
44

Optimization to measure performance in
the Tailorshop test scenario — structured

MINLPs and beyond

Sebastian Sager Carola M. Barth Holger Diedam
Michael Engelhart Joachim Funke

Interdisciplinary Center for Scientific Computing
Department of Psychology

University of Heidelberg
INF 368, 69120 Heidelberg, Germany

sebastian.sager@iwr.uni-heidelberg.de

Abstract

Obtaining objective means to measure performance is of crucial im-
portance in the research field Complex Problem Solving. While for
traditional tests like the Tower of Hanoi the correct solutions were
known, this is more difficult for modern, complex, simulation-based
test scenarios, as the Tailorshop. We derive a problem class of non-
convex mixed-integer nonlinear programs (MINLPs) which stem from
such economic test scenarios. In a round based scenario participants
need to make decisions. A posteriori a performance indicator is cal-
culated and correlated to their ability of emotion regulation. We
solve altogether 2088 optimization problems with different size and
initial conditions. They are based on real world experimental data
from 12 rounds of 174 participants. The goals are twofold: first,
from the solutions we gain additional insight into a complex system,
which facilitates the analysis of a participant’s performance in the
test. Second, we propose a methodology to automatize this process
by providing a new criterion based on the solution of a series of opti-
mization problems. We disprove the assumption that the “fruit fly of
complex problem solving”, the Tailorshop scenario that has been used
for dozens of published studies, is not mathematically accessible. By
providing a detailed mathematical description and the computational
tool Tobago [12] for an optimization-based analysis we hope to foster
further interdisciplinary research between psychologists and applied
mathematicians and provide a source for benchmarking of MINLP
solvers.
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1. Introduction

Psychologists define complex problem solving as a high-order cognitive process. The
complexity may result from one or several different characteristics, such as a cou-
pling of subsystems, nonlinearities, dynamic changes, intransparency, or others [6].
The main intention of the research field complex problem solving of human beings
is the desire to understand how certain variables influence a solution process. In
general, personal and situational variables are differentiated. In our study we ana-
lyze the personal variable emotion regulation. Other interesting personal variables
are working memory, amount of knowledge, and intelligence.

Psychologists have been working in the research fields of problem solving for ap-
proximately 80 years. Since the 1970s and 1980s also computer-based test scenarios
are in use. The overall idea, compared to early works in problem solving, is still the
same: one evaluates the performance of a participant by calculating an indicator
function and either correlates it to personal attributes or analyzes the influence of
different experimental conditions for groups of participants. The main difference is
that for the early test scenarios the correct solution is known at every stage. For
more complex scenarios the performance evaluation is not so straightforward. The
availability of an objective performance indicator is an obstacle for analysis and it
has often been argued that inconsistent findings are due to the fact that

“. . . it is impossible to derive valid indicators of problem solving perfor-
mance for tasks that are not formally tractable and thus do not pos-
sess a mathematically optimal solution. Indeed, when different dependent
measures are used in studies using the same scenario (i.e., Tailorshop
[7, 13, 11]), then the conclusions frequently differ.”

as stated by Wenke and Frensch [15, p.95]. The Tailorshop is sometimes re-
ferred to as the “Drosophila” for problem solving researchers [9] and thus a promi-
nent example for a computer-based test scenario. In Section 2 we will derive a
mathematical model for the Tailorshop. In Section 3 we will discuss mathemati-
cally optimal solutions, and finally formulate a valid indicator function in Section 4.

To our knowledge, numerical optimization methods have only scarcely been
used for the analysis of participants’ decisions. The general approach to compare
performance to optimal solutions has been discussed by [10]. However, the authors
do not provide a mathematical model for their test scenario EPEX. Hence, they
need to use the software as a black box for brute-force simulation or derivative
free strategies, such as Nelder-Mead. Such strategies result in significantly higher
computational runtimes, give less insight, and have poor theoretical convergence
properties.

2. Tailorshop MINLP Model

The Tailorshop has been developed and implemented as a test scenario in the 1980s
by Dörner [6]. It has been used in a large number of studies. Also comprehensive re-
views on studies and results in connection with the Tailorshop have been published,
e.g., [8].
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A participant has to take economic decisions to maximize the profit of a small
company, specialized in the production and sales of shirts. The scenario com-
prises twelve rounds (months), in which the participant can modify infrastructure
(employees, machines, distribution vans), financial settings (wages, maintenance,
prices), and logistical decisions (shop location, buying raw material). As feedback
he gets some key indicators in the next round, such as the current number of sold
shirts, machines, employees, and the like. Arrows next to the indicators show if the
value increased or decreased with respect to the previous round.

We derive a mathematical formulation as an optimization problem. The basic
idea is that for different initial values (the current state in round ns of a participant’s
test run) the optimal solution for the remaining N − ns rounds can be calculated.
The optimal solution can then either be used for a manual comparison and analysis
of the participant’s decisions, Section 3, or for an automated indicator function, as
discussed in Section 4.

The Tailorshop has been developed as a test scenario in GW-Basic code. On the
basis of this code we derived a mathematical optimization problem for a participant
and month 0 ≤ ns < N as

max
x,u,s

F (xN )

s.t. xk+1 = G(xk, uk, sk, p), k = ns . . . N − 1,
0 ≤ H(xk, xk+1, uk, sk, p), k = ns . . . N − 1,
uk ∈ Ω, k = ns . . . N − 1,
xns

= xp
ns

.

(44.1)

The model is dynamic with a discrete time k = 0 . . . N , where N = 12 is the
number of rounds. The control vector uk = u(k) has 15 (or 13 when van purchase is
fixed) entries for each k = 0 . . . N −1 corresponding to the decisions the participant
can make in the test. The vector of dependent state variables xk = x(k) comprises
16 entries. We define

(xp, up) = (xp
0 , . . . , xp

N , up
0 , . . . , up

N−1)

to be the vector of decisions and state variables for all months of a participant.
Certain entries xp

ns
enter (44.1) as fixed initial values. The goal is to find decisions

uk that maximize the overall balance at the end of the time horizon. The objective
function is given by F (xN ) = xOB

N . The resulting problem is a nonconvex mixed-
integer nonlinear program with ns–dependent dimension.

3. Optimization and numerical results

We want to solve a series of optimization problems of the form (44.1) for different
participant data that has been obtained experimentally.

3.1. Implementation

To be able to analyze and visualize the data in a convenient way, to have a simu-
lation environment for own studies, and to be able to automatize the optimization
of all 2088 = 174 · 12 problems, we implemented the software framework Tobago
[12]. It is publically available under an open source license, includes a GUI, and
may as well be used for experimental setups. This data generation and analysis
tool can be hooked to a variety of optimization solvers. Currently the software
supports AMPL interfaces. This allows for the usage of solvers from the COIN-OR
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Figure 1. Top row: state variable xW100
k that indicates how many workers

for the 100 machines are employed. The left and right column show the results
for two different participants. For both the optimal strategy is to have a fixed
number of 0 to 4 workers which is decreasing as ns increases. Note that the
values are solutions of the relaxed problem where also non-integer values are

possible.

initiative, which are also available under a public license. In this study we use the
global solver Couenne [3] and the local solvers Bonmin [4] and Ipopt [14]. We used
the currently latest stable version 0.2.2 of Couenne, and for better comparability
the versions 1.1.1 of Bonmin and 3.6.1 of Ipopt it is interfaced with. For all solvers
we used the default settings exclusively and the MA27 sparse solver for numerical
linear algebra.

It turns out, however, that the size and complexity of the problems presented
in this paper leads to extremely long runtimes of the global solver and can only be
used on a small subset of the problems. We present a problem-specific cut to avoid
bad local minima and guarantee monotonicity of the analysis function that builds
on the locally optimal objective function values.

3.2. Optimal Solutions

In total, 2088 optimization problems have been solved. Depending on the value of
ns in (44.1), each consists of 13(N − ns) control, 16(N − ns) state, and 5(N − ns)
slack values. The total number of optimized variables for all 174 participants sums
up to

nvar = 174
N−1
∑

ns=0

34(N − ns) = 174 · 2652 = 461448.

This many variables are obviously difficult to discuss and visualize comprehensively.
As an illustration, in Figure 1 the state variable xW100

k is depicted. It indicates how
many workers for the 100 machines are employed at time k.

3.3. Local minima and integer solutions

The optimization problems (44.1) are nonconvex. Depending on initial values for
the optimization variables different local minima can be found. Hence one has to
use a global optimization solver, such as Couenne or one of the solvers listed on [5].
As mentioned above, we used three different solvers to obtain solutions. Table 1
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S 0 1 2 3 4 5 6 7 8 9 10 11
1 0.15 0.13 0.17 0.11 0.1 0.06 0.05 0.03 0.02 0.02 0.0 0.0
2 1183 264 1552 1464 356 36 5 4 16 3 0.2 0.2

Table 1. CPU times in seconds for the solution of (44.1) for one participant.
The columns show the start month ns. Solver S 1: Ipopt for the relaxation of
(44.1). Solver S 2: Bonmin. The global solver Couenne could only solve the
problem for ns = 11 in 3 seconds, for ns = 10 the B&B tree grew too fast.

shows an overview of computational times that have been obtained with Ipopt and
Bonmin. Note that the runtime is not monotonically increasing as ns is reduced.
The reason is that the solution process strongly depends upon the local minima of
the relaxations that need to be solved.

The global solver Couenne was able to solve (44.1) for ns = 11 in 3 seconds.
For the next larger problem, ns = 10, however, no results could be obtained. The
solver terminated after processing 600.000 nodes in 7 hours, because the computer
ran out of memory. The stack comprised about 2.000.000 open nodes at that
time. To reduce the search space, we introduced and tightened the bounds on all
variables to extremal values found with the local approaches. However, even with
this restriction and a relaxation of all integer variables the same happened, now
after 8.800.000 processed nodes with 2.9 million NLPs still on the tree. The best
solution at that time was 500497 with the upper bound of 506610 still leaving a
certain gap. For comparison: the objective function values found by Bonmin and
Ipopt are 490385 and 500779, respectively. When heuristic non-convexity options
num resolve at root and num resolve at node are used with a value of 1 (or
2) for Bonmin, an integer solution with value 500188 (500438) is found after 142
(317) seconds, which is considerably higher than the 0.2 seconds with the standard
settings.

Obviously already for one participant data set the computational times are pro-
hibitive for global approaches. For the analysis of all 174 participants we therefore
solved 2088 NLP relaxations with the local optimizer Ipopt.

A crucial feature of our method is that the How much is still possible–function,
see Section 4.1, decreases monotonically with ns increasing. To take this into ac-
count, we exploit this knowledge in our a posteriori analysis. We define

(x∗, u∗, s∗) = (x∗
ns

, . . . , x∗
N , u∗

ns
, . . . , u∗

N−1, s
∗
ns

, . . . , s∗N−1)

as a locally optimal solution obtained by solving problem (44.1) for month ns.
We initialize the variables for problem (44.1) with a feasible solution. To avoid

local minima with a worse performance, we add the additional cut

xOB
N ≥ x∗,OB

N(44.2)

to (44.1).
Computational experience shows that the primal-dual interior point solver we

are using cannot exploit the initialization to its full extent and in many cases Ipopt
converged to locally infeasible points although it started from a primally feasible
one. Future studies should therefore include active set based solvers. For this study
we iterated in an inner loop with random initializations until the objective function
cut (44.2) was fulfilled for all problems.
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Figure 2. Left: optimal choices of site for one participant and all start months
ns, calculated with Ipopt (green, relaxed values between 1.1 and 1.9) and Bon-

min (blue, integer values of 0, 1, and 2). Right: How much is still possible–
function for one participant, calculated with Ipopt (green, upper curve) and
Bonmin (blue, lower curve). The integer gap seems to be largest for interme-
diate values of ns.

Within our analysis approach, local minima can lead to a violation of the goal
to have an objective measurement for participant performance. Whenever possible,
global solvers with a guaranteed, deterministic global minimum should be used. If
the size of the problem is still too large for current algorithms and computational
platforms, we propose to use relaxations and include the cut (44.2) as a compromise.
The difference between participant’s performance and global optimum seems to be
so far apart compared to the distance between global and local minimum, especially
when the cuts (44.2) are used, that the analysis based on a local How much is still
possible–function should still be valid.

Several of the control variables are restricted to integer values. A comparison
of (locally) optimal relaxed and integer solutions shows that some of the variables
show typical behavior for most xp

ns
, such as the maintenance uMA

k or the purchase
of raw material u∆MS

k . Others, in particular the numbers of machines and workers,
the shirt price uSP

k , and the choice of the site uCS
k are more sensitive to local optima

and/or the fixation of some of the variables to integer values. Figure 2 shows an
example.

3.4. Analyzing Lagrange Multipliers

Using optimization as an analysis tool yields insight on several levels. Structural
properties of the problem, e.g., the unboundedness, can be understood. Also the
performance of a participant can be compared to the optimal solution, and the
How much is still possible–function to be discussed in Section 4 delivers a temporal
resolution of this performance. But even a more detailed analysis is possible. While
an analysis of the How much is still possible–function indicates at what rounds the
participant made particularly good or bad decisions, the question of what of the
decisions contributed significantly to the success or failure remains and might be of
importance in a given test scenario.

We propose to combine two concepts. First, the comparison of the participant’s
decisions at month ns with the optimal solution, up

ns
−u∗

ns
, gives a global indication

of differences in the controls. However, it is unclear from this comparison how
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significant a single deviation is. Therefore we use, second, Lagrange Multipliers
for the participant’s decisions to measure the effect on the objective function. We
augment problem (44.1) with the additional constraint

uns
= up

ns
(44.3)

Note that necessarily it holds x∗
ns+1 = xp

ns+1, hence the augmented problem for
month ns has the same solution as problem (44.1) for ns + 1. Hence there is no
need for additional optimization problems to be solved. The advantage is that an
optimization code will also calculate the dual variables or Lagrange multipliers λns

for the constraints (44.3). It is well known that the Lagrange multipliers indicate the
shadow prices, i.e., how much the objective function will vary if the corresponding
constraints were relaxed, assumed that the active set stays constant.

4. A correct indicator function for Tailorshop

We propose to use the solutions of (44.1) for all ns as an indicator function for
the performance of a participant. The approach described in Section 4.1 is generic
and should also be used for other test scenarios in complex problem solving in the
future. In Section 4.2 we describe the results we obtained by using this indicator
function for a psychological study.

4.1. How much is still possible

On an individual basis, the performance of every participant can be better under-
stood by a comparison with optimal solutions as illustrated in Section 3. For an
evaluation of large data sets that shall be related to characteristics of participants
or experimental setup, an automatization and a reduction to an indicator function
is necessary. To measure performance within the Tailorshop scenario different in-
dicator functions have been proposed in the literature, e.g., the evolution of profit
or overall worth of the tailorshop. An obvious drawback of comparing the results
of several rounds with one another is that the main goal of the participant is to
maximize the value at the end of the test, not necessarily in between.

Hence it might happen that decisions are analyzed to be bad, while they are
actually good ones and vice versa. To overcome this problem, we propose to com-
pare the decisions to mathematically optimal solutions. In a certain analogy to
the cost-to-go-function in dynamic programming, the optimal objective function
values for all rounds yield the monotonically decreasing How much is still possible–
function. We look at the series of optimal objective function values F ∗(xN ;ns) for
ns = 0, . . . , N−1. By comparing F ∗(xN ;ns = k) with F ∗(xN ;ns = k+1) we obtain
the exact value of how much less the participant is still able to obtain, assumed he
would take the best solutions from now on.

We conclude that the newly proposed methodology based on the How much is
still possible–function is more reliable and generally applicable to test scenarios in
complex problem solving.

4.2. Impact of Emotion Regulation

In the study 174 data sets have been used, every one from a different participant
who had but one try. For 42 of them a positive feedback was used in the sense
that in every round, regardless of the decisions the participant took, a sum of
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20.000 money units (MU) was added to the capital. For 42 participants a negative
feedback in form of a reduction of 8000 MUs was implemented. These modifications
are implemented in the model and readjusted in the a posteriori analysis, of course.

In a previous study [1] it was shown that participants who receive a negative
feedback perform better than those who receive positive feedback. In our new
study we additionally considered the ability to regulate emotion. The psychological
results of this study are submitted in a separate paper [2] in which also details on
the experimental setup can be found. As a main result, an interaction between
feedback and emotion regulation could be shown: participants with a high ability
of emotion regulation perform better when they get negative feedback, while those
with a low ability to regulate their emotions perform bad for negative and good for
positive feedback.
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2LIX, École Polytechnique, Palaiseau, France. liberti@lix.polytechnique.fr
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