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A B S T R A C T

Network phenomena are of key importance in the majority of scien-
tific disciplines. They motivate the desire to better understand the im-
plications of interactions between connected entities. In the focus of
this thesis are two of the most prominent tasks in the research of such
phenomena: the modelling and the inference of connections within
networks. In particular, I provide a systematic framework for using
the topology and unifying characteristics of networks from fields as
diverse as biology, sociology, and economics to predict and validate
connections. I build on existing random graph models and node sim-
ilarity measures, which I then employ in both unsupervised and su-
pervised machine learning approaches. Furthermore, I present novel
methods for identifying the statistically significant connections in net-
work settings that involve multiple types of entities and connections—
a crucial element of modelling, which most available methods fail to
address.

To demonstrate the potential of these new tools, I use them to fil-
ter networks that were constructed from large-scale noisy data gen-
erated by biological experiments as well as records of online social
activity. Subsequently, I predict previously unobserved connections
within these networks and evaluate the performance of the developed
tools based on ground truth data. In further data sets without direct
evidence for the connections in the network, a second, bipartite net-
work serves as proxy for the analysis. Specifically, in an e-commerce
setting I use connections between products and customers to deduce
similarities between the products based on customer behaviour. In an
analysis of high-throughput screening data on the other hand, I uti-
lize relations between proteins and experimental conditions to iden-
tify potential functional affinities among the proteins.

The findings presented here show that the computational predic-
tion of connections can both help researchers gain a better under-
standing of costly large-scale data and guide further experimental
design. The thesis demonstrates the potential of a network analytic
approach to modelling and inference on multiple applications, such
as the uncovering of possible privacy issues in the context of online
social networking platforms and the optimization of drug develop-
ment in cancer treatment.
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Z U S A M M E N FA S S U N G

Netzwerkphänomene sind in einer Vielzahl von wissenschaftlichen
Disziplinen von zentraler Wichtigkeit und motivieren die Bestrebung,
die Interaktionen zwischen vernetzten Entitäten besser zu verstehen.
Im Fokus dieser Dissertation stehen zwei der prominentesten Prob-
leme bei der Erforschung solcher Phänomene: die Modellierung und
die Inferenz von Beziehungen innerhalb von Netzwerken. Hier präsen-
tiere ich ein systematisches Rahmenwerk, das auf Basis der Topolo-
gie und der einheitlichen Merkmale von Netzwerken aus so unter-
schiedlichen Bereichen wie Biologie, Soziologie und Ökonomie neue
Beziehungen vorhersagt. Aufbauend auf Zufallsgraphenmodellen und
Ähnlichkeitsmaßen für Knoten, verwende ich zu diesem Zweck so-
wohl überwachtes als auch unüberwachtes maschinelles Lernen. Weit-
erhin enthält diese Dissertation neuartige Methoden zur Identifika-
tion von statistisch signifikanten Beziehungen in solchen Netzwerken,
die aus mehreren unterschiedlichen Arten von Entitäten und Bezieh-
ungen bestehen—sie stellen somit ein zentrales Element der Model-
lierung dar, das den meisten verfügbaren Ansätzen bisher fehlt.

Um das Potential dieser neu entwickelten Methoden zu demonstri-
eren, verwende ich sie zum Filtern von Netzwerken aus verrauschten
Daten, die durch großangelegte biologische Experimente beziehungs-
weise aus Aufzeichnungen von Aktivitäten in sozialen Online-Netz-
werken erzeugt wurden. Weiterhin sage ich in diesen Netzwerken
unbeobachtete Kanten vorher und bewerte die Leistung der dafür ver-
wendeten Methoden anhand eines Goldstandards. In weiteren Daten-
sets, in denen die Beziehungen nicht direkt nachweisbar sind, di-
ent ein zweites, bipartites Netzwerk als Proxy für die Analyse. Im
Besonderen benutze ich Beziehungen zwischen Kunden und Produk-
ten im elektronischen Handel um Ähnlichkeiten zwischen Produkten
herzuleiten, sowie den Zusammenhang von Proteinen und experi-
mentellen Bedingungen aus Hochdurchsatz-Verfahren um potentielle
funktionale Abhängigkeiten zwischen Proteinen zu bestimmen.

Die in dieser Dissertation präsentierten Ergebnisse zeigen, dass
die rechnergestützte Vorhersage von Beziehungen Wissenschaftlern
sowohl zu einem besseren Verständnis von großen Datensets ver-
helfen, als auch beim Design weiterer Experimente Anwendung fin-
den kann. Die Resultate unterstreichen zum einen das Potential eines
netzwerkanalytischen Ansatzes im Data-Mining in einer Vielzahl von
Anwendungsmöglichkeiten, sowie zum anderen die Implikationen
solcher Analysemöglichkeiten für die Privatsphäre von Internetnut-
zern und die Medikamentenentwicklung in der Pharmaforschung.

vi



A C K N O W L E D G M E N T S

For their contributions to my PhD studies, I owe many thanks to:

Prof. Katharina Zweig for her trust, dedication, and constant support;
for the things she taught me and for being a real Doktormutter to me.
Prof. Fred Hamprecht for his unconditional helpfulness and for the
great idea and setup of the Facebook project.
Prof. Dieter Heermann for kindly agreeing to review this work on
such a short notice.
Prof. Özgür Sahin, Dr. Jitao David Zhang, Dr. Stefan Uhlmann, and
Dr. Michael Hanselmann for being inspiring collaborators and co-
authors, as well as for the knowledge and experiences they shared
with me.
Andreas Spitz for his devotion to our Karl Steinbuch project and for
developing the ability to make sense of even my least organized ideas.
Andreas Spitz, Wolfgang Schlauch, Dr. Bo Morgan, Dr. Michael Han-
selmann, and Gabriell Máté for their time and energy spent proof-
reading this thesis. Their comments improved this document consid-
erably.
The "Netzwerker Gruppe" for making me feel welcome at not just one
but two universities.
The members of my two adoptive groups, the Image Processing and
Modeling and the Computer Vision groups, for the entertaining dis-
cussions during lunches and after hours.
Karsten Staack, Henrik Schäfer, Lyubov Nakryyko, Angela Eigenstet-
ter, and Sophie Abendschein for enriching the Heidelberg everyday
life with their cute and hilarious comments.
Gabriell Máté for countless helpful discussions and constant encour-
agement.
Dr. Michael Winckler, Oktavia Klassen, Sarah Steinbach, Tanja Kohl,
Ria Lynott, Sabine Kluge, Jan Keese, Jürgen Moldenhauer, and Markus
Ridinger for their kind and effective assistance in technical, adminis-
trative, and press-related issues.
Prof. Zoltán Toroczkai and Melinda Varga for their great hospitality
and the insightful discussions during my visit at the University of
Notre Dame.
My loving family and dear friends for their understanding and for
helping me with whatever I needed.
My parents for never teaching me the meaning of impossible.

This research was supported by the Heidelberg Graduate School of
Mathematical and Computational Methods for the Sciences.

vii





C O N T E N T S

1 introduction 1

1.1 A first glance at modelling and inferring connections . 3

1.2 Outline and contributions of this thesis . . . . . . . . . 4

1.3 Publications related to this thesis . . . . . . . . . . . . . 7

i theoretical framework 11

2 preliminaries 13

2.1 Graph basics . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Network analytic measures and concepts . . . . . . . . 16

2.3 Mining multiplex networks . . . . . . . . . . . . . . . . 21

2.4 Markov chain Monte Carlo methods . . . . . . . . . . . 23

2.5 Graph exploration . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Inferring graph topology . . . . . . . . . . . . . . . . . . 27

2.7 Measures of prediction performance . . . . . . . . . . . 29

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 random graphs as null models 33

3.1 Classic random graph models . . . . . . . . . . . . . . . 34

3.2 Generalized random graph models . . . . . . . . . . . . 35

3.2.1 The fixed degree sequence model . . . . . . . . 36

3.2.2 Other generalized random graph models . . . . 38

3.3 Generating random graphs with fixed degree sequence 39

3.3.1 Markov chain Monte Carlo sampling . . . . . . 40

3.3.2 Undirected non-bipartite graphs . . . . . . . . . 41

3.3.3 Bipartite graphs . . . . . . . . . . . . . . . . . . . 42

3.3.4 Multiplex bipartite graphs . . . . . . . . . . . . . 44

3.3.5 The configuration model . . . . . . . . . . . . . 46

3.4 Applications of the fixed degree sequence model . . . 50

3.4.1 Significance assessment of network observables 50

3.4.2 Detection of network motifs . . . . . . . . . . . . 51

3.4.3 Generation of benchmark graphs . . . . . . . . . 52

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 node similarity 55

4.1 Why and how to study node similarity? . . . . . . . . . 56

4.2 Classic node similarity measures . . . . . . . . . . . . . 57

4.3 Similarity based on the fixed degree sequence model . 63

4.4 Node similarity in multiplex graphs . . . . . . . . . . . 66

4.5 Node similarity measures in edge inference . . . . . . . 67

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 classification with random forests 69

5.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Decision trees . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Random forests . . . . . . . . . . . . . . . . . . . . . . . 71

ix



x contents

5.4 Feature selection . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ii applications 75

6 predicting relationships between non-members

of facebook 77

6.1 Problem statement and approach . . . . . . . . . . . . . 77

6.2 Ground truth imputation . . . . . . . . . . . . . . . . . 79

6.3 The experimental setting used for prediction . . . . . . 81

6.4 Prediction results . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Discussion and conclusions . . . . . . . . . . . . . . . . 85

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 inferring edges in both biological and social

networks 87

7.1 Validating and predicting protein–protein interaction . 88

7.2 Deducing high-probability acquaintances . . . . . . . . 90

7.3 Inference based on node similarity . . . . . . . . . . . . 90

7.4 Discussion and conclusions . . . . . . . . . . . . . . . . 94

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8 evaluating film similarity in a market basket

setting 97

8.1 Multiplex one-mode projection . . . . . . . . . . . . . . 98

8.2 Robustness analysis . . . . . . . . . . . . . . . . . . . . . 100

8.2.1 Construction of the artificial data . . . . . . . . . 101

8.2.2 Results on the artificial data . . . . . . . . . . . . 101

8.3 Application to the Netflix data set . . . . . . . . . . . . 104

8.3.1 Ground truth data sets . . . . . . . . . . . . . . . 105

8.3.2 Characterization of the multiplex projection . . 106

8.3.3 A coarse-grained analysis based on genres . . . 111

8.3.4 The role of the co-dislike and the like–dislike
networks . . . . . . . . . . . . . . . . . . . . . . . 114

8.4 Film similarity beyond the market basket setting . . . . 116

8.5 Discussion and conclusions . . . . . . . . . . . . . . . . 117

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9 assessing the statistical significance of mild co-
regulation 121

9.1 From regulation graphs to co-regulation graphs . . . . 123

9.1.1 Building a bipartite graph model from protein
array data . . . . . . . . . . . . . . . . . . . . . . 123

9.1.2 Multiplex co-regulation patterns . . . . . . . . . 124

9.1.3 Inference of the association network by finding
significant co-regulation patterns . . . . . . . . . 126

9.2 Robustness analysis . . . . . . . . . . . . . . . . . . . . . 127

9.2.1 Construction of the artificial data . . . . . . . . . 127

9.2.2 Experiments on the artificial data . . . . . . . . 129



contents xi

9.3 Results on the biological data set . . . . . . . . . . . . . 131

9.3.1 Consistently co-regulated miRNAs versus their
families . . . . . . . . . . . . . . . . . . . . . . . . 132

9.3.2 Co-regulation of proteins from the same func-
tional module . . . . . . . . . . . . . . . . . . . . 137

9.4 Advantages of our method over existing approaches . 138

9.5 The software SICOP . . . . . . . . . . . . . . . . . . . . 140

9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10 conclusions and outlook 145

list of notations and abbreviations 149

bibliography 153





When we mean to build,
We first survey the plot, then draw the model;

— William Shakespeare
King Henry IV (1597), Part II, Act 1, Scene 3

1
I N T R O D U C T I O N

Interdisciplinary
workThe majority of scientific disciplines have in recent years been faced

with a flood of data, such as the results of high-throughput screenings
in biology and chemistry, detection experiments in particle physics,
traces of human interactions on social networking platforms in so-
ciology, or consumer data in e-commerce [41, 197]. This abundance
of diverse and high-dimensional data promises new insights to scien-
tists in the involved fields, yet also requires increasingly sophisticated
analytical methods, which are not readily available within the reper-
toires of the individual disciplines. Recent endeavours to handle the
emerging need for such frameworks consist of tackling research ques-
tions from one field with methods developed within another [269].
This approach often provides solutions to key problems and thereby
transforms interdisciplinary research into one of the crucial ingredi-
ents of scientific progress. Specific questions

posed in this thesisDuring my PhD studies, the challenges posed by the plethora of
data motivated me to conduct innovative research at the frontier be-
tween multiple traditional disciplines. Accordingly, in this thesis I
adopt an analytical and algorithmic approach to answer questions
from fields as diverse as systems biology, sociology, and economics:
How could protein–protein interactions obtained from noisy experimental
data be filtered computationally? What role do microRNAs play in the reg-
ulation of a set of proteins responsible for cell proliferation in breast cancer?
Can negative product ratings serve to improve the recommendation systems
of online stores? To what extent can social network platforms be used to
deduce offline acquaintances between non-members? At first glance, these
questions seem to have very little in common. As I show in this thesis
however, their solutions share similarities that lead to a systematic
framework. Within their respective disciplines, they can be answered Focusing on

complex interactionsonly partly through a detailed examination of the individual com-
ponents of the system under study like proteins, people, or films.
Usually, the data does not have the desired level of detail, such as in
the case of user information on social networking platforms and in
online stores. Alternatively, comprehensive information may be too
expensive to acquire, as gene regulation and protein interaction data
for instance. Thus, instead of only focusing on the individual compo-
nents, the interactions between them have to be taken into account

1



2 introduction

to obtain a better understanding of the overall system. Subsequently,
traditional discipline-specific approaches offer possibilities for verifi-
cation.The statistical

physics approach Components of various systems can be seen as particles, whose in-
teractions reflect the "microscopic" rules that govern their behaviour.
As such, they are analogous to a thermodynamic system and methods
from statistical physics can be used to deduce "macroscopic" proper-
ties [12, 202]. The idea of approaching a social, biological, or economic
system within this framework presumes that the components can be
meaningfully reduced to simple entities with well-known behaviour.
Then, lattice models like the Ising model can be employed to analyse
the dynamics of the system [203, ch. 13]. Lattice models are very suc-
cessful in statistical physics as they enable the study of real-world
phenomena, such as phase transitions and critical behaviour [203,
ch. 12]. For many real-world systems however, the interactions con-
sidered by such models are too restrictive. While the components of
the systems under consideration in this thesis are fairly complicated,
novel insights can be deduced from their nontrivial interaction pat-
terns.Network analysis

A promising modelling approach that takes into account interde-
pendencies between the components of a system is network analy-
sis [266, 42, 191]. A network consists of a finite set of entities that
represent the components of the system and a set of pairwise interac-
tions between them, which are the connections. Formally, a network
is represented by a graph. A social system can for instance be mod-

Example of a
network:

marriage (green)
and business (red)

connections among
fifteenth-century

Florentine
families [46]

elled as the network of relationships between a set of individuals,
the physical interactions between proteins form a protein–protein net-
work, and consumers who buy or rate products can be represented
as a product–customer network.

Network analysis itself is an interdisciplinary field that combines
methods from statistical physics [12, 60, 191], graph theory [37, 42],
and statistics [108, 129] into a generalized mathematical framework
for the representation, measurement, and modelling of interconnected
systems. Its fundamentally discipline-independent tools are able to
tackle problems from various fields and have already led to a range
of advances in biology [26, 31, 51], medicine [52, 28], technology [25,
261], economics [228, 74], and sociology [266, 40]. For instance net-
work analysis provided the explanation for the small-world phenome-
non [267], models for epidemic spreading in population networks [29,
ch. 9], insights into the architecture and stability of ecological net-
works [32], analytical tools for studying the controllability of natural
and technological networks [155], and a better understanding of the
structure of neural networks [52].

However, the enthusiasm and the rapid growth of developments
in this field caused several of the proposed methods to be misap-
plied and misinterpreted. Usually, these methods 1) require a careful,
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problem-specific adaptation, and 2) need to be extended to both the
research question at hand and the properties of the studied network,
such as multiple types of connections, different entity attributes, or
temporal information. These two steps are inherent to network ana-
lytic endeavours from beginning to completion. Thus, they are crucial
from the stage when the real-world system is modelled as a network
to the interpretation of the results [54, 281]. This makes a systematic
framework, combining a sound theoretical approach to modelling
with appropriate techniques for inference, indispensable for obtain-
ing reliable insights.

1.1 a first glance at modelling and inferring connec-
tions

Universality in
terms of topologyThe analysis of diverse networks reveals that despite the many dif-

ferences in the underlying systems, the networks themselves often
obey similar mathematical rules and have several common proper-
ties [15, 191, 24]. The universality of different structural characteris-
tics, such as degree distributions [25, 72], degree correlations [168],
motifs [232, 176, 14], and communities [94, 206, 83], are used as a
basis for studying diverse phenomena. Assuming a correlation be-
tween the topology of the network and the mechanisms that govern
the formation of individual interactions between the entities [129],
it is possible to infer unobserved or future connections (prediction),
and detect spurious connections in noisy data (filtering or validation).
These tasks are highly relevant in market basket analysis for example,
where the inference of the future behaviour of individuals is the key
element of recommender systems. Similarly, advances in biomedicine
require the identification of probable interactions whose direct mea-
surement is either technically infeasible or very expensive. In this
case, the inference of connections has the potential for filtering noisy
data as well as handling incomplete data by guiding experiments to-
ward the most probable candidate interactions. Types of considered

networks and
approaches used for
inference

In this thesis, I tackle the problem of inferring connections in di-
verse settings through several different methods. The considered bio-
logical, social, and economic networks contain either one or multiple
types of connections. One of my key contributions is a newly de-
veloped framework for modelling different types of connections as
well as their influences on each other, as presented in this thesis. Re-
garding the deployed approaches, I either use the topology of the
observed network between the entities to validate and predict con-
nections, or rely on additional relational data about the entities under
consideration. In the latter case, I use a bipartite network as proxy to
deduce connections between one of the entity types, whose connectiv-
ity is not directly observable. Whereas direct inference is well suited
for systems that can be modelled by non-bipartite networks, the infer-
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ence based on a proxy network is the preferred option for data with
an inherent bipartite structure. Due to the lack of information about
the entities other than their connectivity, such as age, location, and
occupation of people or 3D structure of proteins, the inference tasks
in this thesis are based on topological similarity measures. In addi-
tion to surveying classic measures, I use random graph models in a
null hypothesis approach to assess the topological similarity of two
given entities. Thereby, I quantify the reliability or the likelihood of
their potential connection. In an unsupervised learning setting, can-
didate connections are scored according to these measures. Based on
data sets for which a ground truth is available, I then identify those
measures with the highest predictive power as well as use them in a
supervised learning setting.Outlook on the main

finding of the thesis
and its implications

The obtained results show that given the appropriate method, con-
nections can be inferred in a broad range of different networks based
solely on the network’s topology. This finding has implications on
the one hand for our society, since in addition to manifold amenities
in optimizing human interactions and organization, it raises incon-
spicuous privacy implications. On the other hand, the validation and
prediction of connections in biological data enable confirming exper-
imental evidences and guide future endeavours.

1.2 outline and contributions of this thesis

The thesis consists of two parts. The first details both classic and
newly developed methods that form the theoretical framework uti-
lized to tackle the specific research questions posed in the second
part, which contains a set of real-world applications. The dependen-
cies between the different chapters are sketched in Figure 1.

For ease of reading, in the remainder of this thesis, I use the word
"we" as a substitute for the reader and myself, the interested scientific
community, the authors of the articles I co-authored, or simply my-
self. To highlight my own contributions, I specify them as so-called
thesis points (TP) in the subsequent list that outlines the content of the
individual chapters. The thesis points are marked accordingly also
throughout the text.

Part I Theoretical framework

Chapter 2 presents the language, the concepts, and the principles on
which the methodological contributions of this thesis are based.
Besides the network analytic measures and models, it intro-
duces basic aspects from graph theory, physics, and machine
learning.

Chapter 3 discusses classic and generalized random graph models.
It details the fixed degree sequence model and provides algo-
rithms for generating graphs according to this model by Markov
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Figure 1: Connections between the individual chapters. The methods in-
troduced in Chapters 3–5 form the theoretical basis underlying
the applications presented in Chapters 6–9 (blue). Node similarity
measures are used as features in random forests and as test statis-
tic for random graph models (grey). Chapters 6 and 7 focus on
non-bipartite graphs that contain one type of connection, whereas
Chapters 8 and 9 analyse bipartite graphs with multiple types of
connections (red). For the networks considered in Chapters 7 and
8, ground truth connections are available (green).

chain Monte Carlo sampling. Finally, it demonstrates how ran-
dom graphs are used in hypothesis testing and for the construc-
tion of benchmark graphs. This chapter contains the following
contributions:

TP1 the fixed degree sequence model for bipartite graphs with
multiple types of connections (Section 3.2.1)

TP2 the algorithm for generating networks from this model
(Section 3.3.4)

Chapter 4 surveys a set of classic node similarity measures. In it, I
discuss their shortcomings and propose to assess the statistical
significance of the similarity of two given entities based on their
expected similarity in the fixed degree sequence model. This
chapter contains the following contributions:
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TP3 a comparative survey of the most relevant node similarity
measures (Section 4.2 and Section 4.3)

TP4 extension of node similarity measures to multiple types of
connections (Section 4.4)

Chapter 5 introduces a machine learning tool, the random forest clas-
sifier, as a supervised learning approach to inferring connec-
tions.

Part II Applications

Chapter 6 addresses a privacy concern of online social networks. I
show how to infer relationships between non-members of a so-
cial networking platform such as Facebook by using topological
node similarity measures and the random forest classifier. This
chapter contains the following contributions:

TP5 development of a set of member acquisition models that
partition the users of real-world Facebook friendship net-
works into members and non-members (Section 6.2)

TP6 extraction of relevant features for training the random for-
est (Section 6.3)

Chapter 7 provides a systematic assessment of node similarity in net-
works generated from noisy experimental data or user-declared
information. In this chapter, I evaluate a set of node similarity
measures based on ground truth data sets for networks as dif-
ferent as protein–protein interaction and user friendship data
on an online blogging platform. The chapter illustrates how to
validate and predict connections in non-bipartite graphs and
contains the following contribution:

TP7 experimental comparison of node similarity measures and
evidence that the newly introduced measure based on the
fixed degree sequence model consistently outperforms all
considered measures (Section 7.3)

Chapter 8 explores new possibilities for recommender systems based
on negative ratings. The proposed network analytic point of
view introduces novel perspectives that hold promise in exploit-
ing the long tail, i.e. niche market products. In this chapter,
I compute film similarities by transforming the film–user net-
work into a film–film network, in which a pair of films is con-
nected if their co-rating pattern is statistically significant. Then,
I illustrate the extension of a method for networks with one type
of connections to the case of multiple types of connections. The
chapter contains thus the following contributions:

TP8 evidence that the proposed algorithm is robust against ran-
dom noise when tested on artificial data sets (Section 8.2)
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TP9 confirmation on different ground truth data sets that the
network of positive co-ratings can be used to detect similar
films (Section 8.3.2)

TP10 study of the potential of additional, mixed co-rating pat-
terns for improving the detection of similar films, as well
as the necessary criteria for the success of this approach
(Section 8.3.4)

TP11 a framework for the study of the "similarity landscape" of
films through the incorporation of details about the films
beyond user ratings (Section 8.4)

Chapter 9 reports the analysis of data from high-throughput screen-
ing experiments that monitor the effect of all known human
miRNAs on a set of proteins. In this chapter, I show how to un-
cover potential regulatory patterns by accounting for the gen-
erally mild regulation effect of miRNAs and the noise that is
inherent to high-throughput experiments. In analogy to the mar-
ket basket analysis setting, I assess the statistical significance of
the co-regulation patterns based on a proper null model. Due to
the lack of ground truth information, the computational predic-
tions have been validated experimentally by our collaborators.
The chapter thus contains the following contributions:

TP12 detection of connections between pairs of proteins belong-
ing to the same functional module and pairs of miRNAs
from the same seed sequence-defined family (Section 9.3)

TP13 identification of miRNAs with tumour suppressing poten-
tial (Section 9.3.2)

TP14 release of the freely available software implementation of
the key algorithm (Section 9.5)

Chapter 10 concludes this thesis by summarizing the most important
findings and discussing future challenges and prospects of the
presented approaches.

1.3 publications related to this thesis

As listed below and marked at the corresponding places throughout
the text, some of the ideas and figures presented in this thesis have
already been published or the corresponding article is in preparation.
Parts included and adapted from the articles were written by myself.

In the Facebook project, I was relevantly involved in designing the
experiments and elaborating the experimental setting. I performed
the data preprocessing, the ground truth imputation, as well as the
feature selection and extraction. I prepared the main part of the illus-
trations for the two papers, wrote selected parts of Reference [117]
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and Reference [118] in its entirety. Finally, I conducted some of the
associated press work.

Concerning the analysis of networks with multiple types of con-
nections, I wrote the encyclopedia essay that surveys existing rep-
resentations, measures, and models under the supervision of K.A.
Zweig [116].

In the miRNA regulation project, I analysed the data and co-deve-
loped the network biology part of the study in Reference [258]. ThisNews and Views:

M. Malumbres,
miRNAs versus
oncogenes: the
power of social

networking,
Molecular Systems

Biology, 8:569
(2012)

contribution of the paper was especially noted in the News and Views
article that accompanied it in the journal [162]. In addition to provid-
ing software and visualizations, I wrote the corresponding method-
ological paper [119], for which I developed and implemented the
used method and performed the robustness analysis under the su-
pervision of K.A. Zweig. The additional software was written by A.
Spitz within a practical student training that I advised. I co-wrote the
application note [238] and created the website that hosts the tool.

I joined the Netflix project with Reference [282] that shows the su-
periority of the fixed degree sequence model over a simpler approx-
imation. While for this publication I had only a supportive role, Ref-
erences [114, 115] contain experiments that were conceived, designed,
and performed by myself. The two papers extend the fixed degree se-
quence model to the case of multiple types of connections and were
written by me.

Finally, for the article in preparation [120] that compares existing
node similarity measures and suggests a new measure based on the
fixed degree sequence model, I contributed the formal comparison
of the node similarity measures and the parts relevant for this thesis,
namely the analyses of the non-bipartite data sets.

list of thesis-relevant publications

[117] E.Á. Horvát, M. Hanselmann, F.A. Hamprecht, and K.A. Zweig.
One plus one makes three (for social networks). PLOS ONE,
7(4):e34740, 2012.

[118] E.Á. Horvát, M. Hanselmann, F.A. Hamprecht, and K.A. Zweig.
You are who knows you: Predicting links between non-members
of Facebook. In T. Gilbert, M. Kirkilionis, and G. Nicolis, editors,
Proceedings of the European Conference on Complex Systems 2012,
Springer Proceedings in Complexity, pages 309–316. Springer,
2013.

[116] E.Á. Horvát and K.A. Zweig. Multiplex networks. In Encyclope-
dia of Social Network Analysis and Mining. Springer, to appear.

[258] S. Uhlmann, H. Mannsperger, J.D. Zhang, E.Á. Horvát,
C. Schmidt, M. Küblbeck, F. Henjes, A. Ward, U. Tschulena, K.A.
Zweig, U. Korf, S. Wiemann, and Ö. Sahin. Global microRNA
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A network-based method to assess the statistical significance of
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Part I

T H E O R E T I C A L F R A M E W O R K

Before tackling discipline-specific research questions, in
this part we establish a methodological framework that
comprises:

1. the concepts needed for the mathematical formula-
tion of the tackled problems,

2. the related modelling tools and evidence of their cor-
rectness, and

3. the key algorithms we later employ.

This framework contains both the methodological contri-
butions of this thesis and established tools from various
disciplines we build upon. For ease of reading, we do not
rigorously separate these two, but combine them into a
coherent framework.





2
P R E L I M I N A R I E S

This chapter contains the technical background needed for the the-
oretical topics covered in this thesis. First, fundamental notions of
graph theory (Section 2.1) and network analysis (Section 2.2) are dis-
cussed, followed by an overview of existing measures and models
for networks that contain multiple types of connections (Section 2.3).
After a short detour to Monte Carlo sampling, Markov chains (Sec-
tion 2.4), and simple graph exploration methods (Section 2.5), basic
aspects of statistical learning in networks (Section 2.6 and Section 2.7)
are introduced.

2.1 graph basics

We start by establishing definitions from graph theory which are nec-
essary for the formulation of the problems and approaches through-
out the thesis1.

graphs and subgraphs Formally, a network is represented as
a graph that consists of a set of nodes V modelling the entities and
a set of edges E ⊆ V× V representing the connections2. Accordingly,
a graph G is denoted by the tuple G := (V,E). Wherever it is not
immediately clear from context, we specify that V(G) is the node set
of G, while E(G) is its edge set. We say that an edge (v,w) is incident
to its endpoints v and w, while the two nodes v and w connected by
an edge are called adjacent.

Undirected graph
V ′ = {s,u, v}
E ′ = {(s,u), (s, v),

(u, v)}
The subgraph
H = (V ′,E ′) is a
clique

A graph H := (V ′,E ′) is called a subgraph of G if H contains a subset
of nodes V ′ along with the subset of edges E ′ that connect them in G
(V ′ ⊆ V and E ′ ⊆ E). A graph is complete if there is an edge between
all possible pairs of nodes. A complete subgraph is called a clique.

types of graphs If the edge set E contains unordered pairs of
nodes, the graph is said to be undirected or symmetric, otherwise it is
directed from a source node to a target node. For an undirected edge be-
tween nodes v andwwe write (v,w), while we refer to directed edges
by (v → w), where v is the source and w is the target. The follow-
ing definitions apply to undirected graphs, unless explicitly specified
otherwise.

1 The majority of the following definitions are based on those provided by Ko-
laczyk [129, ch. 2].

2 Note that different disciplines use different terms for what we call nodes and edges.
Physicists for instance use the terms sites and bonds, computer scientists call them
vertices and links, while in the social sciences actors and ties or connections are used.

13
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If the set E is a multi-set, and thus it contains more than one edge
between the same pair of nodes, we call the duplicate edges multi-
edges. Self-loops are edges of the form (v, v) ∈ E or (v → v) ∈ E, as
they connect a node to itself. Graphs without self-loops and without

Directed graph
(z→ z) is a

self-loop
(u→ v) and

(v→ u) are mutual
edges

multi-edges are said to be simple. Directed graphs may have two edges
(v→ w) and (w→ v) with opposite direction between the same pair
of nodes. In this case, the two edges are said to be mutual. A graph
that contains mutual edges is nevertheless considered to be simple as
long as it does not contain multiple edges in the same direction and
self-loops.

Graphs can be weighted if the edges have values assigned to them.
The weights of the edges are given by the function ω : E → R. By
convention, in an unweighted graph edges are considered to have a
weight of 1.

paths and distances A sequence of nodes pa := {v1, v2, . . . , vk}
such that vi ∈ V and (vi, vi+1) ∈ E ∀1 6 i < k is called a path. A cycle
(also called circuit) is defined as a path that contains at least three
nodes and for which v1 = vk, i.e. the path ends at its starting node.
A cycle containing three edges is a triangle, while a subgraph of three
nodes connected by two edges is called a connected triple.

{t, x,y,w, t} is a
cycle

{s,u, v} is a triangle
{x,y, z} is a

connected triple
Shortest paths

between s and t are
{s, v,w, t} or

{s, v, x, t}
The length of the

shortest path
between s and t is 3
The diameter of the

graph is 4

The length of a path is obtained by summing over the weights of
the edges in the path:

l(pa) :=

k−1∑
i=1

ω((vi, vi+1)) (2.1)

In an unweighted graph, this length is equivalent to the number of
edges in the path. For instance, the length of the longest path in a
connected triple is 2. The shortest path between two nodes v and w is
the path with the minimal possible length among all paths between
v and w. The length of the shortest path is called the (geodesic) dis-
tance between v and w. The diameter of a graph is the largest distance
between any two of its nodes. The set of nodes at distance 1 from a
given node v forms its neighbour set (or neighbourhood) denoted by
N(v).

In a directed graph, a path is a sequence of nodes pd := {v1, v2, . . . ,
vk} such that vi ∈ V and (vi → vi+1) ∈ E ∀1 6 i < k.

trees and bipartite graphs A subgraph in which there exists
a path between all pairs of nodes is called a weak connected component.
Hereafter also referred to as component. A strongly connected compo-
nent is defined for directed graphs and presumes the existence of a
directed path between any two nodes in the component.

Graph with two
components

A connected graph without cycles is called a tree and contains ex-
actly |V|− 1 edges. One node may be designated as the root of the tree.
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Non-root nodes with just one incident edge are called leaves, all other
nodes are said to be internal nodes. A set of trees is said to be a forest.

An undirected graph without cycles of odd length is called bipartite,
otherwise it is said to be non-bipartite. The nodes of a bipartite graph

Tree: if s is the root,
v,w, x,y are
internal nodes and
t,u, z are leaves

can be partitioned into two disjoint sets L and R. A bipartite graph
can therefore be described by the tuple B := (L∪R,E ⊆ L×R), where
edges (v,w) ∈ E exist only between nodes v ∈ L and w ∈ R.

Bipartite graph
L = {t,y, v}
R = {w, x, z, s,u}
d(v) = 4

D(L) = {2, 3, 4}
D(R) = {3, 3, 1, 1, 1}

degrees and degree sequences The cardinality of the neigh-
bour set of v is called its degree, d(v) := |N(v)|. In directed graphs, we
differentiate between the in-degree of a node di(v) (the number of its
incoming edges (w → v) ∈ E,w ∈ V) and the out-degree do(v) (the
number of its outgoing edges (v→ w) ∈ E,w ∈ V).

The degree sequence of an undirected non-bipartite graph is defined
as the ordered sequence of the degrees D(V) := {d(v1),d(v2), . . . ,
d(v|V|)}. The concept can be naturally extended to directed graphs by
differentiating between the in- and the out-degree sequences Di(V)

and Do(V), respectively. Bipartite graphs also have two sequences,
D(L) and D(R), one for each of the two disjoint node sets. A graph
is said to be regular if all of its nodes have the same degree.

A sequence is graphical if there exists at least one simple graph with
this particular sequence. Any such graph is said to be a realization of
the given sequence. Graphical sequences are defined analogously for
bipartite graphs with the remark that each bipartite graph realizes a
pair of degree sequences.

adjacency matrices Often, it is useful to represent a graph G =

(V,E) by its adjacency matrix A of dimension |V|× |V|. The adjacency
matrix of an undirected, unweighted graph has entries Avw := 1 if
(v,w) ∈ E and Avw := 0 otherwise. In this case, the entries of the
matrix denote the presence or absence of an edge, while the matrix is
symmetric and binary.

Certain operations on the adjacency matrix provide additional in-
formation about G. Relevantly for this thesis, the row sum Av+ =∑
wAvw is equal to the degree d(v) of node v. Due to the symmetry

of the matrix of undirected graphs, the row and column sums (the
latter denoted by A+v =

∑
wAwv) are equal: Av+ = A+v.

The adjacency matrix of a bipartite graph B = (L ∪ R,E) has the
dimension |L|× |R|. Thus, the row sums yield the degree sequence of
the nodes in L, while the column sums provide the degree sequence
for R. The adjacency matrix of a directed, unweighted graph is asym-
metric and has the entries Avw = 1 if there is an edge (v → w) ∈ E.
In case of weighted graphs, the adjacency matrix also captures the
weights: Avw := ω((v,w)) if (v,w) ∈ E and Avw := 0 otherwise.
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multiplex graphs Multiplex graphs include multiple types of
edges between the same set of nodes3. Let Ω denote the set of edge
types. A multiplex non-bipartite graph is then defined as G̃ := (V, Ẽ),
where Ẽ = ∪γ∈ΩẼγ denotes the set of edges of different types. The so-
called supersociomatrix [266, p. 81–83] representation of such a graph
is a tensor Avwγ of dimension |V|× |V|× |Ω| that stores the adjacency
matrix for each edge type γ ∈ Ω. The subgraph G̃γ of G̃ is induced
by the edge type γ and contains the edge set Ẽγ alongside the nodes
that are incident to the edges from Ẽγ.

Multiplex graph
|Ω| = 3

G̃γ=red =

({s, v, x,y},
{(s, v), (x,y)})
µ(v,w) = 1

dγ=green(v) = 2

dγ=red(v) = 1

V ′ = {s, t,u, v,w, x}
Dγ=blue(V

′) =
{1, 2, 1, 1, 1, 2}

The multiplicity µ(v,w) :=
∑
γAvwγ of an edge between v and w

counts the number of different edges between the two. In the special
case where there is at most one type of edge admitted between any
pair of nodes (the Figure to the left shows such a graph), the tensor
Avwγ can be aggregated to a weighted adjacency matrix whose en-
tries encode the edge type. The degree of a node v ∈ V with respect
to edge type γ ∈ Ω is denoted by dγ(v) and is equal to the number
of its adjacent edges of type γ. Given γ, the degree sequence Dγ(V)

represents the ordered sequence {dγ(v1),dγ(v2), . . . ,dγ(v|V|)}.
We denote multiplex bipartite graphs by B̃ = (L∪R, Ẽ = ∪γ∈ΩEγ).

The adaptation of the above concepts to the bipartite case is straight-
forward.

Various real-world networks contain multiple types of connections.
Modelling them as non-multiplex graphs is incomplete and thus mis-
leading. With the emerging need for a multiplex framework, this re-
search area is very prolific at the time of writing and it can be ex-
pected to play an important role in the future. Thus, after presenting
some of the most well-known concepts in network analysis in Sec-
tion 2.2, we briefly overview existing efforts to extend these to multi-
plex graphs in Section 2.3.

2.2 network analytic measures and concepts

In the following, we review a core set of useful notions that are widely
used for characterizing the topology of networks4. As presented here,
they hold for undirected non-bipartite graphs. Whenever relevant for
this thesis, we provide the formulations for directed and/or bipartite
graphs.

average degree One of the most basic aggregated measures is
the average degree. According to the handshaking lemma, in an undi-

3 Alternatively, they are called multirelational (for instance in Reference [68]) or multi-
layered (for instance in Reference [160]).

4 Several definitions provided in this section are based on those formulated by Ko-
laczyk [129, ch. 4].
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rected graph G = (V,E) holds that
∑
v∈V d(v) = 2|E|. From this, the

average degree 〈d〉 computed as the degree sum per node equals:

〈d〉 := 2|E|

|V|
(2.2)

where 〈·〉 denotes the average.

density Another simple metric that summarizes the topological
characteristics of the network is the density δ. It is a scaled version of
the average degree and for a simple undirected graph G it is defined
as the ratio of the number of edges to the total number of possible
edges:

δ(G) :=
|E|(
|V|
2

) (2.3)

If |E| ∈ O(|V|), i.e. the number of edges is asymptotically bounded
by a function that is linear in the number of nodes, the graph is said
to be sparse. Otherwise, it is dense. In addition to defining the density
of the entire graph, it is often instructive to look at the density of
a given subgraph, thereby measuring how close the subgraph is to
being a clique.

clustering coefficient Watts and Strogatz defined the den-
sity of a the neighbour set N(v) of node v, denoted by cc(v), as the
local clustering coefficient of v [267]. This measure quantifies the proba-
bility that the neighbours of a node v are connected themselves. Note
that based on Equation 2.3, the local clustering coefficient is unde-
fined for nodes with degree 0 or 1 and is set to 0 by definition. The
average local clustering coefficient of a graph is computed as the average
over all of its nodes:

cc(G) :=
1

|V|

∑
v∈V

cc(v) (2.4)

The local clustering coefficient can be also expressed in terms of
the number of triangles N4(v) in which v is participating and the
number of connected triples N3(v) in which two edges are incident
to v:

cc(v) :=
N4(v)

N3(v)
(2.5)

for nodes v with N3(v) > 0.
Conversely, the global clustering coefficient of a graph tr(G), also

known as transitivity in the social network literature, is defined as the
ratio of the number of triangles to the number of connected triples in
the graph:

tr(G) :=
3N4(G)

N3(G)
(2.6)
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where N4(G) := 1/3
∑
v∈VN4(v) is the number of triangles in the

graph , and N3(G) :=
∑
v∈VN3(v) is the total number of connected

triples.

centrality indices Centrality indices aim to quantify the "im-
portance" of individual nodes in a network [131, 124, 132]. Depend-
ing on the specific network and the research question at hand, several
notions of importance are possible. Accordingly, a plethora of diverse
indices has been proposed in different areas over the years.

The simplest of them is the degree itself and is called in this con-
text degree centrality. Alternatively, the centrality of a node can be
measured based on its location with respect to the other nodes of the
graph. For instance, closeness centrality is defined as the inverse of the
total distance between a certain node and all others, while its between-
ness centrality is given by the fraction of shortest paths between all
pairs of nodes that pass through it.

graph partitioning A partition C := {C1, . . . ,Ck} of a graph
G = (V,E) is a decomposition of V into k non-empty and disjoint
subsets Ci ⊆ V (Ci 6= ∅ and Ci ∩Cj = ∅ ∀i 6= j) such that ∪ki=1Ci = V.

Graph partitioning algorithms (also known as clustering or community
detection algorithms) attempt to find a partition of cohesive subsets
such that the edge sets E(Ci,Cj) connecting nodes in Ci to nodes
in Cj are small in comparison to the edge sets E(Ci,Ci) connecting
nodes within Ci, ∀1 6 i, j 6 k. In other words, in a good partition
there are many edges within each subset and relatively few between
the subsets. Based on this general idea of optimal partitioning, multi-
ple definitions are possible and their formalization often leads to NP-
hard problems [226]. For a review on existing heuristic approaches
see for example Reference [83].

Several methods are based on the idea of hierarchical clustering. This
implies a greedy approach, in which candidate partitions are modi-
fied such as to minimize a specified cost function either by successive
merging of the partitions (agglomerative methods) or by their consec-
utive splitting (divisive methods). The cost function is deduced from
the chosen definition of cohesiveness and is often related to the dis-
similarity or distance of the nodes.

Of note is also one of the most popular approaches to the clustering
of spatially embedded nodes, the k-means algorithm [108, p. 454–455].
It starts with guessing k cluster centers. Then it alternates the follow-
ing two steps until convergence: 1) for each node the closest cluster
center is identified, and 2) each center is updated to the average po-
sition of all nodes that are closest to it. This is known as the nearest
neighbour rule.
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Due to the fundamental and crucial assumption that cohesive sub-
sets of nodes share relevant characteristics that are not revealed per se,
but are only reflected in the topology of a network, various disciplines
are interested in the results of such partitioning algorithms. Examples
range from community detection in social sciences [94, 205, 206] to the
identification of complexes in protein interaction networks [230, 198]
or functional units in metabolic networks [212] in biology.

modularity The modularity of a partition C = {C1, . . . ,Ck} was
introduced by Newman and Girvan [192, 190] and is defined based
on the matrix U of dimension k× k with entries Uij that represent
the fraction of edges in the original graph that connect nodes from Ci
with nodes from Cj as follows:

mod(C) :=

k∑
i=1

(Uii −Ui+U+i) (2.7)

The row sum Ui+ =
∑
jUij and the column sum U+i =

∑
jUji are

equal to the number of edges that connect to nodes in Ci. Note that
for the computation of the matrix U it is important to ensure that
each edge is counted only once without appearing both above and
below the diagonal in U. We give a detailed interpretation of this
formulation based on a null model argument in Section 3.4.1.

assortative mixing Considering a grouping of the nodes based
on some categorical characteristic such as the gender or ethnicity of
individuals in a social network, assortative mixing is a measure of net-
work diversity that quantifies the tendency of nodes to connect to
other nodes with a similar characteristic. Based on the quantities we
introduced for modularity (see Equation 2.7), the assortative mixing
coefficient can be defined as:

am(C) :=

∑
iUii −

∑
iUi+U+i

1−
∑
iUi+U+i

(2.8)

A perfectly assortative network has a coefficient of 1, while a coef-
ficient of 0 indicates that no mixing is observed under the chosen
null model5 (see Chapter 3 for detailed explanations regarding null
models in network analysis).

It is also common practice to measure assortativity based on ordinal
characteristics. In a social network for instance, it might be interest-
ing to quantify assortative mixing according to the age of the indi-
viduals [189]. Similarly instructive is the assortativity by degree λ [187],

5 Note that the coefficient does not reach −1 in the case of perfect disassortativity. For
a discussion see Reference [189].
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which is defined as the correlation between the degrees x and y of
nodes that share an edge6 (∀(v,w) ∈ E : d(v) = x,d(w) = y):

λ(G) :=

∑
x,y xy(Uxy −Ux+U+y)

σ[x]σ[y]
(2.9)

where σ[x] and σ[y] denote the standard deviations corresponding to
the distributions of Ux+ and U+y, respectively. In directed networks,
nodes have both an incoming (in) and an outgoing (out) degree,
which results in the four degree correlations in–in, in–out, out–in,
and out–out [85].

triadic closure and homophily Triadic closure is one of the
basic organizing principles in social networks. It states that when in-
dividuals B and C have a common friend A, then it is likely that they
become friends as well. Whenever this closure is missing, sociologists
talk about structural holes [38; 74, 60–61]. The assumed mechanism
underlying this phenomenon is simply that there are numerous occa-
sions for A to introduce B and C [74, p. 44–46]. One of the measures
that capture the prevalence of this effect is the clustering coefficient
presented above.

Homophily on the other hand, refers to the phenomenon that, as
the phrase "Birds of feather flock together" suggests, people tend to
associate with others who are similar to them [172]. The phenomenon
has been confirmed repeatedly based on characteristics such as age,
gender, social class and role. It suggests that given the friendship and
the implied similarity of A and B as well as that of A and C, the
individuals B and C are likely to be similar to each other as well.
It is thus probable that B and C become friends, even if neither of
them is aware that the other knows A. Homophily tests are usually
performed by comparing the observed network with a network that
does not show this effect [74, p. 77–83].

The principles of triadic closure and homophily drive the formation
of connections in social networks and thus represent an important
basis for predicting future edges. Due to triadic closure, a new edge
appears in the network for purely topological reasons. According to
the homophily effect, contextual factors beyond the topology of the
network lead to the emergence of edges. This distinction becomes
relevant when designing indicators that quantify the similarity of two
nodes and thus the probability that an edge will form between them
(see Chapter 4).

one-mode projection of bipartite graphs A bipartite struc-
ture is a common property of many real-world networks, such as
agents who are affiliated with societies, customers who buy, rent,
or rate products, and authors who write scientific papers. These are

6 Read more about the Pearson correlation coefficient in Section 4.2.
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modelled by bipartite graphs, which are also called two-mode or affili-
ation graphs in social network analysis.

The one-mode projection of bipartite graphs onto either set of enti-
ties (such as societies, products, and articles) is a well-established ap-
proach for their analysis. When projecting B = (L∪R,E) onto its node
set L, B is transformed into a new non-bipartite graph G = (L,E ′),
whose edges E ′ are deduced from the connection patterns to the
nodes from R.

One-mode projection
of a bipartite graph

In the most simple approach, such a projection is obtained by con-
necting each pair of nodes from L that share at least one common
neighbour in R [45, 267, 185, 27, 113]. There are two main drawbacks
to this approach: structurally very different bipartite networks can re-
sult in the same projection (for an example illustrating this problem
see Reference [138]) and in most real-world networks the projection
can be expected to be uninformatively dense. In a product–customer
bipartite graph for instance, there are typically some customers who
have bought, rented, or rated almost every product, and thus induce
a giant connected component in the resulting projection that contains
the majority of the products.

To further distinguish between the connections in such a dense pro-
jection, several suggestions have been made to weight them [186, 192,
163, 145, 210, 278]. However, these methods remain problem-specific
and do not provide a statistical significance assessment. To address
this issue, alternative approaches have been developed [184, 254, 280,
283]. Among the aims of this thesis is to extend the most accurate
method to multiplex bipartite graphs (see Chapter 8 and Chapter 9).

2.3 mining multiplex networks

This section is an
adapted excerpt from

E.Á. Horvát and
K.A. Zweig,
Multiplex
networks, to appear
in Encyclopedia of
Social Network
Analysis and
Mining, Springer

The study of multiplex network data goes back to the beginning of
social network analysis—for a literature review see Reference [266,
p. 719–21]. However, most of the considered networks were generated
from small-scale observations or were manually curated from histor-
ical evidence. Today, the abundance of large-scale data sets in the
humanities, biology, medicine, technology, or from social networking
platforms has created a growing need for large-scale multiplex net-
work models. Although multiplex network representations seem to
be a natural and conceptually easy generalization, their analysis re-
quires nontrivial modelling decisions and to date only a few network
analytic methods have been properly extended.

possible representations of multiplex networks Besides
the supersociomatrix representation of multiplex networks (see Fig-
ure 2A), there are two basic possibilities for their analysis:

1. The first is to consider the individual graphs that are induced
by each type of edge (see Figure 2B). These graphs can then



22 preliminaries

Figure 2: Possible representations of multiplex networks: (A) the superso-
ciomatrix representation, (B) the individual representation, and (C)
the aggregated representation. Figure reprinted from [116].

be used to compare network properties such as the position of
the same node in each of them or the global structure of the
different networks on the same set of nodes.

2. Alternatively, the multiplex network can be transformed into a
simple graph (simplex network). For this transformation, the in-
dividual adjacency matrices are collapsed, such that any pair
of nodes is connected in the simplex network if it is linked
by at least one edge in any of the matrices. The edges can be
weighted, for example, by counting the number of different con-
nections that were aggregated (see Figure 2C) or by computing
a weighted sum of their respective weights [146, 126]. The ob-
tained simplex network can then be analysed using standard
network analytic measures (see Section 2.2). This approach is
viable whenever the overall relationship between two nodes be-
comes stronger as more types of connections are present be-
tween them. As an example, consider employees who are com-
municating via email, memos, telephone, fax, and through per-
sonal encounters. When analysing the volume of information
propagated between these people, it can be assumed that the
medium used for communication is irrelevant. It is thus suffi-
cient to regard an aggregated version of the network.

Ignoring the dependencies across the different connections in indi-
vidual graphs or aggregating them into a single connection, however,
often leaves the social context underexploited and may result in inac-
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curate interpretations [160]. This is the case, for example, when the
multiplex network contains friendship and enmity relations. If an ag-
gregate representation of this network is clustered, the result could
be groups that consist of people who are partly befriended and who
partly dislike each other. If the different connections are interdepen-
dent, analysing them in individual graphs will also result in mislead-
ing findings. Structural balance theory, for example, predicts that every
triangle in a social network contains an even number of enmity rela-
tions [266, p. 220–233]. Based on the chosen representation, different
types of methods can be applied to analyse multiplex network data.

measures and methods Most network analytic measures allow
for different generalizations to multiplex networks. Even the most
simple measure, the degree, can be generalized in at least three dif-
ferent ways: either by counting the total number of edges of any type
incident to a given node, or by taking the degree of the given node
in the aggregated network, or by separating the connections by type
such that every node has as many degrees as different types of con-
nections. Thus, in the case of degree centrality, one kind of degree
must be preferred over the others, according to the specific prob-
lem [160].

Most other centrality measures rely on a suitable definition of the
distance of two nodes, i.e. the minimal length of any path between
them. It can be meaningful to allow a path to use either all or just
a subset of the connections represented in the given multiplex net-
work. Alternatively, the path can be defined separately for each of
the connections. Based on a suitable distance metric, most centrality
measures, such as the betweenness or closeness centrality, can be eas-
ily defined.

The framework for analysing large-scale multiplex networks is not
yet standardized. Although the types of results that can be obtained
are not yet clear, there exist some illustrative studies of large-scale
multiplex networks such as the one performed on a network of play-
ers in an online game [245, 246]. The results reveal how cross-network
analysis provides additional insight into the organizational principles
and dynamics of the network. This information has been obtained by
computing the overlap and the correlations between the networks
corresponding to different edge types.

2.4 markov chain monte carlo methods

Individual graphs can be considered random objects drawn from a
collection of graphs, a so-called ensemble. As we will see later, this is
a useful way of thinking about graphs whenever we need to statisti-
cally assess their properties. As the ensemble of graphs is potentially
very large, we can not feasibly enumerate it, but only explore it by
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constructing a representative sample. To understand how this works
(see Chapter 3), the following basic ideas of Markov chains and Monte
Carlo sampling are necessary7.

markov chains Let S = {s0, s1, s2, . . . } denote a finite collection
of states that form a so-called state space. The states are associated with
probabilities Tij (known as transition probabilities), which quantify how
likely it is to move from the current state i to another state j. Addi-
tionally, it is required that Tij > 0 and

∑
j Tij = 1. The Markov chain is

defined for a system of states and associated transition probabilities
as a discrete-time stochastic process without "memory". This means
that the probability of being in state s at time t can be modelled as a
function of the immediate predecessor state only:

P(st = j|st−1 = i, st−2 = h, . . . ) = P(st = j|st−1 = i) = Tij (2.10)

for all states of the state space. Note that a Markov chain can beThe state graph
corresponding to a

Markov chain
associated with a weighted directed graph, the so-called state graph,
whose nodes correspond to the states and whose edges are weighted
by the individual transition probabilities.

properties of markov chains The chain is called irreducible if
any state can be reached from any other in a finite number of transi-
tions:

T
q
ij = P(st+q = j|st = i) > 0 ∀i, j ∈ S and finite q (2.11)

where Tqij denotes the q step transition probability, which is the prob-
ability that starting in state i the current state is j after q time steps.
Accordingly, the state graph must be strongly connected.Irreducibility,

aperiodicity, and
ergodicity

An irreducible chain is said to be aperiodic if there is a state i for
which the greatest common divisor of the length of the cycles that
contain it is 1. A more stricter condition, which is sufficient for the
purposes of this thesis is that ∃i : Tii > 0. This means that the chain
is not constrained to cycle through the states in a periodic manner.
Equivalently, the state graph of an aperiodic chain is non-bipartite. A
finite state Markov chain that is both irreducible and has an aperiodic
state is called ergodic8.

Consider a random process in which, starting from an initial state
i, a fixed number q of steps is performed according to the transition
probabilities. Then, {Tqij}j∈S is a probability distribution on S, quanti-
fying the probability that the process stops in j after q steps. Let π be
a probability distribution on S such that the probability of state i is
πi > 0 and

∑
i πi = 1. If this distribution satisfies the equation:

πj = lim
q→∞ Tqij ∀i, j ∈ S (2.12)

7 This summary is based on References [157; 129, p. 27; 137, p. 32–33; 167, ch. 14; 34].
8 A state is said to be ergodic, if it is both aperiodic and positive recurrent in the sense

that it is possible to return to it in a finite number of steps.
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than it is called a limiting stationary distribution. In other words, the The existence of a
stationary
distribution

stationary distribution no longer changes over time as more and more
transitions are being performed, i.e. π = πT . Irreducible and aperiodic
chains have such a well-defined stationary distribution. Reversible chains

and the detailed
balance condition

An alternative way to test for the existence of a stationary distri-
bution is achieved by requiring that the Markov chain fulfils the de-
tailed balance condition9. First, we introduce the notion of a reversible
Markov chain. A chain is reversible if ∃π : πiTij = πjTji, i.e. moves
along the chain are performed forwards and backwards with equal
probability. Based on this, we observe that reversibility implies de-
tailed balance, meaning that any sequence of steps is equally likely
to be chosen as its reversed sequence.

The theory of Markov chains states that the stationary distribution
of a reversible chain is proportional to the degree of each state in the
underlying state graph. For instance, a uniform stationary distribu-
tion thus requires that all states have the same degree, or equivalently,
that the state graph is undirected (symmetric) and regular [157].

Sampling from an
underlying
distribution

random walks and monte carlo sampling Given a Markov
chain, a random walk can be performed on it by starting from an initial
state and randomly picking each successive state based on the tran-
sition probabilities. To sample from a distribution, a Markov chain
can be defined on the state space S with the target distribution as its
stationary distribution π. Then, according to the principle of Monte
Carlo sampling, performing a large enough number of random walk
steps, i.e. visiting independent and identically distributed states, will
produce samples whose distribution approaches π, regardless of the
chosen initial state. As the number of samples grows, the sample dis-
tribution converges to the actual distribution. Mixing time of a

Markov chainThe mixing time τ of a random walk on a chain is defined as the
minimum number of steps for which the variation distance is small.
The variation distance measures how close the distribution is to the
stationary distribution after q steps. Thus, the mixing time of the
chain is the time it takes for it to reach its stationary distribution.

In summary, Monte Carlo sampling can be used to generate sam-
ples from Markov chains that were constructed in such a way as to
have the distribution we want to sample from as their stationary dis-
tribution. This allows for a broad applicability in physics, molecular
biology, ecology, and statistics. Moreover, it is of key importance for
sampling random graphs from a given ensemble as discussed in Sec-
tion 3.3.1.

9 Conversely, a chain that satisfies the detailed balance condition is necessarily er-
godic.



26 preliminaries

2.5 graph exploration

Basic graph exploration methods are relevant for this thesis when
modelling the acquisition of new members by social networking plat-
forms (see Chapter 6). A few wide-spread possibilities are reviewed
in the following10.

breadth first search (bfs) A search on a graph can be imag-
ined as a gradual process of moving outward from a given node v. In
breadth first search, the order of "visiting" the other nodes is as follows.
First, nodes adjacent to v are reached (i.e. those that are one hop away
from it), then nodes that are two hops away from it, and so on, until
all reachable nodes have been visited [66, p. 594–601]. Through this,
a tree with root v is constructed and the path between v and some
node w in this tree corresponds to the shortest path between the two
nodes in the original graph.

depth first search (dfs) The depth first search from node v is
carried out by recursively visiting one of the nodes adjacent to v (for
instance w), followed by one of w’s adjacent nodes, and so on. When-
ever there are no more reachable nodes from a given node, a back-
tracking step is performed to the most recently visited node that still
has unvisited adjacent nodes [66, p. 603–610]. A tree is constructed in
a similar manner to BFS with the difference that this tree is likely to
degenerate into a chain (especially for dense graphs). Thus, distances
in the tree generated by DFS do not necessarily relate to shortest
paths in the original graph.

random walk (rw) Similarly to the random walk on a state
graph used to sample graphs belonging to a given ensemble, random
walks can be used to explore one particular graph. Given this graph
and a starting node v, one of its adjacent nodes w is selected at ran-
dom. We then move on to w; then one of w’s adjacent nodes, and so
on. The (random) sequence of nodes selected this way is considered
a random walk on the graph [157].

ego-networks (en) Popular mainly in social network analysis,
an ego-network is a subgraph centered around a given node v and con-
tains the node itself, its adjacent nodes N(v), and all edges between
them [166].

10 Graph exploration as defined here should not be confused with graph sampling. In
addition to sampling a complete graph from an ensemble of graphs, one frequently
needs to sample subgraphs from large real-world networks that can not be dealt
with in their entirety. This is the case for instance when the underlying graph is
prohibitively large for visualization or for the desired analysis [129, ch. 5].
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random selection (rs) Each node of the graph is chosen ran-
domly with the same probability until a sample of the required size
is obtained.

2.6 inferring graph topology

Inference problems on real-world networks represent exciting challen-
ges and aim at predicting unobserved parts of a graph. Although they
are researched intensively nowadays, there is so far no coherent body
of formal results on these problems. Instead, most efforts are centered
around specific prediction tasks [129, ch. 7].

Original graph with
edges (straight lines)
and non-edges
(dashed lines)

inferring edges In line with current research trends, in this the-
sis we concentrate on inferring the presence or absence of connections
between a given, fixed set of nodes. More precisely, we focus on pre-
dicting individual edges between two given nodes. A typical example
of the prediction tasks we deal with is the following. Given a social
network of mutually confirmed connections, 1) infer whether two in-
dividuals are likely to meet and form a friendship in the near future
or 2) predict if their connection exists in reality, but is not present
in the network (for instance due to our inability to observe it). In
other words, we predict a future or a hidden edge connecting the
two individuals. To tackle this problem, we have the following two
possibilities.

Edge prediction:
unobserved edges
and non-edges that
need to be inferred
are coloured red

Association network
inference: none of
the edges and
non-edges is
observed (red lines);
connections to a
different type of
nodes are available
instead (black dotted
lines)

a. We can use the topology of the observed network between the
individuals and reason that, based on the effects of homophily
and triadic closure, the structure of their neighbourhoods makes
it likely that they in fact already know each other or will meet
soon. This approach is commonly referred to as edge or link pre-
diction (see for instance References [90, 147, 62]).

b. We can rely on additional relational data involving the individ-
uals. For instance, knowing about their affiliation to groups, so-
cieties, or organizations indicates their potential connectedness.
In other words, given data that can be modelled by a bipartite
graph between individuals and their affiliations, a projection
of this graph onto the individuals results in information about
the likelihood that they are connected. This procedure can be
seen as the inference of an association network and formally, it
is equivalent to the one-mode projection of a bipartite graph
(cf. Section 2.2).

Edge inference works well in practice if the overall topology of the
graph correlates in a nontrivial aspect of the driving forces of social
dynamics. Thus, the structure of the observed network is assumed
to be predictive and allows reasoning about connections that are not
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(yet) visible, but—as we will show in this thesis—can be deduced by
means of data mining and machine learning.

supervised versus unsupervised learning Existing statis-
tical learning approaches are categorized into supervised and unsuper-
vised learning. For an overview see Reference [108, ch. 1,2,14].

1. In the case of supervised learning, the aim is to predict (for in-
stance in a medical setting) an output variable (sick or healthy)
based on a set of features (such as blood pressure, temperature,
and other clinical indicators). The output variable often can be
interpreted as a label. The feature values corresponding to the
same entity (an individual) form an example. Based on a ground
truth set of examples, for which both the features and the out-
put variable are known, a prediction algorithm models the data
and generalizes such as to provide a sensible output for new
examples for which only the features are provided.

2. In an unsupervised learning setting, only the features are ob-
served without knowledge of the output variable. Thus, in this
case an algorithm is needed that organizes and categorizes the
examples based on their similarity, such that further examples
can be assigned to one of the categories based on how similar
they are to previously seen examples. The prototypical unsuper-
vised learning task is partitioning (or clustering).

Depending on the availability of ground truth data, edge inference
can be tackled by both learning approaches as sketched in the follow-
ing and detailed later (see Chapter 4 and Chapter 5).

edge inference as a classification problem Classification
is a typical supervised learning task [218, ch. 8; 167, ch. 6]. When
inferring connections between individuals as in the case of social net-
works, the examples are pairs of people. The learning is based on
features that characterize each pair (like the number of common ac-
quaintances or shared interests) and labels given by the discrete class
assignments (friend or non-friend). Note that each pair of individuals
is either friend or non-friend (i.e. each example belongs to exactly one
class) and there are both friends and non-friends among the pairs of
individuals (i.e. the classes occurring in the examples cover the com-
plete space of possible outputs).

We assume a systematic relationship between features and labels
and that the examples are representative for their classes. Based on
this assumption, we use the ground truth data to model the friend
and non-friend classes and to design a classifier that is able to assign
new pairs of individuals to one of the two classes, based on their fea-
tures. We proceed by partitioning the ground truth data into training
and validation (or test) sets. The classifier is built using the training
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data and tested on the validation data. Naturally, the goal is to obtain
good classification performance on the validation data. For more de-
tails about classification as well as an increasingly popular approach
to it see Chapter 5.

edge inference using scoring methods In an unsupervised
approach, the aim is to find effective scoring methods in order to estab-
lish whether it is likely to exist an edge between two nodes based
on this scoring function [129, p. 201–202]. In the example of social
networks, a score is computed for each pair of individuals in such
a way that, just as the features in the case of supervised learning, it
quantifies how similar the two individuals are based on their friend
circles and connection patterns.

Connections between individuals are then predicted in two simple
ways: 1) either by considering all pairs of individuals to be connected
for which the score is above a certain threshold t or 2) by ordering
the pairs according to their scores and inferring that the k highest-
ranked pairs are connected for some fixed k. Many types of scores
have been proposed in the literature. We review and compare the
most well-known of them and assess their predictive power in the
edge inference setting (see Chapter 4 and Chapter 7). Note that scor-
ing functions can be incorporated as features into classification algo-
rithms. Moreover, if ground truth data is available, we can use this
information to assess the performance of the individual scores.

2.7 measures of prediction performance

Assuming the existence of a ground truth, performance measures enable
us to evaluate the quality of a prediction algorithm. Several different
indicators have been proposed in the literature [270, p. 22–24; 218,
p. 86–88]. Here we review the measures utilized later to test the re-
sults obtained for binary predictions.

Ground truth data suited for an edge prediction problem partitions
the set of all possible pairs of nodes into edges (denoted by the set
E) and non-edges (the set E). Compared with the ground truth, a
predicted edge can either belong to E and thus be a true positive (TP),
or belong to E and be a false positive (FP). Analogously, a predicted
non-edge might belong to E and thus be a true negative (TN) or belong
to E and be a false negative (FN).

Usually, prediction in bioinformatical problems as well as in social
networks is difficult because the set E is often substantially larger
than E. This implicit disproportion (termed class imbalance in the clas-
sification jargon) has to be taken into account when choosing the per-
formance measures for evaluation. A trivial algorithm which always
predicts that a pair is a non-edge would deceivingly result in a perfect
specificity spec (the probability of predicting the absence of an edge



30 preliminaries

that truly doesn’t exist). However, for most applications the sensitivity
sens (the probability of predicting an edge that truly exists) is more
relevant. Thus, measures are needed which combine specificity and
sensitivity in a meaningful way11.

F-score An informative measure for assessing the performance
of an algorithm is the F-score (also known as F1-measure or balanced
F-score). It combines sensitivity and positive predictive value PPV (the
fraction of predicted edges that are true, sometimes called precision)
in such a way that they are evenly weighted [21, p. 144]:

F := 2 · sens · PPV
sens + PPV

(2.13)

The F-score is always in the range [0 , 1], and the higher the score, the
better the prediction. Having no false positive and no false negative
predictions would result in an F-score of 1.

the area under the curve , AUC The receiver operating char-
acteristic (ROC curve) is a scatter plot of sens versus 1− spec12. The
performance of an algorithm on a certain data set is displayed in the
ROC diagram with a changing discrimination threshold, i.e. the predic-
tion value that discriminates between edges and non-edges. Varying
this threshold allows a trade-off between sensitivity and specificity.

The Area Under the ROC Curve (AUC) is a scalar performance
measure that aggregates the prediction accuracy over all possible set-
tings of this threshold. In other words, it quantifies the probability
that true positives are assigned lower scores than true negatives by
a given algorithm. A perfect predictor achieves an AUC of 1 while
randomly guessing the result of a binary problem yields a value of
0.5 [81].

positive predictive value at rank k, PPVk While the AUC
measures the accuracy over the full range of possible discrimination
thresholds, the PPVk is based on a specific threshold: let k denote the
number of edges in the validation set k := |E| and let all pairs of nodes
of the validation set be ordered non-increasingly by their prediction
value. The PPVk is then defined as the fraction of correctly classified
edges (true positives) among the k top-ranked pairs13. It is thus also
equal to the sensitivity achieved by predicting these k examples to

11 There are numerous alternatives to the terminology introduced here: false positives
are also called type I error or error of the first kind; false negatives are also called type II
error or error of the second kind; sensitivity is sometimes called recall, true positive rate,
or hit rate.

12 According to an alternative terminology, the ROC curve shows the true positive rate
(i.e. the sensitivity) against the false positive rate.

13 The PPVk is also known under the name average precision at rank k [21, p. 140].
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be edges. It can be shown that if FP=FN, the specificity is linearly
dependent on PPVk:

1+ f · (PPVk − 1) = spec (2.14)

where f denotes the ratio between |E| and |E|. Both the sensitivity and
specificity are thus represented by the PPVk. The higher its value, the
more true edges are placed among the k highest-ranked pairs by the
algorithm. Note that the baseline for PPVk is the overall fraction of
edges among all possible pairs of nodes. This would be the result of
a naive algorithm in which k pairs of nodes are chosen uniformly at
random and predicted to be edges.

The advantage of PPVk is that it allows us to consider the ordering
of the pairs in the prediction result. This is useful for the assessment
of the output of both a scoring and a classification algorithm. This
feature is used for instance in information retrieval for the definition
of the mean average precision MAP:

MAP :=

∑K
k=1 PPVk yk

TP
(2.15)

where k is the rank, K is the number of node pairs, and yk is a label
vector indicating whether the k-th pair is an edge (yk = 1) or not
(yk = 0) [270, p. 23].

Throughout this thesis, the PPVk is used as an indicator of perfor-
mance in two settings:

a. The local PPVk is computed for each node v from the ground
truth individually by ranking the predicted pairs that contain
v according to the prediction value and then counting the true
positives among the k top-ranked predictions, where k denotes
the degree of the node v.

b. The global PPVk is given by the fraction of true positives among
the k globally highest-ranked pairs, where k is the total number
of edges in the ground truth. Note that the global PPVk is equiv-
alent to the overall PPV and we denote it as such to differentiate
between the local and global positive predictive values.

normalized discounted cumulative gain, nDCG While
the PPVk weighs the top predictions equally, DCG measures the use-
fulness, the so-called gain, based on the position in the ranking, in
which pairs are sorted non-increasingly by their prediction value. The
individual gains are discounted with decreasing ranks and are then
added up. Thus, true positives with a higher ranking result in a larger
accumulated gain [21, p. 145–150].
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To achieve the effect of discounted gain, DCG introduces a loga-
rithmic position dependency. Accordingly, the benefit of seeing a true
positive at position k is 1/ log2 (k+ 1):

DCG :=

K∑
k=1

1

log2 (k+ 1)
yk (2.16)

where the notation is consistent with Equation 2.15. nDCG then nor-
malizes by the ideal DCG, i.e. the value we would obtain if the k true
edges were ranked at positions 1 to k, where k is the number of TPs
in the data set. Similarly to PPVk, it can be computed both locally, by
averaging over all nodes from the ground truth, and globally.

2.8 summary

This chapter discussed basic methods for analysing the observed topol-
ogy of networks and provided first ideas related to modelling and
prediction tasks in graphs. Relying on these preliminaries, the follow-
ing chapters give a more detailed and formal description of the key
methods used in the applications presented in Part II.
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R A N D O M G R A P H S A S N U L L M O D E L S

Graph models are useful tools in various settings. For instance, when
studying the emergence of topological properties of real-world net-
works and the processes leading to their formation [267, 25], when
investigating their evolution over time [141], when analysing the im-
plications of diverse patterns with a given functional role [232], when
studying the effect of diverse phenomena on networks such as spread-
ing of epidemics [201] and tolerance to attacks [13], or when estimat-
ing their topological characteristics [129, p. 162–163]. Random graphs
can be formally defined as:

Definition of a graph
modelDefinition 1 (Graph model) A graph model is an ensemble of graphs G

with a probability distribution P over the graphs in G:

{P(G),G ∈ G} (3.1)

Thus, the different graph models arise due to the various possibili-
ties for specifying which graphs should be contained in G and with
which probability. Hereafter, we distinguish between the ensembles
associated to (simplex) non-bipartite, (simplex) bipartite, multiplex
non-bipartite, and multiplex bipartite graphs. We denote them by G,
B, G̃, and B̃, respectively. Random graph

models and their use
in this thesis for
hypothesis testing

The modelling tasks that are of interest in this thesis revolve around
building null models for hypothesis testing. As we will see later, our
main task can often be formulated as follows: Given a graph G0 and
a network observable η, assess the statistical significance of the value
η0 observed in G0. In other words, quantify how unexpected η0 is in
comparison to an appropriate frame of reference [129, p. 155–156]. As
a baseline for such a comparison we use random graph models. These
are specific graph models for which the ensemble G contains graphs
that maintain the values for a fixed set of parameters and are random
in all other respects. After defining G, we compare the value η0 to the
set of values {ηG |G ∈ G}, thereby using the random graph model as
a reference distribution for the possible values of the characteristic η.
For simplicity, we choose P to be uniform on G such that no graph
compatible with the model is preferred1.

The best choice for the selection of parameters to be kept con-
stant in the graphs from G is an important practical issue. It con-
siderably influences the results and can lead to contradictory inter-
pretations if not constructed carefully with respect to the considered

1 In social network analysis, the approach is also known under the name of conditional
uniform graph test [53].

33
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problem [17, 283]. This decision involves the well-known trade-off in
modelling between generality and realism. Clearly, a null model con-
structed from an ensemble of random graphs with "no structure" will
be easily rejected. With more structure, the model becomes more real-
istic. However, if too much structure is incorporated, the null model
will closely resemble the observation and will lack generality [102,
p. xii].Ecologists locking

horns over the null
model approach

Among other factors, this trade-off has led to controversies concern-
ing the justification of the null model approach, especially in ecology.
An essay of Diamond from 1975 [70] launched an intense debate that
resulted in a flood of papers which contained both conceptual objec-
tions from the application side and statistical criticism concerning the-
oretical and algorithmic issues [65, 215, 239, 101, 103, 63, 71]. Nowa-
days, hypothesis testing through null models is widely accepted and
extensively used. According to Gotelli and Graves [102, p. 7]:

"Null models reflect this natural variability in community
structure and require that the ’signal’ of mechanism be
stronger than the ’noise’ of natural variation."

Prevailing discussions within and beyond ecology revolve around the
question of which null model to use and how to obtain it even for net-
works that are considerably larger than typical for ecological studies.
In the following, we review the two main possibilities: classic random
graphs2 (i.e. graphs in which only the number of nodes and edges
is maintained) and generalized random graphs (i.e. graphs which also
preserve additional properties).

3.1 classic random graph models

The two equivalent
formulations:

G(n,m) and G(n,p)
The simplest class of random graphs constrains only the number of
nodes n and the number of edges m. This class is widely known as
the Erdős-Rényi model [78], but it was actually previously proposed
by Solomonoff and Rapoport [236], and introduced independently
by Gilbert [91]. Denoted by G(n,m), the graphs of this ensemble are
constructed from n nodes by randomly adding m edges such that no
self-loops or multi-edges are introduced (i.e. the graph is kept sim-
ple). Furthermore, all possible graphs in G(n,m) appear with equal
probability:

P(G) =

((n
2

)
m

)−1

∀G ∈ G(n,m) (3.2)

In a different formulation, the classic random graph model is de-
fined to consist of all graphs with n nodes, in which all possible
edges are instantiated independently with probability p ∈ (0, 1). This

2 Termed as such in the literature for instance by Dorogovtsev and Mendes [72] and
by Kolaczyk [129, p. 156].
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ensemble is denoted by G(n,p) and all of its graphs are associated
with the same probability:

P(G) = pm(1− p)(
n
2)−m ∀G ∈ G(n,p) (3.3)

It can be shown that in most investigations the G(n,m) and G(n,p)
models are practically interchangeable, provided that m is close to
pn [37, p. 37]. They are jointly referred to as classic random graph
models and represent the class of models that are best understood
mathematically, because several of their properties can be determined
analytically using probabilistic arguments. For instance, it has been
shown that in the limit of large n, their binomial degree distribu-
tion becomes a Poisson distribution3. Accordingly, the probability of
a node having degree k is:

pk =

(
n

k

)
pk(1− p)n−k ≈ 〈d〉

ke−〈d〉

k!
(3.4)

where the average degree 〈d〉 is 2m/n in G(n,m) and p(n − 1) in
G(n,p)4. For n → ∞, unless n � m, the assortativity by degree λ Analytical results

for the classic
random graph
models

is approximately 0, because the edges are placed randomly without
regard to the degree of nodes [187]. The expected transitivity tr(G)
is equal to p [129, p. 157]. Finally, the average shortest path length is
small and grows only logarithmically with n [267].

These properties are largely different from what is observed in real-
world networks. For instance, most social, biological, and technolog-
ical networks’ degree distributions have a long tail [72]; social net-
works are typically assortative, while many biological and technolog-
ical networks show a tendency towards disassortativity [187]; most
real-world networks are modular [94]; exhibit small-world character-
istics, i.e. they have a small average shortest path length, but also a
higher clustering coefficient than expected by pure chance [267]. Clas-
sic random graph models are therefore too general and unrealistic.
They can thus only be deployed as a baseline against which struc-
ture should be defined. For the analysis of real-world networks, more
involved models are required.

3.2 generalized random graph models

Generalized random
graph models as
subensembles of the
classic models

There are various possible extensions to classic random graph models
that make them more realistic. These involve additional constraints
beyond the fixed number of nodes and edges. The imposed restric-
tions influence the ensemble G, while, for simplicity, P remains the
uniform distribution over G. Accordingly, the constrained ensemble G

3 This explains their alternative name of Poisson random graphs [188].
4 The equivalence of the average degree in the two formulations can be deduced in

the limit of large n by observing that m = p
(n
2

)
.
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is a subensemble of G(n,m) and is thus strictly contained in it. There-
fore, the generalized models can be specified through a conditional
distribution on the G(n,m) model [129, p. 158; 53].

The most commonly chosen additional constraint is that of a fixed
degree sequence (Section 3.2.1). Observe that by simply fixing a de-
gree sequence D = {d(v1),d(v2), . . . ,d(vn)} for an arbitrary ordering
v1, v2, . . . , vn of the nodes, the number of nodes n and the number of
edgesm = 1

2

∑n
i=1 d(vi) are automatically prescribed. Thus, the fixed

degree ensemble implicitly fulfils the requirements of the G(n,m) en-
semble and as noted above, it is its subset. Efforts to include even
more additional information in the null model, such as to preserve
the number of mutual directed edges, have been made in particular
in the sociological literature and are briefly discussed in Section 3.2.2.

3.2.1 The fixed degree sequence model

Topologically, the most straightforward way of incorporating informa-
tion about the diversity of the nodes is through their degrees. The het-
erogeneous degree sequence observed in many real-world networks
(cf. References [25, 72]) seems to be an important individual charac-
teristic and as such it should be taken into account in a proper null
model. Although there are several other possible node characteristics
that also indicate diversity (such as the different centrality indices),
various fields have agreed independently on the requirement that a
meaningful null model should constrain the degrees of all individual
nodes. Thus, in the fixed degree sequence model all graph character-
istics are free to vary to the extent allowed by the maintained number
of nodes, edges, and the preserved degree sequence. In the follow-
ing, we illustrate the need for the constrained degree sequence on
two representative examples, one from social networks and one from
ecology.Illustration of the

importance of the
degree sequences on

two examples
a. In the analysis of social networks, a graph is constructed to

represent existing relationships between individuals. Usually,
the relationships are mutual and unique (as represented by an
undirected graph without multi-edges) and the relationship of
individuals to themselves is usually disregarded (there are no
self-loops). The degree of a node indicates the popularity of the
individual represented by it, and thus it should be contained in
a representative null model.

b. In ecology, the presence or absence of species at different loca-
tions at a given point in time can be modelled by a bipartite
graph without multi-edges. The chance of the occurrence of a
species at a location depends on the abundance of the species
and on the capacity of the location, which are coded in the de-
gree sequence of the species and locations, respectively. There-
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fore, a null model constructed for testing hypotheses about the
competition between species should preserve both degree se-
quences of the bipartite graph.

The intuition is thus that the probability of an edge as well as the
occurrence of higher order structures, such as co-occurring pairs of
nodes or clusters, depends on the overall context of the nodes. Con-
sider for instance a graph with a power-law degree sequence. In such
a graph, low degree nodes ought to be connected to high degree
nodes more often than expected in the G(n,m) ensemble. However,
this tendency is predetermined by the graph topology and only an
ensemble that takes into account the bias introduced by this degree
sequence is able to assess structure that is not immediately implied by
the power-law distribution. For illustrative examples about the effect
of not maintaining the degree sequences when studying real-world
market basket analysis data see References [92, 283].

Motivated by various applications, random graphs with fixed de-
gree sequences have been widely investigated within application ar-
eas like sociology [216, 171, 53], ecology [65, 215, 239, 101, 103, 71],
and biology [168, 232, 176], but also from the methodological point of
view in combinatorics and graph theory [219, 130, 33, 249, 49, 50, 175],
in statistics [211, 63, 61, 92, 10], and in network analysis [193, 188, 177,
16, 84, 127, 88, 254].

Several of these works approach the problem of generating graphs
with prescribed degree sequences through the equivalent task of gen-
erating (0, 1)-matrices with fixed margin totals (i.e. with fixed row and
column sums). To see the exact correspondence between the two prob-
lems, let us consider again the two examples given above. The simple
undirected5 graphs required for modelling the two networks can be
naturally represented by their binary adjacency matrices. Generating

(0, 1)-matrices with
fixed margin totalsa. The social network can be modelled by the non-bipartite graph

G = (V,E) with the corresponding adjacency matrix A(G) of
dimension |V| × |V| with zeros on the diagonal. Both the row
and column sums of the matrix are equal to the degree sequence
D(V).

b. The ecological network modelled by a bipartite graph B = (L∪
R,E) has an adjacency matrix A(B) of dimension |L|× |R|. Note
that because self-loops are inadmissible in bipartite graphs, this
matrix does not have structural zeros on the diagonal. Its row
sums match the degree sequence D(L), while its column sums
are equal to the degree sequence D(R).

Generating graphs from the ensembles G and B is thus equivalent to
constructing the matrix collections A(G) and A(B) that preserve the

5 Directed graphs are also very interesting in this respect. However, they are not the
focus of this thesis. Results for random directed graph models with fixed degree
sequences can be found for instance in References [211, 188, 34, 79, 128].
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corresponding margin totals. Several important results that have been
provided in the context of these matrices can be directly transferred
to the graph theoretic problem.

Most of the existing explorations revolve around toy graphs or
anecdotal networks containing a few tens of nodes such as Darwin’s
finches on the Galápagos Islands6. Even in these cases, the number ofThe cardinality of

the ensembles G and
B

possible graphs in the ensemble is astronomically large. For instance,
for the mentioned network of 13 species of finches on 17 islands there
are about 6.71 · 1016 graphs with the given degree sequence [153,
p. 93]. For a small artificial bipartite graph containing 20+ 20 nodes
and 20 edges such that each node has degree 1, the fixed degree en-
semble contains 20! ≈ 2.43 ·1018 graphs. To our best knowledge, there
is no closed formula to estimate the number of graphs in a given en-
semble.

the fixed degree sequence model for multiplex graphs

An increasing amount of data sets of interest contain details that canThesis point 1

not be translated to binary edges between the nodes without signif-
icant loss of information. For instance, product–customer data from
market basket analysis contains ratings with positive and negative
connotation (customers like or dislike products), while gene expres-
sion data often encodes both activation and inhibition, i.e. two quali-
tatively very different relationships.

Although a null model approach to the analysis of such data could
be very rewarding, methods for constructing null models for multi-
plex graphs are still missing (for an exception see Reference [272]). As
one of the key contributions of this thesis we provide such a method
for multiplex bipartite graphs. After explaining the intuition behind
it, describing its theoretical aspects, and providing the relevant algo-
rithm (Section 3.3), in Chapter 8 we use it to analyse the Netflix data
set, while in Chapter 9 we show how it performs on an application
from systems biology.

3.2.2 Other generalized random graph models

The idea of constructing further generalized random graph models
that constrain additional characteristics beyond the degree sequence
is very appealing. Research in this direction has been conducted based
on directed social networks, in which relationships between individu-
als are not necessarily mutual. For instance, McDonald et al. have de-
fined ensembles that maintain both the in- and out-degree sequences
and the number of mutual edges [171]. Roberts has constructed en-
sembles that also preserve the number of edges between predefined
communities [216]. In addition to the fixed degree sequence, the en-

6 Data compiled by Sanderson [223]. The original source is presumably Refer-
ence [104].
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semble of Maslov et al. contains graphs with a given correlation profile,
defined as the ratio P0(k,k ′)/PG(k,k ′), where P0(k,k ′) denotes the
likelihood that two nodes with degrees k and k ′ are connected in the
observed network, while PG(k,k ′) denotes the same likelihood com-
puted from the ensemble G [170].

Adapting random graph models to constrain certain graph charac-
teristics (or equivalently, fix particular sums in the adjacency matrix)
allows to assess other observables in a controlled experiment. Unfor-
tunately, understanding and verifying the mathematics behind these
models is extremely challenging. In the absence of analytical results,
formal verifications are way behind the pace of idea emergence and
algorithm development.

3.3 generating random graphs with fixed degree se-
quence

For all practically relevant graph sizes, the fixed degree sequence en-
semble can not be exhaustively enumerated and therefore the refer-
ence distribution of any statistic needs to be approximated. While
there are a few analytical approaches based on the generating func-
tion formalism [193], typically Monte Carlo simulation methods are
used to sample uniformly from the ensemble [129, p. 161]. In sta-
tistical terms, these are methods for examining distributions using
permutation tests under a null model of equally likely graphs with a
given degree sequence. Realizability of a

degree sequenceSuch an approach presumes that at least one feasible realization
for a given degree sequence is given. In the absence of an observed
real-world network however, a realization has to be constructed. So-
cial networks for instance can be anonymized by hiding the actual
connections and revealing only the degree sequence to avoid privacy
issues. Known in general as the graph realization problem, characteriz-
ing the existence and finding at least one graph instance with a given
degree sequence is a thoroughly investigated problem in graph the-
ory. After the more general Tutte’s f-factor theorem [255], Erdős and
Gallai gave a necessary and sufficient condition for the graphicality
of a degree sequence [77], while Havel developed a greedy algorithm
to construct a realization of a degree sequence as a simple undirected
graph [109]7.

The following sections deal with sampling as a critical issue for the
application of the fixed degree sequence model in real-world settings.
They detail the used Markov chain approach and discuss some of
its algorithmic aspects, showing that it can be performed efficiently
and can be applied to reasonably large data sets. Section 3.3.5 then
presents another wide-spread method that enables graph generation
based on the degree sequence for the cases where there is no observed

7 For extensions to the directed case see References [127, 79, 88, 128].
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graph. Finally, the chapter ends with a review of some basic ideas for
the application of the presented algorithms that draw random graphs
from an underlying fixed degree sequence model (Section 3.4).

3.3.1 Markov chain Monte Carlo sampling

Due to its simplicity and relatively low time complexity, one of the
most common strategies to sample instances from a well-defined en-
semble is Markov chain Monte Carlo sampling. For a brief summary
about Markov chains and Monte Carlo sampling see Section 2.4. With-
in this framework, the problem of generating random graphs with
fixed degree sequences lends itself to systematic analysis and facili-
tates algorithm development.

The basic idea is as follows. The finite number of graphs from the
State graph of an

ensemble
G = {Gi}

4
i=1

desired fixed degree sequence ensemble are modelled as the states
of a Markov chain and we define transitions between those pairs
of graphs for which a local transformation exists. Thus, the Markov
chain itself can be seen as a graph of states in which two nodes are ad-
jacent if the graphs represented by them can be transformed into each
other. A sufficiently long random walk on this chain will arrive at a
state that is independent from the starting state and can be consid-
ered a random sample from the ensemble. To explore the ensemble,
several such random walks are performed and yield a representative
sample.

This rough outline of the approach leaves several ensemble-specific
details open:

1. How to define the local transformation in such a way that en-
sures all graphs in the ensemble to be reachable during the ran-
dom walk (the chain is irreducible, i.e. the state graph is con-
nected)?

2. How to ensure that the chain has a stationary distribution (it is
also aperiodic, i.e. the state graph is non-bipartite)?

3. How to construct the chain in such a way that ensures all graphs
of the ensemble to be chosen with equal probability (the chain
has a uniform stationary distribution, i.e. the state graph is undi-
rected and regular)?

The following sections contain the definition of the correspond-
ing chains for three different ensembles: the fixed degree sequence
ensemble for undirected non-bipartite graphs, bipartite graphs, and
multiplex bipartite graphs. We discuss whether the chains fulfil the
requirements and present in each case a proper extension of the popu-
lar switching algorithm (also called rewiring algorithm). The idea under-
lying this algorithm is old [219] and represents the basis for several
algorithmic and theoretical approaches to graph and matrix genera-
tion (see for instance References [211, 63, 34]).



3.3 generating random graphs with fixed degree sequence 41

3.3.2 Undirected non-bipartite graphs

Initial configuration
(middle),
disallowed edge
swap (top), and
allowed swap
(bottom)

The switching algorithm uses edge swaps as local transformations. In
undirected non-bipartite graphs, an edge swap replaces two non-
adjacent edges (v,w) and (x,y) either by (v, x) and (w,y) or (v,y)
and (x,w) unless they are already contained in the graph. Observe
that such a swap maintains the degrees of all involved nodes and
that it is symmetric in the sense that a swap can be undone by a
reverse swap.

Consider a chain whose states are all graphs with a certain degree
sequence and in which there is a transition between all those pairs
of graphs that can be transformed into each other by one valid edge
swap. Because the chain is reversible, its stationary distribution is
proportional to the degree of each state. In general, some states have
more neighbours than others. Thus, such a chain does not guarantee
uniform sampling. There are two popular solutions to overcome this
issue: 1) the Metropolis algorithm8 that allows converting a chain with
a given stationary distribution into a chain with another stationary
distribution [137, p. 70–73], and 2) the self-loop or holding method [63,
177, 16], which introduces self-loops to ensure that all states have
the same degree and the state graph is thus regular, which is the
requirement for uniform sampling [34].

Several authors resent the fact that the switching algorithm as im-
plemented with self-loops spends too much time "doing nothing" [63,
16]. However, adding self-loops does not require computing any ex-
tra information, while any improvement of the method, as well as the
Metropolis algorithm, presume knowledge of the number of adjacent
states for each state [92] or an estimate of the upper bound for this
number [211]. Moreover, this computation is numerically expensive,
as small floating point numbers must be handled appropriately to as-
sure a sufficient accuracy. Thus, although the self-loop method needs
more steps for convergence, this approach remains efficient in prac-
tice. The running time comparison performed by Gionis et al. [92] for
bipartite graphs indicates that the Metropolis algorithm is less effi-
cient than the self-loop method. Thus, in this thesis, we opt for the
latter and construct the following chain, which produces the desired
uniform samples.

Definition 2 (Markov chain for non-bipartite graphs) (Berger and
Müller-Hannemann) Let M(G) = (G,T(G)) denote a state graph, where G is
an ensemble of undirected non-bipartite graphs with a given degree sequence.
The transitions T(G) are defined as follows. Two graphs G 6= G ′ ∈ G are con-
nected in the state graph if there is a valid edge swap transforming one into
the other. Furthermore, for each pair of non-adjacent edges (v,w) and (x,y)

8 In the statistics and mathematics literature, the algorithm is known as the Metropolis-
Hastings algorithm.
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in G a self-loop is introduced if (v, x) ∈ E(G)∨ (w,y) ∈ E(G)∨ (v,y) ∈
E(G)∨ (x,w) ∈ E(G).

It can be shown that the needed formal conditions are satisfied,
i.e. the state graph of this Markov chain is connected, non-bipartite,
undirected, and regular, and thus a random walk on it results in
asymptotically uniform sampling. For the proof, see for instance Ref-
erence [34, sec. 2]. Algorithm 1 is a transcription of the switching
algorithm of Berger and Müller-Hannemann [34] and is adapted here
to produce a sample H ⊂ G of size κ = |H| as result9.

The mixing time τ (i.e. the number of steps required to obtain an
independent graph from the starting graph) has been the subject
of theoretical study, but without any conclusive results (see Refer-
ence [34] and the references therein). Thus, it remains an open chal-
lenge whether these Markov chains are rapidly mixing. For the prac-
tical purposes of this thesis, we empirically check the convergence of
the samples for a given real-world network and choose a "safe" τ.

3.3.3 Bipartite graphs

Due to the prevalence of real-world networks with a bipartite struc-
ture as well as the efforts in ecology, data mining, statistics, and soci-
ology, the generation of bipartite graphs with given degree sequences
has been extensively researched. By the definition of bipartite graphs,
only the edge swap interchanging (v,w) and (x,y) with (v,y) and
(x,w) is allowed (where v, x ∈ L and w,y ∈ R), again provided that
(v,y) and (x,w) are not already contained in the graph. In the context

Bipartite edge swap

Switching along an
alternating rectangle

of (0, 1)-matrices, the edge swap can be viewed as switching along an
alternating rectangle10 in the adjacency matrix (i.e. interchanging 0s
and 1s): a set of four distinct entries of the type {vw, vy, xy, xw}, such
that the entries are alternately 0s and 1s. Clearly, this switching keeps
the row and column sums unaltered (i.e. both degree sequences). Hav-
ing defined the edge swaps, similarly to the case of non-bipartite
graphs presented above, the Markov chain is constructed based on
the concept of self-loops [211].

Definition 3 (Markov chain for simplex bipartite graphs) (Rao et al.)
Let M(B) = (B,T(B)) denote a state graph, where B is an ensemble of bi-
partite simplex graphs with given degree sequences. The transitions T(B)

connect two graphs B 6= B ′ ∈ B if there is a valid edge swap transforming
one into the other. Furthermore, for each pair of non-adjacent edges (v,w)
and (x,y) in B, where v, x ∈ L and w,y ∈ R, a self-loop is introduced if
(v,y) ∈ E(B)∨ (x,w) ∈ E(B).

9 Note that a similar algorithm can be constructed for directed graphs as well, with
the difference that a small number of three-edge swaps is also needed. See Refer-
ences [211, 34] for details.

10 Known as a checkerboard unit in the ecological literature (see for example [70, 215,
239, 101, 103, 63, 71]), an interchange [219], or a switching [249].
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Algorithm 1 Uniform sampling of undirected non-bipartite graphs

Input: an undirected graph G0 = (V,E), a mixing time τ, a number
κ of required graphs

Output: a sample H ⊂ G

G← G0
k← 0

while k < κ do
t← 0

while t < τ do
choose uniformly at random (v,w), (x,y) ∈ E(G)

. a pair of non-adjacent edges
choose with probability 1/2 between case a and b
if case a then

if (v, x), (w,y) /∈ E(G) then
. walk to an adjacent graph

delete (v,w), (x,y) from E(G)

add (v, x), (w,y) to E(G)

else . walk a loop
end if

else
if (v,y), (x,w) /∈ E(G) then

. walk to an adjacent graph
delete (v,w), (x,y) from E(G)

add (v,y), (x,w) to E(G)

else . walk a loop
end if

end if
t← t+ 1

end while
add G to H

k← k+ 1

end while
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The formal properties of this chain have been thoroughly studied
in the mathematical literature. Irreducibility was rigorously proven
for the first time by Ryser [219, th. 3.1] (alternative proofs have been
given later by Rao et al. [211, th. 1], Cobb and Chen [63], and Miklós
et al. [175, th. 2.2]). Aperiodicity and uniformity were also shown [211,
63]. Based on this chain, Algorithm 2 produces κ uniform and inde-
pendent graphs from the ensemble with the degree sequences pre-
scribed by B0.

Algorithm 2 Uniform sampling of simplex bipartite graphs

Input: a simplex bipartite graph B0 = (L ∪R,E), a mixing time τ, a
number κ of required graphs

Output: a sample H ⊂ B

B← B0
k← 0

while k < κ do
t← 0

while t < τ do
choose uniformly at random (v,w), (x,y) ∈ E(B)

. a pair of non-adjacent edges with v, x ∈ L and w,y ∈ R

if (v,y), (x,w) /∈ E(B) then
. walk to an adjacent graph

delete (v,w), (x,y) from E(B)

add (v,y), (x,w) to E(B)

else . walk a loop
end if
t← t+ 1

end while
add B to H

k← k+ 1

end while

The sequence of edge swaps is stopped heuristically after τ steps
and the obtained graph is considered to be randomly drawn from the
ensemble. There are several estimates for the mixing time in the bipar-
tite case. Gionis et al. estimate a number of steps that is linear in the
order of magnitude of the edges O(|E|) to suffice for convergence [92].
To ensure that the number of performed steps is indeed sufficient,
for experiments we always used a strictly super-linear function in the
number of edges O(|E|log|E|).

3.3.4 Multiplex bipartite graphs

Next, we focus on bipartite graphs that contain multiple distinct typesThesis point 2

of edges. Let B̃ = (L ∪R, Ẽ = ∪γ∈ΩẼγ) denote a multiplex bipartite
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graph that contains edges of type γ ∈ Ω. If we perceive B̃ as the
superposition of individual simplex graphs B̃γ, then we can define
for each of the graphs a separate chain as described in Section 3.3.3.
Observe, however, that by doing so we allow parallel edges of differ-
ent types in the superposed graph B̃. In other words, there can exist
edges (v,w) ∈ Ẽγ and (v,w) ∈ Ẽϕ with γ 6= ϕ ∈ Ω, v ∈ L, and w ∈ R.
As the examples from Chapter 8 and Chapter 9 show, for some real-
world networks of interest this would be an unnatural characteristic,
because there is at most one type of edge admitted between any pair
of nodes, i.e. the maximal multiplicity of any edge in the graph is 1:
max(v,w)∈Ẽ µ(v,w) = 1. Thus, we elaborate in the following a Markov
chain and a corresponding sampling algorithm that ensure a proper
sampling of the fixed degree sequence ensemble B̃ that contains all
graphs in which every node maintains its degree for each of the edge
types and no parallel edges of any kind occur.

For sampling from this ensemble, we define the edge swap as fol-
lows. We choose uniformly at random two edges of the same type,
e.g. (v,w), (x,y) ∈ Ẽγ (where v, x ∈ L, w,y ∈ R, and γ ∈ Ω). We
furthermore ensure that each edge type is sampled with a probability
that corresponds to the frequency of this type in the graph. If nei-
ther (v,y) nor (x,w) is already contained in the graph, we remove
(v,w), (x,y) and add (v,y), (x,w) instead. By always checking for the
existence of any type of edge between (v,y) and (x,w), we do not
allow for multiple edges. The multiplicity of the sampled bipartite
graphs thus remains 1. We define the corresponding Markov chain as
follows.

Definition 4 (Markov chain for multiplex bipartite graphs) Let M(B̃)

= (B̃,T(B̃)) be a state graph, where B̃ denotes the ensemble of multiplex bi-
partite graphs. The transitions T(B̃) connect two graphs B̃ 6= B̃ ′ ∈ B̃ if
there is a valid edge swap transforming one into the other. Furthermore, for
each pair of non-adjacent edges of the same type (v,w), (x,y) ∈ Ẽγ ∀γ ∈ Ω
in B̃, where v, x ∈ L and w,y ∈ R, a self-loop is introduced if (v,y) ∈
Ẽ(B̃)∨ (x,w) ∈ Ẽ(B̃).

To ensure that this Markov chain samples the graphs from the en-
semble B̃ with equal probability, 1) it needs to be ergodic and 2) has
to have a uniform stationary distribution.

Example of edges
that are
unswappable due to
edges of a different
type

ergodicity As we have seen in Section 2.4, a Markov chain is
ergodic, if it is aperiodic and irreducible. Due to the introduced self-
loops, aperiodicity is assured. As discussed in Section 3.3.3, the bi-
partite edge swap results in an irreducible chain for simplex graphs.
In the multiplex case, it is possible that the irreducibility of the chain
becomes violated due to the interference of the subgraphs of differ-
ent types during the edge swap procedure. A rigorous proof of the
necessary and sufficient conditions a graph has to fulfil such that this
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situation does not occur is subject to future research. The real-world
networks we deal with in this thesis are both extremely sparse and
have a long-tail degree distribution. in their case, it is unlikely that
we encounter such configurations.

uniformity We first observe that since the edge swaps are sym-
metric (i.e. they can be "undone" and thus each transition in the state
graph is associated with an inverse transition) the chain is reversible.
Hence, the stationary distribution π is proportional to the degrees
of the nodes in the state graph. To obtain a uniform distribution, all
graphs of the ensemble (the nodes of the state graph) must have the
same degree. By construction, the nodes of the state graph contain
self-loops for each pair of non-adjacent edges that are unswappable
in the graph they represent. The degree of each node in the state
graph is then equal to the total number of non-adjacent edges of the
same type, which is equal for all graphs, as required. For an illustra-
tion see Figure 3.

Figure 3: The state graph of the ensemble of multiplex bipartite graphs
B̃ = (L ∪ R, Ẽ = ∪γ∈ΩẼγ) with Ω = {red,green} that realize
the degree sequences D(L)red = {1, 0, 1}, D(L)green = {0, 2, 1},
D(R)red = {1, 1, 0}, D(R)green = {1, 1, 1}. The state graph is con-
nected and aperiodic (i.e. the chain is ergodic), as well as undi-
rected and regular (i.e. the stationary distribution of the chain is
the uniform distribution).

Based on this Markov chain, we propose Algorithm 3 for sampling.

3.3.5 The configuration model

The major critique of the Markov chain Monte Carlo sampling con-
cerns the unknown mixing time [128]. If the performed walk is too
short, the independence of the graphs is not guaranteed and thus
the resulting sample can not be used as a representative null model,
because it will probably contain a bias towards the structure of the
observed graph. Despite the fact that the Markov chain Monte Carlo
sampling is potentially computationally intensive if high accuracy is
desired, it is straightforward to implement as well as adaptable to a
wide range of applications, and therefore it remains the most popular
choice.
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Algorithm 3 Uniform sampling of multiplex bipartite graphs

Input: a multiplex bipartite graph B̃0 = (L∪R, Ẽ = ∪γ∈ΩẼγ), a mix-
ing time τ, a number κ of required graphs

Output: a sample H ⊂ B̃

B̃← B̃0
k← 0

while k < κ do
t← 0

while t < τ do
choose at random an edge type γ ∈ Ω with probability |Ẽγ|

|Ẽ|

choose uniformly at random (v,w), (x,y) ∈ Ẽγ
. a pair of non-adjacent edges of the selected type

if (v,y), (x,w) /∈ Ẽ(B̃) then
. walk to an adjacent graph

delete (v,w), (x,y) from Ẽ(B̃)

add (v,y), (x,w) to Ẽ(B̃)

else . walk a loop
end if
t← t+ 1

end while
add B̃ to H

k← k+ 1

end while
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Alternative algorithmic approaches are the stub method [180, 193,
176], sequential importance sampling [61, 10], and exact sampling [88].
From these, the most wide-spread is the stub method, which has the
advantages of being conceptually uncomplicated, easy to implement,
and analytically tractable through the associated configuration model.
We discuss this model in the following, as we will use it to elaborate
two of the node similarity measures presented in Section 4.2.

the stub method The stub method is a matching algorithm that
enables generating graphs with a prescribed degree sequence with-
out requiring an observed graph with the given sequence. It instead
builds the graph from n disconnected nodes that are assigned a num-
ber of stubs according to the desired degree sequence, by randomly
matching the stubs.

Based on this procedure, in the case of highly skewed degree se-
quences we can expect nodes with high degree to be matched to each
other more than once [129, p. 160]. This in turn changes the topolog-

Realization of the
degree sequence

D = {2, 2, 2, 3, 1}
by stub matching

ical properties of the graph, especially around the nodes with high
degree [169, 282, 283]. Multi-graphs are not allowed in most applica-
tions and thus the simple algorithm needs to be refined such as to
exclude the formation of multi-edges and self-loops. This can be en-
forced either 1) by rejecting those configurations that turn out to be
multi-graphs, or 2) by performing an additional test whenever two
stubs are matched and discarding inadmissible matchings.

Both options make the originally computationally inexpensive ap-
proach almost infeasible for skewed degree sequences, because they
lead to unacceptably many rejected configurations and backtracking
steps, respectively. Moreover, the uniformity of sampling is not guar-
anteed any more. 1) In the case of rejected configurations, Molloy
and Reed argued that, under appropriate conditions on the degree
sequence and in the limit of large n, the generated graphs will have
equal probability [180]. 2) When discarding inadmissible matchings,
the bias in sampling becomes inevitable [191, p. 436]. Although Milo
et al. report examples where this bias is sufficiently small for practical
purposes [176], it remains an open question whether the approach is
viable in general.

analytical approximations in the configuration model

In the matching algorithm presented above, individual edges are con-
sidered to be independent events. This considerable simplification
allows the deduction of analytical approximations that lead to the
formulation of the configuration model [191, p. 434–445].

Consider a non-bipartite graph G = (V,E) with |V| = n and |E| = m.
Based on the construction prescribed by the stub method, the prob-
ability that one stub of node v is connected to a stub of node w is
d(w)/(2m− 1), because there are 2m− 1 possible stubs (we excluded
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the one connected to v) from which exactly d(w) belong to node w.
Taking into account that v has d(v) stubs, the probability that any of
these is connected to a stub of w is d(v)d(w)/(2m− 1) [191, p. 439–
440]. As m→∞, the probability becomes:

Pvw =
d(v)d(w)

2m
(3.5)

Approximating the
expected number of
common neighbours

The number of common neighbours of v and w is defined as |{u ∈
V|(v,u) ∈ E ∧ (w,u) ∈ E}|, where | · | denotes the cardinality of the
set. To compute the number of common neighbours, we sum over
all nodes u that are connected to node v with probability Pvu =

d(v)d(u)/2m, while also being connected to node w with probabil-
ity Pwu = d(w)(d(u) − 1)/2m [191, p. 441]:

∑
u

PvuPwu =
d(v)d(w)

(2m)2

∑
u

d(u)(d(u) − 1) =
d(v)d(w)

n

〈d2〉− 〈d〉2

〈d〉2

(3.6)

where 〈d〉 is the average degree, 〈d2〉 is the average square degree,
and according to Equation 2.2, 2m can be substituted by n〈d〉.

Based on a slightly different probabilistic argumentation, under the
same purely random selection mechanism, the expected number of
common neighbours of nodes v and w can also be approximated by:

d(v)d(w)

n
(3.7)

Note that this expectation value should actually be d(v)d(w)/(n− 2).
The above simplification holds for large networks (n → ∞) and is
widely used [191, p. 214].

Observe that the difference between the two approximations for the
number of common neighbours, Equation 3.6 and Equation 3.7, lies
in the term:

〈d2〉− 〈d〉2

〈d〉2
=

(
σ[d]

〈d〉

)2
(3.8)

where σ[·] denotes the standard deviation.
The same reasoning can be used to compute the probability of an

edge and the expected number of common neighbours in a bipartite
graph B = (L∪R,E) with |L| = nL, |R| = nR, and |E| = m. There, the
probability of an edge between two nodes v,w ∈ L is:

Pvw =
d(v)d(w)

m
(3.9)

while their expected number of common neighbours is:

d(v)d(w)

nR

〈d2R〉− 〈dR〉2

〈dR〉2
(3.10)
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where 〈dR〉 is the average degree of the right side nodes and 〈d2R〉 is
their average square degree. In the simpler approximation:

d(v)d(w)

nR

(3.11)

The configuration model also allows approximating further quan-
tities. As the benefits of such easily computable approximations are
immense, it is crucial that we understand just how accurate they are
and where they can safely be used. The expressions for the number
of common neighbours presented above are relevant for this thesis,
because they serve as basis for two of the used node similarity mea-
sures (i.e. the covariance and the configuration model-based similar-
ity, see Section 4.2).

3.4 applications of the fixed degree sequence model

There are several possible practical uses of the fixed degree sequence
model in real-world applications. In this thesis, we use random graphs
generated by Markov chain Monte Carlo sampling for the significance
assessment of network observables and the detection of so-called net-
work motifs, while we employ the stub method to create benchmark
graphs. Note that although we presented the fixed degree sequence
model for three types of graphs, the following analyses are directly
applicable to other types of graphs as well, provided that a suitable
random graph model has been defined.

3.4.1 Significance assessment of network observables

One of the most important tasks in various applications is to study
properties of an observed network in comparison to a null model. The
aim is to detect deviations from randomness and thereby to distin-
guish significant characteristics from expected characteristics. Topo-
logical properties of interest are for example the number and size
of components, the diameter of the network, or the total number of
edges connecting nodes with a given degree.

To perform such an analysis, a uniform sample from the chosen
fixed degree sequence ensemble is obtained for example by one of the
described algorithms. The observed value is then compared to the dis-
tribution defined by the samples. If the difference is significant, the
observed value can not be explained by the structure incorporated
in the null model (the given number of nodes, edges, and degree se-
quence), but might rather indicate a functional role, design principle,
and/or evolutionary history [169]. For example, appropriate random
graphs are used as frame of reference whenever we need to interpret
an observed clustering coefficient for which it is impossible to deter-
mine a priori whether it is "high" or "low" [129, p. 164–165].
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While statistics has long been dealing with significance testing [99],
in the context of graphs, one often needs to assess the significance
of more complex results rather than individual network observables.
When testing the significance of a clustering for instance, we can com-
pare the clustering error in the observed graph to the error of the
same algorithm applied to the graphs from the ensemble. A signif-
icantly higher average error in the ensemble indicates that the ob-
served graph is in fact strongly clustered [92].

Furthermore, the null model approach is used for quantifying the
modularity of a node partition in a network (for the definition see Sec-
tion 2.2). In fact, the modularity measures the difference between the
total fraction of intra-cluster edges in the observed network and the
expected fraction if edges were placed at random. Although different
null models of random edge assignment are possible [206], the most
popular choice is based on the configuration model, in which edges
are placed at random regardless of the underlying partition [94].

3.4.2 Detection of network motifs

A firm assumption underlying network analysis is that a network’s to
follows its function [28]. It is therefore informative to look for identi-
cal replicas of small subgraphs, so-called network motifs [232, 176, 14],
which occur more often than expected under a given null model. In
this case it can be assumed that they developed due to evolution or
fundamental design principles and limitations [169]. Thereby we cor-
rect for those subgraphs which occur in a network with the same
basic components but an otherwise random structure. We can differ-
entiate between several types of subgraphs for a given number of
involved nodes. One of them, for the case of three nodes, is the di-
rected feed-forward loop, in which A is influencing B and C, while
C is influencing B. The feed-forward loop is a characteristic building
block of protein networks and performs signal-processing tasks such
as pulse generation [206]. The method for the computation of the sta-
tistical significance of a subgraph in a network was introduced by
Shen-Orr et al. [232, 176]. Feed-forward loops for instance are much
more common than expected in transcription networks that control
gene expression. Their method can be described as follows:

1. Given a graph G and a network pattern ζ, count the number of
occurrences NG(ζ) of this pattern in the whole graph.

2. Build a set of graphs with the same degree sequence as G but
otherwise randomly distributed edges. In other words, generate
a sample H of the fixed degree sequence ensemble G.

3. Count the number of occurrences of this pattern for all graphs
G ′ ∈ H and compute the fraction p of graphs in which the
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number of occurrences of this pattern is at least as large as in
the original graph G.

This procedure is thus based on the basic principles discussed in Sec-
tion 3.4.1. The resulting fraction is the empirical approximation of the
real p-value. A low p-value implies that the observed occurrence of
ζ is less likely to be simply caused by the structure of the data. In-
stead, it may hint at a functional correlation (for more details see Sec-
tion 4.3).

The approach of Shen-Orr et al. for detecting network motifs is
global in the sense that it takes into account subgraphs placed any-
where in the network11 [232]. In various problems from data mining,
molecular biology, and ecology for instance, it is far more interesting
to assess the significance of a local pattern in which some of the nodes
are fixed. This thesis deals in depth with one typical such pattern
formed by two given nodes and their common neighbours (see Sec-
tion 4.2). The idea is to count the number of common neighbours of
the two nodes and obtain a context for this value by repeatedly com-
puting it for several instances of the fixed degree sequence ensemble.
While our empirical results show that there are data sets with a lot
of structure (Chapter 7, Chapter 8, and Chapter 9), others have very
few interesting patterns. The bipartite graph which models disorders
and disease genes that are connected by known disorder–gene associ-
ations (known as the Diseasome [95]) for instance is so sparse that the
null model approach fails to detect significant co-occurrences.

3.4.3 Generation of benchmark graphs

Because ground truth information that could be used for evaluation is
only rarely available, results of diverse analyses are commonly tested
against computer-generated benchmark graphs, for which the opti-
mal outcome is defined by construction. Validating an algorithm on
artificial graphs is a standard procedure in network analysis and has
been used extensively for assessing the quality of clustering meth-
ods [94, 136]. In general, benchmark graphs should also be of moder-
ate size and have a structure which resembles the original graph for
which ground truth is lacking.

Such artificial benchmark graphs are usually built using a version
of the stub method for instance, which guarantees that no multi-edges
are created (see Section 3.3.5). Having one realization of the degree
sequence, the switching algorithm can then be used to create further
instances that can be assumed to represent equally likely random
samples of the ensemble. The set of artificial graphs constructed this
way enables testing algorithms for their robustness against different

11 Often, only subgraphs occurring at some minimum number of disjoint locations in
the graph are declared to be motifs [129, p. 167].
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types of noise, such as the random elimination or addition of obser-
vations (cf. Section 8.2 and Section 9.2).

3.5 summary

In the evaluation of network characteristics it is useful to compare the
observed values against those which are expected in a null model that
fits the data set at hand. By noting the extent and direction of the devi-
ation from the reference distribution, structural biases within a given
real-world network can be detected. These biases then provide use-
ful indications of the mechanisms underlying network formation and
function. In this chapter we have discussed random graph models
that serve as such null models and are suitable for hypothesis testing.
The key model we presented here is the fixed degree sequence ensem-
ble, in which the number of nodes, edges, and the degree sequence
are set to the values that are specified by an observed real-world net-
work. All graphs that share these properties form the fixed degree
sequence ensemble. To generate a uniform sample from this ensem-
ble, we construct a corresponding Markov chain and perform Monte
Carlo sampling on this basis.

The most relevant network characteristic for edge inference is node
similarity. In the following, we review classic similarity measures and
show how to assess the statistical significance of these measures by
using the random graph model approach presented in this chapter.





4
N O D E S I M I L A R I T Y

Similarity measures
in general: the main
issues and
challenges

The notion of the level of similarity between individual entities is cen-
tral to a variety of analytical problems arising in diverse fields, such
as classification and clustering in data mining and machine learn-
ing [108, p. 79–114,453–479], searching in text retrieval [222], struc-
ture comparison in chemical information retrieval [30, 194], classifi-
cation of biological species in numerical taxonomy [235, p. 116–147],
or sequence alignment and comparison in bioinformatics [143, 181].
Clustering techniques for example attempt to group entities based
on the supplied definition of similarity. This similarity, typically inter-
pretable as a distance, is fundamental to a successful analysis—insofar
as it may be more important than the choice of the clustering algo-
rithm itself [108, p. 459].

Despite the ubiquitous need for the assessment of the alikeness
of entities as a basic first step in several fundamental investigations,
information about objectively verifiable similarity is only rarely avail-
able. However, there are many possibilities for quantifying implicit
similarity. Usually, there is no agreement on which is the most correct
or insightful measure for a given problem (not even within a certain
field). Accordingly, since the late nineteenth century, a great variety
of similarity measures have been proposed within a multitude of scien-
tific areas. Unfortunately, the lack of communication between these
fields resulted in repeated duplication of effort and inconsistency of
terminology. From today’s perspective, these endeavours raise two
main issues:

a. Problem-specific measures have emphasized the need for do-
main-specific knowledge and have been usually developed to
tackle individual problems. Therefore, most of the resulting mea-
sures are based on experience with distinct data sets rather than
on theoretical arguments.

b. Assessing the quality of individual measures by relying on sin-
gle data sets is difficult, mainly because: "the choice of a similar-
ity coefficient is largely subjective and often based on tradition
or on a posteriori criteria such as the ’interpretability’ of the
results", as Jackson et al. put it [123]. Moreover, Gordon aptly
states that "human ingenuity is quite capable of providing a
post hoc justification of dubious classifications" [100]—and not
just classifications, we might add.

55
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Although similarity is a very convenient concept for humans, its
formal definition is not straightforward. Here we provide its most
general formulation [218, p. 13].Definition of a

similarity measure

Definition 5 (Similarity measure) A function s : Rn × Rn → R is
called a similarity measure if ∀~x,~y,~z ∈ Rn:

s(~x,~y) = s(~y,~x) (4.1)

s(~x,~y) 6 s(~x,~x) (4.2)

s(~x,~z) 6 s(~x,~y) + s(~y,~z) (4.3)

s(~x,~y) > 0 (4.4)

The function s is a normalized similarity measure if additionally s(~x,~x) = 1.

In this thesis, the focus is on the more limited yet less extensively
researched problem of determining topological similarity between
nodes in a network based on their position (Section 4.1). Unfortu-
nately, the general difficulties outlined above also hold in the con-
text of node similarity. This chapter is dedicated to taking a closer
look at the most common existing measures (Section 4.2). Besides the
measures proposed and established in different fields of research, we
introduce a measure of our own (Section 4.3).

4.1 why and how to study node similarity?

Main approaches
and assumptions Formulated on a global level, in terms of the question How similar are

two given nodes?, node similarity is central to clustering. Termed on
a local level, Which other nodes are most similar to a particular node?, it
represents a key issue in recommendation. Moreover, node similarity
measures that are used as scoring functions are also well-suited as
predictors for the existence or formation of edges (see details in Sec-
tion 4.5). Despite its broad applicability, node similarity is a con-
cept that received little attention (for notable exceptions see Refer-
ences [139; 191, p. 211–220]) when compared to several other network
measures that have been subject to close examination (for example
the clustering coefficient [267], degree distribution [25], or centrality
indices [131, 124, 132, 39]).

Two nodes can be alike in many respects such as shared external
factors or similar position in the network. Here, we concentrate on
node similarity based solely on network topology, meaning that no
additional node attributes are taken into account (such as the age,
gender, location, or occupation of individuals in a social network). In
the network analysis literature, the most common approach to con-
structing mathematical measures for the quantification of ideas of
similarity is termed structural equivalence and means that two nodes
are considered to be similar if they share the same neighbours and
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thus occupy the same place in the network [156; 38; 191, p. 211–216].
The main advantage of this idea is its generality. However, it has to
be emphasized that it relies on two basic assumptions: 1) the struc-
ture of the network reflects real information about the nodes and
this type of similarity is thus well-suited for any network where the
function or role of a node is related to its structural surroundings,
and 2) edges in the network indicate fundamental similarity between
the nodes they connect. Given these two assumptions, the structural
equivalence-based notion of similarity is appropriate for instance in
the identification of functional categories or in functional prediction.

There have also been efforts to define similarity without requiring a
shared neighbourhood of nodes. In a social network for instance, two
students have a similar social position, even if they study at different
universities and thus do not share acquaintances. To account for this
within the limits of purely network topological data, the similarity of
a pair of nodes can be recursively defined in terms of the similarity of
their neighbours. This is known as regular equivalence and states that
two nodes are similar if they are connected to other nodes that are
similar themselves [139; 38; 191, p. 217–220].

4.2 classic node similarity measures

In this section we review a selection of the most well-known and long- Thesis point 3a

standing similarity measures (i.e. the "fittest"), which are based on
the idea of structural equivalence. We formulate them both for non-
bipartite and bipartite graphs that are undirected and unweighted
and thus have a binary adjacency matrix that codes the presence or
absence of an edge between two nodes (cf. Section 2.1). As it turns
out, in this binary case several similarity measures have alternative
set theoretic and contingency table-based forms.

common neighbours , cooc Based on the intuition about vari-
ous types of networks, the most basic indicator of the similarity of
two nodes is the number of their common neighbours. For instance,
two individuals in a social network who share several acquaintances
are likely to have similar domicile, age, or activities; two films that
are liked by the same people might be similar in terms of story, cast,
and style; two genes regulated by the same transcription factors can
be assumed to share sequence similarity or functional role; and two
scientific papers that are often cited together may deal with related
topics.

The number of common neighbours in a graph theoretical sense is
closely related to the so-called co-occurrence (hence the notation cooc)
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defined for diverse relational data1. For instance, in text mining terms
that appear in the same document or sentence [64; 82, p. 9], in ecology
species that habit the same location [102, ch. 7], or in market basket
analysis items that are purchased together [152, p. 299–302] are said
to co-occur.

The number of common neighbours of nodes v and w is the con-
junction of their respective rows from the (0, 1)-valued adjacency ma-
trix A and can be perceived as the intersection of their neighbour-
hoods:

cooc(v,w) := |N(v)∩N(w)| (4.5)

where N(v) is the neighbour set of node v and | · | denotes the cardi-
nality of the set.

There is a practical alternative to this set theoretic formulation based
on the observation that the number of common neighbours of two
nodes is equivalent to the number of distinct paths of length two be-
tween them in the graph. Accordingly, the number of common neigh-
bours of nodes v and w in an undirected graph with n nodes is the
vw-th element of the second power of the adjacency matrix A (cf. Sec-
tion 2.1). Note that the diagonal elements of A2 contain the degrees
of the individual nodes2.

Based on these set theoretic and algebraic formulations and due to
the nature of the similarity measures we discuss in the following, we
define the number of common neighbours of nodes v and w in an
undirected graph as the scalar product of their respective adjacency
rows:

cooc(v,w) := Av ·Aw =

n∑
u=1

AvuAwu (4.6)

A key property of the number of common neighbours is that it is
bounded by the smaller degree of the involved nodes:

0 6 cooc(v,w) 6 min {d(v),d(w)} (4.7)

Thus, cooc has the shortcoming that the expectation is larger for high
degree nodes sharing only a small percentage of their neighbours
than for small degree nodes with a relatively large neighbourhood

1 While the number of common neighbours, as defined here, refers to two individual
nodes, the co-occurrence is often used more broadly to incorporate multiple entities,
i.e. a set of co-occurring nodes.

2 Citation analysis, the area that is preoccupied with the analysis of the directed net-
work of papers citing each other, draws a distinction between two measures for the
similarity of papers, both of which are actually equivalent to the number of common
neighbours. The co-citation is equal to the number of other papers that cite them both
(i.e. it is based on the incoming edges) and is computed as ATA, where AT is the
transpose of the matrix A. The bibliographic coupling is equal to the number of other
nodes to which both point (i.e. it is based on outgoing edges) and is computed as
AAT [191, p. 115–118; 270, p. 90–91].
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overlap. The majority of the wide-spread similarity measures thus
normalizes the number of common neighbours to compensate for the
degrees such that the similarity is 1 for perfectly overlapping neigh-
bourhoods. A prominent example of this is the Jaccard coefficient we
discuss next.

jaccard coefficient, jac One of the oldest similarity measures
was proposed by Jaccard to measure the alikeness of two sets [122]
and it has been heavily used ever since3. In a network setting, the
Jaccard coefficient normalizes the intersection of the neighbour sets
of nodes v and w by the cardinality of their union:

jac(v , w) :=
|N(v) ∩ N(w) |

|N(v) ∪ N(w) |
(4.8)

where N(v) is the neighbour set of node v. Expressed in terms of the
number of common neighbours and the degrees d(v) and d(w), the
above formula can be rewritten as:

jac(v , w) =
cooc(v , w)

d(v) + d(w) − cooc(v , w)
(4.9)

The Jaccard coefficient assigns values from the interval [0 , 1] and
reaches its optimal value of 1 when the two nodes have exactly the
same neighbours. Note that it is undefined for nodes with degree 0.
In this case, it could be explicitly defined to be 0.

cosine similarity, cos The cosine similarity4 or Salton’s co-
sine [222] gives the angular cosine distance between the n-dimensional
vectors ~x , ~y ∈ Rn:

cos(~x , ~y) :=
~x · ~y

‖~x‖2 ‖~y‖2
(4.10)

where · denotes the scalar product of two vectors and ‖ · ‖2 is the

Euclidean norm defined as ‖~x‖2 =
√∑n

k=1 x
2
k. Note that the cosine

similarity is invariant against scaling of the vectors:

cos(α ~x , ~y) = cos(~x , ~y) ∀ ~x , ~y ∈ Rn and α ∈ R+ (4.11)

Therefore, it is extensively used in data mining, where the relative
distribution of the feature values needs to be taken into account. Its
applications range from document comparison to collaborative filter-
ing (see for instance References [163, 151]).

The cosine similarity of nodes v and w is computed from their
corresponding rows in the adjacency matrix:

3 In a binary setting such as this, it is equivalent to the Tanimoto coefficient [248].
4 Also known as the Ochiai coefficient [195].
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cos(v,w) =
Av ·Aw

‖Av‖2 ‖Aw‖2
=

∑
uAvuAwu√∑

u (Avu)
2
√∑

u (Awu)
2
=
cooc(v,w)√
d(v)d(w)

(4.12)

Accordingly, the cosine similarity equals the number of shared neigh-
bours cooc(v,w) when normalized by the geometric average of the
degrees d(v) and d(w). Its value lies in the range from 0 to 1 with 1
indicating a perfect overlap between the neighbourhoods. As in the
case of the Jaccard coefficient, cosine is also undefined for zero vec-
tors and requires an explicit definition for this case.

covariance , cov The covariance is a measure of the degree of
independence of two n-dimensional vectors ~x and ~y and is defined
as5:

cov(~x,~y) :=
1

n

n∑
u=1

(xk − 〈~x〉)(yk − 〈~y〉) (4.13)

where 〈~x〉 denotes the average of the elements of ~x. If the covariance
yields a large positive value, there is a strong positive linear depen-
dency between ~x and ~y. In other words, vector components with high
values coincide with high component values, and low component val-
ues coincide with low component values. If it yields a large nega-
tive value, there is a strong negative linear dependency. Accordingly,
high component values coincide with low component values and vice
versa.

Analogously, the covariance between the adjacency rows correspond-
ing to nodes v and w can be defined as:

cov(v,w) =
1

n

n∑
u=1

(Avu − 〈Av〉) (Awu − 〈Aw〉) (4.14)

=
1

n

(
n∑
u=1

AvuAwu −n〈Av〉〈Aw〉

)
(4.15)

=
1

n

(
cooc(v,w) −

d(v)d(w)

n

)
(4.16)

where we used Equation 4.6 and the fact that the average of the el-
ements in row Av is 〈Av〉 = n−1

∑n
u=1Avu = d(v)/n. The normal-

ization contained in the resulting formula suggests an intuitive way
of accounting for the number of common neighbours the two nodes
would have if both would choose their neighbours purely at random.
As Equation 3.7 shows, under the assumption that the nodes "choose"
independently from each other, their expected number of common
neighbours is indeed d(v)d(w)/n.

5 The normalization factor required for sample covariance with unknown average is
n− 1. For large graphs, however, the approximation with n is sufficient.
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Awu = 1 Awu = 0

Avu = 1 a = cooc(v,w) b = d(v) − cooc(v,w)

Avu = 0 c = d(w) − cooc(v,w) d = n+ cooc(v,w) − d(v) − d(w)

Table 1: Contingency table allowing the comparison between the neighbour-
hoods of nodes v and w: a is the number of common neighbours;
b is the size of the exclusive neighbourhood of node v; c is the size
of the exclusive neighbourhood of node w; and d is the number of
nodes that are not adjacent to neither v nor w.

Note that in the case of bipartite graphs, the expected number of
common neighbours of nodes v,w ∈ L is d(v)d(w)/nR, where nR

denotes the number of nodes in the opposite set (see Equation 3.11).
Thus, their covariance is:

cov(v,w) =
1

nR

(
cooc(v,w) −

d(v)d(w)

nR

)
(4.17)

This concept of normalization is analogous to a key concept in mar-
ket basket analysis and is crucial for the investigation of patterns of
the form If customers bought a set of products Q1 then they also purchased
the set of products Q2. For two disjoint sets of products Q1 and Q2, this
pattern is formulated as a so-called association rule Q1 → Q2, meaning
that if a data set contains the products in Q1 then it also contains the
products in Q2. To assess the meaningfulness of such implications,
Shapiro introduced a measure called leverage [247], which is defined
as the difference between the joint probability of Q1 and Q2’s occur-
rence P(Q1,Q2) (i.e. their co-occurrence) and their expected probabil-
ity if they were appearing independently from each other:

P(Q1 → Q2) = P(Q1,Q2) − P(Q1)P(Q2) (4.18)

An equivalent formula that quantifies the excess of observed co-
occurrence over the expected co-occurrence has been derived for bi-
nary data in text retrieval from a 2x2 contingency table representation
(see Table 1). The determinant of this contingency table is propor-
tional to the covariance: ad − bc = ncooc(v,w) − d(v)d(w). For fur-
ther measures deduced from this type of representation see Refer-
ences [75, 38].

The covariance (alongside the equivalent leverage) is intuitive and
can be used successfully in many settings. However, it lacks a proper
standardization and therefore it is unclear what constitutes a "good"
covariance value. The Pearson correlation presented in the following
suggests a possible normalization. The motivation behind this nor-
malization is the drawback of the covariance that if a vector is multi-
plied by a constant factor α, then the covariance between the vector
and any other vector will increase by α. The normalization used in
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the Pearson correlation (i.e. the division of the covariance by the stan-
dard deviation of both vectors) compensates for this effect of constant
scaling.

pearson correlation, r The Pearson correlation or Pearson
product-moment correlation is widely used to measure linear depen-
dency between vectors and allows for several interpretations [217]. It
is commonly used in traditional collaborative filtering approaches [270,
p. 17] and recently also in systems biological analyses (see for exam-
ple Reference [165]).

The Pearson correlation is often used to measure node similarity
based on the corresponding rows of the adjacency matrix and is sim-
ply computed by rescaling the covariance [191, p. 214–215]:

r(v , w) :=
cov(v , w)

σ[v]σ[w]
=

1

nσ[v]σ[w]

(
cooc(v , w) −

d(v)d(w)

n

)
(4.19)

where σ[v] denotes the standard deviation of the adjacency row of
node v. The normalization makes the interpretation of the Pearson
correlation more tractable than that of the covariance. Its values lie
in the interval [−1 , 1] with r ≈ 1 being a strong positive correlation,
r ≈ −1 meaning a strong negative correlation, and r ≈ 0 indicating
linear independence.

Two final remarks are in order regarding the Pearson correlation.
First, because the covariance takes a slightly different form for bipar-
tite graphs, the Pearson correlation changes accordingly and becomes:

r(v , w) =
1

nRσ[v]σ[w]

(
cooc(v , w) −

d(v)d(w)

nR

)
(4.20)

Second, observe the relationship between the Pearson correlation and
the cosine similarity: for centered adjacency rows, meaning that 〈Av〉 =
〈Aw〉 = 0, the two are equivalent to each other [217].

hypergeometric coefficient, hyp The cumulative hyperge-
ometric distribution has been used extensively to measure the sig-
nificance of the number of common neighbours in biochemistry and
systems biology (see for instance [253, 242, 96, 243]). The hyperge-
ometric distribution assumes a null model, according to which the
neighbourhoods of the two nodes are independent, but the common
neighbours are chosen without replacement. It is computed from the
degrees of the two nodes and the total number of nodes as follows:

hyp(v , w) := − log
min {d(v) ,d(w)}∑
c=cooc(v ,w)

(
d(v)
c

)(n−d(v)
d(w)−c

)(
n

d(w)

) (4.21)
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The sum gives the probability of obtaining a number of common
neighbours which is at least as large as the actual number of common
neighbours and thus, it can be interpreted as a p-value. Introducing
the negative logarithm maps this value to R+.

Note that in the case of bipartite graphs with |R| = nR, the hyper-
geometric coefficient for two nodes v,w ∈ L is:

hyp(v,w) = − log
min {d(v),d(w)}∑
c=cooc(v,w)

(
d(v)
c

)(nR−d(v)
d(w)−c

)(
nR

d(w)

) (4.22)

configuration model-based similarity, cfm Leicht et al.
suggested to normalize the observed number of common neighbours
by its expected value in the configuration model [139, eq. 19]. As
discussed in Section 3.3.5, the configuration model is a random graph
model in which individual edges are considered to be independent
events. Using Equation 3.6, we obtain the configuration model-based
similarity for the nodes v and w in a non-bipartite graph as:

cfm(v,w) :=
cooc(v,w)

d(v)d(w)
n

〈d2〉−〈d〉2
〈d〉2

(4.23)

where 〈d〉 is the average degree, 〈d2〉 is the average square degree,
and n denotes the number of nodes. As we compare the similari-
ties within the same network, we can neglect the multiplicative con-
stants [139] and obtain:

cfm(v,w) :=
cooc(v,w)
d(v)d(w)

(4.24)

Note that the configuration model-based similarity is defined analo-
gously for bipartite graphs by taking into account Equation 3.10. After
discarding the multiplicative constants, we obtain an expression that
is equivalent to Equation 4.24.

The node similarity measures listed above (for an overview see Ta-
ble 2) are only a few examples of the many existing possibilities. For
a series of additional measures and discussions see for instance Refer-
ences [235, p. 116–147; 75; 218, p. 13–14]. As we see severe limitations
in the null model adopted by these measures, in the following we
discuss other, more accurate measures based on the fixed degree se-
quence model (see Section 3.2.1).

4.3 similarity based on the fixed degree sequence model

The more simplistic raw measures (such as common neighbours, Jac- Thesis point 3b

card coefficient, or cosine similarity) suffer from the fact that it is un-
clear what constitutes "good" values, as they all depend intimately on
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similarity measure formula range optimal

value

common neighbours, cooc Av ·Aw N0 ∞
Jaccard coefficient, jac cooc(v,w)

d(v)+d(w)−cooc(v,w) [0, 1] 1

cosine similarity, cos cooc(v,w)√
d(v)d(w)

[0, 1] 1

covariance, cov 1
n

(
cooc(v,w) − d(v)d(w)

n

)
[−1, 1] 1

Pearson correlation, r cov(v,w)
σ[v]σ[w] [−1, 1] 1

hypergeometric − log
∑min {d(v),d(w)}
c=cooc(v,w)

(d(v)c )(n−d(v)d(w)−c)
( n
d(w))

R+ ∞
coefficient, hyp

configuration model-based cooc(v,w)
d(v)d(w) [0, 1] 1

similarity, cfm

p-value, p |{G∈H | coocG(v,w)>cooc(v,w)}|
|H|

[0, 1] 0

z-score, z cooc(v,w)−〈coocG(v,w)〉
σ[coocG(v,w)] R ∞

presorted z-score, z∗ see text N+ ∞
Table 2: Summary of the presented similarity measures. Bold measures have

a slightly different formula when adapted to bipartite graphs (see
text for details).
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the number of common neighbours and the degree of the nodes. Ad-
justed measures (like the hypergeometric coefficient, the covariance,
or the Pearson correlation) try to alleviate this problem by accounting
for the similarity that would be obtained under a given null model.
The null models that are implied by these measures contain indepen-
dence assumptions that are potentially overly simplistic in the case of
many real-world networks. Based on this classic statistical approach,
in the following we look at node similarity measures that are general-
ized to arbitrarily complicated null models. Without making any as-
sumptions about the distribution of the similarity values, we propose
a non-parametric significance assessment using permutation tests6.

empirical p-value , p Based on the fixed degree sequence model,
a common way of assessing the statistical significance of the observed
number of common neighbours of v and w is to count the fraction of
sampled graphs in which their number of common neighbours is at
least as large as the observed value cooc(v , w):

p(v , w) :=
|{G ∈ H | coocG(v , w) > cooc(v , w)}|

|H|
(4.25)

where coocG(v , w) is the number of common neighbours of v and w
in a graph G ∈ G from the ensemble G that contains all graphs with
the same degree sequence as the observed graph (see for instance
Reference [272]). Since the graph ensemble can not be exhaustively
enumerated, an empirical p-value is computed based on the random
sample H ⊂ G. This empirical measure approximates the true p-
value. The observed number of common neighbours is thus corrected
with the expected number of common neighbours in H. We have
presented methods for generating this sample in Section 3.3.

The smaller the p-value, the more unlikely it is that the two nodes
have the observed number of common neighbours in a random graph
and thus the more significant the observation.

The numerical estimation of the p-values in the tail of the distri-
bution (i.e. where many of our points of interest lie) requires a large
sample [252]. In contrast, calculating the z-scores, as described next,
requires sampling the first two moments of the distribution, namely
the average and the standard deviation.

z-score , z Assuming Poisson distributed numbers of common
neighbours, a Gaussian distribution is a good fit for nodes with large
degree and thus the z-score can be used as test statistic instead of the
empirical p-value. The z-score quantifies the deviation from the sam-
ple average in units of standard deviation. Applied to the number of
common neighbours, in the fixed degree sequence model we obtain:

z(v , w) :=
cooc(v , w) − 〈coocG(v , w)〉

σ[coocG(v , w)]
(4.26)

6 For a comprehensive study of the permutation approach see the book by Good [99].
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where the notation is consistent with that in Equation 4.25, 〈·〉 de-
notes the sample average, and σ[·] denotes the sample standard de-
viation.

Our tests on real-world data show that the distribution of the num-
ber of common neighbours is asymptotically Gaussian for large de-
gree nodes. For smaller degree nodes however, the distribution of the
number of common neighbours may have a heavy tail. In this case,
the probability of obtaining extreme z-scores can be orders of mag-
nitude higher than in the Gaussian distribution. This could be the
explanation for the astronomically large z-scores reported in the lit-
erature (see for example References [176, 272, 85]). Nevertheless, it is
believed that the Gaussian approximation is frequently sufficient to
gauge statistical significance [252].

presorted z-score , z∗ For obtaining accurate p-values, a large
sample is needed. Thus, a p-value that is near 0 can indicate true sig-
nificance or the fact that the number of taken samples is not sufficient.
In the range of low p-values, it can be thus rewarding to use the z-
score, because it differentiates better than the p-value when computed
based on a sample of the same size. Therefore, we propose to assess
the similarity of nodes based on the combination of these two mea-
sures. Let <p and <z denote the order of the node pairs according to
p-value and z-score, respectively. Then, we define the order <z∗ as:

(v,w) <z∗ (v ′,w ′) ⇐⇒ { (v,w) <p (v ′,w ′) } ∨

{ (v,w) =p (v ′,w ′)∧ (v,w) <z (v ′,w ′) }
(4.27)

Accordingly, z∗ does not provide a similarity score for two nodes, but
results in a ranking of the pairs of nodes. As we will see in Chapter 7,
this combined measure outperforms the others on all tested networks.

4.4 node similarity in multiplex graphs

Note that the presented measures can be extended to quantify nodeThesis point 4

similarity in multiplex graphs. Let G̃ = (V, Ẽ = ∪γ∈ΩẼγ) denote a
multiplex graph. The co-occurrence of two nodes v,w ∈ V, denoted
by cooccγϕ(v,w), then equals the number of common neighbours
u ∈ V they share with respect to the edge types γ,ϕ ∈ Ω:

coocγϕ(v,w) = |{u ∈ V|(v,u) ∈ Ẽγ ∧ (w,u) ∈ Ẽϕ}| (4.28)

The co-occurrence thus signifies how often we observe an edge of
type γ between v and u together with an edge of type ϕ between w
and u. Clearly, cooccγγ(v,w) is equivalent to the co-occurrence of the
nodes v and w computed in the simplex subgraph G̃γ.

Based on this multiplex co-occurrence, we can then define the fixed
degree sequence model-based p-value and z-score, provided that the
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proper multiplex graph ensemble is used as null model. For the case
of multiplex bipartite graphs see Section 3.3.4.

4.5 node similarity measures in edge inference

In the context of this thesis, the node similarity measures which we
presented above are used for edge validation and prediction as fol-
lows. We compute the measures for each pair of nodes we are inter-
ested in and identify either by unsupervised or supervised learning,
which pairs of nodes should be connected.

a. In the unsupervised case, individual measures serve as scor-
ing functions [147]. The node pairs are ranked according to the
chosen measure and those pairs with the highest score are pre-
dicted to be edges.

b. In the supervised setting, several measures collectively form the
features, based on which a learning algorithm is trained [148].

In both cases, the underlying assumption is that there exists a mean-
ingful correlation between the structure of the network and the mech-
anisms responsible for the lack of a given edge. Similarity measures
based on structural equivalence thus possess predictive power in this
context [129, p. 201–202]. To which extent this assumption holds and
for which prediction tasks the diverse measures can be used has been
scarcely addressed in the literature. In Chapter 7 we provide a con-
tribution to this problem by empirically testing the diverse measures
on networks from two very different areas and thereby address this
important aspect of node similarity.

The measures discussed here assess local topology in the neigh-
bourhood of the nodes. However, measures considering a broader
structure can also be constructed. For instance, the similarity of two
nodes can be quantified as the negative shortest-path distance be-
tween them [129, p. 201] or the number of paths of at most a given
length [147]. Different variants based on the number of common
neighbours can also be designed by weighing the common neigh-
bours by their degree for example [7] or by their clustering coefficient
as we suggest in Chapter 6.

4.6 summary

In this chapter we have presented a set of the best-known node sim-
ilarity measures: common neighbours, Jaccard coefficient, cosine simi-
larity, covariance, Pearson correlation, hypergeometric coefficient, and
three futher measures based on the fixed degree sequence model.
These measures rely solely on network topology and are derived
from the number of common neighbours shared by the two nodes
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of interest. They range from simple to those that correct for the ex-
pected value of the number of common neighbours under a given
null model. While in some cases this null model is rather simplistic,
we have also presented two measures that are test statistics based on
the fixed degree sequence model. In addition to the expository part,
we introduced a new measure that combines the latter two. As the
presented similarity measures differ conceptually and in terms of the
required computational effort, we argue that the choice of measure
for a given problem should be subject of careful consideration and
present a comparative survey in Chapter 7. In the case of edge pre-
diction, these measures can be used individually as scoring functions
or they can serve as features in a classification setting, as we show in
the next chapter.



5
C L A S S I F I C AT I O N W I T H R A N D O M F O R E S T S

This chapter introduces classification problems (Section 5.1), elabo-
rates, how these can be approached using decision trees (Section 5.2),
and describes the classifier algorithm called random forest (Sec-
tion 5.3). Additionally, two important related issues are reviewed,
namely feature selection (Section 5.4) and training schemes (Sec-
tion 5.5). Although the corresponding machine learning literature is
vast (see for instance Reference [108]), we focus solely on the aspects
that are relevant to this thesis.

5.1 classification

Classification1 is a supervised learning task that assigns entities to
classes based on a labelled feature data D = {(~x1,y1), . . . , (~xe,ye)},
where e denotes the number of examples, ~xi ∈ Rq is the q dimen-
sional feature vector corresponding to entity i, and yi ∈ {1, . . . , c},
c > 2 is the class label of i. Using the data D, a classifier is a function
g : Rq → {1, . . . , c} that yields a class y for a given feature vector
~x [218, p. 85–86]. For this thesis only binary classification is relevant,
meaning that c = 2. Wide-spread

approachesSeveral different classifiers exist in the literature, each with specific
features and drawbacks. Among the most popular are the naive Bayes
classifier, the nearest neighbours classifiers, and the support vector
machine (SVM) [108, p. 21,415–423,371–376]. By default, these meth-
ods consider all features for analysis, which has a twofold drawback:
1) not all features are actually informative and 2) the assessment of all
features requires great computational effort. To counteract this, one
could rank the features by their importance based on the already ob-
served feature data and use only a subset of the possible features [218,
p. 97]. This represents the basic idea of decision trees, which is elabo-
rated in the following.

5.2 decision trees

Classification by decision trees has become very popular, not least due
to the fact that trees are intuitive and computationally inexpensive.
The cost of building a balanced binary tree of n elements is O(n logn)
and traversing it from its root to a leaf node is in O(logn) [66, p. 286–
292]. This is important in the context of classification, since the trained

1 For a short introduction to classification and the related basic concepts see Sec-
tion 2.6.

69



70 classification with random forests

decision tree classifier is queried, i.e. traversed, for each new entity
that we intend to classify.Using decision trees

The basic idea of decision trees is to break classification down to
a set of choices about each feature in turn starting at the root of the
tree and progressing down to the leaves, where the final classification
decision is made. In case of numeric features, each node of the treeDecision tree

constructed based on
the features cooc

and jac

Separation of the
feature space in

correspondence to
the tree

contains a simple test of the form Is the value of the i-th feature lower
than threshold ti?, and all leaves contain a deterministic class label.

While there are several different options for constructing the tree,
all of them are based on the same principle: the tree is built in a
greedy manner, starting at the root and choosing at each node the
most informative feature that best enables splitting the examples into
two further nodes. The amount of information can be quantified based
on the information entropy H for instance, which describes the impu-
rity in a set of features [167, p. 135] and is defined as:

H(p) = −
∑
c

pc log2 pc (5.1)

where pc are probabilities associated with the classes. In binary clas-
sification, if p is the proportion of examples in class 1, then:

H(p) = −p log2 p− (1− p) log2(1− p) (5.2)

It can be shown that the optimal feature to pick at a node has maximal
entropy, as this feature separates the examples optimally. The infor-
mation gain of a feature describes how much the entropy of the train-
ing set would decrease if we selected this particular feature. Based on
it, the feature is chosen that results in the highest gain.

Therefore, we employ a greedy procedure that searches the space
of possible trees by choosing the feature with the highest informa-
tion gain at each node, given what is already known. The tree is con-
structed recursively: at each node the best feature is selected and re-
moved from the data set and the algorithm is called on the rest until
there are no features left or there is only one class remaining in the
data. In the first case, the most common label is added to the node,
in the second, a leaf is added with that class as its label.

overfitting and pruning Overfitting is one of the major prob-
lems for statistical learning models in general and it can have a signif-
icant impact on decision trees as well. Overfitting means that instead
of the underlying feature–output relation, the noise in the training
data is modelled [218, p. 74]. The algorithm therefore memorizes the
training data instead of finding a generalizing model. To avoid overfit-
ting a decision tree, the size of the tree should be limited. A common
advanced technique which achieves this is called pruning.

The idea of pruning is to compute the full tree and then reduce
it while monitoring the induced error. While there are many differ-
ent versions of pruning, the most basic idea works as follows: First,
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the tree is built using all features. Smaller trees are then produced
by iterating over the individual nodes and replacing the subtree be-
low them with a leaf labelled with the most common label. The error
of the pruned tree is calculated on the validation set and the prun-
ing is accepted if the error is no larger than when using the original
tree [167, p. 142].

5.3 random forests

The random forest classifier was introduced by Breiman and consists of
an ensemble of randomized decision trees. The basic idea behind it is
to aggregate the results of a set of "weak classifiers" (simple decision
trees) to form a "strong classifier" (the forest). The main advantage of
the random forest is that, as opposed to single trees, it is robust to
overfitting without using additional techniques like pruning [47].

The past few years have seen an increased interest in random forests.
Most importantly, they have already been successfully used for edge
prediction [58, 148, 265] and are thus very attractive for the purposes
of this thesis.

Figure 4: Two exemplary decision trees that form the random forest classi-
fier. The two-dimensional feature space (top) is partitioned accord-
ing to the splits made at the nodes of the individual trees (bottom).
The final classification is based on majority votes.

Constructing the
forestAs sketched in Figure 4, the random forest is constructed by draw-

ing ntree bootstrap samples from the training data. For each of the
samples, a decision tree is built with the modification that at each
node, rather than choosing the best binary split among all features, a
split is selected based solely on a random sample of features. Thus,
for each tree the following procedure is repeated: We start with the
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root node that contains all training examples. At each node, the fea-
ture that best splits the examples in the node is selected from a ran-
domly chosen subset of size mtry of the q available features (as a
rule of thumb, mtry =

√
q [47]) and an adequate threshold is found.

The tests at each node of the tree are selected by first creating a set
of random tests and then picking the best among them according to
some quality measure (for instance the above presented information
gain or the Gini index). Subsequently, the node is split and the pro-
cess is recursively repeated for each of the resulting subsets until a
pure subset with examples from only one class is produced [106].Using the forest

Given a set of validation data, all trees of the forest are traversed
from their roots to one of their leaves. The trees that vote for a certain
class are counted. This can be interpreted as the posterior probability
of a certain example belonging to a particular class, given its features.
A crisp classification can be obtained by taking the majority votes.

5.4 feature selection

As we have seen in Chapter 4, there are several feature candidates
that quantify node similarity and could therefore be used in an edge
prediction setting. Usually, the question of which features to choose
for a specific classification task is not easy [167, p. 221]. The feature
selection problem is thus concerned with finding the most influential
subset of features from a much larger set of potential candidates. Tak-
ing into account too many features increases the computational cost,
may lower the performance due to overfitting, and entails the curse of
dimensionality. The latter refers to the phenomenon where, as the num-
ber of features (i.e. input dimensions) grows, more data is required to
assure that the algorithm generalises sufficiently well. Moreover, the
number of required examples is increasing super-linearly with the
number of used features [167, p. 106–108].

Feature selection typically involves looking through the available
set of features and testing their usefulness, i.e. whether they are cor-
related to the desired output. Alternatively, the following trial-and-
error procedure can also be rewarding: First, we choose subsets of
the available features and use them for training. Then, we adapt the
subsets successively according to the obtained performance until a
satisfactory feature subset is identified. Unfortunately, finding an op-
timal subset is difficult, since all possible combinations need to be
tested, and this in turn implies an exponential effort, causing feature
selection to belong to the group of NP-hard problems [173]. All in all,
it is still unclear how to best handle the trade-off between computa-
tional volume and accuracy involved in feature selection such that a
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reliable separation between the classes is obtained based on the avail-
able set2.

5.5 cross-validation

Based on ground truth data, the performance of a classifier can be
evaluated by cross-validation, a training scheme that is designed to
avoid overfitting. The idea here is to partition the data D into a dis-
joint training set Dt and validation set Dv, where Dt,Dv ∈ D, Dt ∩
Dv = ∅, Dt ∪Dv = D.Dt is used to train the algorithm andDv serves
for validation. Since the validation data is not used for training, a
high performance on it indicates that the algorithm achieves a good
classification [218, p. 74–75]. The implicit assumption is of course that
the two sets are independent.

A popular cross-validation scheme is the k-fold cross-validation. For
this, D is randomly partitioned into k pairwise disjoint and approxi-
mately equal sized subsets D1, . . . ,Dk (Di ∩Dj = ∅ and |Di| ≈ |Dj|∀i
6= j : i, j ∈ {1, . . . ,k}, ∪ki=1Di = D). Each of the subsets is used to val-
idate the algorithm trained on the remaining k− 1 subsets. The per-
formance of the algorithm is then averaged over the k experiments.

5.6 summary

The edge inference problem central to this thesis can be perceived as a
classification task that uses node similarity measures as features and
labels from ground truth data to assign pairs of nodes to the edge
or the non-edge class. Viewed as such, supervised machine learning
provides a set of tools that allow us to tackle this problem. Here we
opt for the conceptually simple yet powerful random forest, an ap-
proach that is based on a randomized ensemble of decision trees. Our
choice is motivated by the advantages random forests have over other
alternatives, such as the ability to handle large data sets and the ro-
bustness to overfitting. With this last tool, we have covered the core
methods that are required to proceed to the challenging real-world
problems that follow.

2 Stochastic methods such as simulated annealing [173] or evolutionary algorithms [234]
approximate an optimal feature selection.





Part II

A P P L I C AT I O N S

Equipped with the above concepts and methods, we turn
to selected demonstrations of their uses. The applications
are chosen from diverse fields in which extensive network
data awaits analysis. The concerned areas immensely profit
from network modelling and edge inference, especially if
the results obtained by network analytic methods are in-
tegrated into the context of knowledge acquired by disci-
pline-specific approaches—as is shown in this part.
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P R E D I C T I N G R E L AT I O N S H I P S B E T W E E N
N O N - M E M B E R S O F FA C E B O O K

A supervised learning approach
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Inference of user attributes and edge prediction in online social net-
works are challenging tasks that have attracted the attention of many
researchers over the past few years. They showed that characteristics
of a given user, such as one’s political preference or one’s sexual ori-
entation, can be accurately inferred based on the attributes of their
friends [125, 150, 179, 277]. Previously unobserved or future relation-
ships have also been predicted with high precision using both super-
vised [148, 264] and unsupervised [147] learning methods. Inference
was performed either based solely on structural measures deduced
from the network topology [62, 213] or by additionally taking into
account the nodes’ attributes [196, 107, 67, 18].

As an extension of these insights into the transparency of members
of online social networking platforms, we ask here a novel question:
How many of the relationships between non-members could online social
networks infer? In other words: Can we predict relationships outside so-
cial networking platforms from the relationships within? We approach this
question on the basis of supervised learning (cf. Section 2.6): we ex-
tract topological features based on the idea of shared neighbourhoods
(cf. Section 4.2) and use random forests to build a proper prediction
algorithm (cf. Chapter 5).

The problem at hand poses challenges on a technical level because
there are at least fifty times more possible than realized edges (cf.
References [268, 265]). Furthermore, the success of edge prediction is
typically measured by cross-validation within the same network [279,
154]. In a graph however, the samples are usually dependent and,
hence, the estimate of the performance of the prediction algorithm
is overly optimistic. To evaluate the obtained results, we train and
validate our algorithm on distinct Facebook networks. Our quality
assessment is thus more accurate.

6.1 problem statement and approach

All members of society can be represented as nodes in an unobserv-
able social graph. This latent graph is dynamic and extremely com-
plex, with edges of widely differing quality (two people may be kin-
dred, engaged, or work together, they may like or dislike each other,
and so on). Given an online social network, the latent social graph is
partitioned into a fraction ρ of members and 1− ρ of non-members
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(see Figure 5). Members of the platform are connected through mu-
tually confirmed friendship relationships. Furthermore, aiming at ex-
panding their circle of friends, a fraction α of the platform members
import their whole e-mail address-book, thereby sharing their con-
tacts to non-members. Based on the seemingly innocuous combina-
tion of these two information types, we infer relationships between
the non-members.

member relevant non-member irrelevant non-member

bilaterally confirmed contact

unilaterally declared contact

unobserved contact

link to be predicted

Figure 5: Division of the social network into members of a social networking
platform (black nodes) and non-members. In the depicted example,
a fraction of ρ = 0.3 (30 out of 100) individuals are members. The
relevant subset of non-members consists of those who are in con-
tact with at least one member (red nodes). A fraction of α = 0.5
(15 out of 30) members have disclosed their e-mail contacts to non-
members. The edges between members (black, bi-directed arrows)
and their connections to non-members (green arrows) are used to
predict edges between non-members (red lines). For the purpose
of illustration, the values of ρ and α are exaggerated and the weak
ties between individuals are omitted. Figure reprinted from [117].

For the very reason that the latent social graph is fundamentally
unobservable, to apply a supervised machine learning procedure, the
missing information needs to be imputed. The approach we choose
was to use the observed part of a social network—for instance the
Facebook network of all students at a given university—and to pre-
sume that it represents the complete (and unobservable) social graph
of a hypothetical community. In other words, the edges in this social
graph are considered the ground truth. We then proceed to partition
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this community into a set of members and a set of non-members
through a number of member recruitment models that represent a
broad range of potential strategies by which people choose to be-
come members. Finally, we predict the existence of edges between
pairs of non-members and evaluate the quality of these predictions
with respect to the ground truth. Box 1 gives an overview of the main
steps.

Box 1 | Problem statement and approach

Data Graphs deduced from real-world Facebook data that represents the "friendships"
between students of five American universities

Task Predict edges between non-members of social networking platforms such as Face-
book

Framework

Step 1 | Ground truth imputation

a. Partition the nodes into members and non-members

– Choose the desired fraction of members ρ

– Select the member recruitment model

b. Model the probability with which a member reveals all their email contacts

– Choose the disclosure parameter α

Step 2 | Edge prediction by supervised learning

a. Compute a set of features for all pairs of non-members who share a member
acquaintance

b. Build training and test sets for learning

– Select training scheme

c. Apply prediction algorithm (random forest classifier)

d. Assess the quality of the results

6.2 ground truth imputation

The used data sets represent real Facebook friendship networks of stu- Thesis point 5

dents from five different US universities: UNC, Princeton, Georgetown,
Oklahoma, and Caltech [252]. Figure 6 shows a comparison of the
networks in terms of their number of nodes, average degree, density,
and average local clustering coefficient (cf. Section 2.2). We partition
the five networks into members and non-members. Since we do not
have a clear understanding of how people decide upon joining online
social networks, we consider multiple phenomena described in the lit-
erature. On the one hand, a recent analysis of the growth of Facebook
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showed that the probability of a non-member joining the platform
increases with the structural diversity of one’s acquaintances who
are members, i.e. with the number of connected components in one’s
Facebook neighbourhood [257]. On the other hand, there is indication
that platforms recruit their members through a mixture of online me-
diated invitations by friends who are already members and through
independent decisions by individuals who are not yet friends of a
member [135].

Networks
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Georgetown
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Caltech

number of nodes average degree density clustering coefficient
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Figure 6: Comparison of the networks representing students from five differ-
ent universities based on basic network analytic measures. Figure
reprinted from [117].

In line with the latter investigation, we cover a wide range of possi-
ble mechanisms and use a series of different member recruitment mod-
els to impute the ground truth from the input data. The considered
models are the following (for more details see Section 2.5): 1) the
breadth first search model (BFS): once a starting member is identi-
fied, all its friends become members, followed by all their friends and
so on, 2) the depth first search model (DFS): a randomly chosen friend
of a member joins, followed by a randomly chosen friend of the new
member, and so on, 3) a random walk (RW) is started from a mem-
ber and restarted as soon as someone would be chosen who already
is a member, 4) the ego-networks selection model (EN): a number
of members are selected randomly and together with them, all their
friends join the platform, and 5) the random selection model (RS):
people decide independently from their friends whether to become
a member or not, i.e. each member is chosen randomly from the re-
maining non-members. Figure 7 shows the resulting partitions of a
toy graph under all five models. As we will see, the specific choice of
the member recruitment model does not alter our main findings.

Accordingly, the ground truth imputation for our inference prob-
lem consists in fixing the fraction of members ρ, partitioning the com-
munity into members and non-members by using one of the member
recruitment models, and finally choosing the disclosure parameter
α, thereby controlling for the percentage of contacts that are made
public. Having devised the ground truth, we use the following exper-
imental setting for our learning approach.
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BFS ENDFS RW RS

Figure 7: Membership acquisition in a toy example according to different
member recruitment models. Note that real social networks ex-
hibit more weak ties. Examples for the platform penetration value
ρ = 0.2 show the nodes from which the propagation started (black
nodes with white core). Other members are marked black and rel-
evant non-members red; for ease of reading, arrows are not dis-
played, but black edges are bidirectional while green edges point
from black to red nodes. With BFS and DFS the network is ex-
plored starting from one node (denoted by a white circle); with
RW and EN there are several nodes from which the propagation
is launched; and finally, for RS all selected nodes can be seen as
starting nodes. Figure reprinted from [117].

6.3 the experimental setting used for prediction

feature extraction The available Facebook networks are ano- Thesis point 6

nymized. Therefore, in the absence of user attributes, we base our
predictions solely on topological graph features (see Chapter 4). For
each pair of non-members v and w we compute 15 features deduced
from the known structural properties of (online) social networks (see
for instance Reference [178]). The phenomena of homophily and tri-
adic closure (cf. Section 2.2) motivate the inclusion of a feature that
counts the absolute number of common neighbours of v and w. As
discussed in Section 4.2, the absolute number of common neighbours
might be misleading if v has just a few neighbours, while w has many.
Thus, we add normalized versions of this value such as the Jaccard
coefficient. The typically high degree assortativity [187] and the sig-
nificant local clustering [9] of nodes in online social networks justify
considering the average degree and the clustering coefficient of the
common neighbours of v and w. The community structure of social
networks [94] leads us to construct several features that reflect the
interconnectedness of the member side neighbours of the two nodes.
As a final feature, we count the absolute number of distinct paths of
length 3 between v andw. For each pair of non-members these scalars
are stored in a 15 dimensional feature vector.

the prediction algorithm We use the feature vectors to train
a random forest classifier [47]. As described in Chapter 5, we adjust
the parameters of the classifier on a training set before applying it
to a validation set. We predict those pairs of non-members to be con-
nected, for which the edge probability as determined by the algo-
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rithm is higher than some threshold value. In a final step, we validate
our predictions by comparing them with the ground truth. We use
the area under the curve AUC and the positive predicted value of
the k top-ranked predictions PPVk, where k denotes the number of
edges in the ground truth that need to be predicted (see Section 2.7)
to assess the performance of the algorithm.

training schemes All prior work on edge prediction with high
imbalance between possible and realized future edges that we are
aware of uses cross-validation (cf. Section 5.5). This represents a train-
ing scheme in which training and validation are achieved within a
single network. In reality however, an algorithm that can be trained
once and then allows to predict edges in independent networks is
preferable (cross-prediction). In general, cross-validation within a sin-
gle network tends to be overly optimistic in its results, since the train-
ing and the validation examples may be dependent. In addition to
validating our algorithm by cross-validation, we deploy two cross-
prediction schemes as well, thereby assuring the independence of the
training and validation sets by learning and validating on different
networks.

a. In the 4→ 1 cross-prediction scenario the classifier is trained on
examples from four data sets and validated on examples from
a fifth set. This scheme is less prone to overfitting, because the
learning is performed on four different networks.

b. In the 1 → 1 cross-prediction setting the classifier is trained
on one data set and evaluated on another. The goal here is to
evaluate whether a single network contains enough character-
istic patterns to obtain high-quality predictions for an entirely
different network.

6.4 prediction results

According to our experimental setup, imputing the ground truth re-
quires the introduction of two parameters (the membership parame-
ter ρ and the disclosure parameter α), as well as a member recruit-
ment model (BFS, DFS, RW, EN, or RS). In the following, we investi-
gate the prediction accuracies for a wide range of their combinations,
using two measures (AUC and PPVk) and three training schemes.

As argued above, the prediction performance of cross-validation
should be an upper-bound to the performance of a cross-prediction
approach. Thus, as a base line, Figure 8 visualizes the prediction per-
formance as measured by the AUC, using different member recruit-
ment models in conjunction with cross-validation on the UNC data set.
The general pattern is that the prediction performance increases with
ρ and α. In other words, the greater the percentage of members and
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the higher their propensity to share their email contacts, the easier
it is to predict the network between non-members. One exception to
this pattern is the BFS model, whose prediction performance shows
a maximum for ρ ∼ 0.5. The behaviour of the AUC and the PPVk is
very consistent over all member recruitment models for all university
data sets, implying that the exact model of the member recruitment
model is not crucial.

Figure 8: Prediction performance (AUC) of examples based on all member
recruitment models in the cross-validation training scheme ap-
plied to UNC data. The white square denotes one data point that
lacked enough data to perform the prediction. Figure reprinted
from [117].

Next, we examine the performance of our algorithm with 4 → 1

cross-prediction for each combination of ρ and α values, all member
recruitment models and all five university data sets (see Figure 9).
Based on the minimal (lower triangle) and maximal (upper triangle)
AUC and PPVk values, we see that the differences between the mem-
ber recruitment models are small in most cases. The AUC values are
above 0.85 for all combinations with ρ > 0.5 and α > 0.4 in the
case of UNC, Princeton, Georgetown and Oklahoma, for all member re-
cruitment models except the BFS. This implies that in most cases the
prediction is considerably better than random guessing. The PPVk
is at least 0.4 for the same range of ρ and α and in the case of UNC,
Georgetown, and Oklahoma, and for all member recruitment models
except the BFS and the DFS. A value of 0.4 means that when select-
ing the k examples with the highest prediction values, at least 40% of
them actually represent two non-members that know each other. To
interpret this value correctly, we have to emphasize that our data set
shows a striking class imbalance. While there is a huge number of
node pairs that could be connected by an edge, there are only a few
pairs which are truly connected. More precisely, depending on the
chosen member recruitment model and on the ρ membership and α
disclosure parameters, the ratio f between the number of edges and
non-edges lies between 0.0002 and 0.03 for four out of five university
networks. These values represent the baseline for PPVk.

Finally, in the 1 → 1 cross-prediction setting, we evaluate how re-
liable the predictions are if the random forest is trained on only one
network at ρ = α = 0.5. Given the coverage of Facebook especially
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Figure 9: Minimal (lower triangle) and maximal (upper triangle) prediction
performance in the 4 → 1 training scheme for all five member
recruitment models as a function of the membership parameter
ρ and the disclosure parameter α. Upper row: AUC; lower row:
PPVk; black triangles denote data points where PPVk was smaller
than the according fraction f of edges among all examples, i.e. it
was worse than expected by chance. Figure reprinted from [117].

among the youngest and the heavy usage of the "friend finder" appli-
cation by both novice members and experienced users of the platform,
these estimates of ρ and α are rather conservative. Figure 10 shows
the corresponding prediction performance. On the diagonal, we plot
as reference the prediction performance when we train and validate
on the same network, while the off-diagonal elements correspond to
the cross-prediction case.

It can be seen that some data sets such as Oklahoma and UNC are
easy to predict, while Caltech is difficult to predict based on any
of the four other data sets. Furthermore, if the classifier is trained
on Caltech data, the predictions are consistently the worst among
all cross-predictions. The intuition behind this observation is that
Caltech is a clear outlier among the used data sets as it is by far
the smallest and the densest (cf. Figure 6).

Figure 10: 1 → 1 cross-prediction performance: AUC values for each of the
five member recruitment models when ρ = α = 0.5. The y and
x-axis show on which network the random forest was trained and
validated, respectively. The white square indicates that there were
too few edges to reasonably train the classifier. Figure reprinted
from [117].
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6.5 discussion and conclusions

The ground truth imputation on which the presented results are based
relies on three important modelling decisions which require further
discussion. First, we imply that non-members are similar to members
in terms of the revealed network characteristics. Two studies from
2006 and 2009 indicate that there are in fact statistically significant
differences between members and non-members among university
students, yet these differences concern age, ethnicity, and gender, but
not important social factors such as life satisfaction, social trust, or
privacy concerns [6, 259]. Although the sociability of members and
non-members was not directly assessed, these studies give no indica-
tion that members and non-member differ significantly in the struc-
ture of their contact networks.

Second, since the contact network between the members and non-
members is not available for any social networking platform, we take
the known Facebook friendship network as a proxy for the structure
of the email contact network between members and non-members.
This is justified by the fact that both belong to the large set of social
networks with scale-free degree distribution, high clustering coeffi-
cient, small-world behaviour, and a positive assortativity [178, 8, 251].

Third, we only take into account pure member recruitment models
which might not be realistic on their own. The surprising result, that
the choice of member recruitment models does not alter the main
conclusions, shows that the analysis of the pure models does not con-
strain the approach. Even for BFS, for which the prediction quality
was worst among all models, good results are achieved. This indi-
cates that in whichever way individuals decide to join an online so-
cial network, the unilateral disclosure by members of their contacts
to non-members allows social networking platforms to gain substan-
tial insight into the relationships of non-members. This increase in
coverage due to edge prediction will be most successful if the indi-
vidual members’ decisions to join the network are independent. This
could be exploited by the platform when developing new recruitment
strategies.

Altogether, our work reveals the potential that social networking
platforms have in predicting edges between non-members, based only
on the connection patterns of the befriended members and their e-
mail contacts to non-members. Accordingly, individuals without a
profile in an online social network—such as Facebook—are not im-
mune to data mining based on data available to the given platform.
This finding is based solely on topological features, i.e. we only used
contact data and no user attributes. If we had access to more com-
prehensive data including details about the members such as their
age, location, or occupation, then our inference could be improved
considerably.
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6.6 summary

Could online social networks like Facebook be used to infer relationships be-
tween non-members? We showed in this chapter that the combination
of relationships between members and their e-mail contacts to non-
members provides enough information to deduce a substantial pro-
portion of the relationships between non-members. Using topological
features, we were able to predict relationship patterns that are stable
over independent social networks of the same type. To obtain this re-
sult, we used a random forest classifier and applied it to data sets that
are characterized by high class imbalance. Our findings are not spe-
cific to Facebook and can be applied to any other social networking
platform that involves online invitations.
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An unsupervised learning approach
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Given a complex system of interest, the first goal of a network ana-
lytic study is to find a corresponding graph representation. This map-
ping is not unique, but involves several modelling decisions, based
on which we determine which elements of the system and which
interactions should be observed or measured and included in the
model [129, ch. 3, 281]. Clearly, these decisions have a strong influ-
ence on the constructed network model and hence the conclusions
that are subsequently drawn from it. Assuming that we have identi-
fied the key elements of the mapping (i.e. those that constitute the
node and edge set), there are further issues that must be addressed
during this process and are tied to the field of research. In genomics,
for instance, highly popular high-throughput experiments allow mon-
itoring protein interaction by protein affinity experiments on the one
hand and gene regulation by microarray experiments on the other.
These measurements enable the construction of large graphs that pro-
vide one view from a single perspective on the underlying biological
system. However, this perspective is likely to contain spurious inter-
actions and to be incomplete, for example due to the fact that high-
throughput experiments are error-prone and there are several inter-
actions that have not been tested yet. A comparison of several high-
throughput methods to a reference high-quality data set showed in
2002 that these methods had at that time accuracies below 20% [263].
Although less extreme, but a similar problem arises during the obser-
vation of social networks. Existing online social networking platforms
record connections that are casually defined by their members, with-
out validation of any sort. Additionally, these networks are evolving
quickly, because many of the connections are ephemeral.

Twofold scope:
1.) validation of
observed edges
(blue)
2.) prediction of
unobserved or future
edges (red)

Due to these problems in measurement and data collection, the
validation of observed connections as well as the prediction of unob-
served or future edges is often very important in the context of both
biological and social networks. In this chapter, we therefore analyse
an experimentally derived protein–protein interaction network1 and
a large sample of an online social network.

The main difficulty with the prediction of edges in these networks
is evaluation, because the true web of connections is usually unknown.
Tedious efforts of experts to manually inspect the results of proposed

1 Chapter 9 deals in depth with a regulation network, i.e. a second common type of
biological network obtained from high-throughput screening.

87
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algorithms are often too expensive or simply not feasible at the in-
vestigated scales. While there are examples for a few evaluations
on small social networks [274, 192], ground truth information that
is preferably generated automatically and that enables large-scale
quantitative evaluation is necessary [271]. Obtaining such large-scale
ground truth data usually requires additional data sources. In the
case of the two considered networks further data exists and can be
used to generate the required ground truth. In the biological setting,
interactions that have been individually confirmed by different small-
scale experiments constitute the ground truth, while in the social net-
work scenario, user-declared communities can be used to verify the
existence of friendships between members of the same group.

The availability of ground truth data in the presented prediction
context allows evaluating an unsupervised approach in which we
compute the node similarity measures presented in Chapter 4 and
use them as scoring functions to rank the pairs of nodes according
to the likelihood that they are connected by an edge2. Based on the
ground truth, we then compare the individual measures by testing
their efficiency as single predictors3. We thereby identify those mea-
sures that improve the quality of inference for the investigated net-
works in particular and propose to use them for further biological
and social data sets without ground truth information (Section 7.3). As
the two networks are derived from very different settings (Section 7.1
and Section 7.2) and pose different challenges that are representative
for each of these areas, we can assume that our results—if consistent
over both chosen networks—will indicate a tendency that is valid for
complex networks in general.

7.1 validating and predicting protein–protein interac-
tion

The function and molecular properties of individual proteins have
been the focus of intense investigation for decades. In addition, one
of the recent scopes of biological research is the mapping of protein-
to-protein physical interactions, i.e. the construction of the interac-
tome [93]. A protein–protein interaction is defined as the molecular dock-
ing between two proteins that co-occur in a cell in vivo [214]. It im-
plies direct physical interaction and should not be confused with
functional contact. It has to be noted that these physical interactions

2 Note that in the case of the two particular networks with ground truth a supervised
learning approach, as the one presented in Chapter 6, could be used. However, as
we have argued there, simply splitting a network into training and validation sets is
problematic due to the inherent dependency between the two resulting sets. Thus,
whenever we do not have several different networks of the same type as in the case
of the five entirely independent, but structurally similar Facebook networks, this
approach is not flawless.

3 See Section 2.6 and Section 2.7 for the preliminaries for this chapter.
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are not static or permanent and not all possible interactions will oc-
cur in a cell at any time. Protein–protein interactions are essential
for diverse biological processes, including the formation of macro-
molecular structures, cell signalling, regulation, metabolic pathways,
and several physiological processes [244]. From these interactions, a
protein–protein network (PPI) can be constructed, which contains the
proteins as nodes and the interactions as edges [256, 198, 214].

The number of technologies that measure proteome-wide physical
connections on a large scale has increased substantially recently [233].
However, even the most common and widely accepted techniques
such as yeast two-hybrid (Y2H) or co-complex methods face several
challenges. For example, there may exist a bias in the selection of in-
teractions that are tested and different databases cover only subsets
of all experimentally tested interactions. Therefore, strategies to im-
prove the reliability of measured interactions are highly requested.
Our contribution consists of predicting possible interactions between
pairs of proteins based on the topology of the entire protein–protein
interaction network. This approach does not require additional in-
formation, such as 3D structural information about the interacting
proteins, and can be expected to scale better than more complicated
methods. Furthermore, its financial cost is substantially lower than
those of biological experiments making it a worthwhile test in any
case.

The specific network we use to verify our method is constructed
for the unicellular model organism Saccharomyces cerevisiae yeast [256].
An empirical estimate of the interactome of this yeast contains 18, 000
±4, 500 interactions [273]. Other estimates assume over 30, 000 inter-
actions between roughly 6, 000 proteins [35]. These large discrepan-
cies in the estimations of the size of the interactome occur due to the
large proportion of false positives in the recorded interactions [207].
Several factors may favour false positives, i.e. the detection of bio-
logically non-relevant interactions between proteins that never simul-
taneously co-occur in vivo [93]. A network analytic approach holds
promise for evaluating the reliability of interactions based on the as-
sumption that the overall topology of the protein–protein interaction
network is characteristic. Thus, the network topology alone provides
evidence based on which spurious local interactions may be detected.
For a similar endeavour that is restricted to just a few node similarity
measures, see Reference [96], while for an approach based on stochas-
tic block models, see Reference [105].

To evaluate filtering and/or prediction algorithms, results of well-
documented small-scale experiments can be used as reference [273].
We use the full set of protein–protein interactions available for Sac-
charomyces cerevisiae on the public repository Database of Interacting
Proteins (DIP) [1], release of August 18, 2012. The data integrates in-
formation from large- and small scale experiments reported in the
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literature. After removing 318 self-interactions, the built network con-
tains 22, 148 interactions between 5, 078 proteins. The 3, 543 interac-
tions that are classified as dip-quality control core constitute the ground
truth, i.e. the interactions that were verified manually in experiments.

7.2 deducing high-probability acquaintances

The notion that individuals are embedded in webs of social connec-
tions motivates networks as a straightforward representation of social
systems [266]. Ever since their appearance, there has been an explo-
sion of interest in and research about online social networking plat-
forms even beyond the social sciences (cf. Chapter 6). Accordingly,
current efforts aim at finding explanations of social phenomena at
previously unobservable scales within classic social network analysis.
Furthermore, as Butz and Boyle Torrey note, "the fundamental chal-
lenge in the social sciences is moving from complicated correlations to
useful prediction" [55]. Here we provide solutions for edge inference
in large graphs. We show the potential of our method by analysing
the online social network and blogging platform called LiveJournal
(LJ) [19, 271].

Within this network, individuals explicitly state their group mem-
berships. Groups are formed based on a common external property
that the members share and around which the group is organized. As
the network is prohibitively large (34, 681, 189 connections between
3, 997, 962 individuals), we perform our analysis on a sample. To gen-
erate the sample, we first select all groups that have a size between 3
and 50 (inclusive). Our assumption is that larger groups do not allow
a close relationship between the individuals. We then proceed by pick-
ing a starting group uniformly at random and continually increase
the network by adding adjacent groups. Two groups are considered
adjacent if they share at least one individual. The process is stopped
once 1, 000 groups are selected and results in a network of 11, 755
individuals and a total of 80, 023 connections. Out of these, 30, 230
edges connect individuals that are members of the same group and
are considered to constitute the ground truth.

7.3 inference based on node similarity : which measure

to choose?

The main tasks involving the protein–protein interaction and the Live-Thesis point 7

Journal network as well as the proposed solutions are outlined in Box
2.
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Box 2 | Problem statement and approach

Data 1. A graph deduced from protein–protein interaction data

2. A graph that models the "friendships" on the LiveJournal online blogging
platform

3. A ground truth data set for each of the above graphs

Task Compare a set of topological node similarity measures (Jaccard coefficient, cosine
similarity, covariance, Pearson correlation, hypergeometric coefficient, configura-
tion model-based similarity, p-value, z-score, and the presorted z-score) based on
their ability to validate available edges and predict future or unobserved edges

Framework

a. Compute node similarities for all pairs of nodes that share a common neigh-
bour, whether they are connected by an edge or not

b. Rank the pairs of nodes by each individual similarity measure

c. Evaluate the similarity measures by comparing the top-ranked pairs to the
ground truth edges

similarity calculation Both in the PPI and LJ networks, we
compute the node similarity measures defined in Chapter 4 for all
pairs of nodes, regardless of their actual connection status. Due to
the nature of the used measures, we restrict the pairs to those with
at least one common neighbour. The computation of the classic sim-
ilarity measures is straightforward. For the hypergeometric coeffi-
cient, the factorials are calculated by numerical approximation. The
fixed degree sequence model-based measures require sampling from
the ensembles of non-bipartite graphs that have the same degree se-
quence as the PPI and LJ network, respectively. Algorithm 1 is used
for obtaining the samples. As discussed in Section 3.3.2, the theoret-
ical estimates for the mixing time of the Markov chain are inconclu-
sive. However, the mixing time can be compensated by the number
of taken samples and we thus perform a test to check the sample size
needed for the performance to converge. Figure 11 shows the result-
ing plot for LJ4. As expected, the z-score reaches convergence much
faster than the p-value, since it only requires the first two moments
of the distribution (cf. Section 4.3). The presorted z-score z∗ deduced
from the combination of the two reaches convergence before the p-
value. Based on this test, we deduce that κ = 100, 000 graphs are
enough to form a representative sample.

ranking pairs of nodes by their similarity As described
in Section 4.5, the pairs of nodes are ranked non-increasingly accord-
ing to the considered similarity measures. During this analysis, the

4 The convergence test for the PPI network behaves similarly.
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Figure 11: The performance of the similarity measures based on the fixed
degree sequence ensemble, as quantified by the global PPV , plot-
ted against growing sample size κ. Experiment conducted on the
LJ network.

unnormalized number of common neighbours is omitted. Our as-
sumption is then that there exists a meaningful correlation between
the obtained rankings and the verity of the individual protein–protein
interactions (in the PPI network) and acquaintances of individuals
(in the LJ network). In other words, we test the hypothesis that the
similarity measures indicate whether there is a real interaction or ac-
quaintance between given pairs of nodes. To test this assumption, we
compare the rankings with the respective ground truth. First, we per-
form a global evaluation by using the PPV and the nDCG, i.e. the
standard measure for evaluating rankings (cf. Section 2.7).

correlation between the rankings and the validity of

edges Figure 12 shows large differences in the performances of the
different node similarity measures. As a baseline, we use the result of
a random predictor, which unsurprisingly has the worst performance
of all measures. The ranking of the individual measures based on
their performances is the same according to both performance mea-
sures (PPV and nDCG). The top performers for PPI are z∗, p, hyp,
and cov, while for LJ z∗, jac, z, and r come out on top. The presorted
z-score z∗ achieves an improvement of 6% over the second-best mea-
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sures for the PPI network (i.e. the p-value and hyp) and 5% for LJ
(i.e. jac and z-score). There is no indication that the hypergeometric
or the Jaccard coefficient would perform consistently well on differ-
ent networks. Note that for both the biological and the social data set
one of the similarity measures based on the fixed degree sequence
model perform best after z∗. As the presorted z-score is a ranking
function, which is a combination of z-score and p-value, in Chapter 8

and Chapter 9 we will rely on the z-score and the p-value.
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Figure 12: Performance of the node similarity measures as evaluated by PPV
and nDCG. Ties in the ranking are broken at random and to ac-
count for this, we average over 100 iterations. The top performing
measure for both data sets is the presorted z-score, z∗. The nota-
tion of the measures is shown in Table 2.

After analysing the overall performance of the measures in Fig-
ure 12, i.e. the accuracy of the entire ranking when compared to the
ground truth, we now consider the distribution of true positives in
this ranking. Figure 13 depicts the number of TPs at increasing ranks
for the PPI network. We plot the fraction of interactions validated by
high-confidence small-scale experiments for pairs of nodes with at
least one common neighbour. The pairs are ranked in non-increasing
order by the individual similarity measures. In a random baseline, the
expected fraction of TPs is constant across all bins at approximately
0.007. We expect a useful measure to place a high fraction of vali-
dated interactions on top positions in the ranking. Conversely, edges
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without evidence should be placed on lower positions, thus resulting
in a monotonically decreasing curve. z∗, the p-value, and hyp show
this desired behaviour. z∗ clearly dominates the others, i.e. it ranks
true edges higher than any other measure. Interestingly, the z-score
alone performs rather poorly. However, when presorted with p-value,
a better performance is obtained than when using the p-value alone.
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Figure 13: Global PPV at different rank intervals obtained by using various
similarity measures. On the x axis, the ranks are binned linearly.
The size of one bin is 5, 000, while the pairs above rank 100, 000
are all contained in the last bin. Ties in the p-value ranking are
broken at random and to account for this, the performance is
averaged over 1, 000 iterations.

7.4 discussion and conclusions

With the above procedure, we have identified the measures that sepa-
rate true edges from unreliable edges in the ranking and showed that
this can be exploited to identify true positives. The benefits of such an
analysis are twofold. First, we can assess the quality of the edges and
thereby filter out false positives. Recall that we compute the similar-
ity also for those pairs of nodes that are connected by an edge in the
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data set. Second, we can predict interactions for which we currently
have no direct supporting evidence. These are the top-ranked pairs
without a connection in the original network. More importantly, ex-
haustive literature research or targeted experiments concerning these
top predictions could further validate our findings.

Considering our selection of node similarity measures we find that:

1. Measures based on the immediate neighbourhood of the nodes
(such as the Jaccard coefficient jac, the cosine similarity cos,
and the configuration model-based similarity cfm) indicate the
likelihood of edge formation whenever it can be presumed that
two nodes having more neighbours in common at a given time
point will get connected later. For instance, due to the repeat-
edly confirmed principles of triadic closure (cf. Section 2.2), this
is indeed to be expected in social network settings.

2. Measures quantifying the level of association between two nodes
in terms of their connection patterns (like the covariance cov
and the Pearson correlation coefficient r), are expected to be
meaningful predictors for instance when predicting gene regu-
latory networks, i.e. relationships between genes based on the
effect of a series of experimental conditions on them. In this
case it is usually assumed that each experiment exerts a roughly
similar effect on all genes. In graph theoretic terms, the degree
sequence of the experiments is Poissonian (cf. Reference [282]).

3. Finally, where issues of measurement error and degree hetero-
geneity are of potential concern, it is usually necessary to use
the systematic statistical approach prescribed by the measures
based on the fixed degree sequence model: the p-value, the z-
score, and the presorted z-score z∗ computed from the proper
graph ensemble.

In summary, we have exploited the topology of protein–protein in-
teraction and online social networks to rank the pairs of nodes by
the likelihood that they should be connected by an edge. We have
suggested a new measure that best filters out low-confidence inter-
actions in the PPI network and thereby addressed one of the main
problems with this type of data. The same measure is also suited
for predicting interactions that have not been tested yet. In the social
network setting, it enables detecting connections between individuals
with common interests. Importantly, the inference is based solely on
the graph topology and does not use any additional details about the
proteins or individuals.

7.5 summary

Biological networks that are generated from noisy experimental data
and online social networks deduced from user-specified information
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both require a systematic way of assessing the confidence in exist-
ing edges and predicting further connections. Despite the differences,
such networks share similarities in their topology. We thus proposed
in this chapter a network analytic framework that relies on node simi-
larity measures, which are equally suitable for either kind of network.
We compared a set of node similarity measures and evaluated them
based on ground truth data sets for networks as different as protein–
protein interaction and user friendship data on a blogging platform.
We showed that the similarity measures based on the fixed degree se-
quence model are inherently meaningful for true edges and that this
information is consistent enough to enable their use for inference.
Finally, we provided evidence that our new similarity measure, the
presorted z-score z∗, consistently outperforms existing measures and
is thus more suited than any other measure we tested for adjusting
our confidence in the veracity of edges in diverse types of complex
networks.

The following two chapters use the idea of node similarity based
on the fixed degree sequence model to infer associations between the
same type of entities in different bipartite graphs. Furthermore, they
extend the method to the case of multiplex graphs.
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Data about human behaviour that was once considered to be unat-
tainable is nowadays collected in unprecedented amounts [41]. As
data acquisition methods become more efficient, the need for more
sophisticated exploratory methods which allow studying this often
multidimensional data becomes increasingly evident. Behind this mul-
tidimensionality often lies an inherent bipartite structure: in the social
sciences for example, agents are affiliated with societies and scientists
write papers, while in biology birds inhabit islands and genes are in
relation to diseases. Data that can be modelled as bipartite graphs
is also collected in large amounts for the purpose of market basket
analysis and usually contains records of customers buying, renting or
rating products.

The most common task associated with these latter data sets of
economic interest is to relate products by quantifying their similarity
based on customer behaviour. Accordingly, the product–customer bi-
partite graph is transformed into a non-bipartite graph between the
products, i.e. it is subdued to a one-mode projection (see Section 2.2).
A prominent large-scale data set of this kind is the Netflix data set
that consists of millions of discrete ratings from 1 to 5 given by
480, 000 distinct users to 17, 770 films [5]. The availability of different
ratings in the data set enables a multiplex analysis in which one can
differentiate for instance between "likes" (ratings of 4 and 5) and "dis-
likes" (ratings of 1 or 2). To model this extra information, a multiplex
network representation is needed that contains two distinct types of
edges (see Figure 14A). In general, there are two straightforward op-
tions for analysing such networks: 1) The analysis is based on the in-
dividual representation of the networks that contain different types of
connections. This of course means that the interdependencies across
the different connections are completely ignored. 2) A representation
is used, in which connections of different types are aggregated into a
single network. For the Netflix application both of these approaches
are overly simplistic: 1) Considering the like and dislike networks
independently disregards one of the key structural properties of the
data set, namely that users can not simultaneously like and dislike
the same film. Furthermore, the combination of likes and dislikes
promises new insights. 2) The aggregated approach leads to inaccu-
rate interpretations, because it inevitably mixes qualitatively different
connections. Therefore, a proper multiplex analysis is required.

97
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Analytic methods handing networks that contain different types
of entities and different types of connection (for instance multiplex
bipartite networks) are mostly missing. Until now, research mainly
concentrated on understanding only one of these two aspects. On
the one hand, state-of-the-art work includes studies about the role
of different entity properties and their influence on connection prob-
ability [200, 11]. On the other hand, several approaches exist for the
analysis of multiplex networks (see Section 2.1 and Section 2.3). These
range from methods that are firmly based on the field of classic social
network analysis and advanced from small-scale questionnaire-based
approaches [266, 172] to methods for large-scale analysis that granted
additional insight into the organization principles [144, 246, 245], the
community structure [182], and the predictability [73, 126, 146] of
multiplex networks. Recently, researchers suggested frameworks for
the representation and handling of multiplex networks [160] and for
the extension of traditional network analytic measures to deal with
multiplexity [48].

In this chapter, we demonstrate how the null model approach pre-
sented in Section 3.3.4 and Section 4.3 can be used to perform a one-
mode projection based on a multiplex fixed degree sequence ensem-
ble (Section 8.1). We test the robustness of the framework on com-
puter generated data for which an exact ground truth is known (Sec-
tion 8.2). We then apply it to the Netflix data and discuss the results
in terms of the like/dislike patterns contained in the projection (Sec-
tion 8.3). Furthermore, we evaluate our findings in relation to the
classification of films into genres and to two ground truth data sets
of similar films. After analysing the potential of negative ratings for
finding significant film similarities, in a final step we use the approach
to explore further aspects of film similarity beyond the similarity de-
duced from the rating data (Section 8.4).

8.1 multiplex one-mode projection

Without loss of generality, let us consider the case of projecting the
multiplex bipartite graph B̃ = (L ∪ R, Ẽ) onto the node set L. Fur-
thermore, let Ω denote the set of edge types in B̃, i.e. Ẽ = ∪γ∈ΩẼγ.
As we focus on graphs with maximal multiplicity 1 it holds that
Ẽγ ∩ Ẽϕ = ∅ ∀γ 6= ϕ ∈ Ω (cf. Section 2.1 and Section 3.3.4). The one-
mode projection of B̃ is based on the co-occurrence cooccγϕ(v,w) of
the node pairs v,w ∈ L, i.e. on the number of their common neigh-
bours u ∈ R for which the edge (v,u) is of type γ and the edge (w,u)
is of type ϕ. It results in a non-bipartite, weighted, and multiplex
graph G̃ that contains edges between nodes from L, with the types
of these edges in Ω ′ = Ω×Ω. Figure 14B shows a projection contain-
ing three edge types. In this projection two nodes are connected if
they have a co-occurrence of at least one in the bipartite graph from
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Figure 14A. We further include a function ω that assigns a weight
to each edge in G̃. For practical reasons, we choose this weight to
express how unlikely it is to obtain the given edge by chance, i.e. it
quantifies its statistical significance with respect to a null model con-
sisting of the ensemble of multiplex bipartite graphs with the same
degree sequences as B̃. Details of the construction of the null model
have been presented in Section 3.3.4, while the choice of test statis-
tic for the function ω was described in Section 4.3. Note that the test
statistic serves as the similarity measure and the process of one-mode
projection can thus be viewed as the inference of an association net-
work between the nodes from L.

Figure 14: (A) Example of a film–user bipartite graph. Ratings that express
"like" are shown as green lines, while ratings that express "dis-
like" appear as red lines. (B) In the multiplex projection of this
graph, which contains co-rated films, there are connections be-
tween pairs of films that were both liked (green line), pairs that
were both disliked (red line), and pairs where one of the films was
liked (source of the blue arrow) and the other was disliked (tar-
get of the blue arrow) by the same users. The presented method
assesses the statistical significance of the edges in this projection
network. Figure reprinted from [115].

In summary, the method relies on the common practice in network
analysis, according to which the statistical significance of topological
patterns (i.e. network observables) is assessed by using the null model
approach as presented in Chapter 3 and in particular in Section 3.4.1.
Accordingly, we proceed as follows:

1. Given the multiplex bipartite graph B̃, we compute the co-oc-
currence coocγϕ(v,w) ∀ γ,ϕ ∈ Ω for all distinct node pairs v
and w from the node set L, for which the co-occurrence in B̃ is
at least 1.

2. We then compare these observed values with the expected val-
ues in a bipartite graph from the corresponding fixed degree se-
quence ensemble, i.e. in which every node maintains its degree
for each of the edge types and no parallel edges of any kind oc-
cur. As the ensemble cannot be fully enumerated, we compute a
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large sample using a Markov chain Monte Carlo technique (see
Algorithm 3).

3. We count the number of co-occurrences of v and w with re-
spect to all possible combinations of edge types for all sampled
graphs and compute as a test statistic the p-value and the z-
score1, both of which quantify the statistical significance of the
edge between v and w, given their expected co-occurrence in
the null model.

Note that the multiplex projection G̃, that is induced by a multiplex
bipartite graph with |Ω| = n types of edges, will contain |Ω ′| =

(
n+1
2

)
types of edges. Regardless of the number of edge types, there are
two straightforward approaches for analysing the projection. First,
a global-level analysis aims at identifying the overall most similar
pairs of nodes within L, based on their connection patterns to the
nodes from R. This is a transformation of the obtained complete pro-
jection into a sparser graph and involves choosing a set of thresholds
{tγϕ|γϕ ∈ Ω ′}, one for each edge type available in the projection.
If using the z-score as test statistic, an edge of type γϕ can then be
created between all pairs of nodes with a weight of at least tγϕ in
G̃γϕ. Note that per definition G̃γϕ contains only nodes with a degree
of at least 1. Choosing the proper threshold is usually done based
on a rule of thumb stating that observations with z > 2 (in terms of
the z-score) and equivalently p 6 0.05 (in terms of the p-value) are
statistically significant. Another approach is to find meaningful sig-
nificance thresholds based on the topology of the subgraphs of the
original graph built with different possible thresholds. As we will
see in Section 9.3, this idea is very viable when analysing biologi-
cal networks, but it has also been used successfully in sociology [86],
chemistry [275], and physics [231]. In the following, we will use both
of these methods.

Second, it is interesting to explore on a local level which nodes are
the most similar neighbours for a given node, as this information can
for example be used to generate recommendations. In the case of the
Netflix data, this local approach enables us to validate the obtained
similarities, as we describe in Section 8.3.

8.2 robustness analysis

First, we show the robustness of the presented method on bipartiteThesis point 8

graphs containing two types of edges. This reveals how stable the one-
mode projection is with respect to a single edge type (the robustness
of the projection G̃γγ ∀γ ∈ Ω) and with respect to the combination
of edge types (the robustness of the projection G̃γϕ ∀γ 6= ϕ and

1 Hereafter we report results based mainly on the z-score. Whenever this is not the
case, we state it explicitly.
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γ,ϕ ∈ Ω). In the following we refer to the two different edge types
of the bipartite graph as + and −, i.e. Ω = {+,−}. Accordingly, the
one-mode projection contains the edge types Ω ′ = {++,−−,+−}. To
demonstrate the robustness of the method, we use computer gener-
ated benchmark graphs for which the optimal structure of the projec-
tion is defined by construction.

8.2.1 Construction of the artificial data

Artificial graphs that are suitable for testing the presented multiplex
one-mode projection algorithm should have an embedded ground
truth. This property enables us to verify the ability of the algorithm
to detect groups of nodes that are similar based on their connection
patterns. Artificial graphs should also recreate one of the main diffi-
culties that real-world data sets impose on one-mode projection algo-
rithms, namely the heterogeneity of the degree sequences.

These two requirements can be instantiated in different ways. Exist-
ing bipartite network models aim at explaining cooperation for eco-
logical [57] and organizational networks [220] or model affiliation [97]
and scientific collaboration networks [209]. These problem-specific
models are ill-suited for producing artificial graphs for large-scale
testing, since they are based on processes that constrain the graph
structure beyond the degree sequences. Therefore, we use a bipartite
model that recreates the structure of the Netflix data while keeping
the artificial graphs small and adhering to the above two require-
ments2. Our artificial graphs consist of four built-in clusters with
|L| = |R| = 60 nodes and the same number of |E+| = |E−| = 128 edges
per cluster. Each cluster has the following structure: in the node set
onto which we are projecting, there are two groups of equal size that
have only + or − edges. With this we model a film rating scenario
where we have a group of films X which is liked by most users, and a
group of films Y that is disliked by the majority. The degree sequences
corresponding to the two edge types are the same (D+(L) = D−(L)):
there are 16 nodes with degree 2, 8 with degree 4, 4 with degree 8,
and 2 with degree 16 (implicitly, the rest has degree 0). To keep it sim-
ple, in the other set of nodes of the bipartite graph, nodes have the
same number of + and − edges. Accordingly, there are 32 nodes with
degree 1+ 1, 16 with degree 2+ 2, 8 with 8+ 8, and 4 with 16+ 16.

8.2.2 Results on the artificial data

We generated an ensemble of 100 random graphs with the given de-
gree sequences and projected each of them using the z-score as test

2 We also ran experiments on artificial data where the degree sequence of one of the
node sets of the bipartite graph was more homogeneous. Results on this slightly
different model are presented in Section 9.2.
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statistic. We defined the ground truth (i.e. the optimal result of a
meaningful computation) by a simple projection in which there is an
edge between all pairs of nodes with a co-occurrence of at least 1
in the original graph. Without noise, all the edges contained in the
ground truth are recognized by the algorithm. In two separate runs
we then randomly add and randomly eliminate up to ρ = 50% of the
edges in the artificial graphs (without preference for the edge types)
and check how the applied noise affects the ability of the method to
recover the ground truth.
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Figure 15: Robustness analysis on artificial data: AUC and PPVk evaluate
the performance of the algorithm on an ensemble of 100 artifi-
cial graphs for increasing ρ noise levels. Results are shown for
added (upper row) and eliminated edges (lower row). Green data
points represent the performance of recovering the ++ network,
red data points refer to the −− network, and blue points indicate
results for the +− network. Figure reprinted from [115].

Figure 15 (left) shows that the performance measured by the AUC
is almost perfect for up to ρ = 50% added edges, but less accurate for
eliminated edges. Since the AUC is unable to detect any changes for
added edges, we include a second measure. The PPVk is equal to the
fraction of true positives among the k top-ranked node similarities,
where k is the number of elements in the ground truth3. The PPVk
shows an inferior quality for both added and eliminated edges, as
shown in Figure 15 (right). Nevertheless, the algorithm is able to de-
tect more than 90% of the truly significant edges when ρ 6 6− 8% of

3 For more details about the used performance measures see Section 2.7.
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edges are added or ρ 6 8% are eliminated—depending on the edge
type. Two trends are visible in the results:

1. adding random edges affects the quality of the algorithm less
than randomly eliminating edges and

2. the different edge types show different sensibility to noise: while
++ and −− edges are practically indistinguishable in terms of
precision due to the symmetry of the artificial graphs, the accu-
racy in case of +− edges is slightly better.

We conclude that the presented method is robust against random
noise. The results obtained here with z-scores as test statistic are
in agreement with the corresponding values obtained based on p-
values [114]. The striking similarity suggests that on the data set at
hand, the test statistic used for assigning weights to the edges of the
projection is not a defining step as long as the proper random graph
model is used for hypothesis testing. Having verified the robustness
of the method, we show in the following how it performs on the Net-
flix data set.

Box 3 | Problem statement and approach

Data 1. A bipartite graph connecting films and users by edges that express like and
dislike

2. Film attributes such as genre and cast

3. Two ground truth data sets consisting of similar TV shows and feature films

Task Detect films that are similar, based on the user rating patterns and their shared
attributes

Framework

a. Project the film–user bipartite graph onto the set of films

– Threshold the individual projections based on topological criteria

b. Compare the co-like, co-dislike, and like–dislike projections in terms of their
ability to detect similar pairs of films based on

– A classification of the films according to genre

– The TV show and feature film ground truth sets

c. Explore the potential for identifying similar films based on the combination
of different types of projection networks

d. Project the film–attribute bipartite graphs onto the set of films in order to
include further aspects of film similarity
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8.3 application to the netflix data set

We use the presented and tested method for the projection of mul-
tiplex bipartite graphs to explore the similarity landscape of films
based on pairs that are both rated similarly by the same users. Box 3

gives an overview of the adopted approach.
Due to the computational complexity of our method as well as the

size of the Netflix data set, an analysis of the entire data set is not
feasible. However, in a first approach, Zweig had shown that the ab-
solute number of co-occurrences and their expected values are stable
if large enough subsets are used [280]4. We therefore restrict our in-
vestigation to a subset of the whole data set that can be projected in
a reasonable time frame and contains 5, 000 randomly chosen users
with all their ratings. Of these ratings, 590, 248 express like (+) while
152, 131 ratings express dislike (−). In a first approximation, ratings
of 3 are considered neutral and are omitted. During this process, we
completely remove 10 users with only neutral ratings and are left
with 15, 206 films forming a multiplex bipartite graph with two types
of edges.

We then annotate the films with genres using the comprehensive
list of genres available from the Internet Movie Database (IMDb) [3].
Due to the discrepancy in the titles and release years, our string
matching algorithm assigns genres to only 7, 314 out of the 15, 206
films. The majority of these cannot be classified into a single genre
but are tagged with 2 or 3 genres. Figure 16 (left) shows the frequency
of the number of genres per film.
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Figure 16: Histograms showing the frequency of films with a given num-
ber of genres for the considered Netflix subset (left), the genre-
matched TV show ground truth (middle), and the genre-matched
feature film ground truth (right). Figure adapted from [115].

4 Although this was tested on the simplex network containing only the good ratings,
none of our observations suggest that the bad ratings (with values 1 and 2) are
distributed differently throughout subsets of the Netflix data.
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8.3.1 Ground truth data sets

In order to objectively assess the quality of the projection, we need
a ground truth that contains films which are similar or alternatively
films that are dissimilar. Constructing ground truth data sets for com-
plex real-world data sets is a challenging task that involves several
elaborate decisions and rarely yields a flawless result. While the gen-
eration of a ground truth consisting of dissimilar films does not ap-
pear to be achievable, there are several possibilities for the construc-
tion of a ground truth of similar films. A classification of the films into
genres and genre combinations results in a coarse-grained clustering.
Although films which belong to the same genre share thematic and
stylistic similarities and users often define their preferences in terms
of genres, we cannot expect all films belonging to a pure genre or a
combination of genres to be similar. Recall that in this context, two
films are considered similar if users who liked one of them will also
like the other. A more refined grouping can be built based on the
concept of film series, though. To avoid biased results due to the in-
herent inaccuracies in the construction of such a ground truth, we
rely on two different approaches and create one ground truth for TV
shows and one for feature films:

1. Zweig proposed a ground truth for TV shows based on produc-
tions that run for several years and are grouped into seasons, i.e.
collections of all episodes produced during one year [280]. She
extracted all films with the keyword "season" in their titles and
subsequently grouped them by the remaining part of their titles.
This procedure results in a usable ground truth, which contains
coherent groups of TV shows like Friends or Star Trek without
their spin-offs. Using this procedure and trimming the ground
truth to the films from our ++, −−, and +− projection networks
yields 400–600 TV shows grouped into about 150 cliques, which
are small complete graphs of films, i.e. they contain all available
seasons of a series and the full set of all possible edges between
them.

2. Constructing a ground truth for films other than TV shows is
possible by using the comprehensive list of feature film series
available on Wikipedia [2]. Due to inconsistencies and dupli-
cate entries inherent to user-generated data, the extraction of
this compilation required manual postprocessing before being
matched with the Netflix films by title and release year. This re-
sults in a ground truth of around 750 films forming around 280
cliques, among which we find the James Bond films or the films
of the Three Colours series.

We consider the two presented ground truth data sets to be directed
graphs. This enables us in a subsequent analysis to properly deal with
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film similarities detected by our method which are not symmetric. For
instance, if we find that film B is most similar to film A, the reverse is
not necessarily true and there can be a film C which is most similar
to film B.

Since we use the ground truth data sets to evaluate the results of our
algorithm, we require them to be representative for the considered
Netflix subset. An indication of this property is provided in Figure 16:
the frequency of films with a given number of genres in the entire
Netflix subset and their frequency in the ground truth data sets show
similar trends.

In the following, we perform a one-mode projection for the sub-
set of the Netflix data. We then analyse the resulting projection to
identify interesting structures in its topology and to understand the
relevance of these patterns in detecting similar pairs of films.

8.3.2 Characterization of the multiplex projection

We perform a one-mode projection of the Netflix subgraph by gener-Thesis point 9

ating 10, 000 random graphs with the same degree sequences as the
original graph. Each of the graphs is created from the previously sam-
pled graph through a sequence of edge swaps by using Algorithm 3.
The corresponding multiplex projection contains film pairs that are
both liked (++ edges forming the co-like network), both disliked (−−

edges in the co-dislike network) or rated antagonistically by the users
(+− edges of the like–dislike network).

Zweig and Kaufmann [283] provided a global analysis based on
leverage5 for the simplex network based on like ratings. However,
since leverage is bounded from above by the minimum degree of
the two considered films, edges which contain a film with low de-
gree can never be as highly ranked as edges between two films with
high degrees. The normalization of leverage as incorporated in the
z-score may overcome this problem and improve the detection of sim-
ilar films. In order to analyse our projection at a global level with
the z-score, we choose a threshold for each of the three individual
networks (++,−−, and +−) based on their topology.

Co-like edges are a certain indicator of similarity, while co-dislike
edges only partly indicate similarity. For instance, significantly many
users disliked both volumes of Kill Bill, obviously a pair of similar
films. However, there were several users who disliked both Gulliver’s
Travels (the adaptation of a fantastical tale as a family film) and Chi-
natown (Polanski’s neo-noir, a mixture of mystery and drama)—a pair
of conceptually very different films. Assuming that the co-rating be-
haviour of the users—if properly denoised—indicates which films
are indeed similar, we expect both of these types of edges to be
transitive. In order to find a significance threshold we therefore con-

5 For details about the equivalent covariance see Section 4.2.
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Figure 17: Deducing meaningful significance level thresholds t for the dif-
ferent networks in the multiplex Netflix projection. Left: average
local clustering coefficient of the projections which contain film
similarities equal to or higher than the candidate z-score thresh-
olds. Results for the various types of networks (++,−−,+−) are
color coded (green, red, blue). The thresholds which are indicated
by the dashed vertical lines (t++ = 20.8, t−− = 16.4) are selected
based on this plot. Right: assortativities by degree and their aver-
age for the directed +− network at different threshold candidates.
The threshold t+− = 40 (marked by a dashed vertical line) is cho-
sen based on this plot. Figure reprinted from [115].

sider the clustering coefficient, which quantifies the probability that
neighbours of a film are connected themselves (cf. Section 2.2). Mon-
itoring the average local clustering coefficient for subgraphs of G̃++

and G̃−− at varying z-score thresholds t as shown in Figure 17 (left),
we see nontrivial changes in topology that indicate which threshold
candidates are meaningful6. Accordingly, we choose t++ = 20.8 and
t−− = 16.4 to be the optimal thresholds, as they mark a clear maxi-
mum in the average clustering coefficient of the particular networks,
suggesting a strong increase in interconnectedness.

The +− network shows a very low clustering with monotonic in-
crease, indicating that there is no specific trend in the way users cou-
ple liked and disliked films (see Figure 17, left). Ideally, this directed
network should contain hubs: if users liked (or disliked) the major-
ity of films from a given group of similar films and disliked (or liked)
one film from the group, then the projection should contain +− edges
between this outlier and the rest of the group. The presence of hubs,
i.e. nodes with high degree connected to nodes with low degree, is

6 This approach can be extended to other structural measures besides the clustering
coefficient. We provide an example of this extension to the number of components
and component density in Section 9.3.1.
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t |L| |E ′| δ |C| Cmax(%) cc λ

G̃++ 20.8 6, 248 57, 846 0.003 358 81.16 0.53 0.61

G̃−− 16.4 3, 444 129, 097 0.022 532 32.87 0.72 0.97

G̃+− 40.0 2, 490 4, 267 0.001 314 41.16 0.00 *

* in out

in −0.3760 0.3191

out 0.4140 −0.4297

Table 3: Basic network statistics of the multiplex Netflix projection broken
down to the networks induced by the different edge types. Shown
are the z-score threshold t, the number of nodes in the node set
we project onto |L| and edges |E ′|, the density δ, the number of
components |C|, the percentage of nodes in the largest component
Cmax(%), the average local clustering coefficient cc, and the assor-
tativity by degree λ which in the case of the directed +− network
consists of four correlation values (in–in, in–out, out–in, and out–
out).

not reflected by the clustering coefficient. We thus use another aggre-
gated measure for finding the threshold, namely the assortativity by
degree as defined for directed networks (see Section 2.2). We expect
the number of hubs to be maximal when the network is disassorta-
tive, i.e. all assortativities are minimized. Thus, based on Figure 17

(right) we set the threshold to t+− = 40.
As a first step in the analysis of the thresholded projection, we fo-

cus on the basic statistics of the individual networks. As summarised
in Table 3, all three are extremely sparse. In terms of the number of
nodes, the −− network is smaller than the ++ network, partly due
to the lower number of dislike edges in the bipartite graph in gen-
eral. The −− network is also the most clustered and has an almost
perfect assortativity by degree. Besides having the highest clustering
coefficient, the −− network is also composed of more components
than the ++ network. This is surprising, because the intuition is that
co-like edges are more specific than co-dislike edges and we thus ex-
pect that they would cause the formation of many tightly connected
components. The fact that the −− network has more components
than the ++ network could be the result of two factors. On the one
hand, blockbusters which are co-liked with films belonging to differ-
ent groups of similar films bridge these groups, thereby destroying
the clustering. On the other hand, systematic recommendation of sev-
eral films by Netflix’s recommendation engine which are falsely clas-
sified into a group of similar films results in a co-disliked clique of
these films.

Finally, the +− network is built with the strictest threshold and it
is characterized by a small number of edges and no clustering. We
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establish the significance of these +− edges later, based on the mul-
tiplex projection consisting of the ++, −−, and +− edges. So far, we
note that it is informative to extract a pair of films A and B that
are in a mutual like–dislike relation, as they are an indication that
users either liked A and disliked B or vice versa. From these pairs
we can deduce the films that were considered controversial by the
Netflix users at the time of data collection. The +− subnetwork with
the mutual edges contains mainly classics, block busters, and popu-
lar films of the considered time frame. Interestingly, it seems that this
network reveals subcultures within the popular genres. As examples,
Figure 18A shows a component of musicals from the 40s/50s and
Figure 18B one of horror and mystery films from the 80s/90s.

Figure 18: Two components of the like–dislike subgraph. Only the mu-
tual edges are shown. The projection was created by using p-
values and applying a threshold of t+− = 0.004. Figure adapted
from [114].

On a side note, we could technically also project the aggregated net-
work, i.e. the original bipartite graph that contains both edges express-
ing like and dislike. However, due to the inability of the aggregated
network to differentiate between the distinct connotation of the edge
types, the resulting projection is uninformative with respect to the
++ and −− edges and misleading regarding the +− edge type [114].
For example, such a projection contains an edge between Tootsie and
Rosemary’s Baby. This edge between a romantic comedy and a horror
film is deceiving: the multiplex projection reveals that this connection
should be actually of type +− because significantly many users liked
Tootsie and at the same time disliked Rosemary’s Baby, a distinction
that is otherwise lost due to aggregation.

shortcomings of the global-level analysis To evaluate
the multiplex projection, we use the ground truth for TV shows and
feature films as described above. Based on these, we know for each
film in the ground truth the number of k other similar films our
algorithm should find. For each such film we then separately rank
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individual uniform

TV shows feature films TV shows feature films

G̃++ 0.70 0.31 0.76 0.47

G̃−− 0.06 0.04 0.11 0.05

G̃+− 0 0 0 0

Table 4: Average local PPVk for the TV show and feature film ground truth
for the projection obtained with strict individual thresholds and a
standard uniform threshold.

its neighbours from the three projection networks decreasingly by z-
scores and compare the k top-ranked films from this list to the films
contained in the ground truth clique. To compensate for possible bias
in the rankings due to ties, we use 10 rounds of randomization for
tie braking. By this procedure we have computed the local PPVk, i.e.
the fraction of truly similar pairs of films among the k highest ranked
pairs, where k is the degree of each individual film from the ground
truth. The PPVk values averaged over all considered films are shown
in Table 4 under the "individual" header. According to this, the ++

network is fairly good at detecting similar films, while edges deduced
from the −− network provide only a weak inference. As expected,
the most significant like–dislike edges never indicate meaningful film
similarities.

There is a considerable difference in the performance of our algo-
rithm with respect to the two different ground truth data sets: 70% of
the detected film similarities are correct for TV shows, while only 31%
are correct for feature films. Possible explanations are that 1) fans of
TV series are more loyal or have clearer preferences; 2) for many TV
shows it is difficult to understand a single episode without having
watched the majority of previous episodes; 3) feature films belong-
ing to a series are separated by a larger time span (a couple of years
as compared to a few months) and are also more independent in
terms of story, style, and crew; 4) inaccuracies in the ground truth are
more prominent for feature films than for TV shows, i.e. the feature
film ground truth we constructed by matching the films from Netflix
with the user-generated Wikipedia lists is qualitatively worse than
the more straightforwardly constructed TV show cliques.

Finally, we compute the PPVk values in a similar manner based on
the projection with the less stringent standardized threshold t++ =

t−− = t+− = 2. The resulting ++ and −− rankings better resem-
ble the cliques from the ground truth, meaning that with the strict
thresholds we excluded some of the correct film similarities, as shown
in Table 4 under the "uniform" header. This indicates that for the ap-
plication at hand, a local analysis is preferable over a global one.
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8.3.3 A coarse-grained analysis based on genres

A one-mode projection of bipartite graphs is often used as a method
for finding groups of similar objects, i.e. it results in a clustering of
the set of nodes we project onto. In the following, we consider the
similarity landscape of the films generated by the multiplex projec-
tion and grouped by the most intuitive, coarse-grained classification
of films, namely into genres. This classification, although arguable in
its exactness due to evolving genre definitions and the flexible bor-
derlines between individual genres, is a good opportunity for identi-
fying tendencies in the placement of the different edge types and to
check whether the detected film similarities are meaningful beyond
the available ground truth sets.

Without the strict individual thresholds, the projection with the
uniform threshold t++ = t−− = t+− = 2 on the z-scores is substan-
tially larger and requires a higher-level investigation. For this purpose
we aggregate films which belong to the same genre into nodes of a
genre network. Edges of different types between the films are divided
into those connecting films of the same genre (intra-genre edges repre-
sented by self-loops in the genre network) and edges connecting films
from different genres (inter-genre edges represented by normal edges
in the genre network). As like–dislike edges emphasise the antago-
nistic perception of two films, their direction is of little importance
at this stage and is thus disregarded. The individual edges between
the films are grouped according to the genres the films belong to and
then counted. The resulting value is normalized by the number of
possible connections between all films of the given genres. Due to
the fact that the same films belong to multiple genres, the number of
possible inter-genre edges for genres A and B containing nA and nB
edges respectively is given by:

nA ·nB −
n · (n+ 1)

2

where n is the number of films in the intersection. For the directed
case of the +− edges, the number of possible edges is doubled. Given
the projection network, we obtain the fraction of realised edges in the
way described above and assign this value as weight to the edges of
the genre network. Figure 19 shows the 20 highest-valued edges for
each edge type in this genre network. With the exception of fantasy,
which has two self-loops, all genres with self-loops fall into one of
the following two categories:

1. Genres with triple self-loop. Here the ++ and −− self-loops
indicate agreement within the individual genres, while the +−

intra-genre edge suggests divided opinions among users. Thus,
films belonging to these genres seem to be highly debated.
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2. Genres with a single self-loop. Single self-loops stand for un-
divided opinion. These are mostly classical Hollywood genres
that have passed their golden times, such as musical, western,
and film-noir.

We note that the weights of the ++ edges are one order of magni-
tude higher than the other two. Most of the genres have a small ++

degree. Film-noir is an exception as it is mostly watched by connois-
seurs and is one of the most conservative Hollywood genres with no
inclination to renewal. Animation has the highest +− degree and it is
a genre with an extremely different target audience and evidently dis-
tanced from genres like crime, action, or war. As opposed to the other
two networks, the −− network shows striking triangles linking the-
matically and stylistically connected genres like science fiction–horror–
thriller or adventure–family–fantasy. A ++ and −− edge between the
same two genres, as in the case of science fiction–horror and family–
fantasy–animation, suggests more closely related genres.

Figure 19: The genre network containing the top 20 edges for each edge type.
Nodes are contractions of all films of the multiplex projection
with the given genre, while edges are an aggregation of all edges
of a given type between two genres. The direction of the like–
dislike edges was disregarded. Colour coding as before. Figure
reprinted from [115].

Assuming that films which belong to a genre represent a cohesive
unit, we expect that the realized number of edges normalized by the
number of possible edges is higher within a genre than it is between
different genres. To test this, we consider the genre network as con-
structed above and, for each genre, count how often the normalized
number of its intra-genre edges exceeds the number of inter-genre
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Figure 20: Comparison of the frequency of realized intra-genre edges to the
frequency of realized inter-genre edges, deduced from the com-
plete genre network. For each type of edge and each genre, we
show the percentage of other genres to which the considered
genre has a lower frequency of realized edges than to itself. Fig-
ure reprinted from [115].

edges with respect to all other genres. By this, we obtain the percent-
age of other genres to which the considered genre has a lower fre-
quency of realized edges than to itself. Figure 20 shows the obtained
percentages for the different genres and types of edges. In agreement
with our expectation, the percentages are highest for the ++ network,
reinforcing the observation that user preferences are correlated with
the genres. However, the classification of films into genres is accept-
able as a first approximation for a ground truth only at the qualitative
level, because this classification does not allow us to decide which of
the edges that we used during our analysis actually represent simi-
lar films. In order to perform a quantitative analysis, we turn in the
following to our ground truth of film similarity.

local rankings per genre Using only those films from the
ground truth data sets that could be annotated with a genre, we com-
pute the local PPVk for each of these films. When computing the PPVk
for film X, k denotes the number of other films that are similar to X
according to the ground truth. Figure 21 shows the local PPVk values
averaged over the films belonging to the given genres. Accordingly,
there are clear differences in the performance of detecting pairs of
similar films belonging to the distinct genres. For instance, based on
our ground truth data sets, pairs of similar family and romance films
are rather hard to identify, while detecting pairs of similar action films
proves to be easier. With the exception of westerns, the detection for
TV shows is better than for feature films and the difference between
the two values can rise to more than 0.4. One of the prerequisites
for a good performance of our method is that users rate the films
belonging to a given genre in a consistent way7. Intuitively, smaller
and more specific genres thus have better chances of attaining a good

7 This is verified for most genres, see Figure 20.
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performance. Interestingly, our results indicate that even large genres
such as action films can perform well. For instance, there is a much
higher agreement between users with regard to action films than there
is for romance films.
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Figure 21: Quality of the rankings for the different genres as measured by
the local PPVk. Shown are results on the TV shows (purple dia-
monds) and feature films (blue dots) with genre annotations. The
performance of the algorithm on the entire TV show and feature
film ground truth is marked with dashed lines (cf. Table 4). The
size of data points indicates the number of films with the given
genres. Figure reprinted from [115].

8.3.4 The role of the co-dislike and the like–dislike networks

The trends we presented above motivate ideas on how to improveThesis point 10

the film similarities deduced from the ++ network by using the −−

and +− networks. The key observation for this is that the multiplex
projection contains overlapping edges, i.e. different types of edges be-
tween the same pairs of films. Co-dislike edges indicate similarity,
and thus could be used to augment the results obtained from co-like
edges through the aggregation of overlapping ++ and −− edges, in
a first approach for instance by adding their respective z-scores. Like–
dislike edges indicate dissimilarity and therefore they could be used
to annihilate or weaken co-like edges which do not connect truly sim-
ilar films, for example by subtracting their z-scores. In the following
experiment we test these two ideas. We progressively decrease the z-
score threshold for the −− (or +−) edges, thereby obtaining a larger
fraction of these networks in every step. We then update the rank-
ings of the ++ network according to the newly introduced −− (or
+−) edges, as a proof of concept for example by creating the sum
of the z-scores of overlapping edges (in the case of the −− network)
or by eliminating overlapping edges (in the case of the +− network).
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For each threshold value, we compute the average local PPVk and
monitor its progression.

Using the multiplex projection in such a way requires the existence
of overlapping edges. When considering the Netflix subset, the frac-
tion of co-like edges that overlap with co-dislike edges is 7%, while
11% of co-like edges overlap with like–dislike edges. Due to the fact
that this overlap is relatively small and the sets of −− and +− edges
are not complete, we did not find this approach to produce a signifi-
cant and consistent improvement of the results for our data set.

An ideal scenario which would enable such an analysis is illus-
trated by a subgraph taken from the multiplex projection. It contains
two ground truth cliques with differing target audiences (see Fig-
ure 22). The provocative action-comedy series parodying well-known
spy films and the popular series of family films are both eligible for
clear fan bases as well as opponents. Thus, they are co-liked and co-
disliked by a significant number of users. While the Austin Powers
films form a perfect ++ and −− clique, sequels of Home Alone, which
have a greater time span between each other (up to 12 years between
their release dates), fail to keep their audience. The additional like–
dislike edge between the first two films of the Home Alone series in-
dicates a frequently observed phenomenon, namely that fans of a
production can be disappointed by the follow up of a beloved film.
The remaining +− edges lie exclusively between the two cliques and
are evidence of viewers from both cliques stating their dislike of the
other.

Figure 22: Exemplary subgraph of the multiplex projection showing the
Austin Powers and the Home Alone films. The two almost perfect
++ (green) and −− (red) cliques are connected by +− edges (blue
arrow from the liked film to the disliked one) indicating the dif-
fering tastes of their individual fan bases. The thickness of the
edges relates to their z-score. Figure reprinted from [115].
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8.4 film similarity beyond the market basket setting

Projecting the film–user bipartite graph sheds light on one aspect ofThesis point 11

the similarity of films, namely the similarity deduced from co-ratings.
Provided that the data set underlying the graph is comprehensive
enough, such an approach can be very rewarding, as this notion of
similarity is highly relevant for recommender systems and constitutes
the basis for collaborative filtering [270, p. 63–64,169–175].

Figure 23: Using attributes of films to obtain a more nuanced notion of film
similarity. (A) Excerpt from the film–composer, film–director, and
film–writer bipartite graphs. (B) Exemplary subgraphs of the mul-
tiplex projection.

Nevertheless, the presented framework enables studying various
other aspects of film similarity as well. For instance, we can obtain a
more nuanced notion of similarity by using further discrete attributes
of films that can be represented as different bipartite graphs, in which
the films constitute the node set L, while the diverse attributes form
the node set R (see Figure 23A). One such possible attribute is film
genre. As it provides an intrinsic indication of the similarity of films,
we have already used it as a coarse-grained ground truth. Further
attributes such as the cast (e.g. the actors), the creators (e.g. the di-
rector, writer, and composer), and the technical specifications (e.g.
colour, sound, and film format) are available on the Internet Movie
Database [3]. The fixed degree sequence model is a meaningful choice
because it takes into account the popularity of an actor (in the film–
actor graph), the productivity of the crew (in the film–main creators
graph), and the adoption of a certain technology (in the film–technical
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specifications graph). Projecting these bipartite graphs individually
results in a multiplex film network in which films are connected
whenever their similarity in terms of these aspects is statistically sig-
nificant. Figure 23B shows exemplary subgraphs from the obtained
multiplex projection. The possibilities of incorporating this manifold
similarity into a recommender system are rewarding avenues for fu-
ture research.

8.5 discussion and conclusions

The algorithm for the one-mode projection of multiplex bipartite
graphs we presented in this chapter extends a simplex projection
method [280, 283]. The adaptation of the simplex method consists of
making the random graph model sensitive to the edge types. This is a
necessary step which assures the existence of a proper null model for
establishing the relevance of the edges in the projection. When com-
puting a multiplex projection of a similar subset of the Netflix data
set, we observe that the projection of the aggregated network (the
bipartite network with no differentiation between like and dislike) in-
evitably mixes up edges with different connotations. This results in
misleading similarities, showing that a more nuanced random graph
model is needed.

which test statistic to use as similarity measure? Sev-
eral possible statistical tests can be used for assessing the significance
of edges in the resulting projection (cf. Chapter 4). The use of leverage
(or the covariance) leads to meaningful film similarities at the top of
the global ranking [280, 283]. However, the highest-rated pairs were
all blockbusters, since leverage is bounded by the smaller degree of
the individual films and thus disfavours less popular films. Another
widely used statistical test, the p-value, does not directly depend on
the degrees of the nodes in the bipartite graph. Still, in the case of the
Netflix data set, it was not well-suited for a global-level analysis, be-
cause it assigned maximal significance to a relatively large amount of
edges in the projection, unless the number of samples was infeasibly
high [114]. Thus, in this chapter we mainly used the z-score, which is
a normalised version of leverage and best differentiates between the
edges in the projection.

how robust is the method? We showed that the method is
very stable based on artificial data, for both p-value [114] and z-score,
as long as the number of added or removed edges lie in the range
of noise we expect from market basket analysis data. Future research
will have to show whether the algorithm is more sensible in the case
of more difficult applications (e.g. nodes with extremely low/high
degree).
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why are our results better on tv shows than on series

of feature films? We presented a framework for the analysis
and evaluation of the multiplex similarity landscape of films. For
this purpose, we used the classification of films into genres and two
ground truth data sets constructed based on the concept of film se-
ries. Compiling sound ground truth data sets is difficult (already at
a conceptual level) due to the manifold aspects and the inherent sub-
jectivity of film similarity. While the episodes of a TV show are usu-
ally released within a short time span and the variance in terms of
their story, director, and cast is negligible, ground truth-construction
for feature films lacks these criteria and is thus more limited. On a
technical level, information about series could be attained only for
a subset of the films present in the multiplex one-mode projection
because we aggregated data from diverse sources (Netflix, Internet
Movie Database, and Wikipedia). The ground truth data sets suggest
that similarities between TV shows are easier to detect than those be-
tween feature film series. Two possible explanations for this discrep-
ancy are 1) the more "faithful" fanbase of TV shows, i.e. sequels of TV
shows are rated more consistently throughout our data set than series
of feature films and 2) the less accurate ground truth for feature films.
Our genre analysis revealed that detecting similar films that belong
to some of the genres is harder than for others. This was typically
the case for broader categories like animation, which is a technique
rather than a genre and contains films as diverse as the Disney pro-
ductions and Japanese animes with mature content. Additionally, the
performance for a genre increases not with its size, but rather with
the consistency of the ratings given to the films it contains.

global or local analysis? Applying the presented method
to the Netflix data revealed that a global-level analysis is only partly
meaningful. Since there is no ground truth that would contain the
globally most similar pairs of films, we use the local ground truth
for verification instead. We found that some of the pairs of similar
films contained in our ground truth data sets were assigned lower
z-scores by our algorithm than other pairs, which were not similar
based on the ground truth. These correct pairs were thus eliminated
from the network through the overly strict thresholding, leaving pairs
of outliers among the highest-ranked edges. Their presence can be
explained through statistical reasoning, as there always exist random
ratings that can not be differentiated from truly significant ones. This
problem is not specific to our method, but an inherent issue of any
statistical approach with the same purpose.

On the local level we found that edges of the co-like network are
well-suited for detecting similar films. The co-dislike network on the
other hand is too unspecific to be used by itself, while the like–dislike
network finds only pairs which are not similar according to the ground
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truth data sets. Although our attempts of using the latter two net-
works did not improve our results reliably on the considered data
set, we argue that a more comprehensive record of user ratings ex-
pressing dislike (resulting in a more complete set of co-dislike and
like–dislike edges) would contribute more reliable information to our
efforts.

future work The main limitation of our method can be found in
the range of nodes with a low-degree in the bipartite network. Future
work in this direction could therefore include the acquisition of data
from other sources to compensate for scarce statistics.

Interesting questions arise from the analysis of the Netflix data as
well. For instance, here we did not take into account the temporal
aspect of the data. Netflix collected the ratings between October, 1998

and December, 2005 and the release years of the considered films
vary from 1896 to 2005. It is an open question how these informations
could be used to improve the results.

Furthermore, we projected a bipartite graph with two types of edges.
Nevertheless, the presented method can be generalised to more types
of edges. Thus, instead of concentrating on ratings that express like
and dislike, we could directly project the bipartite graph that contains
an edge type for each of the five distinct ratings, possibly allowing
for a more nuanced analysis. Moreover, this approach could be re-
fined by using results from the psychology of online rating systems
for developing normalization schemes to be applied to the ratings of
individual users.

We conclude that beyond the specific problem tackled here, the
analysis of multiplex networks with different types of entities is an
important area of future research in complex network analysis that
has not yet been explored to its full potential. The versatile method
presented here is not limited to the Netflix application. As we will
see in the following Chapter 9, a similar approach can be used for a
biological data set and enables us to identify biomolecules that hinder
the growth of an especially lethal type of breast cancer.

8.6 summary

Inference of association networks in general and the one-mode pro-
jection of multiplex bipartite graphs in particular is a key tool in
analysing data with inherent bipartite structure. In this chapter, we
presented a framework that is based on the null model approach and
uses a multiplex fixed degree sequence ensemble as reference for sig-
nificance assessment. We showed the robustness of the method on
artificial data before applying it to a real-world network of user rat-
ings for films, namely the Netflix data set. Based on the assumption
that co-ratings of films contain information about the films’ similar-



120 evaluating film similarity in a market basket setting

ities, we analysed the multiplex projection as an approximation of
the similarity landscape of the films. In addition to comparing the
projection to the coarse-grained classification of films into genres, we
validated the resulting similarities based on ground truth data sets
containing film series. Our analysis confirmed that the network of
positive co-ratings can be used to detect similar films. Furthermore,
we explored the potential of additional, mixed co-rating patterns in
improving the detection of similarities and highlighted necessary cri-
teria for this approach. Based on additional data about the crew, cast,
and technical specifications of films, we detected further aspects of
film similarity using the same framework. We expect that the gener-
ality of the method can be further exploited for multiplex bipartite
graphs and in the next chapter we demonstrate this on a very differ-
ent application from systems biology.
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High-throughput screening is a well-established tool for large-scale
experiments and provides an overview of how different cellular vari-
ables change under various conditions. Such experiments monitor for
instance the alteration of protein levels due to the presence of differ-
ent transcription factors and changed environmental conditions like
starvation or enhanced radiation [36]. Biological or chemical pertur-
bations that specifically influence single gene expression—including
small interference RNAs (siRNAs) or microRNAs (miRNAs)—have
been used alongside protein assays to systematically study the rela-
tionship between gene expression and function [221]. miRNAs are a
large class of small non-protein-coding RNAs that usually (but not ex-
clusively [260]) function as negative regulators. It is known that they
play an essential role in the development and maintenance of many
diseases: for example, they are tumour suppressors or oncogenes (on-
comirs) in various types of cancer [56, 80, 110, 159, 134, 204, 158].
There are over 2, 000 mature human miRNAs registered in the miR-
Base release 19 [4, 224] and these can target over 60% of the mam-
malian genes [87] whose corresponding proteins display diverse func-
tions.

Until recently, large-scale experiments designed to investigate regu-
latory relationships between miRNAs and protein-coding genes have
been used to either study one or few miRNAs against a large number
of genes (on the transcriptomic [149] or the proteomic [20, 229] level),
or test a library of miRNA mimics or inhibitors against one or few
genes [140]. In either approach, univariate analysis prevalent in high-
throughput analysis [161] has been frequently applied to rank targets
or perturbations, for instance by z-score or p-value, in order to inter- A. Spitz, K.A.

Zweig, E.Á. Horvát,
SICOP: identifying
significant
co-interaction
patterns,
Bioinformatics,
29(19):2503–2504,
2013

pret the results. It is known that large-scale experiments often come
with the trade-off that not all of the results are very reliable [183]:
the preparation of cells and tissues, variances in the chip, detection
mediated by antibodies, and sensors that quantify signals are all in-
dependent sources of noise. To avoid false-positive results, a strict
threshold on these values assures that only those effects are reported
that have a low probability to be caused by random or non-functional
fluctuation around the resting level, e.g. due to handling or measur-
ing errors. It has however been confirmed that many of the protein
regulating effects of the whole human genome miRNA (miRome) are
mild [20, 229, 258]. These mild effects can only be detected if observa-
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tions with a low significance are also included in the analysis, which
in turn increases false-positive results.

This problem of detecting mild regulation effects was the motiva-
tion behind our computational approach: based on the methodolog-
ical framework presented in Chapter 3 and Chapter 4, it is compu-
tationally feasible to determine whether the number of shared co-
regulation conditions of two proteins is statistically significant or
not. The implication is then that if two proteins are co-regulated
by a significant number of regulating conditions, these regulation ef-
fects have a higher chance to be true-positive regulating effects than
their individual z-scores suggest. Furthermore, by identifying pairs
of proteins that are significantly co-regulated, experimentalists can
make hypotheses of functional relationships following the guilt-by-
association principle [240, 208].

In this chapter, we present the network-based method and give the
details needed for applying it in diverse biological settings. For in-
stance, we discuss when to use it (noisy data containing mild effects)
and which decisions are required in order to apply it (especially con-
cerning the choice of meaningful significance thresholds). The idea
was motivated by the specific biological question raised in a high-
throughput study conducted by our collaboration partners: How to
map regulatory network structures in the EGFR-driven signalling system
modulated by human miRNAs? Subsequently to our analysis, our col-
laborators provided experimental validation for several of the predic-
tions obtained with our method.

Besides determining co-regulation patterns, the framework is gen-
erally applicable to any biological data set that contains two types
of interacting entities. In network terms, the data set must have a bi-
partite structure. The method is similar to the method used for the
Netflix application (see Section 8.1) and is based on the theoretical
prerequisites presented in Section 3.3.4, Section 3.4.1, and Section 4.3.
Its main feature is its robustness against noise, which we demonstrate
here on artificial data sets that emulate a possible biological structure
(Section 9.2). The advantage of artificial data sets is that they can be
constructed in such a way that the ground truth (i.e. the true posi-
tive and negative results to be found by an optimal algorithm) can
easily be determined. As in the case of the market basket application,
we show on artificial graphs that mimic the structure of the biolog-
ical data that the method is robust against random elimination and
random addition of observations. These model two typical sources of
noise in biological data.

Furthermore, this chapter presents the analysis of a real data set be-
tween the genome-wide human miRNAs (miRome) and a subset of
proteins in the EGFR-driven signalling system in an in vitro model
of human breast cancer. We provide key features of co-regulated
miRNAs (Section 9.3.1), report the results for protein co-regulation
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(Section 9.3.2), and discuss the general applicability of the method
in systems biology (Section 9.4). Finally, we provide the open-source
software implementation SICOP (SIgnificant CO-interaction Patterns)
available under a GPL licence [237] (Section 9.5). Box 4 gives an
overview of the tasks and approaches used in this chapter.

Box 4 | Problem statement and approach

Data High-throughput screening data that monitors the effect of various miRNAs on
a selection of proteins

Task Identify statistically significant co-regulation patterns and detect miRNAs that
are potential drug targets

Framework

a. Build multiplex miRNA–protein bipartite graphs that differentiate between
up- and down-regulation and correspond to different stringency levels

b. Project the bipartite graphs onto the set of miRNAs

– Threshold the individual multiplex projections based on topological cri-
teria

– Compare the groups of co-down-regulated miRNAs with the miRNA
families

c. Project the bipartite graphs onto the set of proteins

– Construct a consensus graph from statistically significantly co-regulated
proteins

– Identify proteins that belong to the same functional module

– Detect miRNAs that co-target the cell cycle proteins

9.1 from regulation graphs to co-regulation graphs

9.1.1 Building a bipartite graph model from protein array data

The high-throughput data was obtained by transfecting cells from the
human breast cancer line MDA-MB-231 with a library of 810 miRNA
mimics. The level of 26 different proteins from the EGFR-signalling
pathway was then measured to monitor the effect of various miRNAs
on them. The data was processed such as to result in a z-score for
each pair of miRNA and protein, which quantifies the change in the
expression level with regard to the protein’s resting level.

To build the basic bipartite graph, we determine a hard threshold
tB. Given the data and the threshold tB, the bipartite graph model
contains an edge between any pair of miRNA and protein if the ab-
solute value of the corresponding observed z-score is at least as large
as tB. Note that these edges are unweighted, i.e. all of the edges are
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treated equally after this step, regardless of the value of the original z-
score. However, we differentiate between those edges with a positive
z-score (up-regulation) and those edges with a negative z-score (down-
regulation). Figure 24A–C shows schematically how the protein array
data is transformed into an unweighted bipartite graph. Alternatively,
different thresholds can be used to filter up- and down-regulations.

Figure 24: Converting the normalized z-score array into a bipartite graph
and illustration of the co-regulation patterns of interest. (A) Ex-
emplary array depicting the normalized z-scores of the change
in expression level for proteins A, B, and C when cells are trans-
fected with miRNAs 1, 2, and 3. The z-scores are specified by
the white labels. (B) The corresponding bipartite graph where z-
scores are represented by weighted edges; the weights are shown
as labels on the edges. (C) After applying a threshold tB to
the weights, only some connections are retained. In this case tB
equals 1.96, corresponding to a p-value of 0.05. Edges with a pos-
itive weight (up-regulation) are shown in red, edges with a nega-
tive weight (down-regulation) in green. (D) Protein co-regulation
graph based on the co-regulation patterns as described in the text.
Colours denote the co-regulation pattern: the red edge denotes
co-up-regulation; the green edge denotes co-down-regulation; the
blue, directed edge from B to C indicates that B is down-regulated
while C is up-regulated by the same miRNA. Figure reprinted
from [119].

The higher the z-score threshold, the smaller the probability that
the change in the protein level is merely a random fluctuation, and
subsequently the fewer edges are present in the bipartite graph. As
stated above, the goal is to understand mild regulation effects, which
can only be analysed if the threshold is moderately low. In the fol-
lowing, we choose three thresholds: 2.58 (corresponding to an un-
adjusted, two-sided p-value of 0.01), 1.96 (p-value of 0.05), and 1.64
(p-value of 0.10). The unweighted bipartite graph that results from
thresholding the weighted bipartite graph at tB is henceforth called
the regulation graph B at tB (see Figure 25).

9.1.2 Multiplex co-regulation patterns

In the setting described above, we are interested in the statistically
significant co-regulation of either the proteins or the protein-regula-
ting conditions (hereafter: miRNAs). As in the case of the film–user
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A B

Figure 25: Bipartite graph models of the whole-genome miRNA regula-
tion data of the EGFR/cell cycle proteins. (A) Dense miRNA–
protein interaction network at the z-score threshold of 1.96 (p =

0.05). Blue nodes on the inner circle represent the proteins and
black nodes indicate the miRNAs. While green edges between
a miRNA and a protein show down-regulation of that protein
by the miRNA, red edges show the up-regulation of the protein
by the given miRNA. miRNAs that regulate more than one pro-
tein are located on the inner circle, while those that regulate only
one protein are placed on the outer circle. (B) A much sparser
miRNA–protein interaction network obtained from a more strin-
gent threshold: z = 3.29 (p = 0.001). Figure adapted from [258].

bipartite graph model from Chapter 8, the protein–miRNA graph con-
tains two different types of edges (up- and down-regulation effects)
and thus, its one-mode projection (or in other words, the generated
association network) displays the following connections that can be
defined for both proteins and miRNAs, as illustrated by Figure 24D:

1. Co-up-regulation: A and B are both up-regulated by the same
miRNA 1, represented by the two red edges connecting A and
B to 1;

2. Co-down-regulation: A and C are both down-regulated by the
same miRNA 2, represented by the two green edges connecting
A and C to 2;

3. Antagonistic regulation: B is down-regulated by miRNA 3 while
C is up-regulated by it. This antagonistic co-regulation is de-
noted by a directed edge (represented by an arrow) from B to
C.
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Note that in principle, each pair of proteins or miRNAs could be
connected by all four types of co-regulation patterns and thus be con-
nected by all four possible edges (red, green, and a blue edge in either
direction). In reality, we expect that two proteins or miRNAs are ei-
ther 1) in only one relationship, or 2) at the same time co-up-regulated
and co-down-regulated (connected by one green and one red edge),
or 3) reversely co-regulated (blue edges in both directions). Next, we
present why and how our method for the projection of multiplex
bipartite graphs discussed in Section 3.3.4 and already applied to a
market basket analysis data set Chapter 8 can be used to assess the
statistical significance of co-regulations.

9.1.3 Inference of the association network by finding significant co-regula-
tion patterns

Given z-scores from a large-scale protein regulation experiment and a
threshold tB on the observations to be included into the graph model,
the number of co-regulating miRNAs can be computed for each pair
of proteins. Vice versa, the number of co-regulated proteins can be
computed for each pair of miRNAs. Based on this information, we
want to understand whether the resulting numbers are actually sig-
nificant or might 1) be just a random effect caused by noise, 2) oc-
cur simply due to some of the proteins showing extreme variation
in their level, or 3) result from many miRNAs targeting a central
protein by both direct interference as well as indirect effects propa-
gated through the gene regulatory network. All of these problems
can be mitigated by assessing the probability that this number of co-
regulating miRNAs is observed in graphs with the given degree se-
quence. Only those numbers which are unlikely to be the result of
this null model will then be accepted as significant. The main idea be-
hind overcoming the first problem is that filtering randomly missing
edges or randomly added edges will not induce significant numbers
of miRNAs. The second problem, namely proteins with an erratically
jumping abundance level, will mainly induce random edges in the
network. The random model can cope with both types of problems
since a node with a higher degree will also have higher numbers of co-
regulating miRNAs in the model. The third problem is that miRNAs
with many indirect effects induce proteins with high degree. Their co-
regulations are corrected however by the same noise-filtering effect.

Our method uses as null model for significance assessment the
fixed degree sequence model adapted to bipartite graphs that con-
tain two types of edges: those corresponding to up-regulation and
those corresponding to down-regulation (Figure 26A). Recall that in
this case we need to maintain both the degree sequences of the up-
regulations and the degree sequences of the down-regulations (see Sec-
tion 3.3.4). The edge type specific degree sequence of each protein and
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Figure 26: Pipeline of the algorithm. (A) We define the initial bipartite graph,
(B) count the observed number of co-regulations, (C) simulate a
sample of random bipartite graphs which define the expected
number of co-regulations, (D) build the protein co-regulation
graph where the weight of the edges indicates the p-value as-
signed to the co-regulation of a given protein pair, and (E) con-
sider each co-regulation with a p-value smaller than or equal to
a threshold tP statistically significant. Figure adapted from [119].

each miRNA in the bipartite graph is then fixed while the edges of the
same type are swapped (Figure 26C). This is achieved by the Markov
chain Monte Carlo procedure discussed in Section 3.3.4. Figure 26

sketches the main steps of the method.

9.2 robustness analysis

For the kind of question at hand, namely the co-regulation behaviour
of proteins under various experimental conditions, there is, to our
knowledge, no large data set where the correct result is known. We
thus build artificial data sets for which the ground truth is defined
by construction and test our method against them (cf. Section 3.4.3).
This approach is often used in the clustering of networks to test the
performance of clustering algorithms [44, 43]. Note that in Section 8.2
we showed the robustness of the same method on artificial graphs
that resembled the structure of the film–user data set. The benchmark
graphs used here mimic the structure of the biological data under
study.

9.2.1 Construction of the artificial data

In the considered data set, there is a strong imbalance between the
number of proteins and the number of miRNAs (26 versus 810). More-
over, their degree sequences show a large variance. Constructing ar-
tificial graphs that best resemble this topology involves several mod-
elling decisions. For illustration purposes, we formulate the simpli-
fying assumptions behind the construction of the artificial graphs in
terms of artificial proteins and artificial miRNAs: 1) There are groups
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of artificial proteins that are either co-up- or co-down-regulated by a
subset of artificial miRNAs. 2) Such a group of up-regulated artificial
proteins and a group of down-regulated artificial proteins are antag-
onistically regulated by some subset of artificial miRNAs. 3) Each
group of artificial miRNAs is responsible for up-regulating exactly
one group of artificial proteins and down-regulating another group of
artificial proteins. 4) Additionally, the regulation effect of the artificial
miRNAs is assumed to be half up- and half down-regulations. Note
however, that real-world data might be biased towards one of the
edge types. For instance, in the biological data set at hand, miRNAs
have a preference for down-regulation.

To model these assumptions, we build artificial graphs consisting
of five modules with 16 nodes on the left side and 60 nodes on the
right side, where the left side represents the artificial proteins and
the right side the artificial miRNAs. In each module, there are 8 ar-
tificial proteins that are up-regulated and 8 that are down-regulated
by the artificial miRNAs in the same module. Each of these modules
represents one group of artificial proteins that are up-regulated, and
another group of artificial proteins that are down-regulated by the
same group of artificial miRNAs. Figure 27A sketches the structure
of a single module. The degree distributions of the artificial proteins
and artificial miRNAs are chosen to be similar to the ones in our bi-
ological data set: The degree distribution of the artificial miRNAs is
strongly skewed, i.e. four of the nodes have degree 16, 8 nodes have
degree 8, 16 nodes have degree 4, and 32 nodes have degree 2, while
artificial proteins have a Poisson degree distribution.
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Figure 27: Structure of the artificial data. (A) Sketch of one module of an ar-
tificial graph. The degree of artificial proteins/miRNAs is propor-
tional to size of the circles/squares. (B) Decision tree illustrating
the principle behind the construction of the ground truth. Figure
adapted from [119].
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For these artificial graphs, when projecting to the artificial protein
side, the ground truth is the following: within each of the modules all
artificial proteins of the first group are significantly co-up-regulated,
while all artificial proteins of the second group are significantly co-
down-regulated. For any pair consisting of one artificial protein from
the first and one from the second group, we require the algorithm
to detect a significant antagonistic co-regulation directed from the
second group to the first (see Figure 27B).

Defining a ground truth for the projection to the artificial miRNA
side is not equally straightforward due to the presence of artificial
miRNAs with a high degree, which will inherently be involved in
non-significant co-regulations as well. However, since the robustness
of the projection onto the artificial miRNA side is also highly relevant,
we test the stability of the obtained artificial miRNA co-regulations
with increasing noise.

To show the stability of our method, the artificial data is further
perturbed to model two types of noise that are typical for biological
data:

a. False-negative observations, i.e. the miRNA does regulate the
protein’s level but the change is too low due to random fluctua-
tions, measuring errors, or simple handling errors. In this case,
the regulation is not included in the regulation graph model
and is thus a missing edge.

b. False-positive observations. By lowering the threshold of the
original z-scores we add edges to the bipartite graph which are
unlikely to represent significant regulations.

These two types of noise are modelled by the random elimination
of a percentage ρ of edges (0 < ρ 6 100), and the random addition of
a percentage ρ of edges (0 < ρ 6 100). The quality of the algorithm is
measured by its ability to find the structure embedded in the original,
artificial graph despite the presence of noise.

9.2.2 Experiments on the artificial data

We construct 100 artificial graphs with this predefined modular struc-
ture. In this section, whenever we refer to artificial proteins or arti-
ficial miRNAs, we use the terms protein and miRNA. Each artificial
graph is projected twice: first to the protein side and then to the
miRNA side. To assess the statistical significance of the co-regulations,
a sample of κ = 10, 000 random graphs is used. Based on the projec-
tion onto the protein side (with an easily definable ground truth), our
aim is to assess how well our algorithm recovers the built-in modular
structure of the ground truth projection. Then, based on both projec-
tions, we test the robustness of the algorithm against elimination and
addition of randomly chosen edges. To quantify the precision of the
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algorithm for different noise levels, we use the F-score and the PPVk
as performance measures (for details see Section 2.7). Figure 28 shows
the performance of the algorithm when projecting onto the protein
side (upper half) and when projecting onto the miRNA side (lower
half). There are three patterns of interest for the protein case: when
both proteins are up-regulated, both proteins are down-regulated, or
one is up- while the other is down-regulated. For miRNAs, we only
have two patterns: the antagonistic co-regulation pattern is omitted
due to the lack of miRNA pairs in the original graphs that would
antagonistically co-regulate proteins.
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Figure 28: F-score and PPVk evaluating the performance of our algorithm
on artificial data sets for increasing noise levels ρ. Results are
shown for eliminated and added edges when projecting onto the
artificial protein and the artificial miRNA side. Red data points
represent the performance of predicting co-up-regulation, green
data points refer to co-down-regulation, and blue ones to antago-
nistic co-regulation. Figure reprinted from [119].

As the results of both measures suggest, the algorithm recovers
the protein modules perfectly in the absence of noise. As the noise
increases, the performance decays slowly. When projecting onto the
protein side, gradual elimination of all edges in the bipartite graph
(ρ = 0% to 100%) covers the whole range of possible prediction qual-
ities. Accordingly, the F-score drops from 1 to 0 at tP = 0.05 (the
threshold used for determining the significance level of the edges that
are included in the projection). The PPVk decreases from 1 to about
0.04 (for the co-up- and co-down-regulation patterns) and to 0.05 (for
the antagonistic co-regulation). These values are the baseline for this
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measure, i.e. the proportion of true positives among all samples. Up
until the point where 20% of all edges are eliminated, the PPVk is al-
most perfect, while the F-score is above 0.9 for all considered patterns.
Thus, the algorithm compensates well for noise. The prediction accu-
racies when projecting onto the miRNA side show similar tendencies:
for 22% noise, the PPVk is about 0.6, while the F-score is 0.67.

The addition of edges exerts a milder effect on the prediction qual-
ity. Thus, for as many as ρ = 100% added edges, there are still many
correct predictions. In this range, when projecting onto the protein
side, the PPVk is above 0.88 and the F-score exceeds 0.85 for all pat-
terns. Projecting onto the miRNA side results in lower, yet still con-
vincing accuracies: the PPVk remains above 0.52, while the F-score
always exceeds 0.45. This is reassuring, as it means that one can still
find significant co-regulation patterns even when also including mild
effects into the bipartite regulation graph.

Although the two chosen quality measures are conceptually differ-
ent, the resulting performance plots are relatively similar. The general
trend is that, for low noise values, the PPVk scores higher than the
F-score. This is due to the different thresholds the two measures use.
While PPVk uses a threshold that is innate to the graph (the number
of edge samples k), for the F-score we fix the threshold according to
the rule of thumb tP = 0.05. This emphasises that the proper choice of
tP for the algorithm is crucial and needs further consideration. Over-
all, we conclude that the algorithm is robust against both investigated
types of noise. Having validated it on artificial data, we proceed to
the analysis of a real biological data set.

9.3 results on the biological data set

As described above, the chosen biological data set contains the ef- Thesis point 12

fect of a genome-wide library of miRNA mimics on the expression of
26 proteins in the EGFR-driven cell cycle pathway in a breast cancer
cell line. Proteins are typically regulated by multiple miRNAs and
miRNAs generally modulate, directly and/or indirectly, the expres-
sion of many proteins (see Figure 25). Given these complex interac-
tions between proteins and miRNAs, it is challenging to differentiate
mild biological effects from technical fluctuations and to identify reg-
ulatory patterns. Our algorithm can be used to detect on the one hand
those pairs of proteins which are systematically co-targeted by a set
of miRNAs, and on the other hand those pairs of miRNAs which sys-
tematically co-target a set of proteins. In the following, we present
results for both cases.
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9.3.1 Consistently co-regulated miRNAs versus their families

First, we search for miRNA pairs which simultaneously and signifi-
cantly regulate the same proteins, i.e. we project the bipartite graph
onto the miRNA side. Out of the obtained three projections, one for
each co-regulation type, we focus on the biologically most relevant
miRNA co-regulation pattern, namely the co-down-regulation. A sim-
ilar analysis can be performed on the other two projections consisting
of co-up-regulations and antagonistic regulations.

The robustness analysis discussed above suggests that the choice of
tP is one of the subtleties of the method that may influence the perfor-
mance of the algorithm considerably. Thus, we first discuss this final
step of the algorithm (see Figure 26E). When interpreting the result
of a statistical analysis, it is common practice to choose the threshold
for the significance level by some rule of thumb. For instance, it is
widely accepted to define the significance level as 0.05 or 0.01. In con-
trast to this arbitrary choice of threshold, a trial and error approach is
possible: one can set different thresholds and choose the best parame-
ter by validating the results against prior knowledge or experiments,
i.e. by using an external reference approach. Since external references
might be difficult to obtain, we suggest the use of intrinsic properties
like the network topology to automatically determine threshold can-
didates1. The idea behind this internal reference approach is motivated
by the core assumption in the analysis of biological networks, namely
that a network’s function is reflected by its structure [139, 28]. To find
the significance threshold, one can thus use a general criterion that
relies on network analytic reasoning and results in a network-specific
threshold that is chosen based on the structure of the network rather
than just on the underlying problem. In an ideal setting, the two meth-
ods (the external and internal reference approaches) can be combined
in order to maximize the efficiency of the predictions.

To choose a proper threshold for miRNA co-regulations, we pro-
pose the internal reference approach and base the decision on intrin-
sic information deduced from the underlying graph. Thus, we search
for an appropriate threshold by inspecting the topology of the sub-
graphs built with different possible thresholds. Topological features
of interest are2:

1. the number of edges normalized by the maximum number of
edges,

2. the number of connected components,

3. the component density of the subgraphs normalized by the max-
imum number of components, where the density of a compo-

1 We have already presented an application of this procedure in Section 8.3.2.
2 For more details about these topological features see Section 2.1 and Section 2.2.
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tB = 0.01 tB = 0.05 tB = 0.1
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Figure 29: Deducing meaningful tP significance thresholds from topological
measures. Shown are four measures against the tP thresholds for
the p-values in the projection. The projections onto the miRNA
side are constructed from the bipartite graphs with thresholds tB
corresponding to a p-value of 0.01, 0.05 and 0.10. Figure reprinted
from [119].

nent is defined as the total number of its edges divided by the
number of possible edges, and

4. the local clustering coefficient that quantifies the probability
that any two of a node’s neighbours are connected themselves.
The clustering coefficient of a graph is the average local cluster-
ing coefficient of its nodes.

As shown in Figure 29, monitoring these features at varying thresh-
old levels, we observe nontrivial changes in the structure of the sub-
graphs, indicating the more informative threshold candidates. The
thresholds are considered optimal when there is a strong increase
or local maximum in the average local clustering coefficient and in
the global component density, while the number of components is
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tB 0.10 0.05 0.01

tP 0.0440 0.0459 0.0509

number of miRNAs 437 322 151

number of groups 33 42 31

Table 5: Properties of the co-down-regulation projections obtained from bi-
partite graphs with different tB thresholds. Shown are the signif-
icance thresholds tP for the edges in the corresponding co-down-
regulation graphs alongside the number of miRNAs and groups of
size > 1 obtained at those thresholds. Table reprinted from [119].

still considerable. With respect to miRNA co-regulation, these criteria
assure increased transitivity and best reveal the local connection pat-
terns of the individual miRNAs. Accordingly, for our data we choose
the tP thresholds shown in Table 5. Interestingly, for this data set, the
thresholds for the statistical significance of the co-regulations do not
differ considerably for altered significance levels tB of the edges in
the bipartite graph.

Analysing the effect of the bipartite graph threshold on the result-
ing co-regulation graphs, we observe that as tB gets stricter, these
projections contain a decreasing number of miRNAs that are grouped
in several components of size > 1 (see Table 5). First, to reinforce the
assumption that the algorithm detects miRNA groups which have
similar regulation patterns, we return to the bipartite graph model
and analyse it with respect to the newly acquired grouping of the
miRNAs. As shown in Figure 30, based on the number of proteins
that are co-targeted by the miRNAs contained in the found groups,
we can differentiate between three types of groups:

1. Groups of miRNAs that target one single protein (section I in
Figure 30A). Although they do not provide new biological in-
sights, these groups are reassuring findings since they obviously
satisfy the criterion of non-random co-regulation.

2. Groups of miRNAs that have 2 to 8 protein targets (section
II in Figure 30A and magnified in Figure 30B). These groups
represent nontrivial co-regulations and should be central to fur-
ther experimental investigations aimed at finding candidates for
new tumour suppressors.

3. One larger group that contains several miRNAs with multiple
targets (section III in Figure 30A). Here, the interconnectedness
in the bipartite graph is highly complex and requires further re-
search. For instance, the group could be split up by lowering the
projection threshold tP or using a subsequent clustering algo-
rithm which detects subgroups based on the p-values assigned
to each miRNA pair.
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miRNAs arranged by groups

  hsa-miR-933

hsa-miR-769-5p  

  hsa-miR-768-5p

  hsa-miR-767-3p

hsa-miR-624  

hsa-miR-555  

  hsa-miR-550

hsa-miR-526b*

  hsa-miR-522
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Figure 30: (A) miRNA groups obtained by our algorithm from the bipartite
graph with tB = 0.05 and tP = 0.0459. Each square represents
a down-regulation in the bipartite graph. Shown are the groups
with one exclusive protein target (section I), with 2 to 8 targets
(section II, coloured regulations), and with multiple targets (sec-
tion III). (B) Magnification of section II containing nontrivial co-
regulations. In accordance with (A), colours indicate the differ-
ent groups. (C) The group containing hsa-miR-489, hsa-miR-522,
hsa-miR-200c, hsa-miR-550, and hsa-miR-200b (purple nodes) to-
gether with the co-regulating miRNAs. Co-down-regulation is
shown in green, co-up-regulation in red, while antagonistic regu-
lation is coloured blue and is directed from the down-regulating
miRNA to the up-regulating miRNA. Figure adapted from [119].

Figure 30C shows an exemplary excerpt of the co-regulation graph
with typical patterns for the entire graph. The subgraph is constructed
around the five miRNAs belonging to one of the found groups by
the addition of the co-regulating miRNAs. Accordingly, co-up- and
co-down-regulations define tightly connected clusters. Antagonistic
co-regulations occur between these clusters, systematically connecting
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enriched miRNA miRNAs of the family phyp

family that are in the group as well

mir-99 hsa-miR-100, hsa-miR-99a, 0.001

hsa-miR-99b

let-7 hsa-let-7f, hsa-let-7f-1*, 0.029

hsa-let-7f-2*, hsa-let-7g*,

hsa-let-7i*

mir-146 hsa-miR-146a, hsa-miR-146b 0.005

mir-221 hsa-miR-221, hsa-miR-222 0.011

mir-29 hsa-miR-29a, hsa-miR-29c 0.001

mir-506 hsa-miR-509-3-5p, hsa-miR-510 0.018

mir-8 hsa-miR-200b, hsa-miR-200c 0.001

mir-515 hsa-miR-515-3p, hsa-miR-520f 0.021

Table 6: miRNA groups identified by the algorithm in which the fami-
lies are significantly over-represented. For our analysis, we con-
sider the seed sequences of the groups obtained at the regulation
stringency threshold tB = 0.05. The statistical significance of over-
representation was assessed by a hypergeometric test, resulting in
the p-value phyp. Table adapted from [119].

co-down-regulated clusters with co-up-regulated clusters, i.e. consis-
tently with their direction.

We expect that the membership of the miRNAs in the identified
groups is biologically meaningful. To test this, we analyse the groups
in relation to the assignment of miRNAs into families according to
their seed sequence—a non-disrupted subsequence between the 2nd
and 7th bases of the mature miRNA, which is believed to be deci-
sive for RNA binding. Specifically, we compare the seed sequences
of miRNAs belonging to the same group. To quantify the similarity
of two miRNAs, we use the edit distance of their seed sequences, i.e.
the minimum number of alterations (insert, delete, or exchange of a
nucleotide) required to transform one sequence into the other [143].
The similarity of the miRNAs which the algorithm places in the same
group is then defined as the average pairwise edit distance between
the miRNAs. To test whether the sequence similarity within a given
group is statistically significant, we conduct simulations with boot-
strapping. In some of the cases, the edit distances suggest a significant
similarity between the sequences in the identified groups. As shown
in Table 6, a hypergeometric test reveals that for tB = 0.05 there
are 8 over-represented families in the groups. Four of these families
are reported to be oncogene or tumour suppressors in breast cancer,
while two of them, miR-99 and miR-506, play a role in prostate/head-
and-neck cancer and melanoma, respectively. Thus, by using the al-
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gorithm, we can extract miRNAs and families which have already es-
tablished roles in the pathogenesis of breast cancer. This suggests the
ability of our algorithm to identify the potentially most pathologically-
relevant miRNAs.

9.3.2 Co-regulation of proteins from the same functional module

So far, little is known about the physiological relevance of protein
pairs that are co-regulated by miRNAs. It is believed that such co-
regulations within a network confer signalling robustness (e.g. damp-
ening and buffering effects) and can mediate the crosstalk of differ-
ent signalling pathways [121]. To better understand the mechanisms
underlying co-regulation, we now project the miRNA–protein inter-
action network to the protein side, thereby identifying significant co-
regulations of proteins.

As discussed in Section 9.1.1, the bipartite graph is determined by
the choice of the threshold tB. However, depending on how many and
which edges are added to the bipartite model, different co-regulations
might appear to be significant. To limit this effect, we combine the re-
sults obtained for different choices of tB by building a consensus graph
based on the co-regulations that are significant over a broad range of
selected threshold combinations. To keep only those co-regulations
that are statistically significant under different tB thresholds, we choose
three relatively relaxed z-score thresholds for tB, namely 1.28, 1.64,
and 1.96. We project the three resulting bipartite graphs to the pro-
tein side and, similarly to the miRNA case, monitor the change of
the average clustering coefficient with increasing tP to find thresh-
old candidates. From these we deduce a set of threshold levels. The
consensus graph corresponding to a given level then consists of the
edges that are contained in all three graphs at the given level.

Figure 31: Consensus graph of co-regulated proteins. Cell cycle proteins
are CDK4, p27/KIP1, Cyclin D1, and RB1 (black nodes). The
green edges between the proteins show the co-down-regulation
of two proteins while the red edges show the co-up-regulation.
The directed blue edges indicates that the source node is
down-regulated, whereas the target node is up-regulated. Figure
adapted from [258].
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rank miRNA rank miRNA

1 miR-124 6 miR-147

2 miR-892b 7 miR-491

3 miR-124* 8 miR-342

4 miR-193-3p 9 miR-518e*

5 miR-17-3p 10 miR-769-5p

Table 7: Ranking of the miRNAs based on their frequency in the consensus
graphs. miRNAs that were chosen for experimental validation are
highlighted in bold.

The obtained consensus graph with the most stringent threshold is
shown in Figure 31. We observe that most edges between the cell cy-
cle proteins CDK4, p27/KIP1, Cyclin D1, and RB1 are present in the
consensus graph, indicating that their co-regulation is robust. Fur-
thermore, the miRNAs that co-regulate the cell cycle proteins show
an interesting pattern, which is biologically relevant: they up-regulate
the expression of the CDK inhibitor protein p27/Kip1, while down-
regulating CDK4 and RB1 which would, in turn, inhibit cell cycle
progression. Furthermore, PIK3CA and AKT2 are co-down-regulated
with RB1, while PLCG1 is significantly co-down-regulated with CDK4

by dozens of miRNAs. Overall, these results indicate that the proteins,
which belong to the same known functional module (here: EGFR-
driven cell cycle module) are systematically co-regulated by certain
miRNAs.

Finally, we wish to understand which miRNAs are responsible forThesis point 13

these protein co-regulations. For this purpose, we consider again the
bipartite graph model and for each pair of proteins with a statistically
significant co-regulation, we record the miRNAs with which they are
connected at the specific threshold tB in the bipartite graph. By this
procedure we obtain for each miRNA the frequency of its participa-
tion in the consensus graph. Ranking then the miRNAs according to
this frequency, we obtain those that have the most important regula-
ting role altogether. Table 7 shows the 10 miRNAs located at the top
of the ranking. miR-124 (rank 1), miR-193a-3p (rank 4), and miR-147

(rank 6) are among those with the highest frequency, indicating that
they should, when overexpressed, alter cell cycle progression patterns.
Wet laboratory experiments of our collaborators have confirmed the
validity of this prediction [258].

9.4 advantages of our method over existing approaches

High-throughput studies that aim at exploiting regulatory networks
between two types of biological entities have become feasible due
to technological development and community efforts. Recently, as
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the ENCODE project reached its milestone, several data sets and ac-
companying papers were published (for a review see Reference [76]),
providing data in various settings that can be modelled as bipartite
graphs. Some examples are transcription factors binding to DNA pro-
moter regions [89], gene-coding RNAs and co-transcriptional long
non-coding RNAs [250], as well as single-nucleotide polymorphisms
(SNPs) and diseases [227]. Despite their distinct nature, all these data
sets can be analysed by our algorithm to identify significant co-inter-
action patterns. Previous approaches of finding such patterns include
various clustering methods, most prominently hierarchical clustering
and k-means clustering (cf. Section 2.2). Our approach differs from
these methods in four important aspects:

1. It applies thresholding when building the bipartite graph model.
We reckon that this step can be both advantageous and risky. By
using a hard threshold, on the one hand we filter out noise, but
on the other we may disregard potentially useful information
by eliminating edges. However, the robustness test on artificial
graphs suggests that our method is highly robust against ran-
domly added edges (noise included due to a loose threshold)
or eliminated edges (relevant regulation lost because of a strict
threshold). This gives us flexibility in choosing the threshold
tB, suggesting that small deviations of the threshold have no
considerable impact on the results obtained by our algorithm.

2. The co-regulation graph with the threshold tP is selected by
tracing changes in the graph characteristics with respect to the
threshold choice. Instead of relying on rules of thumb, this al-
lows for a threshold-selection which retains a maximum of in-
formation obtainable from the primary data.

3. Classical hierarchical clustering returns a tree in which each bi-
ological entity (e.g. miRNA) is connected to another entity via
an internal node. The k-means clustering results in groups of
nodes without internal edges. In comparison, our method pro-
vides an intuitive way of understanding co-regulations within
the groups.

4. For each identified co-regulation, it reports an empirical p-value
which quantifies the likelihood of observing the given co-regula-
tion pattern in random graphs. This is neither the case for hi-
erarchical clustering nor for k-means. Therefore, our method
makes it possible to compare the statistical significance of the
co-regulations within one network as well as between different
networks. Comparing significant co-regulation patterns instead
of comparing top hits may help in revealing the mechanisms
underlying observations of interest, as pathway and network
analysis have demonstrated in microarray analysis [241].
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Besides these classical clustering methods, weighted correlation net-
work analysis (WGCNA) has been proposed [276] and successfully
applied in gene expression microarray analysis [262]. WGCNA as-
sumes a scale-free topology of the underlying network. In contrast,
our method does not make any assumption regarding the structure
of the data. Thus, we believe that it offers an unbiased analysis as com-
pared to WGCNA. A thorough comparison between our method and
other existing approaches on different bipartite data sets with ground
truth represents the main direction for future research. An exemplary
comparison of our method with the Pearson correlation of the ex-
pression values, i.e. one of the standard methods for evaluating gene
co-expression [165], showed that our algorithm outperforms this on
artificial data sets: When identifying co-regulated proteins from data
sets containing 50% noise in form of added edges, the Pearson corre-
lation achieves a PPV of 0.85, while our method has a performance of
0.96.

9.5 the software sicop

In order to enable experimentalists to use our method on their ownThesis point 14

data, we provide an open source tool that implements the algorithm.
SICOP accepts several common input formats and supports different
output formats to facilitate additional analysis and visualization. The
key features of SICOP include a user-friendly interface, easy installa-
tion, and platform-independence.

Existing tools for the analysis of bipartite graphs like the R pack-
ages bipartite [71] or networksis [10] are mainly tailored to the purpose
of understanding principles in community ecology. Systems biology
applications pose three important challenges that these tools cannot
cope with: 1) large-scale experiments that are often prone to noise,
2) mild interaction effects that are difficult to detect, and 3) simultane-
ously observed distinct types of interactions. The presented method
overcomes these issues and SICOP implements it as an easy-to-use
client-side tool. The most important functionalities of SICOP are:

data import from diverse input file formats The tool
accepts a list of the observed interactions stored in a text file, a matrix
containing the measured level of all interactions in a csv file (comma
separated value), or a graph representation of the network in a gml file
(graph mark-up language) as produced by graph editing programs
such as yEd.

simplex and duplex network support and precomputa-
tional edge filtering Given the experimental data, SICOP first
constructs the bipartite graph model. If the observed interactions are
assigned weights, the user may add a threshold to filter them. If there
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are two types of interaction, the user can treat them as a single type
(simplex network data) or use both of them (duplex network data).

statistical significance assessment of co-interactions

SICOP detects patterns in the bipartite graph that are significant un-
der a null model defined by the fixed degree sequence ensemble as-
sociated with the original graph (see Section 3.3.4). The statistical sig-
nificance of the individual co-regulations is quantified by a z-score or
a p-value (see Section 4.3).

multiple data export formats The same edge selection op-
tions are available when exporting the data as when importing it.
Thus, the user may create and store multiple networks with different
threshold values corresponding to different p-values or z-scores. The
obtained co-regulation networks may be exported in any of the input
file formats or alternatively as graphml.

high configurability Besides the key functionalities described
above, SICOP allows more confident users to modify the parameter
values. The default values are based on the theoretical and empirical
considerations presented in Chapter 3 and are automatically adjusted
to the size of the input data. Increasing the pre-set values enhances
accuracy but comes at the cost of additional computational time. See
Reference [238] or consult the manual and the download page for
further information [237].

SICOP can be applied to a wide range of data sets, such as transcrip-
tion factors binding to DNAs, gene-coding RNAs interacting with co-
transcriptional non-coding RNAs, genes in relation with diseases, or
diseases and their symptoms. Designed as a flexible tool, it offers an
effortless way to better explore such data.

9.6 conclusions

Since the early days of genetics and molecular biology, it has been
noted that proteins can be regulated by more than one regulator and
one regulator may in turn affect several proteins. In many situations,
a regulator or a given experimental condition exerts only a mild ef-
fect on an observed protein, which might be difficult to differentiate
from a random fluctuation. To address this complication, this chap-
ter discussed a network analytic method, which is rooted in the ob-
servation that if proteins are "collaborating" with each other to co-
erce a common biological function, then this should be reflected in
the way they are co-regulated. Based on this assumption, we search
for pairs of proteins or protein-regulating agents, which are signif-
icantly co-regulated under many different experimental conditions.
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In a biological system with many layers of regulatory networks, co-
regulations may contribute to the robustness of the system, since the
regulation can be resistant to partial losses of functional members
due to gene deletion, mutation, or stochastic expression regulations.
Understanding co-regulation is vital in establishing an effective and
stable modulation of the molecular target and is thus important for
cellular engineering and drug research.

Given a complex interconnected system of proteins and regula-
tors, our method finds statistically significant co-regulations. We have
shown on artificial data sets that systematic co-regulations are de-
tected even in the presence of random noise in the form of eliminated
or added regulations. To test the algorithm on a real biological data
set, we applied it to the EGFR-driven cell cycle system regulated by
miRNAs.

Focusing on miRNA co-regulation, we showed with sequence anal-
ysis and miRNA family enrichment analysis that the theory, accord-
ing to which miRNA targeting is sequence-dependent, indeed par-
tially explains the observed co-regulations obtained by the method.
However, the results of the algorithm show that even miRNAs with
distinct seed regions can induce strong co-regulations, which may be
caused by the co-targeting of upstream transcription factors or sepa-
rate targeting of canalized pathways. This indicates the complexity of
the miRNA regulatory machinery, since miRNAs from different fam-
ilies may target different genes while yielding the same output. To
tackle this complexity, further experiments are needed, such as profil-
ing gene expression by over-expressing miRNAs of the same groups.
Our results do not only yield proteomic evidences that sequence simi-
larity of miRNAs determine their targets, but also provide hypotheses
of other types of co-targeting that can be tested experimentally. Thus,
potential therapeutic applications have to consider miRNA sets with
similar co-regulation patterns. Based on our observations, we there-
fore argue that systematic approaches examining regulations between
two biological components (miRNA and EGFR pathway proteins in
our case) can be essential to the detection of co-regulation patterns
and in the design of multiplex targeting strategies.

Concerning protein co-regulation, we could show that there are
consistent regulatory patterns in which miRNAs simultaneously and
significantly co-regulate several proteins, which act in the same func-
tional module. This approach also enabled us to identify and sub-
sequently validate experimentally three miRNAs (miR-124, miR-147,
and miR-193a-3p) as novel tumour suppressors that co-target the
EGFR-driven cell cycle proteins and inhibit cell cycle progression and
proliferation in breast cancer.

The results obtained on the EGFR-driven cell cycle system trans-
fected with miRNAs illustrate merely one systems biology context
in which our method can be used. The method can be applied as
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long as the system of interest can be modelled as a bipartite graph
and the research question can be meaningfully approached in terms
of co-occurrences of nodes of the same type. The statistically signifi-
cant co-occurrences identified by our method are expected to unravel
functional groups which could be profitably analysed from this per-
spective.

9.7 summary

Interactions between various types of molecules that regulate crucial
cellular processes are extensively investigated by high-throughput ex-
periments and require dedicated computational methods for the anal-
ysis of the resulting data. In many cases, this data can be represented
as a bipartite graph because it describes interactions between entities
of two different types such as the influence of different experimental
conditions on cellular variables or the direct interaction between re-
ceptors and their activators/inhibitors. One of the major challenges
in the study of such noisy data sets is the statistical evaluation of the
relationship between two entities of the same type—a task known in
the literature as the one-mode projection of bipartite graphs or as the
inference of association networks.

In this chapter we have presented a method for the detection of
pairs of entities with a statistically significant relationship. We showed
the stability of the proposed method on artificial data sets: when ran-
domly adding and deleting observations, we obtained reliable results
even with noise exceeding the level that can be expected in large-
scale experiments. Subsequently, we illustrated the viability of the
method based on the analysis of a proteomic screening data set to re-
veal regulatory patterns of human microRNAs that target proteins in
the EGFR-driven cell cycle signalling system. Since statistically signifi-
cant relationships may indicate functional synergy, they hold promise
in drug target identification and therapeutic development. To reduce
the amount of required experiments, we also provide an implementa-
tion of our algorithm that offers an effortless way of exploring such
data to its full potential and is thus a flexible, novel tool in the arsenal
of high-throughput screening analysis.
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C O N C L U S I O N S A N D O U T L O O K

Inferring
connections in
diverse large
networks

In the work covered in this thesis, we addressed the problem of infer-
ring connections in various networks. We identified mild co-regulation
effects in biological networks, filtered physical interactions between
proteins, predicted social ties based on online social networks, and
deduced film similarities in a market basket setting. Despite the very
diverse nature of the studied systems, we described them in terms of
a common network analytic framework. We modelled the underlying
systems as graphs that contained one or more types of edges between
one or more types of nodes. Exploiting these models to their full po- Methodological

developmentstential required selecting, combining, adapting, and developing novel
exploratory methods and algorithmic solutions. Accordingly, we com-
pared a set of node similarity measures, which are based on structural
equivalence, and showed that the measures which use the fixed de-
gree sequence model as null model are better suited for assessing
node similarity than their popular alternatives. Our experiments on
biological and social networks confirmed that there exists a mean-
ingful correlation between the topology of the graph and the mech-
anisms responsible for the formation of edges. This finding empha-
sizes our best-performing measure as a valuable unsupervised scor-
ing method in exploratory settings. On the other hand, for scenarios
in which ground truth information is available, we proposed the use
of similarity measures to train a random forest classifier, thereby ap-
proaching the edge prediction problem in a supervised manner. To
address the challenges represented by graphs with multiple types of
edges, we extended node similarity measures to this case and pre-
sented a new method for the projection of multiplex bipartite graphs
in which at most one type of edge is admitted between two nodes.
The adapted and developed methods proved to be highly flexible and
generalizable to other applications both within and beyond the fields
of the domain-specific problems around which they were created. The central findings

of our projectsRegarding our project-specific findings, our method for the study
of the miRNA regulation of the EGFR/cell cycle proteins detected
three miRNAs as novel potential tumour suppressors, which were
validated experimentally by our collaborators and shown to indeed
hinder the growth of an especially lethal type of breast cancer. Our ap-
proach to the prediction of relationships between non-members of on-
line social networking platforms correctly inferred 40% of the connec-
tions between non-members. This result highlights the implications
of a common practice where members of such platforms provide re-
lational data about non-members on a constant basis, often without
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their consent. In the market basket setting, our identification of sim-
ilar films was successful for 76% of the pairs of TV shows available
in the ground truth data set and 47% of the contained pairs of fea-
ture films. The additional multiplex analysis enabled us to analyse
different aspects of film similarity and contributed a number of ob-
servations and measurements about the important interplay between
these aspects.

A summary of the obtained results, concluding remarks, and di-
rections for future research concerning each individual project were
already given at the end of the respective chapters. In the following,
we thus focus on more general challenges that relate to our frame-
work in a broader sense.

challenges and perspectives

topological node similarity In this thesis, we considered
topological node similarity measures to validate the presence or pre-
dict the emergence of an edge between two nodes. Therefore, we only
used structural details to deduce potential functional information. Al-
though this has provided valuable insights for the considered appli-
cations, the correlation between structure and function requires fur-
ther explorations, for instance by the incorporation of additional data
wherever possible (for some examples see References [107, 67]). Fur-
thermore, we only addressed those topological measures that assess
local structure in the neighbourhood of the nodes. Although some
studies use longer-range information [147; 129, p. 201], it is still un-
clear to which extent this improves inference.

multiplex networks with different types of entities As
shown in this thesis, the majority of the systems of interest are only
rarely reducible to graphs that contain solely a single type of edge
between a single type of node [53]. This renders the study of mul-
tiplex graphs with different types of nodes indispensable, as they
model ubiquitous concepts inherent to real-world systems [246, 182,
69, 98, 59]. Due to the increasing availability of large-scale data sets
that record various types of connections between different types of
entities, a multitude of problem-specific approaches can be expected
to appear. For example, systems biology already advances integrated
studies that analyse various types of interactions (for instance regu-
latory, structural, and catalytic) among different cellular components
(genes, proteins, and metabolites) [225]. Despite these endeavours, a
standardized approach consisting of rigorous and universal methods
for the analysis of such networks is still missing and increasingly
needed. As such, it represents a key direction for future research.



conclusions and outlook 147

temporal aspects Our focus in this thesis has been on snap-
shots of networks that model either instantaneous or time-averaged
views on the underlying system. Taking temporal aspects into ac-
count would lead to more accurate modelling and to a better under-
standing of processes on these networks [112]. Like network topol-
ogy, the temporal structure of connection activations can affect the
dynamics of disease contagion on the network of patients or of in-
formation diffusion on a communication network for instance. There- Karl-Steinbuch
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fore, there has been an increased interest in the analysis of temporal
networks in recent years [22, 133, 199, 142, 111, 182]. In a further
project, independent from this thesis, we took a step in this direction.
There, we modelled a citation network by a multiplex graph with
time-ordered nodes and identified central nodes. While this stipend-
supported project is still ongoing, it already provided insights into
this type of network, not least due to the methods developed for this
thesis.

co-evolution of networks When predicting connections, both
the context and certain attributes of the involved entities may affect
the formation of further connections. To assure a unified framework,
we considered elements of the context and the discrete attributes in
terms of networks. This allowed us to construct bipartite graph mod-
els in which the nodes of one set modelled the entities of interest,
while the nodes of the other set modelled the elements of the context
or the attributes. We then used the bipartite graph as a proxy to infer
the connections. Moving beyond this, the combination of such bipar-
tite graphs with graphs that model observed connections between
the entities for which further predictions are desired, is a rewarding
avenue for future research. For instance, the co-evolution of social
and affiliation networks modelling the participation of individuals in
different activities can shed light on the mechanisms behind social
influence and selection [74, p. 86–88]. Similarly, in a biological set-
ting, the joint consideration of known functional relationships among
genes and gene regulation data could be rewarding. Moreover, ef-
fects on the cellular level alongside environmental and social influ-
ences can be considered to represent a key step towards personalized
medicine [23]. Following this trend of jointly considering different
networks, we expect an increased scientific interest in the study of
their co-evolution.

interdisciplinary work The highly interdisciplinary work be-
hind this thesis builds on a broad network analytic framework which
proved to be just as useful in the social sciences as in molecular biol-
ogy. Although such interdisciplinary endeavours are very beneficial,
the differences between the disciplines persist. In the words of Bor-
gatti [38]:
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"To a physical scientist, network research in the social sci-
ences is descriptive because measures of network proper-
ties are often taken at face value and not compared to
expected values generated by a theoretical model such
as the Erdős-Rényi random graphs. For their part, social
scientists have reacted to this practice with considerable
bemusement. To them, baseline models like simple ran-
dom graphs seem naïve in the extreme—like comparing
the structure of a skyscraper to a random distribution of
the same quantities of materials."

As emphasized in this statement, network analytic procedures can-
not be applied "out of the box" and require problem-specific adapta-
tion. The methods for edge inference presented in this thesis are no
different. They are based on the number of common neighbours of
two individual nodes in the graph that models the studied system.
Therefore, only those networks can be analysed in a similar fashion,
in which the concept of similarity through shared neighbourhood
is meaningful within the investigated context. Consider for example
the widely studied concept of word adjacency in sentences. The prob-
abilistic study of longer sequences of n consecutive words, the so-
called n-grams, has led to advances in statistical natural language
parsing [164] and provided novel insights into the evolution of gram-
mar [174]. However, a network of words, which is constructed by
connecting each pair of words that occur successively in a text, is not
meaningful, since even syntactic dependencies between words span
greater distances. This example shows that a network representation
is not always required and stresses the need for a network modelling
with appropriate definitions of entity and connection, as well as a
clearly specified set of methodologies and algorithms for obtaining
significant and reliable results.

After this note of caution, we emphasize that correctly used net-
work analysis provided a novel perspective on old questions and
inspired valuable new solutions for a wide range of problems. As
the field itself evolved from different disciplines and becomes richer
through every scientific area with which it intersects, so will the gen-
eral framework presented here. I expect it to contribute to the develop-
ments that yield a better understanding and a wide-spread awareness
of diverse aspects of our world.



L I S T O F N O TAT I O N S A N D A B B R E V I AT I O N S

G = (V,E) non-bipartite graph with node set V and edge set E . . . .13

B = (L∪R,E) bipartite graph with node sets L and R, edge set E 15

(v,w) undirected edge between nodes v and w . . . . . . . . . . . . . . . . . . . 13

(v→ w) directed edge between nodes v and w . . . . . . . . . . . . . . . . . . . 13

ω : E→ R weight function for weighted graphs . . . . . . . . . . . . . . . . . . 14

N(v) neighbour set or neighbourhood of node v . . . . . . . . . . . . . . . . . 14

d(v) degree of a node v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

D degree sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A adjacency matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A+v v-th column sum of matrix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Av+ v-th row sum of matrix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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