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Abstract:

This thesis explores the quantum many-body tunneling dynamics of open ultra-
cold bosonic systems with the recently developed multiconfigurational time-
dependent Hartree for bosons (MCTDHB) method. The capabilities of MCTDHB
to provide solutions to the full time-dependent many-body problem are assessed
in a benchmark using the analytically solvable harmonic interaction Hamilto-
nian and a generalization of it with time-dependent both one- and two-body
potentials. In a comparison with numerically exact MCTDHB results, it is shown
that e.g. lattice methods fail qualitatively to describe the tunneling dynamics. A
model assembling the many-body physics of the process from basic simultane-
ously happening single-particle processes is derived and verified with a numer-
ically exact MCTDHB description. The generality of the model is demonstrated
even for strong interactions and large particle numbers. The ejection of the
bosons from the source occurs with characteristic velocities. These velocities are
defined by the chemical potentials of systems with different particle numbers
which are converted to kinetic energy. The tunneling process is accompanied
by fragmentation: the ejected bosons lose their coherence with the source and
among each other. It is shown that the various aspects of the tunneling dynamics’
can be controlled well with the interaction and the potential threshold.
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Kurzzusammenfassung:

Diese Dissertation erkundet die Quantenvielteilchentunneldynamik von offenen,
ultrakalten bosonischen Systemen mithilfe der kürzlich entwickelten multikon-
figurationalen zeitabhängigen Hartreemethode für Bosonen (MCTDHB). Eine
Bewertung der Fähigkeiten dieser Methode, Lösungen des vollen, zeitabhängi-
gen Vielteilchenproblems zu liefern wird in Form eines Benchmark-Tests mit dem
analytisch lösbaren Hamiltonoperator mit harmonischer Wechselwirkung, sowie
einer Verallgemeinerung dessen mit zeitabhängigen Ein- und Zweiteilchenpo-
tentialen, durchgeführt. In einem Vergleich mit numerisch exakten Resultaten
wird gezeigt, dass z.B. Gittermethoden qualitativ darin versagen, die Tunneldy-
namik zu beschreiben. Ein Modell, welches die Physik des Vielteilchenprozesses
aus einfachen, gleichzeitigen Einteilchenprozessen zusammensetzt wird abgelei-
tet und mit einer numerisch exakten MCTDHB-Rechnung verifiziert. Die Allge-
meinheit des Modells wird selbst für starke Wechselwirkung und große Teilchen-
zahlen gezeigt. Der Ausstoß von Bosonen aus der Quelle verläuft mit charakter-
istischen Geschwindigkeiten. Diese Geschwindigkeiten sind durch die Umwand-
lung der chemischen Potentiale von Systemen unterschiedlicher Teilchenzahl in
kinetische Energie definiert. Der Tunnelprozess wird von Fragmentierung be-
gleitet: die ausgestoßenen Bosonen verlieren ihre Kohärenz mit der Quelle und
untereinander. Es wird gezeigt, dass diverse Aspekte der Tunneldynamik gut mit
der Wechselwirkung sowie dem Wert des Potentials im offenen Raum kontrolliert
werden können.
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“... quantum physics means that anything can happen at
any time for no reason.”1

1Professor Farnsworth in Futurama, Bender’s Game (2008).
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Chapter 1. Introduction

Chapter 1

Introduction

Even though the physics of ultracold bosons is a rich field, the many-body physics
of tunneling has not been described by means of exact methods. The present
thesis connects the fields of both ultracold atoms and that of the many-body
physics of tunneling. This introduction provides some basic knowledge of both
scientific contexts, and motivates the present connection.

Bose-Einstein Condensation:

Bose-Einstein condensation is a phenomenon which has been drawing the atten-
tion of the scientific community ever since its prediction in 1924 [1–3]. Until
the actual production of a Bose-Einstein condensate (BEC), a very long time was
needed, because sophisticated laser-cooling techniques, like for instance Doppler
or Sisyphus cooling, were needed (see Refs [4–7] for an overview). Finally, in
1995 three groups, succeeded independently in cooling a trapped sample of ul-
tracold bosons below the critical temperature for the formation of BECs. The first
group, led by Ketterle, used repulsive sodium [8], the second, led by Cornell and
Wieman, used repulsive rubidium [9], and the third one, led by Hulet, used at-
tractive lithium [10]. Bose-Einstein condensation opened a door to the in-depth
study of quantum many-body physics, because the amount of control that can
be exerted on BECs in the lab is outstanding: their dimensionality [11–13], their
confinement [14], and their interparticle interactions [15] can be controlled al-
most at will. Hence, BECs are used as so-called quantum simulators to emulate
the physics encountered in other physical systems as, for instance, solid state
systems (see e.g. [16]) or even analogs of black holes from astrophysics [17].
More recently, dipolar BECs have been realized in chromium [18] and dyspro-
sium [19]. The presence of contact and dipolar interparticle interactions in these
samples allows for an even larger class of physical systems that can be studied
in a well controlled experimental environment. Further applications of BECs in-

1



clude, for instance, precision measurements (see e.g. Ref. [20]), dynamics of
BEC in optical lattices [21], quantum computation [22] and the study of vortic-
ity and vortex dynamics [23]. A good overview of the present techniques and
possibilities in the field is available in Refs. [21,24–26].

It is appropriate to introduce here the definition for condensation found by
Penrose and Onsager in the 1950s: the reduced one-body density matrix of a
condensed quantum many-body system has only a single macroscopic eigen-
value [27]. This eigenvalue corresponds to the quantum mechanical single-
particle state which is occupied by all the bosons. In the more complex recent
experiments, especially for the case of dynamical scenarios, it turned out that the
reduced density matrix has several – in contrast to only a single – macroscopic
eigenvalues. This interesting physical situation is referred to as the fragmenta-
tion of BECs, see Refs [28–36].

With the wealth of accessible and controlled physical situations, it is of great
interest to tackle further, fundamental many-body problems. One of these is the
many-boson tunneling process to open space. Beyond the well-known (effective)
single-particle description of the process [37, 38], very little is known about the
mechanism. This thesis explores and assesses the physics of tunneling from a
many-body point of view and proposes and validates an intuitive model, as well
as a scheme to manage and control the tunneling dynamics.

The Many-body Physics of Tunneling:

Ever since the beginning of quantum theory, the tunneling phenomenon was of
great interest [37–39] and this is mainly due to the lack of a classical analog. The
tunneling process occurs in all potentials that have regions to which a classical
particle could go, the so-called energetically allowed regions, as well as regions
to which a classical particle could not go, the so-called energetically forbidden re-
gions. Usually, an energetically allowed region is separated from an energetically
forbidden one by a barrier. A quantum particle in such a potential can overcome
the potential barrier without having the necessary energy, because its position is
described by a probability distribution which is greater than 0 in the classically
forbidden regions of the potential (cf. Fig. 1.1). With this very general condition
for its occurrence, quantum tunneling is characteristic for many processes and is
omnipresent in nature and its physical systems. It occurs in the field of nuclear
physics of fusion [40] and fission [41], in the field of chemistry in photodissocia-
tion [42] as well as photoassociation [43], to name just a few. It is important to
stress here, that almost all systems in which the tunneling phenomenon occurs
are many-body systems which are, in principle, open. Yet, the tunneling process
is conventionally studied from an effective single-particle perspective – neglect-
ing the correlation between the constituent particles of the system as well as

2



Chapter 1. Introduction

Figure 1.1 Sketch of Single- and Many-Particle Tunneling.

their dynamics. For an illustration, compare the left and right panels of Fig. 1.1.
A theoretical or experimental study beyond the simplified effective single parti-
cle picture is a complicated task, which necessitates sophisticated methods and
new ways of analysis. The realization of BECs [8–10] and the aforementioned
developments provided new possibilities to study many-body tunneling in a very
well-controlled environment. For ultracold bosonic atoms, the Hamiltonian of
the many-body system is known explicitly. The Hamiltonian uniquely defines
the dynamics via the time-dependent Schrödinger equation (TDSE). Hence, the
time-evolution and quantum dynamics are also known, in principle. The prob-
lem arises when one tries to solve the TDSE of a many-body system. The solution
of a partial differential equation is the time-dependent probability distribution of
N particles, hence, it has dimensionality N . In almost all cases, such a solution
has no closed analytical form. In the history of variational methods used to solve
the many-boson TDSE, a recent breakthrough has been achieved. After the time-
dependent Gross-Pitaevskii equation (TDGP) (cf. Refs [44,45]) in 1961 and the
best mean-field (BMF) methods in 2003 and 2007 [46, 47], the multiconfigu-
rational time-dependent Hartree for bosons (MCTDHB) method was derived in
2008 [48]: numerically exact solutions of the TDSE for many bosons for general
time-dependent problems are available [28,49] for the first time.
In the present thesis, this method is introduced and its capabilities are assessed
by benchmarking it with analytical results, and by comparing it with other meth-
ods in the field. Subsequently, MCTDHB is employed to calculate numerically
exact solutions of the TDSE for one-dimensional many-boson problems of tun-
neling to open space in various situations. The full many-body results are com-
pared to the single particle case in order to explore the collective many-body
phenomena and the correlation dynamics in the process. The analysis of the
many-boson physics explains how the overall tunneling to open space process
can be modeled as an interference of simultaneous single-particle tunneling pro-
cesses emerging from a coherent source. With this understanding, a scheme for
the control of the dynamics in the many-body system is formulated and verified.
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Structure of this Thesis:

Chapter 2 provides an introduction to the quantum-physical methods in the
field with focus on the ones that are used throughout this thesis. The quality
and the numerical implementation of the aforementioned MCTDHB theory (see
Ref. [50]) is assessed. This is done by, first, a benchmark and, second, a compar-
ative study with lattice models. In Chapter 3 the benchmark with the analytically
solvable harmonic interaction model (HIM) and a time-dependent generalization
of it (TDHIM) (see also Ref. [49]) is used. The comparison is done with the help
of a Bose-Hubbard simulation and a mapping of discrete and continuous space
in Chapter 4. In Chapter 5 several analytical considerations on the many-body
physics in the tunneling process to open space are presented. For instance, the
aforementioned model assembling the many-body dynamics from simultaneous
single-particle processes is derived and discussed. Chapter 6 presents numeri-
cally exact results for the many-boson to open space tunneling process and dis-
cusses the significance of correlation and coherence dynamics in the many-body
process (cf. Ref. [51]). Furthermore, the models formulated in Chapter 5 are
verified. In Chapter 7 the dynamics in the tunneling process of many bosons to
open space are subjected to a threshold, i.e., a non-zero value of the potential in
the asymptotic region. To model the dynamics properly, the introduced model
with simultaneous single-particle-tunneling processes is modified accordingly. It
is shown how the counting statistics and correlation dynamics in the process can
be controlled by manipulating the threshold and interparticle interactions. A
summary of the findings and an outlook complete the present thesis in Chapter
8. The Appendices collect lengthy analytical calculations, as well as other many-
body quantities of analysis which were derived but not numerically applied so
far.
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Chapter 2. Theory and Methods

Chapter 2

Theoretical Concepts and Numerical

Methods

The scope of this chapter is to give an overview of the various methods available
to tackle the problem of solving the TDSE for a system of many bosons. In the
rich variety of literature on this problem, References [26, 52] provide a good
starting point. Here, special attention is devoted to the motivation and illustra-
tion of the mean-field methods and their multiconfigurational generalizations,
because these are the methods within which most of the numerical results in the
present study have been obtained. To give a self-contained picture, it is a good
approach to review the basics of the second quantized formulation of the quan-
tum mechanics of bosons, as well as some of the theoretical concepts used in
the field. The approximations considered here fall into two different categories:
the first set relies on making assumptions solely on the ansatzes and intends to
solve the full many-body Hamiltonian (the Gross-Pitaevskii theory, best mean-
field theory, MCTDHB, and etc.). The second set relies on making assumptions
on the physical situation and constructing model Hamiltonians and possibly also
ansatzes for the wavefunctions (such as the Bose-Hubbard Hamiltonian, the dis-
crete non-linear Schrödinger equation, and etc.). All these approximations allow
for an analytical description only in very rare and special cases or under addi-
tional assumptions – it is therefore inevitable to construct methods to solve them
numerically in order to avoid the necessity of further idealizations. The above
points are discussed in this chapter.
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2.1. The Schrödinger Equation from a Many-Body Perspective

2.1 The Schrödinger Equation from a Many-Body

Perspective

The many-body Schrödinger equation reads:

Ĥ(~r1, ..., ~rN , t)Ψ(~r1, ..., ~rN , t) = i∂tΨ(~r1, ..., ~rN , t). (2.1)

Here, both, Ĥ and the wavefunction Ψ depend on the positions of the N par-
ticles. In many cases, the Hamiltonian Ĥ is an Hermitian operator in the N -
particle Hilbert space. For N identical bosons, both Ĥ and Ψ are symmetric
when interchanging any two of the coordinates in Eq. (2.1). Hereafter, a Hamil-
tonian with a single particle potential for each particle and two-body interactions
for every pair of particles is considered,

Ĥ =
N∑

i=1

ĥ(~ri) +

j=N∑

i<j

Ŵ (~rj , ~ri, t),

ĥ(~r) = T̂ (~r) + V (~r, t),

T̂ (~r) = −1

2
∂2
~r , (2.2)

unless otherwise specified. Here Ŵ is the two-body interaction, V is the one-
body potential, and T̂ is the usual kinetic energy in dimensionless units with
~ = m = 1. Both, Ŵ and V , can be time-dependent but for most of the problems
they will be considered as time-independent. For ultracold bosons it is usually
assumed that the two-body physics are well-described by s-wave scattering. Ul-
tracold temperatures imply very low kinetic energies. Hence, only the s-wave
is contributing to the partial wave expansion of the scattering processes. In this
case:

Ŵ (~ri, ~rj) = λ0δ(~ri − ~rj), (2.3)

where λ0 relates to the s-wave scattering length [53,54]. Already from Eqs (2.1),
and (2.2) it is obvious that this problem becomes high-dimensional for several
particles N > 1. It is hence difficult to solve and approximations are a must
in the many particle case. A very efficient formalism for treating systems of N
identical particles is called second quantization. It is explained below.

2.1.1 Second Quantization

The space of many-boson wavefunctions is the N -particle Hilbert space [55].
Conventionally, a complete and orthonormal set of single-particle states1, {|ai〉, i =

1For didactical reasons, the time-dependencies are omitted in various places in this section.
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Chapter 2. Theory and Methods

1, ..., N}, is chosen to describe this N -particle Hilbert space. In this basis, a state
of N distinguishable particles is the product

|a1〉 · · · |aN〉 = |a1, ..., aN〉,

where the subscript identifies the particle. Straightforwardly, symmetrized prod-
ucts, the so-called permanents, can be formed by summing all possible permuta-
tions of this expression. This summation is denoted as the action of the so-called
symmetrization operator Ŝ+. Hence, the permanent has the following properties:

Ŝ+ [|a1, ..., aN〉] =
1

N !

∑

{~a}
|~a〉. (2.4)

Here {~a} = {|aα, ..., aω〉} denotes all possible permutations of the indices α, ..., ω,
and Ŝ+ is the symmetrization operator for bosons. Permanents are fully symmet-
ric, N -dimensional, orthogonal functions. If one assumes, that one of the single
particle states |ai〉 is occupied by ni bosons, the symmetrization with Ŝ+ will
make it occur ni! times in the right hand side of Eq. (2.4). To obtain a proper
normalization, one has to divide by the square root of ni! for all i. Hence, it
follows for the permanent |n1, n2, ...〉:

|n1, n2, ...〉 =
1√

n1!n2! · · ·
Ŝ+ [|a1, ..., aN〉] (2.5)

〈n1, n2, ...|n′
1, n

′
2, ...〉 = δn1,n′

1
δn2,n′

2
· · · (2.6)

∑

n1,n2,...

|n1, n2, ...〉〈n1, n2, ...| = 1. (2.7)

Here, a constant particle number, i.e.
∑∞

i=1 ni = N was assumed. By introducing
the conventional creation and annihilation operators, respectively:

â†i |..., ni, ...〉 =
√
ni + 1|..., ni + 1, ...〉

âi|..., ni, ...〉 =
√
ni|..., ni − 1, ...〉,

it is possible to write a general single-permanent many-boson state as:

|n1, n2, ...〉 =
1

n1!n2! · · ·
(
â†1

)n1
(
â†2

)n2

· · · |vac〉, (2.8)

where |vac〉 ≡ |0, 0, ..., 0〉 denotes the vacuum state in which there is no particle
present. The commutation relations of the operators âj are of bosonic nature:

[âi, âj] = 0;
[
â†i , â

†
j

]
= 0;

[
âi, â

†
j

]
= δij. (2.9)

With this, the description of a general basis set of a many-boson system with
constant particle number is complete. The next section covers how to transform
the set of single-particle states building up the permanent given in Eq. (2.8).
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2.1. The Schrödinger Equation from a Many-Body Perspective

Unitary Tranformations of Permanents:

Usually, unitary transformations are specified on the boson creation and anni-
hilation operators. This paragraph closely follows the considerations made in
Refs [56,57]. An M -mode Fock state is considered,

|~n〉 = |n1, n2, ..., nM〉 = 1

n1!n2! · · ·nM !

(
â†1

)n1
(
â†2

)n2

· · ·
(
â†M

)nM

|vac〉. (2.10)

If the following (unitary) transformation to the {â†k; k = 1, ...,M} is applied:

â†i → ˜̂a†i =

M∑

k=1

Ukiâ
†
k. (2.11)

In general, the matrix elements of Uki are given by the overlap integrals of the
new basis with the old single-particle basis functions {φk, k = 1, ...,M} and
{φ̃i, i = 1, ...,M}. The action of U on a single permanent Fock state is then

U|~n〉 = |̃~n〉 (2.12)

=

M∏

i=1

[
(ni!)

− 1

2

(
M∑

ki=1

Ukiiâ
†
ki

)ni
]
|vac〉. (2.13)

To process this result further, it lies at hand to use the multinomial expansion

theorem for the multinomials
(∑M

ki=1 Ukiiâ
†
ki

)ni

. The resulting expression reads:

|̃~n〉 =
∑

{nij}∑M
j=1

nij=ni

(∏M
i=1 ni!

) 1

2

∏M
i,j=1 nij !

M∏

κ=1

[
M∏

jκ=1

(
Ujκκâ

†
jκ

)nκjκ

]
|vac〉. (2.14)

For convenience, an integer M -by-M matrix nij was introduced, whose elements
fulfill the constraints that the sum of all its columns are equal to the occupations
in the original Fock state |~n〉, i.e.,

∑M
j=1 nij = ni. Labeling the row sums of nij by

mj , i.e.,
∑M

i=1 nij = mj , one can rewrite the Fock vector on the right-hand side
of the above expression as follows:

|̃~n〉 =
∑

{nij}∑M
j=1

nij=ni

(∏M
i=1 ni!

) 1

2

∏M
i,j=1 nij !

(
M∏

l=1

ml!

) 1

2
(

M∏

k,l=1

Ulk

)nkl

|m1, ..., mM〉. (2.15)

Now, the sum over all the products of the powers Unkl
lk , for all possible matrices

nij , can be written as a permanent of a specific N -by-N matrix

8



Chapter 2. Theory and Methods

U [n1, ..., nM |m1, ..., mM ]. Its entries are taken from the transformation matrix Uqs

as follows: the row index of Uqs appears nq times and the column index appears
ms times. Furthermore, it is convenient to use the vector notation for the mi, i =

1, ...,M , too, i.e., |~m〉 = |m1, ..., mM〉. Consequently, U [n1, ..., nM |m1, ..., mM ] =

U [~n|~m]. Finally, denoting with Per(·) the permanent of a matrix, one arrives at
a compact expression,

U|~n〉 = |̃~n〉 =
∑

{~m}

M∏

i=1

√
mi!ni! Per (U [~n|~m]) |~m〉, (2.16)

where, the sum runs on all possible distributions of N particles in M orbitals,
{~m}. It is noteworthy to mention that the unitary transform of a single configu-
ration will have contributions to all possible configurations in the new basis set.
It is, therefore, intimately related to the multiconfigurational expansion which
will be used frequently later on. Moreover, Eq. (2.16) makes evident the con-
nection between unitary transformations of many-body states of bosons and the
computation of permanents and shows, thus, the big complexity of such a trans-
formation.
For the sake of completeness and its possible later use, the unitary transforma-
tion for multiconfigurational states, i.e., |Ψ〉 =∑{~n}C~n|~n〉 is specified here:

U|Ψ〉 = U

∑

{~n}
C~n|~n〉 =

∑

{~n}
C~nU|~n〉. (2.17)

The unitary transformation is applied to each configuration, respectively. Now,
U|~n〉 can be replaced by Eq. (2.16):

U

∑

{~n}
C~n|~n〉 =

∑

{~n}
C~n

∑

{~m}

M∏

i=1

√
mi!ni! Per (U [~n|~m]) |~m〉. (2.18)

A few remarks should be made here. The general unitary transform of a single

permanent, as specified in Eq. (2.16), contributes to all other possible configu-
rations, and it is hence already a quite complicated object. Note that the time-
evolution operator e−iĤt of a given Hamiltonian is a unitary transformation. By
writing down the unitary transform in Eq. (2.16) one, thus, arrives at the con-
clusion that the only way to properly account for the time-evolution of a system
is by using a multiconfigurational wavefunction. To continue, it is indicated to
define some useful operators and their expectation values.
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2.1. The Schrödinger Equation from a Many-Body Perspective

One-Body Operators:

In general, a sum of one-body operators t̂ in second quantization takes the form

T =
∑

i

t̂i =
∑

i,j

tij â
†
i âj; (2.19)

where tij = 〈i|t̂|j〉.

Often occuring examples of one-body operators are the occupation number op-
erator,

n̂i = a†iai; n̂i|..., ni, ...〉 = ni|..., ni, ...〉 = ni,

the particle number operator, N̂ =
∑

i n̂i, the kinetic energy T̂ , or the potential.

Two-Body Operators:

In second quantization the sum of two-body operators Ŵ = 1
2

∑
a6=b w(~ra, ~rb) in

takes the form

Ŵ =
1

2

∑

i,j,k,l

â†i â
†
jâkâlwijkl; (2.20)

where wijkl = 〈i, j|ŵ|k, l〉 =

∫
d~ra

∫
d~rbφ

∗
i (~ra)φ

∗
j(~rb)w(~ra, ~rb)φk(~ra)φl(~rb).

An example of this is the two-body interaction occuring in Eq. (2.1) and its
simplest form ŵ(~ri, ~rj) = λ0δ(~ri − ~rj).

Field Operators:

It is often useful to have operators Ψ̂(~r, t) [Ψ̂†(~r, t)] which create [annihilate] a
particle at position ~r, i.e., in the state |~r〉. These are called field operators and
read:

Ψ̂†(~r) =
∑

i

φ∗
i (~r)â

†
i ; Ψ̂(~r) =

∑

i

φi(~r)âi. (2.21)

To simplify the reading, the time-dependency of the field operators will be omit-
ted where appropriate. They obey the usual bosonic commutation relations, just
like the operators âi, â

†
j , and can be used to rewrite, among others, the operator

for particle density n̂(~r) =
∑N

i=1 δ(~r − ~ri) as n̂(~r) = Ψ̂†(~r)Ψ̂(~r). The Hamiltonian
in Eq. (2.2) expressed with field operators results in

Ĥ =

∫
d~r

(
~
2

2
∇Ψ̂†(~r)∇Ψ̂(~r) + V (~r, t)Ψ̂†(~r)Ψ̂(~r)

)

+
1

2

∫
d~r

∫
d~r′Ŵ (~r, ~r′, t)Ψ̂†(~r)Ψ̂†(~r′)Ψ̂(~r)Ψ̂(~r′). (2.22)
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Chapter 2. Theory and Methods

For more details, the reader is referred to Ref. [52] and References therein.
With this subsection all the necessary second quantization notations and con-
cepts have been introduced. To continue, it is now appropriate to introduce
the quantum many-body measures and analysis techniques which are important
throughout this work.

2.1.2 Quantities of Interest

The scope of this subsection is to equip the reader with the analysis methods
and viewpoint applied throughout this thesis and also place their development
in a broader context. Since the prediction of BEC in 1924 (Refs [1, 2]) some
attention was devoted to the quantum mechanical condensation of bosonic par-
ticles in the lowest possible single-particle level. In 1956 Penrose and Onsager
(Ref. [27]) were concerned with the presence of BEC in superfluid Helium and
found a rigorous definition for condensation in quantum systems: a quantum
system is condensed, when its reduced one-body density matrix (1-RDM) has
a single macroscopic eigenvalue. In recent developments and experiments on
BEC it turned out that fragmentation (see e.g. Refs [28–36]) may occur. Frag-
mentation is defined as the situation where several eigenfunctions of the 1-RDM
are macroscopically populated. The occurrence of fragmentation is ubiquitous
especially in dynamical scenarios. The quantum mechanical description of con-
densation and fragmentation with the eigenvalues of the 1-RDM is intimately
related to Glauber’s quantum theory of optical coherence, starting in the 1960s
(see Refs [58–60]). It has been shown, that it is fully equivalent to have com-
plete condensation and full coherence: when the single eigenvalue of the 1-RDM
is N then all the normalized correlation functions are constant for all space and
time [28, 60]. The systems considered in this thesis are initially confined and
coherent systems that are decaying by tunneling through a barrier. Hence, it is
instructive to introduce here also some measures which are especially adapted to
quantify and assess the dynamics in these processes. The survival or nonescape
probability of a decaying many-body quantum system can be defined as an inte-
gral either on the one-body density or on the full wavefunction.
The introduction and definition of the mentioned quantities are done in the fol-
lowing paragraphs. Further quantities, like the so-called particle loss and the
principle of local fragmentation are deferred to the Appendices A and B ( this is
due to their complexity and because these quantities have yet to be implemented
in the MCTDHB package [50]). Local fragmentation and the expectation values
of particle loss operators can in principle be used to improve the detail of the
investigation on the many-body mechanism of the tunneling process also locally.
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2.1. The Schrödinger Equation from a Many-Body Perspective

Reduced Density Matrices:

The p-particle reduced density matrix of a system, ρ(p) (p-RDM), is defined by
tracing N − p coordinates from the N -particle density , |Ψ〉〈Ψ|:

ρ(p)(~r1, ..., ~rp|~r′1, ..., ~r′p; t) = Tr~rp+1···~rN [|Ψ〉〈Ψ|] (2.23)

=
N !

(N − p)!

∫
d~rp+1 · · ·d~rNΨ(~r1, ..., ~rN , t) Ψ∗(~r′1, ..., ~r′p, ~rp+1, ..., ~rN , t).

The second line illustrates the action of the trace operation Tr[·]. The 1-RDM
plays a special role for the definition of condensation and fragmentation, as well
as for the analysis of bosonic systems:

ρ(1)(~r1|~r′1; t) =
N !

(N − 1)!

∫
d~r2 · · · d~rNΨ(~r1, ..., ~rN , t)Ψ

∗(~r′1, ~r2, ..., ~rN , t). (2.24)

Similar to the above Eq. (2.24), the RDMs can also be obtained in momentum
representation. When the starting point is a many-boson wavefunction specified
in momentum space, the RDMs are simply obtained by replacing ~rs with ~ks in
the above equations. This holds also for the quantities computed from the RDMs,
which are discussed in the next three paragraphs, i.e., the one-body density,
natural occupations/orbitals, and normalized correlation functions.

The One-Body Density:

Probably the most analyzed and the most intuitive quantity to look at in a quan-
tum system is the one-body density. This is simply the diagonal of the 1-RDM of
Eq. (2.24):

ρ(~r, t) ≡ ρ(~r1 = ~r|~r′1 = ~r; t) (2.25)

=
N !

(N − 1)!

∫
d~r2 · · · d~rNΨ(~r, ..., ~rN , t)Ψ

∗(~r, ~r2, ..., ~rN , t).

From a probabilistic point of view, it can be interpreted as the probability to find
one particle at position ~r, while the remaining are anywhere in space.

Natural Occupation Numbers and Natural Orbitals:

One of the key measures to assess the degree of condensation and coherence or,
complementarily, fragmentation and incoherence, is the diagonal representation
of the 1-RDM in Eq. (2.24):

ρ(1)(~r1|~r′1; t) =
M∑

k,q=1

ρkq(t)φ
∗
k(~r

′
1, t)φq(~r1, t) =

M∑

i=1

ρ
(NO)
i (t)φ

∗(NO)
i (~r′1, t)φ

(NO)
i (~r1, t).

(2.26)
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Chapter 2. Theory and Methods

In first equality the 1-RDM or any arbitrary function is expanded in a suitable
basis set {φi, i = 1, ...,M}. The ρkq(t) are termed one-body matrix elements.
In the second equality, one simply diagonalizes the ρkq(t) matrix to achieve
the simplest possible representation of the 1-RDM. The corresponding basis set,
{φ(NO)

i , i = 1, ...,M}, is termed natural orbitals and their weights, ρ(NO)
i (t) are

termed natural occupations. The {ρ(NO)
i (t), i = 1, ...,M} and {φ(NO)

i , i = 1, ...,M}
are the eigenvalues and eigenfunctions of the 1-RDM, respectively.

Normalized Correlation Functions:

The normalized p−particle correlation function, g(p), is defined by the relation
of the p-RDM, see Eq. (2.23), to the diagonals of the 1-RDM at the p different
coordinates (see Refs [58–61]):

g(p)(~r′1, ..., ~r′p, ~r1, ..., ~rp; t) =
ρ(p)(~r1, ..., ~rp|~r′1, ..., ~r′p; t)√∏p

i=1 ρ1(~ri|~ri; t)ρ1(~r′i|~r′i; t)
. (2.27)

Coherence of p-th order is achieved, if g(p) = 1 holds. It is straightforward to see
that this holds only if the p-RDM is a product of 1-RDMs [58]. This is the case
if the 1-RDM can be represented by a single complex-valued function, which,
in turn, means that the 1-RDM has a single eigenvalue. Therefore, this 1-RDM
corresponds to a fully condensed system. From a probabilistic point of view g(p)

measures the degree of statistical dependence of the simultaneous measurement
of a set of p coordinates ~r1, ..., ~rp. If g(p) = 1 then the measurement of the p

coordinates is statistically independent and, consequently, the positions of the
particles are not correlated. In this case it is said that the system is p-th order
coherent. Full coherence can only be reached for p = 1. In the case of big
particle numbers and p ≪ N , the maximally achievable p-th order coherence is
1 + O(N−1) [58, 61]. In the case of g(p) > 1 the measurement of the p posi-
tions is correlated and in the case of g(p) < 1 it is anticorrelated. In this respect,
coherence comes with condensation and correlation/anticorrelation comes with
fragmentation. Of course, the equivalent p-th order normalized correlation func-
tions can be obtained also in momentum space from the p-RDMs in momentum
space.

The Nonescape Probability:

Tunneling processes occur in potentials that have regions separated by a barrier
which is higher than the energy of the considered system. Usually, the initial
state is localized on one side of this barrier with a probability almost equal to
one. During its time evolution the system is eventually no longer localized on
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2.2. Theoretical Methods employing the Full Hamiltonian

one side of the barrier. There are two ways to measure the survival or nonescape
probability of the state in question. One can integrate either the one-body den-
sity or the full wavefunction in the part of space Ω where the state is initially
localized. This integration defines the density-related and the wavefunction-
related nonescape probabilities, Pnot,ρ(t) and Pnot,Ψ(t), respectively:

Pnot,ρ(t) =

∫

Ω

ρ(~r, t)d~r, (2.28)

Pnot,Ψ(t) =

∫

Ω

Ψ∗(~r1, ..., ~rN)Ψ(~r1, ..., ~rN)d~r1 · · ·d~rN . (2.29)

Pnot,ρ(t) measures the nonescape probability on the level of single particles,
whereas Pnot,Ψ(t) measures the nonescape probability on the N -particle level.
For non-interacting particles, the relation Pnot,ρ(t) ∝ N

√
Pnot,Ψ(t) is obvious. Ad-

ditionally, it is reasonable to expect that Pnot,Ψ(t) is proportional to the autocor-
relation function c(t) = 〈Ψ(t = 0)|Ψ(t)〉. This at least holds in the case of open
systems, where Pnot,Ψ(t) and c(t) are monotonously decreasing functions. One
can formulate the nonescape probabilities discussed in this paragraph also in
relation to the so-called particle loss operators (see Appendix A).

2.2 Theoretical Methods employing the Full Many-

Boson Hamiltonian

2.2.1 The Time-Dependent Variational Principle

The derivation of the TDGP, BMF, and of the MCTDHB is done by tackling the full
many-boson Schrödinger equation with the time-dependent variational principle
(TDVP) using different ansatzes. To motivate and place the following introduc-
tion to these methods on a solid ground, it is instructive to review briefly the
TDVP as given in Ref. [62]. The basic idea is that the action functional S is
minimized by the actual time-evolution taken by the system. Hence,

δS !
= 0. (2.30)

The action S is the time-integral of the Lagrangian of the considered system de-
scribed by a set of so-called generalized coordinates. For a quantum mechanical
(many-body) system, having a constant particle number and and a Hermitian
operator i∂t, the Lagrangian takes the form:

L(Ψ(t),Ψ∗(t)) = 〈Ψ(t)|i∂t − Ĥ|Ψ(t)〉. (2.31)
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Consequently, requiring the action to be stationary results in demanding the
following expression to vanish:

δS [Ψ(t),Ψ∗(t)] = δ

∫ t2

t1

L(Ψ(t),Ψ∗(t))dt (2.32)

= δ

∫ t2

t1

〈Ψ(t)|i∂t − Ĥ|Ψ〉 !
= 0. (2.33)

It is possible with this machinery to derive the equations of motion for any wisely
or unwisely chosen generalized coordinates Ψ and Ψ∗. Kramer and Saraceno aptly
described this issue in Ref. [62], on page 6:

“As is well-known, a variational principle is a blind and dumb proce-
dure that always provides an answer, but it’s accuracy depends cru-
cially on the choice of the trial function.”

In what follows, the quest for a more and more accurate variational description
in terms of improvement of the ansatz for the trial function (wavefunction) Ψ

for many-boson systems is presented and discussed.

2.2.2 The Time-Dependent Gross-Pitaevskii Equation

The main working tool for the description of the physics of ultracold bosons and
BEC is the famous and successful time-dependent Gross-Pitaevskii equation (see
Refs [26,63] and the References therein). Phenomenologically, it was the natural
first step taken to understand the quantum physics of the TDSE, Eq. (2.1), with
the many-boson Hamiltonian, Eq. (2.2), using the TDVP. The starting point to
obtain the TDGP is to use a contact interparticle potential, Ŵ (~r, ~r′) = λ0δ(~r− ~r′).
In order to cover the phenomenology of BEC, one assumes that all bosons occupy
only one quantum mechanical single-particle state. This implies the truncation of
the field operator, Eq. (2.21), to a single time-dependent mode function Φ(~r, t):

Ψ̂(~r, t) ≡ Φ(~r, t)b̂(t). (2.34)

From this, the (single) boson creation operator,

b̂(t) =

∫
Φ∗(~r, t)Ψ̂(~r, t)d~r, (2.35)

is defined. As a result, the GP many-boson wavefunction is a product state,

|Ψ(t)〉 = 1√
N !

(
b̂†(t)

)N
|vac〉 = |N, 0, ...; t〉 = 1√

N !

N∏

i=1

Φ(~ri, t). (2.36)
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The expectation value of i∂t − Ĥ then reads

〈Ψ|i∂t − Ĥ|Ψ〉 = −N

∫
d~r{Φ∗(~r, t)ĥΦ(~r, t) +

(N − 1)

2
λ0|Φ(~r, t)|4}+ 〈Ψ|i∂t|Ψ〉

(2.37)
Plugging this ansatz, Eq. (2.37), in the action functional, Eq. (2.33), and requir-
ing the latter to be stationary, results in the following Equation:

δS [Φ(~r, t)]

δΦ∗(~r, t)
= 0 → i∂tΦ(~r, t) =

[
ĥ + λ0(N − 1)|Φ(~r, t)|2

]
Φ(~r, t). (2.38)

Equation (2.38) describes the dynamics of interacting bosons which are
completely condensed into a single particle state and is referred to as the time-
dependent Gross-Pitaevskii equation.

2.2.3 Best Mean-Field

The straightforward generalization of the GP ansatz for the many-boson wave-
function is simply to allow the bosons to occupy M , instead of one, single particle
states. This permits the description of single-configurational condensed or frag-
mented quantum states, given that one uses an appropriate number M of single-
particle states. Here, single-configurational means that a single permanent, cf.
Eq. (2.8), is used in the description. This section will sketch the derivation of
the equations of motion of the time-dependent multi-orbital mean-field or, in
short, best mean-field (BMF) as given in [47]. Note that there is also a time-
independent version of the best mean-field for condensates, which for brevity
is not presented here (see Ref. [46]). The ansatz for the time-dependent best
mean-field with M orbitals reads:

Φ(~r1, ~r2, ..., ~rN , t) = Ŝ
[
(φ1(~r1, t)φ1(~r2, t) · · · )︸ ︷︷ ︸

n1 times

(φ2(~rn1+1, t)φ2(~rn1+2, t) · · · )︸ ︷︷ ︸
n2 times

· · ·

(φM(~rN−nM+1, t)φM(~rN−nM+2, t) · · · )︸ ︷︷ ︸
nM times

]
, (2.39)

where Ŝ is a symmetrization operator. In the second quantization formalism, the
above Eq. (2.39) reads:

|Φ〉 = |n1, n2, ..., nM ; t〉.
As in the previous derivation of the TDGP, the TDVP is used to obtain equations
of motion (EOMs) for the variational parameters φ1(~r, t), ..., φM(~r, t). Obviously,
the TDGP is recovered in the case of M = 1 in Eq. (2.39). The functional action
is given as

S =

∫
dt

[
〈Φ|Ĥ − i∂t|Φ〉 −

M∑

k=1,j=1

µkj(t) [〈φk|φj〉 − δkj]

]
, (2.40)
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where µkj are Lagrange multipliers to ensure the orthonormality of the time-
evolution of the orbitals φk and φj. For convenience, the time-dependencies will
be omitted in the following where they are not explicitly needed. It is convenient
to define:

hkj =

∫
φ∗
k(~r)ĥ(~r)φj(~r)d~r,

(i∂t)kj =

∫
φ∗
k(~r) (i∂t)φj(~r)d~r

=

∫
φ∗
k(~r)φ̇j(~r)d~r,

Wkjql =

∫ ∫
φ∗
k(~r)φ

∗
j (~r

′)W (~r − ~r′)φq(~r)φl(~r′)d~rd~r′,

Wkj[ql] = Wkjql +Wkjlq,

Ĵl(~r) =

∫
φ∗
l (~r)W (~r − ~r′)φl(~r′)d~r′,

K̂l(~r) =

∫
φ∗
l (~r)W (~r − ~r′)P~r~r′φl(~r′)d~r′,

PPP = 111−
M∑

i=1

|φi〉〈φi|. (2.41)

By demanding the action to be stationary when varying the parameters in the
ansatz, { δS

δφ∗
j (~r,t)

!
= 0, j = 1, ...,M} one gets (after the elimination of the Lagrange

multipliers) the following EOMs for the BMF:

PPPi|φ̇k〉 = PPP

[
ĥ+ λ0(nk − 1)Ĵk +

M∑

l 6=k

λ0nl(Ĵl + K̂l)

]
|φk〉. (2.42)

These EOMs are a coupled set of non-linear integro-differential equations. The
details of their derivation, as well as illustrative numerical examples can be
found in Refs [31,46,47,64,65]. In physical situations that are fully described by
a single configuration, i.e., one permanent, the BMF theory is a good approach.
Note that any initial set of occupations, n1, ..., nM , will remain unchanged by the
time-evolution under Eqs (2.42). This means that the BMF theory lacks the capa-
bility of describing processes in which the many-boson system under considera-
tion undergoes fragmentation or condensation, because the occupation numbers
cannot change. The MCTDHB circumvents this flaw of the BMF and will be the
topic of the next section.
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2.2. Theoretical Methods employing the Full Hamiltonian

2.2.4 The Multiconfigurational Time-Dependent Hartree

Method for Bosons

The natural generalization of the BMF towards a better description of the full
Hilbert space of the many-boson system is to consider not only a single configu-

ration (see Eqs (2.39),(2.8)) but, instead, many configurations, i.e., all possible
configurations that can be formed from a set of M single-particle states. The
method thus becomes multiconfigurational and, as the time-dependent configu-
rations and derivation come from the Hartree method, its name is the multicon-
figurational time-dependent Hartree method for bosons (MCTDHB). There is a
wealth of multiconfigurational Hartree theories for mixtures of different species
of bosons and fermions, see Refs [66, 67], with particle conversion and up to
three-body interactions. The following introduction considers and sketches only
the single-species version as given in Ref. [48,68] because this version will be am-
ply used, benchmarked with analytical results, and compared with other meth-
ods in the field throughout the present work. It is instructive to start from the
field operator expanded in the basis of a set of M orthonormal, time-dependent
functions (orbitals), {φk(~r, t), k = 1, ...,M}:

b̂k(t) =

∫
φ∗
k(~r, t)Ψ̂(~r)d~r, k = 1, ...,M

Ψ̂(~r) =

M∑

k

b̂k(t)φ
∗
k(~r, t). (2.43)

This is the bosonic field operator. The only approximation introduced here, is the
assumption that the set of M orbitals is sufficient to describe the Hilbert space
occupied by the many-boson wavefunction. Using the b̂k(t), their commutation
relations, b̂k(t)b̂

†
j(t)− b̂†j(t)b̂k = δkj, and the abbreviation ~n = (n1, n2, ..., nM), one

arrives at the ansatz for the variational derivation of the MCTDHB EOMs:

|Ψ(t)〉 =
∑

{~n}
C~n(t)|~n; t〉 (2.44)

=
∑

{(n1,...,nM)}

C(n1,...,nM)(t)√
n1! · · ·nM !

(
b̂†1(t)

)n1

· · ·
(
b̂†M(t)

)nM

|vac〉.

Here, |vac〉, stands for the vacuum state with no boson present and the sum runs
over all Nconf =

(
N+M−1

N

)
possible configurations, {(n1, ..., nM)}, of N =

∑M
i=1 ni

particles occupying the M orbitals. Note that both, the coefficients {C~n} and the
orbitals {φk}, are time-dependent and both will be used as variational parameters
for the following derivation of the equations of motion. Introducing Lagrange
multipliers, µkj(t), ensuring the orthonormality of the orbitals (as in the BMF
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case, cf. Eq. (2.40)), the action functional takes the form:

S [{C~n(t)}, {φk(~r, t)}] =
∫

dt

[
〈Ψ|Ĥ − i∂t|Ψ〉 −

M∑

k,j=1

µkj(t) [〈φk|φj〉 − δkj]

]
.

(2.45)
Now, one demands this action to be stationary when varying all the Nconf coef-

ficients, i.e., δS
δC∗

~n
(t)

!
= 0 and when varying the M orbitals, i.e., δS

δφ∗
k(~r,t)

!
= 0. The

details of the derivation and how the elimination of the Lagrange multipliers
results in the emergence of projectors are given in Ref. [48]. The EOMs for the
coefficients reads:

HHH(t)CCC(t) = i∂tCCC(t); HHH(t) = {H~n~n′(t)} = {〈~n; t|Ĥ|~n′; t〉}. (2.46)

Here CCC(t) collects the coefficients {C~n(t)} in a vector. On the other hand, the
EOMs for the orbitals read:

i∂t|φj〉 = P̂PP

[
ĥ|φj〉+

M∑

k,s,q,l=1

{ρρρ(t)}−1
jk ρksqlŴsl|φq〉

]
,

Ŵsl(~r, t) =

∫
φ∗
s(~r

′, t)Ŵ (~r − ~r′, t)φl(~r′, t)d~r′,

P̂PP = 1−
M∑

i=1

|φi〉〈φi|. (2.47)

Here {ρρρ}(−1) is the inverse of the reduced one-body matrix elements, the ρabcd
are the matrix elements of the reduced two-body density and the Ŵsl(~r, t) are
referred to as local time-dependent potentials. The Equations (2.46),(2.47) are
the core of the MCTDHB and their numerical solution is implemented in a For-
tran program package, see Ref. [50], which will be described in Section 2.4.
It is appropriate to note that the Hilbert space covered by the ansatz of the
MCTDHB, Eq. (2.45), is Nconf times bigger than the one covered by the TDGP.
Yet, one obtains back the TDGP from the MCTDHB for M = 1 in the above
equations of motion. This could also be deduced already from the field opera-
tor, see Eq. (2.43). Extending beyond TDGP, fragmented states (up to M -fold)
are described self-consistently by the MCTDHB. The dynamics of fragmentation
and condensation processes, which go beyond the realm of the BMF, can be de-
scribed by MCTDHB because the coefficients of the permanents which assemble
the many-boson wavefunction are time-dependent. A benchmark of the qual-
ity and convergence properties of the MCTDHB approximation is the topic of
Chapter 3.
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2.3. Theoretical Methods employing Model Hamiltonians

2.3 Theoretical Methods employing Model Hamil-

tonians

2.3.1 Bose-Hubbard and Time-Evolved Block Decimation

One of the most frequently used models in the field of ultracold bosons is the
so-called Bose-Hubbard (BH) model. To arrive at the BH model Hamiltonian (fol-
lowing Ref. [69]) one assumes a periodic potential, such as V0(~x) =

∑3
j=1 Vj0 sin kxj ,

a so-called optical lattice. Furthermore, one uses the zero-range pseudopoten-
tial of Eq. (2.3). Now, a deep potential (large coefficients Vj0) is assumed and
the field operator Ψ̂(~x) is expanded in a Wannier basis. The Wannier functions
wk(~x− ~xi) are linear combinations of Bloch waves which are localized at certain
lattice sites ~xi. The final assumption is, that the lattice is deep and the higher
Wannier functions k ≥ 2 do not contribute. The resulting field operator reads

Ψ̂(~x) =
∑

i

b̂iw(~x− ~xi). (2.48)

The resulting so-called BH Hamiltonian (BHH) reads:

Ĥ = −J
∑

{i,j}
b̂†i b̂j +

∑

i

ǫin̂i +
U

2

∑

i

n̂i(n̂i − 1). (2.49)

Here, the following abbreviations are used:

J =

∫
d~xw∗(~x− ~xi)ĥ(~x)w(~x− ~xi); (2.50)

U = λ0

∫
d~x|w(~x)|4; (2.51)

ǫi =

∫
d~xVT (~xi)|w(~x− ~xi)|2. (2.52)

Here, VT is some additional external, slowly varying, potential leading to an en-
ergy shift, see Ref. [69]. To compute the time-evolution of the BHH an algorithm
called time-evolving block decimation (TEBD) is frequently employed. TEBD
works for quasi-one-dimensional systems only. Hence, the following discussion
of the BHH and TEBD is restricted to one spatial dimension. TEBD relies on the
idea, that one achieves a good approximation to a given pure quantum state |Ψ〉
by rewriting it as |Ψ〉 =

∑D
α=1 λ

[l]
α |Φ[1···l]

α 〉|Φ[(l+1)···N ]
α 〉 and restricting D to some

Dǫ [70]. Here, |Φ[··· ]
α 〉 and λ

[l]
α are obtained from a Schmidt decomposition of |Ψ〉

onto subspaces containing less than the total number of particles, l < N and
l − N < N . For any l, the entries of λ[l]

· are the decreasingly ordered Schmidt
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coefficients. The approximated state reads:

|Ψ〉 =
(

Dǫ∑

α=1

|λ[l]
α |2
)− 1

2 Dǫ∑

α=1

λ[l]
α |Φ[1···l]

α 〉|Φ[(l+1)···N ]
α 〉. (2.53)

For further details see Refs [70, 71] and References therein. For the BHH it is
intuitively a good idea to make such an approximation, because there is only
a direct nearest-neighbor interaction and it is a reasonable approximation to
consider subsystems as uncorrelated, hence, Dǫ ≪ D. This means, that the com-
putation of the time-evolution of a state under the BHH to a quite good accuracy
is cheap, depending on the Dǫ chosen.
The great achievements of these intuitive approximations, see Ref. [72] and
References therein, have to be contrasted with the examples where they fail
[28,61,73,74]. This failure is mostly due to the incapability of the BH model to
properly cover the physics of the considered system which involves higher bands
or delocalized states. Such a comparison must rely on a many-body method,
such as the MCTDHB, which is able to capture the rich physics beyond the BH
model.

2.3.2 The Discrete Non-Linear Schrödinger Equation

In principle, the BH model is capable to describe a system of ultracold bosons
which are not condensed. Yet, one can imagine, that in the mean-field limit it is
feasible to describe the state of the system as a coherent product state. In this
mean-field limit, the following assumptions are introduced:

N → ∞;
NU

J
= const.; U → 0.

One can derive the resulting discrete nonlinear Schrödinger equation by replac-
ing the creation and annihilation operators b̂i, b̂

†
j in the BHH, Eq. (2.49), by com-

plex numbers, bi, b∗j . The time evolution of these numbers is then defined solely
by their canonical equations of motion, cf. Ref. [75]. The result is the so-called
discrete nonlinear Schrödinger equation (DNLS) which can be used to find the
coherent dynamics within the BH model. It reads:

iḃi = −J(bi+1 + bi−1) +
Un̄

2
|bi|2bi; n̄ = N/L. (2.54)

Here n̄ = N/L is the number of atoms per lattice site. The physical situa-
tion where this approximation to the BH model is applicable is deep optical
lattices with a very weak interaction. Nevertheless, the authors of Ref. [76]
benchmarked the BHH and the DNLS with each other on a tunneling problem
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with long-range correlations and delocalized states. It is instructive to perform
a check on the validity of the predictions of this benchmark, by a comparison
to numerically exact solutions of the same problem obtained with the MCTDHB
method.

2.4 Numerical Methods

This section provides an overview of the numerical methods applied throughout
this work. The focus is on introducing the concepts which are needed to achieve
the numerical results presented in this and later chapters, as well as to give an
overview of the current implementation and capabilities of the MCTDHB package
[50].

2.4.1 The Multiconfigurational Time-Dependent Hartree for

Bosons Software Package

The MCTDHB package is a collection of Fortran programs and Bash-scripts. The
current organization of the code consists in two programs: the main program
which performs the computation, and the analysis program to extract quantities
of interest from the results of a computation.

Current Implementation:

The current implementation of the MCTDHB package is in FORTRAN 90/95. It
has two main parts: a hybridly parallel one for solving the TDSE and one to an-
alyze the many-body properties of the solutions. As discussed in Section 2.2.4,
MCTDHB is simply a reformulation of the TDSE of many-boson systems into
two sets of coupled partial differential equations. To solve the two sets, i.e.,
the coefficient EOMs and the orbital EOMs, numerical solvers for partial dif-
ferential equations have been implemented. Namely, the coefficient EOMs are
solved with a Krylov subspace method: the short iterative Lanczos (SIL) integra-
tor. Various numerical integrators for the orbital EOMs are available: the 16th
order Bullirsch-Stoer method, a Runge-Kutta method of 5th/8th order and an
Adams-Bashforth-Moulton predictor-corrector integrator (ABM) of 7th order are
the implicit methods available – they work well in the case that the orbital EOMs
are not stiff. For the case of dominating non-linearity, i.e., stiff orbital EOMs,
the so-called ZVODE integrator [77], an implementation of a Gear-type second
order backwards differentiation formula (BDF) was chosen.
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Integrators

The scope of this subsection is to introduce the integrators implemented in the
current version of the MCTDHB package and provide the peculiarities of it as well
as its specifications. The documentation of most of the integrators is available
in the Multiconfigurational time-dependent Hartree method (MCTDH) package
documentation and References therein, see Ref. [78]. The focus here is on the
integrators either not provided in the MCTDH package, either the ones which
rely on a different implementation, namely, the SIL, the ABM and the BDF. For
the details on the other numerical integrators the reader is referred to Ref. [79]
and the References therein.

The Short Iterative Lanczos:

To build the Krylov basis which is needed for the SIL algorithm, one has to apply
powers of the Hamiltonian Ĥk depending on the order k+1 of the method, to the
state vector of the coefficients. The action of the Hamiltonian is computationally
the most demanding part in the SIL algorithm and therefore the part which is
parallelized. This evaluation can be extremely efficiently done according to the
scheme described in Ref. [80]. As soon as the basis of the Krylov subspace is con-
structed, the problem of the computation of the time-evolution of the coefficient
vector is reduced to the diagonalization of the SIL matrix, i.e., a (k+1)× (k+1)

matrix, which is done with a LAPACK routine. The advantage of the SIL algo-
rithm is that it is generally very stable when the ground state or a propagation
with high accuracy are desired. Yet, in the case of degeneracies or the computa-
tion of excited states more advanced numerical techniques are needed, such as
the Arnoldi or Davidson methods.

The Adams-Bashforth-Moulton Predictor-Corrector Integrator:

The ABM implementation in the MCTDHB package is in principle identical to the
one in the MCTDH package [78], but it is parallelized using OpenMP. The ABM
algorithm is a multistep method, which relies on a polynomial extrapolation of
the solution of the partial differential equation tackled. The term “predictor-
corrector” stands for the error control mechanism on which it relies: if the pre-
diction of the next order is sufficiently close to the actual next order solution
the integration step is accepted; it is otherwise rejected and the stepsize is ad-
justed dynamically. It turns out that the most time-consuming parts in the ABM
algorithm are the evaluations of the right-hand side of the orbital EOMs and
the various products of orbital vectors which have to be evaluated. The evalu-
ation of the right-hand side of the orbital EOMs is done by a hybridly parallel
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scheme outlined in the following subsection. The evaluation of the products of
orbital vectors is done in OpenMP parallelized loops inside the ABM routine. For
large grids the evaluation time is greatly reduced by this parallelization, while
for small grids the execution time spent in the integrator is negligible.

The Gear-type Second Order Backwards Differentiation Formula:

In the case of strong interparticle interactions, the set of orbital EOM becomes
a stiff set of partial differential equations. For stiff equations the integration
schemes mentioned and/or described above become inefficient or even unstable.
It was proven that in the case of stiff differential equations an implicit integrator
of second order relying on a backwards differentiation formula would globally
minimize the introduced error, see Ref. [79]. The essential advantage of this
kind of integrator lies in its superior stability which allows for bigger step-sizes
as compared to other methods in the case of stiff differential equations. ZVODE
from the ODEPACK package, see e.g. [77], is an implementation of the Gear-
type second order backwards differentiation scheme and the needed changes for
its use in the MCTDHB package were minor. Yet, for the cases of dynamics of
strongly interacting bosons, see e.g. Ref. [81], it has proven to be essential.

Parallelization:

In order to provide most of the numerical results presented in this thesis, the al-
gorithm implemented in the MCTDHB package solving the coupled sets of EOM
has to be efficient enough to provide a time-evolution in a reasonable time.
The only way to achieve the desired efficiency is to parallelize the algorithm
by distributing the computational tasks among several computers in a network.
During the development of MCTDHB, all the available platforms were heteroge-
neous clusters, in which several identical computers with multi-core processors
are connected by a network of the InfiniBand or Cray Gemini II standard. Hence,
the current parallelization is adapted to such platforms. Further parallelization,
like the usage of GPU-computing might be of relevance for future developments,
but is not part of the current package. The algorithm basically deals with two
different sets of equations: a linear one for the coefficients and a non-linear one
for the orbitals. Depending on the chosen setup, the overall computational ef-
fort can be dominated by the former or the latter, or it might be balanced. For
each of the two sets, the solutions of the EOMs is done by integrators which
need possibly many evaluations of the complicated right-hand side of the EOMs,
Eqs (2.46),(2.47). The major part of the execution time is hence spent in the
evaluation of these right-hand sides. Consequently, the strategy was to paral-
lelize this evaluation, as shown in Figure 2.1.
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Figure 2.1 Scheme of the Parallelization of the MCTDHB Main Program.

The Parallelization of the Orbital EOMs:

The parallelization scheme for the orbital EOMs was done by means of a hy-
brid OpenMP-MPI parallel algorithm and is problem-size adaptive. In the case
of rather small problems, i.e., problems with a primitive grid size of less than
1024 functions, the communication time overhead of an MPI-parallel calculation
of the one-body Hamiltonian terms was dominating. Hence, it was beneficial
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not to communicate the needed data and use only OpenMP threads to evaluate
the one-body Hamiltonian terms on the master node. The more time consuming
evaluation of the two-body Hamiltonian terms is done by distributing the Wkqsl

terms equally among the slave processes, communicate to them the needed or-
bital vectors and evaluate the integrals – in principle sums of pointwise products
of vectors – using OpenMP threads. In the case of larger problems, i.e., problems
with a primitive grid size of equal to or more than 1024 functions, the evaluation
of the one-body and the two-body Hamiltonian terms is distributed among all
MPI-processes and done with OpenMP threads. It is appropriate here to make
a remark on the scaling behavior. The number of one-body Hamiltonian terms
scales with ∼ M2 and the number of two-body terms with ∼ M4. Interestingly,
so far, no case occurred where the communication overhead actually dominated
the benefits of the parallelization scheme implemented. Hence, the more orbitals
were taken, the closer to linear the speedup was for both, large and small prob-
lem sets. In the current implementation, all the orbitals are communicated to all
the MPI processes. In order to achieve the close-to-linear speedup for problems
with fewer orbitals as well as to have it for problems with a very large number of
orbitals, it would be beneficial to further optimize this communication. This op-
timization is achievable by determining in the initialization phase of the program
which orbitals are needed for the computational tasks assigned to a particular
MPI process.

The Parallelization of the Coefficient EOMs:

The coefficient EOMs are propagated using the SIL algorithm described above.
This renders the main part of the computation to be the application of the Hamil-
tonian Ĥ, and its powers, for the construction of the Krylov subspace basis.
The many-body basis employed in MCTDHB consists of the time-dependent Fock
states with M modes at maximum. If one represents the Hamiltonian in the ba-
sis of the corresponding time-dependent creation and annihilation operators, it
can be shown that each and every one-body term corresponds to a re-addressing
of one element of the vector of coefficients. Similarly, each and every two-body
term corresponds to a re-addressing of, at most, two elements of the vector of
coefficients. With the knowledge of this re-addressing-scheme (for details, see
Ref. [80]), it is no more necessary to build up a Hamiltonian matrix – the ac-
tion of the Hamiltonian is available by re-adressing the elements according to
the representation of the Hamiltonian in terms of the time-dependent creation
and annihilation operators. Most importantly, the re-addressings needed for the
N1b = M(M+1)

2
one- and N2b = N1b(N1b+1)

2
two-body operators are independent

of each other. Hence, the parallelization distributes the N1b + N2b needed re-
addressings among the number of available MPI processes, where they are done
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with OpenMP threads. The current implementation of this scheme provides all
MPI processes with a full copy of the coefficients, which might be a huge array.
Therefore, the necessary communication limits the favorable scaling of this par-
allelization scheme to a few tens of MPI processes. Of course, this depends on
the system architecture and the number of coefficients. A further improvement
on this scheme would be, in principle, available by finding a suitable partition-
ing for the coefficients’ vector. Yet, the inter-dependencies of the coefficients
encoded in the re-addressing scheme are intricate and render a suitable parti-
tioning complicated.

IMEST Algorithm

The interaction matrix evaluation by successive transforms is an efficient way
to evaluate the two-body matrix elements for two-particle interaction potentials
Ŵ (yyy), which depend only on the distance yyy = |~r−~r′| between the two interacting
particles. The IMEST was invented by Kaspar Sakmann and the derivation here
follows the one given in his Ph.D. thesis, see Ref. [82]. It is instructive to first
consider the case of time-independent Ŵ . For convenience, the matrix elements
of the interaction and the local time-dependent potentials are repeated:

Wksql(t) =

∫ ∫
d~r′d~rφ∗

k(~r, t)φ
∗
s(~r

′, t)Ŵ (~r − ~r′)φq(~r, t)φl(~r, t)

=

∫
d~rφ∗

k(~r, t)Ŵsl(~r, t)φq(~r, t),

Ŵsl(~r, t) =

∫
d~r′φ∗

s(~r
′, t)Ŵ (~r − ~r′)φl(~r′, t). (2.55)

Here, it is worthwhile to note that the evaluation of the Ŵsl, as well as the
evaluation of the Wksql, is only a single integration on ~r′ and ~r, respectively.
Given that the considered interaction Ŵ depends only on ~r − ~r′, one can write
its Fourier and inverse Fourier transforms in the following form:

Ŵ (~r − ~r′) =
1

√
2π

D

∫
d~k

˜̂
W (~k)ei

~k(~r−~r′) (2.56)

˜̂
W (~k) =

1
√
2π

D

∫
dyyyŴ (yyy)e−i~kyyy. (2.57)

It is now straightforward to insert Eq. (2.56) into the above expression for Ŵsl.
This results in the following expression:

Ŵsl(~r, t) =

∫
d~r′φ∗

s(~r
′, t)

1
√
2π

D

[∫
d~k

˜̂
W (~k)ei

~k(~r−~r′)

]
φl(~r′, t). (2.58)
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Here, one can split up the exponential, ei~k(~r−~r′) = e−i~k~r′ · ei~k~r, in order to collect
the terms dependent solely on ~r′ and ~k:

Ŵsl(~r, t) =

∫
d~k

1
√
2π

D

[∫
d~r′φ∗

s(~r
′, t)φl(~r′, t)e

−i~k~r′
]
˜̂
W (~k)ei

~k~r. (2.59)

The expression in square brackets is the Fourier transform f̃sl(~k) of the function
fsl(~r′, t) = φ∗

s(~r
′, t)φl(~r′, t). Revisiting Equation (2.59), the integration on ~k can

be cancelled by a Fourier transform and a multiplication by
√
2π

D
, giving an

appealing form to the Fourier transform ˆ̃Wsl(~k, t) of Ŵsl(~r, t):

ˆ̃Wsl(~k, t) =
1

√
2π

D

∫
d~rŴsl(~r, t)e

−i~k~r

=
√
2π

D
f̃sl(~k, t)

ˆ̃W (~k). (2.60)

Consequently, the local time-dependent potentials, occuring in the right-hand
side of the orbital EOMs of the MCTDHB (cf. Eqs (2.47),(2.46)) are available as
the inverse Fourier transform of the above Eq. (2.60):

Ŵsl(~r, t) =
1

√
2π

D

∫
d~k ˆ̃Wsl(~k, t)e

i~k~r. (2.61)

Equations (2.60) and (2.61) are the working equations of the IMEST. The key
advantage here is that, for time-independent Ŵ (~r, ~r′) = Ŵ (~r − ~r′), it is suffi-

cient to evaluate once the Fourier transform of the interaction potential, ˆ̃W (~k)

and at each time-step the Fourier transform of fsl(~r, t), f̃sl(~k, t), and the inverse

Fourier transform of the ˆ̃Wsl(~k, t). This is much more efficient than directly eval-
uating the integrals needed for the matrix elements Wksql(t), especially when it
comes to perform computations with a large number of grid points. For details
on the implementation and an assessment of the numerical effort, see Ref. [82].
For time-dependent two-body interactions, Ŵ (~r, ~r′, t) = Ŵ (~r − ~r′, t), like, e.g.,
the ones presented in Chapter 3, the computational effort increases because the

Fourier transform of the interaction potential ˆ̃W is now also a function of time,

i.e., ˆ̃W = ˆ̃W (~k, t). Therefore, it has to be evaluated at each time-step. This im-
plies that, at each time-step, three, instead of two, additional Fourier transforms
have to be evaluated. Still, the procedure is much more efficient than the direct
evaluation of the integrals. The IMEST algorithm, also in its time-dependent
form, were crucial for performing the calculations in Section 3 and for compar-
ing the results of Chapter 6 with a zero-range potential to computations with a
short-range Gaussian potential.
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Chapter 3

Benchmarks with Analytically Solv-

able Problems

In order to assess the validity and check the convergence of the MCTDHB method,
it is appropriate to benchmark it against some analytically solvable interacting
many-body problems. There are only few such problems, like, e.g., the Lieb-
Liniger Hamiltonian. The latter is only solvable for the one-dimensional case, see
Refs [83–86]. To treat the dynamics of such systems is a tough problem by itself
[87]. For this reason the so-called harmonic interaction model [88] is a better
choice for a benchmark: all the eigenstates of the Hamiltonian are analytically
known [89] for any dimensionality of the system, but still the Hamiltonian is a
true many-body one which contains repulsive or attractive parabolic long-range
two-body interactions. Interestingly, it was amply studied, see Refs [90,91], even
including temperature, see Ref. [92]. However, there are so far neither studies
of the time-evolution within the HIM nor considerations on the time-evolution
of coherence, i.e., considerations how well the system is described by a single
quantum mechanical one-particle state. As the MCTDHB allows to tackle the
dynamics of the HIM, it is of fundamental interest to understand for instance
how the system responds to an abrupt change of the interaction parameter, the
so called interaction quench. This chapter reiterates, in principle, the considera-
tions presented in Ref. [49].

3.1 The Harmonic Interaction Model

The Hamiltonian of the HIM is readily obtained by setting the boson-boson inter-
action potential Ŵ and the one-body potential V in the many-body Hamiltonian
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3.1. The Harmonic Interaction Model

in dimensionless units,

Ĥ =
N∑

i=1

(
T̂ (~ri) + V (~ri)

)
+

N∑

i<j

Ŵ (~rj , ~ri), (3.1)

to be harmonic:

Ŵ (~ri, ~rj) = K (~ri − ~rj)
2 ; V (~r) =

1

2
ω2~r2. (3.2)

Here, K accounts for the strength of the two-body interaction and T̂ (~r) = −1
2
∂2
~r

is the kinetic energy operator. A positive value of K corresponds to attraction
while a negative value means repulsion. In the case of a parabolic trapping
potential, it is easy to see that the system would become unbound when the
value of K is negative and big enough for the two-body repulsion to overcome
the one-body harmonic trapping, i.e., K < − ω2

2N
. Following the line of Cohen and

Lee in Ref. [88] the Hamiltonian, Eq. (3.1), can be separated into N independent
harmonic oscillators by the following coordinate transformations:

~xj =
1√

j(j + 1)

j∑

i=1

(~rj+1 − ~ri), j = 1, ..., N − 1; ~xN =

N∑

i=1

~ri. (3.3)

The resulting Hamiltonian Ĥ is a sum of the relative and the center of mass
Hamiltonians, Ĥ = Ĥrel + ĤCM . Ĥrel and ĤCM read:

Ĥrel =

N−1∑

i=1

(−1

2
∂2
~xi
+

1

2
δ2N~x

2
i ) δN =

√
ω2 + 2NK. (3.4)

ĤCM = −1

2
∂2
~xN

+
1

2
ω2~x2

N

To this end, the Hamiltonian in the new coordinates describes N − 1 harmonic
oscillators with the trapping frequency δN in a set of relative coordinates and 1

harmonic oscillator with the frequency ω in a center of mass coordinate.
The Hamiltonian in its separable form, Eq. (3.4), is easy to solve analytically.

There is even an analytical solution when a product, i.e., Hartree-type ansatz
(Ψ = 1√

N !

∏N
i=1 φ(~ri)) is used, see e.g. Refs [88, 89]. Because this is also the

ansatz used to derive the famous Gross-Pitaevskii (GP) equation, it is instructive
to refer to the corresponding energies as GP energies and label them EGP . One
obtains the equations for the exact and the GP energies (when a product wave
function is assumed), Eexact and EGP of the Hamiltonian in Eq. (3.1), see e.g.
Refs [88,89]:

Eexact =
D

2
((N − 1)δ(N, ω,K) + ω) (3.5)

EGP =
ND

2
δ(N − 1, ω,K). (3.6)
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Here, D is the dimensionality of the system. A plot of the energy per particle,
Eexact/N and the difference (Eexact − EGP )/N is given in Fig. 3.1.

Figure 3.1 Ground State Energies of the Harmonic Interaction Hamiltonian.
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The eigenvalues of the harmonic interaction Hamiltonian are depicted as a func-
tion of the interparticle interaction K and the particle number N for a trapping
potential with ω = 1. Plot (a) shows the exact energy per particle. Plot (b) shows
the difference of the exact and the GP energies per particle. All quantities shown
are dimensionless. See text for discussion.

From the left panel of Fig. 3.1 one can see that the energy per particle is
growing when the interaction or the particle number is increased. These features
are reproduced by the GP approximation. The difference between the exact and
the GP energies per particle increases as a function of interaction and decreases
when the particle number is increased [see Fig. 3.1(b)]. It is therefore obvious
that the best testing ground for a many-body method such as the MCTDHB is in
the parameter region where the difference of the mean-field to the exact energies
is the largest: for the benchmark of MCTDHB on the HIM, small N and large K

are adequate.

3.2 Benchmark Studies with the Harmonic Interac-

tion Model

Setup and Computational Details:

The MCTDHB method relies on a multiconfigurational ansatz for the wave func-
tion, i.e., |Ψ(t)〉 =

∑
~n C~n(t)|~n; t〉. It is noteworthy that both, the coefficients

C~n(t) and the permanents |~n; t〉 are time-dependent, variationally optimized quan-
tities. The permanents are build up from M time-dependent orbitals. The nu-
merical efficiency of MCTDHB comes from its time-dependent, adaptive orbitals.
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In total, the variational space is spanned by the Nconf coefficients and by M time-
dependent functions. The equations of motion of the MCTDHB are obtained by
tackling directly the many-boson TDSE with the above ansatz and the principle
of least action [48]. The EOMs are efficiently solved numerically with the MCT-
DHB program package [50]. In order to obtain ground states, the EOMs are
propagated in imaginary time and in order to compute dynamical evolutions,
the EOMs are propagated in real time. The current study relies on the propaga-
tion of the orbitals’ EOM with a shared-memory parallelized implementation of
the Adams-Bashforth Moulton predictor corrector integrator and the coefficients’
EOM with a hybridly OpenMP-MPI parallelized short iterative Lanczos algorithm.
As a time-independent representation of the time-dependent orbitals, the numer-
ically efficient and wide-spread fast Fourier transform collocation method was
implemented also in a hybridly OpenMP-MPI parallel way – this corresponds to
plane waves as (primitive) basis functions.

Of primary interest for the present considerations is the convergence when
the number of orbitals is increased. Of course, the time-dependent variational
principle guarantees that the solution will be exact for M → ∞. For the stud-
ies of the convergence with the number of orbitals one first has to choose an
appropriate number of plane wave functions for the used fast Fourier transform
collocation. For this purpose, series of calculations, doubling the number of ba-
sis functions at each step, were performed until the difference in the obtained
energy value was less than 10−12 and the last step was taken. Consequently, the
primitive basis size in one dimension was 28 = 256, and in two dimensions it was
214 = 27×27 = 16384 plane wave functions per time-dependent orbital. The spa-
tial extension of the grid in dimensionless units was chosen such that the ground
state densities were less than 10−16 on the boundary. This resulted in box exten-
sions of [−8, 8] in one dimension, and [−6, 6] × [−6, 6] in two dimensions. The
largest number of coefficients, Nconf , for the presented calculations was for the
two-dimensional ground state of N = 10 bosons with M = 18 orbitals, namely,
Nconf = 8436285.

In summary, the problem which the MCTDHB is applied to, is a very complex
one: a one-, two- or three-dimensional correlated, long-range interacting, many-
boson system described by many time-dependent configurations. In the time-
dependent benchmarks which follow, even the one- and two-body potentials will
be time-dependent. In order to evaluate such a (potentially time-dependent)
non-contact two-body interaction numerically efficiently, the interaction matrix
evaluation by successive transforms algorithm (IMEST) was used (for a descrip-
tion see Ref. [82]). It is in place to state here that it was necessary to generalize
the IMEST for time-dependent potentials. This was done simply by evaluating
the Fourier transform of the time-dependent interaction potential in every in-
tegration step. The original formulation in Ref. [82] was for time-independent
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two-body interactions and requires only a single Fourier transform of the interac-
tion potential in the beginning of the computation. The computational overhead
caused by the additional Fourier transform at each step was minimal. With set-
ting up the computation, one is in the position to start the investigation on the
ground states of the HIM with the MCTDHB.

Ground State Benchmarks:

To determine the properties of the convergence of the MCTDHB towards the ex-
act results, it is instructive to choose a rather small particle number and a rather
strong interaction, because the difference of the exact and the GP energies per
particle is largest then. This means that one has more room to benefit from a
many-body method systematically improving from the TDGP by increasing the
orbital number M in the MCTDHB treatment in this situation. In order to bench-
mark MCTDHB with the HIM, the one-body potential V (x), the values of K and
the number of particles N have been chosen as V (~r) = 1

2
~r2, N = 2, N = 10

and K = 0.5, K = 2.0. The exact ground state energies for these values (cf.
Refs [88,89]) and the values obtained with MCTDHB with a different number of
orbitals M for the one- and two-dimensional cases are collected in Table 3.1.

Dim. System Eexact Numerically exact EGP

1D N=2, K=0.5 1.36602540 EM=5 = 1.36602543 EM=1 = 1.41421356

1D N=2, K=2.0 2.00000000 EM=8 = 2.00000002 EM=1 = 2.23606798

1D N=10, K=0.5 15.42481156 EM=8 = 15.42481156 EM=1 = 15.81138870

1D N=10, K=2.0 29.31405907 EM=10 = 29.31405908 EM=1 = 30.41381265

2D N=2, K=0.5 2.73205081 EM=10 = 2.73205682 EM=1 = 2.82842712

2D N=2, K=2.0 4.00000000 EM=18 = 4.00008958 EM=1 = 4.47213595

2D N=10, K=0.5 30.84962311 EM=18 = 30.84964834 EM=1 = 31.62277660

2D N=10, K=2.0 58.62811814 EM=18 = 58.63132065 EM=1 = 60.82762530

Table 3.1: Selected Ground State Energies of the Harmonic Interaction Hamilto-
nian: Exact analytical versus Numerical MCTDHB(M) and TDGP Results.

To find the properties of convergence of the MCTDHB towards the exact so-
lution of the HIM, it is instructive to successively increase the number of or-
bitals, M , used for the computation and plot the relative difference, (EMCTDHB−
Eexact)/Eexact, to the corresponding exact energy. The one- and two-dimensional
results for these differences are given in Fig. 3.2.

The results prove that numerically exact solutions of the HIM can be obtained
using the MCTDHB method with just a few time-adaptive self-consistent orbitals.
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Figure 3.2 Convergence of MCTDHB and Exact Energies in the Harmonic Inter-
action Model.
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The relative difference of the MCTDHB energy and the exact energy, (EMCTDHB−
Eexact)/Eexact, is shown for the one-, and two-dimensional case for different or-
bital number M . In panels (a) and (c), the red lines are for the N = 2, K = 0.5,
the blue lines for the N = 10, K = 0.5, the green lines for the N = 2, K = 2.0

and the magenta lines for the N = 10, K = 2.0 cases, respectively. The relative
difference is decreasing exponentially with M . For the two-dimensional cases
in (c) the number of spherical harmonics is of importance. See text for further
discussion. Panel (b) depicts the convergence with M for different particle num-
bers where Λ = K/(N − 1) is kept constant for N = 2 (red line), N = 5 (green
line), N = 10 (magenta line) and N = 50 (turquoise line) particles. In this case
the pace of the convergence improves when increasing the particle number.

From Fig. 3.2(c) one can see that in the two-dimensional case, the respective
number of spherical harmonics shows up as a staircase in the plots. Another
instructive comparison, to check the behavior of the convergence of MCTDHB
when changing the particle number, is to vary the particle number and inter-
actions such that the mean-field energy per particle, EGP/N , remains constant.
This implies Λ = K/(N − 1) = const. Fig. 3.2(b) shows the relative energy
difference for the particle numbers N = 2, 5, 10, 50 in the case of Λ = 2.0. The
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convergence is faster for larger particle numbers as it can be anticipated already
from results in Fig. 3.1(b), cf. Fig. 3.2(b).

Before concluding the benchmark on the ground state of the HIM Hamilto-
nian it is timely to stress here, that in MCTDHB the many-body wave function is
available for all time-points in a given computation in a very compact form which
makes it amenable to compute from it one-body and two-body densities, first and
second order correlation functions and other quantities of interest. When the en-
ergy is converged, also all these invariants describing the quantum many-body
system converge. This will be shown for the nonequilibrium studies in Subsec-
tion 3.2. This concludes the benchmark study of the convergence of MCTDHB
against the HIM ground state. The overall convergence with orbital number is
exponential. In more than one dimension, the number of spherical harmonics is
of importance. The convergence is improving, when the number of particles is
increased while keeping a fixed Λ = K(N − 1).

Nonequilibrium Benchmarks:

The next step is to compare the nonequilibrium dynamics of a given initial state
within the HIM to the respective time-evolution within MCTDHB. As the scope
of the present study is to benchmark and find the accuracy of the MCTDHB it
is appropriate to select the most involved possible setup: time-dependent one-
particle potentials V (~r, t) and time-dependent two-body interactions Ŵ (~r, ~r′, t).
For this, one has to shortly revisit the Hamiltonian of the HIM. It is given in its
time-dependent form as follows:

Ĥ(t) =
N∑

i=1

(−1

2
∂2
~r +

1

2
ω(t)2~r2) +K(t)

j=N∑

i<j

(~ri − ~rj)
2 = ĤCM(t) + Ĥrel(t).

It is important to remember, that the ĤCM describes a single particle and Hrel

describes N − 1 uncoupled particles, and the corresponding one-particle TDSEs
are therefore easy to solve numerically, see Refs [93, 94], even when the one-
body potential is time-dependent. The used time-dependent trapping potential
is defined by:

ω ≡ ω(t) = ω0 [1 + f(t)] . (3.7)

In order to have a simple relation to the HIM Hamiltonian, one can choose δN
such that Ĥrel remains time-independent. This can be achieved by making the
interaction strength K time-dependent as follows:

K ≡ K(t) = K0

[
1− ω2

0

2NK0
f(t)

]
. (3.8)
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With the two time-dependencies, Eqs (3.7),(3.8), δN =
√

ω2
0 + 2NK0 is time-

independent. Since the Hamiltonian is now time-dependent, the energy is no
longer conserved. The expectation value of the Hamiltonian in Eq. (3.4) is (cf.
e.g. Refs [88,89]):

〈Ψ(t)|ĤCM(t) + Ĥrel|Ψ(t)〉 = ǫ(t) +
D

2
(N − 1)δN . (3.9)

ǫ(t) is obtained by integrating the one-body center of mass Schrödinger equation
with the Hamiltonian ĤCM(t) = −1

2
∂2
~r +

1
2
ω2
0(1+ f(t))2~r2. It is instructive to state

here that the time-dependencies, Eqs (3.7),(3.8), can be more general and it is
of course not necessary to choose them such that the relative Hamiltonian Hrel is
time-independent. Yet, there are two advantages to this particular choice: first,
only a single additional one-particle Schrödinger equation has to be integrated
and second, the convergence in the untransformed Hamiltonian which is solved
within the MCTDHB, is more difficult to achieve. A very high fidelity of the
method is needed in order to accurately reproduce the complex dynamics of only
a small fraction of the system, i.e., one particle out of N . This is obvious from
the coordinate transformations, see Eqs (3.3), which decompose the original
HIM Hamiltonian into subsystems made of N − 1 identical effective particles in
relative motion and to a quasi-particle representing the center of mass motion.
In the chosen setup, one can picture the total system as a medium formed by
N − 1 identical, uncoupled particles. This medium is in a relative, oscillatory
motion with a time-independent frequency δN , where the effective particle with
coordinate xN , representing the center of mass, is moving with a different time-
dependent frequency ω. In what follows, two different time-dependent trapping
and interaction potentials are chosen with

f1(t) = 0.2 sin2(t)

f2(t) = sin(t) cos(2t) sin(0.5t) sin(0.4t).

The one-body center of mass Schrödinger equation with the respective time-
dependent potentials is solved to obtain the corresponding one-body energies
ǫ1(t), ǫ2(t). See Figs 3.3,3.4 for a plot of these quantities.

The agreement of the time-dependent parts of the energies corresponding to
ǫ1(t) in one dimension and ǫ1(t) in two dimensions is striking, see Fig. 3.3, even
for the wildly oscillatory ǫ2(t), see Fig. 3.4. It is obvious from the convergence
studies with ǫ1(t) that the MCTDHB converges very well when one increases the
number of variational parameters, i.e. orbitals and coefficients, even for the
present cases with time-dependent one-body and two-body potentials. The rea-
son for the slight differences at bigger times in the ǫ2(t) case is that the strong
time-dependence of the potential and the interaction force the system to frag-
ment quickly and the number of orbitals is insufficient to achieve convergence
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Figure 3.3 Time-Dependent Energy ǫ1(t) and Time-Dependence f1(t) to Modify
the Harmonic Interaction Hamiltonian.
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The convergence of ǫ1(t) when increasing the number of orbitals M is depicted
for the one-dimensional case in panel (a) and the two-dimensional case in panel
(b). For convenience, the time-dependency entering the Hamiltonian, f1(t), is
plotted in panel (c). The difference to the exact result is decreasing to 0 when
increasing M . See text for discussion.

for times larger than t ∼ 25 in the N = 10,M = 6 and N = 50,M = 5 cases
with K = 0.5. When increasing M to N = 10,M = 7 and N = 50,M = 6,
convergence improves, see Fig. 3.4 and its inset. The oscillatory motion of the
center of mass results in a relatively small contribution to the total energy: the
values of ǫ1(t), ǫ2(t) are roughly one to two orders of magnitude smaller than
the energies in table 3.1. It is noteworthy, that this implies that a high fidelity
is needed to describe accurately the motion of a small fraction of the system (as
discussed above). This makes the number of orbitals for the convergence higher
compared to the other calculations. In general, a calculation can be considered
as numerically exact when the least occupied orbital has a population of less than
10−3. In the high fidelity cases with small energy oscillations and long-range in-
teractions presented here 10−6 or less is needed. An appropriate measure for
the fidelity of the MCTDHB method is the absolute relative error ∆E

1D/2D
1 (t) of
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Figure 3.4 Time-Dependent Energy ǫ2(t) and Time-Dependence f2(t) to Modify
the Harmonic Interaction Model.∗
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In panel (a) the time-dependent contribution in the energy of the MCTDHB cal-
culation for N = 10,M = 6/7 and N = 50,M = 5/6 is shown for the case of
f2(t). The red line is the exact solution. Small discrepancies start to occur when
the number of orbitals becomes insufficient to account for the large amount of
energy pumped into the system. In panel (b) the time-dependency f2(t) chosen
for the HIM Hamiltonian is plotted for convenience. See text for discussion.

the time-dependent total energies, E1D/2D
MCTDHB(t) for the one- and two-dimensional

calculations with the time-dependency f1(t), respectively,

∆E
1D/2D
1 (t) =

√√√√
(
E

1D/2D
MCTDHB,1(t)− E

1D/2D
exact,1 (t)

E
1D/2D
exact,1 (t)

)2

. (3.10)

Here, E1D/2D
MCTDHB,1(t) is the computed MCTDHB energy at time t and E

1D/2D
exact,1 (t) is

the exact energy, obtained from solving the relative one-body problem with the
Hamiltonian Ĥrel and the time-dependent center of mass one-body problem with
the Hamiltonian ĤCM with the time-dependency f1(t). For a plot of ∆E1D

1 (t) and
∆E2D

1 (t) see Fig. 3.5. From this figure it can be clearly seen that the MCTDHB
method reveals this high fidelity and grasps the highly oscillatory motion of the
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Figure 3.5 Absolute Relative Error of the Time-Dependent Total Energies Com-
puted with MCTDHB.
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Plot (a) depicts ∆E1D
1 (t) for N = 10, K = 0.5 with the time-dependency f1(t)

in one dimension and plot (b) ∆E2D
1 (t) for the same parameters in two dimen-

sions. To achieve the same relative total error in the time-dependent energies
more orbitals are needed in the respective two-dimensional systems. See text for
further discussion.

center of mass quasi-particle through the harmonic oscillators of the relative
motion with great accuracy. Given the small depletion, one could assume that
the TDGP would provide a reasonable description of the system in some cases.
Yet, the TDGP results plotted in Figs 3.3,3.4 show that only the higher frequency
of the dynamics is covered but the lower one is not captured at all. So, even
in the situation where one assumes the validity of the TDGP mean-field, the
proper description of the many-boson system can be obtained only within the
framework of exact many-body methods. To display a general way to find out
if a given calculation with MCTDHB is converged it is appropriate to check on
the convergence of the natural occupation numbers ρ(NO)

i (t), i = 1, ...,M . A plot
of those for the respective time-dependent potentials is given in Fig. 3.6 for the
one-dimensional study and in Fig. 3.7 for the two-dimensional case.

One can deduce from Figs 3.3,3.4,3.6,3.7 the convergence of the natural oc-
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Figure 3.6 Convergence of the Occupation Numbers for the Time-Dependent
Potentials in one Dimension.
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Panel (a) shows all occupations of the converged N = 10, K = 0.5 time-
dependent study with M = 7. Panel (b),(c) and (d) show how the time-evolution
of the first three occupation numbers ρNO

1 (t), ρNO
2 (t) and ρNO

3 (t) converges for in-
creasing orbital number M . The color code indicated by the labels in panel (d)
holds also for panels (b) and (c). See text for discussion.

cupations ρ(NO)
i implies the convergence of the energies. Generally, the occupa-

tions of the least occupied orbitals are very small. As their sum is normalized, it
is obvious that the higher occupations do not change anymore when the lowest
ones become negligibly small. Depending on the desired accuracy of a given cal-
culation it is therefore appropriate to use the size of the smallest occupation as a
measure for the convergence. In the present example, the energies were numer-

ically exact when the smallest occupation was below 10−6 in one dimension or
10−7 in two dimensions. It has to be stressed, that this holds for the present ex-
amples with time-dependent one-body and long-range two-body potentials only;
in the much more usual case of dynamics without those time-dependencies, and
for short-range interaction potentials, convergence is achievable easier, i.e., al-
ready when the smallest occupation is below 10−3.
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Figure 3.7 Convergence of the Occupation Numbers for the Time-Dependent
Potentials in Two Dimensions.
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Panel (a) shows all occupations of the converged N = 10, K = 0.5 time-
dependent study with M = 16. Panel (b),(c) and (d) show how the time-
evolution of the first three occupation numbers ρNO

1 (t), ρNO
2 (t) and ρNO

3 (t) con-
verges for increasing orbital number M . The color code indicated by the labels
in panel (d) holds also for panels (b) and (c). See text for discussion.

3.3 Dynamics of an Interaction Quench in the Har-

monic Interaction Model

The HIM features a lot of the physics of the Hamiltonian with contact interac-
tions. One of these, which can be nicely shown by applying the MCTDHB, is the
dynamical change of the occupation numbers, when quenching the interaction.
To investigate it, one sets up a solution of the HIM Hamiltonian, Eqs (3.1),(3.2),
with a certain interaction Ki as the initial guess. Subsequently, the interaction
is abruptly switched to another value Kf . This interaction quench causes the dy-
namics, which are the topic of this section. As an illustrative example N = 10

one- and two-dimensional bosons with initial interactions Ki
1 = 0.5, Ki

2 = 2.0
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were chosen as initial guesses. The interactions were quenched to the values
Kf

1 = 2.0(≡ Ki
2) and Kf

2 = 0.5(≡ Ki
1), respectively. See Fig. 3.8 for a plot of the

time-evolution of the fragmentation, i.e., the first occupation number ρ
(NO)
1 (t)

for the respective one- and two-dimensional cases. The behavior of the fragmen-

Figure 3.8 Interaction Quench Dynamics for N = 10 Particles.
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Panels (a), (c) and (e) depict the time evolution of the fragmentation for the
interaction quench from Ki

1 = 0.5 → Kf
1 = 2.0 and panels (b), (d) and (f) depict

the time-evolution of the fragmentation for the interaction quench from Ki
2 =

2.0 → Kf
2 = 0.5. In (a) and (b) the fragmentation for both the one-dimensional

(turquoise lines) and the two-dimensional (gray lines) are oscillatory. The frag-
mentation is stronger in the two-dimensional case than in the one-dimensional
ones (roughly twice). For convenience, the convergence of the fragmentation for
the one- [panels (c), (d)] and two-dimensional [panels (e), (f)] cases is depicted
also. The color code is (c): M = 3/5/7/8, magenta/blue/green/red line, re-
spectively, (d): as in (c) ,(e): M = 10/14/15/16, magenta/blue/green/red line,
respectively, (f): M = 6/10/15/16, magenta/blue/green/red line, respectively.
The red curves in panels (c),(d),(e),(f) are the converged results and are identi-
cal with the respective gray/turquoise lines in panels (a),(b). See text for further
discussion.

tation in Fig. 3.8(a),(b) is oscillatory with a bigger frequency for the Ki
1 → Kf

1

quench (Q1) than for the Ki
2 → Kf

2 quench (Q2). The frequency is the same
for the one-dimensional and two-dimensional cases. Intuitively, the fragmenta-
tion decreases, first, when one decreases the interaction, and the wave function
becomes more condensed in Q2 initially. Correspondingly, in Q1, by increasing
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the interaction, the wave function becomes more fragmented initially. In both
cases the fragmentation is roughly twice larger in the two-dimensional com-
pared to the one-dimensional cases. This can be explained by the energetics
of the system. Simply, because the dimensionality is a global factor in the to-
tal energy and consequently the change in energy by the interaction quench
is twice larger in the two-dimensional cases compared to the one-dimensional
cases for Q1 and Q2, respectively. The degree of fragmentation hence is roughly
proportional to the change in the total energy, i.e., proportional to the energy
pumped into the system by the interaction quench. Because the interaction and
the trapping potential are isotropic, the quench dynamics are dynamics in the
relative coordinates. That the fragmentation is roughly twice as large as in the
two-dimensional case means that roughly twice as many particles are excited to
move relatively to each other. One can estimate the frequencies of the oscilla-
tions from the difference ∆EQ1/2 = Ef

Q1/2 −EKf
1/2

of the energy after the quench

Ef
Q1/2 to the respective ground state energy at the interaction Kf

1/2, EKf
1/2

. The

oscillatory frequencies νQ1/2 are obtained by νQ1/2 =
∆EQ1/2

2π
(remind that ~ = 1

in the units used). In the one-dimensional case one finds νQ1 = 3.3475
2π

= 0.5328

and νQ2 =
6.4628
2π

= 1.0286. The agreement with the frequencies in Fig. 3.8(a) and
(b) is satisfactory.

Transferring the finding for the HIM to the corresponding systems with shorter-
ranged, contact-like interaction, one would expect the coherence of systems of
higher dimensionality to be more sensitive to changes of external parameters,
such as the interaction strength or the trap geometry, because the change in the
total energy is larger for bigger dimensionality. This is true also for parabolically
confined three- and two-dimensional ultracold bosons and their one-dimensional
counterparts with short-range interactions.

3.4 Discussion and Summary of the Benchmark with

the Harmonic Interaction Model

Throughout this work, the youngest method in the family of the MCTDH meth-
ods, namely MCTDHB, has been benchmarked with the HIM for the convergence
of ground states and dynamics in one and two spatial dimensions. Furthermore,
an application of MCTDHB to the fragmentation dynamics occurring within the
HIM in the case of an interaction quench was provided.

In conclusion, it was proven that the MCTDHB, like the other members of
the MCTDH family of methods, can be used to obtain numerically exact solutions
of the many-body TDSE for one-, and two-dimensional systems. The considered
many-boson systems can be described in a numerically exact way when the in-
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teraction is arbitrary (weak to strong, attractive or repulsive) and the particle
number is small enough to allow one to use enough orbitals to achieve conver-
gence, even in the present case of parabolic long-range interactions. In the case
of large orbital and small particle number, the numerically most demanding part
is to propagate the coupled integro-differential EOMs for the orbitals, as given in
Ref. [48] and Eqs. (2.46), and (2.47). Numerically exact solutions are also possi-
ble if the particle number is large enough to make convergence achievable with
a small number of orbitals, as shown in Fig. 3.2(b). In this case, the numerically
most demanding part is the propagation of the equations for the coefficients.

The convergence is improving roughly exponentially with the number of or-
bitals. Less orbitals are needed for constant Λ = K(N − 1) and a large parti-
cle number. Higher dimensionality and the long-range interactions of the HIM
require more orbitals for convergence than the respective problems with short-
range interactions. The respective number of spherical harmonics becomes of
importance for more than one-dimensional studies.

Numerically exact solutions are obtainable even for smoothly varying, time-
dependent one- and long-range two-body potentials. For stronger oscillatory
behavior convergence is harder to achieve, and the necessary number of orbitals
is larger in this case. The dynamics of the time-dependent Hamiltonians with
time-dependent one-body and time-dependent two-body potentials are of course
more difficult to describe.

As an application of the fragmentation dynamics an interaction quench sce-
nario was studied. The behavior found is oscillatory and tends towards less
fragmentation first in the case of lowering the interaction and towards stronger
fragmentation first in the case of increasing the interaction. The oscillation fre-
quencies are determined by the difference of the energy after the quench to the
respective ground state energies at the final interaction strength. In the compar-
ison of the one-dimensional and two-dimensional quenches the fragmentation
is about twice larger than in the latter case. This is a manifestation of the re-
lation of the change in the total energy in one dimension and two dimensions
[cf. Eq. (3.5)]. The interaction quench imposes a change two times larger in two
dimensions compared to that in one dimension.
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Chapter 4

Comparison of Lattice Model, Gross-

Pitaevskii, and MCTDHB predictions

on a Tunneling Process

After the previous assessment of the numerical exactness of MCTDHB(M) in the
case of convergence with the number of orbitals, see Chapter 3, it remains to
compare MCTDHB to other methods in the field. For this comparison the con-
tinuous methods MCTDHB and TDGP [i.e., MCTDHB(M = 1)] and the lattice
methods DNLS and TEBD/BH are used. In Reference [76] the authors com-
pare the two lattice methods’ predictions on the decay by tunneling dynamics
of an initially trapped bosonic system comprised of different particle numbers
N , varying from N = 2 to N = 70 particles. It is a delicate question whether
and how such studies with discretized space relate to scenarios in continuous
space. One case, where the mapping of a discretized BH simulation to sev-
eral corresponding simulations and analytical predictions in continuous space
was successfull is Reference [95]. The straightforward strategy to perform the
comparison of the continuous space methods TDGP indexGross-Pitaevskii and
MCTDHB with the discrete models BH and DNLS in this section is thus to apply
the discrete-to-continuous-space-mapping of Ref. [95] to the potential given in
Ref. [76] and solve the corresponding Schrödinger equation in continuous space
approximately by the TDGP and exactly by the MCTDHB method. The compari-
son will be done in terms of a quantitative comparison of the escape times and
the coherence dynamics and many-body physics in the process.
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4.1 Mapping of Discrete and Continuous Space Prob-

lems

Following Ref. [95], the many-body Hamiltonian of a one-dimensional Bose gas,

Ĥ =

∫
dx Ψ̂†

[
−1

2
∂2
x + V (x) +

g

2
Ψ̂†Ψ̂

]
Ψ̂, (4.1)

where again ~ = m = 1, can be transformed to the BHH, see Eq. (2.49), by
replacing the integrals by sums and approximating the second spatial derivative
in the kinetic energy operator with a difference quotient, i.e.,

∂2
xΨ̂ ≈

[
Ψ̂(xj+1) + Ψ̂(xj−1)− 2Ψ(xj)

]
· 1

2∆x2
. (4.2)

The parameters of the BHH, U and J , are then

J =
1

2∆x2
; U =

g

∆x
. (4.3)

In order to get a continuous version of a desired discrete BHH problem only the
∆x in the above equation has to be chosen according to Ref. [95]. In their work,
Ref. [76], on the BHH and the DNLS the authors chose so-called hopping units,
i.e., they set J ≡ 1 and express everything in units of J . By this choice, the
mapping of Ref. [95] outlined above, they also define the ∆x and the interaction
parameter g to read

∆x =
1√
2
; g = U∆x =

U√
2
. (4.4)

To define the many-body Hamiltonian which can be studied within the contin-
uous TDGP and MCTDHB methods it remains to express the discrete potential
V ext
i , given in Ref. [76], as a function V (x) in the continuous x-space. The po-

tential given in Fig. 1 of Ref. [76] is of rectangular shape for the initial state, i.e.,
at times t < 0,

V ext,t<0
i =





∞ for i ≤ 0

0.05J for i ≥ xs

0 otherwise

(4.5)

while for the time evolution

V ext,t≥0
i =





∞ for i ≤ 0

0.05J for xs ≤ i ≤ xe

0 otherwise.

. (4.6)
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Here xs marks the start of the barrier and xe the end of the barrier. Such rectan-
gular potentials can be modelled conveniently by Heaviside step functions Θ(·).
Yet, to get the proper continuous space potential V (x) the start/stop of the bar-
rier xs/e has to be translated via the specified ∆x = 1√

2
. Finally, one obtains:

V (x; t < 0) =





∞ for x ≤ 0

0.05 for x ≥ xs√
(2)

0 otherwise

(4.7)

for the continuous space potential for the initial state and

V (x; t ≥ 0) =





∞ for x ≤ 0

0.05 for xs√
(2)

≤ x ≤ xe√
(2)

0 otherwise

(4.8)

for the potential for the dynamics. For a plot of these potentials, see Fig. 4.1.
This concludes the description of the mapping of discretized and continuous-
space Hamiltonians in general and for the particular decay by tunneling example
in Ref. [76]. For further details, see Ref. [95] and References therein.

4.2 Comparison of DNLS,BH,TDGP and MCTDHB Dy-

namics

In order to compare the dynamics of the model Hamiltonians introduced in this
section, i.e., the BH and the DNLS, with the TDGP description and the full many-
body Schrödinger equation (solved exactly with MCTDHB) it is timely to first
specify the interaction and the potential V (x; t). For convenience, the param-
eters are chosen identically to the ones used to produce Fig. 3c) of Ref. [76]:
the interaction in this subsection is given by UN

J
= −0.15 in discretized space

and by λ0(N − 1) = 0.15 · ∆x = 0.15√
2

in continuous space dimensionless units
[cf. Eq. (4.4)]. Furthermore, the barrier is chosen from discretized xs = 18

to xe = 20 – or, in continuous, dimensionless units from 18√
2

to 20√
2
. With these

parameters specified, the TDGP and MCTDHB dynamics should (in accordance
with Ref. [95]) correspond to the respective DNLS and BH ones. It is instructive
to first compare the time-evolution of the one-body density of the discrete sys-
tems with the continuous ones. For a plot of the BH, TDGP and exact density,
see Fig. 4.2.

Qualitatively, the decay of the initially localized state is covered by all three
theoretical approaches – yet, it’s interesting to note that the middle and right
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Figure 4.1 Rectangular Continuous Space Potential for the Comparison of the
DNLS,BH,TDGP and MCTDHB Approaches.
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The potential for the generation of the initial guess is given by the black-dashed
line and the red line indicates the potential for the propagation. To guide the
eye, an initial density, ρ(x, t = 0), obtained from MCTDHB is plotted in blue. All
quantities shown are in dimensionless units.

panels of Fig. 4.2 which show the TDGP and exact MCTDHB solutions, respec-
tively, are practically indistinguishable. This can only be the case if the dynamics
are fully coherent.

It is hence instructive, to measure the decay times depicted in Fig. 3c) of
Ref. [76] for the DNLS and BHH models also with the continuous TDGP and
MCTDHB methods in order to quantify how accurately the dynamics of the den-
sity ρ(x, t) are captured. Figure 4.3 shows a plot of the nonescape times tesc ob-
tained with the methods in question for various particle numbers between N = 2

and N = 70. The quantity tesc is defined such that the integral
∫ xe

−∞ dxρ(x; tesc) is
equal to e−1.

From this figure one can read on one hand, that the many-body dynamics
are very close to full coherence because of the close proximity of the escape
times for the TDGP and the MCTDHB methods. On the other hand, it shows the
failure of the discrete methods TEBD/BHH and DNLS on the present example.
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Figure 4.2 BH, TDGP and Exact Density for the Decay by Tunneling of an Attrac-
tive System of 70 Bosons from a Rectangular Well.∗
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The darker the color the bigger the particle density. The left panel (BH dynamics)
shows more structure than the middle (TDGP) and the right one (MCTDHB).
There is no noticeable difference between the TDGP and MCTDHB solutions. The
data of the BH plot were extracted from Fig. 2b) of Ref. [76] and are printed here
with the permission of the authors of Ref. [76]. See text for further discussion.

First, they underestimate the escape times (by 30% and 50%, respectively) and
second, the prediction of the many-body properties is wrong: while the exact
description reveals the full coherence of the process, a discrepancy of 20% in
the escape times tesc is predicted between the DNLS and the TEBD/BHH. Hence,
the TEBD/BHH description predicts a departure of the process from coherence,
which is unphysical. To investigate the dynamics of the coherence in the present
example it is instructive to plot the first order correlation function g(1). |g(1)|2
describes the fringe visibility in interference experiments and is, hence, a direct
measure for the first order coherence. For the MCTDHB a plot of g(1) is provided
in Fig. 4.4 in the two upper panels for representative times.

From the top panels of Fig. 4.4 it can be read that the process can be viewed as
fully first order coherent. This means that, to a very good approximation, one can
apply the TDGP, i.e., a mean-field description to the process. It has, hence, no
interesting many-body characteristics. This is corroborated by the fact that the
process is also almost completely second-order coherent, as it can be read from
the graphs of g(2) in the bottom panels of Fig. 4.4. g(2) defines the bunching or
anti-bunching properties of a quantum field [96–98]. If g(2) is larger than unity,
the particles are likely to be in these positions together and if g(2) is smaller than
unity, the particles are unlikely to be in the these positions together. The former
situation is referred to as bunching and the latter situation is referred to as anti-
bunching. The plots in Fig. 4.4 show that the process, subject to this section,
does not show any bunching or anti-bunching characteristics and is, hence, fully
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Figure 4.3 Nonescape Times Obtained with the BHH/TEBD, DNLS, TDGP and
Exact MCTDHB.
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The mean-field methods, DNLS and TDGP, do not distinguish different particle
numbers. The many-body methods, TEBD/BHH and MCTDHB are sensitive to
the particle number – yet, for the exact MCTDHB solutions they differ only at
the most by 1% from the TDGP ones. The discrepancy of the continuous meth-
ods to the discrete ones is ∼ 50% and ∼ 30% for the DNLS and the TEBD/BHH,
respectively. Both discrete methods, TEBD/BHH and DNLS, hence, grossly un-
derestimate the escape times. Data points for TEBD/BHH and the DNLS have
been extracted from Ref. [76]. See text for further discussion.

second-order coherent. Yet the authors of Ref. [76] attribute to the differences
they find between their two discrete DNLS and BHH models a “many-body nature
of the process”. They conclude “Our study shows that many-body effects in
macroscopic quantum tunneling can be observed via number fluctuations and
density-density correlations as well as the increased escape time.”
The reason that lead to this conclusion is that the lattice/discrete models that
have been applied in Ref. [76], i.e., the DNLS and TEBD, expand the governing
Hamiltonian in a basis which is time-independent and adapted to a situation
in which there is a periodic potential. The potential that Ref. [76] suggests to
treat (cf. Fig. 1 in Ref. [76]), is not a continuous space potential. It solely
shows the offset of the lattice potential considered. The dynamics in continuous
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Figure 4.4 Coherence of the Tunneling Process from Normalized Correlation
Functions.∗

Top: Normalized first-order correlation function |g(1)(x′, x, t)|2 of N = 70 bosons
for t = 0 and t = 100. The dynamics do not depart from coherence, i.e.,
|g(1)|2 ≈ 1 holds for all space and time with a deviation not greater than 1%. See
text for further discussion. Bottom: Diagonal of the normalized second-order
correlation function |g(2)(x1, x2, t)|2 of N = 70 bosons for t = 0 and t = 100.
The dynamics show almost full second-order coherence, i.e., |g(2)|2 ≈ 1 holds for
all space and time with a deviation not greater than 3%. See text for further
discussion.

space are different and the effects found in Ref. [76] do not correspond to a
continuous space scenario of the many-boson tunneling process to open space.
These dynamics correspond rather to a deep optical lattice of which one cannot
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straight forwardly recover a continuous space form. In summary, the DNLS and
BHH treatment is simply not applicable to the problem of many-boson tunneling
to open space.
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Chapter 5

Theoretical Considerations and Ana-

lytical Models on the Many-Body

Physics of Tunneling Bosons

In this Chapter, various (analytical) model consideration and general character-
istics of the methods introduced in Chapter 2 are discussed. This is done in
order to put the later numerical results in a wider context and to familiarize the
reader with the key concepts of the quantum many-boson dynamics of tunneling
to open space. The first part of this Chapter is a proof that the TDGP does not
account for correlations and coherence properly. In the second part the physics
of tunneling are assessed from a many-body point of view by including corre-
lations and coherence. This is done by starting out from basic assumptions on
the orbitals or a possible decomposition of the Hilbert space of the considered
dynamics.

5.1 Analytical Considerations within the Gross-

Pitaevskii Approximation

In the TDGP approximation a wavepacket of a System is constructed by a product
of a single orbital with different spatial coordinates and proper normalization.
Thus TDGP is built upon the assumption that all bosons reside in one single
quantum state which is directly equivalent to the statement that the bosons form
a fully coherent condensate. The normalized Ansatz for the wavefunction reads:

ΨGP (x1, ..., xN , t) =

N∏

k=1

Φ(xk, t). (5.1)
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When one plugs this GP ansatz for the wavefunction, ΨGP , in the definition of the
RDM ρ(1) it reads (the dependency on time is henceforward omitted to simplify
the reading):

ρ(1)(x1 | x
′

1) =
N !

(N − 1)!

∫
ΨGP (x1, ..., xN) ·Ψ∗

GP (x
′

1, x2, ..., xN)dx2 · · · dxN

=
N !

(N − 1)!

∫ ( N∏

k=1

Φ(xk)

)(
Φ∗(x

′

1)
)( N∏

k=2

Φ∗(xk)

)
dx2 · · · dxN

= N · Φ(x1) · Φ∗(x
′

1). (5.2)

This RDM is simply a product of the permanent at x1 and its complex conjugate
at x

′

1.
To determine what are the implications for the coherence properties of such a
wavefunction, it is instructive to compute from the found RDM, Eq. (5.2), the
correlation functions of the TDGP ansatz. The first order correlation function
g(1)(x1, x

′

1) reads:

g(1)(x1, x
′

1) =
ρ(1)(x1 | x

′

1)√
ρ(1)(x1 | x1) · ρ(1)(x′

1 | x
′

1)
(5.3)

=
Φ(x1) · Φ∗(x

′

1)√
Φ(x

′

1) · Φ∗(x
′

1) · Φ(x1) · Φ∗(x1)
(5.4)

|g(1)(x1, x
′

1; t)| = 1 ∀ x1, x
′

1, t. (5.5)

Intuitively, Equation (5.5) is already clear from the way the GP-ansatz for the
wavefunction is constructed. The TDGP theory has no feature for first order
decoherence because the first order correlation function will always be indepen-
dent of the spatial coordinates and constant within this model. This is because
the denominator and nominator of g(1) are always a product of a single complex
valued function (the orbital). The diagonal of the two-body reduced density
matrix, i.e., the two-body density is obtained analogously:

ρ(2)(x1, x2 | x
′

1, x
′

2) =
N !

(N − 2)!

∫
ΨGP (x1, ..., xN ) ·

Ψ∗
GP (x

′

1, x
′

2, x3, ..., xN)dx3 · · · dxN .

Which once again can only be the product of a single complex valued function:
the orbital in the TDGP-ansatz. The diagonal of ρ(2) reads:

ρ(2)(x1, x2 | x1, x2) = N(N − 1) | Φ(x1) |2 · | Φ(x2) |2 . (5.6)

The two-body density is a product of the same complex valued function as the
RDM and hence the two-body density is a product of one-body densities. This
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accounts for the fact that the system in this model is bound to be condensed.
The higher order coherence is measured by a system’s n-th order correlation
function |g(n)|2 (see e.g. [58,59]). If it is close to (far from) 1, the system is n-th
order coherent (incoherent). The fact that the GP wavefunction is constructed
as a product of one orbital yields that all-order RDMs are also constructed of the
same orbital. As the correlation functions are ratios of different RDMs, the first
order correlation function is bound to be |g(1)|2 = 1 everywhere at any time. Sim-
ilarly, the n-th (n > 1) order correlation function is bound to be constant every-
where at any time. One can obtain this from writing down g(p)(x1, ..., xp|x

′

1, ..., x
′

2)

in terms of bosonic field creation and annihilation operators Ψ̂(x), Ψ̂†(x):

Ψ̂(x)|N ; t〉 =
√
NΦ(x, t)|N − 1; t〉 Ψ̂†(x)|N ; t〉 =

√
NΦ∗(x, t)|N + 1; t〉. (5.7)

Therefore the p-th order normalized correlation function reads:

g(p) =
ρ(p)(x1, ..., xp|x

′

1, ..., x
′

p)√∏p
ξ=1 ρ

(1)(xξ|xξ)ρ(1)(x
′

ξ|x
′

ξ)
(5.8)

=
〈Ψ(t)|Ψ̂†(x

′

1)...Ψ̂
†(x

′

p)Ψ̂(xp)...Ψ̂(x1)|Ψ(t)〉
∏p

ξ=1

(√
〈Ψ(t)|Ψ̂†(xξ)Ψ̂(xξ)|Ψ(t)〉〈Ψ(t)|Ψ̂†(x

′

ξ)Ψ̂(x
′

ξ)|Ψ(t)〉
) .

For convenience, some time-dependencies have been omitted in Eq. (5.8) and
will be omitted furtheron to simplify reading. Recalling the commutation rela-
tions of bosonic field operators

[
Ψ̂(xi), Ψ̂

†(xj)
]
= δ(xi − xj),

[
Ψ̂(xi), Ψ̂(xj)

]
= 0, (5.9)

one finds for the diagonal of the first order RDM:

〈Ψ(t)|Ψ̂†(x)Ψ̂(x)|Ψ(t)〉 = N |Φ(x)|2. (5.10)

The diagonal of the one-body RDM, needed for the denominator of Eq. (5.8)
within the TDGP approximation, can be evaluated and g(p) takes on the form:

g(p) =
〈Ψ(t)|Ψ̂†(x

′

1)...Ψ̂
†(x

′

p)Ψ̂(xp)...Ψ̂(x1)|Ψ(t)〉√∏p
ξ=1

(
N |Φ(xξ)|2 ·N |Φ(x′

ξ)|2
) . (5.11)

Also the numerator of Eq. (5.8) can be evaluated with the help of Eq. (5.7). g(p)

then reads:

g(p) =

∏p
ξ=1

(√
(N + 1− ξ)Φ(xξ)

√
(N + 1− ξ)Φ(x′

ξ)
)

Np
∏p

ξ=1

√(
|Φ(xξ)|2 · |Φ(x′

ξ)|2
)

=
N · (N − 1) · · · (N − p)

Np
=

N !

Np · p! . (5.12)
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When one considers an interacting many-body system whose dynamics is most
likely described by a time-dependent wavefunction of big complexity, this result
is at least surprising. A constant correlation function of any order, everywhere at
any time is equivalent to the statement that the wavepacket, from which it was
derived, has defined, constant coherence properties for all times and everywhere.
This, of course is only a good model if one whishes to describe phenomenolog-
ical a Bose-Einstein condensate, which is in a good approximation, a coherent
many-body object. This result clarifies the fact, that the TDGP model will fail
to describe the dynamics and effects of first or higher order (anti-)correlations
and first or higher order coherence or decoherence. Furthermore, a nice way to
analyze the dynamics of many-boson systems starts from the above considera-
tions: if one finds a deviation (in whatever quantity) of a many-boson system
from the approximative description with the TDGP approximation, this means
that the system is no longer fully coherent and its correlation functions impact
its physics.

5.2 Analytical Considerations beyond Gross-

Pitaevskii

5.2.1 Decomposition of Hilbert Space into Subspaces

As found in many cases of the dynamics of ultra-cold bosons, initially coherent
states develop fragmentation throughout their dynamics, see e.g. Refs [49, 51,
81]. In this section an analytical model is constructed for the dynamics one
would expect if an initially coherent and parabolically trapped system tunnels to
open space with two momenta k1 and k2 involved in the process. As a first step
it is instructive to consider the full Hilbert space of the problem as partitioned in
an inside part and an outside part. Then one pursues a description of the tunnel-
ing process which covers the fragmentation in the interior subspace containing
initially the mainpart of the density and fragmentation in the exterior subspace
which initially contains the lesser fraction of the density outside the well.
By making this assumption on the partitioning of space, one assumes that the
system is completely separable, i.e., lives in two orthogonal subspaces P (the
interior) and Q (the exterior). The wavefunction in P , ΨP , is an (a linear com-
bination of) eigenfunction(s) of the Hamiltonian

ĤP = P̂{
N∑

i=1

[
−1

2
∂2
xi
+

1

2
x2
i

]
+
∑

j<k

Ŵ (xj − xk)} (5.13)

on the P subspace and the wavefunction ΨQ is an (a linear combination of)
eigenfunction(s) of the Hamiltonian ĤQ = Q̂{

∑N
i=1

[
−1

2
∂2
xi

]
+
∑

j<k Ŵ (xj − xk)}
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on the Q subspace - here P̂ , Q̂ denote the projectors onto the orhogonal sub-
spaces. Obviously, one can write the whole Hilbert space of our system then as a
direct sum of P and Q: H = P ⊕Q. In fact one can write down the wavefunction
Ψ of this separable problem. By the above guess, Eq. (5.24), one assumes that
the only effect of the interparticle interaction potential Ŵ in Q is to force the sys-
tem to occupy two eigenfunctions of the kinetic energy operator (i.e. two plane
waves). It is obvious that the difference of the two momenta, k1 and k2 must
relate to the interaction. In P the wavefunction can be described by mollifying

the gaussians constructing the eigenfunctions of the parabolic trap in P . Hence,
the following wavefunction is obtained:

|ΨP (t)〉 =
∑

~nP

(
p̂†1(t)

)Nq1 · · ·
(
p̂†M(t)

)NMp |vac〉 (5.14)

|ΨQ(t)〉 =
∑

~nQ

(
q̂†1(t)

)Np1 · · ·
(
q̂†M(t)

)NMq |vac〉 (5.15)

|Ψ(t)〉 = |ΨQ〉 ⊗ |ΨP 〉 (5.16)

⇒ Ψ(x1, ...., xN , t) = ΨP (x1, ...., xNP
, t)ΨQ(x1, ...., xNQ

, t). (5.17)

Where the vector of all possible configurations of NP/NQ bosons over Mξ or-
bitals, ~n :=

(
N1, ..., NMξ

)
; {Ni|

∑Mξ

k=1Nk = Nξ ξ = P,Q}, the P and Q subspace
boson creation operators for the i-th orbital {q̂†i (t), p̂†i(t)}, the numbers of bosons
in P and Q, NP and NQ, the number of orbitals to represent the wavefunction in
P and Q, MP and MQ, and the vacuum state |vac〉 have been used. If one rep-
resents this in the Fock-space notation for the P -subspace, i.e. |n1, n2, ...〉, where
one omits the P -subscripts for the sake of simplicity, one gets:

p̂†k(t)|vac〉 = P̂ e−iϕktKk−1(x)e
−x2

2
wk |0, ..., 0, 1︸︷︷︸

k-th position

, 0, ...〉

K0 = 1 ;K1(x) = x ;Kn+1 = xKn(x)−Kn−1(x) ; P̂ = Θ(x− xP ) (5.18)

⇒ p̂†1(t)|vac〉 = P̂ e−iϕ1te−
x2

2
w1 |1, 0, ...〉 (5.19)

p̂†2(t)|vac〉 = P̂ e−iϕ2txe−
x2

2
w2|0, 1, 0, ...〉 (5.20)

...

In analytical considerations the {wi} could be e.g. determined by minimizing the
energy functional with respect to these parameters. The tunneled density in Q is
forged from creation operators q̂†k. Because the potential in the Q subspace has
no structure (i.e. it is constant) and the absolute density is small, it is timely to
neglect the interaction part W (xi − xj) of the Hamiltonian HQ, i.e.,

ĤQ = Q̂
N∑

i=1

[
−1

2
∂2
xi

]
. (5.21)
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Under this assumption the q̂†k operators create plane waves, the eigenfunctions
of the kinetic energy operator. Basically, in modelling the density this way one
implies that the interaction forces the bosons to occupy more than one state
macroscopically. This is quite easy for the bosons as there is no potential but
their repulsive interactions. Still, the interactions are weak enough such that
the shape of the eigenfunctions of ĤQ is the same as if there was no repulsion.
Hence, the eigenfunctions are very close to those of free, noninteracting particles
and are plane waves, therefore. This assumption works only for weak interac-
tions and when the density in the Q subspace is small. Hence, one can write
for the action of the q̂†k, while omitting the Q-subscripts for the permanents for
simplicity:

q̂†j(t)|vac〉 = Q̂e−iνjte−ikjx = Q̂|0, ..., 0, 1︸︷︷︸
j-th position

, 0, ...〉 (5.22)

Here, too, the only time dependence inherits in a phase factor. Now all the
ingredients to write down the wavefunction of the whole system, |Ψ〉 = |ΨP 〉 ⊗
|ΨQ〉 are at hand. As an example the wavefunction for the case of two natural
orbitals describing the Q and one modelling the P subspace is given below.

|Ψ〉 =
∑

~np,~nq

C~npC~nq

(
p̂†1(t)

)Np
(
q̂†1(t)

)Nq1
(
q̂†2(t)

)Nq2 |vac〉 (5.23)

Here, the coefficients C~ni
for the i = P,Q subspace-configurations, and the com-

bined vacuum |vac〉 = |vac〉Q|vac〉P were used. ~np = (NP ) = (N − NQ) has to
hold because there is only one natural orbital for the condensate inside the trap
and ~nq = (Nq1, Nq2) = (Nq1 , NQ − Nq1) has to hold as one uses two orbitals for
the outside region.
The above considerations have several nice physical properties. The tunneling
process from the P to the Q subspace can be described in this model even if the
escaping particles have several different momenta and even if the trapped bosons
form a (locally) fragmented object (see Appendix B for a concise definition of
local fragmentation/coherence). The density of the considered wavefunctions
resembles a sample of parabolically trapped bosons in P and interfering plane
waves with different momenta on the exterior Q. In the specific case introduced
in Eq. (5.23), one finds a locally condensed fraction in P and an interference
pattern formed by permanents built from two plane waves with momenta k1 and
k2 in Q – which is in general (locally) fragmented, i.e., not coherent. The spa-
tial density of the wavefunction in Eq. (5.23) is a spatially extended oscillatory
part in Q and a Gaussian part in the interior P . The momentum density of such
a wavefunction will be a convolution of a structure peaked at k1 and k2 from
the exterior part of the wavefunction and a Gaussian part from the trapped, in-
terior part of the wavefunction. It is timely to stress here, that these features
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were found in the numerically exact simulations (discussed in Chapters 6 and
7) and it is hence justified to look at the problem in this way. Of course, all the
above considerations do not account properly for the tunneling dynamics. The
dynamics are caused by a coupling of the P and Q spaces which makes the par-
ticle numbers NQ and NP time-dependent. To account for such a coupling the
model Hamiltonian needed to be modified. The above form is block-diagonal.
To include the dynamics one needed to introduce a coupling of the P to the Q

block. Yet, the presented considerations will be helpful to analyze the many-
boson tunneling process from the point of view of the energetics of the interior
and exterior subsystems. The energies can be approximately found from the
above Hamiltonians ĤP and ĤQ.

5.2.2 Model for the Energetics of the Many-Body Physics of

Tunneling to Open Space

Starting from the model in the previous section it is interesting to consider and
formulate the consequences for the physics from the point of view of the energies
which particles have in the interior or exterior part of space. Basically, the model
in this subsection comes from the de facto splitting of space by a barrier in tun-
neling processes. The idea introduced and formalized above and applied here is
to indeed consider the interior and exterior subsystems as separate (interacting)
many-boson systems and find the physics that are to be expected. The strategy
pursued is to assemble the many-body process from basic transfer processes of
single particle or multiple particles. To analyze these basic transfer processes
the above defined Hamiltonians’ ĤP , ĤQ, cf. Eqs (5.13),(5.21), eigenfunctions
and corresponding energies are used. For convenience, the interior, P -subspace
is referred to as “IN” subspace and the exterior, Q-subspace is referred to as the
“OUT” subspace.

Basic Static Processes Assembling the Many-Body Physics:

The initial and final physical situations in the “IN” and “OUT” subspaces are
intuitively clear. The totally condensed initial state lives in the “IN” region and is
confined by a harmonic potential. Therefore, it can be described by a harmonic
oscillator-like product state, cf. e.g. Ref. [63]. In the final state all the bosons
have tunneled out and live entirely in the semi-infinite “OUT” region. According
to Ref. [99] the static many-body solution of the one-dimensional bosonic system
with short range repulsive interaction on a semi-infinite axis can be constructed
as a linear combination of many correlated (incoherent) states. This implies that
the dBecauseynamical final state of our system is incoherent.
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Figure 5.1 Sequential Mean-Field Scheme to Model the Tunneling Processes.

The bosons are ejected from “IN” to “OUT” subspaces (indicated by the red line).
The chemical potential µi is converted to kinetic energy Ekin,i. All the momenta
corresponding to the chemical potentials ki =

√
2mEkin,i =

√
2mµi; i = N,N −

1, ..., 1 appear in the momentum distribution, see Figs 6.4,6.8,6.9. All quantities
shown are dimensionless.

To model the steps translating the fully coherent systems to complete incoher-
ence, let us first consider the situation in which exactly one boson has tunneled
through the barrier from “IN” to “OUT” and has no more connection with the
interior. The “IN”-system now has N − 1 particles and the “OUT”-system has
1 particle. By assuming that no excitations have been produced in the “IN”-
system, the trapped bosons’ energy is exactly reduced by the chemical potential
µ1 = EN − EN−1, see Fig. 5.1.

Here Ei is the energy of the trapped harmonic oscillator product state with
the distribution of i bosons in the “IN” subspace. One assumes that the chemical
potential does not depend on the number of emitted bosons, because in “OUT”
V (x) ≈ 0. Let us further ignore the inter-particle interaction in the exterior
system. Energy conservation requires then, that the chemical potential µ1 of
the first boson tunneled from “IN” to “OUT” region must be converted to kinetic
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energy. A free particle has the kinetic energy Ekin
OUT = k2

2m
- we thus expect the first

emitted boson to have the momentum k1 =
√

2mEkin
OUT,1 =

√
2mµ1. The above

considerations imply that the many-body wavefunction can be considered in a
localized basis |IN ;OUT 〉. The process of emission of the first boson in this basis
reads |N ; 0〉 → |N − 1; 1k1〉. Here the k1 superscript indicates that the emitted
boson occupies a state which is very similar to a plane wave with momentum k1
in the “OUT” subspace. Now one can prescribe the process of the emission of the
second boson as |N − 1; 1k1〉 → |N − 2; 1k1, 1k2〉. By neglecting the interactions
between the first and second emitted bosons we can define the second chemical
potential as µ2 = EIN (N − 1) − EIN(N − 2). Thus, a second kinetic energy
Ekin

OUT,2 = µ2 gives rise to the momentum peak at k2 =
√
2mµ2. Generally, the

chemical potentials of the systems made of N − i and N − i− 1, i = 0, ..., N − 1,
particles are different, so the corresponding peaks should appear at different
positions in the momentum spectra. One can continue to apply the above scheme
until the last boson is emitted |1; 1k1 · · · 1kN−1〉 → |0; 1k1 · · · 1kN 〉. Fig. 5.1 indicates
the chemical potentials for these one-particle mean-field processes by horizontal
lines and the processes by the vertical arrows. This simplified mean-field picture
of the tunneling dynamics is analogous to N processes of ionization, where the
momenta of each independent process or channel are defined by the chemical
potential of the respective sources made of N ,N − 1,N − 2, etc. particles.

5.2.3 Model with Two Momenta from Single-Particle States

After the previous sections presented considerations on the mechanism in many-
boson tunneling to open space, the present paragraph is to shed light on the
shape and properties of the wavefunctions and densities of the process. It was
found, that the situation in the exterior is well-described by a discrete peak-
structure in the momentum distribution and the situation in the interior is well-
described by a coherent, Gaussian-like density. Such a situation can be straight-
forwardly modeled by constructing a many-boson wavefunction from the follow-
ing two single-particle states:

φ1 = µ(x) + θ(x− C)eik1x ; φ2 = ν(x) + θ(x− C)eik2x. (5.24)

µ(x), ν(x) are assumed to be localized inside the well such that µ(x) = ν(x) ≈ 0

if x > C holds.
From here on it remains only to derive the two particle RDM with this density
after symmetrizing it. For this lengthy but straight forward calculation as well
as the definition of the coefficients we refer the reader to Appendices D,E and
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display only the result for the diagonal of the two-body RDM, diag(ρ(2)), here:

diag(ρ(2)) = A
[
P̂CNP

C∗
NP

exp
(
−w(x2

1 + x2
2)
)]

× (5.25)

B Q̂(|C2,0|2 + |C0,2|2 + |C1,1|2

+ α cos((k2 − k1)(x2 − x1))

+ β cos

(
(k2 − k1)(x1 + x2)

2

)
cos

(
(k2 − k1)(x1 − x2)

2

)
)

One ends up having three main parts of the diagonal of the reduced two-body
density matrix, a beam pattern which is weighted by α, an egg-carton pattern,
weighted by β and the trapped part of the density which resembles a condensate
wavefunction of a parabolic trap. See Fig. 5.2 for a plot of the structure.

The two-body correlation function can also be calculated within this model,

Figure 5.2 Structures in the Two-Body Density of a Two-Momentum Tunneling
Process.

The left plot shows the two-body density with equal coefficients, the middle
plot shows the beam pattern, and the right one the egg-carton pattern. It is
evident, that the tunneling dynamics which incorporate two momenta rather
than a single momentum must have an interesting structure in their two-body
density and correlations.

it is deferred to Appendix F. This model does not include the decay dynamics
so far, but one could do this by adding a negative complex term −iΓP to the
Hamiltonian operator for the interior space which will result in an exponential
decay with the rate exp(−Γ). Then, to keep the total wavefunction normalized it
would be necessary to include another complex part in the exterior subspace, i.e.
add +iΓ in the exterior. Yet, the above model consideration nicely shows – with
very basic assumptions on the one-particle states – how an intricate bunching
and antibunching [96–98] structure must arise in the tunneling of systems with
more than one momentum.
To conclude this section, it remains to mention that a reformulation of the above
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model using a single-particle basis which consists in functions which are products
of a function in the interior and the plane wave exterior part:

φ1 = µ(x) · eik1x ; φ2 = µ(x) · eik2x. (5.26)

This ansatz is somewhat more realistic, because it turned out that in all the
numerical computations presented in the later Chapters 6 and 7, the natural
orbitals are delocalized and have a shape like the one in Equation (5.26). Ex-
plicitly, the orbitals have very similar Gaussian like structures in the interior part

of space, i.e., µ(x) ∝ e−
x2

2 . The calculation of the full densities ρ(1) and ρ(2) is
a bit more cumbersome and lengthy and is, like the results of it, deferred to the
Appendix G. In essence, its two-body density ρ(2) is the one of the above model
(cf. Eq. (5.24)), but decaying exponentially in space. One important advantage
is, that the model reproduces also the natural occupations, ρ(NO)

1/2 , of the numer-
ical simulations relyably. It is interesting to note here, that it’s in principle also
possible to construct densities and momentum distributions with almost identi-
cal features from coherent product states (see Appendix C). Yet, the fragmented
states in this Chapter and Appendix G are the ones that contribute to the dy-
namics in the system. This is due to the TDVP selecting states that minimize the
action [62] – such states are hence fragmented ones in the case of many-body
tunneling to open space.

63



5.2. Analytical Considerations beyond Gross-Pitaevskii

64



Chapter 6. Many-Boson Tunneling without a Threshold

Chapter 6

Tunneling of a Many-Boson System

to Open Space without a Threshold

The scope of this chapter is to analyze the tunneling initially parabolically trapped
many-boson systems to open space. A scheme of the process is depicted in
Fig. 6.1. In order to really observe a tunneling process the energy of the sys-
tem has to have a value such that the one-body potential V (x, t) has classically

forbidden as well as classically allowed domains. In the numerical example con-
sidered the energies per particle are close to ǫ ≈ 1

2
and the height of the barrier

is ≈ 2.26. This makes the potential well and the asymptotic part (where x → ∞)
classically allowed, because V (x, t > 0) < ǫ holds. Consequently the barrier
region where V (x, t) > ǫ is classically forbidden. Such a situation is the paradig-
matic example for the tunneling effect to occur: due to the probabilistic nature
of quantum mechanics the particles’ probability to be present on the other side
of the barrier is not zero although they do not have sufficient energy to pass over

the barrier. This chapter (re-)considers the study presented in Ref. [51].

The tunneling effect lies at the very heart of quantum mechanics (QM),
as there is no classical analogon to it and there is plenty of realizations of
it in nature: α-decay, fusion and fission in nuclear physics, photoassociation
and photodissociation in biology and chemistry [37, 40–43] and many others
more. The effect has been a matter of discussion since the advent of QM, see
Refs [38, 100, 101] and a theoretical overview in Ref. [39]. The physical anal-
ysis is usually made under the assumption that the correlation between decay
products (i.e., between the remaining and emitted fractions of particles) can be
neglected. However, it has to be stressed first that, at any finite decay time, the
remaining and emitted particles still constitute one total many-body wavefunc-
tion and, therefore, can be correlated. Second, in contrast to the tunneling of an
isolated single particle into open space, which has been amply studied and un-
derstood [39], nearly nothing is known about the tunneling of a many-body sys-
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Figure 6.1 Protocol of the Tunneling Process.
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An initial density ρ(x, t < 0) (blue line) is prepared as the ground state of a
parabolic trap V (x, t < 0) (dashed black line). The trap is transformed to the
open shape V (x, t ≥ 0) (black line), which allows the system to tunnel to open
space. All quantities shown are dimensionless.

tem. To shed light onto this process the initial state of an ultracold atomic gas of
bosons is prepared coherently in a parabolic trapping potential [63] which is sub-
sequently transformed to an open shape allowing for tunneling (see the Fig. 6.1).
In this tunneling system the correlation between the remaining and emitted par-
ticles can be monitored by measuring deviations from the initial coherence of the
wavefunction. This is because the final state is entirely in open space to the right
of the barrier, where the bosons populate many many-body states, related to
Lieb-Liniger states [83,84,99], which are generally not coherent. It is instructive
to ask the following guiding questions for this chapter: what happens in between
these two extremes of complete coherence and complete incoherence? And how
does the correlation (coherence) between the emitted particles and the source
evolve? Finding the answers to these questions will allow for a deeper theo-
retical understanding of many-body tunneling and explains whether the studied
ultracold atomic clouds qualify as candidates for atomic lasers [24, 102–106]
or as a toolbox for the study of ionization or decay processes [37, 40–42]. Am
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instructive way to start investigating is to analyze the many-body dynamics for
N = 2, N = 4, N = 101 weakly repulsive (λ0 = 0.3

N−1
) bosons computed numer-

ically exactly with the MCTDHB. The outline of the remainder of this chapter is
first to investigate the one-body density ρ(x, t), see Eq. (2.1.2), and integrals on
it, P x

not(t), P
k
not(t), see Eq. (2.1.2). Subsequently one finds the characteristic mo-

menta involved in the process by investigating the one-body momentum density
ρ(k, t), see Eq. (2.1.2) and last one can learn on the coherence of the process by
analyzing the natural occupations, see Eq. (2.1.2), and correlation functions, see
Eq. (2.1.2).

6.1 One-body Density and Integrals on it

To get an overall impression of the dynamics a plot of the time-evolution of the
density of the decay by tunneling process is given in Figure 6.2.

With time the source of bosons leaks to open space. During the process it
preserves its shape, but its absolute value decays. The constant velocity of the
wavefront propagating away from the well suggests that the underlying involved
momenta are not time-dependent. Qualitatively the process is identical for the
other particle numbers. To assess the nature of the decay and to study the cor-
relation between the source and emitted bosons with the densities it’s natural to
decompose the one-dimensional space into the internal “IN” and external “OUT”
regions with respect to the top of the barrier in Fig. 6.1. With this decomposition
one is able to compute P x

not(t) which measures the probability to find a particle
in the IN region. Its counterpart in momentum space, P k

not(t), corresponds to
the fraction of the momentum distribution which is associated with a harmonic
oscillator eigenstate. For a plot of these quantities for N = 2, N = 101, see
Fig. 6.3.

A first main observation is that the tunneling of bosonic systems to open space
resembles an exponential decay process – a least squares fit shows slight differ-
ences, though: they can be attributed to the interaction. The close similarity
of the P x

not,ρ(t), characterizing the amount of particles remaining in the internal
region in real space, and P k

not,ρ(t) confirms the validity of the natural decompo-
sition of Hilbert space into in and out, cf. Section 5.2.1. This means that it is of
interest to analyze the local properties of the many-boson wave-function in these
sub-spaces (see also Appendix B). A good point to start from is the quantities
from which the P k

not(t) were extracted: the momentum distributions.
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Figure 6.2 Density of Many-body Tunneling to Open Space for N = 101.∗

 1e-05

 0.0001

 0.001

 0.01

 0.1

-5  0  5

D
en

si
ty

 ρ
(x

,t)

 
 100  400  700  1000

x

t=100
t=200
t=400
t=700

To represent the overall decay dynamics, the density ρ(x, t) is plotted for various
times t on logarithmic scale. The shape of the internal parts in the left inset is al-
most unchanged throughout the time evolution and the velocity of the wavefront

is seemingly constant. All quantities shown are dimensionless.

6.2 Momentum Distributions

The key features of the dynamics of quantum mechanical systems manifest them-
selves very often in characteristic momenta. Therefore, it is worthwhile to com-
pute and compare evolutions of the momentum distributions ρ(k, t) of the in-
teracting bosonic systems. Fig. 6.4 depicts ρ(k, t) for N = 2, 4, 101 bosons. At
t = 0 all the initial real space densities have Gaussian-shaped profiles resting
in the internal region (see upper panel of Fig. 6.1). Therefore, their distribu-
tions in momentum space are also Gaussian-shaped and centered around k = 0.
With time the bosons start to tunnel out of the trap. This manifests itself in the
appearance of a pronounced peak structure on top of the Gaussian-shaped back-
ground, see central upper panel of Fig. 6.4. The peak structure is very narrow –
similar to a laser or an ionization process, the bosons seem to be emitted with a
very well defined momentum. For longer propagation times a larger fraction of
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Figure 6.3 Many-Body Tunneling to Open Space as a Fundamental Decay Pro-
cess.
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To picture how the fraction of atoms remaining in the trap decays with time the
density related nonescape probabilities P x

not,ρ(t) in real and P k
not,ρ(t) in momen-

tum space are depicted, indicated by the respective solid green and red lines. All
quantities shown are dimensionless.

bosons is emitted and more intensity is transferred to the peak structure from the
Gaussian background. Thus, one can relate the growing peak structures in the
momentum distributions to the emitted bosons and the Gaussian background to
the bosons in the source. The value of the estimated momentum from the model
consideration, see Section 5.2.1, agrees excellently with the position of the peak
in the computed exact momentum distributions, see the arrows marked k1 in
Fig. 6.4 i)-iv). This agreement allows us to interpret the peak structures in ρ(k, t)

as the momenta of the emitted bosons. As a striking feature, also other peaks
with smaller k appear in these spectra at later tunneling times [see Fig. 6.4i),
ii) and iv)]. These correspond to the momenta associated with the next chem-
ical potentials µ2, etc.. The momentum spectrum for N = 101 bosons shows a
similar behavior – the multi-peak structures gradually develop with time starting
from a single-peak to two-peaks and so on, see Fig. 6.4 iv). The close proxim-
ity of the chemical potentials {µi} for a big particle number makes the peaks
corresponding to the trapped subsystems of different particle numbers overlap.
Still, the emission momenta are alway enclosed by the first and the last chemical
potentials, µ1 and µN . However, from this figure one can see that the posi-
tions of the peaks’ maxima, and with them the momenta of the emitted bosons
change slightly with time. On the one hand one can see that the considered
tunneling bosonic systems can not be utilized as an atomic laser: the intially
coherent bosonic source emits particles with different, weakly time-dependent
momenta. In optics a source behaving like the bosons momentum spectrums
would be called polychromatic. On the other hand one can associate the peaks
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with different channels of an ionization process and their time-dependency with
the channels’ coupling. Thus, one can conclude that it is possible to model and
investigate ionization processes with tunneling ultracold bosonic systems. To in-
vestigate the coherence of the tunneling process itself a comparison to the TDGP
approximation is instructive. The above analysis of the momentum spectra re-
lied on the exact numerical solutions of the TDSE for N = 2, 4, 101 bosons. In
the context of ultracold atoms the Gross-Pitaevskii (GP) theory is a popular and
widely used mean-field approximation describing systems under the assumption
that they stay fully coherent for all times, cf. Section 5.1. The GP approximation
assumes that the ultracold atomic cloud coherently emits the bosons to open
space and keeps the source and emitted bosons coherent all the time. To learn
about the coherence properties of the ongoing dynamics it is thus instructive to
compare exact many-body solutions of the TDSE with the idealized GP results,
see Fig. 6.4iii). The strengths of the inter-boson repulsion have deliberately been
chosen such that the GP gives identical dynamics for all N studied. It is clearly
seen that for short initial propagation times the dynamics is indeed coherent.
The respective momentum spectra obtained at the many-body and GP levels are
very similar, see Fig. 6.4i)-iv) for ρ(k, t1 = 100). At longer propagation times
(t > t1), however, the spectra become considerably different. This means that
with time, the process of emission of bosons becomes less coherent. To assess
the mechanism of this loss of coherence, it is giving to analyze the natural occu-
pations and the correlation functions of the process.

6.3 Coherence from Natural Occupations and Cor-

relation Functions

To quantify the coherence and correlations between the source and emitted
bosons the momentum correlation functions |g(1)(k′, k|t)|2 are computed and
plotted in the left panel of Fig. 6.5 for N = 101 (for N = 2, 4 they look almost
the same).

It has to be stressed here that the proper correlation properties cannot be
accounted for by approximate methods. For example the GP solution of the
problem gives |g(1)|2 = 1, i.e., full coherence for all times. For the exact so-
lution one also obtains that at t = 0 the system is fully coherent, and thus
|g(1)(k′|k; t = 0)|2 = 1. Hence, the top left panel of Fig. 6.5 is also a plot for the GP
time-evolution. However, during the tunneling process the many-body evolution
of the system becomes incoherent, i.e., |g(1)|2 → 0. The coherence is lost only

in the momentum-space domain where the momentum distributions are peaked,
the k-region associated with the emitted bosons (see left panel of Fig. 6.5). In the
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remainder of k-space the wavefunction stays coherent for all times. The conclu-
sion is that the trapped bosons within the source remain coherent. The emitted
bosons become incoherent with their source and among each other. Therefore,
the coherence between the source and the emitted bosons is lost. A complemen-
tary argumentation with the normalized real-space correlation functions is also
possible. To characterize the coherence of the tunneling many-boson system in
real space one needs to compute the normalized real space first order correlation
function g(1)(x′

1|x1; t) at various times t. It is depicted for the system of N = 101

boson in Fig. 6.6.
From this figure one can see that initially the system is fully coherent, namely

|g(1)(x′
1|x1; t = 0)|2 = 1. For t > 0 |g(1)(x′

1|x1; t)|2 < 1 only in the “OUT” region,
indicating that only the emitted bosons quickly lose their coherence. In contrast,
the source bosons living in the interior around x1 = x′

1 = 0 remain coherent
for all times. This corroborates the findings from the first order normalized
momentum correlation function g(1)(k′

1|k1; t) analyzed before: the bosons are
ejected incoherently from a source, which preserves its initial coherence already
for the weak inter-particle interactions λ = 0.3.

6.4 Tunneling without a Threshold and Stronger In-

teractions

The previous section focused on the many-body tunneling process of an initially-
coherent weakly interacting bosonic cloud. In this section, the the generality of
the found mechanism of many-body tunneling is shown by first analyzing what
happens in the case of seven-times stronger interactions, λ = 2.1, when the initial
state is still mostly condensed, but exhibits a larger depletion. The nonescape
probabilities P x/k

not (t) for N = 2, 101 in are shown in Fig. 6.7.
The decay is faster than in the case of the weak λ = 0.3 interactions. The

real space quantity P x
not is also very close to the momentum space quantity P k

not.
To investigate the mechanism of the decay, the momentum distributions for N =

2, 4, 101 bosons and the respective TDGP calculation are plotted in Fig. 6.8 in the
same way as in Fig. 6.4 of the previous section on weak interactions.

The model described in Section 5.2.1 predicts well the characteristic mo-
menta of the dynamics also in the case of seven-times stronger interactions, see
the black arrows in Fig. 6.8. Of course, since the interaction is stronger, the posi-
tions of the peaks in the momentum distributions shift to higher values, compare
Fig. 6.8 and Fig. 6.4. Even, when one turns to the case of two-hundred-times
stronger interactions, where the initial state is fermionized, the model predicts
well the occuring momenta in the momentum distributions as shown in Fig. 6.9
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and the black arrows therein.
To conclude, this shows the generality of the found mechanism of many-body

tunneling to open space as illustrated in Fig. 6.1 of the previous section on the
weak interactions λ = 0.3.

6.5 Direct Detection of the Momentum Spectra

It remains to line out the possible straightforward experimental verification of
the emerged physical picture. In typical experiments the bosons are ultracold
many-electron atoms in a very-well defined electronic state. According to the
conjectures put forward above, the bosons will tunnel to open space with definite
kinetic energy. To detect the kinetic energy of the emitted bosons one can utilize
the techniques and principles of mass-spectrometry as schematically depicted in
Fig. 6.10.

One can place an ionization chamber at some distance from the trapping
potential to ionize the propagating bosonic atoms suddenly. The respective ex-
perimental ionization techniques are presently available, see e.g. Ref. [107] and
references therein. The now charged particle will, by application of a static elec-
tric field, experience a corresponding driving force and change its trajectory. The
trajectory of the ionized atom or, alternatively, the trajectory of the ionized elec-
tron are completely described by the respective driving force, the electronic state
of the atom and its initial kinetic energy. By using a detector capable to detect
the charged atom or a photoelectron multiplier for the electrons one can moni-
tor the deflection of the ionized particle from the initial direction of propagation.
The kinetic energy and, therefore, the momentum of the emitted boson can be
calculated. By this one can detect in situ the momentum spectra ρ(k, t) corre-
sponding to different tunneling times and study the tunneling to open space as
a function of time.

For the few-particle case it is especially interesting not only to obtain the mo-
mentum spectra, but also to monitor the time-ordering in which the peaks ap-
pear, i.e., to monitor the time evolution of the momentum peak densities ρ(k, t).
In such an experiment one can see whether the signals corresponding to the
different ki, i = 1, ..., N , will be detected sequentially, starting from the largest
momentum, or they appear to some degree arbitrarily. The latter case is a clear
indication that the tunneling is a combination of several single particle tunnel-
ing processes happening simultaneously, as predicted in the previous section.
Additionally, this measurement would be among the first direct observations of
the dynamics of the coherence and normalized correlations in ultracold bosonic
systems.

To summarize, the deterministic preparation of few particle ultracold sys-
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tems is now possible, see Ref. [108]. Mass-spectrometry is one of the most well-
studied techniques and working tools available and even more sophisticated de-
tection schemes have been developed on atom chips (see Ref. [109]). The com-
bination of these facilities makes the detailed experimental time-resolved study
of the tunneling mechanism feasible at present time.

6.6 Connection of the Numerical Experiment to

prior Model Considerations

Let us first compute the momenta available in the system of N = 2 bosons with
interparticle interaction strength λ0 = 0.3, following Ref. [46]. The difference
between the total energies of the trapped system made of N = 2 and N = 1

bosons provides k1 = 1.106. The second momentum associated with the emition
of the last boson from the parabolic trap gives k2 = 1.000. A similar analysis
done for the system of N = 4 bosons with the interparticle interaction strength
λ0 = 0.1 [λ0(N−1) = 0.3] gives k1 = 1.106, k2 = 1.075, k3 = 1.038 and k4 = 1.000

for the first, second, third and fourth momentum respectively. To relate the
model and the full many-body results we draw the momenta estimated from
the respective chemical potentials in Figs. 6.4,6.8,6.9 by vertical arrows. The
agreement between the momenta obtained from the model and the respective
ones from the dynamics is very good, see the arrows and the peaks in the orange
framed plots in Figs. 3i) and ii). From this figure it is clearly seen that the later in
time we look at the momentum distributions ρ(k, t), the closer the peaks’ maxima
locate to the estimated results. Moreover, our model explains why for N = 101

the peaks are washed out. The chemical potentials of neighboring systems made
of a big particle number (101 and 100) become very close and, as a result, the
corresponding peaks start to overlap and become blurred. Nevertheless, they
are always enclosed by the first and last chemical potentials contributing, see
the labels k1 and kN in Fig. 3iv).

The good agreement between our model and full numerical experiments val-
idates the applicability of the emerged physical picture to the tunneling to open
space. We continue by excluding the possibility that the observed peaks in the
momentum spectra can be associated with excitations inside the initial parabolic
trap potential. This can be done straightforwardly by calculating the chemical
potentials associated with the configurations where one or several bosons re-
side in the second, third, etc. excited orbitals of the trapped system. It is easy
to demonstrate that the bosons emitted from these excited orbitals would have
higher kinetic energies resulting in the spectral features with higher momenta.
Since the computed spectra depicted in Figs. 6.4,6.8,6.9 do not reveal such spec-
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tral features we conclude that the excitations inside the initial parabolic trap
potential do not contribute to the tunneling process in a visible manner.

The above analysis suggests that the overall many-body tunneling to open
space process is assembled by the elementary mean-field-like tunneling processes
analogous to the ionization of the systems made of different particle numbers
which are happening simultaneously. We also are in the position to deduce now
that every elementary contributing process is of a single-particle type. Indeed,
if it were a two-particle process, the kinetic energy of the emitted bosons would
have been Ekin

2b =
(k2b

1
)2+(k2b

2
)2

2·2m . For large N one can assume that the chemical
potentials of the first two processes are almost equal, i.e., µ2b

1 ≈ µ2b
2 ≈ 2µ1. The

momentum associated with a two-particle tunneling process would be k2b
tot =√

4mµ1 =
√
2k1 – which is far out of the domain where the peaks occur in the

exact solutions.
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Figure 6.4 The Peak Structures in the Momentum Distributions Characterize the
Physics of Many-Body Tunneling to Open Space.∗
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The total momentum distributions ρ(k, t) for N = 101 (top center) and their
peak structures for N = 2, N = 4, N = 101, and the respective Gross-Pitaevskii
solutions, at times t1 < t2 < t3 < t4. The broad Gaussian-shaped backgrounds
correspond to the bosons remaining in the trap, the sharp peaks with positive
momenta can be associated with the emitted bosons. For N = 2 one finds two
peaks in panel i), for N = 4 one finds three peaks and an emerging fourth
peak at longer times, in panel ii). In panel iv) one finds three washed out peaks
for N = 101. The corresponding GP dynamics reveals only a single peak for all
times in iii). The arrows in the plots mark the momenta obtained from the model
consideration, cf. Section 5.2.1. All quantities shown are dimensionless.
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Figure 6.5 Monitoring the Coherence of the System.
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Left: The first order correlation functions in momentum space |g(1)(k′|k; t)|2 for
N = 101 are plotted at t = 0, 400, 600, 700. At t = 0 the system is totally coherent,
i.e., |g(1)|2 = 1. At times t > 0, the system remains coherent everywhere in k-
space apart from the region around k = 1, where the peaks in the momentum
distributions appear. The loss of coherence, |g(1)|2 ≈ 0 only in these regions
allows one to conclude that the source (trapped) bosons remain coherent at
all times while the emitted ones are incoherent. Right: The time evolution
of the first few natural occupation numbers ρNO

i (t) for N = 2, N = 4, and
N = 101 bosons. The coherence in the systems is gradually lost with time. The
systems fragment because more and more natural orbitals become populated.
All quantities shown are dimensionless.
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Figure 6.6 The Real-Space Normalized Correlation Function of the Tunneling to
Open Space Process.

|g(1)(x′
1|x1; t)|2 is used to measure the spatial coherence in the decaying system

of N=101 bosons at various tunneling times. White corresponds to |g(1)|2 = 1

and black to |g(1)|2 = 0 The red lines in the top left part separate the “IN” and
“OUT” regions. Here white corresponds to full coherence and black to complete
incoherence. In the “OUT” region the spatial coherence is lost with time, i.e.,
|g(1)|2 ≈ 0 on the off-diagonal |g(1)(x′

1 6= x1|x1; t)|2. The coherence of the source
bosons is conserved, because in the “IN” part |g(1)|2 = 1 for all times. See text for
discussion.
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Figure 6.7 Nonescape Probability for Sevenfold Stronger Interactions.

To confirm that the fraction of atoms remaining in the trap decays exponen-
tially with time, the density-related nonescape probabilities P x

not,ρ(t) in real and
P k
not,ρ(t) in momentum space are depicted, indicated by the respective solid green

symbols and red lines. Even for stronger interactions the many-body tunneling
to open space is a close to exponential decay process.
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Figure 6.8 Momentum Distributions for Sevenfold Stronger Interaction.∗

The total momentum distributions ρ(k, t) for N = 101 (top center) and their
peak structures for N = 2, N = 4, N = 101, and the respective Gross-Pitaevskii
solutions. The arrows in the plots mark the momenta obtained from the model
consideration. Even for stronger interactions the peak structures in the momen-
tum distributions characterize the physics of many-body tunneling to open space.
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Figure 6.9 The Peak Structures in the Momentum Distributions Characterize the
Physics of Strongly-Interacting Bosons Tunneling to Open Space.∗

The total momentum distributions’ peak structures for the N = 2 and N = 4

bosons with λ = 60 (the color code is as in Fig. 6.8). The arrows in the plots
mark the momenta obtained from the model consideration.

Figure 6.10 Proposed Experimental Realization of the Momentum Spectroscopy
of the Many-Boson System Tunneling to Open Space.

At some propagation distance from the experiment (left panel) the bosons are
ionized by, e.g., a laser beam (center left). Subsequently, the ions/electrons are
deflected by a static electric field and counted by a detector (center right). The
momentum distribution can be obtained as histogram from different realizations
of the few- or many-boson tunneling process by detection of the deflected parti-
cles (right).
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Chapter 7

Tunneling of a Many-Boson System

to Open Space with a Threshold

This chapter is dedicated to investigate how one to control the tunneling process
of the many-body system by introducing a threshold in the one-body potential
of the Hamiltonian of the system. In the present case this is done by setting
the potential to a constant value in the asymptotic region: the threshold T . The
protocol for the process is unaltered: the ground state of an interacting system
in a parabolic trap is prepared, then the potential is abruptly transformed to an
open shape and finally the dynamics are analyzed from a many-body perspec-
tive and for different interaction strengths λ0. To describe and assess the impact
of the threshold on the occuring dynamics, it is appropriate to find a suitable
smooth shape for the potential and then to analyze the energetics in this new
potential. This can be achieved starting out from the conjectures presented in
Chapter 6 and the model in Section 5.2.1. The viewpoint of available energies in
the problem is subsequently used to control the final state as well as the corre-
lation dynamics of the process with the threshold T and the interaction strength
λ0. Illustrative numerical examples are given and discussed. In the wider context
of atom lasers and ionization processes, the modification of the threshold T and
the interaction strength λ0 result in a modification of the ionization threshold,
the characteristic velocity of the emission and the distance of the peaks in the
momentum distribution. Hence, manipulating the threshold and the interaction,
one is in the position to configure the dynamics of the ultracold atoms such that
these dynamics simulate the desired ionization or atom laser process.
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7.1 Setup

The setup of the system is very similar to the setup of the tunneling with zero
threshold. This aim of this section is to give an outline of the changes with
respect to the potential used for the tunneling dynamics with zero threshold.

7.1.1 The Potentials

In order to be flexible with the threshold T it is practical to use a smooth poly-
nomial continuation of the harmonic trap Vh(x) =

1
2
x2 from xc1 = 2 to xc2 = 4.

There are four constraints to the polynomial continuation, namely: the polyno-
mial and its first derivative have to be equal to the potential and its derivative
at both connection points xc1 and xc2. Therefore, a polynomial of at least third
order with four coefficients, A,B,C,D, to satisfy the four constraints is required:

P (x) = Ax3 +Bx2 + Cx+D (7.1)

With the constraints

P (xc1) = Ax3
c1 +Bx2

c1 + Cxc1 +D = Vh(xc1) = 2 (7.2)
d

dx
P (x) |x=xc1= 3Ax2

c1 + 2Bxc1 + C =
d

dx
Vh(x) |x=xc1= 2 (7.3)

for the connection at xc1 to the harmonic trapping potential Vh(x) and

P (xc2) = Ax3
c2 +Bx2

c2 + Cxc2 +D = T (7.4)
d

dx
P (x) |x=xc2= 3Ax2

c2 + 2Bxc2 + C =
d

dx
T = 0 (7.5)

for the connection to the constant threshold T at xc2. From these four equations
the coefficients A(T ), B(T ), C(T ), D(T ) are obtained. Hence, manipulate the
threshold T arbitrarily while maintaining a smooth potential. The coefficients
are collected in Table 7.1.
The overall potential then reads:

V (x) = Θ(xc1 − x) · 1
2
x2 +Θ(x− xc1) ·Θ(xc2 − x) · P (x) + Θ(x− xc2) · T (7.6)

where Θ(·) is the Heaviside step function. Plots of the potential with T =

0.1, ..., 2.0 are depicted in Figure 7.1.
By using a polynomial continuation to the threshold, the position of the maxi-

mum of the potential (xm) now depends on the threshold T as follows:

xm(T ) = 2 +
1

3− 3
4
T
. (7.7)
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Figure 7.1 Protocol for the Tunneling Dynamics with Non-Zero Threshold.
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The initial density (blue line) is prepared as the ground state of the parabolic
trap (black dashed V (x, t = 0)). Subsequently, the potential is transformed to its
open form with a threshold (various solid colored lines, V (x, t > 0)). This allows
for a tunneling process to open space – inhibited by a threshold – to occur. The
energy of a single, parabolically trapped particle, E(N = 1), is indicated by the
horizontal black dashed line. The initial potential, V (x, t = 0), is the same as in
the tunneling dynamics with zero threshold. Between xc1 and xc2 (indicated in
magenta on the x-axis) the potential is the polynomial P (x) of Eq. (7.1) with the
coefficients as given in Table 7.1.

Some quantities, such as the nonescape probability for every propagation with a
different threshold

Pnot(T ) =

∫ xm(T )

−∞
ρ(x, t)dx (7.8)

because it should measure the remaining density up to the maximum of the
barrier xm(T ) defined in Equation (7.7).
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Energetics

Coefficient Dependency on T Value at T=0.5
A A(T ) = −1

4
T + 1 0.875

B B(T ) = 9
4
T − 19

2
8.375

C C(T ) = −6T + 28 25.0

D D(T ) = 5T − 24 21.5

Table 7.1: Parameters of the Potential with a Threshold.

7.2 Threshold Potentials and their Dynamics from

the Point of View of Energetics

Starting from the model consideration in Section 5.2.1 and its successful descrip-
tion of the tunneling dynamics of systems with zero threshold in Chapter 6, it
is straightforward to adapt the model to the present potentials with a threshold.
One can conveniently do that by going through the steps of the model consid-
eration in Section 5.2.1 again, carefully taking into account the impact of the
threshold onto the energetics – especially in the external part of the potential.

As a first step, it is natural to consider the system as split into an “IN” part,
to the left of the maximum of the barrier at xm, and an “OUT” part to the right
of the maximum of the barrier at xm. For a depiction, see Fig. 7.2. Consider the
situation, when a single boson has escaped from the “IN” to the “OUT” region.
According to the previous consideration in Section 5.2.1, the available energy of
this boson must come from the energy difference of the trapped systems with N

and with N − 1 particles, EN − EN−1 = µ1 – the chemical potential of the N -
particle system. With this energy available, the ejected boson has to overcome
the threshold T – hence, it remains with an energy µ1 − T in the “OUT” part of
the potential to the right of the barrier. As the potential in the “OUT” part is flat
the ejected boson will convert its available energy to kinetic energy. Because the
density can be assumed to be small, the effects of the interaction on the wave-
function can be neglected. Analogous to the model in Section 5.2.1, the other
particles, hence, are ejected taking their available energy from the chemical po-
tentials µi. Furthermore, one can derive momenta ki from the related kinetic
energies and the threshold:

Ekin,T ;i = µi − T =
k2
i

2m
⇒ kT

i =
√

2m(Ekin,i) =
√

2m(µi − T ). (7.9)

This assumes that the interaction in the exterior only forces the bosons to occupy
different single-particle states and ignores the effect of the interaction on the
shape of these states in the “OUT” part of space. It is also evident, that in the
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Figure 7.2 Sequential Mean-Field Scheme to Model the Tunneling Processes with
a Threshold T .
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The bosons are tunneling from the “IN” to the “OUT” subspace (indicated by
the red line). If the threshold is large enough, some of the states might be-
come bound (see e.g. the N = 1 state indicated by the lowest black line
in the above). The chemical potential µi is used to overcome the threshold
T and the remaining energy is transformed to a kinetic energy Ekin,i if the
state is not bound. The momenta corresponding to the chemical potentials
ki =

√
2m(Ekin,i) =

√
2m(µi − T ); i = N,N − 1, ..., 1 appear in the momen-

tum distribution, see the arrows in Fig. 7.5 and lines in Fig. 7.6. All quantities
shown are dimensionless.

case of the absence of interaction, all chemical potentials are equal, i.e., µ1 =

µ2 = ... = µN .

A particularly interesting feature of the class of potentials with non-zero
asymptotic value is that they can have bound states. If one raises the threshold
T beyond the chemical potential µl of a certain parabolically trapped L-boson
system then the boson to be ejected does not have enough energy to overcome
T and stays trapped – hence, the system is in a bound state (cf. Fig. 7.2 and
Eq. (7.9)). One can thus control the number of bound particles with the inter-
action λ0 and the threshold T . By manipulating the interaction λ0 the energies
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and particularly the chemical potentials can be controlled, and by adjusting the
threshold T , the number of bound particles can be regulated. In the case of
a vanishing interaction, the threshold T controls whether the whole system is
bound or not. It is convenient to adopt the |IN,OUT 〉 notation of the model in
Section 5.2.1. The energy for the “IN” subsystem, EIN , is given by the energy of
NIN interacting bosons in a parabolic potential, EHO(NIN). The minimal energy
for the “OUT” system, EOUT , is given by NOUT bosons at rest, i.e., with momen-
tum kj = 0, at threshold potential energy, hence, EOUT = NOUT · T . It follows
for the total energy ETOT :

ETOT (NIN , NOUT , T, λ0) = EHO(NIN) +NOUT · T. (7.10)

To summarize, one can adjust the energies of the initial states, EIN by tuning the
interaction and the energies of the final states, EOUT , by tuning the threshold
T . The following two subsections explore these possibilities for the tunneling
bosonic systems with a threshold constituted by N = 2,N = 3, and N = 101

particles, respectively.

7.3 Controlling the Dynamics of Two Bosons by the

Threshold

As a first step to explore the dynamics in the new potential with a threshold and
the physics of the above model it is instructive to fix the interaction λ0 and vary
the potentials’ threshold. Fig. 7.3 shows the energies of the possible final states
with constant interaction and variable threshold, i.e., ETOT (NIN , NOUT , T, λ0 =

1.0)|NIN+NOUT=2. The respective lowest line in Fig. 7.3 shows the energetically
favorable final state for the dynamics. Hence, the crossing points of the lines
define critical thresholds at which the energetically favorable final state of the
dynamics is changing. It would expected that for T ≤ 0.5 both of the particles
decay, and for 0.5 < T . 0.8 one particle decays and the other stays bound.
For T & 0.8 the whole system is bound and no particle decays. This behavior
is because the final states available are |0, 2〉, |1, 1〉 and |2, 0〉, respectively. The
nonescape probability P x

not(t) should tend to 0 for the |0, 2〉 final state, to 0.5 for
the |1, 1〉 final state and stay at 1 for the bound |2, 0〉 final state. To verify this
behavior Fig. 7.4 shows a plot of the nonescape probabilities for the thresholds
T = 0.1, 0.6 and 0.9.

One can see nicely that the expected behavior of the nonescape probability
is recovered and that the prior analysis of the energetics of the problem is appli-
cable. Furthermore, the above analysis demonstrates, how the threshold can be
used to control the final state of the dynamics by modifying EOUT = NOUT · T .
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Figure 7.3 Scheme for Controlling the Two-Boson Dynamics with the Threshold
T .
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This plot shows the energies of the possible final states, |2, 0〉, |1, 1〉 and |0, 2〉 of
two bosons at fixed interaction λ0 = 1.0 and variable threshold T . At T = 0.5

a one-particle bound state emerges in the trap and at T ≈ 0.8 the two-boson
system becomes bound. The crossing points determine the (un)availability of
final states. See text for further discussion.

By tuning T · NOUT beyond the chemical potential of an NIN -body system, an
NIN -body bound state is created. This allows for a flexible control of the count-
ing statistics in the “IN”-subspace and the “OUT”-subspace. It remains to validate
the predictions of the energetics model presented in Fig. 7.2 on the momenta of
the ejected particles, see Eq. (7.9). For this validation it is good to inspect a plot
of the peak structure in the momentum distribution of the tunneling processes
occuring at equal times and varying different thresholds. See Fig. 7.5 for plots
of ρ(k, t, T ) for t = 600 and T = 0.1 to T = 0.6.

The changes in the momentum distributions by the threshold are intuitive.
The peak structure in the momentum distribution corresponds to the ejected
bosons. If the threshold is increased, two effects upon the peaks are seen. First,
by a larger threshold the peak is shifted towards 0, as the escaping bosons have to
invest a part of their available energy to overcome the threshold (cf. Eq. (7.9)).
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Figure 7.4 Nonescape Probability for Varying Thresholds for N = 2 and λ0 = 1.0.
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The nonescape probabilities P x
not(t, T ) for different thresholds T = 0.1, 0.6, 0.9

are plotted as red, green and blue line, respectively. For T = 0.1 the final state
|0, 2〉, for T = 0.6 the final state |1, 1〉 is favorable. For T & 0.8, the two-boson
system is bound, i.e., the only final state available is a bound state for T = 0.9.
The thick horizontal dashed line marks P x

not = 0.5, the nonescape probability of
the final state |1, 1〉. See text for further discussion.

Second, the higher the threshold, the smaller is the intensity of the kT
1 peak, i.e.

ρmax(k
T
1 , t = 600). This means that the increase of the threshold decreases the

rate with which the first boson is escaping.
As in the previous case of the tunneling to open space with 0 threshold, the

agreement of the peaks’ positions in k-space with the model’s prediction is very
good (see the arrows in Fig. 7.5). To further determine the validity of the model
especially also for the second peak at kT

2 , it is instructive to graph the change of
the peak positions with varying threshold (see Fig. 7.6).

From the good agreement of the model predictions to the peak of the ex-
act solutions peak in Fig. 7.6, it can be deduced that the tunneling process of
the many-boson system can indeed be pictured as an interference of different
single-boson tunneling processes. These single-boson processes are happening
simultaneously. Their momenta are determined by the chemical potentials of sys-
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Figure 7.5 Effects of Various Thresholds in the Momentum Distributions’ Peak
Structures.∗
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This plot depicts ρ(k, t = 600) for the tunneling processes in the potentials with
thresholds T = 0.0, 0.1, ..., 0.6. The arrows at the bottom of the plot indicate the
momenta kT

1 obtained from the model consideration. The momenta are shifted
towards 0 by an increasing threshold T . The intensity, i.e. ρ(kT

1 , t = 600), of the
peaks is diminished by an increasing threshold. See text for further discussion.

tems with different particle numbers. The momenta are shifted by the threshold.
When the threshold is above the chemical potential of a certain process a bound
state emerges and the momentum of this process becomes zero (see k2, i.e., green
line in Fig. 7.6 at T ≥ 0.5). The emergence of a bound state in the system closes
at least one of the final states. In the present case of N = 2, λ0 = 1 the final state
|NIN , NOUT 〉 = |0, 2〉 becomes energetically unfavorable for T ≥ 0.5 and conse-
quently the counting statistics of the final state are altered to |NIN , NOUT = |1, 1〉
(see Fig. 7.3) and the nonescape probability P x

not(t) of the decay converges to
NIN = 1 from above (see Fig. 7.4).
Several different quantities can be controlled in the many-body tunneling dy-
namics to open space by modification of the threshold. First, the counting statis-
tics can be controlled with the threshold by creating bound states. Second, this
implies a control on the momentum spectra of the emitted bosons. Peaks can be
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Figure 7.6 Comparison of N = 2 Peak Positions to Model Predictions.
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k2 in the exact momentum distributions. The blue and black dashed lines show
the model predictions kT

1 and kT
2 from Equation (7.9). For the exact solutions

circles represent actual data, the lines are drawn for guidance. See text for
further discussion.

switched off (on) by making the corresponding single-boson process energetically
unaccessible (accessible).

7.3.1 Effect of the Threshold on the Coherence and Correla-

tion Dynamics

In Section 6 on the tunneling process of bosonic systems to open space with-
out a threshold, the discussed dynamics of correlation and coherence were of
key importance. The ejected bosons loose the coherence both with the source
and among each other. As processes with a threshold are explained by a similar
model, one would expect the correlation or coherence properties of the present
process with a threshold to be similar to those properties of the process without
a threshold. To prove this behavior, this section discusses the quantities describ-
ing the dynamics of coherence: the occupation numbers ρ

(NO)
i (t) of the single-

90



Chapter 7. Many-Boson Tunneling with a Threshold

particle reduced density matrix and the one-particle and two-particle normalized
correlation functions g(1) and g(2).

Time-Evolution of the Occupation Numbers:

To find the effect of a change in the potentials threshold on the time-evolution of
the occupation numbers, it is a good start to plot them for N = 2, λ0 = 1.0 and
thresholds T = 0.0, 0.1, 0.2, ..., 0.6 in Fig. 7.7.

Figure 7.7 Fragmentation is Lowered by Threshold.
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Shown is the time evolution of the first two occupations, ρ(NO)
1 (t), ρ

(NO)
2 (t) for

N = 2 bosons interacting with λ0 = 1.0 for different thresholds T as various
colored solid lines. The occurrence of fragmentation and the initial depletion
are delayed by the increase of the threshold T . See text for further discussion.

The behavior of the occupation numbers upon increasing thresholds is as
follows: as the process is slowed down by the threshold, the occurrence of frag-
mentation is delayed. Furthermore, the initial depletion of the system is delayed,
i.e., ρ(NO)

1 ≈ 1 holds for a longer time, when T is bigger. It is very interesting to
note that the development of fragmentation persists also in the cases of T ≥ 0.5,
where a one-boson bound state emerges and the counting statistics of the fi-
nal state are changing from |0, 2〉 to |1, 1〉. This is somewhat counterintuitive,
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because one would naively argue that the final state |1, 1〉 could be described
with a single permanent (see Eq. (2.8)). Yet, the chosen |NIN , NOUT 〉 notation
refers to the counting statistics and not to permanents or eigenfunctions of a
many-body Hamiltonian. Hence, fragmentation is occuring anyways because
one needs possibly many permanents to represent the final |NIN = 1, NOUT = 1〉
state.

Effects of Threshold on the Coherence and Correlation Dynamics:

To explore, whether there is an effect of the threshold on the correlation dy-
namics during the fragmentation in the tunneling to open space, the normalized
single-particle correlation function g(1) has to be inspected. See Fig. 7.8 for a
plot of g(1) in momentum space.

In the correlation functions in Fig. 7.8 the single-particle processes, from
which the many-boson tunneling process is built up, are seen as lines of incoher-
ence. The positions of these lines coincide with the momenta k1, k2 predicted by
the above model considerations. During the time-evolution, the positions of the
lines and hence the structure of g(1) does not change and it is therefore sufficient
to depict g(1) at a single point in time. With the increase of the threshold the sys-
tem’s final state is changed from |0, 2〉 to |1, 1〉, i.e., only one of the two particles
is decaying for T ≥ 0.5. This change manifests itself in the correlation functions
by the disappearance of the line at k2 corresponding to the now energetically
forbidden process (cf. e.g. bottom left and bottom right part of Fig. 7.8). By
the increase of the threshold the loss of coherence around the momentum k2 is
gradually decreasing until it becomes fully coherent for the T = 0.6 case, even-
tually. In this manner, peak after peak, corresponding to the model processes, is
becoming fully coherent, as soon as the corresponding final state is energetically
unfavorable. It is interesting that the coherence of the system is still lost in the
cases where only a single particle is ejected (statistically). Hence, the two-body
correlations in the tunneling process shoul be consedered. The two-body cor-
relations should show changes of the many-boson process, when the system is
switched from two-boson to one-boson decay. In the spirit of Hanbury Brown
and Twiss, Refs [96–98], the situation where g(2) > 1 is referred to as bunching
and g(2) < 1 is referred to as anti-bunching. For a plot of g(2) in momentum space
for t = 800, see Fig. 7.9.

The structure of the diagonal of the two-particle normalized momentum cor-
relation function, g(2)(k1, k2) is intricate: it has a line-structure similar to g(1) in
Fig. 7.8. Yet, in the case of g(2) coherence can be lost in two ways – through
bunching, i.e. g(2) > 1, or anti-bunching, i.e. g(2) < 1. In the case of bunch-
ing, the two momenta are likely to occur together whereas in the case of anti-
bunching they are not. From the general structure of Fig. 7.9 it can be observed
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Figure 7.8 Coherence in Tunneling to Open Space with a Threshold.

Shown is the absolute value of the single-particle normalized correlation func-
tion, |g(1)(k′, k; t)|2 for t = 600 for various thresholds T . White corresponds to
full first-order coherence, i.e., |g(1)|2 = 1 and black to full first-order incoherence,
i.e., |g(1)|2 = 1. The ejected particles loose the coherence with the source. The
change of the final state manifests in the absence of a second line where coher-
ence is lost (cf. bottom right plot for T = 0.6). See text for further discussion.

that the resting part of the cloud, i.e., where k1 = k2 ≈ 0, is initially and through-
out the tunneling process a slightly anti-bunched, almost second order coherent
entity, because g(2) . 1 holds for k1 = k2 ≈ 0 at all different thresholds T . The
lines are located at kT

1 and kT
2 where the peaks in the momentum distribution
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Figure 7.9 Bunching and Anti-Bunching in Tunneling to Open Space with a
Threshold.∗

Shown is the value of the diagonal of the two-particle normalized correlation
function, g(2)(k1, k2; t) for t = 600 for various thresholds T . The cases of T = 0.0

and T = 0.2 show slight anti-bunching for k-space region with the first peak
in the momentum distributions and anti-bunching for the region of the second
peak. Increasing the threshold gradually switches off the second peak and leaves
behind a anti-bunched single line. Throughout the time-evolution (not shown)
the peaks on the diagonal at k1 = k2 = kT

1 and k1 = k2 = kT
2 attain maximal

bunching which shifts to peaks at k1 = kT
1 ; k2 = kT

2 and k1 = kT
2 ; k2 = kT

1 later on.
See text for further discussion.

are. The first line at the bigger kT
1 shows bunching whereas the second line at
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the smaller kT
2 shows anti-bunching. This means that it is likely to find one bo-

son at rest and one with kT
1 , while it is rather likely that the second boson also

propagates when one finds the first one at kT
2 . The change in the final state of

the tunneling process is again visible by the disappearance of the line around kT
2

(cf. bottom right part of Fig. 7.9). The diagonal point at kT
1 = k1 = k2 is strictly

anti-bunched in this case. The line structure is strictly bunched. This behavior
is expected because only one boson can leave and, hence, it is becoming more
and more likely to have a boson at rest and another one propagating with kT

1 . In
those cases where both bosons are decaying, the degree of sequentiality can be
assessed with g(2): when one analyzes the line around kT

2 in the plots of g(2) for
T = 0.0, 0.2 and 0.4 bunching occurs only at the intersections with the other lines
and this means that it is very likely that one boson has already left the trap and
propagates with momentum kT

1 when the second one follows with momentum
kT
2 .

In the cases of two-particle decay, the intensities of the peaks at the intersec-
tion points of the lines are time-dependent. Initially, the peak at k1 = k2 = kT

1

is dominant, followed by bunching also in the k1 = k2 = kT
2 and off-diagonal

k1 = kT
1 ; k2 = kT

2 , and k1 = kT
2 ; k2 = kT

1 regions. Finally, the off-diagonal peaks
will become dominant, owing to the fact that the final state of the dynamics
contains two bosons, each propagating with a specific momentum.

To summarize, the dynamics of the tunneling process to open space can be
controlled by the threshold T . The occurrence of bound states manifests itself
by closing final states of the dynamics. The momenta in the decay process are
obtained from the chemical potentials of systems with reduced particle number
and the threshold. The coherence of the ejected particles with the source is
lost and the bunching and anti-bunching properties explain to which degree the
processes occur (non-)sequentially.

7.4 Controlling the Dynamics of Three Bosons by

the Interactions

The aim of this section is to underline and corroborate the generality of the find-
ings of the previous section for larger particle numbers. The control mechanism
employed for the final states is generalized: instead of the interaction strength
λ0 the threshold T is kept at a fixed value, T = 0.7. By changing λ0 it is pos-
sible to determine which final states are favorable in the dynamics. A plot of
ETOT (NIN , NOUT , T = 0.7, λ0) for N = NIN + NOUT = 3 particles is given in
Fig. 7.10.

Here, only the energies of |3, 0〉, and |2, 1〉, i.e., ETOT (NIN = 3, NOUT =
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Figure 7.10 Energetics of the N = 3 System with a Threshold of T = 0.7.
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This plot shows the minimal energies ETOT (NIN , NOUT , T, λ0) which are needed
to allow the different final states |NIN , NOUT 〉 = |3, 0〉; |2, 1〉, |1, 2〉, and |0, 3〉, as
solid green, red, blue, and magenta line, respectively. The crossing points at λck

show for which interactions final states are available. See text for discussion.

0, T = 0.7, λ0), and ETOT (NIN = 2, NOUT = 1, T = 0.7, λ0), are dependent on
the strength of the interaction, λ0. The energies of both |1, 2〉, and |0, 3〉, on the
other hand, are independent of λ0 in the considered model. The reason is that
the energy of a single boson does not depend on the interaction (EHO(1) = 0.5)
and the interaction in the exterior is neglected in the model. The energy of
|1, 2〉 is ETOT = (1, 2, 0.7, λ0) = 0.5 + 2 · T = 0.5 + 1.4 = 1.9 and the energy of
|0, 3〉 is ETOT (0, 3, 0.7, λ0) = EHO(NIN = 0) + 3 · T = 3 · 0.7 = 2.1. These are
the minimal energies the system needs in order to eject two or three particles,
respectively. The energy of the final state, in which a single particle has tunneled,
ETOT (2, 1, 0.7, λ0) = EHO(NIN = 2) + 1 · T = 0.7 + EHO(NIN = 2), is dependent
on the interaction, because the energy of the trapped system, EHO(NIN = 2),
with two bosons depends on interaction and so does the energy of the trapped
system |3, 0〉 for the analogous reason.

If an interaction λ0 smaller than λc1 is chosen for the initial state of N = 3

parabolically trapped particles, the system becomes bound at a threshold of
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T = 0.7 because the possible final states, |2, 1〉, |1, 2〉, and |0, 3〉 are energeti-
cally not available. If one chooses an interaction of λc1 ≤ λ0 ≤ λc2, then the final
state |2, 1〉 is energetically allowed, i.e., EHO(3) > ETOT (2, 1, 0.7, λ0), but the
other final states are energetically forbidden. In this regime, the N = 3 system
should thus decay by emitting a single boson, leaving behind two bound bosons.
In the case of e.g. λc3 > λ0 > λc2, two final states, i.e., |2, 1〉, and |1, 2〉, are
energetically allowed, because EHO(3) > ETOT (1, 2, 0.7, λ0) > ETOT (2, 1, 0.7, λ0).
In this situation, it turns out that the energetically lowest configuration is the
actual final state. This means that e.g. in the above case of λc3 > λ0 > λc2

one finds the final state of the dynamics to be |2, 1〉, i.e., the ejection of a single
particle is preferred. This can be illustrated by the physics of decay processes:
the rate at which a decay process is occuring is determined by the overlap of the
initial and the final states. Intuitively, the overlap of the |NIN = 3, NOUT = 0〉
and |NIN = 2, NOUT = 1〉 states is larger than that of the |NIN = 3, NOUT = 0〉
and |NIN = 1, NOUT = 2〉 states. This is simply due to their contributions in the
IN subspace. Furthermore, there is also an overlap of the |NIN = 1, NOUT = 2〉
and the |NIN = 2, NOUT = 1〉 states. This means that there is a rate with which
|NIN = 1, NOUT = 2〉 is transformed to |NIN = 2, NOUT = 1〉. With this rea-
soning the final state is, hence, the energetically lowest final configuration. One
can apply a similar reasoning for the other critical interactions λc4, λc5. It is in-
teresting to note the peculiarity of the process – determined by the overlap of
|NIN = 1, NOUT = 2〉 and |NIN = 2, NOUT = 1〉: the trapped particle number
NIN is actually increasing by one. With this reasoning it should thus be possible
to find sets of parameters for which the nonescape probability of the system in-
creases for a limited amount of time. This is at times at which the predominant
part of the wavefunction is similar to e.g. |NIN = 1, NOUT = 2〉. However, in
all the presented examples in this section this was not the case. This makes the
following conclusion tempting: the rate at which the above-mentioned transfor-
mation of |NIN = 1, NOUT = 2〉 to |NIN = 2, NOUT = 1〉 is very large and this
makes the observation of the counterintuitive behavior of the nonescape proba-
bility impossible. Any population in |NIN = 1, NOUT = 2 rangle is momentarily
shifted to |NIN = 2, NOUT = 1〉 and the respective counting statistics cannot be
found.

In order to consistently investigate such populations so-called loss operators
are needed (see Appendix A). With these loss operators the time-evolution of the
population of any final state is, in principle, accessible. In the current implemen-
tation of the MCTDHB [50], these loss operators are not available. To check the
validity of the above considerations, it remains to quantify the counting statistics
in the dynamics with the nonescape probabilities P x

not(t).
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Nonescape Probabilities:

To verify the above considerations, it is timely to first analyze the time-evolution
of the nonescape probabilities, P x

not(t) in the given example of N = 3 bosons in
a potential with T = 0.7 for various interactions λ0. For a plot for nonescape
probabilities, corresponding to the different possible final states, see Fig. 7.11.

Figure 7.11 Time-Evolution of Nonescape Probabilities for Different Final States
for N = 3 Bosons.
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The dependence on the interaction λ0 of the nonescape probability for N = 3

bosons tunneling to open space in a potential with a threshold of T = 0.7 is
shown. The interactions and the threshold were chosen according to energetics
(cf. Fig. 7.10) of the process such that there is a bound state for either N = 1

(red and blue solid lines) or N = 2 (green solid line) bosons. See text for further
discussion.

The behavior of the nonescape probabilities also for N = 3 is as predicted
from the energetics: when a certain final state becomes energetically unavail-
able, then the counting statistics of the final state change. For example, for
λ0 = 0.5, the available final state in the |IN,OUT 〉 notation is |2, 1〉 – conse-
quently, the norm of the density in the “IN” subspace, i.e., the nonescape prob-
ability Pnot, converges to 2

3
. In the case of the stronger interaction λ0 = 1.0, the

final state |1, 2〉 is energetically favorable and consequently the nonescape prob-
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ability converges to 1
3
. The model introduced in Section 7.2 is indeed accurate

in predicting the counting statistics of the tunneling to open space process with
a threshold. To corroborate this finding and to prove the generality of the model
also for stronger interactions, in Fig. 7.11 also a plot of the nonescape proba-
bility for the very strong interaction λ0 = 30.0 is shown by a red solid line. For
such a strong interaction the initial state is fermionized. It would be expected
that the model description is inaccurate if it was depending on the interparticle
interactions. Yet, the model prediction of a nonescape probability Pnot of 1

3
for

the final state |1, 2〉 still holds. Of course, the decay happens at a much faster
rate in this stronger interacting case. Hence, the model consideration should
hold for particle numbers N > 3, independent of the interactions. In order to
prove the general applicability of the model, Fig. 7.12, shows the energetics and
nonescape probability for N = 101 particles. In this case, the threshold was
fixed at T = 0.6 and the tunneling process’ counting statistics can be tuned by
modifying the interactions in order to obtain an NIN ≈ 50 bound state by the
aforementioned reasoning.

Figure 7.12 Energetics and Nonescape Probability for the Tunneling to Open
Space of N = 101 Bosons.
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Left Panel: Shown are the energies of the final states |IN,OUT 〉 =

|41, 60〉, |51, 50〉, and |61, 40〉. When one tunes the interaction λ0 such that it lies
in between the crossing points (marked by the black dashed vertical lines) of the
green and red/magenta solid lines at λ0 = λc1/2, the energetically most favorable
state will be with NIN ∈ (41, 61) and NOUT = N−NIN particles. The black arrow
shows the interaction λ0 = 0.005 chosen for the propagation. See text for further
discussion. Right Panel: Shown is the nonescape probability Pnot(t) of N = 101

particles with λ0 = 0.005 (red solid line). The green points are an extrapolation
obtained from a least squares fit of an exponential function to the actual data.
According to this extrapolation, the final state is |NIN = 50, NOUT = 51〉 and
hence in the range assessed from the energetics in the Left Panel of the figure.
See text for further discussion.
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Fig. 7.12 shows the validity of the model for a general number of particles,
thus allowing for the formulation of a protocol for the deterministic production
of a desired N -boson state. In the case of a fixed potential threshold the interac-
tions λ0 can be tuned such that the energy of the desired number of bosons just
becomes a bound state. And in the case of fixed interactions, the threshold of
the potential can be adjusted such that the desired number of bosons remains.
With this approach, the counting statistics of the problem are fully under control.
With just two parameters, it is possible to control the interplay of one-particle
potential and interparticle interactions in order to manufacture any desired final
state.
It remains to analyze the many-body physics of coherence and correlations also
for the N > 2 cases.

Coherence and Correlations in the Tunneling Process with a Threshold for

N > 2:

In order to determine the effects in the processes’ correlation and coherence
dynamics, it is convenient to investigate the correlation functions g(1) and g(2)

in momentum space. Fig. 7.13 shows the coherence |g(1)(k1, k′
1, t = 800)|2 for

different interactions and a fixed threshold T = 0.7 in the left and center panel.
For convenience and in order to display all possible final states of the dynamics
with an |NIN = 3, NOUT=0〉 initial state, the right panel of Fig. 7.13 shows the
coherence in the T = 0 dynamics.

Indeed, the behavior of the case of N = 2 bosons is reproduced in the dy-
namics of the coherence in the tunneling to open space process of N = 3 bosons.
Upon increase of the interaction λ0 across the critical value for the availability
of a certain final state, new lines, which are incoherent, show up (cf. left and
middle panel of Fig. 7.13). Hence, with the momentum distributions, also the
first order coherence in the process can be controlled by the manipulation of λ0.
Of course, the dynamics shown involve the fragmentation of the initially coher-
ent sample of N = 3 parabolically trapped bosons. Both, the time evolution of
the occupation numbers and the momentum distributions resemble in this case
those in Figs 7.7, and 7.5 and are not shown, therefore. It remains to find out
what are the two-body properties of the process. For this purpose, a plot of the
second order coherence g(2) is shown in Fig. 7.14.

The structure of the first order coherence |g(1)|2 in Fig. 7.13 is preserved for
the diagonal part of g(2) in Fig. 7.14. The anticipated behavior from the case of
N = 2 bosons (cf. Fig. 7.9) prevails: the bunching is mainly for the off-diagonal
intersections of the slightly anti-bunching lines at the different momenta. The
degree of the bunching on the diagonal and the off-diagonal shows the sequen-
tiality of the process. For instance, the line corresponding to the largest mo-
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Chapter 7. Many-Boson Tunneling with a Threshold

Figure 7.13 Coherence Dynamics in Tunneling to Open Space with a Threshold
for N = 3 Bosons.∗

The first order correlation function |g(1)|2 is plotted for three different final states
with NIN = 2, 1, and NIN = 0 in the Left, Middle and Right Panel, respectively
for the time t = 800. White corresponds to |g(1)|2 = 1 and Black to |g(1)|2 = 0.
The Left Panel for the interaction λ0 = 0.5 and threshold T = 0.7 shows a single
line at the momentum with which the single boson escapes. In the Middle Panel
for λ0 = 1.0 and T = 1.0 two bosons are emitted and the wavefunction looses
it’s coherence at precisely their respective momenta. For convenience, the Right
Panel shows the case of λ0 = 1.0 and T = 0.7 where all N = 3 bosons can
decay – and consequently 3 lines show up where |g(1)|2 ≈ 0. See text for further
discussion.

mentum is all cases the closest to coherent (i.e., white in Fig. 7.14) and the
anti-bunching for this line on the diagonal is the strongest. Hence, the boson
emitted and propagating at the corresponding momentum kT

1 is very unlikely to
be found, if another boson also propagates with the same momentum. Further-
more, the boson propagating with kT

1 is coherent, i.e., uncorrelated with all the
other momenta – one could say it does not care at all about the remainder of the
N -boson system. This explains the good applicability of the model introduced
in Section 7.2. While the escaped bosons loose their first order coherence with
the source, their second order coherence is preserved – given that the process,
accounting for a single line, is of a single particle. The model’s elementary pro-
cesses describe exactly such a behavior. Similar reasoning can be applied to the
other lines in g(2). This concludes the discussion of the first- and second-order
coherence in the many-boson process of tunneling to open space.

In summary, this chapter has shown that it is possible to exert control over
the counting statistics and momentum density of the ejected bosons with the in-
terplay of the threshold of the potential versus the two-body interactions. The
overall many-boson process is made up by single-particle processes which are
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Figure 7.14 Bunching Dynamics of Tunneling to Open Space with a Threshold
for N = 3 Bosons.∗

The second order correlation function g(2) is plotted for three different final states
with NIN = 2, 1, and NIN = 0 in the Left, Middle and Right Panel, respectively
for the time t = 800. The line structure of the first order correlation functions
in Fig. 7.13 is preserved. The lines corresponding to the biggest momenta show
slight anti-bunching. In their crossings with the anti-bunching intensifies. Where
the lines corresponding to the bigger k intersect the lines of the smaller momenta
bunching occurs – this corresponds to the sequential ejection of two bosons. See
text for further discussion.

well-described using the presented model (cf. Fig. 7.2). The momentum kT
i of

the ejection process is defined by the chemical potential µi of the NIN -boson sys-
tem in a parabolic trap. This chemical potential µi is firstly used to overcome the
potential threshold T and secondly converted to kinetic energy ET

kin. Hence, one
finds peaks in the momentum distributions at kT

i =
√

2m(µi − T ). At precisely
the peaks’ positions, the first-oder coherence of the bosons is lost, but the second
order one is preserved. This illustrates the one-particle nature of the processes.
It is hence also possible to control the coherence in the process by switching on
or switching off certain final states with the interaction λ0 or the threshold T .
This qualifies the system as a tunable quantum simulator for the mechanism of
complicated ionization processes. The final states can be selected to resemble the
open channels in the considered ionization process. The interaction can be used
to tune the kinetic energy – which are associated with the ionization energies of
the ionization process under consideration – of the ejected bosons.
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Chapter 8

Final Remarks and Outlook

Final Remarks:

The present thesis consists of an exposition, benchmark and comparison of the
currently most efficient numerical algorithm to solve the time-dependent many-
boson Schrödinger equation: the multiconfigurational time-dependent Hartree
method for bosons. The MCTDHB was applied to the problem of one-dimensional
tunneling to open space of initially parabolically trapped coherent bosons in a
potential without a threshold and also in a potential with a threshold. Through-
out the investigation of the many-boson tunneling processes, various models
were formulated. These allow for a straightforward and intuitive understanding
and control of the physics in the process.

The assessment of the capabilities of the methods was done by checking
the convergence with analytical solutions of the HIM Hamiltonian and a time-
dependent generalization of the HIM, the TDHIM. For the first time, numerically
exact solutions, i.e., solutions of any desired accuracy of the TDSE even with
time-dependent one- and two-body potentials have been achieved (see Ch. 2).
The problem of many-boson tunneling to open space consists in dynamics which
involve the fragmentation of initially coherent samples – mean-field methods
and lattice methods fail. This was shown in Ch. 2 for the DNLS and BH/TEBD
approaches.

In the case of zero threshold (Ch. 6), the tunneling to open space process
of initially coherent ultracold bosons includes their gradual fragmentation. The
mechanism behind can be explained by decomposing the many-body process
in elementary single-particle processes. Reasoning with the energetics of these
single particle processes one finds: from a (close to) parabolic potential a bo-
son is ejected to open space, its energy – which it converts to kinetic energy
– is the chemical potential: the difference in energy of the (close to) paraboli-
cally trapped N and N − 1-particle system. These kinetic energies define a peak
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structure of the momentum distributions. The values at which the momentum
density is peaked are predicted precisely by the model consideration in Ch. 2.
Once the bosons are ejected, they propagate with different momenta and thus
lose the coherence among each other and also with the source, which retains its
coherence.

If the threshold, i.e., the absolute value of the one-body potential in the
asymptotic open space part, is changed, the physics of the process are changed
too (see Ch. 7). The momenta of the ejected bosons are shifted towards zero and
vanish when the threshold crosses certain values. With the vanishing of the mo-
menta the counting statistics of the final state change – a fraction of the system
is left behind if the threshold is big enough to support a bound state of a certain
number of particles. The reasoning with the energetics in the model considera-
tion in Ch. 5 is modified: the available energy for the bosons is still defined by
the chemical potential, but after the ejection the bosons have to first spend part
of their energy to overcome the threshold before they convert the remainder to
kinetic energy, which manifests in a peak in the momentum distribution. Hence,
one can control the momentum of the ejected particles with the threshold. Fur-
thermore, one can also tune the chemical potential with the interaction strength
λ0. A detailed analysis of the first order coherence of the process has consistently
shown that the coherence dynamics can also be explained by the model, i.e., the
ejected particles lose the first-order coherence among each other and with the
source. An analysis of the second-order coherence shows the time-dependence
of the (non-)sequentiality of the processes and their single-particle nature.

It is appropriate to comment also on the analogs of the tunneling to open
space process: ionization and atom lasers. The use of the investigated systems
as quantum simulators for ionization processes was demonstrated. The control
schemes found employing the threshold and the interaction can be used to cal-
ibrate the system to emulate almost any desired ionization process – by making
the association of ionization energies with the ejection momenta of the bosons.
In the case of the dynamics of atom lasers, the found dynamics show that it is
very difficult to maintain the coherence of the sample. In all the repulsive cases
studied, fragmentation, i.e., decoherence occurs dynamically.

In summary the exploration of the many-boson tunneling process to open
space in the present thesis not only explained the process on a many-body level,
but also put forward an easy-to-implement and intuitive scheme of control of the
counting statistics and many-body physics of the process.

Outlook:

With a method that can solve a problem exactly, like MCTDHB, there is a plethora
of opportunities. From the physical point of view, any quantum system is of
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course three-dimensional. It is, hence, of interest whether there is an effect
of the dimensionality on the dynamics of the quasi one-dimensional systems
studied here. It is a generally open question how tightly a system has to be
confined in the transversal direction until it can be truly regarded as quasi one-
dimensional. Certainly, the physics become more complex in the case of two-
dimensional dynamics.

Another interesting step would be to change the particle statistics, i.e., to in-
vestigate whether the physics of the many-fermion tunneling to open space is
similar to the presented many-boson case. It is tempting to just adopt the found
models and schemes for the many-boson tunneling also for a many-fermion sys-
tem – yet, a proof that these models are applicable for fermions by exact numer-
ical simulations or a suitable experiment (see Ref. [108]) is still needed.

In the presented cases, the interaction of the bosons was almost always repul-
sive. Repulsive interactions increase the chemical potentials. If one would make
the interactions attractive, the chemical potentials would decrease and eventu-
ally become negative. The many-body properties of the process in such a case
might be entirely different and rich.

The amount of control one can exert on the system with the threshold and
the interactions is vast. One could study the effects of further modifications
of the potential, like including a second barrier or making the threshold time-
dependent.

The processes discussed in the present thesis all incorporate the loss of initial
coherence. It would be interesting to see if it is possible to restore the coherence
throughout the process by applying optimal control theory to a time-varying
parameter like, for instance, the interaction or the potential threshold.

The previous points are steps to be taken in the exploration of the physics of
this process. But from a more fundamental point of view, there is also a wealth
of questions to be tackled. For instance, the definitions of a local measure for the
coherence, formulated in Appendix B, could be an interesting theoretical concept
in the physics of many-boson systems in general. Especially, for systems tunnel-
ing to open space, it seems as if the source is alway coherent whereas the ejected
bosons always lose their coherence. Hence, a local measure of fragmentation
is needed. Yet, the implementation of the necessary general transformations for
many-body bases is very complicated and presently not available. The concept of
local fragmentation is just one of the examples of concepts and methods that are
promising and not implemented. There is a plethora of theories in the MCTDH
family, which deserve numerical implementation – for instance, the MCTDH for
three kinds of different indistinguishable particles with up to three-body interac-
tions, see [67].
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Appendix A. Particle Loss Operators

Appendix A

Particle Loss Operators

In order to define an operator, whose expectation value defines the υ-particle
loss from an N -indistinguishable-particle system it is convenient to first define
projectors employing Heaviside functions. For the sake of simplicity the con-
siderations in this paragraph are restricted to the one-dimensional case. The
Heaviside functions readily are the projectors up to a certain position C – in the
case of a tunneling problem C is usually the position of the barrier. Yet, it is note-
worthy, that it is straightforward to generalize these considerations to projectors
also in 2 or 3 dimensions. The one-dimensional projectors read:

Θ−
k = Θ(C − xk) = (1−Θ+

k ); Θ+
k = Θ(xk − C). (A.1)

In principle, these operators measure the probability density of particle k to be
in the interior, xk < C (Θ−

k ), or the exterior xk > C (Θ+
k ) parts of space. These

operators are the building blocks for the general operators describing the υ-
particle loss from an N -particle reservoir, denoted by L̂N

υ . Clearly, the L̂N
υ will be

simple products of the 1D projectors above and it will be possible to exploit the
indistinguishability of the particles in the reservoir. It is instructive to start with
the case, where one measures the probability that the whole system survives.
This is the probability of all particles remaining in the interior, xk < C, ∀k. Thus
one finds

L̂N
0 =

N∏

i=1

Θ−
i (A.2)

The expectation value of this operator is completely equivalent to the above
defined wavefunction-related nonescape probability Pnot,Ψ(t), where Ω = {xi <
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C, i = 1, ..., N}:

〈Ψ|L̂N
0 |Ψ〉 =

∫
Ψ∗(x1, ..., xN ; t)

N∏

i=1

Θ−
i Ψ(x1, ..., xN ; t)dx1 · · · dxN (A.3)

=

∫ C

−∞
Ψ∗(x1, ..., xN ; t)Ψ(x1, ..., xN ; t)dx1 · · · dxN = Pnot,Ψ(t).

In the last equality it is used that the action of L̂N
0 can be simply incorporated

by restricting the boundaries for the integration on the different coordinates
x1, ..., xN to xi < C, i = 1, ..., N . In the case in which all N particles of the
N -particle reservoir are lost, one finds analogously:

L̂N
N =

N∏

i=1

Θ+
i . (A.4)

It is instructive to write down the operators for the one- and two particle losses
in order to generalize it to an arbitrary number υ ≤ N .

L̂N
1 =

∑N
κ=1Θ

+
κ

∏N
i=1
i 6=κ

Θ−
i = NΘ+

1

N∏

i=2

Θ−
i (A.5)

L̂N
2 =

∑
{κ,ν}Θ

+
κΘ

+
ν

∏N
i=1
i 6=κ
i 6=ν

Θ−
i = M2Θ

+
1 Θ

+
2

N∏

i=3

Θ−
i (A.6)

Here, the sums are running over all possible configurations of one or two of
the N particles being in the exterior and the respective last equality uses the
indistinguishability of the considered particles. M2 denotes the cardinality of
the different possibilities to realize a subset of two elements out of N . Clearly,
M2 =

(
N
2

)
and Mυ =

(
N
υ

)
. It is now straightforward to write down the υ-of-N -

particle loss operator:

L̂N
υ =

∑

{j1,...,jυ}

[
υ∏

κ=1

Θ+
jκ

]


N∏

i=1
i 6∈{j1,...,jυ}

Θ−
i


 (A.7)

=

(
N

υ

) υ∏

κ=1

Θ+
κ

N∏

ξ=υ+1

Θ−
ξ . (A.8)

Here, the last equality uses the indistinguishability of the considered particles.
With the expectation value of this operator it is possible to measure the loss of
an arbitrary number υ of particles from a reservoir of N by defining an interior
and an exterior region. Basically, the particle loss operators are nothing else but

110



Appendix A. Particle Loss Operators

projectors on the Hilbert space of a definite particle number whose coordinates
are restricted. For instance, L̂N

1 is a projector on the Hilbert space where one
coordinate is restricted to the exterior and all other N − 1 coordinates are re-
stricted to the interior. Note that, for an N -particle system, these are N -body
operators and hence very difficult to evaluate. In practical numerical computa-
tions, N -body operators’ expectation values require N -dimensional integrals to
be evaluated, which is a demanding task.
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Appendix B

The Concept of Local Fragmentation

Fragmentation, i.e., the macroscopic (of order O(N)) occupation of more than
one natural orbital, is a quantity intimately related to the natural occupations
ρ
(NO)
i (t), i.e., the eigenvalues of the reduced one-body density matrix ρ(1)(x′

1|x1; t),
cf. Section 2.1.2 and Ref. [27]. The 1-RDM is a quantity defined on the whole
Hilbert space of the system under consideration as an integral of the wavefunc-
tion. It is a natural question to ask how to assess the fragmentation of a sys-
tem locally, because the full information might not be available in a given ex-
perimental setup. From a fundamental theoretical point of view there are two
ways of approaching the question. The first idea takes the 1-RDM and applies
a projection to a subspace to obtain a new, truncated 1-RDM from which one
computes the local natural occupations. The second way to obtain local occu-
pation numbers applies the projection to the subspace on the wavefunction and
computes from the truncated wavefunction a new 1-RDM on the considered sub-
space, from which in turn one can obtain local natural occupations. The first is
termed 1-RDM-related local natural occupations and the second way is termed
wavefunction-related local natural occupations. The scope of this section is to
clarify the properties and the differences of the two approaches.

B.1 The 1-RDM-Related Local Natural Occupations

To define local occupation numbers ρ̃(NO)
i,τ and local natural orbitals φ̃(NO)

i,τ it is a
natural approach to simply truncate the 1-RDM by projection to some subspace
Ω = {(x1, ..., xN) |xj ≤ xτ,j , j = 1, ..., N} of the entire space H. For the sake
of simplicity one-dimensional systems are considered in this subsection. The
projector P̂ onto Ω is:

P̂ =
N∏

j=1

p̂j =
N∏

j=1

Θ(xτ,j − xj). (B.1)
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Now one applies P̂ to the 1-RDM ρ(1)(x1|x′
1; t):

P̂ ρ(1)(x1|x′
1; t) = p̂1ρ

(1)(x1|x′
1; t) (B.2)

= p̂1N

∫
dx2 · · · dxNΨ

∗(x′
1, x2, ..., xN ; t)Ψ(x1, ..., xN ; t).

Here, it was firstly used that the 1-RDM is a function of only x1 and x′
1, so only p̂1

acts onto it. Secondly, the definition of ρ(1), see Eq. (2.24), was inserted. Next,
one uses the possibility to express the 1-RDM expanded in a basis set φi, i =

1, ...,M , cf. the paragraph on natural orbitals and occupations:

p̂1ρ
(1)(x1|x′

1; t) = p̂1

M∑

k,q=1

ρkqφ
∗
i (x

′
1, t)φi(x1, t)

=

M∑

k,q=1

ρkqp̂1φ
∗
i (x

′
1, t)p̂1φi(x1, t)

≡
M∑

k,q=1

ρ̃kqφ
∗
i,τ (x

′
1, t)φi,τ(x1, t)

≡
M∑

i=1

ρ̃
(NO)
i,τ (t)φ̃

∗(NO)
i,τ (x′

1, t)φ̃
(NO)
i,τ (x1, t). (B.3)

In the first step one uses the fact that p̂1 only acts on the functions used to expand
ρ(1). In the second step, the respective truncated basis φi,τ = p̂1φi, i = 1, ...,M

was introduced. In the last step the obtained truncated 1-RDM was diagonalized
to obtain a set of truncated occupations, ρ̃(NO)

i,τ (t), as well as a set of truncated

natural orbitals φ̃
(NO)
i,τ (x, t). Eqs (B.3) also are an easy, practical guide for the

implementation of this analysis tool.

B.2 The Wavefunction-Related Local Natural Occu-

pations

In this section the notion of wavefunction-related local natural occupation num-
bers is introduced. In order to define local occupation numbers ρ(NO)

i,τ (t) and local

natural orbitals φ
(NO)
i,τ starting from the wavefunction, one first uses the projec-

tor P̂ defined in the previous subsection to obtain a truncated wavefunction Ψτ .
This is done in the following specifically for the case of a multiconfigurational
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wavefunction:

Ψτ (x1, ..., xN , t) = P̂Ψ(x1, ..., xN , t)

= P̂
∑

~n

C~n(t)|~n; t〉

=
∑

~n

C~n(t)P̂ |~n; t〉

≡
∑

~n

C~n(t)|~n; t〉τ . (B.4)

Here, the multiconfigurational ansatz for the wavefunction is inserted in the sec-
ond line of the above equation, because it will be frequently used throughout this
thesis. In this case, the projector P̂ acts only on the configurations |~n, t〉 (third of
the above equalities) and this leads to the introduction of new, projected config-
urations |~n; t〉τ = P̂ |~n; t〉. Two things have to be noted here: first, that the new
set of configurations is no longer orthogonal (!) and, second, that the projector
P̂ again only acts on the single particle functions constructing the permanents.
In principle one thus relies on the same basis set φi,τ , i = 1, ...,M as in the previ-
ous paragraph. To continue, one constructs a truncated 1-RDM ρτ (x1|x′

1; t) from
the truncated wavefunction Ψτ :

ρτ (x1|x′
1; t) = N

∫
dx2 · · · dxNΨ

∗
τ (x

′
1, x2, ..., xN)Ψτ (x1, x2, ..., xN )

= N

∫

Ω

dx2 · · · dxN p̂1Ψ
∗(x′

1, x2, ..., xN )p̂1Ψ(x1, x2, ..., xN ).(B.5)

Here, the first identity is simply the definition of ρ(1) with Ψ replaced by Ψτ

and in the second identity the action of the projectors was incorporated as the
boundaries of the integration. Of course, as in the previous subsection, also this
truncated 1-RDM can be represented in the basis φi,τ , i = 1, ...,M with weights
ρ′kq(t):

ρ(1)τ (x1|x′
1; t) =

M∑

k,q=1

ρ′kqφ
∗
i,τ (x

′
1, t)φi,τ (x1, t)

≡
M∑

i=1

ρ
(NO)
i,τ (t)φ

∗(NO)
i,τ (x′

1, t)φ
(NO)
i,τ (x1, t). (B.6)

Note that ρ′kq(t) 6= ρ̃kq(t). This is because the space where the wavefunction is
integrated or, in other terms, the applied projectors are different from the case
of the truncated ρ(1) in the previous subsection. To assess and understand better
the concept of local fragmentation, it is instructive to compare the 1-RDM based
approach to the present wavefunction-based approach.
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B.3 Comparison of the Wavefunction- and 1-RDM-

Based Approaches

The simplest way to compare two quantities is to simply calculate their differ-
ence. For the wavefunction-based and 1-RDM based local 1-RDMs this is achiev-
able straightforwardly by subtracting Eq. (B.5) from Eq. (B.3):

ρ1,τ − ρ̃1,τ = p̂1N

∫
dx2 · · · dxNΨ

∗(x′
1, x2, ..., xN ; t)Ψ(x1, ..., xN ; t)

−N

∫

Ω

dx2 · · · dxN p̂1Ψ
∗(x′

1, x2, ..., xN)p̂1Ψ(x1, ..., xN )

= p̂1

∫

H\Ω
dx2 · · ·dxNΨ

∗(x′
1, x2, ..., xN)Ψ(x1, ..., xN ). (B.7)

A comment on the two approaches from a practical point of view is in order. The
computation of the wavefunction-related local occupations is a numerically de-
manding task because it relies on N -body operators or quantities. In particular,
the evaluation of the integral in Equation (B.5) demands (unitary) transforma-
tions of permanents (see Eqs (2.16),(2.18)) which constitute a big numerical
effort and are not yet implemented in the software developed (see Ref. [50])
and in use throughout this thesis.
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Distribution of a Gross-Pitaevskii-Wavefunction Composed of Two Plane
Waves

Appendix C

Reduced One-Body Density Matrix and

Momentum Distribution of a Gross-

Pitaevskii-Wavefunction Composed of

Two Plane Waves

This Appendix demonstrates that one can construct coherent quantum product
states incorporating two momenta in principle.

Assumed GP Orbital:

Gaussian g(x) inside the well and 2 plane waves outside, x > xc, where the
gaussian is 0 (no overlap).

ϕ(x) = g(x) + θ(x− xC)
[
eik1x + eik2x

]
(C.1)

Construction of GP-Wavefunction:

Eq. (C.1) is used:

ΨGP =

N∏

i=1

ϕ(xi); N := 2

=

2∏

i=1

g(xi) + θ(xi − xC)
[
eik1xi + eik2xi

]
(C.2)

= g(x1)g(x2)

+ θxC

[
eik1(x1+x2) + ei(k1x1+k2x2) + ei(k2x1+k1x2) + ei(k2x1+k2x2)

]
(C.3)

117



Construction of the RDM:

ρ(1)(x1|x′
1) = N

∫
Ψ∗(x′

1, x2, ..., xN)×Ψ(x1, ..., xN)dx2 · · · dxN

= 2

∫
Ψ∗

GP (x
′
1, x2)×ΨGP (x1, x2)dx2 (C.4)

=

∫ {
(g(x1))

2 g(x′
1)g(x2)

+ θxC
×
[
e−ik1(x′

1
+x2) + e−i(k1x′

1
+k2x2) + e−i(k2x′

1
+k1x2) + e−i(k2x′

1
+k2x2)

]

×
[
eik1(x1+x2) + ei(k1x1+k2x2) + ei(k2x1+k1x2) + ei(k2x1+k2x2)

] }
dx2 (C.5)

using the abbreviation θxC
:= θ(x1 − xC)θ(x2 − xC) in the step from Eq. (C.4) to

Eq. (C.5). Evaluating the integrand, I = Ψ∗(x1, x
′
1)Ψ(x1, x2), of Eq. (C.5):

I = (g(x1))
2 g(x′

1)g(x2) + θxC
× (C.6){

ei(k1x2−k1x′
1) + ei(k2x2−k1x′

1) + ei(k2x1+k1x2−k1(x1+x′
1)) + ei(k2x1+k2x2−k1(x1+x′

1))

+ ei(k1x2−k2x′
1
) + ei(k2x2−k2x′

1
) + ei(k2x1+k1x2−k1x1−k2x′

1
) + ei(k2x1+k2x2−k1x1−k2x′

1
)

+ ei(k1x1+k1x2−k2x1−k1x′
1) + ei((k1−k2)x1+k2x2−k1x′

1 + ei(k1x2−k1x′
1) + ei(k2x2−k1x′

1)

+ ei((k1−k2)x1+k1x2−k2x′
1
) + ei((k1−k2)x1+k2x2−k2x′

1
) + ei(k1x2−k2x′

1
) + ei(k2(x2−x′

1
))
}

Performing the Integration, ρ(1) =
∫
Idx2, using the abbreviations

A =
∫
θxC

ei(k1x2)dx2 and B =
∫
θxC

ei(k2x2)dx2 and C =
∫
g(x2)dx2

ρ(1) =

∫
C (g(x1))

2 g(x′
1) + θxC

× (C.7)
{

Ae−ik1x′
1 +Beik1x

′
1 + Aei(k2x1−k1(x1+x′

1
)) +Bei((k2−k1)x1−k1x′

1
)

+ Ae−ik2x′
1 +Be−ik2x′

1 + Aei((k2−k1)x1−k2x′
1
) +Bei((k2−k1)x1−k2x′

1
)

+ Aei((k1−k2)x1−k1x′
1
) +Bei((k1−k2)x1−k1x′

1
) + Ae−ik1x′

1 +Be−ik1x′
1

+ Aei((k1−k2)x1−k2x′
1) +Bei((k1−k2)x1−k2x′

1) + Ae−ik2x′
1 + e−ik2x′

1

}

After simplifications, one obtains:

ρ(1) =

∫
C (g(x1))

2 g(x′
1) + θxC

× (C.8)
{

(2(A+B))
(
e−ik1x′

1 + e−k2x′
1

)

+ (A+B)
[
ei((k2−k1)x1−k1x′

1
) + ei((k1−k2)x1−k1x′

1
)

+ ei((k1−k2)x1−k2x′
1) + ei((k2−k1)x1−k2x′

1)
}
.
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Appendix C. Reduced One-Body Density Matrix and Momentum

Distribution of a Gross-Pitaevskii-Wavefunction Composed of Two Plane
Waves

(C.10)

Calculation of the Momentum Distribution:

By definition the momentum distribution is the Fourier transform of the RDM:
ρ(j) =

∫
dx1dx

′
1e

−ijxρ(1)(x1|x′
1). Using the abbreviations ℵ(j) for the gaussian-

shaped Fourier transforms of the gaussians g(x) one arrives at:

ρ(1)(j) = Cℵ(j) +
∫ {

θxC
(C.11)

× 2A
[
e−i((k1−j)x′

1
+jx1) + e−i((k2−j)x′

1
+jx1)

]

+ 2B
[
e−i((k2−j)x′

1
+jx1) + e−i((k1−j)x′

1
+jx1)

]

+ (A +B)
[
e−i((k2−k1)x1−k1x′

1−j(x1−x′
1)) + e−i((k1−k2)x1−k1x′

1−j(x1−x′
1))
]}

dx2

= Cℵ(j) + (2A+ 2B) [δ(j − k1) + δ(j − k2)]

+ (A +B) [δ(j − k1)δ(j − (k2 − k1))]

+ (A +B) [δ(j − k1)δ(j − (k1 − k2))] (C.12)

= Cℵ(j) + (2A+ 2B) [δ(j − k1) + δ(j − k2)] . (C.13)

where Eq. (C.13) follows from the fact that k2 6= 0 out of Eq. (C.12).
A comment is in place here: the momentum density and reduced density matrix
described above do resemble the ones obtained in exact numerical simulations
(cf. Chs. 7,6). The key difference is, that the exact solutions do not preserve
the coherence whenever there is more than one momentum present. This is
caused by the state constructed above being energetically much higher than its
prescribed fragmented counterpart (cf. Appendices D,G). States of higher energy
are excluded from the dynamics by the TDVP [62].
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Appendix D. Derivation of the Reduced One-body Density for a System
Tunneling with Two Momenta

Appendix D

Derivation of the Reduced One-body

Density for a System Tunneling with

Two Momenta

The RDM of the system with the wavefunction constructed in the orbitals given
in Eq. (5.24) reads as follows:

ρ(1)(x1|x′
1) =

∫
Ψ(x1, ..., xN)×Ψ∗(x′

1, x2, ..., xN)dx2 · · · dxN

=

∫
Ψ(x1, x2)×Ψ∗(x′

1, x2)dx2

= (C~n1
)2
∫

dx2

[
e−

1

2
(x2

1
+(x′)2

1
+2x2

2
) + θ(x− xc)e

ik1(x1−x′
1
)
]

+ θ(x− xc)C~n1
C~n2

∫
dx2

[
ei(k1(x1+x2)−k1x′

1−k2x2) + ei(k1(x1+x2)−k1x2−k2x′
1)
]

+ θ(x− xc)C~n1
C~n2

∫
dx2

[
ei((k1x1+k2x2)−k1(x′

1
+x2)) + ei(k1x2+k2x1−k1(x′

1
+x2))

]

+ θ(x− xc)(C~n2
)2
∫

dx2

[
ei(k1(x1−x′

1
)) + ei(k2(x1−x′

1
))
]

+ θ(x− xc)(C~n2
)2
∫

dx2

[
ei(k1x1−k1x2+k2x2−k2x′

1) + ei(k1x2+k2x1−k1x′
1−k2x2)

]

+ θ(x− xc)(C~n3
)2
∫

dx2

[
eik2(x1+x2)−ik2(x′

1
+x2)

]

+ θ(x− xc)C~n3
C~n2

∫
dx2

[
e−i(k2(x′

1+x2)(ei(k1x1+k2x2) + ei(k1x2+k2x1))
]

+ θ(x− xc)C~n3
C~n2

∫
dx2

[
ei(k2(x1+x2)(e−i(k1x′

1
+k2x2) + e−i(k1x2+k2x′

1
))
]

+ θ(x− xc)C~n3
C~n1

∫
dx2

[
e−ik2(x2+x′

1
)eik1(x1+x2) + eik2(x2+x1)e−ik1(x′

1
+x2)

]
(D.1)
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This equation drastically reduces when one takes the diagonal x1 = x′
1 and uses

the addition theorems cos2(λ
2
) = 1

2
(1 + cos(λ)) and cos(λ) = eiλ+e−iλ

2
:

ρ(x1|x1) = (C~n1
)2
[√

πe−x2
1

]

+ C~n1
C~n2

θ(x− xc)

[
4 cos2(x1(

k1 − k2
2

))

]

+ (C~n2
)2θ(x− xc)

[
4 cos2(x1(

k1 − k2
2

)

]

+ C~n3
C~n2

θ(x− xc)

[
4 cos2(

(k1 − k2)

2
x1)

]

+ C~n3
C~n1

θ(x− xc) [2 cos((k1 − k2)x1)]

+ θ(x− xc)
[
2(C~n3

)2 + 2(C~n2
)2
]
x2

= (C~n1
)2
[√

πe−x2
1

]

+ θ(x− xc)
[
(C~n2

)2 + C~n3
C~n2

+ C~n1
C~n2

] [
4 cos2(x1(

k1 − k2
2

))

]

+ θ(x− xc)C~n3
C~n1

2 cos((k1 − k2)x1)

+ θ(x− xc)
[
2(C~n3

)2 + 2(C~n2
)2
]
x2 (D.2)

As the reduced one body density is a function of x1 and x′
1 the term with x2 is ac-

tually a constant coming from the undefined integral in the x2 degree of freedom.
Thus, x2 = ξ = const., is furthermore assumed. Thus one gets after introducing
the abbreviations D = (C~n1

)2;E = θ(x − xc) [(C~n2
)2 + C~n3

C~n2
+ C~n1

C~n2
] ;G =

θ(x− xc) [2(C~n3
)2 + 2(C~n2

)2] ξ and F = θ(x− xc)C~n3
C~n1

:

ρ(x1|x1) = D
[√

πe−x2
1

]

+ 4E

[
cos2(x1(

k1 − k2
2

))

]

+ 2F cos((k1 − k2)x1)

+ G. (D.3)

122



Appendix E. Derivation of the Diagonal of the Reduced Two-body Density
for a System Tunneling with Two Momenta

Appendix E

Derivation of the Diagonal of the Re-

duced Two-body Density for a Sys-

tem Tunneling with Two Momenta

The two-body density of the system with the wavefunction constructed from the
orbitals given in Equation (5.24) reads as follows:

ρ(2)(x1, x2|x1, x2; t) =

∫
Ψ(x1, ..., xN)Ψ

∗(x1, ..., xN )dx3 · · · dxN (E.1)

= Ψ(x1, x2)Ψ
∗(x1, x2)

= (C~n1
)2
[
e−(x2

1+x2
2)
]

+ θ(x− xc)(C~n1

C~n2√
2
)
[
ei(k1−k2)x1 + ei(k2−k1)x1 + ei(k1−k2)x2 + ei(k2−k1)x2

]

+ θ(x− xc)(C~n3
)2
[
ei[(k1−k2)x1+(k2−k1)x2] + ei[(k1−k2)x2+(k2−k1)x1]

]
.

The indices ~n1, ~n2, ~n3 refer to the configurations |2, 0〉, |1, 1〉, |0, 2〉, respectively.
Introducing the abbreviations A = (C~n1

)2;B =; θ(x− xc)(C~n1

C~n2√
2
) and C = θ(x−

xc)(C~n3
)2 and using the relation cos(λ) = eiλ+e−iλ

2
one arrives at the following:

ρ(2)(x1, x2|x1, x2; t) = A
[
e−(x2

1
+x2

2
)
]

+ B [2 (cos((k1 − k2)x1) + cos((k1 − k2)x2))]

+ C [2 cos((k1 − k2)x1) cos((k1 − k2)x2)] (E.2)

The second row of the equation above can be transformed to a single factor via
the relation cos(λ) + cos(λ′) = cos(λ+λ′

2
) · cos(λ−λ′

2
) times the coefficient B: if one
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further assumes real coefficients the diagonal of ρ(2) reads as follows:

ρ(2)(x1, x2|x1, x2; t) = A
[
e−(x2

1
+x2

2
)
]

+ B

[
4

(
cos((k1 − k2)

(x1 + x2)

2
) cos((k1 − k2)

(x1 − x2)

2
)

)]

+ C [2 cos((k1 − k2)x1) cos((k1 − k2)x2)] (E.3)
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Appendix F. Derivation of the Diagonal of the Second Order Correlation
Function for a System Tunneling with Two Momenta

Appendix F

Derivation of the Diagonal of the Sec-

ond Order Correlation Function for a

System Tunneling with Two Momenta

The construction of |g(2)(x1, x2|x1, x2, t)|2 (definition see Section 2.1.2) for the
wavefunction constructed from the orbitals in Equation (5.24) is presented in
the following. As in the previous Appendix E, the indices ~n1, ~n2, ~n3 refer to
the configurations |2, 0〉, |1, 1〉, |0, 2〉, respectively. Using the abbreviations α =

x1(
(k1−k2)

2
); β = x2(

(k1−k2)
2

);A = (C~n1
)2;B =; θ(x−xc)(C~n1

C~n2√
2
);C = θ(x−xc)(C~n3

)2;

D = (C~n1
)2;E = θ(x − xc) [(C~n2

)2 + C~n3
C~n2

+ C~n1
C~n2

] and F = θ(x − xc)C~n3
C~n1

and defining straightforwardly:

g(2)(x1, x2|x1, x2) =
ρ(2)(x1, x2|x1, x2)√
ρ(1)(x1|x1)ρ(1)(x2|x2)

|g(2)(x1, x2|x1, x2)|2 ≡ µ

ν

One finds the following for µ and ν:

µ = A2e−(2x2
1
+2x2

2
) + θ(x− xc)[A

2 + 2AB (cos(α) + cos(β))

+ (cos(α) cos(β))
[
AC + 4BC(cos(α) + cos(β)) + 4C2(cos(α) cos(β))

]

+ 16B2 cos2(α + β) cos2(α− β)] (F.1)

and

ν = D2e−(x2
1+x2

2) + θ(x− xc)[E
2 + 4EF (cos2(α) + cos2(β))

+ 16F 2(cos2(α) cos2(β))]. (F.2)
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Appendix G. Densities of a Model with Delocalized Orbitals and Two
Momenta

Appendix G

Densities of a Model with Delocal-

ized Orbitals and Two Momenta

The scope of this appendix is to derive the resulting densities ρ(1) and ρ(2) with
the ansatz for the orbitals given in Eq. (5.26), where one assumes the interior
µ(x) part to be a Gaussian. This assumption yields the orbitals:

φ1(x) = e−
x2

2 · eik1x ; φ2(x) = e−
x2

2 · eik2x. (G.1)

Furthermore, the description is restricted here to N = 2 bosons. In this case the
possible permanents contributing to the full wavefunction are |2, 0〉, |1, 1〉, and
|0, 2〉. Explicitly, they read:

|2, 0〉 = eikx−
x2

2
+ik1y− y2

2

|1, 1〉 = eik1x−
x2

2
+ik2y− y2

2 + eik2x−
x2

2
+ik1y− y2

2

|0, 2〉 = eik2x−
x2

2
+ik2y− y2

2 . (G.2)

From this basis, it is straightforward to form a multiconfigurational wavefunc-
tion. The above orbitals and permanents are not normalized, but one can just
assume that the normalization is absorbed in the coefficients, u, v, w, of the mul-
ticonfigurational expansion:

|Ψ〉 = u|2, 0〉+ v|1, 1〉+ |0, 2〉
= e−

x2

2
− y2

2

(
eik1(x+y)u+ ei(k1x+k2y)v + ei(k2x+k1y)v + eik2(x+y)w

)
. (G.3)
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Having at hands the wavefunction one can write down the two-body density
ρ(2)(x, y):

ρ(2)(x, y) = Trx3···xN
[|Ψ〉〈Ψ|] = Ψ∗(x, y)Ψ(x, y)

= e−x2−y2
(
u2 + 2v2 + w2

+ 2v(v cos[(k2 − k1)(x− y)]

+ (u+ w)(cos[(k2 − k1)x] + cos[(k2 − k1)y]))

+ 2uw cos[(k2 − k1)(x+ y)]) . (G.4)

In the derivation the same addition theorems for trigonometric functions as in
Appendix E were used. It is interesting to note that the oscillatory pattern is
identical to the one presented in Appendix E. It remains to evaluate the reduced
one-body density ρ(1):

ρ(1)(x, y) = Trx2,··· ,xN
|Ψ〉〈Ψ|

=

∫
dx2Ψ

∗(y, x2)Ψ(x, x2)

=

[
1

2
e−ik2x−ik1x−x2

2
− y2

2

√
π

×
(
ei(k2x+ky)

(
u2 + v2

)
+ eik2(x+y)v(u+ w)

+ eik1(x+y)v(u+ w) + ei(k1x+k2y)
(
v2 + w2

))

× Erf [x2] +
1

2
e

1

4(−k22−k21+2k2(k1−2ix)−4ik1x−2(x2+y2))

×
√
π
((
eik1yu+ eik2yv

) (
eik2xv + eik1xw

)

× Erf

[
1

2
(ik2 − ik1 + 2x2)

]

+
(
eik2xu+ eik1xv

) (
eik1yv + eik2yw

)

× Erf

[
1

2
(−ik2 + ik1 + 2x2)

])]∞

−∞
.

(G.5)

When finally taking the limits in the above expression the terms dependent on
x2 and the error functions Erf disappear:

ρ(1)(x, y) = e
1

4(−k22−k21−4i(k2+k1)x−2(x2+y2)) (G.6)

×
√
π
(
2e

k2k1
2

+ik2x+ik1yuv + e
1

4(k22+4ik2x+k1(k1+4iy))

×
(
u2 + v2

)
+ 2e

k2k1
2

+ik2x+ik2yvw + e
1

4(k22+k2
1
+4ij(x+y))v(u+ w)

+ e
1

4(k22+k1(k+4i(x+y)))v(u+ w) + e
1

2
k(k2+2i(x+y))

(
v2 + uw

)

+ e
1

2
k2(k1+2i(x+y))

(
v2 + uw

)
+ e

1

4(k22+k1(k1+4ix)+4ik2y) (v2 + w2
))

.
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Appendix G. Densities of a Model with Delocalized Orbitals and Two
Momenta

This concludes the analytical exposition of this appendix. It has been verified
that the numerical diagonalization of the above one-body density matrix repro-
duces the natural occupation numbers ρ(NO)

1/2 of the exact solutions of the N = 2

boson dynamics if values of coefficients in MCTDHB calculations are taken for
the coefficients u, v, w.
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