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Abstract:

An imaging polarimetric slope sensing instrument for measuring water waves has been de-
veloped. From the measurement of the intensities of three different linear polarization states,
it is possible to determine the first three components of the polarization Stokes vector. The
slope of the water surface is computed from the measurement of the polarization of reflected
light. Unlike in common polarimeters, custom optics are not required in this simple setup
consisting of three cameras aligned in parallel and each equipped with a standard polariza-
tion filter. The trade-off for the simple setup is the need for more extensive system calibra-
tion and image post-processing. The camera setup was fully calibrated (extrinsic, intrinsic,
and distortion parameters) with a specialized calibration procedure using a custom built tar-
get. The analyzer matrix, which transforms the intensities of the measured polarization states
into the Stokes vector components was determined and verified experimentally. A data set
collected during an experiment on board the research vessel Meteor is analyzed. In an ex-
periment at the Hamburgische Schiffsbau-Versuchsanstalt, the polarimeter was successfully
operated under laboratory conditions. It is shown to be capable of measuring the slope distri-
bution of mechanically generated waves. Elevation power spectra, determined by integration
of the slope measurements, show good agreement with reference measurements with a wave
wire. Deviations at low wave frequencies due the small size of the polarimeter footprint can
be compensated with a transfer function that is derived from the measurements.

Zusammenfassung:

Ein bildgebendes polarimetrisches Instrument zur Messung der Neigung von Wasserwellen
wurde entwickelt. Aus der Messung von drei linearen Polarisationszuständen werden
die ersten drei Komponenten des Stokes-Vektors bestimmt. Die Neigung der Wasser-
oberfläche wird aus der Messung der Polarisation von reflektiertem Licht berechnet. Im
Gegensatz zu herkömmlichen Polarimetern werden keine spezialisierten optischen Elemente
benötigt, es kommt ein einfacher Aufbau aus drei parallel angeordneten Kameras mit Po-
larisationsfiltern zum Einsatz. Ein Mehraufwand in der Kalibrierung und Bildverarbeitung
wird dabei in Kauf genommen. Der Kamera-Aufbau wurde mit einer dafür entwickelten
Methode und einem eigens angefertigten Kalibriertarget kalibriert (extrinsische, intrinsis-
che und Verzerrungs-Parameter). Die Analyse-Matrix, die die gemessenen Polarisation-
szustände in die Komponenten des Stokes-Vektors überführt, wurde bestimmt und experi-
mentell verifiziert. Ein Datensatz, der während eines Experiments an Bord des Forschungss-
chiffs Meteor aufgenommen wurde, wurde analysiert. In einem Experiment an der Ham-
burgische Schiffsbau-Versuchsanstalt wurde das Polarimeter erfolgreich unter Laborbedin-
gungen eingesetzt. Seine Fähigkeit, die Neigungsverteilung mechanisch erzeugter Wellen
zu messen, wird demonstriert. Aus der Integration der Neigungsmessungen gewonnene
Wellenhöhen-Leistungsspektren stimmen gut mit Referenzmessungen mit einem Wellen-
draht überein. Abweichungen, die bei niedrigen Frequenzen durch die kleine Größe des
Polarimeter-Messfelds auftreten, können durch eine experimentell bestimmte Transferfunk-
tion korrigiert werden.
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1. Introduction

Figure 1.1.: The blue marble, earth. Source: NASA http://visibleearth.nasa.gov/view.php?id=57723

From a satellite’s view, Earth seems to be a beautiful blue marble. This is because about 71
percent of the Earth are covered with water. The vast ocean not only determines the color of
our planet but also influences the climate of the Earth in a profound way1.

Especially the exchange of gases, momentum, heat and energy between ocean and atmo-
sphere plays an important role for our climate. This can be exemplarily depicted by the uptake
of 30-40% of the anthropogenic CO2 (Donelan and Wanninkhof, 2002). Even after decades of
intensive research, the exchange processes and its physical parametrization are still not fully
understood. It was pointed out that the near-surface turbulence has a significant influence on
the exchange processes (Frew et al., 2004). The mean squared slope, which is a measurement
for small scale waves, describes the near-surface turbulence (Jähne et al., 1987). Hence, the si-
multaneous acquisition of wave and gas exchange data is necessary to obtain a physically based
parametrization of the exchange processes.

Traditional instruments exist, like wave wires (Donelan et al., 1985) or floating buoys (Longuet-
Higgins et al., 1963), measuring the elevation of the water surface, which is useful for swell and
long wind waves. To resolve the small scale waves, which have a small amplitude and are su-
perimposed on the large scale waves, an amplitude measurement technique must have a high
dynamic range. The preferred solution is to measure the slope of the surface, since the slope
has a much smaller dynamic range due to the wave breaking of steep waves.

1NASA Ocean Motion: http://oceanmotion.org/html/background/climate.htm
Surface Ocean Lower Atmosphere Study (SOLAS): http://www.solas-int.org

http://visibleearth.nasa.gov/view.php?id=57723
http://oceanmotion.org/html/background/climate.htm
http://www.solas-int.org


2 1. Introduction

In the laboratory, the slope of small scale waves can be measured with high temporal and
spatial resolution using an imaging slope gauge (ISG, Rocholz (2008)). This instrument can
measure the slope of the surface from the refraction of light coming from an underwater light
source. For field measurements, installing a light source underwater is often not feasible. Thus,
it is more convenient to use light that is reflected at the water surface for the measurements.
Stilwell (1969) developed a measurement technique that relies on the dependence of the reflec-
tion coefficient on the incidence angle of light (known as Stilwell photography). This method
has strong limitations because it requires very homogeneous illumination. Furthermore, the
relation between the slope and the intensity of the reflected light is highly nonlinear (Jähne
et al., 1994).

Another approach that overcomes many problems of the Stilwell photography does not rely
on the intensity of the reflected light, but measures its polarization state (Zappa et al., 2008).
This has two significant advantages: First, the dependence of the used polarization measures
(degree of linear polarization and orientation of polarization) on the incidence angle is not as
nonlinear as the reflected intensity. Second, the measurements are based on the ratio of mea-
sured intensities. This makes the measurement independent of inhomogeneities in the illumi-
nation.

Studies that have applied polarimetric slope sensing to small scale water waves so far used
very expensive instruments including custom lenses and complex optical setups containing
polarizing beam splitters (Pezzaniti et al., 2008, 2009; Zappa et al., 2012). While this is an ele-
gant solution, it is also very expensive.

For this work, a new approach to an imaging polarimeter was tested, using three cameras
placed next to each other. Each camera is equipped with a standard polarization filter, which
makes the whole setup quite cheap. The disadvantage of this setup is a larger necessity of pro-
found image processing. The aim of this thesis was to build the newly designed polarimeter,
to calibrate the whole system, to develop a data processing structure and to characterize its
performance.



2. Theory

2.1. The electrodynamics of continuous media

2.1.1. Maxwell’s equations

The basic principles of optics and phenomena of the electromagnetic field is, except of quan-
tum effects, completely described by the Maxwell’s equation along with the Lorentz’s equation.
Hence, to get a deeper understanding of the interaction between light and matter and the po-
larization of light, some general entities of electrodynamics will be stated or derived in the next
sections. But first and foremost the Maxwell’s equations will be stated in a general form, inde-
pendent of the choice of the electrodynamic units.

Homogeneous equations

∇·B = 0 (2.1)

which equals to, that there are no magnetic monopoles.

∇×E + ∂B

∂t
= 0 (2.2)

which correspond to Faraday’s law of induction.

Inhomogeneous equations

∇·E = ρ

ε0
(2.3)

which relate to to the divergence theorem (or Gauss’s theorem).

∇×B −µ0ε0
∂E

∂t
=µ0 j (2.4)

which is equal to Ampère’s circuital law with Maxwell’s correction.

Together with the Lorentz-force

F L = q · [E + (v ×B )] (2.5)

Maxwell’s equations gather all classical phenomena of the electromagnetic interactions in vac-
uum. Here, E denotes the electric field vector, B the magnetic induction vector, ρ the electric
charge density, j the electric current density, ε0 the permittivity of vacuum, µ0 the permeabil-
ity of vacuum and q the electrical charge of the particle, on which the electromagnetic field is
acting.
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2.1.2. The electromagnetic wave equations or Light

In vacuum there is neither an electric charge density ρ = 0 nor any electrical current density
j = 0. So Maxwell’s equations look like this:

∇·E = 0; ∇·B = 0; ∇×E =−∂B

∂t
; ∇×B = ε0µ0

∂E

∂t
(2.6)

These partial differential equations can be decoupled by some vectorial identities, which is
shown in many textbooks1 and give as result the homogeneous wave equation for the E-filed as
well for the B-field.(

1

c2
0

∂2

∂t 2 −∇2

)
E =�E = 0 with

1

c2
0

= ε0µ0 (2.7)

where � is the d’Alembert-Operator and c0 is the speed of light in vacuum. With these substi-
tutions, equations (2.6) reduce to:

�E = 0 ∇·E = 0

�B = 0 ∇·B = 0 (2.8)

The solution to these equations is given by a plane wave.

E (x , t ) =ℜ(
E 0 exp(i (k · x −ωt ))

)
(2.9)

B (x , t ) =ℜ(
B 0 exp(i (k · x −ωt ))

)
(2.10)

Here ℜ denotes the real part of the solution and k and ω the wave vector and the angular fre-
quency respectively.

Properties of the wave solution

This section shows some important properties of the wave solution which will be used in fur-
ther derivations.

Dispersion relation The dispersion relation is one of the easiest to derive. Inserting Eq. (2.9)
into the Eq. (2.7), the dispersion relation in vacuum gives

ω2 = k2c2
0 , (2.11)

where k = |k |.
Transversality of electromagnetic waves From ∇·E = 0 and Eq. (2.9) we obtain

k ·E = 0 (2.12)

and the same for B . This means the field vectors E and B are transversal to the propaga-
tion direction k .

Orthogonality of E and B From the wave solution Eq. (2.9) and from the Maxwell equation

∇×E =−∂B

∂t
(2.13)

1recommended textbook Jackson (1998)
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follows

k ×E =ωB (2.14)

This means that E ⊥ B and E ,B and k span an orthogonal coordinate system. The nor-
malization of E and B are fixed through this equation as well:

|B | = |E |/c0 (2.15)

2.1.3. Electromagnetic fields in matter

In principle, it is possible to use the same equations as in Sec. 2.1.1 to calculate the electro-
magnetic field in any kind of material composition. Because this assignment is linked to a huge
computational effort we will just consider temporal and spatial averages of the field, which is
then called the macroscopic view. The effort to compute a microscopic solution is as well not
necessary for most experiments, since in the laboratory it is only possible to control temporal
and spatial averages of the field. Hence we have to distinguish between the microscopic field
and the macroscopic (average) field2.
Another simplification is that we will only examine linear and isotropic optical materials, where
the electric displacement density D and the magnetic field vector H are proportional to E and
B . We define D and H as:

D = εr ε0E = εE (2.16)

H = B

µrµ0
= B

µ
(2.17)

Here ε is the permittivity and µ is the permeability of the material (εr and µr are called relative
permittivity and relative permeability respectively).
With these new fields we can rewrite the Maxwell equations as:

Homogeneous Equations

∇·B = 0 ∇×E + ∂B

∂t
= 0 (2.18)

Inhomogeneous Equations

∇·D = ρ f ∇×H − ∂D

∂t
= j f (2.19)

As one can see, there is no change in the homogeneous equations (Eq. (2.18)) since the
properties of the matter have no influence on them, but the inhomogeneous equations have
changed. Here ρ f and j f denote the electric charge density and the electric current density of
the free charge carrier. The bound charge carrier are polarized by the field, which is included in
the D- and H-field, by the relative permittivity εr and the relative permeability µr . Another note
is that E- and B-field are defined asymmetric, as in Eq. (2.16) and (2.17) shows (ε is in the nom-
inator andµ is in the denominator). This unluckily seeming cause has a practical meaning, that
in experiments it is easier to control the E- and H-field, which are the two independent fields.

2There will be no change in notation between the microscopic field labels of Sec. 2.1.1 and the macroscopic field
labels of this section, even if the latter one is averaged over time and space



6 2. Theory

2.1.4. Electromagnetic Fields at a boundary

Because we want to deal with at least two different materials, it is not enough to know what
happens inside these two materials (which is given by the equations of Sec. 2.1.3), but as well
to understands the effects of the boundary. The most interesting question at a boundary is,
which component of the field is continuous. Therefore we will first investigate the homoge-
neous equations (Eq. (2.18)) at a boundary. With the divergence theorem and ∇ · B = 0 it is
possible to show that the normal component of B n is continuous at a boundary. With Stokes’
theorem we can find out from the second homogeneous equation that the tangential compo-
nent E t is continuous there.
The same can be done with the inhomogeneous equations (Eq. (2.19)) by using these two the-
orems. Thus, we get

(D (1)
n −D (2)

n ) = γ f n × (H (1)
t −H (2)

t ) = i f (2.20)

where the subscript n ,t denote the normal or tangential component, n the normal vector of the
surface, γ f and i f the free surface charge and the free surface current respectively of the two
materials.

2.1.5. Electromagnetic Fields in Dielectric Materials

In nature, we can sort materials roughly in conductors and isolators (also called dielectric ma-
terials). Because conductors are not transparent and act mostly as a mirror, the main focus in
optics is on dielectric materials. What is so special about them? A dielectric material can be a
gas, a fluid or a solid, in which all charge carriers are normally fixed and therefore can’t move.
This has as consequence:

ρ f = 0 ⇒ γ f = 0 and j f = 0 ⇒ i f = 0 (2.21)

This means that at the boundary of a dielectric material the normal component of the B- and
D-field and the tangential component of the E- and H-field are continuous. The continuity is
formulated mathematically like this

n ·B n ·D n ×E n ×H (2.22)

where n is the normal vector to the surface area.
Another interesting property of dielectric materials is, that they are normally not magnetic. This
means that we can ignore the permeability and set µr = 1.

2.1.6. Electromagnetic Waves in Matter

If the macroscopic field equations of Sec. 2.1.3 are combined with the knowledge of Sec. 2.1.5
(especially Eq. (2.21)), the solution looks much like the microscopic wave equation Eq. (2.6) in
vacuum of Sec. 2.1.2. Thus, after some decoupling of the equations they are written like this:

�E = 0 �D = 0 ∇·D = 0

�B = 0 �H = 0 ∇·B = 0 (2.23)

As mentioned in Sec. 2.1.3, we are mostly interested in E- and H fields. Therefore we will only
use these two fields in our further considerations. The solution of the wave equation in matter
for E and H is

E (x , t ) =ℜ(
E 0 exp(i (k · x −ωt ))

)
(2.24)

H(x , t ) =ℜ(
H 0 exp(i (k · x −ωt ))

)
(2.25)
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The waves have the same properties as discussed in Sec. 2.1.2. Especially the transversality
and the orthogonality of E and H stay the same. These two properties will be important for
the polarization of light (Sec. 2.2) and for the Fresnel equations (Sec. 2.3). The dispersion
relation will be used in the next section.

Phase and Group velocity

As we have seen in Sec. 2.1.2 in Eq. (2.7), a phase velocity is already included in the d’Alembert-
Operator. For a macroscopic field in matter this velocity cannot be the same as the speed of
light in vacuum c0. The easiest way to get the phase velocity is to use the dispersion relation,
like Eq. (2.11), by reinserting Eq. (2.24) into Eq. (2.23).

vph(ω) = c(ω) = ω

k
= 1p

εµ
= 1p

εrµr ε0µ0
= c0

n(ω)
(2.26)

Here we have introduced the index of refraction n =p
εrµr , which is normally frequency de-

pendent, since εr and µr dependent on the frequency. This effect is also called dispersion and
is responsible for such nice effects like a rainbow. Because εr and µr are in general complex,
the refection index can as well be complex. The imaginary part of the refraction index is repre-
senting a damping of the electromagnetic wave amplitude in the material. The imaginary part
is important for opaque materials and metals, which we will not consider here any further.
The phase velocity can even get higher than the velocity of light in vacuum (c > c0), which
stands not in conflict with the theory of relativity. This is because the energy and the informa-
tion is transported with the group velocity vgr:

vgr(ω) =
(

dω

dk

)
k=k0

(2.27)

2.1.7. Energy density, Pointing Vector and Intensity

One of the most important properties of the electromagnetic field or of light is the transport of
energy. The derivation of the energy density E and the Pointing Vector S is as well given in many
textbooks (Jackson, 1998). They are given by

Engergy density: E= 1

2
(E ·D +B ·H) (2.28)

Pointing vector: S = (E ×H) (2.29)

The pointing vector S can as well be regarded as the energy flux density of the energy conserva-
tion equation.

∂E

∂t
+∇·S = 0 (2.30)

The pointing vector plays another important role for the measurement of electromagnetic
waves, because it is only possible to measure the energy deposit. Therefore the definition of
the intensity comes up.

I [W m−2] = 〈|S|〉 = ε0nc〈|E |2〉 EM-wave: I = 1

2
ε0nc|E0|2 (2.31)

where 〈 〉 denotes the temporal mean over one period T .
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2.2. Polarization of Light

Due to the orthogonality of E and H of electromagnetic waves (Sec. 2.1.2 and Sec. 2.1.6, Eq.
(2.14)) it is only necessary to consider one field, which will be the E-field in our case. Without
loss of generality we can choose k to go into z-direction and therefore the transversality of EM-
waves (k ·E = 0) states that the E must lie in the x, y-plane. Without loss of generality we can
write the solution to the wave equation Eq. (2.24) as such:

E = E x +E y =
 Ex0 cos(kz −ωt )

Ey0 cos(kz −ωt +ϕ)
0

 (2.32)

where Ex0,Ey0 are the amplitudes of the E-field in x, y-direction andϕ is a phase factor between
the x, y-component. The different configuration of these factors (Ex0,Ey0,ϕ) give the different
types of polarization, which will be explained subsequently.

2.2.1. The polarization ellipse

The trace of the E-vector over time at a certain x, y-plane (where z = z0) describes an ellipse.
This can easily be seen if we use some trigonometric function identities and combining the
Ex (t ) and Ey (t ) component of the E-field. After some mathematical manipulation the equation
of the polarization ellipse arise (see Schott (2009), Brosseau (1998)).

E 2
x

E 2
x0

+
E 2

y

E 2
y0

−2
Ex Ey

Ex0Ey0
cosϕ= sin2ϕ (2.33)

An illustration of the polarization ellipse is shown in Fig. 2.1.

y

x2Ey0

2Ex0

a

b
Φ

Figure 2.1.: Illustration of the polarization ellipse with the polarization angle Φ

Equation (2.33) is the general equation of an ellipse, which is rotated by an angleΦ, where

tan2Φ= 2Ex0Ey0 cosϕ

E 2
x0 −E 2

y0

(2.34)

Even more generally, the amplitude of E as well as the phase difference (and hence also the an-
gle Φ) can change over time. This means that the polarization ellipse starts to rotate over time.
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Another aspect of the propagation of elliptical EM-waves is not covered with the above equa-
tions, which is the left- or right-handedness of the rotation. As neither elliptical nor circular
polarization is relevant in this thesis, this topic will not be considered in detail further.
Some special cases of the elliptical polarization are the linear polarization and the circular po-
larization.

Linear Polarization

Linear polarization is a special case of the elliptical polarization, where the phase shift ϕ be-
tween the Ex and Ey components is an integer multiple of π. (ϕ= n ·π;n ∈N). This means that
the E-field oscillates only in one plane. Therefore it is called plane or linear polarization. If we
look at the two cases of ϕ= 0 or π we can write Ey

Ey =
Ey0

Ex0
Ex for φ= 0, Ey =−Ey0

Ex0
for φ=π (2.35)

This is a line with zero intercept and a slope of Ey0/Ex0 and we can deriveΦ from the slope by

tanΦ= Ey0

Ex0
(2.36)

which corresponds to a simplification of equation (2.34).
Since linear polarization is the most common form of polarized light in nature, we will mainly
concentrate on this in the next chapters.

Circular Polarization

Circular polarization is as well a special case of the elliptical polarization, where the phase shift
between the two E-vector components is ϕ= 2·n+1

2 π;n ∈N and the amplitudes are equal Ex0 =
Ey0 = E0. Hence the ellipse equation (2.33) reduces to:

E 2
x

E 2
0

+
E 2

y

E 2
0

= 1 (2.37)

which is a circle equation.

2.2.2. Stokes Vector

There are many ways to introduce the Stokes vector (see Jackson (1998), Brosseau (1998), Videen
et al. (2005)). But the easiest way, in my opinion, is described by Schott (2009), which we will
follow. The Stokes parameters are one of the most important concepts in this work because
they are easy to measure as we will see later and they describe also partly polarized light. An
unpolarized light ray has no distinct polarization state, which means that it consist of many
EM-waves with all kinds of polarization. A partial polarized light is then a light ray which has
one favored polarization state, but there are as well other ones included in the ray.
To derive the Stokes parameter we start out with the equation of the elliptical polarization Eq.
(2.33), taking the time average over one period and taking the square as for the intensity Eq.
(2.31). This gives after some mathematical reformulation:

(E 2
x0 +E 2

y0)2 = (E 2
x0 −E 2

y0)2 + (2Ex0Ey0 cosϕ)2 + (2Ex0Ey0 sinϕ)2 (2.38)
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As we can see here, there are four important terms, which we will define as the Stokes pa-
rameters:

S0 = E 2
x0 +E 2

y0 (2.39)

S1 = E 2
x0 −E 2

y0 (2.40)

S2 = 2Ex0Ey0 cosϕ (2.41)

S3 = 2Ex0Ey0 sinϕ (2.42)

The first parameter S0 is the easiest to interpret, since it is the squared norm of the E-vector of
Eq. (2.32), were the time average is already taken. Hence we can conclude from Eq. (2.31), that
this parameter represents the total intensity of the light ray. The second parameter S1 becomes
clear, if we consider only horizontal or vertical polarized light, where only Ex0 or Ey0 exists,
respectively. Thus the second parameter represents these polarization states. S2 describes the
polarization in ±45°-direction and last but not least S3 stand for the amount of left- and right-
handed polarization. (For further understanding of the parameters have a look at the definition
of the different polarization states in Sec. 2.2.1 or in the book Schott (2009).)
If we use now the definition of the Stokes parameters Eq. (2.39) and Eq. (2.38) we can derive a
very important property of the Stokes parameters:

S2
0 = S2

1 +S2
2 +S2

3 (2.43)

This equation is only valid if the light ray is fully polarized, which is not true for most cases.
Due to the fact that S0 represents the total energy of the ray, the right hand part of Eq. (2.43)
cannot become larger than S0 because of energy conservation. Thus a partly polarized ray is
characterized by

S2
0 > S2

1 +S2
2 +S2

3 (2.44)

Another property of polarized light can be expressed by the Stokes parameters, namely the
polarization angle Φ, which is defined in Eq. (2.34).

tan2Φ= 2Ex0Ey0 cosϕ

E 2
x0 −E 2

y0

= S2

S1
⇒ Φ= 1

2
tan−1

(
S2

S1

)
(2.45)

The Stokes parameters are often arranged in vector form. This vector has no directional
meaning, but the convenience of this representation becomes clear in the next section (Sec.
2.2.3)).

S =


S0

S1

S2

S3

=


E 2

x0 +E 2
y0

E 2
x0 −E 2

y0

2Ex0Ey0 cosϕ
2Ex0Ey0 sinϕ

= S0


1

S1/S0

S2/S0

S3/S0

 (2.46)

Since in polarimetry we are mostly interested in the state of polarization, the normalized Stokes
vector, which is divided by the total intensity, is introduced.
A further fascinating attribute of the Stokes vector is that they obey the superposition principle.

Sc =


S0c

S1c

S2c

S3c

=


S0a

S1a

S2a

S3a

+


S0b

S1b

S2b

S3b

=


S0a +S0b

S1a +S1b

S2a +S2b

S3a +S3b

= Sa +Sb (2.47)
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With this principle it is possible to split up the Stokes vector for a partially polarized light into a
vector of the full polarization and a Stokes vector of the unpolarized light. Before we do that we
have to define the degree of polarization (DOP), which defines how much the ray is polarized
on total.

DOP =
√

S2
1 +S2

2 +S2
3

S0
(2.48)

In nature, there is mostly no circular polarized light and therefore we define another concept of
degree of linear polarisation(DOLP), where only linear polarized light is considered.

DOLP =
√

S2
1 +S2

2

S0
(2.49)

With these definitions we can write a partly polarized light ray as

Spartly = Spol +Sunpol =


DoP ·S0

S1

S2

S3

+ (1−DOP ) ·


S0

0
0
0

 (2.50)

To obtain a deeper understanding of the Stokes vector we put six different ideal polarization
filter, which represent the different parts of the Stokes vector in front of an incident beam and
measure after every filter the intensity. Figure 2.2 pictures the composition.

Figure 2.2.: Put different polarization filters in front of an incidence beam to distinguish it’s Stokes vector.
Source: Schott (2009, p. 39)

The Stokes vector for this setup is given as

S =


IH + IV

IH − IV

I+45 − I−45

IR − IL

 (2.51)

where IH , IV , I+45, I−45, IR , IL describe the intensities of the different polarization states.

Table 2.1 gives an overview over the different polarization states and normalized Stokes vec-
tor representations.
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Table 2.1.: Representation of the different normalized Stokes vector. The S stands for german senkrecht
(horizontal) and the P stands for parallel.

Polarization
State

Symbol Stokes
Vector

Polarization
State

Symbol Stokes
Vector

Horizontal
↔
⊥
S


1
1
0
0

 Vertical
l
∥
P


1
−1
0
0



Linear +45° ↔


1
0
1
0

 Linear -45° ↔


1
0
−1
0



Right-Hand
Circular

�


1
0
0
1

 Left-Hand
Circular

	


1
0
0
−1



Random ∗


1
0
0
0



2.2.3. Müller-Matrices

The Stokes vector provides a description of the polarization states and the intensity of a beam.
But we do not have a description of the interaction, when this beam is transmitted or reflected
by a material. Here the Müller matrix comes up, which will represent the interaction of a beam
by transforming the Stokes vector. The incoming beam S in will then be converted to the outgo-
ing beam Sout like

Sout = M ·S in (2.52)
S0

S1

S2

S3


out

=


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 ·


S0

S1

S2

S3


in

where M is the Müller matrix describing the property of the optical element.
The easiest way to understand Müller matrices is by looking at different examples of polarizers.

ideal horizontal polarizer: Ms = 1

2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 (2.53)

ideal vertical polarizer: Mp = 1

2


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 (2.54)
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ideal +45° polarizer: M+45 = 1

2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

 (2.55)

ideal -45° polarizer: M−45 = 1

2


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 (2.56)

ideal depolarizing filter: Mdepol =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (2.57)

The factor of 1
2 in front of the polarizer is important for energy conservation.

Another property of the Müller matrices is that we can combine them by multiplying. If we
send a beam S in first through a horizontal polarizer and afterwards through a +45° polarizer,
the result would be

Sout = M+45 ·M s ·S in (2.58)

As we have seen in Sec. 2.2 we can choose our frame of reference, where we measure the
components of the Stokes vector. The transformation to another reference frame can as well be
represented by a Müller matrix. A change of the reference frame along the beam is equal to a
rotation with the angel θR . Thus the rotation Müller matrix is given by

Sθ = R(θR ) ·S in
S0

S1

S2

S3


θ

=


1 0 0 0
0 cos2θR sin2θR 0
0 −sin2θR cos2θR 0
0 0 0 1

 ·


S0

S1

S2

S3


in

(2.59)

As one can easily verify, the rotation has no effect on the circular polarization or on DOP or
DOLP, but it has some effect at the polarization angleΦ, which is very intuitive.

2.3. Fresnel equations

In this section we want to look at an incoming light ray that is reflected and transmitted at
a surface of a dielectric material. These considerations can also be done for non-dielectric
materials and also the Fresnel equations are valid then. For simplicity, we want to look only
at simple linear isotropic dielectric materials, where µr = 1 and the refraction index is only
governed by n =p

εr a non complex permittivity.
A ray with the wave vector k i is coming in the material with the refraction index n1 at a surface
of the material with refraction index n2. This incoming beam gives rise to a reflected beam kr

and a transmitted beam k t . The situation is depicted in Fig. 2.3. To obtain all relevant effects,
we have to take the boundary conditions of Sec. 2.1.2 and Sec. 2.1.5 into account. The first
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z = 0
n1

n2

ki kr

kt

θi θr

θt

Eis Ers

Ets

His Hrs

Hts

z = 0
n1

n2

ki kr

kt

θi θr

θt

Hip Hrp

Htp

Eip Erp

Etp

Horizontal Polarization
(senkrecht)

Parallel Polarization

Figure 2.3.: An incidence beam with wave vector k i gets reflected (wave vector kr ) and transmitted (wave
vector kr ) at a boundary between the two materials with the index of refraction n1,n2 respectively. For the
horizontal polarization the field vector E s is looking out from the paper (indicated by the dot in the circle). For
the parallel polarization the field vector H p is looking in the paper (indicated by a cross in the circle).

boundary condition is that at the surface all spatial and also temporal changes of the wave
must be the same. This means that at any moment t the phase factor has to be the same. This
means the following condition must hold at the surface z = 0

(k i x)z=0 = (kr x)z=0 = (k t x)z=0 (2.60)

This must hold for an arbitrary x at the surface and hence

k i∥ = kr∥ = k t∥ ⇒
ki · sinθi = kr · sinθr = kt · sinθt (2.61)

where k = |k | and θ is the angle to the surface normal. Since the magnitude of the incoming
and reflected wave vector must be the same ki = kr , the commonly known reflection principle
is derived, where incidence angle is reflection angle.

θi = θr (2.62)

For the angle of refraction we have to consider the two different indexes of refraction with the
dispersion relation ki ci =ω= kt ct .

kt

ki
= ci

ct
= n2

n1
= sinθi

sinθt
(2.63)

This is Snell’s law of refraction.
From the continuity of the E-field n ×E at a dielectric boundary (see Eq. (2.22)) we can obtain
the Fresnel’s equation for horizontal polarization (horizontal to the plane of incidence), which
will be denoted by s for senkrecht. Here, the field vector E is always tangential to the surface
independent of the incident angle. The continuity condition can therefore be written as

Eis +Ers = Ets, (2.64)
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whereas the field vectors H are always perpendicular to the E vector and thus, they must be
projected with a cosθ at the surface normal. With equation (2.15) and µr = 1 the magnitude of
H is given by H = n

µ0c0
E . Hence the continuity of the tangential component of n ×H leads to

n1Eis cosθi −n1Ers cosθr = n2Ets cosθt (2.65)

After some mathematical manipulation of Eq. 2.64 and Eq. (2.65) with Eq. (2.62) we get the
ratio of reflection for the horizontal (German: senkrecht) polarization

rs = Ers

Eis
= n1 cosθi −n2 cosθt

n1 cosθi +n2 cosθt
(2.66)

The same can be done for the ratio of transmission, but since we are only interested in the
reflection part, it will not be listed here.
The refraction index in Eq. (2.66) can be eliminated by Snell’s law Eq. (2.63). To get the reflection
coefficient we have to calculate the ratio of reflection for intensities, which are given by Eq.
(2.31). Because all factors in front of the E-field cancel out for reflection, we just have to square
the factors. This yields the horizontal reflection coefficient

Rs = Irs

Iis
= E 2

rs

E 2
is

= sin2(θi −θt )

sin2(θi +θt )
(2.67)

Now the same can be done if the field vector E is parallel to the plane of incidence. Here we can
use the same boundary conditions as for the horizontal polarization, but we have to exchange
the E with the H field. This gives the following conditions

Hip +Hrp = Htp ⇒ n1Eip +n1Erp = n2Etp (2.68)

Eip cosθi −Erp cosθi = Etp cosθt (2.69)

This yields the ratio of reflection for the parallel polarization

rp = Erp

Eip
= n2 cosθi −n1 cosθt

n2 cosθi +n1 cosθt
(2.70)

This result looks quite similar to the result of the horizontal polarization Eq. (2.66), but with the
refraction indices swapped. This has a great impact if we use again Snell’s law Eq. (2.63). The
parallel reflection coefficient for the intensities is then given as

Rp = Irp

Iip
=

E 2
rp

E 2
ip

= tan2(θi −θt )

tan2(θi +θt )
(2.71)

These two reflection coefficients (Eq. (2.67) and Eq. (2.71)) together with the transmission coeffi-
cients for horizontal and parallel to the plane of incidence polarized light are called the Fresnel
coefficients.
Another interesting property can be calculated with the Fresnel coefficients, namely the Brew-
ster angle. The Brewster angle θB is defined as the angle, where the parallel polarization of the
reflected light vanishes and only horizontal polarization is present. Therefore at the Brewster
angle the degree of linear polarisationis DOLP = 1. For the angle between the transmitted par-
allel polarized beam θt and the reflected horizontal polarized beam θr one has θr + θt = 90°
(Zinth and Zinth, 2013). From this and the law of reflection θr = θB the following relation for
the Brewster angle can be derived:

Brewster Angle: tanθB = n2

n1
(2.72)
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Figure 2.4.: Reflectance for the horizontal (Rs ) and parallel (Rp ) polarization and degree of linear polari-
sation(DOLP) plot against the incidence angle θi . The Brewster angle θB is indicated by the dashed line.
Material properties: n1 = 1,n2 = 1.5

Fig. 2.4 shows the reflection coefficients and the degree of linear polarisation(DOLP) for dif-
ferent incidence angles θi .

The Fresnel reflection or transmission coefficients can also be included in a Müller matrix
to describe the interaction of a incoming beam at a surface. The Müller matrices for reflection
and transmission are given in Brosseau (1998), Schott (2009) and Kattawar and Adams (1989).

Reflection Müller matrix R(θi ,θt ) =


α+η α−η 0 0
α−η α+η 0 0

0 0 γRe 0
0 0 0 γRe

 (2.73)

Transmission Müller matrix T (θi ,θt ) =


α′+η′ α′−η′ 0 0
α′−η′ α′+η′ 0 0

0 0 γ′Re 0
0 0 0 γ′Re

 (2.74)

where

α= 1

2

(
tan(θi −θt )

tan(θi +θt )

)2

η= 1

2

(
sin(θi −θt )

sin(θi +θt )

)2

γRe = tan(θi −θt )sin(θi −θt )

tan(θi +θt )sin(θi +θt )

α′ = 1

2

(
2cosθi sinθt

sin(θi +θt )cos(θi −θt )

)2

η′ = 1

2

(
2cosθi sinθt

sin(θi +θt )

)2

γ′Re =
4cos2θi sin2θt

sin2(θi +θt )cos(θi −θt )

Here, α,η,γRe, and α′,η′,γ′Re represent the Fresnel reflection or transmission coefficients re-
spectively for the different incident (θi ) and transmission angle (θt ).
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3.1. Imaging Polarimeter

A polarimeter is a measurement instrument that can measure the polarization state and hence
the Stokes vector of the incoming light. An imaging polarimeter is a polarimeter, which mea-
sures the polarization state of an object for every image position. This can be achieved with
a setup with several cameras. Since a CCD or CMOS camera measures only intensities, which
corresponds to the incoming power (see Sec. 2.1.7), different polarization filters in front of the
cameras are necessary to measure all components of the Stokes vector (like in Fig. 2.2). At least
four linear independent measurements are needed to gain the full information about the four
component Stokes vector. If one can assume, that no circular polarized light is present, the last
component of the Stokes vector S3 can be neglected. Therefore only three cameras with three
linear polarization filters are required to gather the first three components of the Stokes vector
(S0,S1,S2).

First we want to examine an incoming light ray, which has the Stokes Vector S in = [S0,S1,S2]t
in,

going through a polarization filter with the adjusted angle α. After the filter the intensity Iα is
measured, which corresponds to the first component of the Stokes vector Sout. As we have seen
in Sec. 2.2.3 the effect of a linear polarization filter can be described in terms of Müller calculus
by a Müller matrix. The Müller matrix for an ideal linear polarization filter with the polarization
angle α is given as:

M lin.pol.(α) = 1

2


1 cos2α sin2α 0

cos2α cos2 2α cos2αsin2α 0
sin2α cos2αsin2α sin2 2α 0

0 0 0 0

 (3.1)

Since the cameras themselves are insensitive to polarization and can only measure the total
intensity S0out , we just have to use the first column of the Müller matrix to link the incoming
Stokes vector to the intensity.

Iα = S0out =
b

2
· [ 1 cos2α sin2α

] ·
 S0

S1

S2


in

(3.2)

where b is a factor to correct that the polarization filter is not perfect, α is the angle of the filter.
The factor b f depends on the polarization filter quality and on the efficiency of the intensity
measurement system and is therefore normally constant over time. As we can see in Eq. (3.2)
the relation between the measured intensity and the incoming Stokes vector is linear if α is not
changing. As mentioned before, the minimum requirement to measure the first three com-
ponents of the incoming Stokes vector is therefore to obtain at least three intensities for three
different polarization filter orientations α. As explained in Sec. 4 we have used three cameras
each with a different polarization filter angle. To use the full angular resolution of the polariza-
tion of 180°, we set the polarization filter at α = 0°,60°,120°. Since the relation in Eq. (3.2) is
linear for each of the three intensities, it is possible to reverse it to obtain the Stokes vector of
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the incoming light:

S in =
 S0

S1

S2


in

= A · I =
 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ·
 I1

I2

I3

 (3.3)

Here the matrix A is the analyzer matrix and describes, how the measured intensities of the
polarimeter are related to the Stokes vector. This matrix can be found by calibration of the
system, see Sec. 5.6. The analyzer matrix is therefore the heart of the polarimeter, because it
enables us to measure the first three components of the Stokes vector.

3.2. Water as dielectric matter

As we have seen in Sec. 2.1.5 dielectric materials have some special characteristics, which are of
importance for optics. Water is such a dielectric matter and has an index of refection of nwater =
1.33 in our used bandwidth (490 nm to 740 nm) at a temperature of T = 20°C (Daimon and
Masumura, 2007). Because water is a dielectric matter the Müller matrix of the Fresnel equation
for reflection Eq. (2.73) and transmission Eq. (2.74) between air and water surface are valid.
(The refraction index of air is taken as that of vacuum nair = 1.) The Müller calculus describe
how an incoming Stokes vector S in gets changed by the interaction at the air-sea surface. For
the measurement of waves on the water surface, sky light is used for illumination. The reflected
Stokes vector SR is than given as:

SR = RAS(θ) ·Ssky (3.4)

with the Stokes vector of the incoming sky light Ssky. Here RAS(θ) is the Müller matrix of reflec-
tion (Eq. (2.73)) at the Air-Sea interface. Eq. 3.4 shows that the polarization state depends on
the incidence angle of the reflected light, which is the basis for the polarimetric slope images
technique (see Sec. 3.3). To get a functional relationship between the incidence angle θ and the
polarization state, the degree of linear polarisation (DOLP) will be calculated. If we assume that
the sky is unpolarized, which means that the normalized Stokes vector is Ssky = Sup = [1,0,0,0]t

the DOLP of the reflected Stokes vector SR can be calculated with Eq. 2.49 as:

DOLP (θ,n) = α(θ,n)−η(θ,n)

α(θ,n)+η(θ,n)
(3.5)

This equation is the key point of the polarimeter wave measurement technique, because it links
the polarization to the incidence angle of the incoming light. Figure 3.1 illustrates the depen-
dency of the degree of linear polarisation with the angle of incidence θ. The Brewster angle for
water θB = tan(nwater) = 53° is indicated by a vertical dashed line.

Because DOLP(θ) is not a monotone function (see Fig. 3.1), it is not possible to invert the
relation for the whole rang of the incidence angle θ. The inversion from DOLP to θ is possible
between 0° and the Brewster angle θB = 53° or between the Brewster angle and 90°. We have
chosen to look under an angle of θpol = 37° at the water surface because the DOLP is rising
there almost linear, which can be seen in Fig. 3.1b. Figure 3.1b shows the absolute derivative
of |∂DOLP/∂θ| over the incidence angle θ. The inflection point, where the gradient is at the
maximum and the curve is almost linear, is close to θ = 37°.

In the range between the Brewster angle θB and 90° the inversion from DOLP to θ is very sen-
sitive. Also the reflection coefficients and therefore the amount of reflected light would be high.
Still it is not practicable to measure in this region, because the angle of view of the polarimeter
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Figure 3.1.: a degree of linear polarisation for the reflection at a air-sea interface calculated from the Fresnel
reflection coeffiecents Eq. (3.5) b Absolute derivative of |∂DOLP/∂θ| over the incidence angle θ. The Brewster
angle of θB = 53° is indicated by a black dashed line.

would be so low, that large waves would hide some parts of the measurement area.

In the previous derivation of the degree of linear polarisation the factor of the upwelling light
was neglected. To get the total Stokes vector Stot that is seen by the Polarimeter, the effect of
the upwelling light from beneath the water surface has to be taken into account. The upwelling
light with the Stokes vector Sup gets transmitted through the sea surface. Thus the transmission
Stokes vector ST is given as

ST = T AS(θ′) ·Sup (3.6)

where T AS(θ′) is the Müller matrix of transmission (Eq. (2.74)) between an Air-Sea interface.
The total Stokes vector is therefore given as

Stot = SR +ST = RAS ·Ssky +T AS ·Sup (3.7)

If we make the same assumption as before, that the sky and the upwelling light is unpolarized
which means that the normalized Stokes vectors are Ssky = Sup = [1,0,0,0]t the DOLP of the
total Stokes vector Stot can be calculated with Eq. 2.49 as

DOLP (θ,n) = α(θ,n)−η(θ,n)+u(θ,θ′) · (α′(θ′,n)−η(θ′,n))

α(θ,n)+η′(θ,n)+u(θ,θ′) · (α′(θ′,n)+η′(θ′,n)
(3.8)

where α,η,θ are the coefficients of the reflection and α′,η′,θ′ transmission Fresnel formula.
u(θ,θ′) = S0T(θ′)/S0R(θ) is the ratio between the transmitted (or upwelling) and the reflected
light intensity (Zappa et al., 2008). The upwelling light changes the degree of linear polarisation
which is needed to calculate the surface slope. Hence it is important for an accurate measure-
ment of the reflected DOLP that the upwelling light does not play a role which means that

u(θ,θ′) = S0T(θ′)
S0R(θ)

→ 0 (3.9)

This leads again to the much simpler form of DOLP(θ) Eq. 3.5 from before. Not only the up-
welling light is disturbing Eq. (3.5) but also the incoming polarization from the sky, which will
be discussed in the next section.
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3.2.1. Polarization of the Sky

The sky consists of many different particles, like gases and aerosols, all with a different size
distribution. Therefore the electromagnetic waves of light interact with the particles and get
scattered. The scattering process depends on the size of the particle and is mainly divided into
two different regimes. The first is the Rayleigh scattering, which applies if the particle size is
much smaller than the wavelength (2πr << λ) and the other is Mie scattering, which is valid if
the particle size is equal or greater than the wave length (2πr ≥ λ). Here r is the radius of the
particle and λ is the wave length. Because the scattering direction for Mie scattering is mainly
in forward direction, it can be included in a first order correction to the Rayleigh sky model.
The Rayleigh sky model describes the polarization of the incoming sun light at a clear sky due
to Rayleigh scattering. A description of the sky model can be found in Schott (2009) and an
application of the Rayleigh sky model together with a polarimetric slope sensing can be found
in Barsic and Chinn (2012). Lee (1998) showed with polarimetric images of the clear sky, that
the degree of linear polarisation can even reach DOLP = 1 at an angle of 90° to the sun.
With cloud cover the situation changes significantly because in clouds the prevailing scatter-
ing type is Mie scattering. Pust and Shaw (2006) showed that the sky gets nearly unpolarized if
clouds are on the sky. Horváth et al. (2002) used this phenomenon to detect clouds.
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Figure 3.2.: Images of the polarization of the sky taken at 14:50 on the 04.07.2013. Looking direction:
South. a First component of the Stokes vector S0, where the clear sky is dark and the clouds are white.
b Overlay of DOLP onto the S0 image. The depolarizing effect of the clouds can be seen.

Figure 3.2 shows an image taken with the polarimeter on the 04.07.2013 at 14:50 (local time)
of the south part of the sky with some clouds. The sun position was Elevati on = 51.77°,
Azi muth = 238.79° at the geographical position Lati tude = 49.41729°N , Long i tude = 8.67402°E 1.
This means, that the sun was above the top right corner of the image. Since the maximal de-
gree of linear polarisation is reached at 90° to the sun, the DOLP looking almost in the direction
to the sun gets not more than DOLP ≤ 0.25. Fig. 3.2a shows the S0 component of the Stokes
vector, to understand the scene. (Sky is mostly dark and the clouds are white.) Fig. 3.2b is an
overlay of DOLP onto the S0 image in color to show the depolarizing effect of clouds.

1Sun position calculated with http://www.sunearthtools.com/dp/tools/pos_sun.php

http://www.sunearthtools.com/dp/tools/pos_sun.php
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3.3. Polarimetric Slope Imaging

Equation (3.5) is the main equation for the polarimetric slope imaging technique. With the
inversion of the equation, from DOLP to θ, it is possible to measure the incidence angle of light
onto the water surface. From this and the known angle of view of the polarimeter the slope of
the surface can be computed. Since the inversion is not unique it is only possible to invert the
equation in the range from θ = 0°−53°. Together with the polarization angel Φ (Eq. (2.34)) it is
possible to recover a two dimensional slope field from the reflected light at the air-sea surface.

If η(x , t ) is the water surface elevation, the polarimetric slope imaging measures the gradi-
ent of the elevation [sx , sy ]t = ∇η(x , t ). This relation will be later used to recover the surface
elevation except for an integration constant (see Sec. 3.4).

Figure 3.3.: Geometrical representation of the light path for polarimetric measurements. The reflection
surface is defined by the surface normal vector. The angle θ is defined by the vector of the incidence light
and the surface normal vector and can be measured with DOLP. The slope of the surface to the horizontal is
defined by the angle φ. (Attention: φ=Φ+90°.) Source: Zappa et al. (2008)

Figure 3.3 shows the geometric relationship between the surface slope and the incidence an-
gle θ (measured with DOLP) and the surface orientation φ to the polarization angle Φ, where
φ =Φ+90°. As derived in Sec. 2.3, the incidence angle and the reflection angel are equal (Eq.
(2.62)) and the reflected beam and the surface normal lie in the same plane. The surface orien-
tation φ can than be seen as the angle between the X-axis of the imaging plane and the plane
of reflection. Therefore the orientation of the surface normal is determined by the angles θ,φ
relative to the camera reference system.

Because the camera is looking tilted onto the water surface, a projective transformation from
the image plane onto the water surface is needed to obtain the water surface slope in Cartesian
coordinates, see Sec. 5.2.

Because the system is measuring angles, the angle of view of the camera must be taken into
account. This can be done by imposing that the water surface must be flat for a long term
average slope. Thus, we can subtract an long term slope average from all images to correct for
the angle of view.
To calculate the slope of the surface, we have to do an transformation from θ,φ to sx , sy . The
angular slope of the surface facet can be calculated like that:

Xcomp =−cosφ ·θ = sinΦ ·θ
Ycomp = sinφ ·θ = cosΦ ·θ (3.10)
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where φ = Φ+ 90° was used. To get the actual slope the tangents have to be taken from the
Xcomp,Ycomp.

sx = tan(Xcomp) = tan(sinΦ ·θ)

sy = tan(Ycomp) = tan(cosΦ ·θ) (3.11)

From these two slope maps an elevation map can be calculated, which will be done in the next
section.

3.4. Height Reconstruction

Since the slope in X- and Y-direction (sx , sy ) corresponds to the gradient of the surface elevation
h(x) of the water, it is possible to reconstruct the water height except for an additive constant,
which corresponds to the constant of integration. The first attempt to get the height from an
gradient field would be integration of the two slope components. The height is then depending
on the integration path. Hence for one pixel the height must be calculated from many integra-
tion paths, which means, that this method is computational exhausting. Thus a nowadays very
commonly used method was proposed by Frankot and Chellappa (1988), which was already
successfully applied on water surface slops, see Zhang (1996), Balschbach (2000), Fuß (2004)
and Rocholz (2008). This method uses some useful properties of the Fourier domain. A quan-
tity in Fourier domain will be indicated by a ^. The definition and the properties of the spatial
Fourier transformation (F T ) can be found in Jähne (2005). The starting point is the transfor-
mation of the height gradient into Fourier space.

Spatial domain ◦−• Fourier domain

sx (x) = ∂h(x)

∂x
◦−• ŝx (k) = i kx ĥ(k) ⇒ i kx ŝx (k) =−k2

x ĥ(k)

sy (x) = ∂h(x)

∂y
◦−• ŝy (k) = i ky ĥ(k) ⇒ i ky ŝy (k) =−k2

y ĥ(k) (3.12)

Here it was used that a partial derivative ∂x in Fourier domain is a multiplication with i kx .
Another step was to multiply the equations with i kx and i ky respectively. Now the Fourier
transformed of the height can be written as:

ĥ(k) = −i (kx ŝx (k)+ky ŝy (k)

(k2
x +k2

y )
(3.13)

The denominator (k2
x +k2

y ) = |k2| is the quadratic norm of k . The equation can’t be evaluated at

(k2
x +k2

y ) = |k2| = 0, which means that the mean height and the mean slope cannot be recovered
with this method. To recover the real height, equation (3.13) must be transformed into real
space with the inverse Fourier transformation F T −1. The formula for the height reconstruction
is therefore:

h(x) = FT−1

(
−i (kx ŝx (k)+ky ŝy (k)

(k2
x +k2

y )

)
(3.14)
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3.5. Constraints for the Polarimeter technique

As we have seen in the previous sections, there are some constraints on the polarimeter slope
imaging technique, so that it is working properly. To summarize and characterize all constraints
a list of them will be given here.

No Upwelling Light As we have seen in Eq. (3.8) for DOLP, the upwelling light from under-
neath the water surface makes the inversion of the relation of DOLP and the angle of
incidence θ nearly impossible. In clear and deep water (e.g. in the open ocean) this is not
a problem, because the light is absorbed within about 200 m. In turbid water, e.g. coastal
areas with a lot of biological activity or turbid rivers, light scattered from suspended par-
ticles close beneath the surface can be a problem. In the laboratory, the absorption of
water can be increased by adding a dye that absorbs in the bandwidth of the polarimeter.

Unpolarized Incoming Light Eq. (3.5) was derived for an unpolarized incoming light. Hence,
if the incoming light is polarized the relation between DOLP and the incidence angle θ
gets changed. If the incoming polarization is known, like from a Rayleigh sky model or
from polarization measurements of the incoming light, it is possible to conclude again
from DOLP onto the incidence angle θ. If the polarization of the incoming light cannot
be measured, it has to be verified that the incoming light is unpolarized. The incoming
sky light can be seen as unpolarized, if the sky is completely overcast. (see Sec. 3.2.1).

Sufficient illumination The reflectivity of water can be calculated from the Fresnel coeffi-
cients (Eq. (2.67) and Eq. (2.71)) and reaches from 2.0% at θ = 0° to 3.8% at θ = 53°. This
means that not very much light is reflected at the water surface. Thus, it is necessary to
have enough light that can be reflected so that the exposure time can be set low enough
to capture the high frequency waves. Especially for inside experiments it has to be paid
attention to a proper illumination.

Pixel size small enough Due to the nonlinearity of the dependence of DOLP on surface
slope (Eq. (3.5) and Fig. 3.1), the slope should not change significantly over the area
that is projected onto one pixel. This means that even in studies where long waves are of
interest, the scale of the smallest occuring waves determines the requirement for spatial
resolution. In studies of wind generated waves, where capillary waves are abundant, this
means that if large areas are to be observed, large image resolution is required.





4. Experiments and Setup

There were two major experiments with the polarimeter. One was conducted on board of the
research vessel Meteor for during one month and the other one was operated at the Ham-
burgische Schiffsbau-Versuchsanstalt (HSVA) in Hamburg.

4.1. Experiments at the Meteor

It was possible to deploy the Stereo Polarimeter on the Meteor M91 cruise1 in front of the Peru-
vian coastline. The cruise started at the 1st of December 2012 in Callao (Peru) and ended at the
26th of December 2012 in Callao as well. The cruise was part of the SOPRAN2 project, where
two PhD students of our group, Daniel Kiefhaber and Leila Nagel, were taking part. On board
of the ship the Stereo Polarimeter was operated by Daniel Kiefhaber. Due to the short building
time and the early date of the shipment from Heidelberg to Callao at the 12th of October 2012,
the setup was barely tested. The setup of the Stereo Polarimeter at the METEOR is described
in Sec. 4.3. Table 4.1 lists all measurement stations where the Stereo Polarimeter was running,
with the station names and positions taken from the cruise logbook.

Figure 4.1.: Route of the Meteor (black) in front of Peru with the measurement stations of the Stereo-
Polarimeter marked by a red cross. Map generated with Matlab® WebMap.

1METEOR M91 Cruise Report: http://www.ifm.zmaw.de/fileadmin/files/leitstelle/meteor/M90_M93/M91-SCR.
pdf

2SOPRAN - Surface Ocean Processes in the Anthropocene: http://sopran.pangaea.de/

http://www.ifm.zmaw.de/fileadmin/files/leitstelle/meteor/M90_M93/M91-SCR.pdf
http://www.ifm.zmaw.de/fileadmin/files/leitstelle/meteor/M90_M93/M91-SCR.pdf
http://sopran.pangaea.de/
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Table 4.1.: Overview of all measurement stations at the Meteorwhere the Stereo Polarimeter was acquiring
data. The Station name, Date, Time and Position were taken from the logbook of the Meteor.

Num Station Date Time Position Lat Position Lon Recording
time

1 1728-1 06.12.2012 21:33:00 8°8.46′ S 80°7.20′ W 70.0 s
2 1728-2 06.12.2012 22:14:00 8°8.40′ S 80°7.19′ W 60.0 s
3 1732-2 07.12.2012 19:31:00 9°19.79′ S 78°58.19′ W 128.0 s
4 1745-2 11.12.2012 19:46:00 12°2.39′ S 77°22.21′ W 90.0 s
5 1746-1 11.12.2012 21:29:00 12°2.39′ S 77°29.41′ W 120.0 s
6 1746-2 11.12.2012 21:54:00 12°2.42′ S 77°29.42′ W 400.0 s
7 1750-1 12.12.2012 14:44:00 12°2.38′ S 78°30.02′ W 120.0 s
8 1750-2 12.12.2012 16:07:00 12°2.44′ S 78°30.01′ W 420.0 s
9 1750-3 12.12.2012 17:37:00 12°3.79′ S 78°29.65′ W 145.0 s

10 1752-5 13.12.2012 14:05:00 12°56.96′ S 78°41.43′ W 200.0 s
11 1752-6 13.12.2012 18:38:00 12°57.03′ S 78°41.43′ W 415.4 s
12 1757-1 15.12.2012 10:02:00 12°6.93′ S 77°17.50′ W 60.0 s
13 1761-3 16.12.2012 18:30:00 13°8.40′ S 76°31.80′ W 2080.0 s
14 1762-1 16.12.2012 22:44:00 13°25.78′ S 76°22.19′ W 120.0 s
15 1764-1 17.12.2012 08:34:00 14°7.23′ S 76°52.23′ W 420.0 s
16 1764-4 17.12.2012 12:11:00 14°8.77′ S 76°53.89′ W 60.0 s
17 1764-5 17.12.2012 16:02:00 14°8.79′ S 76°53.93′ W 1020.0 s
18 1764-9 17.12.2012 22:00:00 14°11.10′ S 76°55.99′ W 60.0 s
19 1764-10 17.12.2012 22:30:00 14°11.11′ S 76°56.01′ W 540.0 s
20 1766-1 18.12.2012 17:27:00 14°26.99′ S 77°28.23′ W 120.0 s
21 1766-2 18.12.2012 18:58:00 14°27.07′ S 77°28.33′ W 480.0 s
22 1769-2 19.12.2012 14:46:00 15°2.93′ S 77°47.39′ W 960.0 s
23 1770-2 19.12.2012 21:07:00 15°19.68′ S 77°32.02′ W 120.0 s
24 1770-3 19.12.2012 22:11:00 15°19.70′ S 77°32.03′ W 1020.0 s
25 1772-3 20.12.2012 10:58:00 15°54.15′ S 77°3.56′ W 60.0 s
26 1772-4 20.12.2012 11:32:00 15°54.21′ S 77°3.62′ W 720.0 s
27 1773-1 20.12.2012 16:19:00 16°10.71′ S 76°48.25′ W 480.0 s
28 1773-3 20.12.2012 20:32:00 16°9.38′ S 76°49.28′ W 360.0 s
29 1774-1 21.12.2012 19:40:00 16°1.15′ S 76°30.14′ W 120.0 s
30 1774-2 21.12.2012 21:15:00 16°1.14′ S 76°30.73′ W 840.0 s
31 1776-1 22.12.2012 09:30:00 15°41.40′ S 75°54.02′ W 60.0 s
32 1776-2 22.12.2012 10:58:00 15°41.46′ S 75°54.01′ W 840.0 s
33 1777-3 22.12.2012 18:34:00 15°31.19′ S 75°36.03′ W 540.0 s
34 1777-5 22.12.2012 20:31:00 15°32.44′ S 75°36.84′ W 1223.0 s
35 1777-9 23.12.2012 12:34:00 15°35.19′ S 75°38.24′ W 1320.0 s
36 1778-1 23.12.2012 20:01:00 15°22.76′ S 75°19.91′ W 60.0 s
37 1778-2 23.12.2012 20:39:00 15°22.83′ S 75°20.04′ W 600.0 s
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4.2. Stereo Polarimeter

The idea of the Stereo Polarimeter was to combine stereo height measurements (Benetazzo,
2006; Schumacher, 1939) with slope measurements of the polarimeter (Zappa et al., 2008), to
gain information about large and small scale waves. My task was the development of the po-
larimetric slope imaging technique, but for documentation reasons the stereo measurements
will be illustrated here as well.

The Stereo Polarimeter consists of two equal polarimeter boxes, each with three cameras
equipped. For cooling reasons, the cameras are installed on an aluminium block parallel to
each other with a displacement of 3.5 cm. Some space is left for an optional fourth camera. A
power supply for the cameras and a fan for cooling inside the box was installed as well. On each
camera of the type Basler acA2500-14gm (for the specifications see Tab. 4.2) a TAMRON lens3

with 16 mm focal length is installed. At the lens a polarisation filter from Schneider-Kreuznach4

is mounted. Because the polarisation filter is only working in the bandwidth from 420 nm to
780 nm a yellow filter5 and an IR-blocking filter6 (as front window) are placed in front of the
polarisation filter. The bandwidth is therefore limited from 490 nm to 740 nm. If necessary,
the cameras can be triggered externally with a function generator. A picture of the inside of a
polarimeter box and the setup of the optical components is given in Fig. 4.2.

Table 4.2.: Specifications of the camera used. Source: http://www.baslerweb.com/products/ace.html?
model=170&language=en

Vendor Basler
Model acA2500-14gm
Sensor type Progressive Scan CMOS, rolling shutter
Sensor diagonal Diagonal 7.13 mm, Optical Size 1/2.5 inch
Lens Mount C-Mount
Resolution horizontal/vertical 2592 pixel × 1944 pixel
Pixel Size horizontal/vertical 2.20 µm × 2.20 µm

Pixel Bit Depth 12 bits
Maximum Frame Rate 14 fps (@ 2592 × 1944 pixel)
Synchronization external trigger, free-run, Ethernet connection
Interface type Gigabit Ethernet

4.3. Setup Meteor

The Stereo Polarimeter was installed at the bow of the research vessel METEOR7. The rack of the
3 m long stereo basis was mounted on top of the ACFT 8 box. The height from the polarimeter
boxes to the water surface was 8.9 m. Hence the length of the line of sight was 11.14 m, because
the polarimeter was tilted by 37° to the water surface normal. The line of sight is an imaginary

3TAMRON M118FM16,
http://www.tamron.eu/en/cctv/cctv-single/cctvproduct/m118fm16-wlock-118-16mm-f14-c-mount-3.html

4Schneider Fil Pol/CIR 25,5-MRC, http://www.schneiderkreuznach.com/fileadmin/user_upload/bu_industrial_
solutions/industriefilter/Polarizer/IF_Polarizer.pdf

5Schneider Fil 022/25,5-MRC, http://www.schneiderkreuznach.com/fileadmin/user_upload/bu_industrial_
solutions/industriefilter/Color/IF_Color_Filter.pdf

6CalflexX, http://www.opticsbalzers.com/data/tmp/1383303693_OBA%20010%20PE.pdf
7http://www.ifm.zmaw.de/fileadmin/files/leitstelle/meteor/METEORvirtuell/index.html,

http://www.ifm.zmaw.de/fileadmin/files/leitstelle/meteor/M90_M93/M91-SCR.pdf
8Active Controlled Flux Technique, see Schimpf et al. (2011)

http://www.baslerweb.com/products/ace.html?model=170&language=en
http://www.baslerweb.com/products/ace.html?model=170&language=en
http://www.tamron.eu/en/cctv/cctv-single/cctvproduct/m118fm16-wlock-118-16mm-f14-c-mount-3.html
http://www.schneiderkreuznach.com/fileadmin/user_upload/bu_industrial_solutions/industriefilter/Polarizer/IF_Polarizer.pdf
http://www.schneiderkreuznach.com/fileadmin/user_upload/bu_industrial_solutions/industriefilter/Polarizer/IF_Polarizer.pdf
http://www.schneiderkreuznach.com/fileadmin/user_upload/bu_industrial_solutions/industriefilter/Color/IF_Color_Filter.pdf
http://www.schneiderkreuznach.com/fileadmin/user_upload/bu_industrial_solutions/industriefilter/Color/IF_Color_Filter.pdf
http://www.opticsbalzers.com/data/tmp/1383303693_OBA%20010%20PE.pdf
http://www.ifm.zmaw.de/fileadmin/files/leitstelle/meteor/METEORvirtuell/index.html
http://www.ifm.zmaw.de/fileadmin/files/leitstelle/meteor/M90_M93/M91-SCR.pdf


28 4. Experiments and Setup

a b
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Figure 4.2.: Setup of the Polarimeter: a three cameras with different polarisation filters (0°,60°,120°) aligned
parallel next to each other. b optical components of each camera: optics with aperture, polarisation filter,
yellow filter and an IR-blocking filter, which is used as front window of the box.

straight line from the center of the camera to the mean water surface. A sketch of the setup on
the Meteor and a photo are given in Fig. 4.3. Detailed information about the proportions and
configurations is subsumed in Tab. 4.3. A summary of all measurements with the correspond-
ing conditions during the Meteor 91 cruise is given in Tab. 4.1.

a b

Figure 4.3.: a Photo (taken by Daniel Kiefhaber) and b Sketch of the Setup of the Stereo Polarimeter at the
Meteor. The polarimeter was fixed with a X95-rack to face the water surface under an angle of 37° to the
water surface normal

For calibrating the stereo system a set of chessboard pictures was taken. This was done by
turning the Stereo Polarimeter such that it was facing towards the ship.
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Table 4.3.: Specifications of the Setup at the Meteor with the camera configuration used. (The real image
size is calculated as a plane parallel to the image sensor at the distance of the line of sight.)

Focal length 16 mm
Aperture 1.4
Binning 1 x 1
Resulting pixel pitch 2.20 µm x 2.20 µm

Resulting resolution 2592 pixel x 1944 pixel
Maximum frame rate 14 fps
Distance Ship - Water surface 8.9 m
Length of the line of sight 11.14 m
Real image size 3.97 m x 2.97 m
Real resolution 1.53 mm/pixel

4.4. Experiments in Hamburg

The experiments in Hamburg were conducted at the Hamburgische Schiffsbau-Versuchsanstalt9

on the 12th and 13th of August 2013. At the small towing tank at the HSVA only one polarimeter
box was installed, since it was necessary to measure the slope of the waves. In this experiment
the waves where not driven by wind, but generated by a wave generator. Different wave spectra
were generated. A wave wire was installed at the tank, which is useful for comparison. Table 4.4
shows all measurements and conditions of the experiment.

Table 4.4.: Overview of all measurements and conditions at the Hamburgische Schiffsbau-Versuchsanstalt.

Date Measurement Name Generated Waves Acquisition
Frequency

Recording
Time

12.08.2013 HSVA1 Test measurements - -
12.08.2013 HSVA2 Test measurements - -
12.08.2013 HSVA3 Monochromatic free running -
12.08.2013 HSVA4 Monochromatic free running -
12.08.2013 HSVA5 Monochromatic 10 Hz 1 × 100 s
12.08.2013 HSVA6 Monochromatic 10 Hz 1 × 100 s
12.08.2013 HSVA7 Monochromatic 10 Hz 2 × 100 s
12.08.2013 HSVA8 Monochromatic 10 Hz 2 × 100 s
13.08.2013 HSVA9 Monochromatic 25 Hz 6 × 40 s
13.08.2013 HSVA10 Monochromatic 25 Hz 10 × 40 s
13.08.2013 HSVA11 Monochromatic 25 Hz 1 × 120 s
13.08.2013 HSVA12 Monochromatic 25 Hz 4 × 120 s
13.08.2013 HSVA13 Monochromatic 25 Hz 1 × 120 s
13.08.2013 HSVA14 Monochromatic 25 Hz 2 × 120 s
13.08.2013 HSVA15 Monochromatic 25 Hz 2 × 120 s
13.08.2013 HSVA16 Continuous spectrum 25 Hz 2 × 120 s
13.08.2013 HSVA17 Continuous spectrum 25 Hz 3 × 120 s
13.08.2013 HSVA18 Continuous spectrum 25 Hz 3 × 120 s
13.08.2013 HSVA19 Continuous spectrum 25 Hz 2 × 120 s

9HSVA: http://www.hsva.de/

http://www.hsva.de/
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4.5. Setup Hamburg

For measurements at the Hamburgische Schiffsbau-Versuchsanstalt (HSVA) only the polarime-
ter function of the Stereo Polarimeter was necessary. To fit the needs at the HSVA, the compo-
nents of one box were changed slightly. To achieve a larger measurement area a TAMRON lens10

with 8 mm focal length was installed on each camera. The yellow filter was replaced by a red
filter11 and as a result the bandwidth of the incoming light was limited to 600 nm–740 nm. To
increase the sensitivity of the cameras they were operated in binning mode. This means that
4× 4 pixel were collected together. Accordingly, the resulting image has a smaller resolution,
which was sufficient at the HSVA because the pixel area on the water surface was still smaller
than the smallest wave length (see Sec. 3.5). Apart from that, the cameras could be operated
with a higher acquisition rate (up to max. 30 fps). Detailed information about the setup is given
in Tab. 4.5. The cameras were triggered externally with a function generator, except for the free
running mode, where cameras use their internal trigger.

Table 4.5.: Specifications of the Setup at the Hamburgische Schiffsbau-Versuchsanstalt with the camera
configuration used. (The real image size is calculated as a plane parallel to the image sensor at the distance
of the line of sight.)

Focal length 8 mm
Aperture 1.4
Binning 4 x 4
Resulting pixel pitch 8.80 µm x 8.80 µm

Resulting resolution 648 pixel x 486 pixel
Maximum Frame Rate 30 fps
Length of the line of sight 4.00 m
Real image size 2.85 m x 2.13 m
Real resolution 4.4 mm/pixel

4.5.1. Setup at the HSVA

The polarimeter was operated at the small towing tank of the Hamburgische Schiffsbau-Ver-
suchsanstalt (HSVA). The size of the tank can be seen in Fig. 4.4, where the positions of the
wave generator, the wave wire and the polarimeter are marked. The polarimeter was mounted
on a ladder such that it faces the water surface normal under an angle of 37°. Fig. 4.5a visualizes
the geometry of the setup schematically. The polarimeter box is visible in the upper left corner
at the top of the ladder in Fig. 4.5b.

At the Hamburgische Schiffsbau-Versuchsanstalt two problems arose in contrast to the open
field measurements (see Sec. 3.5). The first problem was how to achieve a proper unpolarized
illumination, because there was not enough light for the cameras. The second one are the
reflections from the ground of the tank. It is important that only reflections from the water
surface were seen by the cameras.

Unpolarized Illumination The light that is reflected by the water surface to the polarimeter
must be unpolarized before it is reflected. Hence two spotlights, each made out of 140

10TAMRON M118FM08,
http://www.tamron.eu/en/cctv/cctv-single/cctvproduct/m118fm08-wlock-118-8mm-f14-c-mount-2.html

11Hoya R-60 Red M25.5x0.5 Threaded, http://www.edmundoptics.com/optics/optical-filters/
color-dichroic-filters/mounted-color-filters/46-542

http://www.tamron.eu/en/cctv/cctv-single/cctvproduct/m118fm08-wlock-118-8mm-f14-c-mount-2.html
http://www.edmundoptics.com/optics/optical-filters/color-dichroic-filters/mounted-color-filters/46-542
http://www.edmundoptics.com/optics/optical-filters/color-dichroic-filters/mounted-color-filters/46-542
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Figure 4.4.: Sketch of the Polarimeter position at the Small Towing Tank at the HSVA. Source: http://www.
hsva.de/

a

37°

5 m

2,5 m

Ceiling

3
m

b

Figure 4.5.: a Sketch of the polarimeter setup at the small towing tank at the HSVA. On the right hand side
the light source is illuminating the ceiling. The polarimeter sees the reflection of the ceiling at the water
surface. b Photo of the polarimeter setup.

high-performance LEDs12 (λpeak = 630 nm), were built for illumination. The degree of
linear polarisation of the light reflected by the ceiling (see Fig. 4.5) was checked on-site
and it was just a few percent.

Only reflections from the water surface All light that is gathered by the cameras must come
from the water surface. Otherwise the assumption that no upwelling light is present (see
Sec. 3.5) is not justified any more. When light hits the water surface nearly perpendicu-
larly only a fraction of about 2% is reflected. Thus, almost all light is transmitted into the
water. Therefore it must be guaranteed that no light is reflected by the bottom of the tank.
At the beginning of the experiment the ground was visible, because the self absorption of
the water was not high enough. To enhance the absorption of the water the dye Patent
Blue V13 was added. As it can be seen in Fig. 4.6 the absorption bandwidth overlaps with
the bandwidth of the LEDs from the spotlight. Hence, only a small amount of dye was
necessary to prevent all reflections of the ground. In total, an amount of 40 g was added
to the towing tank with a capacity of about 2.7×106 l of water.

12Cree XP-E red, http://www.cree.com/~/media/Files/Cree/LED%20Components%20and%20Modules/XLamp/
Data%20and%20Binning/XLampXPE.pdf

13Patent blue V sodium salt (E131)

http://www.hsva.de/
http://www.hsva.de/
http://www.cree.com/~/media/Files/Cree/LED%20Components%20and%20Modules/XLamp/Data%20and%20Binning/XLampXPE.pdf
http://www.cree.com/~/media/Files/Cree/LED%20Components%20and%20Modules/XLamp/Data%20and%20Binning/XLampXPE.pdf
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Figure 4.6.: Emission spectrum of the red LEDs used and absorption spectrum of Patent Blue
V. The absorption is almost the highest at the wavelengths where the LEDs emit. Source of the
Data: LEDs http://www.cree.com/~/media/Files/Cree/LED%20Components%20and%20Modules/XLamp/
Data%20and%20Binning/XLampXPE.pdf, Patent Blue V http://www.zum.de/Faecher/Ch/BW/smarties.shtml

http://www.cree.com/~/media/Files/Cree/LED%20Components%20and%20Modules/XLamp/Data%20and%20Binning/XLampXPE.pdf
http://www.cree.com/~/media/Files/Cree/LED%20Components%20and%20Modules/XLamp/Data%20and%20Binning/XLampXPE.pdf
http://www.zum.de/Faecher/Ch/BW/smarties.shtml


5. Calibration

The calibration is one of the most important parts of my work, because it is crucial for the
success of the measurements.

5.1. Coordinate Systems

In photogrammetry the correct definition of coordinate systems is important, because it mainly
deals with transformations from one coordinate system (e.g. the camera) to another one (e.g.
the real world). All coordinate systems used are listed and explained below.

5.1.1. Pixel Coordinate Frame

The pixel coordinate frame is the coordinate system of a digital image and consists of columns
and rows (u, v). The origin (u = 0, v = 0) is in the upper-left corner and is defined with the
positive y-axis pointing downwards. A digital image can also be interpreted as a matrix, which
becomes multidimensional if there is more information, like color or image sequences.

5.1.2. Image Coordinate Frame

The image coordinate frame (often also: camera coordinate/reference frame) determines the
camera reference system. First of all we will define it as a flat Cartesian coordinate system
(x ′, y ′) (see Fig. 5.1). This coordinate frame is fixed to reference points of the camera like the
pixel coordinate frame. The difference to the pixel coordinate frame is that it’s origin is in the
center of the image and the coordinates are continuous. The origin of this coordinate system is
also called principal point (see. Sec. 5.3).

This coordinate system can be extended by a z ′-axis to become a right-handed three dimen-
sional coordinate system. The origin of this three dimensional coordinate system is the projec-
tion center of the camera O′.

Figure 5.1.: Sketch of the image coordinate system. The physical imaging process is taking place at the
negative B1. In photogrammetry it is easier to think of the positive definition B2, since the vector x ′ is pointing
to the point P in world coordinates. Source: Luhmann (2010, p. 25, Fig. 2.2)
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With the extension of the z’-axis it is possible to define a vector x ′:

x ′ =
 x ′

y ′

z ′

=
 x ′

y ′

− f

 (5.1)

where f is the focal length of the camera. z ′ component is negative because the image coor-
dinate system is right-handed. This vector x ′ points to the point P , which is defined in world
coordinates (see Sec. 5.1.3). x ′, y ′ and z ′ are continuous coordinates, but are related to the pixel
coordinate frame via the pixel size, pixel position and focal length (Sec. 5.1.1).

Normalized Coordinates

Normalized coordinates can be seen as a projection of a pinhole camera. A pinhole camera
is a simple camera model without aberrations, like the one we have used in the previous sec-
tion. If P ′ is a point defined in the camera reference frame, with the vector P ′ = [x ′, y ′, z ′]t , the
normalized coordinates are defined as:

xn =
 xn

yn

1

=
 x ′/z ′

y ′/z ′

1

 (5.2)

The normalized coordinates are therefore independent of any properties of the camera.

5.1.3. World Coordinate Frame

The world coordinate frame (often also: object coordinate frame) is a Cartesian coordinate sys-
tem (X ,Y , Z ), which is defined by reference points at an object in the real world. The aim of
photogrammetry is to connect the world coordinate frame to the camera frame and therefore
to the pixel coordinates. The definition of the origin, the coordinate orientation and the scal-
ing is often called datum. The transformation from world coordinates to image coordinates is
visualized in Fig. 5.3.

5.2. Coordinate Transformations

Transformations are needed to change between two reference systems. Thus finding the right
transformation is one of the key points of photogrammetry. Similarity, affine, polynomial and
bilinear transformations are well discussed and presented in many books about this topic, e.g.
Luhmann (2010), Forsyth and Ponce (2002), Szeliski (2011), Hartley and Zisserman (2003). The
most important transformation, the 2D projective transformation, is described in the next sec-
tion.

5.2.1. 2D Projective Transformation

A plane (2D) projective transformation or also plane homography transforms one plane (2D)
coordinate system to another one, where each ray of the projection crosses the projection cen-
ter.

The transformation rule is given as:

X = a0 +a1x +a2 y

1+ c1x + c2 y

Y = b0 +b1x +b2 y

1+ c1x + c2 y
(5.3)
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X, Y

x, y

projection center

Figure 5.2.: Plane projective transformation from one plane (x, y) to another one (X ,Y ) or vice versa

or in matrix notation with normalized vectors:

X =
 X

Y
1

=
 a1 a2 a0

b1 b2 b0

c1 c2 1

 ·
 x

y
1

= H · x (5.4)

Here the coordinates (X ,Y ) and (x, y) can be of any plane euclidean coordinate system. For
example the projective transformation can be used to transform from one camera system to
another one or from one camera system to the water surface.

As it can be seen in eq. (5.3) and eq. (5.4) the projective transformation has 8 degrees of
freedom (DOF). The equation can be solved by linearizing Eq. (5.3) by multiplying with the
denominator.

a0 +a1x +a2 y −X − c1x X − c2 y X =0

b0 +b1x +b2 y −Y − c1xY − c2 yY =0 (5.5)

The parameters of the homography can be solved either with a least-squares fit or with SVD
(single value decomposition). For a detailed description of the SVD see Trucco and Verri (1998).
A special property of the plane projective transformation is that double ratios are conserved,
which is also known as the intercept theorem.

5.2.2. 3D Transformations

A 3D transformation from one 3D coordinate system to another one is in general given by a
displacement vector X 0, a scaling factor m and a rotation matrix R(ω,ϕ,κ). (More information
about rotation matrices can be found in Sec. A.1)

X = X 0 +m ·R · x ′ X
Y
Z

=
 X0

Y0

Z0

+m ·
 r11 r12 r13

r21 r22 r23

r31 r32 r33

 ·
 x ′

y ′

z ′

 (5.6)

Figure 5.3 shows a sketch of a transformation from world coordinates to image coordinates.
Equation (5.6) can be seen as starting point to derive the main equation of photogrammetry,

the so called collinearity equation. As we have seen in Sec. 5.1.2 the camera coordinate system
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Figure 5.3.: Sketch of the coordinate transformation from world coordinates to the image coordinates.
Source: Luhmann (2010, p. 237, Fig. 4.4)

is primarily two dimensional (x ′, y ′). The imaging process therefore describes the transforma-
tion from a world coordinate point (X ,Y , Z ) to the image coordinates (x ′, y ′). This can be done
by rewriting Eq. (5.6):

x ′ = a′
0 +a′

1X +a′
2Y +a′

3Z

1+ c ′1X + c ′2Y + c ′3Z

y ′ = b′
0 +b′

1X +b′
2Y +b′

3Z

1+ c ′1X + c ′2Y + c ′3Z

(5.7)

This equation is the three dimensional projection equation or collinearity equation. The
parameters a′,b′,c ′ can be calculated from the translation vector X 0 and the rotation matrix
R . Since we transform from a 3D coordinate system to a 2D coordinate system, the distance
information in z-direction is lost completely.

5.3. Camera Matrix

With the camera matrix it is possible to transform normalized coordinates (see Sec.5.1.2) to the
pixel coordinate frame (see Sec.5.1.1). The camera matrix contains the intrinsic parameters of
the camera without the distortion. There are five independent intrinsic camera parameters,
which are the focal length ( fx , fy ), the principal point (ccx ,ccy ) and the shear parameter αc .
The focal length is split into two parameters, because the ratio fy / fx = (1+m) gives the scaling
difference, if the pixels are not squared. (For squared pixels m = 0). The shear parameter αc is
important if the pixels are not rectangular. The principal point (ccx ,ccy ) gives the penetration
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point of the optical axis at the sensor in pixel coordinates. The camera matrix K is then:

K =
 1 αc ccx

0 (1+m) ccy

0 0 1

 ·
 fx 0 0

0 fx 0
0 0 1

=
 fx αc · fx ccx

0 fy ccy

0 0 1

 (5.8)

The combination of the camera matrix and the 3D-Transformation equation 5.6 then gives
the total projection matrix P , which describes the transformation from the world reference
frame to the pixel coordinate frame. The projection matrix P has 11 DOF in total, 5 DOF from
the intrinsic parameters (K -Matrix) and 6 DOF from the extrinsic parameters (3 rotation angles
and 3 components of the translation vector X 0).

P = K ·R · [I |−X 0] =
 fx αc · fx ccx

0 fy ccy

0 0 1

 ·
 r11 r12 r13

r21 r22 r23

r31 r32 r33

 ·
 1 0 0 −X0

0 1 0 −Y0

0 0 1 −Z0

 (5.9)

Here a new notation is introduced (in geometry often called homogeneous coordinates) to sim-
plify the subtraction of the translation vector X 0. Thus the projection matrix P is a 3×4 dimen-
sional matrix and therefore the 3 dimensional vector X must be changed into to a 4 dimen-
sional vector by adding 1 as fourth component. The transformation from object coordinates X
to normalized camera coordinates x ′ is then given as:

x ′ = P ·
[

X
1

]
= K ·R · (X −X 0) (5.10)

5.4. Imaging Optics and Optical Aberration

There are many different optical aberrations, but most of them are corrected by a good lens.
Detailed information about the different aberrations can be found in Jähne et al. (1999), Jähne
(2005), Luhmann (2010). In our setup spherical aberrations, astigmatism and coma aberra-
tions were corrected by the lens very well and therefore they where not taken into account for
the calibration procedure. The chromatic aberrations also do not play a major role because
the visible spectrum was limited to a small bandwidth with optical filters. Hence the most im-
portant aberration for calibration is the distortion of the lens. Additionally, there exist some
radiometric properties as well that cannot be corrected by a good lens, like the field darkening
or the dark noise. Therefore a correction these parameters is important for high quality images.

5.4.1. Field darkening

The intensity of an incoming bundle of light rays is reduced by a factor of cos4θ, θ is the angle
between the incoming light ray and the optical axis of the lens.

ISensor = IIncoming ·cos4θ (5.11)

There is also an effect of the aperture, which is discussed in Jähne et al. (1999) and Jähne (2005).
The factor of cos4θ is composed of a factor of cos2θ from the inverse square law (the reduction
of the incoming cross-section for the incoming ray bundle), a factor of cosθ from passing the
lenses in a sloped way and a factor of cosθ by light rays hitting the sensor not perpendicular.
This effect can easily be corrected by taking a mean picture of the integrating sphere, which
produces an evenly distributed light field and normalizing it to one for the highest intensity in
a picture. A calibration picture and the setup in front of the integrating sphere can be seen in
Fig. 5.4.
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a b

Figure 5.4.: a Setup for the radiometric calibration of the cameras. The cameras are placed parallel in front
of the integrating sphere. b The result of a mean image with an 8 mm optics.

5.4.2. Dark Noise

Due to thermal effects the sensor becomes exposed even when the camera is put into complete
darkness. This noise is called dark noise or amplifier noise because it is provoked by the thermal
stimulation of the "reading"-electronics of the sensor. Each pixel of a CMOS-sensor has its own
amplifier. All these amplifiers have a slightly different offset. The CMOS sensor therefore has
a fixed pattern noise, which comes from the offset differences. The fixed pattern noise occurs
especially in the dark parts of an image, since the amplifiers also becomes thermal stimulated.
This fixed pattern noise can easily be corrected by subtracting a dark image after the acquisition
of an image. The dark image is generated by taking the mean of a long time series of images
which are acquired when the camera is completely covered, so that no light can enter the lens.
A typical dark image can be seen in Fig. 5.5. A normalized image with correction of the field

Figure 5.5.: Example of the dark image of a Basler acA2500-14gm

darkening and of the dark noise is computed like this:

Inorm = Iin − ID

IM − ID
(5.12)

here Iin is the image input, ID is the dark image, IM is an image of the field darkening and Inorm

is the normalized image.
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5.4.3. Depth-of-field

To get a sharp image of an object it is not only necessary to adjust the focus at the correct
length, but as well to adjust the aperture so that the whole measurement range is in the depth-
of-field. In our case the aperture was fixed to n f = 1.4 and the focus was set at 11 m at the
Meteor and at 5 m in Hamburg. The calculation of the measurement range (depth-of-field),
where the image is not blurred, is done in many textbooks like in Haferkorn (1994). The depth-
of-field ∆d = d f −dn is defined as the difference between the near point dn and far point d f ,
where the image is still focused. The relationship between these points is depicted in Fig. 5.6.

dn

df

g

d
le
n
s ε

fΔd

Figure 5.6.: Sketch of a lens with an aperture (opening diameter dlens), where all important distances for the
depth-of-focus ∆d calculation are depicted.

Near and far point are computed like this:

dn = 1
1
g + 1

dh

d f =
1

1
g − 1

dh

(5.13)

where g is the distance to the focused object and dh is the hyperfocal distance. These equations
are valid only with the assumption of g >> f , which is given for all of our setups. The hyperfocal
distance is defined as:

dh = f 2

n f ·ε
+ f (5.14)

where f is the focal length, n f = f
dlens

is the f-number, with the opening diameter of the aperture
dlens and ε is the diameter of the blur disk (in general the pixel size). In our case the hyperfocal
length for f = 16mm, n f = 1.4 and ε = 2.2µm (size of one pixel) is dh = 83.13m and for f =
8mm, n f = 1.4 and ε = 8.8µm (size of one pixel with binning 4x4) is dh = 5.203m. Table 5.1
gives an overview of the different distances and depth-of-field for the different experimental
setups.
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Table 5.1.: Calculated depth-of-field ∆d and important distances for the two different setups

Setup Meteor Setup Hamburg

Focus f 16.0 mm 8.0 mm

F-Stop n f 1.4 1.4

Pixel size ε 2.2 µm 8.8 µm

Object distance g 11.14 m 5.00 m

Hyperfocal length dh 83.13 m 5.20 m

Near Point dn 9.82 m 2.55 m

Far Point d f 12.86 m 128.27 m

Depth of Field ∆d 3.04 m 125.72 m

5.4.4. Distortion

For most lenses, distortion is the most significant optical aberration. For the functionality of the
polarimeter three images have to be mapped. In order to avoid errors the distortion correction
is crucial for a correct mapping. Hence a major part of this thesis was to quantify the distortion
of the cameras.

The primary part of distortion is the radial symmetric distortion, which can be classified
into two different regimes, depending on the sign of the distortion parameter: barrel distortion
(negative sign) and pincushion distortion (positive sign).

a b

Figure 5.7.: Illustration of a barrel distortion and b pincushion distortion

There is a lot of literature about this topic like Zhang (2000), Heikkilä and Silven (1997), Tsai
(1987) each one with its own calibration parameters and procedure. For the optimization of
the parameters we used the Camera Calibration Toolbox for Matlab (Bouguet, 2008) and for
consistence we use the same notation.

Radial-symmetric distortion

The radial symmetric distortion has the most significant effect on the images. The origin of the
radial distortion normally is the principal point. Therefore it is important to use the image co-
ordinates (see Sec. 5.1.2) or the normalized coordinates (see Sec. 5.1.2) for further calculations.
Normalized coordinates can as well be achieved with pixel coordinates by multiplying them
with the inverse of the camera matrix. We will use the definition of the normalized coordinates
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xn Eq. (5.2), which were defined as:

xn =
[

xn

yn

]
=

[
x ′/z ′

y ′/z ′
]

(5.15)

With the normalized coordinates we can define a radius from the origin as:

r 2 = x2
n + y2

n (5.16)

For our purpose it was sufficient to take just two radial distortion coefficients (k1,k2). With
these definitions we get for the radial distortion vector xrad:

xrad = (1+k1r 2 +k2r 4)xn (5.17)

The effect of the radial distortion and the distortion curve can be seen in Fig. 5.8. Fig. 5.8a
visualizes the distortion coefficient of Eq. (5.17) in front of xn over the normalized radius r .
The barrel distortion of this lens is clearly visible, since the first coefficient k1 is negative and
the radial distortion factor reaches below one. Fig. 5.8b shows the radial distortion map. The
cross indicates the middle of the image and circle indicates the principal point. The arrows
point from the ideal position to the distorted position of the image points. The contours show
the shift in pixels.
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Figure 5.8.: a Radial symmetric distortion of a 8.00 mm optics as function of the normalized radius r .
b Influence of the radial symmetric distortion on an image

Radial-asymmetric or tangential Distortion

The tangential distortion comes mainly from the misalignment of the lenses in the optics. Thus,
for well-adjusted optics the tangential distortion parameters (k3,k4) is secondary. For our pur-
pose the tangential distortion was taken into account although it was rather small. The tangen-
tial distortion vector x tan is given as:

x tan =
[

2k3 · xn · yn +k4 · (r 2 +2x2
n)

k3 · (r 2 +2y2
n)+2k4 · xn · yn

]
(5.18)
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Total distortion model

The total distortion is then described by the sum of the radial distortion xrad and the tangential
one x tan. Another term could be added, which corrects for the affinity and shearing, but this is
already included in the camera matrix K , see Eq. (5.8). The total distortion is therefore:

x tot = xrad +x tan[
xpx

1

]
= K ·

[
x tot

1

]
= K ·

[
xrad +x tan

1

]
(5.19)

where xpx is the total distortion vector x tot converted using the pixel coordinates of the image
to the camera matrix K . The effect of the total distortion model and of the tangential distortion
can be seen in Fig. 5.9. As seen in the previous distortion map, the cross indicates the middle
of the image and circle indicates the principal point. The arrows point from the ideal position
to the distorted position of the image points. The contours show the shift in pixel. Hence a
correction of the total distortion model would displace the image points from the tip to the
shaft of the arrow.
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Figure 5.9.: Influence of a the tangential distortion and b the complete distortion, with radial and tangential
distortion, on an image

To apply the total distortion model onto images, the shift of each pixel is calculated. Because
the shift might not be on the same regular pattern as the pixel coordinates, some interpolation
is necessary. The standard way is to use a linear interpolation, with four pixels as basis.

With the inclusion of the total distortion model in the transformation from world coordinates
to pixel coordinates, the system becomes non-linear. Thus, it is not possible any longer to use
a linear technique (like the Direct Linear Transformation DLT) to receive the parameters. The
minimization process must be done by iteration, for example with a Levenberg–Marquardt al-
gorithm. For our purpose we used the iterative optimization of the Camera Calibration Toolbox
for Matlab (Bouguet, 2008) to obtain all 9 intrinsic parameters (5 from the camera matrix K and
4 from the distortion model). A table with all the parameters for all cameras can be seen in Tab.
A.1 and Tab. A.2.

5.5. Calibration in Hanau

The normal calibration procedure with the Camera Calibration Toolbox for Matlab (Bouguet,
2008) requires taking about 10 to 15 pictures of a chessboard target in different orientations.
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To obtain a good calibration result the chessboard should cover almost the full image size in
the range of the depth-of-field. As shown in Tab. 4.3 the cameras were focused at a length of
11.14 m and the image size in the real world was X = 3.97m and Y = 2.97m. Since we printed
the chessboard on a plotter, the maximum size was DinA0 and hence it was not possible to
cover the whole field with images of a chessboard at the focused distance. Prof. Jähne came
up with the idea to build our own target with the correct dimensions, which was done at the
Studiozentrum of AEON1 in Hanau.

5.5.1. Target

The target is made out of three aluminum composite sandwich structure panels with a size of
3.1m× 1.5m. Black circles (made out of Metal Velvet2) were glued in a regular pattern (∆x =
∆y = 50.1cm) at the top of the panels. At the middle panel a minor pattern (∆x =∆y = 16.7cm)
with smaller circles is attached at the center. In each circle a white paper, which has a known
emission characteristic, is applied, so that this target can also be used for radiometric calibra-
tion. The three panels were standing upright on the floor and were held by an aluminum rack.
Fig. A.1 shows a 2D-graph of the target and Fig. 5.10 is a photo of it.

Figure 5.10.: Photo of the target in Hanau for the geometric calibration. (Large Pattern: ∆x =∆y = 50.1cm,
Small Pattern: ∆x =∆y = 16.7cm)

5.5.2. Linear Translation Axis

One of the most difficult parts in camera calibration is to find the principal point of the camera.
Therefore Prof. Jähne had the idea, whenever a camera is moving onto a target in a straight line
the projection of the points must move on a straight line away from the principal point. There-
fore the cameras were installed on a 3 m long linear translation axis, to move them on a straight
line towards the target. The linear translation axis system consists of a Parker Compax33 con-
trol box, a brushless servo motor and a 3 m long linear axis4. A photo of the linear axis with the
cameras and a sketch of the whole setup in Hanau is depicted in Fig. 5.11.

1AEON Verlag & Studio GmbH & Co. KG, http://www.aeon.de
2Ultra-Diffusive Light-Absorbing Foil UV, VIS and IR, http://www.acktar.com/category/products/

lights-absorbing-foils/ultra-diffusive
3Parker C3S025V2F11I12T11M00, http://www.parker.com
4Motor: Parker SMH8260038142ID65A7, Linear-axis: Parker LCB060SG03000SRN, Gearbox: PTN080-004S7

http://www.aeon.de
http://www.acktar.com/category/products/lights-absorbing-foils/ultra-diffusive
http://www.acktar.com/category/products/lights-absorbing-foils/ultra-diffusive
http://www.parker.com
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a b
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Figure 5.11.: a Photo and b sketch of the measurement setup in Hanau with the camera box on the linear
axis facing at the target

Wobble Correction

Due to the large distance from camera to target, even tiny changes in the camera’s viewing
angle had notable effects on the position of the target in the image. Since the camera was
supposed to move in a straight line towards the target, this wobbling had to be corrected. The
laser pointer shown in Fig. 5.11 provided a stable reference point that had a fixed position in
the camera image, but was subject to the same wobbling. Thus, by tracking the position of
the laser pointer on the target, it is possible to determine the changes in the viewing angle. In
practice, it was not trivial to determine the position of the laser spot, the cheap laser diode that
was used was badly focused and had an irregular shape. Therefore, virtual points were used. A
typical calibration image sequence consists of 59 images from different positions of the linear
translation stage. The parameters for the wobble correction then were determined like this:

501mm

x

y

5
0

1
m

m

Taking a squared area 
of interest (AOI) where 
4 circles are present.
Detecting the middle 
of each circle

Generating an artificial 
image (same size as 
the AOI)with a circle in 
the middle of the 
image

Transforming the 
original image so that 
the middle points are 
at the edges of the 
squared AOI

Make the same 
transformation with 
the artificial image, 
scale it and measure 
the middle of the 
ellipse

Figure 5.12.: Wobble Correction

1. An area of interest (AOI) was selected such that the
same 4 circles are visible in all images of the se-
quence.

2. The centers of the circles were detected.

3. An artificial image with the same size as the AOI was
generated with a circle in the middle (fixed point in
the camera).

4. Using a perspective transformation, the image can be
warped in a way that the 4 circle centers are the cor-
ners of the warped image.

5. The same transformation is applied to the artificial
image (circle → ellipse).

6. The transformed artificial image is scaled to the same
dimensions as the square pattern of the target (∆x =
∆y = 501mm).

7. The center of the ellipse is determined, which repre-
sents the fix point at the target.
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After this was done for every position of the linear axis a line was fitted to the X− and Y −data
as a function of the position. Due to the intercept theorem (projective transformation, Sec.
5.2.1) the projection of a point must move on a line when the camera is moving on a straight
line towards this point. The correction factors (Xcorr,Ycorr) were calculated by subtracting the
X−,Y −values of the straight line from the X−,Y −data. The wobbling and the line fit is shown
in Fig. 5.13.
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Figure 5.13.: a Wobbling of the linear axis in X- and Y-direction for every step of the linear axis. For the
correction a linear fit is made. b Correction of the wobbling by subtracting the linear fit.

5.5.3. Detection of the Target

The implementation of the target detection was done in Heurisko®and in Matlab®. As it is
shown in Fig. 5.11, the cameras are always facing head-on the target. This has one big advan-
tage and one big disadvantage. The advantage is that circles always remain circles and do not
transform to an ellipse. Thus, it was possible to use the Matlab®-Function imfindcircles.

Since the wobbling of the linear axis was very prominent in the images, it was not possible
any more to use the first idea with the principal point. Therefore, we tried to use the Camera
Calibration Toolbox for Matlab on this data. Because the target was always aligned parallel to
the image sensor, it was not possible to use it as a planar target. Zhang (1998) showed that the
standard calibration procedure with planar targets is not working any more if the planar target
is always facing the camera with the same orientation.

The solution of this problem was to generate a 3D point cloud out of the real world coordi-
nates of the planar target and the known translation of the linear axis. For every position of
the linear axis the real world coordinates of the target were corrected as well by shifting the
X−,Y −coordinates with the wobbling parameters (Xcorr,Ycorr). With this approach it was pos-
sible to calibrate all cameras with the 16 mm-lens configuration. The intrinsic parameters of
the calibration can be seen in Tab. A.2.

5.6. Polarization Filter Calibration

As mentioned in Sec. 3.1, the polarization filters of one polarimeter have to be aligned at θ = 0°,
60° and 120° to cover the full range of 180°. The calibration of the orientation of the polariza-
tion filter was done with the integrating sphere with a polarization filter attached. Since the
polarization filter of the integrating sphere had no degree scale, it was necessary to calibrate
the orientation of this polarization filter as well. The knowledge of Sec. 3.2, that reflected light

http://www.mathworks.com/help/images/ref/imfindcircles.html
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is fully horizontally polarized at the Brewster angle, was used to do the gauging of the polar-
ization filter. The reflection at the Brewster angle of the integrating sphere was acquired with a
camera. A degree scale, determined by the radius of the polarization filter, was mounted on the
polarization filter and the zero point of the scale was set where the reflection was the brightest.
The zero point of the scale at the polarization filter of the integrating sphere is therefore set to
horizontal polarization.

For the rough adjustment of the polarization filter of the three cameras to 0°, 60° and 120° the
corresponding angle was set at the integrating sphere filter. Afterwards the filter in front of the
camera was turned to the darkest position. This means e.g. the 0°-filter is vertically polarizing,
since the zero position of the integrating sphere is horizontally aligned.

For the accurate measurement of the polarization filter adjustment the filter at the integrat-
ing sphere was turned from 0°−195° in 5° steps and pictures were taken at every position of the
polarization filter. The analyzer matrix A (see Sec. 3.1 and Eq. 3.3) for each box was determined
using a least squares fit of Eq. 5.20, where Ik are the intensity from camera k and Si (i = 0,1,2)
are the calculated components of the Stokes vector (see. 2.2.2). I1

I2

I3

= A−1 ·
 S0

S1

S2

 (5.20)

The Stokes-vector S is computed from the angle of the polarization filter θpol at the integrating
sphere like this: S0

S1

S2

=
 1

cos(2θpol)
sin(2θpol)

 (5.21)

An example of the measured intensities and with the calibrated A-matrix and Stokes vector
calculated intensities can be seen in Fig. 5.14. The crosses are the measured values and the
continuous lines are the calculated values with Eq. (5.20). The polarization angle Φ is defined
by the polarization filter of the integrating sphere.
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Figure 5.14.: Intensities of the different cameras with different polarization filters facing the polarization
filter of the integrating sphere. The crosses indicate the measured values and the continuous lines are the
calculated values with Eq. (5.20).
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5.6.1. Test of the Polarization Filter Calibration

To verify the polarization filter calibration of the polarimeter, a special test was designed. A
sketch and a photo of the experimental setup is shown in Fig. 5.15.

The reflection of an integrating sphere (without polarization filter) at the water surface was
recorded for different incidence angles. The polarimeter was put on a rack with an angular
adjustment stand. For a precise measurement of the angle a spirit level was fixed on the top
of the box. The cameras were directly facing a water tank, where the ground was covered by
black fabric, so no upwelling light (see Sec. 3.5) could come from the bottom of the tank. The
integrating sphere was placed such that the reflection could be seen by the cameras.

a b

Figure 5.15.: a Photo and b sketch of the polarimeter test. The integrating sphere is shining onto the water
surface without any filter attached to it. The camera is installed under a certain angle to the water surface
and is capturing the reflection of the integrating sphere.

The incidence angle was adjusted from 30° to 75° in steps of 5° and the degree of linear polar-
isation was computed for the reflection of the integrating sphere. For matching the images of
the cameras, a chessboard was put on the water surface for every condition. Since the Brewster
angle of 53° is passed, when the incidence angle is varied from 30° to 75°, the two parts (left and
right of the Brewster angle) of the DOLP curve Fig. 3.1 have to be taken into account. Below the
Brewster angle the left part and above the right part is important.

Since the reflection was not always at the same position in the image the angle of view α of
the camera has to be considered. The angle of view is depending on the optics and on the pixel
position and can be calculated like this:

αypos = arctan

(
ypos − ccy

f

)
(5.22)

Here αypos is the angle of view in Y at a certain position, ypos is the y-position of the reflection,
ccy is the principal point or middle of the image in y-direction and f is the focal length. The
same can be done in x-direction. The angle of view was computed for every position, by using
the center of gravity of the reflection as pixel position.

Figure 5.16 shows the result of the polarization filter test, where Fig. 5.16a depicts the relation
DOLP - incidence angle with and without the angle of view correction. Fig. 5.16 plots the quality
of the polarization filter test, where the measured angle is compared to the adjusted angle.

This test demonstrates as well that it is possible to use both parts of the DOLP curve Fig. 3.1
(above and below the Brewster angle) for the reconstruction of the incidence angle. In prac-
tice it is not really useful to use both parts, since it is not possible to distinguish whether the
Brewster angle is passed, like here in this experiment.
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Figure 5.16.: a Plot of degree of linear polarisation (DOLP) for different adjusted angles of the camera. The
blue line shows the result of the measurements when the angle of view and the position of the reflection is
not taken into consideration whereas in the green one, this effect is corrected. The red curve is a theoretically
calculated curve. b Relation between the measured angles and the adjusted angles.



6. Data Processing

The principle of the polarimeter data processing chain, from taking the picture of the 3 cameras
to the X-, Y-slope images, is shown in Fig. 6.1. To illustrate the data processing steps, an exam-
ple set of images will be shown in some sections. The conversion from the slope distributions
to the height images is described in Sec. 6.6.
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Figure 6.1.: Figure Data Processing Block diagram

6.1. Data Acquisition

The three cameras of the polarimeter were acquired at the same time. The acquisition fre-
quency and the resolution of the different measurements can be seen in Tab. 4.3 and Tab. 4.5.
An example set of 3 images from the measurements in Hamburg can be seen in Fig. 6.2.

The contrast of the images in Fig. 6.2 were adjusted to the same range.

6.2. Radiometric Correction

A two point correction was done for every acquired images by subtracting a dark image Fig. 5.5
(Sec. 5.4.2) and dividing by the field darkening images Fig. 5.4 (Sec. 5.4.1). With this correction
different offsets and sensibilities of every pixel were adjusted. Especially the correction of the
field darkening is very important for the polarimeter, because we want to compare different
intensities for every pixel.
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a b

c

Figure 6.2.: Example raw images acquired from the 3 different cameras of a polarimeter with the polarization
angle of a = 0° b = 60° c = 120°

6.3. Distortion Correction

Like the radiometric correction the distortion correction has to be done for every camera indi-
vidually, since every lens and camera sensor is different adjusted. Especially the 8 mm optics
in the experiments at the HSVA have not negligible distortion, which can be seen in particular
at the edges of the images. The determination of the distortion parameters (two radial and two
tangential) is done like in Sec. 5.4.4 described. The parameters for every setup can be looked up
in Tab. A.1 and Tab. A.2. The distortion correction was done with the modified rect-routine of
the Camera Calibration Toolbox for Matlab (Bouguet, 2008). Because the distortion correction
is computationally extensive, the resulting images after the radiometric and distortion correc-
tion were saved for every data set. Therefore all further steps in the data processing chain could
start with corrected images.

6.4. Mapping of the Images

The three cameras look from a slightly different position and a different perspective on the wa-
ter surface. Hence, it is not possible to map the different images by a simple translation. To
align the three images exactly pixel by pixel, two homographies (or projective transformations,
see Sec. 5.2.1) where calculated, to map the outer cameras to the middle camera. In the same
step the images were transformed to an orthogonal coordinate system. This is significant, be-
cause the cameras were looking under 37° at the water surface and hence the image section is
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not rectangular. The rectification is as well a projective transformation (Sec. 5.2.1). At the HSVA
experiment, the parameters of the transformation are determined by an chessboard floating on
the water. The chessboard was as well important to calculate the dimensions of one pixel on
the water surface. Figure 6.3 shows an example result of the mapping of all cameras of one box
in RGB-colour coding.

Figure 6.3.: Example image of the mapping process. The three cameras are shown in RGB-coding.

6.5. Calculation of the Slope Distribution

After the mapping we get at every pixel position the three intensities, which were taken with
different polarization filter directions. These intensities can be converted with the calibrated
analyzer matrix to the three components of the Stokes vector, see Sec. 3.1 and Eq. (3.3). With
the components of the Stokes vector the orientation angle Φ and the degree of linear polarisa-
tion(DOLP) were calculated, see Sec. 2.2.2, Eq. (2.49) and Eq. (2.45). The non-linear transfor-
mation from DOLP to incidence angle θi (see Sec. 3.2) was done with a look-up table. With the
angle of incidence θi and the orientation angle Φ the slope in X- and Y- direction (sx , sy ) were
calculated Eq. (3.11). Figure 7.3 and Fig. 7.6 display example images of DOLP and the orienta-
tion angleΦ. In Fig. 7.4 and Fig. 7.7 the slope in X- and Y-direction of the before shown images
can be seen.

6.6. Calculation of the Height Distribution

With the two slope images (sx , sy ) the surface elevation can be reconstructed with the algo-
rithm developed by Frankot and Chellappa (1988). The principle of this algorithm is shown in
Sec. 3.4. Because the algorithm is based on a Fourier transformations the slope images have
to be cleared of NaNs, since the Fourier transformation is not working with NaNs. The NaN
reconstruction algorithm will be depicted in the next section.

The reconstructed height is then given in pixel and must be scaled with the pixel scale that is
evaluated in Sec. 6.4. An example of a reconstructed height can be seen in Fig. 7.5 and Fig. 7.8.
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6.6.1. NaN-Reconstruction

Slope Image
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Slope Image
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with a 
Gaussian Filter

Not-NaN-mask
smeared out

with the same
Gaussian Filter

Reconstr. Image
by dividing the
smeared slope 

image
by the

smeared mask

Figure 6.4.: Block diagram
of the NaN-Correction

In many slope images there are NaNs in the data, because of
too high DOLP values (see Sec. 7.2.2) at the transformation
from DOLP to incidence angle. Since the FFT (Fast Fourier
Transformation) cannot deal with NaNs, we have to get rid
of them. The simple solution is to set all NaNs to zero. This
means for the reconstructed height, that it stays at the same
level, were the slop is zero. Another approach is to fill the
NaNs by smearing the slope images so that the NaNs get
filled up. The process of the reconstruction is described be-
low.

NaN-Correction

1. Detection of the NaNs in a slope image and generat-
ing masks (NaN-mask and Not-NaN-mask)

2. Smearing the slope image with a Gaussian filter.

3. Smearing the Not-NaN-mask with the same Gaussian
filter.

4. Correct the effect of darkening in the middle of a big
hole by dividing with the smeared Not-NaN-mask.

5. Use the original image and fill the NaNs with the cor-
rected image

6.7. Timing of the Data Processing

The analysis of the polarimeter can in principle be done online (in real time) if the system is
calibrated in advance. Therefore the timing of all processes is very critical. Thus a timing of
the different steps of the data processing was made and listed in Tab. 6.1. The calculations
were done with Matlab®on a PC with Intel® Core™ i7-3820 Processor with 3.60 GHz and 64 GB
of RAM. The time estimation is done with a data set of the Hamburg experiments with 3000
images. The initial size was 648×486 pixel and the final size was 486×470 pixel.

Table 6.1.: Timing of the different data processing steps. The times are given to process an image triples
from 3 cameras (Resolution: 648×486 pixel) to the output parameters (sx , sy ,h) (Resolution: 486×470 pixel).

Data Processing Step 3000 Triples 1 Triple

Calibration (radiometric and geometric, Sec.6.2 and Sec.6.3) 160.14 s 53.38 ms

Mapping, Analse Matrix, DOLP and X-,Y-slope (Sec.6.4 and Sec.6.5) 81.69 s 27.23 ms

NaN- and Height-Reconstruction (Sec.6.6) 90.77 s 30.26 ms

Total 332.60 s 110.87 ms
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7.1. Results of the Meteor

As described in Sec. 4.1 the Stereo Polarimeter was barely tested before it was used on board of
the ship. Therefore most of the calibration had to be done afterwards. In Sec.4.3 it is mentioned
that chessboard pictures were taken to calibrate the stereo system. Since the polarimeter was
my only area of responsibility of the Stereo Polarimeter, the stereo calibration and the stereo
data analysis aren’t processed until now. As all reflections are specular at the water surface (see
Sec. 3.2), it is not possible to use standard stereo algorithms (Jähne et al., 1994). The main
difficulties of the stereo analysis will be that the illumination from the sky was very inhomoge-
neous and the sea surface roughness was too low most of the time, so that there is not enough
structure for stereo matching.

It turned out that the analysis of the polarimeter data is challenging as well. First and fore-
most we do not have the possibility to place a chessboard at the water surface, like in the exper-
iments in Hamburg (see Sec. 6.4). Therefore we had to map the three images of one polarimeter
box with the calibration data from Hanau (Sec. 5.5). Since the cameras were tilted at the ship,
we cannot obtain the exact mapping and the exact scale from this calibration. This problem can
in principle be fixed with some height data from the RSSG1 or from the stereo system. Another
difficulty of the Meteor data is the stereo effect between the three cameras of the polarimeter.
Although if the polarimeter was located 11.14 m from the mean sea surface, the stereo basis of
3.5 cm (Sec. 4.2) from one camera to the next one was sufficient to see a parallax effect in the
images.

To estimate the stereo effect in the images, the change of the disparity is calculated. The
starting point is the Equation of disparity or parallax, see Jähne (2005, p. 221, Eq. (8.3))

p = b · f

X3
(7.1)

where p is the disparity in pixel, b is the length of the stereo basis, f is the focal length in pixel
and X3 is the distance from the cameras to the object. To calculate the change of disparity when
the length of the line of sight changes, we have to differentiate the disparity.

d p

d X3
=−b · f

X 2
3

(7.2)

With the data from Tab. 4.3 and Tab. A.2 (b = 3.5cm, f = 7273px taken from the camera cali-
bration, X3 = 11.14m) we obtain for the change of disparity:∣∣∣∣ d p

d X3

∣∣∣∣= 2.1px/m (7.3)

This means, that for a wave magnitude of only 0.5 m, a stereo displacement of 1 px appears
between two nearby cameras. The waves on the ocean were definitely higher and therefore this
effect cannot be ignored.

1Reflective Stereo Slope Gauge: Kiefhaber et al. (2011)
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To illustrate the stereo effect Fig. 7.1 shows a mapped image of all three cameras in RGB color
coding. In the upper part of the image a shift occurs, whereas in the lower part the shift is barely
visible. This is hard to see with naked eye, hence two profiles from bubbles were taken in the
upper and lower part in the image. The stereo effect appears as a shift of the peak in Fig.7.2.
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Figure 7.1.: Matched example image from the Meteor data illustrated in RGB-colors for the three different
cameras. The red lines in the upper and lower part of the image indicate the position where a profile was
taken. The profiles are shown in Fig. 7.2.
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Figure 7.2.: Profiles in x-direction taken from bubbles in image Fig. 7.1. a Profile from a bubble from the
upper right-hand side b Profile from a bubble from the lower left-hand side. The green line represents the
middle camera. Between these two profiles due to the shift from the stereo effect can be seen here.

The stereo effect can in principle be corrected, if we know the declination of the ship and the
exact surface elevation, like from the stereo measurements or from the RSSG measurements.

As mentioned in Sec. 3.5, the polarization and luminosity of the incoming light has to be
considered. Since it is not possible to install an artificial light source which is large enough
in front of the ship, all measurements have to be done during day time. During day time the
measurements can be distorted due to the polarization of the clear sky (see Sec. 3.2.1). The
polarization of the incoming light can be diminished by a cloud cover, which was unfortunately
very rare at the Meteor 91 cruise. Another approach is to take the incoming polarization into
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account with a Rayleigh sky model or to measure the polarization with a polarimeter facing the
sky. The latter one is not possible any more for this data set. Solving all these problems was
beyond the scope of this thesis.

7.2. Results from Hamburg

The conditions at the towing tank in Hamburg, where a mechanical wave generators was used,
were completely different than on the Meteor. The waves were mainly moving into one direc-
tion (see Sec. 4.5.1), because they were not wind driven. Since the waves were very smooth
and had a relatively long wavelength, it was possible to reduce the resolution of the cameras
(according to the constraints Sec. 3.5) with a 4x4 binning modus (see Sec. 4.5). With a reduced
resolution and a maximum wave amplitude of 0.15 m it was possible to ignore the stereo effect,
which was visible in the Meteor data. A sufficient illumination in the laboratory was important
(see Sec. 3.5 and Sec. 4.5.1), but the binning mode was beneficial for the gathering of light.
Before all experimental conditions will be discussed in Sec. 7.2.2 a set of example images will
be shown. The images are the result of the data processing chain in Sec. 6.

7.2.1. Example Images

A set of example images of the polarimeter are displayed in the following paragraph. All ex-
ample images are taken from the same series HSVA15_001. The monochromatic water waves
of this series are always moving from the right to the left in the images. The degree of linear
polarisation images and polarization angle Φ images are shown in one set and the slopes in X-
and Y-direction (sx , sy ) are displayed as pair. Attention has to be paid to the scale of the images,
since the scale for the X-slope sx is from −0.3 to 0.3 (in degrees: tan−1 0.3 = 16.7°) and for the Y-
slope sy from −0.2 to 0.2 (in degrees: tan−1 0.2 = 11.3°). The elevation map of the surface given
in centimeters is reconstructed from the two slope images (sx , sy ) (see Sec. 6.6).
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Figure 7.3.: a DOLP and b polarization angle Φ from the series HSVA15_001 at the time t = 40.12s.
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Figure 7.4.: Slope in a X-direction sx and b Y-direction sy from the series HSVA15_001 at the time t = 40.12s.

Figure 7.5.: Example image of the reconstructed height from the series HSVA15_001 at the time t = 40.12s.
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Figure 7.6.: a DOLP and b polarization angle Φ from the series HSVA15_001 at the time t = 52.0s.
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Figure 7.7.: Slope in a X-direction sx and b Y-direction sy from the series HSVA15_001 at the time t = 52.0s.

Figure 7.8.: Example image of the reconstructed height from the series HSVA15_001 at the time t = 52.0s.

7.2.2. Experimental conditions

Illumination

To obtain correct results from polarimetric slope imaging measurements the incoming light
plays an important role, like it is shown in Sec. 7.2.6. For illumination, we installed two LED-
Spotlights (see Sec. 4.5.1), facing the ceiling in order to widen the illuminated area. The illumi-
nated area was still too small, which can be seen as dark spots in the image corners. With this
lack of illumination it is not possible to obtain qualitatively good results. Figure 7.9 shows an
example image of the degree of linear polarisation, where the noise becomes very large espe-
cially in the lower image corners.

The illumination area plays as well an important role for steep waves with a high curvature.
A steep surface reflects the light from a spot, where the illumination source does not extend to.
This causes high noise levels in these areas.

To quantify the lack of illumination, we can compute the effect of the noise in the raw images
on the noise in the processed DOLP images. In the area marked by the red square in Fig. 7.9,
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Figure 7.9.: Example image of the degree of linear polarisationof the series HSVA15_001. Attention should
be paid to the noise at the lower image corners, which comes from a lack of illumination.

the absolute error (in gray values) in the mapped raw images is: σI 1

σI 2

σI 3

=
 151.98

131.67
135.51

 (7.4)

With the propagation of uncertainty (Eq. (3.3)) we obtain for the error of the stokes vector.

 σS0

σS1

σS2

=

√√√√√√
A ·

 σI 1

σI 2

σI 3

2

=
 0.0179

0.0275
0.0235

 (7.5)

The propagation of uncertainty can also be evaluated for DOLP (Eq. (2.49)):

σDOLP =
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)2
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Following the rules of propagation of uncertainty for normally distributed errors, we get for
the error of the DOLPσDOLP = 0.0982. The actual noise in the DOLP amounts toσdol p = 0.0852.
This shows that the noise does come from the lack of proper illumination. Therefore it is clear
that the data quality can be increased significantly by increasing the power of illumination in
future experiments.

Ring waves

A perturbing effect that appeared at the towing tank at the HSVA was the generation of ring
waves. Figure 7.10 shows an example image of the phenomenon.

At the side of the tank a water drain channel was installed. To empty the water drain channel
holes connect the channel with the tank. These holes were located just above the water surface
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Figure 7.10.: Example image of ring waves shown in the X-component of the slope sx of the series
HSVA15_001.It can be recognized that the ring waves are coming from the side of the towing tank. (Main
wave direction is in X-direction.)

when the water was calm. So, when a wave crest moved close some water flooded the holes.
When the wave trough passed then the hole, the water was streaming out and generating some
small scale ring waves. These ring waves will have an effect on the wave spectra, as one can see
later. This is of importance since we want to compare the wave spectrum of the wave wire with
that of the polarimeter and the wave wire was installed closer to the wave generator than the
polarimeter (see Fig. 4.4).

Stereo Effect

Figure 7.11a shows an example image of degree of linear polarisation where all values that are
larger than DOLP > 1 are marked in blue color. Because DOLP > 1 is unphysical, the error must
come from the data analysis. A notable fact is that this defect is occurring especially where the
reflected structure is very inhomogeneous. For investigation of this error a profile was taken
in x-direction at the same position in the DOLP-image and in the image which was mapped
already (Fig. 7.11b). The position of the profile is indicated by a red line in the images.

Figure 7.12 shows the result of both profiles of DOLP and the mapped images. By comparison
of the two profiles it it is noticeable that DOLP decreases when the blue profile decrease and
it increases when the green line is decreasing. Hence if the two dips of the blue and the green
image profiles would coincide, DOLP were not too high.

As mentioned in the discussion of the Meteor data (see Sec. 7.1) a stereo effect arise due to
the design of the polarimeter, with a stereo basis of 3.5 cm from one camera to the next one.
Since we have mapped the images with a perspective transformation onto the water surface,
the parallax was artificially set to zero at the water surface. The reflected background is there-
fore far away from the cameras. A parallax shift can be recognized in the images, if the reflection
background is inhomogeneous. This effect is inherent in the simple polarimeter design, but its
consequences can be eliminated by making the illuminated area as homogeneous as possible.

7.2.3. Slope Images

The primary result of the polarimeter is the degree of linear polarisation (DOLP) and the polar-
ization angle Φ (see Sec. 6.5). An example image of each is shown in Fig.7.3 and 7.6. These re-
sults were then converted to the slope in X- and Y-direction (sx , sy ) (see Sec. 3.1) with Eq.(3.11).
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Figure 7.11.: a Example image of DOLP where all areas with DOLP > 1 are marked with blue color. b A
detail of the same image of the 3 cameras in RGB color coding, mapped at the water surface. The red lines
in both images indicate the position of the profile taken there. (see Fig. 7.12)
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Figure 7.12.: Profiles of a DOLP and b mapped image in RGB color coding, which is taken from Fig. 7.11

Figure 7.4 and Fig.7.7 show the result of the conversion respectively.
As one can see with the naked eye the the slope in X-direction sx is determined by the po-

larization angle Φ much more than by degree of linear polarisation and vise versa for slope in
Y-direction sy . This result shows obvious that the incidence angle θ, specified from DOLP, is the
main factor for the Y-Component of the slope sy . Thus the resolution in Y-direction is limited
to a range from θ = 0°− 53°, which corresponds to a slope from 0.0 to 1.3, due to conversion
from DOLP to θ.

7.2.4. Height Reconstruction

Figure 7.5 and Fig. 7.8 show an example of the reconstructed height in a 3D representation. No-
ticeable is the smoothness of the reconstructed height although there has been a lot of noise in
the corner of the images (see Sec. 7.2.2). This noise is diminished by the integration of the slope
(see Sec. 3.4). The correct mean value can be achieved by integration, if the noise scatters Gaus-
sian around this mean value. The smooth result of the height reconstruction demonstrates the



7.2. Results from Hamburg 61

quality of the polarimetric slope imaging results.

As mentioned in Sec. 7.2.2 the degree of linear polarisation is sometimes larger than one
(DOLP > 1). At the conversion from DOLP to the incidence angle θ all DOLP values above one
will be set to NaN . Because the Fourier transformation in the height reconstruction routine
cannot deal with NaNs, the areas with NaNs in the slope images (sx , sy ) have to be corrected
first. This can be done in two ways. The simple way is to set all NaNs to zero. This means
that the height will remain on the same level where the slope is set to zero. Another approach
is depicted in Sec. 6.6.1, where the NaN areas are filled up by an reconstruction algorithm.
A comparison of the two NaN correction methods will be discussed in this section. The first
method will be referred to as "NaN = 0" and the other one as "NaN reconstruction". Figure
7.13a depicts a reconstructed elevation map of the water surface with NaN reconstruction and
Fig. 7.13b shows a detail image of the height difference with and without NaN reconstruction.
The red line indicates the position where a profile was taken from the images.
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Figure 7.13.: a Example image of the series HSVA15_001 of the Height with NaN reconstruction. b Detail
of the height difference between the two height reconstructions, with different NaN corrected slopes. The
red line indicates where a profile was taken (see Fig.7.15a)

To understand what is happening, one has to consider the slope images with the two differ-
ent NaN correction methods. This is depicted in Figure 7.14. The difference in the two methods
is quite prominent, since in the slope image with NaN = 0 the defects are easily visible, whereas
in the images with NaN reconstruction they are not.

Figure 7.15a shows a profile of the two different height distribution, calculated with different
NaN corrected slope images. It can be seen that the blue curve with the NaN reconstruction
is much smoother and hence more physical than the curve where the NaNs in the slope image
were set to zero. Figure 7.15 shows the corresponding profile of the X-slope image, where the
two methods become obvious. The blue and the red curve are the same except for the NaN
part, where the red curve is set to zero and the blue curve is continuing quite smoothly. The
effect of the zero part in the red slope curve can also be seen in the red height curve as a bend
to the horizontal. This is evident since a slope of zero is equal to no change in height.
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Figure 7.14.: Detail image of the slope in X-direction sx a with NaN reconstruction and b with NaN= 0. The
red line indicates the position of the profile that is shown in Fig. 7.15b.
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Figure 7.15.: a Profile of the two different height distributions, calculated from different NaN corrected slope
images. b Profile of two slope images with the two different NaN correction methods.

7.2.5. Monochromatic Height Spectra

At the towing tank a wave wire was installed (see Sec. 4.5.1) for comparison reasons. To com-
pare the data from the polarimeter with the wave wire, height power spectra were computed.
The height power spectra of the polarimeter are computed as the mean of time series for ev-
ery pixel of an area of interest. This area of interest, reaching from x = 120px − 370px and
y = 220px−340px, was set to avoid errors from the missing illuminations in the corners (see
Sec. 7.2.2) or from the stereo effect where the background was inhomogeneous (see Sec. 7.2.2).
For a better comparability the data from the wave wire was resampled from 1000 Hz to the
same frequency as the polarimeter (25 Hz). The same time range as for the polarimeter was
chosen before the height power spectra of the wave wire were computed. Figure 7.16 and Fig.
7.17 show a height power spectrum of the wave wire compared to the polarimeter for the series
HSVA15_001 and the series HSVA15_002, respectively.

The measurements fit quite well above 0.9 Hz. Below this range the polarimeter underesti-
mates the energy, especially at the peak frequency of 0.5 Hz. This is because the wavelength
below 0.9 Hz (the corresponding wavelength is > 1.9 m) becomes longer than the length of the
imaged water surface area of the polarimeter (see Tab. 4.5). This effect can be seen even for
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Figure 7.16.: Measurement HSVA15_001 (monochromatic waves): Comparison of the spectrum from the
polarimeter and the wave wire.
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Figure 7.17.: Measurement HSVA15_002 (monochromatic waves): Comparison of the spectrum from the
polarimeter and the wave wire.

shorter wave lengths. Since the height distribution is computed from the slope distribution (see
Sec. 6.6) the mean height is lost with this method. Waves cannot be measured if the assump-
tion, that the mean wave height is zero in every image, is not valid. This effect is responsible for
the underestimation of the energy below 0.9 Hz.

Figure 7.18 shows the power spectrum of monochromatic waves for two polarimeter series
(HSVA15_001, HSVA15_002), where the first one was taken about 130 s before the second one.

Although the second time sequence (HSVA15_002) matches with the wave wire very well, the
energy above 2.5 Hz is increased in the second sequence compared to the first one. This situ-
ation is depicted in Fig. 7.18. However it should be noted that in this frequency band there is
hardly any energy and therefore the deviations are very small in total. The additional energy in
the high frequency range comes from disturbances, which develop over time with the propa-
gating waves. These disturbances could come from an inhomogeneity in the wave generation,
from the already discussed ring waves or from reflections of the waves at the end of the tow-
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Figure 7.18.: Spectra from two sequences of the measurement HSVA15, where the first sequence was
taken before the second one. A clear rise of the energy at higher frequencies can be seen.

ing tank. Since this effect evolves with time and can be seen in the wave wire data, it is a real
physical effect and not an error in the data processing chain of the polarimeter.

7.2.6. Continuous Height Spectra

A continuous wave spectrum was generated by combining many waves with different frequen-
cies and random phase relations. Figure 7.19 and Fig. 7.20 demonstrate the comparison of
a wave wire spectrum with a polarimeter spectrum of the series HSVA16_001 and the series
HSVA16_002 respectively. The continuous spectra were computed with logarithmically spaced
bins (Tröbs and Heinzel, 2006) to obtain a smoother curve for the higher frequency range.
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Figure 7.19.: Continuous wave spectra of the series HSVA16_001 of wave wire and polarimeter. The incline
below 0.9 Hz becomes obvious.

As seen in Fig. 7.19 and Fig. 7.20 the continuous spectra show the same attitude below 0.9 Hz
as the monochromatic spectra Fig. 7.16 and Fig. 7.17. This effect was already discussed in the
previous section 7.2.5. There is evidence that 0.9 Hz is the lower limit of the polarimeter due to
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Figure 7.20.: Continuous wave spectra of the series HSVA16_002 of wave wire and polarimeter. The incline
below 0.9 Hz becomes obvious.

the area of interest at the water. Above this limit the spectrum of the polarimeter fits quite well
to the spectrum of the wave wire.

In Fig. 7.20 the energy of the polarimeter spectrum is slightly increased for the higher fre-
quencies compared to the wave wire spectrum. This effect can be seen in almost all continu-
ous spectra from the second measurement series. Therefore is seems likely that increase comes
from the disturbances of ring waves or the reflection of the waves at the end of the towing tank.

Figure 7.21 shows the same behavior as Fig. 7.18, but with a continuous wave spectrum. The
first sequence (HSVA16_001) was taken about 130 s before the second sequence (HSVA16_002).
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Figure 7.21.: Comparison of two spectra of the same series (HSVA16) but from different sequences. The
build up of the high frequency disturbances over time is observable here.

For the continuous spectrum the consequence of the build up of the small scale waves is
enforced due to the interference of many different wave lengths. Therefore the influence of the
increase of the small scale waves over time can be seen clearly in the comparison of the two
sequences in Fig. 7.21.
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7.2.7. Polarimeter Characteristics

As discussed already in the previous sections the polarimeter has some immanent properties,
which are given by the setup and the monitored water surface area. There are some external
characteristics as well which result from the position at the towing tank and the disturbing
effects on waves from ring waves, surface films or reflections of the water waves. To isolate
these effects is very hard. Yet it is possible to determine the characteristics or transfer function
of the polarimeter for this setup.

The transfer function of the polarimeter is obtained by dividing the many continuous wave
spectra from the polarimeter by the corresponding wave spectra of the wave wire. This was
done for nine continuous logarithmic spectra. The mean of these nine spectra can be seen in
Fig. 7.22.
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Figure 7.22.: Response function of the polarimeter at the towing tank. The response function was calcu-
lated by the mean of nine continuous spectra. The polarimeter shows a filtering behavior below the cutoff
frequency of 0.88 Hz. The cutoff frequency was determined as intersection of the two red lines fitted to the
transfer function.

Figure 7.22 shows the response of the polarimeter in Fourier space. The cutoff at 0.88 Hz
is explicitly visible by the roll-off below this frequency. This decrease could be corrected by
measuring the long scale waves, which could be done by combining height measurements with
the polarimeter data. It is sufficient to know the height information at one known point in a
polarimeter image to correct the lost mean height which is lost due to integration.

It is possible to apply the transfer function to the monochromatic spectrum, like in Fig. 7.16.
Figure 7.23 shows a polarimeter spectrum corrected with the response function. Since the re-
sponse function is calculated with the continuous spectra, the correction is independent of the
monochromatic spectrum.

As expected, with the correction the spectra fit quite well even at the main peak at 0.5 Hz.
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Figure 7.23.: Spectrum of the series HSVA15_001 (see Fig. 7.16). The spectrum of the polarimeter is
corrected by the response function of the polarimeter which was calculated independently of this spectrum.





8. Conclusion and Outlook

8.1. Conclusion

The approach of this thesis was to develop a simple polarimetric slope sensing instrument for
water waves. Unlike common imaging polarimeters, where multiple cameras share a single
custom lens, it consists of three cameras aligned in parallel, each equipped with a polarization
filter and a standard lens (Sec. 4.2).

Due to the simple setup additional expenses have to be paid in the image processing part. Es-
pecially the calibration of the intrinsic, extrinsic, and distortion camera parameters (Sec. 5) was
one of the key points for successful measurements. Since three images have to be mapped onto
each other with a projective transformation (Sec. 6.4), the correction of the distortion from the
lenses was crucial, see Sec. 5.4.4. To gain the intrinsic and distortion parameters of the cam-
eras, a special calibration procedure with a custom built target was performed, see Sec. 5.5.The
heart of the polarimeter is the analyzer matrix (Sec. 3.1), which transforms the incoming in-
tensities into the parameters of the Stokes vector (Sec. 2.2.2). The calibration of the analyzer
matrix (Sec. 5.6) was verified in a specifically designed inclination test (see Sec. 5.6.1).

The polarimeter was deployed to two experiments (Sec. 4.1 and 4.4) where its capabilities
were tested. The instrument was collecting data during the M91 cruise on board of the German
research vessel Meteor. While the full evaluation of this data set is beyond the scope of this the-
sis, an analysis of the polarimetric slope imaging measurements is presented in Sec. 7.1. The
second experiment was conducted at the small towing tank at the Hamburgische Schiffsbau-
Versuchsanstalt (HSVA) in Hamburg. This tank is equipped with a mechanical wave generator
and a wave wire for reference measurements (see Sec. 4.5.1). The polarimeter was modified to
fit the needs of laboratory measurements (Sec. 4.5).

The capabilities of the polarimeter in capturing the slope distribution of mechanically gen-
erated waves are demonstrated (Sec. 7.2). The necessity of a powerful illumination and pertur-
bations of the measurements due to imperfections of the laboratory setup are discussed (Sec.
7.2.2). The effect of data gaps on the reconstruction of surface elevation (wave height) from the
measured wave slope is discussed and different approaches are compared (Sec. 7.2.4).

Comparative measurements of the polarimeter with the wave wire are presented both for
nearly monochromatic waves (Sec. 7.2.5) and for continuous spectra consisting of a random
superposition of waves with different frequencies (Sec. 7.2.6). Wave height power spectra com-
puted from the polarimeter data are shown to agree with reference measurements for wave
frequencies above 0.9 Hz. Since longer waves have wavelengths comparable to the dimensions
of the footprint of the polarimeter, their mean height is no longer zero at all times as was as-
sumed in the height reconstruction. This leads to a sharp cutoff in the transfer function of the
polarimeter (see Sec. 7.2.7). The derived transfer function can be applied to correct measured
spectra, allowing the polarimeter to measure waves for a wide range of frequencies.
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8.2. Outlook

The simple design of the imaging polarimeter presented in this thesis allows for building inex-
pensive measurement instruments. The trade-off is the inherent stereo disparity, which causes
problems especially for shipborne measurements in which the relative variations of the dis-
tance to the water surface are large. To avoid the use of an expensive custom lens (as described
by Pezzaniti et al. (2009)), the three cameras could be placed behind a system of beam splitters
so they are virtually placed in the same position.

The experiences with the polarimeter during the M91 cruise show, that it is crucial to in-
clude measurements of the polarization of the sky in the data processing scheme to reduce the
constraints on environmental conditions under which the polarimeter can operate.

Apart from its potential to measure small-scale waves on the ocean, an imaging polarimeter
might also be useful in other scientific disciplines, e.g. the inspection of clouds (Pust and Shaw,
2006), the sky (Lee, 1998) or the detection of volcanic plumes (Sassen et al., 2007). In all these
areas, the strength of the polarimeter technique, to make the normally invisible polarization
visible, could gain new insights into the mysteries of our world.
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A. Appendix

A.1. Rotation Matrices

In this thesis this convention for rotational matrices is used.

1. Rotation around the Z-axis with the angle κ

X = Rκ · x X
Y
Z

=
 cosκ −sinκ 0

sinκ cosκ 0
0 0 1

 ·
 x

y
z

 (A.1)

2. Rotation around the Y-axis with the angle ϕ

X = Rϕ · x X
Y
Z

=
 cosϕ 0 sinϕ

0 1 0
−sinϕ 0 cosϕ

 ·
 x

y
z

 (A.2)

3. Rotation around the X-axis with the angle ω

X = Rω · x X
Y
Z

=
 1 0 0

0 cosω −sinω
0 sinω cosω

 ·
 x

y
z

 (A.3)

In general rotation matrices are orthonormal, which means:

R ·RT = RT ·R = I R−1 = RT und det(R) = 1 (A.4)

A general rotation can be described as a rotation first around the Z-axis, then the Y-axis and
at last the X-axis. This gives for the general rotation matrix:

R = Rω ·Rϕ ·Rκ =
 r11 r12 r13

r21 r22 r23

r31 r32 r33



=
 cosϕcosκ −cosϕsinκ sinϕ

cosωsinκ+ sinωsinϕcosκ cosωcosκ− sinωsinϕsinκ −sinωcosϕ
sinωsinκ−cosωsinϕcosκ sinωcosκ+cosωsinϕsinκ cosωcosϕ


(A.5)
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The rotation angles can be determined by the coefficients of the rotation matrix R .

sinϕ= r13 sinϕ= r13

tanω=−r23

r33
or cosω= r33

cosϕ
(A.6)

tanκ=−r12

r11
cosκ= r11

cosϕ
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A.2. Target in Hanau
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Figure A.1.: 2D-drawing of the target in Hanau for the geometric calibration
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A.3. Intrinsic Parameters

The intrinsic parameters where calculated with the Camera Calibration Toolbox for Matlab
(Bouguet, 2008). Table A.1 shows all parameters for the setup in Hamburg, table A.2 shows
all parameters for the setup at the Meteor. The specifications of the different setups with pixel
size and lens properties can be found in Tab. 4.5 for the Hamburg setup and in Tab. 4.3 for the
Meteorsetup.

Table A.1.: All important parameters of the Camera Calibration Toolbox for Matlab for the setup in Hamburg

buf1A buf1B buf1C

Image Size Nx 648 648 648

[pixel] Ny 486 486 486

Focal length fx 895.55±8.58 902.33±9.09 900.45±9.11

[pixel] fy 898.53±8.74 904.41±9.25 902.38±9.26

Principal Point ccx 297.61±8.41 296.61±8.97 290.14±9.04

[pixel] ccy 240.06±7.41 250.61±7.82 253.34±7.75

Radial k1 −0.22546±0.01039 −0.22637±0.01083 −0.22648±0.01042

distortion k2 0.09437±0.05434 0.08929±0.05449 0.09834±0.04815

Tangential k3 0.00063±0.00089 0.00007±0.00092 −0.00072±0.00091

distortion k4 −0.00139±0.00088 −0.00183±0.00093 −0.00277±0.00094

Pixel er rx 0.07688 0.08212 0.08937

error er ry 0.23094 0.23628 0.23747
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