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Abstract

Coreference resolution is one of the most fundamental Natural Language Process-

ing tasks, aiming to identify the coreference relation in texts. The task is to group

mentions (i.e. phrases of interest) into sets, so that all mentions in one set refer

to the same entity (i.e. a real world object). Mentions are conventionally proper

names, common nouns and pronouns. Lately, the coreference task has been ex-

tended to deal with verb phrases too. However, we only work with noun phrase

mentions in this thesis. By linking mentions together in a document, not only

entities are recovered but also different fragments of the context are connected.

This therefore leads to a better text understanding. Coreference resolution is es-

sentially important to many applications, such as text summarization and infor-

mation extraction. In this thesis, we propose a novel coreference model based on

hypergraph partitioning. Our system is namedCOPA, standing forCoreference

Partitioner. Given a raw document,COPA represents it as a hypergraph, upon

which the hypergraph partitioning algorithms are applied to derive coreference

sets directly.

The Coreference Representation. The coreference relation is a high-dimensional

relation, because it depends on multiple types of basic relations (e.g. string simi-

larities and semantic relatedness). Most of the previous work on the coreference

resolution task combines the basic relations between mentions into single ones

and derives the coreference sets afterward. Since it is relatively expensive to learn

the combination of the basic relations, we propose a novelhypergraph represen-

tation model for coreference resolution. In our model, the mentions are taken as

vertices in the hypergraph and the relational features derived from the basic rela-

tions as hyperedges. The hypergraph allows for multiple edges between vertices,

so that it suits thehigh-dimension property of the coreference relation. More-

over, in a hypergraph one hyperedge can connect more than twovertices. As a

result the hypergraph directly representsthe relations between sets of mentions

as required for the coreference resolution task.

Since the basic relations are incorporated in an overlapping manner,COPAonly

needs a few training documents to achieve competitive performance. Theweakly
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supervisednature makesCOPAa good candidate when applying to different do-

mains or languages, or when only limited training data is available.

The Coreference Inference. The inference of the coreference resolution task

deals with sets of mentions. It needs to capture the relations between multiple

mentions in order to derive the final coreference sets. Therefore, we consider

coreference resolution as a set problem. Most of the previous coreference models

address the set problem by dividing the resolution into two steps — a classification

step and a clustering step (e.g.Soon et al. (2001)). The classification step makes

decisions for each pair of mentions on whether they are coreferent or not. Upon

the pairwise decisions, the clustering step further groupsmentions into the final

sets. The two-step division makes the classification performance not necessarily

positively correlated with the end evaluation numbers. It is difficult to track the

error propagation and hard to optimize with respect to the final coreference sets.

Moreover, since the coreference decisions are made betweenpairs of mentions

independently, global context information is missing in those models.

In this thesis, we propose a global coreference model viahypergraph partition-

ing. We design two algorithms based on the spectral clustering technique — a

hierarchicalR2 partitionerand a flat k-wayflatK partitioner. We also propose

extensions to the clustering algorithms ofCOPA, aiming to include constraints to

enforce the cluster-level consistency. The constrainedCOPAis the first attempt to-

wardsa better learning schemefor our system. It solves the cluster-level incon-

sistency problem and at the same time contributes to research in the constrained

graph clustering field.

The Coreference Evaluation. SinceCOPAis anend-to-end coreference sys-

tem, the important implementation issues encountered when applying clustering

algorithms to practical uses are also addressed in this thesis. For instance, the ex-

isting evaluation metrics become problematic when the automatically identified

mentions do not align with the ones in the ground truth. In this thesis, we propose

variants of the coreference evaluation metricsto tackle this problem.

COPAoutperforms several baseline systems in fair settings, using the same fea-

tures and the same mentions and only comparing the effectiveness of the models

themselves. It also performs competitively compared to thestate-of-the-art sys-

tems across different evaluation metrics, different data sets and different domains.



Zusammenfassung

Koreferenzresolution ist eine der grundlegendsten Aufgaben der Computerlin-

guistik. Es wird dabei das Ziel verfolgt, die Koreferenzrelation in Texten zu iden-

tifizieren. Die Aufgabe besteht darin, Erwähnungen (d.h. zu untersuchende Phra-

sen) so in Mengen zu gliedern, dass alle Erwähnungen in einer Menge auf die glei-

che Entiẗat (d.h. ein Objekt in der Welt) referieren. Herkömmlicherweise werden

Eigennamen, Gattungsnamen und Pronomen zu den Erwähnungen gez̈ahlt, wobei

in den letzten Jahren auch vermehrt Verbphrasen einbezogenworden sind. In die-

ser Dissertation werden ausschliesslich nominale und pronominale Erẅahnungen

ber̈ucksichtigt. Indem Erẅahnungen in einem Dokument miteinander verknüpft

werden, werden nicht nur Entitäten identifiziert, sondern auch verschiedene Kon-

textfragmente miteinander verbunden. Dies führt zu einem besseren automati-

schen Textverstehen. Koreferenzresolution ist für viele Anwendungen wie bei-

spielsweise Textzusammenfassung und Informationsextraktion essentiell. In die-

ser Dissertation schlagen wir ein neues Koreferenzmodell basierend auf Partitio-

nierung von Hypergraphen vor. Unser System heisstCOPA, was f̈ur Koreferenz-

Partitionierer (engl. Coreference Partitioner) steht. Gegeben ein Textdokument

wird dieses inCOPAals Hypergraph repräsentiert. Anschliessend werden Parti-

tionierungsalgorithmen auf diesen Hypergraphen angewendet, um direkt die Ko-

referenzmengen zu erhalten.

Die Repräsentation von Koreferenz. Die Koreferenzrelation ist hochdimen-

sional, da sie von vielen Typen von Basisrelationen (z.B. Zeichenketten̈ahnlichkeiten

und semantischer Verwandtschaft) abhängt. Viele fr̈uhere Koreferenzresolutions-

arbeiten kombinieren verschiedene Basisrelationen zwischen zwei Erẅahnungen

zu einer einzelnen Relation und treffen die Koreferenzentscheidungen basierend

auf diesen kondensierten Relationen. Da es relativ aufwändig ist, die Kombination

von Basisrelationen zu lernen, schlagen wir ein neues Repräsentationsmodell ba-

sierend auf Hypergraphen für Koreferenzresolution vor. In unserem Modell wer-

den Erẅahnungen als Knoten in einem Hypergraphen betrachtet und die Basisre-

lationen werden als Hyperkanten integriert. Der Hypergraph erlaubt viele Kanten

zwischen Knoten, was der hochdimensionalen Eigenschaft der Koreferenzrelation
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entspricht. Hinzu kommt, dass in einem Hypergraphen eine Hyperkante mehr als

zwei Knoten miteinander verbinden kann. Folglich repräsentiert der Hypergraph

direkt die Relationen zwischen Mengen von Erwähnungen, wie es die Koreferenz-

resolutionsaufgabe erfordert. Da die Basisrelationenüberlappend integriert sind,

ben̈otigt COPAnur wenige Dokumente zum Trainieren, um konkurrenzfähige Er-

gebnisse zu erzielen. DaCOPAein schwacḧuberwachtes Koreferenzsystem ist,

eignet es sich auch dann, wenn verschiedene Domänen und Sprachen interessie-

ren oder wenn wenige Trainingsdaten verfügbar sind.

Inferenz für Koreferenz. Die Inferenz f̈ur die Koreferenzresolutionsaufgabe

erfolgtüber Mengen von Erẅahnungen. Es m̈ussen dabei die Relationen zwischen

mehreren Erẅahnungen berücksichtigt werden, um die endgültigen Koreferenz-

mengen abzuleiten. Wir betrachten daher Koreferenzresolution als ein Mengen-

problem. Die meisten bisher vorgeschlagenen Koreferenzmodelle unterteilen das

Mengenproblem in zwei Schritte – einen Klassifikationsschritt und einen Clus-

teringschritt (z.B.Soon et al. (2001)). Im Klassifikationsschritt wird f̈ur jedes

Paar von Erẅahnungen entschieden, ob die entsprechenden Erwähnungen ko-

referent sind oder nicht. Basierend auf diesen paarweisen Entscheidungen wer-

den die Erẅahnungen im Clusteringschritt in die endgültigen Mengen gruppiert.

Die Gliederung in zwei Teilschritte führt dazu, dass die Klassifikationsergebnis-

se nicht notwendigerweise mit den Endresultaten für Koreferenzmengen positiv

korreliert sind. Es ist daher schwierig, die Fehlerfortpflanzung zu verstehen und

die Inferenz hinsichtlich der endgültigen Koreferenzmengen zu optimieren. Hinzu

kommt, dass globale Kontextinformation in diesen Modellenfehlt, da die Kore-

ferenzentscheidungen zwischen Paaren von Erwähnungen unabhängig getroffen

werden. In dieser Dissertation schlagen wir ein globales Koreferenzmodell basie-

rend auf Partitionierung von Hypergraphen vor. Wir schlagen zwei Algorithmen

vor, die auf der spektralen Clusteringtechnik basieren – einhierarchischerR2 Par-

titionierer und ein partitionierenderk-way flatk Partitionierer. Wir präsentieren

auch Erweiterungen für die Clusteringalgorithmen vonCOPA, die Nebenbedin-

gungen (engl.constraints) einschliessen, um Konsistenz auf der Clusterebene zu

erzwingen. Derconstrained COPAist ein erster Versuch in Richtung eines bes-

seren Lernschemas für unser System. Es löst spezielle Koreferenzprobleme und

trägt gleichzeitig zum Forschungsfeld von Graphclustering mit Nebenbedingun-

gen bei.
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Die Evaluation von Koreferenz. Da COPAein Koreferenzsystem mit realen

Vorverarbeitungskomponenten ist, befasst sich die vorliegende Dissertation auch

mit wichtigen Implementierungsschwierigkeiten, die bei Clusteringalgorithmen

auftreten, wenn sie in Anwendungen benutzt werden. So sind beispielsweise Eva-

luationsmetriken problematisch, da die vom System identifizierten Erẅahnungen

nicht mit den Erẅahnungen im Goldstandard̈ubereinstimmen. Wir schlagen da-

her in dieser Dissertation neue Varianten der Koreferenzevaluierungsmetriken vor,

um mit diesem Problem umgehen zu können.

COPA schl̈agt verschiedene Baseline-Systeme in einem fairen Evaluierungs-

szenarium mit gleichen Features, sodass ausschliesslich die Effektivität der Mo-

delle verglichen wird.COPAerzielt zudem auch konkurrenzfähige Ergebnisse im

Vergleich zu Systemen, welche dem Stand der Forschung entsprechen. Hierbei

wird sowohl hinsichtlich verschiedener Evaluationsmetriken als auch in Bezug

auf verschiedene Textsammlungen und Domänen verglichen.
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Chapter 1

Introduction

”Hi Cai,

you must be very brave to work on

Coreference Resolution.”

– Prof. Mirella Lapata1 –

This thesis addresses the challenge of within-documentcoreference resolution, a task of

grouping the referring expressions (i.e. phrases) of entities (i.e. real world semantic objects)

into coreference sets so that all expressions in one set refer to the same entity. The coreference

relation is dependent on multiple basic relations such as the shallow syntactic relation and

semantic relatedness. It can be derived from one of the basicrelations or from a combination

of multiple ones, depending on different contexts. Therefore we consider the coreference

relation asa complex relation and a high-dimensional relation, as opposed to the basic low-

dimensional relations. Since the coreference resolution task is not only to detect the pairwise

coreference relation but also to group the referring expressions into sets, we consider the task

as a set problem. By analyzing the linguistic phenomena of the coreference relation and

understanding the task requirements, we raise four important questions which are addressed

throughout the thesis — (1) representing the coreference relation, (2) inferring the coreference

relation, (3) evaluating coreference resolution, (4) learning cheaply.

Our proposed coreference model is motivated by the first two questions. Both its repre-

sentation model and its inference method address the requirements (1) and (2) correspond-

ingly. Our model represents documents ashypergraphs, which allow for multiple edges

between vertices and multiple vertices within one edge. Thevertices are the referring expres-

sions from the documents, and the multiple edges between them enable us to break down the

complex coreference relation into multiple basic ones. Moreover, the hyperedges containing
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multiple vertices straightforwardly represent the sets ofexpressions. Upon the hypergraph

representation, we applygraph partitioning techniques to partition the hypergraphs into sub-

hypergraphs, each of which corresponds to a coreference set. Our system is namedCOPA,

standing for Coreference Partitioner.COPAdiffers significantly from the previous local mod-

els, since it is able to take the global context (of a document) into consideration and to generate

the coreference sets simultaneously in one step.

We work onan end-to-end system setting, which takes raw texts as input and extracts

coreference sets in a fully automatic way. Since the presence of noise is unavoidable in such

a realistic setup, not only the modeling itself but also the practical issues are addressed in

this thesis. For instance, our proposed evaluation metricsaim to conquer the problems of the

widely used metrics when evaluating the noisy output from end-to-end coreference systems.

In this chapter, we start with introducing the coreference phenomena from a linguistic

point of view in Section1.1. Section1.2 then describes the coreference resolution task and

the four questions consequently emerging. In Section1.3, we convey the intuitions behind our

proposal ofCOPAand the main contributions of the thesis. The general structure of the thesis

is given at the end in Section1.4.

1.1 Anaphora and Coreference

In linguistic expressions, in order to preserve the coherence in texts while keeping the diverse

phrasal expressions at the same time, the referring expressions are used frequently. In the

following Example (1), the pronouns [him], [he] and [his] are all referring expressions, which

are calledanaphorsor anaphoric expressions. An anaphor is used to refer to anantecedent

which is a preceding phrase (e.g. [Yemen’s President]), and they are talking about the same

object in the world. A world object is called anentity, for instance the YEMEN’ S PRESIDENT

in Example (1)2. The process of identifying the correct antecedent for an anaphor isanaphora

resolution.

Example (1): [Yemen’s President]1 has repeatedly said an internal explosion rocked the

”USS Cole”, but tomorrow the U.S. official expects [him]1 to announce that [he]1 has

changed [his]1 mind, and tomorrow, the search for bodies will resume .

Besides the pronominal anaphors, as shown in Example (1), definite and demonstrative

phrases are often used as the anaphoric expressions too (e.g. [the meeting] and [the regulators]

in Example (2)). Proper names can either mention a new entityor refer to a previous one, such

as both mentions of [Lincoln].

2The entities are in capitalized fonts throughout this thesis.
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Example (2): In [a highly unusual meeting in Sen. DeConcini ’s office in April 1987]1 ,

the five senators asked [federal regulators]2 to ease up on [Lincoln]3 .

According to notes taken by one of the participants at [the meeting]1 , [the regulators]2
said [Lincoln]3 was gambling dangerously with depositors ’ federally insured money

and was ” a ticking time bomb .”

An anaphor and its antecedent are said to becoreferent with each other. In other words,

both of them are linguistic expressions that refer to a specific entity. It is common that there are

multiple linguistic expressions for an entity in a document, which together form acoreference

chain or acoreference set(e.g. all the phrases marked with the same subscripts in Example

(1) form one coreference set). The process of identifying the coreference sets within or across

documents iscoreference resolution. As Example (2) illustrates, a document tends to have

multiple coreference sets, and coreference resolution is to identify all of them commonly.

Coreference resolution is closely related to anaphora resolution, and it can be viewed as

a post-processing upon the antecedent-anaphor output fromanaphora resolution. Consider-

ing Example (1), resolving [him], [he] and [his] to [Yemen’s President] respectively during

anaphora resolution will help to generate the entire coreference set. However, in this thesis,

we argue that global (set-level) information is missed fromsuch post-processing interpreta-

tion. In the same Example (1), when the first two pronouns are resolved to the entity YEMEN’ S

PRESIDENT, it is more likely for the third one to refer to this salient entity too rather than to

the entityTHE U.S. OFFICIAL. As a result, a set-based one-step coreference resolution model

is preferable due to its global property.

1.2 The Coreference Resolution Task

In this section, the crucial requirements for modeling the coreference resolution task are dis-

cussed within an end-to-end system framework. Our proposedcoreference model is motivated

by the requirements and addresses all of them throughout thethesis.

The coreference resolution task is to group the referring expressions into sets so that all

expressions in one set refer to the same entity. An end-to-end coreference system takes raw

documents as input and generates the identified coreferencesets as output, via a pipeline of

automatic processors. Figure1.1shows an example text displayed inMMAX, which is a multi-

layer visualization tool to help illustrate the coreference examples (Müller & Strube, 2006).

The phrases that need to be resolved for coreference resolution are conventionally called

mentions in the task, such as [Gore], [I ], [he], [his opponent] and [the vice president]. In

this thesis, the mentions marked with square brackets (i.e.[]) are true mentions, which are

taken from the ground truth annotation, and the ones in curlybrackets (i.e.{}) aresystem

mentions, which are derived automatically. The runningentity in this example is GORE,
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whose corresponding coreference set is{[Gore], [I ], [he], [his opponent], [the vice president],

· · · }.

Figure 1.1: Example (3): Coreference Resolution inMMAX

The pre-processing components may vary between different systems, but the most impor-

tant ones are sentence splitting, POS tagging, mention detection and syntactic parsing. The

pre-processors provide a coreference system with the mentions to be resolved and contex-

tual information for assisting the resolution procedure. When external resources are available,

more components for knowledge extraction may be incorporated into the system accordingly.

The following subsections will introduce the most important aspects for designing a coref-

erence system.

1.2.1 Representing the Coreference Relation

The Coreference relation is a high-dimensional relation. By interpreting the coreference

relation as a high-dimensional relation, we refer to the fact that the coreference relation is

dependent on different types of basic relations, such as shallow syntactic dependency and

semantic relatedness. These basic relations are considered to be low-dimensional, which to-

gether form the (more) complex coreference relation.



1.2 The Coreference Resolution Task 5

We use the same Example (3) (Figure1.2) in this subsection to convey thehigh-dimension

property of the coreference relation. It can be seen that within the exemplar text, there are

several diverse basic (low-dimensional) relations which comprise the coreference relation.

In Example (3), with the entity GORE, the coreference relation between the first [Gore] and

the second [Gore] can be easily detected just based on their high string similarity. However,

in order to resolve the coreference relation between [Gore] and [the vice president], external

knowledge resources are necessary for providing relevant information about vice president

GORE. If it has been mentioned in the preceeding text that GORE is a vice president (e.g. in a

text fragment ”the Vice President Gore”), the relation can be also retrieved from the very text

by extracting the relevant attributes for the entity GORE before the resolution.

Figure 1.2: Example (3): Coreference Relation is High-Dimensional (part 1)

For the same Example (3), Figure1.3 illustrates a more complex coreference relation be-

tween the mentions [his opponent] and [Gore], whose resolution requires a reasoning scheme

upon the two entities GORE and BUSH. In order to identify the relation between [his oppo-

nent] and [Gore] correctly, it is necessary to resolve [his] to [Bush] at first and afterward to

extract the fact that GORE is the opponent of BUSH in the debate. In this case, the coreference

relation is much more complex than the ones between mentionswhich share the same strings.
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Figure 1.3: Example (3): Coreference Relation is High-Dimensional (part 2)

The coreference relation of pronouns is often based on localphenomena. Considering the

pronoun [He] marked in Figure1.3, which is in a parallel sentential structure with [Gore],

i.e. ”[Gore] said” and ”[He] added”. It is reasonably confident for such a structural relation

to indicate the coreference relation for pronouns. However, structural information is a much

weaker indicator for most of the non-pronominal anaphors.

To sum up, the coreference relation can be inferred from multiple low-dimensional rela-

tions (e.g. string match and parallel structure). Depending on the types of the participating

mentions and the local contexts, different basic relationscan be dominating or be interacting

with each other during coreference resolution.

Q1: How to represent the multiple low-dimensional relations and to allow their

interactions?

is the first question to consider in terms of the representation model for a coreference resolution

system.
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1.2.2 Inferring the Coreference Relation

The coreference resolution task is a set problem. The coreference resolution task is to

group mentions into disjoint coreference sets, so that eachset corresponds to an entity. The

resolution decision for one mention depends on the resolutions of all the others in the same

text, which together provide the global context for the mention in focus. As explained for

Example (3) (Figure1.3), the resolution of the mention [his opponent] should benefit from the

resolution of the embedded mention [his]. Therefore, inferring the coreference sets simulta-

neously is essential to making use of the complete context.

In order to achieve the overall optimized coreference sets,the inference procedure needs

to consider not only the relations between mentions within the same sets, but also the rela-

tions between mentions from different sets. Since the optimization is conducted at the output

end, it is important to preserve all relations from a document until the final generation of the

coreference sets. Hence it is preferred to have the coreference sets identified directly from the

original relations.

Q2: How to derive coreference sets directly and simultaneously?

is the second crucial question we need to consider. It regards the choice of the inference

algorithm.

1.2.3 Evaluating Coreference Resolution

Evaluating the system output sets against the true coreference sets is no trivial matter. There

have been several evaluation metrics designed for the coreference resolution task, either eval-

uating on mention pairs or on sets directly. However, they become problematic in a realistic

system setup, where the system mentions do not align with thetrue mentions any more.

Q3: How to evaluate end-to-end coreference resolution systems?

is the third concern of ours in this thesis.

1.2.4 Cheap Learning?

There are several data sets proposed for evaluating coreference resolution systems, most of

which are collections of news articles, such as the examplesillustrated in this section. Since
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the coreference relation is a general linguistic phenomenon, coreference resolution is applica-

ble to different domains (e.g. the medical domain) and to different languages. This urges the

requirements of a large amount of annotated data sets for thepurpose of the model training.

Annotating the corpora manually is considered to be expensive, therefore the question

Q4: Can we use less training data?

becomes important when extending the coreference system toopen domain texts or when

applying the system to multilingual tasks.

1.3 Contributions of this Thesis

Most recent approaches to coreference resolution divide the task into two steps: (1) a clas-

sification step which determines whether a pair of mentions is coreferent or which outputs a

confidence value for this pair, and (2) a clustering step which groups mentions into entities

based on the output of step 1.

In this thesis, we propose a global one-step model —COPA— to approach the coreference

resolution task.COPAis a novel coreference model which avoids the division into two steps

and instead performs a global decision in one step. It represents a document as a hypergraph,

where the vertices denote the mentions and the edges denote the (low-dimensional) relational

features between mentions. Coreference resolution is performed globally in one step by parti-

tioning the hypergraph into sub-hypergraphs so that all mentions in one sub-hypergraph refer

to the same entity. The left part of Figure1.4illustrates the appearance of the hypergraph built

by COPAand the right part shows theCOPAoutput after the partitioning procedure. This

example is described in more detail in Chapter4.

Figure 1.4: COPA Example: Processing Illustration
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With COPA, we are able to address the four questions raised in Section1.2, which are

explicated in Section1.3.1to Section1.3.4.

1.3.1 Representing the Coreference Relation

Previous two-step models attempt to predict a single confidence value between a pair of

mentions by learning the combination of features from the training data (Soon et al., 2001;

Luo et al., 2004; Rahman & Ng, 2009; Bengtson & Roth, 2008). Since these models base

their clustering step on the collapsed relations, some global information which could have

guided step 2 is already lost. In the other hand, global information cannot be accessed in step

1 when making the pairwise decisions.

The hypergraph representation ofCOPA (e.g. Figure1.4 (a)) enables the multiple rela-

tional features to directly come in (as hyperedges) withoutthe necessity of collapsing them

into single ones (as standard edges) as standard graph models would have to. Comparing with

the standard graph, the hypergraph has additional representation power. A hyperedge con-

nects two or more than two vertices (e.g. the hyperedge connecting [Obama], [US president

Barack Obama] and [Barack Obama]), and between vertices there can be multiple hyperedges

involved (for the sake of a clear illustration, Figure1.4 does not include overlapping hyper-

edges). The set property and the overlapping manner of hyperedges make the hypergraph a

good candidate for representing the coreference relation.In brief, the hypergraph allows for

representing multiple low-dimensional relations and capturing set-level information, so

that the representation model ofCOPAis intuitively representing coreference phenomena.

Moreover, since the hypergraph is a generalization of the standard graph, the algorithms

based on standard graphs are still applicable to hypergraphs with necessary adaptations. It is

easy to include more relations as hyperedges into the hypergraph model and various graph-

based inference algorithms are supported on top of theCOPAmodel.

1.3.2 Inferring the Coreference Relation

For most of the two-step methods, the classification steps vary in the choices of the classifiers

and the numbers of features used. The clustering step exhibits much more variations: Local

variants utilize greedy search strategies (Soon et al., 2001; Ng & Cardie, 2002) while global

variants optimize globally but still upon the pairwise output from step 1 (Luo et al., 2004;

Dauḿe III & Marcu, 2005; Nicolae & Nicolae, 2006; Denis & Baldridge, 2009). As already

mentioned, since these methods base their global clustering step on a local pairwise model,

some global information which could have guided step 2 is already lost.

There have also been attempts on establishing global one-step models, most of which

are probabilistic ones (Culotta et al., 2007; Sapena et al., 2010; McCallum & Wellner, 2005;
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Poon & Domingos, 2008). The global models allow one to make use of set-level information

and more context during the inference procedure.

Upon the hypergraph representation,COPAapplies graph partitioning techniques to derive

coreference sets directly and simultaneously. The graph partitioning algorithms ofCOPAgen-

erate the optimized coreference sets, so that the mentions within the same sets are connected

to each other as closely as possible, while the mentions fromdifferent sets as loosely as pos-

sible. It is the first graph-partitioning-based coreference model that takes all mentions from a

document into one unified graph and achieves competitive performances across different data

sets in a realistic setting. Partitioning algorithms enable us to make aglobal coreference de-

cisionby using whichever contextual information encoded in the graph, rather than to work in

a sequential and local manner.

Unlike the probabilistic models,COPA is based on a graph partitioning technique that is

preferable for its simple inference procedure. We differ fromNicolae & Nicolae’s graph parti-

tioning model (Nicolae & Nicolae, 2006), as we do not make pairwise coreference predictions

and we manage to handle all types of mentions in one unified model.

1.3.3 Evaluating Coreference Resolution

In this thesis, we address an important issue in the coreference resolution task — evaluation

metrics. Since most widely used metrics are designed to handle true mentions only, they

become problematic when evaluating end-to-end coreference systems. We proposevariants

of different evaluation metrics for dealing with this issue.

1.3.4 Cheap Learning!

The hypergraph-based coreference model ofCOPAderives the coreference relation by ana-

lyzing the graph structure at the inference phase, and the relational features used for the graph

construction are simply represented in an overlapping manner. Since no feature combination

function needs to be learned beforehand,COPAonly requires a small amount of training data

to learn the weights for low-dimensional relations (i.e. hyperedge weights), which makes

COPAaweakly supervisedsystem.

1.3.5 Other Contributions

Coreference resolution is a set problem and thus the coreference relation is a transitive rela-

tion. Due to the transitive closure which is implicitly doneduring the partitioning process of

COPA, inconsistent coreference sets may be derived. Different optimization strategies have

been employed in the literature in order to enforce the coreference transitivity. In this thesis,
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we address this problem within the graph partitioning framework by proposing constrained

clustering algorithms. We propose a novel method to combineconstrained data clustering al-

gorithms with the spectral graph clustering technique via the spectral embedding, hereby con-

tributing to the constrained graph clustering field. At the same time, theconstrainedCOPA

contributes to the coreference problems which can only be solved by considering cluster-level

consistencies. We experiment with both artificial clean constraints and automatically gener-

ated ones. Although the clean setting produces promising improvements, our results on the

automatically generated constraints are mostly negative for now. Further efforts on designing

more high-recall constraints are needed.

Extensive experiments show thatCOPAoutperforms strong baseline systems in strict fair

comparisons, and it performs competitively with a small feature set and a small amount of

training data across different domains.

1.4 The Thesis Structure

The thesis is organized into two parts, (1) Chapter1 to Chapter7 form the backbone of our

contributions to the coreference resolution task; (2) Chapter8 introduces the important exten-

sions we made upon the basic version ofCOPAmodel, both in the algorithms and in solving

special types of coreference problems.

• Chapter1 helps the readers to develop an idea about the work presentedin this thesis —

the motivation and the significant contributions.

• Chapter2 introduces the important related work for coreference resolution, which pro-

vides a big picture to the task modeling.

• Chapter3 describes the corpora used throughout the thesis. The annotation schemes

adopted by each of the data sets are illustrated and the important differences between

them are pointed out. The chapter aims at assisting the reader to get familiar with the

coreference phenomena and the involved issues related to annotations, both of which

are important for understanding the coreference resolution task addressed in this thesis.

• Chapter4 introduces our proposed coreference system —COPA. The chapter is self-

contained, with the representation model, the partitioning algorithms and the system

components described in detail. For the techniques involved in the basic version of

COPA, readers can read Chapter4 and Chapter7 (for experiments) alone, with the

features in Chapter5 to be briefly looked up if necessary.

• Chapter5 presents the features used inCOPA.
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• Chapter6 discusses the problems of the previous evaluation metrics and then introduces

our variants of the metrics for evaluating end-to-end coreference systems. Experiments

verifying our variants are included at the end of the chapter. For readers who have been

working in the field and are concerned about evaluating end-to-end coreference systems

due to ones’ own experiences, Chapter6 can be read as a stand-alone chapter.

• Chapter7 evaluatesCOPA with thorough experimental comparisons, against strong

baseline systems and state-of-the-art systems in different domains.

• Chapter8 describes the constrained version ofCOPA. We aim to guide the system to-

wards more consistent partitionings by imposing negative (i.e. Cannot-Link) constraints

on the partitioning algorithm. Experimental results for constrainedCOPAare provided

within the chapter.

For readers interested in graph clustering algorithms, Chapter 8 focuses on including

constraints into graph clustering algorithms without changing the objective functions,

and the chapter applies the proposed methods to an application of coreference resolu-

tion. Readers may also want to check on all the implementationissues addressed in

Chapter4, which give important hints to use clustering techniques for real applications.

• Chapter9 concludes the entire thesis and suggests future improvement directions for

graph-based coreference models.

1.5 Published Work

The proposal ofCOPA is published in (Cai & Strube, 2010a), where the hypergraph rep-

resentation of texts and the coreference inference via partitioning are described. (Cai et al.,

2011b) describes the positive-negative-weak feature engineering and illustrates the application

of COPAon a large corpora to compete with the state-of-the-art systems.COPA’s participation

on clinical tasks is introduced in (Cai et al., 2011a).

The proposed evaluation metrics for end-to-end coreference resolution are published in

(Cai & Strube, 2010b).



Chapter 2

Related Work On Coreference Models

Understanding and automatically resolving the coreference phenomena in texts has been of

interest to computational linguists for decades, startingfrom the early work on linguistic the-

ories to the latest research on exploring machine learning techniques. The inclusion of the

early theories (Section2.1) in this chapter is to illustrate the linguistic insights they provide,

which still inspire good features for modern methods. However, the main stream of research

is moving towards the machine-learning-based task modeling (Section2.3to 2.5).

In this chapter, the most important research lines in the field are introduced. The existing

coreference models are categorized according to their learning schemes — rule-based systems

(Section2.2), unsupervised models (Section2.3), weakly supervised methods (Section2.4)

and finally the supervised ones (Section2.5). Our proposed system isa supervised coref-

erence model. However, we show in Chapter7 that our system only needs a little training

data to achieve competitive performance, which makes it a weakly supervised one (when us-

ing limited training data). Unlike the weakly supervised methods in Section2.4 which make

use of unlabeled data together with labeled ones, our model is only trained on (manually) an-

notated data in a conventional supervised manner without making bootstrapping procedures

necessary.

2.1 Early Theories and Formalisms

In this section, two important theories related to coreference resolution are introduced. Cen-

tering theory (Section2.1.1) studies the referring relation between utterances (e.g. sentences)

and entities in order to model the discourse coherence. Thistheory can be used directly to

estimate the possible entity assignments for referring expressions, and therefore to predict the

coreference relation. Centering theory is summarized with its important claims in this section,

and the details are provided in the corresponding references.

Binding theory (Section2.1.2) models the preference of antecedents for anaphoric expres-
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sions on dependency trees. It can be easily adopted as relational features (or constraints) for

machine-learning-based coreference models.

2.1.1 Centering

Centering theory (Grosz & Sidner, 1986; Grosz et al., 1995; Strube & Hahn, 1999) is a theory

of the local component of attentional state.Joshi & Kuhn (1979), Joshi & Weinstein (1981)

show that there is a connection between changes in immediatefocus and the complexity of

the inference required for understanding the utterances inthe corresponding discourse. From

a coreference modeling point of view, the less complex the required inference is, the more

possible it is to be a correct usage of referring expressionsin the utterances.

Centers (e.g. referring expressions) of an utterance refer to the entities which help to

link the utterance to others within a discourse segment. Each utteranceU in a discourse

segmentDS has a set offorward-looking centers, Cf (U,DS ) and (except for the segment

initial utterance) has a singlebackward-looking center, Cb(U,DS ). The simplified notations

areCf (U) andCb(U). When a centerc is the semantic interpretation of an utteranceU , it is

defined as a relation —U directly realizesc. A ” realizes” relation is a generalization of the

”directly realizes”. Since the realization relation combines syntactic, semantic, discourse, and

intentional factors, the centers of an utterance are determined by the properties of the utterance

in focus, the corresponding discourse segment and the discourse.

The center elements ofCf (Un) are derived from the expressions that constituteUn, and

they are partially ordered according to their prominences in Un. The top ranked element of

Cf (Un) that is also realized inUn+1 is taken asCb(Un+1). Three types of transition relations

between pairs of utterances are defined.

1. Center continuation:Cb(Un+1) = Cb(Un), and the entity is the top ranked element of

Cf (Un+1).

2. Center retaining: Cb(Un+1) = Cb(Un), but this entity is not the top ranked element in

Cf (Un+1).

3. Center shifting: Cb(Un+1) 6= Cb(Un).

Different centering transitions between utterances indicate different degrees in coherence

for the corresponding segment. The most fundamental claim of centering theory is that the

inference load on the hearer decreases as the discourse coherence increases. Several other

major claims are provided, which can be used as constraints for coreference modeling.

1. A uniqueCb: eachUn has only one backward-looking center.
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2. Ranking ofCf : the elements ofCf are partially ordered according to a number of

factors.

3. Centering constraints realization possibilities:if any element ofCf (Un) is realized by

a pronoun inUn+1, thenCb(Un+1) must be realized by the pronoun too.

4. Preferences among sequences of center transitions:sequences of continuation are pre-

ferred over sequences of retaining; sequences of retainingare to be preferred over se-

quences of shifting.

5. Primacy of partial information:a semantic theory supporting the construction of partial

interpretations is necessary.

6. Locality ofCb(Un): Cb(Un) cannot be corresponding toCf (Un−2) or other prior sets of

forward-looking centers.

7. Centering is controlled by a combination of discourse factors: centers are determined

on the basis of the combination of syntactic, semantic and pragmatic processes.

Centering theory connects the focuses of attention, the choices of referring expressions,

and the coherence of utterances within a discourse segment.It has been used in extended or

re-formulated forms for anaphora resolution tasks (Brennan et al., 1987; Hahn & Strube, 1997;

Strube, 1998; Walker, 1998).

2.1.2 Binding Theory

The binding theory is formulated in Chomsky’s Lectures of Government Binding (Chomsky,

1981; Chomsky, 1995), which discusses anaphora within the generative paradigm. It considers

the anaphoric relation for reflexive pronouns, reciprocals, personal pronouns and referential

expressions (lexical noun phrases), by imposing syntacticconstraints on their NP interpreta-

tions. Reflexives and reciprocals need local antecedents; pronouns may have an antecedent,

but must be free locally; referential expressions must be free.

The three principles in binding theory are described as:

Principle A : An anaphor (reflexive or reciprocal) must be bound in its governing cate-

gory.

Example:[John]i saw[himself]i. ([John] binds[himself], and they are coreferen-

tial.)

Principle B: A pronoun (except reflexive and reciprocal) must be free in its governing

category.
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Example: [John]i saw [him] j. ([John] binds [him] which violates the principle,

so that they are not coreferential.)

Principle C: An referential expressions must be free everywhere.

Example:[John]i saw[Katja] j. ([John] binds[Katja] which violates the princi-

ple, so that they are not coreferential.)

The binding theory is helpful in ruling out the antecedents for pronominal anaphors that vi-

olate the proposed constraints, as well as in assigning possible antecedents to bound anaphors.

For instance, our feature (6) corresponds to Principle C andfeature (17) to Principle A (see

Chapter5).

2.2 Rule-based Deterministic Coreference Models

The coreference resolution systems from earlier years (e.g. Hobbs (1978) andLappin & Leass

(1994)) rely on manually configured rules, most of which are derived from the linguistic in-

terpretations of the coreference phenomena. There are a couple of lately emerged coreference

resolution systems (Section2.2.3and2.2.4) which are also completely built upon heuristic

rules and perform in a deterministic manner. These systems aim to explore how syntactic and

semantic information helps the task by neglecting the effect of the learning schemes. The suc-

cessfully explored heuristic rules should inspire (strong) features for machine-learning-based

algorithms (see Section2.3, 2.4 and2.5), and the deterministic systems may serve as good

baselines for the complex coreference models.

2.2.1 Hobbs’ Algorithm

Hobbs (1978) proposes one of the first algorithmic approaches to pronounresolution, deter-

mining the antecedents for pronominal anaphors by searching on syntactic parse trees and

incorporating semantic analysis.

Hobbs’ first algorithm performs on surface parse trees, which are assumed to be correctly

available for each sentence to be resolved. A surface parse tree exhibits the grammatical struc-

ture of a sentence. This simple method traverses the tree in aparticular order looking for a

noun phrase of the correct gender and number as the expected antecedent of a pronoun. Selec-

tional constraints can be further applied to the algorithm to restrict the candidate antecedents.

Hobbs’ second algorithm is working on texts, where the syntactically derivable corefer-

ence and non-coreference relations have already been detected. The texts should be in logical

representations, exhibiting functional semantic relationships. In this semantic algorithm, there

are four principal semantic operations on logical notations of texts. These are (1) detecting



2.2 Rule-based Deterministic Coreference Models 17

inter-sentence connections, (2) interpreting general words or predicates in context, (3) merg-

ing redundant statements and (4) extracting the yet unidentified entities. The four options

together are able to accomplish the pronoun resolution mostof the times. Where they fail, the

naive algorithm is used to determine the final antecedent.

Hobbs’ approach remains one of the most influential work in the fieldand serves frequently

as a common benchmark for evaluating later proposals (Mitkov, 2002).

2.2.2 Lappin and Leass’ Algorithm

Lappin & Leass (1994) propose an algorithm,RAP (Resolution of Anaphora Procedure),

which is applied to the syntactic representations generated by McCord’s Slot Grammer parser

(McCord, 1989). The system uses multiple salience measures, which capture a variety of

syntactic properties. Moreover, the system uses a model of attentional state too.

From a list of candidate antecedents of a pronominal anaphor, RAPdetermines the pre-

ferred one by relying on several components.

1. An intra-sentential syntactic filter.

2. A morphological filter rules out the candidate NPs for a pronoun according to their

syntactic grounds or agreements on person, number or gender.

3. Pleonastic pronouns are identified by a separated filter.

4. An NP is assigned several salience values, which favor (i)subject over non-subject NPs,

(ii) direct objects over other complements, (iii) arguments of a verb over adjuncts and

objects of prepositional phrase adjuncts of the verb, and (iv) head nouns over comple-

ments of head nouns.

5. For an equivalent class of NPs, an overall salience value is calculated.

6. At the end, a decision maker selects the preferred antecedents for each anaphoric pro-

nouns

Lappin & LeasstestRAPon five computer manuals containing approximately 82,000 to-

kens. The success rate of the system is optimized on the training set in a heuristic way. In

the blind test,RAPscores higher than a Slot Grammer version ofHobbs’ algorithm (Hobbs,

1978).
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2.2.3 Haghighi and Klein’s Simple System

Haghighi & Klein (2009) present a deterministic coreference system, which is driven by syn-

tactic and semantic compatibility lists extracted from an unlabeled corpus. They try to break

from the standard view of focusing on coreference modeling.Instead, they are devoted to

exploringlinguistic features in a simple deterministic manner.

Haghighi and Klein’s system works in a three-step process. For each anaphor, a best

antecedent is chosen or is set to be NULL, following the threesteps:

1. Syntactic Constraints: a self-contained syntactic module generates syntactic structures

using an augmented parser and extracts syntactic paths fromthe anaphor to its candidate

antecedents. When applicable, syntactic constraints either enforce or disallow corefer-

ence relations on paths.

2. Semantic Constraints: a self-contained semantic module evaluates semantic compati-

bilities between head words and between names, so that this module further filters the

remaining antecedents from 1.

3. Selection: Select the final antecedent with the minimal tree distance to the anaphor.

For agreement constraints,Haghighi & Klein implementperson, numberandentity type

agreements. Role appositivesandpredicate nominativesare extracted from syntactic trees to

assist non-pronominal resolution. A set of compatible wordpairs which match the predicate-

nominative patterns are extracted from two external data sets, so that rich semantic knowledge

can be accessed.

The simple system manages to outperform the state-of-the-art unsupervised coreference

resolution systems and is broadly comparable to the state-of-the-art supervised systems. The

authors suggest to use the system as a simple-to-reproduce and high-performance baseline for

future work in the field.

2.2.4 Stanford’s Multi-Pass Sieve System

When participating in the CoNLL-2011 shared task (Pradhan et al., 2011) which is one of

the most influential shared task on the coreference resolution task, the Stanford’s system (Lee

et al., 2011) won in all provided settings. The proposedMulti-pass Sievesystem is built in an

architecture which implements multiple sieves in a cascaded manner. In a top down manner,

the sieves output the highest precision predictions to the lowest ones. Since at each sieve all

information available (including the predictions from previous sieves) can be used,cluster-

level features(e.g. cluster head match) have a means to come into the model. The sieves

proposed are described briefly below.
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1. Pass 1: Extract string match.

2. Pass 2: Precise constructions (e.g. appositive; predicate nominative; role appositive).

3. Pass 3: Strict Head Match (e.g. cluster head match; compatible modifiers).

4. Pass 4 & 5 & 6: Variants of head match.

5. Pass 7: Pronoun resolution.

Despite of its simplicity, Stanford’s multi-sieve system achieves more competitive perfor-

mance than most of the complex models. With careful engineering, it is easier to add more

sieves and features without harming the performance which on the other hand can frequently

happen to more sophisticated models.

2.3 Unsupervised Coreference Models

Generally speaking, unsupervised models are studied to ease the requirements for expensive

human annotations. However, the unsupervised coreferencemodels have not yet surpassed

the supervised ones. In this section, an unsupervised clustering method, three unsupervised

probabilistic models and one bootstrapping method for coreference resolution are described.

2.3.1 Cardie and Wagstaff’s Clustering Method

Cardie & Wagstaff (1999) represent mentions to be resolved as vertices in a graph. Edge

weights are calculated from a distance metric which measures the compatibility degree be-

tween vertices. The proposed distance metric is

dist(NPi, NPj) =
∑

f

wf × incompatibilityf (NPi, NPj)

wheref corresponds to a specific pairwise feature. To generate the coreference sets, an ag-

glomerative clustering algorithm is applied afterward, which merges compatible partial clus-

ters according to the judgments from the distance metric. The algorithm performs in a greedy

manner and does not allow clusters with incompatible mentions. Therefore it may become

problematic when dealing with noisy data sets.
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2.3.2 Haghighi and Klein’s Bayesian Model

Haghighi & Klein (2007) propose a fully generative model for coreference resolution. A non-

parametric Bayesian model is adopted in order to avoid the pre-assumption about the number

of entities. For non-pronominal mentions, the model makes decisions based on their depen-

dencies on mention heads. For pronouns, the model incorporates the parameters for the entity

type, gender and number. Entity salience is added into the model too.Haghighi & Kleinreport

higher numbers thanCardie & Wagstaff (1999) on the MUC-6 data, and show that including

more unannotated data can improve the performance due to theunsupervised learning nature

of their model. However,Haghighi & Klein’s Bayesian model is difficult to extend, since it

requires the change of the model structure to include more features.

2.3.3 Ng’s EM Clustering Method

Ng (2008) recasts the unsupervised coreference resolution problemas EM clustering. The

adopted joint probability is

P (D,C) = P (C)P (D|C)

whereD represents an observed document andC is a clustering on it. The document is further

represented by mention pairs and7 features are applied to each pair of mentions. Therefore

P (D|C) is given by

P (D|C) =
∏

mij∈Pairs(D) P (m1
ij, · · · ,m

7
ij|Cij)

The parameters (i.e. the probabilities of the features given the clusterings) are estimated

using an EM algorithm and at the end a converged clusteringC is induced for each document.

In order to cope with the number of possible clusterings which are exponential to the number

of mentions in a document, complex schemes are proposed to choose only the best clusterings

at each iteration.

Ngachieves better performance compared with the enhanced version ofHaghighi & Klein’s

system but his system is still not comparable to supervised coreference models.

2.3.4 Poon and Domingos’ Markov Logic Model

In order to perform a joint inference across mentions as opposed to focus on pairwise relations,

Poon & Domingos (2008) make use of the expressive power of Markov Logic to represent

relations between mentions in first-order logic.Poon & Domingospropose an unsupervised

system based on Markov Logic Networks to infer the coreference sets.

Several relational features are adopted, wherem stands for a mention,c for a cluster ande

for an entity.
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1. Head Match for Non-pronouns:

¬IsPrn(m) ∧ InCluster(m,+c) ∧ Head(m,+t)

2. Mention Types Agreement:

InCluster(m, c)⇒ (Type(m, e)↔ Type(c, e))

3. Pronoun-Cluster Types Agreement:

IsPrn(m) ∧ InCluster(m, c) ∧ Head(m,+t) ∧ Type(c,+e)

4. Apposition Constraint:

Appo(x, y)⇒ (InCluster(x, c)↔ InCluster(y, c))

5. Predicate Nominative Constraint:

PredNom(x, y)⇒ (InCluster(x, c)↔ InCluster(y, c))

Poon & Domingosreport competitive performance of their system, benefitingfrom lever-

aging relations between mentions from the cluster-level perspective. Markov Logic provides

an easy way for incorporatingcluster-level features, which is non-trivial for pair-wise mod-

els. However, their big gain by adding appositive and predicate nominative constraints cannot

be reproduced for other data sets where these relations are not taken as being coreferent.

2.3.5 Kobdani et al.’s Bootstrapping Model

Kobdani et al. (2011) collect word associations from large unlabeled data sets,and propose an

unsupervised system to learn the association scores between mentions. For the testing phase,

the word association scores are used in the same way as the coreference probabilities. Built

upon the predictions of the unsupervised system, a self-training scheme is adopted to learn the

coreference relation in a conventional supervised manner.Since no manually labeled data is

used, the self-training system can be viewed as unsupervised too, and it outperforms several

strong unsupervised systems.

2.4 Weakly Supervised Coreference Models

Weakly (semi-) supervised learning algorithms work with little labeled data and attempt to

make use of the unlabeled data while processing. They are expected to perform better than

the unsupervised methods due to the available (although limited) guidance from the training

labels. In this section, several weakly supervised coreference models are described.
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2.4.1 Multi-view Co-training Models

Co-training (Blum & Mitchell, 1998) is a multi-view method to bootstrap by gradually ex-

tending the training (labeled) set with theautomaticallylabeled data. Co-training algorithms

utilize multiple learners each of which captures a separateview of the data (i.e. using disjoint

subsets of features to represent the data).

Müller et al. (2002) apply a co-training method to coreference resolution by using two

classifiers and therefore two views of the data. They proposea feature selection strategy to

create the two subsets of features, representing the two views with the two best features and

selecting the remaining one by one. Besides the greedy feature selection method byMüller

et al., Ng & Cardie (2003) also experiment with random selection and the selection according

to the feature types. The two classifiers are trained with their own feature sets, and predict

labels for the unlabeled data. At each iteration of training, each classifier chooses its most

confident predictions and add the auto-labeled data into thetraining set of the other classifier.

However, the results reported byMüller et al.are mostly negative andNg & Cardiedo

not generate improvements with co-training algorithms either. The main difficulties lie in the

generation of the independent feature sets (views), the choice of the number of iterations and

the training data growth speed (Pierce & Cardie, 2001).

Raghavan et al. (2012) propose semantic and temporal features as views for their co-

training classifiers, and these views appear to work on clinical data sets.

2.4.2 Single-view Bootstrapping Methods

Ng & Cardie (2003) compare multi-view weakly supervised methods with single-view ones

with the application to coreference resolution. They propose two single-view algorithms, a

self-training algorithm and an EM algorithm. Both of their single-view methods are based on

the bootstrapping scheme.

The self-training algorithm involves a committee of classifiers, each of which is trained on

a random sampled subset of the labeled data. The classifiers predict for all the unlabeled data

and the predictions agreed by all of the classifiers are addedto the labeled data.

The single-view weakly supervised EM assumes a parametric model of data generation.

The unlabeled data are considered to be missing labels and the algorithm optimizes the poste-

rior probability of the parameters given both the labeled and the unlabeled data. More details

can be found inNigam et al. (2000).

Ng & Cardie (2003) conclude that the single-view methods easily outperform the multi-

view co-training algorithm for the coreference resolutiontask.
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2.5 Supervised Coreference Models

Due to the existence of well-annotated corpora (see Chapter3 for details), more attention

has been paid recently to supervised coreference resolution modeling. Although coreference

resolution is asetproblem (i.e. grouping mentions into sets), the first machine-learning-based

approach applies pairwise classification models which break down the problem into two-step

processing (Section2.5.1). The success of the two-step method is mainly due to its expressive

simplicity and straightforward learning strategy. However, more global models are coming

into the field (Section2.5.3) aiming to conquer the performance bottle-neck from the missing

of pairwise-beyond information (e.g. relations between more than two mentions).

Both local and global models are introduced in this section, so that readers can grasp an

idea of the motivations and the importance of working on global models, specifically on the

relative simpler graph-partitioning-based inference.

2.5.1 Two-step Methods

The Mention-pair model was firstly proposed byAone & Bennett (1995) andMcCarthy &

Lehnert (1995). However,Soon et al.’s system (Soon et al., 2001) is the first successful attempt

applying machine learning technique to the mention-pair model for coreference resolution,

which has become the most widely used baseline system in the field.

Soon et al.divide the task into a two-step processing, a classificationstep and a cluster-

ing step. In step 1, the classifiers perform on pairs of mentions to decide whether they are

coreferent or not. Based on the classification decisions, theclustering component merges

mention pairs into sets so that all mentions in one set are coreferent to each other. A decision

tree classifier (e.g. C5Quinlan (1993)) is adopted along with12 features for step 1, and the

closest-first search strategy for step 2 (i.e. choosing the closest positive antecedent for the

focusing anaphor). A simple example illustrating the two-step processing is given below.

• Mention list :

a1, b1, a2, b2, a3

• Step 1: Classification step:

For b1: a1←| b1

For a2: a1←a2; b1←|a2

For b2: a1←|b2; b1←b2; a2←|b2

For a3: a1←a3; b1←|a3; a2←a3; b2←|a3

• Step 2: Clustering step:
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Set1: {a1, a2, a3}

Set2: {b1, b2}

The sign←| denotes that the mention pair is decided not to be coreferentand the sign←

applies to the ones which are predicted to be coreferent witheach other.

In the literature, one line of improvements afterSoon et al.is made along two directions,

either by proposing more powerful pairwise classifiers (in step 1) or by clustering the pairwise

decisions with better algorithms (in step 2). For a more detailed overview, readers are referred

to Ng (2010).

Work on the Classification Step. Step 1 can be improved by exploring more powerful

classifiers. Besides the decision tree classifier (e.g.Soon et al. (2001), Ng & Cardie (2002)),

the Maximum Entropy classifier (e.g.Luo et al. (2004)) and the averaged perceptron learning

algorithm (e.g.Bengtson & Roth (2008)) have also been applied to the classification step.

There have been researchers working on enriching the feature set for step 1.Ng & Cardie

(2002) extendSoon et al.’s feature set to a size of52, including more sophisticated linguistic

knowledge.Bengtson & Roth (2008) stress on the importance of feature selection and propose

to serve as the enhanced baseline system for complex coreference models.

Ponzetto & Strube (2006) firstly exploit semantic features (by the means of semanticrole

labeling) and world knowledge (from Wikipedia) for coreference resolution, andRahman &

Ng (2011) proceed to analyze in details the behavior of combining world knowledge with

different models. Since world knowledge (especially when obtained from the web data) is

noisy, it is still of interest how to make use of it in a robust way. More recent attempts can be

found inKobdani et al. (2011) andBansal & Klein (2012).

Work on the Clustering Step. By always choosing the closest positive antecedents (as in

Soon et al. (2001)), the pairwise decisions from the classification step are linked into sets.

Since theclosest-firststrategy is too sensitive to error propagation, abest-firstmethod is pro-

posed byNg & Cardie (2002) instead to link the most confident positive antecedents.

Luo et al. (2004) perform a greedy search on a bell tree representation (Figure2.1). In each

step a decision is made to connect a focusing anaphor (e.g. 3*) with a previously constructed

partial entity (e.g. [12]). Although this method moves towards entity-level modeling, the

greedy (and sequential) nature of the algorithm excludes important information contained in

all the other paths except for the chosen one.
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Figure 2.1: Luo’s Bell Tree Method (Luo et al., 2004)

Optimization algorithms have been applied to the clustering step, in order to achieve better

performance given the output from the classification step. For instance, bothKlenner (2007)

andFinkel & Manning (2008) impose transitivity constraints on integer linear programming

(ILP) to enforce transitive closure which cannot be taken care of by greedy algorithms.

2.5.2 Preference Models

Selecting the correct antecedent for an anaphor among all candidate antecedents can also be

approached by preference modeling, which predicts the winning candidates based on compar-

isons between all candidates. Preference models allow one to consider not only the corefer-

ence relations between antecedents and anaphors, but also the competition relation between

antecedents.

Twin Candidate Model. A twin candidate model is proposed byYang et al. (2005) to

model the competition between pairs of antecedents. Each anaphorana together with two

candidate antecedentsante1 andante2 form one tuple instance{ana, ante1, ante2}, which

has three possible labels —10 suggesting the preference ofante1, 01 suggestingante2 and

00 indicatingana being non-anaphoric. The best antecedents are ranked top ina round-robin

manner.

Yang et al.propose features describing relations between a pair of antecedents, which are

not accessible for non-preference models.

• inter SentDist: Distance betweenante1 andante2 in sentences
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• inter StrSim: 0,1,2 ifStrSim(ante1, ana) is equal to, larger or less than

StrSim(ante2, ana) (whereStrSim(·, ·) measures the string similarity between two

mentions)

• inter SemSim: 0,1,2 ifSemSim(ante1, ana) is equal to, larger or less than

SemSim(ante2, ana) (whereSemSim(·, ·) measures the semantic agreement between

two mentions in WordNet)

Ranking Models. Denis & Baldridge (2007) rank all candidate antecedents for pronoun

anaphors simultaneously, and the system is shown to outperform the twin candidate model

significantly. To be able to exploit cluster-level information upon the mention ranking model,

Rahman & Ng (2009) propose to rank clusters instead of antecedents.

The preference models start exploring the global relationswithout assuming pairwise pre-

dictions given. But due to their sequential property, only the preceding context of each anaphor

is participating in the decision making which is still similar to the two-step methods.

2.5.3 One-step Methods

In this section, one-step models for the coreference resolution task are introduced. Those are

the closest work to ours in terms of resolving all mentions simultaneously by considering the

available full context.

2.5.3.1 Clustering Methods

Two algorithms are described in this section, both of which perform the global inference by

means of clustering algorithms.

Nicolae and Nicolae’s graph clustering algorithm to be introduced is still built upon pair-

wise classification output (as edge weights). However, it isconsidered as a global model as

they do not sequentially cluster mentions into coreferencesets, but resolve them all together.

Cardie and Wagstaff’s Method. It is worth noting that Cardie and Wagstaff’s method

(Cardie & Wagstaff, 1999) in Section2.3 is unsupervised since the edge weights are set man-

ually. However their clustering mechanism can be easily adapted into a supervised version by

learning the weights automatically.

Recall thatCardie & Wagstaffrepresent mentions to be resolved as vertices in the graph,

and edge weights are calculated from a distance metric whichmeasures the compatibility

degree between vertices. An agglomerative clustering algorithm is applied to generate the

coreference sets afterward.
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Nicolae and Nicolae’s Best-cut. Nicolae & Nicolae (2006) describe a graph-cut-based al-

gorithm with the same graph representation as Cardie and Wagstaff’s. The graph-cut strategy

superficially resembles our approach. However, they apply the cutting algorithm only on the

output from a classification step which form a weighted standard graph as shown in Figure

2.2.

Figure 2.2: Nicolae and Nicolae’s Best-cut Method (Nicolae & Nicolae, 2006)

They report considerable improvements over state-of-the-art systems includingLuo et al.

(2004). However, since they not only change the clustering strategy but also the features for

the classification step, it is not clear whether the improvements are due to the graph-based

clustering technique. Furthermore, they separate pronounresolution from the core processing

but adopt a standard two-step method for pronouns. The fact that their algorithm is only

applied to a subset of mentions makes it less elegant than ours.

2.5.3.2 Probabilistic Models

Being conceptually similar to the graph clustering algorithms, probabilistic models optimize

the entity assignments by considering all relations available in the focusing contexts. Different

inference frameworks have been explored in the literature to capture cluster-level information

(e.g. transitivity) and different approximation algorithms are used to make globally optimized

predictions. It is not very clear yet which model is distinguishably superior.
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McCallum and Wellner’s Conditional Model. McCallum & Wellner (2005) introduce

three discriminative, conditional-probabilistic modelsfor coreference resolution, all examples

of undirected graphical models. The models condition on thementions, and generate entity

assignments for them. It is shown that the most improved version (i.e. the third model) can

transform itself to an equivalent (different) graph, whichis with mentions as vertices and edge

weights ranging from−∞ to+∞. The inference thus becomes a graph partitioning problem,

where e.g. correlation clustering (Bansal et al., 2002) can be applied to handle the negative

edges.

Culotta’s First-order Logic Method. Culotta et al. (2007) adopt a first-order logic repre-

sentation where features over sets of mentions are implemented (i.e. cluster-level features).

The proposed models can be viewed as estimating the parameters for each cluster-wise com-

patibility independently and then being combined togethervia clustering. Uniform sampling

is used for generating training instances (i.e. positive/negative clusters) in one model, and

on-line training schemes are proposed for the other two improved versions. They use four

features in the model. The first is an enumeration overpairs of noun phrases. The second is

the output of apairwisemodel. The third is the cluster size. The fourth counts mention type,

number and gender in each cluster. They assume true mentionsas input and only report one

evaluation metric numbers. It is not clear whether the improvement in results translates into

system mentions.

Sapena’s Relaxation Labeling Algorithm. Sapena et al. (2010) use a constraint-based ap-

proach (i.e. relaxation labeling) for coreference resolution. They generate pairwise predictions

as constraints using a decision tree classifier and represent them in a graph. Afterward they

optimize with respect to the constraints (both positive andnegative ones) in an iterative proce-

dure. It is shown that the proposed model outperforms an ILP algorithm with the transitivity

enforced.

In his thesis (Sapena, 2012), Sapenashows that his graph representation can be viewed

as hypergraphs, as illustrated in Figure2.3. The mentions are taken as vertices and the con-

straints generated from the decision tree are taken as edges(e.g. e1, e2 ande3). The main

differences betweenSapena’s work and ours lie in (1) his hyperedges represent the learned

combinations of features while ours are derived directly from simple (low-dimensional) rela-

tional features; (2) his resolution model is a probabilistic model while ours performs under the

graph-based clustering framework. The two work differs in both the representation model and

the resolution algorithm, despite of the similar namings.
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Figure 2.3: Sapena Thesis’s Hypergraph Representation (Sapena, 2012)

Markov Logic Models for Coreference Resolution. As mentioned,Poon & Domingos

(2008) propose to use a learning-based unsupervised Markov LogicModel for coreference res-

olution, which manages to incorporate cluster-level features via formulas.Song et al. (2012)

implement a supervised framework using Markov Logic, to perform the mention pair classifi-

cation and the mention clustering jointly. They make use of the expressive power of Markov

Logic Networks to include hard (global) constraints for thebest-firstscheme and for transitiv-

ity. Frank et al. (2012) adopt Markov Logic Networks to detect errors in automatic semantic

annotations. The automatic system predictions for word sense disambiguation and corefer-

ence resolution are taken together into the their model, andare optimized (i.e. corrected) via

the joint inference. BothSong et al.’s andFrank et al.’s proposed models can be viewed as

optimization methods for step 2 in the two-step coreferenceframework.

2.6 Summary

Two-step Coreference Models. Although coreference resolution is naturally a clustering

problem, which aims to cluster mentions into coreference sets, most of the recent approaches

divide the task into two steps: (1) a classification step which determines whether a pair of

mentions is coreferent or which outputs a confidence value, and (2) a clustering step which

groups mentions into entities based on the output of step 1.

Soon et al. (2001) firstly propose the two-step strategy under the machine learning frame-

work, i.e. pairwise classification and clustering. They usea set of twelve powerful features.

Their system is based solely on information of the mention pairs (i.e. anaphor and antecedent),

and does not take any information of other mentions into account. However, it turned out that it

is difficult to improve upon their results by just applying a more sophisticated learning method

without improving the features.
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A number of approaches have been focusing on improving coreference modeling within

the two-step framework, either by proposing linguistic-leaned or world-knowledge-based fea-

tures or by applying different optimization algorithms forthe clustering phase. Most of the

two-step methods are considered to be local, because they make coreference decisions on pairs

of mentions and cluster the mentions into sets considering only the preceding antecedents. In

order to exploit the full context,global models are preferred over the two-step methods.

Global Coreference Models. As an example of graph partitioning models for coreference

resolution,Nicolae & Nicolae (2006) propose a graph-cut-based approach where mentions are

vertices and edge weights are learned from pairwise coreference classifiers. Unfortunately,

they only manage to resolve non-pronoun mentions in this framework and have to approach

pronoun resolution separately. This work is superficially similar to ours, but our graph-based

model includes mentions of all types in the graph representation. In this way, we are able to

access the full context of the focusing document, which makes our model fully global.

Graphical models have the superiority of precise probability formulating, which conse-

quently enables the coreference systems to learn complex dependency structures between

mentions and entities. However, the learning and inferenceprocedures can be complicated

even with the approximation (e.g.Finkel & Manning (2008)), which make them less prefer-

able than the simpler coreference systems such as ours.

Lang et al. (2009) propose an unsupervised coreference resolution system based on a hy-

pergraph partitioning algorithm, which did not appear accessible before our first proposal (Cai

& Strube, 2010a). Lang et al.represent mentions as vertices and generate hyperedges directly

from features. Unfortunately, no strict experimental comparison (with the same feature sets) is

provided to verify the effect of their model. Furthermore, the mentions along with their heads

and semantic types are all taken from the gold annotation inLang et al.’s system.

In contrast, in this thesis we present a complete hypergraphpartitioning model for coref-

erence resolution and provide thorough experiments with realistic system settings. Crucial

issues regarding both the clustering algorithms and the coreference application are addressed

in this thesis. For instance, we propose the feature categorization in Chapter5 to ensure the

stable construction of the hypergraphs. Extensive experiments across different domains and

different evaluation metrics are able to convey the effectiveness and the robustness of our

proposed system.



Chapter 3

Data Sets for Coreference Resolution

Two data sets have been frequently used for years to evaluatecoreference resolution. The for-

mer is from the MUC conferences (see Section3.1) and the latter is provided by the Automatic

Content Evaluation (ACE) program (see Section3.2). Stoyanov et al. (2009) point out that

there are significant differences in annotating mentions and the coreference relation between

these corpora, which will be illustrated in this chapter. A much larger corpus OntoNotes (see

Section3.3) was recently released. It became the standard evaluation set for the coreference

resolution task soon after its first usage in the CoNLL 2011 shared task (Pradhan et al., 2011).

In this thesis, we also experiment on a medical data set (see Section3.4), which consists

of clinical reports with annotated coreference relation between persons, (clinical) problems,

treatments etc.

We describe the coreference data sets before introducing our proposed coreference model

in this thesis, aiming to assist the readers to better understand coreference phenomena and the

annotation- scheme-related problems involved in the task.

3.1 MUC

The MUC data sets consist of MUC-6 (MUC-VI Text Collection) (Chinchor & Sundheim,

2003) with a standard training/testing division (30/30) and MUC-7 data (North American

News Text Corpora) (Chinchor, 2001) (30/20). The documents in the MUC data sets are

all news articles, and are prepared (annotated) for four evaluation tasks — Named Entity

Recognition, Coreference Resolution, Template Elements and Scenario Templates.

The MUC corpora are annotated with general types of mentions, but only the ones that

participate in the coreference relation. In other words, the entities containing single mentions

(denoted assingleton entities) are not tagged, such as ”the Federal Railway Labor Act” in

the following MUC Example. It is also worth noting that neither apposition nor predicate

nominatives are annotated as the coreference relation.
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MUC Example:

Under the Federal Railway Labor Act, if the mediator fails to bring [the two sides]1
together and [the two sides]1 do n’t agree to binding arbitration, [a 30-day cooling-

off period]2 follows .

After [that]2 , [the union]3 can strike or the company can lock [the union]3 out .

Since we only focus on the end-to-end coreference resolution problem, which takes raw

texts as input without assuming any annotations, mentions need to be detected automatically.

Our mention tagger (see Chapter7) tends to identify too many mentions for MUC data, as

there is no restriction on the types of mentions to be resolved. This is therefore resulting in too

many spurious coreference sets, such as the entity containing several [yesterday] mentions.

3.2 ACE

There are four corpora from the ACE program, ACE 2002 (Mitchell et al., 2002), ACE 2003

(Mitchell et al., 2003), ACE 2004 (Mitchell et al., 2004) and ACE2005. The annotations

of ACE data contain six areas — Entity Detection and Recognition (EDR), Entity Mention

Detection (EMD), EDR Co-reference, Relation Detection and Recognition (RDR), Relation

Mention Detection (RMD), and RDR given reference entities. There are different types of

document sources for ACE data sets, i.e. news wire reports, broadcast news programs and

newspapers, and in three different languages, i.e. Arabic,Chinese and English. In this thesis,

we use both ACE 2003 and ACE 2004. Since we do not have access to official ACE testing

data (only available to ACE participants), we followBengtson & Roth (2008) to divide ACE

2004 English training data into training, development and testing partitions (268/76/107). We

randomly split the 252 ACE 2003 training documents using the same proportions into training,

development and testing (151/38/63).

The coreference relation in ACE data sets is annotated only among the mentions of certain

entity types. For instance, ACE 2004 adopts7 entity types, which are Person (PER), Orga-

nization (ORG), Location (LOC), Geo-Political Entity (GPE),Facility (FAC), Vehicle (VEH)

and Weapon (WEA). Singleton entities are allowed in ACE data aslong as they are of the re-

quired entity types. In the following ACE Example that illustrates the ACE annotations, both

mentions [Palestinian]1 and [the former Soviet Union]4 form singleton entities due to their

GPE types.

ACE Example:
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The problem arose after [[Palestinian]1 Mahmood Abu Talib,[whose]2 testimony

the court has been hearing since Friday]2, refused to continue answering a ques-

tion by [[defense lawyer]3 Richard Keen]3 about the detailed reasons for [his]3
having lived in [the former Soviet Union]4 for a period of 18 months in the 70s .

[The lawyer]3 asked the judges to force [Abu Talib]5 to answer the question aimed

at demonstrating [the witness]5 ’s ”professional terrorism” precedents .

There are several special relations that are taken as the coreference relation in ACE data

sets, such as appositive (e.g. entity 2), predicative nominative and role appositive (e.g. [[de-

fense lawyer]3 Richard Keen]3). Features designed for capturing these special relationsmight

not work when moving to different data sets, as they usually do not form the coreference

relation from the linguistic perspectives.

It is relatively easier to detect ACE mentions given the fixed entity types. However, since

entity extraction is also implicitly evaluated via singleton entities, it brings non-trivial im-

plementation issues to the the coreference evaluation metrics (for more details, readers are

referred to Chapter6).

3.3 OntoNotes

The OntoNotes Release 4.0 corpus (Weischedel et al., 2011) provided by the Linguistic Data

Consortium (LDC) is used for CoNLL 2011 shared task on modeling unrestricted coreference

in OntoNotes. It consists of2, 999 English documents,1, 674 of which are chosen as the

training data,202 as the development set and207 as the testing set for the shared task. In the

collection, there are news wire texts, broadcast news, broadcast conversations, magazine and

web documents. The diverse text types impose more challenges on coreference systems.

In addition to the coreference relation, OntoNotes data is also tagged with syntactic trees,

high-coverage verb and some noun propositions, partial verb and noun word senses, and 18

named entity types. The shared task provides two types of annotation layers, the gold layers

(for the training set) and the system predicted layers (for all sets). The participating systems

can only have access to system predicted information duringthe testing phase, which explicitly

stresses on the importance of the end-to-end coreference setting.

In OntoNotes data, appositive structures are annotated as aseparate type and they are not

included in the coreference sets. The predicative nominatives are not considered being coref-

erent either. Event coreference is annotated, such as the [overcoming]2 and [This example]2
entity in the following OntoNotes Example (1). As shown in OntoNotes Example (2), the

generic phrases (e.g. [Officials]1) are also tagged as mentions as long as there are other men-
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tions being coreferent with them. GPEs are linked to the references of their governments, e.g.

[China]1 and [the Chinese government ’s]1 in OntoNotes Example (3).

OntoNotes Example (1):

[The South Korean team of veterans]1, by [overcoming]2 [their]1 injuries to give a

display of athleticism at the international level , have emerged from the shadow of

war and transformed [their]1 handicaps into glorious results.

[This example]2 should provide food for thought to the disabled and sports com-

munities in the future .

OntoNotes Example (2):

[Officials]1 say [they]1 have reduced the reunion schedule from four days to three

and will spend some $ 800,000 to bring the families together ,compared with the

nearly $ 1.6 million it spent for the August event .

OntoNotes Example (3):

[China]1 today blacked out a CNN interview that was critical of [the Chinese gov-

ernment ’s]1 handling of the SARs epidemic and of [the country ’s]1 health care

system.

3.4 I2B2

The I2B2/VA/Cincinnati Childrens 2011 challenge (Uzuner et al., 2012) held one NLP shared

task in 2011, the first track of which was on coreference resolution. Participants were asked

to mark the concept mentions (i.e. entity mentions), including pronouns, as coreferent or not.

Data for this track were provided byPartners HealthCare, Beth Israel Deaconess Medical

Center(MIMIC II Database),University of Pittsburgh, andthe Mayo Clinic. According to

different settings, the task was further divided into task 1A, 1B and 1C. We participated in all

three of them.

The ODIE corpus (including the Mayo and Pittsburgh data sets) is used for task 1A and

task 1B. Task 1B provides manually annotated mentions (referred to as concepts in the task

description) while task 1A requires an automatic mention detection. The ODIE corpus consists

of 97 training documents. The I2b2/VA/Cincinnati corpus (including thePartner, Bethand
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Pittsburghdata sets) with 492 training documents is used for task 1C, where the true mentions

are provided too.

The entities of interest in the I2B2 data sets are significantly different from the ones in

standard coreference data sets (i.e. the previously introduced corpora in this chapter), which

cover persons, problems, treatments, tests, etc. All the texts are in semi-structured formats,

with content of the clinical treatments a patient receives as well as a rich set of his/her relevant

information, e.g. the admission date, the date of birth, etc.

I2B2 Example (1):

[Attending]1 :

[Gayle M Whitener , M.D.]1

I2B2 Example (2):

On hospital day 2 she experienced [atrial fibrillation ]1 with HR in the 140s.

We decided given her age that she would not be a good candidatefor cardioversion

for [her afib]1 nor would she be a good candidate for coumadin.

I2B2 Example (3):

[VULVAR CANCER]1.

A tumor was noted on her vulva which was biopsied and revealed[squamous cell

carcinoma in situ]1.

Examples from I2B2 corpora are shown above. It can be seen thatdue to the organized

structures, some of the coreference entities are obvious tosolve, e.g. [Attending]1 and [Gayle

M Whitener , M.D.]1 in I2B2 Example (1). However, abbreviations (e.g. [atrial fibrillation ]1
and [her afib]1 in I2B2 Example (2)) can be difficult as well as the variants formedical ex-

pressions (e.g [VULVAR CANCER]1 and [squamous cell carcinoma in situ]1 in I2B2 Example

(3)).

3.5 Summary

In order to convey the improvements one achieves, researchers in the corefernce resolution

field always conduct comparison experiments on several standard data sets. The documents

selected for the corpora are conventionally news articles.The community starts to include
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speech transcripts and others only recently in OntoNotes data. In this chapter, the coreference

data sets used by our system are introduced, including one additional medical corpus.

The given examples show that the entity types and the annotation schemes vary between

different data sets, so that the corpus-specific system engineering and feature designing are

necessary to some degree. For instance, features capturingthe knowledge on GPE entities are

required for news articles, while for clinical reports, medical-domain-specific knowledge are

needed in order to solve the difficult cases. Nevertheless, linguistically driven features (e.g.

binding constraints) can be applied universally.
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COPA: Coreference Partitioner

In this thesis, we propose a novel coreference resolution model, that represents documents

as hypergraphs, upon which partitioning algorithms are applied to derive the coreference sets

directly and simultaneously. Our system is namedCOPA, standing for Coreference Partitioner.

The Hypergraph Representation. Unlike most of the previous work that resolves the pair-

wise relations independently (e.g. the two-step methods inChapter2), representing documents

as graphs enablesCOPA to have a global view of the relations between all mentions. More

specifically, we propose the hypergraph model for the representation, motivated by thehigh-

dimensionproperty of the coreference relation. The standard graph models have to collapse

the multiple low-dimensional relations between mentions into single ones (i.e. the coreference

relation) as edges, which leads to a loss of information before the inference phase. In contrast,

a hypergraph is a graph in which (a) a hyperedge can connect more than two vertices, and (b)

between two vertices there can exist more than two hyperedges. Therefore, our hypergraph

model is able tomaintain the original low-dimensional relationsas overlapping hyperedges

(i.e. (b)) until the final inference, and the model alsoeasily represents sets of mentions(i.e.

(a)) which suits well the set property of coreference resolution.

The Partitioning Inference. Upon the hypergraph representation,COPAproduces the coref-

erence sets so that the mentions within the same sets are closely connected and different sets

are far apart from each other. In order to achieve such an optimization, we propose to apply

the graph partitioning technique as the inference method for coreference resolution. Graph

partitioning algorithms seek for a cut upon the graph edges,so that the derived subgraphs are

optimized with respect to a specific graph cut function. InCOPA, we adopt theNormalized

Cut (NCut) function which measures both the inner-set and the inter-set connectivities. The

spectral clustering algorithm is employed to optimize the NCut value, so that the inner-set

connections are as strong as possible while the inter-set ones are as weak as possible. With the
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graph partitioning algorithm applied, theoptimized coreference setsare able to be derived

simultaneously.

The Chapter Organization. Section4.1 illustrates howCOPAworks via examples. The

mathematical background of both the hypergraph model and the spectral clustering algorithm

is described in Section4.2, which provides the notation used throughout the thesis. Section

4.3describes in detail our proposed hypergraph partitioning model for coreference resolution.

The important issues regarding applying the graph partitioning technique to practical uses

are discussed in Section4.4. As mentioned previously, the hypergraph is a generalization

of the standard graph and is equipped with additional power of representation. However,

there exist standard graphs to which the hypergraph can be transformed (see Section4.5).

Upon the standard graphs, more graph-based algorithms can be directly applied. Therefore

such transformation gives the freedom in choosing the inference algorithm to hypergraph-

based models. AlthoughCOPAperforms directly on the hypergraphs, future extensions onthe

inference method may benefit from such graph transformation.

4.1 Introduction to COPA

Figure 4.1 shows the modules of our proposed coreference resolution system. TheCOPA

system includes the learning modules for collecting the hyperedge weights (i.e. theHyperedge

Learner in Section4.3.2) and for predicting the number of entitiesk (i.e. thek model in

Section4.3.4). The resolution modules of theCOPAsystem construct the hypergraph models

for the testing documents (using theHypergraph Builderin Section4.3.2) and partition them

into sub-hypergraphs (using theHypergraph Resolverin Section4.3.3).
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Hyperedge Learner k Model

Hypergraph Builder

Hyperedge Weights The Predicted k

Hypergraphs

Hypergraph Resolver

Coreference Sets

Training Set

Testing Set

Learning Modules

Resolution Modules

Figure 4.1: COPA Model Illustration

COPAExample. To illustrate howCOPAworks, an example of a short document involving

two entities — BARACK OBAMA and NICOLAS SARKOZY — is provided in Table4.1.

[US President Barack Obama] came to Toronto today.

[Obama] discussed the financial crisis with[President Sarkozy].

[He] talked to[him] about the recent downturn of the European markets.

[Barack Obama] will leave Toronto tomorrow.

Table 4.1:COPAExample: Texts

A hypergraph (Figure4.2a) is built for the example document based on three features.Two

red (solid line) hyperedges denote the featurepartial string match— {US President Barack

Obama, Barack Obama, Obama} and {US President Barack Obama, President Sarkozy}.

One green (dashed line) hyperedge denotes the featurepronoun match— {he, him}. Two

blue (dashed-dotted line) hyperedges denote the featuresubject|object match— {Obama, he}

and{President Sarkozy, him}. Each of the hyperedges has an associated edge weights (the

examples of which can be seen in Section4.3.2).
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On this initial representation, spectral clustering technique is applied to find two partitions

that have the strongest within-cluster connections and at the same time the weakest between-

clusters relations. The cut found in this way is calledNormalized Cut(abbreviated asNCut),

which avoids trivial partitions frequently output by the min-cut algorithm (see Section4.2.2).

The two resulting sub-hypergraphs (Figure4.2 b) correspond to two resolved entities shown

on both sides of the bold dashed line, i.e. the upper left sub-graph being BARACK OBAMA

and the lower right NICOLAS SARKOZY. In real cases, multiple entities can be found within

one document.

Figure 4.2: COPA Example: Processing Illustration

4.2 The Mathematical Background

4.2.1 The Hypergraph Representation

A hypergraph is a graph in which hyperedges can connect more than two vertices, and between

two vertices there can be multiple hyperedges.

The Hypergraph Notation. Let HG = (V,E) be a hypergraph with a vertex setV and

a hyperedge setE. The hyperedges can connect arbitrarily multiple verticessuch thatE ⊆

{U |U ⊆ V, |U | > 1}. A weightedHG has a positive weight valuew(e) associated with each

hyperedgee. A vertexv is incident with a hyperedgee if it is connected with the edge, being

denoted asv ∈ e.

For a vertexv ∈ V , the degree ofv is the number of hyperedges connecting to it and is

thus defined as
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d(v) =
∑

e∈E|v∈e

w(e) (4.1)

For a hyperedgee ∈ E, its degree is the number of vertices connected by it, denoted as

δ(e) = |e| (4.2)

In order to be analyzed mathematically, the hypergraph representation is further trans-

formed into matrices. The incidence matrixH of a HG is a |V | × |E| matrix with entries

H(v, e) = 1 if v ∈ e and 0 otherwise.Dv andDe denote the diagonal matrices with the

vertex and hyperedge degrees respectively, andW the diagonal matrix with the corresponding

hyperedge weights. After the transformation, the matricescontain full information about the

original hypergraphs.

The Matrix Computation Example. We use the hypergraph in Figure4.3as an example to

illustrate the matrix computations introduced above. The numbers in brackets are the corre-

sponding hyperedge weights.

v1 v2 v3 v4

e1 (0.4)
e2 (0.1) 

e3 (0.7) 

Figure 4.3: An Example for the Hypergraph Notation

The incidence matrixH of this hypergraph and the hyperedge weight matrixW are

H =











e1 e2 e3

v1 1 0 0

v2 1 1 0

v3 1 1 1

v4 0 0 1











, W =







e1 e2 e3

e1 0.4 0 0

e2 0 0.1 0

e3 0 0 0.7
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The degrees of vertices are calculated as

d(v1) = w(e1) = 0.4

d(v2) = w(e1) + w(e2) = 0.5

d(v3) = w(e1) + w(e2) + w(e3) = 1.2

d(v4) = w(e3) = 0.7

so that the vertex degree matrixDv and the hyperedge degree matrixDe are

Dv =











v1 v2 v3 v4

v1 0.4 0 0 0

v2 0 0.5 0 0

v3 0 0 1.2 0

v4 0 0 0 0.7











, De =







e1 e2 e3

e1 3 0 0

e2 0 2 0

e3 0 0 2







4.2.2 Hypergraph Partitioning

Grouping data into meaningful clusters is well known ascluster analysisor data clustering,

which is to discover the intrinsic structures of the focusing data sets (seeJain et al. (1999)

for an overview). The data points to be clustered are usuallyin vector-based feature repre-

sentations, the quality of which often influences the performance of the clustering algorithms

directly. For tasks where the relations between data pointsare of greater interest, such as coref-

erence resolution, explicit data vector representations can be avoided by resorting to graph

models.

Partitioning upon graphs is also referred asgraph clustering. Graph clustering is the task

of dividing the vertices in a graph into sets (i.e. sub-graphs), such that vertices within sets

are tightly connected to each other in some pre-defined sense, while the ones from different

sets are loosely related. The edges to be removed to output the sub-graphs form acut, and the

edges are said to be crossing the cut. In a weighted graph, thevalueof a cut is defined by the

sum of the weights of these edges crossing the cut. Graph clustering algorithms are aiming at

finding a partition that optimizes the chosen cut value, so that the partition provides an optimal

segmentation solution on the graph.

Spectral clustering is a family of clustering algorithms that has been proven to work ef-

ficiently in applications and frequently outperforms standard clustering algorithms such as

k-means. InCOPA, we adopt a spectral clustering algorithm that can perform directly on

hypergraph models.
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4.2.2.1 Spectral Clustering

Taking the two-way partitioning as an example, we introducebriefly the intuitions behind

spectral clustering in this section.

The Standard Graph Cut. LetA,B denote two disjoint sub-graphs from the original graph

G = (V,E) (V , E are vertex set and edge set respectively), whereA∪B = V andA∩B = ∅.

The standardgraph cutis defined as

cut(A,B) =
∑

u∈A,v∈B

w(u, v) (4.3)

Finding the minimum cut (min-cut) of a graph (i.e.minA,B(cut(A,B))) is the simplest and

most direct way to solve the partitioning problem. Themin-cut is well-studied (seeStoer &

Wagner (1997) for algorithms and discussions) and is used in applications too (Wu & Leahy,

1993). However, it is noticed that themin-cut criteria favors cutting isolated vertices (Jain

et al., 1999) , which have few edges connecting to others in the graph so that the corresponding

cut value is small. Most applications focus on detecting meaningful cluster structures (i.e. the

clusters consisting of multiple vertices), and are not interested in such trivial singletons output

by min-cutalgorithms.

Normalized Cut. Shi & Malik (2000) propose a new measure of disassociation between

sub-graphs, taking the inner-cluster density into consideration too. The new measure is called

Normalized Cut(NCut):

NCut(A,B) =
cut(A.B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(4.4)

Whereassoc(A, V ) =
∑

u∈A,t∈V w(u, t) sums all the edges between vertices inA sub-graph

and all vertices in the original graph. Therefore, by minimizing theNCutvalue, the resulting

sub-graphs should be weakly connecting to each other while being as dense as possible at the

same time.

However, introducing the inner-cluster factor makes the minimization of NCut an NP-

hard problem. Spectral clustering techniques (Chung, 1997; Shi & Malik, 2000; Ng et al.,

2002) solve the relaxed version by partitioning the rows of a matrix (see the Laplacian matrix

Lsym in Section4.2.2.2) according to the components in the top few singular vectorsfor the

matrix. They are simple to implement and reasonably fast andhave been shown to frequently

outperform traditional clustering algorithms such as k-means algorithm in applications (von

Luxburg, 2007).
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4.2.2.2 Spectral Clustering for Hypergraphs

(Zhou et al., 2007) generalize spectral clustering to operate directly on hypergraphs (in contrast

to e.g.Agarwal et al. (2005) who partition a graph that approximates the hypergraph). In

COPA, we adopt their hyperspectral clustering algorithm.

Following the same intuition behind the standard normalized cut as introduced in Section

4.2.2.1, hypergraph spectral clustering defines theNCuthg of ak-way partitioningPk as

NCuthg(Pk) =
∑

1≤i≤k

vol∂Vi

volVi

(4.5)

WhereVi ∩ Vj = ∅, for all 1 ≤ i, j ≤ k andi 6= j.

The volumevolVi of a vertex setVi is defined by

volVi =
∑

v∈Vi

d(v) (4.6)

The hyperedge boundary∂Vi is defined as the graph cut separatingVi from other vertices

in the graph, such that

∂Vi = {e ∈ E|e ∩ Vi 6= ∅, e ∩ V c
i 6= ∅} (4.7)

whereV c
i denotes the complement ofVi.

The volume of the hyperedge boundary is defined by

vol∂Vi =
∑

e∈∂Vi

w(e)
|e ∩ Vi||e ∩ V c

i |

δ(e)
(4.8)

When a minimizedNCut(Pk) value is reached, the linkage between clusters is as weak as

possible while it is as dense as possible within clusters. The minimization can be approached

using a relaxation approach, which approximates discrete cluster memberships with continu-

ous real numbers by solving the eigen problem of thehypergraph Laplacian. The symmetric

Laplacian (Lsym) (von Luxburg, 2007) is adopted.

Lsym = I −Dv
− 1

2HWDe
−1HTDv

− 1

2 (4.9)
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Given a hypergraphHG, a set of matrices is generated.Dv andDe denote the diagonal

matrices containing the vertex and hyperedge degrees respectively. |V | × |E|matrixH repre-

sents theHG with the entriesh(v, e) = 1 if v ∈ e and0 otherwise.HT is the transpose ofH.

W is the diagonal matrix with the edge weights.

Let (λi, vi), i = 1, . . . , n, be the eigenvalues and the associated eigenvectors ofL, where

0 ≤ λ1 ≤ · · · ≤ λn and‖vi‖ = 1. The continuous solution to minimizingNCut(Pk) is then

provided by a new data representationX with lower dimensions compared with the original

data dimensions:

X = (v1, · · · , vk) (4.10)

whereX is called thek-th orderspectral embeddingof the graph. It has been shown that

k is generally equal to the number of clusters (Ng et al. 2001).A standard data clustering

algorithm, such as the k-means method (MacQueen, 1967), can afterward be applied to cluster

the graph nodes in the new space. An illustration is given in Figure4.4 to show how spectral

clustering work on graph models.
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Figure 4.4: Illustration of Spectral Graph Clustering

4.3 COPA: Coreference Resolution via Hypergraph Parti-

tioning

Figure4.5 illustrates the work flow of theCOPAsystem. The system takes raw documents as

input and outputs the expected coreference sets. The pre-processing components perform text

parsing (e.g. POS tagging and syntactic parsing), mention identification, and mention-relevant

information extraction (e.g. semantic class identification). With the identified mentions and

the extracted features,COPA represents the input text as hypergraphs. At the end,COPA

partitions the hypergraphs into coreference sets.
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Figure 4.5: Illustration ofCOPASystem Flow

4.3.1 Preprocessing Pipeline

COPAis implemented on top of theBART-toolkit (Versley et al., 2008). Documents are trans-

formed into theMMAX2-format (Müller & Strube, 2006) which allows for easy visualization

and (linguistic) debugging. Each document is stored in several XML-files representing dif-

ferent layers of annotations. These annotations are created by a pipeline of preprocessing

components. We use theStanford MaxentTagger(Toutanova et al., 2003) for part-of-speech

tagging, and theStanford Named Entity Recognizer(Finkel et al., 2005) for annotating named

entities. In order to derive syntactic information, we use the Charniak/Johnson reranking

parser (Charniak & Johnson, 2005) combined with a constituent-to-dependency conversion

Tool 1.

We have implemented an in-house mention tagger, which makesuse of the parsing output,

the part-of-speech tags, as well as the chunks from theYamcha Chunker(Kudoh & Matsumoto,

2000). The mention tagger detects automatically the mention boundaries, along with their

syntactic heads.

The separated-annotation-layer scheme and the flexible feature representation (see Chapter

5) enableCOPA to incorporate knowledge easily. For instance, to enrich the system with

medical domain information, we query the Unified Medical Language System (UMLS)2 and

the MetaMap software (Aronson, 2001) for each mention. All the top matched concept names

returned by the MetaMap API as well as their corresponding definitions in the UMLS database

are collected during preprocessing.

4.3.2 Constructing Hypergraphs for Documents

The Hypergraph Builder component ofCOPA represents documents in undirected hyper-

graphs with basic relational features. Hyperedges are derived from the adopted feature set.
1http://nlp.cs.lth.se/software/treebank_converter
2http://www.nlm.nih.gov/research/umls/

http://nlp.cs.lth.se/software/treebank_converter
http://www.nlm.nih.gov/research/umls/
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Each hyperedge corresponds to a feature instance modeling aspecific relation of that feature

type between two or more mentions. This leads to initially overlapping sets of mentions (as in

Figure4.2(1a)).

Hyperedges are assigned weights that are calculated from the training data using theHy-

peredge Learnercomponent, as the percentage of the initial edges being in fact coreferent.

For instance, when calculating the edge weights for theHeadMatchfeature,126 binary corre-

sponding relations are found, out of which55 are coreferent. As a result, the edge weight for

HeadMatchis 55
126

= 0.4365. Since only basic statistics are collected from the annotated data,

COPAis not sensitive to the size of the training set (see Chapter7).

The weights for some of (Soon et al., 2001)’s features learned from the ACE 2004 training

data are given in Table4.2.

Edge Name Weight

Alias 0.777

StrMatchPron 0.702

Appositive 0.568

StrMatchNpron 0.657

NonPronPron 0.403

Table 4.2: Hyperedge Weight Examples for ACE 2004 Data

4.3.3 Hypergraph Resolver

Raw documents are transformed into hypergraphs with mentions as vertices and features as

edges. In contrast to the common practice in graph models, weincorporate rich relational

information directly without assuming a distance metric and maintain all the relations until

the final generation of the coreference sets. As introduced in Section4.2.2.1, for a given

hypergraph, the hypergraph LaplacianLsym is computed. After solving the eigenvectors of

Lsym, a new representation of the original vertices are formed. As illustrated in Figure4.6,

after forming a matrix using the eigenvectors as columns, the rows of the matrix are taken

as the new vector representations of the vertices. The vertices in the new spectral space can

easily be partitioned, because they are well-separated by then.
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Figure 4.6: Illustration of the Spectral Embedding

TheHypergraph Resolver(i.e. the partitioner) aims to detect the intrinsic clusterstructure

in the hypergraph. It partitions every hypergraph into several sub-hypergraphs, each corre-

sponding to one set of coreferent mentions (see e.g. the output in Figure4.2(1b) which con-

tains two sub-hypergraphs). Section4.3.3.1and4.3.3.2describe our proposed partitioning

algorithms which form the core parts of the hypergraph resolver.

4.3.3.1 Recursive 2-way Partitioner

We propose the recursive variant of spectral clustering,recursive 2-way partitioning (R2 par-

titioner) (Cai & Strube, 2010a). This method does not need any information about the number

of target sets (the numberk of clusters). Instead a stopping criterionα⋆ has to be provided

which is adjusted on development data. At each recursion step, theR2 partitionerbi-partitions

the focusing graph and the resulting partitions will be keptonly if the cut value is smaller than

α⋆. The graph Laplacian is re-computed at each recursion basedon the input graph. The

algorithmic details are referred to Algorithm1.

In theR2 partitioner, only one eigenvectorV2 is used for the spectral embedding and con-

sequently the new vertex representation is only in one dimension. Therefore, directly search-

ing for a best splitting point inV2 is sufficient to partition the graph, with vertices ordered

according to their correspondingV2 values. For recursion purpose, all the sub-hypergraphs

that can be partitioned with aNCut value smaller than theα∗ are partitioned further. When

theNCutvalue is bigger than theα∗, it is suggesting a strong connectivity within the hyper-

graph in focus so that it should not be partitioned any more.
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Algorithm 1 R2 partitioner

1: Note:{ Lsym = I −Dv
− 1

2HWDe
−1HTDv

− 1

2 }

2: Note:{ NCut(S) := vol∂S( 1
volS

+ 1
volSc )}

3: input : target hypergraphHG , predefinedα⋆

4: Given aHG , construct itsDv, H, W andDe

5: ComputeL for HG

6: Solve theL for the second smallest eigenvectorV2

7: for each splitting point inV2 do

8: calculateNCut i
9: end for

10: Choose the splitting point withmin
i

(NCuti)

11: Generate two subHG ’s

12: if min
i

(NCut i) < α∗ then

13: for each subHG do

14: Bi-partition the subHG with R2 partitioner

15: end for

16: else

17: Output the current subHG

18: end if

19: output: partitionedHG

Since the mention detectors usually aim at high recall, there are a lot of system mentions

which do not match with true mentions. Including system mentions into graphs results in

loosely connected outliers, andCOPAis expected to split them out as singleton clusters. Using

Normalized Cut does not generate singleton clusters, hence aheuristic singleton detection

strategy is proposed inCOPA. We apply a thresholdβ to each node in the graph. If a node’s

degree is below the threshold, the node will be removed.

4.3.3.2 Flat k-way Partitioner

The R2 partitionergenerates an optimized bi-partitioning at each recursion step. Due to its

hierarchical nature, however, it is not guaranteed that thefinal output clusters are also globally

optimized, and it does not have any intrinsic means to include global constraints to globally

guide the clustering. In order to overcome these problems, we propose a flat variant of parti-

tioner,flatK partitioner(see Algorithm2). k clusters will be output simultaneously by making

use of thek smallest eigenvectors of the hypergraph LaplacianLsym (as in Figure4.6).
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Algorithm 2 flatK partitioner

1: Note:{ Lsym = I −Dv
− 1

2HWDe
−1HTDv

− 1

2 }

2: Note:{ NCut(Pk) =
∑

1≤i≤k
vol∂Vi

volVi
}

3: input : target hypergraphHG , number of clustersk

4: Given aHG , construct itsDv, H, W andDe

5: ComputeLsym for theHG

6: Solve theLsym for thek smallest eigenvectorsv1, ..., vk
7: Construct the spectral embeddingX = (v1, · · · , vk)

8: Apply k-means to the points(xi)i=1,...,n to producek clustersC1, ..., Ck

9: output: partitionedHG with clustersC1, ..., Ck

To assist theflatK partitioner we propose a preference-basedk modelto predict the num-

ber of entities within documents. The details of thek modelis introduced in Section4.3.4.

4.3.4 k Model: Predicting the Number of Entities

Most clustering methods for multi-cluster tasks assume thenumber of clustersk to be known

beforehand. However, ifk is not known, choosing it turns out to be a general problem for

clustering algorithms, especially when partitioning noisy data. Several methods to estimate

k have been proposed (for an overview see (Milligan & Cooper, 1985) and (von Luxburg,

2010)) which focus on detecting the intrinsic cluster structures from the data where clustering

is viewed as an unsupervised task.

The methods of analyzing the cluster structures, such as thegap statistic (Tibshirani et al.,

2001) and the stability measurements (Ben-David et al., 2006), require relatively big graphs

to support valid statistics. For instance, when there are less than100 vertices in a graph to be

partitioned, the analysis methods are not able to work stably. Since documents vary largely

in numbers of mentions,COPAseeks methods that arenot sensitive to the graph sizeswhen

predicting the number of entities.

In this thesis, we propose a supervisedk modelto decide on ak — the number of entities

— for each hypergraph. The objective of ourk modelis to find the bestk thatoptimizes the

end coreference performance. The bestk does not necessarily correspond to the number of

true entities (the truek), when spurious system mentions are included in the hypergraphs. We

address thek predicting problem with preference modeling, where two partitionings of two

differentk compete with each other and the better partitioning is expected to generate a better

coreference performance (e.g. the F-score number). By applying thepreference modeling,

the differences between partitionings can be captured, which are less sensitive to noise than

the methods solely analyzing the graph structures. In orderto avoid confusion, the terms
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Partitioning, Partition andClusterare clarified via the following example.

• mentions

– m1, m2, m3, m4, m5

• apartitioning P2 (k = 2)

– {m1, m2}, {m3, m4, m5}

• apartitioning P3 (k = 3)

– {m1, m2}, {m3, m4}, {m5}

• an examplecluster|partition

– {m1, m2}

Our proposedk modelis outlined in Algorithm3. Given a set of possiblek’s for a hyper-

graph, a preference model is trained to find the bestk with respect to the application F-score.

The details of the model are described in the following subsections.
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Algorithm 3 k modeloutline

Training :

Construct hypergraphs for the documents

for each hypergraphdo

Estimate thek range,[k1, kx]

Decide on OneCluster

for ki ∈ [k2, kx] do

Generate a partitionPk

end for

Find the best partitionPbest

Pair the{Pkbest , Pki}, kbest < ki, as positive training instances

Pair the{Pki , Pkbest}, ki < kbest, as negative training instances

end for

Build k modelfrom training instances

Testing:

Construct hypergraphs for the documents

for each hypergraphdo

Estimate thek range,[k1, kx]

Decide on OneCluster

for ki ∈ [k2, kx] do

Generate a partitionPk

end for

Pair each{Pki , Pkj}, ki < kj, as testing instances

Use the learnedk modelto annotate the instances

Choose the bestPk using the round-robin scheme

Output Pk

end for

Training. Before the training, a range of possiblek’s for each hypergraph is estimated based

on the string properties of the mentions. The lower bound is set to be1, while the upper

bound is the number of different mention strings. Determining the possiblek’s can also be

approached by including more linguistic knowledge, for instance, to set the lower bound as

the number of different proper names, which are most likely to be different entities.

Since determining if a graph should be partitioned at all (asa binary decision) is easier

than deciding on the best partition (as a preference decision), the cluster withk = 1 denoted

asOneClusteris decided separately by simply looking at the the second cluster withk = 2, as

opposed to the other situations in which both partitioningsneed to be considered. A graph with
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the second cluster which generates a highNCutvalue (greater than 0.1 in our experiments) will

prefer the OneCluster, and all the others will be passed to thepreference model.

We partition each hypergraph built from the training data with a set of possiblek’s. The

resulting partitioning withki is denoted asPki . Thek modelaims to find theargmaxki F (Pki),

where theF (Pki) denotes the coreference F-score when the partitioningPki is taken.

Two partitionings are paired as one training instance,{Pki , Pkj} with ki < kj. An instance

is labeled positive whenF (Pki) > F (Pkj), and negative otherwise. This way, thek model

casts the original problem of picking the bestk into a binary classification task where the

preference among each pair ofk’s is learned.

Testing. For testing data, all pairs of partitionings{Pki , Pkj} with ki < kj are selected as

instances. The learnedk modelassigns each instance a label of positive or negative, with

positive indicating the preference forPki and negative forPkj .

To find the topk from the pairwise preference decisions, a round-robin strategy is adopted.

We assign each partitionPki a confidence valueconf(Pki) = pos(Pki) − neg(Pki), where

pos(Pki) is how many timesPki is preferred, andneg(Pki) denotes the times not preferred.

The topk then is simply the one with the highest confidence value.

k Model Features. There are currently only a few features used for thek model proposed

in this section. For an instance{Pi, Pj}, there are features:

(1)MaxNCut1: the biggestNCutvalue of partitioningPi;

(2)MaxNCut2: the biggestNCutvalue of partitioningPj;

(3)MaxNCutDiff : the difference between biggestNCutvalues of the partitioningPj

and partitioningPj;

(4) kDiff : the difference between thek values used for both partitioningPi and parti-

tioningPj;

(5) ConNumDiff : the difference between the numbers of constraints violated in par-

titioningPi and partitioningPj, and the constraints used are simply the negative features

used inCOPA(see Section5.2).

For thek modellearner, a decision tree classifier (J48provided by (Witten & Frank, 2005))

is used.
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4.3.5 Complexity ofCOPA

In COPA, the hyperedge weights are assigned using simple descriptive statistics, so that the

time theHypergarph Resolverneeds for building the hypergraph model, transforming the

hypergraph to matrices and computing the graph Laplacian matrix is not substantial. For

eigensolving, we use an open source library provided by the Colt project3which implements

a Householder-QL algorithm to solve the eigenvalue decomposition. When applied to the

symmetric graph Laplacian, the complexity of the eigensolving is given byO(n3), wheren is

the number of the mentions in the hypergraph.

For theR2 partitioner, only the top two eigenvectors are required at each recursion, the

decomposition can be easily improved by Lonczos algorithm which givesO(nm) as the com-

putational cost withm as the number of an equivalent (different) graph of the hypergraph. The

equivalent graph here is depicted by the hypergraph Laplacian implicitly.

To sum up, the worst computational complexity of our resolving procedure givesO(n3)

and in hierarchical manner it is onlyO(nm). Spectral clustering only becomes problematic

when the graph has millions of vertices. However, for documents where at most hundreds of

mentions appear it is not an issue at all.

4.4 Implementation Issues

4.4.1 The Post-processing For Pronoun Anaphors

In a hypergraph built byCOPA, pronouns are connected to all other non-pronouns which do

not violate any agreement relations, such as gender and number agreements. In an end-to-end

setting, there are many singleton entities included into the hypergraphs via their connections to

pronouns. As mentioned before, a spectral clustering algorithm is unable to separate singletons

during partitioning, thus we may derive clusters mixed withsingleton entities. In order to

address this issue, we propose a post-processing strategy.For a pronoun anaphor, only its

strongest connection within its assigned cluster is kept and all other links are removed.

Figure4.7 gives an example for the post-processing of pronouns, the graph is shown in

a standard graph form for the sake of clarity. The dashed (red) circles indicate the cluster

boundaries.
3http://acs.lbl.gov/ ˜ hoschek/colt/

http://acs.lbl.gov/~hoschek/colt/
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Figure 4.7: Illustration of the Post-processing for Pronouns

Considering the generated cluster in the left side of Figure4.7which contains the mentions

{a1}, {a2}, {he}, {b1}, {c1}, with links between{he} and all the other mentions and one link

between{a1} and{a2}. Assuming the strongest connection to{he} is {a1}, the proposed

post-processing removes{b1} and{c1} while leaving{a1}, {a2}, {he} in the final cluster.

This post-processing is driven by the intuition that the connections between pronouns and

non-pronouns are not confident enough to support transitiveclosures. For instance, the links

between{he} and{b1}, {c1} are not confident enough to enforce a connection between{b1}

and{c1}. We only maintain one link per pronoun after the partitioning procedure, e.g. the one

between{he} and{a1}, but keeping other relations being transitive so that{a2} is also in the

final cluster.

4.4.2 Partitioning Issues

Graph Components. The number of zero eigenvalues corresponds to the number of com-

ponents in the graph (von Luxburg, 2007). A graph component is a disconnected sub-graph,

and inCOPAmultiple components can occur when only limited features are used, so that not

all mentions from the document are connected (directly or via a path). Different components

can be processed separately during partitioning process, for the sake of reducing complexity.

Only for the connected graphs, the top (k) eigenvectors are taken as described for the spectral

embedding.

Eigenvalue Smoothing. It is worth noting that depending on the implementation details of

the eigen decomposition component, the solved eigenvaluescan be a double or a float type. It

is necessary to smooth the eigenvalues, for instance by applying an Epsilon variable (e.g. a

small number) to allow for small fluctuations on the eigenvalues.



4.5 Hypergraphs to Standard Graphs 57

The k-means Initialization. It is well known that the k-means algorithm is sensitive to the

initialization of cluster centers. Since there is a lot of noise involved in our hypergraphs,

the decision on the initial cluster centers becomes even more crucial. Accidentally choosing

the noisy mentions as initial centers can generate unexpected clusters. InCOPA, we address

this issue by restricting the initial cluster centers to proper names that are more likely to lead

entities. This modification manages to introduce application specific knowledge into the k-

means to guide the initialization, and can be easily improved by estimating the entity centers

using more information.

4.5 Hypergraphs to Standard Graphs

The hypergraph is a generalization of the standard graph. Itis possible to find graphs which

approximate hypergraphs and thus can be accessed using the standard graph-based algorithms.

In order to preserve the power of representation of the hypergraph, inCOPAwe avoid the

transformation step by applying the partitioning algorithm directly to the hypergraph models.

However, in this section, we introduce the equivalent graphs to the hypergraph, which serve

as alternatives when hypergraph-based algorithms are not available or whenone wants to

explore more inference models upon the hypergraph representation.

The two most commonly used ones areStar ExpansionandClique Expansion(Agarwal

et al., 2005). Star Expansion(in Section4.5.1) introduces a new star vertex for each hy-

peredge, which connects all the vertices covered by the original hyperedge. As a result, a

bi-partite graph is generated where the edge weights can be assigned by distributing the cor-

responding hyperedge weights evenly.Clique Expansion(in Section4.5.2) expands each hy-

peredge into cliques, and the similarity between two vertices is proportional to the summed

weights of their common labels.

4.5.1 The Star Expansion

Star Expansiontransforms the hypergraph into a bi-partite graph, where there are additional

starred vertices corresponding to original hyperedges. All the vertices belonging to a hyper-

edge are therefore connected to the new starred vertex in thebi-partite graph. The weights of

the multiple edges generated from one hyperedgee is normalized by the degree ofe:

w′(u, e) = w(e)/δ(e) (4.11)

where thew(e) is the original hyperedge weight andu is a vertex connecting toe.
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4.5.2 The Clique Expansion

Clique Expansiontransforms each hyperedge into several pairwise edges (Zien et al., 1999),

so that the vertices in a hyperedge form a clique. The new edgeweights between vertexu and

v is

w′(u, v) = µ
∑

e

h(u, e)h(v, e)w(e) (4.12)

where thew(e) is the original hyperedge weight andµ is a fixed scalar.

4.6 Summary

Our Contributions. In this chapter, we introduce our proposed coreference resolution model

— COPA, standing for coreference partitioner. Our contributionsare two-fold, (1) represent-

ing the coreference relation with thehypergraph model, and (2) inferring coreference sets

using thehypergraph partitioning algorithms.

COPArepresents documents in the hypergraph model, so that the multiple low-dimensional

relations between mentions are easily expressed as hyperedges without the necessity of com-

bining them before the final decision. Upon the constructed hypergraphs, the spectral cluster-

ing technique is applied to derive coreference sets directly and simultaneously. By adopting

spectral clustering algorithms, it is made sure that the mentions within a coreference set are

closely related, while the ones from different sets are far apart from each other.

Spectral Hypergraph Partitioning for Coreference Resolution. The proposed hypergraph

partitioning model looks at the entire graph to make coreference decisions. Not only the

context preceding a mention but also the one after it are evaluated to assign the mention to one

of the clusters. We propose two partitioning algorithms forCOPA, theR2 partitionerperforms

the hierarchical clustering and theflatK partitioner partitions only once. To assist theflatK

partitioner, we propose a novelk modelto predict the number of entities within documents.

End-to-end Coreference Resolution. We address the coreference resolution problem in an

end-to-end system setup, where noise is unavoidable and thementions to be resolved may

not align with the true mention set. Implementing coreference models in end-to-end systems

is very important, since it has been observed that improved performance on true mentions

does not necessarily translate into the improved performance on system mentions (Ng, 2008).

The implementation issuesof applying clustering techniques to coreference resolution are

addressed in this chapter too.
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Overall, the hypergraph representation ofCOPAavoids the expensive training for the fea-

ture combination, and its light weighted partitioning-based inference does not ask for complex

probabilistic estimations.COPA’s partitioning-based strategy can be taken as a general pref-

erence model, where the preference of entities for one mention depends on information on all

other mentions. Therefore, we believe thatCOPAis a coreference model preferable not only

to the previous local models but also to complicated graphical methods.
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Chapter 5

COPAFeatures

In this chapter, we introduce the feature representation scheme encoded inCOPA. Our features

aim to capture the linguistic phenomena of the coreference relation, as well as the data-specific

statistics.COPAhas been applied to various types of data sets ranging from news articles (e.g.

MUC, ACE and OntoNotes data sets in Chapter3) to clinical reports (e.g. the I2B2 corpus),

the feature sets it implements therefore cover both generaland domain-specific information.

5.1 The Feature Categorization in the Hypergraph

Positive relational features can be incorporated into the hypergraph model ofCOPAas types

of hyperedges (e.g. in Figure4.2 (b) the two hyperedges marked by “–··” are of the same

type from featuresubject/object match), so that a realized hyperedge is an instance of a cor-

responding type. All hyperedge instances that are derived from the same type have the same

weight, but they may get re-weighted by the distance feature(Section5.5). Negative relations

can be treated either as filters to be applied to the graph construction phase (e.g. the negative

features described in Section5.2) or as constraints to be applied to the inference procedure

(see Chapter8). In this chapter, we only focus on the features adopted for constructing the

hypergraphs, which consist of three categories:

Negative Features:to prevent hyperedges between mentions;

Positive Features:to generate relatively strong hyperedges between mentions;

Weak Features: to add hyperedges to an existing hypergraph without introducing new

mentions into the hypergraph;

Negative features here act as global filtering variables, avoiding incompatible mentions

to be connected in a graph. For instance, although [Mr. Clinton] and [Mrs. Clinton] match
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via substring match(positive) feature, there is no hyperedge built between them due to their

incompatible gender.

COPAdifferentiates between positive and weak features, because spectral clustering al-

gorithms do not have intrinsic means to handle singleton clusters. Recall that the spectral

clustering technique targets at optimizing the normalizedcut (NCut) value, which has the

inner-cluster connectives factor as the denominator. Thistherefore makes it impossible to

output singleton clusters. In order to avoid too much noise (e.g. singleton mentions) in our

hypergraph model, we construct the graphs in a conservativemanner. While weak relations

contribute to the graph structure, they tend to involve too many singleton mentions into the

graph. So we construct hypergraphs solely out of the positive features and only add weak

relations into the graph afterward without introducing newvertices at all.

In the following sections we describe the features implemented inCOPA.

5.2 Negative Features

Negative features describe the pairwise relations betweenmentions that are most likely to be

not coreferent. They have been conventionally used in combination with other features (Soon

et al., 2001) and is implemented as weak positive features in an early version ofCOPA(Cai

& Strube, 2010a). Now we apply negative features as global filters in the graph construction

phase. When mentions are detected to be in a negative relation, it is made sure that no edges

are built between them in the hypergraphs.

(1) N Gender, (2) N Number

Two mentions do not agree in gender or number.

For instance, no edge is allowed between the mentions [Hillary Clinton] and [he] due to their

incompatible gender. The mention [Mr. Sisulu] has the negative relation of incompatible

number with the mention [boys].

(3) N SemanticClass

Two mentions do not agree in semantic classe.

For news articles (e.g. MUC, ACE and OntoNotes data sets), onlytheObject, Date, Person

and other top categories derived from WordNet (Fellbaum, 1998) are used. For clinical reports

(e.g. I2B2 corpus), this feature is replaced by feature (7) that identifies the medical types for

each mention.

(4) N Mod
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Two mentions have the same syntactic heads, and the anaphor has a modifier that does not

occur in the antecedent or contradicts the modifiers of the antecedent.

For instance, a negative relation is built between the mentions [expedited proceedings] and [the

investigation proceedings], as the modifiers of the two mentions convey different information.

However, simply enforcing the modifiers to be the same cannothandle the situations in which

the modifiers appear differently though without contradicting each other (e.g. [the case in

question] and [the case against the accused]). The current version ofCOPAdoes not take care

of these difficult cases.

(5) N DSPrn

Two first person pronouns (i.e. [I ], [me], [my] etc.) in direct speech which are assigned

to different speakers should not be linked together. The speaker information is given in the

OntoNotes data set.

(6) N ContraSubjObj

Two mentions are in the subject and object positions of the same verb, and the anaphor is not

a possessive pronoun.

For instance, [John] talks to [him], where [John] should not be coreferent with [him].

(7) N i2b2Type

Two mentions have different mention types (e.g.treatment, problem, etc. as defined in the

I2B2 data set).

For instance, [Ischemic bowel] has an incompatible I2B2 type with [Thoracentesis], as a clin-

ical problem mention cannot be coreferent with a medical treatment mention.

(8) N i2b2Quant

Two mentions are modified by different quantities.

For instance, the mention [heart rate] in the text fragment ”heart rate 116” and the mention [a

heart rate] in the text fragment ”a heart rate of 128” cannot be coreferent.

(9) N i2b2ConName

Two mentions have the same syntactic heads, and their matched (if ever) concept names in

MetaMap are different.

For example, the mention [back pain] and the mention [chest pain] are in this negative relation.
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5.3 Positive Features

The majority of the well-studied coreference features (e.g. Stoyanov et al. (2009)) are positive

coreference indicators. In our system, the mentions that participate in positive relations are

included in the hypergraphs as vertices.

(10) StrMatch Npron & (11) StrMatch Pron

After discarding stop words, if the strings of mentions completely match and are not pronouns,

they are put into hyperedges of theStrMatchNpron type. When the matched mentions are

pronouns, they are connected with aStrMatchPronhyperedge. We differentiate the two types

of string matchings, as pronouns suggest much less information than non-pronouns do.

(12) Alias

After discarding stop words, if mentions are aliases of eachother (i.e. proper names with

partial match, full names and acronyms of organizations, etc.).

For instance, [Australia’s Qintex] and [Qintex Australia Ltd.] are aliases of each other.

(13) HeadMatch

If the syntactic heads of mentions match, such as [the U.S. rules] and [the rules].

(14) Nprn Prn

If the antecedent is not a pronoun and the anaphor is a pronoun. The feature is designed with

the intuition that pronouns are used to refer to existing entities. Although this feature is not

highly weighted, it is crucial for integrating pronouns into the hypergraph.

(15) Speaker12Prn

If the speaker of a second person pronoun is talking to the speaker of a first person pronoun,

the two pronouns are connected with a hyperedge. This type ofhyperedges only contain first

and second person pronouns. This feature is useful for the OntoNotes data set where speaker

information (e.g. the speaker names and the speech boundaries) is explicitly provided.

(16) DSPrn

If one of the mentions is the subject of aspeakverb, and other mentions are first person pro-

nouns within the corresponding direct speech. Direct speech boundaries are detected simply

by paring double quotes.
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(17) ReflexivePrn

If the anaphor is a reflexive pronoun, and the antecedent is the subject of the same clause.

Dependency trees are utilized to conduct the necessary grammatical analysis.

In sentence ”[today’s generation of Taiwanese] save our island’s last remaining forest of these

giant trees, for [themselves] and later generations?”, the marked mentions are linked via this

feature.

(18) PossPrn

If the anaphor is a possessive pronoun, and the antecedent isthe subject in the same sub-clause.

In sentence ”How would you feel if [your child] learned from [his] classmates to cough up

phlegm all over the place?”, the marked mentions are in this relation.

(19) GPEIsA

If the antecedent is a Named Entity of GPE entity types (i.e. one of the ACE entity type (NIST,

2004)), and the anaphor is a definite expression of the same type.

For instance, [Iraq] is linked with [the nation].

(20) OrgIsA If the antecedent is a Named Entity of Organization entity type, and the

anaphor is a definite expression of the same type.

For instance, [Google Inc.] is linked with [the company].

Feature (19) and (20) capture the IsA relations for specific types of Named Entities, and

are designed for news article data sets.

(21) Appositive

Two mentions are in an appositive structure, such as the mention [Laurence Tribe, Gore’s

attorney] and its embedded mention [Gore’s attorney]. Depending on the annotation schemes

of the adopted data set, this relation may or may not be a coreference indicator.

(22) Concept

We disambiguate each Named Entity to Wikipedia entries (Fahrni et al., 2012), and if mentions

linked to the same entries.

For instance, [South Korea] and [ROK] are disambiguated to the same entry so that they are

connected by this feature.
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(23) i2b2PisA

A pseudo IsA relation. One mention appears in other mentions’ definitions extracted from the

UMLS thesaurus.

For instance, the mentions [Paracentesis] and [the tap] are captured by this feature, since the

top ranked definition of [the tap] is ”Paracentesis”.

(24) i2b2Abbr

One mention is in the abbreviation format (i.e. with all letters capitalized), the other mentions

match (exactly or partially) with its concept name extracted by MetaMap.

For instance, the mention [EGD] is identified to be the abbreviation of the mention [esopha-

gogastroduodenoscopy].

(25) i2b2CatMatch

There is always structured information in the clinical datasets (e.g. I2B2), as shown in the

text ”[Attending]: [Erm K. Neidwierst , M.D.]”. The mentions are linked when they appear in

the same category slot of the report and both are persons.

(26) i2b2PrnPreference

This is a data specific feature, describing the preferences for certain types of pronouns.

For example, first person singular pronouns in the data set mostly refer to the physician who

writes the clinical report.

5.4 Weak Features

Weak features are weak coreference indicators. Using them as positive features would intro-

duce too much noise to the graph (i.e. a graph with too many singletons). We apply weak

features only to mentions already integrated in the graph, so that weak information provides it

with a richer structure.

(27) W VerbAgree

If the anaphor is a pronoun, and the antecedent appears as a subject or an object in previous

sentences. The verbs of both mentions should be the same.

For instance, the sentence ”Born in Homei, Changhua in 1928, [Hsu] studied the violin in

Japan as a youth” is followed by the sentence ”Later, [he] studied in France ...”, so that the

marked two mentions share thisW VerbAgreerelation.

(28) W Subject

If mentions are subjects.
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(29) W Synonym

If mentions are synonymous as indicated by WordNet, such as [the town] and [the village].

(30) W i2b2SubStr

One mention is the substring of the other.

For instance, the mention [Cisplatin] is the substring of the mention [Cisplatin chemotherapy].

5.5 The Distance Feature

Graph models cannot deal with positional information well,such as distance between men-

tions or the sequential ordering of mentions in a document. Therefore the hypergraph model

of COPAdoes not have any obvious means to encode distance information. However, distance

between mentions plays an important role in coreference resolution, especially for resolving

pronouns. We do not encode distance as a binary feature, as this introduces too many hyper-

edges into the graph. Instead, we use distance to re-weigh hyperedges of degrees of2, which

are supposed to be sensitive to positional information.

We experiment with two types of distance weights:(31) sentence distanceas used inSoon

et al. (2001)’s feature set and(32) compatible mentions distanceas introduced byBengtson

& Roth (2008).

5.6 The Learned Hyperedge Weights

Table5.1and Table5.2provide the example feature weights (i.e. hyperedge weights) learned

from the OntoNotes training set, in order to indicate the hypergraph structures we derived.

I2B2-relevant feature weights are shown in Table5.3. In Table5.4, the statistics for the nega-

tive features suggest how strongly the features are contributing to non-coreference decisions.

OntoNotes data does not annotate appositive relations as coreference relations, so that

Feature (21) gives surprisingly small weights.
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Positive Features Weights

(10) StrMatchNpron 0.766

(11) StrMatchPron 0.620

(12) Alias 0.733

(13) HeadMatch 0.614

(14) NprnPrn 0.176

(15) Speaker12Prn 0.552

(16) DSPrn 0.9

(17) ReflexivePrn 0.567

(18) PossPrn 0.75

(19) GPEIsA 0.308

(20) OrgIsA 0.111

(21) Appositive 0.001

(22) Concept 0.494

Table 5.1: Positive Feature Weights on OntoNotes Data

Weak Features Weights

(27) W VerbAgree 0.342

(28) W Subject 0.4425

(29) W Synonym 0.429

Table 5.2: Weak Feature Weights on OntoNotes Data

I2B2 Features Weights

(23) i2b2PisA 0.348

(24) i2b2Abbr 0.423

(25) i2b2CatMatch 0.935

(26) i2b2PrnPreference 0.967

(30) W i2b2SubStr 0.594

Table 5.3: Feature Weights on I2B2 Data
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Negative Features Statistics

(1) N Gender -0.993

(2) N Number -0.996

(3) N SemanticClass -0.993

(4) N Mod -0.853

(5) N DSPrn -0.762

(6) N ContraSubjObj -0.997

(7) N i2b2Type -0.999

(8) N i2b2Quant -0.999

(9) N i2b2ConName -0.816

Table 5.4: Negative Feature Statistics on OntoNotes Data

5.7 Summary

In COPA, features are expressed as hyperedges. Since the combination of features is implic-

itly done during the inference phase, the features in the graph construction phase simply are

included in an overlapping manner. Therefore it is straightforward and costs little effort to

include more features inCOPA. We categorize the features into three types, which do not only

indicate the linguistic functions of different features but also provide a systematic way for

feature development inCOPA.

Negative relations are interpreted as global filters duringthe graph construction in this

Chapter, and they are explored further in Chapter8 as global constraints which are applied

during the inference phase. Coreference decisions depend onpreferences, where negative

information in certain cases contributes as much as the conventional positive indicators.
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Chapter 6

Evaluation Metrics for End-to-end

Coreference Resolution

Evaluating clustering results is one of the most important issues in cluster analysis, and is

referred as clustering validation (Halkidi et al., 2001). When the ground truth is provided,

the evaluation methods aim to measure how similar the clustering results are to the gold an-

notations. For instance, the evaluation metrics for coreference resolution measure the output

coreference sets (i.e. clusters) against the ground truth sets provided by domain experts. Since

there may be different numbers of output clusters (e.g. the coreference sets) compared with the

gold annotations, such an evaluation task is different fromevaluating classification problems

which directly assesses the label assignments of instances. It becomes more complicated to

perform the evaluation when the numbers of the output instances (e.g. the mentions) are also

different from the gold ones. In this chapter, we focus on theend-to-end system setting for

the coreference resolution task, and propose evaluation algorithms to assess noisy coreference

output.

Early research on coreference resolution has worked on thetrue mentionsetting, where

the mentions participating in coreference sets are given along with their exact boundaries.

The commonly used coreference resolution evaluation metrics are designed for such systems,

but evaluate the output coreference sets from different perspectives. For instance, the MUC

score (Vilain et al., 1995) in Section6.1.1performs on the relations between mentions, the

B3 algorithm (Bagga & Baldwin, 1998) in Section6.1.2operates on the relations between

mentions and sets, and theCEAF algorithm (Luo, 2005) in Section6.1.3captures the rela-

tions between sets. However, it is not trivial to apply thesemetrics to end-to-end coreference

systems, where the automatically identifiedsystem mentionsmay not align with the true men-

tions. To be consistent with the literature, in this chapterkey mentionis used to refer to true

mention.

In Section6.1, we discuss the problems of the existing coreference metrics and propose
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two variants of theB3 andCEAFalgorithms which can be applied to noisy coreference output

dealing with system mentions. Our experiments in Section6.2show that our variants lead to

intuitive and reliable results for end-to-end coreferencesystems.

6.1 Evaluation Metrics for the End-to-end Coreference Res-

olution

6.1.1 MUC

The MUC score (Vilain et al., 1995) counts the minimum number of links between mentions

to be inserted or deleted when mapping a system response to a gold standard key set. Given

an example,

Key : {m1, m2, m3, m4}

Response:{m1, m2} {m3, m4}

Figure6.1 illustrates the relations between mentions for both the keyand the response. Since

the response sets require at least one link (e.g. between m1 and m4) to form a set (i.e.{m1, m2,

m3, m4}) which matches the provided key, the recall is given asRecall = 2/3. The precision

is computed asPrecision = 2/2, as all the links in the response are correct.

m1

m2 m3

m4

Key Response

m1

m2 m3

m4

Figure 6.1: The MUC Score Illustration

Although pairwise links capture the relations in a set, theycannot represent singleton en-

tities, i.e. entities, which are mentioned only once. Therefore, the MUC score is not suitable

for the ACE data (http://www.itl.nist.gov/iad/mig/tests/ace/ ), which in-

cludes singleton entities in the keys. Moreover, the MUC score does not give credit for sep-

arating singleton entities from other chains. This becomesproblematic in a realistic system

setup, when mentions are extracted automatically.

http://www.itl.nist.gov/iad/mig/tests/ace/


6.1 Evaluation Metrics for the End-to-end Coreference Resolution 73

6.1.2 B3

TheB3 algorithm (Bagga & Baldwin, 1998) overcomes the shortcomings of the MUC score.

Instead of looking at the links,B3 computes precision and recall for all mentions in the doc-

ument, which are then combined to produce the final precisionand recall numbers for the

entire output. For each mention, theB3 algorithm computes a precision and recall score using

equations6.1and6.2:

Precision(mi) =
|Rmi

∩Kmi
|

|Rmi
|

(6.1)

Recall(mi) =
|Rmi

∩Kmi
|

|Kmi
|

(6.2)

whereRmi
is the response chain (i.e. the system output) which includes the mentionmi, and

Kmi
is the key chain (manually annotated gold standard) withmi. The overall precision and

recall are computed by averaging them over all mentions.

Considering the same example as in the previous section,

Key : {m1, m2, m3, m4}

Response:{m1, m2} {m3, m4}

Figure6.2 illustrates the relations between mentions and their corresponding sets.

m1:

m1 m2

m3
m4

Km1

Rm1

m2:

m1 m2

m3
m4

Km2

Rm2

m3:

m1 m2

m3
m4

Km3 Rm3

m4:

m1 m2

m3
m4

Km4 Rm4

Figure 6.2: TheB3 Algorithm Illustration
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According to Equation6.1and6.2,

Precision(m1) =
2
2
, Recall(m1) =

2
4

Precision(m2) =
2
2
, Recall(m2) =

2
4

Precision(m3) =
2
2
, Recall(m3) =

2
4

Precision(m4) =
2
2
, Recall(m4) =

2
4

SinceB3’s calculations are based on mentions, singletons are takeninto account. How-

ever, a problematic issue arises when system mentions have to be dealt with:B3 assumes the

mentions in the key and in the response to be identical. Hence, B3 has to be extended to deal

with system mentions which are not in the key and key mentionsnot extracted by the system,

so calledtwinless mentions(Stoyanov et al., 2009).

6.1.2.1 ExistingB3 variants

A few variants of theB3 algorithm for dealing with system mentions have been introduced

recently. (Stoyanov et al., 2009) suggest two variants of theB3 algorithm to deal with system

mentions,B3
0 andB3

all
1. For example, a key and a response are provided as below:

Key : {a b c}

Response:{a b d}

B3
0 discards all twinless system mentions (i.e. mention d) and penalizes recall by setting

recallmi
= 0 for all twinless key mentions (i.e. mention c). TheB3

0 precision, recall and

F-score (i.e.F = 2 · Precision·Recall
Precision+Recall

) for the example are calculated as:

PrB3

0
= 1

2
(2
2
+ 2

2
) = 1.0

RecB3

0
= 1

3
(2
3
+ 2

3
+ 0)

.
= 0.444

FB3

0
= 2× 1.0×0.444

1.0+0.444

.
= 0.615

B3
all retains twinless system mentions. It assigns1/|Rmi

| to a twinless system mention as its

precision and similarly1/|Kmi
| to a twinless key mention as its recall. For the same example

above, theB3
all precision, recall and F-score are given by:

PrB3

all
= 1

3
(2
3
+ 2

3
+ 1

3
)
.
= 0.556

1Our discussion of B3

0
and B3

all
is based on the analysis of the source code available at

http://www.cs.utah.edu/nlp/reconcile/ .

http://www.cs.utah.edu/nlp/reconcile/
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RecB3

all
= 1

3
(2
3
+ 2

3
+ 1

3
)
.
= 0.556

FB3

all
= 2× 0.556×0.556

0.556+0.444

.
= 0.556

Tables6.1, 6.2 and6.3 illustrate the problems withB3
0 andB3

all. The rows labeledSystem

give the original keys and system responses while the rows labeledB3
0, B3

all andB3
sys show the

performance generated byStoyanov et al.’s variants and the one we introduce in this chapter,

B3
sys (the row labeledCEAFsys is discussed in Subsection6.1.3).

Set 1

System 1
key {a b c}

response {a b d}

P R F

B3
0 1.0 0.444 0.615

B3
all 0.556 0.556 0.556

B3
r&n 0.556 0.556 0.556

B3
sys 0.667 0.556 0.606

CEAFsys 0.5 0.667 0.572

System 2
key {a b c}

response {a b d e}

P R F

B3
0 1.0 0.444 0.615

B3
all 0.375 0.556 0.448

B3
r&n 0.375 0.556 0.448

B3
sys 0.5 0.556 0.527

CEAFsys 0.4 0.667 0.500

Table 6.1: Problems ofB3
0

In Table6.1, there are two system outputs (i.e.System 1andSystem 2). Mentionsd ande

are the twinless system mentions erroneously resolved andc a twinless key mention.System 1

is supposed to be slightly better with respect to precision,becauseSystem 2produces one more

spurious resolution (i.e. for mentione ). However,B3
0 computes exactly the same numbers for

both systems. Hence, there is no penalty for erroneous coreference relations inB3
0, if the

mentions do not appear in the key, e.g. putting mentionsd or e in Set 1does not count as

precision errors. —B3
0 is too lenient by only evaluating the correctly extracted mentions.
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Set 1 Singletons

System 1
key {a b c}

response {a b d}

P R F

B3
all 0.556 0.556 0.556

B3
r&n 0.556 0.556 0.556

B3
sys 0.667 0.556 0.606

CEAFsys 0.5 0.667 0.572

System 2
key {a b c}

response {a b d} {c}

P R F

B3
all 0.667 0.556 0.606

B3
r&n 0.667 0.556 0.606

B3
sys 0.667 0.556 0.606

CEAFsys 0.5 0.667 0.572

Table 6.2: Problems ofB3
all (1)

Set 1 Singletons

System 1
key {a b}

response {a b d}

P R F

B3
all 0.556 1.0 0.715

B3
r&n 0.556 1.0 0.715

B3
sys 0.556 1.0 0.715

CEAFsys 0.667 1.0 0.800

System 2
key {a b}

response {a b d} {i} {j} {k}

P R F

B3
all 0.778 1.0 0.875

B3
r&n 0.556 1.0 0.715

B3
sys 0.556 1.0 0.715

CEAFsys 0.667 1.0 0.800

Table 6.3: Problems ofB3
all (2)
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B3
all deals well with the problem illustrated in Table6.1, the figures reported correspond

to intuition. However,B3
all can output different results for identical coreference resolutions

when exposed to different mention taggers as shown in Tables6.2 and6.3. B3
all manages to

penalize erroneous resolutions for twinless system mentions, however, it ignores twinless key

mentions when measuring precision. In Table6.2, System 1andSystem 2generate the same

output, except that the mention tagger inSystem 2also extracts mentionc. Intuitively, the same

numbers are expected for both systems. However,B3
all gives a higher precision toSystem 2,

which results in a higher F-score.

B3
all retains all twinless system mentions, as can be seen in Table6.3. System 2’s mention

tagger tags more mentions (i.e. the mentionsi, j andk), while bothSystem 1andSystem 2

have identical coreference resolution performance. Still, B3
all outputs quite different results for

precision and thus for F-score. This is due to the creditB3
all takes from unresolved singleton

twinless system mentions (i.e. mentioni, j, k in System 2). Since the metric is expected

to evaluate the end-to-end coreference system performancerather than the mention tagging

quality, it is not satisfying to observe thatB3
all’s numbers actually fluctuate when the system is

exposed to different mention taggers.

Rahman & Ng (2009) apply another variant, denoted here asB3
r&n. They remove only

those twinless system mentions that are singletons before applying theB3 algorithm. So, a

system would not be rewarded by the the spurious mentions which are correctly identified as

singletons during resolution (as has been the case withB3
all’s higher precision forSystem 2as

can be seen in Table6.3).

We assume thatRahman & Ngapply a strategy similar toB3
all after the removing step (this

is not clear inRahman & Ng (2009)). While it avoids the problem with singleton twinless

system mentions,B3
r&n still suffers from the problem dealing with twinless key mentions, as

illustrated in Table6.2.

6.1.2.2 Our proposed variant —B3
sys

We here propose a coreference resolution evaluation metric, B3
sys, which deals with system

mentions more adequately (see the rows labeledB3
sys in Tables6.1, 6.2, 6.3, 6.8 and 6.9).

We put all twinless key mentions into the response as singletons which enablesB3
sys to pe-

nalize non-resolved coreferent key mentions without penalizing non-resolved singleton key

mentions, and also avoids the problemB3
all andB3

r&n have as shown in Table6.2. All twinless

system mentions that are deemed not coreferent (hence beingsingletons) are discarded. To

calculateB3
sys precision, all twinless system mentions that are mistakenly resolved are put into

the key since they are spurious resolutions (equivalent to the assignment operations inB3
all),

which should be penalized by precision. UnlikeB3
all, B3

sys does not benefit from unresolved

twinless system mentions (i.e. the twinless singleton system mentions). For recall, the algo-
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rithm only goes through the original key sets, similar toB3
all andB3

r&n. Details are given in

Algorithm 4.

Algorithm 4 B3
sys

Input: key setskey, response setsresponse

Output: precisionP , recallR and F-scoreF

1: Discard all the singleton twinless system mentions inresponse;

2: Put all the twinless annotated mentions intoresponse;

3: if calculating precisionthen

4: Merge all the remaining twinless system mentions withkey to form

keyp;

5: Useresponse to form responsep

6: Throughkeyp andresponsep;

7: CalculateB3 precisionP .

8: end if

9: if calculating recallthen

10: Discard all the remaining twinless system mentions inresponse to

from responser;

11: Usekey to formkeyr

12: Throughkeyr andresponser;

13: CalculateB3 recallR

14: end if

15: Calculate F-scoreF

For example, a coreference resolution system has the following key and response:

Key : {a b c}

Response:{a b d} {i j}

To calculate the precision ofB3
sys, the key and response are altered to:

Keyp : {a b c} {d} {i} {j}

Responsep: {a b d} {i j} {c}

So, the precision ofB3
sys is given by:
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PrB3
sys

= 1
6
(2
3
+ 2

3
+ 1

3
+ 1

2
+ 1

2
+ 1)

.
= 0.611

The modified key and response for recall are:

Keyr : {a b c}

Responser: {a b} {c}

The resulting recall ofB3
sys is:

RecB3
sys

= 1
3
(2
3
+ 2

3
+ 1

3
)
.
= 0.556

Thus the F-score number is calculated as:

FB3
sys

= 2× 0.611×0.556
0.611+0.556

.
= 0.582

B3
sys indicates more adequately the performance of end-to-end coreference resolution systems.

It is not easily tricked by different mention taggers. Further example analysis for the proposed

B3
sys can be found in Section6.1.2.3.

6.1.2.3 B3
sys Example Output

Here, we provide additional examples for analyzing the behavior of B3
sys where we system-

atically vary system outputs. Since we proposeB3
sys for dealing with end-to-end systems,

we consider only examples also containing twinless mentions. The systems in Table6.4 and

6.6generate different twinless key mentions while keeping thetwinless system mentions un-

touched. In Table6.5 and 6.7, the number of twinless system mentions changes through

different responses and the number of twinless key mentionsis fixed.

In Table6.4, B3
sys recall goes up when more key mentions are resolved into the correct set.

And the precision stays the same, because there is no change in the number of the erroneous

resolutions (i.e. the spurious cluster with mentions i and j). For the examples in Tables6.5and

6.7, B3
sys gives worse precision to the outputs with more spurious resolutions, but the same

recall if the systems resolve key mentions in the same way. Since the set of key mentions

intersects with the set of twinless system mentions in Table6.6, we do not have an intuitive

explanation for the decrease in precision from response1 to response4. However, both the

F-score and the recall still show the right tendency.
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Set 1 Set 2 B3
sys

key {a b c d e} P R F

response1 {a b} {i j} 0.857 0.280 0.422

response2 {a b c} {i j} 0.857 0.440 0.581

response3 {a b c d} {i j} 0.857 0.68 0.784

response4 {a b c d e} {i j} 0.857 1.0 0.923

Table 6.4: Analysis ofB3
sys 1

Set 1 Set 2 B3
sys

key {a b c d e} P R F

response1 {a b c} {i j} 0.857 0.440 0.581

response2 {a b c} {i j k} 0.75 0.440 0.555

response3 {a b c} {i j k l } 0.667 0.440 0.530

response4 {a b c} {i j k l m} 0.6 0.440 0.508

Table 6.5: Analysis ofB3
sys 2

Set 1 B3
sys

key {a b c d e} P R F

response1 {a b i j} 0.643 0.280 0.390

response2 {a b c i j} 0.6 0.440 0.508

response3 {a b c d i j} 0.571 0.68 0.621

response4 {a b c d e i j} 0.551 1.0 0.711

Table 6.6: Analysis ofB3
sys 3

Set 1 B3
sys

key {a b c d e} P R F

response1 {a b c i j} 0.6 0.440 0.508

response2 {a b c i j k} 0.5 0.440 0.468

response3 {a b c i j k l} 0.429 0.440 0.434

response4 {a b c i j k l m} 0.375 0.440 0.405

Table 6.7: Analysis ofB3
sys 4
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6.1.3 CEAF

Luo (2005) criticizes theB3 algorithm for using entities more than one time, becauseB3 com-

putes precision and recall of mentions by comparing entities containing that mention. Hence

Luo proposes theCEAFalgorithm which aligns entities in key and response.CEAFapplies a

similarity metric (which could be either based on mention orentity) for each pair of entities

(i.e. a set of mentions) to measure the goodness of each possible alignment. The best mapping

is used for calculatingCEAFprecision, recall and F-measure.

Consider the same example as cited for previous metrics,

Key : {m1, m2, m3, m4}

Response:{m1, m2} {m3, m4}

The best mapping of the key and response sets is illustrated in Figure6.3. Since the

response setR1 is aligned with the key setK1, R2 is forced to align with an empty set.

K1

R1
R2

m1
m2

m3 m4

m1
m2

m3
m4

Figure 6.3: TheCEAFAlignment Illustration

Luo proposes two entity-based similarity metrics (Equation6.3and6.4) for an entity pair

(Ki, Rj) originating from key,Ki, and response,Rj.

φ3(Ki, Rj) = |Ki ∩Rj| (6.3)

φ4(Ki, Rj) =
2|Ki ∩Rj|

|Ki|+ |Rj|
(6.4)
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TheCEAF precision and recall are derived from the alignment which has the best total simi-

larity (denoted asΦ(g∗)), shown in Equations6.5and6.6.

Precision =
Φ(g∗)

∑

i φ(Ri, Ri)
(6.5)

Recall =
Φ(g∗)

∑

i φ(Ki, Ki)
(6.6)

If not specified otherwise, we applyLuo’s φ3(⋆, ⋆) in the example illustrations. We denote the

originalCEAFalgorithm asCEAForig.

Detailed calculations are illustrated via a new example below:

Key : {a b c}

Response:{a b d}

TheCEAForig φ3(⋆, ⋆) are given by:

φ3(K1, R1) = 2 (K1 : {abc};R1 : {abd})

φ3(K1, K1) = 3

φ3(R1, R1) = 3

So theCEAForig evaluation numbers are:

PrCEAForig
= 2

3
= 0.667

RecCEAForig
= 2

3
= 0.667

FCEAForig
= 2× 0.667×0.667

0.667+0.667
= 0.667

6.1.3.1 Problems ofCEAForig

CEAForig was intended to deal with key mentions. Its adaptation to system mentions has not

been addressed explicitly. AlthoughCEAForig theoretically does not require the same number

of mentions in key and response, it still cannot be directly applied to end-to-end systems,

because the entity alignments are based on mention mappings.

As can be seen from Table6.8, CEAForig fails to produce intuitive results for system men-

tions. System 2outputs one more spurious entity (containing mentioni andj) compared with

System 1, however, achieves the sameCEAForig precision. Since twinless system mentions do
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not have mappings in key, they contribute nothing to the mapping similarity. So, resolution

mistakes for system mentions are not calculated, and moreover, the precision is easily skewed

by the number of output entities.CEAForig reports very low precision for system mentions

(see alsoStoyanov et al. (2009)).

Set 1 Set 2 Singletons

System 1
key {a b c}

response {a b} {c} {i} {j}

P R F

CEAForig 0.4 0.667 0.500

B3
sys 1.0 0.556 0.715

CEAFsys 0.667 0.667 0.667

System 2
key {a b c}

response {a b} {i j} {c}

P R F

CEAForig 0.4 0.667 0.500

B3
sys 0.8 0.556 0.656

CEAFsys 0.6 0.667 0.632

Table 6.8: Problems ofCEAForig
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Set 1 Set 2 Set 3 Singletons

System 1
key {a b c}

response {a b} {i j} {k l} {c}

P R F

CEAFr&n 0.286 0.667 0.400

B3
sys 0.714 0.556 0.625

CEAFsys 0.571 0.667 0.615

System 2
key {a b c}

response {a b} {i j k l } {c}

P R F

CEAFr&n 0.286 0.667 0.400

B3
sys 0.571 0.556 0.563

CEAFsys 0.429 0.667 0.522

Table 6.9: Problems of CEAFr&n

6.1.3.2 ExistingCEAF variants

Rahman & Ng (2009) briefly introduce theirCEAF variant, which is denoted asCEAFr&n

here. They useφ3(⋆, ⋆), which results in equalCEAFr&n precision and recall figures when

using true mentions. SinceRahman & Ng’s experiments using system mentions produce un-

equal precision and recall figures, we assume that, after removing twinless singleton system

mentions, they do not put any twinless mentions into the other set. In the example in Table6.9,

CEAFr&n does not penalize adequately the incorrectly resolved entities consisting of twinless

system mentions. SoCEAFr&n does not tell the difference betweenSystem 1andSystem 2. It

can be concluded from the examples that the same number of mentions in key and response is

needed for computing theCEAFscore.

6.1.3.3 Our proposed variant —CEAFsys

We propose to adjustCEAF in the same way as we did forB3
sys, resulting inCEAFsys. We

put all twinless key mentions into the response as singletons. All singleton twinless system

mentions are discarded. For calculatingCEAFsys precision, all twinless system mentions

which were mistakenly resolved are put into the key. For computing CEAFsys recall, only the
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original key sets are considered. In this wayCEAFsys deals adequately with system mentions

(see Algorithm5 for details).

Algorithm 5 CEAFsys

Input: key setskey, response setsresponse

Output: precisionP , recallR and F-scoreF

1: Discard all the singleton twinless system mentions inresponse;

2: Put all the twinless annotated mentions intoresponse;

3: if calculating precisionthen

4: Merge all the remaining twinless system mentions withkey to form

keyp;

5: Useresponse to form responsep

6: Form Mapg⋆ betweenkeyp andresponsep
7: CalculateCEAF precisionP usingφ3(⋆, ⋆)

8: end if

9: if calculating recallthen

10: Discard all the remaining twinless system mentions inresponse to

form responser;

11: Usekey to formkeyr

12: Form Mapg⋆ betweenkeyr andresponser
13: CalculateCEAF recallR usingφ3(⋆, ⋆)

14: end if

15: Calculate F-scoreF

TakingSystem 2in Table6.8as an example, key and response are altered for precision:

Keyp : {a b c} {i} {j}

Responsep: {a b d} {i j} {c}

So theφ3(⋆, ⋆) are as below, only listing the best mappings:

φ3(K1, R1) = 2 (K1 : {abc};R1 : {abd})

φ3(K2, R2) = 1 (K2 : {i};R2 : {ij})

φ3(∅, R3) = 0 (R3 : {c}) φ3(R1, R1) = 3

φ3(R2, R2) = 2
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φ3(R3, R3) = 1

The precision is thus given by:

PrCEAFsys
= 2+1+0

3+2+1
= 0.6

The key and response for recall are:

Keyr : {a b c}

Responser: {a b} {c}

The resultingφ3(⋆, ⋆) are:

φ3(K1, R1) = 2(K1 : {abc};R1 : {ab})

φ3(∅, R2) = 0(R2 : {c})

φ3(K1, K1) = 3

φ3(R1, R1) = 2

φ3(R2, R2) = 1

The recall and F-score are thus calculated as:

RecCEAFsys
= 2

3
= 0.667

FCEAFsys
= 2× 0.6×0.667

0.6+0.667
= 0.632

However, one additional complication arises with regard tothe similarity metrics used

by CEAF. It turns out that onlyφ3(⋆, ⋆) is suitable for dealing with system mentions while

φ4(⋆, ⋆) produces unintuitive results (see Table6.10).

Set 1 Singletons

System 1
key {a b c}

response {a b} {c} {i} {j}

P R F

φ4(⋆, ⋆) 0.4 0.8 0.533

φ3(⋆, ⋆) 0.667 0.667 0.667

System 2
key {a b c}

response {a b} {i j} {c}

P R F

φ4(⋆, ⋆) 0.489 0.8 0.607

φ3(⋆, ⋆) 0.6 0.667 0.632

Table 6.10: Problems ofφ4(⋆, ⋆)
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φ4(⋆, ⋆) computes a normalized similarity for each entity pair usingthe summed number

of mentions in the key and the response.CEAFprecision then distributes that similarity evenly

over the response set. Spurious system entities, such as theone with mentioni andj in Table

6.10, are not penalized.φ3(⋆, ⋆) calculates unnormalized similarities. It compares the two

systems in Table6.10adequately. Hence we use onlyφ3(⋆, ⋆) in CEAFsys.

When normalizing the similarities by the number of entities or mentions in the key (for

recall) and the response (for precision), theCEAFalgorithm considers all entities or mentions

to be equally important. HenceCEAF tends to compute quite low precision for system men-

tions which does not represent the system performance adequately. Here, we do not address

this issue.

6.1.4 BLANC

Recently, a new coreference resolution evaluation algorithm, BLANC, has been introduced

(Recasens & Vila, 2010). This measure implements theRand index(Rand, 1971) which has

been originally developed to evaluate clustering methods.The BLANCalgorithm deals cor-

rectly with singleton entities and rewards correct entities according to the number of men-

tions. However, a basic assumption behindBLANC is, that the sum of all coreferential and

non-coreferential links is constant for a given set of mentions. This implies thatBLANCas-

sumes identical mentions in key and response. It is not clearhow to adaptBLANCto system

mentions. We do not address this issue here.

6.2 Experiments with the Proposed Evaluation Metrics

While Section6.1 used toy examples to motivate our metricsB3
sys and CEAFsys, we here

report results on two larger experiments using ACE2004 data.

6.2.1 Data and Mention Taggers

We use the ACE2004 (Mitchell et al., 2004) English training data which we split into three

sets followingBengtson & Roth (2008): Train (268 docs), Dev (76), and Test (107). We use

two in-house mention taggers. The first (SM1) implements a heuristic aiming at high recall.

The second (SM2) uses theJ48decision tree classifier (Witten & Frank, 2005). The number

of detected mentions, head coverage, and accuracy on testing data are shown in Table6.11.
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SM1 SM2

training mentions 31,370 16,081

twin mentions 13,072 14,179

development mentions 8,045 –

twin mentions 3,371 –

test mentions 8,387 4,956

twin mentions 4,242 4,212

head coverage 79.3% 73.3%

accuracy 57.3% 81.2%

Table 6.11: Mention Taggers on ACE2004 Data

6.2.2 The Artificial Setting

For the artificial setting we report results on the development data using theSM1tagger. To

illustrate the stability of the evaluation metrics with respect to different mention taggers, we re-

duce the number of twinless system mentions in intervals of 10%, while correct (non-twinless)

ones are kept untouched. The coreference resolution systemused is the BART (Versley et al.,

2008) reimplementation ofSoon et al. (2001). The results are plotted in Figures6.4and6.5.
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Omitting twinless system mentions from the training data while keeping the number of

correct mentions constant should improve the coreference resolution performance, because a

more precise coreference resolution model is obtained. As can be seen from Figures6.4 and

6.5, theMUC-score,B3
sys andCEAFsys follow this intuition.

6.2.3 The Realistic Setting

Experiment 1 For the realistic setting we compareSM1andSM2as preprocessing com-

ponents for the BART (Versley et al., 2008) reimplementation ofSoon et al. (2001). The

coreference resolution system with theSM2tagger performs better, because a better corefer-

ence model is achieved from system mentions with higher accuracy.

The MUC, B3
sys andCEAFsys metrics have the same tendency when applied to systems

with different mention taggers (Table6.12, 6.13 and6.14 and the bold numbers are higher

with a p-value of 0.05, by a paired-t test). Since theMUC scorer does not evaluate singleton

entities, it produces too low numbers which are not informative any more.
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MUC

R Pr F

Soon (SM1) 51.7 53.1 52.4

Soon (SM2) 49.1 69.9 57.7

Table 6.12: Realistic SettingMUC

B3
sys B3

0 B3
all B3

r&n

R Pr F R Pr F R Pr F R Pr F

Soon (SM1) 65.7 76.8 70.8 57.0 91.1 70.1 65.1 85.8 74.0 65.1 78.7 71.2

Soon (SM2) 64.1 87.3 73.9 54.7 91.3 68.4 64.3 87.1 73.9 64.3 84.9 73.2

Table 6.13: Realistic SettingB3 Variants

CEAFsys CEAForig CEAFr&n

R Pr F R Pr F R Pr F

Soon (SM1) 66.4 61.2 63.7 62.0 39.9 48.5 62.1 59.8 60.9

Soon (SM2) 67.4 65.2 66.3 60.0 56.6 58.2 60.0 66.2 62.9

Table 6.14: Realistic SettingCEAFVariants

As shown in Table6.13, B3
all reports counter-intuitive results when a system is fed with

system mentions generated by different mention taggers.B3
all cannot be used to evaluate

two different end-to-end coreference resolution systems,because the mention tagger is likely

to have bigger impact than the coreference resolution system. B3
0 fails to generate the right

comparison too, because it is too lenient by ignoring all twinless mentions.

TheCEAForig numbers in Table6.14illustrate the big influence the system mentions have

on precision (e.g. the very low precision number forSoon (SM1)). The big improvement for

Soon (SM2)is largely due to the system mentions it uses, rather than to different coreference

models.

Both B3
r&n andCEAFr&n show no serious problems in the experimental results. However,

as discussed before, they fail to penalize the spurious entities with twinless system mentions

adequately.
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B3
sys B3

0

R Pr F R Pr F

Soon (SM2) 64.1 87.3 73.9 54.7 91.3 68.4

Bengtson 66.1 81.9 73.1 69.5 74.7 72.0

Table 6.15: Realistic SettingB3
0 vs. B3

sys

Experiment 2 We compare results ofBengtson & Roth’s (2008) system with ourSoon

(SM2) system. Bengtson & Roth’s embedded mention tagger aims at high precision, gen-

erating half of the mentionsSM1generates (explicit statistics are not available to us).

Bengtson & Rothreport aB3 F-score for system mentions, which is very close to the

one for true mentions. TheirB3-variant does not impute errors of twinless mentions and is

assumed to be quite similar to theB3
0 strategy.

We integrate both theB3
0 andB3

sys variants into their system and show results in Table6.15

(we cannot report significance, because we do not have accessto results for single documents

in Bengtson & Roth’s system). It can be seen that, when different variants of evaluation

metrics are applied, the performance of the systems vary wildly.

6.3 Summary

In this chapter, we address problems of commonly used evaluation metrics for coreference

resolution and suggest two variants forB3 andCEAF, calledB3
sys andCEAFsys. In contrast to

the variants proposed byStoyanov et al. (2009), B3
sys andCEAFsys are able to deal with end-

to-end systems which do not use any gold information. The numbers produced byB3
sys and

CEAFsys are able to indicate the resolution performance of a system more adequately, with-

out being tricked easily by twisting preprocessing components. We believe that the explicit

description of evaluation metrics, as given in this chapter, is a precondition for the reliable

comparison of end-to-end coreference resolution systems.
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Chapter 7

Evaluating COPA

In order to analyze the effectiveness ofCOPA, we present three groups of comparison experi-

ments (1, 2, and 3) and two analytical ones (4 and 5) in this chapter.

1. Section7.1 comparesCOPAagainst two baseline systems, both of which are pairwise

models with strong features. The comparisons aim to convey the superiority of the

global partitioning method proposed inCOPAover local pairwise models, with all pre-

processors (including the mention detector) being the same.

2. Section7.2shows the performance ofCOPAin the CoNLL 2011 shared task on coref-

erence resolution, which is one of the most influential shared tasks in the field. Demon-

stratingCOPA’s results in the task enables us to identify the competitiveness of our

system, by comparing it with the most important state-of-the-art systems.

3. Section7.3testsCOPAon medical data sets, to illustrate the robustness ofCOPAwhen

adapted to new domains.

4. Experiments on the weakly supervised property ofCOPAare shown in Section7.5.

5. Experiments on analyzing our proposedk modelare in Section7.6.

Since the experimental settings differ between sections, discussions are provided sepa-

rately in each section, making them self-contained. Features mentioned in this chapter are

described in Chapter5 in more details, and the data sets are introduced in Chapter3.

7.1 COPAvs. Baselines

We compareCOPAwith two implementations of pairwise models. The first baseline isSOON

– the BART (Versley et al., 2008) reimplementation ofSoon et al. (2001), with few (i.e. 12)
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but strong features. Our second baseline isB&R – Bengtson & Roth (2008) 1, which exploits

a much larger feature set while keeping the machine learningapproach simple.Bengtson &

Roth (2008) show that their system outperforms much more sophisticated machine learning

approaches such asCulotta et al. (2007), who reported the best results on true mentions

beforeBengtson & Roth (2008). Bengtson & Roth (2008)’s is the strongest pairwise model

on the ACE data sets before the CoNLL 2011 shared task (which is discussed in Section

7.2), and its source code is accessible for modifications so thatstrict fair comparisons can be

conducted. ThereforeBengtson & Roth (2008)’s system is the second reasonable competitor

for evaluatingCOPAin this Section.

Both of the baseline systems are chosen because they are the strongest pairwise models to

compare with to illustrate the effectiveness of our proposed global method. We usethe same

pre-processors (including the mention detection)for all systems to exclude the possible

influences from them. Differences in outputs mainly indicates the differences in the inference

algorithms.

7.1.1 Data

We use the MUC6 data (Chinchor & Sundheim, 2003) with the standard training/testing divi-

sions (30/30) and the MUC7 data (Chinchor, 2001) (30/20). Since we do not have access to

the official ACE testing data (only available to ACE participants), we followBengtson & Roth

(2008) for dividing the ACE 2004 English training set (Mitchell et al., 2004) into training,

development and testing partitions (268/76/107). We randomly split the 252 ACE 2003 train-

ing documents (Mitchell et al., 2003) using the same proportions into training, development

and testing (151/38/63). The systems were tuned on development data and run only once on

testing data.

7.1.2 The Mention Tagger

We implement a classification-based mention tagger, which tags each NP chunk (e.g. the

output of the Yamcha Chunker) as being an ACE mention or not, with the necessary post-

processing for embedded mentions. For the ACE 2004 testing data, we cover75.8% of the

syntactic heads of mentions with a73.5% accuracy.

Since the MUC data sets do not limit the mentions to any specific semantic classes as the

ACE sets do, our mention tagger directly outputs all the embedded noun phrases.

1http://l2r.cs.uiuc.edu/ ˜ cogcomp/asoftware.php?skey=FLBJCOREF

http://l2r.cs.uiuc.edu/~cogcomp/asoftware.php?skey=FLBJCOREF
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7.1.3 Evaluation Metrics

In order to report realistic results, we neither assume truementions as input nor do we evaluate

only on true mentions. Instead, we use an in-house mention tagger for automatically extract-

ing mentions, and evaluate using variants of the evaluationmetricsB3 (Bagga & Baldwin,

1998) andCEAF (Luo, 2005), namedB3
sys andCEAFsys respectively, which are adapted to

the evaluation of end-to-end coreference resolution systems (see Chapter6). For the sake of

completeness we also report theMUC score.

7.1.4 Results

7.1.4.1 COPAvs. SOON

In this section, we compare theSOON-baseline withCOPAusing theR2 partitioner(param-

etersα⋆ andβ optimized on development data).COPAuses the same features as adopted by

SOON, which are shown in Table7.1. Moreover, the two systems use the same set of system

mentions too.

Negative (1) N Gender, (2) NNumber, (3) NSemanticClass

Positive (10) StrMatchNpron, (11) StrMatchPron, (12) Alias,

(14) NprnPrn, (21) Appositive, (31)sentence distance

Table 7.1:COPAFeatures for Comparing withSOON(details in Chapter5)

Table7.2 gives the comparison results, it can be seen that even with the same features,

COPAconsistently outperformsSOONon all data sets using all evaluation metrics. With the

exception of MUC7, ACE 2003 and ACE 2004 data evaluated withCEAFsys , all of COPA’s

improvements are statistically significant. When evaluatedusingMUC andB3
sys, COPAwith

theR2 partitionerboosts recall in all data sets while losing in precision. This led us to believe

that incorporating more features would increase precisionwithout losing too much recall.

Hence we integrated features fromBengtson & Roth (2008)’s system to conduct the second

comparison in Section7.1.4.2.



96 7. Evaluating COPA

SOON COPA with theR2 partitioner

R P F R P F α⋆ β

MUC MUC6 59.4 67.9 63.4 62.8 66.4 64.5 0.08 0.03

MUC7 52.3 67.1 58.8 55.2 66.1 60.1 0.05 0.01

ACE 2003 56.7 75.8 64.9 60.8 75.1 67.2 0.07 0.03

ACE 2004 50.4 67.4 57.7 54.1 67.3 60.0 0.05 0.04

B3
sys MUC6 53.1 78.9 63.5 56.4 76.3 64.1 0.08 0.03

MUC7 49.8 80.0 61.4 53.3 76.1 62.7 0.05 0.01

ACE 2003 66.9 87.7 75.9 71.5 83.3 77.0 0.07 0.03

ACE 2004 64.7 85.7 73.8 67.3 83.4 74.5 0.07 0.03

CEAFsys MUC6 56.9 53.0 54.9 62.2 57.5 59.8 0.08 0.03

MUC7 57.3 54.3 55.7 58.3 54.2 56.2 0.06 0.01

ACE 2003 71.0 68.7 69.8 71.1 68.3 69.7 0.07 0.03

ACE 2004 67.9 65.2 66.5 68.5 65.5 67.0 0.07 0.03

Table 7.2:SOONvs. COPAR2 (SOONfeatures, system mentions, bold indicates significant

improvement in F-score overSOONaccording to a paired-t test withp < 0.05)

In brief, Table7.2conveys that the global hypergraph partitioning method ofCOPAmodels

the coreference resolution task more adequately thanSoon et al. (2001)’s local model – even

when using the very same features and the same mentions.

7.1.4.2 COPAvs. B&R

Table7.3 gives our re-producedB&R numbers on the ACE 2004 testing data using the true

(and system) mention settings, in comparison to the numbersthey reported in the paper. Their

lenient variant ofB3 (Stoyanov et al., 2009) is used, which discards all twinless mentions2.

Table7.3 is to show that we make sure that their reported numbers are successfully regen-

erated. Replacing their preprocessing components with oursgenerates74.8 F-score ofB3
sys,

which is comparable to the74.0 using their own’s.

2The mentions which are not aligned with true mentions are called twinless (Stoyanov et al., 2009)
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Reported Reproduced

R P F R P F

true mention (lenientB3) 74.5 88.3 80.8 73.0 89.6 80.4

B&R’s system mention (lenientB3) 72.5 84.9 78.24 72.1 83.2 77.3

B&R’s system mention (B3
sys) - - - 68.3 80.8 74.0

COPA’s system mention (B3
sys) - - 73.8 66.3 85.8 74.8

Table 7.3: Reproduced Numbers ofB&R

In Table7.4we report theB3
sys performance ofSOONandB&R on the ACE 2004 testing

data (which was the data setB&R’s original results reported on) using true mentions and using

COPA’s automatically identified system mentions. For evaluation we useB3
sys only, because

(Bengtson & Roth, 2008)’s system does not allow one to easily integrateCEAF. B&R con-

siderably outperformsSOON(we cannot compute statistical significance, becauseB&R does

not provide single document performance). The difference using system mentions, however,

is not as big as we expected.Bengtson & Roth (2008) reported very good results when using

true mentions. For evaluating on system mentions, however,they were using the lenientB3.

When replacing this withB3
sys the difference betweenSOONandB&R shrinks.

SOON B&R (Reproduced)

R P F R P F

true mention (B3
sys) 67.4 90.3 77.2 73.0 89.6 80.4

COPA’s system mention (B3
sys) 64.7 85.7 73.8 66.3 85.8 74.8

Table 7.4: Baselines on the ACE 2004 Testing Data

In this section, we compare theB&R system (using our preprocessing components and

mention tagger), andCOPA with the R2 partitionerusing B&R features. The features are

given in Table7.5. COPAdoes not use the learned features fromB&R, as this would have

implied to embed a pairwise coreference resolution system in COPA.
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Negative (1) N Gender, (2) NNumber, (3) NSemanticClass

(4) N Mod,

Positive (10) StrMatchNpron, (11) StrMatchPron, (12) Alias,

(13) HeadMatch,(14) NprnPrn, (21) Appositive,

(31)sentence distance, (32) compatible mention distance

Weak (27) W VerbAgree, (29) WSynonym

Table 7.5:COPAFeatures for Comparing withB&R (details in Chapter5)

The comparison results are provided in Table7.6. We report results for ACE 2003 and ACE

2004. The parameters are optimized on the ACE 2004 data.COPAwith the R2 partitioner

outperformsB&R on both data sets.Bengtson & Roth (2008) developed their system on ACE

2004 data and never exposed it to ACE 2003 data. We suspect thatthe relatively poor result of

B&R on ACE 2003 data is caused by its over-fitting to ACE 2004. This shows thatCOPAis a

highly competitive system as it outperformsBengtson & Roth (2008)’s system which claims

to have the best performance on the ACE 2004 data.

B&R COPAwith theR2 partitioner

R P F R P F

B3
sys ACE 2003 56.4 97.3 71.4 70.3 86.5 77.5

ACE 2004 66.3 85.8 74.8 68.4 84.4 75.6

Table 7.6:B&R vs.COPAR2 (B&R features,COPA’s system mentions)

7.1.4.3 Running Time

On a machine with 2 AMD Opteron CPUs and 8 GB RAM,COPAfinishes preprocessing,

training and partitioning the ACE 2004 data set in 15 minutes,which is slightly faster than our

duplicatedSOONbaseline and is much faster than the originalB&R system.

7.1.5 Discussion

Most previous attempts to solve the coreference resolutiontask globally have been hampered

by employing a local pairwise model in the classification step (i.e. step 1 mentioned in Chapter
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2) while only the clustering step realizes a global approach (E.g.Luo et al. (2004), Nicolae

& Nicolae (2006), Klenner (2007), Denis & Baldridge (2009), lesser soCulotta et al. (2007)).

In this section, we conduct experiments comparing our coreference resolution system,COPA,

against two strong baselines (Soon et al., 2001; Bengtson & Roth, 2008). Soon et al. (2001)

is the first two-step model with12 very strong features.Bengtson & Roth (2008)’s system

has been claimed to achieve the best performance on the ACE 2004 data (using true mentions,

Bengtson & Roth (2008) did not report any comparison with other systems using system

mentions).COPA implements a global decision in one step via hypergraph partitioning and

considers all the relations in a graph, which enables it tooutperform the two strong pairwise

models.

It has been observed that the improved performance with truementions do not necessarily

translate to an improved performance when system mentions are used (Ng, 2008). We follow

Stoyanov et al. (2009) and argue that evaluating the performance of coreference resolution

systems on true mentions is unrealistic. Hence we integratean ACE mention tagger into our

system, tune the system towards the real task, and evaluate only using system mentions. While

Ng (2008) could not show that superior models achieved superior results on system mentions,

COPAis able to outperform both baseline systemsin strict comparisons and in an end-to-

end setup.

7.2 COPAvs. State-of-the-art Systems

COPAhas participated in the CoNLL shared task on modeling unrestricted coreference (Pradhan

et al., 2011), and we submittedCOPA’s results to theopensetting of the task. We used only

30% of the training data (randomly selected) and 20 features (see Table7.7).

Negative (1) N Gender, (2) NNumber, (3) NSemanticClass,

(4) N Mod, (5) N DSPrn,

(6) N ContraSubjObj

Positive (10) StrMatchNpron, (11) StrMatchPron, (12) Alias,

(13) HeadMatch, (14) NprnPrn, (15) Speaker12Prn,

(16) DSPrn, (17) ReflexivePrn, (18) PossPrn,

(19) GPEIsA, (20) OrgIsA, (31) sentence distance

(32) compatible mention distance

Weak (27) W VerbAgree, (28) WSubject, (29) WSynonym

Table 7.7:COPAFeatures for the CoNLL 2011 Shared Task (details in Chapter5)
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7.2.1 Data

The CoNLL shared task aims to predict coreference on the OntoNotes data. There are 1,674

training documents, 202 development documents and 207 testing documents. As is customary

for CoNLL tasks, two tracks are provided, i.e. closed and open. For the closed track, partic-

ipating systems are restricted to using the distributed resources (with the predicted layers of

information provided by the task), in order to allow fair algorithmic comparisons. The open

track allows for unrestricted usage of additional externalresources. Since several off-the-shelf

pre-processing components are used,COPA participates in the open setting track (without

actually using additional resources such as Wikipedia).

7.2.2 The Mention Tagger

For the CoNLL shared task, we incorporate information from syntactic parse trees into our

mention tagger. Both the semantic classes and the syntactic heads are generated along with the

system mentions. The official evaluation on the mention taggers shows that the performance

of our mention tagger falls into the average-performance group (see Table7.8).

R P F1

COPA 67.15 67.64 67.40

max open 74.31 67.87 70.94

Table 7.8:COPA’s Mention Tagger Performance on the CoNLL testing set

7.2.3 Evaluation Metrics

The unweighted average ofMUC, BCUBEDandCEAF(E)is used as the final score in CoNLL

shared task.CEAF(E) is using the entity based similarity metric (see Chapter6). It is con-

sidered that each of the three metrics represents a different important dimension (Denis &

Baldridge, 2009), theMUC being based on links,BCUBEDbased on mentions andCEAFon

entities. The combination of them should be adequate for evaluating the performances of a

coreference resolution system.

7.2.4 Results

The stopping criterionα∗ (see Section4.2.2.2) is tuned on development data to optimize the

final coreference scores. A value of0.06 is chosen for the CoNLL testing set.
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COPA’s results on the development set and the testing set are displayed in Table7.9 and

Table7.10respectively. TheOverall numbers in both tables are the average scores ofMUC,

BCUBEDandCEAF(E). In Table7.11, the best performances in both open and closed are

given, along with the median numbers. SinceCOPAis not using additional resources anyway,

the closed numbers can still be roughly compared with. This is mentioned in the overview

paper of the task too (see the second paragraph in page 18 of (Pradhan et al., 2011)).

Metric R P F1

MUC 52.69 57.94 55.19

BCUBED 64.26 73.39 68.52

CEAF(M) 54.44 54.44 54.44

CEAF(E) 45.73 40.92 43.19

BLANC 69.78 75.26 72.13

Overall 55.63

Table 7.9:COPA’s results on the CoNLL development set

Metric R P F1

MUC 56.73 58.90 57.80

BCUBED 64.60 71.03 67.66

CEAF(M) 53.37 53.37 53.37

CEAF(E) 42.71 40.68 41.67

BLANC 69.77 73.96 71.62

Overall 55.71

Table 7.10:COPA’s results on the CoNLL testing set

F1

COPA 55.71

max open 58.31

med open 54.32

max closed 57.79

med closed 50.98

Table 7.11: Overall Results on the CoNLL testing set
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The best system of CoNLL 2011 shared task is Stanford’s Multi-Pass Sieve system (Lee

et al., 2011), which is based on heuristic rules. The second ranking systems are not signifi-

cantly different from ours, for instance Sapena’s system, which uses an iterative probabilistic

model with the constraints between mentions learned from a decision tree. Both of the systems

are described in Chapter2. Overall,COPAperforms competitively when compared with the

state-of-the-art systems in the field, while using a relatively small set of features and a small

amount of training data.

7.2.5 Discussions

The CoNLL 2011 shared task enables us to compare our coreference modelCOPAwith the

state-of-the-art systems on a much bigger data set, the OntoNotes data. We only apply30% of

the training documentsto learn the hyperedge weights, and the learnedCOPAmodel comes

in asthe second teamin the open track in which five teams participated. SinceCOPAdoes

not use additional resources, it is considered to belong to the second small ball park in the

closed track too (Pradhan et al., 2011) where there are18 teams participating.

Pradhan et al. (2011) concludes that most of the participating systems are stilltwo-step

models, fully trained upon the training set using the approach as described in (Soon et al.,

2001). It is suggesting again thatCOPA’s global partitioning algorithmoutperforms the

pairwise models under the CoNLL setup, even with a small set of features (i.e.22).

7.3 COPA in the Medical Domain

We participated in all three tasks of the 2011 i2b2/VA Track on Challenges in Natural Lan-

guage Processing for Clinical Data (descriptions can be found in Chapter3). The features

used to report the results are given in Table7.12.
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Negative (1) N Gender, (2) NNumber, (3) NSemanticClass,

(4) N Mod, (6) N ContraSubjObj, (7) Ni2b2Type,

(8) N i2b2Quant,

(9) N i2b2ConName

Positive (10) StrMatchNpron, (11) StrMatchPron, (12) Alias,

(13) HeadMatch, (14) NprnPrn, (17) ReflexivePrn,

(21) Appositive, (23) i2b2PisA, (24) i2b2Abbr,

(25) i2b2CatMatch, (26) i2b2PronPreference, (31)sentencedistance,

(32) compatible mention distance

Weak (28) W Subject,(29) WSynonym, (30) Wi2b2SubStr

Table 7.12:COPAFeatures for the 2011 i2b2/VA Shared Task (details in Chapter5)

7.3.1 Data

For task 1A and task 1B – ODIE corpus without and with concepts3, a training set of 97

documents is released (including the Mayo and Pittsburgh data sets). A total number of 492

documents (including the Partner, Beth and Pittsburgh data sets) are used as training data for

task 1C – i2b2/VA corpus with concepts. In task 1A, our in-house mention tagger is integrated

into the preprocessing components.

For development purposes, we randomly split the training data into two parts with the

ratio of 4 to 1. From the ODIE corpus, 78 documents are kept fortraining, and 19 are used as

development set. A split of 394/98 is used for the i2b2/VA corpus.

7.3.2 The Mention Tagger

For the I2B2 shared task, the semantic classes of mentions (e.g. persons and treatments) are

evaluated together with the output coreference sets in task1A. Our mention tagger makes use

of the entity definitions extracted from the Unified Medical Language System (UMLS)4 for

the semantic class identification. Our mention tagger covers 84.9% of the syntactic heads of

mentions with an accuracy of62.2% on the ODIE corpus.

3Concepts in the shared task refer to the given true mentions.
4http://www.nlm.nih.gov/research/umls/

http://www.nlm.nih.gov/research/umls/
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7.3.3 Evaluation Metrics

For coreference resolution there exists no evaluation metric that has been approved unani-

mously. Hence the i2b2/VA/Cincinnati shared task adopts theapproach taken by the CoNLL

2011 shared task to measure the final coreference performance, the unweighted average of

theMUC, BCUBEDandCEAF(E)evaluation metrics, here being denoted asOverall. How-

ever, in contrast to theCoNLL evaluation, the i2b2/VA/Cincinnati shared task evaluates ad-

ditional mentions that do not participate in any coreference set, so that it results in too high

performance numbers (seeBCUBED numbers in Table7.15 for an example). In addition,

i2b2/VA/Cincinnati adopts theBLANCevaluation metric but does not include it inOverall.

We report numbers according to the i2b2/VA/Cincinnati evaluation scripts for Task 1B and

Task 1C (denoted asI2B2). For task 1A (with automatically detected mentions) we com-

pute the evaluation metrics according to our own variants ofBCUBEDandCEAF (denoted

asSYS), and CoNLLs variants ofBCUBEDandCEAF (denoted asCoNLL). Reporting our

results for task 1A using theI2B2metrics is meaningless because the final i2b2/VA/Cincinnati

evaluation script also evaluates the semantic classes of mentions which we do not include into

our output files. The final i2b2/VA/Cincinnati evaluation script changed during the final eval-

uation phase. The released script during the development phase actually does not evaluate the

semantic classes. All evaluations in this section are conducted across semantic classes.

7.3.4 Results

COPAon the Development Data. COPA’s results on the development sets for all three tasks

are displayed in Table7.13, Table7.14, Table7.15and Table7.16. The evaluation metrics (i.e.

MUC, BCUBED, CEAF(E), overall as the unweighted average of the three, and additionally

BLANC) are calculated with the scripts provided by the shared task.

task 1A (SYS) R P F1

MUC 88.9 61.8 72.9

BCUBED 83 90 86.4

CEAF 78.5 63.6 70.2

Overall 76.5

Table 7.13:COPA’s Results on the ODIE Development Set w/o Concepts (Task 1A) Using

SYSEvaluation Metrics
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task 1A (CoNLL) R P F1

MUC 88.9 61.8 72.9

BCUBED 82.5 94.4 88

CEAF 78.5 48.2 59.7

Overall 73.6

Table 7.14:COPA’s Results on the ODIE Development Set w/o Concepts (Task 1A) Using

CoNLLEvaluation Metrics

task 1B (I2B2) R P F1

MUC 88.6 79.1 82.7

BCUBED 88.5 93 90.7

CEAF 71.5 62.2 66.5

(BLANC 80.5 95.8 86.6)

Overall 80.0

Table 7.15:COPA’s Results on the ODIE Development Set with Concepts (Task 1B) Using

I2B2Evaluation Metrics

task 1C (I2B2) R P F1

MUC 80.8 84.9 82.8

BCUBED 95.6 96.1 95.8

CEAF 88.8 86.3 87.6

(BLANC 93.3 97.2 95.2)

Overall 88.7

Table 7.16:COPA’s Results on the i2b2/VA Development Set with Concepts (Task 1C) Using

I2B2Evaluation Metrics
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COPA on the Testing Data. Our final performances on the testing data for Task 1B (i.e.

overall F1 measure of 0.806) and Task 1C (i.e. overall F1 measure of 0.888) are similar to our

results on the development set (see Table7.15and Table7.16).

Our testing results are slightly worse than the results of the top performing system for Task

1C, and are not significantly different from the top results for Task 1B (Uzuner et al., 2012).

It is indicating that our system is competitive in the medical domain. However, our results on

the testing data of Task 1A are much worse than on the development data, because the final

evaluation script (I2B2) also evaluates the semantic classes of mentions too, whichwe did not

include into our output files. It can be seen from Table7.17 that, SYSmetrics give similar

numbers on the Task 1A testing data as on the Task 1A development data, which are the best

SYSperformances in the shared task.

task 1A (SYS) R P F1 F1 max F1 med

Exact and Partial .760 .648 .696 .696 .690

Exact .783 .707 .730 .730 .703

Table 7.17:COPA’s Results (in bold) on the ODIE Testing Set w/o Concepts (Task 1A) Using

SYSEvaluation Metrics

task 1A (I2B2) R P F1 F1 max F1 med

Exact and Partial .617 .423 .417 .657 .624

Exact .765 .568 .630 .675 .634

Table 7.18:COPA’s Results (in bold) on the ODIE Testing Set w/o Concepts (Task 1A) Using

I2B2Evaluation Metrics

task 1B (I2B2) R P F1 F1 max F1 med

Overall .850 .773 .806 .827 .800

Table 7.19:COPA’s Results (in bold) on the ODIE Testing Set with Concepts (Task1B) Using

I2B2Evaluation Metrics
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task 1C (I2B2) R P F1 F1 max F1 med

Overall .894 .882 .888 .915 .859

Table 7.20:COPA’s Results (in bold) on the i2b2/VA Testing Set with Concepts (Task 1C)

UsingI2B2Evaluation Metrics

Medical Domain Knowledge. As mentioned in Chapter5, the UMLS thesaurus and the

MetaMap API are used to equipCOPAwith medical domain knowledge. Features(7) N i2b2Type,

(9) N i2b2ConName, (23) i2b2PisAand(24) i2b2Abbr are left out in Table7.21to illustrate

the influence of domain knowledge.

w/o KnowledgeFeats w KnowledgeFeats

task 1C(I2B2) R P F1 R P F1

MUC .807 .821 .814 .808 .849 .828

BCUBED .959 .953 .956 .956 .961 .958

CEAF .859 .867 .863 .888 .863 .876

Overall .878 .887

Table 7.21:COPA’s Results on the i2b2/VA Development Set with Concepts (Task 1C), with

and without Knowledge Features, UsingI2B2 Evaluation Metrics. (bold indicates significant

improvement in F1 measure over the column w/o KnowledgeFeats, according to a paired-t test

with p < 0.005)

By accessing domain knowledge,COPAmanages to capture the coreference relation which

pure linguistic features cannot capture. For example, the mention{neurolysis} is correctly

resolved to{the procedure}R due to the contribution of theIsA relation. Because the version

of the evaluation metrics used by the shared task is overwhelmed by unresolved singletons

(in particularBCUBED), the contribution of the knowledge features appears smaller than it

actually is. The same comparison is conducted withSYSmetrics in Table7.22, which shows

a bigger improvement by using knowledge features.
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w/o KnowledgeFeats w KnowledgeFeats

task 1C (SYS) R P F1 R P F1

MUC .807 .821 .814 .808 .849 .828

BCUBED .750 .849 .797 .752 .883 .813

CEAF .786 .731 .757 .792 .750 .770

Overall .787 .804

Table 7.22:COPA’s Results on the i2b2/VA Development Set with Concepts (Task 1C), with

and without Knowledge Features, UsingSYSEvaluation Metrics. (bold indicates significant

improvement in F1 measure over the column w/o KnowledgeFeats, according to a paired-t test

with p < 0.005)

7.3.5 Discussions

By participating in the I2B2 shared task, we are able to convey thedomain adaptationability

of the COPAmodel. With the system mention setting and theSYSmetrics (see Table7.17),

COPAgenerates thebest performance. In terms of the true mention setting,COPAis ranked

into thesecond group(Uzuner et al., 2012).

From the experiences in the I2B2 shared task, we confirm that itis easy to adapt theCOPA

model to new domains. Thefeature engineering is easydue to the overlapping hyperedges

and thelearning phase can be cheaply donewith a small portion of the training documents.

7.4 Error Analysis

7.4.1 COPAErrors for News Articles

Mention Detection Errors. As described in Section4.3.1, our mention detection is based

on automatically extracted information, such as syntacticparsing trees and basic NP chunks.

Since nominimum spaninformation is provided in the OntoNotes data (in contrast to the

previous standard corpus, ACE), exact mention-boundary detection is required. A lot of the

spurious mentions in our system are generated due to the mismatches of the ending or starting

punctuations, and the OntoNotes annotation is also not consistent in this regard. The mention

detection F-score ofCOPA is 67.40, whereas the best system in the CoNLL shared task has

the F-score of70.94.
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Our current mention detector does not extract verb phrases.Therefore it misses all the

Eventmentions in the OntoNotes corpus.Besides the fact that the currentCOPAis not resolv-

ing anyevent coreferences, our mention detector performs weakly in extractingdatementions

too. As a result, the system outputs several spurious coreference sets, for instance a set con-

taining theSeptemberfrom the mention15th September. Moreover, an idiomatic expression

identification needs to be included too, which should help toavoid detecting some spurious

mentions, such as{God} in the phrase{for God’s sake}.

Resolution Errors. A big portion of the recall loss in our system is due to the lackof world

knowledge. For example,COPAdoes not resolve the mention{the Europe station} correctly

into the entity RADIO FREE EUROPE, because the system does not know that the entity is a

station.

Some more difficult coreference cases in theOntoNotesdata might require a reasoning

mechanism. To be able to connect the mention{the victim} with the mention{the groom’s

brother}, the event that the brother is killed needs to be interpretedby the system.

We also observed from the experiments that the resolution ofthe{it} mentions are quite

inaccurate. Although our mention detector discards the pleonastic pronouns, there are still a

lot of them left that introduce wrong coreference sets. Since the{it} mentions do not contain

enough information by themselves, more features exploringtheir local syntax are necessary.

7.4.2 COPAErrors for Clinical Reports

The data sets adopted in the i2b2/VA shared task contain semi-structured reports describing

clinical relevant information of patients. Therefore somedata-specific coreference chains can

be easily derived, such as in the case of ”{Patient} name:{XXX}” where the patient name

is explicitly given. Pronouns in these data sets are not as ambiguous as they are in news

articles. The patient is quite centered in the context of each report, who occupies most of the

third person pronouns. Most singular first person pronouns refer to the doctors who write the

reports.

Definite noun phrases are not used frequently in the i2b2/VA data sets. Instead, variations

of medical terms and expanded descriptions of entities frequently appear, which are difficult

to detect without domain-dependent knowledge resources.

Mention Detection Errors. The mention detection in task 1A has been a challenge for us, as

the annotated mentions are not always the largest noun phrase spans (which is usually the case

in coreference annotations). Annotated is rather a meaningful medical usage. For instance,

phrase{appendix 8.0 x 0.5 cm} is a mention while{135 pulse rate} is not.
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Resolution Errors. COPAhas difficulties deciding whether the difference between the mod-

ifiers of the mention{chest pain} and the mention{back pain} is essential enough to separate

them from each other. It requires knowledge that{back} and{chest} are both part of the body

while being different ones. We attempt to handle this problem by including the medical con-

cept names the mentions refer to (see feature (9)). However,including even deeper knowledge

would be beneficial.

7.5 Experiments on the Training Data Size

We conducted a series of runs with different amounts of the training data, shown in Figure

7.1. The curve derived from the i2b2/VA/Cincinnati corpus usingthe I2B2 metrics is tagged

with ”i2b2 trsize”, while the curve using ourSYSmetrics is tagged with ”i2b2trsize,sys”.

Because of the skewed evaluation metrics adopted in the i2b2/VA/Cincinnati (see Section

7.3.3), the curve ”i2b2trsize” shows only a small drop in performance (i.e. four percent F-

measure) when only two training documents are used. When we apply our own version of the

evaluation metrics which is not as influenced by singletons (see Chapter6), the drop on the

curve ”i2b2 trsize,sys” is more pronounced. However, even with this evaluation measure we

can see that only little training data is sufficient for our system to reach its top performance.
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In order to check whether the task of coreference resolutionis easier in the clinical domain

than in the news domain, we perform the same experiment usingthe CoNLL-shared task

development data using our own evaluation metrics (“sys”),the curve of which is tagged as

“conll trsize,sys”. Here we see a slight increase when using more than 20 training documents,

though even here we reach top performance with only about 100training documents (out of

more than 1,800 original ones). The overall lower numbers can be partially explained by using

automatically tagged mentions and partially by the difficulty of the news domain (due to the

more occurrences of pronouns and diverse entity types). However, in both domains our system

needs only very little training data to achieve competitiveperformance.

7.6 Experiments on thek Model

We proposed two partitioning algorithms in this thesis, theR2 partitionerwhich partitions

the hypergraphs in an iterative manner and theflatK partitioner which attempts to conquer

the hierarchical limitation of theR2 partitionerby deriving the clusters at one step. TheflatK

partitionerassumes the number of clusters to be known beforehand, and our proposedk model

in Chapter4 addresses this issue via preference modeling.

The effect of singleton entities. It is no trivial matter to predict the number of entities (i.e.

clusters) during the end-to-end coreference processing, when noise is involved in the graphs

to be partitioned. System mentions which do not participatein any coreference set present as

singleton entities in the graphs, which dramatically change the distributions of the number of

entities.

Figure7.2compares the distributions of the number of entities per100 mentions with and

without singleton entities involved. The figures on the leftside plot the frequencies of different

k’s without singleton entities, while the right ones includesingleton entities. The upper two

figures are for MUC 6 data set and the lower two are for ACE 2002 corpus.
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Figure 7.2: The Distributions ofk With and Without Singleton Entities

It can be seen that when using system mentions (i.e. the settings with singleton entities),

the distributions of the number of entities contain a lot of noise compared with the true mention

setting without singletons. Such noisy distributions makethe prediction ofk difficult to be

approached by regression methods. This motivates our proposed preference-basedk model

which does not estimate the intrinsic distribution ofk, but attempts to optimize the application

F-score directly.

The Performance of Our Proposedk Model. With the set of features described in Section

4.3.4, Table7.23gives the performance for the classification step of our proposedk model.

The true and false classes correspond to the decisions whichprefer the first or the second

partitionings. Since the upper bound ofk is decided by simply counting the numbers of

different mention strings, we generate an approximately 1:6 ratio for positive and negative

instances. The much bigger size of negative instances explains the low F-score the false class

achieves. Although the classification performance does notdirectly correlate with the final

coreference results, it is empirically observed that improving the classification step boosts
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COPA’s resolution results correspondingly.

Class R P F

false 0.271 0.428 0.332

true 0.759 0.611 0.677

Table 7.23:k Model’s Classification Performance on the CoNLL Development Data

Table 7.24 illustrates the performance of our proposed partitioning algorithms on the

CoNLL development data and on the ACE 2004 development data. With the current set of

the k model features, theflatK partitioner does not show its superiority over theR2 parti-

tioner. However, it is potentially useful for incorporating global set-level information, such as

the number of entities and the relations between entities. The numbers withbestK suggest the

upper bound performance of theflatK partitioner. The bestK setting chooses thek’s which

achieve the best coreference performances.

R2 flatK flatK(bestK)

R P F R P F R P F

CoNLL

MUC 59.99 61.82 60.89 60.04 60.99 60.51 60.51 61.97 61.23

B3
sys 67.78 73.29 70.43 68.23 71.94 70.03 68.6 73.28 70.86

CEAFsys 46.72 44.93 45.81 45.97 45.02 45.49 46.86 45.42 46.13

ACE04

MUC 63.3 70.9 66.9 63.5 70.8 67.0 61.8 78.8 69.3

B3
sys 70.9 81.0 75.6 71.0 81.0 75.7 68.8 86.2 76.5

CEAFsys 71.8 67.4 69.6 71.8 67.5 69.6 71.9 69.3 70.6

Table 7.24: COPA R2 Vs. flatK’s ( with the alpha*=0.07, bold indicates significant improve-

ment in F-score over the others according to a paired-t test with p < 0.05)



114 7. Evaluating COPA

7.7 Summary

In this chapter, our proposed modelCOPAis evaluated in various settings. For the model com-

parisons, we do not include the graph partitioning algorithm proposed byNicolae & Nicolae

(2006) as a baseline system, because our adopted baseline modelBengtson & Roth (2008) is

claimed to produce better performance over the previous ones. For the state-of-the-art systems

afterBengtson & Roth (2008), we compare them with the CoNLL 2011 shared task setup.

COPA vs. Pairwise Models. By comparingCOPA with two pairwise models in a strict

manner (i.e. leaving only the models to be different), it is suggested that the performance

gains of our graph-partitioning model come from the usage offull contexts and the direct

optimization of coreference sets. From the comparison experiments conducted on several

corpora and with different evaluation metrics, we concludethat our global model triumphs

over the pairwise methods consistently.

COPA vs. the State-of-the-art. The CoNLL 2011 shared task allows us to compare our

system with the state-of-the-art systems on the OntoNotes corpus, which is a big collection

of documents and is well-annotated.COPAparticipates with theR2 partitioner, and performs

competitively with only a limited amount of training documents applied (coming in as the

second in the open track, and also belongs to the second blockin the closed track). It is

shown thatCOPAworks stable on different types of documents, such as news articles and

speech transcripts, and incorporating new features is simple as the learning process is very

light-weighted.

COPA’s Domain Adaptation & Weakly Supervised COPA. In order to further test the

robustness ofCOPA, we also provide the experiments on a data set of clinical reports. The

flatK partitioner is used in this setting, and the performance is encouraging thatCOPAcan be

easily adapted to new domains by incorporating some domain-specific knowledge.

In Section7.5, more extensive experiments are conducted to illustrate the weakly super-

vised nature of theCOPAmodel. Our hypergraph model is shown to be stable with respect

to the amount of the training data. For the clinical set, we need as little as five percent of the

training data to achieve a competitive performance. This makesCOPAa good choice, when

coreference resolution needs to be applied to new domains and new languages.

Our Proposedk model. We analyze our proposedk model in Section7.6which is designed

to assist theflatK partitioner. We show statistics on the number of entities within documents

and provide experimental numbers to show the current statusof the model.
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Graph models cannot deal well with positional information,such as distance between men-

tions or the sequential ordering of mentions in a document. We implement distance informa-

tion as weights on hyperedges which results in a decent performance. However, this is limited

to pairwise relations and thus does not exploit the power of the high-degree relations available

in COPA. We expect further improvements, once we manage to include positional information

directly.

An error analysis reveals that there are some cluster-levelinconsistencies in theCOPA

output, such as the cluster with three mentions [Bill Clinton], [Clinton] and [Hillary Clinton]

where [Bill Clinton] and [Hillary Clinton] are incompatible with each other. Enforcing the

consistency would require a global strategy to respect the constraints during the partitioning

phase. We also explore constrained clustering algorithms in COPA, a field which has been very

active recently (Basu et al., 2009). Constrained clustering methods should allow us to make

use of negative information from the cluster-level perspective (see Chapter8 for details).
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Chapter 8

The ConstrainedCOPA

The ConstrainedCOPA. The coreference resolution task is to cluster mentions intosets so

that all mentions in one set refer to the same entity.COPA represents documents as hyper-

graphs, with relational features as hyperedges. Upon the hypergraphs, the system resorts to

graph partitioning techniques to generate the final coreference sets. The partitioning should

be significantly improved using supervision in the form ofpairwise constraints, e.g. pairs

of mentions which are known to be in the same coreference sets(Must-Linkconstraints) or in

different ones (Cannot-Linkconstraints). The constraints suggest top-down advice to improve

the output partitioning. While it is straightforward to interpretMust-Linkconstraints as highly

weighted edges, there is no trivial way to include negative relations (i.e.Cannot-Linkcon-

straints) into a graph representation. Directly adding negative edges into a graph results in a

NP-hard problem for the standard graph partitioning algorithms, although it can be addressed

by specific algorithms such as correlation clustering (Bansal et al., 2002).

In this chapter, we includeCannot-Linkconstraints within the hypergraph partitioning

framework ofCOPAwithout changing the already-adopted spectral clusteringalgorithms.

The constrainedCOPAapplies constrained data clustering algorithms to the vector represen-

tations in the spectral space, which are generated during the spectral clustering procedure. In

this way, the consistent partitions are found by both respecting the constraints and optimizing

the normalized cut. From the supervision point of view, thiswork of including constraints can

be viewed as the first step towardsa better learning model for COPA. However, pairwise

constraints only provide limited pairwise guidance. Improvements are expected by further

exploring the learning phase ofCOPA.

Enforcing Transitivity in Coreference Resolution. In this chapter, we aim to show that

includingCannot-Linkconstraints is helpful to the task of coreference resolution. In our hy-

pergraph representation, the weight of a hyperedge indicates how close its incident vertices

are to each other with respect to the corresponding relation. The vertices without edges in
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between can still be clustered into the same coreference setdue to the transitive closure which

is implicitly done during the clustering process. Therefore, without any means to enforce

the constraint respecting, inconsistent clusters can be derived. For example, when a mention

[Bill Clinton] is connected with a mention [Clinton] in a graph, and at the same time a simi-

larly weighted edge is connecting the mention [Clinton] and a mention [Hillary Clinton], the

mention [Bill Clinton] and the mention [Hillary Clinton] therefore end up in the same cluster

despite of the negative relation between them (e.g. different person names indicate different

entities).

There have been attempts to enforce transitivity in coreference resolution, for instance,

by imposing constraints on integer linear programming (ILP) (Finkel & Manning, 2008) or

by disallowing inconsistent assignments during the optimization of the graphical models (the

second model inMcCallum & Wellner (2005)). However, we work on including constraints

into graph partitioning algorithms, in order to generate more consistent coreference sets.

We experiment with both artificial clean constraints and automatically generated ones. The

experiments on clean constraints show significant improvements by applying our proposed

constrained partitioning algorithm. However, our experimental results with generated con-

straints are mostly negative, due to the low coverage of the proposed constraints. Detailed

discussions on the current problem and future work are also provided.

The previous efforts on including constraints in the coreference resolution task are intro-

duced in Section8.1.1, and the existing general purpose constrained clustering algorithms are

in Section8.1.2. We describe our proposed algorithm in Section8.3, and empirically analyze

the performance of the constrainedCOPAin Section8.5.

8.1 Background

8.1.1 Enforcing Transitivity in Coreference Resolution

It has been observed that the two-step coreference systems (i.e. conducting a classification

step and a clustering step) tend to generate inconsistent coreference sets. Since the negative

predictions from the classification step are ignored, the transitivity of the coreference relation

is not enforced explicitly in the clustering step.

Constrained Clustering Methods. Cardie & Wagstaff (1999) include constraints into their

distance metric to modify the edge weights between mentions, and perform graph cluster-

ing algorithms upon the modified graphs afterward. Built uponCardie & Wagstaff’s system,

Wagstaff (2002) attempts to apply constrained clustering algorithms directly to the task (see

her Chapter 5). To illustrate the contributions of the constraints, Wagstaffonly compares
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against the system that does not use constraint informationat all. For instance, thegender

agreementindicator is excluded from the feature set of the baseline system. We argue that

constraints can be straightforwardly incorporated into the standard feature sets, and simply

excluding constraint information leads to a very low performance of the baseline system (see

column 1 of Table 5.5 inWagstaff (2002)).

Constrained ILP Models. Klenner (2007) andFinkel & Manning (2008) impose transitiv-

ity constraints on the integer linear programming optimization (ILP) to cluster the pairwise

classification decisions into sets. With constrainedCOPA, we enforce transitivity with one-

step clustering algorithms. We also do not suffer from expensive computational complexity as

ILP models do.

Constrained Probabilistic Models. McCallum & Wellner (2005) optimize the conditional

probability of the global entity assignment, by casting theproposed graphical model as an

equivalent graph partitioning problem — the correlation clustering problem (Bansal et al.,

2002). Correlation clustering operates on pairwise relations between data points, to derive

partitions which respect the relations as much as possible.Since negative edges are allowed

in such graphs, the cluster-level consistency is taken careof directly. McCallum & Wellner

use fully connected graphs with all mentions as vertices. Webelieve that the coreference re-

lation can be represented in much sparser graphs as the ones adopted byCOPA(see Chapter

4). Moreover, only a small amount of negative relations between mentions need to be consid-

ered as constraints, rather than intensively making use of many trivial ones (i.e. the negative

relations between the mentions which are not likely to be clustered into the same set at all).

In this thesis, we propose to guide the graph clustering algorithm to generate more consistent

partitions with the selectedCannot-Linkconstraints.

Sapena et al. (2010) use a constraint-based approach (i.e. relaxation labeling) for coref-

erence resolution with the learned constraints applied. Itis shown that the proposed model

outperforms an ILP algorithm which enforces transitivity constraints. The work is conceptu-

ally similar to the constrainedCOPA, except that we focus on the standard graph-clustering

setup.

Entity-mention Models. Entity-mention models (Luo et al., 2004; Yang et al., 2008; Culotta

et al., 2007) take care of the entity-level consistency by the incremental manner of processing.

Entity-level information gets accumulated as the entitiesgrow, the within-entity consistency

is therefore maintained. Despite of the improved expressiveness, entity-mention models have

not yield particularly encouraging results yet (Ng, 2010), possibly due to the seriousness of

the error propagation.
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8.1.2 Literature on Constrained Clustering

Due to the unsupervised nature of clustering algorithms, the obtained clusters may not nec-

essarily be consistent with the domain knowledge of interest. For instance, in the image seg-

mentation task, while expecting to cluster portraits of persons by gender, it is still possible to

generate clusters with and without glasses in the portraits. Constrained clustering allows one

to specify prior (domain) information about clusters to guide the clustering process in order to

avoid creating spurious partitions.

Constrained Data Clustering. Most of the previous efforts of including constraints into

clustering algorithms have been on the data which can be represented as vectors.Wagstaff &

Cardie (2000) propose to modify the standard k-means algorithm (MacQueen, 1967) to make

sure that no constraint is violated while assigning data points to clusters.Basu et al. (2002)

use annotated data points to form k-means’s initial clusters and to constrain the following

assignments. Instead of modifying the assignment methods of k-means, one can also learn

distance metrics from pairwise constraints (Bar-Hillel et al., 2003; Klein et al., 2002; Xing

et al., 2003). Basu et al. (2004) propose a probabilistic model for semi-supervised clustering

based on Hidden Markov Random Fields (HMRFs). Recently, this area has greatly expanded

to include algorithms that leverage additional domain knowledge for the purpose of clustering

(Basu et al., 2009).

Constrained Graph Clustering. For tasks where relations are of greater interest than data

points themselves (e.g. the coreference resolution task which focuses on identifying the coref-

erence relation) or where data vectors are not directly available, graph clustering fits more

appropriately than data clustering techniques. There is only a little work on constrained graph

clustering.Kamvar et al. (2003) modify the similarities between the constrained data items

and then apply classifiers in the spectral space, so that spectral clustering is transformed to

spectral classification. Our proposed constrainedCOPAresembles the spirit of making use of

the data representation in the spectral space, but we do not apply classification steps.Kulis

et al. (2005) construct appropriate kernels including constraint penalties, with which kernel

k-means (Dhillon et al., 2004) can be applied to iteratively find the optimization of the cor-

responding objective functions. There are also attempts tocombine pairwise constraints with

the normalized cut directly, but only withMust-Linkconstraints (Yu & Shi, 2004) or only for

two-class problems (Coleman et al., 2008).

In the constrainedCOPA, we combine a simple constrained data clustering algorithm(Wagstaff

& Cardie, 2000) with our hypergraph spectral clustering algorithms (see Chapter4) via the
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spectral embedding. With our constrained clustering algorithm, we avoid modifying the con-

structed graphs or changing the objective functions of the original partitioning algorithms.

8.2 Inconsistency Analysis on Output Coreference Sets

Before introducing our proposal of the constrainedCOPA, we firstly provide examples of

inconsistent coreference sets generated by the basicCOPA(Chapter4). Since we only focus

on the pairwiseCannot-Linkconstraints in this chapter, the inconsistent sets are determined to

be the ones containing at least one pair of mentions which do not corefer. By illustrating the

spurious coreference set examples, we motivate the proposal of the constrainedCOPA.

The analysis in this section is conducted on the OntoNotes development set (see Section

3.3), andCOPA’s CoNLLevaluation numbers are given in Table8.1.

R2 partitioner R P F1

MUC 60.87 61.92 61.39

BCUBED 68.76 72.57 70.61

CEAF(E) 46.18 45.15 45.66

overall 59.22

Table 8.1: COPA R2 partitioner’s results on the OntoNotes development set usingCoNLL

metrics

Frequency of Inconsistent Clusters. We collect the output coreference sets where there

are at least one pair of mentions belonging to different entities. The inconsistencies are only

measured between the mentions which are not twinless1, so that their ground truth annotations

are available and the effect of the mention detection is not taken into account. From Table8.2,

it can be seen that around1/6 of the output clusters from the basic version ofCOPAcontain

inconsistent mentions, occurring in half of the documents.

1The mentions which are not aligned with true mentions are called twinless (Stoyanov et al., 2009)
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Overall Output Clusters Inconsistent Clusters

3097 (in 202 documents)484 (in 102 documents)

Table 8.2: Inconsistent Output Clusters fromCOPA R2 partitioneron the OntoNotes Devel-

opment Set

Although there is only a small portion of the output clusterscontaining inconsistencies, we

believe that the problem will become more severe when more relational features are included

and when the graph structure becomes richer. Since the negative relations are taken as negative

features inCOPA(see Chapter5), the violated ones in the output result from the partitioning

phase only. Our objective here is to guide the partitioning algorithm with cluster-level infor-

mation. It is worth noting that although theCannot-Linkconstraints adopted in this chapter

are pairwise, the consistencies are enforced on the clusterlevel.

Inconsistent Cluster Examples. With the inconsistent cluster examples, we aim to illustrate

how they are generated via the transitivity closure automatically done during the partitioning

procedure. In the examples, the subscripts of the square brackets (i.e. []) indicate the true

entity assignments and the ones of the curly brackets (i.e.{}) give the system output.

In Example (1), the mention{[He]} is wrongly cut away from the entity JUSTICE AN-

TONIN SCALIA , and is grouped with the LAURANCE TRIBE entity whose name indicates

female gender. This mistake is generated via the connectionbetween the mentions{[He]} and

{[Tribe]}. It shows that solely activating a negative feature between{[He]} and{[Laurance

Tribe, Gore’s attorney]} does not prevent this inconsistent cluster in the output. A better

partitioning should be expected for this example when the cluster-levelgender agreement

constraint is respected.

Example (1):

{[Laurance Tribe, Gore’s attorney]1}1, said the state court did nothing illegal.

{[Justice Antonin Scalia]2}2 also pressed{[Tribe]1}1.

{[He]2}1 said the state court relied on the Florida Constitution to draft its decision.

In Example (2), both entitiesANY ECONOMIC THEORY andAN ECONOMIC THEORYare
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only active locally (i.e. in their own sentences). However,they are mistakenly linked to-

gether via the definite expression{[the theory]}. Since it is most likely that the indefinite

noun phrases introduce new entities, the connections between {[an economic theory]} and

its preceding mentions should be forbidden. This can be easily interpreted as aCannot-Link

constraint.

Example (2):

For example your uncle, using{[any economic theory]1}1, the probability that

{[it]1}1 will be accurate is virtually 0.

So whenever you discuss{[an economic theory]2}1 with someone, the response

would be: My uncle isn’t like that, so{[the theory]2}1 is baloney.

In Example (3), the mention{[him]} is clustered together with the mention{[He]}. This

violates Principle B of the binding theory (see Section2.1). When the principle is respected,

the resolution of the mention{[He]} can be indicated by the observation that the entity RUS-

SIAN FOREIGN M INISTER IGOR IVANOV is more salient (i.e. in the subject position of the

sentence) than the entity KOSTUNICA in this context.

Example (3):

{[Russian Foreign Minister Igor Ivanov]1}1 congratulated{[Kostunica]2}2 on

{[his]2}2 election victory .

{[He]1}1 also gave{[him]2}1 a letter from Russian President Vladimir Putin.

The examples introduced in this section convey that simply preventing links between non-

coreferent mentions as suggested by the negative features do not ensure the within-cluster

consistencies in the output. The examples also indicate that the partitioning algorithms should

be improved with the guidance of linguistic knowledge. In this chapter, we focus on guidance

information in the form ofCannot-Linkconstraints, and address the problem by proposinga

constrained hypergraph partitioning algorithm .
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8.3 Our Proposal — the ConstrainedCOPA

In this section, we propose to combine constrained data clustering algorithms with our hyper-

graph spectral clustering algorithms via the spectral embedding. The proposed method avoids

changing the objective function of the adopted hypergraph clustering algorithms. It also avoids

propagating the constraints on the originally constructedhypergraphs. Our proposal makes it

feasible to apply different constrained data clustering algorithms within the spectral graph

clustering framework.

A simple constrained data clustering algorithmCOP-KMeansis introduced in Section

8.3.1, and our variant of theCOP-KMeansis in Section8.3.2. Section8.3.3describes our

proposal of combining the modifiedCOP-KMeanswith COPAvia the spectral embedding, in

order to tackle the constrained hypergraph clustering problem.

8.3.1 Constrained Data Clustering —COP-KMeans

The standard k-means algorithm (MacQueen, 1967) iteratively assigns data points to their

closest clusters, and converges when there are no more changes in the cluster assignments.

The k-means algorithm solely depends on the intrinsic distributions of the given data sets.

Wagstaff & Cardie (2000) provide a modified version of the k-means algorithm which makes

use of the background knowledge being expressed as pairwiseconstraints. Their proposed

variantCOP-KMeansrespects the pairwise constraints during the cluster assigning process.

The algorithm disallows the assignments where constraintsare violated, therefore resulting

in consistent partitions. There are two types of pairwise constraints which are prevalently

adopted and are the input toCOP-KMeans.

• A Must-Link constraint suggests that the given pair of data points should belong to the

same cluster.

• A Cannot-Link constraint suggests that the given pair of data points should not belong

to the same cluster.

Algorithm 6 gives the details onCOP-KMeans. Line 4 and Line 5 of the algorithm lo-

cate the modificationsCOP-KMeansmakes upon the standard k-means algorithm. Instead

of assigning a data point to the closest cluster,COP-KMeanschecks on the constraint viola-

tion first. Only the clusters which do not violate any given constraints are considered in the

assignment.



8.3 Our Proposal — the ConstrainedCOPA 125

Algorithm 6 COP-KMeansAlgorithm (single iteration) (Wagstaff & Cardie,

2000)

1: input : data setD, must-link constraintsCon= ⊆ D × D, cannot-link

constraintsCon 6= ⊆ D ×D

2: LetC1 . . . Ck be the initial cluster centers

3: for each pointdi in D do

4: Assign di to the closest cluster Cj such that

violateConstraints(di, Cj,Con=,Con 6=) is false

5: If no such cluster exists, fail (return ∅)

6: end for

7: for each clusterCi do

8: Update the center ofCi by averaging all of the pointsdj that are as-

signed toCi

9: end for

10: return partitionedC1 . . . Ck

TheViolateConstraints function in Algorithm7 suggests that the pairwise constraints are

brutally enforced inCOP-KMeans. No partitioning output is generated when there is no single

assignment respecting all given constraints (i.e. Line 12).

Algorithm 7 ViolateConstraints Function Algorithm (Wagstaff & Cardie,

2000)

1: input : data pointd, clusterC, must-link constraintsCon= ⊆ D × D,

cannot-link constraintsCon 6= ⊆ D ×D

2: for each(d, d=) ∈ Con= do

3: if d= /∈ Con= then

4: return true

5: end if

6: end for

7: for each(d, d 6=) ∈ Con 6= do

8: if d 6= ∈ Con 6= then

9: return true

10: end if

11: end for

12: return false
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8.3.2 Our Variant of COP-KMeans

SinceCOPA is an end-to-end system which works in a noisy environment, enforcing con-

straints in a hard way asCOP-KMeansdoes can be problematic. We propose a variant of

COP-KMeansto minimize the number of the violated constraints. The proposedVD-KMeans

is given in Algorithm8, with the modification in line 4 replacing theViolateConstraints

function with theViolationDegree function (see Algorithm9). ViolationDegree counts the

number of the violatedCannot-Linkconstraints when assigning a data point to a cluster, and

VD-KMeanssimply decides on the cluster with the smallest violation degree or on the closest

cluster when the violation degrees are the same.

Algorithm 8 VD-KMeansAlgorithm (single iteration)

1: input : data setD, cannot-link constraintsCon 6= ⊆ D ×D

2: LetC1 . . . Ck be the initial cluster centers

3: for each pointdi in D do

4: Assign di to the cluster Cj with the smallest

ViolationDegree(di, Cj, Con 6=)

5: For clusters are with the same violation degree, choose the closest one

6: end for

7: for each clusterCi do

8: Update the center ofCi by averaging all of the pointsdj that are as-

signed toCi

9: end for

10: return partitionedC1 . . . Ck

Algorithm 9 ViolationDegree Function Algorithm

1: input : data pointd, clusterC, cannot-link constraintsCon 6= ⊆ D ×D

2: for each(d, d 6=) ∈ Con 6= do

3: if d 6= ∈ C then

4: Increase the violation degree:vdCnt++

5: end if

6: end for

7: return vdCnt

We only considerCannot-Linkconstraints in constrainedCOPA, asMust-Linkconstraints

can be straightforwardly incorporated as highly weighted hyperedges in our hypergraph mod-

els.
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8.3.3 Constrained Hypergraph Spectral Clustering

The hypergraph-based spectral clustering has been introduced in Section4.2.2. In short, spec-

tral clustering reduces the data dimensionality by using the eigenvectors of the graph Lapla-

cians. The resulting vector representation of the data set is thespectral embedding. For the

sake of the expressive convenience, we start with revisiting some of the basic notations.

Hypergraph Normalized Cut. When the normalized cut (Ncut (Shi & Malik, 2000)) is

adapted to hypergraphs (Zhou et al., 2007), it preserves the intuition that a good partitioning

cuts as few hyperedges as possible while leaving the resulting partitions as dense as possible.

The hypergraphNcut for ak-partitioningPk is defined by

Ncut(Pk) =
∑

1≤i≤k

vol∂Vi

volVi

(8.1)

Pk = {Vi|V = V1 ∪ V2 ∪ · · · ∪ Vk}, whereVi ∩ Vj = ∅, for all 1 ≤ i, j ≤ k and i 6= j.

The volumevolVi gives the within-cluster density of the the vertex setVi. The volume of the

hyperedge boundary∂Vi measures the hyperedges to be cut in order to deriveVi as a cluster.

The objective of our partitioning algorithm is therefore tominimize Equation8.1.

The Spectral Embedding. TheNcut value can be minimized using a relaxation approach,

which approximates discrete cluster memberships with continuous real numbers. The approx-

imation can be approached by solving the eigen problem of thehypergraph Laplacian:

L = I −Dv
− 1

2HWDe
−1HTDv

− 1

2 (8.2)

Let (λi, vi), i = 1, . . . , n, be the eigenvalues and the associated eigenvectors ofL, where

0 ≤ λ1 ≤ · · · ≤ λn and‖vi‖ = 1. The continuous solution to theNcutminimization is then

provided by a new low-dimensional data representationX:

X = (v1, · · · , vk) (8.3)

whereX is called thek-th orderspectral embeddingof the graph. It has been shown that

k generally equals to the number of clusters (Ng et al. 2001). Astandard data clustering

algorithm, such as the k-means, can be applied to cluster thegraph nodes in the new space

afterward.

Applying Constrained Data Clustering Algorithms to the Spectral Embedding. Fig-

ure 8.1 illustrates our proposal of the constrained spectral graphclustering algorithm. The

Cannot-Linkconstraints are extracted from the graph to be partitioned,and are imposed on

the generated spectral embedding. Since the spectral embedding transforms the original graph
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to a vector representation of vertices, constrained data clustering algorithms can be directly

applied.

Graph

vertex1

vertex2

vertexn

Spectral 

Embedding

Constrained

Data Clustering 

subgraph1 subgraph2 subgraphk

Cannot-Link 

Constraints

Figure 8.1: Illustration of Constrained Spectral Graph Clustering

8.3.4 ConstrainedCOPAPartitioners

COPAimplements a hierarchical multi-class partitioner,R2 partitioner, which recursively bi-

partitions the hypergraph until a stopping criterion (i.e.α∗) is reached (see Section4.3.3.1).

We propose to apply constraints to each recursion of theR2 partitioner. The resultingConR2

partitioner is outlined in Algorithm10. ConR2 partitionerrecursively bi-partitions when the

Ncut value is smaller thanα∗ or when the violated constraints are fewer compared with the

input hypergraph (i.e. Line 8). The current bi-partition isnot accepted when the constraint

violations do not become fewer after partitioning (i.e. Line 11). VD-KMeansis used as the

data clustering algorithm, taking the spectral embedding andCannot-Linkconstraints as input.
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Algorithm 10 ConR2 partitioner

1: input : target hypergraphHG , Cannot-LinkconstraintsCN , α⋆

2: Counts the violated constraintsVioCnt for the inputHG

3: Solve for the2-nd spectral embedding,SE

4: Generate two subHG ’s usingVD-kmeans(SE ,CN )

5: Counts the violated constraintsVioCnt1 , VioCnt2 for two subHG ’s

6: if min
i

(Ncut i) < α∗ OR bothVioCnti ’s are smaller thanVioCnt then

7: for each subHG do

8: Bi-partition the subHG with R2 partitioner

9: end for

10: else

11: if anyVioCnti is bigger than or equal toVioCnt then

12: Output the inputHG

13: end if

14: else

15: Output the current subHG

16: end if

17: output: partitionedHG

The R2 partitioneroptimizes the bi-partition at each recursion step. However, it is not

guaranteed that the final output clusters are globally optimized due to the hierarchical nature.

To overcome the problem, we experiment with theflatK partitioner (see Algorithm2) as well
2. However, theConflatK partitioneris not covered in this chapter.

8.4 Cannot-Link Constraints for Coreference Resolution

The Difference Between Negative Features and Cannot-Link Constraints. In this sec-

tion, we describe theCannot-Linkconstraints proposed for coreference resolution. TheCannot-

Link constraints are negative relations between a pair of mentions, and are at the same time

taken as negative features too. Negative features inCOPAprevent hyperedges to be built dur-

ing the graph construction phase, while theCannot-Linkconstraints guide the partitioners in

2With the constrainedConflatK partitioner, k clusters are output simultaneously. TheVD-kmeansalgorithm

is again applied to thek-th spectral embedding of the input hypergraph, and directly outputs the final clusters.

The model used to predict thek is introduced in Section4.3.4.
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the inference procedure. Duplicating the constraints as negative features enables us to analyze

the contributions which are solely from the constrained clustering algorithm.

(1) CN Gender

– Two mentions do not agree in gender.

– For instance, the mentions [Hillary Clinton] and [he] should not be clustered into

one set due to the incompatible gender.

(2) CN ContraMod

– Two mentions have the same syntactic heads, and the anaphor has a modifier which

does not occur in the antecedent or which contradicts the modifiers of the an-

tecedent.

– For instance, aCannot-Linkconstraint is built between [1,000 coal rail cars] and

[the 1,450 coal rail cars], as the two mentions contain different quantitative mod-

ifiers.

(3) CN ContraGPE

– Two mentions realizing different GPEs should not be in one set.

– For instance, a negative relation exists between the mentions [Syria] and [Lebanon]

because they are different countries. A gazetteer consisting of lists of country

names and city names is looked up for computing this constraint.

(4) CN ContraSubjObj

– Two mentions are in the subject and object positions of a non-copular verb, and

the anaphor is not a possessive pronoun.

– Considering the text ”[John] talks to [him]”, where the mention [John] should not

be coreferent with the pronoun [him]. The dependency tree is used to identify the

verbs on which the mentions depend. This constraint is derived from Principle B

of the Binding theory (Section2.1.2).

(5) CN Span

– A mention spanning another one cannot be linked to it, exceptfor RoleAppositive

cases.

– Considering the embedding mentions [[his] brother], the two should not be clus-

tered together.
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(6) CN ContraPerson

– Two person mentions with different names cannot be linked.

– For instance, the mention [Mr. Wright] should not be coreferent with the mention

[Mr. Valenti] due to the different family names of the two person entities.

The Cleanness of the Proposed Constraints.Table8.3analyzes the cleanness of the pro-

posed constraints. The statistics corresponds to the frequencies of the constraints holding on

the OntoNotes training data. The negative signs in the tableindicate that theCannot-Link

constraints are negative relations between mentions.

Constraints Statistics

(1) CN Gender -0.993

(2) CN ContraMod -0.980

(3) CN ContraGPE -0.992

(4) CN ContraSubjObj -0.997

(5) CN Span -0.996

(6) CN ContraPerson -0.961

Table 8.3: The Cleanness of the Cannot-Link Constraints on the OntoNotes Training Set

8.5 Experiments on the ConstrainedCOPA

Experimental Settings. In this section, we experiment with the proposed constrainedCOPA.

The numbers are reported on the OntoNotes development set, using the unweighted average of

MUC, BCUBEDandCEAF(E)(i.e. the final score in CoNLL 2011 shared task). The setting

of COPAusing theR2 partitioneris denoted asR2, upon which the settingR2+N Feats in-

cludes theCannot-Linkconstraints as negative features. The baseline systemPostR2encodes

the standard k-means algorithm and keeps bi-partitioning until there is no violated constraint

any more.ConR2corresponds to the constrainedCOPAproposed in this chapter.

In Section8.5.1, we first experiment with the clean constraints which are generated from

the ground truth annotations. Such upperbound setting allows us to evaluate the proposed

method while excluding the effect of the constraint generation phase. The automatically gen-

erated constraints are tested in Section8.5.2, where the constrainedCOPAperforms in a fully

automatic manner.
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8.5.1 Experiments with Artificial Clean Constraints

The Generation of Clean Constraints. The clean constraints are only generated for the

mentions which can align with the true mentions. In this way noise brought by the twinless

mentions is still kept, otherwise building clean constraints for all mentions will directly remove

the spurious ones. There are a total of144, 858 clean constraints generated for the OntoNotes

development set.

ConR2vs. Baselines. Table8.4 gives the performance of our proposed constrainedCOPA

with clean constraints. The difference betweenPostR2andConR2is thatPostR2only uses the

constraints as the stopping criterion for the recursive partitioning, butConR2actually guides

the partitioning inference with the constraints.

R2 R2+N Feats PostR2 ConR2

R P F R P F R P F R P F

MUC 60.85 61.93 61.39 61.81 64.06 62.92 59.6 64.67 62.03 62.66 67.6 65.03

BCUBED 68.68 72.59 70.58 69.6 76.28 72.78 67.62 78.58 72.69 69.8 80.0 74.55

CEAF(E) 46.19 45.13 45.66 47.85 45.72 46.76 49.47 44.8 47.02 50.03 45.49 47.65

overall 59.21 60.82 60.58 62.41

Table 8.4:ConR2vs. Baselines with Clean Constraints on the OntoNotes Development Set

(bold indicates significant improvement in F-score overPostR2according to a paired-t test

with p < 0.05)

The improvementConR2achieves compared with the settingR2+N Featsdemonstrates

the contribution which is solely from the proposed algorithm. The precision of all metrics

(except forCEAF(E)) are improved by using the constrained clustering algorithm. This is not

surprising given the fact thatCannot-Linkconstraints are applied to prevent spurious linkages.

Gains on recall are observed too. Since constraints participate in the partitioning decisions

when usingConR2, the recall improvements suggest that the corrections on some mentions

(which are involved in the constraints) also improve the resolutions of others.

The baseline systemPostR2greedily partitions the clusters which violate constraints, with-

out incorporating constraint information into the partitioning decisions. ThePostR2results

also produce higher precision (except for theCEAF(E)metric), but suffer from a bigger loss

in recall. This confirms again that the constraints need to beenforced on the cluster level

during the partitioning inference.
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ConR2with Randomly Sampled Constraints. Figure8.2 plots the performance curve of

ConR2given the increasing number ofCannot-Linkconstraints. The used constraints here are

randomly sampled from the full set of clean constraints as introduced previously. It is worth

noting that all the original clean constraints are includedas negative features throughout the

experiments, and only the ones used asCannot-Linkconstraints differ in size. Therefore the

leftmost points in all three plots correspond to the performance of theR2+N Featsmodel.
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Figure 8.2:ConR2Performance with Increasing Size of Clean Constraints

Figure8.2 shows thatConR2only outperformsR2+N Featswhen more than80% of the

constraints (around115, 880) are used. Smaller sets of constraints generate worse performance

compared with theR2+N Featssystem which does not use constraints at all. The possible

explanation is that more constraints help to generate balanced clusters, while a few can easily

skew theConR2partitioner. This demonstrates a drawback of the proposed algorithm, that

enforcing the constraints is a higher priority than deriving a good partitioning.
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We conduct another group of experiments by adding noise constraints, as shown in Figure

8.3. Noise constraints are randomly sampled, and are added uponthe full set of the clean

constraints. The straight lines in all plots indicate the performance of the baselineR2+N Feats.

ConR2’s performance drops below the baseline soon after about10% noise constraints are

included, and keeps decreasing quickly.
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Figure 8.3:ConR2Performance with the Increasing Size of Noise Constraints

In this section, we experiment with the artificialCannot-Linkconstraints using the pro-

posed constrainedCOPA. We analyze the influence of the size of applied constraints and the

size of the involved noise constraints (i.e. incorrect constraints). Significant improvement is

achieved when a big enough set of constraints is provided andwhen the set consists of less

than10% spurious ones. The experiments on the randomly sampled clean constraints suggest

a reasonablerecall range for designing the real constraints, and the experiments on the noise

constraints hint on a properprecision range. In the following section, experiments with the

automatically generated constraints (i.e. the real constraints) are provided.
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8.5.2 Experiments with Automatically Generated Constraints

ConR2vs. R2+N Feats. Table8.5shows the results ofConR2using theCannot-Linkcon-

straints proposed in Section8.4. Since the constraints are already included as negative features

in the basicCOPA, theR2performance in Table8.4 is the same as the baseline performance

in Table8.5(i.e. R2+N Feats).

R2+N Feats ConR2

R P F R P F

MUC 60.85 61.93 61.39 59.58 61.77 60.66

BCUBED 68.68 72.59 70.58 67.57 73.22 70.28

CEAF(E) 46.19 45.13 45.66 46.6 44.47 45.51

overall 59.21 58.82

Table 8.5: ConR2 vs. R2+N Feats with Automatically Generated Constraints on the

OntoNotes Development Set

From the statistics provided in Table8.3, it can be seen that more than90% of our auto-

matically generated constraints are correct. This is demonstrated in the previous section to be

a good proportion in order to improve upon theR2+N Feats. However,ConR2yields worse

results compared with the baseline system. It can be partially explained by the small size of

the applied constraints, which is12, 555 for the entire development set. The contributions of

the proposed constraints are illustrated in Table8.6, ordered in accordance with the cleanness

of the constraints. Increases in precisions are observed for both MUC andBCUBED, but a

bigger loss loss in recalls constantly occurs.

The current constrainedCOPAunfortunately generates negative results. A detailed inspec-

tion shows that several inconsistent output clusters (see Table 8.2) are not covered by the

proposed constraints. For instance, (2) CNContraMod does not capture the negative relation

between the mentions [China’s Red Cross Society] and [the international Red Cross Organi-

zation]. Since the current constraints target at high precisions,more high-recall ones should

be developed.
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MUC BCUBED CEAF(E)

R P F R P F R P F

(4) CN ContraSubjObj 60.22 61.73 60.97 68.19 72.8 70.42 46.26 44.79 45.51

+ (5) CN Span 60.22 61.78 60.99 68.15 72.86 70.42 46.33 44.81 45.56

+ (1) CN Gender 59.93 61.76 60.83 67.87 73.01 70.35 46.42 44.63 45.51

+ (3) CN ContraGPE 59.85 61.7 60.76 67.78 72.95 70.27 46.44 44.63 45.52

+ (2) CN ContraMod 59.69 61.74 60.7 67.68 73.1 70.28 46.53 44.53 45.51

+ (6) CN ContraPerson 59.58 61.77 60.66 67.57 73.22 70.28 46.6 44.47 45.51

Table 8.6: The Contributions of the ProposedCannot-LinkConstraints

Solved Example byConR2. AlthoughConR2does not generate promising results yet, we

now show an example which is solved by applying the constrained clustering algorithm. Fig-

ure8.4shows the output clusters by the basic version ofCOPA, where the entity PRESIDENT

SLOBODAN M ILOSEVIC is mistakenly mixed with the entity PRESIDENT PUTIN. This hap-

pens because both persons are male presidents and they are linked together via other mentions

such as [the president] and [he].

Figure 8.4: Example Output Clusters Using the BasicCOPA

By applying the constrainedCOPA, it can be seen from Figure8.5that the two entities are

correctly resolved thanks to the constraint (6) CNContraPerson.
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President Slobodan Milosevic :

President Putin :

Figure 8.5: Example Output Clusters Using the ConstrainedCOPA

8.6 Summary

Incorporating Constraints into Coreference Resolution. In this chapter, we consider a

general problem for the clustering field. Due to the transitive closure which is implicitly

done during the clustering phase, counter-intuitive clusters can be derived. This is also an
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issue for the coreference resolution task when the coreference sets are generated by clustering

models. For instance, the mention [a Norwegian Transport Ship] is clustered together with

a preceding mention [The damaged ship] via another mention [the ship] which appears later

in the document. However, the indefinite article ”a” strongly indicates that the mention [a

Norwegian Transport Ship] is not anaphoric. Such information can be interpreted as pairwise

constraints:Must-Linkasks the mentions to be in one cluster andCannot-Linkforbids so.

In order to generate consistent coreference sets, there hasbeen previous work on enforcing

transitivity for coreference resolution (e.g.Finkel & Manning (2008)) and on applying corre-

lation clustering to incorporate negative edges in graphs (e.g. McCallum & Wellner (2005)).

In this thesis, we focus on incorporating the pairwise constraints within the graph spectral

clustering framework.

Our Proposal: Constrained COPA. In this chapter, we extend the basic version ofCOPA

in order to guide the partitioning algorithms with pairwiseconstraints. Since theMust-Link

constraints can be straightforwardly included as strong edges in a graph model, we only deal

with Cannot-Link’s for now. We propose to combine constrained data clustering algorithms

with hypergraph spectral clustering algorithms via the spectral embedding. In this way, we

address the constrained graph clustering problem without changing the clustering objective

function or modifying the originally constructed graph structures.

We conduct experiments with the constrainedCOPAon both the artificial clean constraints

and the automatically generated ones.The experiments on clean constraints allow us to study

the effect of the size of constraints and the proportion of the noise on the proposed algorithm.

Although the improvement achieved by using the clean constraints is significant, our results

on the automatically generated ones are unfortunately negative. The possible reason is that

the currentCannot-Linkconstraints do not have enough coverage on the data set. Testing with

constraints of a small coverage does not convey the effectiveness of the algorithm, especially

when the number of the inconsistent clusters to be solved is not very big in the first place.

Future Work. Since the number of the inconsistent clusters will grow bigger when the graph

structures become richer, the importance of providing prior information to guide the cluster-

ing algorithms remains. Our proposed method provides a way to address the problem with

relatively little effort on adapting the original clustering algorithms. The next step for us is to

include more constraints in order to explore the potential of the constrainedCOPA. We cur-

rently exclude the negative relations such assemantic class agreementandnumber agreement,

to avoid too much noise. However, the experiments with cleanconstraints suggest that at most

10% noise is allowed, which is the case for both of them. So it willbe reasonable to include

more high-recall constraints in the future.
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Conclusions

Natural Language Processing (NLP) tasks process texts automatically on the syntactic, seman-

tic and pragmatic levels, targeting at the full text understanding. Coreference resolution has

been one of the most fundamental NLP task for decades, which links the referring expressions

of the same entities into sets. From a pragmatic point of view, a text can be considered as

a collection of entities and the relations between them. Resolving the referring expressions

therefore enables us to identify the entities in a document.Furthermore, the local context of

the different occurrences of an entity are implicitly merged via the coreference relation built

between the referring expressions. Therefore it is made easier to extract the relations between

entities from their enlarged context.

In the introduction of this thesis, we interpret the coreference relation as a high-dimensional

relation, which can be derived from multiple basic relations (e.g. string similarity and seman-

tic relatedness). Unlike the previous methods which collapse the basic relations before the

inference step, we aim to maintain the basic relations untilthe final inference procedure. In

order to do so, we proposea hypergraph model to represent a documentas shown in Figure

9.1(a).

Figure 9.1: COPA Example: Processing Illustration
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The thesis presents our proposed coreference systemCOPA, an end-to-end hypergraph-

partitioning-based model. Upon the hypergraph representation of documents, partitioning

algorithms are proposed to derive the coreference sets as shown in Figure9.1(b). By making

use of the graph partitioning technique,COPAis able to generate the coreference sets at one

step by considering all the relations encoded in the hypergraph together. In contrast to the local

coreference models, our system performs the inference procedure in a global manner; and un-

like the probabilistic global methods, our partitioning algorithms do not involve sophisticated

probability estimations but achieves more competitive performance.

In this chapter we summarize the main contributions of our work and point out the possible

future research directions.

9.1 Main Contributions

In this thesis, we address four important questions concerning the coreference resolution mod-

eling and the end-to-end coreference system designing.

Representing the High-dimensional Coreference Relation. COPA represents the men-

tions as vertices in thehypergraph model, and connects them with weighted hyperedges

which are directly derived from the basic relations (i.e. features). Since this allows for mul-

tiple hyperedges existing between mentions, the basic relations are incorporated into the hy-

pergraphs in an overlapping manner. The hypergraph provides us with a way to make the

coreference decisions only during the inference phase, in contrast to the previous work which

combines the basic relations into the coreference relationduring the graph construction phase

(i.e. the representing phase).

We propose to categorize the coreference features into three types. The negative features

prevent the hyperedges to be built between mentions, indicating the non-coreferential rela-

tions. The positive features are used to construct the hypergraphs, which are mainly the strong

indicators for the coreference relation. The weak featuresenrich the hypergraph structures

by providing many weak hyperedges which do not strongly correlate with the coreference re-

lation but are still informative. Thefeature categorization is important for applying graph

models in end-to-end systems, making them less sensitive tothe noise and making it easier to

incorporate more features.

Inferring the Coreference Sets Globally. The coreference resolution task is to derive the

coreference sets from a collection of mentions. We argue that the coreference models should

not only analyze the relations between mentions but also consider the relations between dif-

ferent coreference sets. The hypergraph partitioning algorithms adopted inCOPAmanage to
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optimize the output coreference setsdirectly instead of only making the best decisions for

mention pairs. Moreover, in our model resolving one mentiondepends on the resolutions of

all the others, which makesCOPAa global method.

In this thesis, we also exploreda constrained version ofCOPA. We demonstrate the im-

portance of enforcing the transitivity in the coreference resolution task and propose to address

the problem within the constrained graph clustering framework. The idea of our method is to

combine the constrained data clustering algorithms with the spectral graph clustering ones via

the spectral embedding. Due to the low coverage of the automatically generated constraints,

our experimental results are mostly negative so far. However, the clean (artificial) constraints

show promising improvements from the proposed algorithm. We leave the work on incorpo-

rating the generated constraints inCOPAas a future research direction.

Evaluating the End-to-end Coreference Systems. In this thesis, we report the problems of

the existing coreference evaluation metrics when they are applied to end-to-end system output.

In order to evaluate the coreference task in a realistic setting, we proposetwo variants of

the evaluation metricsB3 andCEAF . Our variants are empirically shown to evaluate the

noisy coreference output in an adequate way. The appropriate evaluation metrics are essential

especially when the coreference systems optimize with respect to the final coreference output.

Learning Cheaply. Due to the overlapping manner of the hyperedges,COPAonly needs to

learn the weights for the basic relations instead of a high-dimensional combination of them.

It requires only a few training documents to collect the simple statistics for the weights of the

basic relations, soCOPAis considered as aweakly supervisedsystem. The experiments also

confirm thatCOPAachieves competitive results with a small training set. This makesCOPAa

good candidate when moving to a different domain or a different language where not enough

ground truth annotation is available.

9.2 Future Work

In this section, we highlight a couple of possible future research directions which should be

worth investigating.

More Coreference Features. Due to the well-defined hypergraph representation and the

feature categorization strategy inCOPA, it requires little effort to incorporate relational fea-

tures. The current version ofCOPAonly adopts a standard set of coreference features, and

it should be further improved by designing more linguistic-and world- knowledge. For in-

stance, weak features enable us to include (a large amount of) noisy relations extracted from
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the Internet such as word associations.

Besides building relations between mentions, it will be alsointeresting to explore the rela-

tions between mention contexts. For instance, the mentionsparticipating in the same event as

the same roles or having the same relations with the same (another) entity should have a good

possibility to be coreferent with each other.

In brief, more features will help to generate hypergraphs with richer structures, and there-

fore better partitions should be produced on such hypergraphs.

Learning to partition. The learning scheme currently adopted byCOPA is only to collect

simple statistics about the basic relations. The constrainedCOPAcan be viewed as a first step

towards a better learning of our hypergraph-partitioning-based model. However, it should be

worth efforts to find a learning algorithm which can directlyoptimize the hyperedge weights

with respect to the partitioning criterion (i.e. theNCut value). In general, the learning pro-

cedure being consistent with the inference procedure should be able to make the most of the

training data.

Graph-partitioning-based Entity Model. Although the hyperedges inCOPAare able to

represent sets of multiple mentions, we have not yet modeledentities explicitly . Enabling

properties on hyperedges may be able to capture entity-level information, and such informa-

tion can be propagated to mentions and vice versa via the edge-vertex incidences.

Incrementally or iteratively partitioning the hypergraphs can be another way to model en-

tities. Entities derived from the previous runs or iterations should help with later partitionings.

Application to Other Languages and Domains. COPAhas been lately tested on differ-

ent languages, such as Chinese. It performed stable by borrowing some of the language-

independent features from the English implementation, such ashead match. As discussed

in the thesis already, the proposed system performs competitively across different domains

too. In the future, it will be interesting to applyCOPAto other languages and domains where

hardly any annotation for coreference resolution is available. In such cases, training on similar

languages or relying more on the weak Internet features may all contribute.
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Advances in Neural Information Processing Systems 17, pp. 905–912. Cambridge, Mass.:

MIT Press.

McCarthy, Joseph F. & Wendy G. Lehnert (1995). Using decisiontrees for coreference reso-

lution. In Proceedings of the 14th International Joint Conference on Artificial Intelligence,

Montréal, Canada, 20–25 August 1995, pp. 1050–1055.

McCord, Michael C. (1989). Slot grammar: A system for simpler construction of practical

natural language grammars. InNatural Language and Logic’89, pp. 118–145.

Milligan, Glenn W. & Martha W. Cooper (1985). An examination of procedures for determin-

ing the number of clusters in a data set.Psychometrika, 50(2):159–179.

Mitchell, Alexis, Stephanie Strassel, Shudong Huang & RamezZakhary (2004).ACE 2004

Multilingual Training Corpus. LDC2005T09, Philadelphia, Penn.: Linguistic Data Consor-

tium.

Mitchell, Alexis, Stephanie Strassel, Mark Przybocki, JK Davis, George Doddington, Ralph

Grishman, Adam Meyers, Ada Brunstain, Lisa Ferro & Beth Sundheim (2002). ACE-2

Version 1.0. LDC2003T11, Philadelphia, Penn.: Linguistic Data Consortium.



BIBLIOGRAPHY 157

Mitchell, Alexis, Stephanie Strassel, Mark Przybocki, JK Davis, George Doddington, Ralph

Grishman, Adam Meyers, Ada Brunstain, Lisa Ferro & Beth Sundheim (2003). TIDES

Extraction (ACE) 2003 Multilingual Training Data. LDC2004T09, Philadelphia, Penn.:

Linguistic Data Consortium.

Mitkov, Ruslan (2002).Anaphora Resolution. London, U.K.: Longman.

Müller, Christoph, Stefan Rapp & Michael Strube (2002). Applying Co-Training to reference

resolution. InProceedings of the 40th Annual Meeting of the Association for Computational

Linguistics,Philadelphia, Penn., 7–12 July 2002, pp. 352–359.

Müller, Christoph & Michael Strube (2006). Multi-level annotation of linguistic data with

MMAX2. In Sabine Braun, Kurt Kohn & Joybrato Mukherjee (Eds.), Corpus Technology

and Language Pedagogy: New Resources, New Tools, New Methods, pp. 197–214. Peter

Lang: Frankfurt a.M., Germany.

Ng, Andrew Y., Michael J. Jordan & Yair Weiss (2002). On spectral clustering: Analysis and

an algorithm. In T.G. Dietterich, S. Becker & Z. Ghahramani (Eds.),Advances in Neural

Processing Systems 14 (NIPS 2001), pp. 849–856. Cambridge, Mass.: MIT Press.

Ng, Vincent (2008). Unsupervised models for coreference resolution. InProceedings of the

2008 Conference on Empirical Methods in Natural Language Processing,Waikiki, Hon-

olulu, Hawaii, 25-27 October 2008, pp. 640–649.

Ng, Vincent (2010). Supervised noun phrase coreference research: The first fifteen years. In

Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,

Uppsala, Sweden, 11–16 July 2010, pp. 1396–1411.

Ng, Vincent & Claire Cardie (2002). Improving machine learning approaches to coreference

resolution. InProceedings of the 40th Annual Meeting of the Association for Computational

Linguistics,Philadelphia, Penn., 7–12 July 2002, pp. 104–111.

Ng, Vincent & Claire Cardie (2003). Weakly supervised naturallanguage learning without

redundant views. InProceedings of the Human Language Technology Conference of the

North American Chapter of the Association for Computational Linguistics,Edmonton, Al-

berta, Canada, 27 May –1 June 2003, pp. 173–180.

Nicolae, Cristina & Gabriel Nicolae (2006). BestCut: A graph algorithm for coreference reso-

lution. In Proceedings of the 2006 Conference on Empirical Methods in Natural Language

Processing,Sydney, Australia, 22–23 July 2006, pp. 275–283.



158 BIBLIOGRAPHY

Nigam, Kamal, Andrew Kachites McCallum, Sebastian Thrun & Tom Mitchell (2000).

Text classification from labeled and unlabeled documents using EM. Machine Learning,

39(2/3):103–134.

NIST (2004). The ACE evaluation plan: Evaluation of the recognition of ACE entities,

ACE relations and ACE events. http://www.itl.nist.gov/iad/mig//tests/ace/2004/doc/ ace04-

evalplan-v7.pdf.

Pierce, David & Claire Cardie (2001). Limitations of Co-Training for natural language learn-

ing from large datasets. InProceedings of the 2001 Conference on Empirical Methods in

Natural Language Processing,Pittsburgh, Penn., 3–4 June 2001, pp. 1–9.

Ponzetto, Simone Paolo & Michael Strube (2006). Exploitingsemantic role labeling, WordNet

and Wikipedia for coreference resolution. InProceedings of the Human Language Tech-

nology Conference of the North American Chapter of the Association for Computational

Linguistics,New York, N.Y., 4–9 June 2006, pp. 192–199.

Poon, Hoifung & Pedro Domingos (2008). Joint unsupervised coreference resolution with

Markov Logic. InProceedings of the 2008 Conference on Empirical Methods in Natural

Language Processing,Waikiki, Honolulu, Hawaii, 25-27 October 2008, pp. 650–659.

Pradhan, Sameer, Lance Ramshaw, Mitchell Marcus, Martha Palmer, Ralph Weischedel &

Nianwen Xue (2011). CoNLL-2011 Shared Task: Modeling unrestricted coreference in

OntoNotes. InProceedings of the Shared Task of 15th Conference on Computational Natu-

ral Language Learning,Portland, Oreg., 23–24 June 2011.

Quinlan, J. Ross (1993).C4.5: Programs for Machine Learning. San Mateo, Cal.: Morgan

Kaufman.

Raghavan, Preethi, Eric Fosler-Lussier & Albert M. Lai (2012). Exploring semi-supervised

coreference resolution of medical concepts using semanticand temporal features. InPro-

ceedings of the 2012 Conference of the North American Chapter ofthe Association for

Computational Linguistics: Human Language Technologies, pp. 731–741.

Rahman, Altaf & Vincent Ng (2009). Supervised models for coreference resolution. InPro-

ceedings of the 2009 Conference on Empirical Methods in Natural Language Processing,

Singapore, 6-7 August 2009, pp. 968–977.

Rahman, Altaf & Vincent Ng (2011). Coreference resolution with world knowledge. In

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics,

Portland, Oreg., USA, 19–24 June 2011, pp. 814–824.



BIBLIOGRAPHY 159

Rand, William R. (1971). Objective criteria for the evaluation of clustering methods.Journal

of the American Statistical Association, 66(336):846–850.

Recasens, Marta & Marta Vila (2010). On paraphrase and coreference.Computational Lin-

guistics, 36(4):639–647.

Sapena, Emili (2012).A constraint-based hypergraph partitioning approach to coreference

resolution, (Ph.D. thesis). Universitat Politècnica de Catalunya.
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