ∗(t0)

)
dr

yields the matrix of an approximation of the tangent vectors of the SIM in
the computed point for approximation of the SIM.
The necessary derivatives of the solution of the ODE constraints at the point
in time t∗ with respect to the initial values

d

(
z∗(t∗)
T ∗(t∗)

)
d

(
z∗(t0)
T ∗(t0)

) .
are computed as solutions of the sensitivity differential equations with the
BDF integration method, see also [151].

8.4 Equilibration of the KKT matrix
The KKT matrix in the linear equation system (8.3) for computation of the
parameter sensitivities can be ill-conditioned, see also the results in Sec-
tion 9.3.2. An equilibration of the matrix D(x,λ,µ)K(x∗, λ∗, µ∗, r) can over-
come this problem.
We restrict ourselves to direct methods for the computation of a solution
of the linear equation system (8.3). The description and notation in the
following is taken from and similar to [116].
In general, we aim to solve a system of linear equations of the form

Ax = b (8.17)

with the coefficient matrix A ∈ Rñ×ñ, A = (aij)
ñ
i,j=1, and x, b ∈ Rñ the

solution and right hand side, respectively.

Definition 8.4.1 (Preconditioned system [116])
The system

Ãx̃ = b̃

with Ã = PLAPR, b̃ = PLb, and x̃ = P−1
R x, where PL, PR ∈ Rñ×ñ are regular

matrices, is called preconditioned system to system (8.17).

The goal of preconditioning is to find matrices PL, PR such that the trans-
formed coefficient matrix Ã has a better condition number than the original
A. First, one computes the matrix Ã = PLAPR and the right hand side
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8.5 | Warm start of interior point methods

b̃ = PLb. Second, the preconditioned system is solved which results in the
solution x̃. Finally, one gains the solution x = PRx̃.
We deal with the symmetric matrix A = D(x,λ,µ)K(x∗, λ∗, µ∗, r). So we use
P := PL = PT

R to preserve symmetry. A simple form for P is a regular
diagonal matrix D = diag(d) with a vector d ∈ Rñ. Such an equilibration is
commonly called scaling. We define D := P−1 to simplify notation.
The success of a certain scaling depends strongly on the underlying problem,
and no clear suggestion can be made which scaling should be used for a
specific problem. The following scaling is available in the implementation:

1. di = 1.0, i = 1, . . . , ñ

2. di = |aii|
1
2 , i = 1, . . . , ñ

3. di = aii, i = 1, . . . , ñ

4. di =
∑ñ

j=1 |aij |, i = 1, . . . , ñ

5. di =
(∑ñ

j=1 a
2
ij

)1
2
, i = 1, . . . , ñ

6. di = maxj=1,...,ñ |aij |, i = 1, . . . , ñ.

In the cases 2. and 3., the machine precision eps is used instead of aii if
|aii| < eps.

8.5 Warm start of interior point methods
The notions warm start and hot start are distinguished in context of interior
point methods [176] as described in Section 7.2. The start of an algorithm to
find a solution of a new optimization problem from a solution of a previously
solved optimization problem is called hot start. The starting point may be
at the boundary of the feasible set. This results in an ill-conditioned KKT
matrix and a small step size [71]. The start from a point near to a solution
of a previously solved optimization problem but sufficiently far from the
boundary is called warm start [176].
Recently, an unblocking strategy for interior point methods is suggested in
[71]. A survey at earlier proposed heuristics for a hot start is also given as
well as examples for a warm start with a first correction step for unblocking
and combinations of these strategies [71].
We do not expect the solutions of the optimization problems for model reduc-
tion as discussed in Chapter 5 at the boundary of the realizable composition
space. So we always use the hot start technique as described in Section 8.1.
Some tests for a comparison of a hot start with the final homotopy parame-
ter δ of a previously solved optimization problem and an increased value of
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δ show that convergence with δ from the old solution usually is faster in our
experience than with an increased value. This is because the original value
for δ fits together with the current prediction as described in Section 8.1.2.
If convergence to the solution is blocked, this results in many corrector it-
erations such that the algorithm for the step size control (see Section 8.2)
computes a reduced step size in the continuation algorithm.
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However beautiful the strategy, you
should occasionally look at the re-
sults.

Winston Churchill

9
Results of application

A computer code in form of a collection of C++ classes named MoRe (short
for model reduction) is developed with this thesis. The code solves the
optimization problems (5.1), (5.6), or (5.7) for model reduction to reduce
general ODE models, but it is tailored to particular needs of the reduction
of chemical combustion models.
The implementation of the model reduction method is tested with a large
number of examples. A selection of results of the tests is presented in this
chapter. In the first section, test models with SIM that can be represented
as the graphs of functions are used. In Section 9.2, more complicated models
are treated. Test models based on kinetic mechanisms are considered in Sec-
tion 9.3. Finally, results of the reduction of realistic models for combustion
are shown in Section 9.4.

Remark 9.0.1 (Choice of the objective function)
For the results presented in this chapter, we only use criterion

Φ(z(t)) = ‖JSm(z(t)) Sm(z(t))‖22 (9.1)

in the objective function (5.2) of the optimization problem (5.1) as the opti-
mization problem (5.1) with this objective function is analyzed theoretically
in [108].

Remark 9.0.2 (Design of the figures)
In the following, all figures are designed in a similar way: All state variables
(of importance) are plotted versus the reaction progress variables via a pro-
jection from the full composition space into the subspace spanned by the
reaction progress variables and the state variable under consideration. The
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state of equilibrium is shown as full red dot. Numerical solutions of different
optimization problems for different values of the reaction progress variables
are shown as blue x marks. This is the optimal value z∗(t∗) and eventually
T ∗(t∗). To distinguish test cases where the state variables are not given in
terms of specific moles in mol kg−1, the symbol y is used instead of z. If the
optimization problem (5.6) is solved in the reverse mode, i.e. t∗ = tf , the
“reverse” trajectory pieces {(z∗,T(t), T ∗,T(t))T | t ∈ [t0, tf ]} are also shown.
In all cases, trajectories through the solution points in forward direction
(t > t∗) are shown. This allows for a consistency test as it is described in
Definition 5.5.1.

9.1 Basic tests
As a first test, we aim at the computation of an approximation of SIM in case
of models, where analytic expressions as descriptions of SIM are given. A
qualitative and quantitative comparison between the numerical results and
the analytical evaluation can be made.

9.1.1 Davis–Skodje model
The Davis–Skodje model is a standard test model for model reduction pur-
poses due to an existing analytical expression for the SIM. The Davis–Skodje
model is given in [43, 149] via the two-dimensional system of ODE

Dy1 = −y1

Dy2 = −γy2 +
(γ − 1)y1 + γy2

1

(1 + y1)2
.

(9.2)

The parameter γ > 1 serves as a measure for the spectral gap of the system.
The model is constructed in such a way that there is an exact SIM described
by the graph of the map

y2 =
y1

1 + y1
.

In case of the Davis–Skodje model, there is also an explicit representation
for a one-dimensional ILDM, see the explanation in Section 2.4.2. It is given
as the graph of the map

y2 =
y1

1 + y1
+

2y2
1

γ(γ − 1)(1 + y1)3
.

Results of our model reduction method in application to the Davis–Skodje
model are shown in [105, 108, 135, 161]. So we restrict ourselves to some
basic examples.
In this model, y1 is the slow variable. Solutions of the optimization problem
(5.6) are visualized in Figures 9.1 and 9.2 for different values of the reaction
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Figure 9.1: Visualization of numerical solutions of the semi-infinite
optimization problem (5.6) in reverse mode t∗ = tf with tf − t0 = 5
to reduce the Davis–Skodje model with a spectral gap γ = 3. The x
marks are the solution points y∗(t∗) for several values of the reaction
progress variable y1 at t∗, for each of which the optimization problem
is solved.

progress variable y1 at t∗. In all cases, a small value for the spectral gap γ
is chosen. The optimization problem in reverse mode formulation (t∗ = tf)
is solved for a time horizon of tf − t0 = 5. The plots show the exact SIM as
red curve. It can be seen that the results y∗(t∗) are near this invariant one-
dimensional manifold. Only for the small value yt∗1 = 0.01 for the reaction
progress variable in case of the small spectral gap γ = 1.1, the solution y∗(t∗)
is not close to the invariant manifold, see Figure 9.2. A better result could
be achieved with a larger time horizon tf − t0 as it is proven in [108]. A
comparison of our results to the ILDM is shown in [105].
To obtain the results shown in Figure 9.3, the same spectral gap for the
Davis–Skodje model is used as for the results visualized in Figure 9.1, but
solutions of the optimization problem (5.7) are computed. The presented
numerical solutions y∗(t∗) are inconsistent in the sense of Definition 5.5.1;
however, the computation is less time-consuming.
For the results shown in Figure 9.4, the same spectral gap for the Davis–
Skodje model is used as for the results depicted in Figure 9.1, but the forward
mode t∗ = t0 in the semi-infinite optimization problem (5.6) is used with the
same time horizon. The presented numerical solutions y∗(t∗) deviate stronger
from the exact SIM than the results do which are shown in Figure 9.3.
We want to illustrate the linear step as defined in Equation (8.14) by means
of the results shown in Figure 9.5. We choose the problem formulation as
the same that we have chosen for the results shown in Figure 9.1. However,
we set the linear step tolerance, see Equation (8.13), to a very large value
of εtol = 0.75 for demonstration. In regions where the SIM has a large
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Figure 9.2: Illustration of numerical solutions of the optimization
problem (5.6) to reduce the Davis–Skodje model with the same setting
(t∗ = tf , tf − t0 = 5) as for the computation of the results shown in
Figure 9.1 but with a spectral gap γ = 1.1.
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Figure 9.3: Visualization of numerical solutions of the local (in the
point in time t∗) optimization problem (5.7) to reduce the Davis–
Skodje model with γ = 3.

curvature, the results deviate from the invariant slow manifold.

9.1.2 Verhulst model
An interesting model is discussed in [164, Example 1.2]. It is given as the
two-dimensional system of ODE

Dy1 = 1

Dy2 =
y1y2 − y2

2

ε
=

(y1 − y2)y2

ε

(9.3)
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Figure 9.4: Visualization of numerical solutions of the optimization
problem (5.6) in forward mode t∗ = t0 with tf − t0 = 5 to reduce the
Davis–Skodje model with γ = 3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y1

y 2

Figure 9.5: Illustration of numerical solutions of (5.6) in reverse
mode t∗ = tf with tf − t0 = 5 to reduce the Davis–Skodje model with
γ = 3, but the linear step tolerance εtol = 0.75 (see Equation (8.13))
is chosen.

with the small parameter ε > 0. The right hand side of the fast variable y2

is Dy2 = 0 at the two critical points y2 = 0 and y2 = y1. The stability of
the critical points depends on the value of the slow variable y1. If y1 < 0,
y2 = 0 is stable and y1 = y2 is instable, and vice versa. This means, there
are two slow manifolds: the y1-axis for y1 < 0 and the line of identity for
y1 > 0. Consider the stable SIM given as the graph of the map

y2 =

{
0, y1 < 0

y1, y1 > 0.
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Figure 9.6: Visualization of numerical solutions of (5.6) in forward
mode t∗ = t0 to reduce the Verhulst model (9.3). The time horizon is
tf − t0 = 0.3, and the spectral gap is ε = 0.01.
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Figure 9.7: Visualization of numerical solutions of (5.6) in reverse
mode t∗ = tf to reduce the Verhulst model (9.3). The time horizon is
tf − t0 = 0.3, and the spectral gap is ε = 0.01.

This function is not continuously differentiable at y1 = 0 such that the region
near y1 = y2 = 0 is of special interest.
The results of an application of our model reduction method are shown
in Figures 9.6 and 9.7. In both cases, a collocation method is used for
discretization of (5.6) as this solution method shows fast convergence in
our experience in the region where the stability of the SIM changes near
y1 = 0. Different optimization problems are solved starting with the reaction
progress variable at a value of yt∗1 = 4. More solution points y∗(t∗) of (5.6)
with t∗ = t0 for the reduction of the Verhulst model (9.3) with different yt∗1
are nearer to the stable SIM than the corresponding solution points of (5.6)
with the reverse mode t∗ = tf ; compare the results for 0 < yt∗1 < 0.5 in
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Figures 9.6 and 9.7.

9.1.3 Singularly perturbed system of catalysis
As introduced in Section 2.2.2, we want to approximate a SIM in the phase
space of the singularly perturbed system which arises in catalytic reactions.
The approximation of zeroth order of the SIM can be computed by setting
the right hand side of Equation (2.7b) to zero for BZ = 0. With the value
BA = 1.0, this leads to the expression

−k+
1 yAyZ + k−1 yAZ + k+

2 yAZ − k−2 yZyP = 0.

Hence, an approximation of the one-dimensional SIM is the graph of

yZ = − k−1 + k+
2

(−k+
1 + k−2 )yA − k−1 − k

+
2 − k

−
2

. (9.4)

The test to identify candidates for reaction progress variables based on the
comparison of σ̂i(ȳ) defined in Equation (5.11) suggests to use yA. Solutions
of optimization problem (5.6) with t∗ = tf for the reduction of the model for
catalysis with different values for yt∗A are shown in Figure 9.8. The parameters
of the model are given in Section 2.2.2.
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Figure 9.8: Illustration of numerical solutions of the optimization
problem (5.6) with t∗ = tf for the reduction of the singularly per-
turbed system for catalysis as given in Equation (2.7). The integration
interval is tf − t0 = 2.5. The red curve is the SIM approximation as
given via Equation (9.4).

The SIM approximation given via the graph of the map in Equation (9.4) is
shown as red curve in Figure 9.8. The presented numerical solutions of the
optimization problem coincide with the analytical result.
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9.2 Advanced tests
The models in the previous section involve simple ODE and have a known
SIM, that is representable as the graph of an explicit function. In this sec-
tion, the examples are more complicated as they involve features of realistic
models.

9.2.1 Simple three species model
In the original article [101] and [102, 104], the MEPT model reduction
method is tested with a small three component reaction model as given in
Table 9.1. The realizable composition space has an effective dimension of two
due to mass conservation. This model is further discussed by Al-Khateeb et
al. in [6, 7]. They compute an exact one-dimensional slow manifold for the
model via heteroclinic orbits. In [105, 108], comparisons of our results with
those of Al-Khateeb et al. are discussed.

Table 9.1: Three component test mechanism. The rate coefficients
are given directly.

Reaction kf kr

A+A 
 B 1 10−5

B 
 C 0.01 10−5

A scaled ODE system for this model is given by the equations

DyA = −kf,1 y
2
A + kr,1 yB

DyB = kf,1 y
2
A − kr,1 yB − kf,2 yB + kr,2 yC

DyC = kf,2 yB − kr,2 yC,

and the conservation relation yA + yB + yC = 1.0 holds.
The authors of [6] find two finite equilibria R1 and R2

R1 = (9.9945× 10−5, 9.9890× 10−4, 9.9890× 10−1)

R2 = (−9.9955× 10−5, 9.9910× 10−4, 9.9910× 10−1).

The heteroclinic orbit connecting the saddle R2 with the sink R1 is a one-
dimensional SIM of the system.
As in [101, 105], we choose yC as reaction progress variable. It is fixed at
several grid point values between 9.9890×10−1 and 9.9910×10−1. Computed
solution points y∗(t∗) of the optimization problem (5.6) in reverse mode
t∗ = tf for the different values of yt∗C are shown in Figure 9.9. Arbitrary
trajectories shown as green dashed curves converge to the SIM. The SIM is
well identified.
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Figure 9.9: Visualization of numerical solutions of optimization
problem (5.6) with reverse mode t∗ = tf for the reduction of the three
species example with a time horizon tf − t0 = 300. Arbitrary trajec-
tories are plotted green, dashed. The full red dot denotes the sink
R1, the open red dot denotes the saddle R2. An integration from a
slightly disturbed value of R2 leads to R1. This trajectory is shown
as approximation of the heteroclinic orbit depicted as red curve. Our
results are shown as blue crosses.

9.2.2 Lindemann mechanism
The Lindemann mechanism is given in a dimensionless form via the equations

Dy1 = +
y2

ε
(y2 − y1)− y1

Dy2 = −y2

ε
(y2 − y1)

in [77], where 0 < ε � 1 is a small parameter measuring the time gap and
y1 is the slow variable. Dissociation-recombination processes are modeled
with this mechanism [77]. A value of ε = 10−3 is proposed for the test
problem. The special feature of this mechanism is the fact, that the SIM
exits or vanishes in different areas of the two-dimensional phase space. The
slow manifold can be described with the equations

y1 ≈ y2 −
ε

2
+

ε2

4y2
, (y1, y2) > O(ε) (9.5a)

εy1 ≈ y2
2 +

y3
2

ε
− 5y5

2

ε3
, (y1, y2) < O(ε). (9.5b)

In case of (y1, y2) = O(ε), there is no time gap. A reasonable choice for
an initial value is y0 = (1, 4)T. The trajectory started at this point is first
attracted to the SIM described by the graph of the first equation (9.5a), near
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Figure 9.10: Visualization of numerical solutions y∗(t∗) of the opti-
mization problem (5.7) for the reduction of the Lindemann mechanism
as blue x marks. The axes have logarithmic scale. The red and red
dashed curves show the two different parts of the SIM. A parameter
value of ε = 10−3 is used in the computation.

which the fast time scale is exhausted. On the further way to equilibrium
(the origin), this manifold degenerates and re-emerges again in form of the
graph of Equation (9.5b).

Solutions of the optimization problem (5.7) for the reduction of the Linde-
mann model with ε = 10−3 are shown in Figure 9.10. There is no time
scale separation present if the value of the reaction progress variable is near
yt∗1 ≈ ε = 10−3.

The method seems to identify a transition between the two parts of the SIM
in the region where (y1, y2) = O(ε). In case optimization problem (5.6) is
solved for the reduction of the Lindemann mechanism (results not shown),
the middle mode t∗ = 1

2(tf + t0) shows fast convergence and good results in
our experience.

9.2.3 Bioreactor

An idealistic model describing the processes in a bioreactor is given and
reduced in [91]. It consists of three species and the corresponding ODE
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system
Dsp = D̃sp,f − D̃sp

Dx = −D̃x+
µmaxsx

Ks + s

Ds = D̃(sf − s) + cKsp −
µmaxsx

Y (Ks + s)
.

The parameters are taken from [91]:

sf = 0 D̃ = 0.2544 d−1

µmax = 4.2 d−1 Ks = 23.0mg l−1

Y = 0.11 sp,f = 50 000mg l−1

K = 0.1 d−1 c = 1.

There is a two-dimensional slow manifold in the phase space of this model.
The variable s is considered as fast. The equilibrium is taken from [91] as

seq
p =

D̃sp,f

D̃ +K

xeq = Y

(
sf +

cKsp,f

D̃ +K
+

D̃Ks

µmax − D̃

)

seq =
D̃Ks

µmax − D̃
.

(9.6)

Solutions of optimization problem (5.6) with t∗ = tf are shown in Figure 9.11.
A two-dimensional slow manifold is approximated, where the slow variables
x and sp are used as reaction progress variables.

9.3 Models based on kinetic mechanisms
In this section, applications of the model reduction algorithm to test models
which are based on kinetic mechanisms are presented. The models range
from a model based on a small hypothetical test mechanism to models for
realistic ozone decomposition.

9.3.1 Six species test mechanism
A small mechanism which is used for tests of model reduction methods is
raised in [74]. It is also used for demonstrations in [38, 102, 103, 104, 105,
106, 135, 136, 161, 175]. It consists of six species involved in six (forward
and reverse) elementary reactions, cf. Table 9.2.
The model is based on this mechanism. A system in an isochoric and isother-
mal thermodynamic environment is considered. Units are meaningless in
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Figure 9.11: Visualization of numerical solutions of (5.6) in reverse
mode t∗ = tf with time horizon tf − t0 = 1 for the reduction of the
bioreactor model (9.6), where x and sp are the reaction progress vari-
ables.

Table 9.2: Six species test mechanism as in [74], where the forward
rate coefficients and equilibrium constants are given.

Reaction kf kr

H2 
 2 H 2.0 216.0
O2 
 2 O 1.0 337.5
H2O 
 H + OH 1.0 1400.0
H2 + O 
 H + OH 1000.0 10800.0
O2 + H 
 O + OH 1000.0 33750.0
H2 + O 
 H2O 100.0 0.7714

this academic example and are skipped in the following. There are only two
chemical elements – hydrogen and oxygen – involved. The corresponding
mass conservation relations are chosen as in [74] in terms of concentration
as

2 cH2 + 2 cH2O + cH + cOH = 2

2 cO2 + cH2O + cO + cOH = 1.

This leads to a mass density of ρ = 0.0180. The values given in the figures
in the following are in terms of concentration to allow for comparison to the
results published in the articles cited above.
The realizable composition space of the model has an effective dimension
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Figure 9.12: Illustration of numerical solutions of the optimiza-
tion problem (5.6) with reverse mode t∗ = tf to approximate a one-
dimensional manifold in the phase space of the six species test model.
The time horizon tf − t0 = 0.001 is chosen.

of four. We aim to approximate a one- and a two-dimensional manifold.
The test to identify candidates for reaction progress variables (see Equa-
tion (5.11)) leads to the suggestion to use the specific moles of H2O, H2, H,
O, H2, and OH in descending preference.

One-dimensional manifold

We choose zH2O as reaction progress variable, where only values smaller
than the equilibrium value zeq

H2O = 0.7 are of interest. Solutions of (5.6) with
reverse mode t∗ = tf for the reduction of the six species test model are shown
in Figure 9.12. Solutions of the least squares optimization problem (5.7) for
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Figure 9.13: Visualization of numerical solutions of (5.7) to approx-
imate a one-dimensional slow manifold in the phase space of the six
species test mechanism.

the reduction of the six species test model are shown in Figure 9.13. A large
inconsistency in the sense of Definition 5.5.1 can be seen in both cases. This
is especially the case for the unstable “radical” species H and O that occur
at small concentration.

Two-dimensional manifold

To approximate a two-dimensional SIM, zH2 and zH2O serve as reaction
progress variables. These are fixed at different values in the region where
the value of zH2 is higher than its equilibrium value and zH2O is lower than
its equilibrium value. Combinations of these values which violate mass con-
servation and nonnegativity are identified and sorted out automatically in
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Figure 9.14: Visualization of numerical solutions of the optimization
problem (5.6) in reverse mode (t∗ = tf) to approximate a two-di-
mensional slow manifold in the phase space of the six species test
mechanism. As the norm of the right hand side of the ODE model as
a measure of the rate of change of the state variables is larger near
the two-dimensional SIM than it is near the one-dimensional SIM, a
smaller integration interval of tf − t0 = 10−5 is used in comparison to
the time horizon used for the results shown in Figure 9.12.

the implementation. Solutions of the optimization problem (5.6) in reverse
mode (t∗ = tf) for the reduction of the six species test model are shown in
Figure 9.14. An approximation of an invariant manifold can be asserted.

9.3.2 Simplified six species hydrogen combustion
In this section, we consider a test case that includes a simplified combustion
mechanism. The presented results are partly discussed in [108, 148], where
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we show a comparison of solutions of our method to the results of Al-Khateeb
et al. [6, 7].
The reaction mechanism is given in Section A.1, see also [140]. It consists of
five reactive species and inert nitrogen. The reaction system is considered in
an isothermal and isobaric thermodynamic environment at a temperature of
T = 3000K and a pressure of p = 101 325Pa.
Conservation relations for the elemental mass in this model are given in
terms of amount of substance as [140]

nH + 2nH2 + nOH + 2nH2O = 1.25× 10−3 mol

nOH + nO + nH2O = 4.15× 10−4 mol

2nN2 = 6.64× 10−3 mol.

(9.7)

The total mass in the system can be computed with the values in Equa-
tion (9.7) and has a value of m = 1.01× 10−4 kg.
An analysis which variables should be used as reaction progress variables is
done by comparing the values σ̂i(z̄), i = 1, . . . , nspec, defined in Equation
(5.11). This results in the recommendation to use the specific moles zi
of the following species (where constant species are ignored) in descending
preference: H2O, H2, H, OH, O. Another analysis based on the time scales
for an appropriate dimension of a SIM to approximate, see Section 5.5.1,
gives the following recommendation in descending preference: 0, 1, 3, 2. As
a zero-dimensional manifold corresponds to the equilibrium state and a three-
dimensional manifold to the full system, we conclude that it would be more
appropriate to approximate a one-dimensional manifold than to approximate
a two-dimensional one.

One-dimensional manifold

We aim to approximate a one-dimensional SIM. Solutions of the optimization
problem (5.6) with t∗ = tf and the simplified hydrogen combustion model are
computed with the shooting approach and Ipopt [168]. The reaction progress
variable zH2O is fixed at different values between 0.0 and 4.0. The results
are shown in a three-dimensional sketch in Figure 9.15 for a comparison
with the SIM of Al-Khateeb et al. [6, 7]. The authors of [6, 7] identify the
heteroclinic orbits that connect two instable fixed points with the stable
equilibrium. The plot is designed as Figure 9 in [6]. The numbering of the
species is z1 = zH2 , z2 = zO, and z3 = zH2O. The unit mol kg−1 is omitted
in the plots. Figure 9.15 shows a good agreement of our result with theirs.

Initialization Fast convergence of the algorithm to compute solutions of
optimization problems (5.6) and (5.7) depends strongly on the initial value,
that should be chosen near a (still unknown) solution. For a first initializa-
tion of the algorithm, we solve the ODE system (5.6b) and (5.6c) initialized
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Figure 9.15: Three-dimensional visualization of the results illus-
trated as in Figure 9 in [6]. The blue bounded polytope depicts the
realizable state space. Green curves correspond to some arbitrary tra-
jectories to illustrate their bundling near the one-dimensional SIM.
The red curve depicts the two branches of the SIM as derived in [6].
The open red dot represents the instable fixed point named R6 in [6];
the full red dot represents the equilibrium R7 [6]. Our results are in-
cluded as blue x marks: numerical solutions z∗(t∗) of the optimization
problem (5.6) with t∗ = tf and a time horizon tf − t0 = 10−7 s to
reduce the model for hydrogen combustion. The state of the system
is given as z1 = zH2

, z2 = zO, and z3 = zH2O in mol kg−1.

with the desired “unburned” mixture in the sense that zH2 and zO are at their
maximum possible value restricted by the given elemental specific moles un-
til reaching the equilibrium state, i.e. until the state variables do not change
significantly.
We use a state near the equilibrium state as initial point in the optimization
algorithm as we assume this point near a slow manifold. We set the values of
the reaction progress variables near their values in that state; see Table 9.3
for the concrete values. This allows for a fast computation of a solution of
the first optimization problem with zt∗H2O = 3mol kg−1.
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Table 9.3: Initial value (unscaled) for the algorithm and a solution
of the optimization problem (5.6) as solved for the results depicted in
Figure 9.15 to reduce the simplified hydrogen combustion model with
zt∗H2O

= 3mol kg−1.

State Initial value z0(t0), T 0(t0) Numerical solution z∗(t∗), T ∗(t∗)

zO 0.345 464 41mol kg−1 0.345 637 63mol kg−1

zH2 2.027 973 2mol kg−1 2.028 161 5mol kg−1

zH 1.519 563 9mol kg−1 1.519 360 6mol kg−1

zOH 0.764 549 59mol kg−1 0.764 376 37mol kg−1

zH2O 3.000 000 0mol kg−1 3.000 000 0mol kg−1

zN2 32.905 130mol kg−1 32.905 130mol kg−1

T 3000K 3000K

Condition number We want to show by means of this example that
scaling of the KKT matrix as described in Section 8.4 can improve con-
vergence. Therefore, we consider optimization problem (5.6) with t∗ = tf ,
tf − t0 = 10−7 s as it is solved to obtain the results presented in Figure 9.15.
The value of the reaction progress variable is fixed to zt∗H2O = 2mol kg−1.
The shooting approach and Ipopt [168] are used to solve this optimization
problem. In Table 9.4, we list the condition numbers of the KKT matrix
with different scaling at the solution of this optimization problem denoted
as D(x,λ,µ)K(x∗, λ∗, µ∗, r) in Chapter 8, where x∗ = z∗(t0) are the primal
variables in the current context, λ∗, µ∗ are the dual variables at the solution,
and r = zt∗H2O = 2mol kg−1.
We use the 2-norm condition number κ

κ =
σmax(PD(x,λ,µ)K(x∗, λ∗, µ∗, r)P )

σmin(PD(x,λ,µ)K(x∗, λ∗, µ∗, r)P )

computed with MATLAB [113], i.e. the ratio of the largest singular value of
the equilibrated matrix PD(x,λ,µ)K(x∗, λ∗, µ∗, r)P to the smallest singular
value of the equilibrated PD(x,λ,µ)K(x∗, λ∗, µ∗, r)P with the regular matrix
P = diag(d)−1 and d ∈ Rnspec+1, see Section 8.4.
The scalings 4., 5., and 6. lead to an improved condition number of the
(scaled) KKT matrix at the solution of the optimization problem, which is
needed to compute the parameter sensitivities as described in Section 8.1.1,
in the case of the presented example.

Warm start with step size strategy We want to demonstrate that a
step size strategy for the prediction in the predictor corrector scheme of the
algorithm to solve neighboring optimization problems can have a benefit. So
we consider on the one hand the optimization problem (5.6) with t∗ = tf ,
tf−t0 = 10−7 s to be solved for zt∗H2O = 3mol kg−1 with the shooting approach
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Table 9.4: Condition number κ of the equilibrated KKT matrix
PD(x,λ,µ)K(x∗, λ∗, µ∗, r)P with the six different scalings introduced
in Section 8.4.

Scaling κ

1. 1.7730× 1013

2. 1.2344× 109

3. 1.4499× 1019

4. 3.0251× 105

5. 3.2546× 105

6. 3.5504× 105

and Ipopt [168]. As neighboring problem we consider the same optimization
problem but with the parameter value zt∗H2O = 0.5mol kg−1. (Such a rather
large change in the parameter can occur e.g. if the presented method for
model reduction is used in situ in a CFD simulation and grid refinements
are performed in different regions of the spatial domain.)
We solve the optimization problem at hand first with zt∗H2O = 3mol kg−1

and second with zt∗H2O = 0.5mol kg−1 with a full step method and the Euler
prediction. For the scaling of the KKT matrix to compute the parameter
sensitivities, we use scaling 4. as this results in the best condition number,
see Table 9.4.
The computations are done on an Intelr CoreTM 2 Duo CPU E6550 with
2.33GHz, operating system is openSUSE 11.4 (i586) including the Linux
2.6.37.6 kernel and GCC 4.5. Four iterations in Ipopt [168] have to be
preformed to solve the first optimization problem and nine iterations to solve
the second optimization problem. In sum, 13 iterations are necessary which
take 3.63 s.
If we initialize the step size strategy, see Section 8.2, with initial step size
hinit = 1

2.5 and the desired number of iterations k̃ = 10, we need one interme-
diate step in the predictor corrector scheme described in Section 8.1.2. This
intermediate step is to solve the optimization problem with the parameter
zt∗H2O = 2mol kg−1. In this case, we need in sum 4 + 4 + 6 = 14 iterations
that only take 2.95 s.
The difference in the computation time arises as the point for initialization
of the algorithm to solve the second optimization problem in the full step
method is not near a solution such that the KKT matrix is badly scaled.
The inertia correction in Ipopt, see [168], is activated, and 17 line search
iterations are performed. In case of an activated step size strategy, the initial
value for the algorithm to solve the optimization problem in case of a warm
start is near to a solution of the optimization problem such that no inertia
correction and only 14 line search iterations (one per Newton iteration) are
necessary in the presented example.
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Two-dimensional manifold

We aim to approximate a two-dimensional SIM. We choose the values of
z1 and z2 as reaction progress variables in opposition to the results of the
analysis which reaction progress variables to choose stated before. Numerical
results are shown in Figures 9.16 and 9.17.

0

2

4

6

0

1

2

3

4

5

0

2

4

6

z2
z1

z 3

Figure 9.16: Visualization of numerical solutions of the optimization
problem (5.6) with t∗ = tf , tf − t0 = 10−7 s to reduce the simplified
hydrogen combustion model with the reaction progress variables z1
and z2. The solution points z∗(t∗) for different values of (zt∗1 , z

t∗
2 ) are

shown as a blue mesh in addition to the results shown in Figure 9.15.

Solutions of the optimization problem (5.6) approximate different two-di-
mensional “SIM” for different values of the reaction progress variables. At
the turning point of the heteroclinic orbit (in the top left corner of the blue-
bounded polytope in Figure 9.16) the two SIM merge. Such phenomena can
lead to severe numerical problems in the optimization algorithms as well as
in the continuation algorithms as there are regions where the KKT matrix
might be singular at least to machine precision.

Optimization landscapes

We want to further analyze this problem via optimization landscapes, i.e.
graphical representations of the objective function versus the (free) opti-
mization variables.

One reaction progress variable In Figure 9.18, the value of (the ob-
jective function of the optimization problem (5.7)) Φ = ‖JSm(z) Sm(z)‖22 is
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Figure 9.17: The same plot as shown in Figure 9.16, but shown from
another angle.

plotted versus two degrees of freedom in (5.7) for one exemplary value of
one reaction progress variable zt∗3 = zt∗H2O = 1mol kg−1 for the simplified
hydrogen combustion model.

Figure 9.18: Visualization of Φ = ‖JSm(z) Sm(z)‖22 in dependence
of z1 and z2 to illustrate the location of the computed solution of
the optimization problem (5.7) with zt∗3 = zt∗H2O

= 1mol kg−1 for the
reduction of the simplified hydrogen combustion model.
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The Φ-axis has logarithmic scale. One local solution of the optimization
problem (5.7) for the reduction of the simplified hydrogen combustion model
can be seen.

Two reaction progress variables To compute an optimization landscape
in case of two reaction progress variables, we fix zt∗2 = zt∗O = 0.3mol kg−1.
The other reaction progress variable z1 = zH2 varies as well as the optimiza-
tion variable z3 = zH2O. This means, we are interested in (the objective
function of the optimization problem (5.7)) Φ = ‖JSm(z) Sm(z)‖22 in depen-
dence of z3 for fixed z1.
The optimization landscape is shown in Figure 9.19. It can be seen that

Figure 9.19: Visualization of Φ = ‖JSm(z) Sm(z)‖22 for the simplified
hydrogen combustion model in dependence of z1 and z3 for a fixed
value of zt∗2 = 0.3mol kg−1. The scale for Φ is logarithmic. Consider
the value of Φ in dependence of z3 for a fixed value of z1, e.g. for
zt∗1 = 2mol kg−1.

there are two distinct local minima of Φ = ‖JSm(z) Sm(z)‖22 for a fixed value
of e.g. z1 = 2mol kg−1: There is no unique local solution of the optimization
problem (5.7) for the reduction of the simplified hydrogen combustion model
with the reaction progress variables zt∗2 = zt∗O = 0.3mol kg−1 and zt∗1 = zt∗H2

=

2mol kg−1.
This is also visualized in Figure 9.20. One solution is near the value z′3 =
z′H2O = 3.1020mol kg−1 and the other one near z′′3 = 5.2977mol kg−1.
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9.3 | Models based on kinetic mechanisms

Figure 9.20: Same plot as in Figure 9.19 but with the value
z3 ∈ [2mol kg−1, 7mol kg−1] and shown from a different angle (view
on top).

Performance test

We use the specific moles of H2O and H2 (based on the comparison of σ̂i(z̄)
defined as in Equation (5.11) as stated before) for parametrization of a two-
dimensional SIM approximation in a performance test.
We consider a test situation of a two-dimensional grid of 108 points de-
fined by (zt∗H2O, z

t∗
H2

) ∈ [0.001, 0.5, 1, 1.5, . . . , 5, 5.5]× [0.001, 0.5, 1, . . . , 3.5, 4],
where points which violate mass conservation in combination with the non-
negativity constraints are ignored such that 80 points remain. Solutions of
the optimization problem (5.7) to reduce the model at hand, which are com-
puted with the GGN method with Euler prediction for initialization of the
algorithm to solve neighboring problems, are shown in Figure 9.21.
In Table 9.5, we compare the performance of our algorithm using the differ-
ent implemented solution methods. We use the generalized Gauss–Newton
method as described in Section 7.1 for solving (5.7). We apply a shooting
approach for the semi-infinite optimization problem (5.6) with t∗ = tf . The
NLP problem (after solving the ODE with the BDF integrator) is solved
with the interior point algorithm Ipopt [168]. As a third alternative, we
use a Gauss–Radau collocation with linear polynomials (backward Euler)
for (5.6) with t∗ = tf . The resulting high-dimensional NLP problem is also
solved with Ipopt [168]. For the optimization problem (5.6), an integration
horizon of tf − t0 = 10−8 s is used.
An initialization of neighboring problems is done without step size control,
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Figure 9.21: Illustration of an approximation of a two-dimensional
SIM in the phase space of the simplified model for hydrogen combus-
tion. The optimization problem (5.7) is solved with the GGN method.
The absolute tolerance for convergence is 10−10, see Section 7.1.3. The
relative tolerance is 10−9. The values of the optimization variables at
the computed solution are plotted versus the given values of the reac-
tion progress variables shown as x marks. The trajectories started with
the solution z∗(t∗) as initial values converge toward the equilibrium
(full red dot).

as we concentrate on the benefit of the Euler prediction. The computations
are done on an Intelr CoreTM 2 Duo CPU E6550 with 2.33GHz.
It can be seen that the relative gain in the computation time achieved by
the Euler prediction in case of the collocation method, where we use 100
collocation points, is the largest with about 19%. This is reasonable because
of the strong dependence of the collocation method on the initialization on
all collocation points in the time interval [t0, tf ].
The benefit of the Euler prediction if the shooting approach is used to solve
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9.3 | Models based on kinetic mechanisms

Table 9.5: Comparison of the performance of the algorithm for the
reduction of the simplified model for hydrogen combustion with two
reaction progress variables and full step method for the initialization
of neighboring problems.

Method Prediction # Iter. w/o fail Time Fail Time w/o fail

GGN Constant 804 0.67 s 11 0.33 s
Euler 723 0.64 s 11 0.30 s

Shooting Constant 335 77.39 s 0 77.39 s
Euler 258 66.48 s 0 66.48 s

Collocation Constant 315 119.28 s 0 119.28 s
Euler 234 96.96 s 0 96.96 s

(5.6) is about 14%. In case of the GGN method, the benefit is only 10% if
we do not regard failures. The eleven failures only occur in the region, where
zt∗H2O is larger than the equilibrium value zeq

H2O. The numbers of iterations
in Table 9.5 are given without the failures, where the code stops after the
predefined maximum of 100 iterations. This drawback can not be overcome
neither with the step size control for the continuation method nor with a
larger tolerance for convergence in the GGN method. It can be seen that the
algorithm to solve (5.7) with the GGN method is about a factor of 100 faster
than the algorithm to solve (5.6). The computation of one approximation of
a point on the SIM takes about 0.33 s/69 = 4.78ms.

9.3.3 Ozone decomposition
As a small realistic test problem, we consider an ozone decomposition mech-
anism which includes three allotropes of oxygen, namely atomic oxygen,
dioxygen, and ozone. The mechanism is given in Section A.2. The following
results are also discussed in [107, 148].
The elemental specific mole has to be given for mass conservation. It is
always

žO =
1

15.999 gmol−1 = 62.5mol kg−1

for this composition of species. We consider a density of ρ = 0.2 kgm−3

in the isochoric case and a pressure of p = 105 Pa for isobaric conditions,
respectively. In the isothermal cases, T = 1000K is chosen. The specific
internal energy or enthalpy, respectively, of žO at a temperature of 1000K is
used as a fixed specific internal energy or enthalpy of adiabatic systems.
In case of the ozone mechanism as given in Table A.2, it is not necessary to
demand nonnegativity of specific moles to guarantee that the right hand side
of the ODE model is evaluable, because no pressure dependent reactions are
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present, which could lead to undefined values in the model equations. There-
fore, the model can be evaluated also in nonphysical regions. That means
that negative specific moles of the species are visible in the following figures.
The analysis for identification of candidates for reaction progress variables
(see Equation (5.11)) yields the proposal zO, zO2 , and zO3 in descending
preference. Hence, we use zO.
Solutions of the optimization problem (5.6) for the reduction of the ozone de-
composition model in case of all four different thermodynamic environments
are shown in Figures 9.22, 9.23, 9.24, and 9.25.
We present the optimization problem (5.6) for the reduction of the model for
adiabatic, isobaric ozone decomposition as example. We solve∗ with t∗ = tf ,
t∗ = 10−8, t0 = 0, t ∈ [t0, tf ]

min
z,T

∫ 10−8

0
‖JSm(z(t)) Sm(z(t))‖22 dt (9.8a)

subject to

Dzs(t) = Sm
s (z(t), T (t)) =

ωs(t)

ρ(t)
, s = 1, . . . , nspec. (9.8b)

DT (t) = −
RT (t)

∑nspec

s=1

(
H̄◦s (T (t)) ωs(t)

)∑nspec

s=1 zs(t)

p
∑nspec

s=1

(
zs(t) C̄◦p,s(T (t))

) (9.8c)

0 = žO −
nspec∑
s=1

χO,s zs(0) (9.8d)

0 = ȟ−
nspec∑
s=1

H̄◦s (T (0)) zs(0) (9.8e)

0 = zO(10−8)− zt∗O (9.8f)

with χO,O = 1, χO,O2 = 2, and χO,O3 = 3. The production rate ωs(t) is

ωs =

nreac∑
r=1

νsr

(nspec∑
s=1

αsrcs

)(
kf,r

nspec∏
s=1

cν
′
sr
s − kr,r

nspec∏
s=1

cν
′′
sr
s

)
, s = 1, . . . , nspec,

with the concentrations

cs = zs ρ, s = 1, . . . , nspec,

the density ρ given via
pM̄ = ρRT,

and the mean molar mass

M̄ =

(nspec∑
s=1

zs

)−1

.

∗See Chapter 4 and Section B.2 for the notation.
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The forward rate coefficients are computed with the parameters given in
Table A.2 as

kf,r(T ) = A T b e−
Ea
RT , r = 1, . . . , nreac,

and the reverse rate coefficients via the equilibrium constant

Kc,r = Kp,r

(
p◦

RT

)νr
, r = 1, . . . , nreac

with

νr :=

nspec∑
s=1

νsr, r = 1, . . . , nreac

and

Kp,r = exp

(
∆S◦r,r(T )

R
−

∆H◦r,r(T )

RT

)
, r = 1, . . . , nreac. (9.9)

The entropy and enthalpy of the reactions, the standard molar enthalpy of
the species, and the standard molar heat capacity at constant pressure of
the species needed in (9.9), (9.8c), and (9.8e) are computed via the NASA
polynomials as discussed in Section 4.2.3.
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Figure 9.22: Illustration of numerical solutions of the optimization
problem (5.6) with reverse mode (t∗ = tf) for an approximation of a
one-dimensional SIM in the phase space of the ozone decomposition
model for an isothermal and isochoric thermodynamic environment.
The value of zO serves as reaction progress variable and is varied be-
tween zero and the largest meaningful value žO. We use an integration
interval of tf − t0 = 10−6 s.

For the reduction of the models in all four traditional thermodynamic envi-
ronments, good results can be achieved as the SIM approximation is nearly
consistent in the sense of Definition 5.5.1. However, no consistent SIM ap-
proximation can be identified due to a lack of time scale separation in the
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Figure 9.23: Visualization of numerical solutions of the same op-
timization problem as solved for the results shown in Figure 9.22,
but the ozone decomposition is modeled in an isothermal and isobaric
thermodynamic environment.
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Figure 9.24: Visualization of numerical solutions of the same op-
timization problem as solved for the results shown in Figure 9.22,
but the ozone decomposition is modeled in an adiabatic and isochoric
thermodynamic environment, and the integration interval is reduced
to tf − t0 = 10−8 s.

region far from equilibrium at large values of zO for unstable O, but the val-
ues are in a reasonable range. In the isothermal and isobaric case, where the
results are shown in Figure 9.23, O3 is more stable than in the isothermal and
isochoric case with the results shown in Figure 9.22. Chemical processes in
the models of adiabatic systems, where the results are shown in Figures 9.24
and 9.25, are faster such that a shorter integration interval is sufficient.
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Figure 9.25: Visualization of numerical solutions of the same opti-
mization problem as solved for the results shown in Figure 9.22, but
the ozone decomposition is modeled in an adiabatic and and isobaric
thermodynamic environment: This is optimization problem (9.8).

We want to demonstrate the importance of the inequality constraints for
nonnegativity in (5.6f) and (5.7d), respectively, by means of the ozone de-
composition model for a system in an isothermal, isochoric thermodynamic
environment. Solutions of optimization problem (5.6) for the reduction of
this model are shown in Figure 9.22.
A numerical solution of (5.6) with t∗ = tf and tf − t0 = 10−6 s to reduce the
model for isothermal, isochoric ozone decomposition with zt∗O = 62mol kg−1

for the reaction progress variable is given by z∗O2
(t∗) = 2.50× 10−1 mol kg−1

and z∗O3
(t∗) = −1.67× 10−4 mol kg−1. The negative value might cause prob-

lems in the further use of the SIM approximation, e.g. in a CFD simulation.

9.4 Models for combustion
We aim for the reduction of realistic models for combustion in this section.
The GRI-Mech 3.0 mechanism [152] serves as basis for these models in the
following. We subsume all relevant reactions in Section A.3. With the ther-
modynamic data for the GRI-Mech 3.0 mechanism, that can be found on the
internet, a confirmation of the results presented here is possible.

9.4.1 Hydrogen combustion
In this section, we restrict ourselves to the combustion of hydrogen without
nitrogen chemistry. This means, the model is based on the reactions from
the GRI-Mech 3.0 mechanism listed in Listing A.1.
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We choose a temperature for the isothermal cases of T = 1500K. We con-
sider a density of ρ = 0.3 kgm−3 in the isochoric cases and a pressure of
p = 105 Pa for isobaric conditions, respectively.
The overall reaction can be stated as

2 H2 + O2 → 2 H2O. (9.10)

Nitrogen is considered as inert. We assume a homogeneous mixture at a
ratio of nH2 : nO2 = 2 : 1 and a ratio of nO2 : nN2 = 1 : 3.76. This leads to
an unburned mixture of oxygen zO2 = 7.070 243 7mol kg−1, hydrogen zH2 =
14.140 487mol kg−1, and nitrogen zN2 = 26.584 116mol kg−1. The specific
internal energy or enthalpy, respectively, of this mixture at a temperature
of T = 1000K is used as a fixed specific internal energy or enthalpy for the
models of adiabatic systems.

One-dimensional SIM

As in case of the ozone decomposition model, we aim for the reduction of
hydrogen combustion models for systems in all four standard thermodynamic
environments. The results for these are shown in Figures 9.26, 9.27, 9.28,
and 9.29.
We use zH2O as reaction progress variables as it is the product of the overall
reaction (9.10). It can be seen that over the whole range of meaningful
values of zH2O an approximation of a one-dimensional SIM can be computed
for the models of isothermal hydrogen combustion, see Figures 9.26 and 9.27.
However, this is different in the case of the adiabatic hydrogen combustion
models, cf. Figures 9.28 and 9.29. Only near the equilibrium value for the
reaction progress variable zt∗H2O < zeq

H2O, z
t∗
H2O ≈ zeq

H2O, a reasonable one-
dimensional SIM approximation can be identified. Results for low values of
zt∗H2O are not satisfying and not shown.

Two-dimensional SIM

We consider an approximation of a two-dimensional SIM for the model of
adiabatic and isochoric hydrogen combustion for which an approximation
of a one-dimensional SIM is shown in Figure 9.28. We choose zO2 as sec-
ond reaction progress variable as this is the oxidizer in the overall reaction
(9.10). Numerical solutions of the corresponding optimization problem (5.7)
are shown in Figure 9.30.
A two-dimensional SIM approximation can be seen in the visualization. The
solution is not satisfying for highly reactive species as e.g. H2O2: The results
are inconsistent in the sense of Definition 5.5.1. An increase in the number
of reaction progress variables can be beneficial, but consistency in the sense
of Definition 5.5.1 cannot be checked for approximation of high-dimensional
SIM in an easy manner.
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Figure 9.26: Visualization of numerical solutions z∗(t∗) of the op-
timization problem (5.6) with t∗ = tf for an approximation of a one-
dimensional SIM in the phase space of the model for hydrogen com-
bustion. The system is modeled with all reactions given in Listing A.1
in an isothermal and isochoric thermodynamic environment. The spe-
cific mole of the product of the overall reaction zH2O serves as reaction
progress variable and is varied between zero and the equilibrium value.
We use an integration horizon of tf − t0 = 10−7 s.
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Figure 9.27: Visualization of numerical solutions of the same opti-
mization problem as solved for the results shown in Figure 9.26, but
the hydrogen combustion is modeled in an isothermal and isobaric
thermodynamic environment.

9.4.2 Syngas combustion
We consider a syngas combustion model as largest combustion model in this
thesis. It includes all species of the hydrogen combustion mechanism as used
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Figure 9.28: Visualization of numerical solutions of the same opti-
mization problem as solved for the results shown in Figure 9.26 but
with a model for hydrogen combustion in an adiabatic, isochoric ther-
modynamic environment.

in Section 9.4.1, additionally the two species CO, CO2, and some nitrogen
compounds. We consider N2 as inert species in the following section. In a
second step, reactive nitrogen is also considered.
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Figure 9.29: Visualization of numerical solutions of the same opti-
mization problem as solved for the results depicted in Figure 9.26 but
in case of a model for adiabatic and isochoric hydrogen combustion.

Syngas combustion with inert nitrogen

We use all species and reactions listed in Listings A.1 and A.2, i.e. thirty-
three reactions of the GRI-Mech 3.0 mechanism [152] which include no other
species than O, O2, H, OH, H2, HO2, H2O2, H2O, N2, CO, and CO2. Those
thirty-three reactions can be split up into thirty-one reactions of Arrhenius-
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Figure 9.30: Visualization of numerical solutions of optimization
problem (5.7) for the approximation of a two-dimensional SIM in the
phase space of the model for adiabatic and isochoric hydrogen com-
bustion. Reaction progress variables are zH2O and zO2 .

type and two pressure-dependent reactions of Troe-type.
The overall reaction can be stated as

H2 + CO + O2 → H2O + CO2,
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where N2 is a collision partner. We assume a homogeneous stoichiometric
mixture of syngas with air in an adiabatic and isochoric thermodynamic
environment. We use ρ = 0.3 kgm−3 as fixed mass density. We assume a
ratio of nH2 : nCO = 1 : 1 and a ratio of nO2 : nN2 = 1 : 3.76. This leads
to an unburned mixture of zCO = zH2 = zO2 = 5.972 579 6mol kg−1 and
zN2 = 22.456 899mol kg−1. The specific internal energy of this mixture at a
temperature of T = 1000K is used as a fixed specific internal energy for the
model. The specific moles of water and carbon dioxide are used as reaction
progress variables as we assume the emission of these species of interest in a
reactive flow simulation where the reduced model can be used.
Solutions of the optimization problem (5.6) with t∗ = tf for the reduction of
the syngas combustion model are shown in Figure 9.31. Only a small region
near the equilibrium is considered, where the results are satisfying.

Syngas combustion with reactive nitrogen

We additionally consider chemical reactions with reactive nitrogen in the
model that is discussed in the preceding section. That means, we consider
the submechanism of the GRI-Mech 3.0 mechanism [152] that includes all
reactions in the Listings A.1, A.2, A.3, and A.4. Hence, the model also
includes pollutants such as NOx.
We use the same ratios as in the example before: A stoichiometric mixture
of air and the fuel is chosen where the fuel fulfills the ratio nH2 : nCO = 1 : 1.
As nitrogen takes part in the reaction, argon plays the role of the inert
gas, and we further assume nO2 : nN2 : nAr = 21 : 78 : 1. Therefore, we
consider an unburned mixture of zH2 = zO2 = zCO = 5.953 224 66mol kg−1,
zN2 = 22.112 059mol kg−1, and zAr = 0.283 487 9mol kg−1. We consider an
adiabatic, isobaric thermodynamic environment at standard pressure p = p◦.
The value for the fixed enthalpy is the enthalpy of the unburned mixture
at standard state for a temperature of T = 1000K analogous to the case
discussed before.
Solutions of the optimization problem (5.7) for the reduction of the model
of syngas combustion with reactive nitrogen are shown in Figure 9.32. The
constant value of argon is not shown. Reactions with nitrogen interaction are
much slower (on a larger time scale) than reactions that involve only carbon,
hydrogen, and oxygen. Therefore, zN2 is chosen as one reaction progress vari-
able. The specific mole of carbon dioxide serves as second reaction progress
variable.
The algorithm (with GGN method) needs a computation time of 0.73 s
to solve the 9 optimization problems with different values of the reaction
progress variables where the results are depicted in Figure 9.32. Always one
intermediate homotopy step is done, such that a total of 17 optimization
problems are solved with 62 Gauss–Newton iterations.
The values of ammonia and radicals which include nitrogen, e.g. NH2, NH,
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Figure 9.31: Visualization of numerical solutions z∗(t∗) of the op-
timization problem (5.6) with t∗ = tf for the reduction of the syngas
combustion model. The integration horizon tf − t0 = 10−7 s is used.
We aim to approximate a two-dimensional SIM. The overall products
zH2O and zCO2

serve as reaction progress variables.

and CN, deviate from a smooth manifold and are inconsistent in the sense
of Definition 5.5.1, but they are of reasonable magnitude.
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Figure 9.32: Visualization of solutions z∗(t∗) of the optimization
problem (5.7) for the reduction of the syngas combustion model in-
cluding reactive nitrogen. As for the results shown in Figure 9.31, we
aim to approximate a two-dimensional SIM. The variables zN2 and
zCO2 serve as reaction progress variables. Constant zAr is not shown.
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Systems seem, like certain worms,
to be formed by a kind of gener-
atio aequivoca – by the mere con-
fluence of conceptions, and to gain
completeness only with the progress
of time.

Immanuel Kant

10
Summary, conclusion, and outlook

The thesis is summarized in this chapter, and conclusions are drawn. An
outlook on future work is given.

10.1 Summary and conclusion
This work deals with the numerical solution of optimization problems. These
problems arise in an optimization based model reduction method that is
raised in [101]. The method for kinetic model reduction is applied to models
of chemical combustion.
The theory of kinetic model reduction methods is reviewed shortly. The aim
of model reduction as discussed here is the identification of slow invariant
manifolds (SIM) in the state space of the dynamical system which forms
the model under consideration. Species reconstruction is an important issue
for an efficient usage of a model reduction method within other applications:
The values of unrepresented species are computed locally as approximation of
a slow manifold in dependence of the given values of the represented species,
which are also called reaction progress variables and parametrize the slow
manifold. In addition to the values of the unrepresented species, the compu-
tation of the derivative of these with respect to the reaction progress variables
is of great importance. In this work, the method for model reduction based
on optimization of trajectories is further analyzed toward these aims.
Parametric optimization techniques are considered for the computation of
the tangent space of the manifold. The tangent space of the manifold can be
used together with the results of the species reconstruction in applications
that make use of reduced models. Furthermore, parameter sensitivities, that
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are computed for the tangent space, can serve for an Euler prediction of
solutions of neighboring optimization problems.
The main focus of this work is the reduction of models that describe combus-
tion chemistry. It is shown, that the optimization problem that is solved to
approximate points on the SIM in the realizable composition space of stan-
dard models for combustion of a homogeneous mixture always has a solution
if the feasible set is nonempty. A simple strategy is used for the selection
of the reaction progress variables based on the Jacobian matrix of the right
hand side of the ordinary differential equation (ODE) of the model.
The aim of this work is an efficient application of the model reduction method
to models of combustion chemistry. Therefore, we discuss these models in
detail. It becomes clear that negative values of third body concentrations in
pressure dependent reactions result in undefined values of the right hand side
of the ODE of the model. Such values have to be avoided in the optimization
algorithm e.g. with an active set strategy or an interior point method. It
turned out that discontinuities can occur at the switch temperature of the
NASA polynomials for the standard molar heat capacity of the species. As
we need sufficiently smooth functions for optimization, this problem is solved
with a smooth transition function.
Two methods are tested to solve the semi-infinite optimization problem (5.6)
for model reduction: collocation and shooting approaches. The resulting non-
linear programming problem is solved with a state-of-the-art open source
interior point algorithm [168]. It turns out that all variants for solving the
semi-infinite optimization problem are too slow for an in situ application of
the model reduction method e.g. in a computational fluid dynamics simula-
tion.
A finite optimization problem in form of a constrained nonlinear least squares
problem is solved instead. This can be solved efficiently with a generalized
Gauss–Newton method. A filter approach is used for globalization of conver-
gence. Second order correction iterations prevent the Maratos effect. The
problem that has to be solved in the feasibility restoration phase of the filter
algorithm can also be formulated as a least squares problem such that matrix
factorizations can be reused.
Parameter sensitivities of the optimization problem are used in a predictor
corrector homotopy method. The reaction progress variables for parametri-
zation of the slow manifold are considered as parameters in the optimization
problem. This problem has to be solved several times for different values
of the parameters. An Euler prediction based on the (computed) solution
of neighboring problems is employed for initialization of the corrector algo-
rithm. This linear prediction can be used directly within a certain tolerance
as an approximation of a point on the slow manifold. It can also be used
in the continuation scheme in combination with a sophisticated step size
strategy. The step size is computed according to [45] in dependence of the
contraction of the corrector method (i.e. the solution method for the non-
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linear programming problem) and the iterations needed to solve a previous
optimization problem.
Results of applications are shown. A computer code associated with this
work implements the model reduction approach as presented in this the-
sis in C++. The model reduction method is applied to a large variety of
test problems. They range from test problems with known slow manifolds,
which can be represented as the graphs of functions, to singularly perturbed
systems of ODE and models with instable manifolds in their phase space.
Ozone decomposition is considered in form of a small realistic mechanism.
Stoichiometric hydrogen and syngas combustion with and without reactive
nitrogen are used as samples of combustion models.

It can be stated that the current implementation of the model reduction
method including all features described in this thesis can efficiently solve
models for chemical combustion. There is a large flexibility in the imple-
mentation, and a user has to make a lot of deliberate decisions, where the
following considerations and statements can help.

1. A model has to be provided. This can be done in form of a combustion
mechanism in HOMREA format [172] with a specification of the assumed
thermodynamic environment and additional parameters. The model
can also be given as the right hand side of an ODE implemented as
C++ class in an appropriate format.

2. If a model is provided that includes reactions with Troe kinetics, non-
negativity of the variables should be considered in the algorithm, see
Section 9.3.3. This is also the case if the application where the reduced
model is supposed to be used can only deal with positive specific moles,
concentrations, etc.

3. Initial values for the algorithm have to be given. These should be near
to the solution as the scaling is based on the magnitude of the initial
values and convergence depends strongly on a good initialization, see
Section 9.3.2.

4. The reaction progress variables have to be chosen appropriately. The
strategy described in Section 5.5.1 can give a hint, but also depends
strongly on the initial values as a nearest feasible point to the initial
values in the Euclidean distance is analyzed. In general, the application
in which the reduced model is needed also poses criteria for the selection
of the reaction progress variables; the product or educt of the overall
reaction are often of interest. Either way, it is not guaranteed that a
satisfying approximation of a point on a SIM can be computed for all
values of the reaction progress variables that are given.

5. The decision has to be made which optimization problem (5.6) or (5.7)
should be used to determine an approximation of a point on a SIM. In
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general, (5.7) can be solved faster than (5.6) as the constraints do not
include the ODE. Sometimes the algorithm fails to solve (5.7) for the
given combination of reaction progress variables, see Section 9.3.2, and
its solution deviates stronger from the SIM than the solution of (5.6)
in some test examples.

6. If the user decides to compute a solution of (5.6) as an approximation
of a point on a SIM, the solution method for (5.6) has to be specified.
Usually a collocation method needs more computation time but con-
verges more reliable in case of instable systems as e.g. in the case of
the Verhulst model described in Section 9.1.2. The shooting method
has an error control for the numerical solution of the ODE constraints
on the other hand.

7. If the shooting approach is chosen to solve (5.6), tolerances for the
BDF integrator have to be given. If on the other hand the collocation
method is used, the user has to specify the number of finite elements,
the order of the collocation polynomials, and the ratio of the size of
the collocation intervals, see Chapter 6 and Section D.3.

8. The time horizon has to be given and the point in time t∗ in the
interval [t0, tf ] has to be specified for (5.6), too. The choice t∗ = tf is
recommendable is case of systems that converge to a stable equilibrium
whereas t∗ = t0 is advisable in the case of systems that diverge, see
Section 9.1.2.

9. If optimization problem (5.1) is chosen to be solved for an approxima-
tion of points on the SIM, the user has also to specify, which criterion
should be used in the objective function, see also Section 5.2. For
the results shown in this work, we restrict ourselves to Φ as given in
Equation (5.5), but currently twenty possibilities are implemented.

10. If (5.7) is chosen as optimization problem to be solved, the user has to
specify, if this optimization problem should be solved with the GGN
method as described in Section 7.1 or with Ipopt [168].

11. If an approximation of several points on the SIM is needed quickly, it
can save much computation time to choose a large linear step tolerance
εtol, see Equation (8.13). This can lead to large deviations from the
SIM (see Section 9.1.1), and the approximation might not fulfill all
desired conservation laws.

12. If Ipopt [168] is used to solve one of the discussed optimization prob-
lems for model reduction, the limited memory BFGS (l-BFGS) update
for an approximation of the Hessian of the Lagrangian function can
be used. In our experience, the Ipopt iterations are computed much
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faster with l-BFGS, but more iterations are needed such that the over-
all computation takes longer.

13. A scaling of the KKT matrix has to be specified as described in the
Sections 8.4 and 9.3.2. Is has to be tested by the user which scaling
works best for the current problem. In case of an indefinite KKTmatrix
near the solution, only another problem formulation can produce relief.

14. The step size control in the homotopy method to solve neighboring
optimization problems as discussed in Section 8.2 can shorten the com-
putation time as shown for an example in Section 9.3.2. This is only
the case if the initial step size and the desired number of corrector iter-
ations are chosen carefully. The algorithm typically slows down if the
step size strategy is activated for solving families of simple problems.

15. The a posteriori checks as described in Section 5.5.2 can help to identify
outliers, but permanent deviation from a smooth invariant manifold
can not be identified with these strategies.

It becomes clear that the model reduction tool MoRe is not a black box but
must be used with care and experience. Knowledge of the model which is
supposed to be reduced, an idea of the rough magnitude of the specific moles
of the different species, and an anticipation of the time scales are inevitable.
It can not be guaranteed that a solution of the optimization problem for
the reduction of models of chemical combustion with a certain value for
the reaction progress variables can be computed with the MoRe code even
though we have proven a solution to exist (see Section 5.4). Many numerical
strategies are presented in this work to overcome the difficulties. It still is
up to the user of the model reduction code to find the best way to overcome
the (numerical) difficulties that arise in each problem.

10.2 Outlook
A lot of open questions remain. The use of reduced models – the approxi-
mation of the slow manifold with its tangent space – for the simulation of
reaction-diffusion-convection problems which include combustion kinetics is
the aim of [48]. An application of reduced models in optimal control prob-
lems with ODE constraints is discussed in [134].
The homotopy method described in Chapter 8 is only implemented for vari-
ations in the reaction progress variables. An analogous implementation is
possible for changes of the fixed values of elemental specific moles or the
fixed specific enthalpy or internal energy, respectively.
There are also open fields in the numerical implementation of the model
reduction method. The choice of the homotopy parameter for a better hot
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start of the interior point algorithm is not clear; an unblocking strategy could
improve computational time as it is shown in [71]. A relaxed version of the
problem to find a feasible point close to the last iterate in the feasibility
restoration phase could be used as in [167]. Eventually, this can be realized
efficiently in the context of a generalized Gauss–Newton method.
Yet it is not clear to our knowledge how to make a good selection of the
reaction progress variables. A good choice depends on the location in the
phase space where the slow dynamics are approximated. It seems rather
laborious to vary the reaction progress variables in a reactive flow simulation
in dependence of space and time. Such an approach can only be made with
a close coupling of the reduction of the chemistry model with the usage of
the reduced model.
Recently, an approach for the selection of the reaction progress variables is
published by V. Hiremath et al. in [83] based on a greedy algorithm. Their
method is designed to find an optimal set of reaction progress variables such
that a certain error is minimal.
Another open question is the existence of large residual solutions [27] of
the least squares optimization problem (5.7). If such problems arose, an
implementation of the restrictive monotonicity test [28] would be helpful.
Furthermore, the temperature could be implemented as a control function,
thereby one could compute a control such that the approximation of the
specific moles of pollutants as NOx on the slow manifold are below a desired
threshold.
There are integration methods for ODE which exploit a time scale separation
and are based on reduced models. The fast directions in the phase space are
needed e.g. in the G-scheme [163]. These directions are not available in the
optimization based model reduction method as presented here.
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Mechanisms

Combustion mechanisms usually are given as a long-winded list of reactions
and parameter values. The mechanisms for test models used in this thesis are
directly given in Chapter 9. Mechanisms for realistic processes in physical
chemistry as ozone decomposition and syngas combustion are collected in
this section. They are noted to enable the reader to implement a code for
computation and verification of the results presented in Chapter 9.

MoRe – the software tool developed with this thesis – has a “preprocessor”
which parses the mechanism file and the thermodynamic data. The mecha-
nism file has to be given in HOMREA format [172]. Molecularity of the reac-
tions, the matrix of stoichiometry, etc. are computed. A text file is created;
its content is arranged in a key word system. All numerical values are con-
verted to SI base units. When a model based on a parsed mechanism is
supposed to be reduced, MoRe reads the file and can evaluate the right hand
side (4.19) of the model. A C++ class is created additionally by the parser.
It contains the computation of ωs as in Equation (4.16). The same content
is also written as a MATLAB function for eventual test computations. If a
general ODE model is considered, these files have to be written manually.
Values for e.g. mass, pressure, volume, and the elemental specific moles have
to be given appropriately.

A.1 Simplified six species hydrogen combustion

The reaction mechanism for a simplified six species hydrogen combustion is
given in Table A.1. We use thermodynamical data in form of coefficients
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Table A.1: Simplified six species hydrogen combustion mechanism
as used in [140]. Collision efficiencies for M are: αH = 1.0, αH2 = 2.5,
αOH = 1.0, αO = 1.0, αH2O = 12.0, αN2 = 1.0; [140].

Reaction A / (cm,mol, s) b Ea / kJmol−1

O + H2 
 H + OH 5.08× 1004 2.7 26.317
H2 + OH 
 H2O + H 2.16× 1008 1.5 14.351
O + H2O 
 2 OH 2.97× 1006 2.0 56.066
H2 + M 
 2 H + M 4.58× 1019 −1.4 436.726
O + H + M 
 OH + M 4.71× 1018 −1.0 0.000
H + OH + M 
 H2O + M 3.80× 1022 −2.0 0.000

of NASA polynomials that we received from J. M. Powers and A. N. Al-
Khateeb. They use these coefficients for the results in [6, 7].
The mechanism is published originally in [110]. The simplified version shown
in Table A.1 is used by Ren et al. in [140]. The mechanism consists of five
reactive species and inert nitrogen, where in comparison to a full hydrogen
combustion mechanism the species O2, HO2, and H2O2 are removed. The
species are involved in six reactions of Arrhenius type, where three combina-
tion/decomposition reactions require a third body for an effective collision.
The mechanism is used in [108, 148], too.
In prior publications, e.g. [106, 161], we use an alternative version of the
mechanism, where the reverse rate coefficients are computed with fitted Ar-
rhenius parameters for the reverse reactions.

A.2 Ozone decomposition

An ozone decomposition mechanism is given in Table A.2. It involves three
chemical species: O, O2, and O3.

Table A.2: Ozone decomposition mechanism with the forward rates
as in [112]. Collision efficiencies in reactions including M: αO = 1.14,
αO2 = 0.40, αO3 = 0.92.

Reaction A / (cm,mol, s) b Ea / kJmol−1

O + O + M 
 O2 + M 2.9× 1017 −1.0 0.0
O3 + M 
 O + O2 + M 9.5× 1014 0.0 95.0
O + O3 
 O2 + O2 5.2× 1012 0.0 17.4

The original version with fitted reverse rate parameters as published in [112]
is used for tests in [105, 135].
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A.3 GRI-Mech 3.0
We use parts of the GRI-Mech 3.0 mechanism [152]. We group the reactions
in four modules: the hydrogen module in Listing A.1, the carbon monoxide
module in Listing A.2, the nitrogen oxide module in Listing A.3, and the
nitrogen with carbon monoxide module in Listing A.4. The third body
collision efficiencies are given in Listing A.5. The listings are given in the
HOMREA format [172] for combustion mechanisms. The activation energy is
converted to SI units.
It is stated with the results in Chapter 9 which modules are used. Related
thermodynamic data can be found in the original publication [152].

Listing A.1: Hydrogen module of the GRI-Mech 3.0 mechanism
[152].

********************************************************************************
**** 1. hydrogen module ****
---- Rxn A b E_a ----
-------- |------- |------- |------- |------- |cm,mol ,s | | kJ/mol ----
-------- |------- |------- |------- |------- |---------|------|----------------
O +O +M(1) =O2 +M(1) 1.200E+17 -1.000 0.00
O +H +M(2) =OH +M(2) 5.000E+17 -1.000 0.00
O +H2 =H +OH 3.870E+04 2.700 26.19184
O +HO2 =OH +O2 2.000E+13 .000 0.00
O +H2O2 =OH +HO2 9.630E+06 2.000 16.736
H +O2 +M(4) =HO2 +M(4) 2.800E+18 -0.860 0.00
H +O2 +O2 =HO2 +O2 2.080E+19 -1.240 0.00
H +O2 +H2O =HO2 +H2O 11.26E+18 -0.760 0.00
H +O2 +N2 =HO2 +N2 2.600E+19 -1.240 0.00
H +O2 +AR =HO2 +AR 7.000E+17 -0.800 0.00
H +O2 =O +OH 2.650E+16 -0.6707 71.299544
H +H +M(5) =H2 +M(5) 1.000E+18 -1.000 0.00
H +H +H2 =H2 +H2 9.000E+16 -0.600 0.00
H +H +H2O =H2 +H2O 6.000E+19 -1.250 0.00
H +OH +M(6) =H2O +M(6) 2.200E+22 -2.000 0.00
H +HO2 =O +H2O 3.970E+12 0.000 2.807464
H +HO2 =O2 +H2 4.480E+13 0.000 4.468512
H +HO2 =OH +OH 0.840E+14 0.000 2.65684
H +H2O2 =HO2 +H2 1.210E+07 2.000 21.7568
H +H2O2 =OH +H2O 1.000E+13 0.000 15.0624
OH +H2 =H +H2O 2.160E+08 1.510 14.35112
OH +OH +M(2) =H2O2 +M(2) 7.400E+13 -0.370 0.00

LOW 2.300E+18 -0.900 -7.1128
TROE 0.7346 94.0 1756.0 5182.0

OH +OH =O +H2O 3.570E+04 2.400 -8.82824
OH +HO2 =O2 +H2O 1.450E+13 0.000 -2.092
OH +H2O2 =HO2 +H2O 2.000E+12 0.000 1.786568
**** BEGIN DUPLICATE REACTION
OH +H2O2 =HO2 +H2O 1.700E+18 0.000 123.05144
**** END DUPLICATE REACTION
HO2 +HO2 =O2 +H2O2 1.300E+11 0.000 -6.81992
**** BEGIN DUPLICATE REACTION
HO2 +HO2 =O2 +H2O2 4.200E+14 0.000 50.208
**** END DUPLICATE REACTION
OH +HO2 =O2 +H2O 0.500E+16 0.000 72.50872
********************************************************************************
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Listing A.2: Carbon monoxide module of the GRI-Mech 3.0 mecha-
nism [152].

********************************************************************************
**** 2. carbon monoxide module ****
---- Rxn A b E_a ----
-------- |------- |------- |------- |------- |cm,mol ,s | | kJ/mol ----
-------- |------- |------- |------- |------- |---------|------|----------------
O +CO +M(3) =CO2 +M(3) 1.800E+10 0.000 9.97884

LOW 6.020E+14 0.000 12.552
TROE 0.0 0.0 0.0 0.0

O2 +CO =O +CO2 2.500E+12 0.000 199.9952
H +H +CO2 =H2 +CO2 5.500E+20 -2.000 0.00
OH +CO =H +CO2 4.760E+07 1.228 0.29288
HO2 +CO =OH +CO2 1.500E+14 0.000 98.7424
********************************************************************************

Listing A.3: Nitrogen oxide module of the GRI-Mech 3.0 mechanism
[152].

********************************************************************************
**** 6. nitrogen oxide module ****
---- Rxn A b E_a ----
-------- |------- |------- |------- |------- |cm,mol ,s | | kJ/mol ----
-------- |------- |------- |------- |------- |---------|------|----------------
N +NO =N2 +O 2.700E+13 0.000 1.48532
N +O2 =NO +O 9.000E+09 1.000 27.196
N +OH =NO +H 3.360E+13 0.000 1.61084
N2O +O =N2 +O2 1.400E+12 0.000 45.22904
N2O +O =NO +NO 2.900E+13 0.000 96.8596
N2O +H =N2 +OH 3.870E+14 0.000 78.99392
N2O +OH =N2 +HO2 2.000E+12 0.000 88.11504
N2O +M(10) =N2 +O +M(10) 7.910E+10 0.000 234.38768

LOW 6.370E+14 0.000 236.98176
TROE 0.0 0.0 0.0 0.0

HO2 +NO =NO2 +OH 2.110E+12 0.000 -2.00832
NO +O +M(2) =NO2 +M(2) 1.060E+20 -1.410 0.00
NO2 +O =NO +O2 3.900E+12 0.000 -1.00416
NO2 +H =NO +OH 1.320E+14 0.000 1.50624
NH +O =NO +H 4.000E+13 0.000 0.00
NH +H =N +H2 3.200E+13 0.000 1.38072
NH +OH =HNO +H 2.000E+13 0.000 0.00
NH +OH =N +H2O 2.000E+09 1.200 0.00
NH +O2 =HNO +O 4.610E+05 2.000 27.196
NH +O2 =NO +OH 1.280E+06 1.500 0.4184
NH +N =N2 +H 1.500E+13 0.000 0.00
NH +H2O =HNO +H2 2.000E+13 0.000 57.9484
NH +NO =N2 +OH 2.160E+13 -0.230 0.00
NH +NO =N2O +H 3.650E+14 -0.450 0.00
NH2 +O =OH +NH 3.000E+12 0.000 0.00
NH2 +O =H +HNO 3.900E+13 0.000 0.00
NH2 +H =NH +H2 4.000E+13 0.000 15.2716
NH2 +OH =NH +H2O 9.000E+07 1.500 -1.92464
NNH =N2 +H 3.300E+08 0.000 0.00
NNH +M(2) =N2 +H +M(2) 1.300E+14 -0.110 20.83632
NNH +O2 =HO2 +N2 5.000E+12 0.000 0.00
NNH +O =OH +N2 2.500E+13 0.000 0.00
NNH +O =NH +NO 7.000E+13 0.000 0.00
NNH +H =H2 +N2 5.000E+13 0.000 0.00
NNH +OH =H2O +N2 2.000E+13 0.000 0.00
H +NO +M(2) =HNO +M(2) 4.480E+19 -1.320 3.09616
HNO +O =NO +OH 2.500E+13 0.000 0.00
HNO +H =H2 +NO 9.000E+11 0.720 2.76144
HNO +OH =NO +H2O 1.300E+07 1.900 -3.9748
HNO +O2 =HO2 +NO 1.000E+13 0.000 54.392
NH3 +H =NH2 +H2 5.400E+05 2.400 41.48436
NH3 +OH =NH2 +H2O 5.000E+07 1.600 3.99572
NH3 +O =NH2 +OH 9.400E+06 1.940 27.02864
********************************************************************************
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Listing A.4: Nitrogen with carbon monoxide module of the GRI-
Mech 3.0 mechanism. [152].

********************************************************************************
**** 7. nitrogen - carbon monoxide module ****
---- Rxn A b E_a ----
-------- |------- |------- |------- |------- |cm,mol ,s | | kJ/mol ----
-------- |------- |------- |------- |------- |---------|------|----------------
CN +O =CO +N 7.700E+13 0.000 0.00
CN +OH =NCO +H 4.000E+13 0.000 0.00
CN +O2 =NCO +O 6.140E+12 0.000 -1.84096
NCO +O =NO +CO 2.350E+13 0.000 0.00
NCO +H =NH +CO 5.400E+13 0.000 0.00
NCO +OH =NO +H +CO 0.250E+13 0.000 0.00
NCO +N =N2 +CO 2.000E+13 0.000 0.00
NCO +O2 =NO +CO2 2.000E+12 0.000 83.68
NCO +M(2) =N +CO +M(2) 3.100E+14 0.000 226.1452
NCO +NO =N2O +CO 1.900E+17 -1.520 3.09616
NCO +NO =N2 +CO2 3.800E+18 -2.000 3.3472
NH +CO2 =HNO +CO 1.000E+13 0.000 60.0404
CN +NO2 =NCO +NO 6.160E+15 -0.752 1.44348
NCO +NO2 =N2O +CO2 3.250E+12 0.000 -2.94972
N +CO2 =NO +CO 3.000E+12 0.000 47.2792
********************************************************************************

Listing A.5: Collision efficiencies (in part) of the GRI-Mech 3.0
mechanism [152].

********************************************************************************
COLLISION EFFICIENCIES
********************************************************************************
M(1) =H2 +H2O +CO +CO2 +AR

2.40 15.4 1.75 3.60 0.83
M(2) =H2 +H2O +CO +CO2 +AR

2.00 6.00 1.50 2.00 0.70
M(3) =H2 +O2 +H2O +CO +CO2 +AR

2.00 6.00 6.00 1.50 3.50 0.50
M(4) =O2 +H2O +CO +CO2 +N2 +AR

0.0 0.0 0.75 1.50 0.0 0.00
M(5) =H2 +H2O +CO2 +AR

0.0 0.0 0.0 0.63
M(6) =H2 +H2O +AR

0.73 3.65 0.38
M(7) =H2 +H2O +CO +CO2 +AR

2.00 6.00 1.50 2.00 0.70
M(8) =H2 +H2O +CO +CO2

2.00 6.00 1.50 2.00
M(9) =H2 +H2O +CO +CO2

2.00 0.00 1.50 2.00
M(10) =H2 +H2O +CO +CO2 +AR

2.00 6.00 1.50 2.00 0.625
M(11) =H2 +H2O +CO +CO2 +AR

2.00 6.00 1.50 2.00 1.00
********************************************************************************
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B
Notation

In this chapter, notations are explained, and lists of important symbols es-
pecially for combustion models are given.

B.1 General notation
In this work, several notations for a derivative of a function are used. Con-
sider some function f : Rn → Rm, n,m ∈ N, with argument x ∈ Rn. The
derivative of f with respect to x is written as

d

dx
f(x) = dxf(x) = Df(x),

where the notation Df usually represents the derivative of f with respect to
time x = t ∈ R.
Consider a function g(x, y) with arguments x ∈ Rn1 and y ∈ Rn2 . The
partial derivative of g with respect to the first entry x is written as

∂

∂x
g(x, y) = Dxg(x, y) = gx(x, y) = ∇x g(x, y)T

and with respect to the second entry analogously.
If special interest is paid to the Jacobian matrix of a vector valued function
f , it is written as Jf (x), which can be considered as the transposed gradient

Jf (x) = ∇f(x)T.

The notation d without index in application to a function is used for the
total differential, e.g.

dg = gxdx+ gydy.
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The symbol ‖ · ‖ denotes any norm in Rn. If it is necessary to specify a
certain norm, ‖ · ‖p is the p-norm. For example, ‖ · ‖2 denotes the Euclidean
norm. For the corresponding scalar product 〈·, ·〉, the same index as for the
norm are used (or not, respectively).
Inequalities between vectors or matrices of the same dimension are always
meant componentwise.
The term instable is used in the mathematical context for e.g. equilibria; the
term unstable is used in the chemical context, e.g. for radicals.

B.2 Symbols in combustion models
In Chapter 4 and later on, a confusing number of symbols is used for the de-
scription of combustion models. An overview of the meaning of the symbols
and eventually their value and/or unit is given in the following tables. Latin
symbols used in combustion models are explained in Table B.1.

Table B.1: List of Latin symbols used in models of combustion.

Symbol Description Value or unit

a parameter in Troe reaction w/o dim.
A pre-exponential factor in Arrhenius law varies
b exponent of T in Arrhenius law
c concentration molm−3

cp specific heat capacity at constant pressure J kg−1 K−1

Cp heat capacity at constant pressure JK−1

C̄p molar heat capacity at constant pressure Jmol−1 K−1

cp,s specific heat capacity at constant pressure of species s J kg−1 K−1

C̄p,s molar heat capacity at constant pressure of species s Jmol−1 K−1

cs concentration of species s molm−3

cV specific heat capacity at constant volume J kg−1 K−1

CV heat capacity at constant volume JK−1

C̄V molar heat capacity at constant volume Jmol−1 K−1

cV,s specific heat capacity at constant volume of species s J kg−1 K−1

C̄V,s molar heat capacity at constant volume of species s Jmol−1 K−1

e specific internal energy J kg−1

E internal energy J
Ea activation energy Jmol−1

es specific partial internal energy of species s J kg−1

h specific enthalpy J kg−1

H enthalpy J
hs specific partial enthalpy of species s J kg−1

H̄s molar partial enthalpy of species s Jmol−1

kf,r forward rate coefficient of reaction r varies
kr,r reverse rate coefficient of reaction r varies
Kc equilibrium constant in concentration units varies
Kp equilibrium constant in pressure units w/o dim.
m mass kg

Continued on next page.
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Symbol Description Value or unit

M̄ mean molar mass kgmol−1

ms mass of species s kg
Ms molar mass of species s kgmol−1

M̄i molar mass of element i kgmol−1

n amount of substance mol
nelem number of elements w/o dim.
ns amount of substance of species s mol
NA Avogadro constant 6.022× 1023 mol−1

nreac number of chemical reactions w/o dim.
nspec number of chemical species w/o dim.
ntb number of collision partners (third bodies) w/o dim.
p total pressure Pa
ps partial pressure of species s Pa
pr reduced pressure w/o dim.
p◦ standard pressure 105 Pa
qr rate of progress of reaction r molm−3 s−1

R gas constant 8.314 Jmol−1 K−1

rf,r forward rate of reaction r varies
rr,r reverse rate of reaction r varies
s specific entropy (if not a counter) J kg−1 K−1

s counter of species (usually as index) w/o dim.
S entropy JK−1

S̄s molar partial entropy of species s JK−1

t time s
T temperature K
T ∗ parameter in Troe reaction w/o dim.
T ∗∗ parameter in Troe reaction w/o dim.
T ∗∗∗ parameter in Troe reaction w/o dim.
Tlb lower bound of temperature in NASA polynomials K
Tsw switching temperature in NASA polynomials K
Tub upper bound of temperature in NASA polynomials K
V total volume m3

vs specific volume of species s m3 kg−1

ws mass fraction of species s w/o dim.
xs mole fraction of species s w/o dim.
zs specific mole of species s mol kg−1

ži specific mole of element i mol kg−1

Greek symbols used in combustion models are listed in Table B.2.

Table B.2: List of Greek symbols used in models of combustion.

Symbol Description Value or unit

αi,s collision efficiency of species s in third body i w/o dim.
νr sum of net stoichiometric coefficients in reaction r w/o dim.
νsr net stoichiometric coefficient of species s in reaction r w/o dim.
ν′sr stoichiom. coeff. of species s in forward direction of rxn r w/o dim.
ν′′sr stoichiom. coeff. of species s in reverse direction of rxn r w/o dim.
ρs mass density of species s kgm−3

Continued on next page.
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Symbol Description Value or unit

ρ total (mass) density kgm−3

χi,s atomic composition coefficient (element i in species s) w/o dim.
ωs molar chemical production rate of species s molm−3 s−1

ω vector of ωs, s = 1, . . . , nspec molm−3 s−1

B.3 Acronyms
A list of acronyms used in this work is given in Table B.3. We use the
same acronym for an expression in singular and plural. The full expression
depends on the current context.

Table B.3: List of acronyms.

Acronym Full expression

AS active set
BDF backward differentiation formula(e)
CFD computational fluid dynamics
CLLS constrained linearized least squares
CNLLS constrained nonlinear least squares
CPA close-parallel assumption
CSP computational singular perturbation
FGM flamelet generated manifold(s)
GGN generalized Gauss–Newton
ICE-PIC invariant constrained equilibrium edge preimage curve
ILDM intrinsic low dimensional manifold(s)
IND internal numerical differentiation
IVP initial value problem(s)
IP interior point
KKT Karush–Kuhn–Tucker
LICQ linear independence constraint qualification
MEPT minimal entropy production trajectory/-ies
NASA national aeronautics and space administration
ODE ordinary differential equation(s)
PDE partial differential equation(s)
PEA partial equilibrium assumption
QSSA quasi steady state assumption
RCCE rate-controlled constrained equilibrium
SIM slow invariant manifold(s)
SOC second order correction
SQP sequential quadratic programming
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C
External software and hardware

All results shown in Chapter 9 are computed on an Intelr CoreTM 2 Duo
CPU E6550 with 2.33GHz. The operating system is openSUSE 11.4 (i586)
including the Linux 2.6.37.6 kernel and GCC 4.5.

The following external software is used in the MoRe code (listed in alphabet-
ical order).

BDF integrator

The BDF integrator used for integration of ODE is an implementation by
D. Skanda [151]. It is based on Nordsiek array interpolation. It is also
possible to compute sensitivities needed in the optimization algorithm based
on internal numerical differentiation [22, 23]. The detailed numerical strategy
can be found in [151, Chap. 5].

CppAD

The automatic differentiation tool CppAD is used for the computation of nec-
essary derivatives. It is published by B. M. Bell with Common Public License
Version 1.0 or the GNU General Public License Version 2 [17, 18]. We always
use the most recent trunk version via the svn repository. This is currently
revision 2332.

HSL routines

We use ma27 with the ordering routine mc19 from the HSL routines [84]
within Ipopt.
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Ipopt

Ipopt is a powerful optimization algorithm based on an interior point filter
method. Its theory is published in [165, 166, 167, 168]. We use Ipopt 3.10
provided by A. Wächter via the svn repository. This version of Ipopt is
published with the Eclipse Public License.

LAPACK

We use LAPACK [13] as standard library for all linear algebra purposes, where
MUMPS or ma27 are not used.

MATLAB

MATLABr R2009a [113] is used to plot the results and to compute the condi-
tion numbers that are presented in Chapter 9. The trajectory pieces shown
in the figures in Chapter 9 are computed with the integrator ode15s.

METIS

METIS is a program for graph partitioning which can be used for the computa-
tion of orderings for sparse matrices [90]. We use METIS 4.0 in combination
with MUMPS.

MUMPS

MUMPS is a multifrontal massively parallel sparse direct solver [11, 12]. In our
case, it is especially useful for use in the collocation approach, where we deal
with sparse systems of linear equations. The right hand side of the linear
system (8.3) for the computation of the tangent space is also sparse and can
be handled by MUMPS. We use MUMPS 4.9.2 which is freely available via the
website http://graal.ens-lyon.fr/MUMPS/.
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D
Work flow of the model reduction code

In this chapter, the work flow of the model reduction code MoRe is shown in
form of flowcharts. We present the usage of our collection of C++ headers in
an overview.

D.1 First call
After creating an instance of the MoRe class, a first call of the model reduction
tool has to be made either with the method first() or with reduction().
In both cases the code works as depicted in Figure D.1. All input data has to
be given in the form of text files. Only the names and values for the reaction
progress variables can be given directly to the code for species reconstruction
in an in situ application with the methods first() and warm().
The path to the text files which contain the parameters can be specified
in the makefile. The easiest way to provide the combustion model which
is supposed to be reduced is to use the mechanism parser which directly
converts the mechanism from HOMREA format [172] to the needed C++ class
and additional text files that contain the values of the kinetic parameters.
All input data is analyzed for contradictions or an empty feasible set of (5.7),
e.g. if the given values for the reaction progress variables violate the mass
conservation if only nonnegative variables are allowed.
Subsequently, the code prepares the tapes for the automatic differentiation
tool CppAD [17], where only these tapes are created that are needed for the
NLP problem which is supposed to be solved afterward. In order to achieve
this, the computation of the right hand side of the ODE system of the model
is done once for the given initial values. This is depicted in Figure D.2.
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call method first() of MoRe

read
data files

data valid stop

build AD
tapes, see
Fig. D.2

instantiate
NLP class

Ipopt
solves (5.7)

GGN
method

solves (5.7)

Ipopt with
shooting

solves (5.6)

Ipopt with
collocation
solves (5.6)

parameter
sensitiv-
ities dx∗

dr

output

new valuewait
continue
with

Fig. D.3

no

yes

no
yes

Figure D.1: Flowchart of a first call of the model reduction code
MoRe with method first() or reduction().

After the preparation of all necessary tapes, the C++ class to solve the NLP
problem is instantiated. Either Ipopt is called to solve the NLP problem that
arises as a discretized form of (5.6) with collocation equations as constraints
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call method compute_rhs() of class chemistry

compute
H̄◦s , S̄◦s ,
C̄◦p,s

compute
cs, s =

1, . . . , nspec

compute
Mi, i =

1, . . . , ntb

compute
kf,r, r =

1, . . . , nreac

compute
kr,r, r =

1, . . . , nreac

compute
ωs, s =

1, . . . , nspec

compute
Se

compute
Sm

return Sm, Se

Figure D.2: Flowchart of the computation of the right hand side of
the ODE of the combustion model in the model reduction code MoRe.

and a quadrature method for the evaluation of the objective function. Al-
ternatively, Ipopt is used to solve the NLP problem that results within a
shooting approach to solve (5.6) with the BDF integrator to solve the ODE
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of the model. As a third choice, Ipopt can be used to solve (5.7). As a
fourth possibility, this problem can also be solved with the GGN method as
described in Section 7.1. The different ways to solve the different optimiza-
tion problems merge with the computation of the derivatives of the solution
x∗ with respect to the parameters r, i.e. to solve Equation (8.3). Here the
choice of the linear solver (MUMPS or a LAPACK solver) depends on the size
and sparsity of the KKT matrix and right hand side of the linear system.
A posteriori checks can be done. That means, the values introduced in
Section 5.5.2 can be computed and saved with the regular output. Here
again the BDF integrator or the Gram–Schmidt algorithm may be used as
described in Section 5.5.2. The results in the sense of the approximation of
a point on the SIM and of the tangent vectors of the SIM in that point are
written to a file (if required) and/or returned by the method first().
If the MoRe code is used for tabulation of the SIM approximation with a
grid of values for the reaction progress variables by means of the method
reduction(), the algorithm continues to solve the optimization problem for
the next grid point according to the warm start depicted in Figure D.3.
Otherwise, the instance of the MoRe class can be newly called with warm().

D.2 Warm start
The work flow of the model reduction code if a neighboring optimization
problem has to be solved in a warm start is similar to the case of a first call,
see Figure D.3, but less input data has to be provided.
After testing the input data for contradictions, it is checked if (8.13) holds.
If this is the case, the values computed as a linear approximation of the SIM
defined in (8.14) are returned. If (8.13) does not hold, the homotopy step
size is computed. This is either a full step (if requested by the user) or the
step size computed with the step size strategy presented in Section 8.2.
An NLP class is instantiated. The same choice for the corrector algorithm
is made as in the preceding call with first(), warm(), or reduction().
After a solution of the NLP problem is computed, parameter sensitivities
are computed as well. If the code fails to solve the NLP problem in a given
number of iterations, the homotopy step size is reduced and another attempt
to compute a solution is made until a maximum number is exceeded.
Repeatedly, a new homotopy step size is computed and the next optimization
problem is solved until the desired values for the reaction progress variables
are achieved (or the algorithm stops after the maximum allowed number of
attempts). An a posteriori check of the solution is possible before the output
is written to a text file and/or returned by the method warm(). If another
requested value for the reaction progress variables is present in a call of the
method reduction(), the algorithm continues. Otherwise a new call with
the method warm() is awaited.
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call method warm() of MoRe

data validstop

lin. step

homotopy
step size

instantiate
NLP class

Ipopt
solves (5.7)

GGN
method

solves (5.7)

linear step
(8.14)

Ipopt with
shooting

solves (5.6)

Ipopt with
collocation
solves (5.6)

parameter
sensitiv-
ities dx∗

dr

at rpv

output

new valuewait

yes

no

no

yes

yes

no
yes

no

Figure D.3: Flowchart for a warm start in the model reduction code
MoRe implicitly with method reduction() or explicitly with warm().
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D.3 Input variables and options
In this section, we present input data that is needed to compute the numerical
solutions of optimization problem (9.8) that are presented in Figure 9.25 in
Section 9.3.3. We choose to solve optimization problem (5.6) with reverse
mode t∗ = tf in a collocation approach. The time horizon is chosen as
tf − t0 = 10−8 s. Therefore, we set the options as given in Table D.1 and use
the default values for the remaining options.

Table D.1: General settings for the example problem (9.8) to reduce
the model for ozone decomposition.

Key word Value

<method> c or collocation
<criterion> 12
<condition> 4

<tf> 1e-8
<t*> tf

<combustion> 1
<positivity> 0

<obj_scal> 1e-10
<output_style> js

The option <criterion> selects the objective function, where 12 is the form
given via Equation 5.5. Option <condition> decides on the thermodynamic
environment for the combustion model (if option <combustion> is set to 1),
where 4 represents adiabatic and isobaric. Nonnegativity of the variables
is not demanded by setting <positivity> to 0. The objective function is
scaled with a factor of 10−10.
We specify the collocation settings by choosing the options as depicted in
Table D.2, where <ncp> defines the degree of the collocation polynomials
and <nfe> defines the number of collocation intervals. For the rest of the
options, we choose the default values.

Table D.2: Collocation settings for the example problem (9.8) to
reduce the model for ozone decomposition.

Key word Value

<nfe> 150
<ncp> 1

The step size control for the homotopy steps in the predictor corrector scheme
is switched off. This means, we set the option <step_size_control> to 0 in
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the homotopy settings and do not have to specify any other options for the
requested homotopy full step method.
The mechanism given in the HOMREA format [172] and the thermodynamic
data (the coefficients of NASA polynomials) are automatically transformed
by the mechanism parser. We choose the parameters of the model as given
in Table D.3.

Table D.3: Parameters for the example problem (9.8) to reduce the
model for ozone decomposition.

Key word Value

p 100000
T 1000
O 62.5

This means, we assume a pressure of 1 bar and an elemental specific mole
of žO = 62.5mol kg−1. The temperature is given to define the fixed specific
enthalpy of the system indirectly: It is the enthalpy of the given value for
žO at T = 1000K.
We also give initial values for the algorithm. We should specify points that
we expect near the solution z∗(t0) and z∗(tf) of the optimization problem
(9.8) for the first given value for the reaction progress variables. In the chosen
collocation approach, a linear interpolation is made on the collocation points
based on the given initial values. For this small example, we make a constant
initialization with the initial values z0(t0) = z0(tf) given in Table D.4.

Table D.4: Initial values for the example problem (9.8) to reduce the
model for ozone decomposition.

Variable Initial value

0 4.968970151960297e+01
02 6.405088761730501e-00
03 4.031922778342857e-05
T 4.825580760386146e+03

The grid of values for the reaction progress variable zO is given as a file
grid.dat with first line 0 and in every subsequent line one value for zt∗O
(50, 51, . . . , 60).
One instance More of the MoRe class is created. To compute the results,
the method More.reduction() is used. The approximation of the points on
the SIM can be found in the file sim_solution.out, and the approxima-
tions of the manifold tangent vectors are saved in mtv_solution.out. The
performance of the algorithm is documented in status_solution.out.
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