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Abstract

Palynological and palynofacies analyses were carried out on 272 core samples from two wells (GTP-17-SE and
GTP-24-SE) in the Sergipe Basin with the aim of reconstruction the paleoenvironment of the upper
Aptian–middle Albian interval.
The succession studied comprises the Muribeca and Riachuelo formations. The Muribeca Formation (Ibura and
Oiteirinhos members) represents the transitional phase between the continental and marine regime and the
Riachuelo Formation (Angico and Taquari members) the open marine phase.
The palynomorphs were identified, recorded (qualitative analysis) and counted (quantitative analysis).
Paleoecological investigations were carried out using on multivariate statistical methods (cluster analysis and
Pearson correlation) to determine the ecological similarity between palynomorph assemblages of different
depositional settings. In addition, Palynological Marine Index (PMI), the Peridinioid to Gonyaulacoid ratio (P/G
ratio) and paleoclimatic analyses were employed.
For the palynofacies analysis the kerogen categories were counted and submitted to cluster analyses (r and q-
mode). In addition, geochemical study (Total Organic Carbon determination, Rock-Eval pyrolysis and
fluorescence) based on a total of 140 samples from well GTP-24-SE was carried out. For a detailed marine
environmental analyses, kerogen distribution trends and parameters were applied, based on percentages of
kerogen categories.
The succession studied yielded a rich palynomorph assemblage, in particular terrestrial components. Altogether
17 genera and 19 species of spores, 24 genera and 31 species of pollen grains, 17 genera and 20 species of
dinocysts were identified. Moreover, one genus of Acritarcha and one genus of fresh-water algae were recorded.
The preservation of the palynomorphs is variable, ranging from moderately to well preserved for the miospores
and from poorly to moderately preserved for the dinocysts.
The sections are clearly dominated by the pollen group, in particular gymnosperms, which is by far the most
abundant group in the two wells studied. This group forms 84.7% in GTP-17-SE and 61.8% in GTP-24-SE of
the total palynomorph assemblage. In well GTP-17-SE the second most abundant group is the spores which
reach a value of 8.9% of all palynomorphs. Well GTP-24-SE is characterized by a relatively high abundance of
marine palynomorphs with 31.7% of the total palynomorphs. Fresh-water palynomorphs are rare, although less
so in well GTP-24-SE (0.1%).
The upper Aptian Sergipea variverrucata Zone, Equisetosporites maculosus and Dejaxpollenites
microfoveolatus sub-zones and middle Albian Classopollis echinatus Zone were recognized. The absence of the
Cardiongulina elongata, Brenneripollis reticulatus and Retiquadricolpites reticulatus sub-zones and the
Steevesipollenites alatiformis Zone of the uppermost Aptian to lower middle Albian indicates a possible hiatus.
The cluster analysis based on the abundance and composition of all 60 palynomorph genera revealed four
superclusters, which represent different palynological assemblages. The stratigraphic distribution of these
assemblages allowed the definition of seven ecophases.
The relative abundance of spores and the genus Classopollis indicates for a predominantly arid paleoclimate.
However, these conditions tend to decrease upwards in sequence, changing to tropical climates.
The stratigraphic distribution of palynofacies associations that defined eight palynofacies units in well GTP-17-
SE and ten in well GTP-24-SE reflects a continuous terrestrial influx (moderate to very high abundances of
phytoclasts) throughout the succession. The amorphous organic matter (AOM) and palynomorph groups show
moderate to high abundances, in particular in well GTP-24-SE. The increase in abundance of these groups
indicates a transgression or a decreasing terrestrial influx in the area.
The palynological and palynofacies analyses of the successions studied allowed detailed environmental
reconstruction. The succession is characterized by a long-term transgressive trend, recognizable in the ecophases
and palynofacies units. Six depositional environments were recognized: a brackish lagoonal to lagoonal coastal
plain environment, intertidal-nearshore (GTP-17-SE) and shallow-neritic (GTP-24-SE), intertidal to shallow
marine (GTP-17-SE) and shallow-neritic (GTP-24-SE), shallow marine (GTP-17-SE) and middle-neritic (GTP-
24-SE), and intertidal to shallow marine (GTP-17-SE) and shallow-neritic (GTP-24-SE). The
paleoenvironmental evolution reflects the progressively increasing marine influence into the area. The results
confirm that the change from a brackish lagoon to open marine environment was controlled by sea-level during
the deposition of the Muribeca Formation, and predominantly by a progressive sea-level rise during the
beginning of the deposition of Riachuelo Formation.
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Kurzfassung

Anhand von 272 Proben aus zwei Bohrungen (GTP-17-SE und GTP-24-SE) im Sergipe-Becken wurden
palynologische und palynofazielle Untersuchungen durchgeführt. Ziel war eine Rekonstruktion der
Umweltverhältnisse des Intervals vom oberen Apt bis mittleren Alb.
Die Abfolge umfasst die Muribeca Formation und die Riachuelo Formation. Die Muribeca Formation (Ibura und
Oiteirinhos Member) repräsentiert hierbei die Übergangsphase zwischen kontinentalen und marinen
Bedingungen, während die Riachuelo Formation (Angico und Taquari Member) unter offen marinen
Bedingungen abgelagert wurde.
Die Palynomorphen wurden identifiziert und sowohl qualitativ als auch quantitativ analysiert. Palökologische
Untersuchungen wurden mit Hilfe von Methoden der multivariaten Statistik (Kluster-Analyse, Pearson-
Korrelation) durchgeführt, um ökologische Zusammenhänge zwischen dem Auftreten der Palynomorphen und
den verschiedenen Ablagerungsräumen zu finden. Darüberhinaus wurden der Palynological Marine Index
(PMI), das Peridinoid zu Gonyaulacoid Verhältnis und die Paläoklima Analyse benutzt.
Für die Palynofazies-Analyse wurden die Kerogen-Kategorien gezählt und einer Kluster-Analyse unterzogen (r-
und q-mode). Daneben wurden geochemische Untersuchungen durchgeführt (TOC, Pyrolyse, Floureszenz), die
auf 258 Proben der Bohrung GTP-24-SE basieren. Für die umfassende Analyse der Umweltbedingungen wurden
die Kerogenverteilungen und –charakteristika herangezogen, wobei die prozentualen Anteile der Kerogen-
Kategorien zu Grunde gelegt wurden.
Die Abfolge beinhaltet eine reiche Vergesellschaftung von Palynomorphen, innerhalb derer die terrestrische
Komponenten überwiegen. Insgesamt wurden 17 Gattungen und 19 Arten von Sporen, 24 Gattungen und 31
Arten von Pollen und 17 Gattungen mit 20 Arten von Dinoflagellatenzysten unterschieden. Daneben konnte eine
Acritarchen Art und eine Gattung von Süßwasseralgen identifiziert werden. Der Erhaltungszustand der
Palynomorphen ist sehr variabel. Er reicht von mäßig bis sehr gut bei den Miosporen und von schlecht bis mäßig
bei den Dinoflagellatenzysten.
Die Profile werden von Pollen dominiert, insbesondere von Gymnospermen, der mit Abstand häufigsten Gruppe
in beiden Bohrungen. Sie stellen 84,7% der gesamten Palynomorphen in GTP-17-SE und 61,8% in GTP-24-SE.
In Bohrung GTP-17-SE bilden Sporen mit einem Anteil von 8,9 % die zweithäufigste Gruppe. Bohrung GTP-
24-SE ist durch eine große Häufigkeit (31,7%) von marinen Palynomorphen gekennzeichnet. Süßwasser Formen
sind sehr selten, aber etwas häufiger in GTP-24-SE (0,1%).
Die Sergipea variverrucata Zone, die Equisetosporites maculosus und die Dejaxpollenites microfoveolatus
Subzonen des oberen Apt und die Classopollis equinatus Zone des mittleren Alb wurden nachgewiesen. Das
Fehlen der Cardiongulina elongata , Brenneripollis reticulatus und der Retiquadricolpites reticulatus Subzonen
und der Steevesipollenites alatiformis Zone des obersten Apt bis unteren Mittel-Alb deuten auf einen möglichen
Hiatus hin.
Die Kluster-Analyse, basierend auf der Häufigkeit und der Zusammensetzung aller 60 Gattungen von
Palynomorphen, erzeugte vier Superkluster, die verschiedene palynologische Vergesellschaftungen
repräsentieren. Die stratigraphische Verbreitung dieser Vergesellschaftungen ermöglichte die Definition von
sieben Ökophasen. Die relative Häufigkeit von Sporen und der Gattung Classopollis weisen auf ein vorwiegend
arides Klima hin. Dies nimmt zum Hangenden hin ab und wechselt zu eher tropisch warmen Bedingungen.
Die stratigraphische Verbreitung der Palynofazies-Vergesellschaftungen, die durch acht Palynofazies-Einheiten
in Bohrung GTP-17-SE und zehn in Bohrung GTP-24-SE repräsentiert werden, zeigen einen kontinuierlich
terrestrischen Einfluß (mäßige bis sehr große Häufigkeiten von Phytoklasten) durch die gesamte Abfolge
hindurch. Die amorphen organischen Bestandteile und die Palynomorphen zeigen mäßige bis große
Häufigkeiten, insbesondere in Bohrung GTP-24-SE. Der Anstieg der Häufigkeiten dieser Gruppen weist auf eine
Transgression oder auf einen abnehmenden terrestrischen Einfluß auf das Gebiet hin.
Die palynologische und palynofazielle Untersuchung der Bohrungen erlaubte eine detaillierte Rekonstruktion der
Ablagerungsverhältnisse. Durch die Abfolge der Palynofazies-Einheiten und der Ökophasen ist ein
langanhaltender transgressiver Trend erkennbar. Sechs sedimentäre Einheiten können unterschieden werden:
brackisch-lagunär, küstennah-lagunär, intertidal–tiefes supratidal (GTP-17-SE) und flach-neritisch (GTP-24-SE),
intertidal bis flach-marin (GTP-17-SE) und flach-neritisch (GTP-24-SE), flach-marin (GTP-17-SE) und mittel-
neritisch (GTP-24-SE), und intertidal bis flach-marin (GTP-17-SE) und flach-neritisch (GTP-24-SE).
Die Entwicklung innerhalb der Abfolge macht den sich zunehmend verstärkenden marinen Einfluß auf das
Untersuchungsgebiet deutlich. Die Ergebnisse bestärken, daß der Wechsel von brackisch-lagunären zu offen
marinen Verhältnissen auf Meeresspiegelschwankungen während der Ablagerung der Muribeca Formation
zurück zu führen ist. Der Beginn der Ablagerung der Riachuelo Formation wurde ebenfalls durch einen
progressiven Meeresspiegelanstieg gesteuert.
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Resumo

Análises palinológicas e de palinofácies de dois poços perfurados na Bacia de Sergipe foram realizadas usando
272 amostras de testemunhos do intervalo Aptiano superior–Albiano médio.
Nas seções estudadas foram registradas duas formações: Muribeca (membros Ibura e Oiteirinhos), que
representa a fase transicional; Riachuelo (membro Angico e Taquari) o início da fase marinha aberta.
A análise palinológica foi baseada na identificação, registro (análise qualitativa) e contagem (análise
quantitativa) dos palinomorfos. Os palinomorfos foram usados na investigação paleoecológica realizada através
da métodos estatísticos (análise de agrupamento e correlação de Pearson) com o objetivo de identificar
similaridades ecológicas entre as associações de palinomorfos de diferentes sistemas deposicionais. Além disso,
foram usados o Palynological Marine Index (PMI), razão entre peridinióides e gonialacóides (P/G) e análises
paleoclimáticas.
Para a análise de palinofácies, as categorias de querogenos foram contadas e submetidas à análise de
agrupamento (modo R e Q). Além disso, foram realizadas análises de geoquímica (Carbono Orgânico Total,
pirólise e fluorescência) baseadas em 140 amostras do poço GTP-24-SE. Para uma análise de palinofácies mais
detalhada foram usadas as tendências e parâmetros de palinofácies.
Foram registrados 17 gêneros e 19 espécies de esporos, 24 gêneros e 31 espécies de polens, 17 gêneros e 20
espécies de dinoflagelados. Além disso um gênero de Acritarca e um gênero de alga dulcícola foram registrados.
A análise quantitativa palinológica mostra claramente que a seção é dominada pelo gimnospermas que formam
84,7% do total de palinomorfos no poço GTP-17-SE e 61,8% no GTP-24-SE. No poço GTP-17-SE o segundo
grupo mais abundante são os esporos (8,9% de todos os palinomorfos). A seção do poço GTP-24-SE é
caracterizada palinológicamente pela abundância dos palinomorfos marinhos (37,7% de todos os palinomorfos).
Neste estudo foram reconhecidas a Zona Sergipea variverrucata e as subzonas Equisetosporites maculosus e
Dejaxpollenites microfoveolatus correspondentes à idade neo-Aptiano e a Zona Classopollis echinatus
correspondente ao Albiano médio. A ausência das subzonas Cardiongulina elongata, Brenneripollis reticulatus
and Retiquadricolpites reticulatus e a Zona Steevesipollenites alatiformis do intervalo do topo do Aptiano
superior–Albiano inferior indica um possível hiato.
A análise de agrupamento baseada na abundância e composição de todos os gêneros de palinomorfos, revelou
quatro super-agrupamentos que representam os diferentes tipos de associações. A distribuição estratigráfica
destes tipos permitiu definir sete ecofases.
A abundância relativa dos esporos e de polens de Classopollis é evidência de um paleoclima predominantemente
árido durante a deposição da seção estudada. No entanto, essas condições tendem a diminuir, mudando para um
clima tropical.
A distribuição estratigráfica de associações de palinofácies que definiu oito unidades palinofaciológicas no poço
GTP-17-SE e dez no poço GTP-24-SE, indica um influxo contínuo de material terrestre em toda seção.
Os grupos de materia orgânica amorfa (AOM) e palinomorfos mostram, principalemnte no poço GTP-24-SE,
uma abundância moderada a alta. O aumento da abundância desses dois grupos indica uma provável transgressão
ou diminuição do influxo terrígeno na área estudada.
As análises palinológica e de palinofácies na seção estudada permitiu uma reconstrução detalhada dos ambientes.
A seção é caracterizada por uma tendência transgressiva reconhecida nas ecofases e nas unidades
palinofaciológicas. Seis ambientes deposicionais foram reconhecidos: laguna a planície costeira de laguna;
intermaré a proximal para o poço GTP-17-SE e nerítico raso no GTP-24-SE), intermaré a marinho raso (GTP-
17-SE) e marinho raso (GTP-24-SE); marinho raso (GTP-17-SE) e nerítico médio (GTP-24-SE) e intermaré a
marinho raso (GTP-17-SE) e nerítico raso (GTP-24-SE). A evolução paleoambiental da seção estudada reflete a
preogressiva influência marinha na área Os resultados obtidos confirmam que a mudança de um ambiente
lagunar para marinho aberto foi controlado pelas mudanças do nível do mar e pelo tectonismo relacionado à
separação dos continentes africano e sul-americano.
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CHAPTER 1

INTRODUCTION

The Sergipe Basin (Figure 1) contains one of the most extensive marine middle Cretaceous

carbonate successions among the northern South Atlantic basins. The Aptian-Albian

succession of the basin is represented by a mixed carbonate-siliciclastic platform system

(Muribeca and Riachuelo formations), corresponding to a transitional phase between the rift

phase and the beginning of the open marine phase. These phases reflect the progressive

separation of the African and South American continents, which led to marine ingressions

basins of the continental margin. However, on a short-term view variations of the sea-level

curve are observed and hence variations in local paleoenvironments. The interpretation of

these different paleoenvironments using palynology and palynofacies analyses is the main

topic of the studies presented herein.

The study is based on the succession recovered from two wells (GTP-17-SE and GTP-24-

SE) in the onshore part of the basin (Figure 2).

Palynology has several applications in geology, for example chronostratigraphy,

biostratigraphy, and paleoclimatology. Among these applications, the use of palynomorphs

and their paleoecology for paleoenvironmental reconstruction has been particularly

developed.

Palynofacies analysis is an interdisciplinary approach in that not only the palynomorphs in

the palynological slides are investigated, but the entire organic content of the slides. The

particles are viewed as sedimentary components that reflect original conditions in the source

area and the depositional environments. In this study palynofacies and their distribution were

analyzed to understand the evolution of the paleoenvironments. Special attention was paid to

the interpretation of changes in sea-level and possible links with climatic changes. Moreover,

the palynofacies distribution from the two studied wells (GTP-17-SE and GTP-24-SE) is

supplemented by investigations based on palynology, its ecological significance, geochemical

characterization, and sequence stratigraphy.

The objective of this study was to reconstruct the paleoenvironment on the basis of

integration of palynology and palynofacies analysis. To achieve these aims following

palynological investigations were carried out:

-  Determination of the stratigraphically diagnostic palynomorphs, in particular the

dinoflagellates.
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- Paleoecological study based on palynomorphs.

- Paleoclimatic reconstruction based on palynomorphs.

- Palynological kerogen classification, to support the identification of palynofacies.

- Identification of palynofacies intervals in the studied.

- Integration of palynology, sedimentology and palynofacies data.
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CHAPTER 2

THE SERGIPE BASIN

2.1 Location

The Sergipe Basin, which forms the southern part of the Sergipe-Alagoas Basin in

northeastern Brazil, is a structurally elongated marginal basin between latitude 9o and 11o30

S, and longitude 37o and 35 o 30 W. Onshore the basin is 16-50 km wide and 170 km long and

covers an area of 6000 km2 and the offshore portion comprises an area of ca. 5000 km2

(Figure 2.1).
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Figure 2.1. Location map of the marginal basins of northeastern Brazil (from Seeling 1999).

The basin is limited on the continent by a system of normal faults, and offshore by the

continental slope; by the Japoatã-Penedo High to the north and by the Jacuípe Basin to the

south. In the southwest lies the Estância platform (Figure 2.2), where only a thin sedimentary

record of Cretaceous marine deposits is found (Schaller, 1970; Bengtson, 1983; Koutsoukos

et al., 1991).
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2.2 Structural framework

The principal structural feature of the Sergipe Basin is a series of half-grabens with a regional

dip averaging 10˚ to 15˚ to the southeast (Ojeda & Fugita, 1976). These are bounded by faults

with an overall N-E and N-S orientation. The faults were formed during the Early Cretaceous

as consequence of the rupture of the African-South American continent. The structural

framework of the basin consists of large-scale tilted fault blocks with a N-S trend, which

originate the structural lows and highs in the basin (Figure 2.2).

1- Estância Platform
2- Itaporanga High
3- Riachuelo High
4- Santa Rosa de Lima Low
5- Divina Pastora Low
6- Mosqueiro Low

7- Aracaju High
8- Japaratuba Low
9- Japoatã/Penedo High
10- Ilha das Flores Low
11- São Francisco Low
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Figure 2.2. Basement structural framework of the Sergipe Basin and southern part of Alagoas Basin (adapted
after Cainelli et al., 1987, and Koutsoukos et al., 1991).

2.3 Tectonic-sedimentary evolution and lithostratigraphy

The Sergipe Basin belongs to the class of sedimentary basins related to passive continental

margins. The evolution of the basin has attracted the attention of many workers, for example

Ojeda & Fugita (1976), Ojeda (1982), Chang et al. (1988) and Lana (1990).

According to Ojeda & Fugita (1976) and Ojeda (1982) the tectonic evolution of the

Sergipe Basin can be divided into five main phases: intracratonic (Permo-Carboniferous), pre-

rift (late Jurassic (?) to earliest Cretaceous), rift (earliest Cretaceous to early (?) Aptian),
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transitional (Aptian), and a marine drift phase (late Aptian to Recent) (Figure 2.3). The

lithostratigraphic units formed during these phases are shown in Figure 2.3.

Intracratonic phase: Sedimentation began in the Carboniferous-Permian with coarse-grained

glacial and fluvial clastics of the Igreja Nova Group, which rest on Pre-Cambrian basement.

Pre-rift phase: This phase is associated with crustal uplift and development of marginal

depressions that antecede the rifting of the continental crust (Ojeda, 1982). During this phase

the sediments of the Perucaba Group were deposited: fluvial fine to medium-grained

sandstones of the Candeeiro Formation; lacustrine shales and claystones of the Bananeiras

Formation, and medium to coarse arkoses and sandstones of the Serraria Formation deposited

by fluvial systems with aeolian reworking.

Rift phase: This phase is characterized by the development of faults that were formed before

the opening of the South Atlantic during the Early Cretaceous. The Igreja Nova Group is

overlain by a megasequence, the Coruripe Group, deposited under tectonically unstable

conditions, typical of rift phases. This megasequence is composed of five formations: the

lower part consists of fluvial sandstones (Penedo Formation) and fine-grained clastics (Barra

de Itiuba Formation) deposited in lagoonal environments. In the proximal portion of the basin

coarse-grained sandstones were deposited by alluvial fans (Rio Pitanga Formation).

Furthermore, in lagoonal environments clastic sediments were deposited (Coqueiro Seco and

Ponta Verde formations).

Transitional phase: This phase represents the first marine ingressions in the area, beginning

in the early Aptian with deposition of evaporites, clastics and carbonate sediments (Muribeca

Formation) under relatively quiet tectonic conditions (Ojeda, 1982). The sediments were

deposited in lagoonal-evaporitic environments. This transitional phase began with the

conglomerates of Carmópolis Member deposited in a system infilled paleotopographic

depressions and deltas fans (Koutsoukos, 1989). The Ibura Member, which overlies the

Carmópolis Member, is represented by a succession of bituminous shales, soluble salts

(anhydrite, halite, tachyhydrite, carnallite, and sylvinite) and dolomitic limestones

(Koutsoukos, 1989). The Ibura evaporites reflect a transgressive facies, when large eroded

areas were inundated and evaporitic basins developed (Ojeda, 1982). According to Della

Fávera (1990), the evaporites were deposited in shallow-marine areas and on sabkha plain
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environments. The Oiteirinhos Member consists of intercalations of grey to black bituminous

shales, limestones and siltstones. The Maceió Formation was deposited by alluvial fans to the

SE of the basin. The sediments consist of arkoses intercalated with shales and halites.

Coruripe
Group Rift phase

Transitional phase

Open marine phase

Members
(Feijó 1995)

Groups and
Formations (Feijó 1995)

Tectonic Phases
(Feijó 1995)

Sapucari
Aracaju

Cotinguiba
Formation

Maruim
Taquari
Angico

Riachuelo
Formation

Muribeca
Formation

Igreja Nova Group

Barreiras
Formation

Piaçabuçu
Group

Pre-rift  phase

Intracratonic
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Oiteirinhos
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Cenomanian

Pliocene

Miocene

Oligocene

Eocene

Paleocene

Albian

Aptian

Jurassic

Carboniferous–Permian

P
a

le
o

g
e

n
e

C
re

ta
ce

o
u

s

"Bahian"

N
e
o
g
e
n
e

Maceió
Formation

Figure 2.3. Summary of tectonic-sedimentary evolution of Sergipe Basin (adapted from Seeling 1999).

Open Marine phase (drift): As a result of the progressive separation of the African and

South American continents, an open marine regime was established with the deposition of the

Riachuelo Formation. This formation is represented by the Angico, Taquari and Maruim

members.

The Angico Member is characterized by very fine-grained sandstones to conglomerates,

interbedded with siltstones, shales and rare thin beds of limestone (Koutsoukos, 1989),

deposited nearshore by cyclical flows of shallow siliciclastic turbidities (delta fans)

(Koutsoukos et al. 1991).

Eastwards the Angico Member grades into the Taquari Member, which consists of

rhythmically bedded, organic-rich, calcareous black shales and calcilutites. Fine-grained

sediments of this member were deposited in lagoonal environments, near patch reefs and

relatively distant from the coarse-grained siliciclastic deposits of the Angico Member. The

fine carbonate sediments of this environment are composed of micritic mud formed by

abrasion of the carbonate grains from patch reefs or produced by calcareous algae. The
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grainstone/packstone sedimentation in this area occurred through turbidity flows. The

turbidities probably originated in patch reefs, by slumping or remobilizations caused by

storms (Mendes, 1994).

The Maruim Member consists of carbonate packstones/wackestones, oolitic-oncolotic-

peloidal grainstones and red algal patch-reefs.

The Riachuelo Formation is overlain by carbonates of low-energy environments of the

Cotinguiba Formation. These sediments were deposited mainly in bathyal to abyssal depths

(Feijó, 1995). The Cotinguiba Formation is overlain by the Piaçabuçu Group represented by

shales (Calumbi Formation), calcarenites (Mosqueiro Formation) and medium to coarse-

grained sandstones (Marituba Formation). The continental clastics of the Barreiras Formation

cover much of the Cretaceous sedimentary record of the Sergipe Basin.

2.4 Cretaceous sequence stratigraphy of the Sergipe Basin

Sequence stratigraphy has been applied by a few workers to the Cretaceous of the Sergipe

Basin, e.g. Feijó (1995), Mendes (1994), Pereira (1994) and Hamsi Junior et al. (1999). For

the subdivision of the entire Cretaceous interval, based on depositional sequences, two models

have been proposed, by Pereira (1994) and Feijó (1995), respectively.

Pereira (1994) established a stratigraphic framework for five continental marginal basins of

Brazil, based on data from 100 wells and 5000 km of seismic lines. He subdivided the

Cretaceous of Sergipe into eleven depositional sequences. The Albian-Maastrichtian interval

was studied in more detail and 23 system tracts were distinguished. The sequences established

by Pereira (1994) are summarized in Figure 2.4.
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upper Aptian-lower Albian -
middle Albian

lower Aptian -
upper Aptian-lower Albian
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upper Barremian
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upper Barremian -
lower Aptian

Sequences Interpretation

Upper Jurassic -
Hauterivian-lower Valanginian

middle Albian -
upper Albian-lower Cenomanian

upper Albian -
middle Cenomanian

middle Cenomanian -
upper Turonian

upper Turonian -
lower Campanian

lower Campanian -
upper Campanian

lower Maastrichtian -
uppermost Maastrichtian

JS-SBH/V

SBH-V/Bs

Bs/SBL

SBL/ALs

ALs/ABm

ABm/ABsC

ABsC/CNm

CNm/TsC

TsC/CAi

CAi/MAiC

MAiC-Ks
LST
TST

HST(?)

LST
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LST (basin floor fan)
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TST
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HST
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HST
LST
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LST
TST
HST
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Figure 2.4. Depositional sequences proposed by Pereira (1994) for the Cretaceous of the Sergipe Basin.

Feijó (1995) subdivided the Cretaceous succession into four major tectono-sedimentary

sequences: pre-rift, rift, transitional and passive margin (Figure 2.5). He further subdivided

these into twelve second-order sequences (K10-K120), which were subsequently subdivided

using unconformities and correlative conformities. His work is the most recent summary on

depositional sequences for the entire Cretaceous of the Sergipe Basin.

Maastrichtian
Santonian
Santonian

Cenomanian
Cenomanian

Albian

upper Aptian

Barremian
Hauterivian

Stages

lower Aptian
upper Barremian

Valanginian
Upper Jurassic

K90 - K120

K80

K60 - K70

K50

K40

K20 - K30

2nd-order
sequences

J- K10

Rift

Transitional

Passive
margin

Major
sequences

Pre-Rift

Figure 2.5. Depositional sequences proposed by Feijó (1995) for the Cretaceous of the Sergipe Basin.
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Mendes (1994) and Hamsi Junior et al. (1999) studied part of the Cretaceous interval and

subdivided the succession on the basis of sequence stratigraphy. Mendes (1994) subdivided

the uppermost Aptian-lowermost Cenomanian succession into three third-order sequences

separated by three regional discontinues (D1-D3) (Figure 2.6). These sequences and their

boundaries are also recognized in the wells studied herein (see Chapter 4).

LithostratigraphySequencesStages

upper Albian
III

middle Albian
lower Albian

II
Riachuelo
Formation

lower Albian
upper Aptian I

lower Cenomanian

Figure 2.6. Depositional sequences proposed by Mendes (1994) for part of the Cretaceous of the Sergipe Basin
(modified from Mendes, 1994)

The most recent study using a sequence stratigraphic approach for the middle Cretaceous

of the Sergipe Basin was carried out by Hamsi Junior et al. (1999). They assigned large-scale

stratigraphic framework to the Marine Carbonate Megasequence, considered to be first-order

cycle. According to Hamsi Junior et al. (1999) this megasequence ranges from the upper

Aptian to the Coniacian. Within this megasequence, two second-order sequences are

recognized, K60 and K70, including the systems tracts KM1, KM2, KM3 and KM4 of third

order (Figure 2.7). The sequences were separated on the basis of regional discontinuities or

major flooding surfaces identified in well logs and through biostratigraphic and geochemical

data.

The KM1 sequence was interpreted by Hamsi Junior et al. (1999) as a transgressive

systems tract (TST) in the upper Aptian (Muribeca Formation) possibly bounded below by an

unconformity and above by a maximum flooding surface (mfs). KM2 represents the highstand

systems tract (HST) of the second-order sequence K60. KM3 was interpreted as the TST of

the second-order sequence K70, and KM4 is represented by a HST deposited discordantly

over KM3.
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Figure 2.7. Depositional sequences proposed by Hamsi Junior et al. (1999) for part of Cretaceous.
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CHAPTER 3

MATERIAL AND METHODS

3.1 Material

The study was carried out using 272 core samples from two wells drilled by

Petromisa/Petrobras (the Brazilian state-owned oil company) in the Santa Rosa de Lima and

Taquari-Vassouras (between Rosário do Catete and Carmópolis cities) areas in Sergipe

(Figure 3.1). The cores are stored at Petrobras, SEAL (Aracaju, Sergipe).

N

Japaratuba

CarmópolisSta. Rosa
de Lima

Divina
Pastora

Muribeca

Laranjeiras

Rosário
do Catete

Pirambu

Aracaju

GTP-
17-SE

GTP-24-SE

Riachuelo

Maruim

+

+

+

+
+

+

+

AT
LA

NTI
C O

CEA
N

5 Km

Figure 3.1. Map of Sergipe Basin showing the location of the two studied wells.

Although the basin contains a large number of wells, the two studied wells were selected

because they are cored throughout (Table 3.1).
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Table 3.1. Summary of data on the studied wells.

452.95

397.26

Thickness (m)

Santa Rosa de Lima

Taquari/Vassouras

Area

x= 8.821.540
y= 698.950

x= 8.822.240.52
y= 714.950.96

Coordinates (UTM)

GTP-17-SE

GTP-24-SE

Well name

159

113

Samples (no.)

3.2 Methods

3.2.1 Sampling

The cores were sampled at approximately every 3.9 m in well GTP-17-SE and every 2.5 m in

GTP-24-SE (Figure 3.1). At important intervals, such as sequence boundary (based on

Mendes, 1994) and the inferred Aptian–Albian boundary, two or more samples were collected

per meter. In additions, samples were collected from all lithological varieties to enable the

palynofacies analyses.

3.2.2 Palynological analysis

3.2.2.1 Sample preparation

The samples were prepared at the Research Center of Petrobras (CENPES), Rio de Janeiro,

Brazil. The method applied of palynological preparation used by Petrobras was compiled by

Uesugui (1979) after, e.g., Erdtman (1949), Erdtman (1969), and Faegri & Iversen (1966).

The objective of the palynological preparation is to destroy the mineral constituents by

acids. As the samples were not oxidized, the same slides were used for palynological and

palynofacies analyses. The following procedure was employed for all samples:

- Dilute hydrochloric acid (HCl) (32%) was added to the sample to remove any carbonate.

After 3 hours when the reaction ceased, the acid was siphoned off and the sample was

washed three times with distilled water to free it from HCl.

- Dilute cold hydrofluoric acid (HF) (40%) was added to the sample to remove any silicates.

After 12 hours the residue was then washed several times.
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- Dilute HCl (10%) was added to dissolve the fluorides, which might have formed in the

residue.

The remaining residue was then sieved through a 10 µm nylon sieve prior to mounting on

slides.

3.2.2.2 Qualitative analysis

The qualitative analysis consisted basically of the identification and recording of the

palynomorphs in the samples. For this analysis 253 samples were used, a total of 101 from

GTP-17-SE and 152 from GTP-24-SE. The samples were analyzed under a transmitted light

microscope (Leitz Labor Lux S). The photographs were taken with an AXIOPLAN Zeiss with

differential interference contrast (DIC) coupled to a MC 100 SPOT.

3.2.2.3 Quantitative analysis

The quantitative analysis was based on the first 200 palynomorphs counted for each slide.

This analysis was the basis for the establishment of the palynomorph distribution. The number

of palynomorphs that should be counted is controversial. Some authors (e.g., Dino, 1992;

Hashimoto, 1995; Lana, 1997) follow proposals by Chang (1967), who first statistically

demonstrated that the greater the number of counted individuals is, the better the sample is

represented. However, as mentioned by Lana (1997, p. 11) when more than 100

palynomorphs are counted the standard deviation is not significantly altered. According to

Chang (1967) the minimum number that must be counted for each sample is 30 individuals;

therefore samples that did not reach this number were not used for quantitative analysis.

3.2.3 Paleoecological analysis

The paleoecological analysis was carried out using multivariate statistical methods (cluster

analysis and Pearson correlation) to identify the ecological similarity between palynomorph

assemblages from different depositional settings. In addition, the Palynological Marine Index

(PMI), the Peridinioid to Gonyaulacoid ratio (P/G ratio) and paleoclimatic analysis were

employed.
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3.2.3.1 Cluster analysis

Cluster analysis was employed based on abundance and composition, in order to establish

groupings and to recognize the relationship between the taxa (palynological analysis) and

kerogens (palynofacies analysis). To identify the divisions of the studied succession based on

palynology and the palynofacies approach, Q- and R-mode cluster analyses were performed

on counts of palynomorphs and kerogen categories. This cluster analysis forms discrete

groupings that are based on the characteristics (abundance) of the objects. The results are

clearly displayed in dendrograms which, when combined, allowed assessment reasons for

clustering.

3.2.3.2 Pearson coefficients

The Pearson coefficient (+/- 1) obtained from the relative abundance of palynomorphs, is used

to yield a correlation matrix and to identify the relationship between the taxa. This coefficient

reflects the presence or absence of similarity among the taxa. If coefficient approaching 1

implies a positive correlation and approaching -1, a negative correlation among the

palynomorphs. Only the numerically and paleoecologically important taxa were used herein.

3.2.3.3 Paleoclimatic analysis

According to Lima (1983), in Cretaceous times the floras were significantly different from

modern ones. Therefore, paleoclimatic reconstructions are based on the few species that

survive to the present and on those extinct species that are closely related to extant ones.

The paleoclimatic investigations were based on selected palynomorphs that are well-

known indicators of Cretaceous times. Moreover, the investigations were also based on

abundance of the pollen grains of the genus Classopollis and fern spores. High abundance of

Classopollis has been found to be related to arid environments (Srivastava, 1976;

Vakhrameev, 1981; Doyle et al., 1982; Lima, 1983). Vakhrameev (1981) proposed climatic

belts based on abundance of Classopollis, where a low abundance (1-10%) of the genus

indicates a temperate climate, 20-50% warm subtropical, and 60-100% semi-arid to arid

conditions. In contrast, high abundance of fern spores reflects nearshore environments under

humid conditions. This hypothesis is directly related to the importance of humidity on the

reproductive-cycle of modern pteridophytes (Doyle et al. 1982; Lima, 1983).
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3.2.3.4 Palynological Marine Index (PMI)

This index was created by Helenes et al. (1998) to support in the interpretation of depositional

environments. PMI is calculated using the formula: PMI= (Rm/Rt + 1)100, where Rm is

richness of marine palynomorphs (dinoflagellates, acritarchs and foraminiferal test linings)

and Rt is the richness of terrestrial palynomorphs (pollens and spores) counted per sample. In

the present study, the Rm and Rt were expressed as number of genera per sample. The genus

level preferred because genera are more easily identified than species and the genera

identified herein show the same environmental significance as species. The high values of

PMI are interpreted as indicative of normal marine depositional conditions. When the samples

have no marine palynomorphs the PMI value is 100.00.

3.2.3.5 Peridinoid to Gonyaulacoid ratio (P/G)

The peridinoid to gonyaulacoid ratio (P/G) introduced by Harland (1973) has been used to

recognize paleosalinity variations and proximity to shorelines. The peridinioid-dominated

assemblage reflects low salinity and nutrient-rich conditions (Jaminski, 1995) related to

nearshore environments (lagoonal, brackish water). In contrast, low values of the ratio, i.e.

gonyaulacoid-dominated assemblages indicate open marine environments. However, salinity

is not the only factor that controls the dinoflagellate assemblage composition.  According to

some studies (e.g., Wall et al. 1977; Bujak, 1984; Powell et al. 1990; Lewis et al. 1990) the

increase of peridinoid dinoflagellates is also attributed to upwelling. Lewis et al. (1990)

mentioned that the P/G ratio is a useful indicator of upwelling strength.

The ratio is used herein the manner described by Lewis et al. (1990), using the formula P-

G/P+G, where P is the number of peridiniacean cysts and G the gonyaulacacean cysts.

According to them, a ratio approaching 1 implies dominance of peridiniacean cysts, and

approaching -1, dominance of gonyaulacacean cysts.
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3.2.4 Palynofacies analysis

3.2.4.1 Kerogen classification

A preliminary international classification of organic matter was discussed during a workshop

on “Organic Matter Classification” in Amsterdam (Lorente & Ran 1991). In this workshop

the organic matter was designated Palynological Organic Matter (POM). The POM was

divided into four major groups: palynomorphs, structured debris, amorphous matter and

indeterminate matter. These were then subdivided into several categories.

In the first monographic work on palynofacies Tyson (1995) revised (and reevaluated) the

palynofacies terms. This author presented an informal classification (Tyson, 1995, p.350)

close to the proposal presented in the workshop in Amsterdam. This classification is used

herein (Figures 3.2-3.4) and kerogen categories are illustrated in Figure 3.5.

3.2.4.2 Kerogen categories

Amorphous Organic Matter (AOM) group

According to Tyson (1995) the AOM group consists of structureless particles that are

observed under light microscopy. This group is composed of ‘AOM‘ and resin. The

characteristics of the two subgroups are shown in Figure 3.2.

Resin
Derived from higher plants
of tropical and subtropical
forest.

"AOM" Derived from phytoplankton
or degradation of bacteria.

AOM Group Origin

Structureless particle, hyaline, homogeneous, non-fluorescent,
rounded, sharp to diffuse outline.

Structureless material.
Color: yellow-orange-red; orange-brown; grey.
Heterogeneity: homogeneous; with "speckles"; clotted; with
inclusions (palynomorphs, phytoclasts, pyrite.
Form: flat; irregular; angular; pelletal (rounded eleongate/oval
shape).

Description

Figure 3.2. Classification of the amorphous organic matter (AOM) group used in this study (based on Tyson,
1995).

Phytoclast group

The phytoclast group consists of structured particles. This group is subdivided into two major

subgroups: opaque and translucent. The opaque subgroup is subdivided into opaque-
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equidimensional (O-Eq) and opaque-lath (O-La). The translucent subgroup is subdivided into

fungal hyphae (Fh), wood tracheid with visible pits (Wp), wood tracheid without visible pits

(Ww), cuticles (Cu) and membranes (Mb) (Figure 3.3).

Zooclast group

The zooclast group consists of animal-derived fragments. According to Tyson (1995) most

zooclast fragments include arthropod exoskeletal debris, organic linings from bivalve shells

and ostracode carapaces.

Derived from fungi

Derived from the ligno-
cellulosic tissues of terrestrial
higher plants or fungi.

Black particle from wood material.
Long axis less than twice the short
axis. Without internal biostructures.

Phytoclast Group Origin Description

O
pa

qu
e

Tr
an

sl
uc

en
t

Wood tracheid with pits (Wp)

Wood tracheid without pits (Ww)

Cuticle (Cu)

Membranes (Mb)

Fungal hyphae (Fh)

Equidimensional (O-Eq)

Lath (O-La)
Black particle from wood material.
Long axis more than twice the short
axis. Without internal biostructures.

Brown particle from wood tracheid
with visible pits.

Brown particle from wood tracheid
without visible pits.

Thin cellular sheets, epidermal tissue,
in some case with visible stomates

Thin, non-cellular, transparent sheets
of probable plant origin.

Individual filaments of mycelium of
vegetative phase of eumycote fungi.

Figure 3.3. Classification of the phytoclast group used in this study (based on Tyson 1995).

Palynomorph group

The palynomorph group is subdivided into the sporomorph subgroup (Sm), which is further

subdivided in spores and pollen grains; the phytoplankton subgroup (Pl), which consists of

organic-walled microplankton and the zoomorph subgroup, composed of foraminiferal test

linings (FTL) and scolecodonts (Figure 3.4).

3.2.4.3 Kerogen count

For a detailed paleoenvironmental study based on palynofacies, a count of the kerogen found

in the slides is necessary. This count is presented as percentage (Appendix 3). According to

Tyson (1995), the ideal count is 500 particles per sample using transmitted light microscopy.
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In this study a total of 284 samples (117 samples from GTP-17-SE and 165 from GTP-24-SE)

were studied. In each sample 500 particles were counted using transmitted light microscopy.

Palynomorph group

Sporomorph
subgroup

Scolecodonts

Zoomorph
subgroup

Terrestrial palynomorph produced
by pteridophyte plants and fungi.

Triangular or circular palynomoph; Trilete spore with
3 laesurae (Y-mark); Monolete spore single laesura;
varied ornamentation

Origin Description

Foraminiferal
 test linings

Acritarchs

Dinoflagellate
 cysts

Prasinophytes

Spores

Pollen grains
*Palynomorphs with complex to simple morphology;
usually spherical to subspherical shapes; with several
ornamentation types; apertures may be present.

Chitinous linings; brown coloured; inner smaller
chambers often darker.

Chitinous tooth-like jaw, dark brown; size 100-1000
µm.

Central cavity enclosed by a wall of single or multiple
layers; fossils with various form and sculpturing,
ranging from types resembling dinoflagellates to
those resembling chitinozoans; Size 5-240 µm

Most, like Tasmanites, are spherical; diameter 50 to
2000 µm, smooth and thick-walled.

Phytoplankton
subgroup

Chlorococcale
 algae

Terrestrial palynomorph produced
by Gymnosperm and Angiosperm
plants.

Organic linings of  benthic
foraminifera.

Mouth parts of some polychaete
worms (mostly marine).

Small microfossils of unknown
and probably varied biological
affinities.

Resting cysts produced during
the sexual part of the life cycle of
Class Dinophyceae survives.

Fossilising structures produced
by small quadriflagellate algae
(Division Pyrrhophyta).

Exclusively colonial freshwater
algae (Botriococcus and
Pediastrum)

Main feature is the paratabulation which divides the
theca and cyst in rectangular or polygonal plates
separated by sutures; 3 main morphologies:
proximate, cavate and chorate; often with an opening
(arceopyle) through which excystment occurs.

Botriococcus: irregular globular colonies; size 30 to
2.000 µm, sometimes with several lobes; orange-
brown.

Pediastrum: radially-symmetrical colonial green algae;
mostly 30-200 µm in diameter and with one or two
horns on the outermost ring of cells. Inner cells may
be irregularly-shaped with spaces between cells, or
closely packed.

Figure 3.4. Classification of the palynomorph group used in this study (based on Tyson, 1995).

3.2.4.4 Kerogen distribution

In marine environments the proximal-distal trend is one of the most important controls on

kerogen distribution. For a detailed marine environmental analyses several kerogen

distribution trends and parameters have been used (cf. Tyson, 1993, 1995) (Figure 3.6). These

trends and parameters are based on percentages of kerogen categories.
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Figure 3.5. Kerogen categories. 1) AOM; 2) Resin (Re); 3) Wood tracheid without pits (Ww); 4) A- opaque lath (O-La), B-
opaque equidimensional (O-Eq); 5) Wood tracheid with pits (Wp); 6) Fungal hyphae (Fh); 7) Membrane (Mb); 8) Cuticle;
9) Zooclast.
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3.2.4.5 Kerogen trends

Percentage of ‘AOM‘ (of total kerogens)

A large amount of ‘AOM‘ results from a combination of high preservation rate and low-

energy environments. The preservation of ‘AOM‘ is directly related to dysoxic conditions and

consequently, but not necessarily, correlated to high primary productivity (Tyson, 1993).

According to Tyson (1993) in carbonate facies the ‘AOM’ may be the only kerogen available

for preservation.

Percentage of phytoclasts (of total kerogens)

High percentages of components the phytoclast group are mostly related to proximal

depositional conditions. The main controlling factor is the short transport of the particles.

Other factors, such as oxidizing conditions and the relative resistance of lining tissues are also

associated with the proximity of the source area (Mendonça Filho, 1999). Generally, large

amounts of phytoclast particles are deposited by rivers in estuaries and delta environments,

both close to shorelines. However, deposition also occurs in deep waters, by turbidity currents

(Habib, 1982).

high-low high-low-high decreases
increases may decrease ?

may increase ?

low-high low-high-low

% phytoclast/kerogen

% AOM/kerogen

% palynomorph/kerogen

Opaque : translucent  phytoclasts

% cuticle/ phytoclasts

% sporomorphs/palynomorphs

Frequency of tetrads

% microplankton/palynomorphs

Peridinoid : gonyulacoid dinocysts

Dinocyst species diversity

Absolute dinocyst abundance

Frequency of foraminiferal lining

Environmental factors
Parameters

Proximal-distal
 trend

negligible

?

?

Distal anoxic
facies

Upwelling (with
arid hinterland)

?

?

Figure 3.6. Some parameters used in palynofacies analysis (adapted from Tyson 1995).
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Percentage of palynomorphs (of total kerogens)

The palynomorph group is the least abundant of the three main groups, therefore its

occurrence is controlled by ‘AOM‘ and phytoclast dilution (Tyson, 1993). Large amounts of

palynomorphs, dominated by sporomorphs, indicate proximity of terrestrial sources

associated with oxygenated environments. Consequently, a small amount of ‘AOM‘ is

observed as a result of low preservation rates. With moderate proximity to land large amounts

of palynomorphs can also be found, although without dilution of phytoclasts (Tyson, 1995). If

microplankton dominates the palynomorph group, the environment may be of a distal shelf,

with adjacent land areas being generally arid, oxygenated and with low ‘AOM‘ preservation

but high productivity.

The abundance of microplankton is inversely related to that of the sporomorphs (Tyson,

1993). Depending on the type of microplankton the ratio of sporomorphs to phytoplankton

reflects the proximal-distal trend. The ratio of peridionioid to gonyaulacoid dinocysts (P/G

ratio) also reflects the nearshore-offshore trend (see Chapter 7).

3.2.4.6 Ratios and Parameters

The palynofacies parameters and ratios used herein follow Tyson (1995). He suggested that

for the ratios the sum of the two components must to be at least 50 particles. The ratios of

opaque to translucent phytoclasts (O:TR) and of equidimensional to lath (O-Eq:O-La) opaque

phytoclasts should be plotted as log graphs, because the values give more symmetrical plots

(Tyson, 1995). For the palynomorph parameters the tetrad abundances and PMI values were

employed.

Ratio of opaque to translucent phytoclasts (O:TR)

According to Tyson (1993) opaque phytoclast particles derive mainly from oxidation of

translucent material, which has been transported over a prolonged period of time. In contrast,

translucent particles are deposited in nearshore environments without a prolonged transport.

Therefore, the ratio between these two categories could indicate the proximal-distal trend.
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Ratio of equidimensional to lath opaque phytoclast (O-Eq:O-La)

This ratio also indicates a proximal-distal trend. A large amount of equidimensional particles

suggests close proximity as a result of short transport. These equidimensional particles are

sorted according to their buoyancy, where smaller particles are deposited in distal

environments (Steffen & Gorin, 1993a). This interpretation is applied especially when the

equidimensional particles are larger than the lath ones.

Abundance of tetrads

Tetrads consist of clusters of four pollen grains or spores. High amounts of tetrads indicate

short duration of transport and consequently deposition in nearshore environments.

Theoretically, a prolonged transport would cause disaggregation of the tetrads. However,

tetrads are also found in deep water, especially when the pollen grains are small (for example

Classopollis). Clusters of more than four pollen grains can also be found, sometimes

containing up to 15 grains or more. These aggregates clearly indicate a short transport from

their place of origin.

Palynologycal Marine Index (PMI)

As the PMI is based on the palynomorph diversity of terrestrial and marine palynomorphs;

therefore, it was used as a substitute for terrestrial:marine ratio. The application of PMI has

already been described.

3.2.4.7 Influence of lithology on kerogen groups

The relationship between lithology and kerogen distribution has been discussed by Tyson

(1995), Mendonça Filho (1999), and Piper (1996), among others. According to Piper (1996)

the sediment grain size influences the distribution of kerogen because of hydrodynamic

equivalence or post-depositional oxidation. Changes in kerogen distribution due to

environmental variations may be confused with changes of lithology, making it important to

identify and separate these lithological influences on kerogen distribution. To this end Tyson

(1995) suggested a comparison of samples with similar granulometric composition. The

lithological data is best evaluated at two levels of scale: first the lithology of each sample and
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then the dominant lithology of the interval where this sample was taken. This detailed

lithological investigation suggested by Tyson (1995) is applied herein (Appendix 1).

3.2.5 Geochemical analysis

The geochemical study was based on a total of 140 samples from well GTP-24-SE processed

for geochemical analyses in the Geochemistry Section of Petrobras, Rio de Janeiro, Brazil.

The geochemical methods employed in this study included Total Organic Carbon (TOC)

determination, Rock-Eval pyrolysis and fluorescence.

The accumulation of organic matter (OM) in sediments is estimated using TOC analysis.

According to Tyson (1995) TOC analysis is a convenient method to determine the abundance

of OM in sediments. The accumulation of OM is controlled by major factors such as primary

productivity, water depth, and sediment grain size. The TOC is always controlled by three

main variables: input of organic matter (OM), preservation of the supplied OM, and dilution

of the OM by sediment accumulation (Tyson, 1995). The results of the TOC and sediment

grain size analyses are presented here. The values of TOC in marine rocks range from ca.

0.1% (deep-sea pelagic deposits) to 94% (coals) (Tyson, 1995).

Rock-Eval pyrolysis involves the measurement of parameters such as hydrogen and

oxygen indices, (HI) and (OI), respectively, S1 (free hydrocarbons), S2 (residual petroleum

potential), S3 (generate CO2), and Tmax (temperature of maximum hydrocarbon evolution

from kerogen, oC). These parameters are useful to characterize the organic matter and source

rock potential. For this study only the HI (measured in units of mg hydrocarbon/g total

organic carbon, mgHC/gTOC) and OI (measured in units of mgCO2/gTOC) (Miles, 1989)

indices were used.

The diagram HI versus OI, also known as a "modified van Klevelen diagram", was

employed to characterize the organic matter type. This characterization is based on four

kerogen types that are based purely on chemical composition of the kerogen; i.e. on the C, H

and O content (Miles, 1989) and identified in the diagram (Table 3.2). In fact, these four

kerogen types are based only on the hydrogen content and not on morphology. Types I and II

are characterized by well-preserved AOM and Types III and IV by woody material

(phytoclasts).
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Table 3.2. Kerogen types. Data from Tyson 1995 and Miles 1989.
Main environment

Anaerobic, in particular lacustrine

Anaerobic to dysaerobic, marine

Oxic, marine, deltaic

Oxidized in subaerial environments and/or
 recycled from older sediments

Origin

algal or cynobacterial
 materials

mixture of phytoplankton, zooplankton
and bacterial material

predominantly contiental plants
and vegetal debris

continental plants

Kerogen Type

IV

III

II

I

A total of 164 samples were analyzed to estimate the fluorescence parameters. This

parameter, based on the qualitative preservation scale of Tyson (1995, p. 347) (Figure 3.7),

was used to estimate the thermal maturity. The different fluorescence colors are indicative of

the level of maturity of the organic matter. This (kerogen) shows autofluorescence when

excited by ultra-violet (UV) light through a fluorescence microscopy. According to

Bordenave (1993), the fluorescence is caused by the emission of photons by fluorophores

when excited by electromagnetic radiation.

1

2

3

4

5

6

Characteristics of organic matter under fluorescence

Kerogen is all non-fluorescent (except perhaps for rare fluorescent
palynomorphs, such as algae, or cuticles).

1a. AOM very rare (<5%) or absent.

1b. AOM present (common to abundant).

Most palynomorphs fluoresce, but the matrix of autochthonous (plankton-
derived) AOM remains predominantly non-fluorescent.

Most palynomorphs fluoresce and a matrix of autochthonous AOM
shows dull fluorescence.

2a. Palynomorphs show dull orange-yellow fluorescence.

2b. Palynomorphs show dull yellow-green fluorescence.

As 3, but AOM matrix shows moderate and heterogeneous fluorescence
(i.e. visible but clearly less than that of in situ palynomorphs).

As 3, but AOM matrix shows strong but heterogeneous fluorescence
(intensity approaches nearly to in situ palynomorphs).

Matrix of autochthonous AOM shows fairly homogeneous and very
strong fluoresecence (bright yellow, like telalginite).

Figure 3.7. Qualitative preservation scale of the organic matter (adapted from Tyson 1995, p. 347).
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CHAPTER 4

STRATIGRAPHY AND LITHOFACIES

4.1 Lithostratigraphy

The succession studied in wells GTP-17-SE and GTP-24-SE comprises part of the Muribeca

and Riachuelo formations (Figure 4.1). The Muribeca Formation represents the transitional

phase and includes the Ibura and Oiteirinhos members. The Riachuelo Formation, deposited

during the open marine phase, is represented by the lower part of the Angico and the Taquari

members (see Figure 2.3).
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(Riachuelo Formation)
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95

100
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Figure 4.1. Lithostratigraphic scheme for the Aptian–Albian of the Sergipe Basin (adapted from Mendes, 1994).
* Foraminiferal biozonal scheme from Koutsoukos (1989).

In well GTP-17-SE (Figure 4.2) the succession has a thickness of ca. 450 m and is

subdivided into: (1) the Muribeca Formation, represented by the Ibura Member (63 m) and

the Oiteirinhos Member (80 m); and (2) the Riachuelo Formation, represented by the Angico

Member (312 m).



26

In well GTP-24-SE (Figure 4.3), the succession reaches 400 m and is subdivided into (1)

the Muribeca Formation, with the Ibura Member (26.9 m) and the Oiteirinhos Member (126.9

m); and (2) the Riachuelo Formation with the Taquari Member (247 m).

The two wells are situated on a W-E axis, extending from the Santa Rosa de Lima Low

area (GTP-17-SE) to the Aracaju High area (Taquari-Vassouras) (GTP-24-SE) (see Figure

2.2). This axis also reflects a proximal-distal trend. The thicknesses of the formations and

their corresponding depths from ground level are taken from Petrobras (1978a-b).

4.2 Evolution of depositional environments

4.2.1 Transitional phase

The upper Aptian to Albian deposits in the Sergipe Basin consist of a mixed carbonate-

siliciclastic platform system (Muribeca and Riachuelo formations). At the end of the rift

phase, followed by tectonic quiescence, sediments of the Muribeca Formation were laid down

(Figure 4.4).
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Figure 4.2. Stratigraphic profile of well GTP-17-SE. For description of lithofacies, see Chapter 4.3. LA=lithofacies association.
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Figure 4.3. Stratigraphic profile of well GTP-24-SE. LA= lithofacies associations For description of lithofacies, see Chapter 4.3. For lithological symbols, see Figure 4.2.
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Data about the depositional environments of the Muribeca Formation are from Feijó

(1980), who subdivided the formation into eight depositional intervals (Table 4.1).

Feijó (1980) referred the intervals IVb and IVa to the Ibura Member. The sediments of

interval IVb were deposited uniformly throughout almost the whole basin. The anhydrite

nodules recognized in this interval suggest a sea-level fall. Interval IVa is characterized by the

intensive growth of these anhydrite nodules, an event designated as the  "principal anhydrite"

of the Muribeca Formation. Deposition during this interval was on a sabkha plain.

Table 4.1. Depositional environments of the Muribeca Formation (adapted from Feijó, 1980).

I

II

IIIa

IIIb

IVa

IVb

IVc

IVd

Intercalation of shales and massive calcilutites

Siltstones, fine-grained sandstones intercalated
with shales and laminated calcilutites

Laminated calcilutites intercalated with shales,
massive calcilutites, anhydrite nodules

Laminated calcilutites, siltstones, fine-grained
sandstones

Laminated-massive calcilutites, intensive
growth of anhydrite nodules

Massive calcilutites; anhydrite nodules

Laminated calcilutites, shales

Laminated calcilutites, shales, anhydrites, halites

Open marine

Slightly deeper lagoon

Open lagoon

Open lagoon

Coastal plain

Shallow lagoon

Shallow lagoon

Shallow lagoon

Marine fossils

Strong subsidence with sea-level rise

Two envents of strong anhydritization
 (electric marker "two peaks")

"Principal anhydrite" of Muribeca Formation

First salt deposition in the Atlantic

Interval Lithology Depositional environment Main characteristics

The Oiteirinhos Member was subdivided into intervals IIIb, IIIa II and the lowermost part

of interval I.

Interval IIIb consists of limestones, shales and fine-grained sandstones deposited in open

lagoonal environments. This interval shows great lithological variation; however, calcilutite

deposition predominates, suggesting a transgression. Interval IIIa is characterized by a feature

called "two peaks", observed in the gamma-ray profile. This marker is related to two clear

events of anhydrite deposition. The anhydrites were generate due to an intense exposition of

the calcilutites that overlie large parts of the area studied.

Interval II is characterized by rapid subsidence, which allowed the deposition of fine-

grained sediments such as siltstones and shales, in the slightly deeper water of a lagoon;

however, burial events are observed. In the upper part of this interval, wave ripples were

recognized indicating progressively shallower conditions.

Interval I is the uppermost unit proposed by Feijó (1980). Its upper limit lies within the

Riachuelo Formation (Taquari Member). Ammonites, echinoderms and benthic and

planktonic foraminifera indicate that the sediments were deposited under open marine

conditions (Feijó, 1980).
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4.2.2 Open marine phase

After the transitional phases (evaporitic, proto-marine) represented by the Muribeca

Formation and the base of the Riachuelo Formation, the open marine phase began (Figure

4.5). The information about the development of this phase is from Koutsoukos et al. (1991)

and Mendes (1994).

SE

Taquari-Vassouras areaSanta Rosa
de Lima area

GTP-17-SE GTP-24-SE16 km

NW

Muribeca Formation

sandstones (Angico Member)

intercalation of shales and calcilutites (Taquari Member)

Figure 4.5. Geological cross-section of the base of the Riachuelo Formation (adapted from Borchert, 1977).

Mendes (1994) subdivided the Riachuelo Formation into three depositional sequences (see

Figure 2.6). In the two studied wells, he identified sequences I and II.

Using percentage maps for coarse siliciclastics (sandstones and conglomerates) and

carbonates and the siliciclastic/carbonate ratio (Figures 4.6 and 4.7), Mendes (1994) identified

the areas of occurrence of these facies. This provides the base for interpretation of the

sedimentary evolution of the sequence.

The lower limit of Sequence I is marked by discontinuity D1 that separates the Muribeca

and Riachuelo formations. In well GTP-17-SE this discontinuity was recognized by Mendes

(1994) at 327 m, and in well GTP-24-SE at 253 m. Using percentage maps of the sedimentary

rocks, he observed that where well GTP-24-SE is located, occurs a predominance of

carbonates, chiefly mudstones and wackestones. However, siliciclastic facies predominate in

the whole area studied. The upper limit of Sequence I is marked by the discontinuity and in

part correlative conformity D2 at 195 m in GTP-17-SE and at 125 m in GTP-24-SE.
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Sequence I (Mendes, 1994)
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Figure 4.6. A) Percentage map of sandstones and conglomerates; B) Percentage map of carbonates; C) Map of
the ratio of siliciclasts/carbonates. Modified after Mendes (1994).

The base of sequence II is defined by D2 and the top by discontinuity 3 (D3). The latter

was not recognized by Mendes (1994) in the studied wells. In Sequence II a major proportion

of sediments derived from patch reefs is recognized. In the areas where the path reefs

occurred there was limited deposition of coarse-grained clastics. Sequence II shows the same

characteristics as Sequence I, where the siliciclastic sediments predominate, except in the area

of the carbonate banks (see Figure 4.7). The carbonate banks in the northeastern part of the

area studied by Mendes (1994) are clearly oriented towards the center of the onshore part of

the basin (NE/SW) where well GTP-24-SE is located. Through analysis of the percentage

maps, Mendes (1994) identified a lagoonal/inner shelf environment between the carbonate

banks and the margin of the basin. In this area the deposition of coarse-grained siliciclastics

(Angico Member) dominated. The paleogeography of this sequence is illustrated in Figure

4.7.
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Sequence II (Mendes, 1994)
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Figure 4.7. A) Percentage map of sandstones and conglomerates; B) Percentage map of carbonates; C) Map of
the ratio of siliciclasts/carbonates. Modified after Mendes, 1994).

4.3 Lithofacies

Four broad lithofacies associations were distinguished in the succession of wells GTP-17-SE

and GTP-24-SE (Figures 4.2 and 4.3): (1) mixed calcilutites/shales/anhydrites; (2) mixed

calcilutites, shales, siltstones, sandstones and anhydrites; (3) mixed sandstones and shales; (4)

mixed calcilutite and shales. The background information for this subdivision of lithofacies

was taken from Petrobras (1978a-b).

Lithofacies association 1 is present in both wells. It comprises laminated medium-grey

calcilutite beds, with fragments and dissemination of organic matter, carbonaceous dark-grey

shale beds and grey anhydrites. This lithofacies association is characterized by common

occurrence of anhydrite beds. Lithofacies association 1 corresponds to the Ibura Member. In

well GTP-17-SE this lithofacies association extends from 471 to 407 m and in well GTP-24-

SE from 415 to 383 m.

Lithofacies association 2 is composed of laminated cream to brownish calcilutites and

medium-dark grey shales, with very thin intercalations of fine-grained, light grey sandstones.

Anhydrite beds are present and occasional ooids occur. This heterolithic nature is

characteristic of the Oiteirinhos Member, which occurs in both wells. In well GTP-17-SE

lithofacies association 2 occurs from 407 to 327 m and in well GTP-24-SE from 383 to 257

m.
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Lithofacies association 3 consists predominantly of sandstones, with locally thick

intercalations of shales and siltstones. This lithofacies association is present only in well GTP-

17-SE, from 327 to 15 m. It is related to the Angico Member. Lithofacies association 3 was

subdivided into four lithofacies.

Lithofacies 3a contains mainly fine to conglomeratic sandstones, with thin beds of dark

grey shales and medium grey siltstones. The sandstones are very porous and poorly

consolidated. This lithofacies occurs from 327 to 215 m.

Lithofacies 3b contains fine to conglomeratic sandstones intercalated with greenish grey

shales and greenish grey siltstones. This lithofacies occurs from 215 m to 147 m.

Lithofacies 3c is more pelitic than lithofacies 3a, containing fine to conglomeratic

sandstones. In this facies increase gradually the frequency and thickness of the greenish grey

shales and greenish grey siltstone beds. Lithofacies 3c extends from 147 to 70 m.

Lithofacies 3d is characterized by a predominance of fine-grained sandstones, although

ranging from very fine to conglomeratic. The sandstone beds are locally intercalated with

very thin beds of greenish grey shales and greenish grey siltstones. Lithofacies 3d occurs from

70 to 15 m.

Lithofacies association 4 is subdivided into three lithofacies, consisting of intercalations of

shales and calcilutites. It occurs only in well GTP-24-SE (Taquari Member), from 257 to 12

m.

Lithofacies 4a consists of parallel laminated light to medium grey calcilutites intercalated

with medium to dark grey shales. This lithofacies occurs from 257 to 205 m.

Lithofacies 4b consists of massive light grey calcilutites and greenish grey shales. This

lithofacies occurs from 205 to 125 m.

Lithofacies association 4c is characterized by parallel laminated dark grey to black shales

and massive medium grey calcilutites. This lithofacies occurs from 125 to 12 m.
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CHAPTER 5

PALYNOLOGY

All slides are kept in the palynological collections of Section for Biostratigraphy and

Paleoecology, Cenpes, Petrobras (Rio de Janeiro, Brazil),

5.1. Qualitative analysis

Of the 253 samples used in this study (see Chapter 3), only eleven were barren. Despite the

rich palynomorph assemblage no new species are recorded and all the species encountered

have a worldwide distribution. As most of the species are well known and have already been

exhaustively described in the literature, only their systematic position is provide in the

ensuing section

The miospores identified in this study are arranged according to their presumed botanical

affinity, after Singh (1971) and Ravn (1995). Some palynomorphs could only be assigned to

genus because only a few poorly preserved specimens could be recovered.

For the dinoflagellates the current classification of fossil and living dinoflagellates of

Fensome et al. (1998) was used.

The miospore assemblage is composed of 17 genera and 19 species of spores, 23 genera

and 31 species of pollen grains and four spore types. The dinocysts include 17 genera and 20

species. Acritarchs are represented by one genus and three types. Among the fresh-water

algae only one genus was recorded.

The preservation of the palynomorph is variable. The miospores are moderately to well-

preserved and the dinocysts poorly to moderately preserved, often with surface corrosion.

5.2. Systematic palynology

Division BRYOPHYTA
Order Sphagnales
Family Sphagnaceae
Genus Antulsporites Archangelsky & Gamerro, 1966

Antulsporites baculatus Archangelsky & Gamerro, 1966
Plate 1, Figure 1

Holotype: Archangelsky & Gamerro (1966), p. 203, Plate 1, Figures 12-14.
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Division PTERIDOPHYTA
Order Filicales
Family Schizaeaceae
Genus Cicatricosisporites Potonié & Gelletich, 1933, emend. Pflug & Thomson, 1953

Cicatricosisporites avnimelechi Horowitz, 1970
Plate 1, Figure 6

Holotype: Horowitz (1970), p. 164, Figures 4-6.

Cicatricosisporites microstriatus Jardiné & Magloire, 1965
Plate 1, Figure 11

Holotype: Jardiné & Magloire (1965), p. 202, Plate 1, Figures 18-19.

Genus Klukisporites Couper, 1958

Klukisporites foveolatus Pocock, 1964
Plate 1, Figure 7

Holotype: Pocock (1964), p. 194, Plate 7, Figures 5, 6.

Klukisporites pseudoreticulatus Couper, 1958
Plate 1, Figure 4

Holotype: Couper (1958), p.138, Plate 19, Figures 8-10.

Genus Microfoveolatosporis Krutzsch, 1959, emend. Potonié 1956

Microfoveolatosporis daukiensis Kar & Singh, 1986
Plate 1, Figure 3

Holotype: Kar & Singh (1986), p. 106, Plate 8, Figures 11-13.

Family Matoniaceae
Genus Matonisporites Couper, 1958

Matonisporites silvai Lima, 1978
Plate 1, Figure 14

Holotype: Lima (1978), pp. 165-166, Plate 12, Figures 4-6.

Family Cyatheaceae or Dicksoniaceae
Genus Cyathidites Cookson, 1947,emend. Potonié, 1956

Cyathidites spp.
Plate 1, Figure 2
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Remarks: Several species are present in the succession, although only one is illustrated in

Plate 1, Figure 2.

Order Selaginellales
Family Selaginellaceae
Genus Echinatisporites Krutzsch, 1959

Echinatisporites varispinosus (Pocock, 1962) Srivastava, 1977
Plate 1, Figure 5

Holotype: Pocock (1962), p. 36, Plate 1, Figures 18-19.

1962 Acanthotriletes varispinosus Pocock, p. 36, Plate 1, Figures 18-20.
1977 Echinatisporites varispinosus Srivastava, p. 39.

Order Lycopodiales
Family Lycopodiaceae
Genus Leptolepidites Couper, 1953

Leptolepidites psarosus Norris, 1966
Plate 1, Figure 18

Holotype: Norris (1966), p. 586, Plate 103, Figures 2-5.

Genus Perotriletes (Erdtman, 1945) Couper, 1953

Perotriletes spp.
Plate 1, Figure 16

Remarks: Several species are present in the succession, although only one is illustrated in

Plate 1, Figure 16.

Genus Retitriletes van der Hammen, 1954, emend. Döring et al., in Krutzsch, 1963

Retitriletes sp. 3 Regali, 1989
Plate 1, Figure 15

Order Marsileales
Family Marsiliaceae
Genus Collarisporites Kaiser, 1976

Collarisporites fuscus Deák, 1964
Plate 1, Figure 17

Holotype: Déak (1964), p. 99.
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Genus Crybelosporites Dettmann, 1963

Crybelosporites pannuceus (Brenner, 1963) Srivastava, 1977
Plate 1, Figure 10

Holotype 1963 Perotriletes pannuceus Brenner, p. 66, Plate 18, Figure 3.

1965 Perotriletes perinopustulosus Jardiné & Magloire, p. 203, Plate 3, Figures 3-4.
1977 Crybelosporites pannuceus (Brenner) Srivastava, p. 35

Genus Foveosporites Balme, 1957

Foveosporites canalis Balme, 1957
Plate 1, Figure 8

Holotype: Balme (1957), p. 17.

Division PTERIDOPHYTA – Incertae sedis
Genus Clavatriletes (van der Hammen, 1954) Herbst,1965

Clavatriletes spp.
Plate 1, Figure 12

Genus Pilosisporites Delcourt & Sprumont, 1955

Pilosisporites trichopapillosus (Thiegart, 1949) Delcourt & Sprumont, 1955
Plate 1, Figure 19

Holotype: Thiegart (1949), p. 22, Plate 4-5, Figure 18.

1949 Sporites trichopapillosus Thiegart, p. 22, Plate 4-5, Figure 18.
1955 Pilosisporites trichopapillosus Delcourt & Sprumont, p. 35, Plate 3, Figure 3.

Genus Reticulosporis Krutzsch, 1959

Reticulosporis foveolatus (Pierce, 1961) Skarby, 1964
Plate 1, Figure 9

Holotype: Pierce (1961), p. 81.

1961 Reticulosporis foveolatus Pierce, p. 81.
1964 Reticulosporis foveolatus Skarby, p. 72.

Genus Verrucosisporites (Ibrahim, 1932) Potonié & Kremp, 1954

Verrucosisporites spp.
Plate 1, Figure 13
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Remarks: Several species are present in the succession, although only one is illustrated in

Plate 1, Figure 13.

Division GYMNOSPERMAE
Order Cycadales
Family Cycadaceae
Genus Bennettitaepollenites Thiegart, 1949, emend. Potonié, 1958

Bennettitaepollenites regaliae Dino, 1996
Plate 2, Figure 16

Holotype: Dino (1996), p. 262, Plate 4, Figures 1, 6.

Family Cheirolepidaceae
Genus Classopollis Pflug, 1953, emend., Pocock & Jansonius, 1961

Classopollis classoides Pflug, 1953, emend. Pocock & Jansonius, 1961
Plate 2, Figure 9

Holotype: Pflug (1953), p. 91, Plate 16, Figures 29-31.

1953 Classopollis classoides Pflug, p. 91, Plate 16, Figures 29-31.
1961 Classopollis classoides Pocock & Jansonius, p. 443, Plate 1, Figures 1-9.

Genus Cycadopites (Wodehouse, 1958) Wilson & Webster, 1946

Cycadopites spp.
Plate 2, Figure 17

Remarks: Several species are present in the succession, although only one is illustrated in

Plate 2, Figure 17.

Order Coniferae
Family Taxodiaceae, Taxaceae and Cupressaceae
Genus Uesuguipollenites Dino, 1996

Uesuguipollenites callosus Dino, 1996
Plate 2, Figures 6-7

Holotype: Dino (1996), p.258, Plate 1, Figures 1-7.

Family Araucariaceae
Genus Araucariacites Cookson, 1947 ex Couper, 1953

Araucariacites australis Cookson, 1947
Plate 2, Figure 2

Holotype: Cookson (1947), p. 130, Plate 13, Figure 3.
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Genus Callialasporites Dev, 1961, emend. Potonié, 1966

Callialasporites segmentatus (Balme, 1957) De Jersey, 1963
Plate 2, Figure 10

Holotype: Balme (1957), p. 33, Plate 9, Figures 93, 94.

1957 Zonalapollenites segmentatus Balme, p.33, Plate 9, Figures 93, 94.
1961 Callialasporites segmentatus Dev, p.48.
1963 Callialasporites segmentatus De Jersey, p. 12.

Order Caytoniales
Family Caytoniaceae
Genus Vitreisporites Leschik, 1955

Vitreisporites pustulosus Regali, 1987
Plate 2, Figure 11

Holotype: Regali, p. 649, Plate 1, Figures 3-4.

1974 Caytonipollenites? sp. 1 Regali, Uesugui & Santos, p. 286, Plate 5, Figure 2.
1987b Vitreisporites pustulosus Regali, p. 649, Plate 1, Figures 1-5.

Order Gnetales
Family Ephedraceae
Genus Equisetosporites Daugherty, 1941, emend. Singh, 1964

Equisetosporites albertensis Singh, 1964
Plate 2, Figure 15

Holotype: Singh (1964), p. 133, Plate 17, Figures 17-18

Equisetosporites concinnus Singh, 1964
Plate 2, Figure 23

Holotype: Singh (1964), p. 133, Figures 10-15.

Equisetosporites maculosus Dino, 1996
Plate 2, Figures 13-14

Holotype: Dino (1996), p. 259, Plate 2, Figures 1-5.

Equisetosporites ovatus (Pierce, 1961) Singh, 1964
Plate 2, Figure 19

Holotype: Pierce (1961), p. 45, Plate 3, Figure 80.

1961 Strianinaperturites ovatus Pierce, p. 45, Plate 3, Figure 80.
1964 Equisetosporites ovatus Singh, p. 133.

Family Gnetaceae
Genus Gnetaceaepollenites Thiergart, 1938, emend. Jansonius, 1962
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Gnetaceaepollenites chlatratus Stover, 1964
Plate 2, Figure 20

Holotype: Stover (1964), p. 149, Plate 1, Figures 12-17.

Gnetaceaepollenites diversus Stover, 1964
Plate 2, Figure 22

Holotype: Stover (1964), p. 147, Plate 1, Figures 1-11.

Gnetaceaepollenites jansonii (Pocock, 1964) Lima, 1980
Plate 3, Figure 1

Holotype: Pocock (1964), p. 149, Plate 1, Figures 26-27.

1964 Ephedripites jansonii Pocock, p. 149, Plate 1, Figures 26-27.
1968 Equisetosporites lajwantis Srivastava, Figures 10, 11.
1968 Ephedripites jansonii Muller, p. 9, Plate 2, Figure 9
1980 Gnetaceaepollenites jansonii (Pocock) Lima, p. 35, Plate 3, Figure 11.

Gnetaceaepollenites uesuguii Lima, 1978
Plate 2, Figure 21

Holotype: Lima (1978), p. 242, Plate 22, Figures 2-3.

Family Gnetaceae or Ephedraceae
Genus Steevesipollenites Stover, 1964

Steevesipollenites binodosus? Stover, 1964
Plate 2, Figure 18

Holotype: Stover (1964), p. 151, Plate 2, Figures 7-9.

Division Gymnospermae – Incertae sedis
Genus Complicatisaccus Pautsch, 1971

Complicatisaccus cearensis? Regali, 1987
Plate 2, Figure 12

Holotype: Regali (1987), p. 648, Plate 1, Figures 15-17.

Genus Elaterosporites Jardiné, 1967

Elaterosporites klaszi (Jardiné & Magloire, 1965) Jardiné, 1967
Plate 3, Figures 2-4

Holotype: Jardiné & Magloire (1965), p. 205, Plate 4, Figures 3a-3b.

1965 Galeacornea klaszi Jardiné & Magloire, p. 205, Plate 4, Figures 3a-3b.
1967 Elaterosporites klaszi Jardiné, p. 246, Plate 2, Figures h-m.
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Genus Sergipea Regali, Uesugui & Santos, 1974, emend. Regali, 1987

Sergipea naviformis Regali, Uesugui & Santos, 1974
Plate 2, Figure 5

Holotype: Regali, Uesugui & Santos (1974), p. 273, Plate 4, Figures 10-11.

Sergipea simplex Regali, 1987
Plate 2, Figure 8

Holotype: Regali, (1987a), p. 619, Plate 1, Figures 24-25.

Sergipea variverrucata Regali, Uesugui & Santos, 1974, emend. Regali, 1987
Plate 2, Figures 3-4

Holotype: Regali, Uesugui & Santos (1974), p. 273, Plate 4, Figure 12.

1974 Sergipea variverrucata Regali, Uesugui & Santos, p. 273, Plate 4, Figure 12.
1987a Sergipea variverrucata Regali, p. 616, Plate 1, Figures 1-16.

Division ANGIOSPERMAE
Order Geraniales
Family Euphorbiaceae
Genus Stellatopollis Doyle in Doyle, van Campo & Lugardon, 1975

Stellatopollis barghoornii Doyle, 1975
Plate 3, Figure 22

Holotype: Doyle (1975), p. 426; Plate 7, Figure 18; Plate 8, Figures 1-5; Plate 9, Figures 1-4.

Stellatopollis dubius Jardiné & Magloire, 1965, emend. Lima, 1978
Plate3, Figure 23

Holotype: Jardiné & Magloire (1965), p. 203, Plate 4, figs 4-5.

1965 Stellatopollis dubius Jardiné & Magloire, p. 203, Plate 4, figs 4-5.
1976 Crotonipollis dubius Lima, p. 17, Plate 1, Figures 16-20.
1978 Stellatopollis dubius Lima, p. 274, Plate 25, Figures 4-5.

Stellatopollis sp.1. Doyle et al., 1977
Plate 3, Figure 24

Order Salicales
Family Salicaceae
Genus Rousea Srivastava, 1969

Rousea georgensis Brenner, 1963, emend. Dettmann, 1973
Plate 3, Figure 8

Holotype: Brenner (1963), p. 91-92.

1963 Rousea georgensis Brenner, p. 91-92.
1973 Rousea georgensis Dettmann, p. 14-15.
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Order Tubiflorae
Family Solanaceae
Genus Striatopollis Krutzsch, 1959

Striatopollis reticulatus Regali, Uesugui & Santos, 1974, emend. Dino, 1996
Plate 3, Figure 21

Holotype: Regali, Uesugui & Santos (1974), p. 279. Plate 8, Figure 2.

1974 Striatopollis reticulatus Regali, Uesugui & Santos, p. 279. Plate 8, Figure 2.
1996 Striatopollis reticulatus Dino, p. 264, Plate 5, Figures 4-7.

Order Principes?
Family Gunneraceae
Genus Afropollis Doyle et al., 1982

Afropollis aff. jardinus Doyle, Jardiné & Doerenkamp, 1982
Plate 3, Figure 5

Holotype: Brenner (1968), p. 381, Plate 10, Figures 5-6.

1968 Reticulatasporites jardinus Brenner, p. 381, Plate 10, Figures 5-6.
1973 Reticulatasporites jardinus (Brenner) Herngreen, p. 536, Plate 2, Figure 9.
1982 Afropollis aff. jardinus Doyle, Jardiné & Doerenkamp, p. 47, Plate 5, Figures 1-7.

Afropollis operculatus Doyle, Jardiné & Doerenkamp, 1982
Plate 3, Figure 7

1977 “Reticulatasporites” jardinus Doyle et al., pp. 457-458, Plate 2, Figures 1-4.
1981 Reticulatasporites jardinus (Brenner) Hochuli, p. 339, Plate 1, Figures 5-6.
1982 Afropollis operculatus Doyle, Jardiné & Doerenkamp, p. 47, Plate 6, Figures 1-7.

Genus Brenneripollis (Brenner, 1963) Juhász & Góczán, 1985

Brenneripollis reticulatus Brenner, 1963, emend. Juhász & Góczán, 1985
Plate 3, Figures 11-12

Holotype: Brenner (1963), p. 94.

1963 Brenneripollis reticulatus Brenner, p. 94.
1985 Brenneripollis reticulatus Juhász & Góczán, p. 151.
Genus Retimonocolpites (Pierce 1961) ex Pierce 1966

Retimonocolpites textus? (Norris, 1967) Singh, 1983
Plate 3, Figures 6, 10

Holotype: Norris (1967) p. 106, Plate 16, Figures 21-25.

1967 Liliacidites textus Norris, p. 106, Plate 16, Figures 21-25; Plate 17, Figures 1, 2.
1983 Retimonocolpites textus (Norris) Singh, p. 188.
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Genus Tricolpites (Cookson, 1947) ex Couper, 1953, emend. Belsk, Boltenhagen & Potonié,

1965

Tricolpites spp.
Plate 3, Figure 13

Remarks: Two or three species are present in the succession, although only one is illustrated

in Plate 3, Figure 13.

Division Angiospermae – Incertae sedis
Genus Dejaxpollenites Dino, 1996

Dejaxpollenites foveoreticulatus Dino, 1996
Plate 3, Figures 14-16

Holotype: Dino (1996), p. 261, Plate 3, Figures 6-10.

Dejaxpollenites microfoveolatus Dino, 1996
Plate 3, Figure 17

Holotype: Dino (1996), p. 261, Plate 3, Figures 1, 5.

Genus Retitricolpites (van der Hammen, 1954) ex van der Hammen & Wijmstra, 1964

Retitricolpites spp.
Plate 3, Figure 9

Remarks: Two or three species are present in the succession, although only one is illustrated

in Plate 3, Figure 9.

Genus Schrankpollis Regali & Santos, 1996

Schrankpollis reticulatus? sensu Regali & Santos, 1996
Plate 3, Figure 18

Holotype: Regali & Santos (1996), p. 5, Plate 3, Figures 5-6.

Genus Quadricolpites Wingate, 1980

Quadricolpites reticulatus? Wingate, 1980
Plate 3, Figures 19-20

Holotype: Wingate (1980), p. 44, Plate 16, Figures 12-16.
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Division PYRRHOPHYTA
Order Peridiniales
Family Ceratiaceae
Genus Circulodinium Alberti, 1961

Circulodinium spp.
Plate 4, Figure 1

Remarks: Two or three species are present in the succession, although only one is illustrated

in Plate 4, Figure 1.

Genus Cyclonephelium Deflandre & Cookson, 1955, emend. Stover & Evett, 1978

Cyclonephelium spp.
Plate 4, Figures 2-5

Remarks: Several species are present in the succession, although only three are illustrated in

Plate 4, Figure 2-5.

Genus Odontochitina Deflandre, 1935, emend. Davey, 1970

Odontochitina operculata (Wetzel, 1933) Deflandre and Cookson, 1955
Plate 4, Figures 6, 7

Holotype: Wetzel, p. 170, Plate 11, Figure 21.

1933 Ceratium (Euceratium) operculatum Wetzel, p. 170, Plate 11, Figure 21
1935 Odontochitina silicorum Deflandre, p. 234, Plate 9, Figures 8-10
1946 Odontochitina operculata Deflandre, cards 1016-1019.
1955 Odontochitina operculata (Deflandre) Deflandre and Cookson, p. 291, Plate 3, Figures 5, 6.

Genus Pseudoceratium Gocht, 1957

Pseudoceratium securigerum? (Davey & Verdier, 1974) Bint, 1986
Plate 4, Figures 9

Holotype: Davey & Verdier (1974), Plate 91, Figure 3

1974 Aptea securigerum Davey & Verdier, pp. 642-643, Plate 91, Figures 2-3.
1986 Pseudoceratium securigerum Bint 1986, p. 145.

Family Gonyaulacaceae
Genus Apteodinium Eisenack, 1958 emend. Lucas-Clark, 1987

Apteodinium granulatum Eisenack 1958 emend Lucas-Clark 1987
Plate 5, Figures 2-3
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Holotype: Eisenack (1958), p. 386, Plate 23, Figure 9.

1958 Apteodinium granulatum Eisenack, p. 386, Plate 23, Figure 9.
1987 Apteodinium granulatum Lucas-Clark, p. 170 and 172.
Genus Cribroperidinium Neale & Sarjeant, 1962 emend. May, 1980

Cribroperidinium tensiftense Below, 1981
Plate 5, Figure 1

Holotype: Below (1981), pp. 41-42, Plate 1, Figures 10, 11a-b; Plate 13, Figures 3a-e, 4-5.

Genus Dinopterygium? Deflandre, 1935, emend. Stover & Evitt, 1978

Dinopterygium? spp.
Plate 5, Figure 5

Remarks: Two or more species are present in the succession, although only one is illustrated

in Plate 5, Figure 5.

Genus Exochosphaeridium Davey et al., 1966

Exochosphaeridium spp.
Plate 6, Figure 1

Remarks: Several species are present in the succession, although only one is illustrated in

Plate 6, Figure 1.

Genus Florentina Davey & Verdier, 1973, emend. Duxbury, 1980

Florentina mantellii (Davey & Williams, 1966) Davey & Verdier, 1973
Plate 4, Figure 13

Holotype: Davey & Williams (1966), p. 66, Plate 6, Figure 6.

1966 Hystrichosphaeridium mantellii Davey & Williams, p. 66, Plate 6, Figure 6.
1967 Hystrichosphaeridium stellatum (Maier 1959) Clarke & Verdier, Plate 2, Figures 1-2
1969 Hystrichosphaeridium mantellii (Davey & Williams) Davey, p. 145, Plate 4, Figure 9
?1971 Hystrichosphaeridium cooksoni Singh, p. 329, Plate 51, Figure 7 and Plate 52, Figures 1-4.
1973 Florentina mantelli Davey & Verdier, p. 191.

Genus Oligosphaeridium Davey & Williams, 1966, emend. Davey, 1982

Oligosphaeridium albertense (Pocock, 1962) Davey & Williams, 1969
Plate 5, Figure 18

Holotype: Pocock (1962), p. 82, Plate. 15, Figure 226.
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1962 Hystrichosphaeridium albertense Pocock, p. 82, Plate. 15, Figures 226-227.
1969 Oligosphaeridium albertense Davey & Williams, p. 5.

Oligosphaeridium complex (White 1842) Davey & Williams, 1966
Plate 5, Figure 17

Holotype: White (1842), p. 39, Plate 4, Figure 11

1842 Xanthidium complex White, p. 39, Plate 4, Figure 11.
1940 Hystrichosphaeridium elegentulum Lejeune-Carpenter, p. 22, Figures 11-12.
1946 Hystrichosphaeridium complex (White) Deflandre, p.11
1959 Hystrichosphaeridium asterigerum Gotch, p. 67, Plate 3, Figure 1 and Plate 7, Figures 1-4.
1966 Oligosphaeridium complex (White) Davey & Williams, p. 71, Plate 7, Figures 1-2 and Plate 10, Figure 3.

Oligosphaeridium irregulare (Pocock, 1962) Davey & Williams, 1969
Plate 5, Figure 13

Holotype: Pocock (1962), p. 82, Plate 15, Figures 228-229.

1962 Hystrichosphaeridium irregulare Pocock, p. 82, Plate 15, Figures 228-229.
1969 ?Oligosphaeridium irregulare Davey & Williams, p. 5.
1971 Oligosphaeridium irregulare (Pocock) (Davey & Williams), Brideaux, p. 90, Plate 26, Figure 62.

Oligosphaeridium poculum Jain, 1977
Plate 5, Figure 16

Holotype: Jain (1977), p. 181, Plate 1, fig 3.

Oligosphaeridium pulcherrimum (Deflandre & Cookson, 1955) Davey & Williams, 1966
Plate 5, Figure 14

Holotype: Deflandre & Cookson (1955), p. 270, Plate 1, Figure 8.

1955 Hytrichosphaeridium pulcherrimum Deflandre & Cookson, p. 270, Plate 1, Figure 8.
1966 Oligosphaeridium pulcherrimum Davey & Williams, p75, Plate 10, Figure 9 and Plate 11, Figure 5.

Oligosphaeridium totum Brideaux, 1971
Plate 5, Figure 15

Holotype: Brideaux (1971), pp. 88-89, Plate 25, Figures 53-55, 57.

Genus Prolixosphaeridium Davey et al., 1966 emend. Davey, 1969

Prolixosphaeridium parvispinum (Deflandre, 1937) Davey et al., 1969
Plate 4, Figure 14

Holotype: Deflandre (1937), p. 77, Plate 16, Figure 5.

1937 Hystrichosphaeridium xanthiopyxides var. parvispinum Deflandre, p. 77, Plate 16, Figure 5.
1958 Hystrichosphaeridium parvispinum Cookson & Eisenack, p. 45, Plate 8, Figures 10, 12.
1969 Prolixosphaeridium parvispinum (Deflandre) Davey, Downie, Sarjeant & Verdier, p. 17.

Genus Systematophora Klement, 1960, emend. Stancliffe & Sarjeant, 1990

Systematophora cretacea? Davey 1979
Plate 5, Figure 4
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Holotype: Davey, p. 560, Plate 8, Figures 10, 13-15.

Genus Spiniferites Mantell, 1850, emend. Sarjeant, 1970

Spiniferites ancoriferus Cookson & Eisenack, 1974
Plate 5, Figure 9

Holotype: Cookson & Eisenack, (1974), p. 58, Plate 21, Figures 4-5.

Spiniferites bejuii Masure et al., 1998
Plate 5, Figure 12

Holotype: Masure et al. (1998), p. 266, Plate 3, Figures 3, 4, 6.

Spiniferites chebca Below, 1982
Plate 5, Figure 7-8

Holotype: Below (1982), p. 35, Plate 8, Figures 8a-c.

1982 Spiniferites multibrevis subsp. chebca Below, p. 35, Plate 8, Figures 7, 8a-c, 9.
1993 Spiniferites chebca (Below) Lentin & Williams 1993 p. 604.

Spiniferites lenzi Below, 1982
Plate 5, Figure 6

Holotype: Below (1982), p. 34, Plate 7, Figures 7a-b, Plate 8, Figures 3a-b, 6a-b.

Genus Tanyosphaeridium Davey & Williams 1966

Tanyosphaeridium spp.
Plate 4, Figure 12

Remarks: Two or three species are present in the succession, although only one is illustrated

in Plate 4, Figure 12.

Genus Trichodinium Eisenack & Cookson, 1960, emend. Clarke & Verdier, 1967

Trichodinium castanea (Deflandre, 1935) Clarke & Verdier, 1967
Plate 6, Figures 2-3

Holotype: Deflandre (1935), p. 229, Plate 6, Figure 8.

1935 Paleoperidinum castanea Deflandre, p. 229, Plate 6, Figure 8.
1967 Trichodinium castanea Clarke & Verdier, p. 19, Plate 1, Figures 1-2.

Family Peridiniaceae
Genus Palaeoperidinium Deflandre, 1935, emend. Sarjeant, 1967
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Palaeoperidinium cretaceum (Pocock, 1962) emend. Harding, 1990
Plate 4, Figure 8

Holotype: Pocock (1962), p. 80, Plate 14, Figure 219.

1962 Palaeoperidinium cretaceum Pocock, p. 80, Plate 14, Figures 219-221.
1970 Astrocysta cretaceum Davey, p. 359.
1986 Palaeoperidinium cretaceum (Pocock), Jansonius, p. 214, Plate 5, Figure 6.
1990 Palaeoperidinium cretaceum Harding, p. 44, Plate 1 Figures 1-9, Plate 2, Figures 1-9, Plate 3, Figures 1-9.

Genus Subtilisphaera Jain & Millepied, 1973 emend. Lentin & Williams 1976

Subtilisphaera senegalensis Jain & Millipied, 1973
Plate 4, Figure 11

Holotype: Jain & Millipied (1973), pp. 27-28, Plate 3, Figures 31-33.

Subtilisphaera trendallii? (Cookson & Eisenack, 1970) Lentin & Williams, 1976
Plate 4, Figure 10

Holotype: Cookson & Eisenack (1970), pp. 145-146, Plate 12, Figure 5.

1970 Ascodinium trendallii Cookson & Eisenack, pp. 145-146, Plate 12, Figures 5-6.
1976 Subtilisphaera trendallii Lentin & Williams, p. 120.

Division CHLOROPHYTA
Class Acanthophyceae
Family Botryococcaceae
Genus Botryococcus Kutzing, 1849

Botryococcus spp.
Plate 6, Figure 8

Group Acritarcha
Subgroup Sphaeromorphitae
Genus Leiosphaeridia Eisenack, 1958

Leiosphaeridia sp.
Plate 6, Figure 9

MISCELLANEOUS

Foraminiferal test linings
Plate 6, Figures 6-7

Scolecodonts
Plate 6, Figures 4-5
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5.3 Quantitative analysis

The succession studied yielded a rich palynomorph assemblage, in particular of terrestrial

components. However, the marine palynomorphs, notably in the upper part of the section of

well GTP-24-SE, also show relatively high abundances. The results of counts (percentage) of

each species for the two wells are given in Appendix 2.

The palynomorphs are divided into two major groups: (1) terrestrial palynomorphs,

represented by spores from pteridophytes, pollens from gymnosperms, angiosperms and

fresh-water algae; (2) and marine palynomorphs, composed of dinoflagellates (subdivided

into ceratioid, gonyaulacoid and peridinoid), foraminiferal test linings, acritarchs and

scolecodonts.

5.3.1 Palynomorph abundance

The succession is strongly dominated by terrestrial palynomorphs. The pollen group, in

particular gymnosperms, is by far the most abundant taxa. This group forms 84.7% of the

total palynomorph assemblage in GTP-17-SE and 61.8% in GTP-24-SE. In well GTP-17-SE

the second most abundant group is the spores, which reach 8.9% of all palynomorphs. Well

GTP-24-SE is characterized by a relatively high abundance of marine palynomorphs with

31.7% of the total palynomorphs. Fresh-water palynomorphs are rare, comprising less than

0.1% in both wells. The relative abundances are shown in Figure 5.1.

GTP-24-SE

Marine
 palynomorphs

31.7%

Spores
6.5%

Pollen
61.8%

Fresh-water
 algae
0.05%

GTP-17-SE

Marine
palynomorphs

6.4%
Spores
8.9%

Pollen
84.7%

Fresh-water
algae
0.02%

Figure 5.1. Relative abundance of the palynomorph groups for the studied wells.

The abundance of the palynomorphs is also influenced by hydrodynamic equivalence

effects. Being the sizes of the palynomorphs equivalent to the fine fraction of the sediments,

the palynomorphs are more abundant in sediments such as shales, calcilutites. Coarse
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sediments such as sandstones normally have low abundances of palynomorphs (Muller,

1959). Moreover, the nature of the sediments is also an important factor in the distribution of

the palynomorphs. Being allochthonous sediments, generally the siliciclastic deposited in

marine environments show higher abundances of terrestrial than marine palynomorphs. On

the other hand, marine palynomorphs are more abundant in carbonate sediments (e.g.

Traverse & Ginsburg, 1966; Groot & Groot, 1966; Lana 1997).

The results presented here support the relationship between the high frequency of

terrestrial palynomorphs in siliciclastic rocks and of marine groups in carbonate

sedimentation (Figure 5.2-5-4).
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Figure 5.2. Palynomorphs abundance vs. lithology in both wells.

In well GTP-17-SE the abundance of terrestrial palynomorphs is considerable, in particular

gymnosperm pollen grains. They occur in siliciclastic as well as in carbonate rocks. A

particular characteristic is that the terrestrial palynomorphs occur mostly in diverse types of

siliciclastic deposits (Figure 5.3). However, the results of the spore distribution confirm the

relation between the siliciclastic sedimentation and terrestrial palynomorphs.

In contrast to what is commonly reported elsewhere the marine palynomorphs are also

observed in higher abundance in siliciclastic than in carbonate sediments (Figure 5.3).
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Figure 5.3. Palynomorphs abundance vs. lithology in well GTP-17-SE.

The results from well GTP-24-SE, which is characterized by mixed sedimentation of

shales and calcilutites, confirm that the marine palynomorphs are more abundant in

carbonates and terrestrial palynomorphs in siliciclastics (Figure 5.4)
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Figure 5.4. Palynomorphs abundance vs. lithology in well GTP-24-SE.

5.3.1.1 Stratigraphic distribution of terrestrial palynomorphs

Pteridophyte spores

Pteridophyte spores are present in low to moderate abundances in the studied succession. This

group averages 8.9% of all palynomorphs in GTP-17-SE but reaches 36.0% at 100.90 m. In

well GTP-24-SE the spores make up 6.5% of all palynomorphs and show a peak in abundance
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of 32.5% at 22.88 m. In both wells the spores increase in abundance upwards; this trend is

more pronounced in well GTP-17-SE (Figure 5.5). The most abundant pteridophyte genus is

Cicatricosisporites, which in well GTP-17-SE reaches 56.0% of all pteridophytes.

Gymnosperm pollen

The gymnosperm group is the most abundant and diversified group in the studied succession.

The high abundance resulted from a large amount of Classopollis and Araucariacites grains

in the samples.

The gymnosperm group is also well represented by pollen grains from the ephedroid

group, in particular by the genus Equisetosporites. In both wells Classopollis is by far the

most abundant genus reaching 66.9% of the total palynomorphs in GTP-17-SE and 49.0% in

GTP-24-SE. At 364.90 m of GTP-24-SE Classopollis is the only palynomorph present. Other

important components are the saccate pollen grains. These are mainly represented by the

monosaccate genus Callialasporites, which reaches 2.0% in some samples. Bisaccate pollen

grains are rare such as all other genera no mentioned above.

Angiosperm pollen

The angiosperm group is characterized by low abundances and moderate diversity. The most

abundant genus is Afropollis, although not exceeding 1.0% of all palynomorphs in the two

wells. Most genera are represented only by a single grain.

Fresh-water algae (Fwa)

This group is represented by only the single genus Botryococcus, which is rare in both wells.
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5.3.1.2 Stratigraphic distribution of marine palynomorphs

Dinoflagellates (Df)

Ceratiacean cysts

Ceratiaceans are represented by four genera, Circulodinium, Cyclonephelium, Odontochitina

and Pseudoceratium. This group shows moderate abundances, particularly in well GTP-24-

SE, where Cyclonephelium is relatively common. The other genera are present in low

numbers. The abundance curve shows that the ceratiacean cysts occur mainly in the upper part

of the section (see well GTP-24-SE) (Figure 5.6).

Gonyaulacacean cysts

This dinoflagellate group is the most abundant and diversified group. It is composed of twelve

genera and includes Spiniferites, the most abundant dinoflagellate genus. The abundance of

gonyaulacacean cysts increases upwards in both wells. This is most clearly observed in well

GTP-24-SE (Figure 5.5). In GTP-17-SE, the group shows a moderate abundance. In this well

the dinoflagellates assemblage is dominated by peridinioid dinocysts (discussed below). In

GTP-24-SE Spiniferites averages 8.8% of all palynomorphs, and at 268.50 reaches 54.5% of

all palynomorphs (Figure 5.5). In well GTP-17-SE this genus is the second most abundant

dinoflagellate after Subtilisphaera.

Other particularly numerous genera among the gonyaulacacean cysts are

Exochosphaeridium and Trichodinium. Exochosphaeridium is relatively abundant in well

GTP-24-SE, where it makes up 3.8% of all palynomorphs, but in well GTP-17-SE it is rare. In

contrast, Trichodinium is less abundant in well GTP-24-SE than in GTP-17-SE. None of the

other nine genera are common.

Peridiniacean cysts

This group of dinocysts (especially Subtilisphaera) is present in great abundances in the

succession. However, it shows very low diversity with only two genera, Palaeoperidinium

and Subtilisphaera. Although there are great fluctuations, the abundances of peridiniacean

cysts generally increase upward (Figures 5.5-5.6).
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Subtilisphaera is the most common peridiniacean genus and the second most abundant

dinoflagellate in the succession (Figures 5.5-5.6). In well GTP-17-SE Subtilisphaera is the

most abundant dinocyst (2.2% of all palynomorphs), at 61.70 m reaching 70.2% of all

palynomorphs (Figure 5.5). In well GTP-24-SE, Subtilisphaera is the second most abundant

dinoflagellate (5.5% of all palynomorphs), 13.25 m reaching 54.9% at.

The genus Palaeoperidinium is found only in well GTP-24-SE, where it is comparatively

rare. However, at 124.40 m Palaeoperidinium shows a peak in abundance, reaching 9.1% of

all palynomorphs.

Foraminiferal test linings (FTL)

Foraminiferal test linings are the most abundant marine palynomorphs, with relatively high

abundances throughout the succession. FTL are more abundant in well GTP-24 than GTP-17-

SE; however, they constitute 38.1% of all marine palynomorphs in well GTP-17-SE, and

24.1% in GTP-24-SE. Moreover, the abundance trend of FTL differs between the wells. In

GTP-17-SE the trendline decreases slightly, whereas in GTP-24-SE the curve increases

upward (Figure 5.5).

Acritarcha

Among the Acritarcha only the genus Leiosphaeridia has been identified. Acritarchs are rare

in both wells, making up less than 1.0% of all palynomorphs.

Scolecodonts

This group is composed of few types that show very low abundances in both wells.
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CHAPTER 6

BIOSTRATIGRAPHY

The most recent and thorough palynostratigraphic study from the Sergipe Basin is that of

Regali & Santos (1996) published as internal report. This study was published only as

extended abstract Regali & Santos (1999). Based on nonmarine palynomorphs the upper

Aptian–lower Albian sequence was subdivided into eight sub-zones (Figure 6.1).
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Figure 6.1. Correlation of the biostratigraphic zonation used herein (Regali & Santos 1999) with recent
palynostratigraphic frameworks for the upper Aptian–Albian of the notheastern Brazilian basins

A number of biostratigraphic studies of the Aptian–Albian of the Sergipe Basin have been

carried out, in particular using other microfossils, such as foraminifera (Koutsoukos, 1989,

1991), calcareous nannofossils (Scarparo & Koutsoukos 1998) and ostracodes (Viviers et al.,

2000). Koutsoukos & Bengtson (1993) proposed an integrated foraminifera-ammonite

biostratigraphy for the Sergipe Basin and correlated this regional biostratigraphic scheme with

the international standard zonation. They pointed out that the exact position of the

Aptian–Albian boundary is difficult to determine in Sergipe because the upper Aptian

Hypacanthoplites jacobi and the lower Albian Leymeriella tardefurcata ammonite zones of

northwestern Europe cannot be recognized.
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The first palynostratigraphic purpose for the Cretaceous of the Sergipe Basin was

published by Müller (1966). On basis of abundance zones, he established 13 biozones ranging

from the Aptian to the Santonian and correlated these with previous foraminifers and

ostracodes schemes. The upper Aptian–Albian deposits correspond to his palynological zones

i–m.

As the outcome of extensive studies on palynomorphs from the Brazilian sedimentary

basins, Regali et al. (1974a) published the most relevant zonation for the Cretaceous. This

interregional biostratigraphic framework subdivided the upper Aptian to middle Albian

sequence into seven biozones based on nonmarine species. Subsequently, this zonation was

re-examined and refined by Regali (1989), who also correlated this scheme with zonations

proposed for several African basins (e.g. Herngreen, 1973; Doyle et al., 1982; Penny, 1986).

The Cretaceous stage boundaries were discussed in 1995 during the “Second International

Symposium on Cretaceous Stage Boundaries” in Brussels. For the base of the Albian stage

two sections were proposed as possible Global Boundary Stratotype Sections and Points

(GSSP) (Hart, 1996). The first occurrence of the ammonite Leymeriella schrammeni was

proposed to define the base of the Albian stage in the Vohrum section (North Germany).

However, in this stratotype, few other biostratigraphic data are known. The Pol de Pré-

Guittard (Vocontian Trough in southeastern France) was also suggested as an alternative

stratotype section. This may be the most complete succession across the Aptian–Albian

transition. From this section, biostratigraphic data on ammonites, calcareous nannofossils,

planktonic foraminifera, dinoflagellates, and oceanic anoxic events are available. For the

Aptian–Albian boundary Hart (1996) indicated extinctions of dinoflagellates such as

Hystrichosphaerina schindewolfii and Cerbia tabulata, whereas Nematosphaeropsis

singularis, Pseudoceratium securigerum and Pseudoceratium eisenackii had their first

appearances at this level.

Kennedy et al. (2000) also reject the Vohrum section as a possible GSSP and suggest the

Tartonne section (Alpes-de-Haute-Provence) in the Vocontian Trough, as a potential GSSP.

The base of the Albian Stage suggested by them coincides with the first occurrence of the

ammonite Leymeriella (L.) tardefurcata. According to them, the Pol de Pré-Guittard section,

also in the Vocontian Trough, is unsuitable as a GSSP due to a hiatus at the critical level in

the section.
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6.1 Palynomorph zonation

The study presented herein was primarily limited to recognizing the zones and sub-zones

proposed by Regali & Santos (1999) (Figure 6.1). The succession in the two wells studied by

them was dated as late Aptian (Equisetosporites maculosus and Dejaxpollenites

microfoveolatus sub-zones) (Marília Regali, Petrobras, Rio de Janeiro, person. comm.

September 1999). However, the samples available to Regali & Santos (1999) are not from the

same depths as those used in this study.

The recognition of the zonation proposed by Regali & Santos (1999) was based on the

distribution of selected taxa, mainly from well GTP-24-SE. Recognition of the zonation in

well GTP-17-SE is difficult owing to the low diversity of palynomorphs and the coarse grain

sedimentation, in particular sandstones (discussed in 5.4).

Four successive biostratigraphic intervals are identified for the upper Aptian–middle

Albian of the studied succession. These are mainly based on the biostratigraphic framework

introduced by Regali & Santos (1999). A few changes were necessary, however, because of

the diverging occurrences of palynomorphs in the studied wells compared to those examined

by the above authors. According to them the sub-zones proposed are only locally applicable,

although some of these sub-zones can be recognized in other basins in Brazil.

The Sergipea variverrucata zone and the Equisetosporites maculosus and Dejaxpollenites

microfoveolatus sub-zones from the Regali & Santos (1999) were recognized herein (Figure

6.1).

The major difference from the study by Regali & Santos (1999) for the two studied wells,

is the recognition of the middle Albian (Classopollis echinatus Zone) characterized by the

first occurrence of Elaterosporites klaszi?. However, it was recorded from samples that were

not studied by Regali & Santos (1999).

The dinoflagellate occurrence from studied succession are compared with schemes from

the African basins (e.g.; Habib, 1975, 1977, 1978; Williams & Bujak 1985; Schrank &

Ibrahim, 1995) (Figure 6.2).
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Sergipea variverrucata Zone (upper Aptian)

Definition: The top of this zone is defined by the last occurrence (LO) of Sergipea

variverrucata.

Other characteristics: In this zone the local LOs (LLO) of C y a t h i d i t e s spp.,

Gnetaceaepollenites diversus, Klukisporites pseudoreticulatus, Stellatopollis dubius,

Vitreisporites pustulosus and Cribroperidinium edwardsii are observed.

Age and correlation: According to Regali (e.g., 1987a, 1989) the extinction of Sergipea

variverrucata occurs within the upper Aptian but not at the Aptian–Albian boundary.

However, Dino (1992) placed the Sergipea variverrucata extinction at the boundary.

Cribroperidinium edwardsii is considered to be a long-ranging species, however, according to

the zonation of Schrank & Ibrahim (1995), it is restricted to the Aptian.

Observation: Sergipea variverrucata is recorded only in well GTP-24-SE. Due the absence of

this species in well GTP-17-SE, the LLO of Schrankipollis reticulatus (ornamented

tricolpates) was used to identified the upper zonal boundary (Figure 6.3). The LLO of

Schrankipollis reticulatus coincides with the LO of Sergipea variverrucata (Figure 6.1)

According to Dino (1992), the extinction of Equisetosporites maculosus coincides with the

extinction of Sergipea variverrucata.
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Figure 6.3. Correlation of the identified zones and sub-zones between the two studied wells

Equisetosporites maculosus Sub-zone (upper Aptian)

Definition: The base of this sub-zone is defined by the LO of Sergipea variverrucata. The

upper boundary is defined by the local LO of Equisetosporites maculosus.

Other characteristics: the Equisetosporites maculosus sub-zone is characterized, among

others, by the following local first occurrences (LFO): Antulsporites spp., Brenneripollis

reticulatus,  Equisetosporites albertenses,  Equisetosporites ovatus, Microfoveolatus

daunkiensis, and the LFO of the dinoflagellates Pseudoceratium spp., Spiniferites

ancoriferus?, Tanyosphaeridium sp. and Oligosphaeridium albertenses. In this interval the

LLOs of Bennettitaepollenites regaliae, Gnetaceaepollenites chlatratus, Striatopollis

reticulatus and Palaeoperidinium cretaceum are observed.
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Age and correlation: In this sub-zone the LFO of Oligosphaeridium spp. represented by

Oligosphaeridium albertenses is recognized. This species has mainly been reported from the

Barremian–Albian of Morocco (Below, 1982, 1983, and 1984). Palaeoperidinium cretaceum

is recorded from the lower to upper Aptian by Torricelli (2000), and from the

Barremian–Albian by Below (1981).

Dejaxpollenites microfoveolatus Sub-zone (late Aptian)

Definition: The base of this sub-zone is defined by the LLO of Equisetosporites maculosus

and its top by the LLO of Dejaxpollenites microfoveolatus.

Other characteristics: In this sub-zone the local FFOs of Oligosphaeridium complex,

Oligosphaeridium totum and Odontochitina operculata are observed. The LLOs of the

palynomorphs Tanyosphaer id ium  sp., Sys t ema tophora?  spp., Circulodinium

Uesuguipollenites callosus, Antulsporites sp., and Gnetaceaepollenites uesugui and the

dinoflagellates Oligosphaeridium irregulare,  Oligosphaeridium pocolum and

Prolixosphaeridium parvispinum are restricted into this sub-zone.

Age and correlation: According to Dino (1994), Dejaxpollenites microfoveolatus is also

found in the Albian of his Biozone C (Figure 6.1). Odontochitina operculata has frequently

been reported from the Aptian and less commonly from the Albian (Figure 6.2), whereas

Prolixosphaeridium parvispinum has mainly been reported from Aptian strata (e.g., Davey,

1979; Hedlund & Beju, 1977; Davey & Verdier, 1974)

Observation: In this sub-zone only the LFOs of dinoflagellates are recorded. This reflects the

marine influence in the upper part of the succession. The well-diversity of Oligosphaeridium

and the LFO of Odontochitina support this conclusion. This sub-zone was not recognized in

well GTP-17 (Figure 6.3).

Classopollis echinatus Zone (middle? Albian)

Definition: The base of this zone is defined by the LFO of Elaterosporites klaszi?

Age and correlation: An Albian age is indicate by the presence of elaterate-bearing species

represented herein by the Elaterosporites klaszi?. Elaterates have been reported as typical of

the Albian strata (Herngreen & Duenas-Jimenez, 1990). Elaterosporites klaszi is not known to

occur below the middle Albian. This species is used to define the Elaterosporites klaszi-

Afropollis-Tricolporopollenites Zone of the middle Albian of the Morocco (Schrank &
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Ibrahim, 1995). Of particular stratigraphic interest is the local FO of the dinocyst Spiniferites

bejuii. This species was described from the Coniacian–Santonian of the Côte d‘Ivoire-Ghana

transform margin. However, according to Cecília C. Lana (Petrobras, Rio de Janeiro, person.

comm., September 1999) this species has also been reported from older strata. According to

the zonation of Regali & Santos (1999), the species Elaterosporites klaszi occurs in this zone.

Observation: Classopollis echinatus was not recorded in the samples studied. This interval

overlies the Dejaxpollenites microfoveolatus sub-zone. The absence of forms indicating the

Cardiongulina elongata, Brenneripollis reticulatus and Retiquadricolpites reticulatus sub-

zones and Steevesipollenites alatiformis Zone of the uppermost Aptian–lower middle Albian

indicates a possible hiatus comprising the stage boundary.
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CHAPTER 7

PALEOECOLOGY

The paleoecological analysis provides data on the palynomorph composition that reflect the

progressive increase in marine influence in the area. For this analysis, percentage data on

palynomorph genera from wells GTP-17-SE and GTP-24-SE were used to investigate the

relationship between the palynomorphs and their depositional environment.

7.1 Palynological assemblages

R-mode cluster analysis, based on the abundance and composition of all 64 palynomorph

genera found in wells GTP-17-SE and GTP-24-SE, revealed four superclusters that represent

the palynological assemblages (PA) 1-4 (Figure 7.1). The major break between clusters 1 and

2 reflects clearly the separation of marine and terrestrial palynomorphs.
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Figure 7.1. Dendrogram (r-mode) of 64 genera from the two wells studied showing the four palynological
assemblages.
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Palynological Assemblage 1

Palynological Assemblage 1 assemblage is composed of marine palynomorphs, with the

exception of the fern spore genus Antulsporites. The assemblages contains Pseudoceratium,

Prolixosphaeridium Cyclonephelium, Exochosphaeridium, Florentina, Trichodinium,

scolecodonts, Spiniferites, foraminiferal test linings, Oligosphaeridium, Systematophora and

Antulsporites.

Nine out of nineteen genera of the dinoflagellates recorded in the succession are

included in this assemblage, the majority of them belonging to the gonyaulacoid group.

Generally, these genera indicate an open marine environment (neritic setting). Spiniferites is

the most abundant dinoflagellate and, together with associated dinoflagellates such as

Exochosphaeridium, Trichodinium and, Oligosphaeridium, indicative of open neritic

conditions (Downie et al., 1971; Williams, 1977; Masure, 1984; Marshall & Batten, 1988;

Lana, 1997). However, the most abundant marine palynomorph is the foraminiferal test lining

group (FTL), which generally, is present in great abundance in nearshore environments

(Tyson, 1995; Lana 1997). This supports the theory that most FTL are derived from benthic

foraminifera (Tyson, 1993). According to some authors (e.g., Cross et al., 1966; Melia, 1984;

Tyson 1993) high abundances of this group is an indication of upwelling.

Like the FTL, Cyclonephelium is mainly recorded in nearshore environments (Eshet et al.,

1992; Lana, 1997). Moreover, high abundances of the genus Cyclonephelium are related to

restricted marine environments under stress conditions.

 Psilatriletes

Cicatricosisporites

Megaspore

Botryococcus

Foraminiferal test-lining

Spiniferites

Subtilisphaera

Exochosphaeridium

Cyclonephelium

Trichodinium

Palaeoperidinium

Oligosphaeridium

Classopolis

Equisetosporites

Gnetaceaepollenties

Araucariacites

Afropollis

Bisaccate

B
is

ac
ca

te

1.0

A
fr

op
ol

lis

-0.1.0

-0.01

A
ra

uc
ar

ia
ci

te
s

1.0

0.05

-0.03

G
ne

ta
ce

ae
po

lle
nt

ie
s

-0.1.0

0.2

0.25

-0.06

E
qu

is
et

os
po

rit
es

1.0

-0.29

0.16

0.31

-0.02

C
la

ss
op

ol
is

1.0

-0.15

-0.19

-0.3

-0.24

0.06

O
lig

os
ph

ae
rid

iu
m

1.0

-0.26

-0.02

-0.04

0.02

-0.07

-0.04

P
al

ae
op

er
id

in
iu

m

1.0

-0.02

-0.5

-0.004

-0.05

-0.05

0.08

-0.01

Tr
ic

ho
di

ni
um

1.0

0.06

-0.04

-0.24

-0.03

-0.02

-0.08

0.07

-0.04

C
yc

lo
ne

ph
el

iu
m

1.0

0.09

-0.02

0.36

-0.5

-0.05

0.03

-0.11

-0.01

-0.05

E
xo

ch
os

ph
ae

rid
iu

m

1.0

0.38

0.08

0.01

0.19

-0.47

0.04

-0.01

-0.10

0.11

-0.05

S
ub

til
is

ph
ae

ra

1.0

0.01

-0.02

-0.05

-0.004

0.03

-0.36

-0.18

-0.05

-0.08

0.12

-0.03

S
pi

ni
fe

rit
es

1.0

0.11

0.23

0.13

0.09

0.03

0.03

-0.42

-0.1

-0.03

-0.27

0.11

-0.06

F
or

am
in

ife
ra

l t
es

t-
lin

in
g

1.0

0.82

0.08

0.17

0.09

0.09

0.02

0.01

-0.4

-0.12

-0.01

-0.26

0.07

-0.05

B
ot

ry
oc

oc
cu

s

1.0

0.04

0.06

0.13

0.11

0.05

-0.03

0.01

0.001

-0.15

0.02

0.02

-0.03

0.02

0.03

1.0

0.02

-0.07

-0.06

-0.004

-0.02

-0.05

-0.03

-0.02

0

0.01

0.04

-0.04

0.06

-0.01

0.1

M
eg

as
po

re

1.0

0.12

0.04

-0.11

-0.1

-0.02

-0.05

-0.06

-0.06

-0.01

-0.06

-0.2

-0.07

-0.06

0.29

0.02

0.16

C
ic

at
ric

os
is

po
rit

es

1.0

0.5

0.001

0.18

-0.04

-0.04

-0.03

0.05

0.05

0.06

-0.02

0.01

-0.31

-0.05

-0.06

0.27

-0.04

0.09

 P
si

la
tr

ile
te

s

Figure 7.2. Pearson correlation of selected paleoecologically significant genera from the two studied wells.
Values in bold indicate significant positive correlation and those in italic negative correlation.
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Palynological Assemblage 2

PA2 is composed only of terrestrial palynomorphs: Retimonocolpites, Gnetaceaepollenites,

Bennettitaepollenites, Cycadopites, Equisetosporites, Cyathidites and Crybelosporites. This

assemblage has the lowest palynomorph abundance of the assemblages, with ephedroid types

(Gnetaceaepollenties and Equisetosporites) being the most abundant. Their pollen grains are

related to the modern gymnosperms Ephedra and Welwitschia (Gnetales), which are found in

arid to semi-arid environments (Doyle et al., 1982; Arai & Coelho, 1996). As observed by

Doyle et al. (1982), the correlation of Gnetaceaepollenites and Equisetosporites with

Classopollis is negative (Figure 7.2), which suggests that these genera are less tolerant of

saline conditions than Classopollis.

Two pteridophyte genera, (Cyathidites and Crybelosporites), also are present in this

assemblage, although in small numbers.

Palynological Assemblage 3

PA3 shows the highest palynomorph abundance among the assemblages, with a dominance of

Classopollis grains. The assemblage consists of Retitricolpites, Brenneripollis, Tricolpites,

Complicatisaccus,  Classopollis, bisaccates, Striatopollis, Stellatopollis, Acritarcha,

megaspore, Palaeoperidinium, Dinopterygium? , Vitreisporites, Cribroperidinium,

Subtilisphaera, Clavatriletes, Echitriletes, and Foveotriletes. Classopollis was produced by

the extinct conifer family Cheirolepidiaceae (Doyle et al., 1982) and dominated in regions

with arid climates. Classopollis is most commonly recorded in nearshore marine-lagoonal

environments and often associated with evaporites (Vakhrameev, 1970; Doyle et al., 1982;

Hashimoto, 1995; Arai & Coelho, 1996). Classopollis shows low correlation with the other

palynomorphs (Figure 7.2).

The presence of bisaccate (bisaccate-types and Vitreisporites) pollen in PA3 is

contradictory because these pollen types are normally associated with temperate highland

climates. However, Arai & Coelho (1996) investigated samples from the Aptian–Albian of

the Araripe Basin (north of the Sergipe Basin) and observed a relatively high correlation

between the bisaccate group and Classopollis. According to them, the bisaccates were

transported by trade winds and that its abundance was influenced by a minor dilution in the

arid periods (weaker terrestrial supply), whereas the terrestrial influx responsible for transport

of the other palynomorphs was relatively weak. Lima (1983) suggested that the occurrence of
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the bisaccate pollen Vitreisporites and Cedripites  in deposits where Classopollis

predominates, could be attributed to short episodes of cooler (possibly subtropical)

conditions.

The fern spores (megaspores, Clavatriletes, Echinatisporis and Foveotriletes) are also

present in this assemblage, but in low abundances. The presence of megaspores reflects a

nearshore environment. These spores are large, dense and thick-walled and not easily

transported, so in general they are deposited near their source (Speelman & Hills, 1980).

Four genera of dinoflagellates are recorded in PA3 (Palaeoperidinium, Dinopterygium?,

Cribroperidinium, and Subtilisphaera). Among them, the genus Subtilisphaera is by far the

most abundant, being the second most abundant dinocyst genus in the assemblage. Generally,

this genus is associated with marine environments with low salinity (Jain and Millepied,

1975). Subtilisphaera are abundant in assemblages of low diversity (Arai et al., 1994; Lana,

1997). It represents 98% of the total of the four genera recorded in PA3, and correlation with

other palynomorphs is very low (Figure 7.2). Arai et al. (1994, 2000) proposed Subtilisphaera

ecozones for the Early Cretaceous of the proto-Atlantic Ocean. These ecozones were

originally identified in the Aptian–Albian of the Ceará Basin (northern Brazil) and later in

other continental marginal basins of Brazil. However, according to Arai et al. (op. cit.) this

ecozone has not been confirmed in the Sergipe Basin. Within five ecozones, the

Subtilisphaera spp. diluted by terrestrial palynomorphs Ecozone would be the most

comparable with the PA3. Subtilisphaera and Palaeoperidinium are typical of restricted

marine environments. Dinopterygium? and Cribroperidinium shows very low abundances.

Palynological Assemblage 4

PA4 is distinguished by the high diversity of fern spores and the high abundance of the genus

Araucariacites. It is composed of Callialasporites, Rousea, Uesuguipollenites, Schrankipollis,

Tanyosphaeridium, Afropollis, Steevesipollenites, Circulodinium, Perotriletes,

Microfoveolatosporis, Dejaxpollenites, Leptolepidites, Apteodinium, Elaterosporites?,

Collarisporites, Sergipea, Klukisporites, Reticulosporis, Botryococcus, Matonisporites,

Quadricolpites, Pilosisporites, Odontochitina, Araucariacites, Retitriletes, Verrucosisporites,

Cicatricosisporites, and Cyathidites.

Araucariacites is the second most abundant genus of the terrestrial palynomorphs.

According to Doyle et al. (1982) it is related to a tropically-centered group, which are found

in lowland deposits of the Early Cretaceous age. These authors mentioned that an increase in
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aridity resulted in a decline of Araucariacites abundance. This was also suggested by Arai &

Coelho (1996), who mentioned the fact that Araucariacites is characteristic of humid and

subtropical to tropical climates. The genus shows a negative correlation with Classopollis

(Figure 7.2), thus confirming this hypothesis.

PA4 contains the highest number of pteridophyte genera with Cicatricosisporites and

Cyathidites being the most abundant. The fern spores have been largely related to humid

conditions, based on modern distributions of the pteridophytes (Doyle et al., 1982; Lima,

1983; Arai & Coelho, 1996). Generally, high abundance of these spores is recorded in

nearshore environments (Hughes & Moody-Stuart, 1967; Tschudy 1969, Heusser & Balsam

1977, Mudie 1982, Tyson, 1989). The genera Cicatricosisporites and Cyathidites have a

negative correlation with Classopollis and ephedroid pollen (Figure 7.2).

Afropollis is the most abundant angiosperm pollen genus in the succession, although, it

is recorded only in small amounts. This genus has been interpreted as typical of arid

environments; however; just as the ephedroid group, Afropollis was less tolerant to saline soil

conditions (Doyle et al. 1982). Afropollis also shows a negative correlation with Classopollis

(Figure 7.2).

Four genera of dinoflagellates are found in PA4: Tanyosphaeridium, Circulodinium,

Apteodinium, and Odontochitina, with Apteodinium being the most abundant. It has been

interpreted as indicative of inner neritic conditions (Wilpshaar & Leereveld, 1994), but others

have suggested it could be found in open marine environments (Leckie, 1990). Circulodinium

is characteristic of restricted marine environments (Lana, 1997). The other two genera are

rare.

In this assemblage is included the only fresh-water palynomorph found in the succession,

the genus Botryococcus. This genus is characteristic of fresh-water lacustrine, fluvial,

lagoonal and deltaic facies (Traverse, 1955; Pocock, 1972; Herngreen et al., 1980 Batten &

Lister, 1988; Williams, 1992). According to Tyson (1995), the abundance of Botryococcus in

marine sediments is usually low.

7.2 Ecophases

The application of ecophases was first introduced by Schuurman (1977), who defined as a

recognizable step of the successive development of a (palynological) assemblages (in

Brugman et al., 1994). According to Brugman et al. (1994) the ecophases are characterized by

the distribution of palynomorph taxa that reflect developments in the local vegetation or

phytoplankton communities.
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The stratigraphic distribution of the palynological assemblages allowed the definition of

seven ecophases (Figure 7.3-7.4). These are recognized in both wells, but with some

differences that are discussed below.

Ecophase 1 is distinguished by a relatively high abundance of marine palynomorphs

from the palynological assemblage 1 (PA1). In well GTP-17 a PA1 is composed essentially of

FTL. In well GTP-24-SE FTL are also dominant, although dinocysts (Spiniferites) are present

in moderate abundances.

The main characteristic of Ecophase 2 is the absolute dominance of PA3, in particular the

genus Classopollis. Marine palynomorphs are rare, and are found only in the lower part of the

ecophase.

The dominance of PA4, in particular by Araucariacites together with the highest

abundance of the palynomorphs from PA2 characterizes Ecophase 3. This ecophase can be

further distinguished by the rare occurrence of marine palynomorphs.

During Ecophase 4 the abundance of palynomorphs from PA3 increased again due

mainly to Classopollis. The great abundance of these terrestrial palynomorphs from PA3

reflects a high proportion of fine siliciclastic sedimentation, especially shales.

Ecophase 5 is characterized by an increase in marine palynomorphs from PA1, mainly

due to Spiniferites, Exochosphaeridium, and Trichodinium associated with fern spores

(Cyathidites and Cicatricosisporites) and Araucariacites from PA4. Of all the dinoflagellates

recorded in the succession, these marine components are the ones that are most clearly

indicative of open marine environments. Therefore, their abundance in this ecophase is strong

evidence of the beginning of a transgressive phase.

In Ecophase 6 the percentage of Classopollis (PA3) increases again, but remains lower

than in ecophases 2 and 4. This, together with a moderate abundance of marine palynomorphs

from PA1 (particular in well GTP-24-SE), indicates that the terrestrial influx was not as

strong as in Ecophase 4. Moreover, in spite of the evidence of a moderate regression, the

environment is still characterized as open marine.

Ecophase 7 is characterized by high abundance and diversity of marine palynomorphs from

PA1 indicating an open marine environment. This is distinguished mainly in well GTP-24-SE.

The abundance of PA1 in well GTP-17-SE is relatively low, with PA4 being the most

abundant. In fact, in both wells Araucariacites pollen grains from PA4 are the most

characteristic land-derived elements. The low abundances of PA1 in well GTP-17-SE are

taken to reflect a proximal facies of the Angico Member.
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Figure 7.3. Stratigraphic distribution of palynological assemblages showing the ecophases for  well GTP-17-SE.
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Figure 7.4. Stratigraphic distribution of palynological assemblages showing the ecophases for  well GTP-24-SE
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7.3 Palynological Marine Index (PMI)

The PMI curves of both wells show strong fluctuations. The index ranges from 100.0, where

marine palynomorphs are absent to 250.00 (in GTP-24-SE). This fluctuation reflects the

major (low PMI values) and minor (high PMI values) influx in the area. However, in both

curves there is an increase in abundance of marine palynomorphs upward. The average

abundance in well GTP-24-SE is higher (138.90) than in GTP-17-SE (122.90). Most peaks of

the PMI from both wells are related to an increase in abundance of FTL and/or Spiniferites.

However, in well GTP-17-SE some of these peaks are related also to the presence of

Subtilisphaera.

High values of PMI are found in ecophases where PA3 shows moderate abundance (Figure

7.5). This is best observed in well GTP-17-SE (ecophases 1 and 5). In well GTP-24-SE high

PMI values are also found in ecophases characterized by PA1 (e.g., ecophases 1, 4, 5 and 7)

(Figure 7.6).

7.4 P/G ratio

The P/G ratio is characterized by strong fluctuations, but with a slight decrease upward

(Figures 7.5-7.6). As for the PMI, this decrease also indicates a progressive marine influence

in the area. However, terrestrial input into the this marine environment is indicated through

major peaks of the P/G ratio that reflect the marked increase in abundance of the genus

Subtilisphaera.

Comparison of PMI with the P/G ratio curves shows that the increase in PMI values is

directly related to the decrease of the P/G ratio (Figures 7.5-7.6). It is not surprising that the

highest values of the ratio are recognized in ecophases 4 and 6 characterized by PA3.

However, in the lower part of Ecophase 5 of well GTP-17-SE Subtilisphaera is also very

common (Figure 7.6).
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Figure 7.5. Stratigraphic distribution of PMI and P/G ratio for well GTP-17-SE showing the ecophases and their
palynological assemblages.
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Figure 7.6. Stratigraphic distribution of PMI and P/G ratio for well GTP-24-SE showing the ecophases and their
palynological assemblages.
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7.5 Paleoclimatic implications

In both studied wells high abundances of Classopollis are observed, although the relative

abundance decreases markedly upward, whereas fern spores increase. These trends reflect the

progressive increase of humid conditions. However, Classopollis is conspicuously more

abundant than the spores, making up 52.0% in well GTP-17-SE and 43.0% in GTP-24-SE.

This indicates that in spite of the increase in humidity, the climate was semi-arid to arid. The

abundance of Classopollis is higher in well GTP-17-SE than in well GTP-24-SE. This is

possibly related to the proximal setting of GTP-17-SE and the relative high abundances of

marine palynomorphs in GTP-24-SE.

In ecophases 5 and 7 there is a clear decrease in abundance of Classopollis with an average

of 36.0% in well GP-17-SE and 23.0% in GTP-24-SE (Figures 7.7-7.8). These proportions

suggest that the climate was slightly humid during deposition. This is also indicated by the

relatively high abundances of Araucariacites grains.
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CHAPTER 8

PALYNOFACIES ANALYSIS

The term palynofacies was first introduced by Combaz (1964) to describe the “total

microscopic image of the organic components”. The term became popular and detailed

studies have subsequently been published. However, the definition varied between different

authors. Some authors named the organic components “organic matter” (e.g., Gehmann, 1962;

Lorente, 1990), others “palynodebris” (e.g., Alpern, 1970; Durand et al., 1970; Boulter &

Riddick 1986; Farr 1989; van der Zwan, 1990; Boulter 1994;) and still others “kerogen”

(Tyson, 1995, 1996; Araujo, 1998; Mendonça Filho, 1999; Carvalho, 1999). The latter is

today the most widely used term to describe the organic components (Tyson, 1993).

Tyson (1995) defined the term kerogen as “the particulate organic matter residue isolated

from a sedimentary rock after complete dissolution of the rock matrix by HCL and HF (non-

oxidative) acids”. The term palynofacies was defined by the same author as “a body of

sediment containing a distinctive assemblage of palynological organic matter thought to

reflect a specific set of environmental conditions, or to be associated with a characteristic

range of hydrocarbon-generating potential”.

8.1 Palynofacies Associations

Five types of palynofacies are identified in the studied succession (Figure 8.1). These types

were observed in all samples studied from the two wells. Owing to their low abundance, the

zooclast groups are not used in the definition the palynofacies associations.

Palynofacies
types

Description

Pal-mp

AOM

Pal-s

Phy-t

Phy-o

Predominance of the palynomorph group
with a high content of marine
palynomorphs.

Predominance of the AOM group.

Predominance of the palynomorph group
with a high content of  sporomorphs.

Predominance of the phytoclast
group with a high content of transluscent
particles.

Predominance of the phytoclast group
with a high content of opaque particles.

Figure 8.1. Palynofacies types identified in the studied wells.
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To assess the pattern of distribution of the palynofacies types, their abundances were

submitted to cluster analysis by (r- and q-mode combined). The cluster for well GTP-17-SE,

based on the abundance and composition of the kerogen groups (except the zooclast group),

revealed two superclusters (Figure 8.2). These are: supercluster A, which is subdivided into

A1, A2 and A3, and supercluster B, subdivided into B1 and B2.  The combination of the r-

and q-mode analyses shows that the phytoclast group is mainly included in cluster A (all

samples up to 50.0%). A1 is composed mostly of phytoclasts and a moderate abundance of

the AOM group (Phy/AOM); A2 of high abundances of phytoclasts combined with moderate

to high abundances of palynomorphs (Phy/Pal); and A3 composed of very high abundances of

phytoclasts (Phy). The palynomorph group shows high values at 103.30 m, which made it

possible to separate this sample from the others. The high abundances of the AOM group

occur in supercluster B. B1 is characterized by very high abundances of the AOM group. In

B2 this group occurs with phytoclasts and, in particular with the palynomorph group

(AOM/Pal).

The major break that occurred between clusters A and B is strongly related to the

abundance of the phytoclast group. The cluster analysis by r-mode (Figure 8.2) clearly shows

that the phytoclast group is separated from the palynomorph and AOM groups.

For well GTP-24-SE, the cluster analyses revealed four superclusters (A to D) (Figure 8.3).

Supercluster A is composed of only one cluster distinguished by high abundances of

phytoclast group (Phy). Supercluster B was subdivided into B1 and B2, in which cluster B1 is

represented by a combination of high abundances of the phytoclast group, with moderate to

high abundances of the AOM group (Phy/AOM), and B2, in which the phytoclast group is

combined with moderate to high abundances of palynomorphs (Phy/Pal). Supercluster C is

characterized by very high percentages of  the palynomorph group (Pal). Supercluster D is

represented by high abundances of the AOM group. This supercluster was subdivided into D1

and D2, based on the amounts of AOM. D1 presents very high abundances of the AOM

group. The D2 cluster is a combination of high abundances of AOM with a moderate

abundance of palynomorphs.



Figure 8.2. Dendrograms by r and q-mode of well GTP-17-SE showing the grouping of  samples
(q-mode) and kerogen groups (r-mode).
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Figure 8.3. Dendrograms by r and q-mode of well GTP-24-SE showing the grouping of samples (q-mode)
and kerogen groups (r-mode).
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In this well the main break separates clearly the samples with high abundances of the

AOM group from those with high abundances of phytoclasts (r-mode) (Figure 8.3). Based on

the palynofacies composition, their abundance and the clusters, the types were grouped into

nine palynofacies associations (Figure 8.4), which were used for the definition of

palynofacies units

Palynofacies associations Description

Predominance of the phytoclast group with a
high content of opaque particles.

Phy-o

Predominance of the phytoclast group with a
high content of opaque particles combined
with sporomorphs.

Phy-o/Pal-s

Predominance of the phytoclast group with a
high content of opaque particles combined
moderate content of the AOM group.

Phy-o/AOM

Predominance of the phytoclast group with a
high content of opaque particles combined
with marine palynomorphs.

Phy-o/Pal-mp

Predominance of the palynomorph group with
a high content of sporomorphs combined with
opaque particles.

Pal-s/Phy-o

Predominance of the AOM group combined
with sporomorphs.

AOM/Pal-s

Predominance of the AOM group combined
with opaque particles.

AOM/Phy-o

Predominance of the AOM group combined
with marine palynomorphs.

AOM/Pal-mp

Predominance of the palynomorph group with
a high content of marine palynomorphs
combined with opaque particles.

Pal-mp/Phy-o

Figure 8.4. Palynofacies associations identified after the cluster analyses.

8.2 Palynofacies units

The pattern of stratigraphic distribution of the palynofacies associations forms the base for the

definition of palynofacies units. The variations reflect from environmental changes, mainly

shoreline shifts that influenced the proximal-distal trend.

The palynofacies units were defined according to Brugman et al. (1994), who established

units and subunits to Lettenkeuper of the Germanic Basin, based on quantitative data on total

organic matter. They indicated that the stratigraphical subdivisions of the succession based on

ecophases may allow interpretations of depositional environments, but at some intervals

because of the lack of significant palynomorphs, the palynofacies units are very useful to

interpret the paleoenvironments.
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8.2.1 Palynofacies units of well GTP-17-SE

The sedimentary succession of GTP-17-SE is represented by a lower part characterized by

moderate to high contents of ‘AOM‘ kerogen and an upper part with high to very high

amounts of the phytoclast group. There is a progressive increase in phytoclast particles

upward, in particular of opaque particles. The mean of entire succession (in this study used as

general mean) of the kerogen categories is displayed in Figure 8.5. The succession of GTP-

17-SE was subdivided into eight units (units A-17 to H-17) as illustrated in Figure 8.22.
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Figure 8.5. Palynofacies summary for well GTP-17-SE. Relative abundance (%) of kerogen groups from total of
kerogen. Relative abundance (%) of the phytoclast group from total phytoclasts. Relative abundance (%) of the
palynomorph group from total palynomorphs. AOM= amorphous organic matter; Ph= phytoclast; Pa=
palynomorphs; Zoocl= zooclast; O-Eq= opaque equidimensional; O-La= opaque lath; Fh= fungal hyphae; Wp=
wood tracheid with pits; Ww= wood tracheid without pits; Mb= membrane; FTL= foraminiferal test linings; Df=
dinoflagellates; Pl= pollen; Sp= spores.

The values of the ratios of opaque to translucent (O:TR) for GTP-17-SE range from –0.27

to 1.9, with a mean of 0.47 (Table 8.1). The ratio curve is characterized by a slight long-term

increasing trend upwards. The ratios of equidimensional to lath particles (O-Eq:O-La) range

from 0.07 to –1.85 (mean = -0.79) and the ratio curve shows a marked increase upwards. The

abundance of tetrads shows a slight decrease upward. The abundance values range from 0 to

23.5% (% of palynomorphs) with a general mean of 3.8%. The PMI values range from 100.00

(nonmarine palynomorphs) to 200.00, with a mean of 122.90. The results found in each unit

are shown throughout this well section and the stratigraphic distribution of the palynofacies

ratios and parameters are illustrated in Figure 8.23.

Table 8.1. Summary of palynofacies parameters of well GTP-17-SE. O= opaque;
TR= translucent; O-Eq= opaque equidimensional; O-La= opaque lath.

O:TR ratio
(log10)

1.90

-0.26

0.47

O-Eq:O-La ratio
(log10)

0.10

-1.90

-0.79

Tetrad frequency
(%)

23.50
-

3.80

PMI

200.00

100.00

122.90

Max.

Min.

General mean



Figure 8.22. Stratigraphic distribution of kerogen categories in well GTP-17-SE. AOM= amophous organic matter;  O-Eq= opaque equidimensional; O-La= opaque lath; Fh=
fungal hyphae; Wp= wood tracheid with pits; Ww=wood tracheid without pits; Cu= cuticle; Mb= membrane; Zoo= zooclast; Sm= sporomorphs; FTL= foraminiferal test linings;
Ph= phytoplankton.
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Figure 8.23. Stratigraphic distribution of the palynofacies ratios and parameters of well GTP-17-SE. Abbreviation see Table 8.2.
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Unit A-17 (471-393 m) - Palynofacies association AOM/Pal-s

This unit is characterized by relatively large amounts of the AOM group, which are combined

with a moderate abundance of terrestrial palynomorphs (sporomorph subgroup). However,

marine palynomorphs, in particular foraminiferal test linings (FTL), are present. Despite the

large amount of phytoclasts, this unit is characterized by the AOM group because its average

abundance (32.3%) in this unit is much higher than its general mean (10.9%) (see Figure 8.6).

The AOM group reaches high values (up 70% of total kerogen). Its abundances decrease

towards the top, where they make up only 0.4% of the kerogen. The phytoclast group contains

mainly opaque-lath particles. The trendline of this group decreases upwards. Translucent

particles are present in moderate amounts throughout the succession.

Unit
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(AOM/
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Figure 8.6. Percentage mean values of the kerogen categories for Unit A-17. Relative abundances and
abbreviations as in Figure 8.5.

Ratios and parameters. The average values of the O:TR ratio are higher than the general

mean (Figure 8.7). The ratio curve shows a constant trendline (Figure 8.23). The O-Eq:O-La

shows a strong fluctuation; however, the trendline shows a slight decreasing trend indicating

an increase of O-La upwards. The tetrad abundances show the highest values found in this

well (23.5%), with a marked increasing trend upwards. The unit is characterized by moderate

to high PMI values. The PMI curve also increases upwards; however, in the uppermost

sample no marine palynomorphs were observed (Figure 8.23).

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

0.92

0

23.50

150.00

Min.

0.25

-1.85

-

100.00

Unit Mean

0.64

-0.77

5.90

119.4

Trendline

constant

slightly decrease upwards

increase upwards

increase upwards

General mean

0.47

-0.79

3.80

122.9

Remarks

highest value

Figure 8.7. Summary of palynofacies ratios and parameters of Unit A-17. For abbreviations see Table 8.1.
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Unit B-17 (393-374 m) - Palynofacies association Phy-o/Pal-s

Unit B-17 is strongly dominated by opaque phytoclasts, which are associated with moderate

to high contents of terrestrial palynomorphs (Figure 8.8). The phytoclast group is composed

mainly of opaque-lath particles. Translucent particles are mainly composed of Ww particles.

The palynomorph group in this unit contains mainly terrestrial palynomorphs, particularly

pollen grains. The marine palynomorphs are represented by only two forms (FTL and

dinocysts). The AOM occur in low to moderate abundances increasing gradually within the

uppermost part of the unit.

38.0

1.0

15.3

10.9

Unit
 B-17

(Phy-o/
Pal-mp)

AOM % Ph% Pa % Zoocl %

Max.
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Mean

Kerogen groups Phytoclast Group Palynomorph Group
Opaque Translucent

O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp

Marine Terrestrial

87.2

44.2

67.9

73.7

23.0

10.0

16.9

15.2

0.2

-

0.1

0.3

20.7

2.1

7.7

12.5

87.8

57.3

66.6

59.4
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-

0.3

0.2

1.3

-

0.5

0.7

5.3

-

1.9

3.3
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23.8
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-

0.1

0.1
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0.1
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0.5

-

0.1
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-

-

-

0.02
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97.3

85.9

5.0

1.0

2.5

6.8General mean

Figure 8.8. Percentage mean values of the kerogen categories for Unit B-17. Relative abundances and
abbreviations as in Figure 8.5.

Ratios and parameters. The ratio curve of O:TR shows a decreasing trend upwards. The

mean value is higher than the general average (Figure 8.9). The O-Eq:O-La ratio clearly

shows an increasing trend, due to the progressive increase of equidimensional particles. The

tetrad abundances show low to moderate values, with a slight increasing trend upwards

(Figure 8.23). The unit is characterized by low PMI values; marine palynomorphs are present

only in two samples.

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

0.98

-0.70

4.00

150.00

Min.

0.23

-1.50

0.50

100.00

Unit Mean

0.49

-1.10

2.60

119.40

Trendline

decrease upwards

increase upwards

constant

constant

General mean

0.47

-0.79

3.80

122.90

Figure 8.9. Summary of palynofacies ratios and parameters of Unit B-17. For abbreviations see Table 8.1.

Unit C-17 (374-325 m) - Palynofacies association AOM/Pal-s

Unit C-17 shows the same characteristics as Unit A-17, in which a high relative abundance of

the AOM group (Figure 8.10) is observed. The palynomorphs are composed mainly of
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terrestrial palynomorphs; however at 328.67 the marine palynomorphs show a major peak in

abundance due to the high relative abundances of FTL and the genus Spiniferites. The

phytoclast group is also present in moderate to high abundances (Figure 8.10). This group is

composed mainly of O-La particles. The translucent particles are predominately composed of

Ww particles, which show moderate to high values (Figure 8.10).

Unit
 C-17

(AOM/
Pal-s)

AOM % Ph% Pa % Zoocl %

Max.

Min.

Mean

Kerogen groups Phytoclast Group Palynomorph Group
Opaque Translucent

O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp

Marine Terrestrial
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9.9
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-
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-
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-
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-

-

-
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85.9
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-

2.4
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Figure 8.10. Percentage mean values of the kerogen categories for Unit C-17. Relative abundances and
abbreviations as in Figure 8.5.

Ratios and parameters. The O:TR ratio in Unit C-17 is characterized by strong

fluctuations; however, the ratio curve shows a clear decrease upward reflecting an increase in

translucent particles (Figure 8.11). The average value (0.39) is lower than the general mean

(Figure 8.11). The O-Eq:O-La ratio also shows strong fluctuations, but the ratio curve

increases slightly upward due to an increase in equidimensional particles. Tetrad abundances

range from 0 to 10%, and its trendline is constant. Unit C-17 is characterized by the highest

PMI value (200.00) of the entire succession. The PMI values increase markedly in the upper

part of the unit (Figure 8.23).

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

0.92

-0.83

10.00

200.00

Min.

-0.21

-1.50

-

100.00

Unit Mean

0.39

-1.14

4.50

116.20

Trendline

decrease upwards

increase upwards

slightly decrease upwards

increase upwards

General mean

0.47

-0.79

3.80

122.90

Figure 8.11. Summary of palynofacies ratios and parameters of Unit C-17. For abbreviations see Table 8.1.

Unit D-17 (325-300 m) - Palynofacies association Phy-o-t

Unit D-17 is strongly dominated by the phytoclast group. The abundance difference between

the subgroups (opaque and translucent) is very small; therefore, this unit was named Phy-o-t.

The O-La  (opaque) and Ww (translucent) are the most abundant particles; however, the

cuticle fragments show a marked increase. The AOM group shows very low to high

abundances, though, the average abundance is low. The palynomorphs are dominated by
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pollen grains. The spores show low to moderate abundances. The marine palynomorphs are

mainly represented by rare dinocysts (Figure 8.12).

Unit
 D-17

(Phy-o-t)

AOM % Ph% Pa % Zoocl %
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Mean

Kerogen groups Phytoclast Group Palynomorph Group
Opaque Translucent

O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp

Marine Terrestrial
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0.4
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-
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-
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-

1.8
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0.6

-

0.1
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94.4

85.9

4.5

1.0

2.2

6.8

Figure 8.12. Percentage mean values of the kerogen categories for Unit D-17. Relative abundances and
abbreviations as in Figure 8.5.

Ratios and parameters. All O:TR values are lower than the general average (0.47) (Figure

8.13). The trendline is constant reflecting the stable amount of translucent particles in this unit

(Figure 8.23). The O-Eq:O-La curve shows a gradual increase upward. Like the other ratio,

the average value (-0.77) is lower than the general mean. The abundances of tetrads show a

slightly increase towards the top. In this unit the PMI values are moderate to high and the

trendline shows an increase upwards (Figure 8.23).

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

0.46

-0.51

9.50

160.00

Min.

0.03

-1.00

-

100.00

Unit Mean

0.22

-0.77

3.10

130.70

Trendline

constant

slightly decrease upwards

decrease upwards

slightly increase upwards

General mean

0.47

-0.79

3.80

122.90

Figure 8.13. Summary of palynofacies ratios and parameters of Unit D-17. For abbreviations see Table 8.1.

Unit E-17 (300-277 m) - Palynofacies association Pal-mp/Phy-o-t

This unit is characterized by the relatively high abundances of marine palynomorphs, in

particular dinocysts (Figure 8.14). This is combined with nearly equal amounts of opaque and

translucent particles (phytoclast group), in which O-La and O-Eq of the opaque subgroup and

Ww (translucent) are the most abundant. The AOM group reaches moderate values, and its

abundance curve increases towards the top.
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Unit
 E-17

(Pal-mp/
Phy-o-t)

AOM % Ph% Pa % Zoocl %

Max.

Min.

Mean

Kerogen groups Phytoclast Group Palynomorph Group
Opaque Translucent

O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp

Marine Terrestrial

General mean
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12.0
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0.8

-
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-
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-
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3.5

0.5
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11.5

-

-

-

95

69.5

83.8
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3.0

10.9 73.7 15.2 0.3 12.5 59.4 0.2 0.7 3.3 23.8 0.1 2.8 4.5 0.02 85.9 6.8

Figure 8.14. Percentage mean values of the kerogen categories for Unit E-17. Relative abundances Relative
abundances and abbreviations as in Figure 8.5.

Ratios and parameters. The average values of the O:TR ratio are lower than the general

mean (0.47) due to the relatively large amounts of translucent particles. The ratio curve is

characterized by a progressive decrease upwards (Figure 8.15). The abundance curve for the

O-Eq:O-La ratio reflects the moderate to high abundance of the O-Eq particles; however, the

abundance curve decreases upwards. The tetrad abundances show low to moderate values

with a slight increasing trend upward. All values obtained for the tetrad abundance are lower

than the general mean (Figure 8.15). Unit E-17 is characterized by moderate to high PMI

values. The PMI curve shows a clear increase upwards.

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

0.50

-0.21

3.00

150.00

Min.

-0.10

-1.00

-

120.00

Unit Mean

0.24

-0.69

0.90

136.30

Trendline

decrease upwards

decrease upwards

slightly increase upwards

increase upwards

General mean

0.47

-0.79

3.80

122.90

Figure 8.15. Summary of palynofacies ratios and parameters of Unit E-17. For abbreviations see Table 8.1.

Unit F-17 (277-143 m) - Palynofacies association Phy-o/Pal-s

Unit F-17 is strongly dominated by opaque phytoclasts combined with a moderate to high

content of terrestrial palynomorphs (Figure 8.16) which characterize this unit. The phytoclast

group is composed mainly of opaque-lath particles (O-La); however O-Eq shows the highest

peak in abundance of this well. Translucent particles are mainly composed of Ww particles

and cuticles that are common in this unit. The palynomorph group contains mainly terrestrial

palynomorphs, in particular pollen grains. The marine palynomorphs are mainly represented

by dinocysts. Generally, ‘AOM’ occurs in low abundances and decreases towards the top

(Figure 8.22).
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Unit
F-17

(Phy-o/
Pal-s)

AOM % Ph% Pa % Zoocl %

Max.

Min.

Mean

Kerogen groups Phytoclast Group Palynomorph Group
Opaque Translucent

O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp

Marine Terrestrial

General mean 10.9 73.7 15.2 0.2 12.5 59.4 0.2 0.7 3.3 23.8 0.1 2.8 4.5 0.02 85.9 6.8
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-
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0.7
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1.8

-

-

53.5

2.0
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2.6

-
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0.3

0.8
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0.3
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-
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31.0

2.5

8.7

Figure 8.16. Percentage mean values of the kerogen categories for Unit F-17. Relative abundances Relative
abundances and abbreviations as in Figure 8.5.

Ratios and parameters. The O:TR ratio shows a progressive increasing upwards indicated

by a rise in opaque particles. In this unit the highest value of this ratio (1.9) is found;

however, the average (0.39) is lower than the general mean value (0.47). The curve for the O-

Eq:O-La ratio shows the same pattern as the O:TR. The curve for tetrad abundances shows

strong fluctuations and a slight decrease upwards. The PMI curve also shows a strong

fluctuations. In the upper part of the unit, two major peaks are recorded; however, the

trendline shows a slight decrease towards the top (Figure 8.23).

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

1.90

0.07

15.00

162.50

Min.

-0.20

-1.50

0.50

100.00

Unit Mean

0.39

-0.78

4.30

120.50

Trendline

decrease upwards

decrease upwards

slightly increase upwards

increase upwards

General mean

0.47

-0.79

3.80

122.90

Figure 8.17. Summary of palynofacies ratios and parameters of Unit F-17. For abbreviations see Table 8.1.

Unit G-17 (143-85 m) - Palynofacies association Pal-mp/Phy-o

This unit is characterized by the highest abundance of the palynomorph group, which is

dominated by terrestrial elements. However, the percentages of these palynomorphs decrease

upwards, whereas a clear increase in abundance of marine palynomorphs is observed. The

high abundance of marine palynomorphs, in particular dinocysts (Figure 8.18), is

characterized of this unit, as are high amounts of phytoclast particles. This group is composed

mainly of opaque particles, in which O-La and O-Eq are the most abundant. The translucent

particles are made up of moderate amounts of Ww and cuticle particles. The AOM group is

rare, but increase in abundances upwards (Figure 8.22).
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Unit
G-17

(Pal-mp/
Phy-o)

AOM % Ph% Pa % Zoocl %

Max.

Min.

Mean

Kerogen groups Phytoclast Group Palynomorph Group
Opaque Translucent

O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp

Marine Terrestrial

General mean 10.9 73.7 15.2 0.3 12.5 59.4 0.2 0.7 3.3 23.8 0.1 2.8 4.5 0.02 85.9 6.8
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0.6
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-

0.5
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-
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36.0

5.0

15.3

Figure 8.18. Percentage mean values of the kerogen categories for Unit G-17. Relative abundances Relative
abundances and abbreviations as in Figure 8.5.

Ratios and parameters. The average value (0.59) of the O:TR ratio is higher than the

general mean value (Figure 8.19). The ratio curve shows a constant trendline (Figure 8.23).

The O-Eq:O-La ratio is characterized by moderate to high values, in which the mean is lower

than the general mean. The ratio curve shows a progressive decrease upwards. The tetrad

abundances show a clear increase upward. The average abundance of the tetrads in this unit

(4.6%) is higher than the general value (3.8%). The PMI values are moderate to high and the

trendline indicates a slight increase upwards (Figure 8.23). The average (133.90) is higher

than the general mean (Figure 8.45).

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

1.13

-0.16

11.00

160.00

Min.

0.21

-0.75

0.50

100.00

Unit Mean

0.59

-0.48

4.60

133.90

Trendline

constant

decrease upwards

increase upwards

slightly increase upwards

General mean

0.47

-0.79

3.80

122.90

Figure 8.19. Summary of palynofacies ratios and parameters of Unit G-17. For abbreviations see Table 8.1.

Unit H-17 (85-18 m) - Palynofacies association Phy-o

Unit H-17 is strongly dominated by opaque phytoclasts reaching up to 100.0% of all kerogen

categories. This group is composed mainly of O-La (Figure 8.20), but O-Eq particles are also

present in large amounts. Translucent particles show moderate to high abundances and are

mainly composed of Ww particles. The cuticle fragments show the highest value recorded in

the well (see Figure 8.20). The unit is also characterized by extremely low abundances of the

AOM group. The palynomorph group occurs in small to moderate amounts; however, despite

of very high amounts of phytoclasts, the marine palynomorphs, in particular dinocysts, show

the highest abundances in the whole section (Figure 8.20). The terrestrial palynomorphs show

relatively low abundances. These elements are composed mainly of pollen grains; however,

the spores show moderate to high abundances.
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Unit
H-17

(Phy-o)

AOM % Ph% Pa % Zoocl %

Max.

Min.

Mean

Kerogen groups Phytoclast Group Palynomorph Group
Opaque Translucent

O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp

Marine Terrestrial

General mean 10.9 73.7 15.2 0.3 12.5 59.4 0.2 0.7 3.3 23.8 0.1 2.8 4.5 0.02 85.9 6.8
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24.6
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2.6

9.7

Figure 8.20. Percentage mean values of the kerogen categories for Unit H-17. Relative abundances and
abbreviations as in Figure 8.5.

Ratios and parameters. The curve for the O:TR ratio reflects the very large amounts of

opaque particles. In spite of a strong fluctuations, the ratio curve shows a clear increasing

trend. In the lower part of the curve there is an abrupt decrease (increase in translucent

particles), where the lowest value of this ratio (-0.26) (Figure 8.21) is observed. The

abundance curve for the O-Eq:O-La ratio reflects the moderate to high abundances of O-Eq

particles. The tetrad abundance show very low to moderate values. The abundance curve

shows a slight decreasing trend upwards (Figure 8.23). The PMI is characterized by a

decrease in abundance upwards. In the abundance curve two parts can be distinguished: a

lower part characterized by high PMI values, and an upper part marked by an abrupt decrease

in PMI values (Figure 8.23).

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

1.47

-0.17

8.00

175.00

Min.

-0.26

-1.06

-

100.00

Unit Mean

0.70

-0.61

1.00

140.60

Trendline

increase upwards

increase upwards

slightly increase upwards

decrease upwards

General mean

0.47

-0.79

3.80

122.90

Remarks

lowest value

Figure 8.21. Summary of palynofacies ratios and parameters of Unit H-17. For abbreviations see Table 8.1.

8.2.2 Palynofacies units of GTP-24-SE

The succession of well GTP-24-SE is characterized by a long-term transgressive trend

indicated by an increase of the AOM and palynomorph groups. This trend is best indicated by

a progressive upward increase in marine palynomorph abundance, especially of dinocysts.

The maximum, minimum and general means of kerogen categories for well GTP-24-SE are

summarized in Figure 8.24. The sedimentary succession of GTP-24-SE was subdivided into

ten units (Unit A-24-J-24) described below and illustrated in Figure 8.45.



Figure 8.45. Stratigraphic distribution of kerogen categories in well GTP-24-SE. ‘AOM‘= amophous organic matter; Re= resin; O-Eq= opaque equidimensional; O-La= opaque lath; Fh= fungal hyphae;
Wp= wood tracheid with pits; Ww=wood tracheid without pits; Cu= cuticle; Mb= membrane; Zoo= zooclast; Sm= sporomorphs; FTL= foraminiferal test linings; Ph= phytoplankton.
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Kerogen groups

AOM %

75.3

0.6

32.7

Ph%

87.4

12.8

47.9

Pa %

49

1.2

19.0

Zoocl %

3.0

-

0.3

Phytoclast Group
Opaque

O-Eq

39.0

0.6

9.0

O-La

79.7

14.2
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Translucent
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-

1.1

Wp

8.5

-

1.3

Cu
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-

1.8

Ww
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33.5
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-

1.1
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Marine
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-

7.8

Df
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-

24.9
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Fwp

1.5

-

0.1

Pl

100

4.0

61.0

Sp

32.5

-

6.3

Max.

Min.

General mean

Figure 8.24. Palynofacies summary for well GTP-24-SE. Relative abundances (%) of the kerogen groups from
total kerogen. Relative abundances (%) of the phytoclast group from total phytoclasts. Relative abundances (%)
of the palynomorph group from total palynomorphs. For abbreviations see Figure 8.5.

The highest and lowest values and means of entire succession of this well (general means)

of the ratios and parameters of well GTP-24-SE are displayed in Table 8.2 and illustrate in

Figure 46. The O:TR ratio curve is characterized by a slight long-term decreasing upward and

the O-Eq:O-La ratio shows a clear increase towards the top. The curve of tetrad abundances is

characterized by a slight long-term decrease upwards. The PMI curve is marked by a increase

upwards reflecting the increase of marine palynomorphs.

Table 8.2. Summary of palynofacies parameters of well GTP-24-SE. For abbreviations see Table 8.1.

Max.

Min.

General mean

O:TR ratio
(log10)

0.83

-0.53

0.21

O-Eq:O-La ratio
(log10)

0.01

-2.15

-0.84

Tetrad frequency
(%)

73.40

-

5.90

PMI

250.00

100.00

138.90



Figure 8.46. Stratigraphic distribution of the palynofacies ratios and parameters of well GTP-24-SE. Abbreviation see Table 8.2.
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Unit A-24 (415-383 m) - Palynofacies association AOM/Pal-s

This unit is characterized by a high abundance of the AOM group combined with the

palynomorph group that mainly consist of terrestrial elements, especially pollen grains

(95.8% of sporomorph subgroup). Marine palynomorphs are relatively few and represented

mainly by FTL.

The phytoclast group is composed mainly of O-La particles, which show high abundances.

Translucent particles are present but in moderate numbers. They are composed basically of

Ww particles (Figure 8.25).

Unit
 A-24

(AOM/
Pal-s)

AOM % Ph% Pa % Zoocl %

Max.

Min.

Mean

Kerogen groups Phytoclast Group Palynomorph Group
Opaque Translucent

O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp

Marine Terrestrial

General mean 32.7 47.9 19.0 0.3 9.0 52.2 11.1 0.7 1.8 33.5 11.1 7.8 24.9 0.1 61.0 6.3

65.0

32.3

49.0

51.7

18.8

35.1

17.8

11.4

15.2

1.6

-

0.6

12.3

4.3

8.2

70.4

65.7

67.6

1.6

-

0.6

2.0

-

0.2

0.6

-

0.2

28.3

17.1

22.3

-

-

-

17.7

-

7.5

11.3

-

4.8

-

-

-

100

79.7

87.7

8.0

1.0

3.7

Figure 8.25. Percentage mean values of the kerogen categories for Unit A-24. Relative abundances and
abbreviations as in Figure 8.5.

Ratios and parameters. The O:TR ratio reflects the high content of opaque particles.

However, the ratio curve shows a progressive decrease upwards (Figure 8.46). The values of

the O-Eq:O-La ratio also reflect the high content of O-La particles. The ratio curve decreases

towards to the top. The abundances of tetrads in Unit A-24 are moderate to high, ranging from

2.1 to 14.2% (Figure 8.26). The abundance curve shows a progressive decrease upwards. The

PMI values are moderate (from 100.00 to 150.00), in which the mean value is 136.10. The

trendline increases slightly upwards (Figure 8.46).

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

0.6

-0.73

14.20

150.00

Min.

0.39

-1.20

2.10

100.00

Unit Mean

0.50

-0.94

8.20

136.10

Trendline

decrease upwards

decrease upwards

decrease upwards

slightly increase upwards

General mean

0.21

-0.84

5.90

138.90

Figure 8.26. Summary of palynofacies ratios and parameters of Unit A-24. For abbreviations see Table 8.1.
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Unit B-24 (385-339 m) - Palynofacies association Phy-o/Pal-s

Unit B-24 is characterized by a high opaque particle content. It is composed mainly of O-La

particles. The O-Eq particles show moderate values. The Ww particles are the principal

content of the translucent particles (Figure 8.27), present in moderate to large amounts. The

phytoclast particles occur combined with moderate to high abundances of the palynomorph

group, composed only of terrestrial elements, especially pollen grains. The AOM group

shows low to moderate abundances. It decreases towards the top of the unit (Figure 8.45).

Unit
 B-24

(Phy-o/
Pal-s)

AOM % Ph% Pa % Zoocl %

Max.

Min.

Mean

Kerogen groups Phytoclast Group Palynomorph Group
Opaque Translucent

O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp

Marine Terrestrial

General mean 32.7 47.9 19.0 0.3 9.0 52.2 11.1 0.7 1.8 33.5 11.1 7.8 24.9 0.1 61.0 6.3

75.3

3.0

27.2

80.8

18.0

54.3

32.0

6.5

18.1

1.4

-

0.2

22.1

0.6

10.0

79.5

35.6

59.0

1.8

-

0.6

2.8

-

1.0

6.2

-

1.5

47.2

16.7

28.0

-

-

-

-

-

-

-

-

-

-

-

-

100

92.1

96.7

7.9

-

3.3

Figure 8.27. Percentage mean values of the kerogen categories for Unit B-24. Relative abundances and
abbreviations as in Figure 8.5.

Ratios and parameters. The O:TR ratio is characterized by high contents of opaque

particles. The ratio curve shows a progressive decrease upwards (Figure 8.46). The O-Eq:O-

La shows a clear increase trend indicated by the increase of O-Eq particles upwards. In this

unit the lowest value of this ratio (-2.15) is recorded (Figure 8.28). The tetrad abundances in

the Unit B-24 show a great variation ranging from very low to very high abundance. The

abundance curve shows a clear decrease upwards. The highest abundance of tetrads in well

GTP-24-SE (73.4%) is recognized in this unit (Figure 8.28). Owing to the absence of marine

palynomorphs the PMI values are constant (100.00).

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

0.64

-0.37

73.40

100.00

Min.

-0.03

-2.15

-

100.00

Unit Mean

0.37

-0.90

17.50

100.00

Trendline

decrease upwards

increase upwards

decrease upwards

-

General mean

0.21

-0.84

5.90

138.90

Remarks

lowest value

highest value

no marine palynomorphs

Figure 8.28. Summary of palynofacies ratios and parameters of Unit B-24. For abbreviations see Table 8.1.

Unit C-24 (338-318 m) - Palynofacies association AOM/Phy-o

Unit C-24 is characterized by relatively high abundances of the AOM group that decreases

upwards combined with moderate to high abundances of the phytoclast group. This group is
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predominately composed of O-La particles, occurring in moderate to high abundances.

Translucent particles are present in moderate to high amounts and are mainly composed of

Ww particles (Figure 8.29).

As in Unit B-24, here the palynomorphs are also only composed of continental elements, in

which pollen grains are the most frequent. However, the spores show a major peak in

abundance at 331.30 m.

Unit
 C-24

(AOM/
Phy-o)

AOM % Ph% Pa % Zoocl %

Max.

Min.

Mean

Kerogen groups Phytoclast Group Palynomorph Group
Opaque Translucent

O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp

Marine Terrestrial

General mean 32.7 47.9 19.0 0.3 9.0 52.2 11.1 0.7 1.8 33.5 11.1 7.8 24.9 0.1 61.0 6.3

62.8

1.0

37.2

77.2

26.8

44.3

34.6

10.0

18.5

0.2

-

0.01

9.6

2.4

6.3

71.4

49.0

59.0

2.1

-

0.9

1.4

0.7

1.0

2.3

-

1.2

40.1

23.8

32.0

0.8

-

0.1

-

-

-

-

-

-

-

-

-

100

91.7

97.0

8.3

-

3.0

Figure 8.29. Percentage mean values of the kerogen categories for Unit C-24. Relative abundances and
abbreviations as in Figure 8.5.

Ratios and parameters. As with Unit B-24, the O:TR ratio also is characterized by a slight

decreasing trend upwards. The pattern of the O-Eq:O-La curve is inversely synchronous with

the O:TR ratio (Figure 8.46). The ratio curve shows a progressive increase upwards. The

tetrad abundances in Unit C-24 are moderate to high and increase progressively upwards.

Like the previous unit, no marine palynomorphs were recorded in this unit; thus the values of

PMI are constant (100.00) (Figure 8.30).

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

0.45

-0.71

18.90

100.00

Min.

0.14

-1.48

1.90

100.00

Unit Mean

0.27

-1.01

8.70

100.00

Trendline

slightly decrease upwards

slightly increase upwards

increase upwards

-

General mean

0.21

-0.84

5.90

138.90

Remarks

no marine palynomorphs

Figure 8.30. Summary of palynofacies ratios and parameters of Unit C-24. For abbreviations see Table 8.1.

Unit D-24 (318-265) - Palynofacies association Phy-o

This unit is strongly dominated by opaque phytoclast. The opaque particles are composed

mainly of O-La particles (Figure 8.45). Translucent particles are present in moderate to high

abundances, in which the Ww particles are the most abundant. The abundance of the AOM

group in this unit is very low to moderate (Figure 8.31). The abundance curve shows a strong

fluctuation; however, it increases towards the top of the unit reaching 51.4% at 300.60 m. The
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palynomorph group is represented only by continental elements, in particular pollen grains.

The abundance of spores is moderate to high.

Unit
D-24

(Phy-o)

AOM % Ph% Pa % Zoocl %

Max.

Min.

Mean

Kerogen groups Phytoclast Group Palynomorph Group
Opaque Translucent

O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp

Marine Terrestrial

General mean 32.7 47.9 19.0 0.3 9.0 52.2 11.1 0.7 1.8 33.5 11.1 7.8 24.9 0.1 61.0 6.3

51.4

0.6

11.5

85.4

36.4

73.1

25.2

10.2

15.4

0.2

-

0.01

7.8

1.1

4.2

71.0

43.6

60.6

0.8

-

0.2

3.3

0.5

1.8

3.3

0.8

2.2

51.3

20.2

31.1

-

-

-

-

-

-

-

-

-

-

-

-

97.9

85.0

92.8

15.0

2.0

7.2

Figure 8.31. Percentage mean values of the kerogen categories for Unit D-24. Relative abundances and
abbreviations as in Figure 8.5.

Ratios and parameters. The O:TR ratio is characterized by a higher content of opaque

particles, in which the average value is higher than the general mean (Figure 8.32). The ratio

curve is characterized by a clearly increasing trend that reflects a decrease of translucent

particles upwards (Figure 8.46). The O-Eq:O-La ratio is characterized by high O-La contents.

The ratio curve shows an increasing trend upwards. The abundance of tetrads in this unit

range from moderate to high (Figure 8.32). The curve shows strong fluctuations, with a slight

decrease upwards. Marine palynomorphs are recorded only in one sample and in very low

abundances; therefore the PMI values are very low.

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

0.49

-0.89

33.30

107.10

Min.

-0.09

-1.59

3.70

100.00

Unit Mean

0.28

-1.24

12.90

100.80

Trendline

increase upwards

increase upwards

slightly decrease upwards

-

General mean

0.21

-0.84

5.90

138.90

Remarks

rare marine palynomorphs

Figure 8.32. Summary of palynofacies ratios and parameters of Unit D-24. For abbreviations see Table 8.1.

Unit E-24 (265-253 m) - Palynofacies association AOM/Pal-s

Like Unit A-24, this unit is characterized by high abundances of the AOM group combined

with frequent terrestrial palynomorphs. However, despite the high abundance of terrestrial

palynomorphs (pollen grains), the moderate abundance of marine palynomorphs, in particular

dinocysts (figure 8.33), differentiates this unit from Unit A-24. The unit is also characterized

by two major peaks in abundance of dinocysts. The phytoclast group is moderately abundant

and composed predominately of O-La particles. Translucent particles are present in moderate

to large numbers with the Ww particles being the most abundant.
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Unit
E-24

(AOM/
Pal-s)

AOM % Ph% Pa % Zoocl %

Max.

Min.

Mean

Kerogen groups Phytoclast Group Palynomorph Group
Opaque Translucent

O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp

Marine Terrestrial

General mean 32.7 47.9 19.0 0.3 9.0 52.2 11.1 0.7 1.8 33.5 11.1 7.8 24.9 0.1 61.0 6.3

62.0

4.6

50.1

82.6

20.8

30.4

34.4

10.2

19.4

1.6

-

0.1

8.6

1.4

4.8

77.4

36.9

56.3

6.3

-

1.0

3.3

-

1.6

3.9

-

1.8

57.7

13.4

34.6

-

-

-

34.5

-

10.1

54.5

-

6.0

-

-

-

96.5

16.0

81.8

7.0

-

2.1

Figure 8.33. Percentage mean values of the kerogen categories for Unit E-24. Relative abundances and
abbreviations as in Figure 8.5.

Ratios and parameters. The values of the O:TR ratio are characterized by higher content of

opaque particles. The ratio shows a strong fluctuation, but in general it shows a progressive

increase upwards. The high amounts of O-La particles is also reflected in the O-Eq:O-La

ratio. The ratio curve shows a marked increasing trend towards the top (Figure 8.46). In this

unit the tetrad abundances show low to high values (Figure 8.34). The trendline for the tetrad

abundance curve is constant. Unit E-24 is characterized by low to moderate PMI values, in

which the mean is 121.20. The PMI curve shows a slight increase upwards.

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

0.69

-0.70

20.20

140.00

Min.

-0.20

-1.60

0.50

100.00

Unit Mean

0.21

-1.11

8.60

121.20

Trendline

increase upwards

increase upwards

constant

increase upwards

General mean

0.21

-0.84

5.90

138.90

Figure 8.34. Summary of palynofacies ratios and parameters of Unit E-24. For abbreviations see Table 8.1.

Unit F-24 - Palynofacies association Pal-s/Phy-t (253-209 m)

This unit is characterized by the abundance of the palynomorph group combined with

moderate to high numbers of translucent phytoclasts. The palynomorphs here show a marked

increase in abundance, when compared with the other units. This group is composed mainly

of pollen grains that show the highest abundance value of the whole succession (Figure 8.35).

The marine palynomorphs show moderate to high abundances, with the FTL more abundant

than the dinocysts. The average abundance of the AOM group is moderate, decreasing

towards the top. The phytoclast group is composed mainly of O-La particles. Here the major

average abundance of translucent particles which are attributed to the great numbers of Ww

particles.
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Unit
F-24

(Pal-s/
Phyt)

AOM % Ph% Pa % Zoocl %

Max.

Min.

Mean

Kerogen groups Phytoclast Group Palynomorph Group
Opaque Translucent

O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp

Marine Terrestrial

General mean 32.7 47.9 19.0 0.3 9.0 52.2 11.1 0.7 1.8 33.5 11.1 7.8 24.9 0.1 61.0 6.3

48

0.8

22.3

82.2

24.4

49.0

45.2

10.8

28.4

1.2

-

0.3

11.4

1.9

7.2

62.1

35.4

49.5

4.1

-

1.0

3.7

-

1.2

1.6

-

0.4

57.4

28.8

40.7

-

-

-

53.7

-

6.0

22.0

-

4.7

-

-

-

96.4

22

85.1

10.5

1.0

4.3

Figure 8.35. Percentage mean values of the kerogen categories for Unit F-24. Relative abundances and
abbreviations as in Figure 8.5.

Ratios and parameters. The O:TR ratio is characterized by moderate content of opaque

particles. The ratio curve shows strong fluctuations; and a progressive increase. The O-Eq-O-

La ratio shows clearly a progressive increasing trend upwards. The mean value of this ratio is

higher than the general mean (Figure 8.36). Generally, the tetrad abundances are low and the

average abundance is lower than the general value (Figure 8.36). The abundance curve shows

a decreasing trend upwards. In this unit the PMI values are moderate; but show a high peak in

abundance at 241.25. The PMI values range from 100.00 to 200.00, in which the mean value

is 120.60. The PMI curve increases slightly upwards.

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

0.35

-0.50

10.00

200.00

Min.

-0.17

-1.40

-

100.00

Unit Mean

0.12

-0.86

4.30

120.60

Trendline

increase upwards

increase upwards

constant

increase upwards

General mean

0.21

-0.84

5.90

138.90

Figure 8.36. Summary of palynofacies ratios and parameters of Unit F-24. For abbreviations see Table 8.1.

Unit G-24 (209-183 m)- Palynofacies association AOM/Pal-s

This unit shows similar kerogen characteristics as in Unit E-24, in which high abundances of

the AOM group combined with terrestrial palynomorphs are observed. The marine

palynomorphs show moderate abundances (Figure 8.37), as well as the phytoclast group. This

group is consists mainly of O-La. The translucent particles are composed mainly of Ww;

however, the cuticle fragments reach 4.0% of %TK.
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Unit
G-24

(AOM/
Pal-s)

AOM % Ph% Pa % Zoocl %

Max.

Min.

Mean

Kerogen groups Phytoclast Group Palynomorph Group
Opaque Translucent

O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp

Marine Terrestrial

General mean

58.6

5.2

38.5

84.4

26.6

43.7

37.6

10.2

17.5

0.6

-

0.3

17.1

5.7

10.0

56.0

41.5

50.5

3.0

-

1.0

1.5

-

0.6

4.7

-

1.0

47.4

29.1

37.0

-

-

-

30.0

2.6

12

42.0

0.5

13.4

-

-

-

83.4

47.5

66.8

17.2

3.0

7.8

32.7 47.9 19.0 0.3 9.0 52.2 11.1 0.7 1.8 33.5 11.1 7.8 24.9 0.1 61.0 6.3

Figure 8.37. Percentage mean values of the kerogen categories for Unit G-24.  Relative abundances and
abbreviations as in Figure 8.5.

Ratios and parameters. The O:TR is characterized by a decreasing trend upwards (Figure

8.46). The average values are lower than the general mean (Figure 8.38). The O-Eq-O-La

shows a greater amount of the O-La than O-Eq indicated by a slightly decreasing of the ratio.

In spite of the decreasing trend, at the uppermost part of unit, the ratio curve shows a smooth

increase upwards (Figure 8.46). The tetrad abundances are low in abundance, but increase

slightly towards the top. In Unit G there are low to moderate values of PMI, decreasing

upwards (Figure 8.46).

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

0.34

-0.48

10.00

200.00

Min.

-0.02

-0.98

-

100.00

Unit Mean

0.19

-0.73

4.30

120.60

Trendline

increase upwards

increase upwards

constant

increase upwards

General mean

0.21

-0.84

5.90

138.90

Figure 8.38. Summary of palynofacies ratios and parameters of Unit G-24. For abbreviations see Table 8.1.

Unit H-24 (183-88 m)- Palynofacies association Phy-o/Pal-mp

This unit is characterized by a relatively high abundances of opaque phytoclasts, in which the

O-La particles are the most abundant. The translucent particles are present in low to moderate

abundances (Figure 8.39). The percentages of the AOM group show very low to moderate

values. The percentage curve shows abrupt fluctuations. However, this group increases

gradually upwards. The occurrence of the phytoclast group is combined with relatively high

abundances of marine palynomorphs. Despite the domain of terrestrial palynomorphs, in

particular pollen grains, this unit was characterized as Pal-mp because its average abundance

in this unit (26.4%) is higher than its general mean (24.9%) (Figure 8.39). The marine

palynomorphs are mainly composed of dinocysts; however, the FTL are also present in

moderate abundance (Figure 8.39). Fresh-water palynomorphs (only Botryococcus) are also

present in this unit.
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AOM % Ph% Pa % Zoocl %

Max.

Min.

Mean

Kerogen groups Phytoclast Group Palynomorph Group
Opaque Translucent

O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp

Marine Terrestrial

General mean 32.7 47.9 19.0 0.3 9.0 52.2 11.1 0.7 1.8 33.5 11.1 7.8 24.9 0.1 61.0 6.3
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Figure 8.39. Percentage mean values of the kerogen categories for Unit H-24.  Relative abundances and
abbreviations as in Figure 8.5.

Ratios and parameters. The O:TR ratio shows a clear increasing trend upwards (Figure

8.40). The average value is higher than the general mean (Figure 8.40) indicating the high

opaque particle content. The O-Eq:O-La shows a slight decreasing upwards, indicated by the

marked increase of O-La particles. The tetrad abundance in this unit shows low to moderate

abundances. The abundance curve shows an increase towards the top of the unit. The PMI

values in this unit are characterized by low to moderate values, with decreasing trend upwards

(Figure 8.46).

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

0.76

-0.46

5.00

162.50
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0.04

-1.15

0.50

109.50

Unit Mean

0.30

-0.83

1.70

134.20

Trendline

slightly increase upwards

slightly decrease upwards

constant

increase upwards

General mean

0.21

-0.84

5.90

138.90

Figure 8.40. Summary of palynofacies ratios and parameters of Unit H-24. For abbreviations see Table 8.1.

Unit I-24 (183-88 m) - Palynofacies association Phy-o/Pal-s

Unit I-24 is characterized by a high content of phytoclast combined with moderate to high

terrestrial palynomorphs. The phytoclast group reaches very high abundances and is

predominantly made up of O-La particles (Figure 8.41). The translucent particles are present

in moderate to high abundances and mainly composed of Ww. The palynomorph group that

also characterizes this unit, is dominated by pollen grains. The marine palynomorphs are

constituted mainly of dinocysts. These palynomorphs are present in moderate to high

abundances. The presence the marine palynomorphs is the main difference between this and

Unit B-24. As in the previous unit, the AOM group shows very low to moderate abundances.
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AOM % Ph% Pa % Zoocl %

Max.

Min.

Mean

Kerogen groups Phytoclast Group Palynomorph Group
Opaque Translucent

O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp

Marine Terrestrial

General mean 32.7 47.9 19.0 0.3 9.0 52.2 11.1 0.7 1.8 33.5 11.1 7.8 24.9 0.1 61.0 6.3
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Figure 8.41. Percentage mean values of the kerogen categories for Unit I-24.  .  Relative abundances and
abbreviations as in Figure 8.5.

Ratios and parameters. The O:TR ratio shows strong fluctuations, with a decreasing trend

upwards. The average value is higher than the general mean (Figure 8.42). The O-Eq-O-La

shows a progressive decrease upwards, which is indicated by a marked increase of O-La

particles. The tetrad abundance in this unit shows low to moderate abundances with a clear

increase towards the top. In contrast with the previous unit, the PMI values in this unit clearly

show a decrease upwards (Figure 8.46).

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

0.78

-0.58

13.50

200.00

Min.

0.06

-1.64

-

115.80

Unit Mean

0.45

-1.00

3.60

149.50

Trendline

slightly decrease upwards

decrease upwards

constant

increase upwards

General mean

0.21

-0.84

5.90

138.90

Figure 8.42. Summary of palynofacies ratios and parameters of Unit I-24. For abbreviations see Table 8.1.

Unit J-24 (88-10 m) - Palynofacies association AOM/Pal-mp

Unit J-24 is characterized by a high abundance values of the AOM group; however this

decreases upwards. This unit is also characterized by moderate to high amounts marine

palynomorphs. In contrast with all other units, it is marked by a conspicuous dominance of

marine palynomorphs. However, their abundance decreases slightly upwards. The marine

palynomorphs are composed mainly of dinocysts, whereas the continental palynomorphs are

mainly composed of pollen grains (Figure 8.43). This unit is also marked by the highest peak

in abundance of spores (32.5% of %TPa at 22.88 m).

The abundances of the phytoclast group range from low to very high. The O-La particles

are the most frequent; however, the O-Eq shows the highest abundance peak of this well.

Translucent particles are represented mainly by Ww.
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Unit
J-24

(AOM/
Pal-mp)
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O-Eq O-La Fh Wp Cu Ww Mb Ftl Df Fwp Pl Sp
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General mean 32.7 47.9 19.0 0.3 9.0 52.2 11.1 0.7 1.8 33.5 11.1 7.8 24.9 0.1 61.0 6.3

Figure 8.43. Percentage mean values of the kerogen categories for Unit J-24. Relative abundances and
abbreviations as in Figure 8.5.

Ratios and parameters. The O:TR curve shows a decreasing trend indicated by an increase

of translucent particles, and displays strong fluctuation. In this unit the lowest abundance

values of the O:TR (Figure 8.44) is recognized. The O-Eq:O-La curve shows a marked

increasing trend upwards, through an increase in numbers of equidimensional particles

(Figure 8.46). The tetrad abundance in this unit is marked by strong fluctuations; with a slight

increasing trend upwards. This unit is characterized by the highest PMI value (250.00 at 16.65

m). In spite of that, the PMI curve shows a slight decrease upwards.

Ratios and Parameters

O:TR ratio (log10)

O-Eq:O-La ratio (log10)

Tetrad abundance (%)

PMI

Max.

0.69

0.01

24.20
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Min.

-0.53

-1.41

-
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Unit Mean

0.08

-1.00

3.60
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Trendline

decrease upwards

increase upwards

slightly increase upwards

constant

General mean

0.21

-0.84

5.90

138.90

Remarks

highest value

highest value

Figure 8.44. Summary of palynofacies ratios and parameters of Unit J-24. For abbreviations see Table 8.1.
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8.3 Effects of lithology on the kerogen distribution

As previously mentioned in Chapter 4, Mendes (1994) indicated through lithological maps

(see Figures 4.6-4.7) that during the Aptian–Albian, the study area was dominated by

siliciclastic lithologies. This is confirmed in the two studied wells. The succession is

dominated by shales (Figure 8.47) reflecting the terrestrial influx in the area. However,

carbonates, in particular calcilutites of the Taquari Member (27.4%), predominate at some

intervals in well GTP-24-SE.
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Figure 8.47. Lithological composition of the two well studied and the average abundances of kerogen groups
(excluding zooclast group) for each lithology. Thin intercalations of shales and calcilutites (6.8%) are not
presented.

The distribution of the three main kerogen groups (AOM, phytoclasts and palynomorphs)

is moderately influenced by the different lithologies. The AOM group occurs mainly in

carbonate rocks such as calcilutites. However, the shale samples also show moderate

abundances of the AOM group. The AOM group is further present in high abundances in

anhydrite layers. The phytoclast group is markedly more abundant in coarse siliciclastic

lithologies, especially in sandstones. The zooclast group is rare in the studied succession;

although it is locally more abundant in carbonate lithologies. The difference in abundance of

the palynomorph group between the various lithologies is relatively low.

Well GTP-17-SE is dominated by siliciclastic rocks of the Angico Member (Figure 8.48).

Sandstones are slightly more common, followed by shales. The high abundances of the

phytoclast group in well GTP-17-SE are strongly related to siliciclastic sedimentation (Figure

8.48). The units, which are characterized by phytoclast predominance show a direct
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relationship with siliciclastic rocks, especially sandstones and shales (Figure 8.49). In the

lower part of the succession (units A-17 and C-17), in the Muribeca Formation, moderate to

high abundances of the AOM group are observed (Figure 49). The abundance of this group

seems to be more influenced by lithology. The difference in abundance between the

carbonates and siliciclastics is the highest observed. The dominant lithology apparently did

not influence the distribution of palynomorph group. The difference in palynomorph

abundances between carbonates and siliciclastic rocks is very low. However, in well GTP-17-

SE, the units that are characterized by a relative high abundance of palynomorph are directly

related to the siliciclastic deposition, especially of shales. In fact, this is reflected in the higher

abundances of terrestrial palynomorphs rather than marine (Figure 49).
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Figure 8.48. Lithological composition of well GTP-17-SE and the average abundances of kerogen groups
(excluding zooclast group) for each lithology. Thin intercalations of shales and calcilutites (1.6%) are not
presented.
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Figure 8.49. Lithological composition (%) and kerogen groups (average abundances) for each palynofacies unit
in well GTP-17-SE. Thin intercalations of shales and calcilutites are not presented.
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Well GTP-24-SE is dominated by shales (Figure 8.50); however, in contrast to well GTP-

17-SE, carbonate deposits also occur in moderate to high amounts, especially calcilutites. The

distribution of kerogen groups in this well shows the same pattern as in well GTP-17-SE. The

AOM group is more abundant in carbonate rocks; however this group is also abundant in

shales. In coarse deposits such as sandstones, the AOM group shows low to very low

abundance. This group characterizes units A-24, C-24, E-24 and G-24, where the calcilutite

layers are thicker. In Unit J-24, which is also characterized by the AOM group, the shale

package is thicker.  The phytoclast group, as in well GTP-17-SE, shows high abundances in

siliciclastic rocks, especially in sandstones. This group is also common in carbonates (e.g.,

Unit F-24) (Figure 8.51). As in well GTP-17-SE, the distribution of palynomorphs shows only

minor differences in abundance between carbonate and siliciclastic rocks. However, In this

well the effect of lithology on two main groups of palynomorphs (marine and terrestrial) is

observed more clearly. The units that are characterized by relatively high abundance of

marine palynomorphs (unit H-24 and J-24) are common in carbonate deposits, and in the units

(e.g., units B-24, F-24 and I-24) (Figure 8.51) that are characteristic of siliciclastic deposits,

terrestrial palynomorphs are more abundant (discussed in more detail in Chapter 5).
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Figure 8.50. Lithological composition of well GTP-24-SE and the average abundances of kerogen groups
(excluding zooclast group) for each lithology. A succession of thin intercalations of shales and calcilutites
(10.6%) is not presented.
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Figure 8.51. Lithological composition (%) and kerogen groups (average abundances) for each palynofacies unit
in well GTP-24-SE. Thin intercalations of shales and calcilutites are not presented.
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CHAPTER 9

GEOCHEMICAL ANALYSIS

The results for each sample are shown in Appendix 4 and are illustrated graphically in

geochemical logs (Figure 9.4).

9.1 Total Organic Carbon (TOC)

TOC ranges from 0.07% at the top of Unit A-24 in the Ibura Member to 9.59% in Unit B-24

of the Oiteirinhos Member (Figure 9.4). The highest TOC values are recorded in the Muribeca

Formation, where the highest average TOC value (Unit E-24) is also recorded (Figure 9.1).

The lowest average TOC (0.7%) is recorded in Unit H-24. The general mean is 1.4%. This

mean shows that the succession has a moderate organic matter accumulation. The TOC values

tend to decrease slightly upward.
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Figure 9.1. TOC values for each palynofacies units in well GTP-24-SE.

The higher average values of TOC show a direct relationship with the units characterized

by a high abundance of AOM. In Unit E-24, where the highest TOC is observed, AOM

surpasses 50.0% of the total kerogen, in contrast with the units that are dominated by the

phytoclast group (Figure 9.1). The palynomorph group does not show any relationship with

high or low values of TOC (Table 9.1).



112

Table 9.1. Comparison between the average of TOC and the palynofacies associations.

AOM
group
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Palynofacies
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-

0.3

0.3

0.2

-

0.3

0.4

TOC%
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1.1

1.4

1.3

0.7

1.3

1.7

1.7

9.1.2 TOC and lithology

The TOC values show a positive correlation with siliciclastic deposits. The highest average of

TOC is recorded in shales (Figure 9.2) and in fine intercalations between shales and

calcilutites, but are clearly dominated by the first situation. In the carbonates the average is

lower than in siliciclastics. In fact, the succession is dominated by only two lithologies: shales

(43.8%), with an average TOC of 1.9%, and calcilutites (37.6%) with 1.0%; thus, data on the

minor lithologies are not included as they are unlikely to influence the interpretations.
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Figure 9.2. Comparison between the lithological composition and kerogen group with the mean of TOC for well
GTP-24-SE. Fine intercalations (not presented) between shales and calcilutites (dominated by shales) show an
average TOC of 1.7%.

9.2 Hydrogen and Oxygen indices (Rock-Eval pyrolysis)

The Hydrogen Index (HI) can be used to characterize the kerogen type and the level of

thermal maturity, whereas the oxygen index (OI) becomes useful for this purpose only in

conjunction with the HI (Miles 1989). HI values range from 1 to 1345 mgHC/g TOC, while

OI values range from 14 to 740 mgCO2/g TOC (Appendix 4). The HI values generally lie
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within a typical range of kerogen type III organic matter, i.e. 0-300 (Miles, 1989). The general

average is 303 mgHC/g TOC, which lies between gas and oil prone organic matter. The

highest value of HI is recorded in Unit I-24 (1345 mgHC/g TOC) (Figure 9.4); whereas the

highest average value is recorded in Unit A-24 (587 mgHC/g TOC), characterized by an oil

prone organic matter (Table 9.2). The values of Unit A-24 are contained in a mixed Type

II/III organic matter. The HI values show a marked decrease upwards. The general mean of

the OI is 94 mgCO2/g TOC, and the highest average of OI is recorded in Unit-B-24 (162

mgCO2/g TOC). However, the highest value of OI (740 mgCO2/g TOC) is recorded in Unit I-

24.

Table 9.2. Comparison between the averages of HI and OI and the palynofacies associations.
OI

(CO2/g TOC)
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79
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68

HI
(HC/g TOC)
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49.0

64.1

44.3

36.4

40.8

AOM
group

11.5

22.7

22.3

10.6

37.6

45.9
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-
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-
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9.3 Organic facies characterization

The organic facies characterization was carried out using the HI versus OI diagram (Figure

9.3). The diagrams are shown for each type of palynofacies association of GTP-24-SE. The

organic matter type in well GTP-24-SE belongs predominantly to kerogen Type III derived

from higher land plants (Figure 9.3). However, in samples, where the AOM is dominant

(AOM/Phy-o, AOM/Pal-s and AOM/Pal-mp) kerogen type II is recorded, especially in

palynofacies association AOM/Pal-s.

9.4 Kerogen fluorescence

The results of the fluorescence investigations confirm that kerogen types III and II

predominated throughout the succession studied. The kerogen intensities range from 1 to 4 or

5 (scale of Tyson, 1995, p. 347), and the average is 3.1. Points 4 and 5 on the scale are

recorded only in the palynofacies association where the AOM group is dominant (Figure 9.4).



Figure 9.3. Hydrogen index (y axis) vs. oxygen index (X axis) diagram of each palynofacies association and general succession
of well GTP-24-SE.
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Figure 9.4. Stratigraphic distribution of selected geochemical data (TOC, HI, OI and fluorescence) and the palynofacies
associations of well GTP-24-SE.
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CHAPTER 10

PALYNOFACIES AND SEQUENCE STRATIGRAPHY

In order to place the information from the palynofacies variations in a sequence stratigraphic

context, the palynofacies units for wells GTP-17-SE and GTP-24-SE were integrated with the

sequence stratigraphy framework of Pereira (1994), Feijó (1995) and Hamsi Junior et al.

(1999) (Figure 10.1). Feijó (1995) assigned the large-scale sequence stratigraphic framework

of the succession to two second-order sequences, K50 and K60. Sequence K50 corresponds to

the SBL–ALs sequence of Pereira (1994). Sequence K60 was subdivided into systems tracts

KM1 and KM2 by Hamsi Junior et al. (1999) (Figure 10.1).

By combining lithofacies data and gamma-ray logs from the studied wells with

palynofacies and paleoecological data (especially the PMI), the succession was subdivided

into third-order sequences and correlated with the integrated sequence stratigraphic

framework. The sequences and boundaries (SB) are described within the “classical” sequence

stratigraphic context (e.g., van Wagoner et al., 1988; Posamentier et al., 1988; Posamentier &

Vail, 1988; Sarg, 1988; García-Mondéjar & Fernández-Mendiola, 1993).

KM1
Transgressive
Systems Tract

KM2
Highstand

Systems Tract
Albian

 Aptian
(upper part)

Stages

K60

K50

2nd-order
sequences

Transitional

Passive
margin

Major
sequencesLithostratigraphy

Oiteirinhos Mb.

Ibura Mb.
(upper part)

Angico Member
(lower part)

Taquari Member

Systems
tracts

Highstand
Systems Tract

Figure 10.1. Integrated sequence stratigraphic framework based on Pereira (1994), Feijó (1995) and Hamsi
Junior et al. (1999).

10.1 Palynofacies and sequence stratigraphy

The composition and quantity of kerogen deposited in marine paleoenvironments is directly

related to sea-level as shown by many authors (e.g., Habib & Miller, 1989; Gorin & Steffen,

1991; Steffen & Gorin, 1993a,b; Blondel et al. 1993; Tyson, 1993, 1995, 1996; Bombardiere

& Gorin, 2000) who placed them in a sequence stratigraphic context.
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The background models for palynofacies in sequence stratigraphic context that were

integrated herein for the distribution of kerogen in the different systems tracts, were taken

from Steffen & Gorin (1993b), Tyson (1995), and Hart et al. (1994). The general trends of the

palynofacies parameters are shown in Figure 10.2

Lowstand Systems Tract (LST)

This LST is the lowermost tract in a sequence (van Wagoner et al., 1988). The LST is

characterized by a progradational parasequence set. Owing to this progradational nature, the

deposits are mainly characterized by proximal facies, formed during periods of rapid but

decelerating sea-level fall (Tyson, 1995). Many authors agree that terrestrial particles

(phytoclasts) increase in abundance during deposition of the lowstand tract (Steffen & Gorin,

1993b; Tyson, 1995). According to Tyson (1995) in the lowest parts of the LST the highest

amounts of phytoclasts are recorded (Figure 10.2). As a result of terrestrial input, the

abundance of marine palynomorphs, especially dinocysts, decreases in lowstand deposits. The

geochemical parameters are characterized by the lowest values of TOC and HI in comparison

with others tracts (Hart et al. 1994).

Transgressive Systems Tract (TST)

The TST is the middle tract distinguished by the retrogradational parasequence sets (van

Wagoner et al., 1988). This tract is bounded at the base by a transgressive surface (ts) and at

the top by the “maximum flooding surface” (mfs) that is the most important condensed

section (CS). These surfaces are also recognized though the kerogen distribution. According

to Tyson (1995) the TST is related to increasing acceleration in sea-level rise, and marked by

a progressive decrease in abundance of phytoclast particles, with the particles becoming more

rounded (Steffen & Gorin, 1993b) (Figure 10.2). The phytoclasts reach the lowest values at

the CS; however, the percentage of opaque particles (of % phytoclasts) increases up to the

mfs.

The abundance and diversity of marine palynomorphs increase during deposition of the

TST. Normally, at the mfs the highest diversity of marine palynomorphs (especially

dinocysts) is recorded (Tyson, 1995) the abundance of AOM depends on the nature of the CS.

In oxic CS the AOM is at a minimum, whereas in anoxic CS this group reaches high
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abundances. According to Hart et al. (1994) the TST may contain the highest values of TOC

and HI. However, the highest peaks of TOC and HI do not necessarily occur at the mfs.

SB

SB

LST

TST

HTS

ts

mfs

AOM Ph PMI TOC
L HL H L H L H

Ph - Phytoclasts

AOM - Amorphous organic matter

PMI - Palynological marine index

TOC - Total organic carbon

H - high abundance
L - low abundance

LST - Lowstand systems tract

TST - Transgressive systems tract

HST - Highstand systems tractmfs - Maximum flooding surface

SB - Sequence boundary

ts - Transgressive surface

Figure 10.2. Schematic relationship between organic matter abundance throughout a stratigraphic sequence
(modified from Tyson, 1995).

Highstand Systems Tract (HST)

The HTS is the upper systems tract distinguished by one or more aggradational parasequence

sets followed by progradational parasequence sets (Van Wagoner et al., 1988). This tract is

related to a decreasing rate of sea-level rise and initial sea-level fall (Tyson, 1995). According

to Steffen & Gorin (1993b) it is characterized by inverted trends with respect to the LST, in

which the major difference is that the shelf is not exposed. This was based on the observation

that the terrigenous fragments (phytoclasts) were not degraded. The HST can be subdivided

into two parts: early and late. The early HST still shows almost the same characteristics as the

TST. The abundance of marine palynomorphs and the geochemical parameters TOC and HI

are still high; however, the abundance curve decreases progressively upwards (late HST)

(Figure 10.2), whereas the amount of phytoclasts increases.
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10.2 Results

10.2.1 Sequence stratigraphic subdivision based on palynofacies

The sequence stratigraphic interpretation is based on the integrated framework shown in

Figure 10.1. The KM1 sequence (Hamsi Junior et al., 1999) is here subdivided in three

sequences on basis of palynofacies associations: am1, am2 and am3 (Angico Member) for

GTP-17-SE, and tm1, tm2, tm3 (Taquari Member) for GTP-24-SE.

K50 Sequence

According to Gilvan Hamsi Jr. (written comm., 2000) the K50 sequence is difficult to

interpret because the upper part of the Muribeca Formation was deposited on a break-up

unconformity, which is interpreted as the transition from rift phase to drift phase (e.g.,

Maerten & Séranne, 1995). Thus, subdivision of the sequence based on palynofacies analysis

is poorly defined. However, this sequence shows a slightly transgressive trend upwards.

Pereira (1994) interpreted the Ibura evaporites and part of the Oiteirinhos Member as a

HTS. This is confirmed here through the marked increase in phytoclast particles towards the

top of the sequence (Figures 10.3-10.4). However, in the lower part of the sequence relatively

high amounts of AOM and phytoplankton are recorded, which decrease upwards. In some

intervals in the two wells no phytoplankton was recorded. The sequence boundaries of K50

are marked by a major peak in abundance of phytoplankton, which is observed in both wells.

At the boundaries a peak in AOM and in the gamma-ray  profile are also observed.
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K60 Sequence

The Sequence K60 was subdivided by Hamsi Jr. et al. (1999) in two sequences: KM1 and

KM2. The KM1 is here further subdivided into three parasequences (Figure 10.5); KM2 is

maintained according to the definition of Hamsi Jr. et al. (1999).

The KM1 sequence was previously interpreted as a transgressive sequence. However, in

spite of the transgressive trend upwards, which observed more clearly in well GTP-24-SE,

especially based on the PMI, one interval (tm2 and am2) shows features of an HST. The KM1

starts below of the boundary between Muribeca and Riachuelo formations. This led to

interpret that the systems tracts and palynofacies data are more related with the depositional

sequence independent of the lithologies.

The interpretation that tm1 and am1 are a TST is supported by a marked increase in the

PMI and AOM values. The phytoclast particles show a progressive decrease (Figure 10.3-

10.4). The upper boundaries are marked by a maximum flooding surface (mfs) characterized

by high abundances of dinoflagellates, particularly of the genus Spiniferites. The boundaries

are also marked by an abrupt decrease of phytoclasts, which is best observed in well GTP-24-

SE

The tm2 and am2 parasequences are characterized by an increase in abundance of

phytoclast particles and a clear decrease in AOM and are interpreted as HTS. In well GTP-17-

SE (am2 parasequence) the phytoclast particles show very low values. The PMI is

characterized by moderate values that tend to increase upwards. The upper boundary of these

sequences is marked by a peak of dinoflagellates indicating the transgressive surface. In well

GTP-24-SE the boundary is placed at the base of an abrupt lithological change, from

calcilutites to dark shales

Sequence

K60

KM2

KM1 tm2

tm3

GTP-24-SE

tm1

am2

am3

GTP-17-SE

am1
Figure 10.5. Sequence stratigraphic subdivision proposed for the K60 sequence.

The tm3 and am3 parasequences are interpreted as TST based on the marked increase in

PMI and AOM, together with the clear decrease in phytoclast particles (Figure 10.3-10.4).

These are observed clearly in well GTP-24-SE, especially the decrease of phytoclasts. The top



123

of these parasequences is distinguished on the basis of the peaks of PMI indicating the mfs.

At the mfs of well GTP-24-SE the lowest abundances of the phytoclast group are recorded.

KM2 sequence

This sequence is identified in both wells. It was interpreted by Hamsi Jr. et al. (1999) as a

HTS, which is confirmed herein, on the basis of palynofacies.

From the base of the sequence, which was marked by the mfs, a clear decrease in

dinoflagellate abundance is observed. However, the highest peak in abundance of

dinoflagellates is observed in this sequence (Figures 10.3-10.4). Tyson (1995) mentioned that

the highest peak of phytoplankton diversity occurs in the TST as well as in the early HST.

The abundance curve of phytoclasts shows a slight increase upwards indicating the HST. In

well GTP-24-SE the AOM group is abundant.
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CHAPTER 11

PALEOENVIRONMENTAL INTERPRETATION

The paleoenvironmental reconstruction is based on an integration of ecophases and the

palynofacies units with the lithological, sequence stratigraphic and biostratigraphic data. The

Aptian-Albian of the Sergipe Basin is characterized by a transgressional trend related to the

African-South American separation. The transition from a brackish lagoon to an open marine

environment is recognizable in the ecophases and palynofacies data, and form the basis for

the subdivision of the succession into these major paleoenvironments. These two

paleoenvironments are subdivided into six events (depositional environments 1-6) that were

mainly controlled by sea-level changes. The boundary between the two major

paleoenvironments is marked by the first major transgression in the area. The

paleoenvironmental interpretations were supported using ternary diagrams (cf. Tyson, 1993,

1995) (Figure 11.1).

A

Palynofacies fields distinguished
on ternary diagrams and the inferred
environment

Comments

IX Proximal suboxic-anoxic basin

AOM-dominated assemblages. Low
abundance of palynomorphs partly due to
masking. Frenquently alginite-rich. Deep
basin or stratified shelf sea deposits,
especially sediment-starved basins.

VIII Distal dysoxic-oxic shelf

AOM-dominated assemblages, excellent
AOM preservation. Low to moderate
palynomorphs (partly due to masking).
Typical of organic-rich shales deposited
under stratified shelf sea conditions.

VII Distal dysoxic-anoxic "shelf"
Moderate to good AOM preservation, low to
moderate abundance of palynomorphs.
Dark-coloured slightly bioturbated mudstones
are typical.

VI Proximal suboxic-anoxic shelf

Good AOM preservation rate due to reducing
basin conditions. Absolute phytoclast content
may be moderate to high due to turbiditic
input and/or general proximity to source.

V Mud- dominated oxic shelf
("distal shelf")

Low to moderate AOM (usually degradated).
Palynomorphs abundant. Light coloured
bioturbated calcareous mudstones are
typical.

Shelf to basin transition

Transition from shelf to basin in time (e.g.,
increased subsidence/water depth) or space
(e.g., basin slope). Absolute phytoclast
abundance depends on proximity to source
and degree of deposition. Amount of marine
TOC depends on basin redox state. IVa
dysoxic, IVb suboxic-anoxic.

IV

III Heterolithic oxic shelf
( "proximal  shel f " )

Generally low AOM preservation rate;
absolute phytoclast abundance dependent
on actual proximity to fluvial-deltaic source.
Oxidation and reworking common.

II Marginal dysoxic-anoxic basin

AOM diluted by high phytoclast input, but
AOM preservation moderated to good.
Amount of marine TOC depending on basin
redox state.

I Highly proximal shelf or basin High phytoclast supply dilutes
 all other components.

V
VII

III

II

VI

IX

VIII

IVa

IVb

I

B

Phytoclasts

AOM Palynomorphs

100% microplankton

100% pollen100% spores

C

shore
(slightly humid) nearshore

open
marine

Figure 11.1. Schematic illustration of palynofacies and palynomorph groups used for paleoenvironmental
interpretations. A- Key to marine palynofacies fields defined using a ternary diagram (B). C- Ternary diagram
for total palynomorphs groups (modified from Tyson, 1993).
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11.1 Interpretation of the depositional history

The lowest part of the sedimentary succession is interpreted as a brackish lagoonal to shallow-

marine environment with a semi-arid to arid hinterland. During a relative highstand the

lagoon was influenced by shallow-marine waters, which is confirmed by the presence of

marine palynomorphs (PA1) (Figures 101 and 10.2). In the upper part of these beds, the

marine connection seems to have been closed as a result of a relative sea-level fall. This

regressive trend is mainly indicated by a maximum abundance of tetrads and high abundances

of phytoclast particles deposited, together with an abrupt disappearance of marine

palynomorphs. The sea-level fall is also indicated by the presence of anhydrite at the top of

the sequence. According to Koutsoukos (1991) the presence of anhydrite suggest subaerial

(sabkha) settings and marginal subaqueous (saline) environments along tidal-type feeding

channels, marginal lagoons and interlagoonal salt flats. The ternary diagrams in Figure 11.2

show that the environment was relatively suboxic-anoxic (IVb), reflecting a restricted lagoon

with normal salinity indicated by a dominance of gonyaulacoid over peridinoids. This

restriction is probably reflected in the increase in AOM abundance.

GTP-17-SE

phytoclasts

AOM palynomorphs spores pollen

microplankton

GTP-24-SE

spores pollen

microplankton

AOM palynomorphs

phytoclasts

Figure 11.2. Ternary diagrams of palynofacies and palynomorph groups (see also Figure 11.1).

Evidence of subaerial exposure or, at least, extremely shallow conditions with rare marine

palynomorphs (foraminifera and Subtilisphaera) and conspicuous high abundances of

phytoclast particles represented by palynofacies units B-17, C-17 and C-24 is observed in this

sequence. This suggests a nonmarine/lagoonal coastal plain with an arid hinterland

environment. Terrestrial palynomorphs reach nearly 100.0% of the total palynomorphs.

During a relative lowstands and drier conditions (Ecophase 2) it is possible that a restriction

of the lagoon occurred. This led to water evaporation reflected in an increase of AOM and

TOC values and intense growth of anhydrite (lithofacies association 2). However, the climate

changed slightly from arid (PA3 dominance) to semi-arid. This change is indicated by the

increase of PA4 elements, in particular by Araucariacites, which probably inhabited areas

more inland. The moderate abundance of AOM seems to be related to the anhydrite
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deposition (see Figures 80-81). However, a high input of phytoclast continued. This is shown

in the ternary diagrams of the palynofacies, which reflect the transition from an environment

where AOM was preserved to one with a strong phytoclast input. The palynomorph ternary

diagrams clearly show the strong dominance of terrestrial palynomorphs (Figure 11.3).

GTP-24-SE

spores pollen

microplankton

AOM palynomorphs

phytoclasts

GTP-17-SE

phytoclasts

AOM palynomorphs spores pollen

microplankton

Figure 11.3. Ternary diagrams of palynofacies and palynomorphs groups for depositional environment 2 (see
also Figure 11.1).

After the first major transgression, fully marine conditions were established in the area.

This transgression is placed at the base of sequences am1 (GTP-17-SE) and tm1 (GTP-24-

SE). The depositional environment of this sequence coincides with that suggested by

Koutsoukos (1989), i.e., extensive tidal flats in an intertidal to shallow, subaqueous,

hypersaline marginal sea with influence by nearby open-marine conditions. Until then the

depositional history corresponding to the Muribeca Formation seems to have been the same

for GTP-17-SE as GTP-24-SE. However, in comparison with the area of GTP-17-SE, there is

evidence that the area of GTP-24-SE became slightly deeper. This event may be attributed to

the last tectonic pulse that affected the basement (Hamsi Junior, written comm., 2000) and led

to the recognition of a more proximal (facies) depositional environments in the area of well

GTP-17-SE, and a more distal one in the area of GTP-24-SE.

The open-marine succession starts with a terrigenous interval with high abundances of

terrestrial palynomorphs of PA3, in particular Classopollis, and phytoclasts. This interval is

recognizable in both areas. The high abundances of Classopollis indicate an arid climate. The

proximal facies (GTP-17-SE) is characterized by siliciclastic deposition in an intertidal to

nearshore environment of LA3, and consequently, large amounts of phytoclast particles were

deposited (see Figure 8.45). Moreover, this strong influx reduced the salinity causing an

increase in abundance of Subtilisphaera. The ternary diagrams (Figure 11.4) show that,

despite the high terrestrial influx, the transgression also affected the palynofacies and the

palynomorph distribution.

This first major transgression is more clearly manifested in the GTP-24-SE area. The

relatively high PMI values, TOC and AOM (units E-24 and G-24) are the main indicators of



127

this transgression. This is also recognizable in the palynomorph ternary diagram (Figure

11.4), where the three points near the microplankton apex indicate the first transgression. A

sea-level rise is also suggested by the dominance of gonyaulacoids over peridinoids, which

indicates normal salinity. The highest abundance of palynomorphs in the succession is related

to the fine lithology of Lithofacies 4a, which is typical of deposition in a more distal

environment. From this point in time a more extensive carbonate deposition began as the

coarse siliciclastic sediments no longer reached this area. This leads to an interpretation of

this paleoenvironment as shallow-marine. This environment is also reflected in the ternary

diagram of the palynomorphs, where some points are plotted in palynofacies field V, in which

according to Tyson (1993) (Figure 11.1) palynomorphs are abundant and calcareous

mudstones are typical.

GTP-17-SE

palynomorphs

phytoclasts

AOM spores pollen

microplankton

GTP-24-SE

spores pollen

microplankton

AOM palynomorphs

phytoclasts

Figure 11.4. Ternary diagrams of palynofacies and palynomorph groups for depositional environment 3 (see also
Figure 11.1).

Despite of the first major is transgression recorded in the lower part of the sequence, there

is a slightly regressive general trend. This minor regression is suggested by the slight decrease

of PMI values (both wells) and the increase of phytoclast deposition (unit E-17 and unit H-24)

in the upper part of the sequence.

After the minor regression recognized in both wells, the PMI (only in GTP-24-SE) shows a

clear increase upwards. However, the depositional environment is also characterized as

intertidal to shallow subaqueous (GTP-17-SE) and shallow neritic (GTP-24-SE), although the

increase of PMI values observed in the area of well GTP-24-SE indicates a more open-marine

environment in comparison to the previous sequence. According to Koutsoukos et al. (1991)

the local sea-level changes demonstrate the clear cyclic nature of this early open-marine

episode.

The sequence is also characterized by signs of increasing humidity (Ecophase 5).

Carbonate productivity was moderate as indicated by the deposition of rhythmic shales and

calcilutite in GTP-24-SE. This may be directly related to the development of patch reefs, as

mentioned by Koutsoukos et al. (1991). In nearshore environment (GTP-17-SE) a extensive
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siliciclastic deposition is indicated by lithofacies 3a and 3b and high abundance of phytoclasts

and spores (Figure 11.5). The P/G ratio also suggests low salinity (high abundance of

peridinoids) which is typical of nearshore environments with strong terrestrial input. On the

other hand, the P/G ratio of well GTP-24-SE demonstrates an increase in dinoflagellates of

the gonyaulacoid group indicating normal salinity.

GTP-17-SE

phytoclasts

AOM palynomorphs spores pollen

microplankton

palynomorphs

GTP-24-SE

spores pollen

microplankton

AOM

phytoclasts

Figure 11.5. Ternary diagrams of palynofacies and palynomorph assemblages for depositional environment 4
(see also Figure 11.1).

In the entire area the sequence starts with fine siliciclastic sediments dominated by

relatively dark shales (lithofacies 3c and 4c). The siliciclastic influx also brought a high

concentration of phytoclasts; however this is manifested by small particles deposited mainly

in the area of well GTP-24-SE. A strong increase in PMI values reflects the occurrence of the

deepest marine environment in the studied succession. Therefore, the sequence is interpreted

representing as shallow-neritic (GTP-17-SE) and middle-neritic environments (GTP-24-SE).

This interpretation is also supported by the palynomorph ternary diagrams (Figure 11.6), in

which (at least of GTP-24-SE) the points are not concentrated to the pollen apices as in the

other diagrams.

GTP-17-SE

spores pollen

microplanktonphytoclasts

AOM palynomorphs

GTP-24-SE

AOM palynomorphs

phytoclasts

spores pollen

microplankton

Figure 11.6. Ternary diagrams of palynofacies and palynomorph groups for depositional environment 5 (see also
Figure 11.1).

The slight decrease in PMI and the increase of phytoclast input and terrestrial

palynomorphs reflect a change to shallow-neritic to intertidal in GTP-17-SE and middle-

neritic to shallow-neritic environments in GTP-24-SE. The Palynomorph assemblage 1 is still

very abundant, although a bloom of Subtilisphaera is recorded, suggesting that the increase in
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terrestrial input affected the distribution of palynomorphs. The increase in TOC, AOM and

the high abundance of Cyclonephelium suggest that the environment was dysoxic-anoxic. The

palynofacies ternary diagrams of the GTP-24-SE also reflect this tendency. The majority of

the points concentrate in palynofacies fields VII, VI and IV. In nearshore settings the situation

is different, because in this area a strong influx of siliciclastic sediments possibly related to

proximal turbidites is recognizable. The climate was subtropical to warm tropical as indicated

by the strong increase in spores and decrease of Classopollis abundance.

GTP-24-SE

AOM palynomorphs

phytoclasts

spores pollen

microplankton

GTP-17-SE

pollen

phytoclasts

AOM palynomorphs spores

microplankton

Figure 11.7. Ternary diagrams of palynofacies and palynomorph groups for depositional environment 6 (see
Figure 11.1).

The integration of the results for the two wells studied is summarized in Figures 11.8 and

11.9, and the distribution of the depositional environments are shown in Figure 11.10.



Figure 11.8. Paleoenvironmental interpretartion derived from correlation of the results of well GTP-17-SE.
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Figure 11.9. Paleoenvironmental interpretartion derived from correlation of the results of well GTP-24-SE.
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Figure 11.10. Schematic distribution of the paleoenvironments for the studied succession. S= shallow; m= middle; d= deep.
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CHAPTER 12

CONCLUSIONS

- The succession studied in wells GTP-17-SE and GTP-24-SE yielded a rich palynomorph

assemblage, mainly represented by terrestrial components. Altogether 17 genera and 19

species of spores, 24 genera and 31 species of pollen grains, and 17 genera and 20 species

of dinocysts were identified. In addition, one genus of Acritarcha (Leiosphaeridia) and

one genus of fresh-water algae (Botryococcus) were recorded. The marine palynomorphs

show high abundances in the upper part of well GTP-24-SE. Preservation of the

palynomorphs is variable, ranging from moderate to well-preserved for the miospores and

from poorly to moderately well-preserved for the dinocysts.

- The gymnosperms are the most abundant group, as a consequence of the high abundances

of the genus Classopollis in well GTP-17-SE. In well GTP-24-SE a relatively high

abundance of marine palynomorphs is observed. Fresh-water palynomorphs are rare.

- The lithology influenced the occurrence and distribution of palynomorphs. The highest

occurrence of terrestrial palynomorphs is recorded in siliciclastic rocks, whereas the

marine groups occur mainly in carbonate deposits.

- The palynomorph zonation is based on the distribution of selected taxa, mainly from well

GTP-24-SE. The establishment of a zonation for well GTP-17-SE is difficult due to the

low diversity of palynomorphs and the proximal facies nature. The Sergipea variverrucata

Zone and the Equisetosporites maculosus and Dejaxpollenites microfoveolatus sub-zones

of the upper Aptian and the Classopollis echinatus Zone of the middle Albian (Regali &

Santos, 1999) were identified the biostratigraphic framework introduced by. The absence

of forms indicating the Cardiongulina elongata, Brenneripollis reticulatus and

Retiquadricolpites reticulatus sub-zones and Steevesipollenites alatiformis Zone of the

uppermost Aptian–lower middle Albian of the biostratigraphic framework of Regali &

Santos (1999) indicates a possible hiatus comprising the stage boundary.

-  The cluster analysis based on the abundance and composition of all 68 palynomorph

genera revealed four superclusters, which represent different palynological assemblages
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(PA). The stratigraphic distribution of these assemblages allowed the definition of seven

ecophases.

-  The relative abundance of spores and the genus Classopollis are evidence of a

predominantly arid paleoclimate during the deposition of the succession. However, these

conditions tend to change upwards to tropical and humid climates.

- The Palynological Marine Index (PMI) and peridinoid to gonyaulacoid ratio (P/G) curves

confirm the progressively increasing marine influence in the region. However, the strong

fluctuations of the curve reflect a continuous terrestrial influx to the area.

- Based on the distribution of palynofacies associations that define eight palynofacies units

in well GTP-17-SE and ten in well GTP-24-SE, a continuous terrestrial influx is indicated

throughout the succession by moderate to very high abundances of phytoclasts. The AOM

and palynomorph groups, especially in well GTP-24-SE, show moderate to high

abundances. The increase in abundance of these groups indicates a transgression or a

decrease in terrestrial influx in the area.

-  The lithology also influenced the distribution of palynofacies. The AOM group occurs

mainly in carbonate rocks such as calcilutites, but also shows moderate abundances in

shales. The phytoclast group is conspicuously the most abundant in coarse siliciclastic

lithologies, particularly in sandstones. The abundance differences of the palynomorph

group among the lithologies are relatively small.

-  The average of TOC shows that the succession has a moderate organic matter

accumulation. The higher average TOC values show a direct correlation with the units

characterized by high abundances of AOM

-  The organic matter in well GTP-24-SE belongs predominantly to Kerogen type III.

However, in samples where the AOM is dominant (AOM/Phy-o, AOM/Pal-mp) Kerogen

type II is also recorded. This is confirmed by the fluorescence investigations.

-  The sequence stratigraphic interpretation based on the palynofacies data enabled the

recognition of system tracts and their boundaries within a pre-established framework
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(Feijó, 1995; Hamsi Junior et al., 1999; Pereira, 1994) as well as the subdivision of the

KM1 sequence (Hamsi Junior et al., 1999) in three parasequences: am1, am2 and am3

(Angico Member) for GTP-17-SE, and tm1, tm2, tm3 (Taquari Member) for GTP-24-SE.

-  By using the PMI, based on the diversity of marine palynomorphs, it was possible to

recognize the maximum flooding surfaces (mfs) in the successions.

-  The palynological and palynofacies analyses allowed detailed environmental

reconstruction of the successions studied. A long-term transgressive trend is recognizable

in the ecophases and palynofacies units. The depositional environments changed from a

brackish lagoonal/nonmarine-lagoonal coastal plain environment, intertidal-nearshore

(GTP-17-SE) and shallow-neritic (GTP-24-SE), intertidal to shallow-marine (GTP-17-SE)

and shallow-neritic (GTP-24-SE), shallow-marine (GTP-17-SE) and middle-neritic (GTP-

24-SE), to intertidal to shallow-marine (GTP-17-SE) and shallow-neritic (GTP-24-SE).

- The paleoenvironmental history is strongly marked by the progressive late Aptian–middle

Albian transgression into the area. The data confirm that the change from a brackish

lagoon to open marine environment was controlled by sea-level during the deposition of

the Muribeca Formation, and dominantly by a progressive sea-level rise during the

beginning of the Riachuelo Formation deposition.
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PLATE 1

Figure 1. Antulsporites baculatus. EFR Z39/3, sample 9700156 (101.7 m), GTP-24-SE.

Figure 2. Cyathidites sp. EFR W16/3, sample 9700174 (170.43 m), GTP-24-SE.

Figure 3. Microfoveolatosporis daukiensis. EFR F14/2, sample 9700156 (101.7 m), GTP-24-SE.

Figure 4. Klukisporites pseudoreticulatus. EFR V9, sample 9700188 (222.25 m), GTP-24-SE.

Figure 5. Echinatisporites varispinosus. EFR K33, sample 9700160 (110.6 m), GTP-24-SE.

Figure 6. Cicatricosisporites avnimelechi. EFR G17, sample 9704614 (242.05 m), GTP-17-SE.

Figure 7. Klukisporites foveolatus. EFR W34, sample 9700224 (318 m), GTP-24-SE.

Figure 8. Foveosporites canalis. EFR C8/4, sample 9700226 (322.25 m), GTP-24-SE.

Figure 9. Reticulosporis foveolatus. EFR Q30, sample 9704583 (93.9 m), GTP-17-SE.

Figure 10. Crybelosporites pannuceus. EFR H25, sample 9704637 (298.3 m), GTP-17-SE.

Figure 11. Cicatricosisporites microstriatus. EFR Q32, sample 9700219 (300.6 m), GTP-24-SE.

Figure 12. Clavatriletes sp. EFR R11/3, sample 9700225 (318.65 m), GTP-24-SE.

Figure 13. Verrucosisporites sp. EFR L10/2, sample 9700174 (170.43 m), GTP-24-SE.

Figure 14. Matonisporites silvai. EFR J30/2, sample 9700183 (207.8 m), GTP-24-SE.

Figure 15. Retitriletes sp. 3. (Regali, 1989) EFR S13/2, sample 9700150 (88.4 m), GTP-24-SE.

Figure 16. Perotriletes sp. EFR N17/1, sample 9700121 (46.35 m), GTP-24-SE.

Figure 17. Collarisporites fuscus. EFR H28, sample 9704585 (100.9 m), GTP-17-SE.

Figure 18. Leptolepidites psarosus. EFR V34, sample 9700126 (51.8 m), GTP-24-SE.

Figure 19. Pilosisporites trichopapillosus. EFR M31, sample 9704632 (283.83 m), GTP-24-SE.
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PLATE 2

Figure 1. Megaspore. EFR X37/1, , sample 9700185 (214.75 m), GTP-24-SE.

Figure 2. Araucariacites australis. EFR J24/4, sample 9704606 (210.55 m), GTP-17-SE.

Figures 3-4. Sergipea variverrucata. EFR M42/1-3, sample 9700172 (160.35 m), GTP-17-SE.

Figure 5. Sergipea naviformis. EFR U12/1, sample 9700121 (46.35 m), GTP-24-SE.

Figures 6-7. Uesuguipollenites callosus. EFR S10, sample 9700185 (214.75 m), GTP-24-SE.

Figure 8. Sergipea simplex. EFR P19/4, sample 9700117 (40.1 m), GTP-24-SE.

Figure 9. Classopollis classoides. EFR H25, sample 9704637 (298.3 m), GTP-17-SE.

Figure 10. Callialasporites segmentatus. EFR N15, sample 9700124 (49.7 m), GTP-24-SE.

Figure 11. Vitreisporites pustulosus. EFR S6/2, sample 9700102 (22.8 m), GTP-24-SE.

Figure 12. Complicatisaccus cearensis? EFR Y12, sample 9700188 (222.25 m), GTP-24-SE.

Figure 13-14. Equisetosporites maculosus. EFR ER17/4, sample 9700226 (322.25 m), GTP-24-SE.

Figure 15. Equisetosporites albertensis. EFR H17, sample 9700155 (99.2 m), GTP-24-SE.

Figure 16. Bennettitaepollenites regaliae. EFR B30/2, sample 9704634 (287.02 m), GTP-17-SE.

Figure 17. Cycadopites sp. EFR X32, sample 9700121 (46.35 m), GTP-24-SE.

Figure 18. Steevesipollenites binodosus? EFR G27/3, sample 9700092 (16 m), GTP-24-SE.

Figure 19. Equisetosporites ovatus. EFR L39/4, sample 9700157 (103.15 m), GTP-24-SE.

Figure 20. Gnetaceaepollenites chlatratus. EFR E25/2, sample 9700171 (157.15 m), GTP-24-SE.

Figure 21. Gnetaceaepollenites uesuguii. EFR G23/3, sample 9700127 (52.35 m), GTP-24-SE

Figure 22. Gnetaceaepollenites diversus EFR U14, sample 9700174 (170.43 m), GTP-24-SE.

Figure 23. Equisetosporites concinnus. EFR V11/2, sample 9700219 (300.6 m), GTP-24-SE.
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PLATE 3

Figure 1. Gnetaceaepollenites jansonii. EFR C11/2-4, sample 9700214 (277.7 m), GTP-24-SE.

Figures 2-3. Elaterosporites klaszi. EFR H13, sample 9704593 (137.7 m), GTP-17-SE.

Figure 4. Elaterosporites klaszi. EFR K20/2, sample 9700125 (50.6 m), GTP-24-SE.

Figure 5. Afropollis aff. jardinus. EFR W16/3, sample 9700123 (48.6 m), GTP-24-SE.

Figure 6. Retimonocolpites textus?. EFR V29/4, sample 9700231 (337.45 m), GTP-24-SE.

Figure 7. Afropollis operculatus. EFR M31/2, sample 9700117 (50.6 m), GTP-24-SE.

Figure 8. Rousea georgensis. EFR G38/1, sample 9700171 (157.15 m), GTP-24-SE.

Figure 9. Retitricolpites sp. EFR C11, sample 9700155 (99.2 m), GTP-24-SE.

Figure 10. Retimonocolpites textus?. EFR V29/4, sample 9700231 (337.45 m), GTP-24-SE.

Figures 11-12. Brenneripollis reticulatus. EFR T10, sample 9700165 (124.4 m), GTP-24-SE.

Figure 13. Tricolpites sp. EFR K29, sample 9704573 (57.3 m), GTP-17-SE.

Figure 14. Dejaxpollenites foveoreticulatus. EFR H18/3, sample 9700175 (178.56 m), GTP-24-SE.

Figures 15-16. Dejaxpollenites foveoreticulatus. EFR Y13, sample 9700156 (101.7 m), GTP-24-SE.

Figure 17. Dejaxpollenites microfoveolatus. EFR M24/3, sample 9700126 (51.8 m), GTP-24-SE.

Figure 18. Schrankpollis reticulatus? EFR H179, sample 9700126 (51.8 m), GTP-24-SE.

Figures 19-20. Quadricolpites reticulatus? EFR X19/2, sample 9700154 (98.2 m), GTP-24-SE.

Figure 21. Striatopollis reticulatus. EFR P13, sample 9700171 (157.15 m), GTP-24-SE.

Figure 22. Stellatopollis barghoornii. EFR K25/2, sample 9700135 (60.7 m), GTP-24-SE.

Figure 23. Stellatopollis dubius. EFR K12/2, sample 9700166 (124.67 m), GTP-24-SE.

Figure 24. Stellatopollis sp. 1 (Doyle et al., 1977). EFR P39/1, sample 9700168 (130.55 m), GTP-24-SE.
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PLATE 4

Figure 1. Circulodinium sp. EFR U33/3-4, sample 9700150 (88.4 m), GTP-24-SE.

Figure 2. Cyclonephelium sp. EFR Q31/2, sample 9700150 (88.4 m), GTP-24-SE.

Figure 3. Cyclonephelium sp. EFR L6, sample 9700101 (20.85 m), GTP-24-SE.

Figure 4. Cyclonephelium sp. EFR X33/1, sample 9700119 (42.65 m), GTP-24-SE.

Figure 5. Cyclonephelium sp. EFR Q17/4, sample 9700150 (88.4 m), GTP-24-SE.

Figure 6. Odontochitina operculata. EFR L4/4, sample 9700139 (67 m), GTP-24-SE.

Figure 7. Odontochitina operculata. EFR Z7/3, sample 9700139 (67 m), GTP-24-SE.

Figure 8. Palaeoperidinium cretaceum. EFR Q25, sample 9700165 (124.4 m), GTP-24-SE.

Figure 9. Pseudoceratium securigerum? EFR M33/1, sample 9700141 (71.6 m), GTP-24-SE.

Figure 10. Subtilisphaera trendallii? EFR R9/2, sample 9700160 (110.6 m), GTP-24-SE.

Figure 11. Subtilisphaera senegalensis. EFR E20/1-3, sample 9700150 (88.4 m), GTP-24-SE.

Figure 12. Tanyosphaeridium sp. EFR M9/2, sample 9700126 (110.6 m), GTP-24-SE.

Figure 13. Florentina mantellii. EFR M20/2, sample 9700175 (178.56 m), GTP-24-SE.

Figure 14. Prolixosphaeridium parvispinum. EFR V25/2, sample 9700129 (56.1 m), GTP-24-SE.
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PLATE 5

Figure 1. Cribroperidinium sp. EFR M6/3, sample 9700103 (22.88 m), GTP-24-SE.

Figures 2-3. Apteodinium granulatum. EFR S9, sample 9700103 (22.88 m), GTP-24-SE.

Figure 4. Systematophora cretacea? EFR Z36/2, sample 9700119 (42.65 m), GTP-24-SE.

Figure 5. Dinopterygium? sp. EFR Y27/1, sample 9700111 (32.25 m), GTP-24-SE.

Figure 6. Spiniferites lenzi. EFR G31/1, sample 9700103 (22.88 m), GTP-24-SE.

Figure 7-8. Spiniferites chebca. EFR V18/3, sample 9700111 (32.25 m), GTP-24-SE.

Figure 9. Spiniferites ancoriferus. EFR Q28/4, sample 9700161 (112.7 m), GTP-24-SE.

Figure 10. Spiniferites sp. EFR L7/2, sample 9700109 (28 m), GTP-24-SE.

Figure 11. Spiniferites sp. EFR F8/1, sample 9700103 (22.88 m), GTP-24-SE.

Figure 12. Spiniferites bejuii. EFR M25/2, sample 9700109 (28 m), GTP-24-SE.

Figure 13 Oligosphaeridium irregulare. EFR J10/1, sample 9700109 (28 m), GTP-24-SE.

Figure 14. Oligosphaeridium pulcherrimum. EFR P28, sample 9700138 (65.9 m), GTP-24-SE.

Figure 15. Oligosphaeridium totum. EFR U5, sample 9700137 (65.45 m), GTP-24-SE.

Figure 16. Oligosphaeridium poculum. EFR J25/4, sample 9700127 (52.35 m), GTP-24-SE.

Figure 17. Oligosphaeridium complex. EFR P21, GTP-24-SE, sample 9700129 (56.1 m).

Figure 18. Oligosphaeridium albertense. EFR T18/2, sample 9700138 (65.9 m), GTP-24-SE.
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PLATE 6

Figure 1. Exochosphaeridium sp. EFR L20/1, sample 9700111 (32.25 m), GTP-24-SE.

Figures 2-3. Trichodinium castanea. EFR K12, sample 9700124 (49.7 m), GTP-24-SE.

Figure 4. Scolecodont. EFR L28/4, sample 9700115 (37.55 m), GTP-24-SE.

Figure 5. Scolecodont. EFR B18/2-4, sample 9700168 (130.55 m), GTP-24-SE.

Figure 6. Foraminiferal test lining. EFR W14/4, sample 9700141 (71.6 m), GTP-24-SE.

Figure 7. Foraminiferal test lining. EFR S19/2-4, sample 9700173 (167.25 m), GTP-24-SE.

Figure 8. Botryococcus sp. EFR K13/2, sample 9700150 (88.4 m), GTP-24-SE.

Figure 9. Leiosphaeridia sp. EFR W11, sample 9700185 (214.75 m), GTP-24-SE.
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APPENDICES



Sample no. Depth (m) Core Box Lithology
9704565 18.00 2 4.6 shale
9704566 25.10 3 1.1 sandstone
9704567 31.85 5 1.1 sandstone
9704568 34.75 7 1.6 sandstone
9704569 36.80 7 3.6 sandstone
9704571 51.15 9 1.7 sandstone
9704572 51.70 9 4.7 sandstone
9704573 57.30 10 2.5 sandstone
9704574 58.95 10 4.5 sandstone
9704575 61.05 10 1.5 sandstone
9704576 61.70 11 2.5 sandstone
9704577 63.50 11 4.5 shale
9704578 65.80 12 1.5 sandstone
9704579 68.95 12 4.5 shale
9704580 70.60 13 3.6 shale
9704581 82.15 14 5.5 claystone
9704582 85.70 15 4.8 siltstone
9704583 93.90 16 4.8 sandstone
9704584 96.00 16 7.8 sandstone
9704585 100.90 17 2.7 shale
9704586 103.30 17 5.7 siltstone
9704587 109.00 18 1.4 shale
9704589 125.50 21 1.3 sandstone
9704590 131.70 22 3.4 shale
9704591 133.55 23 1.4 siltstone
9704592 135.55 23 3.4 shale
9704593 137.70 24 1.1 shale
9704594 141.60 25 3.3 sandstone
9704595 143.97 26 2.3 shale
9704596 147.06 27 1.4 siltstone
9704597 149.90 27 4.4 claystone
9704598 155.70 27 1.5 shale
9704599 158.30 28 4.5 sandstone
9704600 159.43 28 5.5 shale
9704601 167.70 29 4.6 shale
9704602 174.06 30 2.3 siltstone
9704603 182.10 31 1.5 shale
9704604 184.00 31 4.5 shale
9704605 209.50 35 3.7 sandstone
9704606 210.55 35 4.7 sandstone
9704607 215.05 35 1.4 shale
9704608 216.60 36 2.4 siltstone
9704609 218.10 36 3.4 shale
9704610 225.15 37 2.2 siltstone
9704611 230.50 37 3.9 siltstone
9704612 233.27 38 6.9 shale
9704613 233.70 38 7.9 calcarenite
9704614 242.05 39 6.9 shale
9704615 244.35 39 8.9 shale
9704616 246.75 39 1.10 shale
9704617 248.40 3 9 3.10 shale
9704618 250.73 40 5.10 shale
9704619 252.75 40 7.10 siltstone

Appendix 1a. List of samples of well GTP-17-SE.



Identification Depth (m) Core Box Lithology
9704620 254.83 40 9.10 shale
9704621 255.57 40 1.9 shale
9704622 257.65 40 3.9 shale
9704623 259.87 41 5.9 siltstone
9704624 261.70 41 7.9 shale
9704625 263.32 41 9.9 shale
9704626 265.78 41 2.8 shale
9704627 268.40 42 5.8 shale
9704628 271.42 42 8.8 shale
9704629 273.20 42 1.5 shale
9704630 275.72 43 3.5 shale
9704631 277.75 43 5.5 siltstone
9704632 283.83 43 2.7 shale
9704633 285.83 44 4.7 siltstone
9704634 287.02 44 6.7 shale
9704635 292.25 45 2.6 siltstone
9704636 294.75 45 4.6 shale
9704637 298.30 46 2.4 shale
9704638 300.93 46 1.8 shale
9704639 302.25 46 3.8 shale
9704640 304.18 47 5.8 shale
9704641 306.00 47 7.8 shale
9704642 309.05 47 1.9 shale
9704643 315.23 48 7.9 shale
9704644 317.12 48 9.9 shale
9704645 318.00 48 1.9 shale
9704646 322.95 49 5.9 shale
9704647 325.80 49 9.9 shale
9704648 327.31 49 1.3 shale
9704649 328.67 50 2.3 calcarenite
9704650 329.50 50 3.3 shale
9704651 331.50 51 2.7 calcilutite
9704652 333.20 51 4.7 anhydrite
9704653 339.80 51 1.8 siltstone
9704654 340.40 52 2.8 shale/siltstone
9704655 341.30 52 3.8 shale/siltstone
9704656 350.50 53 3.5 siltstone
9704657 351.50 53 4.5 siltstone
9704658 362.72 53 1.8 siltstone
9704659 363.83 5 3 2.8 shale
9704660 368.30 55 6.8 shale
9704661 369.13 5 5 7.8 calcilutite
9704662 372.95 55 3.10 siltstone
9704663 374.15 56 4.10 sandstone
9704664 378.77 56 9.10 shale
9704665 384.15 56 5.10 shale
9704666 385.27 57 6.10 shale
9704667 386.86 57 8.10 calcilutite
9704668 389.35 57 1.10 siltstone
9704669 393.25 58 5.10 shale
9704670 396.62 58 10.10 calcarenite
9704671 409.50 60 7.10 anhydrite
9704672 415.88 61 1.10 siltstone

Appendix 1a. List of samples of well GTP-17-SE.



Identification Depth (m) Core Box Lithology
9704673 440.65 63 9.9 shale
9704674 443.20 64 3.10 calcilutite
9704675 444.17 6 4 7.10 calcilutite
9704676 451.40 65 2.6 shale
9704677 456.25 66 1.4 shale
9704678 467.40 68 6.6 siltstone
9704679 469.25 68 1.7 shale
9704680 470.10 69 2.7 shale
9704681 470.95 69 3.7 shale

Appendix 1a. List of samples of well GTP-17-SE.



Sample no. Depth (m) Core Box Lithology
9700088 12.64 1 2.1 calcilutite
9700089 13.25 1 2.1 calcilutite
9700090 15.55 2 1.5 shale
9700091 15.78 2 1.5 shale
9700092 16.00 2 1.5 shale
9700093 16.45 2 2.5 shale
9700094 16.65 2 2.5 shale
9700095 17.30 2 3.5 shale
9700096 18.63 2 4.5 calcilutite
9700097 19.24 2 5.5 shale
9700098 19.35 2 5.5 shale
9700099 19.85 2 5.5 shale
9700100 20.53 3 1.4 calcilutite
9700101 20.85 3 2.4 calcilutite
9700102 22.80 3 4.4 calcilutite
9700103 22.88 3 4.4 calcilutite
9700104 23.55 4 1.7 shale
9700105 24.05 4 2.7 shale
9700106 25.30 4 3.7 calcilutite
9700107 26.23 4 4.7 shale
9700108 26.83 4 5.7 shale
9700109 28.00 4 6.7 shale
9700110 30.60 5 2.6 shale
9700111 32.25 5 4.6 shale
9700112 33.20 5 5.6 calcilutite
9700113 34.87 5 6.6 shale
9700114 35.95 6 1.8 shale
9700115 37.55 6 3.8 calcilutite
9700116 39.45 6 4.8 shale
9700117 40.10 6 5.8 calcilutite
9700118 42.25 6 7.8 shale
9700119 42.65 7 1.10 calcilutite
9700120 44.15 7 2.10 shale
9700121 46.35 7 5.10 calcilutite
9700122 47.90 7 6.10 shale
9700123 48.60 7 7.10 shale
9700124 49.70 7 8.10 shale
9700125 50.60 7 9.10 shale
9700126 51.80 8 1.16 shale
9700127 52.35 8 3.16 calcilutite
9700128 54.50 8 4.16 calcilutite
9700129 56.10 8 6.16 calcilutite
9700130 56.95 8 7.16 shale
9700131 57.60 8 8.16 shale
9700132 57.80 8 8.16 calcilutite
9700133 58.70 8 9.16 shale
9700134 59.30 8 10.16 calcilutite
9700135 60.70 8 11.16 shale
9700136 62.25 8 13.16 calcilutite
9700137 65.45 8 15.16 calcilutite
9700138 65.90 8 16.16 shale
9700139 67.00 9 1.2 calcilutite
9700140 67.40 9 1.2 calcilutite

Appendix 1b. List of samples of well GTP-24-SE (continued).



Identification Depth (m) Core Box Lithology
9700141 71.60 10 1.7 shale
9700142 72.25 10 2.7 shale
9700143 75.40 10 5.7 shale
9700144 77.20 10 7.7 calcilutite
9700145 80.40 11 1.1 shale
9700146 82.55 12 1.9 shale
9700147 83.00 12 2.9 calcilutite
9700148 84.90 12 4.9 shale
9700149 86.70 12 6.9 calcilutite
9700150 88.40 12 8.9 shale
9700151 91.25 13 1.8 shale
9700152 94.35 13 4.8 shale
9700153 97.65 13 7.8 calcarenite
9700154 98.20 14 1.10 calcilutite
9700155 99.20 14 2.10 calcilutite
9700156 101.70 14 6.10 shale
9700157 103.15 14 8.10 shale
9700158 108.10 15 1.8 shale
9700159 109.40 15 5.8 shale
9700160 110.60 15 6.8 shale
9700161 112.70 15 8.8 shale
9700162 119.50 16 5.10 shale
9700163 120.60 16 6.10 shale
9700164 122.85 16 9.10 shale
9700165 124.40 16 10.10 shale
9700166 124.67 17 1.10 shale
9700167 128.10 17 5.10 shale
9700168 130.55 17 7.10 calcilutite
9700169 134.45 18 2.9 shale
9700253 135.75 18 4.9 calcilutite
9700170 146.10 19 5.10 shale
9700171 157.15 20 3.9 calcilutite
9700172 160.35 21 1.10 shale
9700173 167.25 21 9.10 shale
9700174 170.43 22 2.11 calcilutite
9700175 178.56 23 1.10 calcilutite
9700176 182.06 23 5.10 shale
9700177 182.60 23 6.10 shale
9700178 189.80 24 4.10 shale
9700179 190.75 24 5.10 shale
9700180 200.68 25 5.10 calcilutite
9700181 202.37 25 7.10 shale
9700182 205.35 26 1.70 shale
9700183 207.80 26 4.70 shale
9700184 211.85 27 1.10 shale
9700185 214.75 27 4.10 shale
9700186 217.00 27 7.10 shale
9700187 222.00 28 2.10 shale
9700188 222.25 28 3.10 shale
9700189 224.60 28 5.10 calcilutite
9700190 227.10 28 8.10 shale
9700191 227.70 28 9.10 shale
9700192 232.90 29 3.10 shale

Appendix 1b. List of samples of well GTP-24-SE (continued).



Identification Depth (m) Core Box Lithology
9700194 237.60 29 9.10 shale
9700195 237.70 29 10.10 shale
9700196 239.75 30 2.11 shale
9700197 240.65 30 3.11 shale
9700198 241.25 30 4.11 calcilutite
9700199 243.95 30 7.11 shale
9700200 247.00 30 11.11 shale
9700201 249.10 31 2.10 shale
9700202 252.60 31 8.10 shale
9700203 254.60 31 10.10 calcilutite
9700204 255.65 32 1.10 shale
9700205 256.10 32 2.10 shale
9700206 258.50 32 4.10 calcilutite
9700207 259.05 32 5.10 shale
9700208 262.95 32 9.10 shale
9700209 265.10 33 2.10 shale
9700210 268.05 33 5.10 calcirudite
9700211 268.30 33 5.10 calcirudite
9700212 268.50 33 6.10 calcirudite
9700213 272.55 33 10.10 calcilutite
9700214 277.70 34 6.10 shale/calcilutite
9700215 289.60 35 9.90 shale/calcilutite
9700216 291.50 36 1.10 shale/calcilutite
9700217 295.10 36 5.10 shale/calcilutite
9700218 299.30 36 10.10 shale/calcilutite
9700219 300.60 37 1.10 shale
9700220 304.05 37 5.10 shale
9700221 308.95 37 10.10 sandstone
9700222 309.53 38 1.10 shale
9700223 313.25 38 5.10 siltstone
9700224 318.00 38 10.10 calcilutite
9700225 318.65 39 1.10 shale
9700226 322.25 39 5.10 shale
9700227 326.45 39 10.10 shale
9700228 327.43 40 1.10 calcilutite
9700229 331.30 40 5.10 calcilutite
9700230 336.20 41 2.10 shale
9700231 337.45 41 2.90 anhydrite
9700232 339.30 41 4.90 shale
9700233 342.05 41 7.9 shale
9700234 346.20 42 2.10 calcilutite
9700235 349.18 42 5.10 shale
9700236 357.50 43 4.10 shale
9700237 364.90 44 3.9 shale
9700238 367.65 44 6.9 calcarenite
9700239 372.50 45 1.3 calcilutite
9700240 377.65 46 3.7 shale
9700241 382.75 47 1.10 shale
9700242 384.60 47 3.10 anhydrite
9700243 387.35 47 6.10 anhydrite
9700244 389.75 47 9.10 shale
9700245 393.05 48 3.9 anhydrite
9700246 398.05 48 8.9 shale

Appendix 1b. List of samples of well GTP-24-SE (continued).



Identification Depth (m) Core Box Lithology
9700247 400.53 50 1.6 calcilutite
9700248 403.75 50 4.6 calcilutite
9700250 409.90 51 5.1 calcilutite
9700249 414.95 51 10.10 calcilutite

Appendix 1b. List of samples of well GTP-24-SE (continued).
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137.70 0.5 0.0 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 1.0 63.5 0.0 0.0 4.0 0.5 3.5 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 3.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.5 1.5 2.0 0.0 0.0 0.0 200
141.60 0.0 0.0 27.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 67.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
143.97 0.0 0.0 25.5 0.0 0.0 0.0 0.0 0.5 0.0 1.5 10.5 0.0 40.0 0.0 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.5 3.0 0.5 0.0 6.5 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
155.70 0.0 0.8 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.0 68.4 0.0 0.0 1.5 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.8 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 1.5 0.0 0.0 0.0 0.0 0.0 0.0 7.5 0.0 0.0 0.0 0.8 133
158.30 0.0 0.0 33.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.5 0.0 46.0 0.0 0.0 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 176
159.43 0.0 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 82.0 0.0 0.0 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 200
167.70 0.0 0.0 9.5 0.0 1.5 0.0 0.0 0.5 0.0 1.5 8.5 0.0 58.0 0.0 0.0 8.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 2.5 0.5 0.0 0.0 2.5 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 0.5 0.0 0.0 0.0 2.5 200
174.06 0.5 0.0 7.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.5 0.0 75.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.5 5.5 1.0 0.0 0.0 0.5 200
182.10 0.0 0.0 56.7 0.0 0.0 0.0 0.0 0.5 0.0 0.5 6.4 0.0 24.6 0.0 0.0 2.7 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 1.1 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 1.1 187
184.00 0.0 0.5 4.0 0.0 0.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 87.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.5 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 200
209.50 0.0 0.0 15.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 81.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 200
210.55 0.0 0.0 20.0 0.0 0.5 0.0 0.0 1.1 0.0 0.0 7.0 0.0 63.2 0.0 0.0 2.7 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 1.1 185
215.05 0.0 0.0 0.5 0.0 2.5 0.0 0.0 0.0 0.0 0.0 1.5 0.0 88.5 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 200
216.60 0.0 0.0 13.1 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 74.4 0.0 0.0 2.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 2.0 0.0 0.0 1.0 0.0 0.0 0.5 0.0 0.0 0.0 1.5 0.5 199
218.10 0.0 0.0 5.1 0.0 0.0 0.0 0.0 0.5 0.0 0.0 2.6 0.0 88.7 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 195
225.15 0.0 0.0 5.5 0.0 1.5 0.0 0.0 0.0 0.0 0.5 5.0 0.0 84.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 200
230.50 0.0 0.0 7.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 74.5 0.0 0.0 5.7 0.7 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 2.8 2.8 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 141
233.27 0.0 0.0 10.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 0.0 68.5 0.0 0.0 4.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 200
233.70 0.0 0.0 13.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 78.9 0.0 0.0 1.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 199
242.05 0.0 0.5 10.0 0.0 0.0 0.0 0.0 1.5 0.5 0.0 0.5 0.0 81.0 0.0 0.0 0.5 0.5 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.5 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 200
244.35 0.0 0.0 38.7 0.0 0.0 0.0 0.0 1.0 2.5 0.5 6.5 0.0 48.2 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 199
246.75 0.0 0.0 20.5 0.0 0.0 0.0 0.0 0.5 2.5 1.0 10.0 0.0 60.0 0.0 0.0 1.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 200
248.40 0.0 0.0 10.7 0.0 0.0 0.0 0.0 1.0 0.5 0.5 9.2 0.0 71.4 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 196
250.73 0.0 0.0 9.0 0.0 0.0 0.0 0.0 2.0 0.5 0.0 6.0 0.0 76.5 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 200
252.75 0.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 70.5 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 2.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 200
254.83 0.0 0.0 11.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 84.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 200
255.57 0.0 0.0 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 82.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
257.65 0.0 0.0 15.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 2.5 0.0 73.0 0.0 0.0 1.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.5 1.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0 200
259.87 0.0 0.0 14.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 77.5 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
261.70 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 82.5 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 4.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
263.32 0.0 0.0 12.8 0.0 0.0 0.0 0.0 0.5 0.0 0.0 1.5 0.0 82.1 0.0 0.0 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 195
265.78 1.5 0.0 20.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 1.5 0.0 67.5 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 200
268.40 0.0 0.0 17.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 73.1 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 1.7 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 119
271.42 0.0 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 90.5 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
273.20 0.0 0.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 85.9 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 1.3 0.6 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 156
275.72 0.0 0.0 9.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 2.0 0.0 78.5 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 6.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 200
277.75 0.0 0.0 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 0.0 81.8 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 137
283.83 0.0 0.0 11.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 78.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 200
285.83 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.5 0.0 64.5 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.5 0.0 0.0 0.5 0.0 200
287.02 0.0 0.0 5.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 68.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.5 0.0 0.0 0.0 0.0 200
292.25 0.0 0.5 11.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.0 69.0 0.0 0.0 2.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 3.5 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
294.75 0.0 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 83.0 0.0 0.0 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 1.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 1.5 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
298.30 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 89.0 0.0 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 1.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
300.93 0.0 0.0 7.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.5 0.0 84.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.5 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 200
302.25 0.0 0.0 11.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 86.5 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
304.18 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 78.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.5 3.5 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 200
306.00 0.0 0.0 6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 86.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 3.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 200
309.05 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 88.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 200
315.23 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 93.5 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
317.12 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 2.0 0.0 87.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
318.00 0.0 0.0 3.9 0.0 0.0 0.6 0.0 0.6 0.0 0.0 1.1 0.0 93.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 180
322.95 0.0 0.0 6.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 87.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
325.80 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 95.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 161
327.31 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 81.5 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 200
328.67 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 1.0 0.0 71.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 13.5 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
329.50 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 87.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
331.50 0.0 0.0 23.6 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 69.1 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 110
339.80 0.0 0.0 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 81.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 7.5 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
340.40 0.0 0.0 27.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 70.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
341.30 0.0 0.0 24.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 2.5 0.0 70.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
350.50 0.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 0.0 84.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 200
351.50 0.0 0.0 18.5 0.5 0.0 0.0 0.0 0.0 0.5 1.0 1.0 0.0 68.5 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 200
362.72 0.0 0.7 15.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 82.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 152
363.83 0.0 0.0 27.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 67.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 1.4 0.0 0.0 1.4 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 4
368.30 0.0 0.5 25.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 71.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
369.13 0.0 0.0 27.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 71.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
372.95 0.0 0.0 26.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 73.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
374.15 0.0 1.0 18.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 1.5 0.0 74.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 200
378.77 0.0 0.0 23.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 1.0 0.0 71.5 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 200
384.15 0.0 0.5 21.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 1.0 0.0 73.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.5 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
385.27 0.0 0.0 32.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 64.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
386.86 0.0 0.0 16.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 79.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
389.35 0.0 0.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 88.1 0.0 0.0 0.9 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 109
393.25 0.0 0.0 25.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 68.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.0 0.0 0.0 0.5 200
396.62 0.0 0.0 3.0 0.5 0.0 0.0 0.0 0.0 0.5 0.0 2.0 0.0 88.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
415.88 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 94.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 200
440.65 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 92.4 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 172
443.20 0.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 61.5 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
444.17 0.0 0.0 7.0 0.0 0.0 0.5 0.0 2.5 0.5 1.0 2.5 0.0 81.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 200
451.40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 32.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 65.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 3
456.25 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 2.0 0.0 85.5 0.0 0.0 1.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200
467.40 0.0 1.0 18.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.1 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 9
469.25 0.0 0.5 22.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 65.0 0.0 0.0 1.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.5 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 1.0 200
470.10 0.0 0.0 10.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 3.5 0.0 83.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 200
470.95 0.0 0.0 17.5 0.0 0.0 0.0 0.0 0.5 0.5 0.0 4.0 0.0 74.5 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 200
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182.60 0.0 0.0 0.0 0.0 0.0 2.4 0.5 0.0 0.0 0.0 0.5 0.0 0.0 3.9 0.0 52.7 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.3 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.9 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
189.80 0.0 0.0 0.5 0.0 0.0 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 53.1 0.0 0.0 0.0 0.0 0.0 0.5 2.6 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.5 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 1.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 1.0 0.0 0.5 0.0 0.0 0.0 10.3 0.0
190.75 0.0 0.0 0.3 0.0 0.0 4.9 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.3 0.0 24.6 0.0 0.0 0.0 0.3 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 4.6 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.3 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 0.0 0.0 0.0 0.3 0.0 0.0 0.0 56.3 0.0
200.68 0.0 0.0 0.0 0.0 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 78.4 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 10.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
202.37 0.0 0.0 0.0 0.0 0.0 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 72.3 0.0 0.0 0.0 0.6 0.0 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.3 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 2.3 0.6 0.0 0.0 0.0 0.0 0.0 4.5 0.0
205.35 0.0 0.0 0.0 0.0 0.0 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.1 0.5 64.8 0.0 0.0 0.0 0.0 0.0 1.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 10.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 1.0 0.0 0.0 0.0 0.0 0.0 6.1 0.0
207.80 0.0 0.0 0.0 0.0 0.0 8.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.7 57.5 0.0 0.0 0.0 0.0 0.0 5.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.7 0.0 0.0 0.7 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 3.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
211.85 0.0 0.0 0.0 0.0 0.0 8.7 0.5 0.0 0.0 0.0 0.5 0.0 0.0 2.4 0.0 67.1 0.0 0.0 0.0 0.0 0.0 1.9 1.4 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0 3.4 0.0 0.5 0.0 0.5 0.0 1.4 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0
214.75 1.0 0.0 0.3 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.7 0.0 53.1 0.0 0.0 0.0 0.0 0.0 0.3 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 1.0 0.0 4.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.3 0.3 0.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 28.0 0.0
217.00 0.0 0.0 0.0 0.0 0.0 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 82.2 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
222.00 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 83.3 0.0 0.0 0.0 0.0 0.0 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0
222.25 0.0 0.0 0.0 0.0 0.5 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 81.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.2 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0
224.60 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 93.9 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
227.10 0.0 0.0 0.8 0.0 1.2 1.6 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.8 0.0 72.3 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.2 0.0 0.0 0.8 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 4.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.3 0.0
232.90 0.5 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 88.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
237.60 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 80.8 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
237.70 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 87.6 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
239.75 0.0 0.0 0.0 0.0 0.0 4.8 0.0 0.0 0.0 0.0 0.5 0.0 0.0 1.9 0.0 85.1 0.0 0.0 0.0 0.0 0.0 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
240.65 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 75.6 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 1.7 0.0 0.0 0.0 0.0 0.0 10.9 0.0
241.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.5 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.5 0.0 55.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
243.95 0.0 0.0 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 90.8 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.0
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268.50 0.0 0.0 0.0 0.0 0.0 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 15.2 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.3 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.1 0.0 47.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
272.55 0.0 0.0 0.0 0.0 0.0 21.5 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 55.5 0.0 0.0 0.0 0.0 0.0 1.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 4.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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326.45 0.0 0.0 0.0 0.0 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 93.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
327.43 0.0 0.0 0.0 0.0 0.0 27.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 71.2 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
331.30 0.0 0.0 0.0 0.0 0.0 20.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 60.4 0.0 0.0 0.0 0.0 3.2 0.6 5.2 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 1.3 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0
336.20 0.0 0.0 0.0 0.0 0.0 23.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 71.3 0.0 0.0 0.0 0.0 0.0 0.6 1.9 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
337.45 0.0 0.0 0.0 0.0 0.0 19.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 77.4 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
339.30 0.0 0.0 0.0 0.0 0.0 27.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 51.9 0.0 0.0 0.0 0.0 0.0 0.6 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 2.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.4 0.0 0.0 0.0 0.0 0.0 0.6 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
342.05 0.0 0.0 0.0 0.0 0.0 21.5 0.0 0.0 0.0 0.0 0.7 0.0 0.7 2.0 0.0 50.3 0.0 0.0 0.0 0.0 0.7 1.3 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 2.0 8.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.7 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0
349.18 0.0 0.0 0.0 0.0 0.0 12.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 53.4 0.0 0.0 0.0 0.0 0.0 0.0 4.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 9.7 10.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
357.50 0.0 0.0 3.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 88.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.6 0.0 1.2 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
364.90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
367.65 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 94.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
377.65 0.0 0.0 0.6 0.0 0.0 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 91.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
384.60 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 85.4 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.2 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
387.35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.0 0.0 0.0
393.05 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 86.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.5 0.0 0.0 0.0 0.0 0.0 0.7 0.0
398.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.9 0.0 79.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.7 0.0
400.53 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6 0.0 74.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.8 0.0 0.0 9.1 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 3.3 0.8 0.0 0.0 0.0 0.0 1.7 0.0
403.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 84.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.0 13.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
409.90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 78.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0
414.95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 93.1 0.0 0.0 0.0 0.0 0.9 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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13.25 0.0 0.0 0.0 0.0 1.4 0.0 71
15.78 0.0 0.0 0.0 0.0 2.1 0.0 96
16.00 0.0 0.0 0.0 0.0 2.3 0.0 88
16.45 0.0 0.0 0.0 0.0 0.8 0.0 128
16.65 0.0 0.0 0.0 0.0 0.0 0.0 49
17.30 0.0 0.0 0.0 0.0 3.5 0.0 57
18.63 0.0 14.1 0.0 0.0 0.0 0.0 142
19.24 0.0 0.0 0.0 0.0 2.9 0.0 35
19.35 0.0 0.0 0.0 0.0 0.0 0.0 41
19.85 0.0 0.0 0.0 0.0 1.6 0.0 63
20.53 0.0 0.0 0.0 0.0 0.0 0.0 46
20.85 0.0 0.0 0.0 0.0 0.0 0.0 63
22.80 0.0 0.0 0.0 0.0 1.1 0.0 92
22.88 0.0 0.0 0.0 0.0 5.0 0.0 200
23.55 0.0 0.0 0.0 0.0 0.0 0.0 32
24.05 0.0 0.0 0.0 0.0 0.0 0.0 62
26.23 0.0 0.0 0.0 0.0 0.7 0.0 152
26.83 0.0 0.0 0.0 0.0 0.5 0.0 202
28.00 0.0 1.5 0.0 0.0 0.0 0.0 200
30.60 0.0 0.0 0.0 0.0 3.1 0.0 163
32.25 0.0 0.0 0.0 0.0 0.6 0.0 179
33.20 0.0 0.0 0.0 0.0 1.9 0.0 207
35.95 0.0 0.0 0.0 0.0 2.2 0.0 92
37.55 0.0 0.0 0.0 0.0 0.5 0.0 201
40.10 0.0 5.9 0.0 0.0 0.5 0.0 204
42.25 0.0 0.0 0.0 0.0 2.4 0.0 170
42.65 0.0 0.5 0.0 0.0 0.5 0.0 200
44.15 0.0 0.0 0.0 0.0 0.0 0.0 39
46.35 0.0 6.5 0.0 0.0 0.5 0.0 201
47.90 0.0 1.5 0.0 0.0 2.9 0.0 204
48.60 0.0 0.5 0.0 0.0 1.5 0.0 204
49.70 0.0 1.0 0.0 0.0 2.0 0.0 199
50.60 0.0 0.0 0.0 0.0 1.0 0.0 191
51.80 1.6 2.6 0.0 0.0 3.1 0.0 191
52.35 0.0 0.0 0.0 0.0 0.5 0.0 204
54.50 0.0 0.0 0.0 0.0 0.0 0.0 130
56.10 0.0 0.0 0.0 0.0 0.6 0.0 170
56.95 0.0 0.0 0.0 0.0 1.6 0.0 61
57.60 0.0 0.0 0.0 0.0 1.7 0.0 116
57.80 0.0 0.0 0.0 0.0 0.0 0.0 107
58.70 0.0 0.0 0.0 0.0 3.5 0.0 143
59.30 0.0 0.0 0.0 0.0 0.0 0.0 133
60.70 0.5 0.0 0.0 0.0 0.0 0.0 189
65.45 0.0 0.0 0.0 0.0 0.5 0.0 201
65.90 0.0 0.0 0.0 0.0 0.0 0.0 69
67.00 0.0 0.0 0.0 0.0 2.4 0.0 84
67.40 0.0 0.0 0.0 0.0 1.4 0.0 70
71.60 0.0 0.0 0.0 0.0 6.0 0.0 84
72.25 0.0 0.0 0.0 0.0 3.1 0.0 130
75.40 0.0 0.0 0.0 0.0 1.3 0.0 156
77.20 0.0 0.0 0.0 0.0 0.0 0.0 86
80.40 0.0 0.0 0.0 0.0 0.6 0.0 181
82.55 0.0 0.0 0.0 0.6 0.0 0.0 157
83.00 0.0 5.9 0.0 0.0 1.0 0.0 101
84.90 0.0 0.0 0.0 0.0 1.6 0.0 189
86.70 0.0 0.0 0.0 0.0 0.0 0.0 133
88.40 0.0 0.0 0.0 0.0 1.0 0.0 200
91.25 0.0 0.0 0.0 0.0 4.6 0.0 238
94.35 0.0 0.0 0.0 0.8 0.0 0.0 249
97.65 0.0 6.7 0.0 0.0 3.3 0.0 180
98.20 0.0 0.7 0.0 0.0 5.0 0.0 139
99.20 0.0 0.0 0.0 0.0 2.2 0.0 228

101.70 0.0 0.0 0.0 0.0 2.1 0.0 194
103.15 0.0 0.0 0.0 0.0 1.7 0.0 241
108.10 0.0 0.0 0.0 0.0 0.0 0.0 206
109.40 0.0 14.3 0.0 0.0 0.5 0.0 182
110.60 0.4 0.0 0.0 0.0 0.4 0.0 225
112.70 0.0 1.7 0.0 0.0 0.6 0.0 181
119.50 0.0 0.0 0.0 0.0 0.9 0.0 214
120.60 0.0 0.0 0.0 0.0 2.0 0.0 198
122.85 0.0 0.0 0.0 0.0 0.0 0.0 133
124.40 0.0 5.1 0.0 0.0 0.0 0.0 198
124.67 0.0 9.2 0.0 0.0 0.4 0.0 228
128.10 0.0 5.4 0.0 0.8 0.0 0.0 239
130.55 0.0 40.8 0.0 0.0 0.0 0.0 355
134.45 0.0 1.1 0.0 0.4 0.4 0.0 276
135.75 0.0 40.0 0.0 0.0 0.0 0.0 185
146.10 0.4 11.5 0.0 1.3 0.9 0.0 226
157.15 0.0 0.0 0.0 5.1 1.4 0.0 215
160.35 0.0 0.0 0.0 1.3 0.0 0.0 238
167.25 0.0 0.3 0.0 1.4 0.7 0.0 289
170.43 0.0 5.9 0.0 0.3 0.6 0.0 323
178.56 0.0 5.1 0.0 0.5 0.0 0.0 216
182.06 0.0 0.0 0.0 0.0 0.0 0.4 241
182.60 0.0 0.0 0.0 0.0 0.0 0.0 205
189.80 0.0 0.0 0.0 1.5 0.0 0.0 194
190.75 0.0 0.0 0.0 1.2 0.0 0.0 325
200.68 0.0 0.0 0.0 0.0 0.0 0.0 199
202.37 0.0 0.0 0.0 0.0 0.0 0.0 177
205.35 0.0 0.5 0.0 0.0 0.0 0.0 196
207.80 0.0 1.5 0.0 0.0 0.0 0.0 134
211.85 0.0 0.0 0.0 1.4 0.0 0.0 207
214.75 0.0 0.0 0.0 1.0 0.0 0.0 286
217.00 0.0 0.0 0.0 0.5 0.0 0.0 202
222.00 0.0 0.0 0.0 0.0 0.0 0.0 209
222.25 0.0 0.0 0.0 0.0 0.5 0.0 195
224.60 0.0 0.0 0.6 0.0 0.6 0.0 163
227.10 0.0 0.0 0.0 0.4 0.0 0.0 256
232.90 0.0 0.0 0.0 0.0 0.0 0.0 202
237.60 0.0 0.0 0.0 0.0 0.0 0.0 208
237.70 0.0 0.0 0.0 0.0 1.0 0.0 105
239.75 0.0 0.0 0.0 0.0 0.0 0.0 208
240.65 0.0 0.0 0.0 0.0 1.3 0.0 238
241.25 0.0 0.0 0.0 0.0 0.0 0.0 40
243.95 0.0 0.0 0.0 0.0 0.0 0.0 206



D
E

P
H

 (
m

)

T
an

yo
sp

ha
er

id
iu

m
 s

pp
.

T
ric

ho
di

ni
um

 c
as

ta
ne

a

T
ri

co
lp

ite
s

 s
pp

.

U
es

ug
ui

po
lle

ni
te

s 
ca

llo
su

s

V
er

ru
co

si
sp

or
ite

s
 s

pp
.

V
itr

ei
sp

or
ite

s 
pu

st
ul

os
us

T
o

ta
l

247.00 0.0 0.0 0.0 0.0 0.0 0.0 202
249.10 0.0 0.0 0.0 0.0 0.5 0.0 195
252.60 0.0 0.0 0.0 0.0 1.0 0.0 201
254.60 0.0 0.0 0.0 0.0 0.0 0.0 66
255.65 0.0 0.0 0.0 0.0 0.0 0.0 207
256.10 0.0 0.0 0.0 0.0 0.0 0.0 233
258.50 0.0 0.0 0.0 0.0 0.0 0.0 199
259.05 0.0 0.0 0.0 0.0 0.0 0.0 106
262.95 0.0 0.0 0.0 0.0 0.0 0.0 153
265.10 0.0 0.0 0.0 0.0 0.0 0.0 185
268.05 0.0 0.0 0.0 0.0 0.0 0.0 248
268.30 0.0 0.0 0.0 0.0 0.0 0.0 193
268.50 0.0 0.0 0.0 0.0 0.5 0.0 197
272.55 0.0 0.0 0.0 0.0 0.0 0.0 200
277.70 0.0 0.0 0.0 0.0 1.0 0.0 202
289.60 0.0 0.0 0.0 0.0 0.0 0.0 203
291.50 0.0 0.0 0.0 0.0 1.0 0.0 201
295.10 0.0 0.0 0.0 0.0 0.0 0.0 182
299.30 0.0 0.0 0.0 0.0 0.0 0.0 200
300.60 0.0 0.0 0.0 0.0 0.6 0.0 172
304.05 0.0 0.0 0.0 0.0 1.5 0.0 199
308.95 0.0 0.0 0.0 0.0 0.0 0.0 197
309.53 0.0 0.0 0.0 0.5 0.0 0.0 200
313.25 0.0 0.0 0.0 0.5 0.0 0.0 190
318.00 0.0 0.0 0.0 0.0 1.4 0.0 148
318.65 0.0 0.0 0.0 0.0 0.0 0.0 180
322.25 0.0 0.0 0.0 3.2 0.0 0.0 186
326.45 0.0 0.0 0.0 0.0 0.0 0.0 185
327.43 0.0 0.0 0.0 0.0 0.0 0.0 170
331.30 0.0 0.0 0.0 0.0 0.6 0.0 154
336.20 0.0 0.0 0.0 0.0 0.0 0.0 157
337.45 0.0 0.0 0.0 0.0 0.0 0.0 31
339.30 0.0 0.0 0.0 0.0 0.0 0.0 162
342.05 0.0 0.0 0.0 0.0 0.0 0.0 149
349.18 0.0 0.0 0.0 0.0 0.0 0.0 103
357.50 0.0 0.0 0.0 0.0 0.0 0.0 169
364.90 0.0 0.0 0.0 0.0 0.0 0.0 22
367.65 0.0 0.0 0.0 0.0 0.0 0.0 38
377.65 0.0 0.0 0.0 0.0 0.0 0.0 161
384.60 0.0 0.0 0.0 0.4 0.0 0.0 123
387.35 0.0 0.0 0.0 0.0 0.0 0.0 26
393.05 0.0 0.0 0.0 0.0 0.0 0.0 134
398.05 0.0 0.0 0.0 0.0 1.9 0.0 103
400.53 0.0 0.0 0.0 0.0 0.0 0.0 121
403.75 0.0 0.0 0.0 0.0 1.0 0.0 194
409.90 0.0 0.0 0.0 0.0 0.0 0.0 80
414.95 0.0 0.0 0.0 0.0 0.0 0.0 116



Depth (m) AOM Re O-Eq O-La Fh Wp Cu Ww Mb Zoo Sp FTL Df
18.00 0.0 0.6 20.6 59.8 0.0 0.4 3.4 4.6 0.0 0.0 10.6 0.0 0.0
25.10 0.0 0.0 33.0 54.0 0.0 0.0 2.0 11.0 0.0 0.0 0.0 0.0 0.0
31.85 3.0 0.0 20.0 69.0 0.0 0.0 1.0 2.0 0.0 0.0 3.0 0.0 2.0
34.75 3.0 0.2 3.8 43.4 0.2 1.0 3.4 29.6 0.0 0.8 13.8 0.8 0.0
36.80 3.0 0.0 37.0 55.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0
51.15 2.0 0.0 13.0 59.7 0.0 1.0 6.0 14.0 0.0 0.0 4.0 0.0 0.3
51.70 0.7 0.0 13.0 66.7 0.0 1.0 6.3 11.7 0.0 0.0 0.7 0.0 0.0
57.30 0.6 0.6 14.6 60.4 0.2 0.0 1.6 7.4 0.0 0.4 13.2 0.2 0.8
58.95 0.8 0.8 8.6 67.0 0.0 0.2 0.4 7.6 0.2 1.0 10.8 1.8 0.8
61.05 0.2 0.2 8.4 56.2 0.0 0.6 7.0 19.6 0.0 0.0 3.2 0.0 4.6
61.70 2.0 0.0 2.3 26.7 0.0 0.0 20.3 33.0 0.0 0.3 5.3 0.0 10.0
63.50 1.7 0.0 36.3 55.0 0.0 0.0 0.3 6.3 0.0 0.0 0.3 0.0 0.0
65.80 1.0 0.0 18.4 50.6 0.0 0.6 0.6 18.2 0.0 0.2 10.0 0.0 0.4
68.95 0.3 0.7 29.0 63.3 0.0 0.0 1.7 4.0 0.0 0.0 1.0 0.0 0.0
70.60 0.8 0.8 5.6 59.4 0.0 1.2 2.0 20.2 0.0 0.0 10.0 0.0 0.0
82.15 2.4 0.8 14.6 41.0 0.0 0.8 1.6 24.2 0.0 0.4 11.4 0.0 2.8
85.70 3.0 1.0 10.8 47.8 0.0 0.4 3.8 16.6 0.0 1.0 15.2 0.2 0.2
93.90 2.6 0.2 9.8 37.2 0.0 0.0 3.8 22.4 0.0 0.4 18.8 0.8 4.0
96.00 0.6 0.2 22.6 45.8 0.2 0.6 0.6 12.0 0.0 0.0 16.8 0.0 0.6

100.90 1.2 1.4 13.0 67.2 0.0 0.8 1.0 4.2 0.0 0.0 10.8 0.2 0.2
103.30 4.8 0.2 5.0 28.0 0.0 0.2 1.0 9.8 0.0 1.8 32.0 10.2 7.0
109.00 6.0 0.0 14.0 59.0 0.0 0.0 10.0 11.0 0.0 0.0 0.0 0.0 0.0
119.50 2.0 1.2 8.6 29.2 0.0 0.2 2.0 21.2 0.0 0.8 15.6 3.0 16.2
131.70 0.4 0.4 25.8 37.4 0.0 0.4 0.4 11.2 0.0 2.0 19.8 0.2 2.0
133.55 0.3 0.0 25.0 62.3 0.0 0.7 0.3 10.0 0.0 0.0 1.3 0.0 0.0
137.70 3.4 0.4 13.8 33.8 0.2 0.6 1.2 19.6 0.0 1.0 21.4 1.6 3.0
141.60 1.2 0.4 18.6 38.6 0.0 0.0 1.2 13.4 0.0 0.0 26.4 0.2 0.0
143.97 0.0 0.4 22.6 37.6 0.0 0.2 3.2 21.2 0.4 0.0 14.4 0.0 0.0
147.06 0.0 0.0 48.3 43.3 0.0 0.0 3.0 4.7 0.0 0.0 0.7 0.0 0.0
149.90 17.4 0.0 43.0 36.4 0.0 0.0 0.6 0.4 0.0 0.0 2.2 0.0 0.0
155.70 1.4 0.2 34.6 43.8 0.0 1.2 2.4 6.0 0.0 0.0 8.6 0.0 1.8
158.30 1.0 1.4 10.2 47.6 0.2 1.8 2.4 24.6 0.4 0.0 10.2 0.2 0.0
159.43 1.4 0.2 8.2 32.6 0.2 0.2 5.4 21.2 0.0 0.0 30.6 0.0 0.0
167.70 0.6 0.4 28.4 41.8 0.0 0.4 2.2 8.8 0.2 0.0 16.8 0.0 0.4
174.06 1.6 0.0 19.2 49.4 0.0 0.2 1.0 11.4 0.2 0.0 16.8 0.0 0.2
182.10 3.2 0.2 4.4 32.6 2.2 2.0 3.0 38.8 1.2 0.0 11.6 0.0 0.8
184.00 0.6 0.4 18.2 35.8 0.4 0.2 2.6 16.6 0.2 0.0 24.8 0.2 0.0
209.50 3.2 0.4 6.2 50.0 0.4 0.6 5.4 15.2 0.0 0.2 18.4 0.0 0.0
210.55 2.0 1.4 8.0 48.0 0.2 0.6 3.2 25.2 0.0 0.4 10.4 0.2 0.4
215.05 0.0 0.0 21.6 29.6 0.0 0.2 1.0 11.8 0.0 0.2 35.4 0.2 0.0
216.60 1.0 0.2 9.6 50.4 0.4 0.8 5.4 19.0 0.0 0.2 12.2 0.2 0.6
218.10 0.8 0.2 8.4 46.8 0.0 0.0 1.2 17.4 0.0 0.0 25.0 0.2 0.0
225.15 1.2 0.2 4.0 53.4 0.0 0.4 2.2 21.4 0.0 0.0 17.0 0.2 0.0
230.50 0.6 0.4 4.0 53.4 0.2 1.4 2.8 21.6 0.2 0.0 14.4 0.0 1.0
233.27 0.8 1.0 4.0 47.6 0.6 0.8 9.0 18.2 0.2 0.6 14.8 0.8 1.6
233.70 0.2 0.8 6.8 41.4 0.2 0.2 2.4 29.4 0.6 1.8 15.6 0.2 0.4
242.05 0.4 0.4 17.0 48.6 0.6 0.4 1.0 12.6 0.0 0.0 18.8 0.2 0.0
244.35 1.0 0.2 5.0 52.0 0.6 0.4 6.4 20.8 0.6 0.0 13.0 0.0 0.0
246.75 1.2 1.4 6.8 54.6 0.0 0.0 3.6 20.0 0.6 0.0 11.4 0.2 0.2
248.40 0.8 1.4 7.4 49.6 0.6 0.8 3.6 23.0 0.0 0.4 11.4 0.4 0.6
250.73 1.0 2.0 8.2 48.0 0.0 1.4 1.4 26.8 0.0 0.0 10.6 0.0 0.6
252.75 0.2 0.6 8.0 51.8 0.2 0.2 2.2 14.6 0.0 0.2 19.4 0.2 2.4
254.83 0.4 0.4 3.6 38.0 0.2 0.8 2.4 31.6 0.2 0.2 21.8 0.0 0.4
255.57 0.6 0.8 2.4 43.0 1.2 0.4 4.6 33.8 0.4 0.0 12.2 0.2 0.4
257.65 0.4 0.8 4.6 51.4 0.8 1.0 2.8 25.2 0.4 0.0 12.4 0.0 0.2
259.87 0.2 0.2 4.4 49.2 0.0 0.8 3.6 28.2 0.0 0.0 13.0 0.2 0.2
261.70 0.4 0.4 4.8 48.6 0.2 0.2 8.6 25.4 0.0 0.2 10.4 0.2 0.6
263.32 0.6 0.4 2.4 47.0 0.2 1.0 6.6 22.8 0.8 0.0 17.6 0.0 0.6

Appendix 3a. Palynofacies distribution (percentages) of well GTP-17-SE (continued).



Depth(m) AOM Re O-Eq O-La Fh Wp Cu Ww Mb Zoo Sp FTL Df
265.78 0.8 0.4 5.0 41.4 0.2 1.6 5.0 31.8 0.0 0.0 13.2 0.4 0.2
268.40 0.4 0.6 3.4 45.0 0.4 1.0 12.6 25.2 0.0 0.0 11.4 0.0 0.0
271.48 0.6 0.8 2.2 27.0 0.2 0.4 14.2 30.4 0.0 0.6 23.6 0.0 0.0
273.20 0.8 0.6 1.8 57.4 0.6 1.6 1.0 25.8 0.0 0.2 9.6 0.2 0.4
275.72 1.8 1.0 4.4 52.6 0.4 0.4 1.2 24.6 0.0 0.0 11.2 0.4 2.0
277.75 1.0 2.0 5.6 63.8 0.0 1.2 2.6 12.2 0.0 0.4 11.0 0.2 0.0
283.83 0.6 0.2 3.6 37.0 0.0 0.2 2.0 27.2 0.0 0.4 26.0 1.2 1.6
285.83 25.6 0.2 3.6 28.2 0.0 0.4 1.6 21.0 0.0 0.2 15.6 0.0 3.6
287.02 13.6 0.4 2.6 25.8 0.2 0.4 1.8 32.6 0.0 0.6 17.4 0.2 4.4
292.25 0.8 0.4 22.6 36.4 0.0 1.0 0.8 25.4 0.0 0.6 9.8 1.4 0.8
294.75 0.2 0.2 13.2 37.8 0.0 0.8 2.0 16.2 0.0 0.8 27.2 1.0 0.6
298.30 1.0 0.0 12.0 43.6 0.2 0.2 2.6 14.6 0.2 0.0 25.4 0.2 0.0
300.93 0.2 0.2 13.0 42.2 0.2 0.6 4.8 17.6 0.0 0.8 19.4 0.8 0.2
302.25 1.4 0.4 5.6 44.6 0.2 0.2 2.2 31.0 0.8 0.6 12.8 0.2 0.0
304.18 1.2 0.6 9.6 43.4 0.2 1.0 3.6 25.2 0.0 0.6 13.0 1.0 0.6
306.00 1.2 0.0 9.0 35.6 0.4 0.2 1.0 39.6 0.6 0.8 10.6 0.6 0.4
309.05 43.8 0.0 3.6 22.6 0.2 0.2 0.2 8.4 0.0 0.4 18.6 0.4 1.6
315.23 1.6 0.2 6.8 43.8 0.0 1.4 6.2 27.4 0.0 0.4 11.8 0.0 0.4
317.75 2.0 0.0 4.2 42.2 0.4 1.4 3.4 32.6 0.0 0.6 11.8 0.6 0.8
318.00 1.2 0.0 11.2 46.8 0.6 0.8 2.8 26.4 0.0 0.6 9.6 0.0 0.0
322.95 0.6 0.2 4.8 47.8 0.4 0.4 3.4 29.2 0.2 0.8 11.8 0.2 0.2
325.80 60.0 0.0 1.8 16.4 0.0 0.2 0.2 9.0 0.0 0.6 10.8 0.8 0.2
327.31 57.8 0.0 0.6 10.4 0.2 0.0 0.2 10.4 0.0 0.2 16.2 3.0 1.0
328.67 20.2 0.0 1.8 17.0 0.0 0.6 0.4 29.4 0.0 0.4 22.6 4.6 3.0
329.50 18.2 0.0 2.6 37.2 0.0 0.6 0.6 25.8 0.0 0.0 12.6 1.6 0.8
331.50 43.8 0.0 2.4 30.2 0.0 0.0 2.6 10.6 0.0 0.0 10.4 0.0 0.0
339.80 67.0 0.2 1.2 8.2 0.0 0.2 0.2 4.2 0.0 0.0 17.0 1.6 0.2
340.40 29.4 0.4 2.2 47.4 0.4 0.6 0.8 7.8 0.2 0.2 10.6 0.0 0.0
341.30 26.0 0.2 4.2 44.6 0.6 0.6 0.8 12.0 0.0 0.4 10.6 0.0 0.0
350.50 14.4 1.2 2.0 63.0 0.0 0.0 0.6 7.2 0.0 0.0 11.6 0.0 0.0
351.50 31.4 0.4 2.8 33.6 0.0 0.4 2.0 14.8 0.6 0.0 14.0 0.0 0.0
362.72 13.4 0.2 2.8 59.6 0.0 0.0 1.2 9.6 0.2 1.0 12.0 0.0 0.0
363.83 53.0 0.0 1.8 23.6 0.4 1.6 0.0 9.2 0.0 0.4 10.0 0.0 0.0
368.30 20.0 0.2 2.0 50.2 0.4 0.4 2.0 12.2 0.8 1.2 10.6 0.0 0.0
369.23 28.6 0.0 2.6 35.2 0.0 0.2 2.2 19.6 0.0 0.0 11.6 0.0 0.0
372.95 39.4 0.0 2.4 32.4 0.0 0.2 1.0 8.2 0.0 0.0 16.4 0.0 0.0
374.15 1.0 0.2 10.4 52.0 0.8 0.6 1.2 18.2 0.0 0.0 15.6 0.0 0.0
378.77 37.6 0.0 3.0 29.2 0.2 0.4 0.4 17.8 0.0 0.0 11.4 0.0 0.0
384.15 6.4 0.2 4.4 49.6 0.0 0.0 3.0 13.6 0.0 0.0 22.8 0.0 0.0
385.27 2.6 0.2 6.2 51.2 0.2 0.4 4.6 24.6 0.0 0.0 10.0 0.0 0.0
386.86 37.8 0.2 1.0 32.0 0.4 0.0 1.4 12.8 0.0 0.0 14.4 0.0 0.0
389.35 32.8 0.4 1.2 38.8 0.0 0.2 0.0 4.0 0.0 0.0 22.6 0.0 0.0
393.25 1.2 0.4 4.8 60.4 0.4 0.6 1.6 15.0 0.4 0.2 15.0 0.0 0.0
396.62 0.8 0.2 4.8 46.4 0.0 1.0 0.2 23.4 0.0 0.2 23.0 0.0 0.0
409.50 56.0 0.0 6.0 18.0 0.0 0.0 0.0 5.0 0.0 0.0 15.0 0.0 0.0
415.88 32.6 0.2 4.0 30.0 0.0 0.4 0.2 12.6 0.0 0.2 19.8 0.0 0.0
440.65 64.4 0.0 0.2 14.2 0.0 0.0 0.2 6.6 0.0 0.0 13.2 1.2 0.0
443.20 0.2 0.4 6.4 61.6 0.0 0.2 0.0 11.4 0.0 1.2 12.6 5.2 0.8
444.17 12.0 0.0 14.2 53.0 0.0 0.2 0.4 10.2 0.0 0.0 9.0 0.6 0.4
451.40 74.2 0.0 0.0 10.0 0.0 0.0 0.0 1.2 0.0 0.6 7.4 6.6 0.0
456.25 32.4 0.0 6.6 42.0 0.0 0.2 0.0 5.6 0.0 0.0 11.6 1.4 0.2
467.40 47.2 0.0 4.0 22.8 0.0 1.4 1.4 12.2 0.0 0.2 10.6 0.2 0.0
469.25 0.4 0.0 22.4 53.2 0.0 0.8 0.8 12.2 0.0 0.0 10.2 0.0 0.0
470.10 20.0 1.4 4.8 32.8 0.0 0.6 0.8 10.4 0.0 0.0 28.8 0.4 0.0
470.95 13.4 0.0 5.8 46.0 0.0 0.2 1.4 7.4 0.0 0.0 25.8 0.0 0.0
Mean 10.5 0.4 9.9 43.3 0.2 0.5 2.6 17.0 0.1 0.3 13.8 0.5 0.8

Appendix 3a. Palynofacies distribution (percentages) of well GTP-17-SE (continued).



Depth (m) AOM Re O-Eq O-La Fh Wp Cu Ww Mb Zoo Sm FTL Df
12.64 9.8 1.6 28.4 47.8 0.8 1.2 1.2 7.0 1.0 0.0 0.4 0.0 0.8
13.25 25.2 2.6 8.6 41.6 1.0 1.4 3.0 7.0 3.2 0.0 2.0 0.0 4.4
15.55 70.4 1.0 3.6 10.6 0.6 0.4 3.2 4.4 0.2 0.0 4.0 0.2 1.4
15.78 63.2 0.2 4.0 8.4 0.0 0.8 1.8 7.0 0.8 0.0 5.4 0.2 8.2
16.00 42.0 2.0 11.0 16.2 0.6 0.6 2.2 6.4 2.8 0.0 5.6 0.4 10.2
16.45 44.2 0.0 5.0 15.2 0.0 1.4 3.8 4.2 2.2 0.0 22.6 0.2 1.2
16.65 28.6 0.0 5.8 9.4 0.0 0.6 1.6 48.0 1.0 0.0 2.0 0.0 3.0
17.90 63.4 0.2 3.4 9.2 0.6 2.0 1.2 6.4 0.8 0.0 12.2 0.0 0.6
18.63 25.4 0.4 8.4 21.2 0.4 1.8 0.8 18.6 3.6 0.0 3.4 1.2 14.8
19.24 46.8 1.2 3.0 19.0 1.2 1.2 6.4 9.2 3.4 0.0 6.0 0.0 2.6
19.35 44.2 0.4 2.4 19.8 2.0 0.2 2.4 15.8 2.6 0.0 4.4 0.0 5.8
19.85 50.2 0.6 1.8 17.4 0.6 0.8 3.8 9.6 4.2 0.0 9.8 0.0 1.2
20.53 52.2 2.4 1.8 15.0 0.2 0.2 4.0 7.6 5.0 1.4 5.2 0.2 4.8
20.85 26.0 1.4 7.0 18.4 0.0 1.2 1.2 23.8 3.4 0.4 1.8 0.6 14.8
22.80 59.8 0.8 1.2 13.0 0.2 0.0 0.8 5.6 2.8 0.4 5.4 0.2 9.8
22.88 16.6 0.0 5.8 22.6 0.0 1.2 0.6 33.6 0.0 0.0 9.0 0.6 10.0
23.55 52.2 0.2 6.4 12.0 0.0 0.8 1.2 17.4 0.2 0.4 5.6 1.8 1.8
24.05 50.8 0.4 3.8 18.8 0.4 0.0 1.0 7.4 0.8 0.0 15.4 0.4 0.8
25.30 39.6 0.2 8.6 23.2 0.0 0.4 1.6 19.6 0.6 0.6 2.4 1.4 1.8
26.23 44.4 3.6 3.6 10.4 3.2 1.4 0.8 12.8 0.8 0.0 14.4 0.0 4.6
26.83 30.0 2.4 3.6 15.2 1.0 2.2 1.0 26.0 0.0 0.4 16.6 0.4 1.2
28.00 10.2 7.8 10.4 24.0 0.4 0.6 0.6 20.6 0.0 0.6 7.8 7.2 9.8
30.60 38.0 2.6 4.6 11.6 1.4 1.0 0.4 25.6 0.8 0.0 12.2 0.2 1.6
32.25 21.0 2.0 5.8 16.2 0.4 0.6 0.0 17.2 0.4 0.6 6.6 2.0 27.2
33.20 25.0 1.2 18.4 18.0 0.2 0.4 0.0 10.2 0.0 1.8 6.4 11.2 7.2
35.10 60.4 3.2 4.8 10.4 2.2 0.2 0.8 9.8 3.8 0.2 3.4 0.2 0.6
35.95 49.2 0.8 3.0 7.0 1.4 0.4 0.4 14.0 0.0 1.4 10.4 1.2 10.8
37.55 7.0 2.8 10.0 22.8 0.0 0.4 0.0 25.2 0.8 0.2 6.8 7.6 16.4
39.45 68.2 0.2 2.0 7.4 2.2 0.0 0.0 6.8 0.8 0.0 9.0 1.2 2.2
40.10 41.0 0.8 10.4 11.2 0.0 0.6 1.0 15.2 0.0 0.0 4.6 5.0 10.2
42.25 58.0 0.2 2.6 7.4 1.8 0.0 0.4 13.8 1.0 0.4 8.0 0.8 5.6
42.65 13.0 1.8 10.8 19.2 0.2 0.2 0.0 23.4 0.0 0.0 3.2 2.0 26.2
44.15 53.4 2.2 5.4 10.8 0.8 0.4 0.2 14.2 2.2 0.2 7.2 0.0 3.0
46.35 10.2 2.0 11.8 20.0 0.2 1.0 1.4 30.2 0.0 0.0 4.4 2.2 16.6
47.90 50.0 1.0 4.6 13.2 1.0 0.4 0.6 12.4 0.8 0.0 12.6 0.4 3.0
48.60 46.0 0.8 2.8 12.0 0.4 1.0 0.4 15.2 0.0 0.0 12.2 1.6 7.6
49.70 2.6 0.4 9.8 36.2 0.4 1.0 0.6 29.0 0.0 0.6 4.2 4.2 11.0
50.60 34.8 1.6 9.0 15.4 0.4 0.0 1.0 20.2 0.8 0.0 10.2 0.2 6.4
51.80 8.8 2.4 12.6 27.2 0.4 0.2 0.2 27.0 0.8 0.0 11.4 1.6 7.4
52.35 49.0 1.0 6.2 18.6 0.0 0.2 2.2 11.4 0.4 0.2 7.4 0.2 3.2
54.50 46.4 1.8 5.6 13.2 0.0 0.4 0.6 15.6 0.4 1.2 7.6 0.0 7.2
56.10 46.4 1.0 2.4 16.8 0.0 0.6 1.2 12.0 0.0 0.6 9.2 0.4 9.4
56.95 58.4 0.4 3.6 14.8 0.4 0.0 0.8 4.4 1.8 0.8 13.6 0.8 0.2
57.60 55.6 1.2 3.0 14.6 0.2 0.4 0.4 11.2 0.0 0.6 5.8 0.8 6.2
57.80 67.0 0.4 1.2 5.6 0.6 0.4 0.6 4.2 1.2 0.6 14.2 0.0 4.0
58.70 45.2 0.8 3.0 15.6 0.2 0.2 0.6 18.6 0.0 1.4 4.8 1.0 8.6
59.30 66.2 0.0 2.0 9.0 0.4 0.0 0.0 3.6 0.0 0.8 15.0 1.2 1.8
60.70 13.0 1.6 4.4 36.0 0.4 0.6 0.6 28.8 0.6 0.2 2.0 0.0 11.8
62.25 45.6 1.0 1.4 31.4 0.6 0.4 0.2 12.6 0.8 0.8 4.8 0.0 0.4
64.65 36.6 2.4 1.0 17.8 0.2 0.0 0.6 11.2 0.2 0.4 5.4 1.8 22.4
66.45 60.4 0.2 0.8 17.0 0.2 0.6 0.2 6.0 1.0 0.4 10.6 0.4 2.2
67.00 74.2 0.0 0.4 5.2 0.0 0.0 0.4 6.8 0.0 1.6 5.4 0.8 5.2
67.40 57.0 1.4 0.4 10.0 0.0 0.0 0.4 9.0 0.0 3.0 4.4 5.0 9.4
71.60 56.2 0.4 1.6 10.8 0.6 0.2 0.0 12.4 1.6 0.4 10.0 0.2 5.6
72.25 31.0 1.0 0.8 18.6 0.0 0.0 2.0 26.2 0.8 0.0 5.2 1.2 13.2
75.40 55.6 1.4 2.4 8.4 0.6 0.2 0.2 12.4 0.6 0.4 14.4 0.8 2.6
77.20 55.4 1.0 1.0 12.6 0.4 0.0 0.6 11.8 0.6 0.0 12.0 1.2 3.4
80.40 20.8 0.4 1.4 36.4 0.0 0.6 0.6 21.4 0.2 0.2 5.0 1.2 11.8
82.55 66.8 0.0 1.4 14.4 0.4 0.0 0.0 4.6 0.0 0.6 8.8 0.2 2.8

Appendix 3b. Palynofacies distribution (percentages) of well GTP-24-SE (continued).



Depth(m) AOM Re O-Eq O-La Fh Wp Cu Ww Mb Zoo Sm FTL Df
83.00 23.4 0.4 2.2 42.6 0.0 0.6 1.8 15.4 0.0 0.8 2.6 2.0 8.2
84.90 45.2 0.2 1.2 17.0 0.2 0.4 0.6 7.2 0.0 0.6 19.0 1.4 7.0
86.70 13.2 0.2 5.0 43.2 0.6 0.0 0.6 8.6 0.0 1.0 7.6 3.8 16.2
88.40 21.0 0.2 2.4 29.6 0.2 0.4 1.6 12.6 1.2 0.4 25.0 0.8 4.6
91.25 13.4 0.4 1.2 52.6 0.4 0.6 0.6 11.8 0.2 0.2 16.6 0.6 1.4
94.35 47.0 0.0 1.6 14.4 0.4 0.4 0.2 12.4 0.0 0.2 19.0 1.6 2.8
97.65 2.8 0.4 4.0 57.6 0.6 0.4 0.6 15.2 0.0 0.0 5.6 3.2 9.6
98.20 1.6 1.6 6.8 64.4 0.4 1.4 1.2 11.6 0.0 0.0 8.6 0.4 2.0
99.20 23.8 0.2 2.8 38.8 1.0 0.8 1.2 10.4 0.0 0.0 19.4 0.8 0.8

101.70 8.0 1.2 5.8 42.2 0.0 1.2 0.4 18.6 0.0 0.2 17.8 0.8 3.8
103.15 20.6 0.2 3.0 32.8 1.2 0.0 0.4 12.6 0.0 0.2 22.6 2.8 3.6
108.10 48.6 0.2 2.6 9.8 1.0 0.6 0.2 9.0 0.0 0.4 21.6 4.4 1.6
109.40 1.4 1.2 4.4 61.2 0.0 1.6 0.8 15.0 0.0 0.0 9.6 1.4 3.4
110.60 34.2 0.4 1.8 22.0 0.4 0.4 0.4 10.0 0.0 0.0 26.0 1.4 3.0
112.70 0.8 0.4 11.2 56.2 0.6 1.8 2.0 12.0 0.0 0.4 12.2 0.0 2.4
119.50 25.2 0.6 5.0 26.6 0.4 0.8 0.4 14.8 0.0 1.2 15.2 4.2 5.6
120.60 20.6 0.4 5.0 33.8 1.0 0.6 0.2 13.4 0.0 0.2 16.4 0.2 8.2
122.85 20.2 0.8 4.0 51.8 0.4 0.2 0.6 8.0 0.0 1.8 6.6 2.8 2.8
124.40 13.8 0.4 3.8 41.4 0.0 1.2 0.6 13.0 0.0 0.4 16.0 0.8 8.6
124.67 0.8 0.4 5.6 53.4 0.2 0.6 0.0 22.6 0.0 0.8 6.2 3.0 6.4
128.10 14.6 0.2 5.4 26.6 0.2 0.6 0.6 20.6 0.0 0.0 25.4 5.0 0.8
130.55 0.0 3.2 8.6 40.4 0.4 0.4 0.6 24.0 0.0 0.0 16.0 1.4 5.0
134.45 25.4 0.8 3.6 36.6 1.2 0.2 0.2 16.4 0.0 0.2 10.4 4.8 0.2
135.75 1.6 0.0 5.6 51.4 0.0 0.8 0.2 8.8 0.0 0.4 5.0 3.6 22.6
146.10 0.4 1.2 5.2 52.2 0.0 1.8 1.0 26.6 0.0 0.0 7.6 2.6 1.4
157.15 0.0 1.6 3.0 42.6 0.2 1.4 1.6 38.0 0.0 0.0 9.8 0.6 1.2
160.35 32.2 0.6 2.8 20.2 0.4 0.2 0.4 19.6 0.0 0.6 12.2 8.8 2.0
167.25 19.4 0.2 7.2 20.8 1.4 0.2 0.2 15.2 0.0 0.2 18.2 12.0 5.0
170.43 0.0 3.0 7.0 45.8 0.2 0.2 0.4 20.2 0.0 0.0 17.0 3.0 3.2
178.56 0.6 1.0 11.2 48.0 1.0 1.0 0.2 20.6 0.0 0.2 10.2 3.2 2.8
182.06 44.6 0.0 3.6 18.8 0.0 0.0 0.0 14.0 0.0 0.0 14.0 4.8 0.2
182.60 58.2 0.4 2.6 12.8 0.4 0.2 0.2 10.4 0.0 0.2 11.0 2.6 1.0
189.80 3.4 1.8 4.8 45.4 0.0 1.0 4.0 29.2 0.0 0.2 9.6 0.0 0.6
190.75 35.0 0.0 2.0 11.2 0.8 0.0 0.2 12.8 0.0 0.4 30.0 1.8 5.8
200.68 30.0 0.6 9.4 28.4 0.6 0.4 0.2 16.0 0.0 0.0 12.0 2.0 0.4
202.40 47.8 0.0 2.4 18.2 0.4 0.2 0.2 12.8 0.0 0.4 16.8 0.6 0.2
205.85 53.0 0.0 2.6 17.8 0.4 0.0 0.2 10.8 0.0 0.6 13.0 0.6 1.0
207.80 32.2 1.0 8.0 26.0 0.0 0.8 0.2 19.4 0.0 0.2 10.2 0.8 1.2
211.85 0.0 0.8 6.4 46.2 0.6 0.6 0.8 27.2 0.0 1.0 14.6 1.6 0.2
214.75 13.4 0.2 5.2 18.0 0.2 0.6 0.0 26.8 0.0 0.0 31.8 1.6 2.2
217.00 5.2 0.6 5.6 40.2 0.4 1.0 0.0 35.0 0.0 0.2 11.4 0.4 0.0
222.00 22.4 0.2 4.6 26.0 0.4 0.0 0.2 16.2 0.0 0.0 28.0 2.0 0.0
222.25 25.4 0.0 4.2 22.8 0.6 0.0 0.4 15.4 0.0 0.0 28.4 1.6 1.2
224.60 5.8 0.2 4.4 42.0 0.0 1.4 0.8 33.4 0.0 1.2 9.8 0.8 0.2
227.10 22.4 0.4 2.8 15.6 0.2 0.2 0.0 19.0 0.0 0.0 38.4 0.2 0.8
227.70 22.2 0.8 7.6 33.4 0.0 0.4 0.0 25.2 0.0 0.0 10.2 0.2 0.0
232.90 48.0 0.0 2.0 12.2 0.4 0.4 0.0 9.4 0.0 0.4 25.2 1.6 0.4
237.60 38.6 0.0 1.8 16.4 0.2 0.4 0.0 7.6 0.0 0.0 31.8 2.8 0.4
237.70 6.6 0.0 5.4 35.4 0.2 1.2 0.8 35.4 0.0 0.4 13.8 0.8 0.0
239.75 30.4 0.0 1.0 8.8 0.6 0.0 0.0 14.0 0.0 0.0 43.4 0.4 1.4
240.65 20.8 0.2 2.4 17.2 0.0 0.0 0.0 15.2 0.0 0.2 43.2 0.0 0.8
241.25 32.0 0.0 3.3 31.7 0.0 1.7 0.0 17.0 0.0 1.0 2.3 6.7 4.3
243.95 34.6 0.2 3.0 15.6 1.4 0.0 0.0 13.8 0.0 0.2 30.0 0.2 1.0
247.00 12.8 0.0 1.6 19.4 1.0 1.4 0.6 14.0 0.0 0.0 48.8 0.0 0.4
249.10 23.2 0.0 2.6 18.6 0.4 0.8 0.0 12.0 0.0 0.0 42.2 0.0 0.2
252.60 34.4 0.2 0.8 20.0 0.4 0.8 0.2 19.8 0.0 0.2 22.4 0.6 0.2
254.60 49.0 0.2 2.4 18.6 0.0 0.8 0.6 18.2 0.0 0.0 8.2 1.6 0.4
255.65 52.6 0.2 2.2 11.6 1.6 0.4 0.2 9.6 0.0 0.2 20.8 0.0 0.6
256.10 41.4 0.6 1.2 20.6 0.2 1.0 1.0 6.2 0.0 0.0 24.6 1.0 2.2

Appendix 3b. Palynofacies distribution (percentages) of well GTP-24-SE (continued).



Depth(m) AOM Re O-Eq O-La Fh Wp Cu Ww Mb Zoo Sm FTL Df
258.50 46.4 0.0 1.8 25.4 0.0 0.4 0.8 4.4 0.0 0.4 19.4 0.4 0.6
259.05 49.4 0.0 1.8 15.8 0.0 0.8 1.2 20.4 0.0 0.0 7.4 1.0 2.2
262.95 61.8 0.2 0.6 10.4 0.0 0.2 0.2 9.4 0.0 0.0 17.0 0.2 0.0
265.10 49.0 0.2 0.4 15.4 0.0 0.0 0.2 6.8 0.0 0.0 26.4 1.2 0.4
268.05 12.6 0.2 1.0 19.2 0.2 1.6 0.0 30.0 0.0 0.8 9.4 11.2 13.8
268.30 55.8 0.0 0.8 14.4 0.4 0.6 0.2 4.8 0.0 0.0 22.0 0.6 0.4
268.75 22.4 0.2 1.6 33.0 0.0 1.6 1.4 23.8 0.0 1.6 4.8 3.0 6.6
272.55 4.2 0.4 3.8 30.8 0.0 1.4 3.2 43.4 0.0 1.2 11.6 0.0 0.0
277.70 47.2 0.2 0.4 17.0 0.4 0.6 0.4 10.4 0.0 0.6 22.8 0.0 0.0
289.60 5.8 0.0 6.2 57.4 0.0 0.8 0.8 18.8 0.0 0.0 10.2 0.0 0.0
291.50 4.6 0.2 4.8 55.2 0.2 0.6 2.8 21.2 0.0 0.2 10.2 0.0 0.0
295.10 9.2 0.0 3.8 55.8 0.0 0.6 2.6 16.2 0.0 0.0 11.8 0.0 0.0
299.30 25.0 0.2 2.8 45.0 0.2 1.4 1.2 12.8 0.0 0.0 11.4 0.0 0.0
300.60 51.2 0.2 1.0 22.2 0.0 1.2 1.0 11.0 0.0 0.0 12.2 0.0 0.0
304.05 0.0 0.8 1.2 44.8 0.0 2.8 1.8 34.8 0.0 0.0 13.8 0.0 0.0
308.95 4.2 0.0 0.8 30.8 0.0 1.2 1.6 36.2 0.0 0.0 25.2 0.0 0.0
309.53 0.4 0.2 1.6 38.8 0.6 2.2 1.8 29.2 0.0 0.0 25.2 0.0 0.0
313.25 1.2 0.0 6.2 48.4 0.4 0.4 0.6 23.8 0.0 0.0 19.0 0.0 0.0
318.00 59.6 0.0 1.6 18.2 0.2 0.2 0.4 8.2 0.0 0.0 11.6 0.0 0.0
318.65 52.6 0.0 2.4 14.8 0.6 0.4 0.6 9.6 0.0 0.0 19.0 0.0 0.0
322.25 1.6 1.0 6.0 30.8 0.0 0.6 0.2 25.2 0.0 0.0 34.6 0.0 0.0
326.45 62.8 0.0 1.0 18.2 0.2 0.2 0.0 7.2 0.0 0.0 10.4 0.0 0.0
327.43 36.0 1.4 1.6 33.8 0.0 0.4 0.8 16.0 0.0 0.0 10.0 0.0 0.0
331.30 1.0 0.0 7.0 37.8 1.0 1.0 1.8 28.0 0.6 0.0 21.8 0.0 0.0
336.20 26.8 0.2 4.4 25.8 0.4 0.4 0.8 18.2 0.0 0.2 22.6 0.2 0.0
337.45 54.3 0.0 0.7 20.0 0.3 0.3 0.0 6.7 0.0 0.0 17.7 0.0 0.0
339.30 2.6 2.2 10.0 27.8 0.4 1.4 1.6 36.8 0.0 0.2 17.0 0.0 0.0
342.05 3.2 0.2 10.8 46.2 0.4 0.6 1.0 21.8 0.0 0.0 15.8 0.0 0.0
349.18 39.2 0.4 5.8 22.0 0.8 0.6 3.0 16.4 0.0 1.4 10.4 0.0 0.0
357.50 7.4 0.0 17.0 40.0 0.2 0.0 0.8 19.0 0.0 0.0 15.4 0.0 0.2
364.90 75.3 0.0 0.7 14.0 0.0 0.0 0.3 3.0 0.0 0.0 6.7 0.0 0.0
367.65 66.0 0.0 4.0 12.5 0.5 0.0 0.0 10.5 0.0 0.0 6.5 0.0 0.0
377.65 11.6 0.8 5.8 38.0 0.4 0.4 0.2 15.6 0.0 0.0 27.2 0.0 0.0
382.75 33.0 0.0 0.2 28.0 0.0 0.4 0.2 6.4 0.0 0.0 31.8 0.0 0.0
384.60 2.4 0.6 2.4 48.6 0.2 1.8 0.0 12.0 0.0 0.0 32.0 0.0 0.0
393.05 62.4 0.0 1.2 13.0 0.0 0.0 0.0 5.6 0.0 0.0 16.6 0.0 1.2
398.05 64.8 0.2 0.8 12.6 0.0 0.2 0.0 5.2 0.0 0.0 15.0 0.0 1.2
400.53 45.2 0.0 3.8 28.0 0.6 0.6 0.0 6.8 0.0 1.6 11.2 2.2 0.0
403.75 31.7 0.7 6.3 34.0 0.3 0.3 0.3 10.3 0.0 1.0 12.7 2.3 0.0
409.90 49.0 0.0 3.6 27.8 0.0 0.8 0.2 7.2 0.0 0.0 10.2 1.2 0.0
414.95 40.7 0.0 3.3 27.3 0.7 0.3 0.0 9.3 0.0 1.0 17.3 0.0 0.0
Mean 32.0 0.7 4.4 25.4 0.4 0.6 0.8 15.8 0.4 0.3 13.9 1.4 3.8

Appendix 3b. Palynofacies distribution (percentages) of well GTP-24-SE (continued).



Depth (m) TOC HI OI
13.20 1.25 78 121
15.30 3.22 205 60
16.00 3.22 2 25
16.40 3.37 147 59
17.60 3.45 319 57
19.60 4.82 303 47
20.30 0.56 57 118
20.70 3.03 233 46
22.90 1.67 216 61
23.30 0.5 74 114
24.40 2.85 90 64
26.10 3.48 234 49
30.40 1.6 167 53
31.80 3.01 285 52
34.70 1.87 150 57
37.20 0.41 20 132
39.00 4.89 460 44
41.50 2.84 298 46
42.40 1.16 141 92
44.10 2.71 337 56
45.50 1.88 258 60
47.50 2.2 215 53
50.00 1.93 98 56
51.50 1.67 172 56
53.70 2.48 78 58
54.80 0.63 65 140
56.00 3.42 270 47
58.20 2.84 352 52
61.00 2.25 227 76
63.00 4.23 562 51
66.60 1.82 102 57
67.20 0.66 58 112
71.30 1.95 146 57
74.90 1.21 181 76
77.10 2.72 160 53
82.50 1.53 175 69
84.50 0.81 91 79
86.00 0.95 59 62
88.30 1.57 49 64
89.40 1.3 38 68
92.60 0.74 105 155
95.50 1.64 62 61
97.00 0.2 1345 740
99.50 1.6 150 73
102.00 1.8 128 79
105.30 1.41 104 83
108.50 1.61 126 79
110.50 1.52 131 70
112.50 2.33 238 55
116.50 1.02 84 100
118.70 1.71 192 68
119.90 1.83 234 69
121.50 1.9 223 67
123.50 1.41 96 72
124.50 0.85 34 96
125.40 1.35 130 76
128.20 1.51 126 69
132.20 0.28 57 186
134.50 1.92 192 64
141.00 0.92 33 86
146.00 0.58 36 166
160.00 1.16 151 87
166.50 0.82 52 126
182.20 3.02 385 46
190.00 2.26 327 61
191.70 1.05 205 92
192.60 1.14 211 89
202.50 1.68 240 78
204.00 1.9 223 67
205.00 1.52 215 72
213.40 1.22 131 86

Appendix 4. Geochemical data of well GTP-24-SE (continued).



Depth (m) TOC HI OI
215.00 1.78 151 74
218.00 1.08 86 88
222.50 1.99 253 58
226.60 2.86 347 52
226.70 2.9 420 46
232.00 1.83 242 68
234.00 1.7 217 66
236.00 2.63 356 69
240.50 2.2 100 56
243.90 2.69 316 54
246.30 2.03 226 62
250.00 1.4 164 71
251.50 2.7 273 44
253.00 1.61 84 60
253.20 2.38 1 14
256.00 3.26 310 36
257.50 2.79 5 25
261.00 2.35 6 31
264.00 6.64 365 53
265.00 4.47 413 55
266.50 6.94 685 41
287.80 0.82 79 95
291.60 1.52 139 70
294.30 1.96 223 67
297.90 2.5 409 54
305.20 1.02 221 86
315.00 0.74 104 107
317.00 2.32 350 60
321.50 0.98 108 96
323.30 1.12 105 94
324.70 2.33 497 69
336.10 2.44 439 57
337.90 1.82 870 57
343.60 1.76 631 81
346.20 9.59 1234 41
346.50 3.12 831 66
346.80 0.91 478 223
348.10 0.74 328 432
350.40 1.31 331 321
357.30 0.97 232 218
358.60 0.98 137 205
364.00 2.56 509 84
365.70 2.94 745 66
366.30 2.77 685 112
367.50 2.98 755 73
368.80 1.44 533 112
370.30 2.8 702 63
370.65 1.91 605 89
372.60 3.71 824 73
373.20 1.16 417 177
373.70 4.72 812 64
375.60 3 566 87
376.20 1.42 406 184
377.50 2.86 611 97
378.80 0.8 428 218
380.10 0.93 292 306
382.40 4.28 604 27
388.80 3.25 634 74
389.40 5.13 824 23
392.30 6.58 797 45
393.00 4.96 800 29
396.80 7.31 797 43
397.70 7.07 857 41
398.10 8.45 827 62
398.70 4.3 525 84
403.75 0.62 229 363
406.90 0.62 229 345
408.10 1.06 289 232
414.90 0.67 233 364

Appendix 4. Geochemical data of well GTP-24-SE (continued).
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