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Zusammenfassung

Wir untersuchen komplexe Vielteilchensysteme, welche aus ultrakalten bosonischen Atomen
in optischen Gittern bestehen. Motiviert durch neueste Experimente, die auf kontrollierte Weise
höhere Energiebänder mit ultrakalten Atomen bevölkern, sollen die physikalischen Eigen-
schaften und auftretenden Phänomene in einem Szenario beschrieben werden, das aus den
beiden untersten Bloch-Bändern besteht. In diesem Zusammenhang verwenden wir eindi-
mensionale bichromatische optische Gitter, deren leicht zu verändernde Eigenschaften die
Implementierung eines gut isolierten Zwei-Band Systems erlauben. Die zugrunde liegenden
Ein- und Vielteilchenphysik wird mit Hilfe eines Zwei-Band-Bose-Hubbard-Hamiltonians un-
tersucht. Zudem wird eine externe Kraft eingeführt, die die Interbanddynamik treibt. Dieses
Vielteilchen-Wannier-Stark-System wird durch das numerische Studium seiner spektralen und
dynamischen Eigenschaften in Bezug auf wichtige Systemparameter charakterisiert. Relaxation
und kontrollierte nicht-adiabatische Dynamik über die spektralen Resonanzen werden durch
Quantum Sweeps untersucht. Zusätzlich implementieren wir einen effektiven Hamiltonian, um
die spektralen Eigenschaften eines eindimensionalen optischen Gitters mit kontrollierter Dissi-
pation zu charakterisieren. Wir zeigen, dass die Stabilität langlebiger lokalisierter Vielteilchen-
zustände, d.h. diskreter solitonischer Zustände, mit guter Genauigkeit durch Zerfallraten des
komplexen Spektrums des effectiven (nicht-hermitischen) Hamiltonians beschrieben werden
kann.

Abstract

In this work, we study complex many-body systems consisting of ultracold bosonic atoms in
optical lattices. Motivated by the state-of-the-art of experiments realizing higher bands physics
with ultracold atoms, we use a one-dimensional bichromatic optical lattice, whose properties
permit to engineer a very well isolated two-band system. The underlying single- and many-
particle physics is investigated based on a two-band Bose-Hubbard Hamiltonian. An external
Stark force is introduced to drive the inter-band dynamics. In a first, and main part of this work,
we numerically characterize our many-body Wannier-Stark system through its spectral and dy-
namical properties, in terms of important system parameters. We present a detailed study of
the diffusion in Hilbert space. Relaxation and controlled non-adiabatic dynamics are studied
by driving the system across the spectral resonances, mainly by using quantum sweeps. In a
second part, we implement an effective Hamiltonian in order to characterize the spectral prop-
erties of a leaky one-dimensional optical lattice with controlled dissipation. We show that the
stability of long-lived localized many-body states, i.e. discrete solitonic states, can be described
with good accuracy by the decay rates statistics of the accessible complex energy spectrum of
the effective (non-hermitian) Hamiltonian.
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Chapter 1

Introduction

In modern physics, especially in quantum mechanics, strongly correlated systems are intrin-
sically related to the concept of complexity. The rapid development of high precision experi-
mental techniques allows one nowadays to investigate more in detail a huge variety of complex
systems, for instance, their physical properties and new phenomena. One can also test fun-
damental theories and predictions. A remarkable example is the experimental realization of
the so-called Bose-Einstein condensate (BEC), first proposed in 1924(5) by S. Bose [1] and A.
Einsten [2]. This macroscopic state was experimentally reported, after more than 50 years, for
several groups in the 90’s [3–6]. BECs and ultracold atoms have opened a new road for under-
standing the microworld in more clean manner. Their many applications and emerging effects
have capture the attention of many experimental and theoretical groups around the world and
it is still a field in progress [7–10].

In this framework, Quantum simulation is a fundamental and very exciting concept, which
was first suggested by Feynman in 1982 [11]. It states that the properties of complex systems
can be better understood by engineering analogous (and easier to handle) systems, which
mimic the properties of the original ones. In this manner, we have seen that paradigms as the
quantum electronic transport in semiconductors can be emulated by using ultracold bosonic
atoms trapped in completely controllable optical potentials. An increasing number of single
and many-particle phenomena has been already realized in experiments, for instance, one can
find, among others: atomic Bloch oscillations, Landau-Zener transitions, dark and bright soli-
tonic states and Josephson oscillations. There are still a number of realizable systems and effects
that might be not only simulated, but further investigated in the near future [7, 9].

Throughout the last decade much attention was paid to weakly interacting systems, for
which the fundamental physics is amazingly described through mean field approaches as, for
instance, the Gross-Pitaevskii equation. Now, in the regime of strong atom-atom interaction,
single-band Bose-Hubbard-type Hamiltonians in 1D, 2D and 3D are standard approaches due
to their accurated description of the phenomenology of in this kind of systems [7,9,12]. Some of
the most interesting effects reported in the last years are: simulation of phenomena as quantum
magnetic phase transitions [13] and magnetic frustration [14], artificial strong magnetic fiels
[15] and Higgs modes [16]. All this offers an unique opportunity for further studies on single-
and many-particle dynamics by, for instance, tuning different system parameters, which makes
possible real time dynamical passages across critical points [17] or regions characterized by
strong spectral correlations, i.e. by avoided crossings [18–21]. To study this type of controlled
processes, nowadays a very powerful method is the quantum quench/sweep. This permits to
address investigations on time-dependent phenomena as diffusion in Hilbert space, dynamical
relaxation and macroscopic properties of isolated quantum systems, say, statistical equilibrium
and further thermalization [22–24].
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This Work

In this thesis, we investigate two complex many-body systems consisting of ultracold atoms
in optical lattices, motivated by the state-of-the-art of experiments investigating higher band
physics [25, 26] and controlled dissipation [27–29]. We especially focus our attention on the
following two paradigms of the many-body physics: (i ) the two-band many-body Wannier-Stark
problem, and (i i ) a leaky one-band many-body lattice system.

For the former, we use an one-dimensional bichromatic optical lattice, in order to iso-
late the two-lowest bloch energy bands. The underlying physics is then investigated based on
a Bose-Hubbard Hamiltonian. We numerically study its spectral properties, in terms of a few
system parameters. Diffusion, localization, relaxation towards equilibrium and controlled non-
adiabatic dynamics are just examples of the physical phenomena that can be studied in our
system. For different initial conditions, we drive our system across the spectral resonances. This
is usually done by quantum sweeps/quenches in various realistic scenarios. For the open sys-
tem, we implement an effective Hamiltonian in order to characterize the spectral properties of
a one-dimensional optical lattice with spatially controlled dissipation.
This thesis is organized as follows:

Chapter 2: This chapter provides the fundamental concepts, ideas and basic physics of
ultracold bosonic atoms and optical lattices. We introduce the many-body problems that are
studied in chapters 3, 4 and 5, along with an overview of previous results. A brief state-of-the-
art of experiments with ultracold atoms is presented in order to motivated our investigation.

Chapter 3: In this chapter we formally introduce of our main system, the main questions
and the numerical techniques used to study the spectral properties of a two-band Many-Body
Wannier-Stark problem. We introduce the manifold approach based on the concept of occupa-
tion numbers, which allows a clear understanding of the many-body eigenspectrum. Through
this method we establish the conditions for the onset of spectral mixing, non-integrability and
quantum chaos, in terms of experimentally motivated parameters. We show that is possible to
make predictions about the dynamical effects as relaxation towards equilibrium. In addition,
we generalize the method in [30] to characterize spectral regions with high degree of mixing,
due to the presence of a cluster of avoided crossings.

Chapter 4: This chapter is devoted to the dynamical analysis of the Many-Body Wannier-
Stark system. We study the inter-band transport and the relaxation processes by sweeping the
system essentially across resonances. To do this, we define the Stark force as a time-dependent
parameter. Thus we investigate the role of the initial states in the dynamics. We show that
mostly all predictions from chapter 3 are consistent with the analysis in time-domain. We
show the high sensitivity of the dynamics on the spectral properties, especially, when the non-
integrability takes place. The equivalence between the various definitions of equilibrium state
is established and its connection to the manifold approach.

Chapter 5: This chapter presents the study of a single-band many-body system, which is
open by controlled in-situ dissipation. We show that by the study of the complex quantum spec-
trum, one can recognize and characterize quantum macroscopic states, and their properties in
terms of the system parameters. We show that predictions about the dynamical behaviour can
be still done from the complex spectrum as in the previous chapters (see refs. [31, 32]).

Chapter 5.3: In this last chapter we summarize the findings, present the conclusions and
open questions for future researches.
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Chapter 2

Preliminaries

2.1 Ultracold Atoms in Optical Lattices

Atomic gases near to the absolute zero temperature and optical lattices created by the inter-
ference of counter-propagating laser beams form together one of the cleanest systems created
in the laboratory. In fact, these setups allow one to emulate physical phenomena ranging from
molecular systems [33–35] to the manipulation of single atoms with high precision [27–29, 36].
Ultracold atoms in optical lattices have been used as a toy model for both, experimental and
theoretical investigations, to improve the understanding of fundamental theories of the mod-
ern physics. For instance, today one of the most challenging issues is the understanding of phe-
nomena as superfluidity and superconductivity [37].

In this thesis, we study complex many-body systems, which are modeled by using ultracold
atoms in optical lattices. Therefore, we aim this introductory chapter to present basic concepts
which shall be used throughout this work, in order to help the reader to understand better the
methods, statements and findings that will be exposed along, mainly, in the next two chapters.
Here we revisit some well-known results connected with the study of many-body systems and
end up with a brief overview of the experimental state-of-the-art, in order to put our system in
the framework of future experimental realizations of strongly correlated quantum systems.

2.1.1 Bose-Einstein Condensation

An atomic cloud, at temperature T , is predicted to undergo a phase transition when the de-
Broglie wavelength of the characteristic thermal motion,

λdB =

√

2πħ2

MkB T
, (2.1)

is of the order of the mean interparticle distance, d = ρ−1/3, where ρ is the density of the gas.
M is the the mass of the atomic cloud, kB is the Boltzmann constant and ħ is the Planck’s con-
stant. In this process the ground state of the system becomes macroscopically occupied and the
atoms form coherent "giant" matter wave giving thus rise to one of the most interesting state
of the matter, the so-called Bose-Einstein condensate [38]. This phenomenon was firstly studied
by Bose [1] and Einstein [2] in the 1920s for ideal gases which obey the Bose-Einstein statis-
tics. In the experiments, it was only observed after more than 60 years in a series of experiments
(Cornell [3,4], Ketterle [5] and Bradley [6]) in 1995, using different atomic vapors, say, rubidium,
sodium and lithium respectively.
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2.1. Ultracold Atoms in Optical Lattices

The theory states that a non-interacting gas at T = 0 consisting of a total particle number
N can be described by the product of single particle wave functions φ(~r ):

ψ(~r1,~r2, · · · ,~rN ) =
N
∏

i=1

φ(~ri ). (2.2)

The Bose-Einstein condensate is thus described by the macroscopic wave function Ψ(~r ) [39],
or also referred to as the order parameter. This is simply the wave function of the time-
independent Schrödinger equation for the single particle lowest energy state of a confining po-
tential, in which the condensation phenomenon takes place. This macroscopic quantum state
is affected by the internal atomic interaction and also by the shape of the confining potential.

In a dilute gas the dominating atomic interactions are the inelastic binary collisions, or
two-body interactions, which are treated in the context of the scattering theory. At the first
two-body level, the interaction between the atoms is described by the Van der Waals poten-
tial V (r ) = −C6/r 6 [7], which captures the main features of the atom-atom interaction. With
the help of the Van der Waals coefficient C6, it is possible to define the characteristic length
ac = (2Mr C6/ħ2)1/4, (Mr is the reduced mass of the two atoms), at which the interaction energy
equals the kinetic energy of the atomic motion. At low temperature, the regime of ultracold
atoms ∼ 10−3K, the relevant collisions are of the s-wave type. Therefore, short-range interac-
tions between the confined atoms can be described by the pseudopotential (see [7,8] for details)

Vpp (r ) = gδ(~r )
∂

∂r
(r · · · ), (2.3)

with g = 4πħ2a/2Mr , and a defined as the scattering length. In addition, magnetic and optical
Feshbach resonances are a very useful tool, since they allow one to tune of the strength of atom-
atom interaction via, for instance, resonantly binding states [40, 41]. In this way, one has the
facility of working with repulsive (for a > 0), attractive (for a < 0) or even with no interaction
between the atoms [7].

2.1.2 Optical Lattices

Optical lattices are nowadays one of the fanciest systems used in many laboratories around the
world to emulate and to investigate strongly correlated many-body quantum systems. Due to
the facilities and the high precision at controlling the parameters and geometry of an optical
lattice, these systems allow one to construct analogous models of different complex systems.
Especially, models of the solid state physics can actually be realized. The idea of quantum sim-
ulation has opened a very extense research field (see [7–9] for a review).

An optical lattice belongs to the family of potentials, in which neutral ultracold atoms can
be trapped by the interaction between their atomic dipolar momentum and the electric field.
The periodic potentials are generated by the interference of counter-propagating laser beams.
The spatial period of the resulting standing wave profile is λ/2, where λ is the wavelength of the
laser used. From the theoretical point of view, the interaction between matter (atoms) and light
(laser) can be described by the classical Hamiltonian

Hdip = ~d0 ·~E (~r ), (2.4)

where ~d0 is dipolar momentum of the atoms. Thus the force exerted by the electric field on the
atoms is given by

~Fdip = 1

2
α(ωL)∇

[

|~E (~r )|2
]

, (2.5)

4



2. Preliminaries

with α(ωL) standing for the atomic polarizability and ωL is the field frequency. Due to interac-
tion with the electric field the atoms experience an optical dipole potential given by

Vdip(~r ) = 3πc2

2ω3
0

Γ

∆
〈|E (~r )|2〉, (2.6)

with ∆=ωL −ω0 being the detuning between the frequency of the field and the atomic transi-
tion frequency ω0. Here the atom is treated as two-level system, with decay rate given by Γ. An
optical potential is repulsive for the blue detuning∆> 0 and attractive for the respective red one
∆< 0 [7]. Depending on the profile of the laser used to create the optical potential, the shape of
the lattice can be varied. For instance, the simplest potential is generated by a gaussian profile,
which results in the dipole potential

Vdip(~r ) ≃−V0e−2r /ω2
z sin(kL z), (2.7)

where kL = 2π/λ is the recoil momentum of the atoms in the lattice, ωz is an axial trapping fre-
quency [7] and V0 is the maximum depth of the potential. 2D and 3D optical lattices can be cre-
ated by modifying the angle between two- or three counter-propagating laser beams. They are
usually set to be orthogonal to each other. In this work, we are interested in an one-dimensional
optical lattice generated by superposing two standing waves with spatial periodicities λ and λ/2
as sketched in Fig. 2.1 (left panel). Our dipole potential reads

V (x) =−V0(cos(2kL x)+ s0 cos(4kL x +φ)), with s0 =
V1

V0
, (2.8)

where φ is the phase difference between the two cosinusoidal waves with amplitudes V0 and V1

respectively. This engineered potential allows one to isolate the two-lowest Bloch bands of the
corresponding band structure, hence we can neglect the effects of the third and higher bands
(see Fig. 2.1). This setup is commonly referred to as the miniband structure or bichromatic
optical lattice, and its properties can be easily controlled by means of the parameters s0 =V1/V0

and φ [20, 42].
By adding an external field Vws(x) = F x [43], we can thus define the Wannier-Stark system.

A standard way to experimentally implement the latter system is done by inducing a shift in
the frequencies of the counter-propagating beams. This can be done by using an acusto-optic
modulator [9], which results in the induction of an accelerated motion of the final standing
wave. Later on we shall show how such an equivalence can be mathematically set through a
gauge-type transformation.

Bloch and Wannier Functions

Given a spinless particle in a periodic potential described by the Hamiltonian

Ĥ0 =− ħ2

2m0

∂2

∂x2
+V (x), with V (x +dL) =V (x), (2.9)

with dL being the spatial period of the lattice, the respective eigenfunctions of the system are
the so-called Bloch functions. They are obtained by multiplying the free particle wave function
with an enveloped function which contains the information of the potential V (x), i.e. it has the
same periodicity. These functions are given by

ψ
β

k
(x) = e i kx u

β

k
(x), with u

β

k
(x +dL) = u

β

k
(x), (2.10)

5



2.1. Ultracold Atoms in Optical Lattices

0

2

4

6

8

10

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
/E

R

k/kL

∆
1

∆

∆2

Figure 2.1: (Left) Sketch of the construction of the bichromatic optical lattice in Eq. (2.8). The peri-

odical potential is generated using two optical potentials with wavelength λ and λ/2. h1 = V0(s0 − 1),

h2 =V0(s0+1) and dL represent the two maxima of the potential and the spatial period of the new lattice

respectively. (Right) Typical band structure for the potential shown in the left panel. ∆, ∆1 and ∆2 rep-

resent the energy separation between the Bloch bands at different values of k , which can be modified

by the lattice parameters s0 and φ. In this way, it is possible to energetically isolate the two-lowest Bloch

bands from the rest of the spectrum (see details in App. A.1).

where k is the magnitude of the momentum of the particle, commonly called quasimomen-
tum. β is the band index. The periodicity of the potential V (x) implies that the eigenergies of

Hψ
β

k
(x) = εβ,kψ

β

k
(x), are also periodic in the quasimomentum space. Therefore, the study of

the system properties is reduced to a set of energies lying within the so-called First Brillouin
zone (FB), i.e. εβ,k ∈ [−π/dL,π/dL). The extented spectrum ε vs k is obtained by shifting the
momentum by multiples of 2π/dL. In Fig. 2.1(right panel) we show the respective energy dis-
persion ε(k), or band structure of the system, for the bichromatic optical potential in Eq.(2.8).
The above treatment is the content of the famous Bloch theorem, which was originally intro-
duced by Felix Bloch to describe the behavior of electrons in crystals (see refs. [44, 45]).

Wannier Functions

The Bloch waves defined in Eq. (2.10) are functions extended over the entire lattice system and
form a basis of the Hilbert space. Yet, one can introduce a new set of localized functions (in

situ), which form also a suitable basis of the Hilbert space [46]. An immediate application of
these functions is given by the construction of the so-called tight-binding Hamitonians. These
latters are the starting point of different researches on single particle and many-body phenom-
ena within the context of optical lattices.

The Wannier functions are defined as Fourier transform of the Bloch functions Eq. (2.10)
as

χβ,l (x) =

√

dL

2π

∫1

−1
e−i xl kψ

β

k
(x) dk, (2.11)

with xl = dLl , and l labels the lattice site. The analyticity of the Bloch functions must be guaran-
teed in order to obtain the optimal highly localized Wannier functions [47]. This nontrivial issue
can be solved by setting conveniently the argument of the exponential function in Eq. (2.10), i.e.

6
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by considering a more general definition of the Bloch functions given by

Ψ
β

k
(x) = e iθ(k)ψ

β

k
(x), θ(k +2π/dL) = θ(k), (2.12)

with an arbitrary periodic function θ(k). A clever choice of the latter function will bring us to
optimally localized Wannier functions which drop exponentially as |x| > dL [47–50]. That is

lim
x→±∞

χβ,l (x) ∼ e−h|x|. (2.13)

In App. A.1 we discuss in detail the calculation of both, Bloch and Wannier functions for the
bichromatic optical potential defined by Eq. (2.8). Let us now explicity show the above men-
tioned application of these functions.

2.2 Tight-Binding Approach

In this section we briefly show the derivation of the tight-binding model. This is one of the
most used approaches to study quantum lattice systems, and it is also very useful in solid
state physics and condensed matter phyisics [47]. In order to obtain the tight-binding Hamil-
tonian ĤT B , we use the Wannnier functions (2.11). Every position in the coordinate space can
be reached through the translation operator Ŝxl

, with xl = ldL. For simplicity we denote Wan-
nier functions by the ket |xl ,β〉, where β is the band index. A Hamiltonian Ĥ in the Wannier
representation is obtained by using closure and orthonormalization relations of the Wannier
functions given by

∑

l ,β |xl ,β〉〈xl ,β| = 1, 〈xl ,β|xl ′ ,β
′〉 = δβ,β′δl ,l ′ , (2.14)

as follows
1Ĥ1 =

∑

β,β′
∑

l ,l ′〈xl ,β|Ĥ |xl ′ ,β
′〉|xl ,β〉〈xl ′,β

′|. (2.15)

By using the equation (2.11) with the integral replaced by a summation and the definition of the
Bloch functions, we obtain the next relation

〈xl ,β|Ĥ |xl ′ ,β
′〉 =

∑

k,k′ e−i (kl−k′l ′)dL

∫

d x (ψ
β

k′ (x))∗H0(x)ψ
β′

k
(x)

=
∑

k,k′ e−i (kl−k′l ′)dLδ(k −k ′)δβ,β′εβ,k

= δβ,β′
∑

k
e−i k(l−l ′)dLεβ,k ≡ E

β

l−l ′ . (2.16)

The Hamiltonian is thus reduced to

Ĥβ = E
β
0

∑

l
|xl ,β〉〈xl ,β|+

∑

l ,l ′ E
β

l−l ′ |xl ,β〉〈xl ′ ,β|, (2.17)

where the coefficient E
β

l−l ′ drops to zero as a function of |l − l ′|. For different applications and
taking advantage of the localization properties of the Wannier functions, the equation (2.17) can
be effectively reduced to the nearest-neighbor problem. This is the the tight-binding approach

[45], whose Hamiltonian is given by

ĤT B = E
β
0

∑

l
|xl ,β〉〈xl ,β|+

∑

〈l ,l ′〉 J
β

l ,l ′ |xl ,β〉〈xl ′ ,β|. (2.18)
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Here 〈l , l ′〉 denotes the nearest-neighbors, and J
β

l ,l ′ is the hopping strength between the wells xl

and xl ′ . The symmetry properties of the Wannier functions are given by

χβ,l (−x) = (−1)β−1χβ,l (x). (2.19)

The tight-binding approximation serves to derivate the celebrated Bose-Hubbard Hamilto-
nian [12], which describes the behavior of ultracold atoms trapped in an optical lattice. We
shall see in Chapters 3 and 4, that, under certain conditions, our many-body Hamiltonian can
be reduced to a TB-type effective model based on higher band excitations. This shall be done
in order to understand the origin of an effect referred to as localization in the energy space, first
studied by reported Levitov et. al. [51] and also studied by Izrailev et al. [52, 53]. In addition, the
spatial localization of the electron (atom) wave functions in disordered system is also investi-
gated through TB-type Hamiltonians, where the Anderson model is the famous one [54, 55].

2.2.1 The Wannier-Stark System: Some Known Results

Weakly interacting many-body and single particle limits of the Wannier-Stark system have
been both, theoretically and experimentally studied by several authors in the meanfield regime
[9,43,56,57]. Therein the phyisics is well described by the nonlinear Schrödinger equation, also
called as Gross-Pitaevskii equation. Yet, the scenario of strongly correlated particles in tilted op-
tical lattices was mostly investigated in the single-band approximation [58, 59], where some in-
teresting effects as simulation of quantum Ising chains using ultracold atoms have reported (see
ref. [60]). Along with the experiments, there are also different theoretical works where many-
body effects in tilted optical lattices have been studied in detail [19, 30, 61, 62].

In this section, we want to summarize some known results, especially for the single particle
Wannier-Stark system. The Hamiltonian reads

Ĥ0 =− ħ2

2m0

∂2

∂x2
+V (x)+F x, with V (x +dL) =V (x), (2.20)

where F is a static external force, which is usually treated as a control parameter. By using the
tight-binding approximation described in the previous section, we rewrite the latter Hamilto-
nian in the single-band approximation as

ĤT B =
∑

l
(E0 +dLlF )|xl 〉〈xl |−

J

2

∑

〈l ,l ′〉 |xl 〉〈xl ′ |. (2.21)

This Hamiltonian can be easily diagonalized and its energy spectrum is found to be given by
εl = E0 + ldLF [59]. The eigenfunctions are given by

|wl 〉 =
∑

m

Jm−l

(

J

2dl F

)

â†
m |0〉, (2.22)

where Jm−l (x) is a Bessel function of the first kind. These states are commonly referred to as
Wannier-Stark states, and they are localized functions in the coordinate space at the l th lattice
site. Schematically, for a fixed force, the eigenenergies of the Wannier-Stark system represent
a set of equidistant states, so-called Wannier-Stark ladder [43] as shown in Fig. 2.2. For every
Bloch band one can construct its respective Wannier-Stark ladder, which are energetically sep-
arated by an energy gap, as for instance, ∆g in the two-band approximation introduced in the
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RET

x
Figure 2.2: Resonantly enhanced tunneling (RET) condition for the nearest neighboring double wells,

i.e., for a first order resonance.

previous section. A well-known feature of the Wannier-Stark system is that its respective eigen-
functions are metastable states, because of the unbounded potential F x. The lifetime of the
Wannier-Stark state is given by τβ = 1/Γβ, which implies that the eigenenergies must be cor-
rected by adding the complex part as follows

ε
β

l
= Eβ+ ldLF − i

Γβ

2
. (2.23)

Note that every band has its own decay rate Γβ. This is schematically represented by the wider
single particle levels in Fig. 2.2. In this manner, the Wannier-Stark levels are embedded reso-
nances in a continuum defined by the equation Eq. (2.23). For more details of the calculation of
decay rates we suggest the reference [43] and the perturbative approach reported by Tomadin
et al. [58] in the many-body scenario.

Bloch oscillations are one of the most interesting phenomena that can be seen in the
Wannier-Stark system [63]. Neglecting the effects of higher bands, the evolution of gaussian-
shaped initial condition with quasimomentum k = 0 (and width ∆k ≪ F B) shows that the wave
packet undergoes oscillations within the First Brillouin zone. The generating mechanism of this
effect is the external force, since it accelerates the wave packet and the period of those oscilla-
tions is given by TB = 2πħ/dLF . This time scale is usually referred to as the Bloch period.

Landau-Zener Tunneling

A second and very important phenomenon is the Landau-Zener transition, which is also in-
duced by the external field. Through this mechanism, particles lying in the lowest Bloch band
can be promoted to higher bands via dynamical quantum tunneling. In this manner, when
a system, beforehand performing Bloch oscillations, will undergoes changes in its structure
through particle losses. This effect is naturally enhanced when two different Wannier-Stark lad-
ders get close to each other at values of the force approximately given by

F|l−l ′| ≈
∆β,β′

dL|l − l ′| , (2.24)

where ∆β,β′ is the energy separation between the Bloch bands (see Fig. 2.1). l and l ′ are the
lattice sites, whose lower (upper) and upper (lower) single particle levels become degenerate
respectively. This scenario is sketched in Fig. 2.2, where the resonant tunneling occurs between
states at distance |l − l ′| = 1. Following the notation from ref. [64], we define r = |l − l ′| as the
order of resonance with r ∈ Z. Hereafter, the vicinity of the Stark force Fr will be referred to as

9



2.3. The Bose-Hubbard Hamiltonian

the resonant regime (or RET regime)1. Plötz et al. [64] has also computed a more accurate for-
mula for the single particle resonance between the two lowest Bloch bands, which contains the
dipole-like coupling strength C0. This coupling will be defined in the next section. The formula
reads

Fr =
∆g

dL

√

r 2 −4C 2
0

. (2.25)

In the time-domain, the Bloch oscillations are not completely suppressed by the Landau-Zener
transitions. The finite occurrence probability can be obtained using the celebrated Landau-
Zener formula [65, 66]

PLZ = e−π/γ, with γ= 4α

(∆E )2
, (2.26)

which is valid only for a two-level system. When two single particle states are coupled via the
Stark force, this manifests itself by the appearence of an avoided crossing (AC). It means, that
the individual levels repel each other since they are not allowed to cross, due to a symmetry
breaking occurs. Yet, the avoided crossing is very useful spectral property and it will be amply
studied in Chapter 4. This spectral feature allows one to study three different types of dynamical
transport, when concerning the promotion of particles to excited states and vice versa (see for
example ref. [10]). The latter process can be done, for instance, by suddenly quenching the Stark
force F until the resonant possitions Fr and afterwards letting the system freely evolves. Another
way is by setting the external force as a time-dependent parameter F (t ). In this way, one can
sweep the system across the avoided crossing of width ∆E , with a predefined sweeping rate α

in Eq.(2.26).
Landau-Zener theory allows one to compute the expected decay rate ΓLZ , due to the cou-

pling of the particles with the continuum, via these repeated tunnelling processes. This is given
by

ΓLZ = ωB

2π
exp

[

−π2

32

∆E 2

dLF ER

]

, (2.27)

where ER denotes the recoil energy and ωB = 2π/TB (see ref. [67, 68] for details).
So far, we have introduced a very important phenomenon: Landau-Zener tuneling. This

defines the main properties of the system that we will study in most of this thesis. Let us now
quickly show how ultracold atoms are theoretically studied in the tight-binding regime.

2.3 The Bose-Hubbard Hamiltonian

In this section we sketch the derivation of Bose-Hubbard Hamiltonian. This is a standard pro-
cedure, which can be found in different textbooks and in many scientific papers. To begin with,
let us consider the spinless single particle Hamiltonian Ĥ0 in Eq. (2.9). Here it is worth pointing
out that one of the great advantages of the optical lattices is that in those systems the orbital de-
gree of freedom can be separated entirely from spin and charge [7, 25]. We can use the Wannier
functions to define field operators

φ̂(x) =
∑

β,l

χβ,l (x)â
β

l
, (2.28)

1RET stands for Resonantly Enhanced Tunneling, see ref. [56] for details.
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where β and l are the band and lattice site indexes respectively. To change the representation of
our Hamiltonian to the corresponding one in the second quantization formalism, we can use
the transformation

(Ĥ ) =
∫

d x φ̂†(x)H(x)φ̂(x). (2.29)

The interparticle interaction is considered as a two-body process, which can be described by
the pseudopotential (2.3) [7]. For 1D optical potentials the interparticle interaction is given by
the formula

Vpp = g1D

∫

d x

∫

d x′ ψ̂†(x′)ψ̂†(x′)δ(x −x′)ψ̂(x)ψ̂(x), (2.30)

where the interaction strength is given by g1D = 4πa1D /Mr . a1D is the reduced one-dimensional
scattering constant [69]. In the following we set ħ = 1 and the energy unit is given by the recoil
energy Er = k2

L/2m. In addition, we use the rescaling

k → k/kL, x → kL x, Vi →Vi /Er . (2.31)

By using the field operators in Eq. (2.28), we obtain the following expressions

Ĥ0 =
∑

l ,l ′

∑

β,β′
a†

l ,β
al ′,β′E

β

l−l ′δβ,β′ (2.32)

V̂pp = g1D

∑

l1,l2,l3,l4

∑

β1,β2,β3,β4

M
β1β2β3β4

l1l2l3l4
a†

l1,β1
a†

l2,β2
al3,β3 al4,β4 (2.33)

with the prefactors defined by

J
β

l−l ′ ≡
∫

χ∗
β(x −xl )H0(x)χβ(x −xl ′) d x = E

β

l−l ′ (2.34)

M
β1β2β3β4

l1l2l3l4
≡ g1D

∫

χ∗
β1

(x −xl1 )χ∗
β2

(x −xl2 )χβ3 (x −xl3 )χβ4 (x −xl4 )d x. (2.35)

One can thus obtain the corresponding Bose-Hubbard Hamiltonian for an infinite number of
bands. In absence of the external fields the Bloch bands can be coupled via the interparticle
interaction Eq. (2.33). In the single band approximation the optical potential is engineered to
have only one period (s0 = 0 in Eq. (2.8)). The wells of the lattice are deep enough, in order to
guarantee that the gap ∆1 is larger, and the excited bands can be disregarded (see Fig. 2.1). In
this way, the single-band Bose-Hubbard Hamiltonian is given by

Ĥ =
L
∑

l=1

− J

2

(

â†
l+1

âl +h.c.
)

+
L
∑

l=1

W

2
n̂l (n̂l −1)+

L
∑

l=1

E0n̂l . (2.36)

We shall later on discuss some of the properties of this Hamiltonian, which is mostly used in the
chapter 5. Let us now introduce our main system: the many-body Wannier-Stark system based
on a two-band Bose-Hubbard model.
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Figure 2.3: The figure sketches the process considered in the two-band many-body approximation de-

scribed in the main text. We must keep in mind that the potential used in our realization has a double-

well structure instead of the single one used in previous works (see for instance Fig. 2.4).

2.3.1 Two-Band Many-Body Wannier-Stark Hamiltonian (TBMWSH)

In analogy with the last section, we can transform the external field Vws(x) = F x into the second
quantization formalism, by using the field operators (2.28) as follows

F ˆ(x) = dLF

∫

φ̂†(x) ·x · φ̂(x) d x, (2.37)

which in terms of the Wannier functions reads

F ˆ(x) = dLF
∑

l ,l ′
C

ββ′

l−l ′a
†
l ,βal ′,β′ . (2.38)

The prefactors given by

C
ββ′

l−l ′ ≡
∫

χ∗
β(x)xχβ′ (x −dL(l − l ′)) d x =

∫

χ∗
β(x)xχβ′ (x +dL(l − l ′)) d x. (2.39)

The two-band approximation is obtained by conviniently setting the values for V0, s0 and
φ in Eq. (2.8). We choose those parameters such that the gap ∆2 is much larger than the gap be-
tween the two lowest Bloch bands, i.e.∆1 (Fig. 2.1). The regimes of validity of this approximation
are shown in detail in App. A.1. One can notice that the two lowest Bloch bands become flat-
ter as s0 increases. In this manner, the miniband structure is expected to be a very clean setup
with negligible dissipation to higher bands. Under the latter considerations and, by defining the
hopping terms (see Fig. 2.3) and the energy gap as

Ja ≡ J
β=a
1 , Jb ≡ J

β=b
1 , ∆g ≡∆1 = |E b −E a | = |Jβ=b

0 − J
β=a
0 |, (2.40)

and interparticle interaction as

Wa ≡ 2M1111
l l l l , Wb ≡ 2M2222

l l l l , Wx ≡ 2M1122
l l l l , (2.41)

the two-band Bose-Hubbard Hamiltonian finally reads

Ĥ =
∑

β=a,b

[

L
∑

l=1

−
Jβ

2

(

β̂†
l+1

β̂l +h.c.
)

+
L
∑

l=1

Wβ

2
n̂
β

l
(n̂

β

l
−1)

]

+
L
∑

l=1

2Wx n̂a
l n̂b

l +∆g n̂b
l +

Wx

2

(

b̂†
l
b̂†

l
âl âl +h.c.

)

(2.42)

+
L
∑

l=1

2
∑

s=0
dLFCs (â†

l+s
b̂l +h.c.)+dLF

L
∑

l=1

∑

β=a,b

l n̂
β

l
. (2.43)
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This is our workhorse that will be used in order to describe physics of the many-body Wannier-
Stark system. Here, we label the two lowest Bloch bands by β = a,b and dL = 2π. The multiple
processes involved by our Hamiltonian are sketched in Fig. 2.3 and 2.4. We shall discuss in detail
the properties of Ĥ in Chapter 3. Let us now make a brief overview of some well known and
interesting results on chaos in the tilted Bose-Hubbard Hamiltionian.

2.3.2 Quantum Chaos and the Bose-Hubbard Model

Throughout this work, a very important concept of the modern quantum physics will come
up recurrently, especially, in Chapters 3 and 4: Quantum chaos. This concept has been amply
discussed by physicists and mathematicians over more than 40 years, and it has been named
in different ways due to the lack of a precise definition. Especially for those systems with few
degrees of freedom without classical analogous. Some authors suggest various names, for in-
stance, Quantum complexity and wave chaos [52], when referring to the appearence of signa-
ture of chaos in quantum mechanical systems (see ref. [70] for a review). Chaos in the classical
context can be defined as the loss of integrals of motions, or through the study of the Lyapunov

exponents [71]. For quantum systems, the most accepted definition of chaos is established by
the Bohigas-Giannoni-Schmit conjecture [72]. This sets the connection between spectral fluc-
tuation properties of quantum systems that are chaotic in the classical limit, and the predictions
from the celebrated random matrix theory (RMT) (see [70, 73, 74] and references therein).

Random matrices were introduced by Wigner in the 1960s [73] to study problems in nu-
clear physics. Today, RMT is a powerful statistical tool to establish the conditions for the onset
of chaos in quantum systems through the analysis of their respective quantum energy spec-
trum. In this work, we aim to study the spectral properties of the many-body Wannier-Stark
system. It shall be shown that in the vicinity of the resonant regime (RET) (Eq.(2.25)), the degree
of complexity is drastically enhanced by the interaction. This manifests itself by the presence of
large cluster of avoided crossings. In this scenario, RMT predictions become very useful to un-
derstand the underlying phyisics of our many-particle system. Let us now define some robust
RMT measures.2

Given the energy spectrum {εi } of a Hamiltonian system, random matrix theory predicts
that distribution P ({si }) of levels spacings si = (εi+1 −εi )/〈{εi+1 −εi }〉 must follow the three fol-
lowing types of gaussian distribution

P (s) = π

2
s exp

(

−π

4
s2

)

, (GOE), (2.44)

P (s) = 32

π
s2 exp

(

− 4

π
s2

)

, (GUE),

P (s) = 218

36π
s4 exp

(

− 64

9π
s2

)

, (GSE).

(2.45)

The type of ensemble distribution depends on the properties of the Hamiltonian. If the Hamil-
tonian matrix is real and symmetric, and invariant under time-reversal operations, the distribu-
tion P (s) is expected to be that one for the Gaussian Orthogonal Ensemble (GOE). This is usually
referred to as Wigner surmise. For Hamiltonians with broken time-reversal symmetry, the dis-
tribution P (s) follows the Gaussian Unitary Ensemble distribution (GUE), and for those systems

2 All RMT tools used in this work are summarized in App. C.
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with time-reversal symmetry and no rotational symmetry, we have the Gaussian Symplectic En-

semble (GSE) distribution [70].
The Bose-Hubbard Hamiltonian posseses a time-reversal symmetry when it is diagonal-

ized in the Fock states basis. Therefore the respective level spacing distribution must be com-
pared to GOE ensemble in the fully chaotic regime. In the last years, Kolovsky et al. [21] studied
in detail the spectral properties of the single-band tilted Bose Hubbard Hamiltonian

Ĥ =
L
∑

l=1

− J

2

(

â†
l+1

âl +h.c.
)

+
L
∑

l=1

W

2
n̂l (n̂l −1)+

L
∑

l=1

dLF ln̂l . (2.46)

In this paper it was shown that the Hamiltionian (2.46) undergoes full transition to quantum
chaos, when the interparticle interaction W is comparable to the hopping strength J . This is
valid for filling factors N/L ∼ 1 and finite Stark force F . In addition, they reported the exis-
tence of a temporal symmetry, when the greatest common divisor of N and L is an integer, i.e.
gcd(N ,L) ∈Z (see more details in ref. [59]).

Other authors have amply studied possible extensions of the findings reported by Kolovsky
and co-workers. For instance, Tomadin et al. [58,75] studied a pertubative approach to the open
system. They show that by the statistical analysis of the decay rate of the complex eigenener-
gies, it is possible to infer about the complex dynamics in a Landau-Zener scenario. In another
interesting work, H. Venzl et al. [19] reported the existence of robust solitonic-like states, when
sweeping the system across the quantum chaotic regions from the energy spectrum. Such a
kind of states is also studied by Plötz et al. [30], who show that, up to these latter states, the
spectral regions containing a large set of avoided crossings (AC) can be characterized by the
RMT distributions for the widths of the AC. Furthermore, it is shown that the quantum fidelity
is a very good parameter for ACs detection (see D and C for details).

This is just a short overview showing the big interest of the community to continue study-
ing the Bose-Hubbard-type Hamiltonians due to their overwhelming complexity (see refs.
[76–78]), and also because is realizable in experiments [79]. We shall show throughout this work
more interesting phenomena that can be understood with effective models.

2.3.3 On the Mean-Field Description

Motivated by the macroscopic occupation of the ground state of the confining potential, the
field operator Ψ̂(~r , t ) can be constructed using the wave function of the Bose-Einstein conden-
sate (sec. 2.1.1). This can be replaced by its expectation value as

Ψ̂(~r , t ) ≈
√

N0Ψ0(~r , t )+δΨ̂(~r , t ). (2.47)

Here N0 ≫ 1 is the occupation number of the ground state. Ψ0(~r , t ) is a complex function whose
modulus represents the condensate density n0(~r , t ) = |Ψ0(~r , t )|2. In the limit of small quantum
depletion of the condensate, δΨ̂(~r ) → 0, the time evolution of the wave function Ψ0(~r , t ) is ob-
tained through the Heisenberg equation Ansatz:

iħ ∂

∂t
Ψ̂(~r , t ) = [Ψ̂(~r , t ), Ĥ ]. (2.48)

This yields to the famous time-dependent Gross-Pitaevskii equation (GPE)

iħ ∂

∂t
Ψ0(~r , t ) =

(

− ħ2

2m
∇2 +Vct(~r )+ g̃ |Ψ0(~r , t )|2

)

Ψ0(~r , t ), (2.49)
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where Vct(~r ) is the confining potential and

g̃ = 4πħ2a

m
N = g N , (2.50)

with the interaction strength g defined as in the previous section (see ref. [8, 80] for details of
the derivation). In the one-dimensional context, the GPE is obtained by replacing g → g1D . That
is, by following the quasi-one-dimensional approximation introduced by Olshanii ref. [69]. Yet,
for deep enough optical lattices, the GPE can be reduced to the so-called "tight-binding regime"
(sec. 2.2). The equation (2.49) is thus reduced to the discrete nonlinear Schrödinger equation

iħ d

d t
Ψ0,l = J (Ψ0,l+1 +Ψ0,l−1)+W̃ |Ψ0,l |2Ψ0,l +ǫlΨ0,l , (2.51)

where J is the nearest neighbor coupling, i.e. the hopping. ǫn is the linear on-site energy and W̃

is the nonlinear parameter defined by W̃ = W /N . These coefficients can be computed by the
relations [9]:

J ≃ −
∫

d x

[ ħ2

2m

(

∂xχl ·∂xχl+1
)

+χl Vctχl+1

]

(2.52)

ǫl =
∫

d x

[ ħ2

2m

(

∂xχl

)2 +Vctχ
2
l

]

(2.53)

W̃ = g1D N

∫

d x|χl |4 (2.54)

where χl (x) is the single-band Wannier function defined in Eq. (2.11).
The mean-field limit works out at describing the weakly correlated systems of N particles,

with N ≫ 1. This means that the GPE can equivalently be obtained by rescaling the single-
band Bose-Hubbard Hamiltonian (2.46) by the total particle number N . This is done by defin-
ing the c-numbers as â/

p
N → c, where the commutator [â, â†] → 0 as N → ∞. A surprising

effect appears when the effective interaction energy W N beats the hopping strength J . Under
this circumstance, the lowest-energy solution of the discrete nonlinear Schrödinger equation
is a localized function around one lattice site. This phenomenon is the so-called discrete self-

trapping and it has been already observed in different laboratories [8, 9]. The dynamics of the
Bose-Einstein condensate is characterized by the ratio

Λ= W N

J
, (2.55)

and the critical value for self-trapping is given by Λ> 2 [9]. We shall see in Chapter 5 that by the
interplay between the nonlinear parameter W̃ and controlled dissipation mechanisms [31, 32],
very interesting phenomena take place. For instance, we shall see the formation of many-body
solitons. These robust states appear exactly in the self-trapping regime. Through the analysis
of the quantum spectrum of the metastable many-body system, we show that, one can easily
identify relatively stable quantum states, corresponding to previously predicted solitonic many-
body structures [31, 32].

So far, we have presented important features and well-known results for Bose-Einstein
condensates, and ultracold atoms in optical lattices. This overview concerned mostly the the-
oretical tools and proposals for the realization of weakly and strongly correlated many-body
systems. The next section will be devoted to a short summary of the relevant up-to-date exper-
iments realizing the type of systems studied here.
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2.4. Experimental Realizations

Figure 2.4: Dipole-induced tunneling processes. Every resonance r has s = 0,1, ..,r,r +1, ..,L −1 inter-

band coupling terms with transition strengths FCs .

2.4 Experimental Realizations

This work presents theoretical results on both, static and dynamical spectral characterization
of the two-band many-body Wannier-Stark system. Towards future experimental realizations of
our system, we set some reasonable modifications with respect to the model studied by Plötz
[81]. These are:

• We engineer our optical lattice to be a periodic chain of double-well traps. This is done
by introducing a second lattice with half the spatial period of the original one. This new
lattice system is shown in the left panel of Fig. 2.1 along with their respective band struc-
ture. As mentioned previously, in order to get rid off of the effects induced by the third and
higher bands, our setup can be changed at will using the lattice parameters s0 and φ. With
them, and for a not necessarily deep lattice V0 ≈ 5 we can make the ratio ∆1/∆2 ≪ 1. This
is straightforwardly obtained for φ = π and s0 Ê 1 (see Fig. A.2). Under such a condition
the two-band Bose-Hubbard Hamiltonian (2.42) is a very well isolated system.

• The main modification is the introduction of the dipole-induced inter-band couplings
with strengths Cs>1 (see Eq. (A.18)). These transitions are sketched in Fig. 2.4. In previ-
ous works, only the transition C0 has been considered. We shall show the main changes
introduced by the additional long-range couplings.

With the rapid advances in the field of ultracold atoms in optical lattices, today there are
many different proposals to simulate quantum phenomena. Most of them pay much attention
to the underlying physics emulated by the single-band Bose-Hubbard Hamiltonians [7, 9, 12].
Now it is possible to load higher Bloch bands with high precision using different techniques.
But in most of the experimental studies used 2D or 3D lattice structures (mainly to map out
the respective Brillouin zones). In our case, we consider an one-dimensional system, in which
Landau-Zener tunneling is the signature of the participation of higher bands in the dynamics.
This phenomenon has been already studied in many different experiments (see [9, 10] for an
overview).

Let us make an overview over the experimental ingredients at hand:

Bichromatic Potentials

It is already well estblished that in experiments with optical lattices there is a high controllability
of the parameters. Since the period of the standing wave can be modified using tunable lasers,
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to control the spatial period dL is not a difficult issue. In this way, single particle energy bands
(Bloch bands) are nowadays routinely engineered in experiments using a bichromatic optical
potential of the kind [82, 83]

V (x) =−V0
[

cos(2kL x)+ s0 cos(4kL x +φ)
]

.

Apart from the observation of atomic Bloch oscillations and Landau-Zener tunneling [9,10,
56, 57], bichromatic potentials were implemented to study atomic interference in momentum
space, the so-called Stückelberg interferometry [83], also reported for a single-periodic optical
lattice [84–87].

Ring traps

Boundary conditions are another important ingredient in our system. In the numerical imple-
mentation of our Hamiltonian (2.42), we study its gauge-transformed version [59], that allows
us naturally to assume periodic boundary conditions (PBC). In that context, our system might
be implemented into a ring-shaped optical lattice. Nowadays, there are several observations of
trapping of ultracold atoms in ring-shaped potential. For instance, the creation of persistent
currents of Bose-Einstein condensates with lifetimes ∼ 10 s as reported in refs. [88–91]. Other
authors, for example, Gaunt et al. [92], have reported experimental protocols based on digital
holography to create atom traps with well defined background potential, i.e. with differently
shaped optical confinements.

Tilted potentials and relaxation dynamics

In the literature one can find a number of papers, whose researches are based on the one-band
approach. A famous phenomenon was observed by Greiner et. al. [13, 79]. Therein, they re-
ported the simulation of the phase transition between superfluid and Mott-insulator states. Re-
cently, a quantum antiferromagnetic spin chains was experimentally realized by sing tilted op-
tical lattices [60]. It was also experimentally observed that 1D strongly correlated many-particle
systems can undergo relaxation towards equilibrium [93]. Theoretical studies on this kind of
systems are based often in DMRG simulation [94], which in most of the cases use only for single-
band Hamiltonian. In chapter 4, we aim to study the induced relaxation of predefined initial
many-body states by means of quantum sweeps and quenches. Our calculations are based on
the numerically integration of the time-dependent Schrödinger equation, or on a direct diago-
nalization of the many-body Hamiltonian (2.42).

Experiments in higher bands

In the framework of tilted periodic potential, Holthaus et al. showed the basis for the exper-
imental realization of well-known phenomena referred to as Bloch oscillation and Landau-
Zener transitions using of ultracold atoms [65, 95, 96]. These phenomena that are originally
predicted for solid state systems, can already be studied in different experimental setups (see
refs. [9,56] and references within). However, all these works are based on mean-field predictions
through the GPE 2.3.3, which is essentially governed by the single particle physics.

As we shall see in the chapters 3 and 4, by including the second band, some other inter-
esting many-body effects can be adressed. These becomes more interesting especially in the
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domain of strongly interacting Wannier-Stark ladders. In a recent work by Arimondo et al. [10],
it was reported that it is experimentally possible to create protocols to drive quantum systems
across an avoided crossing, in order to preparate specific quantum states. To be more precise,
they studied the super-adiabatic dynamics in a two-level sytem to obtain high-fidelity of the
quantum transformation of the initial state prepared in the ground state into the final excited
state. The mechanism for such a population transference is the Landau-Zener tunneling. We
shall see that the kind of dynamical evolution presented for this simple system can be imple-
mented in a many-body scenario, as set by our tilted two-band Bose-Hubbard model (2.42).
There, the complexity is enhanced due to the clustering of ACs, induced mainly by the interpar-
ticle interaction. This is a perfect setup to study multi-state transitions, quantum diffusion and
relaxation.

In a more general sense, the interest on the physics of higher Bloch bands has increased in
the last years, whether in one-, two- and three dimensional optical lattices. Due to the two-fold,
three-fold and higher-order degeneracy of the Wannier states, The creation of exotic states
in higher bands (p,d , f -orbitals) has been reported in several experiments [25, 26, 97, 98]. For
instance, Wirth et al. [25] showed that by using bosonic rubidium-87 atoms trapped in the
s-orbital of 2D optical lattice, it is possible to promote the atoms to the p-orbital via resonant
tunneling. The lifetime of the bosons in such an orbital can be made long enough (∼ 20 ms) by
using double-well optical lattices, in order to establish coherence and perform measurements.

After this short overview, we see that the techniques to manipulate ultracold atoms in op-
tical lattices have been amazingly improved over the last years. It is also remarkable that, today
the physics of a few-body system can also be observed in the labs as reported by Jochim et
al. [99]. The future is then very promising for the kind of setups that as those investigated in this
work. Therefore, our system can be thought to be experimentally motivated, thus expecting fu-
ture realizations of some of the predicted many-body effects that we will present throughout
this work.
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Chapter 3

Many-Body Wannier-Stark System: Spectral

Analysis

Among the many interesting systems that can be studied using ultracold atoms in optical lattice
setups, one can find the Wannier-Stark problem (see sec. 2.2.1). The main goal of this chapter is
to present a detailed study of the properties and emerging phenomena of this system, with spe-
cial focus on the strongly interacting many-body regime. As mentioned in the previous chapter,
the tilted single-band Bose-Hubbard model has been amply studied. In this, the onset of quan-

tum chaos is achieved by applying an external Stark Force [19, 30, 43, 58, 59]. We now focus our
efforts on an extended version of this problem: the two-band system. Special emphasis is put on
the mechanisms to couple the Bloch bands, in order to make predictions on the diffusion, and
relaxation dynamics towards equilibrium. Some of these effects can be steered by the important
parameters as: the Stark force, interaction strength and potential depth.

We start our study with an characterization of the the many-body Wannier-Stark energy
spectrum. It shall be shown that the transition between chaos and spectral regularity can de-
termined by mainly three parameters: the filling factor of the optical lattice, the energy gap
between the Bloch bands and the order of resonance Eq. (2.25). Aspects of integrability of our
Hamiltonian system are crucial for expected predictions.

3.1 Our System

3.1.1 Two-Band Many-Body Wannier-Stark Hamiltonian (TBMWSH)

In section 2.2.1, we have shortly described our many-body system. We now explain the con-
cepts that our study involves and what are precisely the questions we want to be answered. Our
system consists of ultracold bosonic atoms in one-dimensional optical lattice, subjected to an
additional Stark force F (see Fig. 3.1). By including such a external potential, we can stimulate
the quantum transport of atoms along the lattice and at the same time, the force couples the
lowest Bloch bands to the higher ones [9, 56, 59, 64, 66, 67, 75, 100]. The mechanism responsible
for the latter transition is the well-known Landau-Zener tunneling phenomenon [65], which
can also induce dissipation. It means reduction of the total particle number, of course, it
depends on how system and enviroment get defined. In this chapter, we essentially study
a closed system, for which the total particle number N is constant, hence a good quantum
number.
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3.1. Our System

In chapter 2 we have shown that the two-band Bose-Hubbard Hamiltonian reads

Ĥ =
∑

β=a,b

Ĥ (β)+ Ĥ1 + Ĥ2 + ĤD , (3.1)

where every term defined as follows

Ĥ(β) =
L
∑

l=1

[

−
Jβ

2

(

β̂†
l+1

β̂l +h.c.
)

+
Wβ

2
n̂
β

l
(n̂

β

l
−1)+2πF ln̂

β

l

]

(3.2)

Ĥ1 =
L
∑

l=1

L−1
∑

s=0
2πFCs(â†

l+s
b̂l +h.c.) (3.3)

Ĥ2 =
L
∑

l=1

Wx

2

(

b̂†
l
b̂†

l
âl âl +h.c.

)

(3.4)

ĤD =
L
∑

l=1

2Wx n̂a
l n̂b

l +∆g n̂b
l . (3.5)

The bosonic annihilation (creation) operators are given by β̂l (β̂†
l
), with β= a for the lower and

β = b for the lower band. The number operators are n̂
β

l
= β̂†

l
β̂l . The dimension of the Hilbert

space H , expanded by the Fock states |~nab〉 ≡ |na
1 ,na

2 , · · · ,na
L
〉⊗ |nb

1 ,nb
2 , · · · ,nb

L
〉, is given by

dim(H ) = (N +2L−1)!

N !(2L−1)!
, (3.6)

where L is the number of lattice sites. Our Hamiltonian might be considered as two tilted single-
band Bose-Hubbard Hamiltonians Ĥ (β = a) and Ĥ(β = b), whose coupling is set through the
three following processes:

(i) Interband one-particle exchange represented by Ĥ1 with transition strengths proportional
to Cs . The integer s = |l − l ′| represents the dipole-induced tunneling between lattice sites
l and l ′ (see Fig. 2.4). Note that the s = 0 is also included, which has the largest magnitude
|C0|. The ratios |Cs>0/C0| are usually smaller, because of the decreasing overlap between
single-particle Wannier functions in different lattice sites. The coefficients Cs>0 drop faster
to zero when increasing either V0 or s0 (see Table A.2). We therefore neglect transitions with
s > 2 in most of the computed data.

(ii) The term Ĥ2 introduces two-particle exchanges between the Bloch bands. This term is
provided by the interparticle interaction with strength proportional to Wx .

(iii) The Hamiltonian ĤD contains the energy separation (∆g ) between the two Bose-Hubbard
chains. Additionally, it introduces the repulsive interaction between particles occupying
the same well different Bloch bands. Its energy cost is proportional to Wx and it lies on the
diagonal of the Hamiltonian matrix.

We again highlight that, in the compared to previous studies of the system (see. [75, 81]), we
have introduced two special modifications: first, a bichromatic potential is used for an easy
control of the lattice parameters (see App. A.1 for details). Our main interest is to investigate the
many-body effect induced by the variation of the energy gap ∆g . Secondly, we consider at least
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3. Many-Body Wannier-Stark System: Spectral Analysis

Figure 3.1: Many-Body processes of the two-band Bose-Hubbard Hamiltonian. (a) Bichromatic one-

dimensional tilted optical lattice loaded with ultracold atoms. (b) Resonant enhanced tunneling (RET)

condition for the nearest neighboring double wells, i.e., for a first order resonance with strength propor-

tional to C1.

two extra dipole-induced tunneling terms represented by the term Ĥ1. This two modifications
shall help us to work with a well isolated and realistic physical system.

For the numerical implementations, as diagonalization and time evolution, it is conve-
nient to work in the interaction picture. This is done by transforming the Hamiltonian with
respect to the tilting term in ĤD as follows

Ĥ ′ → exp

(

−i
∑

l ,β

2πF ln̂
β

l
t

)

Ĥ exp

(

i
∑

l ,β

2πF ln̂
β

l
t

)

, (3.7)

which removes the tilt
∑

l ,β 2πF ln̂
β

l
and transforms the hopping- and inter-band coupling terms

into the time-dependent ones

β̂†
l+1

β̂l → β̂†
l+1

β̂l e−iωB t

â†
l+s

b̂l → â†
l+s

b̂l e−iωB st , (3.8)

with ωB ≡ 2πF . The gauge-transformed Hamiltonian reads

Ĥ ′(t ) =
∑

β=a,b

L
∑

l=1

−
Jβ

2

(

β̂†
l+1β̂l e−iωB t +h.c.

)

+
2

∑

s=0
ωBCs(â†

l+s
b̂l e−iωB st +h.c.)

+
∑

β=a,b

L
∑

l=1

Wβ

2
n̂
β

l
(n̂

β

l
−1)+2Wx n̂a

l n̂b
l +∆g n̂b

l +
Wx

2

(

b̂†
l
b̂†

l
âl âl +h.c.

)

, (3.9)

and it is translationally invariant since there is no longer an explicit spatial dependence. We im-
pose periodic boundary conditions by identifying β̂†

L+1 = β̂†
1. The latter Hamiltonian commutes

with the translation operator Ŝ, therefore a suitable basis for numerical diagonalization and fur-
ther spectral analysis is the translationally invariant Fock basis. The basis vectors are defined as

|s,κ j 〉 =
1

p
M(s)

M(s)
∑

l=1

e i 2πκ j l Ŝl |~nab〉, (3.10)

with quasimomentum κ j = j

M(s) , j = 1, ..., M(s), and M(s) is the number of cyclic permutations

of the fock state |~nab〉 = |na
1 na

2 ...na
L
〉 ⊗ |nb

1 nb
2 ...nb

L
〉 [59]. The dimension of the Hilbert space is

then reduced to Ns ≈ dim(H )/L, when working in a subspace with fixed quasimomentum κ.
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In this work we restrict ourselves to the subspace with κ= 0, for which our Hamiltonian matrix
is real and symmetric. This brings the advantage in the numerical calculation since there exists
various sofisticated diagonalization methods as the lanczos algorithm (see App. B.2) that facili-
tate the analysis of the system under study. Nevertheless, some of our results can be extended to
Hermitian Hamiltonian (κ 6= 0) since they do not depend explicitly on the basis as we shall see
later. On the other hand, the gauge-transformed Hamiltonian is time-dependent and has a fun-
damental periodicity in time given by the Bloch period TB = 2π/ωB . The remaining frequencies
in (3.9) are multiples of ωB (ω= sωB ) and do not modify the periodicity of the Hamiltonian.

At this point, it is very helpful to implement the Floquet theory. This allows us to get rid off
the time dependence and diagonalize the Floquet operator Ĥ f instead [101]

Ĥ f |εi 〉 = εi |εi 〉, with Ĥ f = Ĥ(t )− i∂t . (3.11)

We characterize the spectrum of energies {εi }, commonly called quasienergies, as a function of
any control parameter of our system. The eigenenergies of the Floquet operator are obtained
numerically by implementing a Lanczos diagonalization routine. The spectrum under study
consists of those eigenenergies εi that lie within the so-called fundamental Floquet zone (FZ):

εi ∈ [ε0 −ωB /2,ε0 +ωB /2] ⇔ |εi −ε0|modωB /2, (3.12)

with ωB the width of the FZ and ε0 its predefined center. Throughout this work we conveniently
set ε0 as a function of F in order to enhance the performance of the algorithm and also to im-
prove the visualization of the spectrum in different regions. The full Floquet spectrum can be
reproduced by shifting the FZ, i.e. εi → εi +n f zωB , with the index n f z ∈Z of the FZ. The latter is
just another good quantum number introduced by the temporal periodicity. From (3.12) we see
that the spectrum is periodic. It implies that, whenever a single eigenenergy reaches the bound-
ary of the FZ, as any parameter is continously changed, this energy will appear at the opposite
boundary. This property makes it very difficult to follow an individual energy of the spectrum.
The ordering of the quasienergy spectrum is not a simple task. However, we shall show that
it is possible to avoid this problem and thus a spectral ordering becomes unnecessary for the
analysis.

The procedure shortly described above is explained in detail in App. B. Furthermore, it is
equivalent to diagonalize the evolution operator integrated over one Bloch period,

ÛTB = T̂ exp

[

−i

∫TB

0
Ĥ(t )d t

]

(3.13)

where T̂ stands for the time ordering operator. The diagonalization of the Floquet operator
(3.12) has advantages with respect to the computation times for larger systems and also allows
a deep analysis of the energy spectrum, as will be shown starting in the next section.

3.2 Static Analysis of the TBMWSH

The many processes involved in our problem make it very difficult to find exact analytical so-
lutions for eigenstates and eigenenergies. Nevertheless, we can study the system in the limit
cases, where the system is expected to be nearly integrable or at least to have good quantum
numbers. In fact, we shall see that in those regimes it is possible to extract useful energy scales
that allows one to distinguish the onset of non-integrability and further quantum chaos [102].

22



3. Many-Body Wannier-Stark System: Spectral Analysis

To start with, we study the Floquet spectrum in two separate instances: first, with no interpar-
ticle interaction, sometimes referred to as the non-interacting case. Secondly, we turn on the
interactions in order to describe the many-body effects. For some analytical calculations, we
use the time-independent Hamiltonian, and the respective comparison is done with exact nu-
merical calculation, based on the diagonalization of the Floquet Hamiltonian.

3.2.1 Non-interacting Many-Body Hamiltonian: The Manifold Approach

Let us then start with the non-trivial, non-interacting limit, which is described by the Hamilto-
nian Eq. (3.1) with Wi = 0. The respective Hamiltonian reads

Ĥ =
∑

β=a,b

L
∑

l=1

[

−
Jβ

2

(

β̂†
l+1β̂l +h.c.

)

+ (ωB l +∆β)n̂
β

l

]

+
s=2
∑

s=0

L
∑

l=1

ωBCs

(

â†
l+s

b̂l +h.c.
)

, (3.14)

where the energy separation between the Bloch bands is ∆a,b = {0,∆g }. As mentioned in the
previous section, our Hamiltonian consists of two tilted Bose-Hubbard chains, whose energies
are given by the Wannier-Stark ladder formula

ε
β

l
= 2πlβF +∆β, with lβ ∈Z . (3.15)

These energies are obtained by diagonalizing the Hamiltonian of every chain in the coordi-
nate space representation (see 2.2.1). Note that the energies in the latter equation can get de-
generated at the positions εb

l
−εa

l ′ = (l − l ′) ·2πF +∆g = 0, or equivalently 2π · r ·Fr = ∆g , with
r = l ′− l . The integer r represents the spatial separation between lattice sites l and l ′, whose
upper (lower) and lower (upper) single particle levels have the same energy at the tilt F = Fr .
The two bands interact through the dipole terms â†

l+s
b̂l , and such a degeneracy is destroyed.

Yet, instead of a crossing between the energies, an Avoided Crossing (AC) occurs. This is a well-
known signature of interaction between the two chains, whose most interesting property is the
induced transition between the Bloch bands, i.e. the resonances.

We want to study the mentioned resonances, leading to resonantly enhanced tunneling
(RET). For that reason, it is possible to construct a local Hamiltonian by setting, for example,
la = 0, which implies that lb = ±r . The sign depends on the direction of the tilt, thus in our
case F > 0, the site la = 0 can be connected to the upperband lattice site lb = −r . On the other
hand, for F < 0 we have lb = +r . We are interested in characteristic energy scales, therefore it
turns out be useful to rescale the Hamiltonian as Ĥ → Ĥ/∆g . The energy gap ∆g is typically
the largest parameter in our system. The ratios |Cs>0|/∆g are very small and we can treat the
Hamiltonian perturbativately by neglecting Cs>0. The effective resonant Hamiltonian reads

Ĥr =
∑

β=a,b

L
∑

l=1

[

−
Jβ

2

(

β̂†
l+1

β̂l +h.c.
)

+ (∆β−ωB r )n̂
β

l

]

+
L
∑

l=1

ωBC0

(

â†
l
b̂l +h.c.

)

, (3.16)

which is translationally invariant, and it can be diagonalized whether using the Fock or the
seed basis. We highlight that the first two terms in the right-hand of this equation preserve the
number of particle whether in the lower or in the upperband. Furthermore, in the flat lattice
case ωB = 0, that is, without inter-band coupling, the eigenenergies of (3.35) can be classified
by the number of particles in the upper band. After writting the Hamiltonian matrix in the Fock
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(seed) basis, ordered by increasing upperband occupation number M ≡∑

l n̂b
l

, the Hamiltonian
is reduced to the block matrix

Ĥr =















H0,0 H†
0,1

H0,1 H1,1
. . .

. . .
. . . H†

0,M−1

H0,M−1 HM ,M















.

The diag(Ĥr ) = ⊕N
M=0(Hr )M is a diagonal block matrix constructed by the Hamiltonian terms

preserving the upperband occupation number M , that is the hopping and energy terms (see
Fig. 3.2). The blocks on the diagonal are matrices with dimension

for Fock states : dM =
(

M +L−1

L−1

)(

N −M +L−1

L−1

)

for seed states : d̃M ≈ dM

L
. (3.17)

Motivated by the tight-binding-type form of the Hamiltonian matrix (3.2.1), we define:

Definition 1. Let P̂M be a projector onto the Hilbert subspace HM ⊂H consisting of all states |φ〉
whose upperband occupation number is M. The total number of these subspaces is N +1(block

matrices), and we will refer to the set of states |φ〉 as the M-manifold with dimension d. In the

particular case, when the set of states |φ〉 maps one-to-one onto the members of a subspace of

the Hilbert space expanded by Fock states, the dimension of the manifold is given by dM , and the

Hilbert space dimension is
∑

M dM .

In this way, the Hamiltonian contains only coupling between those manifold states with excess
of particles ∆M = ±1, with "hopping" strength ωBC0. We can construct a new Hamiltonian to
describe the averaged one-particle exchange processes in our resonant system. To do this, we
use the closure relation for the Fock basis given by

di m(H )
∑

i=1

|~nab〉i i 〈~nab| = 1 (3.18)

which can be rewritten as

N
∑

M=0

P̂M = 1 , with P̂M =
dM
∑

i=1

|~nab ; M〉i i 〈~nab ; M |. (3.19)

Here |~nab ; M〉i is a Fock state with M particles in the upperband. Using the projectors P̂M , one
can rewrite the time-independent Schrödinger equation, Ĥr |ψ〉 = E |ψ〉, as

∑

M

〈ψM ′ |Ĥr |ψM 〉 = E〈ψ|ψM 〉δM ,M ′ , with |ψM 〉 = P̂M |ψ〉 =
∑

i

|~nab ; M〉i i 〈~nab ; M |ψ〉, (3.20)

and 〈ψM ′ |ψM 〉 = δM ,M ′ . The off-diagonal blocks are not necessary square matrices and they are
computed from the single-particle exchange term

ĤM ,M ′ ≡ 〈ψM ′ |
L
∑

l=1

ωBC0

(

â†
l

b̂l +h.c.
)

|ψM 〉. (3.21)
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Figure 3.2: Hamiltonian matrix written in the seed basis subspace. (a) The figure shows the block

structure of the Hamiltonian in the non-interacting case, for the system N /L = 7/4, with parameter

Fr=1 = 0.09, s0 = 3 and V0 = 5. Since N = 7 the matrix contains 8 blocks corresponding to the N +1 man-

ifolds. The intra-manifold off diagonal couplings are set by the hopping terms that do not couple Fock

(seed) states with different manifold number. (b) Tight-binding-type many-body Hamiltonian matrix for

the same parameter from panel (a). The remaining parameters are: ∆g = 0.556, Ja = 0.059, Jb = −0.072,

C0 =−0.096, C1 = 0.043 and C2 =−0.0055.

Let us for simplicity choose i 〈~nab; M |ψ〉 = 1/
√

dM , i.e. we assume that the state |ψ〉 is homo-
geneously expanded in the subspace with manifold number M . This assumption yields to the
tight-binding Hamiltonian for the manifolds, which reads

Ĥr ≃
N
∑

M=0

εr (M)|ψM 〉〈ψM |+ωB C0

N
∑

n=0

p
M +1(|ψM 〉〈ψM+1|+h.c.), (3.22)

where the energies on the diagonal are given by

εr (M) = (∆β−ωB r )M − Ja〈ψM |
∑

l

(â†
l+1âl +h.c.)|ψM 〉− Jb〈ψM |

∑

l

(b̂†
l+1b̂l +h.c.)|ψM 〉

≃ (ωB r +∆g )M + (Ja − Jb)M . (3.23)

Here we used the relation N = Na +Nb , with M ≡ Nb . Note that the latter Hamiltonian sums up
all the constributions from the hopping terms and the dipole-type transitions, and the dimen-
sion of this is just (N +1). The first interesting energy scale is provided by the energy separation
between contiguous manifolds (M and M + 1) in presence of one-particle exchange process.
This can be estimated by the diagonalization of the two-state 2×2 Hamiltonian

H2×2 =
(

εr (M +1) ωBC0

ωBC0 εr (M)

)

, (3.24)

and therefore the inter-manifold energy difference ∆r is given by the expression

∆r =∆g

√

(

1− ωB r

∆g
+ Ja − Jb

∆g

)2

+4

(

ωBC0

∆g

)2

. (3.25)
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3.2. Static Analysis of the TBMWSH

For typical parameters it holds |Ja − Jb |/∆g ≪ 1. The minimal width occurs at the exact res-
onance position Fr ≈ ∆g /2πr (apart from the extra corrections from Eq. (2.25)), therefore
∆r (Fr ) = 2ωr

B
|C0|. We see that the inter-band coupling in the non-interacting regime yields to

an avoided crossing of width ∆r (Fr ) around the resonance Fr . The eigenstates can be expressed
as a linear combination of the manifold states {|ψM 〉, |ψM+1〉, } as

|φ±〉 = c1|ψM 〉±c2|ψM+1〉. (3.26)

At the exact resonance, we obtain |c1| = |c2| = 1/
p

2, i.e. the eigenstates |φ±〉 is perfect mixture
of the manifold states, also called maximally hybridized states. These type of states |φ±〉 will be
called mixed states. Here the concept of mixing might not be confused with the mixed states
defined through the density operator which cannot be represented by a ket. We now study the
mixing properties for the single particle case N = 1.

Single Particle Case

The number of M-manifolds is two, M = {0,1}. In Fig. 3.3-(a), we show the numerically com-
puted spectrum of the full Bose-Hubbard Hamiltonian in the single particle case with N/L =
1/6. The appeareance of avoided crossings (black boxes) reveals the inter-band coupling, i.e.
manifold mixing, as the Stark force F treated as a control parameter. The closer to resonance
position Fr , the smaller the energy splitting ∆r . This reaches its the minimal value ∆r = 2πF |C0|
at F = Fr . We see that the inter-band coupling removes the degeneracy that appears in case
C0 = 0, and this effect manifests itself by the ocurrence of an AC. The larger the inter-band cou-
pling, the wider the AC. In terms of the M-manifolds, the eigenstates of H2×2 are given by

|φ±〉 = 1
√

b2 + (λ+−a)2
(b|ψM 〉± (λ+−a)|ψM +1〉), (3.27)

with M = 0, a = εr (M+1), b =ωBC0 and 2λ± = εr (2M+1)±∆r . At F = Fr , these states are reduced
to the maximally hybridized two-level state: |φ±〉r = (|ψM 〉+|ψM +1〉)/

p
2, for |b| = |λ+−a|. The

manifold number of the states |φ±〉r is given by

M̃± = r 〈φ±|
∑

l

nb
l |φ

±〉r =
1

2
M + 1

2
(M +1) = M + 1

2
, M + 1

2
∉Z

+, (3.28)

where the M-character of the φ-states is totally lost and M is no longer a good quantum num-
ber. In general, the manifold number is given by the expression

M̃± = 〈φ±|
∑

l

nb
l |φ

±〉 = b2

b2 + (λ+−a)2
(M)+ (λ+−a)2

b2 + (λ+−a)2
(M +1). (3.29)

We can define the manifold mixing degree as

ζ= |b|
|λ+−a| =

2y

1+
√

1+4y2
, with y = |b|

|εr |
(3.30)

with
|b|
|εr |

= 2πFr

∆g

F |C0|
|F −Fr |

≈ 1

r

|C0|
|1−Fr /F | . (3.31)
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3. Many-Body Wannier-Stark System: Spectral Analysis

Figure 3.3: Numerically computed energy spectrum versus the Stark force in the single particle case,

N /L = 1/6. (a) The two-band Wannier-Stark ladders can be recognized and the inter-band coupling man-

ifest itself around the resonance position Fr through an avoided crossing. The different lines correspond

to eigenstates of the type: M = 0 (black) and M = 1 (red). (b) Manifold mixing degree ζi and manifold

numbers Mi for all Floquet eigenstates |εi 〉. The parameters are the same as those in Fig. 3.2.

The manifold number can be rewritten as

M̃± = M +

(

1+
√

1+4y2
)2

4y2 +
(

1+
√

1+4y2
)2

. (3.32)

We have the following two limits:

(i) Far enough from the resonance limits: (a) F ≫ Fr , but F < Fr+1, the parameter y ≈ |C0|/r ,
where |C0|. 0.1. This is usually the case for the typical Bose-Hubbard coefficients (see Ta-
ble A.2). For resonance order r > 2, y is very small and therefore the manifold mixing de-
gree ζ→ 0. (b) For F ≪ Fr , but F > Fr−1 and y ≈ |C0|F /r Fr ≪ 1, it follows ζ→ 0. In the latter
regime one can increase the manifold mixing by decreasing the energy band to be com-
parable with the inter-band coupling strength ωB |C0|. In this way the closeby resonances
overlap. For y ≪ 1, M̃± ≈ M +1 which is an integer number. We conclude that far enough
from the resonances Fr , the eigenstates |φ±〉 nearly belong to well defined manifolds: M

and M +1. Therein |b|/|λ+ − a| ≪ 1 and we can set a very accurate one-to-one mapping
between the eigenstate of H2×2 and the manifold states, |φ+〉→ |ψM+1〉 and |φ−〉→ |ψM 〉.

(ii) Around the resonance, F → Fr , the ratio y ≫ 1 and M̃± ≈ M +1/2. As seen before, this is
the condition for maximal hybridization between the manifolds, and hence ζ→ 1. This is
represented by the black lines in Fig. 3.3-(b).
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3.2. Static Analysis of the TBMWSH

In the panel (a) of figure 3.3 we show the single particle spectrum for the two-band
Wannier-Stark Hamiltonian. The black line corresponds to the φ-states with one particle in the
lower band |ψM=0〉 ∼ |100...;000...〉 and the red line to those states with one particle in the upper
band |ψM=1〉 ∼ |000...;100...〉. We set the color code by computing the manifold projections pre-
viously defined. A change of color occurs at the position of the resonant Fr . This implies that the
lowest energy eigenstate changes its character when crossing the resonant regime, thus being
transformed from |ψM=0〉 into |ψM=1〉. This effect is one of the most important characteristic
of an AC. Along with the exchange of character, the manifolds get completely mixed at Fr , as
shown by the black lines in the panel (b). There we plot the manifold mixing degree ζi = ζ[|εi 〉]
and the manifold number Mi = 〈εi |

∑

l n̂b
l
|εi 〉 for all eigenstates of the Floquet operator |εi 〉.

Case N > 1

For N non-interacting particles, any eigenstate |φ〉 of the Hamiltonian Hr can be expanded
in Fock (seed) states, hence also in manifold states, by using the projectors P̂M ; therefore the
manifold number takes the form

M̃φ =
N
∑

M=0

pM M , with pM = 〈φ|P̂M |φ〉, and
N
∑

M=0

pM = 1. (3.33)

In analogy to the single particle case, the maximal hybridization should be obtained for pM =
1/(N +1) and M̃φ = N/2. Unfortunately this condition is not valid in general since for N even,
any two manifolds can get equally populated since M̃φ = N/2 ∈Z

+. In this case, we can only say
that such that two manifolds are completely mixed, but not the whole set of them. The reason
lies on the fact that the single particle criterion, in the last section, sets the condition for mixing
of contiguous manifolds.

A better measure of manifolds mixing is borrowed from Anderson localization theory. Ow-
ing to the tight-binding nature of the Hamiltonian Hr , a well-known localization measure is the
inverse participation ratio [103]. This is defined buy summing up the square of the probabilities
pM as

ξφ =
∑

M

p2
M , ⇒ ζφ = 1−ξφ. (3.34)

The inverse participation ratio ξφ is a useful way to quantify localization because it is
easy to calculate (given that the probability distribution is known) and it behaves sensitively.
That is, it has reasonable limits. If any state |φ〉 is localized only one manifold, then ξφ = 1. In
contrast, if the state is evenly divided over N +1 manifolds with pM = 1/(N +1), then ξφ = 1/N .
Furthermore, this function decreases monotonically when probability is exchanged between
two manifolds such that the distribution is more balanced, so it always falls between the limits
of 1 and 1/N .

As the number of particles is larger than one, ∆r is still a characteristic energy scale for one-
particle exchange processes. In figure 3.4, we show spectrum around the resonance r = 1 for
the system N/L = 5/3, first rescaled by the width of the Floquet zone ωB in the panel (a), which
makes all the eigenenergies lie in the interval [−1,1], and second rescaled by ∆r in the panel (b).
We recognize the manifold formation before and after the resonant regime. These manifolds are
characterized by bunches of levels closely degenerated and with the same manifold number M .
At F ≈ Fr the manifold mixing appears and mostly all eigenstates belong to mid-manifolds, i.e.
they are mixed states with 0< M < N . The manifold character ist completely lost as shown in the
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3. Many-Body Wannier-Stark System: Spectral Analysis

Figure 3.4: Spectrum for the non-interacting Hamiltonian around the resonant regime for N /L = 5/3. (a)

Spectrum rescaled by the size of the Floquet zone ωB = 2πF . (b) Spectrum rescaled by the inter-manifold

separation ∆r . The panels (c) and (d) show the manifold mixing degree ζi and the manifold number Mi

computed for all Floquet eigenstates as a function of the Stark force. The parameters are the same as

those in Fig. 3.2.

panel (d) where mostly for all eigenstates M ≈ N/2. Again, we must notice that by computing
the manifold number is not enough to characterize the manifold mixing, since for N even the
eigenstates may have M = N/2, which is an integer at the resonances. But there exists manifold
mixing. That contradiction is washed-out by computing the manifold mixing degree ζi for all
eigenstates, as shown in the panel (c).

Along with ∆r , an additional energy scale appears only around F ∼ Fr . At this position the
hopping amplitudes Jβ are energetically prohibited and therefore we neglect them. In addition,
we must add the previously disregarded resonant term Cs=r , and thus the Hamiltonian reads

Ĥr =
L
∑

l=1

ωBC0

(

â†
l

b̂l +h.c.
)

+
L
∑

l=1

ωBCr

(

â†
l+r

b̂l +h.c.
)

. (3.35)

This is the Hamiltonian of a resonant three-level system that can be represented locally in space
by the 3×3 matrix

H3×3 =





0 ωBC0 0
ωBC0 0 ωBCr

0 ωBCr 0



 . (3.36)

The new splitting is thus given by ∆2 = 2ωB

√

C 2
0 +C 2

r > ∆r (Fr ). Since the coefficients Cr drop

to zero as r increases, the latter splitting becomes ∆r . In Fig. 3.5 we show the time evolution of
the upperband occupation number, which is definded by M(t ) = 〈ψ(t )|∑l n̂b

l
|ψ(t )〉. The initial

evolved are of the kind |ψ(0)〉 = |111...〉a ⊗|000...〉b . It is seen that the interplay between the two
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3.2. Static Analysis of the TBMWSH

Figure 3.5: Time evolution of the upperband occupation number M (t ) at Fr=1 = 0.19, s0 = 2 and V0 = 5.

(a) the panel the Rabi-type oscillation (black-dashed line) for M (t ) in absence of the long-range dipole-

induced terms (Cs>1 = 0). The red line represents the evolution with Cs 6= 0. The system is defined by the

filling factor N /L = 4/4. (b) M (t ) for the N /L = 5/5 and Cs>1 6= 0.

oscillator yields to smaller colapses and revivals of the signal in the course of the time. Here it is
now clear the effect induced by the resonant coupling Cr , which plays an important role in the
dynamics and must be always taken into account.

So far, we have obtained important information about our system, e.g. the characteristic
inter-manifold splitting ∆r as an important energy scale. Furthermore, we have introduced a
natural way to interpret the Floquet spectrum in different regimes by mean of the manifold
method. This approach turns out to be very useful to define observables that characterize inter-
band mixing and the upperband occupation as well. In the next section we deal with the same
problem but now the interparticle interaction will be taken into account. We shall show that it
is still possible to characterize the system in terms of a few set of parameters.

3.2.2 Effects of the Interparticle Interaction

According to the last section, the energy separation between the manifolds M = 0 and M = N is
given by

∆E ≈ N∆g . (3.37)

Yet, many other effects appear when turning the interparticle interaction, especially, in
the resonant regime. Therein the manifold mixing degree is maximal. Let us first explain the
changes introduced by the term Ĥ2 from Eq. (3.2). Ĥ2 induces inter-band coupling between the
manifolds |ψM 〉 and |ψM ±2〉. In this way, the Hamiltonian block-matrix Ĥr has another diago-
nal, and the manifold tight-binding-type Hamiltonian is now extended to second neighboring
transitions. Such a kind of Hamiltonians are usually non intergrable. The number of non-zero
matrix elements in the new blocks depends on the strength Wx , which usually is small com-
pared with the single-particle exchange transition strength |C0|. In the case N/L > 1, the num-
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3. Many-Body Wannier-Stark System: Spectral Analysis

ber of Fock (seed) states with double occupancy either in the lower or upperband increases,
conversely to the case N/L < 1. This term can be considered as a residual effect. The remain-
ing terms are the intra-band and inter-band on-site interparticle interactions, which lie on the
diagonal of the block matrix (3.2.1). In particular, the term Wx

∑

l n̂a
l

n̂b
l

induces strong intra-
and inter-manifold splittings, whose effect is strongly enhanced in the mid-manifolds. All those
terms together introduce many-level splittings and different energy scales. Degeneracies are re-
moved and the appearance of a cluster of avoided crossings around Fr is expected, along with
an enhancement of the manifold mixing. Hereafter, we refer to that cluster of avoided crossing
as sea of ACs.

Despite the resulting complexity, we can still read out useful information from the spec-
trum. One way to proceed is by computing the conmutator between the time-independent
Hamiltonian (3.1) rescaled by the energy gap ∆g and the manifold number operator M̂ =∑

l n̂b
l

.
This reads

1

∆g

[

Ĥ , M̂
]

= ωB

∆g

∑

l

∑

s

Cs(â†
l+s

b̂l −h.c)− Wx

2∆g

∑

l

(b̂†
l
b̂†

l
âl âl −h.c). (3.38)

This expression allows us to set conditions for non-integrability and manifold mixing. We start
with the easiest limit, i.e. when the gap is large enough, such that Wx /2∆g ≪ 1. That condition is
always valid when ∆g & 1. Under the last assumption and given F → 0, the commutator (3.38) is
negligible and the Hamiltonian get diagonalized in the Fock (seed) states basis, that is M is good
quantum number. We also recognize that the labeling of the eigenstates can be done through
the numbers

νβ=a,b = 1

2
〈ψM |

∑

l

n̂
β

l
(n̂

β

l
−1)|ψM 〉, νab = 2〈ψM |

∑

l

n̂a
l n̂b

l |ψM 〉, (3.39)

whose energy lies in the vicinity of εr (M). These numbers are also integers. Therefore, the
eigenenergies of the Hamiltonian are given by

ε(M ;νa ,νb ,νab) = M∆g +Waνa +Wbνb +Wxνab , (3.40)

and the states in the Mth manifold can be written as |M ;~νM 〉 ≡ |M ;νa ,νb ,νab〉. The eigenstates
of Ĥ can be written as a separable product of manifold states as

|ψ〉 = |0;~ν0〉⊗ |1;~ν1〉⊗ ·· ·⊗ |M ;~νM 〉⊗ ·· · |N ;~νN 〉. (3.41)

Figure 3.6: Energy scales of the interacting two-band Bose-Hubbard Hamiltonian. δ0 represents the

energy separation between contiguous manifolds. Wβ represents the internal manifold splitting due to

the different types of interparticle interactions in our model (see Eq. (3.40)).
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3.2. Static Analysis of the TBMWSH

It is worth to notice that now inside a single M-manifold block, there are many different off-
diagonal non-zero entries due to the hopping terms. The new levels are provided by the splitting
of the noninteracting eigenenergies, which makes the Hamiltonian matrix to be highly popu-
lated but banded as | j − i | = 2d[M/2] (see Fig. 3.2).

Due to the on-site interparticle interaction, the maximal internal manifold splittings occur
in those states with M particles sitting in the same lattice site whether in the upper- or lower
band. Their values are given by

(U M
a )max = Wa

2
(N −M)(N −M −1), (3.42)

(U M
b )max = Wb

2
M(M −1), (3.43)

(U M
ab)max = 2Wx(N −M)M , (3.44)

where (U M
ab

)max is different from zero only at a simultaneous occupation of M particles in the
upperband and N − M in the lower band, at the same lattice site. As mentioned before, this
splitting gets larger in the middle of the spectrum and it becomes crucial for the understanding
of local spectral correlations.

The energy scales are sketched in Fig. 3.6. We now define the maximal possible intra-
manifold splitting as

U M
max = max{(U M

a )max, (U M
b )max, (U M

ab)max}. (3.45)

Using U M
max, it is possible to redefine the size of energy interval∆E (3.37). This is done by consid-

ering the maximal splitting of the highest manifold M = N , which occurs for those eigenstate(s),
whose maximal projection in the Fock space is given by the Fock state with N particles in the
same upperband level, say, the seed state

|N ;νa = 0,(νb)max,νab = 0〉 ∼ 1
p

M(s)

M(s)
∑

m=1
Ŝm|000, ...〉a ⊗|N00, ...〉b . (3.46)

We then have that maximal splitting generated by this kind of states is given by U N
max =Wb N (N−

1)/2. The minimal splitting U0 corresponds to those states with the largest projection on the
Fock states, with all particles uniformly distributed over the entire lattice, in the lower Bloch
band. Its density is simply given by the filling factor N/L. We can recognize that the effective
energy interval containing the whole set of Ns eigenenergies is therefore given by the formula

∆E ≈ N∆g +
1

2
Wb N 2 −U0, (3.47)

which satifies ∆E ÉωB in the vicinity of the resonances. Far from the resonant regime, ∆E can
be larger than the size of Floquet zone, which can be the case of time-independent Hamiltonian
in Eq. (3.1). However, when we deal with the gauged-transformed Hamiltonian, the periodicity
of the Floquet eigenenergies guarantees ∆E É ωB , and the formula (3.47) is no longer valid.
Yet, in order to estimate ∆E for any Floquet spectrum, we can use some properties of density of
states (DOS) ρ(ε): (i ) the DOS is sensitive to level bunching; it means, if there exists a concen-
tration of a large number of levels about a fixed energy, the DOS takes a Lorenzian-shaped with
a very narrow width ∆ε. In case of ∆ε→ 0, and with a number of levels within this range larger
than one, there exists degeneracies, hence a (quasi-)symmetry in the problem. The multiplic-
ities given by the number of levels Nε (< Ns) within ∆ε. Two inmediate examples are given
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3. Many-Body Wannier-Stark System: Spectral Analysis

by inter-manifold levels when the interparticle interaction is weak (see Fig. 3.6) or with no one
(see Fig. 3.4). (i i ) The other is case of no degeneracies, i.e. whenever there is overlapping be-
tween different sets unperturbed energies is not negligible and the total number of states Ns

are spread all over within the energy interval ∆E . It density is given by

ρ(ε) = Ns

∆E
, (3.48)

where ∆E does not depend explicitly on the energy. The size of the energy interval depends
on how the levels are distributed into the FZ, which can be quantified by the spectral second
moment of the density of states

∫

F Z dερ2(ε)/N 2
s , whose inverse is just ∆E , i.e.

(∆E )−1 = 1

N
2

s

∫

F Z
dερ2(ε), F Z : [−ωB /2,ωB /2]. (3.49)

It is useful to define the filling of the Floquet zone

χ2 =ωB

∫

F Z
dε

1

N
2

s

ρ2(ε), =⇒ χ= ∆E

ωB
, (3.50)

where the DOS in the case for a distrete spectrum is given by ρ(ε) = ∑

i δ(ε−εi ). If the energy
levels are uniformly distributed over the entire FZ, there exists at least one level per energy
interval ωB /Ns , then

ρ(ε) ≈ Ns

ωB
=⇒ χ2 ≈ωB

∫

F Z
dε

1

ω2
B

=⇒ χ≈ 1 . (3.51)

Otherwise, ∆E /ωB = 1/χ < 1, since χ2 diverges when the energies form bunches in different
regions in the FZ.

As sketched in Fig 3.6, the energy gap between neighboring manifolds can be defined by
δ0(M) =∆g −U M

max. In the non-interacting regime we have proven that the manifold levels come
close to each other in the RET regime. The minimal energy separation at the exact resonance is
∆r (Fr ) = 2ωr

B
C0 (Eq. (3.25)). Here, since the interparticle interaction does not depend explicitly

on the tilt, the reduced energy interval ∆E ′ is obtained by replacing ∆g → ∆r (F ); this implies
that the levels in the interval [ε,ε+∆r (F )] corresponding to the Mth manifold go parallel to
each other as a function of the force. As F → Fr the gap δ0 decreases until it approaches its
minimal value given by the mean level spacing

δ(F ) = ∆E (F,r )

Ns
= N∆r (F )+0.5Wb N 2 −U0

Ns
, (3.52)

keeping in mind that Ns is the dimension of the Hilbert space. By using the Stiriling formula
ln(m!) ≈ m ln(m)−m and the Eq. (3.6), we find that number of levels inside ∆E grows expo-
nentially either with N or L, that is Ns ≈ 1

L
2N (N/2)2L = 1

L
(N/2)2L−N N N , where we also used

(1+x/m)m ≈ xm . The mean level spacing reads

δr (F ) =∆E (F,r ) ·
(

N

2

)N−2L

N−N L , (3.53)

and the density of states

ρr (F ) = 1

δr (F )
= 1

∆E (F,r )

1

L

(

N

2

)2L−N

N N . (3.54)
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Figure 3.7: Ratios |C0|
r (r = 1,2,3 and 4) and Wx

2∆g
as a function of the energy gap ∆g .

Note that the number of states within∆E grows faster with N/L > 1 than with N/L < 1, therefore
the manifolds mix faster with N/L > 1 when crossing any order of resonance. In that case, the
level repulsion creates the sea of ACs within an interval ∆F in the vecinity of Fr . Conversely, for
N/L < 1 the level repulsion is weak and the levels tend to remain parallel to each other right
before and after the resonant regime. The width of the ACs are very small within the interval
∆F̃ < ∆F . For a filling factor N/L = 1, the dimension of the Hilbert space is Ns ≈ N N+1. In
analogy with the N-qubit system reported in [104], the system may be considered to have an
effective spin S = N/2 with projections

m = 1

2
(Nb −Na) =−N

2
,−N −1

2
, · · · ,

N −1

2
,

N

2
, (3.55)

where the interqubit interaction is in our case the Stark force and the Hamiltonian can effec-
tively treated as a one-dimensional quantum Ising Hamiltonian.

Into the Resonant Regime

In the resonant regime we have: ωB |
∑

s Cs |/∆g ≈ |∑s Cs |/r ≈ |C0|/r . That is, the larger the order
of the resonance, the smaller the manifold mixing and the commutator (3.38) drops to zero for
∆g large enough. Therefore, the manifold number M is still a good quantum number. Such a
property is destroyed as ∆g decreases and thus the effect of the two-particle exchange becomes
important. In figure 3.7 we show the ratios |C0|/r and Wx/2∆g as a function of the energy gap
∆g . Note that the mixing is expected to be overwhelmingly strong around the first order reso-
nance when the following condition is reached

|C0| ≈
Wx

2∆g
≈ 0.1. (3.56)

Of course, to fulfil Eq. (3.56), the energy gap ∆g must be very small. From the experimental
point of view, that condition can be induced for non necessarily smaller gaps, by increasing the
interparticle interaction. For example, by driving the system close to a Feshbach resonance [7].
Another way is to increase the number of particles in the system with L fixed, since the mean
level spacing decreases exponentially with N ; then strong band mixing may occur for ∆g & 0.5
with Wa,b,x → 2(3)×Wa,b,x .
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3. Many-Body Wannier-Stark System: Spectral Analysis

We ilustrate the differences in the spectral properties when considering N/L > 1, N/L < 1
and N/L = 1 in Figs. 3.8 and 3.9. There we plot the manifold number {Mi ,ζi } for all eigenstates
as a function of the ratio µ = ∆g /2πF , for different filling factors and decreasing ∆g (from (a)
to (c)). Notice that the resonance positions still remain close to interger values of µ. In the fig-
ure 3.8, we see clearly the manifold formation for larger gaps and their respective destruction
when crossing the resonances or likewise when Wx/2∆g increases. Note that in the panels of the
column (c), the manifolds only manifest themselves for smaller filling factors even if ∆g is small
and these practically disappear over the entire spectrum for filling factors larger than one. This
is a signature of a fully mixed spectrum, and neither Mi , νβ nor νab are good quantum numbers
of the Hamiltonian (3.1).

The values of the tilt at which two contiguous manifolds start overlapping can be estimated
using the inter-manifold gaps δ0 (see Fig. 3.6). For instance, between the manifolds M = 0 and
M = 1 we have

δ0[|0〉 :→|1〉] = ∆r −U 0
max

= ∆g

√

(

1− F

Fr

)2

+4

(

ωBC0

∆g

)2

− Wa

2
N (N −1). (3.57)

Then, when δ0 → 0 the mixing starts, whether from the left(F < Fr ) or from the right(F > Fr ),
the position can be found by solving the second order equation

((

1+ 2C0

µr

)2)

θ2 −2θ+1−Ũ 2 = 0, (3.58)

with

θ = µr

µ
, Ũ = Wa

2∆g
N (N −1) , µ=

∆g

2πF
and µr =µ(Fr ). (3.59)

The solutions are given by the inverse tilts

µ+ = 1

1+αr
µr = (1+αr +α2

r +α3
r +·· · )µr , (3.60)

µ− = 1

1−αr
µr = (1−αr +α2

r −α3
r +·· · )µr , (3.61)

for αr < 1 and we can define effectively the width of the resonance ∆F = |F+−F−| ≈ 2αr Fr , with

αr =

√

1− (1−Ũ 2)

(

1+
(

2C0

µr

)2)

, if : (1−Ũ 2)

(

1+
(

2C0

µr

)2)

< 1. (3.62)

The range ∆F that contains the sea of ACs grows with the parameterαr . For instance, as αr → 1,
which happens when ∆g decreases, neighboring resonances overlap each other since µ+ →
2µr = µr+1, or equivalently ∆g ≈ Wa N (N − 1). Therefore, the energy spectrum becomes more
and more mixed for any Stark force F . Furthermore, the parameter αr depends sensitively on
the ratio between the interparticle interaction and the gap, which means that we can engineer
our system in order to enhance or reduce the manifold mixing, at will (see Fig. 3.8). In general,
the starting tilt for mixing can be defined as the average tilt of the set {F±

M
}, which is a better

estimation since the manifolds with 0 < M < N start mixing way before and after Fr .
It is also observed that close to the full manifold mixing condition, the lowest and highest

manifold are almost unoccupied, because of the large state population of the manifolds with
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3.2. Static Analysis of the TBMWSH

Figure 3.8: Manifold numbers {Mi } as function of the ratio µ = ∆g /ωB . The filling factors are N /L =
3/7,4/4 and 5/3 and the energy gap ∆g corresponding to V0 = 5. The panels in the column (a) show the

results Wx /2∆g = 0.01 with s0 = 2. In the column (b) for parameters Wx /2∆g = 0.023 with s0 = 3 and (c)

for Wx /2∆g = 0.097 with s0 = 5.

0 < M < N . The number of accesible states can be very large but not excess Ns. In fact, for N odd
there exists two contiguous central manifolds with the same size (see Fig. 3.2) with manifold
numbers

M =
[

N

2

]

and M =
[

N

2

]

+1, (3.63)

and for N even there is only one with M = N/2. In the first case it is expected high degree of
mixing and the properties of the sea of ACs to be slightly different in comparison with the sec-
ond case. We can claim that for Wx/2∆g ∼ 0.1, the eigenstates living in the manifolds M = {0, N }
are weakly coupled to the remaining. The Hilbert space may be thus effectively reduced to a
subspace expanded by the states with 0 < M < N ; this means, there are always particles in
both Bloch bands with mean upperband occupation M ≈ N/2. We will referred to this effect
as: manifold balance, which is expected when the system relaxes to its minimal energy state in
presence of inter-band coupling, i.e. it reaches the equilibrium (see the sketch in Fig. 3.10). This
prediction will be confirmed in the time-domain, where we can study the relaxation proper-
ties of non-equilibrium initial state lying in any M-manifold. We expect high sensitivity on the
spectral properties described up until now, especially for those initial state from mid-manifolds
M = [N/2].

So far we have studied the properties of the spectrum, e.g. energy scales and some chara-
teristics of the eigenstates (manifold number Mi and degree of manifold mixing ζi ) in the differ-
ent regimes defined by the Stark force, i.e. the off resonant and resonant regime characterized
by tilts in the vicinity of Fr . Secondly, the non-interacting (Wi = 0) and the respective interact-

36



3. Many-Body Wannier-Stark System: Spectral Analysis

Figure 3.9: Manifold mixing degrees {ζi } as function of the ratio µ=∆g /ωB . The filling factors are N /L =
3/7,4/4 and 5/3 and the energy gap ∆g corresponding to V0 = 5. The panels in the column (a) show the

results Wx /2∆g = 0.01 with s0 = 2. In the column (b) for parameters Wx /2∆g = 0.023 with s0 = 3 and (c)

for Wx /2∆g = 0.097 with s0 = 5..

ing regime, which can be described by the manifold approach. We also defined useful measures
that allow a better understanding of the spectral characteristics of the system, especially when
and why the sea of ACs appears.

In the following, we will further characterize ACs clustering. To do this, we first have to
detect the position where the single ACs occur as a function of the force and its respective width.
In most of the proposed methods the idea is to follow the trajectory εi (F ) of a single eigenstate
as a function of a tuning parameter, what requires an ordering of the energy spectrum. That
procedure, in case of Floquet eigenenergies, is not straight forward due to its periodicity. Here,
we present an alternative method based on the concept of probability vectors, which does not
rely on ordering and brings additional advantages, directly connected with the properties of our
system.

ACs Detection: Projector Approach

In quantum mechanics, the time evolution of an initial condition |ψ(0)〉 is obtained by applying
the evolution operator Ût as follows

|ψ(t )〉 = Ût |ψ(0)〉 =
∑

j

c j ,0e−iεi t |εi 〉, with c j ,0 = 〈ε j |ψ(0)〉. (3.64)

If the Hamiltonian Ĥ has a free parameter λ, the energy spectrum εi depends on this parameter.
Assuming no degeneracies as changing λ, two neighboring eigenenergies come close to each
other for certain values λi . Due to the repulsion between them an avoided crossing appears,
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3.2. Static Analysis of the TBMWSH

Figure 3.10: Manifold mixing process. This mostly appearing at the center of the spectrum by heavily

coupling between manifolds with 0 < M < N . The figures in the right panel are the same as in Fig. 3.8

and 3.9 for the system N /L = 5/3, V0 = 5, s0 = 3 and ∆g = 0.16.

with width δc .1 The coupling strength between these states is thus given by δc /2. At the values
λi , the eigenstates hybridize and we can find locally in the spectrum the state

|θ〉 = a1|ε1〉+a1|ε2〉, with |a1| = |a2| =
1
p

2
. (3.65)

Therefore, the time evolution of |ψ(0)〉 = |θ〉 is constrained to these local eigenstates and c j ,0 =
〈θ|ε j 〉 = 1/

p
2, with j = 1,2. Far away from the AC position c1,0 ≷ c2,0, then the system lives

either in |ε1〉 or |ε2〉 and no dynamical transitions will occur. We see that only by following the
absolute square of the projecions c j ,0, the AC can be detected at the positions λi . If we now
consider the expansion of the eigenstates in the original basis |ε j 〉 =

∑

α Aα|α〉. By choosing
the initial condition to be one of the states |α〉, then at λc the coefficients |c j ,0|2 = |〈α|ε j 〉|2 are
only equal if the character of the local eigenstates is nearly the same and the hybridization is
reached, i.e.

|α〉 = 1
p

2
(|ε1〉+ |ε2〉) , (3.66)

This is equivalently written as

|〈α|ε1〉|2 = |〈α|ε2〉|2 and |〈α|ε j 〉|2 = 〈ε j |(|α〉〈α|) |ε j 〉 = 〈ε j |P̂α|ε j 〉. (3.67)

The latter shows that, when detecting ACs we only have to use the projector that represents an
initial state P̂α = |α〉〈α|, and compare the probabilities as the parameter λ changes. This does
not require ordering of the eigenstates.

Let us now generalize the method. Consider the seed states projectors defined by

P̂α = |sα,κ j 〉〈sα,κ j |, with
∑

α

P̂α = 1̂. (3.68)

In the following, we use the short notation |sα〉 ≡ |sα,κ j 〉. The eigenstates of the Floquet operator
can be expanded in this basis using the normalization condition in Eq. (3.68), and it looks like









...
|ε j 〉

...









=







〈s1|ε1〉 〈s2|ε1〉 . . .
〈s1|ε2〉 〈s2|ε2〉 . . .

...
...

. . .















...
|si 〉

...









,

1Two eigenenergies will repel in case of no symmetries additional in the system, whenever they get close to each
other as certain parameter is changed. See discussion of the single particle case in sec. 3.2.1
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3. Many-Body Wannier-Stark System: Spectral Analysis

Figure 3.11: (a) Eigenenergy spectrum for the system N /L = 5/3, with V0 = 5 and s0 = 3 around the

first order resonance. The black dots represent the energy state living in the manifold M = 0, the red

ones the corresponding states from the manifold M = N and the green dots correspond to mixed states

with 0 < M < N . (b) Zoom of the spectrum around the resonance position that evidences the sea of ACs

predicted by the manifold mixing. The panels (c) and (d) show the individual manifold mixing degree ζi

and the manifold number Mi for the eigenstates around the resonance.

where the matrix of probability amplitudes (M)i j = 〈si |ε j 〉 is unitary. By following the discussion
above, it is useful to define the vector of probabilities

~σ(α) =









...
|〈sα|ε j 〉|2

...









, with ~σ(α) =~σ(α)(λ).

We now set λ= F , and look for the positions in the energy spectrum where the local exchange
of character between neighboring eigenstates |εn〉 ↔ |εn±1〉 will take place. To do this, we only
need the information extracted from the diagonalization procedure and not from the dynamics,
since we are only interested in the coefficients constructed from the initial state c j ,0 in Eq. (3.64).
The components of the vector ~σ(i ) start changing in the vicinity of the AC and thus the largest
one jumps between contiguous components rightafter the avoided crossing as shown for the
single particle spectrum in Fig. 3.3. For not very sharp ACs, this component permutation is
smooth function of F . To quantify the changes of the vector~σ(i ) we can use the fidelity defined
in ref. [30]

fid(F,δF ) ≡ |〈εi (F )|εi (F +δF )〉|. (3.69)

This is a very efficient way to detect avoided crossings as shown by the authors (see also App. D).
We can redefine the latter equation for fidelity by using the projector P̂α and the closure relation
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3.2. Static Analysis of the TBMWSH

of the seed basis,
∑

α P̂α = 1. we thus obtain

G (α)(F,δF ) =
Ns
∑

j=1

|〈ε j (F )|P̂α|ε j (F +dF )〉|2

=
Ns
∑

j=1

|〈sα|ε j (F )〉|2|〈sα|ε j (F +dF )〉|2 (3.70)

which reduces the problem to the calculation of the fidelity of the probability vector~σ(α). Let us
define fα, j (F ) ≡ |〈sα|ε j (F )〉|2, and use the Taylor expansion up to the first order as

fα, j (F +δF ) ≃ fα, j (F )+δF
∂

∂F
fα, j (F )+O(δF (n≥2)). (3.71)

We can rewrite the Eq. (3.70) as

G (α)(F,δF ) =
∑

i

f2
α, j (F )+ δF

2

∂

∂F
f2
α, j (F ), (3.72)

where we can inmediately recognize that the first term is nothing else than the inverse partici-
pation ratio

ξα(F ) =
∑

j

|〈sα|ε j (F )〉|4, (3.73)

and the second its derivative. Numerically by considering a very fine step δF the second term
can be neglected, and thus the fidelity of the vector~σ(α) is reduced to calculate ξα, i.e.

lim
δF→0

G (α)(F,δF ) = ξα(F ), (3.74)

which has minima at the AC positions, i.e. ∂ξα/∂F = 0. Then we see that before and after the AC,
the state represented by P̂α is recovered, but the maxima permutates along of the vector~σ(α), i.
e. from j = k to j = k±1. Due to the many different processes, not only one state participates in
the AC event, but two, three or more eigenstates. This happens for example when three states
are nearly resonant and there is coupling between pairs of states, for instance, in a resonantly
three level system of the section 3.2. In our case, we have many different energy scales, and
hence it is not a surprise to observe more than two states participating on a transition process.
It means, an AC in our system can be created by the tilt

|1111...〉⊗ |0000...〉 FC0←−→ |1011〉⊗ |0100〉,

as well as by transitions between energy levels coupled by the hopping terms

|1111...〉⊗ |0000...〉 Ja←→ |1021...〉⊗ |0000...〉,

|1000...〉⊗ |2100...〉 Jb←→ |1000...〉⊗ |1200...〉,

or by two-particle exchange Wx

|1211...〉⊗ |0000...〉 Wx←→ |1011...〉⊗ |0200...〉,

which are auxiliary processes. In figure 3.12 we show the participation ratio 1/ξα as a function
of µ in the vicinity of the RET. One can see that whenever a peak appears an AC occurs and then
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3. Many-Body Wannier-Stark System: Spectral Analysis

Figure 3.12: AC detection. (Left) single particle avoided crossing and the exchange of character as cross-

ing the resonance. The lower panel shows the participation ratio 1/ξα for the two eigenstates. (Right)

Spectrum for N /L = 3/2 and the colors show the exchange of character of an initial state when crossing

the sea of ACs. The lower panel shows the respective participation ratio, with maxima where the ACs

occur.

the number of eigenstates involved is sometimes more than two. Additionally, the exchange of
character is represented by the color change at the AC. After detecting ACs F0, the respective
width is computed as

∆
ac
n = min{εn+1(F0)−εn(F0),εn(F0)−εn−1(F0)}. (3.75)

The above method offers various advantages: (i ) since we can define from the beginning
the character of the states before the AC detection, then one can identify the class of states and
study the statistics of the respective sea of ACs. The average inverse participation ratio over the
spectrum can be written as

〈ξα〉 =
1

Ns

∑

α

ξα, (3.76)

or equivalently written in the terms of the manifolds by

〈ξα〉 =
1

Ns

[

∑

M

dM 〈ξα〉M

]

, with 〈ξα〉M = 1

dM

dM
∑

α=1
ξα,M . (3.77)

Therefore we can separately study every manifold and its respective sea of ACs. (i i ) Previously,
we have seen that, a maximally mixed spectra contains a large number of states in the middle of
the spectrum with manifold number 0< M < N . Therefore, the number of ACs is expected to get
larger than for the manifolds M = 0, N (see Fig. 3.13). This figure shows the manifold-averaged
participation ratio 1/〈ξα〉M , normalizated to the corresponding dimension of the Hilbert space
Ns . The states from mid-manifold are then most susceptible to undergo changes within the RET
regime, thus very good candidates to study dynamical relaxation. We shall show later the role
of those states the time domain. (i i i ) We avoid the non-trivial of ordering the Floquet eigenen-
ergies.

In the next section, we apply the method exposed here to study the properties of the sea of
ACs.
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3.2. Static Analysis of the TBMWSH

Figure 3.13: manifold-averaged participation ratio 1/〈ξα〉M normalizated to Ns , for (a) N /L = 4/11

(Ns = 1150), (b) (c) N /L = 5/6 (Ns = 728), (c) N /L = 6/5 (Ns = 1001) and (d) N /L = 7/4 (Ns = 858).

M indicates the manifold over the which the average was computed. Note that mid-manifolds mix faster

when entering the RET regime, and at the exact single particle position Fr in both cases the number of

eigenstates participating in the mixing grows algebraically with µ=∆g /2πF . The remainding parameters

are: V0 = 5 and s0 = 2.5.

Density of Avoided Crossings

The term Avoided Crossing is connected to the concept of coupling between different states. It is
also strongly linked to the problem of non-integrability of Hamiltonian systems, therefore to the
concept quantum chaos. Classically, Chaos can be defined by the loss of integrals of motion due
to the presence of interaction or processes which remove symmetries. In quantum mechanics,
the latter is equivalent to the loss of good quantum numbers, which happens as long as ACs
appear. The study of cluster of ACs becomes then an important hint to understand strongly
correlated systems as our Wannier-Stark problem. Yet, the presence of ACs does not guarantee
at all the transition from the regular regime to a quantum chaotic one. A couple of examples are
exposed in ref. [81].

Following ref. [30], we define the density of AC, ρac as

ρac (F ) = 1

Ns

Nac

∆F
. (3.78)

where Nac is the number of ACs in the interval [F,F +∆F ]. This quantity identifies the cross over
between regions with any, a few and many ACs. The figure 3.14 shows ρac (F ) for the system
N/L = 4/4. Note that, around the resonance order µr = ∆g /2πFr , the density follows closely
a gaussian profile. The peaks appearing between the resonances order are a consequence the
periodicity of the Floquet eigenstates and the lack of symmetries on the spectrum. We discrimi-
nate the spectrum by colors depending on the manifold number Mi : (black) states with Mi → 0,
(red) Mi → N and (green) for the rest of the spectrum. One can notice again the bunches of lev-
els, beforehand forming the manifolds, behave quite similar to the single particle eigenstates
around since they totally undergo exchange of character after the RET position. Nevertheless,
their properties are not that trivial.

The peaks about the resonances get embedded into the sea of ACs due to the onset of
global mixing as the filling factor increases. In Fig. 3.15 we see clearly the latter phenomenon.
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3. Many-Body Wannier-Stark System: Spectral Analysis

Figure 3.14: Spectrum for N /L =4/4, V0 = 5 and s0 = 2. The colors discriminate the lowest (black: M = 0),

highest (red: M = N ) and the remaining manifolds (green: 0 < N < M ).

The density of ACs around the resonances becomes flatter with µ, what occurs when neighbor-
ing resonance orders overlap, as shown in Fig. 3.8. Here the density ρac (F ) was computed using
the whole set of seed states. The dimension of the systems used in this figure is: Ns(3/11) = 184,
Ns(4/5) = 143, Ns(5/4) = 198 and Ns(264) = 264, with the step δF = 1/2000. For these small
systems the number of ACs is about 104, and in almost all cases when N/L ∼ 1 the density is
close to constant about the resonance with a value ρac ∼ N/L. This relation is important, since
any localized state shall spread over the local energy domain, by dynamically tuning the force F .
This spreading is the faster, the larger the sea of ACs or equivalently, as the local ρac increases.
Nevertheless, since a large number of ACs does not guarantee the presence of chaos in the sys-
tem, a complete delocalization (spreading) of the initial state does not necessarily take place.
We shall be back to this important issue, because of its connection with the expected spectral
localization.

In our two-band Hamiltonian system there exist many different energy scales. Therefore, it
is not expected to have characteristic energy scales that would control the dynamics. However,
we know that, by controlling the parameters (N/L,∆g ,r ), we can induce a transition from a
nearly integrable system, i.e. that one with good quantum numbers and weak manifold mixing,
to the non-integrable one, for which strongly mixed spectrum was already predicted. We now
want to see how the transition to quantum chaos can be established.

3.2.3 Emergence of Quantum Chaos

So far, we have studied the conditions for system to undergo either weak or strong band mix-
ing. In addition, we have seen that the mixing properties can be well understood in terms of
manifold formalism, despite the many parameters considered. That is: hopping strengths Jβ,
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Figure 3.15: Spectrum and the correspoding density of avoided crossingsρac for increasing filling factor:

N /L = 3/11, N /L = 4/5, N /L = 5/4 and N /L = 7/3. As in the previous figures, the colors discriminate the

lowest (black), highest (red) and the remaining manifolds (green).

intra- and inter-band in-situ interparticle interaction Wβ and Wx , band gap ∆g , dipole-type
transitions {Cs } and filling factor N/L. We have also showed that the spectral properties of our
TBMWSH are highly sensitive to changes on any of the following parameter triplet:

(

N

L
, ∆g , r

)

with r = 1,2, · · · ,L−1, (3.79)

where r is the order of resonance. For typical parameters, very strong manifold mixing is
reached as the ratio between the characteristic strength for one-particle exchange is compa-
rable to the energy gap, i.e. C0 ∼ Wx/2∆g ∼ 0.1. The mixing can be enhanced in the resonant
regime since the one-particle exchange is maximized by the Stark coupling (RET condition),
or by decreasing the ∆g . Both processes depend sensitively on the filling factor. We want now
to establish the conditions for quantum chaos, for which spectral mixing is already one of the
requirements, although not sufficient. We now use RMT tools to statistically characterize the
spectrum within the resonant regime.

To compute distribution P (s), keeping in mind that s = (εi+1 −εi )/〈s〉, the theory assumes
complete randomness of the Hamiltonian matrix, then its matrix elements must be necessarily
Gaussian-distributed. When working with Floquet eigenenergies, the ensemble is referred to as
Circular Orthogonal Ensemble (COE), due to its periodicity. In order to compare our spectral
statistics with the RMT measures, we have to find good parameter to quantify deviations be-
tween both, RMT and our numerical results. A good parameter is the rms deviation between

44



3. Many-Body Wannier-Stark System: Spectral Analysis

the cummulative distribution I (s) =
∫s

0 P (s ′)d s ′ and the predicted by RMT [19, 21]. This is de-
fined as

r ms ≡
∫∞

0
d s [I (s)− IW (s)]2 , with IW (s) = 1−exp(−πs2/4). (3.80)

This quantity is better statistically analyse in the practice, when only a finite number of levels
is available [19, 21, 75], Ns ∼ 103. An additional unfolding procedure of the TBMWSH spectrum
must be done because, as seen in Fig. 3.15, the levels are not necessarily extended over the
entire Floquet zone (i.e. randomization within the zone is not guaranteed). The unfolding is not
necessary when ∆E ≈ωb and Ns ≫ 1.
To see the transition to the quantum chaotic regime, a standard measure is the parameter η

defined by

η=
∫g0

0 (P (s)−PW (s))d s
∫g0

0 (PP (s)−PW (s))d s
, (3.81)

where g0 = 0.4729... is the intersection point between the distributions PP (s) and PW (s). This
function takes the value η= 1 if P (s) is Poissonian-distributed (for regular spectra) and η= 0 in
the case P (s) follows the Wigner surmise PW (s).

It is convenient to rescale the gauged-transformed Hamiltonian as Ĥ ′ → Ĥ/2∆g . Thus we
obtain

Ĥ ′ = y

2

∑

l ,β

[

−(β̂†
l+1β̂l exp(−iωB t )+h.c.)+ n̂

β

l
(n̂

β

l
−1)

]

+ u
∑

l

[

2n̂a
l n̂b

l +
1

2
(b̂†

l
b̂†

l
âl âl +h.c.)

]

+ ω̃B

∑

l ,s

Cs

[

â†
l+s

b̂l exp(−iωB t )+h.c.
]

+ 1

2

∑

l

n̂b
l , (3.82)

where we set

y = Jα

2∆g
≈ Wα

2∆g
and u = Wx

2∆g
.

Here, we use the known fact that, by setting Jβ ≈ Wβ, the independent single-band Bose-
Hubbard chains (manifolds M = 0, N ) exhibit a quantum chaotic regime for filling factor N/L ∼
1 and finite Stark force [59]. The parameter u is the same plotted in Fig. 3.7. Very strong band
mixing is predicted to occur when u ∼ |C0|/r . Note that both, u and y are proportional to ∆

−1
g .

For typical parameters, we have ∆
−1
g ∈ [1/3,10] if s0 ∈ [1,6]. In the same interval, Jβ ∈ [0.01,0.08]

and Wβ,x ∈ [0.02,0.03] (see Table A.3). Therefore, without loss of generality we can set a typi-
cal values for Jβ,Wβ,x and C0, and consider u and y only as a function of the bandgap. This
also brings computational advantages when diagonalizing the Floquet operator. After the latter
rescaling procedure, the onset to quantum chaos may be characterized by the interplay be-
tween single- and two-particle exchange, i.e. nothing else than the analysis of a three-diagonal
block matrix that define the manifold mixing explained in Sec. 3.2.1 (see also Fig. 3.2).

For this analysis we choose systems with different filling factor and similar size of the
Hilbert space. This allows one to establish a good comparison of our results for final size system,
where the filling factor is the important parameter along of this work.

These systems are given in Tab. 3.1 and the results are summarized in Fig. 3.16. We com-
pute the rms deviation along with the parameter η, which sets the critical values for the onset
of chaos. The latter parameter falls continously and smoother than the rms. Both parameters
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Figure 3.16: (a) and (b) show the rms deviation and the parameter η as a funtion of the ratio u =Wx /2∆g

for different filling factors N /L, at the first order resonance. The arrow indicates the critical value at which

the onset to chaos take place for systems with filling factor close to one. (c) and (d) depict the same as in

the upper panels but for the second order resonance r = 2. Note that in both cases the onset of chaos for

N /L ∼ 1 follows the prediction stated in figure 3.7. The parameters for the rescaled gauge-transformed

Hamiltonian are: Wx = Jβ =Wβ = 0.05 and C0 =−0.1.

N/L 3/25 4/11 5/6 6/5 7/4

Ns 884 1150 728 1001 858

Table 3.1: Filling factor N/L of the typical systems and their respective dimension.

show how good is the comparison with RTM predictions. We can see that for filling factors close
to one, our prediction for strong mixing transition in Fig. 3.7 is valid. The red arrows in Fig. 3.16
indicate the critical values |C0|/r ∼ u. Despite the variety of used parameters used in Figs. 3.16
and 3.17, the comparison between the rescaled and non-rescaled Hamiltonian show similar-
ities respect to the chaos onset; yet, the rescaling makes it more clear. It is also seen that for
N/L = 6/5 and N/L = 7/4, the transition to full chaos is reached faster than for filling factors
close to but smaller than one. Finally, figure 3.17 allows one to confirm the prediction of transi-
tion to fully quantum chaotic regime, i.e. |C0| ≈Wx /2∆g .

We therefore conclude that quantum chaos is always presented for filling factors close to
one, similar to the condition states in ref. [59]. The statistics of the spectrum is also sensitive
the bandgap. Consistent with this, when N/L ≪ 1, the distribution P (s) shows deviation to the
Poissonian distribution. We show this effect in Fig. 3.18, where the distribution P (s) is plotted
along with their cummulative distribution. Deviation from the complete regular regime are typ-
ical in our system, where Poissonian distributions are only obtained for very large values of the
gap, i.e. u must be small. The latter condition has been already explored in Eq. 3.38, where we
showed that for u ≪ 1, the dominant transition processes are given by the single particle ones.

46



3. Many-Body Wannier-Stark System: Spectral Analysis

Figure 3.17: Transition to quantum chaos for the unrescaled Hamiltonian, for the several filling factors

N /L at the first order of resonance. For the limit case N /L ≪ 1, the system does not show quantum

chaotic behavior. The parameters are those from table A.3.

Usually, under this effect the Bose-Hubbard chains are weakly coupled by the Stark, hence weak
manifold coupling. This is the limit where M is a good quantum number.

So far, we have studied the transition to chaos at the exact value of the single particle res-
onance F = Fr . However, we must remember that mixing is present overall the entire RET do-
main. To study the statistics of the RET regime, it is useful to study the distribution of AC widths,
for which RMT predicts full chaos if such a distribution follows the GOE prediction [105]:

P (c) = (1−γ)δ(c)+γ

(

4D

π

)1/2

exp
(

−Dc2) , with D = γ

〈c〉2π
. (3.83)

where γ= 1 implies a full chaos (strongly mixed Bloch bands), and γ→ 0 for a regular spectrum
within ∆F (weaky mixed spectrum). We now use the method developed in sec. 3.2.2 to compute
P (c), within the interval ∆F centered at Fr . In Fig. 3.19 we show the resulting distributions
for N/L = 3/11, N/L = 4/5 and N/L = 5/4. Those results show that, the quantum chaos onset
within ∆F depends on: the filling factor and s0. For s0 = 2.5 (upper panels), deviations from the
chaotic regime are expected for all values of N/L, because the parameter u = Wx/2∆g ≈ 0.017,
which is below the critical parameter Wx /2∆g ≈ 0.1. Yet, for filling factors N/L ∼ 1, the spectra
follow nearly the chaotic distribution (γ → 1), due to the enhancement of the number of ACs
within ∆F . There exists no no dominant energy scale in this region. The case for s0 = 4 shows
clearly the transition to chaos for N/L ∼ 1 (u = Wx/2∆g ≈ 0.1), and deviations for filling much
smaller than one. The latter is expected because of the single-particle limit. Note that, the
resulting distribution for P (c) is in a good agreement with the corresponding P (c) despite the
size of the filling factor. This quantity thus is very useful to detect the onset of chaos for system
with few degrees of freedom.

At this point, we can conclude:

• The critical values for quantum chaos are: N/L ∼ 1, |C0|/r ∼Wx/2∆g .

• For high orders resonance, i.e. r > 1, the ratio |C0|/r decreases. In this way, the condition
|C0| ∼ r Wx /2∆g only makes the system to enter in a chaotic regime when the interparticle
interaction increases, i.e. if we replace Wx → gWx with g > 1 (see Fig. 3.7).
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Figure 3.18: The figure shows the NNLS distribution for the systems N /L = 3/25 and N /L = 6/5 (a,b),

along with the cummulative distritution I (s) (c,d). Panels (a) and (b) for V0 = 5 and s0 = 2.5 and panels (c)

and (d) for V0 = 5 and s0 = 4.0. The quamtum chaotic distribution does not change for those system, but

the Poisson one is modified as s0 increases. For all parameters studied there is no clear signal of complete

regularity in the spectrum, i.e. a correspondence with the Poissonian distribution.

• The spectrum in the limit N/L ≪ 1 is nearly regular. To see complete transition to chaos,
one must set very small values for the energy gap ∆g , which is not possible at all with
experimentally motivated parameters in Tab. A.3.

• Quantum chaos is very sensitive on the filling factor as shown by the distributions P (s)
and P (c).

We have seen that, the occurrence of ACs is connected to the spectral mixing and chaos,
especially around the resonant regime. This effect can be seen also when studying the eigen-
vectors of the Floquet Hamiltonian. A more precise analysis of the eigenvectors is left for the
next chapter, where the connection to the dynamics is established. Yet, it is well-known fact that
whenever chaos appears the eigenvector |εi 〉 also undergoes changes in its structure [70, 74].
This can be seen by the study of the expansion coefficients, Aβ, in the Fock (seed) basis, which
are nearly uncorrelated in the fully chaotic regime. That is, all Fock (seed) states contribute
such that Aβ fluctuates about the equipartition condition |Aβ| = 1/

√

Ns . This is the condition
for maximal hybridization, hence the Floquet eigenstates are strongly mixed states. However,
we can have situations where the mixing is large, but not enough to connected the entire set of
Fock (seed) states, and therefore there is no full hybridization. Under that circumstances the
system does not undergo a transition to chaos, and it shall not equilibrate. In the next chapter,
we show that this effect can be detected dynamically when tuning the Stark force across the
RET regime.
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3. Many-Body Wannier-Stark System: Spectral Analysis

Figure 3.19: Avoided crossing widths distribution P(c) for increasing filling factor N /L and s0 = 2.5,5,

and V0 = 5. The distributions in the upper panels correspond to the region where the ratio Wx /2∆g ≈
0.017, where not fully chaotic behavior is expected as predicted in Fig. 3.16. For the distributions in the

lower panels the value Wx /2π ≈ 0.14. This regime is fully chaotic for N /L ∼ 1. Deviations from the RMT

predicition are found for chaos for filling factors N /L ≪ 1, i.e. the single particle limit, and N /L > 2,

where the dominant energy scale is the interparticle interaction. The set of widths {ci } was obtained with

the method presented in sec. 3.2.2. The number of points is larger than 20000 ACs in the RET domain

defined by
∆g

2πF
∈ [0.7,1.3], i.e. about the first order resonance.

3.3 Summary

Let us summarize what has been exposed until this point:

(1) We presented our isolated many-body model: The two-band Bose-Hubbard Hamiltonian.
This model was constructed starting from the miniband approximation based on an en-
gineered bichromatic optical potential. The properties of the latter potential can be easily
modified as a function of the relative amplitudes V0 and V1. In fact, when decreasing the val-
ues of the energy separation between the Bloch bands, we can engineer a very well isolated
system.

(2) We have studied the emerging effects when the properties of the lattice are changed. Tthe
mixing between the Bloch bands manifests itself either local or globally in the energy spec-
trum, as the Stark force is changed. We have established conditions for weak and strong
mixing as a function of the parameter triplet (N/L,∆g ,r ). The phenomenology can be un-
derstood by defining the M-manifolds, associated to the upperband occupation number
M . We introduced the manifold mixing degree ζ, as a complementary measure to distiguish
actual strong manifold mixing.

(3) In the last section, we showed the connection between the emergence of quantum chaos
and the inter-band mixing (manifold mixing). The transition occurs by the exchange of at
most one or two particle between the M-manifolds. This model allows one to recognize the
tight-binding nature of the our Hamiltonian, which implies a kind of spectral localization.
We have shown that in spite of the large number of process considered, chaos can be ac-
tivated by changing the filling factor. In the limit N/L ≪ 1, the behavior of the system is
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3.3. Summary

nearly the single-particle one, where the Hamiltonian is nearly integrable. All these regimes
can be by computing the NNLS and the AC widths distributions.
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Chapter 4

Many-Body Wannier-Stark System:

Dynamical Analysis

So far, we have made a detailed study of the Floquet spectrum of our many-body Wannier-
Stark system. We have shown that global mixing properties are mainly controlled by the en-
ergy separation between the Bloch bands, and local mixing by the order of resonance. How-
ever, all that analysis was static, that is, neither the Stark force nor any other parameter had
an explicit dependence on the time. Unfortunately, in the experiment the energy spectrum of
a system as ours is not easily accessible and alternative (indirect) measurements must be em-
ployed to extract relevant information. In this way, many-body effects predicted by the statical
analysis can be investigated by sweeping the Stark force. Following that reasoning, we define a
pulse F = F (t ) to study the dynamical properties by evolving various specific initial conditions
across the RET regime. In this manner, we can probe the spectral properties in different dynam-
ical regimes: adiabatic, non-adiabatic and diabatic. Relaxation towards equilibrium, controlled
quantum transport and others dynamical features will be exposed, along with their connection
with statical properties of the spectrum.

To begin with our dynamical study, we first revisit some important dynamical aspects,
whose connection with the static characteristic of the spectra can be straightforwardly estab-
lished.

4.1 Adiabatic Theorem and Landau-Zener Transitions

Adiabaticity plays an important role, because this is the condition, at which any system can
transform its properties during the long-time passage across an avoided crossing. The other
limit is the diabatic condition, for which the initial state essentially remains unchanged [106].
This limit is usually referred to as a sudden sweep. Paradigmatically, non-adiabatic transitions
also occur with a probability given by the celebrated Landau-Zener formula [65, 66, 68]

PLZ = e−π/γ, with γ= 4α

(∆E )2
, (4.1)

which is valid only for a two-level AC. ∆E is the width of the AC and α is the sweeping rate.
In our problem, a Landau-Zener scenario is easily set by the single particle limit around

the resonant regime. There an isolated avoided crossing occurs due to the interaction between
the Wannier-Stark ladders (see Fig. 3.3). Furthermore, one defines the initial conditions to be
the state with one particle occupying the l th lattice site in the lowest Bloch band. In this way,
it is possible to promote the particle to the upperband. In order to do this we define the linear
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4.1. Adiabatic Theorem and Landau-Zener Transitions

Figure 4.1: Landau-Zener scenario for the single-particle spectrum. The manifold states |ψM=0〉 and

|ψM=1〉 represent the diabatic states far apart from the resonance Fr . |φ±〉 represents the maximally hy-

bridized state created by the passing across the AC. ∆r (F (t )) is the energy separation, in our case corre-

sponding to the various the manifold states with ∆M =±1.

pulse F (t ) = αt +F0 and sweep the system across any resonant position Fr . The particle can
tunnel r lattice sites until it occupies an upperband state at the exact resonance. In terms of M-
manifolds, the latter setup is the one-particle exchange process between the manifolds M = 0
and M = 1. The respective manifold states, |ψM=0〉 and |ψM=1〉, far apart from the resonant
regime can be considered as the diabatic states sketched in Fig. 4.1. The exchange of character
expected to occur at Fr and it is represented by the change of color of the eigenenergy "path"
(see also the arrows) at the exact resonance. At this point, the diabatic states get completely
hybridized, which is represented by the states |φ±〉. The latter allows one to conclude that the
static spectrum, studied in the previous chapter, is nothing else than the time-domain repre-
sentation of the adiabatic limit, i.e. α → 0. Let ∆T be the time expended to drive the system
from a starting tilt F0 < Fr to a final one F f > Fr . We shall referred to ∆T as the sweeping time.
In the practice, ∆T is finite.

The survival probability PM ,0 of an initial state |ψ(0)〉 = |ψM=0〉 is plotted as a function of
the parameter F (t ). An estimate for the sweeping time can be set by the Heissenberg relation

∆T∆E ≈ħ, with ħ= 1. (4.2)

The sweeping rate is then given by

α= ∆F

∆T
≃λ∆F∆E , (4.3)

where ∆F is the effective interval of tilts F at which the coupling between the diabatic states
effectively starts. λ is a parameter controlling the type of dynamics expected when crossing the
resonance: Diabatic (λ≫ 1), non-adiabatic (λ∼ 1 ) and adiabatic (λ≪ 1) passage (see Fig. 4.2).

The extended version of the Landau-Zener problem, i.e. the multi-state problem, is nat-
urally obtained by increasing the particle number, hence the number of manifolds. In the
non-interacting case (Wi = 0), the tight-binding-type Hamiltonian (3.22) has an energy spec-
trum, whose shape resembles a bow tie-like shown Fig. 4.3-(left). The time-dependent energies
εr (F (t )) define the energy gap between two contiguous manifolds as

∆r (F (t )) ≃∆g

√

(

1− F (t )

Fr

)2

+4

(

F (t )C0

∆g

)2

. (4.4)
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4. Many-Body Wannier-Stark System: Dynamical Analysis

Figure 4.2: Landau-Zener transition: The figure shows the time-dependent survival probability PM ,0 for

the initial state |ψ(0)〉 = |ψM=0〉. Its behavior is plotted for different regimes of the time evolution set by

the parameter λ, where F (t ) = αt +F0. The position of the avoided crossing is given by
∆g

2πF (t ) = 1. The

remaining parameters are V0 = 5, s0 = 1, Fr = 0.4224 and N /L = 1/6.

We now define the Bloch period TB = 1/Fr . Our non-interacting many-body system is usually
referred to as the bow-tie problem for multi-state Landau-Zener scenario [107–109], for which
there exists exact solutions. That is, analytically solutions for the transition probabilities be-
tween the different M-sets. In figure 4.3 we show manifold excitation probability PM ,0(F (t )) as
a function of the time. It is important to see that all probabilities start oscillating in time right
after the full depletion of the lower channel probability takes place t = 5 TB . This happens right
before the resonance position Fr = 0.422. The oscillations reduce as long as the system is swept
across the RET regime, and after the AC, the higher manifold is more populated than the rest.
This calculation was done considering λ = 1 and it takes less than hundred Bloch periods to
excite the higher manifold with an occupation probability larger than 50% for the manifold
M = N . Of course, this simple evolution process becomes more complex when turning on the
interactions. In that limit, the calculation of the analytically the probabilities PM is a way more
complicated. We have already discussed this complexity in the static analysis (see sec. 3.2).

Figure 4.3: (Right) Bow-tie-shaped static energy spectrum for the system N /L = 4/4. The arrow indicates

the starting manifold M = 0. (Left) Time evolution of the manifold occupation probabilities PM ,0(F (t ))

with λ= 1 and initial state |ψ(0)〉 = |1111〉a ⊗|0000〉b .
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4.2. Ergodicity and Mixing

In the following, we study the evolution across the many-body spectrum, again, by consid-
ering the experimentally motivated linear pulse F (t ). We will see that all knowlegde of the static
problem is very useful to understand, e.g. dynamical manifold mixing, relaxation and other in-
teresting many-body effects, along with their dependence on the different system parameters.

4.2 Ergodicity and Mixing

Let us do the following experiment. A system initially prepared in the state |ψ(0)〉|F0 is suddenly
swept from F0 to Fr and then it is left to evolve in time such that F = Fr is fixed. This implies that
the evolution is generated by the time evolution operator ÛTB (3.13). For fixed Stark force, the
dynamics is governed by the gauge-tranformed Hamiltonian (3.9), then we can use the Floquet
formalism B.6 to compute the evolution of |ψ(0)〉Fr . When the evolution starts, so does mixing.
In this way, the inter-band coupling can be investigated through the upperband occupation
number M(t ) [64, 81]. Here, we are interested in long-time behavior of the time average of the
projectors P̂α, which reads

〈ψ(t )|P̂α|ψ(t )〉 =
∑

n

|cn,0|2〈εn(t )|P̂α|εn (t )〉

+
∑

n 6=m

c∗n,0cm,0e−i (εn−εm )t 〈εn(t )|P̂α|εm (t )〉, (4.5)

where cn,0 = ∑

k〈φk
n|ψ(0)〉 and |εn(t )〉 = ∑

k e−ωB kt |φk
n〉. The long-time average of the first term

in the right-hand side is computed as follows

〈εn(t )|P̂α|εn(t )〉 = lim
τ→∞

1

τ

∫τ

0
d t 〈εn(t )|P̂α|εn(t )〉

=
∑

k,k′

(

lim
τ→∞

1

τ

∫τ

0
d t e−i∆k,k′ωB t

)

〈φk′
n |P̂α|φk

n〉

=
∑

k,k′
δk,k′〈φk′

n |P̂α|φk
n〉 (4.6)

=
∑

k

〈φk
n|P̂α|φk

n〉, (4.7)

where we have expanded |φk
n〉 in the seed basis, |φk

n〉 =
∑

β ck
n,β|sβ〉. By using P̂α = |sα〉〈sα|, we

obtain

〈εn(t )|P̂α|εn(t )〉 =
∑

k

|ck
n,α|2|cn,α|2. (4.8)

For the second term of (4.5) we have:
∑

n 6=m

c∗n,0cm,0e−iωn,m t 〈εn(t )|P̂α|εm (t )〉 =
∑

n 6=m

c∗n,0cm,0

∑

k,k′
(ck′

n,α)∗ck
m,αΛk,k′ (t ), (4.9)

with Λk,k′ ≡ e−i (ωn,m−∆k′,kωB )t , ωn,m = εn−εm and ∆k′,k = k ′−k. By choosing the initial condition
to be a seed state, for instance |ψ(0)〉 = |sν〉 we get

P̄α(F ; |sν〉) ≡ 〈ψ(t )|P̂α(t )|ψ(t )〉
=

∑

n

|cn,0|2|cn,α|2

+
∑

n 6=m

c∗n,0cm,0

∑

k,k′
(ck′

n,α)∗ck
m,αΛk,k′(t ), (4.10)
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4. Many-Body Wannier-Stark System: Dynamical Analysis

which is the average occupation probability of the state |sα〉 given initial state |ψ(0)〉 = |sν〉. In
particular, when ν=α, it is possible to rewrite the Eq. (4.10) in terms of the inverse participation
ratio

P̄α(F ; |sα〉) = ξα+
∑

n 6=m

c∗n,0cm,0

∑

k,k′
(ck′

n,α)∗ck
m,αΛk,k′ (t ) (4.11)

with ξα = ∑

n |cn,α|4 and cn,α = 〈εi |sα〉 (see (B.5)). The expression of the inverse participation
ratio can be written as mean value over the energy spectrum, i.e.

ξα =
∑

j

|〈ε j |sα〉|2|〈ε j |sα〉|2 =
∑

j

pα
j 〈ε j |sα〉〈sα|ε j 〉 =

∑

j

pα
j 〈ε j |P̂α|ε j 〉, (4.12)

where pα
j

is the occupation probability of the eigenstate |ε j 〉 and satisfies the normalization

condition
∑

j pα
j
= 1. Therefore, we recognize that the equation (4.12) is the spectral average for

the projector Pα. We conclude that for any initial condition |sα〉 the system becomes ergodic if

P̄α(F ; |sν〉) ≈ ξα =
∑

j

pα
j 〈ε j |P̂α|ε j 〉, (4.13)

which is satisfied if the function Λk,k′ drops faster to zero. In fact, this is satisfied whenever the
system has no additional symmetries, i.e. if there are no degeneracies, and therefore the pres-
ence of ACs. We can prove that Λk,k′ always goes to zero under the latter conditions. Suppose
that the function Λk,k′ is different from zero. This implies that the condition ωn,m = ∆k,k′ωB

must be fulfilled with ωn,m 6= 0. Thus the integer |k −k ′| > 0. Because of the periodicity of the
Floquet eigenenergies, we know that any integer |k −k ′| maps a single energy from the funda-
mental Floquet zone onto the |k −k ′|-zone, and it is exactly the same eigenenergy. Therefore,
we have εn = εm +∆k,k′ωB ≡ εm , and the difference ∆k,k′ωB = 0. This is just a contradiction,
therefore Λk,k′ has to be equal to zero.

As an example of this underlying ergodicity of our system, in Fig. 4.4 we show a compar-
ison between the inverse participation ratio and the spectral average of the projector repre-
senting the initial state |ψ(0)〉 ≡ |sα〉 = |1111〉a ⊗ |0000〉b. The closer to the resonant regime,
the better the comparison, which is the region where the sea of ACs appears, hence a high
degree of mixing. The projector P̂α can thus mix with the entire Hilbert space. Other observ-
ables, for instance occupation number operator M̂ ≡ N̂b , cannot be written in terms of only
one Fock (seed) state projector but as a linear combination of all of them. Therefore, when
computing its long-time average, they contain more information from the entire spectrum.
This is the reason for the almost perfect matching between its time and spectral average, i.e.
N̄b(F ; |sν〉) ≈

∑

j |c j ,0|2〈ε j |N̂b |ε j 〉 (see Fig. 4.4-upper panel). This result is very important be-
cause it claims itself that the spectral properties of the Hamiltonian system with fixed Stark
force are determined by the long-time averages of its dynamical properties (mixing and occu-
pation numbers), whenever the system is restricted to a specific class of symmetry. An impor-
tant consequence of the above analysis comes into the play. Let us suppose that the spectrum
at F = Fr is chaotic, i.e. if the local eigenenergies yield to GOE-distributed P (s). In this case, the
Floquet eigenstates are also chaotic, the coeffients {c j ,α} randomize such that they are gaussian-
distributed. In this way, the variable y ≡ |c j ,α|2/〈c2〉, with 〈c2〉 ≡ 〈|c j ,α|2〉, must follow the GOE
Porter-Thomas distribution [73] (see App. C). Using this distribution and following ref. [110],
the spectral average for the projector P̂α (4.13) can be computed as

ξα =Ns〈c2〉2
∫∞

0
d y P (y)y2, P (y) = 1

√

2πy
exp(−y/2), (4.14)
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Figure 4.4: Comparison between spectral and long-time averaged for the upperband occupation Nb

(upper panel), and the projector P̄α representing the initial state |ψ(0)〉 = |1111〉a ⊗|0000〉b (lower panel),

corresponding to the system N /L = 4/4.

This integral is accesible, therefore we obtain

ξ
goe
α = 3/Ns , (4.15)

which is the GOE limit for strong mixing condition, and the minimal value for relaxation
reached for the initial state |ψ(0)〉 after the quench. This is the condition for equilibrium usually
defined in the context of the energy shell approximation [110, 111].

The results obtained in this section will be very important to understand the rest of this
chapter. We highlight that the ergodic nature of our system is not enough to obtain the GOE
limit for equilibrium. A second component is very important: quantum chaos.

From the latter analysis we can see that our system becomes ergodic if there is spectral
mixing (manifold mixing). However, the presence of mixing, for instance in the non-adiabatic
regime, does not guarantee ergodicity since there is not necessarily mixing of the initial state
with the entire Hilbert space. This is a well-known fact in the statistical mechanics. We shall
come back to this discussion when we study the dynamical relaxation process in our system,
which will be described in the next sections.

4.3 Spectral Diffusion in the Many-body Interacting Regime

In section 4.1 we have shown the simplest cases for evolution across the RET regime, say,
the case N = 1 and the many-body non-interacting system. Such a kind of time-evolution is
more complicated when turning on the interactions between the particle (Wi 6= 0), because the
evolved state has to cross the entire RET regime where many ACs cluster. Furthermore, when
high degree of mixing is present, for instance in a case N/L > 1, there is no characteristic energy
scale which would permit an easy driving of a many-body initial condition. We have then a very
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4. Many-Body Wannier-Stark System: Dynamical Analysis

complex setup provided by the sea of ACs and several interesting dynamical processes will take
place due to the cascade of single Landau-Zener (LZ) events.

Before studying how the system diffuses, we have to consider the effects of the parametric-
time evolution on the Hamiltonian properties and also establishing useful definitions for the
rest of our analysis. First, we note that the properties of the pulse F (t ) can change symme-
try properties of the gauged-transformed Hamiltonian in Eq. (3.9). Let us rewrite the time-
dependent Hamiltonian as

Ĥ(t ) = Ĥ0 + Ĵ †e−i 2πF (t)t +
∑

s

Ĉ †
s e−i 2πsF (t)t +h.c., (4.16)

where Ĥ0 contains all time-independent terms, Ĵ is the hopping term and Ĉs the dipole-
induced interband coupling. In the previous chapter the force has been considered a time-
independent parameter F (t ) = F , which implies that the Hamiltonian has a well defined time
periodicity given by the Bloch period TB = 2π/ωB . The time evolution of any initial state is then
computed by the stroboscopic quantum map

|ψ((m +1)TB )〉 = ÛTB |ψ(mTB )〉, with ÛTB = T̂ exp

[

−i

∫TB

0
Ĥ (t )d t

]

. (4.17)

Additionally, the system is time-reversal invariant because it fullfills the conventional reversal
operation

t →−t , Ĥ (t ) = T Ĥ(−t )T −1 , (4.18)

where one must additionally change i →−i , in order to preserve the antiunitary character of T .
By definition the time-dependent pulse is given F (t ) = αt +F0. The immediate consequences
of this choice are:

(a) The Hamiltonian H(F (t )) is no longer periodic in time. In consequence, we must compute
the temporal evolution explicitly by integrating the Schrödinger equation

i
∂

∂t
Ût |ψ(0)〉 = Ĥ(t )Ût |ψ(0)〉 , (4.19)

e.g. by using a fourth-order Runge-Kutta method. The initial state |ψ(0)〉 can be chosen to
be an eigenstate of the Floquet operator at any position of the spectrum. In order to inte-
grate the equation (4.19), we use the closure relation for seed states

∑

ν |sν〉〈sν| = 1, which
allows to rewrite the Schrödinger equation as a system of first order differential equations
for the coefficients Aν(t ) ≡ 〈sν|Ût |ψ(0)〉. The instantaneous wavefunction |ψt 〉 can be thus
expanded in the seed basis as

|ψ(t )〉 =
Ns
∑

ν=1
Aν(t )|sν〉 . (4.20)

(b) F (t ) breaks the time-reversal symmetry even by setting F0 = 0, for which the function F (t )
is odd.

Both, (a) and (b) also imply that the coefficients Aν(t ) are complex numbers and their
properties are different from those followed for the coefficients cn,ν which are real numbers.
We shall come back later to this crucial difference.
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4.3. Spectral Diffusion in the Many-body Interacting Regime

Figure 4.5: (Left) Many-body avoided crossing for N /L = 4/4. The label M indicates the set of levels

corresponding to the specific manifold. (Right) Typical sea of ACs occuring in the resonant regime for

filling factor N /L = 5/3 (see also Fig. 3.10).

The Setup

In figure 4.5, we present a typical many-body avoided crossing around one of its resonances Fr .
In the left part of the spectrum we label the different manifolds, which are formed by bunches
of energy levels entering nearly parallel to each other and emerging after the resonance with
the same slope. If the system is initially prepared in the manifold M = 0, and it is adiabatically
driven across the RET, we expect a final state living in a different manifold, or in general, in a
superposition of them.1 For the diabatic passage, the system must preserve with its manifold
character high probability. Yet, in the practice, long-time processes are not useful in the differ-
ent applications, therefore non-adiabatic dynamics is the most common case.

The choice of the initial state for the evolution plays also an important role. In our system,
we have basically two natural sets: the seed basis {|sν〉} and the eigenstates of the static problem.
We must remember that for large enough energy gaps∆g , one of the most interesting properties
of the static spectrum is that, its eigenstates can be classified by manifolds since they have a
high probability of being completely mapped one-to-one onto the members of the seed basis.
Other additional initial conditions can be constructed from those two subsets, if necessary.

Measures

To quantify the diffusion in energy space, we compute the instantaneous projections

Ci (t ) ≡ 〈εi (Fk )|ψ(F (t ))〉, with |ψ(F (t ))〉 =Ut |ψ(F0)〉. (4.21)

where |εi (Fk )〉 is the local adiabatic eigenstate at the instantaneous tilt F (t ) = Fk . One can think
the local eigenbasis as a set of detectors, for which |Ci (t )|2 represents the detection probability
of the instantaneous state |ψ(t )〉, with

∑

i |Ci |2 = 1.
In order to visualize the transit of the instantaneous eigenstate, it is very useful to introduce

the local density of states (LDOS) [103, 110], also called strength function. This is defined by

Pψ(ε,F (t )) =
∑

i

|Ci (t )|2δ(ε−εi ). (4.22)

1See for instance right panel in Fig. 4.3
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4. Many-Body Wannier-Stark System: Dynamical Analysis

Figure 4.6: Matrix of probabilities |〈εi |sν〉|2 for the system N /L = 5/5, V0 = 5 and s0 = 2, and three dif-

ferent positions in the spectrum around the first order resonance r = 1: (left) for F > Fr , (middle) F = Fr

and (right) F < Fr .

At F0, Pψ(ε,0) is δ-shaped, when the initial state is chosen as a Floquet eigenstate. But if we
consider a seed state |ψ(F0)〉 = |sν〉, its representation in the local energy basis contains contri-
butions from the neighboring eigenenergies: |ψ〉 in the eigenenergy basis as

|ψ(F0)〉 ≡ |sν〉 =
∑

i

|εi (F0)〉 〈εi (F0)|sν〉. (4.23)

In this case Pψ takes a shape given by the Breit-Wigner formula [112, 113]

Pψ(ε,F0) ∼ 1

π

Γ
2

(ε−ε0)2 +Γ2
, (4.24)

with ε0 the center of the distribution. The width Γ of this distribution determines how generic
our initial condition is and it is computed by the energy deviation

Γ=
(

∑

i

|〈εi (F0)|sν〉|2(εi −ε0)2

)1/2

. (4.25)

An initial state is called generic if Γ≪ ε0 [22, 24]. An example of this is shown in Fig. 4.6 for the
system N/L = 5/5. There it is possible to recognize the manifold formation and the exchange of
character of the eigenstates represented by the rotation of the probability matrix, when crossing
the resonance (from right to the left or vice versa). At the exact resonance an initial condition is
not generic as expected, since a lot of manifold mixing is present.

The delocalization of the instantaneous state |ψ(t )〉 can be studied by computing its sec-
ond moment of Pψ(ε, t ) given by

∫

dερ(ε)P 2
ψ(t ) =

∑

i

|Ci (t )|4 ≡ ξψ(t ), (4.26)

where ξψ is the inverse participation ratio (3.34). This relation is valid when integrating over
large number of Floquet zones. Now we quantitatively characterize the spreading over the spec-
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4.3. Spectral Diffusion in the Many-body Interacting Regime

trum by the average inverse participation ratio and the Shannon entropy, both defined as

ξ(F (t )) ≡
〈

Ns
∑

i=1

|Ci (t )|4
〉

ψ

(4.27)

Ssh(F (t )) ≡
〈

− 1

log10 Ns

Ns
∑

i=1

|Ci (t )|2 log10 |Ci (t )|2
〉

ψ

, (4.28)

respectively. The averages 〈· · · 〉ψ are taken over a large set of similar initial conditions {|ψ(F0)〉},
for instance, those states from a M-manifold. The same measures can be implemented for co-
efficients Aν that expand the state |ψ(F (t ))〉 in the seed basis (4.20), and it will be shown that the
information extracted from the instantaneous coefficients Aν is also very useful for predictions
on the evolution.

Due to the local sea of ACs and the strong mixing generated in RET, complete delocal-
ization of the initial condition is expected. The coefficients |Ci | and |Aν| fluctuate about the
equipartition condition 1/

√

Ns . The localization measures slowly converge to their respective
values, which can be computed under the assumption of complete randomness, i.e. no correla-
tions between the coefficients. The problem here is that any of these sets of coefficients satisfies
a normalization condition due to the probability conservation of the evolved eigenstate

Ns
∑

i=1

|Ci (t )|2 = 1, and
Ns
∑

ν=1
|Aν(t )|2 = 1, (4.29)

and therefore we have Ns −1 independent contributions. When Chaos is present, the random-
ness of the above sets is guaranteed. Then RMT predicts a Porter-Thomas distribution [73, 74]
for the normalized absolute square of the coefficient Ci and Aν (as in the case of cn,α in sec. 4.2).
This allows one to compute the mean values of the localization measures as

ξ = Ns〈c2〉2
∫∞

0
d y f (y)y2 (4.30)

Ssh = Ns

∫∞

0
d y f (y)y〈c2〉 ln(y〈c2〉), (4.31)

with

y ≡
{ |Ci |2

〈c2〉 ,
|Aν|2

〈c2〉

}

, 〈c2〉 ≡
{

〈{|Ci |2}〉,〈{|Aν|2}〉
}

. (4.32)

and the distribution f (y) = e−y (see App. C). The values obtained from Eqs. (4.30) are a very
accurate if the size Hilbert space is large enough, Ns ≫ 1. The mean values are given by

ξgue =
2

Ns
, S

gue
sh

=
(

1− γc

ln(Ns)

)

, with γc = 0.422784... (4.33)

In addition, in the time-domain, we can compute the manifold mixing degree and upperband
number

ζψ(F (t )) = 1−
∑

M

(pM (t ))2, with pM (t ) = 〈ψ(F (t ))|P̂M |ψ(F (t ))〉 (4.34)

Mψ(F (t )) = 〈ψ(F (t ))|
∑

l

n̂b
l |ψ(F (t ))〉, (4.35)
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4. Many-Body Wannier-Stark System: Dynamical Analysis

where the limits are given by ζ→ 1−1/N and M → N/2.

At this point, we have enough methods to probe the spectral properties studied in the
previous chapter. We shall see that the system can undergo relaxation towards equilibrium,
which needs necessarily strong mixing, hence manifold balance. This latter concept was pre-
viously introduced in section 3.2.2 when discussing the conditions for maximal hybridiza-
tion. The conditions for manifold balance are exactly the same as for the onset of chaos, i.e.
N/L ∼ 1, Wx/2∆g ∼ 0.1. In addition, strong manifold mixing implies a large occupation of the
mid-manifolds 0 < M < N , for which the upperband occupation number converge to M ≈ N/2
and ζ→ 1−1/N . Finally, when studying the ergodicity properties of the spectrum, we showed
that, up to degeneracies, the system is expected to equilibrate about the GOE limits.

Now we want to study the relaxation dynamics, via quantum sweeps. Our results show
that via chaotic resonant tunneling we create quantum states that have the same properties
expected for an equilibrium state, i.e. those which satisfy the principle of maximum entropy.
In our case, the Shannon entropy maximizes in the presence of chaos with with maximal value
given by S

gue
sh

. Let us now investigate the RET regime, which can done in different ways:

(1) Local sweeps: here the system is prepared in different initial conditions and then swept
across the local resonant regime, i.e. around the resonant position Fr within the interval
F ∈ [Fr −∆F /2,Fr +∆F /2].

(2) Global sweeps: starting initially from the flat lattice condition, different initial conditions
are evolved across the entire spectra. Here, the system must cross the whole set of reso-
nances Fr non-adiabatically.

(3) One can set our sweeping function F (t ) at will. In the first two steps for simplicity we always
consider the sweep function F (t ) =αt +F0.

In the rest of this chapter we study the two first scenarios, which might be of particular interest
for experimental realizations. Yet, the local sweeps are more practical since they allow us to
study a particular domain of the many-body spectrum. In this case, whenever the spectrum
is fully mixed, the character of the eigenstates is not even close to the seed states before Fr .
Therefore to speak about generic initial condition does not make sense at all. Nevertheless,
by sudden quench, one can easily prepared the initial state in the flat lattice, and then drive
it across the resonance. Such a kind of states undergo fast mixing. The second method has an
enhanced complexity since the evolved states start mixing very early across the entire spectrum.
This naturally implies that the outcoming state is expected to be fully hybridized. However, we
shall see that in absence of (weakly) global mixing the system preserves partially the spectral
localization features at final time, whose signature is the manifold formation. In the following,
we compare the results of the two first types of sweeps and the last one is left to future works.

4.3.1 Local Sweeps

To study the system locally around one resonance position, we use a simple protocol. Let
us choose the many-body avoided crossing in the vicinity of the resonance Fr , i.e. F ∈ [Fr −
∆F /2,Fr +∆F /2]. Here ∆F is defined by

∆F = F f −F0 =
∆g

2π

(

1

µ−
− 1

µ+

)

, with µ− = 0.75, µ+ = 1.25, (4.36)
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Forc

Many-body AC

Force

Figure 4.7: Sketch of the local sweep process. λ is the parameter that controls the type of dynamics (see

Sec. 4.1). This process is done in two instances: first, the system is prepared in a Fock (seed) state at F = 0,

i.e. the flat lattice. A sudden quench (λ≫ 1) is applied to quench the system from F (0) = 0 → F (T0) = F0.

Secondly the starting from F0, the system is evolved across the many-body AC non-adiabatically (λ∼ 1)

during a time ∆Tk =Tk −T0, with Tk ∈ [T0,T f ] and ∆T =T f −T0.

where µ− and µ+ are fixed here, but they can be obtained using Eq. (3.60). The width ∆E of the
many-body AC is given by

∆E ≃ 1

Ns
[N∆r (Fr )+0.5Wb N (N −1))] , (4.37)

and therefore according to Eq. (4.3), the value of the sweeping rate is given by α=λ·∆E (Fr )·∆F .
By fixing this spectral domain, one can sweep any initial condition starting from F = 0, i.e. the
flat lattice, to a tilt F0 < Fr , through a sudden quench (λ ≫ 1). This process does not modify
considerably the characteristics of the state when passing by resonances of higher order . The
reason lies on the fact that, in order to see significant changes in the state, the sweeping rate
must be defined respect to the properties of the local resonance. It means, if we fix our spectral
domain to be the vicinity of Fr , whose ∆r (F ) is given by Eq. (4.37), the value of the sweeping
rate for higher orders of resonance is smaller compared to the local one, i.e. α(Fr ) > α(Fr+1).
The latter relation implies that by sudden sweep the system remains unchanged after crossing
the Fr+1, Fr+2 and so on. In this manner, before Fr the dynamics is nearly diabatic. We leave for
the next section the discussion about the effects that the initial state undergoes when crossing
non-adiabatically the entire spectrum.

To visualize the transit across a resonance, we use the LDOS Pψ(ε, t ) defined in Eq. (4.23).
We can choose the initial state according to its manifold number Mi = 〈εi |

∑

l n̂b
l
|εi 〉. Typically,

|〈sβ|εi 〉|2 & 0.8 in case of weak mixing (see Fig. 4.6). The spectral navigation with this initial state
is numerically computed by solving the Schrödinger equation as explained in the section 4.3.

Then the LDOS function can be constructed through the projections of the instantaneous
state |ψ(t = Tk)〉 with the local eigenstates {|εi (F = Fk )〉}, Fk ∈ [F0,F f ], i.e. the coefficients
Ci (tk ) ≡ 〈εi (Fk )|ψ(t = Tk)〉. The whole evolution process is sketched in Fig. 4.7.
The transit of the instantaneous state |ψ(t )〉 is shown in Fig. 4.8, for two different systems
N/L = 5/4 and N/L = 6/3, and for the three different types of dynamics: λ≪ 1 (left panels),λ= 1
(central panels), λ≫ 1 (right panels). Note, that the sudden sweep tends to preserve the state

|ψ(t )〉 well localized in the spectrum before and after the sea of ACs, centered at the
∆g

2πF (t) = 1.
In the manifold language, if the LDOS emerges well localized from the many-body AC and

parallel to the incoming one, it means that the manifold number is preserved after the passage.
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4. Many-Body Wannier-Stark System: Dynamical Analysis

Figure 4.8: Evolution of the local density of states Pψ(ε, t ) for the system: (a,b,c) N /L = 5/4 and (d,e,f)

N /L = 6/3. The initial condition is the eigenstate |εi 〉 at F0, whose manifold number corresponds to

M ≈ 2 for both systems. The parameters are V0 = 5, s0 = 2.5 with ∆g = 0.8, and Wx /2∆g = 0.027. Both

systems spectra present deviations from the regularity, but they are not fully chaotic (see sec. 3.2.3).

Each panel shows the three different time regimes: adiabatic λ= 0.1, non-adiabatic λ= 1.0 and diabatic

λ= 50.

This is exactly what we have called localization in the spectrum. Yet, this is not the only way
to see such a localization. As seen in the central panels of the figure 4.8, the outcoming state
may emerge with a different slope but well localized. Such a process clearly does not preserve
the manifold number and change the properties of the instantaneous state. That is, the system
undergoes an exchange of character across the AC. When sweeping adiabatically across the RET
domain, several processes, pricipally diffusion, take place. This brings the system to become
delocalized in both basis, the local one |εi 〉 and also in the unperturbed one, i.e. the seed basis.
This effect destroys completely the initial state and the outcoming one has large contributions
of many seed states, hence from all M-manifolds.

An engineering of the dynamics across the RET domain does not rely only on the latter
concepts of localization (delocalization and further mixing) but also on the properties of the
spectrum. This means, if whether the cluster of ACs follows quantum chaotic statistics or nearly
ones.

After the quench, the initial state may drastically change (see in Fig. 4.9). There, we evolve
an initial state across the corresponding spectra of systems with filling factors N/L = 5/6 and
N/L = 6/5. For those, it is already seen that around the resonance the respective NNLS distri-
butions are GOE-distributed in the case N/L = 6/5 and present deviations to the regularity for
N/L = 5/6 for smaller gaps (see Fig. 3.16).

We have seen in chapter 3 that the size of the sea of ACs depends sensitively on the value
of the gap ∆g and filling factors (see Figs. 3.8 and 3.14). We can see that for s0 = 2.5 (∆g = 0.8)
the instantaneous state remains practically localized across the resonance in comparison with
its passage across the spectrum of s0 = 4 (∆g = 0.285). The same effect can be seen by com-
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Figure 4.9: Evolution of the local density of states Pψ(ε, t ) for V0 = 5 and the systems: (a,b) N /L = 5/6,6/5

with s0 = 2.5 and (c,d) with s0 = 4. λ = 1, i.e. non-adiabatic passage is considered. The initial condition

is the eigenstate |εi 〉, whose manifold number corresponds to M ≈ [N /2] for both systems. Both system

spectra around the Fr follows quantum chaotic NNLS distribution. (a,b) show the evolution of a region

with small ACs size and for (c,d) is larger.

paring the evolution for N/L > 1 and N/L < 1. For N/L = 6/5, we can observe the spreading of
the instantaneous state |ψ(t )〉 at ∆g /2πF (t ) ∼ 1. The instantaneous LDOS becomes uniformly
distributed over the entire FZ, which implies that coefficients Ci ’s fluctuate about the equipar-
tition condition |Ci (t )|2 ≈ 1/Ns . The latter happens the strongest, the more chaotic the spectra
is, and no further localization is seen. In the case N/L = 5/6 (Fig. 4.9(c)) the respective spectrum
presents deviations from the GOE. One can see that the LDOS at final time is not fully spread
over the FZ. This is one first difference when sweeping across RET domains with different sta-
tistical energy spectra.

To quantify the difference mentioned in the previous paragraph, we can use the delocal-
ization measures from Eq. (4.27). The results are shown in figure 4.10. One clearly notice that
the delocalization is sensitive to the filling factor. For instance, in the case s0 = 2.5 there is no
complete delocalization of the instantaneous state |ψ(t )〉, but more than 50% of its initial prop-
erties (for example M) are lost around ∆g /2πF (t ) ∼ 1. As an immediate consequence, the out-
coming state starts relocalizing (see Fig. 4.10-(a,b)). Yet, if the filling factor much less than one
the relocalization effect is stronger. The horizontal lines correspond to the GUE limits given in
Eqs. (4.33), whose values depend on the size of the Hilbert space. In the current case we have
Ns (4/11)= 1150, Ns (5/6)= 728, Ns(6/5) = 1001 and Ns(7/4) = 858.

The other case (s0 = 4) is shown in Fig. 4.10. The panels (c,d) show that in the case of fully
chaotic spectra (N/L = 6/5,7/4), the instantaneous state delocalizes completely after Fr . Con-
versely, for N/L = 4/11 and N/L = 5/6, one does not see full delocalization. Other way to see
such a deviations consists in studying the distribution of the coefficients {Ci } at final time, be-
cause they give us information of how delocalized the final state |ψ(∆T )〉 is.
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Figure 4.10: Delocalization measures for the non-adiabatic dynamics λ = 1 for the systems N /L =
4/11,5/6,6/5 and 7/4. The horizontal lines represent the corresponding GUE limit. (a,b) for s0 = 2.5

(∆g = 0.8), and (c,d) for s0 = 4 (∆g = 0.285). The initial states are taken from the manifold M = [N /2].

We compare the numerically computed distribution P (y) with the RMT prediction
PPT (y) = exp(−y) in Fig. 4.11, with y = |Ci |2/〈c2〉. Here 〈c2〉 stands for the mean detection (oc-
cupation) probability. By simple view, it is possible to recognize the deviation for filling factors
smaller than one. In the case N/L > 1 the histograms fit much better to the theoretical Porter-
Thomas distribution (dashed-red line). We then conclude that full delocalization around the
resonance of order one is always expected for filling factor larger than one, and partial delo-
calization with plausible relocalization for the not fully chaotic case. At this point, it is worth
pointing out that the relocalization effect does not imply a partial recovery of the information of
the initial state properties, but it certainly tells us about the exchanging character of the evolved
state in the long-time process. If any relocalization takes place, as in the chaotic case, the de-
localization measures have to decay faster across the RET domain. To study the decay of the
inverse participation ratio, it is convenient to define the time-averaged function

Time−averaged h(t ) = 1

∆Tk

∆Tk
∑

tk=T0

h(tk ), (4.38)

which decays smoother than the oginal one h(t ). ∆Tk is defined as the time expended to sweep
from F0 → Fk , with Fk ∈ [F0,F f ] (see Fig. 4.7). By defining h(t ) = ξ(t ) or h(t ) = 1−Ssh(t ), one can
study its long-time decay.

Figure 4.12 shows the decay of the time-averaged inverse participation ratio ξ(F (t )). Note
that in both cases, s0 = 2.5 and s0 = 4, there exists an algebraic (power law) decay t−ν with
exponent 0.6 < ν < 0.8. This surprinsing result takes place rightafter the position of the local
single particle resonance ∆g /2πFr = 1. In the case s0 = 2.5, none system presents full decay. The
latter is expected since for larger gaps the spectrum is not fully quantum chaotic. This can be
appreciated in the long-time limit where the decay is no longer a power law. This implies the
relocalization phenomenon takes place, and we can have whether character exchanging or the
recovery of the initial state properties. Yet, for s0 = 4 the decay for long times is always power law
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Figure 4.11: (a) Comparison of the theoretical Porter-Thomas distibution with the numerically com-

puted histrogram of the normalizated coefficient {|Ci |2} at final time. Panels (b) and (c) show examples

of the evolution for initial state lying on the mid-manifold M = [N /2]. Note that the spectral navegation

is sensitive to the extension of the sea of ACs, which is the smaller the smaller the filling factor as clearly

shown in panel (d), where η is the chaos quantifier defined in Eq. 3.81.

and therefore there is total lost of memory of the initial state properties, since any relocalization
take place, even if the spectrum start deviating from the quantum chaotic regime as shown in
the panel (d) in Fig. 4.10.

In order to study the loss of memory of the initial state properties, let us define surivival
probability or the autocorrelation function

Psu(t ) =
〈

|〈ψ(0)|Ût |ψ(0)〉|2
〉

ψ . (4.39)

The average is taken over the entire set of initial conditions {|ψ(0)〉} defined by all eigenstates
|εi (F0)〉, with manifold number M ≈ [N/2]. As the evolution starts, the survival probability co-
lapses but also some revivals can be seen before Fr . This occurs due to the intra-manifold tran-
sitions essentially induced by the hopping terms (see 3.2). In the course of the evolution, when
the inter-manifold mixing appears, Psu(t ) delocalizes and the system starts to loose the memory
of its initial properties. This effect is enhanced across the sea of ACs. In the case of fully chaotic
RET domain, no revivals are observed when studying the behavior of the time-averaged Psu (t ):

Time−averaged Psu(t ) = 1

∆Tk

∆Tk
∑

t=0
Psurv(t ). (4.40)

The decaying in time of this function is shown in Fig. 4.13 for s0 = 4. Note that for all
systems the decay follows a power law in the long-time. This is a signature of loss of memory
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Figure 4.12: Long-time decay of the inverse participation ratio ξ for the non-adiabatic dynamics λ= 1.

The panel (a) shows the time–averaged ξ(t ), for s0 = 2.5, with the set of initial conditions lying in the

manifold M = [N /2]. The systems are defined by the filling factors N /L = 4/11,5/6,6/5 and 7/4. The

inset shows the log-log plot of the main panel, where the straight lines represent the fittings to the power

law function t−ν. The respective expontents are shown in the legend. In panel (b) shows the same as

in panel (a) but for s0 = 4. In this case the straight lines do not represent the fitting but show that the

exponents are nearly the same, which implies a sort of universality when crossing the RET domain.

of the initial state and the system undergoes the predicted relaxation towards equilibrium with
exponents ν ≈ 0.7. Therefore, we see that chaos appart of generating strong band mixing, it
also induces fast decay of the localization measures to the equilibrium values set by the GUE
limits (see Eq. (4.27)). Yet, in Fig. 4.13 one can also notice that the system looses its memory
the slower, the smaller the filling factor is. In our case, the equilibrium was defined in the same
way context of the energy shell approach reported in ref. [110, 111]. However, the connection
is not straight forward, since in our case the distribution of coefficients Ci as a function of the
energies within the Floquet zone is nearly flat function, with the same period of the Floquet
eigenenergies. Therefore, the LDOS is an extended function over the entire spectrum. In the
energy shell approach, the distribution of the coefficients has a gaussian profile presented,
but it is not periodic [110]. To solve such a discrepancy, one must do an unfolding of the
distribution in the Floquet energy space, or equivalently one can fold the gaussian profile.
The latter method is straight forward since the function resulting after folding of a gaussian
function is well-known as the normal wrapped distribution [114], which is a periodic function
in the energy domain, it means, in the Floquet energy space.

As expected, there exists dependence on the sort of initial state evolved, i.e. the manifold
character of the state. For local sweeps, the system relaxes faster if the set of initial states
is taken from the mid-manifold M ≈ N/2. The reason lies on the fact that in the center of
the spectrum the number AC clustering is enhanced, especially, by effects of the diagonal
inter-manifold coupling induced by the interaction term 2Wx

∑

l n̂a
l

nb
l

and by the two-particle
exchange (sec. 3.2.3). This effect is shown in Fig. 4.14 for the system defined by the filling
factors N/L = 5/6,6/5. The initial states are taken from the lowest manifold M = 0,1 and from
M = 0,2 respectively. It is seen that the instantaneous state does not delocalizes completely for
s0 = 2.5 (upper panels), but it looses memory across the RET domain. This effect is possible
through the exchange of character despite the incomplete spreading over the FZ. The system
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Figure 4.13: Decay of the time-averaged surivival probability for the non-adiabatic dynamic (λ = 1).

log-log scale for a set of initial conditions lying in the manifold M = [N /2], for the systems N /L =
4/11,5/6,6/5 and 7/4. The straight lines show the power law decay t−ν for the long-time after the sin-

gle particle position Fr . In most of the cases studied until now the coefficients ν ∈ [0.5,0.8].

tends to equilibrate across the resonant regime but the relocalization effect appears. We have
already shown that re-localization can take place in the memory loss of the initial properties
scenario. The situation for s0 = 4 is different. Here, despite the incomplete delocalization, in
the long-time behavior the system undergoes a partial equilibration whose is aabove the full
statistical equilibrium condition. Note that for these low-lying manifold state, the decay of
the autocorrelation function follow a power law ∼ t−1/2, which is expected for diffusive transit
across the RET regime. Such a behavior was already seen the previous chapter in Fig. 3.13,
when studying the manifold-averaged inverse participation ratio.

The results in this section show that our system undergoes the already predicted equilib-
rium, when it is driven locally across the energy spectrum. Towards the possible experimental
realization, one can implement a simple protocol consisting in the following of two steps:

• The system is prepared in any feasible initial state |ψ(t )〉 at F = 0. A sudden sweep (α≫ 1)
is applied to bring the system until the proximity of the chosen RET domain. This dy-
namical procedure is diabatic, which implies a preservation of the initial state with high
fidelity, due to the spectra localization.

• Now the system is evolved non-adiabatically across the resonant regime, with α(λ ∼ 1)
defined as in the beginning of this section. At final time we can read out the properties of
the evolved system, which contains very precise information of the class of spectral statis-
tics followed by the local set of energies, i.e. those studied in the first part (see sec. 3.2).
Furthermore, it is possible to predict relaxation properties, e.g. the power law or scale-free
decay expected for the transit across a chaotic sea of ACs. In our case, across the many-
body avoided crossing.

As final remarks of this section, we highlight the equilibrium reached for the system, es-
sentially when the initial states belong to the mid-manifolds. In general, states with particles
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Figure 4.14: Survival probability and delocalization measures for different sets on the initial conditions.

(a) Relaxation across the RET regime for the states initially prepared in M = 0,2, for s0 = 2.5(∆g = 0.8) and

N /L = 5/6,6/5. The black line corresponds to the power law decay const/
p

t . (b) The same information as

in (a) but for smaller gap s0 = 4(∆g = 0.285). Note that in any of these cases considered full delocalization

does not happens, but the system undergoes in some cases fast decay of the survival probability in the

long-time domain.

in both Bloch bands are non-equilibrium systems, which delocalize faster through the many
Landau-Zener events. Nevertheless, in most of the set of initial states studied in this chapter,
partial equilibration always occurs for initial conditions from low-lying manifolds. With this
analysis, we have shown that the equilibrium is reached independent of the basis, i.e. when the
coefficients Aν and Ci are equivalent, but only possible in the chaotic case.

4.3.2 Global Sweeps

In the previous section we have dealt with the local evolution across the spectrum. We now want
to study the whole process by evolving many different initial conditions starting from the flat
lattice F = 0. The motivation of this section is to see how relevant are the changes due to the evo-
lution across the entire spectrum, by using the properties of a local AC many-body around the
first orde resonance, i.e. ∆r=1. In this context, the system is non-adiabatically evolved across the
entire spectrum with sweeping rate λ= 1. The initial states to evolve are the seed states, which
are the nearly the eigenstates of the Hamiltonian (3.1) with F = 0 for our parameter choices (see
discussion in Sec. 3.2.2). We choose those seed states from the manifolds M = 0 and M = [N/2],
with the lattice parameters V0 = 5, s0 = 3 and s0 = 5. Under the first condition (s0 = 3), the en-
ergy spectrum presents local strong band mixing around the resonant regimes. Between order
of resonances, the degree of manifold mixing is weaker and the instantaneous state preserves its
manifold number with high probability. In the second scenario, we have already seen that the
entire spectrum is strongly mixed overall. We are interested in the two next dynamical aspects:

• Long-time relaxation processes generated by the navegation across the entire spectrum.
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Figure 4.15: Delocalization across the entire spectrum for different filling factor with initial states pre-

pared in the manifold M = 0,[N /2]. The results shown were obtained for s0 = 3 and s0 = 5, with V0 = 5.

(a,b) Delocalization measures for N /L = 4/11, (c,d) for N /L = 5/6. (e,f) for N /L = 6/5 and (g,h) for

N /L = 7/4. The dashed line represent the GUE limit for the delocalization measures.

• Final time effects for manifold occupation number, mixing and delocalization. We set the
sweeping rate as explained in the last section, i.e. using the properties of the RET domain
at the first order of resonance: α(Fr=1) = ∆E (Fr=1)∆F . This analysis is done by studying
the coefficients {Aν}, i.e. we study the delocalization in the seed basis. In the chaotic case
the information obtained from the latter coefficients is equivalent to the analysis done
by using the projections onto the local spectrum. Yet, due to the localization properties
of the spectrum and the M-quasisymmetry of the Floquet spectrum, we do not expecte
crucial differences at final time when we use Aν or Ci . When deviations from chaos case
appear, conservation of the certain manifold properties is clearly understood as spectral
(re)localization. We summarize our findings in the following figures.

Starting with the figure 4.15, we see similarities in the time behavior of the delocalization mea-
sures compared to the findings in the previous section. The plot shows the evolution for the
systems: (a,b) N/L = 4/11, (c,d) N/L = 5/6, (e,f) N/L = 6/5 and (g,h) N/L = 7/4. We find:

• Case s0 = 3: There is no full relaxation for initial states living in the manifold M = 0. Nev-
ertheless, the system equilibrates the GUE limits. The latter occurs due to the deviation
from the fully chaotic regime. Conversely, for initial states with M = [N/2], full delocal-
ization is always seen in the long-time behavior after the passage across the first order
resonance. Such a full delocalization is expected because the instantaneous state starts
hybridizing before crossing the local RET domain. This occurs in two instances: a first
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4. Many-Body Wannier-Stark System: Dynamical Analysis

Figure 4.16: Time-averaged survival probability in log-log plot. (left) for s0 = 3 and (right) s0 = 5. This

figures show the difference in the relaxation process for the cases exposed in the main text. Note that

still in the single-particle limit the system takes longer to relax compared with the systems with a filling

factor close to one.

equilibration occurs before the fourth resonance order. Then a further relaxation process
takes place. Note that the larger the filling factor, the smaller the range of time for the
first equilibration process. This effect has its origin in the spectral (manifold) localiza-
tion, since the one-particle exchange energy increases as a function of the Stark force.
Therefore, for the first order resonances, the sweeping rate α(Fr ) becomes comparable to
the sweeping rates of r = 1,2, and 3. The inter-manifold coupling is enhanced, hence also
the delocalization. Additionally, we can see that complete relaxation takes place in a time
scale of hundred Bloch periods (Fr ∈ [0.01 : 0.5]), which may be good for experimental
realizations.

• Case s0 = 5: For this case, equilibrium is reached faster, especially for filling factors close
to one, and there are no longer first equilibration processes. Note that in the transit to
the equilibrium the inverse participation ratio decays exponentially in a first instance up
until its maximal value for delocalization. At final time, any relocalization process is seen
for this set of lattice parameter.

The relaxation towards equilibrium depends on the filling factor. This is shown in Fig. 4.16,
where the time-averaged survival probability is plotted as a function of time, for the different
filling factors. Note that in case s0 = 3 (Fig. 4.16(left panels)) the system looses its memory of the
initial state properties and any revivals were seen for the systems studied in this section. This
effect was already seen in figure 4.16, where the system does not delocalize completely but it
equilibrates in the long-time evolution.

As final result, we compute the different measures used in this chapter at final time, i.e.
the manifold mixing degree ζi (∆T ) and the number M(∆T ), the participation ratio ξ(∆T ) and
the Shannon entropy S(∆T ), respectively. The results are shown in Figs. 4.17 and 4.18. For this

71



4.3. Spectral Diffusion in the Many-body Interacting Regime

Figure 4.17: Final time relaxation measures or various lattice parameters s0, i.e. for different band gaps.

(Right) the panels show all measures defined along this chapter to study diffusion and mixing, for the

N /L = 4/11. The manifold formation for s0 ≤ 3 is represented by the bunches of states with manifold

number M close to integers. The dashed lines represent the GUE limits for the delocalization measures

and the upper bound values for the manifold mixing degree parameter. (Left) here we plotted the same

quantities for N /L = 5/6.

calculation we have evolved more than 400 different initial conditions belonging to all possible
sets of manifolds. We must keep in mind that the number of manifold is N +1, where N is the
total particle number. Taking the final time as a paremeter, the figures show destruction of the
manifolds as the gap decreases with a critical value s0 ∼ 4. Here one can no longer identify the
separated bunches of states with closely well defined manifold number. The latter dynamical
effects were already predicted in sec. 3.2. Note that independently of the class of initial state, for
fully chaotic spectrum s0 = 5, all final states are completely delocalized. Hence the equilibrium
is obiquitous in that regime of parameters. Some consequences of this final time behavior are
still under study, for example, the resulting thermalization. We shall comment more precisely
on this problem in the outlook of this thesis.
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4. Many-Body Wannier-Stark System: Dynamical Analysis

Figure 4.18: The same measures as in Fig. 4.17 for N /L = 6/5,7/4.

4.4 Summary

Throughout this chapter, we have studied the dynamical properties of our many-body Wannier-
Stark system by means of quantum sweeps of the Stark force. We presented two ways of studying
the delocalization processes generated by the linear pulse F (t ), in analogy to the Landau-Zener
problem, but in a many-body scenario. We have mostly numerically proven that:

• The system undergoes spectral ergodicity up to degeneracies and the strong mixing be-
tween the Bloch bands (represented by the manifold mixing) takes place. This is very im-
portant for the relaxation process.

• There exists a strong sensitivity of the delocalization and posterior equilibration on the
statistical properties of the spectrum, here mainly induced by the decreasement of the
bandgap ∆g , and also by changes of the filling factor. In the first case, the gap must be
reduced to values comparable to the interparticle interaction, in order to obtained a fully
quantum chaotic spectrum for any value of Stark force. Such a condition was referred to
as global mixing. However, such a type of mixing can also be generated by increasing the
filling factor and the interparticle interaction.

• We highlight that despite the complexity of our system, one can still read out useful in-
formation and predict about the underlying dynamics. For example, we have predicted
the manifold formation across spectrum. The bunches of states with the same quan-
tum number M manifest itself by the localization properties of the evolved state |ψ(t )〉,
whether in the final time results in Fig. 4.18, or before and right after the local resonant
domain studied in the section 4.3.1.
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4.4. Summary

• Finally the time scales for the occurrence of the different many-body effects studied in
this chapter are small, which offers the possibility of experimental realization, for ex-
ample of the maximally hybridized state or equilibrium state. This state very interesting,
since after its preparation the system can be "trapped" in the spectrum by driving it until
regions were the inter-manifold mixing is suppressed, i.e. in the off resonant regime. Apart
from the fact that our model involves many different transition processes, we expect that
the many-body effects presented in this chapter can be seen in a realistic implementa-
tion.
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Chapter 5

An Open Many-Body System: Decay-rate

Analysis

In the previous chapter we have shown a detailed study of a closed system based on a two-
band model for the many-body Wannier-Stark system. In this context, when a single-periodic
potential is considered, one way to describe the system, taking into account decay, is by adding
imaginary parts Γi to the diagonal of the Hamiltonian matrix. This transforms the unperturbed
states into metastable ones [115]. An example of that method is reported in [75] for the single-
band tilted Bose-Hubbard model. Therein, it is shown that the dissipation rates Γi can be well
approximated by using perturbation theory under certain circumstances. Nowadays, there exist
experiments, in which the dissipation processes can be manipulated (see ref. [27–29]) directly
without an additional Stark force. In this chapter we study a non-hermitian effective single-
band Bose-Hubbard Hamiltonian. We shall show that, by analyzing the quantum spectrum,
useful information of the system, as state formation and their stability, can be extracted in the
same way as already shown in the previous chapter. The direct access to the spectrum of the
metastable many-body system allows us to easily identify relatively stable quantum states, cor-
responding to previously predicted solitonic many-body structures [31, 32].

5.1 Non-Hermitian Approach to a Noisy Bose-Hubbard Model

The microscopical behavior of a system coupled to its environment is certainly an important
issue in quantum physics. It is a well established fact that, under this circumstances, the sys-
tem will undergo changes, and in general it can no longer be represented in terms of unitary,
Hamiltonian dynamics. To study an open quantum system, say, the system S plus its environ-
ment, there exist many successful approaches. Techniques based on the Master equation [116]
are heavily used in quantum optics [117] to describe, for instance, loss and gain of photons, and
dephasing mechanisms in micro- and nanocavities [118, 119]. Other methods are based on the
theory of scattering (see refs. [120] for an overview).

Effective Hamiltonians containing absorbing boundary conditions [115] have shown
themselves to be a very useful method to study the effect induced by the environment on the
isolated system S. This latter approach has the advantage that it allows one to access a gener-
alized quantum spectrum, thus it extends spectral methods as those applied to closed systems,
to open ones. Keeping in mind that the method of effective non-hermitian Hamiltonians is
based on perturbative arguments [75], such as a weak decay or coupling to the environment,
it nevertheless gives the possibility to predict the evolution of the system for short times. The
qualitative understanding based on the analysis of the spectrum is at least as useful as more
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5.2. A Dissipative Bose-Hubbard System

Figure 5.1: Sketch of a typical realization of strongly correlated many-body open quantum systems,

including particle loss with decay rate γ in one of the potential wells, which can be experimentally engi-

neerd. J denotes the hopping term, i.e. transition strength for particle to jump between neighboring sites

and W denotes on-site two-body interaction energy (see sec. 2.3 for more details). Interplay of the vari-

ous processes can lead to interesting dynamics in the open many-body systems, as discussed in section

5.2.

accurate methods which are based on numerical propagation in most cases [121].
In contrast with the problem studied in Chapters 3 and 4, here we concentrate on systems

of ultracold atoms loaded into single-periodic lattice structures. The optical potential is consid-
ered to be deep enough such that the single-band approximation described in sec 2.1.2 is valid.
In more detail, we choose the ratio between the gaps ∆1 and ∆2 to be larger, which is easily im-
plemented by setting s0 = 0 and V0 > 10 ER . In addition, the external Stark force is disregarded,
since our interest is to study the type of system investigated in ref. [27], but in one-dimension
as sketched in Fig. 5.1. The system may be opened artificially to observe interesting effects in-
duced by dissipation and/or quantum noise. This is investigated in the following section, by
using an effective non-hermitian Hamiltonian for the many-body system. Experimentally, the
loss of particles shown in figure 5.1 can be realized easily in a controlled manner. Single parti-
cle decay channels are provided by shining in appropriate laser beams [122] or even electronic
beams [27–29]. The latter ionize single atoms in the condensate, which, together with the pro-
duced electrons, are afterwards accelerated by electric fields, hence they leave the system ex-
tremely fast without strong back-action to the remaining bosons in the lattice environment.

5.2 A Dissipative Bose-Hubbard System

In the single-band approximation, ultracold bosonic atoms at zero temperature can be de-
scribed by the celebrated Bose-Hubbard Hamiltonian [12]

Ĥ =
L
∑

l=1

−J
(

â†
l+1âl +h.c.

)

+
L
∑

l=1

W

2
n̂l (n̂l −1), (5.1)

provided the optical lattice holding them is sufficiently deep, such that the approximation by
discrete modes denoted by the index l is good. Here âl and â†

l
are the bosonic annihilation and

creation operators and we set ħ to one measuring all energies in frequency units. This Hamilto-
nian can be made dimensionless by rescaling with one of the two energy scales J or W respec-
tively. Hence, without loss of generality, we set J = 1 in the following, measuring all energies in
units of J .
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5. An Open Many-Body System: Decay-rate Analysis

As briefly mentioned in the introduction and motivated in a series of previous papers on
dissipative Bose condensates [31, 32, 123–125], a tunable source of single-particle dissipation
can be added to the system. With the spatially local dissipation rates γl , the dynamics is then
best described by a quantum Master equation [116, 126] for the many-body density operator:

˙̂ρ =−i [Ĥ , ρ̂]− 1

2

∑

l
γl

(

â†
l

âl ρ̂+ ρ̂â†
l

âl −2âl ρ̂â†
l

)

, (5.2)

which can be equivalently written as

˙̂ρ =−i [ ˜̂H , ρ̂]−
∑

l
γl

(

ρ̂â†
l

âl − âl ρ̂â†
l

)

. (5.3)

with
˜̂H = Ĥ − i

2

∑

l

γl â†
l

âl . (5.4)

The Master equation can be numerically integrated by transforming it into a first order differ-
ential equation system for the reduced density matrix ρS = trenvρ, i.e.

d

d t
ρS(t ) =LρS(t ), (5.5)

usually called the Markovian quantum master equation. This representation is valid due to the
existence of linear map L , which allows one to write the evolution of ρS(t ) as

ρS(t ) = exp(L t )ρS (0), (5.6)

for time-independent Hamiltonians H . The generator L of the quantum dynamical semigroup
represents a super-operator, i.e. it transforms operators into operators.

Stochastic methods are also useful to solve (5.3). For instance, the quantum jump ap-
proach allows us to obtain the exact solution, by unravelling the Master equation [116]. Alter-
natively, it can be solved approximately by methods which take into account effects beyond the
mean-field –see, e.g. [31, 32, 125], where results of both methods are shown and compared.

Here we will follow a different approach based on an effective Hamiltonian ˜̂H in which the
dissipative terms of equation (5.3) are included as complex absorbing potentials. In contrast
to the above mentioned methods for solving the Master equation, this gives us access to the
quantum spectrum of the non-hermitian Hamiltonian studied in the next subsection. Within
this approximation, the real parts of the spectrum correspond to the energy levels – just as for
any closed quantum system – and the imaginary parts describe the decay of the metastable
eigenstates, i.e. their stability in the presence of losses [115].

5.2.1 A Spectral Approach

As a study case, we now look at a particular situation of three potential wells with relatively
large filling factors, i.e. particles per site, of the order ten or larger. For this setup, reference [31]
predicts the dynamical formation of very stable collective states of many bosons within a single
well, despite strong atom losses. More precisely, we choose two types of decay along the sites:

• Case γ101: γ1 = γ3 = γ at the two boundary wells and γ2 = 0 in the middle site.

• Case γ010: γ1 = γ3 = 0 at the two boundary wells and γ2 = γ in the middle site.
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5.2. A Dissipative Bose-Hubbard System

For weak atomic interactions, i.e. for the limit W → 0, all particles will be lost steadily as
time evolves. This is just the situation for independent (almost) non-interacting particles. For
strong interactions, i.e. W >Wcrit, however, the particles at the leaky sites are quickly lost, while
the remaining wells are protected against the decay. This may be expected by a simple mean-
field argument, saying that the bosons cannot get rid of their high energy in the middle well by
just gaining the energy J = 1 by hopping to the leaky sites. Then, Wcritn̄ & 2J , which is the so-
called self-trapping criterion where mean-field tunneling, is suppressed by the mentioned en-
ergetic argument [8,9]. n̄ is the filling factor of the corresponding well. The big surprise reported
in [31,32] is yet that the surviving part of the initially prepared condensate is very coherent, im-
plying that non-trivial many-body dynamics occurred during the formation of this very stable,
so-called solitonic state. This strongly correlated state is well known for its stability with respect
to decay [127], and we are going to use this property in order to identify such a state using our
spectral analysis. Thus dissipation can be used to prepare almost pure condensed many-body
states in the middle well [31, 32].

Those solitonic states can be easily detected (without any time-propagation as done in
[31, 32]), by studying the spectrum of the following effective Hamiltonian

˜̂H =−
3

∑

l=1

(

â†
l+1

âl + â†
l

âl+1 −
W

2
â†

l
â†

l
âl âl + i

γl

2
n̂l

)

, (5.7)

with n̂l = â†
l

âl being the number operator. In the framework of the quantum jump method, this
effective Hamiltonian gives the continuous evolution between two quantum jumps (see [116],
Chapter 6, pag. 307). Nevertheless, one can use it to identify and study the breather state, which
is predicted as an attractively stable state of the evolution of the full open system.

We numerically diagonalize the Hamiltonian (5.7) by using the Fock basis, i.e. the Fock
states |~n〉 = |n1,n2,n3〉, whose dimension is given by

Ns =
(N +L−1)!

[N !(L−1)!]
, (5.8)

where N is the total particle number and L is the number of lattice sites, here fixed to L = 3. The
latter basis can be used to expand the respective eigenstates as

|Ek〉 =
∑

α

Cαk |n1,n2,n3〉α, (5.9)

where the coefficients |Cα,k | allow one to recognize the character or structure of stable states.
The eigenvalues, which are complex numbers, can be separately studied by defining εk =
Re(Ek), and Γk = −2Im(Ek ). The time evolution of an initial state |ψ(0)〉 can be computed with

help of complex eigenenergies and eigenstates of the Hamiltonian ˜̂H , which reads

|ψt 〉 =
∑

k

ck e−i Ek |Ek〉 =
∑

k

ck e−iεk t e−Γk t/2|Ek〉. (5.10)

From this equation, one can easily notice that through the evolution the system initially pre-
pared in |ψ0〉 can be constrained to lie in a set of eigenstates with the smallest decay rates Γk ’s.
Without loss of generality this set can consist of only one eigenstate. This will depend on the
difference between the minimal decay rate, here defined by Γ1, and the next one Γ2. If there ex-
ists more than one eigenstate with low decay rate comparable to Γ1 the stability can be defined
by an effective low decay Γ̄ and the nearest largest one, where Γ̄ is the average decay rate of the
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5. An Open Many-Body System: Decay-rate Analysis

distribution in the vicinity Γ1. It will be shown latter that the structure of the state with a low
decay rate depends on the dissipation configuration, i.e. whether we use γ101 or γ010, boundary
conditions especially in the latter configuration, and other parameters. Likewise, the evolution
in time of any observable Ô is computed by

〈Ô〉t =
〈ψt |Ô|ψt 〉
〈ψt |ψt 〉

=
∑

kk′ ck c∗
k′e

−i (εk−εk′ )t e−(Γk+Γk′ )t/2〈Ek |Ô|Ek′〉
∑

k |ck |2e−Γk t
, (5.11)

which inherits the constraining on the evolution of the wave function. The complex energy
spectrum can be computed by using standard diagonalization methods, as for instance, LA-
PACK subroutines or Lanczos algorithm B.2. In the rest of this chapter we discuss the results of
the analysis for the characterization of the stable eigenstates.

Case γ101: Solitonic States

Here, for simplicity, we use periodic boundary conditions for ˜̂H , by identifying â†
L+1 = â†

1. The
results presented below qualitatively remain unchanged when using open (also called hard-
wall) boundary conditions, since the decay affects both ends of the lattice in exactly the same
way.

In order to see the effect of the dissipation on the system, we plot the decay rate as a func-
tion of γ for different values of the interaction strength W . Figure 5.2 shows the different pro-
cesses taking place as the dissipation increases. It is possible to recognize that one eigenstate
with the lowest decay rate separates from the rest and this effect is enhanced as the interparticle
interaction increases. However this also occurs for W = 0 and γ> 10 (see panel (a) in Fig. 5.2).
This is not a surprise since without interactions the particles behave as one with low energy,
not enough to beat the dissipation rate and tunnel to the boundary wells. In this manner, the
dissipation induces a screening which maintain the particle locallized in the central well. This
effect is usually referred to as quantum Zeno effect [128]. The states with largest decay rate form
bunches of levels about log10Γk ∼ 1. They are very leaky eigenstates, i.e. a large number of Fock
states participate on the evolution, thus making it easy to remove all particles from the system.
Conversely, the stable states in the configuration γ101 have as the highest contribution given by
the state |φ〉 ∼ |0, N ,0〉, which has been proven to be very stable [31].

Figure 5.2: Log-plot of the decay rate as a function of γ, for N = 40 and interaction strength: (a) W = 0, (b)

W = 0.1, (c) W = 1 and (d) W = 10. The figure shows clearly the separation of states with small decay rate,

where the smallest one corresponds to the solitonic state |Ek〉 ∼ |0, N ,0〉 predicted by the time evolution

in ref. [31].
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5.2. A Dissipative Bose-Hubbard System

Figure 5.3: (a) The spectral gap ∆21 from (5.4-left) as a function of W N for γ = 5 (solid line), γ = 10

(dashed line), and γ = 20 (dotted line). The values on the y-axis are normalized with respect to their

maximum in order to allow one a better comparison. (b) The decay rates of the four most stable states vs

W N for γ= 20. In (a,b) N = 60 is always kept fixed and W was varied. Doing the same for a different value

of N ≫ 1 produces similar results (red lines in (a) and red circules in (b) for N = 30), hence the results are

robust as long as N ≫ 1 (which is necessary for the scaling with W N to be approximately valid).

The left panel in Fig. 5.4 shows the eigenspectrum {Ek }k for typical parameters. There, the
decay rates, i.e. Γk , are plotted versus the real parts of the spectrum εk . One observes immedi-
ately the state, in the bottom-right corner of the graph, which is far separated from the rest of the
spectrum. Here the structure of the solitonic state is recognized, as discussed before, through
the expansion coefficients |Cα,k |. These are represented by the black dot-line in the right panel
(Γ1). Its stability is given by the rate Γ1, where the index starts to count from the most stable
state. Therefore the distance of the imaginary parts from the next stable state is a criterion for
the stability. It is seen that the next stable states are actually closely degenerate because of the
spatial symmetry of the problem, i.e. their projections in the Fock states is nearly given by the
linear combination of the states

|φ(Γ2,3)〉 → {|1, N −1,0〉, |0, N −1,1〉}
|φ(Γ4,5,6)〉 → {|1, N −2,1〉, |0, N −2,2〉, |2, N −2,0〉}

|φ(Γ7,8,9,10)〉 → {|0, N −3,3〉, |1, N −3,2〉, |2, N −3,1〉, |3, N −3,0〉} . (5.12)

There corresponding prefactors, Cα,k = e iλα |Cα,k |, are almost equal in magnitude in many
of the cases and with normalization

∑

α |Cα,k |2 ≈ 1. This is shown in the right panel of Fig. 5.4,
where only the projections onto the Fock states with decreasing n2 are shown, but the calcula-
tion is done using the complete Fock states.

The spectral gap ∆21 = Γ2−Γ1, is plotted in Fig. 5.3(a) as a function of the effective interac-
tion W N , where N denotes the total particle number in the system (which is fixed to a specific
value). We can indeed confirm that the breather state forms for a sufficiently large effective in-
teraction strength. The critical value may be estimated by the maxima of the curves shown in
the same panel. These maxima come about because all lower lying states in the spectrum have
decreasing decay rates Γk as a function of W N , yet the one which decreases fastest is exactly
the state, the one with minimal Γ1 in panel (b).
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5. An Open Many-Body System: Decay-rate Analysis

Figure 5.4: (Left) Spectrum of the effective Hamiltonian (5.7) for a loss rate γ = 20, interaction strength

W = 2 and fixed number of particles N = 60. Shown are Γi = −2Im(Ei ) vs εi /N = Re(Ei )/N . (Right) Ex-

pansion coefficients |Cα,k | for the first stable states. The Fock basis is ordered with respect to decreasing

occupation number n2 as shown in the x-axis. Note that not all states are plotted, but only the interesting

ones.

The qualitative picture remains unchanged for a large range of single-particle loss rates γ
in the effective Hamiltonian of equation (5.7), as shown in figure 5.3(a). Increasing γ tends to
widen the peak in the spectral gap ∆21 = Γ2 −Γ1 and to shift the peak position toward larger
values of W N , since more interaction energy is necessary to balance the increasing loss at the
outer sites, i.e. to avoid decay into them. An interesting effect can be observed for the very large
dissipation rate γ= 20. As one can see in figure 5.3(a), the normalized spectral gap is almost one
even for zero interaction in this case. This means that the decay rate is almost independent of
the interaction strength. This happens because strong dissipation blocks the tunneling to the
two leaky sites, an effect discussed in detail already in [31, 32].

Case γ010: Effects of the Boundary conditions

The other interesting case of study is the effect of the dissipation in the central well, i.e. γ2 = γ

and with no dissipation in the boundary wells – see Fig. 5.5. Here the choice of the boundary
conditions influences the formation of the type of many-body structures. As before, we show
in Fig. 5.6 the behavior of the decay rate as the dissipation increases. The panels (a-d) show

1

2

3

J

J

J
W

Figure 5.5: Schematic representation of three well system with dissipation in the central well γ2 = γ.

Hard-walls boundary conditions imply no hopping between the well 1 and 3. J and W represent the

hopping and the interaction strengths. This figure is a replica from ref. [125] with kind permission of the

authors.
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5.2. A Dissipative Bose-Hubbard System

Figure 5.6: (upper panels) Log-plot of the decay rates of the eigenstates with increasing γ, for interaction

strength (a,e) W = 0, (b,f) W = 0.1, (c,g) W = 1, (d,h) W = 10, with periodic boundary conditions. (lower

panels) The same as in the upper panels but hard-walls boundary condition. Note that the spectrum

remains almost unaffected by the boundary conditions, however difference appears when studying the

structure of the eigenstates {|Ek〉}.

the log-plot of Γk as a function of γ, for increasing interaction strengths. Furthermore, peri-
odic boundary conditions (PBC) are used to compute the spectra. Likewise, panels (e-h) show
the spectra but using hard-walls. Here we note that the change of boundary condition slightly
modifies the results, especially for the case W = 0.1, which is below the critical self-trapping
limit since W n̄ = 0.2.
For those values, the lowest eigenstate in Fig. 5.6(b) is favored by the latter superfluid condition
W n̄ < J and then the particles move almost free in the lattice for weak dissipation and for strong
dissipation the state is more leaky. In this manner, the lowest decay rate state is no longer stable.
In case of hard-walls the state is more stable for all values of the dissipation rate, since the
particle get practically trapped in the boundary wells, therefore it becomes less leaky.

Yet, the differences between the system with PBC and with hard-walls are clearly seen
when the structure of the states is studied. For example, in Fig. 5.7-(left) we show the quantum
spectrum of the system in both cases, for γ= 20 and W = 2. The regime of interaction strengths
is the same shown in Fig. 5.6(c,g), where one can observe two branches: one for most stable
eigenstates and the other for the very leaky ones. Notice that the spectrum εi vs Γi has still a
gap which separates these branches, and which increases with γ. By inspecting the expansion
coefficients of the eigenstates with the lowest decay rates (Fig. 5.7(b,c)), we see the following
structures for PBC:

|φ(Γ1)〉 → |N ,0,0〉
|φ(Γ2)〉 → |0,0, N〉

|φ(Γ3,4)〉 → {|N/2,0, N/2〉, |N/2+1,0, N/2−1〉, |N/2−1,0, N/2+1〉, · · · }
|φ(Γ5,6)〉 → {|N/2+1,0, N/2−1〉, |N/2−1,0, N/2+1〉, · · · } . (5.13)
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5. An Open Many-Body System: Decay-rate Analysis

Figure 5.7: (Left) Spectrum of the effective Hamiltonian (5.7) for a loss rate γ = 20, interaction strength

W = 2 and fixed number of particles N = 60. Shown areΓi =−2Im(Ei ) vs εi /N = Re(Ei )/N . The black dots

represent the spectrum with periodic boundary conditions and the grey boxes for hard-wall boundary

conditions. (Right) Expansion coefficients |Cα,k | for the first six stable states: (b) with PBC and (c) for

Hard-walls. The Fock basis is ordered with respect to increasing occupation number n1 as shown in the

x-axis. We only show the projection on states with n1 = 0.

In the case of hard-walls (Fig. 5.8(c)), we obtain

|φ′(Γ1)〉 → |N ,0,0〉
|φ′(Γ2)〉 → |0,0, N〉
|φ′(Γ3)〉 → {|N/2,0, N/2〉, |N/2+1,0, N/2−1〉, |N/2−1,0, N/2+1〉, · · · }

|φ′(Γ4,5)〉 → {|N −1,0,1〉, |N −2,0,2〉, |N ,0,0〉, · · ·} . (5.14)

We see that, in the regime of strong dissipation and interparticle interaction, a linear combi-
nation of different states with no particles in the central well is obtained, and it is robust with
respect to the increasing interparticle interaction.

Note that in case γ= 5 and W = 0.1 (see Fig. 5.6(b)) the results are different in the sense that
there exists only one state with the lowest decay rate regardless of the boundary conditions. In
this case, the first stable eigenstates have a very interesting structure when expanded in the Fock
states (Fig. 5.8(b)), for both conditions, we can see a very symmetric gaussian-shaped expansion
of |φ(Γ1)〉 and |φ′(Γ1)〉 with center in the state |N/2,0, N/2〉, i.e.

{|φ(Γ1)〉, |φ′(Γ1)〉} → {|N/2,0, N/2〉, |N/2+1,0, N/2−1〉, |N/2−1,0, N/2+1〉, · · · }
(5.15)

However, in the case of PBC the gaussian profile is wider than for hard-walls. This is because of
the fact that the particles are forbidden to tunnel from the well 1 to 3 and viceversa, therefore
the maximal contribution is from the central state |N/2,0, N/2〉. Such a behavior is referred to as
fragmentation of the Bose-Einstein condensate in ref. [125], where the structure of the eigenstate
resembles the Fock state

|φ〉 = 1
p

2N N !
(a†

1 ±a†
3)N |0,0,0〉. (5.16)
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5.3. Summary

Figure 5.8: Expansion coefficients |Cα,k | for the first four stable states, with periodic boundary condi-

tions (left) and hard-wall (right) boundary conditions. The Fock basis is ordered with respect to increas-

ing occupation number n1 as shown on the x-axis.

An additional noon-type state, |N ,0,0〉+ |0,0, N〉, is predicted in the PBC case. However, in the
approach implemented, such a state is not found to be the most stable, but rather one of the
states |N ,0,0〉 or |0,0, N〉, whch we found to be the ones with the lowest Γk . We claim that such
a kind of state is only obtained after a long-time evolution, which, as mentioned before, cannot
be described by our effective Hamiltonian.

5.3 Summary

We have shown that the method based on effective Hamiltonians, as the one of equation (5.7),
is a useful tool for the quick identification of states with certain properties, in our case very
stable many-body modes. A direct diagonalisation is always possible for small systems, i.e. not
too many bosons and lattice sites. For larger many-body systems, a diagonalisation based on
the Lanczos method may be used to find interesting states locally in the energy spectrum [20].
To do so, the scaling of eigenstates with the system size for smaller systems can guide the search
for the position in the complex energy plane.
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Conclusions and Outlook

In this thesis, we have studied two different many-body systems based on experiments with
ultracold bosonic atoms and optical lattices. Both of them, with possible experimental realiza-
tion, which would verify our predictions of emerging many-particle effects [10, 13, 27, 36].

The first system is an extension of the single-band tilted Bose-Hubbard Hamiltonian,
which has been amply studied (see ref. [59] and references therein). Motivated by the state-
of-the-art experiments with ultracold atoms in higher bands, we modelled a realistic two-band
Wannier-Stark system. The optical potential was engineered in order to get rid off higher bands
effects, which can be straightforward set up by using bichromatic optical potentials. The pa-
rameters of the two-band Bose-Hubbard model were computed using single particle Wannier
functions. They can be modified by varying the lattice parameters.

In chapter 3, we studied in detail the spectral propierties of the two-band Wannier-Stark
system, especially focused on the regime of strongly correlated ultracold bosonic atoms. We
implemented numerical techniques to characterized the system. One of them is the Bloch-
Floquet-Lanczos formalism, which a sophisticated method combining diagonalization of large
sparse matrices with the very efficient Lanczos algorithm. This method has allowed us to go
deeper into the analysis of the eigenspectrum, by computing eigenvalues in different spectral
regions defined mainly by the external Stark force. It also brings the possibility of studying large
systems reducing the computation times as compared to methods based on the diagonalization
of the time evolution operator.

The energy spectrum has been studied in detail in terms of a few system parameters, say,
the energy separation between the Bloch bands (∆g ), the filling factor (N/L) and the resonance
order (r ). These three parameters, for which the spectrum shows a sensitive dependence, al-
lowed us to study the main features of our many-body system. We have introduced the man-
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5.3. Summary

ifold approach that serves to improve the understanding of single- and many-particle effects
emerging in the analysis the Wannier-Stark spectrum. In this manner, the system properties can
be explained in terms of upperband excitation characterized by the manifold number M , and
the manifold degree of mixing ζ. These two quantities have been extensively studied to under-
stand mainly two effects: local and global spectral mixing. In the static case, when scaning the
many-body spectrum by diagonalization of the Floquet Hamiltonian, local mixing was defined
by the intermanifold coupling, which takes place within the resonant regime. As consequence
of the weak mixing, the off resonant regime is characterized by the manifolds, where the Flo-
quet eigenstates inherit the properties of the uperturbed basis (see basis). Therefore, it has been
shown that they can be mapped with high probability onto the Fock (seed) states. This effect is
stronger, the larger the energy bandgap (∆g & 1). Conversely, global mixing occurs for smaller
values the bandgap, typically for ∆g < 0.5. Therefore, the manifold character of the eigenstate
is washed-out for larger forces comparable to ∆g . Here, a first definition of equilibrium was ex-
tracted from the spectral analysis, which is related to the two-state (two-mode) nature of our
system. Equilibrium thus occurs in those regimes where the manifold balance effect occurs.
This implies that both bands are equally populated and there is no longer a one- or two-particle
exchange. It was shown that locally the occurence and clustering of avoided crossings plays a
fundamental role to define concepts as equilibrium and quantum chaos. The onset of quantum
chaos was determined by the filling factor and the gap (at RET domain). This transition is char-
acterized by the competition between one- and two-particle exchange processes between the
diffent manifolds. The critical values for fully chaotic RET regime were found to be N/L ∼ 1 and
Wx /2∆g ∼ 0.1, where Wx is the interband coupling induced by the interparticle interaction. To
characterize the sea of ACs, we further developed an efficient method to detect avoided cross-
ings, which is based on the probability vectors and has an explicit connection with the mixing
properties of our problem. This method can be implemented for other quantum system as well.

In chapter 4, we studied the dynamical features of the Wannier-Stark system. The main
motivation lies in the fact that the quantum evolution by sweeping/quenching appropiated sys-
tem parameters can actually be implemented in experiments (see [10,13]). We therefore studied
the evolution by quantum sweeps, which was useful to verify mostly all predicted results in the
static analysis, that is: the manifold formation, the sensitivity of the quantum chaos emergence
on the filling factor and ∆g , and the relaxation towards equilibrium, which can take place in two
instances: (i ) by the transit across the chaotic resonant regimes, and also by suddenly quench-
ing the system until the single-particle resonance position is reached and then let the system
freely evolve with F fixed. The latter technique was very useful because one can probe the un-
derlying ergodicity 1 in presence of mixing. From this study we recognized the limit for which
the system relaxes and reaches a statistical equilibrium at final time. This equilibrium was de-
fined by the gaussian average of the localization measures (GOE and GUE limits). Exactly the
same phenomena was seen when sweeping non-adiabatically many different initial conditions,
from which equilibrium was defined as the invariant basis measure effect. The results are in full
agreement with the maximal entropy principle, which establishes a precise definition for the
equilibrium state of a quantum system. Here, the most interesting consequence is the fact that
in the non-adiabatic limit, one can prepare/obtain such a state via quantum sweeps, across the
chaotic RET regime, in finite time evolution, ∼ 100 TB . Usually, such a state is only reached in
the very long-time evolution after a quench. Furtermore, the relaxation can be engineered as
shown throughout the chapters 3 and 4.

1Spectral average equals the long-time average.
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5. An Open Many-Body System: Decay-rate Analysis

Figure 5.9: State preparation: (a,b) Non-adiabatic evolution of a Mott-like state |Φ0(0)〉 ≈ |111...;000...〉
across the resonance regime around Fr=1 = 0.4244. (c) Successfull probability of Mott-like |000...;111...〉
for the initial state |Φ0(0)〉 (red) from the left and (black) from the right.(d) Averaged manifold population

P(M ) for critic value αc = 1.2 with the time evolution from left to right (see [20] for details). Here the long-

range coefficients Cs>0 = 0.

Secondly, we have proven the correpondence between spectral and dynamical proper-
ties, which allows one to obtain equivalence between the different definitions of equilibrium.
This means, in the static analysis equilibrium was defined as manifold balance (M → N/2 and
ζ → 1− 1/N ), while in the time-domain the equilibrium was defined, firstly as the statistical
equilibrium whose signature is the gaussian limits for the delocalization measures, and sec-
ondy, by the invariant basis measures, or the equivalence between the coefficients Aν and Ci .
In the last part of the chapter 4, we have seen that all three definitions are equivalent, i.e. we
have

Manifold balance ⇐⇒GOE (GUE) limits⇐⇒ basis invariance. (5.17)

In this way, we can conclude that quantum chaos can be detected via non-adiabatic dy-
namics across the RET domain, whose "robust" signature is the formation of the equilibrium
state, which can be tested by using the manifold measures. The results here exposed are in
good agreement with the energy shell approach [110]. A natural question comes thus into play:
reached the equilibrium, does our system thermalize?. The short answer would be: probably,
according to detailed study presented in this thesis. Nevertheless, we must exhaustively prove
the occurence of thermalization by the different analyses done, e.g. in [110,129–131], and other
authors.

In previous works [121], we have found that one can preparate other types of states, for
example that shown in Fig. 5.9. That result is, unfortunately, very sensitive to the long-range
couplings, i.e. the dipole-induced terms Cs>1, likewise for some dynamical features reported
in previous works [64]. We therefore have still some open questions: (a) Is it still possible
to prepare specific upper band states as shown in Fig. 5.9? (b) Can we construct effective
models that describe the evolution at fixed forces (in the regular regime), thus reducing the
complexity when analytically dealing with the many-body Wannier-Stark system? (c) does
really thermalization happen in our closed system, and how can be define it?.
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5.3. Summary

Finally, in the last chapter we have characterized the behavior of the decay rate of a leaky
single-band Bose-Hubbard Hamiltonian. This system is investigated in the static context, i.e.
in the same way as we studied the many-body system in chapter 3. As well as the Wannier-
Stark system, the type of system here studied has immediate experimental applications (see
ref. [27,28]). In general terms, we showed that very stable macrostates can be created as a result
of the interplay between dissipation and interparticle interaction. Stability criteria can be set
by studying the quantum spectrum, which can be obtained by diagonalization of an effective
Hamiltonian. That Hamiltonian is the sum of the closed system plus an absorbing potential,
which models the dissipation. As an example, we studied a three-well case, for which two dif-
ferent types of dissipation were allowed. Only with this Hamiltonian one can easily recognized
some of those predicted states [31, 32], i.e. discrete solitons, fragmented states among others,
without time-consuming Monte-Carlo simulations.

As a final remark of the chapter 5, one may find analogies to the phenomenon of resonance
trapping in open systems often described by effective non-hermitian Hamiltonians [115, 132].
This phenomenon describes the formation of a gap in the imaginary parts of the spectrum
when the opening of the system is increased. The consequence is that very few very stable states
exist as compared with a large number of fast decay ones. This effect appears as the opening, de-
scribed by γ in our case, increases, whilst in our problem presented before, the stable breather
state rather form when increasing the interparticle interaction strength (and remaining qualita-
tive unchanged over a wide range of γ). Nevertheless it would certainly be interesting to further
investigate this analogy for many-body quantum systems.
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Appendix A

Band Structure, Wannier functions and

Bose-Hubbard Parameters

A.1 Band Structure

Consider an one-dimensional bichromatic optical potential obtained by superposing two sinu-
soidal functions with different spatial periods

V (x) =−(V0 cos(2kLx)+V1 cos(4kL x +φ)), (A.1)

where kL stands for the recoil momentum. The potential V (x) is particularly interesting, since
the lattice depths V0, s0 = V1/V0 and the phase difference φ are easily controlled in the exper-
iment (see Ref. [42]). We can engineer a miniband structure, for which the two lowest Bloch
energy bands are well separated from the third and further higher bands. The parameters of
the Bose-Hubbard Hamiltonian [54, 133] are conventionally computed by using the eigenval-
ues and eigenenergies of the spinless single particle Hamiltonian

Ĥ0 =− ħ2

2m0

∂2

∂x2
+V (x), with V (x +dL) =V (x), (A.2)

with dL being the spatial period of the lattice. The eigenfunctions of the latter Hamiltonian are
the well-known Bloch functions given by

ψα
k (x) = e i kx uα

k (x), with uα
k (x +dL) = uα

k (x), (A.3)

where k is the magnitude of the momentum of the particle in the system, commonly called
quasimomentum.α is the band index. Following the standard procedure, we can find the differ-
ential equation for uα

k
(x) by using the relation Hψα

k
(x) = Eα

k
ψα

k
(x), thus arriving at the formula

[

(p +ħk)2

2m0
+V (x)

]

uα
k (x) = Eα

k uα
k (x), (A.4)

which is reduced to an eigenvalue problem. In the first step, we use the Fourier expansion

uα
k

(x) = ∑

n un(α,k)e
i 2πn x

dL and secondly, after multiplying by exp(−i2πm x
dL

) and integrating
over a unit cell, we thereby obtain the matrix

M (k)
nm = 1

2m0

(

ħk +2πħ n

dL

)2

δnm +Vnm , with Vnm =
∫dL

−dL

d x e
i 2π(n−m) x

dL V (x). (A.5)
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A.1. Band Structure

Figure A.1: Dependence of the band structure on φ. (left) Potential profile and (right) the corre-
sponding band structure. (a) φ= 0, (b) φ=π/2 and (c) φ=π.

Hereafter we use the recoil energy Er =ħ2k2
L/2m0 as the energy unit, with the momentum recoil

kL =π/dL and ħ= 1. For simplicity we use the rescaling

k → k/kL, x → kL x, Vi →Vi /Er . (A.6)

The characteristic eigenvalue equation is given by

[(k +2n)2 −ǫαk ]un(α,k)+
∑

n

Ṽnm un(α,k) = 0, (A.7)

with Ṽnm being the matrix elements of the potential V (x) obtained from the formula

Ṽnm =−V0

2
(δn,m+1 +δn,m−1)− V1

2
(δn,m+2e iφ+δn,m−2e−iφ). (A.8)

The Fourier components un(α,k) and the energy ǫα
k

are compute by solving the Eq. A.7, and
any other bandstructure property can be expressed as a function of the triple (V0, s0 =V1/V0,φ).
For instance, in Fig. A.1 we show in the left panels the potential profile for phase differences
φ = {0,π/2,π}. In our realization, we choose the potential with φ = π, since the two lowest
Bloch band become well separated from the rest of the spectrum as shown in right panel of
the Fig. A.1-(c).

We characterize the range of parameter, for which the miniband structure is valid through
the energy gaps between the Bloch bands, especially at the center and at the edge of the Bril-
louin Zone, i.e. ∆0 = ε2

k=0 − ε1
k=0, ∆1 = ε2

k=1 − ε1
k=1 and ∆2 = ε3

k=0 − ε2
k=0. The behavior of these

parameters is shown in Fig. A.2 as a function of the relative lattice depth s0 = V1/V0 (left panel)
given different fixed values of V0, and as a function of the V0 for s0 = 1,3 and 4. In the first case we
see that the ratio ∆2/∆0 increases faster as s0 or(and) V0 increase(s), therefore a realistic isolated
two-band model is also set for not necessary deeper lattice well as in the case of a one-period
optical lattice, i.e. for V1 = 0.
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A. Band Structure, Wannier functions and Bose-Hubbard Parameters

Figure A.2: The miniband structure. Energy Gaps ∆0, ∆1 and ∆2, as defined in the main text, as
a function of: (left) the relative lattice depths s0 = V1/V0 for V0 = 3,5,10 and (right) the lattice
depth V0 for s0 = 1,3 and 4.

Along of this thesis we restrict the values of V0 < 15, since by increasing s0 the gaps ∆0,1 be-
come smaller and this can entangled the energy Bloch bands, thus the treatment implemented
here must be changed. In this way, we set ∆0,1 Ê 0.1.
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A.2. Wannier Functions

A.2 Wannier Functions

The tight-binding approach is based on the highly localized Wannier functions, see Ref. [46–48].
Under the assumption of non-entangled energy bands, these functions are defined as Fourier
transform of the Bloch functions Eq. (A.3) as follows

χα,l (x) =

√

dL

2π

∫1

−1
e−i xl kψα

k (x) dk, (A.9)

with xl = dLl . In order to obtain the optimal highly localized Wannier functions, we must notice
that the quasimomentum in Eq. (A.3) is just a parameter. It means that in general, the Bloch
functions can be written as

Ψ
α
k (x) = e iθ(k)ψα

k (x), θ(k +2) = θ(k), (A.10)

for any arbitrary function θ(k). A clever choice of the latter brings us to optimally localized
Wannier functions which drop exponentially as |x| > dL. This means

lim
x→±∞

χl
α(x) ∼ e−h|x|. (A.11)

Unfortunately, the choice of the phase prefactor is not a trivial task, so we can find a va-
riety of proposals in the literature (see Ref. [47–50]) to construct these functions. The most
conventional implementation is based on the optimization algorithm introduced by Vanderbilt
et al. [49, 50] for composite and entangled bands. In the 50’s W. Kohn et al. presented a receipt
for the construction of Wannier functions by considering the properties of the Bloch functions
into the first Brillouin Zone. In Ref. [58] the Wannier functions for one-period optical lattice are
computed by choosing the phase factor such that the Bloch functions are continous on k for
every x, which is obtained by setting

u j (1,k) →|u j (1,k)|, u j (2,k) →|u j (2,k)|sign(2 j +u j (1,k)). (A.12)

Thereby, the Wannier functions for the two lowest bands in the well l = 0 read

χ1,0(x) = N1

∑

k j ,n

|un(1,k j )|e i (2k j+n)x

χ2,0(x) = N2

∑

k j ,n

|un(2,k j )|sign(2 j +k)e i (2k j+n)x (A.13)

with Ni ’s being normalization constants. This latter choice ensures that the Wannier functions
have a maxima at x = 0 and preserve their symmetry properties, χα,l (−x) = (−1)α−1χα,l (x). For
the case V1 6= 0 such that choice does not work out, nevertheless the Wannier functions for the
two-period optical lattice inside of a unit cell must behave as the wavefunctions of a single
double-well potential. Thus, the Wannier functions have a maxima at the minimum of V (x),
x0 =±1

2 cos−1(1/4s0). To obtain these functions we consider the invariance of the eigenenergies
εα

k
under the shift x → x ± x0. The Bloch funtions simply become globally maximal at ±x0 and

are smooth function on k. In this way, we define new Bloch functions as following

ψ1,2
k

(x) = 1
p

2

(

ψ1,2
k

(x +x0)±ψ1,2
k

(x −x0)
)

, (A.14)
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A. Band Structure, Wannier functions and Bose-Hubbard Parameters

Figure A.3: (a) Wannier functions for the two lowest Bloch bands with V0 = 5 and s0 = 3. (b)
This panel shows the exponential decay of the Wannier functions from panel (a). (c) dispersion
σ =

√

〈x2〉−〈x〉2 for the Wannier functions as a function of the relative lattice depths s0, with
fixed V0 = 1,2, ...,9.

and the phase prefactor is defined such that u j(α,k) →|u j (α,k)|. The double-Well Wannier
functions are therefor given by

χ1,0(x) = N1

∑

k j ,n

|un(1,k j )|cos[(2n +k j )x0]cos[(2n +k j )x]

χ2,0(x) = i N2

∑

k j ,n

|un(2,k j )|sin[(2n +k j )x0]sin[(2n +k j )x]. (A.15)

In Fig. A.2 we show an example of above functions for some bandstructure paramters.
We see that our choice satisfy the symmetry properties of χα,l , and additionally these are well
localized in the unit cell centered at x = 0. In panel (c) we show the localization parameter
σ=

√

〈x2〉−〈x〉2, with 〈xn〉 ≡
∫

xn |χα,l |2d x being the nth-moment.

So far we have shown how to engineer an optical potential that allows to isolate the two
lowest Bloch bands. We compute the respective Wannier functions, which are very important
in the implementation of tight-bing approach. In the next section we show how compute the
Bose-Hubbard coefficients by using the single particle Wannier functions.

A.3 Seed basis and Bose-Hubbard Parameters

As defined in the main text (sec. 3.1.1), the gauge-transformed Hamiltonian, with periodic
boundary condition can be treated using the translationally invariant Fock space basis, i.e. the
seed states basis [58, 59] defined as follows

|s,κ j 〉 =
1

p
M(s)

M(s)
∑

l=1

e i 2πκ j l Ŝl |~nab〉, (A.16)
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κ= 0 L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 L = 8 L = 9

N = 1 2 2 2 2 2 2 2 2 2
N = 2 3 6 7 10 11 14 15 18 19
N = 3 4 10 20 30 44 62 80 102 128
N = 4 5 19 42 86 143 231 340 490 665
N = 5 6 28 84 198 402 728 1224 1938 2926
N = 6 7 44 156 434 1001 2076 3876 6798 11221
N = 7 8 60 264 858 2288 5304 11076 21318 38456
N = 8 9 85 429 1619 4862 12618 29070 61334 120175

Table A.1: Dimension of the Hilbert space expanded by the seed states basis.

where Ŝ is the translation operator, κ j = j

M(s) , j = 1, ..., M(s), and M(s) is the number of cyclic

permutations of the fock state |~nab〉 = |na
1 na

2 ...na
L
〉⊗ |nb

1 nb
2 ...nb

L
〉. In table Tab. A.1 we show the

size of the Hilbert space expanded by the seed states, with reduced dimension Ns ≈ dim(H )/L.

The Bose-Hubbard coefficients, sketched in Fig. 3.1(a) and Fig. 2.4, are obtained from the
following relations:

• hopping strengths Jβ:

J
β

l−l ′ ≡
∫

χβ(x −xl )H0(x)χβ(x −xl ′) d x = ǫ
β

l−l ′ , (A.17)

where Ja ≡ J
β=a

1 , Jb ≡ J
β=b

1 , and ∆g = |ǫb −ǫa | = |Jβ=b

0 − J
β=a

0 |.

• The dipole-like coupling strength C0:

C
ββ′
s ≡

∫

χβ(x)xχβ′ (x −dL s) d x =
∫

χβ(x)xχβ′ (x +dL s) d x, with Cs ≡C ab
s . (A.18)

Because of the localization of the Wannier functions, coefficient with s = |l − l ′| > 2 are
at most two orders of magnitude smaller than C0,1,2 and thus we do not take them into
account. Furthermore, due to the symmetry properties of the Wannier function all the
coefficients for β=β′ are zero. Note that in the single particle case at the exact resonance
only the coupling s = 0,r are relevant and we get RWA-type of Hamiltonian.

• Finally, the repulsive, intraband, on-site inter-particle interaction terms are given by,

Wβ ≡ g1D

∫

χ4
β(x)d x. (A.19)

The interband on-site inter-particle interaction is

Wx ≡ g1D

∫

χ2
a (x)χ2

b(x)d x. (A.20)

The interaction strength is defined by g1D = 4πa1D /m0, with a1D the one-dimensional
scattering constant and m0 the mass of the atoms [7, 134].

Some values of these parameters are shown in the tables A.2 and A.3.
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V0 ∆g Ja Jb Wa Wb Wx C0 |C1| |C2| |C3|
2.0 1.380 0.203 -0.372 0.017 0.022 0.019 -0.094 0.054 0.0169 0.0087
3.0 1.026 0.135 -0.203 0.020 0.025 0.022 -0.095 0.049 0.0111 0.0051
4.0 0.754 0.089 -0.118 0.023 0.026 0.024 -0.095 0.046 0.0078 0.0034
5.0 0.556 0.059 -0.072 0.025 0.028 0.026 -0.096 0.043 0.0055 0.0024
6.0 0.413 0.040 -0.045 0.027 0.029 0.028 -0.096 0.041 0.0039 0.0018
7.0 0.310 0.027 -0.029 0.029 0.030 0.029 -0.097 0.040 0.0027 0.0015
8.0 0.235 0.018 -0.020 0.030 0.031 0.031 -0.097 0.039 0.0018 0.0012
9.0 0.180 0.013 -0.013 0.031 0.032 0.032 -0.098 0.038 0.0011 0.0010

10.0 0.139 0.009 -0.009 0.033 0.033 0.033 -0.098 0.037 0.0005 0.0009
11.0 0.108 0.006 -0.006 0.034 0.034 0.034 -0.098 0.036 0.0001 0.0008
12.0 0.084 0.005 -0.005 0.034 0.035 0.035 -0.098 0.035 0.0004 0.0007
13.0 0.067 0.003 -0.003 0.035 0.036 0.035 -0.098 0.035 0.0007 0.0007
14.0 0.053 0.002 -0.002 0.036 0.036 0.036 -0.099 0.034 0.0010 0.0006
15.0 0.042 0.002 -0.002 0.037 0.037 0.037 -0.099 0.034 0.0012 0.0006

Table A.2: Bose-Hubbard parameters for s0 = 3, in recoil energy.

s0 ∆g Ja Jb Wa Wb Wx C0 |C1| |C2| |C3|
0.5 3.661 0.0593 -0.3389 0.0210 0.0249 0.0184 -0.0841 0.0365 0.0055 0.0026
1.0 2.532 0.0776 -0.2402 0.0185 0.0246 0.0191 -0.0901 0.0351 0.0029 0.0021
1.5 1.714 0.0852 -0.1736 0.0193 0.0252 0.0211 -0.0922 0.0364 0.0002 0.0023
2.0 1.161 0.0815 -0.1276 0.0212 0.0261 0.0231 -0.0939 0.0388 0.0021 0.0022
2.5 0.796 0.0713 -0.0950 0.0232 0.0270 0.0248 -0.0951 0.0412 0.0040 0.0022
3.0 0.556 0.0593 -0.0716 0.0250 0.0279 0.0263 -0.0959 0.0433 0.0055 0.0024
3.5 0.395 0.0479 -0.0544 0.0266 0.0287 0.0276 -0.0963 0.0451 0.0069 0.0028
4.0 0.285 0.0382 -0.0417 0.0279 0.0295 0.0287 -0.0966 0.0466 0.0082 0.0033
4.5 0.209 0.0303 -0.0322 0.0291 0.0302 0.0296 -0.0967 0.0479 0.0094 0.0038
5.0 0.155 0.0240 -0.0251 0.0300 0.0309 0.0305 -0.0968 0.0490 0.0105 0.0044
5.5 0.117 0.0190 -0.0196 0.0309 0.0315 0.0312 -0.0968 0.0499 0.0115 0.0049
6.0 0.089 0.0151 -0.0155 0.0316 0.0321 0.0318 -0.0967 0.0507 0.0125 0.0055

Table A.3: Bose-Hubbard parameters for V0 = 3, in recoil energy.
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Appendix B

Floquet-Lanczos Diagonalization

B.1 Floquet Bose-Hubbard Hamiltonian

The time-dependent Hamiltonian Ĥ (t ) (see main text) has a number s of frequencies ωi =
ωB ,2ωB , ..., (L+1)ωB , all of them being multiples of the fundamental Bloch frequency ωB ,
i.e. Ĥ(t ) is periodic in time. We can avoid the time integration of the evolution operator as
done in [59] by equivalently diagonalizing the matrix representation of the Floquet opera-
tor [101, 135, 136]

H f = Ĥ(t )− i∂t , → H f |εi (t )〉 = εi |εi (t )〉. (B.1)

The eigenstates |εi (t )〉 have the same periodicity of the Hamiltonian and can be expanded
in multi-mode Fourier decomposition ( [137]) as follows

|εn(t )〉 =
∑

k1

∑

k2

· · ·
∑

ksmax

e−i (k1ω1+k2ω1+...+ksmax ωmax )t |φk1k2...ksmax
εn

〉 =
∑

ks

e−i ksωB t |φks
εn
〉. (B.2)

with ks = k1 +2k2 + ...+ (L+1)kL+1. By using (B.1) and (B.2), the Floquet matrix reads

(

H0 −2πkF 1̂
)

|φk
εn
〉+ J|φk−1

εn
〉+ J†|φk+1

εn
〉+

L
∑

s=1

[

Cs |φk−s
εn

〉+C†
s |φk+s

εn
〉
]

= εn1̂|φk
εn
〉 (B.3)

where the operators J and Cs are defined by the formulae

J = 1

2

∑

l

(Ja a†
l+1al + Jb b†

l+1bl ) and Cs = FCs

∑

l

a†
l+s

bl . (B.4)

The operator H0 contains the time-independent part of Ĥ(t ). The problem now is reduced
to compute the fourier states |φk

εn
〉 which is done by numerical diagonalization of the following

(2L+1)-diagonal block matrix

M
(s)
F

=



















H0 −ωB (k −2)1 J† +C1 C†
2 . . .

J+C1 H0 −ωB (k −1)1 J† +C1 C†
2

...

C2 J+C1 H0 −ωB k1 J† +C1 C†
2

... C2 J+C1 H0 −ωB (k +1)1 J† +C1

. . . C2 J+C1 H0 −ωB (k +2)1



















,

with every block having the same dimension of the original Hamiltonian, i.e. dim =Ns . As said
in the main text (see Sec. 3.1.1), we can disregard those blocks with s > 2 since the coefficients
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Cs ≪ 1, therefore the the eigensystem to solve is given for the matrix M
(smax=2). The eigenener-

gies lie within the so-called Floquet zone: εi ∈ [ε0−ωB /2,ε0+ωB /2] of width ωB , and centered at
ε0, where ε0 can be conveniently set as a function of any free parameter, e.g. F . Due to the peri-
odicity of the eigenenergies, the extended spectrum can be obtained just by shifting the Floquet
zone as εi → εi +nF lωB . The integer nF l label the Floquet zone. The eigenstates of the matrix
M

(s) can be expanded in the seed basis by writting the k-components as |φk
ε j
〉 = ∑

k ck,λ|sλ〉,
where the coefficients ck,λ are obtained through the diagonalization. Therefore we can write

|εi 〉 =
∑

k,λ

ck,λ|sλ〉 =
∑

λ

(

∑

k

ck,λ

)

|sλ〉 =
∑

λ

cλ|sλ〉, (B.5)

with the contraction cλ =∑

k ck,λ. Additionally in this formalism the evolution operator reads

Û (t2, t1) =
∑

j ,kk′
e−iε j (t2−t1)e−iωB kt1 e iωB k′t2 |φk′

ε j
〉〈φk

ε j
| (B.6)

and any general time-dependent wave function, with initial condition |φ(0)〉, can be written as

|ψ(t ,0)〉 =
∑

j

c j ,0

∑

k

e−i (ε j+ωB k)t |φk
ε j
〉, c j ,0 =

∑

k′
〈φk′

ε j
|φ(0)〉. (B.7)

The diagonalization of the Floquet matrix demands a huge memory usage, especially for
larger system and/or smax > 2. Therefore some conventional diagonalization methods are inef-
ficient since those have to compute the whole set of eigenenergies of the system. In our case,
we only need those that lie inside of a Floquet zone, from which we can construct the complete
spectrum as explained above. We then implement a Lanczos algorithm [136, 138–140] which is
more suitable for our numerical calculations.

B.2 Lanczos Algorithm

The dimension of the Floquet matrix M
(2)
F

is given by dimF = Ns∆k, with ∆k the number of
Fourier compontents needed to obtain good convergence of Ns eigenvalues. Furthermore,
M

(2)
F

is a very sparse matrix, which is an usefull property for the Lanczos diagonalization algo-
rithm. This algorithm is a powerfull method for computing a certain number of eigenenergies
in the vecinity of some predefined energy position ε0, and it has been amply used especially
to find the eigenvalues of large symmetric matrices [138, 140]. This routine can also be used to
solve a general eigenvalue problem, i.e. A x = εBx.

Let ε0 be the position in the energy axis. We now shift the matrix A as follows

A →A +ε0B, (B.8)

and then we multiply from the left by A
−1. By definingµ= 1/λ= 1/(ε−ε0), we get an equivalent

eigensystem
A

−1
Bx =µx, (B.9)

which is the general eigenvalue problem that we are interested to solve. Lanczos method
belongs to the family of diagonalization algorithm, so-called power methods, which are very
usefull to compute the maximal modulus eigenvalue of a matrix. In our case, when finding
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out µmax , we inmediately obtain the smallest λ which is the closest eigenvalue to the initial
position ε0. At this part, by redefining the initial guess as the found eigenvalue and start
again the previous process. After nl ancz iterations of this procedure, we can then compute M

convergent eigenvalues that lie into the vicinity of ε0, in general M < nl ancz . Other parameter
control is the number of Fourier components ∆k , which also enhances the performance of the
algorithm, i.e. M increases.

The Lanczos algorithm is base on the construction of the Krylov subspace

Knl ancz
[A −1

B,η1] = span{η1,A −1
Bη1, (A −1

B)2η1, · · · , (A −1
B)nl ancz−1η1} (B.10)

where η1 is an initialization vector, with ‖η1‖ = 1 and nl ancz is the dimension of the Krylov
subspace, which in our case is called the number of Lanczos iterations. The matrix P =
(η1,η2, ...,ηnl ancz−1) is an ortogonal matrix with respect to B, i.e. P

T
BP = 1. Furthermore,

by using the matrix P , the matrix A
−1

B is tranformed in a tridiagonal symmetric matrix
T = P

−1
A

−1
BP , which is then diagonalized by standard diagonalization routine, e.g. QR-

decomposition, in order to obtain the largest eigenvalues µi . The matrix elements of T are
given by the formulae [136]

α j = ηT
j BA

−1
Bη j ,

β j = ‖tT
j+1Bt j+1‖, with t j+1 =A

−1
Bη j −α jη j −β j−1η j−1, (B.11)

η j+1 = 1

β j+1
t j+1,

with Ti ,i = αi and Ti ,i+1 = βi . For the initialization of the algorithm, we set η1 = (1,1,1, ...,1)T

and the normalization of any η j is computed respect to the matrix B = 1, with 1 the identity
matrix.

Figure B.1: Sparseness of the characteristic matrices. (left) Floquet matrix MF (see Eq. B.3) for
N/L = 5/5. Each block with a dimension Ns . (right) Hamiltonian matrix with t = 0 (ref. Hamil-
tonian) for the same system in the left panel.
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n
tot

nlarg

Energy (a)

(b)

Figure B.2: (a) Banded Lanczos matrix used for diagonalization.

Numerical implementation

As seen previously, the Floquet matrix is a large sparse array, as shown in Fig. B.1-(left) for N/L =
5/5, with Ns = 402. The dimension of M

(2)
F

ntot =Ns (kmax −kmi n +1), (B.12)

where kmi n and kmax are the number of left and right Fourier components needed to get M

convergent eigenenergies into the Floquet zone, i.e. M = Ns . We can estimate kmax by using
the maximal diagonal element of the Hamiltonian Ĥ0, which is the gap N∆g plus a correction
given by the energy of the upperband state with the total particle number N particles in a single
lattice site, i.e. ∼ Wb N 2 (see Fig. B.2-(a)). Therefore, we define kmax as the number of Floquet
zone needed to get a transition from the lowest diagonal element of Ĥ0 to the maximal one.
This reads

kmax ≈
N∆g +Wb N 2

ωB
, kmi n =−

[

kmax

n

]

, n = 1, ...,5., (B.13)

where [· · · ] stands for the interger part function. Note that kmi n and kmax does not have to be
equals to get very good convergence, which is an advantage when diagonalizing larger system,
especially for smaller values of the Stark force since kmax ∼ 1/F .

The Lanczos algorithm implementation needs an additional transformation of MF , which
is done as follows

Ar (nl ar g + j − i , i ) = Re(MF )i , j , Ai (nl ar g + j − i , i ) = Im(MF )i , j , (B.14)

thus the routine takes only into account the information into the banded lower diagonal as
sketched in Fig. B.2-(b). The memory storage MS is given by the formula

MS=
ntot nl ar g ×16

109
, (B.15)

where nl ar g = 3Ns is the lateral size of the Lanczos matrix. The table B.2 shows MS for different
system with fixed Stark force F , V0 and s0.

We have seen that the numerical implementation of the Floquet-Lanczos routine has very
good advantages as we summarize now:
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N/L Ns kmax kmi n ntot MS (GB)

7/4 858 7 1 7722 0.32
6/5 1001 6 1 8008 0.38
7/5 2288 7 1 20592 2.26
5/9 2926 5 1 20482 2.88
9/4 2860 9 2 34320 4.71
7/8 21318 7 1 191862 196.33

6/11 26910 6 1 215280 278.07
9/7 71060 9 2 852720 2908.53

Table B.1: Memory storage (MS) different N/L systems needed for computing Ns eigenenergies
into the Floquet zone. Here Fr = 0.42, with r = 1, V0 = 5 and s0 = 1.

1. Fast convergence since the dimension of the Krylov subspace (nl ancz ) needed to com-
pute the convergent eigenenergies is smaller than the dimension of the matrix MF . In
most of the cases by setting nl ancz ≈ 3Ns we can get the complete spectrum into the Flo-
quet zone. This also depends on the position in the spectrum ε0 for the initialization of
the algorithm. This can be set using the physical concepts of the current problem, for in-
stance, by setting ε0 to be in the center of the energetic separation between the lowest
and highest manifold, plus the energy of the lower band state with the total number of
particle in the same site:

ε0(F ) = 1

2
Wan(n −1)+ 1

2
n∆g

(

1− F

Fr

)

, (B.16)

with ∆r as defined in Sec. 3.2.1.

2. It is “fully”parallelizable and the computation time is shorter compared with the integra-
tion of the evolution operator, since the time of integration is larger as the Stark force
decrease. Nevertheless the memory expended gets lager in the latter regime.

3. Since the center of the Floquet zone is a predefined variable, we can used to compute
the spectrum not only in one diagonalization process, but in m parallel processes which
compute the whole spectrum by using the concept of n-manifold the quasi-symmetry
above exposed.
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Appendix C

Random Matrix Theory: Some Tools

C.1 Random Matrix Theory

Random matrix theory is a well-known theory that offers universal predictions of physical phe-
nomena, which are described by Hamiltionian matrix with large degree of randomness. During
the last years, it has been shown that this theory works out, especially in nuclear physics [72–74].
However, most of its measures can be implemented to analize and characterictize spectral
properties of highly complex Hamiltonian system without classical analog, for instance, the
Bose-Hubbard Hamiltonian which has no classical analog for few particle systems. In this ap-
pendix, we summarize the principal RMT (tools) measures used in this work in ordet to study
the spectra properties of the two-band many-body Wannier-Stark system.

Unfolding Of The Spectrum

In order to compare the universal properties of the our system with the RMT measures, we must
transorm the spectrum, i.e. we must to rescaled in such that way that the density of states, ρ(E )
is a constant. As explained in ref. [70], such that process, usually called unfolding, is possible by
means of the integrated density of states Nρ(E ) defined by

N (E ) =
∫E

−∞
ρ(E ′)dE ′, with ρ(E ) =

∑

δ(E −En). (C.1)

and thus the unfolded energies are given by

ǫi = Nρ(Ei ). (C.2)

The latter guarantees that the set of level spacings {si = ǫi+1 − ǫi } has mean value 〈s〉 = 1.
In the case of the Floquet spectra, this process is not necessary only if the quasienergies lie
uniformly distributed over the Floquet zone ωB . However, we have seen that the resonance
width ∆E is usually smaller than ωB , therefore an unfolding process is necessary. We use the
Lorenzian broadening method to unfold the spectrum, for which the average density of states is
defined as

ρ̄γ(E )= 1

π

∑

n

γ

(E −En)2 +γ2
, (C.3)

where γ is an optimization parameter, with a minimal value γmi n & 〈{si }〉, where 〈{si }〉 is the
mean level spacing of the original spectrum.
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Level Spacing Statistics

In RMT the simplest and robustest quantity is the Nearest Neighbor spacing distribution P ({si}).
Systems with time-reversal invariance (t → −t and p → −p) is known to transform under a
canonical transformation

OHOT = H ′, (C.4)

where O is an ortogonal operator, i.e. O−1 =OT . This is the usual case of real symmetric matri-
ces, which are part of the Gaussian Orthogonal Ensemble (GOE). Matrices that break the time-
reversal symmetry transform then under unitary transformation and the ensemble is called
Gaussian Unitary Ensemble (GUE). The matrix elements are complex and the matrix Hermi-
tian. By assuming sufficient randomness of the Hamiltionian matrix, the set {si } follows the
RMT P (s) distributions given by

P (s) = exp(−s) , (Poisson)

P (s) = π

2
s exp

(

−π

4
s2

)

, (GOE) (C.5)

P (s) = 32

π
s2 exp

(

− 4

π
s2

)

, (GUE)

(C.6)

and Intermediate regimes between the Poisson and GOE distribution are interpolated by
using the empirical Brody distribution [74]

P (s;ω) =α(ω+1)sωexp
(

−αsω+1) , α≡
[

Γ

(

ω+2

ω+1

)]ω+1

(C.7)

where ω = 0 leads to the Poisson distribution and ω = 1 results in the GOE limit, commonly
called Wigner surmise.

Porter-Thomas Distribution

The eingenvectors also contain important information about the spectrum, since for a given
set of eigenstates |εi 〉’s, their projections onto an arbitrary vector of the Hilbert space follow the
Porter-thomas distribution [73,74]. For Gaussian ensemble this distributions are defined by the
relations

Pgoe (y) = 1
√

2πy
e−y/2

Pgue (y) = e−y , (C.8)

and

y ≡ |〈α|εi 〉|2

〈c2〉 , 〈c2〉 ≡ 〈|〈α|εi 〉|2〉. (C.9)

〈...〉 stands for the mean value of the projections. Mean values of the localization measures are
computed in the main text are given by the formulae

ξ=Ns〈c2〉2
∫∞

0
d y P (y)y2, (C.10)
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and

Ssh =Ns

∫∞

0
d y P (y)y〈c2〉 ln(y〈c2〉), (C.11)

keeping in mind that the Ns is the dimension of the Hilbert space. In case of complete de-
localization the coefficients fluctuate about 〈c2〉 = 1/Ns , and the corresponding values of the
measures defined in the above equations are given by

ξ−1
goe = 3/Ns , ξ−1

gue = 2/Ns (C.12)

and
S

goe
sh

= ln(0.48Ns), S
gue
sh

= ln(Ns )−γc , with γc = 0.422784... (C.13)

Avoided Crossings widths Statistics

In chapter 3.2 we study the importance of the manifold mixing and the density of ACs about and
between the resonance position. The avoided crossings structure is robust in the many-body
regime, then the ACs width distribution P (c) [30,105,141–143] in the vicinity of Fr becomes very
useful to characterictize locally quantum chaotic regimes. The distribution P (c) is computed for
the 2×2 matrix Hamiltionian, for which the energy levels repel each other at the AC value of the
free parameter λ [141]. The Hamiltionian H2×2 reads

H =
(

a+λv1 g

g b +λv2

)

,

an after the normalization 〈c〉 = 1 and
∫

P (c) dc = 1, the RMT predicts the distribution

P (c) = 2

π
exp

(

−c2

π

)

, for GOE ensembles. (C.14)

For nearly integrable systems P (c) is approximated a delta function δ(c), then intermedi-
ated regime must follows the distribution [105]

P (C ) = (1−γ)δ(C −C0)+γ

(

4D

π

)1/2

exp
(

−DC 2) , with D = γ

〈C 〉2π
. (C.15)

Number Variance

Another measure of correlations between energy levels is the so-called number variance de-
fined by

Σ
2(L) = 〈(N (ǫ0,L)−L)2〉ǫ0 (C.16)

where L is the an energy interval and the energy levels taking into account are those already
unfolded. This quantity is a fluctuation measure that contains information about long-range
correlations [70,74]. This function is also called the "spectral rigidity" and for GOE spectra grows
propotional to ln(2πL) and for poissonian-distributed spectra it is just a linear function of L

Σ
2(L) = L, Poisson ensembles

Σ
2(L) = 2

π2

(

ln(2πL)+γ+1− 1

8
π2

)

, GOE . (C.17)
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Appendix D

AC Detection by Fidelity Change

In this appendix, we present the basis of the method used in ref. [30, 81] to characterize quan-
tum spectra with high degree of level repulsion. The method is based on the concept of quan-
tum fidelity. We show how avoided crossings can be detected in the framework of the Floquet
theory, described in detail in App. B.2. This is an alternative method in comparison with the
method exposed in Chapter 3, which is based on the fidelity of probability vectors. The bound-
ary conditions plays a an important role for the implementation of this method that in case of
quasienergies an explicit ordering of the of the spectrum is needed, which is not straight for-
ward set.

D.1 Fidelity Change

Let us then introduce the method by following the development done in ref. [81]. The fidelity
function is defined by the expression

fn(λ,δλ) ≡ |〈εn(λ)|εn (λ+δλ)|, (D.1)

where

Ĥ (λ)|εn(λ)〉 = εn(λ)|εn (λ)〉 , Ĥ(λ+δλ)|εn (λ+δλ)〉 = εn(λ+δλ)|εn (λ+δλ)〉 (D.2)

The detection of avoided crossing is made by the fidelity change function defined by

Sn(λ,δλ) ≡ 1− fn(λ,δλ)

(δλ)2
, (D.3)

where in the limit δλ≪ 1, this quantity does not dependent on δλ. The eigenstate |εn(λ+δλ)〉
is expanded up to second order of perturbation theory, which reduces the fidelity change to

Sn(λ) = 1

2

∑

n 6=m

|〈εm(λ)|V̂ |εn(λ)〉|2

[εm −εn]2
. (D.4)

Now the question is how to define V̂ . Back to the equation (B.3), i.e. the Floquet matrix
to be diagonalized, one can rewrite the Eq. D.4 in terms of λ+δλ. By recognizing λ ≡ F and
regarding only the largest dipole-induced transition C0, we obtain the expression

(

H0(F +δF )−2πK (F +δF )1̂
)

|φK
εn
〉+ J|φK−1

εn
〉+ J†|φK+1

εn
〉 = εn b̂|φK

εn
〉, (D.5)
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where H0(F +δF ) = H′
0 +δF V is the time-independent Hamiltonian. In this way the equation

(D.5) can be rewritten as

(

H′
0 −K F 1̂

)

|φK
εn
〉+2πδF

(

V−K 1̂
)

|φK
εn
〉+ J|φK−1

εn
〉+ J†|φK+1

εn
〉 = εn 1̂|φK

εn
〉, (D.6)

therefore, we can define V̂ = V−K 1̂, with V defined as in Eq. (3.1) as

V =ωBC0

∑

l

(

a(2)†

l
âl +h.c.

)

1. (D.7)

The term K in V̂ can be neglected without loss of generality, since 〈εm |V|εn〉≫ 〈εm |K |εn〉
about a local AC, i.e. Sn → 0 in region where any AC occurs. Finally, the expression (D.4) can
transformed in term of the eigenstates of the Floquet Hamiltonian as follows

Sn(F ) = 1

2

∑

m 6=n

|∑α,α′ c̃
εn
α c̃

εm

α′ Ṽα,α′ |2

[εm −εn]2
(D.8)

where c̃
εn
α = ∑

K c
K ,εn
α and Ṽα,α′ = 〈sα|V|sα′〉. In figure D.1 we show a simple example of the im-

plementation of this method. For more details about the properties of the fidelity change we
suggest ref. [30]

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

E
n

e
rg

y
(F

)

0⋅10
0

2⋅10
4

5⋅10
4

8⋅10
4

1⋅10
5

0.3515 0.352 0.3525 0.353 0.3535 0.354F
id

e
lit

y
 c

h
a
n
g
e

Force
Figure D.1: Fidelity change as function of F for N /L = 3/3, with V0 = 5 and s0 = 1. The peaks represent the

position of the avoided crossing occurs. The maxima of the fidelity change function and the respective

width of the lorezian peaks are related to the AC width as shown in ref. [30].
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