
I N A U G U R A L – D I S S E R TAT I O N

eingereicht bei der

Naturwissenschaftlich–Mathematischen Gesamtfakultät

der

R U P R E C H T– K A R L S – U N I V E R S I T Ä T

H E I D E L B E R G

zur Erlangung der

Doktorwürde der Naturwissenschaften

vorgelegt von

Dipl.–Math. Michael Jung

aus Heidelberg

Tag der mündlichen Prüfung

.

Relaxations and Approximations for

Mixed-Integer Optimal Control

Eingereicht am: 25.10.2013
1. Betreuer: Prof. Dr. Sebastian Sager, Universität Magdeburg
2. Betreuer: Prof. Dr. Gerhard Reinelt, Universität Heidelberg

Zusammenfassung

Diese Arbeit behandelt verschiedene Aspekte der Klasse gemischt-ganzzahliger nichtlinearer
Optimalsteuerungsprobleme (MIOCPs). Dies sind Optimierungsprobleme, die die Problema-
tik zugrundeliegender dynamischer Prozesse mit kombinatorischen Entscheidungen verbin-
den. Typischerweise sind diese Entscheidungen Schaltentscheidungen zwischen den verschie-
denen Operationsmodi des dynamischen Systems.
In den letzten Jahrzehnten haben sich direkte Methoden als die Löser von MIOCPs durch-
gesetzt. Die Formulierung einer gültigen, engen und verlässlichen Relaxierung der Ganzzah-
ligkeit, also die Formulierung eines Modells für gebrochene Werte, spielt eine wichtige Rolle
bei diesen direkten Lösungsmethoden. Wir geben ausführlichen Einblick in verschiedene Vor-
gehen zur Relaxierung von MIOCPs und vergleichen sie im Hinblick auf ihre zugehörigen
Strukturen. Insbesondere sind diese die Lösungsstrukturen und Eigenschaften wie Konvexi-
tät, Problemgröße und numerisches Verhalten. Aus diesen strukturellen Eigenschaften folgen
direkt einige nötige Spezifikationen eines Lösers. Zusätzlich wird das für diese Klasse typische
Problem von häufigem Springen zwischen verschiedenen Systemmodi durch die Modellierung
und anschließende Beschränkung des Umschaltprozesses direkt angegangen.
Eine der Relaxierungen für MIOCPs ist die äußere Konvexifizierung bei der die Binärvaria-
blen nur affin eingehen. Für diese Relaxierung greifen wir das von Sager als Teil eines Zer-
legungsansatzes für MIOCPs mit affinen ganzzahligen Steuerungen entwickelte Steuerungs-
approximationsproblem im integralen Sinne auf. Es beschreibt die optimale Approximation
von fraktionellen Steuerungen durch ganzzahlige Steuerungen, so dass der zugehörige dy-
namische Prozess möglichst wenig verändert wird. Wir entwickeln eine neue Heuristik für
das mehrdimensionale Problem, die zum ersten mal eine Schranke liefert, die nur von dem
Steuerungsgitter und nicht mehr von der Anzahl der Steuerungen abhängt. Für eine Verallge-
meinerung des Steuerungsapproximationsproblems durch zusätzliche Beschränkungen leiten
wir einen maßgeschneiderten Branch-and-Bound-Algorithmus her, dem die Eigenschaften der
Lagrange-Relaxierung des eindimensionalen Problems zugrunde liegen. Dieser Algorithmus
schlägt moderne, kommerzielle Löser für gemischt-ganzzahlige lineare Programme (MILPs)
für dieses spezielle Approximationsproblem um mehrere Größenordnungen.
Insgesamt stellen wir diverse, teilweise neue Modellierungsansätze für MIOCPs mit den sich
ergebenden strukturellen Eigenschaften vor. Darauf aufbauend entwickeln wir neue Theorien
zur Approximation von bestimmten relaxierten Lösungen. Wir gehen auch auf die effiziente
Implementierung der sich daraus ergebenden strukturausnutzenden Algorithmen ein. Da-
durch wird ein tieferes und besseres Verständnis von MIOCPs entwickelt. Die Praktikabilität
der theoretischen Beobachtungen zeigen wir anhand von vier prototypischen Anwendungen.
Die vorgestellten Modellierungen und Algorithmen ermöglichen auf ihrer Basis die direkte
Entwicklung von Decision Support und Analyse Tools für die Praxis.

v

Abstract

This thesis treats different aspects of the class of Mixed-Integer Optimal Control Problems
(MIOCPs). These are optimization problems that combine the difficulties of underlying dy-
namic processes with combinatorial decisions. Typically, these combinatorial decisions are
realized as switching decisions between the system’s different operations modes.
During the last decades, direct methods emerged as the state-of-the-art solvers for MIOCPs.
The formulation of a valid, tight and dependable integral relaxation, i.e., the formulation of
a model for fractional values, plays an important role for these direct solution methods. We
give detailed insight into several relaxation approaches for MIOCPs and compare them with
regard to their respective structures. In particular, these are the typical solution’s structures
and properties as convexity, problem size and numerical behavior. From these structural
properties, we deduce some required specifications of a solver. Additionally, the modeling
and subsequent limitation of the switching process directly tackle the class-specific typical
issue of chattering solutions.
One of the relaxation methods for MIOCPs is the outer convexification, where the binary
variables only enter affinely. For the approximation of this relaxation’s solution, we took
up on the control approximation problem in integral sense derived by Sager as part of a
decomposition approach for MIOCPs with affine binary controls. This problem describes the
optimal approximation of fractional controls with binary controls such that the corresponding
dynamic process is changed as little as possible. For the multi-dimensional problem, we
developed a new heuristic, which for the first time gives a bound that only depends on the
control grid and not anymore on the number of the system’s controls. For the generalization of
the control approximation problem with additional constraints, we derived a tailored branch-
and-bound algorithm, which is based on the properties of the Lagrangian relaxation of the
one-dimensional problem. This algorithm beats state-of-the-art commercial solvers for Mixed-
Integer Linear Programs (MILPs) for this special approximation problem by several orders of
magnitude.
Overall, we present several, partially new modeling approaches for MIOCPs together with the
accompanying structural properties. On this basis, we develop new theories for the approxi-
mation of certain relaxed solutions. We discuss the efficient implementation of the resulting
structure exploiting algorithms. This leads to a deeper and better understanding of MIOCPs.
We show the practicability of the theoretical observations with the help of four prototypical
problems. The presented methods and algorithms allow on their basis the direct development
of decision support and analysis tools in practice.

vii

Danksagung

Mein aufrichtiger Dank gilt meinen Mentoren Professor Dr. Sebastian Sager, Professor Dr. Ger-
hard Reinelt, und Dr. Christian Kirches für die umfassende Unterstützung bei allen Teilen der
Arbeit, und auch für das gegebene Vertrauen, das mich in meinem Tun immer bestärkt hat.
Mit ihrem Wissen und ihrer Erfahrung haben sie den Grundstein meiner Arbeit gelegt und
mich den gesamten Weg begleitet. Vor allem während der intensiven Phasen hat mir die ge-
meinsame Projektarbeit eine enorme Freude bereitet.

Das hervorragende akademische Umfeld der Ruprecht-Karls-Universität Heidelberg hat am
Abschluss der Arbeit großen Anteil. Insbesondere war es spannend, bei der Entstehung der
Nachwuchsforschungsgruppe Mathematical and Computational Optimization dabei zu sein
und den Übergang in die Nachfolgegruppe Mathematical Algorithmic Optimization mitzuerle-
ben. Die gemeinsamen Diskussionen in dieser Gruppe haben mir oft neue Perspektiven gege-
ben und maßgeblich zur Entstehung der Arbeit beigetragen. Es war schön, Mitglied der Groß-
familie der Arbeitsgruppe Simulation und Optimierung mit allen verwandten Nachwuchsgrup-
pen zu sein. Herausheben möchte ich aus diesen Gruppen Holger Diedam, Jonas Rauch und
Bernat Duran für die fruchtbaren Gedankenaustausche und die gemeinsam verbrachte Zeit.
Auch gilt mein Dank Kathrin Hatz – das gemeinsame Durchleiden der Schreibensphase hat
diese deutlich ertäglicher gemacht.

Danken möchte ich explizit auch Alberto Caprara, Moritz Diehl und Sebastian Sager, die mich
– jeder auf seine Weise – überhaupt erst dazu gebracht haben zu promovieren.

Für die finanzielle Unterstützung möchte ich mich bei der Heidelberg Graduate School of Ma-
thematical and Computational Methods for the Sciences und der Otto-von-Guericke-Universität
Magdeburg (über das Projekt EMBOCON) bedanken.

Meinen Eltern Hans und Dagmar und meiner Schwester Birgit möchte ich für die stets be-
dingungslose Unterstützung und Liebe danken. Sie haben mich zu dem gemacht, der ich bin.

Mein letzter Dank geht an meine Tochter Hanna, die mein Leben so sehr verschönert hat,
für ihre ansteckende Lebensfreude und Begeisterung und an meine Frau Lena für die tiefe
Liebe und Unterstützung in jeglicher Hinsicht, aber auch für den einen oder anderen nötigen
Schubs in die richtige Richtung.

„Je mehr du gedacht, je mehr du getan hast, desto länger hast du gelebt.“

Immanuel Kant

ix

Contents

1 Introduction 1

2 Optimal Control 9

2.1 Problem formulation 9

2.2 Indirect approach 14

2.3 Dynamic programming 15

2.4 Direct approach 16
Control discretization 17 · State discretization 20 · Constraint discretization 23 ·
Gradient computation 24 · Optimizer 26

3 Mixed–Integer Optimal Control – Modeling and Relaxation 27

3.1 Problem formulation 27

3.2 Indirect approach 30

3.3 Dynamic programming 30

3.4 Direct approach 31

3.5 Inner Convexification 32

3.6 Outer Convexification 34

3.7 Big-M formulation 37
Mixed Logical Dynamical systems 37

3.8 Vanishing and complementarity constraints 38
Constraint qualifications 42 · Regularization 43 · NCP functions 44

3.9 Perspective formulation 46
Order preserving functions 51 · Tightened formulation 52

3.10 Illustrative comparison of different formulations 54

3.11 Controlling the switching behavior 59
Switch modeling 60 · Min-up time 63

3.12 Mixed-Integer Nonlinear Programming 64
Enumeration 65 · Relaxations 65 · Cutting planes 67 · Nonlinear branch-
and-bound 67

xi

4 The Control Approximation Problem for Control-Affine Systems 71

4.1 Problem formulation 72

4.2 Approximation of differential states 74
Translation to discrete setting 78

4.3 Approximation of decoupled controls in the integral sense 85
Sum-up Rounding control scheme 88 · Analysis of the LAGRANGIAN 92

4.4 Approximation of SOS1-coupled controls in the integral sense 104
Sum-up Rounding 106 · Next-forced Rounding 110 · LAGRANGIAN relaxation 115

4.5 Approximation of generally coupled controls 118
Choice of the norm 119 · The Control Approximation Problem’s polytope 120 ·
Typical combinatorial constraints 123 · Branch-and-bound algorithm 123

5 Numerical Results 127

5.1 Mixed-Integer Optimal Control with nonlinear ODE 127
Problem formulation 128 · Computational experiments 129 · Conclusions 136

5.2 LOTKA-VOLTERRA fishing problem 137
Problem formulation 137 · Computational experiments 141 · Conclusions 143

5.3 Sewage network overflow 148
Problem formulation 148 · Modeling of overflow 149 · Reformulations for
optimization 155 · Computational results 162 · Conclusions 169

5.4 Dynamic truck model 171
Problem formulation 171 · Formulation of problem relaxations 177 ·
Comparison of relaxations 186 · Conclusions 189

Bibliography 195

Nomenclature 210

Figures, Tables, Algorithms, Acronyms 215

xii

1 Introduction

Optimization has always been part of the human nature and was originally dictated by Dar-
win’s law of natural selection. Naturally, optimization is the process of finding the best so-
lution to a certain problem. In mathematics, this is formalized such that mathematical opti-
mization stands for the minimization or maximization of a certain objective function possibly
under the presence of additional limitations. It has been a success story in the past decades
in its application to various fields of our lives, as for example economics, biology, chemistry,
physics and engineering. Mathematical methods to optimize different kinds of problems have
been on the rise and more and more complex become solvable.
One class of problems whose solution process has been vastly studied with mathematical
methods is the optimization of dynamic systems, i.e., Optimal Control Problems (OCPs). A
dynamic system is a system whose future states are determined by an evolution rule. This
evolution rule prescribes the system’s behavior in dependence on the current system states
and potentially additional external controls. The optimization discipline that treats dynamic
systems is called optimal control and the evolution rules are often systems of Ordinary Differ-
ential Equations (ODEs) or Differential Algebraic Equations (DAEs).
Another widely studied class of problems are Integer Programs (IPs). Here, the operator of
a static or time discrete system is given choices between different, discrete options. These
problems are also often called combinatorial problems due to their innate nature and involve
mostly planning and strategic questions. The problems usually considered in this field have an
integrality requirement for most or all variables of the problem and they have linear functions
for both the objective and the constraints.
This thesis now treats the union of those two disciplines, which we call Mixed-Integer Optimal
Control (MIOC) with regard to its mathematical origins. This class of problems consists of
dynamic systems that can be run in different operation modes and contain logical decision-
making. The system operator is now faced with the choice of the system’s mode in addition
to controlling each mode’s own dynamic system. Mixed-Integer Optimal Control Problems
(MIOCPs) have been gaining significantly increased attention over the last 15 years since
the considered systems are usually highly complex due to their combinatorial, nonlinear and
dynamic nature and thus have a high potential for optimization.
In the engineering world, these systems have also been attracting considerable interest.
There, the class of problems is referred to as hybrid optimal control. This term was chosen
to stress the hybrid nature of the problems in having both continuous-valued and discrete-
valued variables [7, 39, 166]. Other terms for this class of problems, which are used less

1

CHAPTER 1
�� I N T R O D U C T I O N

often, include the description dynamic optimization instead of optimal control to get mixed-
logic dynamic optimization and mixed-integer dynamic optimization [140]. Sometimes, since
the discrete structure appears to be similar to a bang-bang structure, where the continuous
controls take only values at the boundaries, the term optimal bang-bang control is used [132].
There is a wide range of different solution approaches regarding these MIOCPs. An overview
of these approaches is given in [160]. One of the more prominent approaches is the indirect
approach, which uses a hybrid maximum principle [4, 8, 19, 39, 166, 167, 174]. Here, the
optimality conditions are applied on the infinite-dimensional optimization problem in the
function space, and the solution is analytically derived. For this thesis, the focus is put on the
direct approach, i.e., methods that discretize first, then optimize.
The modeling of a system having different system modes with binary variables is not unique
but there exist several possibilities. Some of them are the Inner Convexification (IC) [78], the
Outer Convexification (OC) [152], the formulation with vanishing and complementarity con-
straints [96, 121], or logic-based programming – also named General Disjunctive Programming
(GDP) [57, 85, 137, 139, 180]. The GDP approach either uses perspective functions or a Big-M
reformulation [84].
Several methods exist for the discretization of the resulting system dynamics. The most
prominent examples are collocation [10, 23, 26, 27, 105] and multiple shooting [33, 117].
For direct methods, the state and control discretizations play an important role. In depen-
dence on the problem and after the discretization is chosen the resulting problem may either
become a Mixed-Integer Linear Program (MILP) through linearizations or a Mixed-Integer
Nonlinear Program (MINLP). MILPs allow the usage of methods like branch-and-bound or
cutting plane algorithms – for an example cf. [130]. MINLPs are solved with the generalized
nonlinear branch-and-bound or with outer approximation, an example is given in [76]. The
nonlinear formulation usually involves non-convexities due to the nature of the discretized
dynamic system. Therefore, adaptations for global optimization might be needed to guarantee
optimality [66, 123, 168]. However, in the context of model-predictive control, these means
of an optimality certificate might take too long. The possible means to speed up the solution
process of local methods for MIOCPs in this context have been studied in [111].
After an optimal solution has been determined for a certain discretization, it may be possible
to enhance the solution in a post-processing step. The solution’s switching structure between
the system’s modes is kept and assumed to be optimal, but the exact switching point times
of the fixed system mode sequence can be re-optimized in order to improve the solution as
proposed in [78, 107, 160, 175].
The applications of MIOC are manifold. Typical examples are the choice of gears in automo-
tive control [76, 93, 111, 112, 159, 160, 177] or the choice of mode of driving for hybrid
cars [181]. Other typical examples are the optimal operation of water or gas networks that
involve pumps and valves [43, 44, 130] and the optimal control of processes in chemical en-
gineering that also involve valves [106, 169]. The optimization of traffic flows on networks
[68], the optimal control of continuous supply chain networks [80] or the operation of dis-

2

I N T R O D U C T I O N
�� CHAPTER 1

tributed autonomous robot systems [1] are other, less studied MIOCPs. An open benchmark
library for MIOCPs is available at [155].

Thesis aims and contributions

The aim of this thesis is to help understanding MIOCPs and to augment their solution pro-
cesses. The insights obtained in this thesis are split into two major parts as explicated in the
following.

Firstly, insights concerning the problem formulation are bundled in Chapter 3: ’Mixed-Integer
Optimal Control – Modeling and Relaxation’. There, we give an elaborate overview of the
different ways to formulate an MIOCP. The correct and problem specific choice of the formu-
lation is an important part of the modeling, and it is vital for the optimization of the controlled
dynamic process. We describe five distinct approaches with their advantages and disadvan-
tages to facilitate a well-thought-out decision on the choice of the MIOCP’s modeling formula-
tion. The most important properties to consider are the resulting problem’s dimensions (both
of variables and constraints used), the tightness of the formulation for relaxation purposes
and the formulation’s behavior with regard to convexity and constraint qualifications. These
properties strongly influence the choice of usable solution techniques and the behavior of
the solution process. The corresponding solutions’ features are shown for a sewage network
example in Section 5.3 and a truck cruise control in Section 5.4. Secondly, a special rounding
heuristic to obtain integer controls out of relaxed controls, which has an ε-optimality certi-
fication under certain circumstances, is presented in Chapter 4: ’The Control Approximation
Problem for Control-Affine Systems’. The OC formulation leads to control-affine systems with
regard to the binary controls. In [157], a theoretical result, which derives a dependence of
the difference of the two state trajectories from the difference of the corresponding control
trajectories, has been presented. We translate this proof to a discrete setting, which is usu-
ally used in collocation. Already in [152], the basic problem of this chapter is presented –
i.e., the Control Approximation Problem in the integral sense, which gives the best approxi-
mation of a continuous, relaxed control by an integral control. SAGER provided the Sum-up
Rounding (SUR) heuristic for the corresponding one-dimensional or decoupled problem. This
heuristic solves the problem for equidistant grids. We show that the adaptation of the basic
idea to the multi-dimensional setting, where different controls are coupled with an Special
Ordered Set type (SOS)1-constraint, results in a heuristic that can only give an optimality
certificate in dependence on the number of controls. We derive an alternative Next-forced
Rounding (NFR) heuristic, which overcomes this dependence on the problem dimensions and
provides the provable (data-independent) best bound any heuristic can give for the problem.

In contrast to the heuristics, we also study the true solution process of the problem. There-
fore, we briefly examine the corresponding polytope describing the feasible set. This polytope
is highly unstructured and data-dependent, which does not enable nice cutting plane algo-

3

CHAPTER 1
�� I N T R O D U C T I O N

rithms. Instead, we examine the properties of a LAGRANGIAN relaxation of the problem – espe-
cially in a branch-and-bound framework. From the one-dimensional LAGRANGIAN relaxation’s
solution, we derive a branching strategy that has advantageous properties for the bounds and
lets them be computed in linear time. We show that these advantageous properties carry
over to the multi-dimensional setting with SOS1-constraints. At last, we allow for additional
constraints, as e.g. switching constraints, and show how to construct an algorithm that treats
these changed circumstances. This algorithm and the derived LAGRANGIAN bounds are com-
pared with the standard MILP solvers CPLEX c©and SCIP and their Linear Programming (LP)
bounds. This comparison is done for a LOTKA-VOLTERRA fishing problem in Section 5.2 and for
a small, nonlinear, illustrative example in Section 5.1.

Contributions to publications

During the creation of this thesis, we contributed to four publications. Here, we describe the
content of the papers and highlight the contributions of the author of this thesis:

[158] S. SAGER, M. JUNG AND C. KIRCHES, Combinatorial Integral Approximation, Mathema-
tical Methods for Operations Research, 2011, Vol. 73(3):363–380.

We describe the Control Approximation Problem and give a short derivation as a decoupling
method for control-affine MIOCPs. The new part of this paper is the addition of combina-
torial constraints, e.g. switching constraints, to the problem. We formulate the resulting
optimization problem and analyze the polytope describing the feasible set. Then, we give
an alternative to standard MILP methods, i.e., a tailored branch-and-bound algorithm, and
demonstrate its effectiveness in a LOTKA-VOLTERRA example.
For this paper, JUNG’s main contribution is a preliminary version of the branch-and-bound
algorithm to solve the Control Approximation Problem, cf. Algorithm 4.2, and the corre-
sponding results. Additionally, he added the study of the facets of the problem’s polytope,
which is presented with more details in Section 4.5.2. SAGER derived the main mathema-
tical models and KIRCHES implemented them with standard solvers, i.e., CPLEX c©, IPOPT and
BONMIN.

[104] M. JUNG, G. REINELT AND S. SAGER, The Lagrangian Relaxation for the Combinatorial
Integral Approximation Problem, Optimization Methods and Software (Submitted).

In this work, we derived the theory of the LAGRANGIAN bounds of the Control Approxima-
tion Problem, which is explained in Section 4.3.2 and Section 4.4.3. We also compare the
effectiveness of these LAGRANGIAN bounds with the canonical LP bounds, cf. Section 5.1.
As the first and corresponding author, JUNG wrote the publication and worked out the mathe-
matical proofs and the implementations of the compared methods. The coauthors contributed
in discussions and reviewed the paper before submission.

4

I N T R O D U C T I O N
�� CHAPTER 1

[103] M. JUNG, C. KIRCHES AND S. SAGER, On Perspective Functions and Vanishing Constraints
in Mixed-Integer Nonlinear Optimal Control, in Facets of Combinatorial Optimization
– Festschrift for MARTIN GRÖTSCHEL, M. JÜNGER AND G. REINELT, eds., Springer Berlin
Heidelberg, 2013, pp. 387–417.

The paper includes the description of various modeling approaches for MIOCPs and a discus-
sion of their advantages and disadvantages based on our experience. It demonstrates these
properties for a cruise control problem for a heavy-duty truck.
As the first author, JUNG added the GDP point of view to the MIOC modeling and was re-
sponsible for the complete implementation. The presented formulations, derived from the
GDP approach, are the Big-M formulation, cf. Section 3.7, the perspective formulation from
Section 3.9, and a tightened version of the perspective formulation, cf. Section 3.9.2. KIRCHES

provided the truck model, the insights into the complementarity formulations, and the visu-
alization of the results. SAGER initiated the work on the paper and provided insights into the
IC and OC formulations.

[56] B.J. DURAN, M. JUNG, C. OCAMPO-MARTINEZ, S. SAGER AND G. CEMBRANO, Minimiza-
tion of Sewage Network Overflow, Water Resources Management (Accepted).

The paper describes the problem of optimal control in sewage networks. Due to limited ca-
pacity, overflow happens during periods of heavy rainfall, which is mathematically formulated
with a maximum function. This results in a nonlinear, non-differentiable model. We provide
the network modeling and give reformulations that overcome the problems of the maximum
function. The different formulations are compared for a set of 22 rain scenarios for a part of
the BARCELONA sewage network.
The work was created while DURAN stayed in Heidelberg with JUNG and SAGER. DURAN was
responsible for the network modeling, worked out the Mixed Logical Dynamical (MLD) refor-
mulation, and also provided the test scenarios. JUNG – mentored by SAGER – developed the
other mathematical reformulations and their implementations, i.e., the smoothed nonlinear
formulation, the constraint branching algorithm, and the perspective formulation. The other
coauthors contributed from the engineering application point of view and by providing the
challenging and interesting test problem. The paper has been written jointly by DURAN and
JUNG.

Thesis overview

This thesis is structured in four major chapters, which are set up as follows.
Chapter 2 describes OCPs in an introductory manner. It first describes the problem class of
deriving the optimal control for dynamic processes that are driven by ODE or DAE systems.

5

CHAPTER 1
�� I N T R O D U C T I O N

On this basis, we discuss three general solution approaches. The first one is the indirect ap-
proach, which is based on the Maximum principle. The second discussed approach is dynamic
programming based on the solution of the HAMILTON-JACOBI-BELLMAN partial differential equa-
tions. The third approach covers direct methods and specifies the needed building blocks to
implement a direct method for OCPs.
In Chapter 3, we thoroughly investigate MIOCPs. The chapter starts with the generalization
of the previous chapter’s problem description to the integral setting where the system can
switch between different operation modes. Depending on the operation mode, the underly-
ing ODE might change as well as the control and path constraints limiting the feasible region.
Then, the modifications needed to adapt indirect methods, dynamic programming and direct
methods to this new setting are outlined. A major part of the adaptation of direct methods
is to properly formulate the integral relaxation of the different modes’ ODE systems and con-
straints. Several ways to do so are presented in Sections 3.5–3.9, i.e., the IC technique, the
OC technique, the Big-M approach, the formulation with vanishing constraints and the per-
spective formulation. The different approaches are also discussed in terms of their numerical
stability and general solvability. They are illustrated and compared in Section 3.10. A natural
property of MIOCPs is that a solution might need to switch infinitely many times, which is
called ZENO’s Phenomenon. However, controls of this type are impossible to implement in
reality and hence the corresponding mathematical models should be modified to better re-
flect reality. Even for direct methods with finite control discretization, a discretized system
might switch with high frequency between its different modes, which is not desirable. The
prevention of this switching behavior is done by either penalizing switches or by directly lim-
iting their occurrences. This is described in detail in Section 3.11. The chapter closes with
an overview of solution methods for MINLPs, which are needed to solve the problems with
direct methods.
Chapter 4 treats a special rounding problem to obtain integer control trajectories out of re-
laxed ones. The rounding strategy makes use of a property of MIOCPs where the supposedly
integral controls enter affinely. For these problems, it can be shown that the state trajectory
deviation of two controls depends linearly on the deviation of the two control trajectories in
a special integral sense. This is shown in Section 4.2 and there this property is also carried
over to a discrete setting. Then, the approximation in the integral sense of relaxed controls
with integer controls is studied in different settings with increasing difficulty over the next
sections. First, completely decoupled controls are examined and the SUR strategy is estab-
lished as a heuristic in Section 4.3. Here, also the solution structure of a branch-and-bound
algorithm with a LAGRANGIAN relaxation as subproblems is investigated. The insights are car-
ried over to the more complex setting of SOS1-coupled controls in Section 4.4. This setting
deserves special interest since it arises when the original MIOCP’s ODE system is reformulated
with the OC technique. The NFR heuristic is employed to give a better worst-case scenario
than previously known. In addition, the results of the decoupled problem concerning the
LAGRANGIAN relaxation are incorporated into this more general setting. At last in Section 4.5,

6

I N T R O D U C T I O N
�� CHAPTER 1

the modifications needed for additional constraints are discussed particularly with regard to
switching constraints. The complexity of the resulting polytope is briefly examined, and a
branch-and-bound algorithm is presented that utilizes the findings on the LAGRANGIAN relax-
ation.
The final Chapter 5 gives numerical results on the strategies discussed in the previous two
chapters. The first application covers the OC relaxation followed by the control approximation
in the integral sense for a nonlinear MIOCP. Here, the properties of the branch-and-bound
algorithm derived in Chapter 4 are compared to standard solvers for MILPs – in an uncon-
strained and also in a limited switching context. The second application is the stabilization of
a LOTKA-VOLTERRA type predator-prey model is examined with regard to the switching formu-
lation. This is also executed in the framework of the OC formulation followed by the control
approximation in the integral sense. The results are compared with the optimal solutions
whenever easily attainable. Next, the optimal control of a sewage network is determined
in order to prevent overflow during periods of extensive rain. Here, the Big-M formulation
and the perspective formulation are applied and compared to another, more problem specific
approach. These two approaches are singled out from the collection since they preserve lin-
earity of the model. A heavy-duty truck’s cruise control is the last application presented in
Section 5.4. The five different formulation approaches are applied to the problem and the
results are studied for two different scenarios.

General setup for computational experiments

All results are obtained on a machine with an Intel R© CoreTM2 Duo CPU E7300 with 2.66GHz
and 8GB RAM. The operating system is Ubuntu R© LinuxTMv12.04.02. The source code has
been written in C++. It was compiled with the GNU C/C++ compiler collection v4.6.3
compiler. Additionally, the Standard Template Library (STL) and the Boost C++ libraries
were used for further functionalities. To enable a fair comparison of computational times,
all programs were only run on a single core even if the code was parallelized. The following
software packages were used in this thesis:

• MATLAB c© v.7.7.0 and v.8.1.0 to generate graphics and to model some problems,

• AMPL v.20130327 to model several problems,

• MUSCOD-II v.6.0 to discretize and solve OCPs,

• IPOPT v.3.11 with the HSL linear solvers as an Nonlinear Program (NLP) solver,

• BONMIN with CBC v.2.7 and IPOPT v.3.11 to solve MINLPs,

• SCIP v.3.0.0 with SOPLEX v.1.7.0 as an MILP solver,

• CPLEX c©v.12.1.0 and v.12.5.0 as MILP solvers with the interfaces to AMPL, C++ and
MATLAB c©,

7

CHAPTER 1
�� I N T R O D U C T I O N

• the HYbrid System DEscription Language (HYSDEL) package v1.2.8 for MATLAB c©to
generate MLD systems,

• PORTA v.1.4.1 to generate polytopes for MILPs,

• BUCHNER’s dynamic programming code [42] to generate a global solution for the truck
cruise control of Section 5.4.

8

2 Optimal Control

This chapter covers solution approaches for a class of continuous OCPs. We briefly introduce
the OCP and some variants in Section 2.1 and give the means to model a dynamic process
correctly. There are several approaches of tackling these OCPs, we present three different
concepts. The first two, i.e., the indirect approach in Section 2.2 and dynamic programming
in Section 2.3, are presented in an introductory manner for the sake of completeness. The
presentation of the direct approach in Section 2.4 is more detailed as it is used for the compu-
tational experiments in Section 5.

For the presentation of the widely known and used problem class of OCPs, we adhere closely
to the overviews given in [55, 77, 111, 152].

2.1 Problem formulation

This section gives an overview of the problem class of continuous OCPs.

Definition 2.1 (Continuous optimal control problem)
A Optimal Control Problem (OCP) is an infinite-dimensional, constrained optimization problem
of the following form:

min
x (·),u(·)

Φ(x (·), u(·)) (2.1)

s. t. ẋ (t) = f (t, x (t), u(t)), t ∈ [t0, tf],

0= r eq((t i, x (t i))0¶i¶m), {t i}0¶i¶m ⊂ [t0, tf],

0¶ r in((t i, x (t i))0¶i¶m), {t i}0¶i¶m ⊂ [t0, tf],

0¶ c(t, x (t), u(t)) t ∈ [t0, tf],

u(t) ∈ U t ∈ [t0, tf],

in which we minimize a cost functional

Φ : X ×Rnu → R (2.2)

with the dynamic process

x : [t0, tf]→ Rnx (2.3)

9

CHAPTER 2
�� O P T I M A L C O N T RO L

determined through the Ordinary Differential Equations (ODEs) with right-hand side function

f : [t0, tf]×X × U → Rnx (2.4)

managed by the control function

u : [t0, tf]→ Rnu (2.5)

over the time interval [t0, tf] such that the point constraints

(r eq, r in) : ([t0, tf]×Rnx)m+1→ Rnr (2.6)

on the grid points {t i}0¶i¶m, and the path constraints

c : [t0, tf]×X × U → Rnc (2.7)

are satisfied. 4

This problem is clearly infinite dimensional due to the unknowns being the control trajectory
u(·) and the controlled state trajectory x (·). For the process to be well described and the
controls to be applicable, we need the controls u(·) to be measurable and essentially bounded
and define the set of feasible controls U ⊂ L∞([t0, tf],Rnu). We also define the set of all state
trajectories x (·) as X def

= {x : [t0, tf] → Rnx} ⊂ C1([t0, tf],Rnx). To ensure existence and
uniqueness of the ODE system’s solution through the PICARD-LINDELÖF theorem, we assume
f : [t0, tf]×X×U → Rnx to be LIPSCHITZ continuous. Initial values, or more general boundary
values, can be modeled through the point-wise constraints r : ([t0, tf] × Rnx)m+1 → Rnr .
These could also be of coupled nature as, e.g., periodicity constraints. The path constraints
c : [t0, tf]×X × U → Rnc can contain pure state or control path constraints as well as those
of mixed type.

Often, there is the possibility to move constraints to the objective by penalizing their violation,
they become so-called soft constraints. However, this does not guarantee that they are satisfied
in the solution but usually gives little violation. This is usually implemented for constraints
that are not crucial for the process dynamics but exclude undesirable properties.

Definition 2.2 (Admissibility)
A trajectory (x (·), u(·)) is said to be admissible if x (·) is absolutely continuous, u(·) is mea-
surable and essentially bounded and if they satisfy the constraints (2.4), (2.6) and (2.7) of the
OCP.

A control trajectory u(·) is said to be admissible if there exists a trajectory x (·) such that
(x (·), u(·)) is an admissible trajectory. 4

10

O P T I M A L C O N T RO L
�� CHAPTER 2

Definition 2.3 (Optimality)
A trajectory (x ∗(·), u∗(·)) is said to be globally optimal if it is admissible and it holds

Φ(x ∗(·), u∗(·))¶ Φ(x (·), u(·)) (2.8)

for all admissible trajectories (x (·), u(·)).
It is said to be locally optimal, if there exists δ > 0 such that (2.8) holds for all admissible
trajectories (x (·), u(·)) with

����u(t)− u∗(t)
����¶ δ ∀t ∈ [t0, tf]. 4

Objective functionals

Prevalent objective functionals include the MAYER type functional

ΦM(x (·)) = m(x (tf)), (2.9)

which only considers the end-point values, the LAGRANGE type functional

ΦL(x (·), u(·)) =
∫ tf

t0

l(t, x (t), u(t)) dt, (2.10)

which covers a continuous contribution of the states and controls and their combination, the
BOLZA type functional

ΦB(x (·), u(·)) = ΦL(x (·), u(·)) +ΦM(x (·)). (2.11)

They can be transformed into each other through additional states, derivation and integra-
tion. All scenarios can be modeled with one of these objective functionals.

Parameters

We have to distinguish between controllable parameters and process-dependent parameters.
The first class can be included into our framework. The second class is in our context fixed
and part of the model equations. However, there is a whole branch of optimization addressing
the issues of parameter estimation, cf. [31] for further information on this topic.
Here, we only describe the handling of the first class with the controllable parameters p ∈ Rnp:

min
x (·),u(·),p

Φ(x (·), u(·), p) (2.12)

s. t. ẋ (t) = f (t, x (t), u(t), p) t ∈ [t0, tf],

0¶ c(t, x (t), u(t), p) t ∈ [t0, tf],

11

CHAPTER 2
�� O P T I M A L C O N T RO L

0¶ r ((t i, x (t i))0¶i¶m) {t i}0¶i¶m ⊂ [t0, tf].

Most algorithms can directly handle this type of parameters. However, if a transformation to
the original problem class (2.1) is needed, one can add np new differential states xp(·) to the
system with the corresponding part in the ODE being

ẋp(t) = 0,

and the initial values being the degrees of freedom.

Variable time horizons

A variable time horizon [t0, tf] can be realized by the addition of a new differential state t
for the unified time τ ∈ [0,1], i.e.,

t(τ)
def
= t0+

�
tf− t0

�
τ.

Then, a time transformation has to be made for the ODE system:

ẋ (τ) =
�

tf− t0
�

f (t(τ), x (t(τ)), u(t(τ))), τ ∈ [0,1].

Also for the objective and the constraints, the normal time t has to be replaced by t(τ).
However, the chain-rule need not be considered there. This time transformation transforms
the time interval [t0, tf] to [0,1], and all start and end times need to be adapted. The true
start and end times are treated as controllable parameters as described in the section above.

Differential Algebraic Equations

The extension to DAE systems is possible, i.e., the addition of algebraic states z : [t0, tf]→ Rny

and (differential) algebraic equations:

ẋ (t) = f (t, x (t), z(t), u(t)), t ∈ [t0, tf],

0= g (t, x (t), z(t), u(t)), t ∈ [t0, tf]. (2.13)

An important property of a DAE is the index. It is a measure for the regularity of the DAE
and there are different index definitions, cf. e.g. [40, 46, 89]. One example is the differential
index, which measures how often the algebraic equation has to be differentiated until we
obtain an ODE. Another one is the perturbation index, which measures with what order a
perturbation in the algebraic equation is propagated to the differential states. The index of
the DAE determines how the methods need to be adapted to be able to solve the system.
We illustrate the differential index for a small example: Assume g and u to be differentiable
and gz(t, x (t), z(t), u(t)) to be invertible for all (t, x (t), z(t), u(t)). Then, we can apply the

12

O P T I M A L C O N T RO L
�� CHAPTER 2

IMPLICIT FUNCTION THEOREM and obtain a function z(t, x (t), u(t)) that solves the algebraic
equation (2.13). Furthermore, the system is of differential index 1 because we can obtain an
explicit ODE system through one differentiation:

d

dt
0=

d

dt
g (t, x (t), z(t), u(t))

⇒ 0= gt(t, x (t), z(t), u(t)) + gx (t, x (t), z(t), u(t)) ẋ (t)

+ gu(t, x (t), z(t), u(t)) u̇(t) + gz(t, x (t), z(t), u(t)) ż(t)

⇒ ż(t) =−gz(t, x (t), z(t), u(t))−1
�

gt(t, x (t), z(t), u(t))

+ gu(t, x (t), z(t), u(t)) u̇(t)

+ gx (t, x (t), z(t), u(t)) ẋ (t)︸︷︷︸
= f (·)

�
.

Multistage systems

Many systems cannot be described with one single set of model equations but they switch
between n different sets depending on the time or the system states:

ẋ j(t) = f j(t, x j(t), y j(t), u j(t)), t ∈ [t j, t j+1], 0¶ j ¶ n− 1,

These systems are called multistage systems. They have a different model (2.1) for every
stage of the problem. If the sequence of stages is known and depends on the system states,
switching functions are introduced

ξ j(t, x j(t)) = 0,

which identify the exact switching times between the different model stages. The resulting
system can be solved analogously to other OCPs. Often, the system could be modeled as
a MIOCP, cf. Chapter 3 – however, the resulting problem may be more difficult than the
adaptation of the OCP method to multiphase behavior. Yet, in the more interesting case,
where the operator has the freedom to choose between different stages at every point in time
and their sequence is free, the only way to model the system is to use integer controls as
in MIOCPs.
An example multistage problem is the movement of a biped. In the different phases of the
movement either none, one or both feet touch the ground and degrees of freedom disappear
since new equations appear. The switching function is in this case described by the distance
of the feet to the ground.
In [116], LEINEWEBER gives insight into the handling of the switching functions inside a mul-
tiple shooting framework as well as giving some chemical applications for multistage models.
The behavior of an adsorption chillers is analyzed as a multistage process in [81, 82].

13

CHAPTER 2
�� O P T I M A L C O N T RO L

2.2 Indirect approach

The indirect approach is a long-known method, which is based on the works of PONTRYAGIN

– who gives the main theorem his name – and his students BOLTYANSII and GAMKRELIDZE, cf.
[144]. HESTENES also discovered the methodology independently around the same time, cf.
[94]. The basic principle was already developed by CARATHÉODORY in 1935, cf. [141]. The
idea is to first optimize, then discretize, i.e., the optimality conditions are applied in a function
space. Further references on the topic can be found in [77].
We use an abbreviated formulation of the OCP without additional constraints and that uses
an autonomous ODE system:

min
x (·),u(·)

Φ(x (tf)) (2.14)

s. t. ẋ (t) = f (x (t), u(t)) t ∈ [t0, tf],

u(t) ∈ U t ∈ [t0, tf],

x (t0) = x0,

with sufficiently smooth functions Φ(·) and f (·) and bounded set U of feasible controls. How-
ever, the approach is extendable to more general settings (extension to DAE, addition of
constraints, etc.), which results in more intricate formulations of the theorem, cf. [79].
We need the following definition to formulate the main theorem of the indirect approach.

Definition 2.4 (HAMILTONIAN)
The HAMILTONIAN of the optimal control problem (2.14) is defined as

H(x (t), u(t),λ(t))
def
= λ(t)T f (x (t), u(t))

with the variables λ : [t0, tf]→ Rnx , called the adjoint variables. 4

Now, we can define the maximum principle, sometimes called PONTRYAGIN’s maximum princi-
ple or minimum principle for the simplified problem:

Theorem 2.1 (Maximum principle)
Let u∗(·), x ∗(·) be an optimal solution of problem (2.14). There exist adjoint variables λ∗(·)
such that for almost all t ∈ [t0, tf] it holds

ẋ ∗(t) =Hλ(x ∗(t), u∗(t),λ∗(t)) = f (x ∗(t), u∗(t)),

x (t0) = x0,

λ̇∗(t)
T
=−Hx (x

∗(t), u∗(t),λ∗(t)),

λ∗(tf)
T =−Φx (x

∗(tf)),

u∗(t) = argmin
u(t)∈U

H(x ∗(t), u(t),λ∗(t)). (2.15)

4

14

O P T I M A L C O N T RO L
�� CHAPTER 2

This approach gives only necessary conditions for an optimal solution of the problem. More
insights on necessary conditions for variations of the problem can e.g. be found in [41, 91,
131, 134]. Usually, these conditions require a certain structure of U and involve derivatives
of H(·) with respect to u(·). Sufficient conditions are also often used and usually need higher
order derivatives, cf., e.g., [126].
Notice that the approach as stated above already covers MIOCPs as there are no further
requirements on the set U than being bounded, it may very well be disjoint. This is possible
since the constraint is transferred to the inner minimization problem (2.15), which needs to
be solved globally to be able to use non-convex feasible sets. This is the global version of the
maximum principle, and thus it does not state any additional requirements that the trajectories
must fulfill in order to solve the inner minimization problem. These additional requirements
would use derivative information to describe local minimizers of the HAMILTONIAN. However,
this work focuses on the addition of integrality constraints for the controls, where discrete
domains U arise. For these discrete sets derivative information cannot be provided and hence
local versions of the theorem are not applicable.

The first optimize, then discretize approach works as follows: first the optimality conditions
from the maximum principle 2.1 are applied to the OCP and the following Boundary Value
Problem (BVP) is obtained:

ẋ (t) = f (x (t), u(t)) t ∈ [t0, tf],

λ̇(t) =−Hx (x (t), u(t),λ(t)) t ∈ [t0, tf],

u(t) = argmin
w (t)∈U

H(x (t), w (t),λ(t)) t ∈ [t0, tf],

x (t0) = x0,

λ(tf) =−Φx (tf).

One main problem – but also a main advantage – of the approach is that the applicable
maximum principle has to be determined and that the HAMILTONIAN and the solution of the
minimization problem have to be computed analytically. This is quite hard for large scale
models and one has to recompute large parts after small modifications of the system, e.g. the
addition of a new constraint. However, the needed functional analysis may give insight into
the solution’s structure. Examples of successful applications of the indirect approach can be
found in [32, 113, 141].

2.3 Dynamic programming

The dynamic programming approach was developed by BELLMAN to determine the optimal
control of time-discrete OCPs with discrete state and control spaces. Its main insight is the
Principle of Optimality, [16, Chapter III.3.]:

15

CHAPTER 2
�� O P T I M A L C O N T RO L

“An optimal policy has the property that whatever the initial state and initial de-
cision are, the remaining decisions must constitute an optimal policy with regard
to the state resulting from the first decision.”

The principle leads to the BELLMAN equation to determine the cost-to-go function, which de-
scribes the minimal objective contribution from that point in time to the end of the time
horizon. This formulation directly leads to a recursive solution algorithm. The method is
generalizable to time-continuous OCPs, such as (2.1), with the HAMILTON–JACOBI–BELLMAN

equation. In dynamic programming, the problem is decomposed into several smaller prob-
lems on the time horizon and thereby each subproblem only needs to consider the smaller
time horizon [t i, t i+1]. The states and controls are discretized to be in finite-dimensional sets
of possible state and control vectors. For all possible combinations of initial states at time step
t i, the optimal controls for the interval are computed, taking into account the previously com-
puted and tabulated optimal continuation after time point t i+1. This decomposition makes
the increase in computational effort for finer time discretizations linear in the number of time
intervals m.
The main disadvantage of the method is the so-called curse of dimensionality. It stems from
the necessary discretization of continuous state and control spaces. Since for all possible
combinations of states, the computations have to be made for each slice of the time hori-
zon, the computational effort grows exponentially in the number of states nx when the state
discretization is made finer for all states. This is unfortunately a very strong drawback and
limits the applicability of dynamic programming to problems with small numbers of states
nx and continuous controls nu. Another disadvantage is that additional rounding errors are
introduced at the grid points due to the computed trajectories being only in discretized form,
whereas the simulated trajectory can also attain values in between. Now, the error is intro-
duced as the optimal control was computed for the discretized values and not for the true
values.
However, as an advantage, dynamic programming naturally respects integrality of controls
since they would have to be discretized anyways, and does not introduce any additional
effort. Another advantage of the method is that the whole feasible space is enumerated and
hence the problem is automatically optimized globally – even if it is non-convex.
Further information on dynamic programming can e.g. be found in BERTSEKAS’ textbook [20,
21].

2.4 Direct approach

In contrast to the indirect approach, the principle of the direct approach is to first discretize,
then optimize. Following this motto, first, the whole problem – this includes the controls, the
states, the constraints and the the objective function – is discretized, i.e., it is reformulated to
obtain a finite-dimensional optimization problem. Then optimality conditions are applied to

16

O P T I M A L C O N T RO L
�� CHAPTER 2

the resulting finite-dimensional system.
For the approaches that we present here, we define the time grid

Gm
def
= {t0 < t1 < . . .< tm = tf}

of m+ 1 points, with step sizes

∆t i
def
= t i+1− t i.

The time grid for the state discretization need not necessarily be the same as the grids for
the control discretization and constraint discretization. However, usually the control grid and
constraint grid coincide, whereas the state grid is a subset or superset thereof – depending on
the chosen method. Obviously, for all methods it holds that a finer discretization grid leads
to a better approximation of the function spaces.
A discretization method for optimal control problems is defined by these building blocks,
which are described in the following sections:
• the control discretization with parameter vector q and control functions u(t;q),
• the state discretization with parameter vector s and state trajectories x (t; s ,q),
• the constraint discretization,
• the computation of gradients for the resulting optimization problem,
• the choice of the algorithm to solve the optimization problem.

2.4.1 Control discretization

The space of feasible control functions U ⊂ L∞([t0, tf],Rnu) has to be replaced by a finite-
dimensional subspace L∞k ([t0, tf],Rnu), that is defined by k parameters q ∈ Rnk . Then, every
discretized control uk ∈ L∞k ([t0, tf],Rnu) can be expressed with this parameter vector to be

uk(·) def
=

k∑
i=1

qi bi(·), (2.16)

where {b1(·), . . . , bk(·)} is a basis of L∞k ([t0, tf],Rnu). In the following, this dependence on
the vector q is indicated as uk(t) = uk(t;q). The choice of discretization may be chosen for
each control individually. We also use this situation to replace any dependence on uk(·) by a
dependence on q .
The most simple approach is to approximate the control function with piecewise constant
functions on the time grid, i.e., the basis is defined as

bi, j(t)
def
=

e j if t ∈ [t i, t i+1),

0 else,
0¶ i ¶ m− 1, (2.17)

17

CHAPTER 2
�� O P T I M A L C O N T RO L

where e j is the j-th unit vector. This leads to

u(t)
def
= qi t ∈ [t i, t i+1), 0¶ i ¶ m− 1, (2.18)

with m vectors qi ∈ Rnu that together form q . For completeness, the control at the final time
step is set as

u(tf)
def
= qm

def
= qm−1.

However, this value is only needed for DAE models where the final algebraic state y(tf) may
influence the final differential state x (tf).

Another standard way would be to use higher order B-splines as a representation of the
controls. Choose an order l ∈ N for the control and use the corresponding B-splines as the
basis for each control. The B-splines of order i are recursively defined as bi

j(·):

b0
j (t)

def
=

1, if t ∈ [t j, t j+1),

0, else,
0¶ j ¶ m− 1,

bi
j(t)

def
=

t − t j

t j+i − t j
bi−1

j (t) +
t j+i+1− t

t j+i+1− t j+1
bi−1

j+1(t),

0¶ j ¶ m− i− 1,1¶ i ¶ m− 1,

with the enlarged auxiliary grid

Gl
m

def
= {τi}1¶i¶m+2l−1

defined through

τi
def
=

t0 if 1¶ i ¶ l,

t i−l if l + 1¶ i ¶ m+ l − 1,

tf = tm if m+ l ¶ i ¶ m+ 2l − 1.

The control is then parameterized by m+ l vectors qi ∈ Rnu (also called DE BOOR points in
this context) and is computed through

um+l−1(t;q)
def
=

m+l−1∑
i=0

bl
i(t) qi ∈ L∞m+l−1([t0, tf],Rnu).

This discretization is visualized in Figure 2.1. There are two advantageous properties of this
control discretization. First, a required smoothness of the control can easily be satisfied by

18

O P T I M A L C O N T RO L
�� CHAPTER 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2.1: B-splines of different order (i = 0 on the left, i = 1 in the middle, i = 2 on the right) for an
equidistant grid in the upper graphics.
Best approximation in ||·||L1 of a sin function in the respective finite-dimensional spaces.

choosing the corresponding order l. Additionally, each function bi
j(·) has only local support

on [τ j,τ j+l+1]. This leads to sparsity patterns in the derivatives. The exploitation of these
patterns can strongly reduce the computational effort needed, cf. [74, 75].

If the multiple shooting discretization is used for the states as described in the next section,
it is crucial for the efficient exploitation of the resulting structure that the control parameters
have only local influence on the corresponding multiple shooting interval [t i, t i+1], i.e., the
basis functions need to have local support on one shooting interval only. Therefore, the B-
spline approach is not applicable here for order greater 0, but one has to choose the control
parameterization differently. For each multiple shooting interval [t i, t i+1], we parameterize
the control depending on the desired properties of the control trajectory. Examples for possi-
ble parametrizations are piecewise linear controls, which allow a continuous trajectory, and
piecewise cubic splines, which allow continuous differentiability with given derivatives at the
grid points.

For piecewise linear controls, two parameters q k
i (k = 1,2) are needed for each interval and

19

CHAPTER 2
�� O P T I M A L C O N T RO L

are combined with the basis functions bki : [t i, t i+1]→ [0, 1] defined as

b1i(t)
def
=

t i+1− t

t i+1− t i
,

b2i(t)
def
=

t − t i

t i+1− t i
.

To enable continuity of the controls, additional constraints must be enforced though. These
are constraints that couple two adjacent intervals through

0= q2
i − q1

i+1, 0¶ i ¶ m− 1.

Now, the difference between a B-spline formulation of the situation and this setting is that
the B-spline formulation uses the equation to directly eliminate q2

i from the problem. This
formulation instead lifts the controls to a higher dimension and passes both controls and the
coupling constraint to the optimization problem.
Naturally, the flexibility gained through higher order parametrizations gives better results
regarding the OCP at the cost of higher computational effort. This effect can be seen e.g.
in [112]. However, piecewise constant and continuous, piecewise linear functions are the
preferred control parametrizations, cf. e.g. [45, 172].

2.4.2 State discretization

The discretization of the states can be done through a one-step or a multi-step method, or a
more complex integrator may be used for the steps. The extension to the DAE case is also
possible here, and the algebraic states are discretized in the same manner as the differential
states. If an integrator shall be used, it must naturally be chosen appropriately.
In the following, the three well-known methods single shooting, multiple shooting and collo-
cation are presented. They could also be described as minimal discretization, reduced dis-
cretization, and full discretization with regard to the number of variables introduced in the
optimization problem. These introduced variables, which describe the discretized states, are
called si in the following.

Single shooting

As the dynamic process is completely described if the controls and initial values are known,
the single shooting discretization uses the initial states as the sole degrees of freedom for
the system states s0 = x0. The trajectory and its derivatives are given by the solution of the
corresponding Initial Value Problem (IVP) through an ODE solver also called integrator. Path
constraints c(·) are often enforced on the control grid only. The integrator has to be stopped
at the points where the constraints are applied and derivatives of the trajectory have to be
determined. Figure 2.2 visualizes the single shooting discretization approach.

20

O P T I M A L C O N T RO L
�� CHAPTER 2

Figure 2.2: Visualization of the single shooting state discretization while marking the degrees of free-
dom, which are in this case u, x0.

The advantage of the approach is that it is straightforwardly implemented, cf. [161]. Addi-
tionally, the number of variables in the resulting optimization problem is minimal.
However, there are two big disadvantages as well. First, the state trajectory cannot be ini-
tialized with a priori known information about the process except its initial values. Second,
the error propagation is difficult to control for some systems, depending on the nonlinearity.
For stiff problems, a very good initial guess for the initial state x0 and the controls must be
known to prevent blowup effects from happening. If the initial guess is too far away, a solu-
tion may not even exist due to singularity. Due to the error propagation depending strongly
on the nonlinearity of the process, the process may still run into numerical problems, e.g. a
singularity – even if the initial values were good enough.

Multiple shooting

The direct multiple shooting method originates in [33, 143] for the solution of BVPs. The
implementation MUSCOD-II was used for some models described in Chapter 5; it is described
in [117].
In contrast to single shooting, direct multiple shooting employs additional variables such that
the problem is lifted into a higher dimensional space as follows. The time horizon is divided
with a time grid Gm – called shooting grid – and the new variable vectors si ∈ Rnx – called
shooting variables – are used to describe the state at the grid points. These shooting variables
are the initial values for the IVPs

ẋ (t) = f (t, x (t), u(t)), t ∈ [t i, t i+1),

x (t i) = si ,
(2.19)

with 0≤ i ≤ m− 1. To clarify which arc of the trajectory is meant, we use the notation

x (t; u(·), si) = si +

∫ t

t i

f (τ, x (τ), u(τ)) dτ t ∈ [t i, t i+1).

This system (2.19) differs from the original one as continuity is not required in the grid

21

CHAPTER 2
�� O P T I M A L C O N T RO L

points. Therefore, the resulting problem would produce solutions as on the left-hand side of
Figure 2.3.

The original problem is obtained if the discontinuity is prevented, hence matching constraints
are employed to enforce continuity in the shooting grid nodes:

x (t i+1; u(·), si) = si+1, 0≤ i ≤ m− 1.

The evaluation of these constraints requires the solution of an IVP to get x (t i+1; u(·), si).
Therefore, the numerical method of choice for the solution of the nonlinear optimization
problem must be coupled with an integrator. This has to be chosen adequately for the type of
the problem and the optimizer. If, e.g., algebraic states are present they should be resolved
simultaneously, cf. [5, 13].

Figure 2.3: Visualization of multiple shooting state discretization. On the left-hand side a solution of
the relaxed problem without matching constraints is displayed, whereas on the right-hand
side they are added and the solution is again a solution of the original problem.

One advantage of this discretization and parameterization is that a priori knowledge about
the optimal trajectory can be brought in through the initialization of the shooting variables
si . If this can be done, the system often converges very fast. An interpretation is that the fast,
linear parts of the problem are made more dominant through the shortening of the horizon,
or the nonlinearity diminishes, cf. [6]. Additionally, the stability of the process is improved,
because blowup effects can only happen on the much shorter time horizons [t i, t i+1) and
hence are exponentially less likely. Furthermore, the IVPs for the short time horizons can be
simultaneously solved in parallel if the system architecture allows for parallelism. Another
advantage compared to collocation is that state-of-the-art solvers for the IVP can be used to
improve efficiency and precision, which can use adaptive step refinements and error control
methods, cf. [5].

One might argue that there are strong negative effects due to the larger problem size that
stems from the addition of the si variables in comparison to single shooting. However,
through the so-called condensing technique, these variables can be eliminated from the ac-
tual computations. Still, there is some overhead needed to accomplish this.

Notice that we are only able to enforce the point-constraints on the shooting nodes with this

22

O P T I M A L C O N T RO L
�� CHAPTER 2

discretization, i.e., all points, where they are required, must be included in the shooting grid:

0= r eq((t i, si)0¶i¶m),

0¶ r in((t i, si)0¶i¶m).

Collocation

In this case, the states are discretized on the time grid Gm as x (t i) = si and the values are
connected with a one-step or multi-step integration method. All the corresponding computa-
tions are included in the optimization problem. If we have e.g. an explicit one-step method
like the HEUN method, we replace the ODE through the equations given by the scheme

si+1 = si +
∆t i

2
f (t i, si ,q)

+
∆t i

2
f
�

t i +
∆t i

2
, si +

∆t i

2
f (t i, si ,q),q

�
, 0≤ i ≤ m− 1,

where q are variables used to parameterize the controls and parameters in [t i, t i+1). A thor-
ough overview on collocation is given in [27, Chapter 10].

These equations are now included into the optimization problem instead of the ODE. De-
pending on the solver, the derivatives of these equations with respect to the discretized states
and controls may also be required. Since the ODE is not evaluated separately, the grid has to
be quite fine to sufficiently resolve the trajectories. Therefore, a lot of variables have to be
included in the optimization problem, yet the structure strongly depends on the implemented
collocation scheme and the resulting JACOBIANS are sparse. It is essential for the performance
that these structural properties are exploited, cf. [22, 25]. Instead of using a very fine grid
right from the start, it is also possible to use a coarser grid and to adaptively refine it during
run time, cf. [24]. However, convergence problems exist for singular control problems, where
the optimal control is not at its bounds, cf. [27].

2.4.3 Constraint discretization

The point constraints r (·) are already in a discretized formulation whereas the path con-
straints c(·) still need to be discretized. Depending on the type of constraint, they are usually
discretized on the same grid as the entering variables – i.e., pure state constraints are dis-
cretized on the state grid, pure control constraints are discretized on the control grid and
mixed constraints are discretized on the intersection of both grids. If both were the same
grids, we would obtain

0¶ c(t i, x (t i), u(t i)), 0¶ i ¶ m.

23

CHAPTER 2
�� O P T I M A L C O N T RO L

If the desired accuracy for the constraints is not achieved, the constraints may also be required
on additional points, i.e., a finer sub-grid of broad grids, which are used for the control and
state discretizations, has to be employed. A problem is often that either the state trajectory is
not known on these intermediate points or that the JACOBIAN cannot be provided. Therefore,
sometimes the discretization of the states and/or controls need to be adapted as well to
obtain the desired resolution of the constraints. One approach to introduce the continuous
path constraints in the direct multiple shooting state discretization is the minima tracking
approach described in [145], which adds new tracking points for the constraints without
refining the resolution of the states.

2.4.4 Gradient computation

Most optimizers need at least gradients of the discretized objective function Φ(·) and the
JACOBIAN of the discretized constraints c(·) and r (·). The HESSIAN might be also needed,
depending on the optimizer used. For the fully discretized system, i.e., if collocation was
used to discretize the states, the derivatives of the functions can usually be directly computed.
There are three ways to do so.

• Analytic differentiation is just computing the derivatives by hand and implementing
them as functions. This includes symbolic differentiation, where tools are used to gen-
erate the exact derivative formulation. For larger problems, the effort to compute all
function derivatives can be quite high and is often error-prone.

• Finite differences use different function evaluations to approximate the derivatives. How-
ever, it suffers from limited accuracy and high computational burden.

• Automatic differentiation uses the chain and product rules of differentiation to compute
the derivatives out of C or FORTRAN code. It uses either operator overloading or source
code transformation via a compiler. The approach is fully presented in the GRIEWANK’s
textbook [83]. Details on an implementation can e.g. be found in [183] for ADOL-C,
an operator overloading package.

If the ODEs are solved with an integrator as in single shooting and multiple shooting, the
computation of the derivatives of the trajectories with regard to the discretized states and
controls is more complicated and needs access to the integrator. There are essentially two
versions, the sensitivity equation approach and the adjoint equation approach. We only present
them for single shooting and the dependence of the initial values, the extension to multiple
shooting is straightforward.

Sensitivity equation approach

For the sensitivity equation approach or the solution of the variational IVP, the ODE is differ-
entiated with regard to x0 and the discretized controls q . We want to obtain the sensitivities

24

O P T I M A L C O N T RO L
�� CHAPTER 2

of the states with regard to the other states and controls, the so-called WRONSKI-matrices:

G(t i, t0)
def
=

d

dx0
x (t i;q),

Gq(t i, t0)
def
=

d

dq
x (t i;q).

Through differentiation, we obtain them as the solutions of the following IVPs:

Ġ(t , t0) = fx (t, x (t),q) G(t, t0),

G(t0, t0) = I ,

and

Ġq(t , t0) = fx (t, x (t),q) Gq(t, t j) + fq(t, x (t),q),

Gq(t0, t0) = 0.

However, one has to be careful to use the same integration scheme for the variational ODE as
for the original ODE. Otherwise, the derivative is only a disturbed derivative. Notice that the
right-hand sides of the sensitivity system can be efficiently computed with the forward mode
of automatic differentiation.
The analogous internal numeric differentiation differentiates the discretized ODE with respect
to the discretized states s . The approach stems from BOCK’s work in [28]. Notice that there is
a difference between the presented differentiate-then-discretize scheme and the discretize-then-
differentiate scheme, where instead of x its discretized version coming out of the integrator
is differentiated. This difference vanishes if the ODE is not approximated but solved exactly.
Discussions of additional cases in which the two also commutate for the approximated solu-
tion are e.g. given in [15, 29].
Usually, the internal numeric differentiation approach is implemented, since it guarantees
to get the correct derivatives of the discretized system. Modifications of this method are
e.g. presented in [40, 61].

Adjoint equation approach

The idea of the adjoint equation stems from the elimination of the sensitivities in the LA-
GRANGIAN relaxation of the ODE. It is used to calculate directional derivatives of the states
with respect to the initial states and with respect to the discretized controls

xd(t)
def
=

d

dx0
x (t;q) d,

qd(t)
def
=

d

dq
x (t;q) d

25

CHAPTER 2
�� O P T I M A L C O N T RO L

in direction d ∈ Rnx . The adjoint system is in this case:

ẋd(t) =− fx (t, x (t),q)T xd(t), t ∈ [t0, tf],

xd(tf) = d,

q̇d(t) =− fq(t, x (t),q)T d, t ∈ [t0, tf],

qd(tf) = 0.

The adjoint approach is better suited if the problem has more degrees of freedom than states.
Instead of computing the whole JACOBIAN and then a matrix-vector-product, the directional
derivative is directly computed. Notice that the reverse mode of automatic differentiation can
be used to efficiently calculate the right-hand side of the adjoint system.
As with the sensitivity equation approach, one has to be careful in the usage of this adjoint
formalism with discretized systems such that the principle of internal numeric differentiation
is satisfied, cf. [30]. The application of the formalism to the discretized system instead of
the continuous system, as done above, directly satisfies this principle and ensures that the
derivatives calculated are the true derivatives of the evaluated system. This is the case if the
integration scheme for the ODE system is the adjoint of the integration scheme of the adjoint
system.

2.4.5 Optimizer

The optimizer is the algorithm to solve the resulting finite-dimensional optimization problem.
The applicable options naturally depend on the structure of the problem. For the continuous
OCP, the resulting problem usually is a nonlinear problem. There are two prominent strate-
gies to solve those: interior point methods and active set methods (e.g. the Sequential Quadratic
Programming (SQP) method).
In a general setting, interior point methods are the methods of choice since they can be imple-
mented very efficiently, cf. [182]. However, if similar problems have to be solved more than
once, the warm starting possibilities of active-set methods become advantageous, cf. [120].
This is the case if the resulting problem is a MINLP, cf. [65, 84], or in a predictive control
perspective, cf. [11]. SQP methods can also take advantage of separable structures through
block updates for the approximation of the HESSIAN. These separable structures occur auto-
matically in OCPs through the separation into different time intervals.
Historically, the SQP method has been prevalent in the OCP context, for both collocation
methods [26, 90, 171] and multiple-shooting methods [33].

26

3 Mixed–Integer Optimal Control – Modeling
and Relaxation

This chapter treats MIOCPs from the point of view of problem formulation and modeling
for direct methods. It also briefly treats different solution approaches. The first Section 3.1
covers two general formulations of the problem class and establishes commonly used expres-
sions. The following two Sections 3.2 and 3.3 briefly present the adjustments needed for two
widely known approaches to solve MIOCPs, namely indirect methods and dynamic program-
ming. However, they are only presented for the sake of completeness since they are not used
to solve problems in the numerical results Chapter 5. Section 3.4 treats direct methods to solve
MIOCPs. Then in the following Sections 3.5–3.9, we describe how different relaxed formu-
lations can be obtained for both the ODE and constraints of a disjunction. These approaches
are compared in Section 3.10. Then, we give insight into different ways to model switching
constraints. Last, in Section 3.12, we cover the most important ways to solve MINLPs, which
emerge from the discretization of the MIOCPs.

3.1 Problem formulation

We give an introduction to the MIOCP class that we are interested in. This class is model-
based nonlinear optimal control that includes switching decisions, which are to be optimized
together with piecewise continuous controls. We present two different ways of formulating a
MIOCP and define some expressions. We start with a specific case of a MIOCP in ODEs of the
following form:

Definition 3.1
A Mixed-Integer Optimal Control Problem is a continuous optimal control problem with integer
feasibility requirement on a subset of the control trajectories of the form:

min
x (·),u(·),v(·)

Φ(x (tf)) (3.1)

s. t. ẋ (t) = f (t, x (t), u(t), v(t)), t ∈ [t0, tf],

0¶ c(t, x (t), u(t), v(t)), t ∈ [t0, tf],

0= r eq((t i, x (t i))0¶i¶m), {t i}0¶i¶m ⊂ [t0, tf],

0¶ r in((t i, x (t i))0¶i¶m), {t i}0¶i¶m ⊂ [t0, tf],

u(t) ∈ U , t ∈ [t0, tf],

27

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

v(t) ∈ Ω⊂ Rnv , t ∈ [t0, tf], |Ω|= nω <∞,

where we determine a dynamic process x : [t0, tf] → Rnx on the time horizon [t0, tf] ⊂ R
described by a system of ODEs with the right-hand side function f : [t0, tf]×Rnx ×Rnu ×Rnv →
Rnx . This system is affected by a continuous, vector-valued control function u : [t0, tf] → Rnu ,
and another vector-valued control function, which attains only values from a finite discrete set
v : [t0, tf] → Ω def

= {v1, v2, . . . , vnω} ⊆ Rnv with cardinality |Ω| = nω < ∞. The controls are
to be determined such that we minimize a performance index Φ : Rnx → R and satisfy path
constraints c : [t0, tf]× Rnx × Rnu × Rnv → Rnc and coupled point constraints r = (r eq, r in) :�
[t0, tf]×Rnx

�m+1→ Rnr on a finite number of m+ 1 grid points {t i}0¶i¶m ⊂ [t0, tf]. 4

The addition of integrality usually means that the system can run in different operation
modes. The following disjunctive formulation captures this interpretation of different modes
in a clearer way:

Definition 3.2
A Mixed-Integer Optimal Control Problem in disjunctive form is a continuous optimal control
problem with nω different operation modes of the system. Their status is represented by Boolean
control functions ω : [t0, tf]→ {0,1}nω .

min
x (·),u(·),ω(·)

Φ(x (tf)) (3.2)

s. t.
∨

1¶i¶nω

ωi(t) = 1

ẋ (t) = f (t, x (t), u(t), v i)

0¶ c(t, x (t), u(t), v i)

 , t ∈ [t0, tf], (3.3)

0= r eq((x (t i))0¶i¶m), {t i}0¶i¶m ⊂ [t0, tf],

0¶ r in((x (t i))0¶i¶m), {t i}0¶i¶m ⊂ [t0, tf],

u(t) ∈ U , t ∈ [t0, tf],

ω(t) ∈ {0, 1}nω , t ∈ [t0, tf],

where the different terms are used as in the Definition 3.1 above, except the addition of said ω,
which models the choice of the mode. 4

The disjunction (3.3) was given such that the close connection between the two problems (3.1)
and (3.2) is visible. A more common approach would be to formulate the disjunction as

∨
1¶i¶nω

ωi(t) = 1

ẋ (t) = f i(t, x (t), u(t))

0¶ c i(t, x (t), u(t))

 , t ∈ [t0, tf], (3.4)

28

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

where a different function f i : [t0, tf]×Rnx×Rnu → Rnx and a different function c i : [t0, tf]×
Rnx ×Rnu → Rnc are evaluated for each mode i. This makes the OC approach more natural in
comparison to the IC approach, which is further discussed in Sections 3.5 and 3.6.

Definition 3.3 (Binary control)
We use the term integer control v(·), when its image space is a discrete set, i.e.,

v(t) ∈ Ω def
= {v1, v2, . . . , vnω}, (3.5)

with ∃ε > 0,∀i 6= j :
����v i − v j

����> ε. And we use the term binary control for the special case of

v(t) ∈ {0,1}nω . (3.6)

4

We use the expression relaxed whenever the restriction v(·) ∈ Ω is relaxed to a superset of Ω,
in particular to its convex hull. Similarly, ω(·) ∈ {0,1}nω is relaxed to the superset [0,1]nω .
Analogously to the OCP case, different objective formulations can be incorporated and the
general BOLZA functional can be used.
The reformulations and studies presented in this chapter can also be applied to more general
algebraic systems with the algebraic states z(t) and an explicit algebraic system of index 1
that replaces the ODE:

ẋ (t) = f (t, x (t), z(t), u(t), v(t)), t ∈ [t0, tf],

0= g (t, x (t), z(t), u(t), v(t)), t ∈ [t0, tf].

SAGER’s theoretical basis can be translated to this setting, cf. [79]. As a direct consequence,
our results can be adapted for index 1 DAE systems. However, for higher index models,
already the solution of the relaxed OCPs is hard and further research in the combination of
the two might be needed.
More general hybrid systems with state dependent switches between the system’s modes can
be modeled with implicit switches as described in [38]. Together with these implicit switches,
the system mode is tracked implicitly and a multistage OCP as described in Section 2.1 is ob-
tained. Alternatively, they can be modeled through the coupled path and control constraints:

0¶ c(t, x (t), u(t), v(t)), t ∈ [t0, tf],

where some settings of v i are only allowed in the state space that corresponds to this mode.
These systems include the network overflow problem from Section 5.3.5 and might, e.g., also
include ground contact models in robotics.
In addition to the constraints given, there may be constraints that change the domain of
the integer control functions. Instead of only limiting the choices for each point in time,
there may be additional constraints that consider the whole trajectory as, e.g., switching

29

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

constraints, which limit the amount of total mode switches a control is allowed to take. We
can abbreviate this by requiring for the integer control:

ω(·) ∈ Ωω ⊆ L1([t0, tf]),

v(·) ∈ Ωv ⊆ L1([t0, tf]).
(3.7)

There are different approaches to solve these MIOCPs. In the following, we describe the
adjustments needed for the indirect approach, the dynamic programming approach and the
direct approach, which are explained for MIOCPs in Sections 3.2–3.4. Afterwards, we cover
some issues concerning the integrality relaxation in Sections 3.5–3.9 needed for the direct ap-
proach and we describe different ways to model system switches as additional combinatorial
constraints in Section 3.11.

3.2 Indirect approach

One approach to solve MIOCPs is the indirect approach. The indirect approach for OCPs is
explained in Section 2.2. There, the Maximum Principle was formulated in a global way such
that it is easily generalized to the integral case, cf. [78, 176]. The integrality constraint is
just added to the inner minimization problem (2.15). This is possible since no assumptions
were made on the set U , which is the set of feasible controls. It may be non-convex and
even disjoint. In case of disjoint feasible regions, the behavior of the inner minimization
problem can be captured through the use of switching functions, i.e., the process is tracked in
each region separately and it is switched depending on which region realizes the minimum,
cf. [32]. This approach is called competing HAMILTONIANS.
Furthermore, for the extension to control functions that have additional global properties,
e.g., a limited number of switches, typically additional states are needed that record the
progress of these properties. Nonetheless, these additions can be made.

3.3 Dynamic programming

A second approach to solve MIOCPs is dynamic programming. In Section 2.3, the general
dynamic programming approach is explained for OCPs. It can very easily be adapted to
integer controls and the integrality constraint even is an advantage for this approach since all
other controls have to be discretized and the natural discretization due to integrality is much
coarser than the discretization typically employed for continuous controls. Therefore, the
computational effort is less than for the relaxed problem. However, the curse of dimensionality
still applies to the integral case and the approach is only viable for low numbers of differential
states and controls.
The application of dynamic programming to a truck problem similar to the one presented in
Section 5.4 is carried out in [42, 93].

30

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

3.4 Direct approach

Large parts of the contents of the following Sections 3.4–3.10 are based on our paper

[103] M. JUNG, C. KIRCHES AND S. SAGER, On Perspective Functions and Vanishing Constraints
in Mixed-Integer Nonlinear Optimal Control, in Facets of Combinatorial Optimization
– Festschrift for MARTIN GRÖTSCHEL, M. JÜNGER AND G. REINELT, eds., Springer Berlin
Heidelberg, 2013, pp. 387–417.

In Section 2.4, the direct approach and its components are described for OCPs. As in the con-
tinuous control setting, also for the direct approach in the MIOCP setting, the states, controls,
constraints and objective function have to be discretized. The obtained finite dimensional
problem is an MINLP, the major difference to the continuous NLP is the addition of inte-
grality constraints on some controls. Some of the possibilities to solve the resulting MINLP
are described in Section 3.12. For the most part, the discretization can be done in the same
manner as described in Section 2.4, but there are certain differences.
As the discretization principle is the same, also the direct approach for MIOCPs requires differ-
ent grids to be specified. Assume for notational simplicity that the discretization of the ODE,
the controls, and the constraints all happen on the same grid

Gm
def
= {t0 < t1 < . . .< tm = tf}

of m+ 1 points with step sizes

∆t i
def
= t i+1− t i

and maximum step size

∆t
def
= max

0¶i¶m−1
{∆t i}.

Most solvers for MINLPs need a differentiable function of the ODE f (·) and the constraints
c(·): the problem is usually relaxed by dropping the integrality constraint and the resulting
NLPs are solved with an NLP solver that requires second order differentiability. However,
both functions f (·) and c(·) are not necessarily defined on intermediate values between the
different v i as in Definition 3.1. Therefore, one major difference is that reformulations of
the functions f (·) and c(·) are needed such that a differentiable formulation is obtained.
The possible reformulations differ between equations and inequalities and we present differ-
ent approaches and study their characteristics, i.e., tightness, numerical stability etc., in the
following sections.
There are lots of options to employ binary or integer variables such that for integral points
exactly one mode of the system is chosen but the reformulations result in different relaxations.

31

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

Since the structure of the ODE system is distinct from the general structure of the constraints
c(·), we study them separately. Possible ways to reformulate the ODEs

ẋ (t) = f (t, x (t), u(t), v(t)), v(t) ∈ {v1, v2, . . . , vnω}, (3.8)

with integer variables are presented in the following as the IC approach, the OC approach
and the perspective approach, which includes variable lifting. Notice that this constraint is
almost always non-convex as it is a nonlinear equation. Only if f (·) is linear, the system may
become convex, cf. [139].

As with the ODEs, there are also different, valid options to employ binary or integer formula-
tions for more general constraints

0¶ c(t, x (t), u(t), v(t)), v(t) ∈ {v1, v2, . . . , vnω}. (3.9)

The first variants are the same as for the ODEs, i.e., IC, OC and the formulation with per-
spective functions. However, we present the additional option of vanishing constraints. The
main trait is that in the integer points, the corresponding active mode’s formulation holds.
Depending on the reformulation, there might be different kinds of constraint qualifications
that are violated in a subset of feasible points; we address this issue where it arises.

The integrality relaxation used in our descriptions usually drops the integrality constraint
while still using the variable’s bounds, e.g., a binary variable y ∈ {0, 1} becomes a continuous
variable in y ∈ [0, 1]. However, there exist ways to directly reformulate the integrality con-
straint with usually non-convex constraints and obtain a correct representation of the MINLP
as an NLP as explained in [170].

In the following, we only present the reformulations for inequality constraints. However,
most reformulations are possible for equations as well; we explain the differences as they
emerge.

3.5 Inner Convexification

One of the most natural approaches to unify the ODEs (3.8) as well as path constraints (3.9)
for the different modes is to replace all occurrences of v(t) with a function g (·) that realizes
the different values v i for integral values of additionally introduced integral variables. The
unified ODE is then obtained as

ẋ (t) = f (t, x (t), u(t), g (·)). (3.10)

One such approach would be to use binary variables ω connected with a SOS2-constraint,

32

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

which are used to model piecewise linear interpolations. They use the specifications

g (t,ω(t),α(t)) = α(t) v i + (1−α(t)) v i+1, if ωi(t) = 1,

i.e., ifωi(t) = 1 then g (·) linearly interpolates v i and v i+1. Additional variables µ are needed
to model this behavior correctly:

0= µ0 = µnω =ωnω ,

0¶ µi(t)¶ωi(t)¶ 1, 1¶ i ¶ nω− 1,

1=
nω−1∑
i=1

ωi(t),

g (t,ω(t),µ(t)) =
nω∑
j=1

�
ωi(t)−µi(t) +µi−1(t)

�
v i .

A second approach is to use a convex combination of the values v i with binary variables ω:

1=
nω∑
i=1

ωi(t),

g (t,ω(t)) =
nω∑
i=1

ωi(t) v i .

There are other possible reformulations that use fitted smooth convex functions g (·) as e.g.
suggested in [76].

The method is named Inner Convexification (IC) since the function f (·) itself is not changed
but the input control is replaced by a convex term. Naturally, if f (·) was convex, this property
would still hold for its reformulated version. However, for this property to hold, f (·) has to
be convex also with regard to the controls v(t). The reformulation’s strongest property is the
small computational effort, the reformulated right-hand side still only requires one evaluation
of the function f (·) and is hence as fast as possible. Unfortunately, this reformulation has
some negative properties, which are described in the following. To be able to execute this
reformulation one has to have access to and be able to change the formulation of f (·) and
it may not be treated as a black box. This reformulation may also yield a new function with
singularities in between the discrete values v1, . . . , vnω since their combination could produce
division by 0 or something similar. For algebraic systems, the DAE index could change through
this reformulation as described in [12]. Another unfavorable property is that the integrality
gap between the optimal solution of the relaxed problem and the optimal integral solution
can become arbitrarily large since the reachable set may become much larger through the use
of intermediate values, cf. [152, Section 4.2].

For the constraints for the different modes, the method remains the same. They are unified

33

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

in one single constraint. Again, each occurrence of the discrete controls v(t) is replaced by a
convex function g (t,ω(t)) of the newly introduced integer controls ω(t), which attains the
values v1, . . . , vnω for integral choices of ω(t). Usually, the same functions g (·) is chosen for
the constraints and the ODE. The IC constraint formulation is

0¶ c(t, x (t), u(t), g (t,ω(t))), (3.11)

such that for ω(t) ∈ {0, 1}nω there exists 0¶ i ¶ nω with g (t,ω(t)) = v i .

3.6 Outer Convexification

The OC technique was proposed in [152] and further investigated in [157, 160] to relax
the MIOCP to an ordinary OCP. To reformulate the ODE (3.8) of the different modes, for
every mode’s element v i of Ω, a binary control function ωi(·) is introduced, which represents
the choice of the mode. Then, with these variables, the relaxed version of the ODE is a convex
combination of the different modes’ ODEs:

ẋ (t) =
nω∑
i=1

ωi(t) f (t, x (t), u(t), v i),

1=
nω∑
i=1

ωi(t),

ωi(t) ∈ {0, 1}.

(3.12)

The resulting problem is convexified with respect to the binary controls. This is a convex
combination for the different right-hand sides f i(·) of the disjunctive formulation. For the
reformulated problem, we use the terms partial Outer Convexification to stress that convex-
ification only occurs on the binary controls and control-affine systems when we neglect the
effects of the continuous controls and focus on the effects of the linearly entering binary
controls. The relaxation replaces the binary constraint by

ωi(t) ∈ [0, 1].

This reformulation is only straightforward if the different system modes have the same corre-
sponding differential states as in our definitions.

The main effort needed for one right-hand side evaluation of (3.12) is nω evaluations of
f (·) for the different modes. This may seem quite a lot since any feasible combination of
integer variables may require its own mode v i . However, integer controls often decouple
depending on the separability properties of f (·). This can greatly reduce the number nω of
feasible combinations, i.e., different system modes, cf. e.g. [82, 153]. An example for this

34

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

separability is linear coupling. Assume it holds

ẋ (t) = f1(·, v1(t)) + f2(·, v2(t)), v1(t) ∈ Ω1, v2(t) ∈ Ω2.

Then, instead of enumerating all possible modes in Ω1×Ω2 for all t ∈ [t0, tf]:

ẋ (t) =
nω1∑
i=1

nω2∑
j=1

�
f1(·, v i

1) + f2(·, v j
2)
�
ωi, j(t), v i

1 ∈ Ω1, v j
2 ∈ Ω2,

1=
nω1∑
i=1

nω2∑
j=1

ωi, j(t),

ωi, j(t) ∈ {0, 1},

which would lead to nω = nω1nω2 modes, it is possible to just combine them independently
through

ẋ (t) =
nω1∑
i=1

f1(·, v i
1)ω1,i(t) +

nω2∑
j=1

f2(·, v j
2)ω2, j(t), v i

1 ∈ Ω1, v j
2 ∈ Ω2,

1=
nω1∑
i=1

ω1,i(t),

1=
nω2∑
j=1

ω2, j(t),

ωi, j(t) ∈ {0, 1}.

Both formulations essentially result in the same type of problem, i.e., a control-affine system
with SOS1-constraints, but the second formulation needs a lot less variables to obtain the
formulation. The two formulations have the exact same solutions with regard to the states
and continuous controls. This situation is found for most practical applications where binary
control functions usually enter linearly, e.g., to indicate whether a term is present or not. Ad-
ditionally, large parts of f (·) are usually the same for all system modes and can be evaluated
only once to save computational overhead.

In contrast to the IC’s relaxation, the integrality gap between an integer solution to the
OC (3.12) and a solution of its relaxed formulation – where ωi(t) ∈ [0, 1] – is bounded
linearly by the size ∆t of the discretized time grid. This is proved in [157] and also pre-
sented in Section 4.2 since it establishes the basis for the approximation results of Chapter 4.

For the constraints c(·), the same procedure is used. The residuals of the constraints are eval-
uated separately for each possible mode and the resulting constraint is posed as the convex

35

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

combination of these residuals, i.e.,

0¶
nω∑
i=1

ωi(t) c(t, x (t), u(t), v i),

1=
nω∑
i=1

ωi(t),

ωi(t) ∈ {0, 1}.

(3.13)

Notice that the convex combinations should be chosen such that constraints of the same type
are combined. For constraint types that exist only on a subset of modes, special measures
must be taken that ensure that the constraints are inactive while the corresponding modes
are inactive.
The relaxed formulation replaces ωi(t) ∈ {0, 1} through ωi(t) ∈ [0, 1]. The separability
reformulations should also be applied to the constraints in order to introduce as little variables
as necessary.
As the constraints are aggregated into one single constraint, compensatory effects may lead to
feasible residuals for fractional values of the convex multipliers as observed in [111].

Proposition 3.1 (Feasible region)
There exists ω(t) such that (x (t), u(t),ω(t)) is feasible for the relaxed version of the con-
straints (3.13) if and only if there exists an index 1¶ i ¶ nω such that

0¶ c(t, x (t), u(t), v i). 4

The proposition states that the projection onto the (x , u)-space of the feasible set of the
problem after OC is exactly the union of all feasible sets of the disjunction.

Proof The backward direction is trivial:
If it exists 1¶ i ¶ nω such that

0¶ c(t, x (t), u(t), v i),

then the following choice of ω(t) satisfies (3.13):

ω j(t) =

1, if j = i,

0, else.

On the other hand, assume ∀1¶ i ¶ nω:

c(t, x (t), u(t), v i)< 0,

36

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

then for any choice ω(t) ∈ [0,1]nω with

nω∑
i=1

ωi(t) = 1,

it holds:

nω∑
i=1

ωi(t) c(t, x (t), u(t), v i)¶
nω∑
i=1

ωi(t) max
j=1,...,nω

¦
c(t, x (t), u(t), v j)

©

= max
j=1,...,nω

¦
c(t, x (t), u(t), v j)

© nω∑
i=1

ωi(t)< 0.

This means, there exists no ω(t) such that (ω(t), x (t), u(t)) is feasible for the relaxed con-
straints (3.13). �

3.7 Big-M formulation

This technique is only used to reformulate inequality constraints and not the ODE. The Big-M
formulation stems from the integer programming community and is often used to reformulate
nonlinear constraints into linear ones. The constraints are linearly relaxed through the binary
variables corresponding to each mode. The bounds M i ∈ Rnc have to be lower bounds that
hold for all possible settings, i.e., ∀t ∈ [t0, tf], x (·) reachable and feasible u(·):

M i ¶ c i(t, x (t), u(t)).

The relaxed constraints become

M i �1−ωi(t)
�
¶ c i(t, x (t), u(t)). (3.14)

Remark 3.1
It is well known that the tightness of the constraints depends strongly on the choice of M i .
However, even with the strongest possible choice the constraints can remain quite weak. At
best one reaches the tightness of the convex hull formulation described in the perspective
formulation section, cf. [99]. However, an advantage of the formulation is that it is easy to
formulate, does not introduce additional non-convexities, and does not increase the problem’s
size.

3.7.1 Mixed Logical Dynamical systems

The MLD systems – as used by BEMPORAD and MORARI and realized in the Multi-Parametric
Toolbox (MPT) – use an approach, which results in a Big-M formulation. They automatically

37

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

combine the inherent logic of dynamic control problem with logical decisions involved in the
linear setting, where the state transition, possibly present algebraic constraints, and path and
control constraints of the discretized system are all linear. They employ new binary variables
ω to capture the logics of the system and provide a set of inequalities to combine these
binary variables with the dynamic structure of the continuous states. In [18], the formalism
is described and we give a brief example in the following.

Let us consider the following equivalence condition of a binary variable ω and a linear func-
tion g (·) as a constraint with the connection of the two being:

[ω= 1]↔ [g (x)¾ 0].

This condition is equivalent to the following linear inequalities:

g (x)¾m (1−ω) ,
g (x)¶ (M + ε)ω− ε,

where

mi
def
=min

x∈D
gi(x),

Mi
def
=max

x∈D
gi(x),

and ε is a vector of small tolerance parameters beyond which the constraint is considered to
be violated. Since g (·) is a linear function and if we assume that the variables x belong to a
bounded domain D, then m and M can be computed or at least under- and overestimated,
respectively. This is sufficient to guarantee the equivalence between the logic statement and
the set of inequalities. As usual with Big-M-formulations, the reformulation computationally
works better, the smaller the entries of M and the larger the entries of m, as long as they
remain valid bounds, cf. [185].

Under some assumptions, MLD systems have been shown to be equivalent to other system
modeling formats including linear complementarity systems, extended linear complementarity
systems, piecewise affine systems, and max-min-plus-scaling systems, cf. [92].

3.8 Vanishing and complementarity constraints

Instead of aggregating the different mode’s constraints as done in the IC and OC approaches,
this formulation accounts for the different modes’ constraints independently. This is realized

38

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

through the addition of one constraint set per mode, the constraints (3.9) are replaced with

0¶ωi(t) c(t, x (t), u(t), v i), 1¶ i ¶ nω,

1=
nω∑
i=1

ωi(t).
(3.15)

Notice that each mode’s constraints are enforced if the corresponding multiplier is nonzero.
The obtained NLPs or MINLPs lose constraint qualification and become Mathematical Pro-
grams with Vanishing Constraints (MPVCs), if only inequality constraints are present – or
Mathematical Programs with Complementarity Constraints (MPCCs), if also equations are
present that can be relaxed to inequalities if the corresponding mode is inactive. We mainly
cover MPVC but try to also give some comments on MPCC.

Definition 3.4 (MPCC, MPVC)
An NLP

min
y∈Rny

Φ(y) (3.16)

s. t. 0= ri(y), i ∈ E ,

0¶ ri(y), i ∈ I,

0¶ g (y),

0¶ h(y),

g (y)⊥ h(y), (3.17)

with twice continuously differentiable functions Φ, r , g , and h is called a Mathematical Pro-
gram with Complementarity Constraints (MPCC) (3.17), cf. [14]. The ⊥ operator represents
complementarity and means that for each component i it holds gi(y) = 0 or hi(y) = 0.
An NLP

min
y∈Rny

Φ(y) (3.18)

s. t. 0= ri(y), i ∈ E ,

0¶ ri(y), i ∈ I,

0¶ h(y),

0¶ gi(y) hi(y), 1¶ i ¶ ngh, (3.19)

with twice continuously differentiable functions Φ, r , g , and h is called a Mathematical Program
with Vanishing Constraints (MPVC) (3.19), cf. [3]. 4

Remark 3.2 (Transformation MPVC into MPCC)
MPVCs can easily be transformed into MPCCs. A vector of slack variables z is used to relax

39

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

h(y)

g(
y)

0.8 h(y)

g(
y)

0.8

Figure 3.1: Feasible regions for complementarity constraints (3.17, left) and vanishing con-
straints (3.19, right).

the vanishing constraints g and complementarily combined with the indicator function h:

min
y∈Rny ,z∈Rngh

Φ(y)

s. t. 0= ri(y), i ∈ E ,

0¶ ri(y), i ∈ I,

0¶ h(y),

0¶ z,

0¶ g (y) + z,

z ⊥ h(y).

The resulting problem can be treated with a Mathematical Program with Equilibrium Con-
straints (MPEC) algorithm as, e.g., [122, 148], which use interior point methods, or [102],
which use an active set method. However, the resulting problem is degenerated as solutions
are not unique in the slack variables and it is thus difficult for interior point methods to
handle. Another disadvantage of this reformulation is that in a sense MPCC is a more difficult
class of problems than MPVC – standard constraint qualifications are violated in each feasible
point instead of a discrete set of points, cf. [50, 96, 164].

The following index sets for feasible points have special properties that are described later.

Definition 3.5 (Index sets)
Let ȳ be a feasible point of (3.16) or (3.18), the index set of active inequalities is defined as

Ir
def
= {i | ri(ȳ) = 0, i ∈ I}.

Let ȳ be a feasible point of the MPCC (3.16), the following index sets are defined and partition

40

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

the set of complementarity constraint indices:

I0+
def
= {i | hi(ȳ) = 0, gi(ȳ)> 0},

I+0
def
= {i | hi(ȳ)> 0, gi(ȳ) = 0},

I00
def
= {i | hi(ȳ) = 0, gi(ȳ) = 0}.

Let ȳ be a feasible point of the MPVC (3.18), the following index sets are defined and partition
the set of vanishing constraint indices:

I+0
def
= {i | hi(ȳ)> 0, gi(ȳ) = 0},

I++
def
= {i | hi(ȳ)> 0, gi(ȳ)> 0},

I00
def
= {i | hi(ȳ) = 0, gi(ȳ) = 0},

I0+
def
= {i | hi(ȳ) = 0, gi(ȳ)> 0},

I0−
def
= {i | hi(ȳ) = 0, gi(ȳ)< 0}. 4

For the problem formulation (3.1) of the MIOCP, the functions g (·) and h(·) are chosen to
be:

hi(t, x (t), u(t),ω(t)) =ωi(t),

gi(t, x (t), u(t),ω(t)) = c(t, x (t), u(t), v i),

and the following MPVC is obtained

min
x (·),u(·),ω(·)

Φ(x (tf)) (3.20a)

s. t.
∨

1¶i¶nω

ωi(t) = 1

ẋ (t) = f (t, x (t), u(t), v i)

 , t ∈ [t0, tf], (3.20b)

0¶ωi(t) c(t, x (t), u(t), v i), 1¶ i ¶ nω, t ∈ [t0, tf], (3.20c)

0= r eq((t i, x (t i))0¶i¶m), {t i}0¶i¶m ⊂ [t0, tf], (3.20d)

0¶ r in((t i, x (t i))0¶i¶m), {t i}0¶i¶m ⊂ [t0, tf], (3.20e)

u(t) ∈ U , t ∈ [t0, tf], (3.20f)

ω(t) ∈ {0, 1}nω , t ∈ [t0, tf]. (3.20g)

Remark 3.3 (System of differential equations and complementarity constraints)
The quality of a reformulation of the dynamic process, i.e., the ODE system (3.20b), with
complementarity constraints depends on the actual system at hand. In [149], the authors
report promising results for a batch distillation column and a cryogenic distillation column.

41

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

Both formulations are DAE systems with two independent disjunctions of size 2 per tray. They
discretize the system with collocation, and reformulate the disjunctions with the complemen-
tarity constraint formalism. They can solve realistic scenarios with IPOPT as the NLP solver,
which includes an adaptation for complementarity constraints. In [14], 3 small case studies
are also solved with this approach.
However, for large disjunctions, also large number of complementarity constraints need to be
added to the model, which are generally difficult to solve. Also each equation that appears
in a disjunction needs to be reformulated with 2 slack variables to be able to formulate it in
the MPCC framework. We tried the formalism for the truck model from Section 5.4, but the
resulting NLP could not be solved with IPOPT.

Remark 3.4 (Tightness)
A value of ωi(t) > 0 guarantees that the corresponding vanishing constraints are satisfied,
i.e.,

c(·, v i)¾ 0.

Therefore, the relaxation with ωi(t) ∈ [0, 1] is much tighter than the previously described
relaxations as it is either fully active (ωi(t) > 0) or inactive (ωi(t) = 0) and nothing in
between.

3.8.1 Constraint qualifications for MPVCs and MPCCs

MPCCs and MPVCs are highly challenging non-convex problems, which are known to possess
critical points that violate the Linear Independence Constraint Qualification (LICQ). Their
computational solution with standard NLP software is prone to numerical difficulties and
often terminates in suboptimal points that possess trivial descent directions and are not local
minimizers of (3.16) or (3.18).

Proposition 3.2 (No LICQ for vanishing constraints)
Let (x̄ , ū, ω̄) be a feasible solution of the relaxation of a problem including the vanishing con-
straint formulation (3.15) with I00 6= ;. Then LICQ is not satisfied. 4

Proof We look at the constraint matrix of all constraints in (·, ω̄), given by

∂

∂ (ω1, . . . ,ωnω , (x , u))

ω1(t) c(·, v1)
...

ωnω(t) c(·, vnω)∑nω
i=1ωi(t)− 1

ω1(t)
...

ωnω(t)

=

c(·, v1) · · · 0 ω̄1(t)∇c(·, v1)
. . .

...

0 · · · c(·, vnω) ω̄nω(t)∇c(·, vnω)

1 · · · 1 0

1 0
...

...

1 0

,

42

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

and notice that the rows that correspond to ω̄i(t) c(·, v i) ¾ 0 contain only zeros, leading to
a trivially linear dependent constraint system. �

In [96], it is shown that not only LICQ is violated but that also the weaker MANGASARIAN-
FROMOVITZ Constraint Qualification (MFCQ) and the ABADIE Constraint Qualification (ACQ)
are violated. However, the cone-based GUIGNARD Constraint Qualification (GCQ) holds even
for these points and hence local minimizers are still KARUSH-KUHN-TUCKER (KKT) points. Also,
a specially tailored MPVC-LICQ can be derived, which considers only the row rank of a subset
of constraints, where h and g are treated separately instead of treating their product (3.19).

Definition 3.6 (MPVC-LICQ)
Let ȳ be a feasible point of problem (3.18). MPVC-LICQ is said to hold in ȳ , if the gradients

∇ri(ȳ), i ∈ Ir ,

∇ri(ȳ), i ∈ E ,

∇hi(ȳ), i ∈ I00 ∪ I0− ∪ I0+,

∇gi(ȳ), i ∈ I00 ∪ I+0,

are linearly independent. 4

Similarly, it can be shown that all feasible points for an MPCC violate MFCQ and as a direct
consequence also LICQ, cf. [50, 164]. Therefore, in [64, 164], the analogous MPCC-LICQ is
introduced:

Definition 3.7 (MPCC-LICQ)
Let ȳ be a feasible point of problem (3.16). MPCC-LICQ is said to hold in ȳ , if the gradients

∇ri(ȳ), i ∈ Ir ,

∇ri(ȳ), i ∈ E ,

∇hi(ȳ), i ∈ I0+ ∪ I00,

∇gi(ȳ), i ∈ I+0 ∪ I00

are linearly independent. 4

These MPVC-LICQ and MPCC-LICQ can be used to derive applicable stationarity conditions
and to construct applicable algorithms.

3.8.2 Regularization

Regularization formulations for MPVC relax the feasible set using ε > 0 to prevent the al-
gorithms from reaching the points with violated LICQ. Instead of requiring the vanishing

43

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

constraints (3.15), their relaxed version

−ε ¶ωi(t) c(t, x (t), u(t), v i), 1¶ i ¶ nω,

1=
nω∑
i=1

ωi(t)
(3.21)

is required. Now, a sequence of perturbed problems is solved with ε ↘ 0, whose solutions
converge. The solution should satisfy BOULIGAND stationarity to verify that it is not a spurious
stationary point, which satisfies weaker stationarity conditions, but possesses descent direc-
tions. In [100], theoretical properties of solutions of the perturbed system are studied and
under certain stationarity assumptions, the speed of convergence toward the true solution is
given as O(

p
ε).

ωi(t)

c(
·,v

i)

0.8 ωi(t)

c(
·,v

i)

0.8

Figure 3.2: Feasible region for vanishing constraints (3.17, left) in comparison to the regularized ver-
sion (3.21, right) with ε ∈ {0.05, 0.1,0.15,0.2}.

MPCCs can be regularized similarly and an overview of some possibilities and their properties
can be gained in [97].

3.8.3 NCP functions

A function ϕ : R2→ R is called Nonlinear Complementarity Problem (NCP) function if

ϕ(a, b) = 0 ⇔ a ¾ 0, b ¾ 0, ab = 0, (MPCC),

ϕ(a, b) = 0 ⇔ b ¾ 0, ab ¾ 0, (MPVC).

For surveys on NCP functions in the MPCC context, cf. [63, 121]. Instead of the complemen-
tarity constraints or vanishing constraints, the reformulated problem includes the equation

ϕ
�
h(y), g(y)

�
= 0,

44

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

or – for merit functions that satisfy ∀(a, b) ∈ R2 : ϕ(a, b)¾ 0 – the inequality

ϕ
�
h(y), g(y)

�
¶ 0.

The most prominent NCP functions for MPCC are the FISCHER-BURMEISTER function

ϕFB(a, b)
def
= a+ b−

p
a2+ b2,

and the min-function and its equivalent the natural residual function

ϕNR(a, b)
def
=

1

2

�
a+ b−

p
(a− b)2

�
=min{a, b}.

Observe that both are non-smooth functions and this is a desired property for the reformula-
tion to be correct in a = b = 0.

For MPVC, HOHEISEL gives reasoning to also use non-smooth functions since – with smooth
functions – MPVC and hence also LICQ cannot hold at any feasible point in I0− ∪ I+0 ∪ I00,
cf. [96]. He proposes to use the following NCP function for MPVCs, which has also the
advantage of being a merit function:

ϕVC(a, b)
def
=

1

2

�p
a2 b2− ab+

p
b2− b

�
=−min{ab, 0} −min{b, 0}.

Non-smooth functions are desired for the reformulated problems to behave correctly, yet
algorithms usually require a smooth setting to converge properly. Therefore, the functions
are approximated with smooth functions with a smoothing parameter ε, cf. [63, 121]. Those
functions are designed such that the limit case ε = 0 is the non-smooth function, which shall
be approximated. For MPCC, smoothing under the MPCC-LICQ assumption and different
second-order conditions has been shown to yield B-stationarity of the limit point.

One such smoothing approach for MPCC, which was presented in [49, 60, 121] and showed
good results, is the smoothed natural residual function with ε < 2:

ϕNR
ε (a, b)

def
=

1

2

�
a+ b−

p
(a− b)2+ ε ab

�
.

An advantage of this formulation is that the smoothed function remains an exact NCP func-
tion.

It is shown in [96] that these convergence results cannot be transfered directly to the MPVC
setting. For example, the smoothing approach

ϕVC
ε (a, b)

def
=

1

2

�p
a2 b2+ ε2− ab+

p
b2+ ε2− b

�

can yield an empty feasible set for ε > 0. HOHEISEL proposes to couple the smoothing ap-

45

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

h(y)

g(
y)

1.2 h(y)

g(
y)

1.2

Figure 3.3: Contour lines for the non-smooth natural residual function ϕNR(·) on the left and for the
smoothed version ϕNR

ε (·) on the right with ε = 1
32

.

proach with the already described regularization approach from Section 3.8.2, which pro-
duces the constraint

ϕVC
ε

�
c(·, v i),ωi(t)

�
¶ ε. (3.22)

This formulation has the desired property of convergence for ε ↘ 0 to a strongly stationary
limit point under MPVC-LICQ assuming existence of a sequence of feasible points for the
sequence of smoothed, regularized problems and asymptotic non-degeneracy.

ωi(t)

c(
·,v

i)

0.8 ωi(t)

c(
·,v

i)

0.8

Figure 3.4: Feasible region for vanishing constraints (3.17, left) in comparison to the smoothed and
regularized version (3.22, right) with ε ∈ {0.05,0.1, 0.15,0.2}.

3.9 Perspective formulation

The perspective formulation is originated in the MINLP community and stems from the GDP
approach, cf. [9, 48, 84, 86, 115]. It is motivated by disjunctions as described in Definition 3.2
and it was originally developed for chemical applications in process synthesis. It was designed

46

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

for and applied to convex functions but it is now also studied for non-convex ones, cf. [150].
The authors propose to introduce convex underestimators for the non-convex functions, solve
the resulting convex problem with the presented scheme and then tighten them in a spatial
branch-and-bound framework.

The perspective formulation makes use of the perspective function, which is defined as

Definition 3.8 (Perspective function)
The perspective of a function g : Rn→ R is the function ĝ : R×Rn→ R defined by

ĝ(ω, y)
def
=

ω g
� y
ω

�
, if ω> 0,

0, if ω= 0, y = 0,

∞, otherwise.

4

Perspective functions have been used for strong formulations in MINLPs, cf. [48]. They have
also recently been used to implement the perspective cuts, cf. [88].

Remark 3.5
If a function g(·) is convex, then also its perspective ĝ(·) is convex, cf. [173].

The perspective formulation of the simple disjunction

�
0¾ g1(y)

�
∨
�

0¾ g2(y)
�

, y ∈ [my , M y]

is described through

0¾ω1 g1

�
y1

ω1

�
,

0¾ω2 g2

�
y2

ω2

�
,

1=ω1+ω2,

y = y1+ y2,

y1 ∈ω1[m
y , M y],

y2 ∈ω2[m
y , M y],

ω1,ω2 ∈ {0, 1}.

Its relaxed projection to the (y ,ω1,ω2)-space is the convex hull of the disjunction, if the
involved functions g1(·) and g2(·) are convex.

For a more general description, the following theorem holds:

47

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

Theorem 3.1 (Convex hull of disjunction)
The convex hull in the (ω, y)-space of each single disjunction of the problem

min
y ,ω

e(y) +
∑
k∈K

ek (3.23)

s. t.
∨
i∈Ik

ωik = 1

0¾ gik(y)

ek = γik

 , k ∈ K,

y ∈ [my , M y],

ω ∈ {0,1}nω ,

where gik(y) are convex inequalities, is the convex set given by the projection onto the (ω, y)-
space of the feasible set of

y =
∑
i∈Ik

y ik , (3.24)

0¾ωik gik

�
y ik

ωik

�
, i ∈ Ik,

1=
∑
i∈Ik

ωik,

ek =
∑
i∈Ik

ωik γik,

y ik ∈ωik [m
y , M y], i ∈ Ik. 4

Proof A proof can be found in [84]. �

Remark 3.6 (Numerical difficulties)
LICQ usually holds for perspective functions. However, due to the input structure and divi-
sion by small numbers, numerical difficulties arise for ω close to 0. For regularization, we
introduce a small ε > 0 and obtain the ε-dependent constraint

0¾ (ω+ ε) g
� y

ω+ ε

�
, (3.25)

which was proposed in [84]. It avoids the problematic operation of division by zero. However,
this formulation does not correctly model the feasibility for ω close to 0 as the point (ω, y) =
0 might be cut off, cf. Figure 3.5. This point is especially important since it marks the complete
inactivity of a disjunct and it must not be cut off for good numerical behavior. Therefore, it
was improved in [139] to better capture the original feasibility behavior as

0¾ω g
� y

ω+ ε

�
. (3.26)

48

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

Yet, it was also shown that this reformulation sometimes transforms nonlinear convex con-
straints into nonlinear non-convex ones, cf. [138].

In [162, 163], convex reformulations are studied and compared, e.g. the reformulation

0¾ (ω+ ε) g
� y

ω+ ε

�
− ε max

µ,v
g
�

v

µ+ ε

�
, (3.27)

retains convexity but has the problem of finding the inner maximum. A second proposed
reformulation is

0¾ ((1− ε)ω+ ε) g
�

y

(1− ε)ω+ ε
�
+ ε (ω− 1) g(0). (3.28)

SAWAYA and GROSSMANN declare the second reformulation to be closer to the original perspec-
tive cut for almost all realistic scenarios and give conditions when exactly this is the case, cf.
[163]. Also notice that this an exact problem representation for ω ∈ {0,1} and any choice of
ε. However, for this reformulation to be well-posed, the function g(·) needs to be defined in
0. However, this can always be accomplished through an affine transformation of y .

For MINLPs, the entering variables are duplicated for each side of a disjunction and instead of
adding the constraints, their perspective formulations are added. Analogously, in [139], the
authors proposed to lift all variables, i.e., differential states, controls, and horizon lengths,
into a higher space. Therefore, for each system mode, we introduce disaggregated states
x i(t), and control decision variables u i(t). The newly introduced variables have to be aggre-
gated to give a meaningful interpretation:

x (t) =
nω∑
i=1

x i(t),

u(t) =
nω∑
i=1

u i(t).

(3.29)

Using these variables, we are able to reformulate the disjunction for t ∈ [t0, tf]

∨
1¶i¶nω

ωi(t) = 1

ẋ (t) = f i(t, x (t), u(t))

0¶ c i(t, x (t), u(t))

with perspective functions to be

ẋ i(t) =ωi(t) f i

�
t,

x i(t)
ωi(t)

,
u i(t)
ωi(t)

�
, 1¶ i ¶ nω, (3.30)

49

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

(a) Perspective formulation as in Definition (3.8)

y

ω

1

(b) Regularized formulation (3.25)

y

ω

1

(c) (0, 0)-correction with maximum term (3.27)

y

ω

1

(d) (0, 0)-correction with constant (3.28)

y

ω

1

Figure 3.5: Feasible regions for the different perspective formulations of g(y) = (y − 1.3)2 − 1 ¾ 0
with ε = 0.3. The dashed lines display the bounds y ∈ω[my , M y].
Formulation (3.28) unifies all positive properties, i.e., correct formulation for ω ∈ {0, 1},
convexity, and numerical stability (if g(0) defined), while all other formulations lack in at
least one property.

50

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

0¶ωi(t) c i

�
t,

x i(t)
ωi(t)

,
u i(t)
ωi(t)

�
, 1¶ i ¶ nω,

ωi(t)mx ¶ x i(t)¶ωi(t) M x , 1¶ i ¶ nω,

ωi(t)mu ¶ u i(t)¶ωi(t) Mu , 1¶ i ¶ nω,

1=
nω∑
i=1

ωi(t),

ω(t) ∈ {0,1}nω ,

where mx , M x , mu and Mu are valid lower and upper bounds for the states and controls.

Remark 3.7 (Problematic dimension-increase)
The main problem with the perspective approach is the increase in the problem’s dimensions.
This is proportional to the size of the disjunctions, i.e.,

��Ik

��, and especially for larger disjunc-
tions – as can be found in the truck problem of Section 5.4 – even local algorithms may have
problems finding solutions in the large space due to the non-convexity of the ODE.

3.9.1 Projection of perspective’s convex hull for order preserving functions

An order preserving function is defined through:

Definition 3.9
Let g : E→ R, E ⊆ Rnx . g is independently increasing (resp. decreasing) on the ith coordinate
if ∀x = (x1, . . . , x i, . . . , xn) ∈ dom(g), x ′ = (x ′1, . . . , x ′i , . . . , x ′n) ∈ dom g, with x ′i ¾ x i: g(x ′)¾
(resp. ¶)g(x).
We say that g is independently monotone on the i-th coordinate if it is independently increasing
or decreasing on the given coordinate.
g is order preserving if it is independently monotone on each coordinate. 4

For order preserving functions g : Rnx → Rnc and “on/off” disjunctions, i.e., disjunctions of
the form

�
ω= 0, x ∈ [l0, u0]

�
∨
�
ω= 1, x ∈ [l1, u1], g(x)¶ 0

�
,

a reformulation of the convex hull of the disjunction is introduced in [95], which adds 2nx

constraints for each disjunction but does not need to lift the variables as described above.
Since the addition of 2nx constraints is impractical, the authors propose to take only a subset
of those constraints that already gives a relatively tight convex approximation of the convex
hull of the disjunction. It is described through

0¾ω g(h;(x ,ω)),

x ∈ (1−ω)[l0, u0] +ω[l1, u1],

ω ∈ [0,1],

(3.31)

51

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

with

(h;(x ,ω))i
def
=

x i

ω
− (1−ω)u0

i

ω
, if g is independently increasing on index i,

x i

ω
− (1−ω)l0

i

ω
, if g is independently decreasing on index i.

(3.32)

Since the function is order preserving, the variable value’s effect is limited by the boundary
values. This can be seen best for linear functions, as the procedure computes the best Big-M
formulation obtainable by using exclusively variable bounds. However, the restriction of the
functions to be order preserving is quite strict and hence the reformulation cannot be applied
very often.

3.9.2 Tightening the perspective formulation

The presented formulation describes the convex hull of the feasible integral points. However,
it requires the lifting of the state and control variables into a higher dimensional space and this
may be impractical with large disjunctions with many modes. Here, it may be advantageous
to project the lifted variables back into the original space to get a tighter relaxation. Notice
that this projected relaxation’s feasible set must be non-convex since it realizes a true subset
and it must contain the original disjunctions’ constraints for integral ω whose convex hull is
given by the perspective formulation.

One example projection of this type not only assigns each disjunct its own share of the space,
but requires the controls and states to be partitioned in the same way as the spaces are. The
following constraints are added to project the lifted states and controls into their respective
original spaces:

x i(t) =ωi(t) x(t),

u i(t) =ωi(t) u(t).
(3.33)

This requirement is consistent with the perspective formulation as the following constraints
of the perspective’s lifted variables are automatically fulfilled:

x (t) =
nω∑
i=1

x i(t) =
nω∑
i=1

ωi(t) x (t) = x (t),

u(t) =
nω∑
i=1

u i(t) =
nω∑
i=1

ωi(t) u(t) = u(t),

x i(t) =ωi(t) x(t) ∈ωi(t) [m
x , M x],

u i(t) =ωi(t) u(t) ∈ωi(t) [m
u , Mu].

(3.34)

52

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

The other constraints can be reformulated in the original state to be

ωi(t) ẋ (t) = ẋ i(t) =ωi(t) f i

�
t,

x i(t)
ωi(t)

,
u i(t)
ωi(t)

�
=ωi(t) f i (t, x (t), u(t)) , (3.35)

0¶ωi(t) c i

�
t,

x i(t)
ωi(t)

,
u i(t)
ωi(t)

�
=ωi(t) c i (t, x (t), u(t)) , (3.36)

which is exactly the formulation from Section 3.8 with vanishing constraints (3.15) and lifted
complementarity constraints:

0=ωi(t)
�

ẋ (t)− f i(t, x (t), u(t))
�

(3.37)

⇔

0¶ωi(t)⊥ ẋ (t)− f i(t, x (t), u(t)) + z1,i(t)¾ 0,

0¶ωi(t)⊥ f i(t, x (t), u(t))− ẋ (t) + z2,i(t)¾ 0,

0¶ωi(t)⊥ z1,i(t)¾ 0,

0¶ωi(t)⊥ z2,i(t)¾ 0.

(3.38)

Therefore, we can state for the corresponding feasible sets:

Lemma 3.1
Let FGDP the feasible set of the original integral problem, FVC/CC the projection of the feasible
set of the combination of vanishing constraints (3.15) and complementarity constraints (3.38)
onto the (x (t), u(t),ω(t))-space, and FCH the feasible set of the convex hull formulation (3.30).
Then, it holds:

FGDP ⊂ FVC/CC ⊂ FCH. 4

Proof The first inclusion is trivial since it is a relaxation. The second inclusion comes from
the derivation with the additionally tightening constraints (3.33). �

As pointed out in Remark 3.3, this tightening may be too severe with regard to the usually
nonlinear discretization of the ODE system. A more lenient formulation – as e.g. the OC of
the ODE – might be in order, which aggregates the complementarity constraints (3.35) into a
single constraint:

ωi(t) ẋ (t) =ωi(t) f i (t, x (t), u(t))

⇒ ẋ (t) =
nω∑
i=1

ωi(t) f i (t, x (t), u(t)) .

Another variant could be to project only the states into the original space, apply the aggrega-
tion onto the ODE and leave the lifted controls as additional degrees of freedom to be able to

53

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

satisfy the vanishing constraints more easily:

ẋ (t) =
nω∑
i=1

ωi(t) f i

�
t, x (t),

u i(t)
ωi(t)

�
,

0¶ωi(t) c i

�
t, x (t),

u i(t)
ωi(t)

�
.

(3.39)

3.10 Illustrative comparison of different formulations

In this section, we summarize some of the properties of the different formulations presented
in Sections 3.5–3.8.

To demonstrate the different formulations for constraints and their effects a simple example
disjunction is used in the following. It is a disjunction of two quadratic, convex constraints
(a1(v)¶ 0):

h
c(y, v1)

def
= a1(v

1) y2+ a2(v
1) y + a3(v

1)¾ 0
i

∨
h

c(y, v2)
def
= a1(v

2) y2+ a2(v
2) y + a3(v

2)¾ 0
i

,

y ∈ [l y , uy].

The functions stem from the truck model of Section 5.4 and are the functions Mind,max(·), cf.
(5.25). The parameters v1 and v2 correspond to the special settings of gears µ(s) = 10 and
µ(s) = 13 and the variable y corresponds to the truck’s speed.

The feasible sets must coincide to the original MIOCP formulation in ω ∈ {0,1} for the for-
mulations to be valid relaxations.

Inner Convexification

The IC formulation with two constraints is

cIC(y,ω)
def
= c(y,ω v1+ (1−ω) v2)¾ 0. (3.40)

As the feasible set shows, the reformulation does not retain convexity. This depends on how
the parameters v i enter the functions f (·) and c(·) and cannot necessarily be controlled.

Outer Convexification

The OC formulation with two constraints is

cOC(y,ω)
def
=ω c(y, v1) + (1−ω) c(y, v2)¾ 0. (3.41)

54

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

cIC
(y

,ω
)

ω

y
ω

y

Figure 3.6: IC applied to a two sided disjunction – left: cIC(·) from (3.40) – right: feasible set {(y,ω) |
cIC(y,ω)¾ 0}.

cO
C
(y

,ω
)

ω

y

ω

y

Figure 3.7: OC applied to a two sided disjunction – left: cOC(·) from (3.41) – right: feasible set {(y,ω) |
cOC(y,ω)¾ 0}.

55

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

As the feasible set shows, the reformulation does not retain convexity. It can even be guar-
anteed that, if the two feasible sets are disjoint in the y-space, the feasible set after OC in
the (y,ω)-space is also not connected. This is due to the feasible set in the y-space being
the union of the feasible sets of the different modes. However, it remains convex in the
y-space for fixed ω and vice versa. This property usually leads to good convergence of the
relaxed OCP with standard NLP methods. One has to investigate the problem structure before
the application of the OC technique to a problem since local methods are definitely not suited
for problems with disconnected feasible sets.

Big-M formulation

The Big-M formulation with two constraints is

0¶ c(y, v1) +M1 (1−ω), (3.42)

0¶ c(y, v2) +M2 ω. (3.43)

The Big-M relaxation is quite weak since it provides a large feasible region, which can be seen
in the comparison of the figures. Usually, due to this behavior, the Big-M relaxation gives the
weakest relaxation of the ones presented.

Perspective formulation

The perspective formulation with two constraints introduces auxiliary states y1 and y2 and is

0¶ω c

�
y1

ω
, v1

�
,

0¶ (1−ω) c

�
y2

1−ω , v2

�
,

y = y1+ y2,

y1 ∈ω [l y , uy],

y2 ∈ (1−ω) [l y , uy].

(3.44)

In contrast to the other formulations provided, except the Big-M formulation, the perspective
relaxation retains convexity of the functions provided, which is a strong advantage. However,
to guarantee this behavior, the variables involved in the disjunctions have to be duplicated for
each disjunct of the disjunction. This process severely increases the problem’s dimensions and
usually comes at the cost of strongly increased computational effort. The special formulation
for order preserving functions circumvents this variable duplication while almost giving the
same strength of relaxation. Sometimes some variables may only be present in one disjunct
as, e.g., in the sewage example from Section 5.3. Then, they only need to be introduced for

56

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

c(
y,

v1
)+

M
1
(1
−
ω
)

ω

y

c(
y,

v2
)+

M
2
ω

ω

y

ω

y

Figure 3.8: Big-M formulation applied to a two sided disjunction (The variable’s bounds used to com-
pute M1 and M2 are at the box’s boundaries. Notice that the graphs have a skewed z-axis in
comparison to the other graphs) – top: cBig-M(·) from (3.42) and (3.43) – bottom: feasible
set {(y,ω) | cBig-M(y,ω)¾ 0}.

57

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

ω
c�

y1

ω
,v

1
� ,
(1
−
ω
)

c�
y2

1−
ω

,v
2
�

ω

y

ω

y

Figure 3.9: Perspective formulation applied to a two sided disjunction – left: perspective functions,
where the y1 and y2 space are drawn onto the same axis – right: projection of feasible set
{(y,ω) | ∃y1, y2 : (y, y1, y2,ω) satisfy (3.44)}.

the disjuncts in which they are present and a lot of effort may be saved. This especially holds
true for design problems, where the system mode may only be chosen once for each technical
component.

Vanishing constraints

The vanishing constraint formulation is

0¶ω c(y, v1), (3.45)

0¶ (1−ω) c(y, v2). (3.46)

As the OC formulation, this formulation may produce a disconnected feasible set, if the orig-
inal feasible sets for the different disjuncts of the disjunctions are disjoint. In this case, local
algorithms typically only minimize over the connected component in which the first feasi-
ble point is located. However, this situation is not found very often: typically the feasible
sets overlap. Another disadvantage is that the feasible set is always non-convex and due
to its structure, either special algorithms are needed that can handle weak stationarity or a
smoothing, regularization reformulation must be used together with a homotopy to drive the
smoothing and regularization parameter to zero. However, even those methods often cannot
guarantee convergence to the optimal solution due to the non-convexities introduced.
An advantage of the vanishing constraint formulation for mode specific path constraints is
that any rounded solution ω(t) that is obtained from a fractional, relaxed solution α(t),
where no 0-value is rounded up, remains feasible for the vanishing constraints if the states

58

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

ω
c(

y,
v1
),
(1
−
ω
)

c(
y,

v2
)

ω

y

ω

y

Figure 3.10: Vanishing constraint formulation applied to a two sided disjunction – left: both disjunc-
tions’ vanishing constraints (3.45) and (3.46) – right: feasible set {(y,ω) | cVC(y,ω) ¾
0}).

are approximated closely enough. This behavior allows easily accessible primal rounding
heuristics to be applied in a branch-and-bound framework, which strongly enhances pruning.
One of these rounding strategies that guarantees a close state approximation for control-affine
systems is given in Chapter 4.

3.11 Controlling the switching behavior

Due to several reasons, it may happen that the optimal solution switches infinitely often
between the system’s modes. This typically happens when the relaxed problem’s solution has
fractional controls, which are called singular arcs. They are named due to their cause:

1. path-constrained arcs, cf. [160] for an example of a subway train with the velocity limit
as path constraint,

2. sensitivity-seeking arcs, cf. Section 5.2 for an example of a LOTKA-VOLTERRA fishing prob-
lem with such an arc,

3. chattering arcs, cf. Fuller’s problem [69].

The behavior of infinitely often switching optimal control functions is called ZENO’s Phe-
nomenon, and it is not desired. These infinite switches might be necessary to perfectly track
a constraint. However, if this solution occurs, the process is not well modeled since very fast
switching can rarely be implemented to reality. Limiting the system to finitely many switches
seems natural and the switching behavior can be excluded by assuming the integer control

59

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

functions to be of bounded variation, i.e., to use piecewise constant functions as a basis,
which is b0

j (·) as described in Section 2.4.1. Using piecewise constant functions might not be
enough for a fine discretization as many approximations on a discretized time grid still incur
chattering behavior as shown in Figure 3.11.

t

v(
t)

0 0.2 0.4 0.6 0.8 1
1

2

3

Figure 3.11: The singular arcs of the relaxed solution are typically approximated with a fast switching
between system modes. This solution is taken from the example of Section 5.1.

There are several possible circumventions to prevent the system from highly frequent mode
switching. The first is by limiting the number of system switches directly with an upper bound
σ – a hard constraint. For relatively small σ, this makes chattering behavior infeasible since
a large number of switches would be required to realize it. The second way is to penalize
switching within the objective, i.e., to impose the switching constraint as a soft constraint.
This might realize some operational cost associated with the switching operation or it might
be employed to discourage excessive wear of the involved system parts through the modeling
of the maintenance costs. The optimizer has to trade off the profit of highly frequent switching
with the associated costs. A third way to prevent the system from high frequent switching is
to employ a min-up time, i.e., the system has to stay in a given mode for a certain time after
it switched into it. This may model mechanical switches in systems with small time scales,
where the switching time cannot be neglected.

3.11.1 Switch modeling

In this section, we model switching only for binary control functions since they are mostly
used to model system modes as in Definition 3.2. We limit ourselves to the discretized case,
where the controls can only switch in the discretization points t i. As already described, the
basis functions to model the binary controls should be piecewise constant functions on an
appropriate time grid

Gm
def
= {t0 < t1 < . . .< tm = tf},

60

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

that may contain variable time points but is limited in its size m. The basis control functions
on this grid would be

b0
j (t)

def
=

1, if t ∈ [t j, t j+1),

0, else,
0¶ j ¶ m− 1,

with the binary controls then being

ωi(t;q)
def
=

m−1∑
j=0

b0
j (t) qi, j, 1¶ i ¶ nω.

As suggested in our work [158], a switch in control ωi at time step t j is captured by the term

σi, j
def
=
��qi, j − qi, j−1

�� , 1¶ j ¶ m. (3.47)

1

0

11
0

qi, j−1 qi, j

σi, j

Figure 3.12: Switch formulation (3.47).

These switching variables σi, j can now be used for the soft constraints by adding

nω∑
i=1

m∑
j=1

λi, j σi, j

to the objective function. As a hard constraint, e.g. the total number of switches could be
limited by σmax:

nω∑
i=1

m∑
j=1

σi, j ¶ 2 σmax.

A known technique in linear programming to evade the non-differentiable absolute value

61

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

function |·| in formulation (3.47) is to use the following two constraints instead, which are
the tightest underestimating hyperplanes for the absolute value function:

σi, j ¾ qi, j − qi, j−1,

σi, j ¾ qi, j−1− qi, j.

Notice that this reformulation can only be done, if a higher value of σi, j can never have a
positive impact due to it being either punished in the objective or it being limited from above.
If it is penalized in the objective and does not occur anywhere else, the solution always fulfills
one of the two constraints with equality and hence is equal to the original formulation (3.47).
The reformulation also is linear, which can be added to most constrained problems without
pushing them into a more difficult problem class.
However, this formulation has one strong disadvantage, i.e., it favors solutions with qi, j ≈
qi, j−1. Numerical experiments show that relaxed solutions often have fractional values for qi, j

to evade switching. E.g., the all-1
2

solution produces no switch values, yet any binary solution
that approximates the all-1

2
solution yields chattering behavior with lots of switches.

Convex combination

To account for this behavior, KIRCHES proposed in [111] to use a reformulation that penalizes
this type of solutions. Instead of using the underestimating hyperplanes through the 4 feasible
points, i.e., constraints (3.11.1), he uses the tightest overestimating hyperplanes

σi, j = qi, j + qi, j−1,

σi, j = 2− qi, j − qi, j−1,

and requires the switching variable to be equal to a convex combination of those:

σi, j = αi, j (qi, j + qi, j−1) + (1−αi, j) (2− qi, j − qi, j−1). (3.48)

Naturally, for the binary values, the attainable minimum values are exactly the desired values
since they lie on one of the overestimating planes and fulfill the corresponding equation.
Figure 3.13 shows the attainable minimal values for the switching variables σi, j. They are
attained choosing the free convex multiplier αi, j according to the choice of qi, j and qi, j−1:

αi, j =

1, if qi, j + qi, j−1 ¶ 1,

0, else.

For fractional values of q , the values of the switch variables are as high as possible while

62

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

1

0

11
0

qi, j qi+1, j

σi, j

Figure 3.13: Minimal values of the convex combination (3.48) of the tightest overestimating hyper-
planes for the switch values.

still being on at least one hyperplane through 3 of the 4 binary points, i.e., fractional val-
ues are punished as strongly as possible with a combination of the hyperplanes through the
points. He describes the numerical results to be promising with this reformulation even
though the problem’s size increases through the addition of the new convex multipliers α and
the switching reformulation is non-convex since any nonlinear equation, e.g. equation (3.48),
is non-convex. However, it can be relaxed to the constraint

σi, j ¾ αi, j (qi, j + qi, j−1) + (1−αi, j) (2− qi, j − qi, j−1), (3.49)

which remains a valid formulation as long as switches only have a negative influence and is
easier to handle. This formulation allows additional “fake” switches to appear in the switch-
ing variables σ, which are not reflected in the controls q , and hence it is only a valid re-
formulation if the optimizer tries to minimize each switch. However, the arising system has
advantageous numerical properties.

3.11.2 Min-up time

There are several ways to model min-up times for the system’s modes. The most general
modeling approach forces the system to stay in mode j for ζi, j time units after it switched
from mode i to mode j, i.e.,

qi,k = 1, q j,k+1 = 1 ⇒ q j,k+l = 1, for 1¶ l ¶ ζi, j.

The resulting formulation introduces new variables σi, j,k, which measure switches from mode
i to j in time step k:

σi, j,k =

1, if qi,k = 1, q j,k+1 = 1,

0, else.

63

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

These switching variables are then used to enforce the mode for the following time steps:

q j,l ¾ σi, j,k, k+ 1¶ l ¶ k+ ζi, j.

The definition of the switching variables could either be done with linear constraints to be

σi, j,k ¾−1+ qi,k + q j,k+1,

or as for the switches with the tightest overestimating hyperplanes, which gives the con-
straints

σi, j,k ¾ αi, j,k qi,k + (1−αi, j,k) q j,k+1.

The linear formulation produces a quite weak relaxation, since it does not provide any tight-
ening for qi,k + q j,k+1 ¶ 1. The second formulation considers any setting where qi,k > 0 and
q j,k+1 > 0 at least partly as a switching from mode i to mode j. However, as in the switch-
ing variable case from the previous section, this formulation needs quite some additional
variables. The constraint to enforce a certain mode can also be tightened to be

q j,l+1 ¾
l∑

k=l+1−ζi, j

σi, j,k,

since a switch from mode i to mode j can only happen once in [t l , t l+ζi, j
]. This finally also

does not favor fractional solutions in the q -variables.

3.12 Mixed-Integer Nonlinear Programming

The discretization of an MIOCP is a MINLP. MINLPs meld the combinatorial difficulties of
discrete variables with the difficulties created by nonlinear functions. They represent a very
difficult class of problems and have been getting more and more interest in the last two
decades. They are already quite difficult for small, static problems and become even more
so for the discretized MIOCPs due to the usually larger problems’ dimensions. Some recent
surveys on this topic are given in [17, 36, 84].
This section gives a broad overview on the algorithmic building blocks to solve these prob-
lems. First, we briefly present the simple enumeration idea and its obstacles in Section 3.12.1.
Then in Section 3.12.2, we elaborate on relaxation techniques – some are similar to the ones
presented in Sections 3.5–3.9 to relax the integrality constraint, while other techniques relax
the nonlinearity with simple, convex formulations. Also a small overview on current cut-
ting plane techniques is given in Section 3.12.3 and at last in Section 3.12.4, we present the
main ingredients needed to construct a branch-and-bound or branch-and-cut framework for
MINLPs.

64

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

3.12.1 Enumeration

The simplest idea to solve a MINLP is to enumerate all possible choices for the integer con-
trols and then solve the resulting NLPs. However, the complete enumeration of all possible
choices might give a huge number of NLPs to solve. The exponential growth of the number
of problems to solve is often referred to as the combinatorial explosion and especially holds
for discretized MIOCPs. This is the case since the number of binary control variables depends
on the number of control discretization intervals m and is m nω – the number of problems to
be solved is hence 2m nω .

To emphasize the meaning of this, we consider a special case. Assume we have a problem
with 3 controls and a time discretization of 10 control intervals – a pretty small problem with
a coarse time discretization – and assume each nonlinear subproblem is solved in one second.
Then, the algorithm would need to solve 230 problems, which would take more than 34 years.
Therefore, the computational effort quickly prevents this technique from being successfully
applied.

The dynamic programming approach from Section 3.3 is an augmentation of this complete
enumeration approach. It dissects the time horizon into several parts – naturally into the same
intervals as the control discretization – and enumerates all solutions for each slice. Then,
instead of searching for all valid combinations of solutions over these time slices, the cost-to-
go function is used to deduce sub-optimality of some combinations. However, an additional
drawback of this method is that the continuous state and control spaces have to be discretized,
which leads to a certain inexactness.

3.12.2 Relaxations

All methods that do not rely on enumeration for the integral variables need some kind of inte-
gral relaxation. Therefore, they need to be expressed with integral or binary variables, where
the integrality constraint can be dropped. These formulations with binary variables were
covered in Sections 3.5–3.9 for MIOCPs. The integral relaxations just drop the integrality
constraint in the problem formulation and thereby obtain an NLP.

Polyhedral relaxations

A second form of relaxations is used for convex constraints and convex NLPs. Instead of in-
cluding the convex constraints c(x) ¶ 0 into the problem, each constraint is relaxed with a
set of n j supporting hyperplanes that are obtained through first-order TAYLOR series approxi-
mations of the constraint in the points x i

j :

0¾ c j

�
x i

j

�
+∇c j

�
x i

j

�T �
x − x i

j

�
, 0¶ i ¶ nj, 0¶ j ¶ nc.

65

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

This kind of polyhedral relaxation is used in the outer approximation method – going back to
[109]. The outer approximation method alternatively solves MILPs, which are created with
those polyhedral relaxations, and NLPs, which check the integral solution’s feasibility with
regard to the original constraints with fixed integral variables. The NLP’s solution is used to
cut off the point if it was infeasible in the original setting. Otherwise, it is used to enforce a
decrease in the upper bound on the objective as it provides a feasible point of the MINLP.

These polyhedral relaxations are also used in Generalized BENDER’s Decomposition, cf. [72].
This approach is similar to the outer approximation approach but creates a different MILP
– here, a single constraint is used that combines all linearizations into one aggregated con-
straint. Generalized BENDER’s Decomposition uses duality theory to derive this cut and in
contrast to the outer approximation methods needs dual variables in the solution of the NLP.
It can be shown that the approach is just a further relaxation of the outer approximation
approach.

Another variant of the outer approximation idea is the extended cutting-plane method intro-
duced by WESTERLUND and PETTERSSON in [184]. This method completely passes on NLPs and
solely relies on linear problems. The linearizations are obtained through gradient evaluations
instead of solving the NLPs.

Relaxations of non-convexity

The most common approach when trying to solve non-convex problems to optimality is to
derive convex underestimators of the non-convex functions and thereby obtain a convex relax-
ation. The emerging convex relaxation can then be treated with the other methods from this
section. A recent survey on global nonlinear optimization, which also covers MINLP formula-
tions as well as convex DAE relaxations, is given in [66]. As the convex relaxation’s solution
might not sufficiently satisfy the original constraint, it might be necessary to refine the convex-
ification to adaptively obtain an optimal solution of the original, non-convex problem. This
refinement of the convexification is usually achieved by means of a spatial branch-and-bound
algorithm. This algorithm creates subproblems by subdividing the feasible space of the con-
tinuous variables and adapts the convex relaxations of the subproblems using the variables’
tighter bounds. The whole process may be strongly accelerated if the initial bounds on the
variables are tightened using a bound tightening procedure (feasibility-based bound tightening
or optimality-based bound tightening).

For nonlinear equations, convex envelopes (convex under- and concave overestimators) are
needed. Since the discretized ODE system is usually such a function, special emphasis must
be put on the convex envelope calculation in this case. The integrator, which solves the
ODE, must be capable to handle interval arithmetics to provide a tight relaxation. Otherwise,
an exponential growth in the reachable set cannot be prevented. Further information on
integration with interval arithmetics can be found in [123, 168].

66

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

3.12.3 Cutting planes

To be able to implement cutting plane algorithms for convex MINLPs, the relaxed solutions
need to lie on the boundary of the feasible region. This can be guaranteed by replacing
any convex objective Φ(x) by the objective η with the additional convex constraint η ¾
Φ(x). Now, cutting plane algorithms can be applied, which tighten the feasible set through
additional constraints. The constraints generated in the following example procedures are
always half-spaces generated by hyperplanes since the procedures usually have been derived
from previously known versions that are used to solve MILPs.
Mixed-Integer Rounding cuts are a generalization of the purely integral Gomory cuts. They use
the branching dichotomy x ¶ b x̄c or x ¾ d x̄e for integral x and the fractional solution x̄ of
the integral relaxation together with single linear inequality constraints. Depending on the
linear inequality, a tighter linear inequality may be generated, which cuts off the fractional
solution. This approach only works on linear cuts, but those are often created and used in
different MINLP algorithms.
Perspective cuts are outer approximation cuts, i.e., supporting hyperplanes that are first-order
TAYLOR series approximations of convex constraints, of the convex hull obtained through the
perspective formulation. The addition of these cuts might be advantageous in comparison
to the complete perspective formulation, and in the limit of generating all separating hyper-
planes, the two formulations coincide.
Disjunctive cuts use any disjunction of the feasible set to split the feasible set into two disjoint
subsets. One such disjunction could be the branching dichotomy on an integral variable (the
split disjunction). The convex hull of the two subsets can be described with a convex formu-
lation using the perspective formulation presented in Section 3.9. This requires lifting and
then the separation procedure can calculate a cut in the higher dimensional space obtained
from the perspective formulation. However, the perspective formulation comes with numeri-
cal problems and the lifted problem has twice the size of the relaxed problem, hence cutting
procedures with disjunctive cuts are usually slow. However, BONAMI [34] overcomes these
difficulties for disjunctions created from splits. KILINÇ et al. [110] solve a series of Linear
Programs (LPs) instead of a separation NLP to speed up and stabilize the process.

3.12.4 Nonlinear branch-and-bound

A nonlinear branch-and-bound algorithm is created with the same principles in mind as its lin-
ear version. The problem’s integral relaxation is solved. If the solution is fractional, branching
on the integral variables is executed, which excludes the fractional optimal point and the two
subproblems are solved and so on – it is an implementation of the classical divide-and-conquer
principle. The problems can be displayed in a tree structure where each node corresponds to
a problem with a set of fixed integral variables, cf. Figure 3.14. Using only branching, the
algorithm would not perform much better than any enumeration method described in Section
3.12.1. However, nodes can be pruned due to several observations:

67

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

1. Lower bounds are obtained for each subproblem automatically as the integer relaxation
NLP is solved – non-convex problems need to be solved globally for this to hold. This
bound describes the best achievable value for this problem and all subproblems. If an
integral possibly suboptimal solution to the original MINLP is known, it can be used to
prune parts of the tree, which cannot generate a better solution.

2. Infeasible nodes can be pruned and their corresponding subtree can be disregarded
since subproblems cannot become feasible again.

3. Nodes with integral solutions also do not need to be examined any further since they
already realize the best solution obtainable for all subproblems that could be created
from these nodes.

These pruning rules prevent the whole tree from being searched. In practice, most MINLP
solvers contain a branch-and-bound framework. There are several choices when implement-
ing these algorithms, which shall just briefly be mentioned here. The algorithms may combine
all those choices and change between different settings as they progress.

b

b

ω1 = 0

b

ω2 = 0

l
integer point, new UB

ω3 = 0

b

ω3 = 1

b

ω2 = 1

b

ω1 = 1

b

ω3 = 0

r
pruned due to UB

ω2 = 0

b

ω2 = 1

r
infeasible subproblem

ω3 = 1

Figure 3.14: Branch-and-bound tree

The branching rules, i.e., how child nodes are generated from a node with a fractional solu-
tion, are freely selectable for the implementation as long as the fractional solution is infeasible
for both child problems. There are several different branching strategies presented in [37]
for nonlinear branch-and-bound and in [2] for linear branch-and-bound, which can directly
be translated for MINLP algorithms. One example is maximum fractional branching, where
dichotomy branching is done on the variable with the maximum distance from an integral
value. A second strategy is strong branching where the child nodes are solved for all integer
variables with fractional value in the relaxation. Then, the variable to branch on is chosen

68

M I X E D - I N T E G E R O P T I M A L C O N T RO L
�� CHAPTER 3

with the evaluation of the degradation, i.e., the increase in the lower bound, of both sub-
problems, if both subproblems are feasible. Infeasible subproblems can be used to tighten a
node or even to prune it. Pseudocost branching does not compute the correct degradations
by solving all subproblems, but keeps a history of achieved degradations for all variables and
solved subproblems as pseudocosts, which measure a degradation per unit of fractionality.
These pseudocosts are used with the current fractionalities to estimate the effect that branch-
ing on a certain variable would have and the variable is chosen based on a certain criterion.
A combination of strong branching and pseudocost branching is reliability branching, which
uses strong branching early until reliable pseudocosts are derived and then uses pseudocosts.
Another, less often used branching strategy is branching on general disjunctions, which is for
example used for SOS1-constraints.
A second choice for the implementation are the node selection rules, i.e., which of all open
subproblems is solved next? The general methodologies are depth-first search and best-first
search, which choose the deepest or shallowest nodes, respectively. Depth-first search focuses
on finding good integral solutions fast and has to manage only a small-sized tree, while best-
first search focuses on finding the best solution as fast as possible but often has very large
sets of open subproblems. An often used strategy combines the two methods: the diving
strategy implements depth-first search until an integral solution is found, then backtracks to
the best open subproblem and starts a new depth-first search from there on. For this part of
the algorithm, methods from linear branch-and-bound frameworks, as presented in [2, 124],
may be adopted to the nonlinear setting. However, their performance can differ from the
linear setting. An example is that there are no good warm-start techniques for MINLP with
interior point methods and hence the application of depth-first search in this context loses its
advantage coming from the usage of the dual simplex in the linear case, cf. [37].
An important part of the branch-and-bound algorithm is the pruning step, which is stronger
when good integral solutions are known. A possibility of getting these solutions are heuristics.
Heuristics are naturally also very important when algorithms need to be stopped before com-
pletion due to time constraints, since then at least a good feasible solution can be returned
after the algorithm is stopped. There are certain heuristics that are based on the fractional
solution of a subproblem and try to find a close integral solution. One such strategy is MILP-
based rounding, cf. [133], where a close integral solution in the `1-norm is computed for
a polyhedral approximation of the original problem. This integral solution is put into the
MINLP, all integral variables are fixed and a solution of the original MINLP is derived. The
feasibility pump heuristic is a close relative, cf. [35]. There are lots of other heuristics and also
the diving strategy for node selection implicitly is a heuristic, cf. [17] for detailed descriptions
of several heuristics.
Cutting planes, cf. Section 3.12.3, can easily be included into a branch-and-bound algorithm
to obtain a branch-and-cut algorithm. After solving each subproblem, the solution can be cut
off via the cutting plane approach. This is repeated until a certain threshold is reached, then
branching on the remaining problem is done. Usually, more cuts are generated close to the

69

CHAPTER 3
�� M I X E D - I N T E G E R O P T I M A L C O N T RO L

root node since they are applicable for large parts of the branching tree. Deeper in the tree,
less effort is spent on local cuts since those would only be valid for a smaller subtree.
An alternative to the full nonlinear branch-and-bound algorithm is the LP/NLP-based branch-
and-bound algorithm introduced in [147]. It is also a close relative to the outer approxi-
mation technique described in Section 3.12.2. As explained there, it uses an MILP master
problem with first-order TAYLOR series approximations of the nonlinear functions. Instead of
resolving the master problem, only one master problem is solved. Once an integer point is
reached, the NLP is solved that corresponds to this setting of integer variables. The solution
is used to update all open nodes of the master problem with a new outer approximation and
it is additionally used to enhance the global upper bound if feasible. An implementation of
this technique can be found in LEYFFER’s thesis [119]. The general idea can also be extended
to Generalized BENDER’s Decomposition and all other methods that only focus on the addition
of cutting planes.

70

4 The Control Approximation Problem for
Control-Affine Systems

In this chapter we derive the Control Approximation Problem for control-affine systems, i.e.,
problems where, for fixed states, the controls only enter linearly. These control-affine systems
are, e.g., obtained through an Outer Convexification of the ODE system. The theoretical
behavior of the Control Approximation Problem is studied from simple settings to more and
more complex settings. Different heuristics are given as well as a solution approach that finds
the optimal solution.
We give the theoretical justification of the Control Approximation Problem in Section 4.2
since it is a central building stone for the main contributions of this thesis. Then, we carry the
observations over to discrete systems, i.e., systems that we obtain after discretization. Some
other problems, e.g. turn-based games as in [59, 156], fit into this setting as well.
In Section 4.3, we derive the Control Approximation Problem in its most simple setting,
i.e., one control and no additional constraints. Then, we give the Sum-up Rounding (SUR)
heuristic from [152] and analyze its behavior. We also present conditions for optimality of
its solution. Some of the analysis was previously done by SAGER, BOCK and DIEHL in [157],
but most are new contributions. Furthermore, we examine the LAGRANGIAN relaxation of the
problem and give its analytical solutions inside a branching framework as described in our
work [104].
Section 4.4 covers the extension to the multi-dimensional setting of the Control Approxi-
mation Problem obtained through the OC technique. Therein, SOS1-constraints couple the
different controls, which is the main difference to the one-dimensional or decoupled case.
We present the SOS1-SUR heuristic from [152] and outline its weakness as already done
in [157]. In contrast, we give a new heuristic, the so-called Next-forced Rounding (NFR)
heuristic, which overcomes this weakness. Additionally, some of the insights gained for the
LAGRANGIAN relaxation of the one-dimensional problem are carried over to this setting.
In Section 4.3, the Control Approximation Problem with added combinatorial constraints
is considered. Additionally, we explain why additional combinatorial constraints may be
necessary even if they are not inherently included in the model. The derived problem becomes
an MILP and the polyhedral structure of the Control Approximation Problem is examined. It
is found to be very data dependent and unstructured. Therefore, the common MILP technique
of using cutting planes is hardly applicable in this setting. As an alternative, the branch-and-
bound algorithm from our work [104] is presented. It uses the LAGRANGIAN relaxation for

71

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

bound calculation.

4.1 Problem formulation

SAGER presented a novel decomposition approach to solve MIOCPs in his dissertation [152].
In this approach, firstly, an OCP is solved in which the integer variables are relaxed to be
continuous, and secondly, the obtained relaxed controls are approximated by integer controls
in the integral sense. The quality of the second step is specified in Theorem 4.1. In [157],
SAGER et al. refined the theoretical foundations of the idea. The solution process of the
relaxed problem – the OCP – is described in Chapter 2.

Consider an MIOCP whose relaxation is formulated such that the integer controls enter
the ODEs affinely – this may be obtained with the OC technique from Section 3.6:

min
x (·),u(·),ω(·)

Φ(x (tf))

s. t. ẋ (t) =
nω∑
i=1

ωi(t) f (t, x (t), u(t), v i),

0¶ g (ω(t), c(t, x (t), u(t), v(t))),

1=
nω∑
i=1

ωi(t), t ∈ [t0, tf],

0= r eq((t i, x (t i))0¶i¶m), {t i}0¶i¶m ⊂ [t0, tf],

0¶ r in((t i, x (t i))0¶i¶m), {t i}0¶i¶m ⊂ [t0, tf],

u(t) ∈ U(t), t ∈ [t0, tf],

v(t) ∈ Ω⊂ Rnv , |Ω|<∞, t ∈ [t0, tf],

ω(t) ∈ {0, 1}nω , t ∈ [t0, tf],

ω(·) ∈ Ωω ⊆ L1([t0, tf]),

where g (ω(t), c(t, x (t), u(t), v(t))) realizes the relaxed formulation of the mode-dependent
constraints, e.g. according to one of the choices given in Sections 3.5–3.9.

The decomposition approach now proposes to decompose this problem into several different
problems:

1. Solve the relaxed OCP, where the integrality constraint is relaxed to be ω(t) ∈ [0, 1]nω

and the additional combinatorial constraintsω(·) ∈ Ωω may be relaxed or even dropped.
This gives a lower bound on the optimal solution and a state trajectory x (·) obtained
through relaxed controls α(·).

2. Approximate the relaxed controls α(·) of the solution with integer controlsω(·) through

72

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

the solution of the Control Approximation Problem with an appropriate norm

min
ω

max
t∈[t0,tf]

�����

�����
∫ t

t0

α(τ)−ω(τ) dτ

�����

�����

s. t. 1=
nω∑
i=1

ωi(t), t ∈ [t0, tf],

ω(t) ∈ {0, 1}nω , t ∈ [t0, tf],

ω(·) ∈ Ωω.

Theorem 4.1 guarantees that the deviation of states obtained through the relaxed con-
trols from states obtained through the integer controls, which solve the corresponding
Control Approximation Problem, is bounded linearly by the objective of the Control
Approximation Problem. This means that a close approximation of the controls entails
a close approximation of the states. As long as this approximation can be made quite
close, the states obtained from the relaxed controls are almost matched and the mixed
path and control constraints can be fulfilled up to a certain threshold. The choice of an
appropriate norm is discussed in Section 4.5.1.

3. Another OCP with the integral controls fixed through the solution ω(·) of the Control
Approximation Problem is solved to obtain consistent states and corresponding continu-
ous controls. If the constraint violation is below a given threshold, the scheme obtained
a feasible point of the original MIOCP. If the approximation’s solution is good, the
relaxed solution should be approximated closely and also the upper bound obtained
by this new integer solution should approximate the lower bound obtained from the
relaxation.

There are means to reiterate the process if the constraints are violated beyond the threshold.
Between iterations, the control grid usually has to be refined to improve the approximation.
If there are no additional combinatorial constraints, the SOS1-SUR heuristic and the NFR
heuristic can approximate the relaxed controls arbitrarily close as long as the grid can be
made sufficiently fine. We can thereby provide an arbitrarily good approximative solution of
the original problem in comparison to the relaxed solution and obtain a solution scheme for
the original problem up to a given precision. In presence of combinatorial constraints, this
property is unfortunately lost and the scheme becomes a heuristic. It can be used, though, to
either get a good solution much faster than the optimal solution of the MIOCP or to initialize
an MINLP algorithm with.

73

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

Solve relaxed MIOCP

Solve Control Approximation Problem

Solve original MIOCP
with fixed integer controls

U − L ¶ ǫopt
Refine control
discretization grid Gm

Stop with (x , u,ω)

relaxed controls α,
lower bound L

integer controls ω

states x ,
continuous controls u ,
upper bound U

No

Yes

Figure 4.1: Scheme to obtain a solution with certain maximal deviation εopt from an optimal solution
when no additional combinatorial constraints are present.

4.2 Approximation of differential states

We want to compare the evolution of two differential states x (·) and y(·) belonging to the
same ODE system but driven by two different controls α(·) and ω(·). Of particular interest
is the distance between the differential states dependending on the distance of the controls.
The following variant of GRÖNWALL’s Lemma is taken from [78].

Lemma 4.1 (Variant of GRÖNWALL’s Lemma)
Let [t0, tf] be an interval and w, z : [t0, tf]→ R integrable functions. If for a constant L ¾ 0

w(t)¶ z(t) + L

∫ t

t0

w(τ) dτ (4.1)

holds for t ∈ [t0, tf] almost everywhere, then also

w(t)¶ z(t) + L

∫ t

t0

eL(t−τ)z(τ) dτ (4.2)

holds for t ∈ [t0, tf] almost everywhere.

74

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

If z(·) is additionally essentially bounded, i.e., z(·) ∈ L∞([t0, tf],R) then

w(t)¶ ||z(·)||∞ eL(t−t0) (4.3)

holds for t ∈ [t0, tf] almost everywhere. 4

Proof Define a : [t0, tf]→ R through

a(t)
def
= L

∫ t

t0

w(τ) dτ, (4.4)

it is absolutely continuous since w is integrable.
Due to the assumption, we have

w(t) = z(t) + a(t) +δ(t) (4.5)

with δ non-positive and integrable, i.e., δ ∈ L1([t0, tf],R−0). Plugging (4.5) into (4.4) yields

a(t) = L

∫ t

t0

z(τ) + a(τ) +δ(τ) dτ. (4.6)

Differentiating both sides yields the following inhomogeneous, linear differential equation

ȧ(t) = La(t) + L(z(t) +δ(t))

with initial value a(t0) = 0. This equation can be solved analytically and we get

a(t) = L

∫ t

t0

eL(t−τ)(z(τ) +δ(τ)) dτ,

which can now be used to eliminate a from (4.5) to obtain

w(t) = z(t) +δ(t) + L

∫ t

t0

eL(t−τ)(z(τ) +δ(τ)) dτ.

The first claim can directly be derived off of this equation and the non-positivity of δ.
The second claim can now be derived with the first claim and the essential bound as follows

w(t)¶ z(t) + L

∫ t

t0

eL(t−τ)z(τ) dτ

¶ ||z(·)||∞

1+ L

∫ t

t0

eL(t−τ) dτ

!

= ||z(·)||∞ eL(t−t0). �

75

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

Now, consider the following setting. We have an initial value problem, which is linear in the
control, i.e.,

ẋ (t) = A(t, x (t)) α(t), x (t0) = x0. (4.7)

A ∈ Rnx×nω may depend nonlinearly on t and x (t). In addition, a term independent of α could
be included through an extra component of α, which is then fixed to 1. Under additional
assumptions, i.e., A is differentiable, LIPSCHITZ continuous with respect to x (·) and y(·) and
essentially bounded on the time horizon [t0, tf], the following theorem gives the dependence
of the difference of two solutions of the same IVP with respect to the difference between the
control inputs. The theorem stems from [157].

Theorem 4.1
Let x (·) and y(·) be solutions of the initial value problems

ẋ (t) = A(t, x (t)) α(t), x (t0) = x0, (4.8a)

ẏ(t) = A(t, y(t))ω(t), y(t0) = y0, (4.8b)

with t ∈ [t0, tf], given measurable functions α,ω : [t0, tf] → [0,1]nω and let A : Rnx+1 →
Rnx×nω be differentiable. If a vector norm ||·|| and a consistent matrix norm |||·||| exist together
with positive numbers θ , C , L, M ∈ R+ such that for all t ∈ [t0, tf]:

����
����
����

d

dt
A(t, x (t))

����
����
����¶ C , (4.8c)

������A(t, y(t))− A(t, x (t))
������¶ L

����y(t)− x (t)
���� , (4.8d)

and A(·, x (·)) is essentially bounded by M on [t0, tf], and it holds for all t ∈ [t0, tf]

�����

�����
∫ t

t0

α(τ)−ω(τ) dτ

�����

�����¶ θ , (4.8e)

then it also holds for all t ∈ [t0, tf]

����y(t)− x (t)
����¶

�����y0− x0

����+ �M + C(t − t0)
�
θ
�

eL(t−t0). (4.8f)

4

Proof We define some auxiliary terms to shorten the notations:

∆ω(t)
def
= α(t)−ω(t),

∆a(t)
def
=

∫ t

t0

∆ω(τ) dτ.

76

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

Notice that ∆a(t0) = 0 and due to (4.8e) it holds ||∆a(t)|| ¶ θ . Since the range space of α
and ω is [0, 1]nω , we have

||α(t)||¶ 1,

||ω(t)||¶ 1.

The FUNDAMENTAL THEOREM OF CALCULUS yields for t ∈ [t0, tf]

x (t) = x0+

∫ t

t0

ẋ (τ) dτ= x0+

∫ tf

t0

A(τ, x (τ)) α(τ) dτ,

y(t) = y0+

∫ t

t0

ẏ(τ) dτ= y0+

∫ tf

t0

A(τ, y(τ))ω(τ) dτ,

With these observations, we now obtain for all t ∈ [t0, tf]

����y(t)− x (t)
����¶

����y0− x0

����+
�����

�����
∫ t

t0

A(τ, y(τ))ω(τ)− A(τ, x (τ)) α(τ) dτ

�����

�����

¶
����y0− x0

����+
�����

�����
∫ t

t0

A(τ, y(τ))ω(τ)− A(τ, x (τ))ω(τ) dτ

�����

�����

+

�����

�����
∫ t

t0

A(τ, x (τ))ω(τ)− A(τ, x (τ)) α(τ) dτ

�����

�����

=
����y0− x0

����+
�����

�����
∫ t

t0

�
A(τ, y(τ))− A(τ, x (τ))

�
ω(τ) dτ

�����

�����

+

�����

�����
∫ t

t0

A(τ, x (τ))∆ω(τ) dτ

�����

�����

=
����y0− x0

����+
�����

�����
∫ t

t0

�
A(τ, y(τ))− A(τ, x (τ))

�
ω(τ) dτ

�����

�����

+

�����

�����A(t, x (t))∆a(t)−
∫ t

t0

d

dt
A(τ, x (τ))∆a(τ) dτ

�����

�����

¶
����y0− x0

����+ L

∫ t

t0

����y(τ)− x (τ)
���� ||ω(τ)|| dτ

+ |||A(t, x (t))|||θ +
∫ t

t0

����
����
����

d

dt
A(τ, x (τ))

����
����
���� ||∆a(τ)|| dτ

¶
����y0− x0

����+ L

∫ t

t0

����y(τ)− x (τ)
���� dτ+

�
M + C(t − t0)

�
θ ,

77

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

with the only non-trivial step being a partial integration.
The functions

w(t)
def
=
����y(t)− x (t)

���� ,
z(t)

def
=
����y0− x0

����+ �M + C(t − t0)
�
θ

satisfy the assumptions of Lemma 4.1, namely both are integrable and

z ∈ L∞([t0, tf],R).

The application of said lemma yields the claim

����y(t)− x (t)
����¶

�����y0− x0

����+ �M + C(t − t0)
�
θ
�

eL(t−t0). �

Remark 4.1 (Quality of the approximation)
The theorem gives a linear dependence of the state error on the control deviation θ . In
combination with the SUR strategy from Section 4.3.1, and if the controls enter independently
of each other and are not coupled, this yields a linear dependence of the state error on the
grid size ∆t.

Remark 4.2 (Dependence of approximation on grid)
The direct consequence of Theorem 4.1 is that for the special IVP, which is linear in the
integral controls, the state approximation is driven by the approximation of the controls in
the integral sense and the initial error – which is usually 0. A numerical example for this
theoretical behavior is given in Section 5.2 and in [157]. Section 4.3 treats the Control
Approximation Problem in the integral sense for this setting.

Remark 4.3 (Convex right-hand side)
This theorem can easily be extended for right-hand side functions that are not affine in the
controls but instead convex in the integer controls, when all other components are fixed.
First, one rewrites the integer controls as a convex combination of the integer values. Then,
one uses the convexity property to obtain an affine system and then carries on as above.
However, using the OC technique makes the application of this observation unnecessary.

4.2.1 Translation to a discrete setting

In the following, we transfer Theorem 4.1 to a discrete setting. This is done such that the
work carries over to the actually used implementations, cf. Section 2.4. All direct algorithms
do not treat the ODE as is but instead transform them onto a discrete setting. The propositions
are given as broadly applicable as possible but with the discretization of an ODE system in
mind.

78

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

As a discrete variant of GRÖNWALL’s Lemma we use the sharpest version from HOLTE [98,
Theorem 4]:
Lemma 4.2 (Sharp Discrete Variant of GRÖNWALL’s Lemma)
Assume (yn), (fn), and (gn) are non-negative sequences and

yn ¶ fn+
n−1∑
k=0

gk yk, for n¾ 0. (4.9)

Then

yn ¶ fn+
n−1∑
k=0

fk gk

n−1∏
j=k+1

�
1+ g j

�
. (4.10)

4

Proof For abbreviation, let

G j
i

def
=

j∏
k=i

�
1+ gk

�
.

The proof is by induction. For n= 0, inequalities (4.9) and (4.10) are the same:

y0 ¶ f0.

Assume that inequality (4.10) holds for n ¾ 0. By assumption and induction hypothesis, we
get

yn+1 ¶ fn+1+
n∑

i=0

gi yi

¶ fn+1+
n∑

i=0

gi

fi +

i−1∑
k=0

fk gk G i−1
k+1

!

= fn+1+
n∑

i=0

gi fi +
n∑

i=0

gi

i−1∑
k=0

fk gk G i−1
k+1

!

= fn+1+
n∑

i=0

gi fi +
n−1∑
k=0

fk gk

n∑

i=k+1

gi G i−1
k+1

!

= fn+1+
n∑

k=0

fk gk

1+

n∑
i=k+1

gi G i−1
k+1

!
.

We use the recursive definition of G, i.e.,

G j+1
i =

�
1+ g j+1

�
G j

i , G i−1
i = 1,

79

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

which yields

g j+1 G j
i = G j+1

i − G j
i .

Now, we can get the proposed inequality through a telescope sum

yn+1 ¶ fn+1+
n∑

k=0

fk gk

1+

n∑
i=k+1

G i
k+1− G i−1

k+1

!

= fn+1+
n∑

k=0

fk gk

�
1+ Gn

k+1− Gk
k+1

�

= fn+1+
n∑

k=0

fk gk Gn
k+1. �

Consider the setting of a discrete process with the following state transfer equation:

x n = x n−1+ A(x n−1) αn−1,

where x i ∈ Rnx are the states of the discrete process with initial states x 0, A : Rnx → Rnx×nω is
the state transfer and αi ∈ Rnω are the controls. As in the continuous case, a term independent
of α could be included through an additional component of α, which would then be fixed to
1.
We also need another lemma as the discrete analogon to partial integration to be able to carry
the theorem’s proof over:

Lemma 4.3 (Discrete analogon to partial integration)
Assume that (x i)0¶i¶n is a sequence in Rnx , (αi)0¶i¶n and (ωi)0¶i¶n are sequences in Rnω and
A : Rnx → Rnx×nω , then it holds for all n ∈ N

n∑
j=0

A(x j)
�
α j −ω j

�
= A(x n)

n∑

i=0

αi −ωi

!

+
n−1∑
j=0

�
A(x j)− A(x j+1)

� j∑
i=0

(αi −ωi)

!
. 4

Proof The claim can be proven through a sequence of reformulations:

n∑
j=0

A(x j)
�
α j −ω j

�
=

n∑
j=0

A(x j)

j∑

i=0

�
αi −ωi

�
−

j−1∑
i=0

�
αi −ωi

�!

=
n∑

j=0

A(x j)

j∑

i=0

αi −ωi

!
−

n∑
j=1

A(x j)

j−1∑
i=0

αi −ωi

!

80

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

=
n∑

j=0

A(x j)

j∑

i=0

αi −ωi

!
−

n−1∑
j=0

A(x j+1)

j∑

i=0

αi −ωi

!

= A(x n)

n∑

i=0

αi −ωi

!

+
n∑

j=0

�
A(x j)− A(x j+1)

� j∑
i=0

αi −ωi

!
. �

Under certain assumptions, we can now give the maximum deviation between two states x
and y that belong to the same system but different controls α and ω.
Theorem 4.2
Let (x n)0¶n¶m and (yn)0¶n¶m be sequences in Rnx , which are given solutions of the discrete
system

x n+1 = x n + A(x n) αn,

yn+1 = yn + A(yn)ωn,

with 0 ¶ n < m for given control sequences (αn)0¶n<m, (ωn)0¶n<m ∈ [0, 1]nωm, initial values
x 0 and y0. If for given vector norm ||·|| and consistent matrix norm |||·||| there exist positive
numbers L, M , C such that A is LIPSCHITZ continuous with constant L, bounded by M and its
discretized derivative is bounded by C, i.e., for all 0¶ n¶ m

������A(x n)− A(yn)
������¶ L

����x n − yn
���� ,

|||A(x n)|||¶ M ,������A(x n)− A(x n+1)
������¶ C ,

and if it holds for all 0¶ n< m
�����

�����
n∑

i=0

αi −ωi

�����

�����¶ θ ,

then it also holds for all 0¶ n< m

����x n − yn
����¶ (1+ L)n

����x 0− y0
����+ θ (M + (n− 1)C)

1+ L

n−2∑
k=0

(1+ L)k
!

. (4.11)

4

Proof Due to the control space being [0,1]nωm, we have for 0¶ i < m

����αi
����¶ 1,����ωi
����¶ 1.

81

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

We obtain for 1¶ n¶ m

����x n − yn
����¶

�����

�����x
0+

n−1∑
k=0

A(x k) αk − y0−
n−1∑
k=0

A(yk)ωk

�����

�����

¶
����x 0− y0

����+
�����

�����
n−1∑
k=0

A(x k) αk − A(yk)ωk

�����

�����

¶
����x 0− y0

����+
�����

�����
n−1∑
k=0

A(x k) αk − A(x k)ωk

�����

�����

+

�����

�����
n−1∑
k=0

A(x k)ωk − A(yk)ωk

�����

�����

¶
����x 0− y0

����+
�����

�����
n−1∑
k=0

A(x k)
�
αk −ωk

�
�����

�����
︸ ︷︷ ︸

Lemma 4.3

+
n−1∑
k=0

������A(x k)− A(yk)
������

︸ ︷︷ ︸
¶L||x k−yk ||

����ωk
����

︸ ︷︷ ︸
¶1

¶
����x 0− y0

����+ L
n−1∑
k=0

����x k − yk
����

+

�����

�����A(x
n−1)

n−1∑
i=0

αi −ωi

!

+
n−2∑
j=0

�
A(x j)− A(x j+1)

� j∑
i=0

αi −ωi

!�����

�����

¶
����x 0− y0

����+ L
n−1∑
k=0

����x k − yk
����+

������A(x n−1)
������
�����

�����
n−1∑
i=0

αi −ωi

�����

�����

+
n−2∑
j=0

������A(x j)− A(x j+1)
������
�����

�����
j∑

i=0

αi −ωi

�����

�����

¶
����x 0− y0

����+
n−1∑
k=0

L
����x k − yk

����+Mθ + C(n− 1)θ

= (M + C(n− 1))θ +
����x 0− y0

����+
n−1∑
k=0

L
����x k − yk

���� .

At this point, we use Lemma 4.2 with the specifications

yn
def
=
����x n − yn

���� ,

82

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

fn
def
=

(M + (n− 1)C)θ , for n> 0,
����x 0− y0

���� , for n= 0,

gn
def
=

L, for n> 0,

1+ L, for n= 0,

to obtain the claim

����x n − yn
����¶ (1+ L)n

����x 0− y0
����

+ θ

M + (n− 1)C +

n−1∑
k=1

(M + (n− 1)C) L (1+ L)n−k−1

!

¶ (1+ L)n
����x 0− y0

����+ θ (M + (n− 1)C)

1+ L

n−2∑
k=0

(1+ L)k
!

. �

Analogously to the continuous case, this description can be applied to more general settings
through some simple reformulations.

Remark 4.4 (Linearity of the controls)
The assumption that the discrete systems equations are linear in the controls α is not a strong
assumption for integer controls. We can use the OC technique described in Section 3.6 to
obtain a system that is affine linear in the controls. Afterwards, we multiply the affine part
with an auxiliary control, which is fixed to 1 to obtain the setting of the theorem.

Remark 4.5 (Direct dependence on the step number)
If the system equations depend directly on the step number, the system can be made au-
tonomous by adding an additional state ν for the step number and the corresponding affine
transition equation νk+1 = νk + 1. The resulting system fits into the framework.

Remark 4.6 (Convex state transfer functions)
Theorem 4.2’s statement also holds for state transfer functions that are convex in the controls
when the states are fixed with the same reasoning as in the continuous case. However, using
the OC technique makes the application of this additional observation unnecessary.

Discretization of an ODE system with the explicit EULER method

We verify Theorem 4.2 in a dynamic setting and show that it leads to the same qualitative
conclusion as Theorem 4.1 in this setting. Consider the ODE system

ẋ (t) = F(x (t)) α(t), t ∈ [t0, tf],

83

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

discretized with equal time steps of size ∆t and the explicit EULER method

x k+1 = x k +∆tF(x k) αk .

Since it is a convergent method, we know that, as we take finer grids, the discretized system’s
solution approximates the ODE system’s solution increasingly well. Now, we quantify this
behavior.

If we discretize the interval [t0, tf] into m equal parts of size ∆t = 1
m

, the state transfer
function becomes

A(x k)
def
=∆tF(x k).

Let the assumptions for the continuous case in Theorem 4.1 hold: F is essentially bounded
by M , it is LIPSCHITZ continuous with constant L and its derivative is bounded by C . The
deviation of the two controls in the integral sense is bounded by θ . This translates to the
discretized setting as

������A(x k)
������=∆t

������F(x k)
������¶ M

m
,

������A(x k)− A(yk)
������=∆t

������F(x k)− F(yk)
������¶ L

m

����x k − yk
���� ,

������A(x k)− A(x k+1)
������=∆t

������F(x k)− F(x k+1)
������¶∆t C

����x k − x k+1
����

¶∆t2 C
������F(x k)

������ ����αk
����¶ C M

m2 ,

θ ¾
�����

�����
∫ t

t0

α(τ)−ω(τ) dτ

�����

�����=∆t

�����

�����
n∑

k=0

αk −ωk

�����

����� .

Plugging these bounds into Theorem 4.2, we obtain for 0¶ n¶ m

����x n − yn
����¶

�
1+

L

m

�n ����x 0− y0
����

+
θ

∆t

�
M

m
+ (n− 1)

C M

m2

�
1+

L

m

n−2∑
k=0

�
1+

L

m

�k
!

¶
�

1+
L

m

�m n
m ����x 0− y0

����

+
θ

∆t

M

m

�
1+

n− 1

m
C
�

1+
L

m

n−2∑
k=0

�
1+

L

m

�m k
m

!
.

84

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

If we now focus on a single point t in the time interval [t0, tf], the ratio τ
def
= n

m
= t−t0

tf−t0
stays

constant while we can arbitrarily increase m. This leads to

����x (t)− y(t)
����¶

�
1+

L

m

�mτ ����x 0− y0
����

+
θ

∆t
M∆t

�
1+
�
τ− 1

m

�
C
�
+

�
1+

L

m

n−2∑
k=0

�
1+

L

m

�m k
m

︸ ︷︷ ︸
¶
�

1+ L
m

�mτ

�

¶
�

1+
L

m

�mτ

︸ ︷︷ ︸
↗eLτ

����x 0− y0
����

+ θ M
�

1+
�
τ− 1

m

�
C
�

︸ ︷︷ ︸
↗1+τ C

�
1+ L

n− 1

m︸ ︷︷ ︸
↗L τ

�
1+

L

m

�mτ

︸ ︷︷ ︸
↗eLτ

�
,

which becomes in the asymptotic case

����x (t)− y(t)
����¶ eLτ

����x 0− y0
����+ θ M(1+ Cτ)

�
1+ L τ eLτ

�
.

This shows that the qualitative behavior is the same for the asymptotic case of the discretized
theorem and the continuous Theorem 4.1. Both formulations amplify the linearly entering
initial error exponentially over time and the linearly entering control error (in the integral
sense) also exponentially with τeLτ. The determining factor for the exponential amplification
is in both cases the LIPSCHITZ constant L of the right-hand side of the process.

Remark 4.7 (Truely discrete systems)
The theorem gives a theoretical bound on the state approximation in dependence on the
control difference also for truly discrete systems. However, if there is no refinement possible,
the bound cannot be driven to 0 and an arbitrarily close approximation is not possible in most
cases.

4.3 Approximation of decoupled controls in the integral sense

We start with decoupled systems, in which each relaxed control αi(·) can be approximated
independently. Therefore, we can reduce the problem in this section to a one-dimensional
one, i.e., nω = 1 and the measurable control to be approximated is α : [t0, tf]→ [0, 1]. The
norm naturally becomes the absolute value.

Let Gm
def
= {t0 < t1 < . . . < tm = tf} be the grid on which we want to approximate α with a

85

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

piecewise constant function ω : [t0, tf]→ {0, 1}. We define the time increments

∆t i
def
= t i+1− t i, 0¶ i ¶ m− 1, (4.12)

and the maximum time increment

∆t
def
= max

0¶i¶m−1
∆t i. (4.13)

We can now parameterize the function ω(·) with a vector p ∈ {0, 1}m+1 as

ω(t) = pi, i ∈ [t i, t i+1),

with the end point ω(t f) = pm.

Theorem 4.1 gives a bound on the deviation of the differential states of a system in depen-
dence of the deviation of the controls in the integral sense. Naturally, it makes sense to
compute an approximation such that this deviation becomes minimal, i.e.,

min
ω(·)

max
t∈[t0,tf]

�����
∫ t

t0

α(τ)−ω(τ) dτ

����� . (4.14)

To get rid of the inner maximization problem, we use a well-known trick and add an ad-
ditional variable θ to obtain the Control Approximation Problem in integral sense for given
measurable α(·):

min
θ ,ω(·)

θ (4.15)

s. t. θ ¾
�����
∫ t

t0

α(τ)−ω(τ) dτ

����� , ∀t ∈ [t0, tf],

which is now discretized on the time grid Gm as

min
θ ,p∈{0,1}m+1

θ (4.16)

s. t. θ ¾
�����
∫ t

t0

α(τ) dτ−

i−1∑
k=0

pk∆tk − pi(t − t i)

!����� , ∀t ∈ [t i, t i+1),

0¶ i ¶ m− 1.

The control at the last grid point tm = tf does not have any effect on the problem and is hence
omitted from here on, i.e., p is treated to be in {0, 1}m.

86

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

Notice that the minimum or maximum values for the integral

∫ t

t0

α(τ)−ω(τ) dτ (4.17)

on the interval [tn, tn+1] are taken at one of the grid’s points tn or tn+1. This is the case,
since for t ∈ [tn, tn+1], either 0 = pn ¶ α(t) and the integral is monotonically increasing, or
1 = pn ¾ α(t) and the integral is monotonically decreasing. Therefore, the maximum value
of the norm of integral (4.17) is taken at a grid point t r and we only need to add constraints
for the grid points. Problem (4.16) is equivalent to

min
θ ,p∈{0,1}m

θ (4.18)

s. t. θ ¾
�����
∫ t i

t0

α(τ) dτ−

i−1∑
k=0

pk∆tk

!����� , ∀0¶ i ¶ m.

Since the individual values of the relaxed control only appear in the integral, we can simplify
the problem description by using the mean values q ∈ Rm over the intervals, i.e.,

qi
def
=

1

∆t i

∫ t i+1

t i

α(τ) dτ, 0¶ i ¶ m− 1, (4.19)

such that it holds

∫ t i+1

t0

α(τ) dτ=
i∑

j=0

q j∆t j, 0¶ i ¶ m− 1.

With this reformulation and dissolving the norm, we obtain the Integral Approximation Prob-
lem for control-affine systems with decoupled controls, which is the MILP

min
θ∈R,p∈Rm

θ (4.20)

s. t. θ ¾+
i∑

j=0

�
q j − p j

�
∆t j, 0¶ i ¶ m− 1,

θ ¾−
i∑

j=0

�
q j − p j

�
∆t j, 0¶ i ¶ m− 1.

Remark 4.8 (Two-dimensional problem with SOS1-constraint)
This setting also covers the case where exactly two modes of the system are present and they
are coupled through an SOS1-constraint. One can directly use this constraint to eliminate
one control without changing the feasible set of the other control. After that, the same setting

87

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

as for decoupled controls is obtained.

4.3.1 Sum-up Rounding control scheme

The Sum-up Rounding (SUR) control scheme from SAGER [152] gives a very good solution of
the problem over the described time grid. The following proposition from [158] describes its
quality.

Proposition 4.1 (Deviation of Control Integrals by SUR)
Let α : [t0, tf]→ [0,1] be a measurable function. Let Gm be a time grid as described above.
Then, it holds that the feasible point pSUR of the Control Approximation Problem in integral
sense (4.18) provided by the iterative SUR control scheme has a solution quality of

θ ¶
1

2
∆t. (4.21)

It is defined for 0¶ i ¶ m− 1 as

pSUR
i

def
=

1, if

∫ t i+1

t0

α(τ) dτ−
i−1∑
k=0

pSUR
k ∆tk ¾

1

2
∆t i,

0, else.

(4.22)

4

Proof This is shown by complete induction for the grid points. The claim is trivial for the
first grid point t0 since no control decision had to be made until then.
Let the assumption (4.17) hold for all grid points t i with 0 ¶ i ¶ r. Let us now distinguish
two different cases for the value of the next combined integral

∫ t r+1

t0

α(τ) dτ−
∫ t r

t0

ωSUR(τ) dτ, (4.23)

which lead to the different controls of the scheme.
Assume the integral (4.23) < 1

2
∆t r , then the SUR control scheme provides pSUR

r = 0 and we
obtain

∫ t r+1

t0

α(τ)−ωSUR(τ) dτ=

∫ t r+1

t0

α(τ) dτ−
∫ t r

t0

ωSUR(τ) dτ <
1

2
∆t r ¶

1

2
∆t,

and due to the assumption, it holds

∫ t r+1

t0

α(τ)−ωSUR(τ) dτ=

∫ t r

t0

α(τ)−ωSUR(τ) dτ

︸ ︷︷ ︸
¾− 1

2
∆t

+

∫ t r+1

t r

α(τ) dτ

︸ ︷︷ ︸
¾0

¾−1

2
∆t.

88

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

Assume the integral (4.23) ¾ 1
2
∆t r , then the control scheme provides pSUR

r = 1 and we obtain

∫ t r+1

t0

α(τ)−ωSUR(τ) dτ=

∫ t r

t0

α(τ)−ωSUR(τ) dτ+

∫ t r+1

t r

α(τ)− 1 dτ

=

∫ t r+1

t0

α(τ) dτ−
∫ t r

t0

ωSUR(τ) dτ

︸ ︷︷ ︸
¾ 1

2
∆t r

−
∫ t r+1

t r

1 dτ

︸ ︷︷ ︸
=∆t r

¾−1

2
∆t r ,

and due to the assumption, it holds

∫ t r+1

t0

α(τ)−ωSUR(τ) dτ=

∫ t r

t0

α(τ)−ωSUR(τ) dτ

︸ ︷︷ ︸
¶ 1

2
∆t

+

∫ t r+1

t r

α(τ)− 1 dτ

︸ ︷︷ ︸
¶0

¶
1

2
∆t.

This completes the proof for all grid points. �

Proposition 4.2 (Best possible bound)
The best bound that any algorithm for arbitrary measurable α(·) and arbitrary time grid

Gm
def
= {t0 < t1 < . . .< tm = tf}

can give is 1
2
∆t, as given by the SUR strategy. 4

Proof For any time interval [t i, t i+1] with ∆t i = ∆t, consider any relaxed control α(·) and
let ω(·) be its integer approximation until time point t i, which may use the known data for
t > t i. However, for the algorithm to approximate better than the SUR algorithm, it must
hold

δ
def
=

∫ t i

t0

α(τ)−ω(τ) dτ ∈
�
−1

2
∆t i,

1

2
∆t i

�
,

since the next interval could be the biggest.

Depending on this situation, let the control α(·) to be approximated have the following con-
stant value on the next grid interval:

α(t) =
1

2
− δ

∆t i
, ∀t ∈ [t i, t i+1].

89

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

The two possible approximation choices on the next interval are either 0 or 1:

∫ t i+1

t0

α(τ)−ω(τ) dτ= δ+

∫ t i+1

t i

�
1

2
− δ

∆t i

�
− 0 dτ

= δ+
�

1

2
− δ

∆t i

�
∆t i

=
1

2
∆t i,

∫ t i+1

t0

α(τ)−ω(τ) dτ= δ+

∫ t i+1

t i

�
1

2
− δ

∆t i

�
− 1 dτ

= δ+
�

1

2
− δ

∆t i
− 1
�
∆t i

=−1

2
∆t i.

For both choices, the best reachable approximation is θ = 1
2
∆t i. �

Remark 4.9 (Suboptimal solution)
The SUR scheme does not necessarily give the optimal solution. This is illustrated in the
following example, see Figure 4.2. Consider the problem given by the time grid Gm and
relaxed controls

G3 =
�

0,
3

4
,
5

4
,
11

4

�T

,

q =
�

1

3
, 0,

2

3

�T

.

Then, the SUR solution is

pSUR = (0, 1,1)T ,

with an objective value of θ SUR = 3
4
¶ 1

2
∆t = 3

4
– whereas the optimal solution is

pOPT = (0,0, 1)T ,

with an objective value of θOPT = 1
4
.

However, for equidistant grids it solves the problem to optimality.

Proposition 4.3 (Optimal solution for equidistant grids)
The SUR scheme solves problem (4.20) to optimality for equidistant grids, i.e.,

t i
def
= t0+ i∆t. 4

90

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

(a) relaxed control α(·)

t

(b) SUR solution pSUR(·)

t

(c) control deviation
∫ t

0
α(τ)− pSUR(τ) dτ

t

(d) optimal solution pOPT(·)

t

(e) control deviation
∫ t

0
α(τ)− pOPT(τ) dτ

t

Figure 4.2: Comparison of the SUR solution (b) and the optimal solution (d) for given relaxed controls
(a). The maximum integral deviations are 3

4
and 1

4
, respectively. The issue is that the

SUR scheme locally tries to bring the deviation below ∆t i and thereby prevents the whole
deviation from reaching ∆t. However, locally exceeding this limit of ∆t i might be optimal
if ∆t i is small enough.

Proof Consider another solution p̄ 6= pSUR. Let k be the first time step where they differ, i.e.,
p̄k 6= pSUR

k and p̄i = pSUR
i for i < k. Due to the SUR properties, it holds

�����
∫ tk−1

t0

α(τ)− pSUR(τ) dτ

�����=
�����
∫ tk−1

t0

α(τ)− p̄(τ) dτ

�����¶
1

2
∆t.

Consider the next time step and let the control determining value be > 1
2
∆t, i.e.,

∫ tk

t0

α(τ) dτ−
k−1∑
i=0

pSUR
i ∆t >

1

2
∆t, (4.24)

91

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

and hence 1= pSUR
k 6= p̄k = 0. Then, it holds

∫ tk

t0

α(τ) dτ−
k∑

i=0

p̄i∆t =

∫ tk

t0

α(τ) dτ−
k−1∑
i=0

pSUR
i (τ)∆t − 0∆t >

1

2
∆t,

which leads to θ > 1
2
∆t. Therefore, this solution is worse than the guaranteed worst case for

the SUR solution. It is easy to see that also for the other possible control determining values
on the left-hand side of equation (4.24), i.e., = 1

2
∆t and <= 1

2
∆t, we get the result that

the solution can either only be of the same value as the worst case SUR solution or is even
worse. �

This scheme gives an algorithm that can approximate a measurable control trajectory α(·)
arbitrarily close in a weak sense as long as the grid is chosen fine enough. In combination
with Theorem 4.1, this allows for arbitrarily close approximations of the differential states.
Together, this allows us to come arbitrarily close to a solution of the control-affine purely path
constrained IVP (4.7) through first solving the relaxed problem and then approximating its
solution.

4.3.2 Analysis of the LAGRANGIAN

The contents of this section are based on the paper

[104] M. JUNG, G. REINELT AND S. SAGER, The Lagrangian Relaxation for the Combinatorial
Integral Approximation Problem, Optimization Methods and Software (Submitted).

In this section, we analyze the behavior of the LAGRANGIAN relaxation of the Control Approxi-
mation Problem in integral sense in a branching framework. First, we give a brief introduction
to the general LAGRANGIAN in linear systems, then we analyze the LAGRANGIAN in this special
setting.
The LAGRANGIAN relaxation is a popular relaxation for Mixed-Integer Linear Programs (MILPs),
e.g. [73, 118]. However, the approach is also generally used in all kinds of constrained opti-
mization problems. The principle is to relax a problem by dropping constraints and penalizing
their violation in the objective function. We brief introduce the LAGRANGIAN relaxation, the
LAGRANGIAN function and the LAGRANGIAN problem for an Integer Program (IP):

Definition 4.1 (LAGRANGIAN relaxation)
Consider the IP

min
x

cT x (4.25)

s. t. Ax ¶ b,

Dx ¶ d,

x integer.

92

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

A LAGRANGIAN relaxation of (4.25) is given by the IP

min
x

cT x +λT (Ax − b) (4.26)

s. t. Dx ¶ d,

x integer

for given non-negative LAGRANGIAN multipliers λ ∈ R+0 . 4

This can also be done for equality constraints, then the multipliers can also be negative.

Definition 4.2 (LAGRANGIAN function)
The LAGRANGIAN function corresponding to the LAGRANGIAN relaxation of (4.26) is defined as

zLR(λ)
def
=min

x

¦
cT x +λT (Ax − b)

�� Dx ¶ d, x integer
©

. 4

Definition 4.3 (LAGRANGIAN problem)
The LAGRANGIAN problem of (4.26) is defined as the problem of finding the most constricting
choice of LAGRANGIAN multipliers, i.e., to maximize the LAGRANGIAN function with respect to the
feasible multipliers:

ZLR
def
=max

λ

¦
zLR(λ)

�� λ¾ 0
©

. 4

Proposition 4.4 (LAGRANGIAN relaxation vs. LP relaxation)
Let there exist a feasible point of the canonical LP-relaxation. Let ZLR be the value of the LA-
GRANGIAN problem’s solution and let ZLP the value of the canonical LP-relaxation of (4.25) that
drops the integrality constraint. Then, it holds

ZLR ¾ ZLP. 4

The proposition states that the LAGRANGIAN relaxation is tighter than the LP-relaxation if the
best multipliers are chosen. This well known property of the LAGRANGIAN relaxation is proven
according to [73]:

Proof Let ZLP-dual the objective value of the dual LP of the canonical LP-relaxation with respect
to Ax ¶ b:

zLP-dual(λ)
def
=min

x

¦
cT x +λT (Ax − b)

�� Dx ¶ d
©

, (4.27)

ZLP-dual =max
λ

¦
zLP-dual(λ)

�� λ¾ 0
©

. (4.28)

Due to the duality theorem for linear programming for a subset of constraints, cf. [71, Sec-
tion 6.1], and assuming that a feasible point exists, the optimal value of the canonical LP-

93

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

relaxation is equal to its dual (4.28):

ZLP-dual = ZLP. (4.29)

There exists a multiplier λ̄ realizing the outer maximization of the dual LP (4.28) with:

zLP-dual(λ̄) = ZLP-dual. (4.30)

The feasible set of the inner minimization in zLR(λ) is a subset of the feasible set of zLP-dual(λ),
hence the inner minimization cannot be solved better:

zLR(λ̄)¾ zLP-dual(λ̄). (4.31)

The dual variable λ̄ does not necessarily provide the best solution of the LAGRANGIAN relax-
ation, but could provide a suboptimal point:

ZLR ¾ zLR(λ̄). (4.32)

The chain of inequalities (4.29)–(4.32) proofs the proposition. �

Formulation of the LAGRANGIAN in the Control Approximation Problem

For the discretized Control Approximation Problem in integral sense (4.20), we choose to pe-
nalize all constraints in (4.20) to obtain the following LAGRANGIAN function

zLR(λ,µ) = min
θ∈R,p∈Rm

L(λ,µ,θ , p)

with

L(λ,µ,θ , p)
def
= θ +

m−1∑
i=0

λi

−θ +

i∑
j=0

(p j − q j)∆t j

+
m−1∑
i=0

µi

−θ −

i∑
j=0

(p j − q j)∆t j

= θ

1−

m−1∑
i=0

λi +µi

!
+

m−1∑
i=0

(λi −µi)

i∑
j=0

(p j − q j)∆t j

 .

However, if
∑m−1

i=0 (λi − µi) 6= 1, the inner function L(·) of the LAGRANGIAN function is un-
bounded due to the free variable θ . Therefore, any solution of the LAGRANGIAN problem sat-
isfies this condition – and thereby θ can be eliminated from the problem to get the modified

94

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

LAGRANGIAN function

z̄LR(λ,µ) = min
p∈Rm

m−1∑
i=0

(λi −µi)

i∑
j=0

(p j − q j)∆t j

 ,

and the corresponding LAGRANGIAN problem

max
λ,µ∈Rm

+

min
p∈{0,1}m

m−1∑
i=0

(λi −µi)

i∑
j=0

(p j − q j)∆t j

 (4.33)

s. t.
m−1∑
i=0

(λi −µi) = 1.

Proposition 4.5 (Unconstrained problem)
The value of the LAGRANGIAN problem (4.33) is

ZLR = 0. 4

Proof Reordering the terms in the LAGRANGIAN function results in

z̄LR(λ,µ) = min
p∈{0,1}m

m−1∑
i=0

(pi − qi)∆t i

m−1∑
j=i

λ j −µ j

 .

If λ and µ are fixed to any feasible values, then, the optimal values for p directly emerge,
since there is no coupling between the different points in time:

p∗i =

0, if
m−1∑
j=i

λ j −µ j ¾ 0,

1, else.

(4.34)

Partitioning the index set I = {0, . . . , m− 1} into two subsets according to those two cases,
i.e.,

G(λ,µ) =

i ∈ I

�����
m−1∑
j=i

λ j −µ j ¾ 0

 ,

and its complement I\G, and using the optimal solution p∗, the LAGRANGIAN function can be

95

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

rewritten as

z̄LR(λ,µ) =
∑

i∈I\G
(1− qi)∆t i

m−1∑
j=i

λ j −µ j

︸ ︷︷ ︸
¶0

−
∑
i∈G

qi∆t i

m−1∑
j=i

λ j −µ j

︸ ︷︷ ︸
¾0

¶ 0.

The maximum value ZLR = 0 is taken, e.g. with the following feasible multipliers

λ̄0 = µ̄0 = 0.5 and λ̄i = µ̄i = 0 for i 6= 0. �

Behavior of the LAGRANGIAN relaxation during branching

We could use the LAGRANGIAN problem’s solution in a branch-and-bound algorithm for the
bounding procedure. As already seen in Proposition 4.5, the bound of the root node, i.e.,
the unconstrained case, would be 0. However, we can use this bound after some branching.
Here, we consider the standard branching procedure for binary variables, i.e., for each node
we choose one variable and construct one child where this variable is set to 0 and another
one where it is set to 1.
Consider a deeper node in the branching tree. Some controls pi are fixed to the values pfixed

i ,

i ∈ F ⊆ I def
= {0, . . . , m− 1} due to branching.

To identify the optimal solution of the LAGRANGIAN relaxation of this node, some abbreviating
notations are defined:

Definition 4.4
For two indices 0¶ i1 ¶ i2 ¶ m− 1, we define the following terms vi1,i2 , v̄i1,i2 as

vi1,i2
def
=

∑
i∈[i1,i2]∩F

(pfixed
i − qi)∆t i −

∑
i∈[i1,i2]\F

qi∆t i, (4.35)

v̄i1,i2
def
=

∑
i∈[i1,i2]∩F

(pfixed
i − qi)∆t i +

∑
i∈[i1,i2]\F

(1− qi)∆t i. (4.36)

These terms give the value of the control approximation during a time interval [t i1 , t i2] where all
free controls are either 0 (in the case of v) or 1 (in the case of v̄).
We also define some indices that are needed to properly state the results:

• i∗ ∈ I such that v0,i∗ is maximal,

• i∗1, i∗2 ∈ I such that vi∗1,i∗2 is maximal,

• j∗ ∈ I such that v̄0, j∗ is minimal,

• j∗1 , j∗2 ∈ I such that v̄ j∗1 , j∗2 is minimal. 4

96

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

With these terms, we can directly give the value of the LAGRANGIAN relaxation.

Theorem 4.3 (LAGRANGIAN relaxation after branching)
Assume we are in the described setting for the LAGRANGIAN relaxation of the Control Approxima-
tion Problem with fixed variables pi for i ∈ F .

Then, the value of the LAGRANGIAN relaxation is

ZLR =max
�

v0,i∗ , −v̄0, j∗ ,
1

2
vi∗1,i∗2 , −1

2
v̄ j∗1 , j∗2

�
.

In the optimal solution, depending on which of the terms is the maximum, either λi∗ = 1 or
µ j∗ = 1 or µi∗1 = λi∗2 =

1
2

or λ j∗1 = µ j∗2 =
1
2
. 4

Proof The outline of the proof is as follows. We interpret the problem as being similar to a
knapsack problem and we introduce variables to enhance readability of the procedure. Next,
we explain the concept of phases that helps to understand the objective function of interest.
As a result, four dominant phases naturally emerge as the phases that maximize this special
objective in different circumstances.

For the LAGRANGIAN relaxation we have the following min-max problem:

max
λ,µ∈Rm

+

min
p∈{0,1}m

m−1∑
i=0

(λi −µi)

i∑
j=0

(p j − q j)∆t j

 (4.36)

s. t. pi fixed to pfixed
i for i ∈ F ,

s. t.
m−1∑
i=0

(λi −µi) = 1.

We reformulate the LAGRANGIAN relaxation using the solution of the inner minimization prob-
lem. This solution remains of the same structure as observed in the unrestricted case (4.34).
The only difference is that we have to distinguish three cases for each variable p j instead of
only two. The additional case to be considered emerges when the variable p j is fixed and not
free. With the set

G(λ,µ) =

i ∈ I

�����
m−1∑
j=i

λ j −µ j ¾ 0

97

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

as above, the problem takes the form

max
λ,µ∈Rm

+

m−1∑
i=0

m−1∑
j=i

λi −µi

∆t i

(pfixed
i − qi), if i ∈ F ,

(−qi), if i ∈ G(λ,µ),

(1− qi), if i /∈ F ∪ G(λ,µ),

(4.37)

s. t.
m−1∑
i=0

(λi −µi) = 1.

Here, we can see the clear structure of a budget of 1 for λ and µ as the constraint and a
special objective function that already incorporates the solution of the inner minimization
problem.

Definition 4.5
We introduce variables a and b to enhance readability:

ai
def
=

m−1∑
j=i

λ j, am
def
= 0,

bi
def
=

m−1∑
j=i

µ j, bm
def
= 0. 4

The old variables λ and µ mean a change in the new variables a and b. The restrictions that
were posed on the multipliers λ and µ are easily translated into

0¶ λi = ai − ai+1, (4.38a)

0¶ µi = bi − bi+1, (4.38b)

1=
m−1∑
i=0

λi +µi = a0+ b0. (4.38c)

These restrictions can be described as a restriction on the initial sum of the factors a and b
and both are non-increasing. As a direct result, the total change in a and b is limited by 1.
With these variables, the objective of the LAGRANGIAN function becomes

z̃LR(a, b) =
m−1∑
i=0

(ai − bi)∆t i

(pfixed
i − qi), if i ∈ F ,

(−qi), if i /∈ F and ai ¾ bi,

(1− qi), if i /∈ F and ai < bi.

(4.39)

Taking a closer look at these terms, the only possible positive summands are those with i ∈ F
and sgn(ai− bi) = sgn(pfixed

i −qi). The LAGRANGIAN relaxation maximizes this function under

98

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

the above stated restrictions on a and b. The aim is to optimally use these changes from the
initial factors whose sum is 1 to avoid negative parts and to optimally use positive summands
in the objective.

Since only the change in a and b is limited, we introduce a phase π = (iπ, jπ,δπ) as an
interval in time at whose initial border, iπ, a − b increases by δ ∈ [−1,1] and at whose
ending border, jπ, this change is reversed by adding −δ. The value regarding the objective
contribution of a phase π= (iπ, jπ,δπ) is

v((iπ, jπ,δπ), a, b) = δπ

jπ∑
k=iπ

∆tk

(pfixed
k − qk), if k ∈ F ,

(−qk), if k /∈ F and ak ¾ bk,

(1− qk), if k /∈ F and ak < bk.

Each solution (a, b) to the problem is composed of an overlapping of such phases. For starting
phases, i.e., phases that begin at time step 0, the cost is only contributed by the change at the
end, because for the beginning factors a0 + b0 = 1 must hold, i.e., all of the budget is given
there. Therefore, the cost c(π, a, b) of the phase π in budget terms is

c((0, jπ,δπ), a, b) =
��δπ
�� , 0¶ jπ ¶ m− 1.

For intermediate phases, the costs of the phase are contributed at both its start and its end
and we get

c((iπ, jπ,δπ), a, b) = 2
��δπ
�� , 1¶ iπ ¶ jπ ¶ m− 1.

We can now consider any solution (a, b) as an overlapping of phases. In the following,
for each solution we choose a unique decomposition into a set of phases P(a, b), which
allows a decomposition of the costs into the costs of the single phases and a decomposition
of the objective value into the values of the phases. The idea is to decompose the graph into
maximally sized vertical slices as done on the left-hand side of Figure 4.3. The following
three properties have to be considered to get this set of phases P(a, b):

1. The most important part is that no phases with different signs of δ may overlap. This
implies that by knowing the sign of a phase, we directly also know the sign of a−b during
that phase, it is the same. We can hence determine the value of v(π, a, b) of a phase π
without knowing a and b and always the same choice is made in the inner brackets. This
also forbids “invisible” additional phases that cancel each other’s effects, i.e., all phases
can be visualized in the graph as done in Figure 4.3.

2. The second choice is such that we can directly get the budget consumption as the sum
over phase heights. For this, a phase has to be as wide as possible regarding time with-
out changing its sign (e.g. δ1 on the left-hand side of Figure 4.3 is correct, whereas δ4

99

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

should be chosen wider on the right-hand side). This ensures that the true change in
the multiplier structure is captured instead of additional artificial changes as done on the
right-hand side of Figure 4.3 between phases 4 and 5.

3. To get a unique set of phases we have to add the constraint that each phase is chosen as
high as possible regarding |δ|, else each horizontal slice could be decomposed into any
number of slices, which are as wide as the original but combine to the same height.

In Figure 4.3 these choices are made correctly on the left-hand side, whereas there are some
mistakes on the right-hand side.

(a) distribution of ai − bi

(b) correct choices of the phases

δ1

δ2

−δ3
π1

π2
π3

(c) wrong choice of the phases

δ1

−δ2

δ3
−δ4 −δ5

π1

π2 π3
π4

π5

Figure 4.3: On the left-hand side (b) every phase is chosen according to the rules above. On the right-
hand side (c), e.g. the phase π1 cannot overlap with the phase π2 since the corresponding
δ1 and δ2 have different signs (property (1)), π1 has to be made wider such that it in-
cludes the π3-piece, since width is chosen first (property (2)), and it has to be made lower
(property (3)).

A set of multipliers thus produces a unique set of phases P(a, b). Let each phase π be specified
through π= (iπ, jπ,δπ) as above. Let P0(a, b) be the set of phases starting at time step 0 and
let P+(a, b) be the set of phases starting later.

The total changes of the multipliers can be decomposed into the old changes and the changes
that happen from step i to step i+ 1:

ai+1− bi+1 = ai − bi +
∑

π∈P(a,b)
i+1=iπ

δπ

︸ ︷︷ ︸
phases starting at i+1

−
∑

π∈P(a,b)
i= jπ

δπ

︸ ︷︷ ︸
phases ending at i

, 1¶ i ¶ m− 1. (4.40)

Due to the properties 1 and 2 of the phases in P(a, b), all the δ-terms on the right-hand side

100

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

of this equation (4.40) have the same sign, i.e., the starting phases have a different sign of δ
than the ending phases. Therefore, we can move the norm into all individual terms:

���
∑

π∈P(a,b)
iπ=i+1

δπ−
∑

π∈P(a,b)
jπ=i

δπ

���=
∑

π∈P(a,b)
iπ=i+1

��δπ
��+

∑
π∈P(a,b)

jπ=i

��δπ
��

and obtain the following property for all changes from time step i to i+ 1

∑
π∈P(a,b)

iπ=i+1

��δπ
��+

∑
π∈P(a,b)

jπ=i

��δπ
��=
���
∑

π∈P(a,b)
iπ=i+1

δπ−
∑

π∈P(a,b)
jπ=i

δπ

���

=
(4.40)

��(ai+1− bi+1)− (ai − bi)
��

¶
��ai+1− ai

��+
��bi+1− bi

��
=

(4.38a),(4.38b)
ai − ai+1+ bi − bi+1.

Summing these up for 0¶ i ¶ m−1, we get only the end contribution for the starting phases
and both contributions for the phases starting later and a telescope sum on the right-hand
side:

m−1∑
i=0

�∑
π∈P(a,b)
bπ=i+1

��δπ
��+
∑

π∈P(a,b)
eπ=i

��δπ
���¶ a0+ b0− am− bm

⇔
∑

π∈P0(a,b)

��δπ
��+
∑

π∈P+(a,b)

2
��δπ
��¶ a0+ b0 = 1 (4.41)

Due to the properties of P(a, b) and with the definitions of v and v̄, see (4.35) and (4.36),
the objective value of a solution (a, b) can directly be split into the values of the single phases,
i.e.,

z̃LR(a, b) =
∑

π∈P(a,b)
δπ>0

δπviπ, jπ +
∑

π∈P(a,b)
δπ<0

δπ v̄iπ, jπ .

With the indices i∗, j∗, etc. defined as above, we can now show the claim:

z̃LR(a, b) =
∑

π∈P(a,b)
δπ>0

δπviπ, jπ +
∑

π∈P(a,b)
δπ<0

δπ v̄iπ, jπ

=
∑

π∈P(a,b)
δπ>0

��δπ
�� viπ, jπ −

∑
π∈P(a,b)
δπ<0

��δπ
�� v̄iπ, jπ

101

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

¶
def i∗,

etc.

∑
π∈P(a,b)
δπ>0,iπ=0

��δπ
�� v0,i∗ −

∑
π∈P(a,b)
δπ<0,iπ=0

��δπ
�� v̄0, j∗ +

∑
π∈P(a,b)
δπ>0,iπ 6=0

��δπ
�� vi∗1,i∗2 −

∑
π∈P(a,b)
δπ<0,iπ 6=0

��δπ
�� v̄ j∗1 , j∗2

¶
∑

π∈P0(a,b)

��δπ
��max

n
v0,i∗ ,−v̄0, j∗

o
+
∑

π∈P+(a,b)

2
��δπ
��max

�
1

2
vi∗1,i∗2 ,−1

2
v̄ j∗1 , j∗2

�

¶

∑
π∈P0(a,b)

��δπ
��+
∑

π∈P+(a,b)

2
��δπ
��

max

�
v0,i∗ , −v̄0, j∗ ,

1

2
vi∗1,i∗2 , −1

2
v̄ j∗1 , j∗2

�

¶
(4.41)

max
�

v0,i∗ , −v̄0, j∗ ,
1

2
vi∗1,i∗2 , −1

2
v̄ j∗1 , j∗2

�
.

All four values inside the maximum can be attained with the following multipliers:

v0,i∗ : λi∗ = 1,
1

2
vi∗1,i∗2 : λi∗1 = µi∗2+1 =

1

2
,

−v̄0, j∗ : µ j∗ = 1, −1

2
v̄ j∗1 , j∗2 : µ j∗1 = λ j∗2+1 =

1

2
.

Since the maximum’s value is attainable with the multipliers as described above, this directly
gives the optimal solution’s value. �

Remark 4.10 (Solution interpretation)
The inner problem for the solutions with λi∗ = 1 or µ j∗ = 1 contains just one constraint of the
type

θ ¾±
i∗/ j∗∑
i=0

(pi − qi) ∆t i,

which provides the tightest setting for θ . The free controls would be set considering the
worst-case scenario regarding the bound (either all 0 in the “+”-case or all 1 in the “−”-
case). Hence, the bound takes a stronger value when there are less degrees of freedom left in
[t0, t i∗/ j∗].
The solutions with two multipliers set to 1

2
only consider a time interval [t i1 , t i2] and the

largest term

±
i2∑

i=i1

(pi − qi)∆t i.

Since there is no valid inequality containing this term and θ , we have to split a valid inequality
to explain the behavior:

θ ¾±
i2∑

i=0

(pi − qi)∆t i

102

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

=±
i2∑

i=i1

(pi − qi)∆t i±
i1−1∑
i=0

(pi − qi)∆t i

︸ ︷︷ ︸
¾−θ

⇒ θ ¾±1

2

i2∑
i=i1

(pi − qi)∆t i.

We observe that the factor of 1
2

is needed to cancel possibly bad control decisions during the
interval [t0, t i1).
Thus, Theorem 4.3 gives two different types of bounds, which also vastly differ in their quality.
The second type calculates the value in the same way, but has a pre-factor of 1

2
, which weakens

the bound considerably. Hence, branching strategies should be preferred, which lead to the
first type of bound.

The choice that puts most emphasis on this way of bound derivation fixes the controls forward
in time, i.e., F = {0, . . . , |F | − 1}. We expand the analysis for this set F of fixed controls.

Proposition 4.6
If the first |F | controls are the fixed ones, i.e., F = {0, . . . , |F | − 1}, then it holds for all time
indices in F :

max
¦

v0,i∗ ,−v̄0, j∗
©
¾

1

2
vi1,i2 , ∀ i1 < i2 < |F | ,

max
¦

v0,i∗ ,−v̄0, j∗
©
¾−1

2
v̄ j1, j2 , ∀ j1 < j2 < |F | ,

and hence, the value of the LAGRANGIAN relaxation becomes

ZLR =max
¦

v0,i∗ ,−v̄0, j∗
©

. 4

Proof Both inequalities can be proven directly and we only show the first case, since the
second one can be shown analogously. It holds for i, j < |F |: vi, j = v̄i, j.

1

2
vi1,i2 =

def v

1

2

�
v0,i2 − v0,i1−1

�

¶
def i∗, j∗,

v=v̄

1

2

�
v0,i∗ − v̄0, j∗

�

¶
1

2

�
max

¦
v0,i∗ ,−v̄0, j∗

©
+max

¦
v0,i∗ ,−v̄0, j∗

©�

= max
¦

v0,i∗ ,−v̄0, j∗
©

. �

103

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

Remark 4.11 (Possible application of the proposition)
Theorem 4.3 and Proposition 4.6 do not have a lot of value considering the presented setting,
because here the SUR scheme already provides very good solutions in linear time. However, in
the presence of additional constraints, which limit the feasible set to be a subset of the corners
of the n-dimensional binary cube, the SUR scheme might produce an infeasible solution. In
this case, Theorem 4.3 provides a way to calculate bounds in a branch-and-bound framework
in linear/quadratic time, which correspond to the solution of the LAGRANGIAN relaxation of
the relaxed problem that ignores the additional constraints.

4.4 Approximation of SOS1-coupled controls in the integral sense

As already specified in Section 3.6, general nonlinear ODE systems can be reformulated into
control-affine ODE systems as (4.7) through the OC approach. However, as stated there, one
gets additional SOS1-constraints on the binary controls. Therefore, it is of high interest to
also cover the Control Approximation Problem in these systems.

After applying the OC technique, Theorem 4.1 is applicable and we can approximate the
relaxed controls α : [t0, tf]→ Rnω with binary ones ω : [t0, tf]→ {0,1}nω . This takes place
on a time grid Gm

def
= {t0 < t1 < . . .< tm = tf} with time increments

∆t i = t i+1− t i,

and maximum time increment

∆t
def
= max

0¶i¶m−1
∆t i.

Let ω : [t0, tf]→ {0,1}nω be piecewise constant with possible jumps in the grid points. Then,
ω can be parameterized with a vector p ∈ {0,1}nωm as

ωi(t) = pi, j, 1¶ i ¶ nω, t ∈ [t j, t j+1).

The values in the end points ωi(tf) do not contribute and can be omitted in the parametriza-
tion. The SOS1-constraints is also required for the relaxed controls α(·), i.e.,

nω∑
i=1

αi(t) = 1, t ∈ [t0, tf], (4.42)

as the relaxation should not drop this important constraint.

As described in Section 4.3, it makes sense to compute an approximation such that the inte-

104

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

grated control deviation becomes minimal, i.e.,

min
ω(·)

max
t∈[t0,tf]

�����

�����
∫ t

t0

αi(τ)−ωi(τ) dτ

�����

����� (4.43)

s. t.
nω∑
i=1

ωi(t) = 1, ∀t ∈ [t0, tf].

Analogously to Section 4.3, we can state that the norm takes its maximum values at grid
points and thereby consider the maximization problem only on grid points. Since we only
need to consider grid points, we can also consider mean values q for the relaxed controls,
i.e.,

qi, j
def
=

1

∆t j

∫ t j+1

t j

αi(τ) dτ.

The SOS1-constraint of α(·) directly carries over to q

nω∑
i=1

qi, j = 1, 0¶ j ¶ m− 1. (4.44)

The algorithms presented in this section use the maximum norm in (4.43) since it allows
for an MILP reformulation. Other common norms would be the Manhattan norm and the
Euclidean norm; the latter is briefly considered in Section 4.5. With the maximum norm and
a commonly used reformulation, the problem becomes

min
θ ,p

θ (4.45a)

s. t. θ ¾
j∑

k=0

�
qi,k − pi,k

�
∆tk, 0¶ j ¶ m− 1, 1¶ i ¶ nω, (4.45b)

θ ¾−
j∑

k=0

�
qi,k − pi,k

�
∆tk, 0¶ j ¶ m− 1, 1¶ i ¶ nω, (4.45c)

1=
nω∑
i=1

pi, j, 0¶ j ¶ m− 1, (4.45d)

p ∈ {0,1}nωm. (4.45e)

Due to the SOS1-constraint (4.45d), we have for each time interval [t j, t j+1) exactly one
control i that takes the value 1 and the others take the value 0. In this context, we use the
terms active control i or activation of control i in time step j.

105

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

4.4.1 Sum-up Rounding with SOS1-coupled controls

The first algorithmic approximation was given in [152] as the SOS1-SUR scheme. Its idea is
to activate the control that would deviate most from 0 without an activation. In [154], the
authors give a proof for its guaranteed quality but also proof that the quality of this heuristic
does depend on the number of controls nω. We prove these results in this section.

Proposition 4.7 (Deviation of Control Integrals by SOS1-SUR)
Let Gm be a time grid as described above. Let α : [t0, tf]→ [0,1]nω be a measurable function,
which satisfies the SOS1-constraint (4.44), with mean values q on the grid intervals:

qi j =
1

∆t j

∫ t j+1

t j

αi(τ) dτ.

Let the auxiliary expressions p̃i, j be defined as

p̃i, j
def
=

j∑
k=0

qi,k∆tk −
j−1∑
k=0

pSUR
i,k ∆tk.

Then, it holds that the feasible point of the SOS1-coupled Control Approximation Problem in
integral sense (4.45) provided by the iterative SOS1-SUR control scheme, i.e.,

pSUR
i, j

def
=

1, if p̃i, j ¾ p̃k, j∀k 6= i, and ∀k with p̃i, j = p̃k, j : i ¶ k,

0, else,

has a limited objective value with

θ ¶
�
nω− 1

�
∆t. 4

Proof We prove the proposition by contradiction.

Assume there exists a grid point t r such that
�����

r∑
j=0

�
qi, j − pSUR

i, j

�
∆t j

�����>
�
nω− 1

�
∆t.

Let the maximally violating control have the index

k
def
= argmax

1¶i¶nω

�����
r∑

j=0

�
qi, j − pSUR

i, j

�
∆t j

����� .

106

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

First assume that θ >
�
nω− 1

�
∆t because

r∑
j=0

�
qk, j − pSUR

k, j

�
∆t j <−

�
nω− 1

�
∆t. (4.46)

Let l(k) be the time step of the last activation of control k before time step r, i.e.,

pk,l(k) = 1, pk, j = 0, l(k)< j < r.

Notice that there must have been at least one activation of k because inequality (4.46) holds.

Due to (4.46) and l(k) being k’s last activation, it holds

l(k)∑
j=0

�
qk, j − pSUR

k, j

�
∆t j =

l(k)∑
j=0

qk, j∆t j −
r−1∑
j=0

pSUR
k, j ∆t j

¶
r−1∑
j=0

�
qk, j − pSUR

k, j

�
∆t j

<−�nω− 1
�
∆t,

and since pSUR
k,l(k) = 1, it holds

l(k)∑
j=0

qk, j∆t j −
l(k)−1∑

j=0

pSUR
k, j ∆t j <−(nω− 1)∆t +∆t l(k) ¶−nω∆t.

Due to the scheme’s choice of the activated control k in time step l(k), it must hold for all
1¶ i ¶ nω:

p̃k,l(k) ¾ p̃i,l(k)

⇔ −nω∆t >
l(k)∑
j=0

qk, j∆t j −
l(k)−1∑

j=0

pSUR
k, j ∆t j ¾

l(k)∑
j=0

qi, j∆t j −
l(k)−1∑

j=0

pSUR
i, j ∆t j.

Summing this up for all controls and using the SOS1-constraint on both p and q , we obtain

−n2
ω∆t =−

nω∑
i=1

nω∆t >
nω∑
i=1

l(k)∑
j=0

qi, j∆t j −
l(k)−1∑

j=0

pSUR
i, j ∆t j

=
l(k)∑
j=0

nω∑
i=1

qi, j

!

︸ ︷︷ ︸
=1

∆t j −
l(k)−1∑

j=0

nω∑
i=1

pSUR
i, j

!

︸ ︷︷ ︸
=1

∆t j

=∆t l(k).

107

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

Therefore, θ >
�
nω− 1

�
∆t can only be because

r∑
j=0

�
qk, j − pSUR

k, j

�
∆t j >

�
nω− 1

�
∆t. (4.47)

Assume this is the case. Due to SOS1-constraint on both pSUR and q , we get

nω∑
i=1

r−1∑
j=0

�
qi, j − pSUR

i, j

�
∆t j

= 0.

With assumption (4.47), we obtain

nω∑
i=1
i 6=k

r−1∑
j=0

�
qi, j − pSUR

i, j

�
∆t j

+ �nω− 1

�
∆t < 0.

The left-hand side can be split up into the following nω− 1 terms

∆t +
r−1∑
j=0

�
qi, j − pSUR

i, j

�
∆t j, 1¶ i ¶ nω, i 6= k.

For the whole sum to be negative, at least one of the terms has to be negative. Let c be its
index:

r−1∑
j=0

�
qc, j − pSUR

c, j

�
∆t j <−∆t. (4.48)

Let again l(c) be the last time step before r, where c was activated. Control c must have been
activated due to inequality (4.48). This leads to

−∆t >
r−1∑
j=0

�
qc, j − pSUR

c, j

�
∆t j

¾
l(c)∑
j=0

�
qc, j − pSUR

c, j

�
∆t j

=
l(c)∑
j=0

qc, j∆t j −
l(c)−1∑

j=0

pSUR
c, j ∆t j −∆t l(c)

⇒ 0>
l(c)∑
j=0

qc, j∆t j −
l(c)−1∑

j=0

pSUR
c, j ∆t j. (4.49)

108

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

As the scheme activated control c in time step l(c), holds for 1¶ i ¶ nω

p̃c,l(c) ¾ p̃i,l(c)

⇔ 0>
l(c)∑
j=0

qc, j∆t j −
l(c)−1∑

j=0

pSUR
c, j ∆t j ¾

l(c)∑
j=0

qi, j∆t j −
l(c)−1∑

j=0

pSUR
i, j ∆t j.

Summing them up for 1 ¶ i ¶ nω and using again the SOS1-constraints, we obtain the
contradiction:

0>
l(c)∑
j=0

nω∑
i=1

qi, j

!

︸ ︷︷ ︸
=1

∆t j −
l(c)−1∑

j=0

nω∑
i=1

pSUR
i, j

!

︸ ︷︷ ︸
=1

∆t j =∆t l(c).

The solution quality of SOS1-SUR can hence not be worse than
�
nω− 1

�
∆t. �

The problem with this heuristic is its actual dependence on the number of controls, as can be
seen in the next example.
Remark 4.12 (Best SOS1-SUR objective value must depend on nω)
Consider the following setting, there are nω controls and nω equidistant time steps of length
∆t. The relaxed controls are constant on the time intervals and are hence identical to their
mean values q as follows:

qi, j =

1
nω− j

, if i ¾ j,

0, if i < j,
1¶ i ¶ nω, 0¶ j ¶ nω− 1.

Here, the SOS1-SUR scheme activates the control that was increased the last time and remains
at 0 thereafter. At each point in time, the error made is locally maximal. We get the controls

pSUR
i, j =

1, if i = j+ 1,

0, else,
1¶ i ¶ nω, 0¶ j ¶ nω− 1,

with the maximal deviation at time nω− 1 for control nω of

θ =
nω−1∑
j=0

�
qnω, j∆t

�
−∆t =∆t

nω−2∑
j=0

1

nω− j
=∆t

nω∑
j=2

1

j
,

which is ∆t times the harmonic number, which is approximately ∆t log(nω).
SAGER conjectured in [158] that this is the worst case behavior of the algorithm, i.e., instead
of θ ¶

�
nω− 1

�
∆t, we have θ ¶O(log(nω)∆t).

109

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

(a) relaxed controls q

t

(b) SOS1-SUR solution pSUR

t

(c) θ =
∫ t

0
αnω(τ)− pSUR

nω
(τ) dτ

t

Figure 4.4: The behavior of the SOS1-SUR solution in the described example with nω = 4. As shown,
the approximation value θ in this example is ∆t times the harmonic number of nω and
hence the solution quality can never be independent of nω.

4.4.2 Next-forced Rounding for SOS1-coupled controls

In Section 4.4.1, it was shown that the deviation value of the SOS1-SUR scheme depends
on the number of controls nω. Here, we present a new algorithm that does not. Instead,
it provides a feasible point of problem (4.45) with an objective value of θ ¶ ∆t. In this
context, we distinguish different types of activations. An admissible activation is one where
the activation would not violate θ ¶∆t and a forced activation is an activation that is needed
to prevent θ >∆t:

Definition 4.6 (Admissible activation)
An activation of control ca is admissible in time step i if it holds

i∑
j=0

qca , j∆t j −
i−1∑
j=0

pca , j∆t j ¾−∆t +∆t i. (4.50)

4

Definition 4.7 (Forced activation)
An activation of control c f is forced in time step i if it holds

i∑
j=0

qc f , j∆t j −
i−1∑
j=0

pc f , j∆t j >∆t. (4.51)

4

110

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

With these terms, we can now state the Next-forced Rounding (NFR) heuristic 4.1 in pseudo-
code.

Algorithm 4.1: Next-forced Rounding algorithm for SOS1-coupled controls.
Data: Time increments ∆t i , mean values of relaxed controls q j,i satisfying

SOS1-constraint (4.44) for i = 0 : m− 1, j = 1 : nω.
Result: Binary controls pNFR

i, j that give a feasible point of the Control Approximation
Problem (4.45) with SOS1-coupled constraints with θ ¶∆t.

for all time steps i = 0 : m− 1 do
for all controls j = 1 : nω do

pNFR
j,i = 0.

end

Ai
def
= the set of admissible controls in this time step i.

if there exists control c f with forced activation in time step i then
pNFR

c f ,i = 1.

else if it exists an admissible control that becomes forced without activation, i.e.,

∃ j ∈Ai :
m−1∑
k=0

q j,k∆tk −
i−1∑
k=0

p j,k∆tk >∆t then

For all j ∈Ai , calculate the next point f (j) of forced activation (m if none exists):

f (j)
def
=min

(
l ∈ N

��� i+ 1¶ l ¶ m− 1,
l∑

k=0

q j,k∆tk −
i−1∑
k=0

p j,k∆tk >∆t

)
∪ �m	.

Find the earliest point of forced activation:
fa =min

�
f (j) | j ∈Ai

	
.

ca =min
�

j ∈Ai | f (j) = fa
	
.

pNFR
ca ,i = 1.

else
ca =min{ j ∈Ai}.
pNFR

ca ,i = 1.

end
end

Proposition 4.8 (Solution quality of NFR)
Algorithm 4.1 provides a feasible point of problem (4.45) with

θ ¶∆t. 4

Proof First, we note that the algorithm only uses admissible and forced activations. If the
algorithm provided a solution it would automatically satisfy θ ¶ ∆t. Any solution would

111

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

automatically satisfy the SOS1-constraints (4.45d) since exactly one control is activated for
each time step during the corresponding step of the loop.

Now, we only have to prove that the algorithm always produces a complete solution. We split
this into two parts: First, we show that during each time step in the for-loop there always
exists at least one admissible control. Then, we show that there exists at most one forced
activation during each time step.

1. We prove that for each time step there is at least one admissible activation that could be
chosen. This implies that the algorithm runs through the whole loop. We show this by
contradiction:
Consider the situation after k − 1 time steps, there has been an activation for each time
step due to the mechanics of the loop. Let no controls in time step k be admissible, i.e.,

k∑
j=0

qi, j∆t j −
k−1∑
j=0

pi, j∆t j <−∆t +∆tk, 1¶ i ¶ nω.

Then, we sum these up and use the SOS1-constraint for both p and q to obtain

nω∑
i=1

k∑
j=0

qi, j∆t j −
k−1∑
j=0

pi, j∆t j

< nω

�−∆t +∆tk
�

⇔
k∑

j=0

∆t j −
k−1∑
j=0

∆t j < nω
�−∆t +∆tk

�

⇔ �
1− nω

�
∆tk <−nω∆t.

Therefore, there has to be an admissible control during time step k.
2. We prove that there may be at most one forced activation for each time step k. If this were

not the case, the algorithm would not be well defined. We also show this by contradiction:
Let the algorithm be run through time steps 0, . . . , k− 1 and let k be the first time step at
which it encounters at least two forced activations of controls i1 and i2. Then, it holds

k∑
j=0

qi, j∆t j −
k−1∑
j=0

pi, j∆t j >∆t, i ∈ {i1, i2}. (4.52)

For the combination of all controls, and using the fact that each previous time step had
exactly one activation, it holds

nω∑
i=1

k∑
j=0

qi, j∆t j −
k−1∑
j=0

pi, j∆t j

=

k∑
j=0

∆t j −
k−1∑
j=0

∆t j =∆tk ¶∆t. (4.53)

112

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

We can decompose the left-hand side with i1 and i2 into

∆t ¾
nω∑
i=1

k∑
j=0

qi, j∆t j −
k−1∑
j=0

pi, j∆t j

=
nω∑
i=1

i /∈{i1,i2}

k∑
j=0

qi, j∆t j −
k−1∑
j=0

pi, j∆t j

+
∑

i∈{i1,i2}

k∑
j=0

qi, j∆t j −
k−1∑
j=0

pi, j∆t j

︸ ︷︷ ︸
>2∆t

.

Therefore, we get for the remaining part

nω∑
i=1

i /∈{i1,i2}

k∑
j=0

qi, j∆t j −
k−1∑
j=0

pi, j∆t j

<−∆t.

Since the whole sum is negative, there is at least one negative summand. Let c be the
corresponding control index such that

k∑
j=0

qc, j∆t j −
k−1∑
j=0

pc, j∆t j < 0.

Let l(c) be the time step of the last activation of control c, then it holds

0>
k∑

j=0

qc, j∆t j −
k−1∑
j=0

pc, j∆t j

=
k∑

j=0

qc, j∆t j −
l(c)∑
j=0

pc, j∆t j

=
k∑

j=0

qc, j∆t j −
l(c)−1∑

j=0

pc, j∆t j −∆t l(c).

⇒
k∑

j=0

qc, j∆t j −
l(c)−1∑

j=0

pc, j∆t j <∆t l(c) ¶∆t.

This shows that the activation of control c would not have been forced at time step k.
Now, we have established that there exists at least one control that – without activation –
would not have become forced at time step k, and yet still was activated before that time
step. Let cl be the control of this type that was activated last. We now show that there

113

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

cannot be a control i1 that becomes forced at time step k in this scenario.
Due to the choice of cl , all controls that were activated after l(cl) would have become
forced until time step k, we collect them in A together with i1, which becomes forced at
time step k. For each of those controls i ∈ A\{i1}, the last activation would have become
forced at or before time step k, i.e.,

k∑
j=0

qi, j∆t j −
l(i)−1∑

j=0

pi, j∆t j >∆t, i ∈A\{i1}.

They were last activated at time step l(i) and with this activation we get

k∑
j=0

qi, j∆t j −
k−1∑
j=0

pi, j∆t j >∆t −∆t l(i) ¾ 0, i ∈A\{i1}. (4.54)

For i1 this is even stricter since there was no activation yet. We obtain

k∑
j=0

qi1, j∆t j −
k−1∑
j=0

pi1, j∆t j >∆t. (4.55)

However, since cl was chosen at time step l(cl) and due to the else-part in Algorithm 4.1,
none of the controls in A has been admissible at time step l(cl) and none of them could
hence be activated:

l(cl)∑
j=0

qi, j∆t j −
l(cl)−1∑

j=0

pi, j∆t j <−∆t +∆t l(cl) ¶ 0, i ∈A,

⇒
l(cl)∑
j=0

qi, j∆t j −
l(cl)∑
j=0

pi, j∆t j <−∆t +∆t l(cl) ¶ 0, i ∈A. (4.56)

Taking the sum of inequalities (4.54), (4.55) and (4.56), we get

∑
i∈A

k∑
j=0

qi, j∆t j −
k−1∑
j=0

pi, j∆t j

>∆t, (4.57)

∑
i∈A

l(cl)∑
j=0

qi, j∆t j −
l(cl)∑
j=0

pi, j∆t j

< 0. (4.58)

Subtracting (4.58) from (4.57), we obtain

∑
i∈A

k∑
j=l(cl)+1

qi, j∆t j −
k−1∑

j=l(cl)+1

pi, j∆t j

>∆t.

114

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

Since by definition of A it contains all control activations between time steps l(cl)+1 and
k− 1 and due to the SOS1-constraint on q , we can rearrange the terms to become

∆t <
k∑

j=l(cl)+1

∆t j

∑
i∈A

qi, j

︸ ︷︷ ︸
¶1

−
k−1∑

j=l(cl)+1

∆t j

∑
i∈A

pi, j

︸ ︷︷ ︸
=1

¶
k∑

j=l(cl)+1

∆t j −
k−1∑

j=l(cl)+1

∆t j =∆tk ¶∆t.

Therefore, we have shown that there cannot be two forced control activations at time step
k.

This concludes the proof. We have shown that the algorithm is well-defined because there is
always exactly one choice that can be made. �

Remark 4.13 (Computational effort)
The computational effort of the NFR algorithm is O(nωm2), whereas the effort for the SOS1-
SUR algorithm is only O(nωm). Both provide worst-case bounds for the objective of the
Control Approximation Problem that are linear in ∆t and hence both suffice to also drive the
state approximation arbitrarily close according to Theorem 4.1, if the grid is just chosen fine
enough. Notice that the SUR heuristic only needs past data to derive the decision for each
step while the NFR heuristic needs the whole time horizon (or at least until the next forced
activation) to make its decisions.

4.4.3 The LAGRANGIAN relaxation for SOS1-coupled controls

In this section, we investigate the LAGRANGIAN relaxation with more than two binary con-
trols (nω > 2) but no additional combinatorial constraints, cf. problem (4.45). The case
of two SOS1-coupled controls can be transformed to the one-dimensional case through the
elimination of one control using the SOS1-constraint.

In Section 4.3.2, we determined the solution of the LAGRANGIAN relaxation of the one-dimen-
sional problem. Due to the SOS1-constraint, a valid branching strategy is to create at each
node nω child nodes, which each fix one different control with the same time index to 1
and all the other controls with this time index to 0. For this section, we focus on a branching
strategy that applies this branching forward in time, i.e., the set of fixed controls for a node of
depth d is {pi, j | j < d}. Using F analogously to Section 4.3.2, we obtain F = {0, . . . , |F |−1}.
We use the same LAGRANGIAN relaxation as in Section 4.3.2, which relaxes the constraints
(4.45b) and (4.45c) that are used to reformulate the maximum of the norm and eliminates

115

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

θ :

max
λ,µ∈Rnωm

+

min
p∈{0,1}nωm

nω∑
i=0

m−1∑
j=0

(λi, j −µi, j)

j∑

k=0

(pi,k − qi,k)∆tk

!
(4.59)

s. t. pi, j fixed to pfixed
i, j j ∈ F , 1¶ i ¶ nω,

nω∑
i=1

pi, j = 1, j /∈ F ,

s. t.
nω∑
i=1

m−1∑
j=0

(λi, j −µi, j) = 1.

Proposition 4.9
The objective value of the solution of the LAGRANGIAN relaxation (4.59) with time ordered branch-
ing is

ZLR = max
1¶i¶nω,

j∈F

�����

�����
j∑

k=0

(pfixed
i,k − qi,k)∆tk

�����

�����
∞

4

Proof For fixed λ, µ, after reordering of terms, the inner minimization problem can be rewrit-
ten as

min
p∈{0,1}nωm

nω∑
i=0

m−1∑
j=0

(pi, j − qi, j)∆t j

m−1∑
k= j

(λi,k −µi,k)

 (4.60a)

s. t. pi, j fixed to pfixed
i, j j ∈ F , 1¶ i ¶ nω, (4.60b)

nω∑
i=1

pi, j = 1, j /∈ F . (4.60c)

With the abbreviation

ci, j
def
=∆t j

m−1∑
k= j

(λi,k −µi,k)

 ,

we can directly solve the inner problem for fixed λ and µ and obtain the solution

p∗i, j =

pfixed
i, j , if j ∈ F ,

1, if j /∈ F ,∀k 6= i : ci, j ¶ ck, j,∀k with ci, j = ck, j : k > i,

0, else.

116

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

This is obtained since, for each time interval, exactly one control has to be activated. Since
there is no interconnection between the different time intervals, the problem can be solved
on each interval [t j, t j+1] individually. There, the control with the smallest coefficient is
activated:

c∗j = min
1¶i¶nω

ci, j.

Assume the relaxed controls q fulfill the SOS1-constraint (consistency of the relaxation), the
value of the not fixed intervals is non-positive:

nω∑
i=1

∑
j /∈F

ci, j(pi, j − qi, j) =
def p∗

∑
j /∈F

c∗j −

nω∑
i=1

ci, j qi, j

!

¶
def c∗j

∑
j /∈F

c∗j −

nω∑
i=1

c∗j qi, j

!
=

SOS1 on q

∑
j /∈F
(c∗j − c∗j) = 0.

Therefore, the outer maximization problem sets λi, j = µi, j for all j /∈ F and hence the objec-
tive contribution of the corresponding terms is 0. However, for the fixed part, the LAGRANGIAN

relaxation just describes a convex combination of the terms

±
j∑

k=0

(pfixed
i,k − qi,k)∆tk

as can be seen in the original problem formulation (4.59). Since there is no degree of freedom
left for the pi, j with j < |F | regardless of the values of λ and µ, the optimal solution is the
maximum of these terms. �

Remark 4.14 (Comparison: LAGRANGIAN and LP)
If the developed branching scheme is combined with a standard LP relaxation of the problem,
the bounds of the LP relaxation and the LAGRANGIAN relaxation coincide. Due to the fixed
parts, the Control Approximation Problem (4.45) contains the constraints

θ ¾±
j∑

k=0

(pfixed
i,k − qi,k)∆tk, j ∈ F , 1¶ i ¶ nω,

and hence also

θ ¾ ZLR = max
1¶i¶nω,

j∈F

�����

�����
j∑

k=0

(pfixed
i,k − qi,k)∆tk

�����

�����
∞

.

117

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

Since θ = ZLP ¶ ZLR, it holds

ZLP = ZLR.

4.5 Approximation of generally coupled controls

In this section, we allow more general connections between different controls. We still want
to approximate relaxed controls with binary ones, but now they have to fulfill additional
constraints. However, we assume that the problem formulation uses the OC technique to
model the different modes of the system and hence we assume the SOS1-constraint to be
present. We give some examples for interesting classes of such constraints and examine the
consequences of their presence.

As already seen in the SOS1-constrained multi-dimensional problem, the optimization need
only consider the grid points. We can also replace the controls α(·) by their mean values q
over the time intervals.

Let C be the set of feasible binary controls, which may e.g. be described by constraints

cC(p)¾ 0.

With the OC technique from Section 3.6, we can always reformulate cC to be affine in p, i.e.,

cT
C p ¾ c0.

Therefore, the Control Approximation Problem in general form is

min
p

max
0≤ j≤m−1

�����

�����
j∑

k=0

�
qi,k − pi,k

�
∆tk

�����

����� (4.61)

s. t. 1=
nω∑
i=1

pi, j, 0¶ j ¶ m− 1,

c0 ¶ cT
C p,

p ∈ {0, 1}nωm.

This problem is a bilevel optimization problem. Recently, in [101] an approach is made to
give the structure of the corresponding feasible set. However, JONGEN and SHIKHMAN restrict
themselves to problems where the inner problem has only one variable. Further information
about bilevel programming can be found in [53, 54].

It is possible to reformulate the inner level with the already used standard trick, i.e., through
the addition of a new variable θ . We replace the objective function by θ and add the con-

118

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

straints

θ ¾
�����

�����
j∑

k=0

�
qi,k − pi,k

�
∆tk

�����

����� , 0≤ j ≤ m− 1. (4.62)

This reformulation generally does not remove the difficulty of the bilevel problem, it just
hides it in the extra dimension of θ , where the feasible set becomes quite complicated as can
be seen in Section 4.5.2.

4.5.1 Choice of the norm

It is possible to take different norms since Theorem 4.1 does not specify which norm to use.
Depending on the choice of the norm, the reformulation may become an MILP or an MINLP.
In the following, we consider the common cases of the maximum norm, the Euclidean norm
and the Manhattan norm. Preliminary tests have shown that the quality of the results does
not strongly depend on the norm used.

Maximum norm

This norm was already used in the pure SOS1-case. With the maximum norm and a common
MILP reformulation for absolute values, the constraints become

θ ¾±
k∑

j=0

�
qi, j − pi, j

�
∆t j, 1¶ i ¶ nω, 0¶ k ¶ m− 1, (4.63)

and the whole problem becomes an MILP. This is an advantageous formulation since there
exist very good solvers for MILPs.

Manhattan norm

With the Manhattan norm ||·||1 and a common MILP reformulation for absolute values, prob-
lem (4.61) becomes

θ ¾
nω∑
i=1

µi j, 0¶ j ¶ m− 1,

µi j ¾±
j∑

k=0

�
qi,k − pi,k

�
∆tk, 1¶ i ¶ nω, 0¶ j ¶ m− 1.

In comparison with the maximum norm it introduces nωm extra variables µ are introduced
in the MILP.

119

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

Euclidean norm

With the Euclidean norm the constraints become

θ ¾

√√√√ nω∑
i=1

k∑
j=0

�
qi, j − pi, j

�
∆t j

2

, 0¶ k ¶ m− 1.

Since the inner part can be both positive and negative, these are nonlinear constraints, which
cannot be replaced with a linear term. This makes the problem a MINLP, which makes
this much harder to solve than the Manhattan norm formulation or the maximum norm
formulation.
Due to these observations, we use the maximum norm in the following. It provides an MILP
problem with the addition of only one continuous variable:

min
θ ,p

θ (4.64)

s. t. θ ¾±
k∑

j=0

�
qi, j − pi, j

�
∆t j 1¶ i ¶ nω, 0¶ k ¶ m− 1,

1=
nω∑
i=1

pi, j 0¶ j ¶ m− 1,

c0 ¶ cT
C p,

p ∈ {0, 1}nωm.

4.5.2 The Control Approximation Problem’s polytope

Usually, for MILPs, it is a good idea to take a closer look at the polyhedral structure of the
core problem. Insights obtained through this can often be applied to the problem through
separation procedures.
However, it is well-known that the reformulation of the maximum as in (4.62) does not
provide a good structure. In this context, this usually means that the facets defining the
surface of the feasible set are dense and almost parallel. Often, this also coincides with rather
large amounts of facets. We analyze the facets of the feasible space with regard to the Control
Approximation Problem’s reformulation (4.63) without additional constraints, i.e., C = ;. To
identify the structure of the convex hull of all feasible points of MILP (4.64), we use the
software-package PORTA v.1.4.1 [51, 52]. It uses the FOURIER-MOTZKIN elimination to obtain
the outer description, i.e., all facet-defining inequalities, from the inner description, i.e., all
feasible points. However, this method is limited to rather small problems with reasonable
computational times.
Obviously the feasible points depend on the data as all the inequalities (4.63) do. This carries
over to the facets and hence the structure of the polytope is strongly dependent on the data.

120

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

m relaxed control α(·) set to constant

0.0 0.1 0.2 0.3 0.4 0.5

6 13 23 30 96 99 38

7 15 31 50 204 251 58

8 17 40 97 472 516 80

9 19 50 182 1432 1088 120

10 21 61 319 4062 2457 162

11 23 73 502 7993 4296 242

12 25 119 855 20421 8440 334

Table 4.1: Number of facets of the polytope of feasible points. Due to the problem symmetry if the
roles of 0 and 1 were swapped, only the values between 0 and 0.5 are taken. Exactly the
same observations are made for two controls that are coupled with SOS1-constraints. The
SOS1-equations are added but the rest of the facets remain the same.

m constant relaxed controls (α1(t),α2(t)) =

(0.0,0.0) (0.0,0.1) (0.0,0.2) (0.0,0.3) (0.0,0.4) (0.0,0.5)

5 16 35 47 293 208 59

6 19 50 96 906 695 84

7 22 70 235 2970 1808 267

m constant relaxed controls (α1(t),α2(t)) =

(0.1,0.1) (0.1,0.2) (0.1,0.3) (0.1,0.4)

5 102 407 1013 1573

6 296 1574 4767 8625

7 1521 5410 26043 56870

m constant relaxed controls (α1(t),α2(t)) =

(0.2,0.2) (0.2,0.3) (0.2,0.4) (0.3,0.3)

5 353 2330 424 2305

6 975 14226 1963 12138

7 4723 106501 6656 *

Table 4.2: Number of facets of the polytope of feasible points for the 3-dimensional problem with
SOS1-constraints. Due to the problem symmetry we only looked at ordered controls where
α1 ¶ α2 ¶ α3 = 1−α1−α2. The m SOS1-equations are not included in the above numbers.
The (0.2,0.3)-polytope took a little more than 70 days of computational time to compute
and the (0.3,0.3)-polytope should have around the same number of facets and hence its
solution was not included in the thesis.

121

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

To examine a simple set of problems, the control to be approximated is fixed to a constant
value over all time steps and an equidistant grid is used. Here, the classes of facets should
be identifiable by hand if any obvious classes are present. Table 4.1 gives the numbers of
facets for varying data for the one-dimensional case as in Section 4.3 and table 4.2 gives the
numbers for SOS1-constrained three-dimensional cases as in Section 4.4. If all control values
were 0 or 1, we could write down the exact description for any number of time steps m.
However, the most complicated polytopes are those where the controls are all fractional and
different from each other. These are also clearly the most difficult scenarios for the algorithm
since there is no inherent problem symmetry to be exploited and the approximation is non-
trivial. Here, we can see an exponential growth in the number of facets as the number m of
time steps increases.

The facets of the Control Approximation Problem’s polytope are relatively dense, i.e., there
are lots of non-zero coefficients. There are also a lot of almost parallel facets where each facet
on its own just cuts away a very small part of the infeasible set. These results can examplarily
be seen in figure 4.5.

(1073) −2x1−2x2−2x3− x4− x5− x6− x7 −2x9− x10 − 5x12 <= −8
(1074) −2x1−2x2− x3−2x4−2x5− x6−2x7− x8 − 5x12 <= −8
(1075) −2x1−2x2−2x3− x4− x5 − x7− x8−2x9−2x10 − 5x12 <= −8
(1076) −2x1−2x2−2x3− x4 −2x6−2x7− x8− x9− x10 − 5x12 <= −8
(1077) −2x1−2x2−2x3− x4 − x6− x7− x8−2x9−2x10 − 5x12 <= −8
(1078) − x2−2x3−2x4−2x5−2x6−2x7− x8− x9− x10 − 5x12 <= −8
(1079) − x2− x3−2x4−2x5−2x6−2x7−2x8− x9− x10 − 5x12 <= −8
(1080) − x3−2x4− x5−2x6−2x7− x8−2x9−2x10− x11− 5x12 <= −8

...
(2922) +2x1+2x2+ x3+ x4+ x5+ x6+ x7+2x8+ x9+2x10 − 5x12 <= 3
(2923) +2x1+2x2+ x3+ x4+ x5+2x6+ x7+2x8+ x9+ x10 − 5x12 <= 3
(2924) +2x1+2x2+ x3+ x4+2x5+ x6+ x7+2x8+ x9+ x10 − 5x12 <= 3
(2925) +3x1+3x2+ x3+ x4+ x5 + x8+ x9+ x10+ x11− 5x12 <= 3
(2926) +2x1+2x2+ x3+ x4+ x5+ x6+ x7+3x8+ x9+ x10 − 5x12 <= 3
(2927) +3x1+2x2+ x3+ x4+ x5+ x6+ x7+2x8+ x9+ x10 − 5x12 <= 3
(2928) − x2 +3x7+4x8+3x9 − 5x12 <= 3
(2929) − x4 +3x7+4x8+3x9 − 5x12 <= 3

Figure 4.5: Two excerpts of the output file of PORTA for the one-dimensional problem with m = 11
time steps and the relaxed control being constant α(·) = 0.4.
x1, . . ., x11 represent the controls pi and x12 represents θ .

This structure does make an analysis of different classes of facets difficult and we could not
find a single valid generally applicable class of facets except the simple bounds and SOS1-
constraints. Due to this difficult structure or absence of structure, we assume that there is no
good cutting plane approach for this problem class.

122

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

4.5.3 Typical combinatorial constraints

Theorem 4.1 gives an upper bound for the possible state approximation by the control ap-
proximation in dependence of the grid size ∆t. In the different settings described in Sections
4.3 and 4.4, we gave algorithms that realize this control approximation in direct dependence
of the grid size ∆t. Therefore, by refining the grid, both approximations can be made closer
and the optimal solution of the relaxed problem can be approximated arbitrarily closely. How-
ever, this solution is often not desired since it usually incorporates chattering solutions, i.e.,
solutions with very fast switching between the different system modes as explained in Sec-
tion 3.11.
To prevent this effect from happening, two possible steps can be taken:

• One could employ switching variables σ that measure the switching from one mode to
another as described in Section 3.11. These switches are either penalized or limited to
be below a given threshold σmax. The penalization is not considered if the problem is
decoupled into the relaxed OCP and the Control Approximation Problem. It is very hard
to connect the original objective with the control deviation of the integral controls, but
at least the corresponding penalized value can be computed after a solution is obtained
to provide an upper bound for following computations.

• One could employ min-up times, i.e., after the activation of a certain mode j in time
step k coming from mode i, the system has to stay in this mode for a given time number
of time intervals ζi, j as described in Section 3.11.2.

4.5.4 Branch-and-bound algorithm

The ideas of this section were first introduced in our work

[158] S. SAGER, M. JUNG AND C. KIRCHES, Combinatorial Integral Approximation, Mathema-
tical Methods for Operations Research, 2011, Vol. 73(3):363–380.

In this section, we introduce a method to solve the Control Approximation Problem (4.64)
with additional constraints to optimality. As already explained in Section 4.5.2, a branch-and-
cut method seems not suited to the problem. Therefore, we present a tailored branch-and-
bound method. Its special SOS1-branching strategy branches forward in time and for each
time step all controls become fixed at once: one is activated whereas all others are set to 0.
This is due to the insights obtained in Sections 4.3.2 and 4.4.3 from the derivation of the the
one-dimensional LAGRANGIAN and the LAGRANGIAN coupled with SOS1-constraints.
The branch-and-bound algorithm’s nodes are specified by their depth d in the tree, the fixed
control variables pi, j for all j < d, and the corresponding lower bound θ of the objective
function. Therefore, we abbreviate any node by (d, p,θ). The algorithm in pseudo code is
given as Algorithm 4.2.

123

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

Algorithm 4.2: Combinatorial branch-and-bound algorithm with special SOS1-branching.
Data: Time grid Gm, relaxed mean values of controls q , SOS1-constraints and additional

coupling constraints cC
T p ¾ c0.

Result: Optimal solution (θ ∗, p∗) of problem (4.64).

Initialize the B&B tree Q with an empty node (0, {}, 0.0).
Set best solution: p∗1, j ← 1, p∗k, j ← 0,2¶ k ¶ nω, 0¶ j ¶ m− 1.

θ ∗←max

¨
max

2¶i¶nω

¨m−1∑
j=0

qi, j∆t j

«
,

m−1∑
j=0

(1− q1, j)∆t j

«
.

while Q 6= ; do
a← next node of Q given by search strategy.
if a.θ > θ ∗ then Pruning step.

Prune node a.
else if a.d = m then

Mark a as currently optimal node.
Set new best solution: θ ∗← a.θ , p∗← a.p.

else Create child nodes, use special SOS1-branching.

forall the elements of
n
ϕ ∈ {0,1}nω |∑nω

j=1ϕ j = 1
o

do

Create new node n with:
n.d ← a.d + 1,
n.p ← a.p,
n.pi,n.d ← ϕi , 1≤ i ≤ nω.
if n.p fulfills the combinatorial constraints until time step d + 1 then

n.θ ←max
n

a.θ , maxnω
i=1

n
±∑d

j=0(pi, j − qi, j)∆t j

oo

Add n into Q.
end

end
end

end
return optimal solution (θ ∗, p∗).

124

C O N T RO L A P P ROX I M AT I O N
�� CHAPTER 4

The algorithm should be adapted in the presence of additional combinatorial constraints. The
easiest adaptation modifies the node creation rules according to the constraints. For limited
switching, it is best to fix all controls after the last allowed switching happened as done in
Algorithm 4.3. If the maximum number of switches is reached, the resulting controls can be
extended to the whole time horizon and hence give a solution. This solution can directly be
compared with the best known solution.

Algorithm 4.3: Node creation algorithm in a limited switching environment.
Data: Node a = (a.d, a.p, a.θ), limit of allowed switches σmax, branching tree Q.
Result: Adds feasible child nodes to the branching tree.

σ← number of switches already used in a.p.

forall the elements of
n
ϕ ∈ {0,1}nω |∑nω

j=1ϕ j = 1
o

do

Create new empty node n.
n.p ← a.p.
Let i be the index of ϕ such that ϕi = 1.
if this activation uses last allowed switch: a.pi,a.d−1 6= 1 and σ+ 1= σmax then

n.d← m,

n.pi, j← 1, a.d ¶ j ¶ m− 1,

n.pk, j← 0, a.d ¶ j ¶ m− 1,1¶ k ¶ nω, k 6= i,

n.θ ←max

¨
a.θ , max

1¶i¶nω,
a.d¶ j¶m−1

���
j∑

k=0

(n.pi,k − qi,k)∆tk

���
«

.

else

n.d← a.d + 1,

n.pi,a.d← 1,

n.pk,a.d← 0, 1¶ k ¶ nω, k 6= i,

n.θ ←max

¨
a.θ , max

1¶i¶nω

���
a.d∑
k=0

(n.pi,k − qi,k)∆tk

���
«

.

end
Add n into Q.

end

The adaptation for the combinatorial min-up times can be done analogously. To prevent
infeasible nodes from being checked upon, all child nodes are created respecting the min-up
times already, i.e., instead of only fixing the controls for the next time step, the controls for
the next ζi, j time intervals are fixed when control i is activated coming from mode j.
The bound computation does not change at all in the presence of additional constraints, hence
the algorithm still behaves good in the two following two scenarios: First, if the additional
constraints are very tight and hence the feasible set is much smaller, the branching strategy

125

CHAPTER 4
�� C O N T RO L A P P ROX I M AT I O N

can prune big parts of the branching tree much faster and maintain a good performance.
The second scenario is when the additional combinatorial constraints are very loose and the
LAGRANGIAN relaxation, which drops all additional combinatorial constraints, is quite close to
the true LAGRANGIAN relaxation, hence the algorithm uses good bounds and explores only the
necessary parts of the branching tree.

Technical realization

The algorithm has been implemented in C++. There are several points that need further ex-
planation in the pseudo-code Algorithm 4.2: As the node selection strategy, we implemented
a best-first search to compute the optimal solution as fast as optimal. The only problem that
may arise due to this choice is that very little nodes can be pruned since there is no good solu-
tion known. However, each node requires only the array of binary controls to be stored, which
is less than most other algorithms require. The implementation uses BOOST’s dynamic_bitset
to store the control arrays and an STL priority_queue as the branching tree of open nodes.
Since each child node’s bound is computed during node creation, the strategy can also be
described as full strong branching, where all true bounds are computed as part of the node
selection routine.

126

5 Numerical Results

This chapter covers four different MIOCPs:

1. A prototype MIOCP from the literature; it is a small path-constrained, nonlinear MIOCP.

2. A LOTKA-VOLTERRA type predator-prey model for fish species with a fishing control to
stabilize the system.

3. A sewage network where the overflow onto the streets and into the environment has to
be controlled during periods of high rainfall.

4. A truck cruise control problem where a truck is driven along a street in an energy-
optimal way.

These problems are handled with the methods that have been described in the previous chap-
ters. The different formulations presented in Sections 3.5–3.9 are applied and compared
for the truck model and the sewage network model. The behavior of the solution provided
through the Control Approximation Problem is studied for the LOTKA-VOLTERRA problem and
the nonlinear MIOCP.
An open online benchmark library for the problem class of MIOCPs is available at [151].

5.1 Mixed-Integer Optimal Control with nonlinear ODE

We are interested in the quality of the LAGRANGIAN bound in comparison to the LP bounds
obtained from integral relaxation and we want to compare the computational times for the
corresponding algorithms. We examine these effects for an MIOCP with a nonlinear ODE
system, no constraints inside the disjunction and a limited number of switchings between the
different controls. The model is described in Section 5.1.1 and the computational experiments
are detailed in Section 5.1.2.
The contents of this section are based on the paper

[104] M. JUNG, G. REINELT AND S. SAGER, The Lagrangian Relaxation for the Combinatorial
Integral Approximation Problem, Optimization Methods and Software (Submitted).

127

CHAPTER 5
�� N U M E R I C A L R E S U LT S

5.1.1 Problem formulation

We present numerical results for a benchmark MIOCP from a previous study [157] with the
addition of switching constraints. In its original form, the problem was:

min
x ,v

x2(tf) (5.1)

s. t. ẋ0(t) =−
x0(t)
sin(1)

sin(v1(t)) +
�

x0(t) + x1(t)
�

v2
2 (t)

+
�

x0(t)− x1(t)
�

v3
3 (t),

ẋ1(t) =
�

x0(t) + 2x1(t)
�

v1(t) +
�

x0(t)− 2x1(t)
�

v2(t)

+
�

x0(t) + x1(t)
�

v3(t) +
�

x0(t) x1(t)− x2(t)
�

v2
2 (t)

− �x0(t) x1(t)− x2(t)
�

v3
2 (t),

ẋ2(t) = x2
0(t) + x2

1(t),

x1(t)¾ 0.4,

x (0) = (0.5, 0.5,0)T ,

v(t) ∈ {(1, 0,0), (0, 1,0), (0,0, 1)},

with t ∈ [t0, tf] = [0, 1]. In disjunctive formulation, it becomes much more simple and reads
with nω = 3:

min
x ,v

x2(tf) (5.2)

s. t.

ω1(t) = 1

ẋ0(t) =−x0(t)

ẋ1(t) = x0(t) + 2x1(t)

∨

ω2(t) = 1

ẋ0(t) = x0(t) + x1(t)

ẋ1(t) = x0(t)− 2x1(t)

∨

ω3(t) = 1

ẋ0(t) = x0(t)− x1(t)

ẋ1(t) = x0(t) + x1(t)

 ,

ẋ2(t) = x2
0(t) + x2

1(t),

x (0) = (0.5, 0.5,0)T ,

x1(t)¾ 0.4,

1=
nω∑
i=1

ωi(t),

ω(t) ∈ {0,1}nω .

The problem was constructed in [157] such that its disjunctive formulation resembled a prob-
lem originally described in [58] and later taken up in [175]. As can be seen in this case, the

128

N U M E R I C A L R E S U LT S
�� CHAPTER 5

original interpolating formulations may be very complicated whereas the formulation only
in integral variables is much cleaner. In contrast to the original formulation, we add the
additional path constraint x1(t) ≥ 0.4, t ∈ [t0, tf] to generate a path-constrained arc in the
optimal solution of the relaxed problem, which makes the Control Approximation Problem
non-trivial.

The problem’s disjunction is reformulated with the OC technique. Then, a control discretiza-
tion q on an equidistant control grid with size ∆t = 1

m
is applied. The states are discretized

with the vector s on the same grid with with the direct multiple shooting method and an
explicit integration scheme ϕ(t i, t i+1, si ,qi), which is a discrete representation of the IVP

ẋ0(t) =−x0(t) q1,i +
�

x0(t) + x1(t)
�

q2,i +
�

x0(t)− x1(t)
�

q3,i,

ẋ1(t) =
�

x0(t) + 2x1(t)
�

q1,i +
�

x0(t)− 2x i(t)
�

q2,i +
�

x0(t) + x1(t)
�

q3,i,

ẋ2(t) = x2
0(t) + x2

1(t),

x (t i) = si .

After the relaxation of the integrality constraint, we obtain the OCP

min
x ,q

s2,m (5.3)

s. t. si+1 = ϕ
�

t i, t i+1, si ,qi
�

, 0¶ i ¶ m− 1

s1,i ≥ 0.4, 0¶ i ¶ m,

s0 = (0.5,0.5, 0)T ,

1=
nω∑
j=1

q j,i, 0¶ i ¶ m,

q j,i ∈ [0, 1], 0¶ i ¶ m− 1,1¶ j ¶ nω.

5.1.2 Computational experiments

We examine the problem (5.3) with different equidistant control discretizations. The corre-
sponding relaxed OCPs are solved a priori with MUSCOD-II, cf. [117]. It implements BOCK’s
direct multiple shooting method, cf. Section 2.4.2. We use a RUNGE-KUTTA-FEHLBERG 4/5
method, cf. [62], as the explicit integration scheme ϕ(·). For the resulting relaxed controls
q , we use three different methods to solve the Control Approximation Problem

min
θ ,p

θ (5.4)

s. t. θ ¾±
k∑

j=0

�
qi, j − pi, j

�
∆t j 1¶ i ¶ nω, 0¶ k ¶ m− 1,

129

CHAPTER 5
�� N U M E R I C A L R E S U LT S

1=
nω∑
i=1

pi, j 0¶ j ¶ m− 1,

p ∈ {0, 1}nωm.

Additionally, for four fixed values of m ∈ {50, 60,70, 75}, the Control Approximation Problem
is solved with the addition of switching constraints as described in Section 3.11:

σ j ¾ qi, j − qi, j−1, 1¶ j ¶ m, 1¶ i ¶ nω,

σ j ¾−qi, j + qi, j−1, 1¶ j ¶ m, 1¶ i ¶ nω,

σmax ¾
m∑

j=1

σ j.

(5.5)

The three methods to solve problem (5.4) (with and without switching constraints (5.5)) are
Algorithm 4.2, CPLEX c©and SCIP. We compare the computational times and nodes visited for
solving and additionally the bounds computed during the solution process. Algorithm 4.2
was described in Section 4.5.

CPLEX c© v.12.1.0 is called through AMPL with default options except the following: The
search strategy is set to be traditional branch-and-cut. The backtrack parameter is set to
0.1 to emphasize the best-bound node selection strategy. The feasibility pump heuristic and
the relaxation induced neighborhood search heuristic are disabled. The length of the list of
candidates for strong branching is increased to 15. CPLEX c©is only run on one thread to
easily compare times with the other algorithms and to enforce deterministic behavior.

SCIP v.3.0.0 is also called with default options. In contrast to CPLEX c©, this algorithm’s
parameters are not tuned for better behavior. The implementation is realized with SCIP’s
C++ interface and SOPLEX v.1.7.0 is used as its LP solver.

As in [158] for a MIOCP without SOS1-constraint, the computational times of our imple-
mentation are orders of magnitude lower than for CPLEX c©and SCIP for the Control Approx-
imation Problem related to problem (5.3). To understand how the computational speedup
is achieved, we plot a) the number of processed nodes within the branch-and-bound tree
and b) the average computation time per node in Figure 5.1 and Figure 5.2 on a logarithmic
scale. The average computation time per node in CPLEX c© and SCIP are biased by having
cutting planes and heuristics, whose times are included in the node computation. However,
the given options provide very good overall computational times in comparison to other op-
tions. Therefore, they give a reasonable trade-off between the number of nodes and the time
spent in those procedures. More specifically, the procedures are usually quite fast in compar-
ison to the LP solving. The reduced number of nodes (due to pruning and better bounds) in
most cases outweighs the effort. Additionally, we examine in Figure 5.3 how much worse the
bounds of Algorithm 4.2 are in the presence of switching constraints. There, we also show
how much the tighter bounds reduce the branching tree’s size.

130

N U M E R I C A L R E S U LT S
�� CHAPTER 5

Starting the algorithms in the optimal solution and just proving its optimality would be good
to compute no unnecessary problems. However, knowing a very good initial θ allows the
cutting procedures of CPLEX c©and SCIP to considerably tighten up the problem since θ is
present in all the deviation defining constraints – often the algorithms are able to prove
optimality in the root node if the optimal solution is provided in advance. Therefore, we
decided to not give any initial solution to the algorithms.

Computational results

Number of control discretization intervals m

Algorithm 4.2
CPLEX c© v12.1.0
SCIP v.3.0.0

100 110 120 130 140 150 160 170

10−6

10−4

0.01

1

100

104

106

108

Figure 5.1: Results for different control discretizations of problem (5.4) without switching limits. The
number of nodes solved (solid) and the average time per node in seconds (dashed) are
displayed.

In Figure 5.1, the number of control discretization intervals is varied in the range between
100 and 172 in steps of 4. The number of switches is not limited in this case. Here, the
bound of Algorithm 4.2 is the true LAGRANGIAN relaxation’s bound. However, it is easy to
show that the LP bounds are the same and not dominated by Algorithm 4.2’s bounds, cf.

131

CHAPTER 5
�� N U M E R I C A L R E S U LT S

Remark 4.14. The SUR strategy would solve these problems in O(mnω) but cannot take into
account additional constraints as proposed in the next computations. The numerical results
allow a couple of interpretations:

• The numbers of branch-and-bound nodes qualitatively behave similar for the three algo-
rithms. Problems that are difficult for one algorithm to solve are generally also difficult
for the other algorithms to solve.

• The average computational times per node are almost constant and the effort needed
for the LAGRANGIAN relaxation’s bounds is two to three orders of magnitudes lower than
for solving an LP.

• The effort is not monotone in the problem size. This behavior is connected to the
objective values of the approximation. They do not necessarily get better for finer grids
if the new grid is not a subdivision of the old grid, which it is if and only if the new grid
size is a multiple of the old one. As a rule of thumb, the lower the optimal objective,
the smaller the tree that has to be searched. We give a possible explanation for this
behavior in the next observations.

In Figure 5.2, four different control discretization grid sizes are kept constant, while the
maximum number of switches σmax is varied. Again, we make some observations:

• CPLEX c©solves the problems with σmax = 0 and some of the bigger values for σmax in a
preprocessing step or the root node.

• Again, qualitatively the curves of the number of branch and bound nodes, which need
to be solved, are similar, and the average computational costs are almost constant. The
higher computational effort spent in the root node visibly increases the average effort
per node for instances that only need to solve small numbers of nodes.

• Since the bounding procedure of Algorithm 4.2 ignores the additional constraints, the
LP bounds are better in this case, which can be seen looking at the higher number
of nodes needed for Algorithm 4.2 in comparison to the LP-based algorithms. There
are between one and two orders of magnitude of additional nodes needed. CPLEX c©’s
computational times come within the same order of magnitude for the easy instances,
which can be solved faster than one or two seconds. However, for the more difficult
instances, the computational times of Algorithm 4.2 are still two to three orders of
magnitude lower.

• As a function of σmax, the number of processed B&B nodes has its maximum in the
middle between 0 and the number of switches the SUR strategy would take. As already
briefly discussed in Section 4.5.4, combinatorial constraints are most difficult if they
are neither too severe nor too light. Too severe restrictions allow the branch and bound

132

N U M E R I C A L R E S U LT S
�� CHAPTER 5

(a) B&B nodes and time per node for m= 50:

Maximum number of switches σmax

Algorithm 4.2
CPLEX c© v12.1.0
SCIP v.3.0.0

0 5 10 15

10−6

10−4

0.01

1

100

104

106

108

(b) B&B nodes and time per node for m= 60:

Maximum number of switches σmax

Algorithm 4.2
CPLEX c© v12.1.0
SCIP v.3.0.0

0 5 10 15

10−6

10−4

0.01

1

100

104

106

108

(c) B&B nodes and time per node for m= 70:

Maximum number of switches σmax

Algorithm 4.2
CPLEX c© v12.1.0
SCIP v.3.0.0

0 5 10 15 20

10−6

10−4

0.01

1

100

104

106

108

(d) B&B nodes and time per node for m= 75:

Maximum number of switches σmax

Algorithm 4.2
CPLEX c© v12.1.0
SCIP v.3.0.0

0 5 10 15 20

10−6

10−4

0.01

1

100

104

106

108

Figure 5.2: Results for different control discretizations of problem (5.4) with varying switching con-
straints (5.5). The number of solved nodes (solid) and the average time per node in sec-
onds (dashed) are displayed.

133

CHAPTER 5
�� N U M E R I C A L R E S U LT S

algorithm to cut off a major part of its tree. And for very light restrictions, the bound of
the relaxations are very good and close to the optimum.

• The size of the B&B tree varies strongly in some cases, when σmax is increased. It
seems to be the case that this is related to changes of the optimal objective value θ
of (5.4). If θ has a value slightly above a multiple of ∆t and is reduced below that
value with more switches allowed, the number of nodes, which have to be processed,
significantly decreases. This is because there are many nodes with a bound of multiples
of ∆t. They are created when one or more bad decision are made higher up in the
tree, and afterwards all decisions for the controls are made such that the min-max term
is dominated by the early deviation. Apparently, there is a large number of nodes that
does not violate this bound and cannot be pruned. For the initial parts, until the hardest
problem is reached, the two algorithms behave quite similar. After the hardest problem,
there is usually one sharp decrease as explained above and then a steady decrease until
the solution stays the same for all values of σmax. At this point the switching constraint
is no true constraint anymore, because the SUR solution already fulfills the switching
constraint.

To further distinguish the effect of the different bounding procedures from the effect of the
different branching schemes and node selection strategies, we implemented in Algorithm 4.2
also a procedure to compute the standard LP relaxation’s bound for each node, but no addi-
tional cutting plane techniques to tighten this bound. Nodes, which could be cut off due to
the LAGRANGIAN bound, are cut off before their LP relaxation is computed. For this setting,
we illustrate the ratio of visited nodes whose bound of Algorithm 4.2 is worse than the bound
given by the LP relaxation. We also give the average worsening of the LAGRANGIAN bound
in comparison to the LP bound as a ratio over the worse nodes. In addition, we display the
ratio of nodes that still need to be solve when using the LP relaxation instead of the worse LA-
GRANGIAN relaxation in this framework. Naturally, the computational times strongly increase
in comparison to Algorithm 4.2: the worst instance without LP bounds takes 19.1 seconds,
while the worst instance with those bounds takes approximately 5000 seconds. The results
are displayed in Figure 5.3. Some observations can be made from these results:

• As the number of switches increases, the two bounds become closer since the con-
straints, which are only considered for the LP bounds, become less tight.

• The average worsening takes the value 1 as long as the LP bound is non-trivial while
the LAGRANGIAN bound still is, which only happens at the highest nodes. In the case of
σmax = 0, the number of nodes is very small and only the root nodes’ bounds differ.

• Even if the bounds are stronger for the LP relaxation, this does not necessarily lead to
a reduced number of processed nodes, as the bounds might not be strong enough for
pruning.

134

N U M E R I C A L R E S U LT S
�� CHAPTER 5

(a) Bound comparison for m= 50:

Maximum number of switches σmax

Worse nodes
Avg. bound worsening
Nodes needed

0 5 10 15

0

0.2

0.4

0.6

0.8

1

(b) Bound comparison for m= 60:

Maximum number of switches σmax

Worse nodes
Avg. bound worsening
Nodes needed

0 5 10 15

0

0.2

0.4

0.6

0.8

1

(c) Bound comparison for m= 70:

Maximum number of switches σmax

Worse nodes
Avg. bound worsening
Nodes needed

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

(d) Bound comparison for m= 75:

Maximum number of switches σmax

Worse nodes
Avg. bound worsening
Nodes needed

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Figure 5.3: Bound comparison for different control discretizations of problem (5.4) with varying
switching constraints (5.5). The LAGRANGIAN relaxation’s bounds ZLR from Algorithm 4.2
are compared with the LP bounds ZLP in the same branching framework.
“Nodes needed” displays the percentage of nodes still needed when using the worse LA-
GRANGIAN bound instead of the LP bound.
“Worse nodes” displays the percentage of nodes visited with ZLR < ZLP.
“Avg. bound worsening” displays the average of the relative bound worsening ZLP−ZLR

ZLP
taken

over all worse nodes.

135

CHAPTER 5
�� N U M E R I C A L R E S U LT S

• The size of the branching tree can only be reduced by maximally 20%, when the stan-
dard LP relaxation is used instead of the LAGRANGIAN relaxation, with a mean reduction
of 2.13%. This does not provide a significant decrease to warrant the additional effort
to compute the bound. The worse nodes are usually located in the higher parts of the
tree, close to the root node, and the values of the bounds become closer the deeper the
nodes are in the tree. Nodes high up in the tree rarely have bounds tight enough for
pruning and hence the effect of those better bounds close to the root is weak.

• The additional reduction of tree size in the CPLEX c©and SCIP results must be orig-
inated in the the different branching strategies and in the additionally implemented
procedures that tighten the bounds, e.g. the addition of cutting planes.

Summing up, the improvement of the combinatorial branch-and-bound approach is due to an
almost constant factor of two to three orders of magnitude going back to a faster evaluation
of the relaxations. Although the LAGRANGIAN relaxation’s bound can be proven to be the same
as the LP relaxation’s in the unconstrained problem, this does not hold for the constrained
case. Therefore, any algorithm that uses only the LAGRANGIAN bound might need to visit
more nodes to solve a problem. However, this additional effort is easily accounted for by the
relaxations’ speedup.

5.1.3 Conclusions

We analyzed the behaviors of the LAGRANGIAN relaxation of the unconstrained Control Approx-
imation Problem and of the LP relaxation of the constrained Control Approximation Problem.
We showed that the LAGRANGIAN bound is helpful for the Control Approximation Problem,
although it is unconventional in the sense that it is used inside a branch-and-bound scheme,
and not used as a reformulation of the whole problem.
We showed that the special SOS1 branching strategy yields good results in practice. The
corresponding theoretical analysis shows that this is the case because it leads to LAGRANGIAN

relaxation bounds without a pre-factor 1
2
, cf. Theorem 4.3 and the special case of Lemma 4.6.

The bounds used within Algorithm 4.2 use the exact values of the LAGRANGIAN relaxation
when no additional constraints are present.
It is shown that even though the LAGRANGIAN bounds may be worse than the bounds obtained
through an LP relaxation, the faster computation for each node more than outweighs the
worsening in the bound quality for a reasonably sized example. It can be observed that
the behavior of Algorithm 4.2 is very competitive even after adding further combinatorial
constraints.

136

N U M E R I C A L R E S U LT S
�� CHAPTER 5

5.2 LOTKA-VOLTERRA fishing problem

The contents of this section are based on the paper

[158] S. SAGER, M. JUNG AND C. KIRCHES, Combinatorial Integral Approximation, Mathema-
tical Methods for Operations Research, 2011, Vol. 73(3):363–380.

In this section, we present a predator-prey model of the LOTKA-VOLTERRA type with a control
specifying hunting or fishing activities. The model can be found in the MIOCP benchmark
library [151]. For this scenario, the controls are required to have a maximum number of
switches. The resulting problem is treated with the methods described in Chapter 3 to obtain
a valid integral model and its relaxation. The resulting problem is particularly suited for
our study, because the optimal relaxed solution contains a singular arc, cf. [152]. Then, the
newly developed combinatorial branch-and-bound Algorithm 4.2 is applied to the results of
the relaxation and compared to a solution obtained by a MINLP solver, which tries to solve
the discretized MIOCP directly.

5.2.1 The predator-prey model and the balancing task

The simple predator-prey model of the LOTKA-VOLTERRA type describes a model with two
species: the prey with its biomass x0 and the predator with its biomass x1. The LOTKA-
VOLTERRA model is based on three assumptions:

1. The prey population has sufficient amounts of nutrition and can thus reproduce at a
constant rate g0.

2. The predator species only eats the prey species and thus its survival is entirely based on
the prey population, its mortality rate in biomass without finding food is constant g1.

3. There is no evolution and the environment stays the same.

If predator and prey meet, the prey species’ biomass declines by α0 units and the preda-
tor species’ biomass increases by α1 ¶ α0. The population dynamics are then governed by
the ODEs:

ẋ0(t) = g0 x0(t)−α0 x0(t) x1(t),

ẋ1(t) =−g1 x1(t) +α1 x0(t) x1(t).

This model typically produces a periodically oscillating behavior for both species.
For this example, both species are assumed to be fish and men now interferes with the dy-
namic system through fishing. Generally, this could be modeled through the following dis-

137

CHAPTER 5
�� N U M E R I C A L R E S U LT S

Name Description Domain

x0 Biomass of prey species R+0
x1 Biomass of predator species R+0
x2 Squared L2-deviation from reference states R+0
ω Fishing activity {0,1}

Table 5.1: States and controls of the LOTKA-VOLTERRA model.

junction

ω(t) = 0

ẋ0(t) = g0 x0(t)−α0 x0(t) x1(t)

ẋ1(t) =−g1 x1(t) +α1 x0(t) x1(t)

∨

ω(t) = 1

ẋ0(t) = g0 x0(t)−α0 x0(t) x1(t)− β0 x0(t)

ẋ1(t) =−g1 x1(t) +α1 x0(t) x1(t)− β1 x1(t)

 ,

where ω(t) ∈ {0, 1} represents whether fishing is done or not and β0 and β1 are the rates
with which the corresponding species are caught depending on the nets used, the fish sizes
etc.

Since there are no additional path constraints in the disjunctions, only the ODEs, we directly
choose the OC technique from Section 3.6 to represent the disjunction. This gives us a tighter
relaxation than with the perspective formulation and creates a well-behaving IVP. The result-
ing ODEs are:

ẋ0(t) = g0 x0(t)−α0 x0(t) x1(t)− β0 x0(t)ω(t),

ẋ1(t) =−g1 x1(t) +α1 x0(t) x1(t)− β1 x1(t)ω(t),

ω(t) ∈ {0,1}.

Additionally, this formulation is nice, since it can be interpreted as the fisher interacting the
same way with both species as they interact among themselves. Fishing is done in this case
to drive the system towards a reference state (x ref

0 , x ref
1). This is e.g. achieved through the

following LAGRANGE type functional that measures the square of the L2-norm of the deviation:

ΦL(x (·)) =
∫ tf

t0

�
x0(t)− x ref

0

�2
+
�

x1(t)− x ref
1

�2
dt.

138

N U M E R I C A L R E S U LT S
�� CHAPTER 5

The objective is transformed through the addition of an artificial state x2 that accumulates
the deviation from the reference state:

ẋ2(t) =
�

x0(t)− x ref
0

�2
+
�

x1(t)− x ref
1

�2

and the corresponding MAYER objective

min x2(tf).

Name Description

g0 Reproduction rate of prey species

g1 Mortality rate of predator species

α0 Predation rate when predator meets prey

α1 Predator reproduction rate when predator meets prey

β0 Fishing rate of prey species

β1 Fishing rate of predator species

x0,0 Initial prey population

x1,0 Initial predator population

x ref
0 Desired prey population

x ref
1 Desired predator population

Table 5.2: Parameters of the LOTKA-VOLTERRA model.

Discretization and limited switching model

We introduce discretized states s on the time grid

Gk m
def
=
�

t0 < t1 < . . .< tk m = tf
	

,

and a discretized control q on the sub-grid G̃m with t̃ i = tk i such that it holds with a certain
integration scheme ϕ for the right-hand side:

ω(t) = qi, t ∈ [t̃ i, t̃ i+1), 0¶ i ¶ m− 1,

x (t i) = si , 0¶ i ¶ k m,

si+1 = si +ϕ(t i, t i+1, si , si+1, q j), k j ¶ i ¶ k (j+ 1)− 1, 0¶ j ¶ m− 1.

139

CHAPTER 5
�� N U M E R I C A L R E S U LT S

Since the system is very stable, we use the explicit EULER method as the integration scheme
ϕ.

Due to economic reasons, we limit the number of fishing operations and we limit the number
of system switches, which are directly connected with each other. The system switches are
modeled with the different means described in Section 3.11.

First, we use unlimited switches for the relaxation:

min
s ,q ,σ

s2,m (5.6)

s. t. s0,i+1 = s0,i + (t i+1− t i)
�

g0 s0,i −α0 s0,i s1,i − β0 s0,i q j

�
,

s1,i+1 = s0,i + (t i+1− t i)
�
−g1 s1,i +α1 s0,i s1,i − β1 s1,i q j

�
,

s2,i+1 = s2,i + (t i+1− t i)
��

s0,i − x ref
0

�2
+
�

s1,i − x ref
1

�2
�

,

k j ¶ i ¶ k (j+ 1)− 1, 0¶ j ¶ m− 1,

q j ∈ [0, 1], 0¶ j ¶ m− 1,

s0,0 = x0,0,

s1,0 = x1,0,

s2,0 = 0.

Second, we apply the linear switching reformulation through the addition of the variables
σ ∈ {0,1}m−1 defined through:

σ j ≥±
�

q j − q j−1

�
, 1¶ j ¶ m− 1. (5.7)

The switching limit is given by

σmax ¾
m−1∑
j=1

σ j. (5.8)

The third formulation additionally introduces the auxiliary variables α ∈ {0,1}m−1 to use the
convex combination of the switch defining hyperplanes as described in Section 3.11 instead
of (5.7):

σ j = α j

�
q j + q j−1

�
+
�

1−α j

��
2− q j − q j−1

�
, 1¶ j ¶ m− 1. (5.9)

140

N U M E R I C A L R E S U LT S
�� CHAPTER 5

5.2.2 Computational experiments

The scenario, the population dynamics and parameters are used as described in [151], which
is:

g0 = 1, α0 = 1, β0 = 0.4, x0,0 = 0.5, x ref
0 = 1, t0 = 0,

g1 = 1, α1 = 1, β1 = 0.2, x1,0 = 0.7, x ref
1 = 1, tf = 12.

The control ω has been discretized with varying values of m ∈ {10, 25,50, 80,100, 200} with
piecewise constant basis functions. The differential equations have been discretized with
an explicit EULER method and 10000 equidistant time steps, independent of the control dis-
cretization.
We first solve the discretized, relaxed OCPs (5.6) with IPOPT v.3.11 using the HSL linear
algebra solvers. Then, for the resulting relaxed controls, the Control Approximation Problem
with switching constraints (5.7) and (5.8) is solved, once with CPLEX c©v.12.5.0 and once
with Algorithm 4.2. These results are compared with the true optimal solutions obtained by
directly solving the discretized MIOCPs with BONMIN v.1.7 (internally working with CBC v.2.7
and the aforementioned IPOPT) denoted by ·opt.

Computational results

In the following, ΦL is the objective function value of the OCP, i.e., the L2-deviation of the
reference states, τ represents computational times, θ is the objective value of the Control
Approximation Problem and σ gives the number of control switches used in the correspond-
ing solutions. The calculations of the reference solutions were limited to half an hour of
computational time and if they were not finished, the placeholder ∗ is used.

m 10 25 50 100 125 200

τrel 2.452 3.520 2.900 3.248 2.976 2.520

Φrel
L 1.34915 1.34718 1.34683 1.34649 1.34640 1.34626

ΦSUR
L 1.60251 1.37175 1.38366 1.35561 1.35396 1.35328

Φgap 18.8% 1.8% 2.7% 0.7% 0.6% 0.5%

θ SUR 0.37984 0.23650 0.11993 0.05973 0.04792 0.02997
1
∆t
θ SUR 0.31653 0.49270 0.49971 0.49777 0.49913 0.49956

σSUR 2 4 8 14 18 24

Table 5.3: SUR results for LOTKA-VOLTERRA fishing problem.

The realization of some theoretical results in practice are shown in Table 5.3. We compare the
solution of the integrally relaxed OCP (q ∈ [0,1]m) with the solution obtained through SUR,

141

CHAPTER 5
�� N U M E R I C A L R E S U LT S

cf. Section 4.3.1. One can observe that the approximation value is limited by θ SUR ¶ 1
2
∆t, cf.

Proposition 4.1, and that it hence decreases linearly with the grid size. It is also interesting
to observe that these values approach 1

2
∆t as m increases due to the increased probability to

find a maximum close to the upper bound 1
2
. It is also possible to observe that – with grid

refining – the integrality gap

Φgap
def
=
ΦSUR

L −Φrel
L

Φrel
L

between the relaxed solution and the SUR solution becomes smaller and smaller. It can also
be observed that the SUR solution becomes more and more chattering, i.e., it employs highly
frequent switching, the finer the grid.

Since the chattering behavior is often undesirable, additional switching constraints are added
to the problem. They can be added at several different points and we will discuss some
of these settings in the following. First, the switching constraints are added to the Control
Approximation Problem and the solution is compared with the solution of the true MINLP
discretization with the same switching limit (obtained with BONMIN v.1.7.0 and either one
of the two switching formulations). In Tables 5.4 and 5.5, we compare two algorithms for
solving the Control Approximation Problem with respect to computational times, i.e., the tai-
lored branch-and-bound Algorithm 4.2 with switching constraint handling Algorithm 4.3 is
compared with CPLEX c©v.12.5.0 (run in deterministic mode on one single core). It can imme-
diately be seen that the tailored branch-and-bound is about two orders of magnitude faster
for the difficult instances while finishing immediately for the easy instances. For switching-
constrained problems, the control deviation cannot be driven to 0 for finer discretizations,
but is bounded strictly away from 0. The less tight the switching restriction – with more
switches allowed – the closer the controls can be approximated and the better the solutions
of the procedure become. The objective function values ΦCAP will converge against the value
of Φrel, as m→∞ and σmax large enough. It can also be seen that the solution of the Control
Approximation Problem is generally close to the optimum solution for this state tracking or
stabilization problem. Also notice that the complete problem is really difficult to solve, with
BONMIN being unable to solve a lot of the bigger problems (m¾ 100), while the decomposed
problem can usually be solved within a couple of seconds.

Second, the switching limit could already be employed inside the relaxation, whose solution
is then to be approximated with the Control Approximation Problem. For this problem, the
linear switching limit formulation (5.7) and (5.8) is loose enough for the original relaxation
to already satisfy it. Therefore, in Tables 5.6 and 5.7, only the effects of adding the nonlinear
switching constraints (5.8) and (5.9) to the relaxed problem are examined. Due to the non-
convex nature of the switching description, using IPOPT to solve the relaxation sometimes
leads to problems with local infeasibility, i.e., a local minimizer of the constraint violation
is reached and the algorithm cannot continue. Instances where the infeasibility problems

142

N U M E R I C A L R E S U LT S
�� CHAPTER 5

occurred are crossed out with †. The non-convexity also leads to problems of only locally
optimal solutions with IPOPT, which would cut off the global optimum when taken as lower
bound, the instances where this happens are marked with � at the bound. The relaxation
produces results that are much easier approximated with the Control Approximation Problem.
For most instances, the normalized control deviation is lower than 1

2
∆t or at least close to

this value. This means that the SUR is either feasible or produces an almost feasible solution.
However, another strong disadvantage of this formulation is the computational effort needed
to at least locally solve the relaxation. It is one to two orders of magnitude higher than solving
the relaxation without the nonlinear switching formulation.

5.2.3 Conclusions

The effects of the theoretical results of Chapter 4 could be verified in practice. These take
into account the SUR strategy as well as the quality of the Control Approximation Problem’s
solution. Although this solution is not necessarily optimal for the MIOCP, a feasible solution
is provided. This solution converges to the solution of the nonlinear MIOCP if the switch-
ing constraint does not become active as the time discretization is refined. If the switching
constraint is active, knowledge of system properties – such as the LIPSCHITZ constant of the
right-hand side function of the ODE system – allows to formulate an upper bound on the state
deviation between the states induced by the Control Approximation Problem’s solution and
states of the solution of the relaxed OCP. This upper bound depends linearly on the objective
function value of the Control Approximation Problem as specified in Theorem 4.1.
The nonlinear switching formulation is shown to provide favorable properties with regard to
provided solutions since it attracts integrality. However, it is very difficult to reliably get the re-
laxation’s solution in comparable computational time. The approach of using soft-constraints
for the switches, as in [111], instead of hard-constraints, as done here, seems advantageous
with regard to the computational effort. However, a problem-dependent reasonable setting
for the penalty parameter is needed.

143

CHAPTER 5
�� N U M E R I C A L R E S U LT S

m 10 25 50 100 125 200

Φrel
L 1.34915 1.34718 1.34683 1.34649 1.34640 1.34626

Maximum of σmax = 3 switches:

τbb 0.000 0.000 0.000 0.000 0.000 0.020

τcpx 0.008 0.036 0.116 0.596 1.096 10.825

ΦCAP
L 1.60251 1.52323 1.67052 1.55515 1.54225 1.60619

θCAP 0.37984 0.38772 0.23298 0.22267 0.23064 0.20979

σCAP 2 3 2 3 2 2

τopt 54.659 245.655 620.663 863.730 788.045 *

Φopt
L 1.60251 1.52323 1.38746 1.38741 1.38676 *

σopt 2 3 2 3 3 *

Maximum of σmax = 4 switches:

τbb 0.000 0.000 0.000 0.000 0.000 0.030

τcpx 0.012 0.020 0.068 0.520 1.088 4.840

ΦCAP
L 1.60251 1.37175 1.36718 1.42269 1.40501 1.40632

θCAP 0.37984 0.23650 0.16121 0.14089 0.14744 0.11924

σCAP 2 4 4 4 4 4

τopt 54.975 156.870 813.967 62.836 64.108 68.208

Φopt
L 1.60251 1.37175 1.35883 1.35661 1.35798 1.36555

σopt 2 4 4 4 4 4

Maximum of σmax = 5 switches:

τbb 0.000 0.000 0.000 0.000 0.020 0.140

τcpx 0.012 0.020 0.052 2.080 5.340 17.609

ΦCAP
L 1.60251 1.37175 1.36718 1.39684 1.38364 1.40632

θCAP 0.37984 0.23650 0.16121 0.14089 0.14663 0.11924

σCAP 2 4 4 4 5 4

τopt 52.535 150.005 519.820 1789.660 * *

Φopt
L 1.60251 1.37175 1.35883 1.35661 * *

σopt 2 4 4 4 * *

Table 5.4: Control approximation results for LOTKA-VOLTERRA fishing problem – part 1.

144

N U M E R I C A L R E S U LT S
�� CHAPTER 5

m 10 25 50 100 125 200

Φrel
L 1.34915 1.34718 1.34683 1.34649 1.34640 1.34626

Maximum of σmax = 6 switches:

τbb 0.000 0.000 0.000 0.000 0.020 0.360

τcpx 0.012 0.016 0.036 0.660 3.404 17.029

ΦCAP
L 1.60251 1.37175 1.36540 1.35484 1.38803 1.40313

θCAP 0.37984 0.23650 0.12127 0.10344 0.10183 0.09021

σCAP 2 4 6 6 6 6

τopt 50.767 150.005 519.820 * 1317.890 *

Φopt
L 1.60251 1.37175 1.35233 * 1.35175 *

σopt 2 4 6 * 6 *

Maximum of σmax = 7 switches:

τbb 0.000 0.000 0.000 0.000 0.040 1.060

τcpx 0.008 0.020 0.036 3.536 4.680 90.698

ΦCAP
L 1.60251 1.37175 1.36533 1.39789 1.38547 1.39883

θCAP 0.37984 0.23650 0.12086 0.10300 0.10183 0.09021

σCAP 2 4 7 7 6 6

τopt 50.699 151.821 531.173 * * *

Φopt
L 1.60251 1.37175 1.35233 * * *

σopt 2 4 6 * * *

Maximum of σmax = 8 switches:

τbb 0.000 0.000 0.000 0.000 0.000 0.500

τcpx 0.012 0.020 0.036 0.788 6.096 61.331

ΦCAP
L 1.60251 1.37175 1.38366 1.37767 1.38275 1.35198

θCAP 0.37984 0.23650 0.11993 0.08709 0.07574 0.07436

σCAP 2 4 8 8 8 8

τopt 51.091 152.638 540.806 * * *

Φopt
L 1.60251 1.37175 1.35233 * * *

σopt 2 4 6 * * *

Table 5.5: Control approximation results for LOTKA-VOLTERRA fishing problem – part 2.

145

CHAPTER 5
�� N U M E R I C A L R E S U LT S

m 10 25 50 100 125 200

Maximum of σmax = 3 switches:

τrel 6.748 16.297 100.702 150.533 234.491 †

Φrel
L 1.34915 1.35413 1.38715 �1.47415 �1.41862 †

ΦCAP
L 1.60251 1.53360 1.39174 1.47415 1.41882 †

θCAP 0.37984 0.12476 0.07485 0.00000 0.00942 †
1
∆t
θCAP 0.31653 0.25991 0.31189 0.00000 0.09813 †

σCAP 2 3 3 3 2 †

τopt 54.659 245.655 620.663 863.730 788.045 *

Φopt
L 1.60251 1.52323 1.38746 1.38741 1.38676 *

σopt 2 3 2 3 3 *

Maximum of σmax = 4 switches:

τrel 6.696 41.779 42.715 † † †

Φrel
L 1.34915 1.34724 �1.36447 † † †

ΦCAP
L 1.60251 1.42241 1.52981 † † †

θCAP 0.37984 0.23358 0.15021 † † †
1
∆t
θCAP 0.31653 0.48662 0.62589 † † †

σCAP 2 4 3 † † †

τopt 54.975 156.870 813.967 62.836 64.108 68.208

Φopt
L 1.60251 1.37175 1.35883 1.35661 1.35798 1.36555

σopt 2 4 4 4 4 4

Maximum of σmax = 5 switches:

τrel 6.612 11.181 93.910 † † 226.038

Φrel
L 1.34915 1.34718 1.34716 † † 1.35771

ΦCAP
L 1.60251 1.37175 1.35428 † † 1.36520

θCAP 0.37984 0.23650 0.16121 † † 0.11924
1
∆t
θCAP 0.31653 0.49270 0.51914 † † 0.28959

σCAP 2 4 4 † † 5

τopt 52.535 150.005 519.820 1789.660 * *

Φopt
L 1.60251 1.37175 1.35883 1.35661 * *

σopt 2 4 4 4 * *

Table 5.6: Results for nonlinear switch description of LOTKA-VOLTERRA fishing problem – part 1.

146

N U M E R I C A L R E S U LT S
�� CHAPTER 5

m 10 25 50 200

Maximum of σmax = 6 switches:

τrel 6.524 10.553 45.655 143.841

Φrel
L 1.34915 1.34718 1.34716 1.35771

ΦCAP
L 1.60251 1.37175 1.36540 1.35484

θCAP 0.37984 0.23650 0.12127 0.10344
1
∆t
θCAP 0.31653 0.49270 0.48570 0.56295

σCAP 2 4 6 6

τopt 50.767 150.005 519.820 *

Φopt
L 1.60251 1.37175 1.35233 *

σopt 2 4 6 *

Maximum of σmax = 7 switches:

τrel 6.672 9.529 33.266 †

Φrel
L 1.34915 1.34718 1.34683 †

ΦCAP
L 1.60251 1.37175 1.36533 †

θCAP 0.37984 0.23650 0.12086 †
1
∆t
θCAP 0.31653 0.49270 0.50029 †

σCAP 2 4 7 †

τopt 50.699 151.821 531.173 *

Φopt
L 1.60251 1.37175 1.35233 *

σopt 2 4 6 *

Maximum of σmax = 8 switches:

τrel 6.660 9.769 40.423 †

Φrel
L 1.34915 1.34718 1.34683 †

ΦCAP
L 1.60251 1.37175 1.38366 †

θCAP 0.37984 0.23650 0.11993 †
1
∆t
θCAP 0.31653 0.49270 0.49978 †

σCAP 2 4 8 †

τopt 51.091 152.638 540.806 *

Φopt
L 1.60251 1.37175 1.35233 *

σopt 2 4 6 *

Table 5.7: Results for nonlinear switch description of LOTKA-VOLTERRA fishing problem – part 2.

147

CHAPTER 5
�� N U M E R I C A L R E S U LT S

5.3 Sewage network overflow

The contents of this section are based on the paper

[56] B.J. DURAN, M. JUNG, C. OCAMPO-MARTINEZ, S. SAGER AND G. CEMBRANO, Minimiza-
tion of Sewage Network Overflow, Water Resources Management (Accepted).

In this section, we present the optimal control of sewage networks. In certain locations, it is
of high public interest to minimize the overflow of sewage onto the streets and to the natural
environment that may occur during periods of heavy rain. The assumption of linear flow in
a discrete time setting was proven to be adequate for the practical control of larger systems.
However, the possibility of overflow introduces a nonlinear and non-differentiable element to
the formulation as it can be described by means of a maximum of linear terms. This particular
challenge can be addressed by smoothing methods that result in a continuous nonlinear OCP
or by logical constraints that result in a linear MIOCP. We discuss one approach to handle
the nonlinear OCP and two approaches to handle the linear MIOCP – a constraint branching
algorithm and a disjunctive programming approach that leads to an MILP. We compare the
approaches for a set of realistic rain scenarios.

5.3.1 Problem formulation

Combined sewer networks are present in many large cities all over the world. These net-
works carry both wastewater and storm water together. During low to moderate rainfall, this
water is carried to wastewater treatment plants where it is treated before being released to
the receiving environment (usually a river or the sea). However, during heavy-rain events
the network capacity can be easily overloaded, causing urban surface flooding as well as
untreated water discharges to the environment, known as Combined Sewer Overflow (CSO).
To avoid these unwanted discharges, retention tanks are usually built along the network to
store the water during the peak rain intensity periods and later release it at lower flow rates.
Since these tanks are clearly expensive and difficult to locate in urban areas, their efficient
operation has become a topic of major interest.
Due to the network structure as well as the uncertain distribution of the rain inflows, global
real-time control through network monitoring and rain intensity forecasts is regarded as the
best control option, cf. [165]. This approach has been studied by [47, 70, 127, 128, 129,
135, 136, 142, 146] among others.
In this section, a network model is presented to be used in an optimal control strategy to min-
imize unwanted sewage discharges. Having in mind that a real-time control approach would
require the operator to solve the OCPat every time step (in a model predictive control strat-
egy), the main contribution of this section is to explore some of the applicable formulations,
which were discussed in Section 3.4, and the corresponding solving procedures in order to
determine the best algorithmic option in terms of solving time.

148

N U M E R I C A L R E S U LT S
�� CHAPTER 5

Outline

First, in Section 5.3.2, we present a generic modeling approach for the overflow in sewage
networks and also specify our choices for the flow system, which result in a linear system
for the network flows and a piecewise linear equations system for the overflows. Then, in
Section 5.3.3, we present four ways to handle the piecewise linear equation system: Firstly,
we use a nonlinear formulation, which smooths the non-differentiable kinks. Secondly, we
reformulate the system using the MLD formulation, which results in an MILP. Thirdly, we
present the GDP approach for this system, which is a formal generalization of the MLD ap-
proach, and apply it in two different ways, namely a constraint branching algorithm and a
lifted formulation. The implementations of all but the nonlinear approaches are described in
Section 5.3.4 and their computational results are compared. Finally, we we draw the main
conclusions in Section 5.3.5.

5.3.2 Modeling of overflow in sewage networks

The main difference among the aforementioned studies is the mathematical model that is
used to describe the network dynamics. Sewer networks are usually non-pressurized, i.e.,
water flows only due to the effect of gravity. The classical physical model for open-channel
flow is based on a nonlinear partial differential equation model (the SAINT-VENANT equations).
Such a model is not adequate for control purposes, especially in an optimal/predictive control
framework, where the model equations appear directly as constraints of an optimization prob-
lem, thus transmitting its features to it (e.g. number of variables, convexity, linearity, presence
of integer/boolean variables). The discretization of the SAINT-VENANT equations would in turn
lead to a huge system of nonlinear equations, which would lead to an optimization problem
not solvable in a real-time control framework.
Therefore, simplified models for the network dynamics should be developed. These models
must be able to capture the most notable features of the dynamics at computationally accept-
able efforts, compatible with the real-time computation of the control strategies. The model
presented in the following is based on the so-called virtual tank model, first developed by
GELORMINO and RICKER in [70] and later used in [47, 135, 136, 146]. However, novel ways
to deal with CSO as well as surface flooding are presented here.
In this approach, sewage networks consist of several elements, which are described in the
following. For water storage, there are water retention tanks built by the network operator
and so-called virtual tanks, each of which represents a set of sewage collectors for a specific
zone of the city. These tanks are taken together in the set N – their main difference is that for
tanks the in- and outflow can usually be controlled, whereas for virtual tanks, there are not
necessarily controllable flows. There is a treatment plant to clean the sewage where, opti-
mally, all the sewage should be processed. To connect these different tanks and virtual tanks,
there are sewers, which can be partly controlled with pumps and valves. In some sewers,
there are redirection gates to manipulate and redirect the flow. Other sewers are connected by

149

CHAPTER 5
�� N U M E R I C A L R E S U LT S

simple junctions. Both these structures are treated as tanks with a maximum volume of 0 and
where all inflow is directly forwarded as outflow. These networks can be displayed as directed
graphs. A conceptual example of a small network of this type is displayed in Figure 5.4.

Mediterranean sea

Sewage
treatement

plant

Escola
Industrial

Tank

Virtual tank

Real tank

Rain gauge

Redirection
gate

Retention gate

Overflow to
sea

Collector
Overflow

v1

v2

r1

w1

w2

w3

u1

u2

u3

zq
1

zq
2

zq
3

zv
1

zv
2

q1

q2

q3

Figure 5.4: A small example network with two virtual tanks v1, v2 and one retention tank r1. Flow
paths that appear due to overflow are represented as dashed connections.

Network modeling

During normal operation, the network can easily transport the sewage to the treatment plant.
However, in the presence of heavy rain, it may happen that there exists no viable flow path
for the network to process all the incoming water. In these scenarios, overflow happens –
flow paths appear that are not always present and depend on the system state and inputs. It
is assumed that a short term prediction of the rain intensity as well as a prediction of sewage
inflow at all points of the network is available in order to run the model. The system states
are the volumes v in each tank and virtual tank. We also need to take into account the flows
q through the sewers as dependent variables. However, some of the flows may be directly
controlled with valves or pumps.

150

N U M E R I C A L R E S U LT S
�� CHAPTER 5

For notational simplicity, we introduce the accumulated inflow qin
i (tk) for each node i ∈ N

at each time step tk. This also takes into account the inputs into the system – rain as well as
normal sewage – given by w (tk):

qin
i (tk)

def
= wi(tk) +

∑
j ∈N :
(ji) ∈U ∪ C

q ji(tk).

For each tank i of the system, there is only one regular outflow qout
i – controllable or not. For

the uncontrolled outflows of the tanks due to gravity, we use a rather simplifying assumption
according to [146]: we assume them to be linear in the amount of water, i.e.,

qout
i (tk) = βi vi(tk), (5.10)

where the parameter βi is obtained from historical sensor data or, in a real-time control
approach, is to be calibrated online.

A more precise formulation would consider the water pressure in both nodes adjacent to the
sewer as well as the friction along it. However, this formulation employs nonlinearities in the
model and its contribution is neglectable in our setting. Thus, it shall not be considered in this
work. The outflows that completely leave the system are the desired flow into the treatment
plant and undesired overflows into the surrounding area polluting the environment.

The flow system is governed by the law of conservation of mass for each node i:

v̇i(t) = qin
i (t)− qout

i (t), t ∈ [t0, tf], i ∈N , (5.11)

with the cumulative inflow qin
i (·) and the outflow qout

i (·).
This system is discretized with an explicit EULER method on an equidistant time grid with step
length ∆t and m time intervals to obtain a discrete-time linear flow system

vi(t j+1) = vi(t j) +∆t
�

qin
i (t j)− qout

i (t j)
�

, j = 0, . . . , m− 1, i ∈N , (5.12)

where t j = j∆t represents the j-th time step and m is the total number of time steps that the
model simulates. For abbreviation purposes, we introduce the set of discretization indices

D def
= {0, . . . , m− 1}.

All the controlled flows are limited due to physical constraints such as sewer sizes and pump
capacities. We assume that the volumes of the real retention tanks are limited as well and
that they cannot overflow since they are often placed underground and not connected to
the surface. Their inflows are hence always controlled to prevent overflow that could phys-
ically happen. In real applications, an overflow emergency mechanism is always present in
case there is a malfunction in the controlled devices, but we will not deal with such special

151

CHAPTER 5
�� N U M E R I C A L R E S U LT S

situations in this thesis.

The network structure of the sewage network is given by the following sets in Table 5.8,
the states and controls of the system are summarized in Table 5.9, and the scenario specific
parameters are summarized in Table 5.10.

Name Description

N Set of nodes, these include retention tanks, virtual tanks,

redirection gates, the environment and treatment plants

U Set of uncontrolled flow connections

C Set of controlled flow connections

Z Set of connections that appear due to overflow

Table 5.8: Sets which determine the sewage network structure.

Name Description Unit Domain

vi Volume of node i ∈N m3 [0, vmax
i]

qi j Controlled network flows from node i to node j, (i j) ∈ C m3/s [0, qmax
i j]

qi j Uncontrolled network flows from node i to node j, (i j) ∈ U m3/s [0, qmax
i j]

qin
i Accumulated inflow into node i, i ∈N m3/s R+0

qout
i Accumulated outflow from node i, i ∈N m3/s R+0

zi Network overflows from node i, i ∈N m3/s R+0

Table 5.9: States and controls of the sewage model.

Name Description Unit Domain

vmax Capacity of the nodes m3/s
�
R+0
�|N |

qmax Capacity of the pipes m3/s
�
R+0
�|C∪U |

w Forecasts of rain and sewage inputs for each node m3/s
�
R+0
�|N |

β Slope parameter that determines the flows by gravity –
�
R+0
�|N |

Table 5.10: Parameters of the sewage model.

152

N U M E R I C A L R E S U LT S
�� CHAPTER 5

Overflow modeling

Without overflows, the system would be fully described with the equations from above and
could be implemented as a discretized OCP. As mentioned before, overflow happens if the
volume obtained by the flow system will exceed the maximum capacity vmax

i of the node i.
Joints of different sewers are treated as tanks with maximum capacity vmax

i = 0. In case of
the flows being at the physical limits, no overflow happens, but if they exceed the physical
limits, the excess amount is considered to be overflow. Overflows in each virtual tank and
sewer joint can be redirected to other virtual tanks, i.e., to another catchment area, or to the
environment (usually a river or the sea). Only in the latter case, the overflow volume leaves
the network permanently.

As soon as an overflow zi(t j) appears, the corresponding node’s mass conservation equation
changes to

v̇i(t) = qin
i (t)− qout

i (t)− zi(t), t ∈ [t0, tf], i ∈N .

All the overflow from one node i flows to the same target node j with (i j) ∈ Z. The accumu-
lated inflow is adapted to include inflows due to overflow:

qin
i (tk)

def
= wi(tk) +

∑
j ∈N :
(ji) ∈U ∪ C

q ji(tk) +
∑

j ∈N :
(ji) ∈Z

z j(tk).

The overflow zi(t j) can e.g. be modeled with logical decisions

IF vmax
i ¶ vi(t j) +∆t

�
qin

i (t j)− qout
i (t j)

�
,

THEN zi(t j) =
1

∆t

�
vi(t j) +∆t

�
qin

i (t j)− qout
i (t j)

�
− vmax

i

�
,

ELSE zi(t j) = 0,

(5.13)

where the THEN expression together with (5.12) adjusted for overflow, i.e.,

vi(t j+1) = vi(t j) +∆t
�

qin
i (t j)− qout

i (t j)− zi(t j)
�

, j ∈ D, i ∈N ,

also sets vi(t j+1) = vmax
i . This approach is further explained in Section 3.7.1.

Another modeling approach uses a disjunction as described in Section 3.1:

ωi(t j) = 0

zi(t j) = 0

∨

ωi(t j) = 1

vmax
i ¶ vi(t j) +∆t

�
qin

i (t j)− qout
i (t j)

�

zi(t j) =
1

∆t

�
vi(t j) +∆t

�
qin

i (t j)− qout
i (t j)

�
− vmax

i

�

,

j ∈ D, i ∈ N . (5.14)

153

CHAPTER 5
�� N U M E R I C A L R E S U LT S

Equivalently, the overflow can be modeled directly with the maximum function

zi(t j)
def
=

1

∆t
max

¦
0, vi(t j) +∆t

�
qin

i (t j)− qout
i (t j)

�
− vmax

i

©
,

i ∈ N , j ∈ D. (5.15)

Then, the constraints are piecewise affine equations and thus nonlinear and non-differen-
tiable. Therefore, each system directly containing these constraints becomes not only non-
linear but also non-convex and non-differentiable. One such constraint is displayed in Fig-
ure 5.5.

ov
er

flo
w

z
[m

3
]

flow balance x [m3]

0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

Figure 5.5: The overflow function z(x) =max{0, x − 1} with maximum capacity vmax = 1, ∆t = 1 and
water volume change x . It is nonlinear, non-convex and non-differentiable in the kink at
x = 1.

Overflows in joints (junctions and redirection gates) are modeled in an analogous way by
considering a joint as a tank with zero capacity, and hence constant volume of 0 (also v̇i(·) =
0). In this case, overflows occur when the inflow to the joint exceeds the maximum outflow.
Due to notational simplicity, we omit this part of the formulation for the remainder of this
section since there are no additional insights gained. All formulations directly carry over to
these slightly changed conditions. Here, we briefly show how to adapt the logical formulation:

IF qin
i (t j)¾ qmax

i

THEN zi(t j) = qin
i (t j)− qmax

i

ELSE zi(t j) = 0,

where qmax
i is the maximum capacity of the sewers leaving joint i.

154

N U M E R I C A L R E S U LT S
�� CHAPTER 5

The objective of the network operators is to minimize all overflows, because they have two
negative impacts: inside the city they disturb the residents and outside the city they pollute
the environment. However, different weights λi > 0 can be associated with different overflow
points depending on their geographic location. Therefore, the management objective can be
formulated as follows:

min
∑
i ∈N

∑
j ∈D

λi zi(t j).

5.3.3 Reformulations for optimization

Going a step further from the optimal control approach, a predictive control strategy solves
an OCP at each time step taking advantage of new sensor information of the system and new
predictions of the perturbations. Thus, it is of great interest to develop fast solving algorithms
that guarantee that the solution is obtained within the available time. This would be the goal
of the application to the real world.
This section covers four approaches to handle the given overflow formulation and obtain op-
timization models that can either be solved by standard algorithms or the algorithm needed
is directly specified. The first approach is based on replacing the non-differentiable over-
flow equations by differentiable approximations. We obtain an NLP, which can be locally
solved by a derivative-based algorithm. The other three approaches are based on the fact
that the nonlinearities and non-differentiability are induced by the piecewise linear overflow
equation. Therefore, they can be covered with a disjunctive formulation. These models can
be formulated as described in Sections 3.5–3.8 to produce optimization problems including
binary variables. Since our problem is mostly linear, we apply only those approaches that
preserve linearity and can hence be solved using MILP algorithms. One major distinction of
the last three approaches is that the MLD and the GDP approach make explicit use of the
binary variables to obtain a problem to be solved by standard MILP solvers while the con-
straint branching approach makes use of the problem properties to come up with a branching
strategy that implicitly realizes the logic decisions. A different kind of reformulation for
piecewise linear functions that also avoids the usage of binary variables is the introduction
of SOS2-constraints. However, it is known that the resulting problems are equivalent to the
formulation with binary variables as presented in the GDP approach, cf. [108].

Nonlinear smoothing

Constraints (5.15) can be reformulated using smoothing for the non-differentiabilities. We
use hyperbolic smoothing to connect the two arms of the maximum function with a portion
of a circle of radius r. The circle center is at (m1, r) with

m1
def
= (1−p2)r + vmax

i .

155

CHAPTER 5
�� N U M E R I C A L R E S U LT S

The resulting overflow formulation is

z r
i (x i(t j)) =

0, if x i(t j)¶ m1,

r −
p

r2− (x i(t j)−m1)2, if x i(t j) ∈
�

m1, m1+
rp
2

�
,

x i(t j)− vmax
i , if x i(t j)¾ m1+

rp
2
,

with

x i(t j) =
1

∆t
vi(t j) + qin

i (t j)− qout
i (t j).

We obtain the continuously differentiable function z r
i (·) ∈ C1(R), which is sufficiently differ-

entiable for the usual nonlinear solving methods, i.e., active set and interior point based on
accumulated first derivative approximations for the HESSIAN. The change from the previous
formulation is displayed in Figure 5.6.

flow balance x [m3]

ov
er

flo
w

z
[m

3
]

0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

Figure 5.6: The smoothened function with maximum capacity vmax
i = 1, ∆t = 1 and radius r = 0.5.

Due to smoothening, the non-differentiable kink is replaced by a differentiable approxima-
tion.

Mixed Logical Dynamical system

The MLD system formulation can be used to combine the inherent logic of the overflows with
the dynamical control problem. The general approach has been described in Section 3.7.1. In
the case of overflow modeling, we use binary variables ωi(t j), which model whether there is

156

N U M E R I C A L R E S U LT S
�� CHAPTER 5

overflow of node i at time step t j. This results in the following conditional IFF-THEN-system:

�
ωi(t j) = 1

�
↔
�

vi(t j) +∆t
�

qin
i (t j)− qout

i (t j)
�
− vmax

i ¾ 0
�

, (5.16)

and

IF ωi(t j) = 1

THEN zi(t j) = vi(t j) +∆t
�

qin
i (t j)− qout

i (t j)
�
− vmax

i

ELSE zi(t j) = 0.

(5.17)

together with the flow equation

vi(t j+1) = vi(t j) +∆t
�

qin
i (t j)− qout

i (t j)− zi(t j)
�

.

The IFF-THEN-formulations (5.16) are put into inequalities with a tolerance parameter ε and
bounds mi and Mi, which can be computed using the bounds of the involved variables:

vi(t j) +∆t
�

qin
i (t j)− qout

i (t j)
�
− vmax

i ¾ mi

�
1−ωi(t j)

�
,

vi(t j) +∆t
�

qin
i (t j)− qout

i (t j)
�
− vmax

i ¶
�

Mi + ε
�
ωi(t j)− ε.

The IF-THEN-ELSE-formulations (5.17) are reformulated with

zi(t j) =ωi(t j)
�

vi(t j) +∆t
�

qin
i (t j)− qout

i (t j)
�
− vmax

i

�
,

which is, for binary ωi(t j), equivalent to the linear system

zi(t j)¶ Miωi(t j),

zi(t j)¾ miωi(t j),

zi(t j)¶ vi(t j) +∆t
�

qin
i (t j)− qout

i (t j)
�
− vmax

i −mi

�
1−ωi(t j)

�
,

zi(t j)¾ vi(t j) +∆t
�

qin
i (t j)− qout

i (t j)
�
− vmax

i −Mi

�
1−ωi(t j)

�
,

with the same mi and Mi as used above. As these bounds are needed, this is a realization of
the Big-M formulation of Section 3.7.
The reformulation can be automatically done in MATLAB c©with HYSDEL, cf. [179], which is
now part of MPT, cf. [114]. However, HYSDEL does not deal with systems including time
dependent disturbances, which appear in our case as the rain inflow to the network. To solve
this problem, rain inflow variables are initially regarded as controlled variables and later the
resulting matrices of the MLD format produced by HYSDEL are split to separate the actual
controlled flows from the rain inflow disturbances. A drawback of this workaround is that
artificial bounds wmax

i on the rain flow variables have to be added.
If we used the nonlinear pressure formulation for the outflow instead of the linearized version,

157

CHAPTER 5
�� N U M E R I C A L R E S U LT S

this approach would produce a MINLP. These problems are usually very difficult to solve –
especially considering the problem’s size, which arises from the time discretization together
with the network size.

Constraint branching algorithm

We use the specific problem structure induced by the formulation of overflow to create a
branch-and-bound algorithm. It branches on decisions without adding the corresponding
variables explicitly to the problem. In contrast to the previously described MLD method, we
do not have to add artificial variable bounds and tolerance parameters, which have an impact
on the behavior of the algorithm since they slightly disturb the model.

The maximum equation formulation (5.15) from Section 5.3.2

zi(t j)
def
=

1

∆t
max

¦
0, vi(t j) +∆t

�
qin

i (t j)− qout
i (t j)

�
− vmax

i

©

can be relaxed to the linear inequalities

zi(t j)¾ 0, (5.18)

zi(t j)¾
1

∆t

�
vi(t j) +∆t

�
qin

i (t j)− qout
i (t j)

�
− vmax

i

�
. (5.19)

Thereby, we obtain an LP as the relaxed problem. The meaning of the relaxation is that the
controller can choose, during each time step for each node, how much overflow there is –
even if in this situation no overflow would actually occur in reality. It can have a positive
impact to artificially generate an overflow because it may prevent overflow at another part of
the system, which may have worse weights λi or may propagate further overflow. However,
since overflows zi(t j) are to be minimized, for optimal solutions often one of the inequality
constraints (5.18) and (5.19) holds with equality.

If the solution of the relaxed problem fulfills for all pairs of inequalities (5.18) and (5.19) one
of both with equality, then it is already a solution of the original problem. If this is not the
case for all overflows, the algorithm has to enforce this behavior. Branching is done on the
decision which one of the two inequalities shall be fulfilled with equality for all children in the
branching tree. Instead of dichotomy branching on variable values and adding the constraints
x ¶ b x̄c or x ¾ d x̄e for a fractional variable x̄ , we add for one branch the constraint

zi(t j)¶ 0, (5.20)

and for the second branch the constraint

zi(t j)¶
1

∆t

�
vi(t j) +∆t

�
qin

i (t j)− qout
i (t j)

�
− vmax

i

�
, (5.21)

158

N U M E R I C A L R E S U LT S
�� CHAPTER 5

if the relaxed solution z̄ fulfilled both with “>”. This is done until for each overflow (5.20)
or (5.21) holds, which is then a solution of the original problem with the maximum equa-
tion (5.15). This property is enforced through the branching procedure.

We use the following problem formulation OF(A,B) for subproblems at the nodes. We use
the sets A and B of index pairs to describe where the overflow has already been fixed for this
node:

min
z,q ,v

∑
i ∈N

∑
j ∈D

λi zi(t j) (OF(A,B))

s. t. flow equations and network limits,

zi(t j)≥
1

∆t

�
vi(t j) +∆t

�
qin

i (t j)− qout
i (t j)

�
− vmax

i

�
, j ∈ D, i ∈N ,

zi(t j)≥ 0, j ∈ D, i ∈N ,

zi(t j) =
1

∆t

�
vi(t j) +∆t

�
qin

i (t j)− qout
i (t j)

�
− vmax

i

�
, (i, j) ∈A,

zi(t j) = 0, (i, j) ∈ B.

Each node of the branching tree contains its own version of those two sets to describe the
fixed constraints and the general algorithm is outlined in Algorithm 5.1. This is a simple
branching framework, which can easily be upgraded to contain a bounding procedure to
obtain a branch-and-bound algorithm. We also experimented with the strategy to get the
constraint on which to branch next. The best results were obtained with the intuitive strategy
of choosing the earliest overflows.

The presented approach is similar to standard branching, with the difference that we branch
on the disjunctive constraints instead of on the variables. It can be applied to other prob-
lems as well. One has to have piecewise continuously differentiable equations and that the
relaxation of the equations to inequalities provides a convex (preferably linear) problem. It
helps if the violation of the equations is penalized in the relaxation – even more so if this is
an innate property of the problem. This approach is very dependent on the exact problem
structure and to our knowledge has not yet been explored.

Notice that there exists a different kind of constraint branching, as e.g. RYAN-FOSTER branch-
ing for SOS1-constraints, e.g. presented in [67], which partitions the feasible set based on
special constraint structures.

General Disjunctive Programming

Instead of the two preceding approaches, overflows can also be reformulated with the GDP
framework from [87], which is the foundation of the perspective formulation from Sec-
tion 3.9. The authors use general disjunctions in a first step to model reality and then propose
different ways to handle these disjunctions. With the disjunctive formulation (5.14) and with

159

CHAPTER 5
�� N U M E R I C A L R E S U LT S

Algorithm 5.1: Constraint branching algorithm.
Data: Network structure, time discretization, rain inputs.
Result: Optimal solution, i.e., best solution in the solution pool.

Create queue of active tree nodes Q and add the empty root node ({}, {}) to Q.
while Q is not empty do

Choose node n with corresponding fixed constraints (An,Bn) by search strategy and
remove n from Q.
Solve problem OF(An,Bn) and obtain solution variables (z, v ,q).
if problem is feasible then

if ∀(i, j) /∈An ∪Bn :
zi(t j) = 0 or

zi(t j) =
1

∆t

�
vi(t j) +∆t

�
qin

i (t j)− qout
i (t j)

�
− vmax

i

�

then
Add n’s solution (z, v ,q) to the pool of solutions.

else
Find a pair (i, j) such that
zi(t j)> 0 and

zi(t j)>
1

∆t

�
vi(t j) +∆t

�
qin

i (t j)− qout
i (t j)

�
− vmax

i

�

Add two new child nodes to Q, which have the following fixed constraints:

• (An ∪ {(i, j)},Bn): There is overflow at node i at time step j.

• (An,Bn ∪ {(i, j)}): There is no overflow at node i at time step j.

end
end

end

160

N U M E R I C A L R E S U LT S
�� CHAPTER 5

the auxiliary formulation

x i(t j)
def
=

1

∆t
vi(t j) + qin

i (t j)− qout
i (t j),

with upper bounds M for the new states x , we obtain the problem

min
z,q ,v ,ω

∑
i ∈N

∑
j ∈D

λi zi(t j)

s. t. flow equations and network limits,

ωi(t j) = 1

zi(t j) = x i(t j)−
1

∆t
vmax

i

x i(t j)¾
1

∆t
vmax

i

∨

ωi(t j) = 0

zi(t j) = 0

x i(t j)¶
1

∆t
vmax

i

, j ∈ D, i ∈N ,

0¶ x i(t j)¶ Mi,

ωi(t j) ∈ {0, 1}.

To obtain an MILP in standard form from this formulation, we can either use a Big-M refor-
mulation or a convex hull reformulation. It is well known that the convex hull formulation is
the same as the perspective formulation presented in Section 3.9. As discussed in Section 3.7,
the Big-M formulation’s relaxation usually produces weak bounds, whereas the relaxation of
the convex hull formulation provides tighter bounds. However, the enhancement effect of the
tighter bounds can diminish due to the higher effort needed because of the state duplication.
The given Big-M formulation is equivalent to the previously presented MLD approach. Thus,
only the convex hull approach is examined in the following.

For the convex hull reformulation, one needs to duplicate the x -variables for each branch
of the disjunction and to introduce the binary variables ω as convex multipliers to combine
these different branches. The ω-variables model the decision which branch is taken: the one
with overflow (ωi = 1) or the one without (ωi = 0).

min
z,q ,v ,ω,x 1,x 2

∑
i ∈N

∑
j ∈D

λi zi(t j) (5.22)

s. t. flow equations and network limits,

x i(t j) = x1
i (t j) + x2

i (t j),

zi(t j) = x1
i (t j)−

1

∆t
vmax

i ωi(t j),

x1
i (t j) ∈ωi(t j)

�
1

∆t
vmax

i , Mi

�
, j ∈ D, i ∈N ,

x2
i (t j) ∈

�
1−ωi(t j)

��
0,

1

∆t
vmax

i

�
,

161

CHAPTER 5
�� N U M E R I C A L R E S U LT S

ωi(t j) ∈ {0,1}.

The difference between the convex hull reformulation, which is a general constraint branch-
ing framework, and the constraint branching Algorithm 5.1 described in the previous sec-
tion lies in the different relaxations. The relaxation of the hull reformulation by letting
ωi(t j) ∈ [0,1] is tighter than the LP relaxation proposed in Section 5.3.3, which can be
seen in Figure 5.7. However, the tighter part is only in the upper part of the feasible region,
which leads to higher overflow values and is not desired since z is to be minimized.

ov
er

flo
w

z
[m

3
]

flow balance x [m3]

0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

ov
er

flo
w

z
[m

3
]

flow balance x [m3]

0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

Figure 5.7: On the left-hand side, the LP relaxation from the constraint branching algorithm is
drawn, whereas on the right-hand side, the projection of the hull formulation’s relaxation
from (5.22) is drawn. The left dashed line represents the scaled maximum capacity 1

∆t
vmax

i
and the right dashed line represents the bound M on the maximum inflow. The arrow
represents the objective.

To assess the properties of this formulation, two observations are made: Firstly, as in the MLD
formulation, tight bounds Mi are needed to provide a good formulation. For the overflow
problem, these bounds are dependent on the rain scenario and hence need to be recalculated
for each instance individually to be accurate. Secondly, the relaxation is only tighter in the
non-desired part of the feasible region.

5.3.4 Computational results

We used different versions of the approaches presented in the previous sections to compare
their performance for the minimization of the overflow of a particular sewage network.

162

N U M E R I C A L R E S U LT S
�� CHAPTER 5

Test network description

We used a small scale sewage network that is a part of the Barcelona sewer network and
for this network data has been provided to build the virtual tank model by the company
responsible for the management of the network, CLAVEGUERAM DE BARCELONA S.A. (CLABSA).
This network consists of one real tank, 11 virtual tanks and 4 redirection gates, as shown in
Figure 5.8.
For the rain data we used 22 different real rain scenarios to compare the algorithms. This data
has also been provided by CLABSA and consists of a selection of rain events that occurred in
the period between 1996 and 1999, ranging from 4 to 12 hours each. These rain events are
representative of the different distribution of the rain intensity both in space and time. Since
heavy rain events occur only sporadically, to obtain a larger set of test scenarios, some have
been artificially increased by a factor of 2.

The flow wi

h
m3

s

i
entering the network at virtual tank i is computed from pluviometer data

using a conceptual rainfall-runoff model, which is also based on the virtual tank concept,
together with a sewage forecast for the catchment area. The rain inflow is obtained by mul-

tiplying the rain intensity I
h

mm
s

i
with the catchment area Ai[m2] and scaling with a dimen-

sionless ground absorption coefficient ϕ (calibrated online) to account for infiltration losses,
cf. [146]:

wi(t) = ϕi Ai Ii(t).

The resulting problem dimensions for the different formulations are displayed in Figure 5.9.
The difference between the instances is the number of time steps of the discretization, which
varies between 40 and 186. The MLD model is always bigger than the model used by the
constraint branching algorithm as it needs to add integer variables and additional constraints
to model the logical decisions. The GDP model requires even more variables than the MLD
model, but a little less constraints to formulate the behavior. The number of constraints
needed for the constraint branching algorithm is the number of constraints in the root node
relaxation. The constraints, which are added in the process of branching, transform inequal-
ities into equations corresponding to their activation. The smoothed, nonlinear formulation
has the same number of inequalities as the constraint branching formulation since the con-
straint branching formulation realizes one part of the maximum term with simple bounds.

Implementation details

The hyperbolic smoothing approach from Section 5.3.3 with a nonlinear local algorithm gives
results which are worse than the results from the other approaches. Since the formulation is
nonconvex, the results are not necessarily optimal in two senses: firstly, the reformulation at
the kink of the overflow function is not exact and secondly, one would need to use a nonlinear

163

CHAPTER 5
�� N U M E R I C A L R E S U LT S

Figure 5.8: Partial Barcelona sewer network with 1 retention tank and 11 virtual tanks.

164

N U M E R I C A L R E S U LT S
�� CHAPTER 5

(a) Number of variables (104)

MLD
GDP
B&B, Ipopt

5 10 15 20
0

0.5

1

1.5

2

10

(b) Number of constraints (105)

MLD
GDP
B&B, NLP

5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

10

Figure 5.9: Problem dimensions for the different algorithms on 22 rain scenarios for the sewage net-
work displayed in Figure 5.8.

global algorithm to guarantee that the found optimal solution is the true optimal solution,
since it is not a convex reformulation. Therefore, purely local algorithms are generally not
sufficient to correctly solve the problem.

Nonetheless, we tried to obtain some results for local algorithms since they usually are the
subprocedures called in global algorithms. We tested the interior point method IPOPT v.3.11
with the HSL linear solver MA57. The starting point was the totally uncontrolled network,
i.e., all controls and states were set to 0. The solutions differ slightly from the optimal
solution obtained by the other approaches, as shown in Figure 5.12. However, the solu-
tions were quite close to the global solutions. The deviation is due to the smoothing with
r ∼ 10−6 maxi∈N

¦
vmax

i

©
.

For the MLD approach, we used the HYSDEL package v.1.2.8, cf. [179], in MATLAB c©v.7.7.0
to describe the problem and obtain an MILP. Then, the resulting MILP is solved with CPLEX c©

v.12.1.0. The tolerance parameter ε, used to transform strict inequalities into non-strict ones,
has been set to ε = 10−3, which is enough taking into account the variables’ scale. Addition-
ally, we had to provide artificial upper bounds wmax

i for the rain inputs to allow the trans-
formation of the problem, since they need to be modeled as controlled variables in the MLD
framework and then later fixed to the correct perturbation values.

For the constraint branching algorithm, we used two different implementations. The first
one – a proof of concept – is a very basic implementation of a branch-and-bound algorithm
based on the C++ Standard Template Library (STL) priority queue for the active nodes of
the branching tree with a best-first search as the node selection strategy. The resulting LPs
are solved with CPLEX c©. However, the algorithm does neither use parallelization for the
treatment of nodes nor does it use warm-starting as the solution remains feasible in the
dual sense. The second implementation uses CPLEX c©’s branch-and-bound framework via

165

CHAPTER 5
�� N U M E R I C A L R E S U LT S

callback-routines to use those features. This framework also provides a more sophisticated
search strategy for the branching tree, which leads to more LP iterations but also provides a
good solution faster.
For the GDP approach, we reduced the model (5.22) by eliminating the x 2-variables from the
model. The needed bounds for the additional x 1-variables are set very coarsely and safely by
setting Mi = vmax

i +W , where W is the total rain input. The resulting MILPs were solved with
CPLEX c©.
All the problems were solved with CPLEX c©’s standard settings.

Computational results

The computational results were obtained on a machine with an Intel dual core CPU with
2.66GHz and 8GB RAM. They are displayed in Figures 5.10–5.12.

instance

MLD
B&B Cplex
B&B concept
GDP
NLP

5 10 15 20
100

101

102

103

104

105

Figure 5.10: Iteration numbers (log) for the different algorithms.

In the figures, it can generally be seen that the problem difficulty does not necessarily coincide
with the problems’ sizes, which are proportional to the length of the time horizon. The
difficulty is more dependent on the amount of overflow happening in the optimal solution.
IPOPT solves all instances but one, although the nonlinear model is nonconvex. Only instance
1 could not be solved to an acceptable level and got stuck in a point of local infeasibility. The
objective values are always a little worse (but less than 1% worse) than the objective values
of the other algorithms even though the solution is almost identical. This is originated in the
smoothing technique used.

166

N U M E R I C A L R E S U LT S
�� CHAPTER 5

instance

MLD
B&B Cplex
B&B concept
GDP
NLP

5 10 15 20

10−1

100

101

102

103

104

Figure 5.11: Computational times (log) for the different algorithms.

instance

MILP

NLP

5.8 6 6.2

5 10 15 20

3550

3600

3650

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Figure 5.12: Objective values, i.e., total overflow [m3], for the linear formulations and the nonlinear
formulation.

167

CHAPTER 5
�� N U M E R I C A L R E S U LT S

Comparing the iteration numbers, cf. Figure 5.10, the GDP approach is clearly superior to the
other approaches solving most problems in the root node, i.e., 17 of the 22 scenarios. Both
constraint branching algorithms compare favorably with the MLD approach with regard to the
iteration numbers. They also solve about half the problems in the root node, whereas the MLD
approach does not solve any problem in the root. This indicates that the GDP algorithm and
the constraint branching algorithm provide much better scalability to larger networks than
the MLD approach. Notice that the MLD and GDP approaches use binary variables in the
models and can hence use cutting planes, e.g. Mixed-Integer Rounding (MIR)-cuts, to tighten
the feasible region, whereas the constraint branching formulation only indirectly introduces
those binary variables. For these models, the iteration numbers are the numbers of nodes
solved in the branch-and-bound framework. The nonlinear model’s iterations are NEWTON-
type iterations of the interior point method IPOPT. They can hardly be compared with the
other formulations’ iteration numbers.

With regard to the computational times, the iteration results do not directly carry over, but
additionally the problems’ dimensions as well as the implementations have to be taken into
account. First, we compare both constraint branching schemes. The more sophisticated
approach is about one order of magnitude faster than the simple scheme, which is due to
hot-starting and parallelization on two cores. Yet, it needs more iterations, which also comes
from the parallelization and from the different search strategy, which incorporates diving to
provide a fast near-optimal solution. The simple realization is quite slow and sometimes
needs even more computational time than the MLD realization, which has to solve larger
problems. The more sophisticated implementation overcomes this and is almost always the
fastest procedure. The GDP approach is slower than the constraint branching algorithm since
each iteration (especially the root node) is more costly. One part of this higher effort needed
is due to the higher problem dimensions, but the time spent in heuristics and cutting plane
procedures to tighten the bounds also increases the effort per node. The constraint branching
algorithm cannot apply these procedures due to no incorporated integral variables. For IPOPT,
the overall computational times are 2–3 orders of magnitude worse than the computational
times of the other approaches. Even for these small test instances, the algorithm comes much
closer to the overall time limit of 5 minutes – and for instance 1, it takes more than 5 minutes
to arrive at the local minimizer of feasibility.

Overall, we can state that the GDP approach takes a little longer than the constraint branch-
ing algorithm but the bounds produced by the procedure are tighter. Additionally, the ob-
tained MILP formulation allows the usage of standard algorithms, which can tighten the
formulation even further with cutting planes. Therefore, 17 of the 22 test instances were
already solved in the root node, in comparison to 10 for Algorithm 5.1, and the number of
iterations were in all but one instance the smallest for the GDP approach.

168

N U M E R I C A L R E S U LT S
�� CHAPTER 5

5.3.5 Conclusions

We introduced a modeling approach for sewage networks and presented the corresponding
overflow problem. The overflow process cannot be modeled by straightforward means. We
showed several ways to model it with binary variables resulting in different MIOCPs. We clas-
sified those modeling approaches, if possible, through the classes that have been presented
in Chapter 3. Resulting from these different models, we provided several algorithms that
solve this kind of problems in the desired 5 minute time window. The considered problems
optimize the controls for the network with rain and water consumption forecasts of almost
two days taken into account.

The hyperbolic smoothing approach from Section 5.3.3 did not provide the desired results.
It converged in all but one instance to the global optimum but it needed much more time to
find the optimum than the other algorithms.

The GDP approach has some advantages in comparison to the other two approaches: It is
an easily applied standard modeling approach with no additional thought process involved.
It provides tighter bounds than the constraint branching algorithm and the MLD approach,
which probably makes it scale better towards bigger problems even though the computational
times are worse than those of the constraint branching algorithm.

Overall, the GDP’s perspective formulation seems to be very well suited for disjunctions of
small size – in this case, each disjunction has only two clauses. It preserves linearity of the
constraints in the disjunctions, which make the approach especially suited for linear models.
The MLD’s Big-M approach compares unfavorably. Although it preserves linearity and is as
easily implemented, the bounds provided by the relaxation are much worse and hence the
resulting algorithm is worse as well. The tailored branching algorithms provide an alternative
but need to exploit the special problem structure to be able to compete with the generally
applicable perspective formulation.

There remains the open question of the application into a moving horizon framework. For
the test instances, the complete problem could be solved within the time limit but for larger
instances, this might not be the case anymore. When the horizon shifts, the control of the
past problem’s first time step is applied and shifted out of the horizon. The old time steps
1, . . . , m−1 are shifted to become the new problem’s time steps 0, . . . , m−2, and a new time
step m−1 is created with new forecast data. It is certainly possible to start in the old solution
for the remaining time steps and to enumerate all possible branches for the newly created
time step. This gives a good initial solution if the new forecast data does not deviate too
much from the old forecast data and if the model correctly represents the real system and not
only an approximation. It remains open whether it is possible to re-use some of the branching
information from the previous runs. The application of model predictive control techniques to
OCPs in [55, 111] can be taken as a vantage point for future research.

Even though the computational times of IPOPT are much worse than those of the other algo-
rithms, the starting point plays an important role. While we chose an all-0 starting point, in

169

CHAPTER 5
�� N U M E R I C A L R E S U LT S

a moving horizon framework, the algorithm could start much closer to the optimum. This
would probably speed-up its convergence by a large amount. This question should be studied
when the whole process is transferred to a MPC framework where the solutions of the past
time steps are used to initialize the new starting point.
All of the presented approaches generally remain applicable, if the linear gravity driven flow
is replaced with a pressure dependent equation, which also considers friction, to augment
the model. However, the MLD and GDP approaches would produce MINLPs. These are often
very hard to solve and the state-of-the-art software is not comparably reliable and fast as,
e.g., CPLEX c©in the MILP case. On the other hand, the constraint branching approach would
give a branching framework with nonlinear subproblems that is already a tailored solution to
a MINLP and that seems at first glance at least as solvable.

170

N U M E R I C A L R E S U LT S
�� CHAPTER 5

5.4 Dynamic truck model: Cruise control

The contents of this section are based on the paper

[103] M. JUNG, C. KIRCHES AND S. SAGER, On Perspective Functions and Vanishing Constraints
in Mixed-Integer Nonlinear Optimal Control, in Facets of Combinatorial Optimization
– Festschrift for MARTIN GRÖTSCHEL, M. JÜNGER AND G. REINELT, eds., Springer Berlin
Heidelberg, 2013, pp. 387–417.

In this section we describe a cruise control problem for a heavy-duty truck and model it as a
MIOCP. Then, we compare the different relaxation approaches for direct methods presented
in Section 3.4.
The heavy-duty trucks usually require large amounts of fuel and hence energy-optimal driving
is strongly desired. The typically available controls to reach this goal are the gear shifting
decisions (typically between 8 and 24 gears) and the acceleration processes. However, this
is a non-trivial task and requires extensive training and/or long work-experience from the
drivers. Therefore, it is subject of intense scientific research, e.g. [93, 111, 178]. Hybrid
engines also fit into the modeling framework, this could be of further interest for future
projects.

5.4.1 Problem formulation

Our truck model is slightly simplified by the following assumptions. The track is assumed
to be straight and hence we can reduce the position to be one-dimensional, the degree of
freedom being the progress toward the destination. The track’s height is directly dependent
on the position. Additionally, we neglect traffic, which would pose a lot of constraints (mostly
speed constraints), but usually one cannot predict the exact behavior of traffic and hence it is
omitted.

Dynamics and controls

We describe a basic ODE truck model as introduced in [178]. The controls are the gear
decision µ and directly the choice of the indicated engine torque Mind as well as the engine
brake torque MEB. Table 5.11 summarizes the controls. Notice that we do not model a
retarder or service brake and assume that an a-posteriori breakdown of the engine brake into
the three braking devices may be applied.
The vehicle model involves two differential states, velocity v (in m/s) and accumulated fuel
consumption Q (in l), which is used to reformulate a LAGRANGE objective functional as a
MAYER functional. The traveled distance s (in m) is chosen as the independent variable and we
consider the interval [0, s f]. The velocity v is given through the ODE derived from NEWTON’s

171

CHAPTER 5
�� N U M E R I C A L R E S U LT S

Name Description Unit Domain

µ Gear choice – {1, . . . , nµ}
Mind Indicated engine torque Nm [0, Mind,max]

MEB Engine brake torque Nm [0, MEB,max]

Table 5.11: Controls of the truck model.

second law

v̇(s) =
1

m v(s)

��
Macc(s)−Mbrk(s)

� iA
rstat
−Mair(s)−Mroad(s)

�
, (5.23)

which is the sum of the directed torques, i.e., the effective accelerating torque Macc, the
effective braking torque Mbrk, the turbulent friction torque Mair and the kinetic friction torque
Mroad (all in Nm). The factor 1

v(s)
stems from transformation of the time derivative, in which

NEWTON’s laws are formulated, to the traveled distance derivative.

The change of the aggregated fuel consumption Q(s) is naturally the current fuel consumption

Q̇(s) =
1

v(s)
Qfuel

�
neng(s,µ(s)), Mind(s)

�
, (5.24)

which is a nonlinear function depending on the engine speed neng (in 1/min) and the indi-
cated engine torque Mind (in Nm). In Table 5.12 a brief overview of the differential states of
this truck model is given.

Name Description Unit Domain

v Velocity m/s (0, vmax]

Q Accumulated fuel consumption l [0,∞)

Table 5.12: Differential states of the truck model.

Several missing terms are computed from algebraic formulas. The transmitted engine speed
neng depends on the selected gear’s transmission ratio iT, the rear axle transmission ratio iA
and the static rear tire radius rstat. It is obtained for a given velocity v as

neng(s,µ(s))
def
=

iA iT(µ(s))
2 π rstat

60[s] v(s).

The accelerating torque Macc is computed from the gearbox transmission ratio iT and gearbox

172

N U M E R I C A L R E S U LT S
�� CHAPTER 5

efficiency ηT as

Macc(s,µ(s))
def
= iT(µ(s)) ηT(µ(s)) Mind(s).

Braking torques Mbrk are combined from the controlled engine brake torque MEB and the
internal engine friction torque Mfric, which nonlinearly depends on the engine speed:

Mbrk(s,µ(s))
def
= MEB(s) + iT(µ(s)) Mfric

�
neng(s,µ(s))

�
.

The additional external braking torques Mair and Mroad are computed as

Mair(s)
def
=

1

2
cw A%air v2(s),

Mroad(s)
def
= m g

�
sinγ(s) + fr cosγ(s)

�
,

with the shape coefficient cw, the flow surface A and the air density %air for the turbulent
friction. For the kinetic road friction, we have the vehicle’s mass m, gravity g, the road’s
slope γ(s) and the rolling friction coefficient fr. These algebraic states are summarized in
Table 5.13.

Name Description Unit

neng Transmitted engine speed 1/min

Macc Accelerating torque Nm

Mbrk Total internal braking torque Nm

Mair Turbulent friction due to air Nm

Mroad Kinetic rolling friction Nm

Table 5.13: Algebraic states of the truck model.

All the described parameters are summarized in Table 5.14 and Table 5.15.

Constraints

Operational constraints are path and control constraints and both are present in this model.
The first operational constraints are due to the mechanics of the truck. There is a maximum
state-dependent indicated acceleration torque

Mind(s,µ(s))¶ Mmax
ind

�
neng(s,µ(s))

�
(5.25)

173

CHAPTER 5
�� N U M E R I C A L R E S U LT S

Name Description Unit

A Flow surface m2

cw Aerodynamic shape coefficient –

fr Rolling friction coefficient –

g Gravity constant m/s2

iA Rear axle transmission ratio –

iT Gearbox transmission ratio –

m Vehicle mass kg

rstat Static rear tire radius m

ηT Gearbox efficiency –

%air Air density kg/m3

Table 5.14: Car specific parameters of the truck model.

Name Description Unit

Qstart Initially consumed fuel l

s f Track length m

vstart Initial velocity m/s

vdes(·) Desired velocity profile m/s

vtrack(·) Maximum velocity profile (law and curvature) m/s

γ(·) Road’s slope rad

Table 5.15: Scenario specific parameters of the truck model.

with a truck-dependent function of the engine speed on the right-hand side. The same holds
for the engine braking torque

MEB(s,µ(s))¶ Mmax
brk

�
neng(s,µ(s))

�
,

which is also limited depending on the engine speed.

To protect the engine, we also give constant limitations on the minimum and maximum
engine speeds

nmin
eng ¶ neng(s,µ(s))¶ nmax

eng .

The aforementioned constraints are dependent on the current gear choice and hence will

174

N U M E R I C A L R E S U LT S
�� CHAPTER 5

have to be modeled in a disjunction.

Additional path constraints are due to track properties, e.g. the legal speed limits can be
taken into account or sharp bends of the road, which the truck can only pass at a certain
velocity:

v(s)¶ vtrack(s).

Objective criteria

There are different objective criteria that shall be optimized. We have two important criteria
and one lesser important ones. The first criterion is the tracking problem, i.e., the deviation
from a given velocity profile vdes is to be minimized

Φdev
def
=

∫ s f

0

�
v(s)− vdes(s)

�2 ds. (5.26)

This is a LAGRANGE functional but could be reformulated into a MAYER functional as explained
in Section 2.1. This criterion also models a desired arrival time at the destination point.

The second important criterion is the aggregated fuel consumption after the complete trip

Φfuel
def
=Q(s f) =

∫ s f

0

1

v(s)
Qfuel

�
neng(s,µ(s)), Mind(s)

�
ds. (5.27)

The lesser important one is the driving comfort, which is modeled through the change in
acceleration and braking torques, i.e.,

Φcomf
def
=

∫ s f

0

Ṁ2
ind(s) + Ṁ2

brk(s) ds. (5.28)

There are different ways to handle this situation of multiple objective functions. The most
natural one is to weight the different criteria against each other. The objective becomes

minΦ
def
= λdevΦdev+λfuelΦfuel+λcomfΦcomf. (5.29)

However, this involves a choice for the weights λ. Due to the higher importance of the first
two criteria, their weights would be set comparably larger than λcomf. The other two could
be adjusted by needs, e.g. if the arrival time is the critical part, then λdev would be set higher.
Whereas, if the arrival time is not that important, minimizing the fuel consumption might be
more interesting.

A much more time consuming variant would be to compute the PARETO front, i.e., the surface
that contains the optimal solutions for all possible combinations of the weights respecting an

175

CHAPTER 5
�� N U M E R I C A L R E S U LT S

additional normalizing constraint, e.g.

λdev+λfuel+λcomf = 1.

The PARETO front has been studied for a driving car example in an OC setting of the disjunc-
tion in [125]. Our main goal here is to study the effects of the chosen relaxation and not
to correctly calibrate a real-world application. Therefore, we study only one setting of the
weights for each scenario.

Complete formulation

We arrive at a complete model for the operation of a heavy-duty truck. The model in disjunc-
tive form is

min λdevΦdev+λfuelΦfuel+λcomfΦcomf (5.30)

s. t.
∨

1≤i≤nµ

µ(s) = i

v̇(s) =
1

m v(s)
�

Mint(s,µ(s)) +Mext(s)
�

Q̇(s) =
1

v(s)
Qfuel

�
neng(s,µ(s)), Mind(s)

�

neng(s,µ(s)) =
iA iT(µ(s))
2 π rstat

60 v(s)

Mint(s,µ(s)) =
iA

rstat

�
Macc(s,µ(s))−Mbrk(s,µ(s))

�

Mbrk(s,µ(s)) = MEB(s) + iT(µ(s)) Mfric

�
neng(s,µ(s))

�

Macc(s,µ(s)) = iT(µ(s)) ηT(µ(s)) Mind(s)

Mind(s,µ(s)) ∈
�

0, Mmax
ind

�
neng(s,µ(s))

��

MEB(s,µ(s)) ∈
�

0, Mmax
brk

�
neng(s,µ(s))

��

neng(s,µ(s)) ∈
h

nmin
eng , nmax

eng

i

, (5.31)

Mext(s) =−Mair(s)−Mroad(s),

Mair(s) =
1

2
cw A%air v2(s),

Mroad(s) = m g
�
sinγ(s) + fr cosγ(s)

�
,

v(s) ∈ �0, vtrack(s)
�

, s ∈ [0, s f],

Φdev =

∫ s f

0

�
v(s)− vdes(s)

�2 ds,

Φfuel =Q(s f),

176

N U M E R I C A L R E S U LT S
�� CHAPTER 5

Φcomf =

∫ s f

0

Ṁ2
ind+ Ṁ2

brk ds,

v(0) = vstart,

Q(0) =Qstart.

Example truck realization

The formulations were given as a general description, which would fit most cars and trucks.
Here, we specify the parameters and functions for one special truck with nµ = 16 gears, which
we then examine with the relaxation techniques described in Section 3.4. We compare the
results for different scenarios in Section 5.4.3.

The truck-specific functions that define the engine characteristics – the internal engine friction
torque Mfric(neng(s,µ(s))), the maximally indicated engine torque Mmax

ind (neng(s,µ(s))) and the
fuel consumption rate Qfuel(neng(s,µ(s)), Mind(s)) – are displayed in Figure 5.13, whereas
Mmax

brk is set to be constant. They are specified as

Mfric(neng(s,µ(s)))
def
= cfric,2n2

eng(s,µ(s)) + cfric,1neng(s,µ(s)) + cfric,0,

Mmax
ind (neng(s,µ(s)))

def
= Mmax

ind − cind

�
neng(s,µ(s))− nbest

eng

�2
,

Mmax
brk (neng(s,µ(s)))

def
= Mmax

brk ,

Qfuel(neng(s,µ(s)), Mind(s))
def
= cfuel,0+ cfuel,1 n2

eng(s,µ(s))

+ cfuel,2 neng(s,µ(s)) Mind(s) + cfuel,3 M2
ind(s),

where the engine speed nbest
eng allows the maximum torque and different truck-specific param-

eters c are added.

The concrete truck-specific parameter values are given at the MIOCP benchmark library
MINTOC.DE, described in [151, 155].

5.4.2 Formulation of problem relaxations

We want to apply a direct method to the truck problem and hence discretize the controls
and states of the system (5.30). The controls are discretized with nc piecewise constant
functions, such that on each discretization interval, only one variable is needed per control.
The differential states are discretized with a collocation approach in ns intervals, where the
different points are connected via an implicit EULER integration scheme. We choose the state
discretization to be a refinement of the control discretization, i.e., ns = l nc with l ∈ N. The
grids are chosen to be equidistant with step lengths hc and hs =

hc

l
, respectively. The tracking

integral Φfuel and the comfort integral Φcomf in the objective are discretized with the composite
trapezoidal rule. The derivatives Ṁind and Ṁind are only needed for the objective contribution

177

CHAPTER 5
�� N U M E R I C A L R E S U LT S

(a) Maximum indicated engine torque Mind,max as a
function of the engine speed neng.

neng [1/min]

M
in

d,
m

ax
[N

m
]

600 1000 1400 1800
0

500

1000

1500

2000

2500

3000

(b) Engine friction Mfric reduces torque depending on
engine speed neng.

neng [1/min]

M
fr

ic
[N

m
]

600 1000 1400 1800
100

150

200

250

300

350

(c) Fuel consumption Qfuel depending on the current engine speed neng and the indicated
engine torque Mind.

neng [1/min]Mind [Nm]

Q
fu

el
[l
/s
]

0.005 0.01 0.015 0.02 0.025

600
1000

1400
1800

0
1000

2000
3000

0

0

0.02

0.02

0.04

Figure 5.13: Truck engine characteristics for computational example.

and are hence approximated with finite differences. The path and control constraints are
enforced only on the control grid’s points.

We obtain the discretized formulation

min λdevΦdev+λfuelΦfuel+λcomfΦcomf (5.32)

178

N U M E R I C A L R E S U LT S
�� CHAPTER 5

s. t.
∨

1≤i≤nµ

µk = i

vk, j+1 = vk, j + hs

Mint,k, j+1+Mext,k, j+1

m vk, j+1
, 0¶ j ¶ l − 1,

Qk, j+1 =Qk, j + hs

Qfuel

�
neng,k, j+1, Mind,k

�

vk, j+1
, 0¶ j ¶ l − 1,

neng,k, j =
iA iT(µk)
2 π rstat

60 vk, j, 0¶ j ¶ l,

Mint,k, j =
iA

rstat

�
Macc,k −Mbrk,k, j

�
, 0¶ j ¶ l,

Mbrk,k, j = MEB,k + iT(µk) Mfric

�
neng,k, j+1

�
, 0¶ j ¶ l,

Macc,k = iT(µk) ηT(µk) Mind,k,

Mind,k ∈
�

0, Mmax
ind

�
neng,k,0

��
,

neng,k,0 ∈
h

nmin
eng , nmax

eng

i
,

,

0¶ k ¶ nc,

vk,l = vk+1,0 0¶ k ¶ nc − 1,

Qk,l =Qk+1,0 0¶ k ¶ nc − 1,

Mext,k, j =−Mair,k, j −Mroad,k, 0¶ j ¶ n, 0¶ k ¶ nc,

Mair,k, j =
1

2
cw A%air v2

k, j, 0¶ j ¶ l, 0¶ k ¶ nc,

Mroad,k = m g
�
sinγk + fr cosγk

�
, 0¶ k ¶ nc,

MEB,k ∈
�

0, Mmax
brk

�
, 0¶ k ¶ nc,

vk,0 ∈
�

0, vtrack,k

�
, 0¶ k ¶ nc,

v0,0 = vstart,

Q0,0 =Qstart.

We apply various of the approaches presented in Sections 3.5–3.9. In all approaches, new
binary variables ωk,i are introduced with the meaning

ωk,i =

1, if µk = i,

0, else.

For all formulations, the relaxations of these binary variables to [0,1] are examined and
compared. The discretized formulation already uses a constant Mmax

brk .

179

CHAPTER 5
�� N U M E R I C A L R E S U LT S

Inner Convexification

The IC approach was described in Section 3.5. Here, it replaces any occurrence of a gear-
dependent parameter (the ratios iT(µ) and ηT(µ)) with the functions ĩT(ωk) and η̃T(ωk),
which are a convex combination of the possible choices in combination with the newly intro-
duced gear choice variables (0¶ k ¶ nc):

ĩT(ωk)
def
=

nµ∑
l=1

iT(l)ωk,l ,

η̃T(ωk)
def
=

nµ∑
l=1

ηT(l)ωk,l .

(5.33)

Thereby, the disjuncts are aggregated into one set of constraints.

Outer Convexification

The OC approach was described in Section 3.6. Here, it replaces any discretization of an ODE
with the convex combination of right-hand sides, where the gear choice is fixed. This results
in the ODE system with 0¶ k ¶ nc and 0¶ j ¶ l − 1:

vk, j+1 = vk, j +
hs

m vk, j+1

 nµ∑
i=1

Mint,k, j+1,i +Mext,k, j+1

!
ωk,i,

Qk, j+1 =Qk, j +
hs

vk, j+1

nµ∑
i=1

Qfuel

�
neng,k, j+1,i, Mind,k

�
ωk,i,

(5.34)

where the auxiliary terms are defined as

neng,k, j,i =
iA iT(i)
2 π rstat

60 vk, j,

Mint,k, j,i =
iA

rstat

�
Macc,k,i −Mbrk,k, j,i

�
,

Mbrk,k, j,i = MEB,k + iT(i) Mfric

�
neng,k, j,i

�
,

Macc,k,i = iT(i) ηT(i) Mind,k.

(5.35)

The path and control constraints are also aggregated by usage of the convex combination:

Mind,k ∈

0,

nµ∑
i=1

Mmax
ind

�
neng,k,0,i

�
ωk,i

 ,

nµ∑
i=1

neng,k,0,i ωk,i ∈
h

nmin
eng , nmax

eng

i
.

(5.36)

180

N U M E R I C A L R E S U LT S
�� CHAPTER 5

Big-M formulation

The Big-M constraint approach was described in Section 3.7. We can only relax the con-
straint formulation with this approach since we do not want to reformulate the ODEs to two
inequalities, which are then relaxed, but we want to remain tight in the ODE sense. The
ODE is reformulated with the OC approach (5.34), (5.35). The bounds on the engine speeds
are derived from the linear dependence between engine speed and the gear’s transmission
ratio iT(i) and the maximum transmission ratio iT(1) and minimum transmission ratio iT(nµ).
The bound on the indicated engine torque is simply the constant offset of the corresponding
nonlinear function, since the quadratic part has the upper bound 0. The derived bounds that
hold for all gears and that represent the Big-Ms in this case are

neng,k,0,i ¾ nmin
eng

iT(i)
iT(1)

,

neng,k,0,i ¶ nmax
eng

iT(i)
iT(nµ)

,

Mind,k ¶ Mmax
ind .

With these constants, the constraints are reformulated for 0¶ k ¶ nc and 1≤ i ≤ nµ to be:

Mind,k ¾ 0,

Mind,k ¶ Mmax
ind −ωk,i cind

�
neng,k,0,i − nbest

eng

�2
,

neng,k,0,i ¾ nmin
eng

iT(i)
iT(1)

+ωk,i

�
nmin

eng − nmin
eng

iT(i)
iT(1)

�
,

neng,k,0,i ¶ nmax
eng

iT(i)
iT(nµ)

+ωk,i

�
nmax

eng − nmax
eng

iT(i)
iT(nµ)

�
.

(5.37)

Vanishing constraints

The vanishing constraint approach was described in Section 3.8. As already described there,
using a complementarity formulation for the ODE system produces nonlinear problems, which
are very difficult to solve, and we had no solver at hand that could handle the arising systems.
Therefore, the ODEs of the disjunctions are handled with the OC technique, the corresponding
equations are (5.34), (5.35). The disjunctions’ path and control constraints are reformulated
with the vanishing constraint technique to be

�
Mmax

ind −Mind,k

�
neng,k,0,i

��
ωk,i ¾ 0,�

nmax
eng − neng,k,0,i

�
ωk,i ¾ 0,

�
neng,k,0,i − nmin

eng

�
ωk,i ¾ 0.

(5.38)

181

CHAPTER 5
�� N U M E R I C A L R E S U LT S

As this formulation has special numerical disadvantages, standard solvers cannot be expected
to solve the problem, which can also be seen for this formulation. IPOPT’s barrier method
directly cuts off the lower arc of the vanishing constraints and hence cannot find a feasible
solution. Therefore, a relaxed formulation and an additionally smoothed formulation are also
tested. The relaxed formulation is given with a relaxation parameter ε > 0 to be

�
Mmax

ind −Mind,k

�
neng,k,0,i

��
ωk,i ¾−ε,�

nmax
eng − neng,k,0,i

�
ωk,i ¾−ε,�

neng,k,0,i − nmin
eng

�
ωk,i ¾−ε.

(5.39)

The smoothed variant is with the smoothing and relaxing parameter ε > 0

ϕVC
ε

�
Mmax

ind

�
neng,k,0,i

�
−Mind,k,ωk,i

�
¾−ε,

ϕVC
ε

�
nmax

eng − neng,k,0,i,ωk,i

�
¾−ε,

ϕVC
ε

�
neng,k,0,i − nmin

eng ,ωk,i

�
¾−ε,

(5.40)

with the NCP function

ϕVC
ε (a, b)

def
=

1

2

�p
a2 b2+ ε2− ab+

p
b2+ ε2− b

�
,

which also gives favorable theoretical results.

Both methods need to drive ε↘ 0 and hence are employed in the homotopy Algorithm 5.2.

Algorithm 5.2: Homotopy method for problems with constraints (5.39) or (5.40).
Data: problem formulation and initial point
Result: solution σ∗ of problem that satisfies constraints (5.39) or (5.40) with ε ¶ 10−4

δ = 3
5
, ε∗ = 105, set σ∗ to initial point,

while ε∗ > 10−4 do
ε = δε∗

solve the problem corresponding to ε starting from last solution σ∗

if terminal point infeasible, or cannot restore feasibility of the initial point then
δ = 8

5
δ

else
store solution as σ∗, ε∗ = ε, δ = 5

6
δ.

end
end

182

N U M E R I C A L R E S U LT S
�� CHAPTER 5

Perspective formulation

The perspective function approach is described in Section 3.9. It can be applied to both the
ODE system and the constraints. All states and controls that are present in the disjunction
are duplicated for each disjunct. The original variables are replaced by their sums and the
formulation has to ensure that all variables belonging to one disjunct are driven to zero in
linear dependence on the corresponding binary variableωk,i. We introduce the lifted versions
of the states v, Q with three indices and their aggregated formulation on the control grid with
one index only, which are needed to properly describe the objective. The lifted controls Mind,
Mbrk have two indices whereas their aggregated versions have only one. The other variables
are auxiliary variables and are adjusted according to the needs. Notice that all constraints of
the disjunction were reformulated with perspective functions and the integrality condition is
already relaxed for ω.

min λdevΦdev+λfuelΦfuel+λcomfΦcomf (5.41)

s. t. vk, j+1,i = vk, j,i +
hs

m vk, j+1,i

�
Mint,k, j+1,i +Mext,k, j+1,i

�
ωk,i,

Qk, j+1,i =Qk, j,i +
hs

vk, j+1,i
Qfuel

�
neng,k, j+1,i

ωk,i
,

Mind,k,i

ωk,i

�
ω2

k,i,

0¶ j ¶ l − 1,0¶ k ¶ nc, 1¶ i ¶ nµ,

neng,k, j,i =
iA iT(i)
2 π rstat

60 vk, j,i,

Mint,k, j,i =
iA

rstat

�
Macc,k,i −Mbrk,k, j,i

�
,

Mbrk,k, j,i = MEB,k,i + iT(i) Mfric

�
neng,k, j+1,i

ωk,i

�
ωk,i,

Mext,k, j,i =−Mair,k, j,i −Mroad,k,i,

Mair,k, j,i =
1

2
cw A%air v2

k, j,i,

neng,k, j,i ∈
h

nmin
eng , nmax

eng

i
ωk,i,

vk, j,i ∈
�

0, vtrack,k

�
ωk,i,

0¶ j ¶ l, 0¶ k ¶ nc, 1¶ i ¶ nµ,

Macc,k,i = iT(i) ηT(i) Mind,k,i,

Mroad,k,i = m g
�
sinγk + fr cosγk

�
ωk,i,

Mind,k,i ∈
�

0, Mmax
ind

�
neng,k,0,i

ωk,i

��
ωk,i,

183

CHAPTER 5
�� N U M E R I C A L R E S U LT S

MEB,k,i ∈
�

0, Mmax
brk

�
ωk,i,

ωk,i ∈ [0, 1],

0¶ k ¶ nc, 1¶ i ¶ nµ,

Mind,k =
nµ∑

i=1

Mind,k,i,

Mbrk,k =
nµ∑

i=1

Mbrk,k,i,

vk =
nµ∑

i=1

vk,0,i,

Qk =
nµ∑

i=1

Qk,0,i,

1=
nµ∑

i=1

ωk,i,

0¶ k ¶ nc,

vk+1 =
nµ∑

i=1

vk,l,i, 0¶ k ¶ nc − 1,

Qk+1 =
nµ∑

i=1

Qk,l,i, 0¶ k ¶ nc − 1,

v0 = vstart,

Q0 =Qstart, .

The formulation is numerically instable if vk, j+1,i = 0 since there is a division by this term
in both ODEs. For the other models this does not happen, since a velocity of 0 will usually
not be desired. However, for the non-active disjuncts, the lifted variables are all set to 0 and
hence the division 0

0
will happen in this model. The divisor vk, j+1,i is replaced in the ODE

discretization with (1− ε) vk, j,i + ε to circumvent this behavior.

This formulation is still numerically instable due to the division by 0 if ωk,i = 0. To circum-
vent this behavior, the 0-corrected formulation (3.28) has been applied in the computational
model.

The results are also not very promising since the relaxation seems to give too much freedom
to the optimizer, we hence also formulated two tightened versions of this formulation:

The first tightened version reformulates the problem such that only the truly necessary parts
of the problem are lifted. With the notation as in Chapter 3, it is formulated to be in abstract

184

N U M E R I C A L R E S U LT S
�� CHAPTER 5

form

min
x (·),u(·),ω(·)

Φ(x (tf))

s. t. ẋ (t) = fdisj(t) + findep(t, x (t), u(t)),

∨
1¶i¶nω

ωi(t) = 1

fdisj(t) = fdep(t, x (t), u(t), v i)

0¶ c(t, x (t), u(t), v i)

 ,

x (t) ∈ [mx , M x],

u(t) ∈ [mu , Mu],

ω(t) ∈ {0, 1}nω , t ∈ [t0, tf],

where the right-hand side is decomposed into a mode-dependent part and a mode-indepen-
dent part f (·) = fdep(·) + findep(·). The dependent part is temporarily treated as if it was
neither dependent on the states nor on the controls. Now, the perspective relaxation is applied
to this problem and we obtain

min
x (·),u(·),ω(·)

Φ(x (tf)) (5.42)

s. t. ẋ (t) = fdisj(t) + findep(t, x (t), u(t)),

f i
disj(t) = fdep

�
t,

x i(t)
ωi(t)

,
u i(t)
ωi(t)

, v i

�
ωi(t),

0¶ c

�
t,

x i(t)
ωi(t)

,
u i(t)
ωi(t)

, v i

�
ωi(t),

1=
nω∑
i=1

ωi(t),

fdisj(t) =
nω∑
i=1

f i
disj(t), (5.43)

x (t) =
nω∑
i=1

x i(t),

x i(t) ∈ [mx , M x]ωi(t),

u(t) =
nω∑
i=1

u i(t),

u i(t) ∈ [mu , Mu]ωi(t),

ω(t) ∈ [0,1]nω , t ∈ [t0, tf],

The states and controls that need to be lifted are only those that occur in either c(·) or fdep(·).

185

CHAPTER 5
�� N U M E R I C A L R E S U LT S

Eliminating the auxiliary term fdisj(t) through equation (5.43) directly aggregates the ODE
formulation to be similar to the OC technique. One difference lies in the dependent part,
here, the lifted variables occur. The main disparity to the OC formulation is in the constraints,
which are formulated with the lifted variables only instead of being aggregated. This version
of the problem is much easier to handle than the original perspective formulation but still
provides a quite weak relaxation as can be seen in the computational results.
The second reformulation is the tightened perspective formulation as described in Section 3.9.
It eliminates the lifted states with the constraint

x i(t) = x (t)ωi(t), t ∈ [t0, tf].

The result is similar to the vanishing constraint formulation of the constraints (5.38) with an
OC of the ODE (5.34). The single difference is that the controls are still lifted and their lifted
version appears in both the vanishing constraints as well as the right-hand side of the ODE:

ẋ (t) =
nω∑
i=1

ωi(t) f

�
t, x (t),

u i(t)
ωi(t)

, v i

�
,

0¶ωi(t) c

�
t, x (t),

u i(t)
ωi(t)

, v i

�
.

The vanishing constraints are smoothed as above, cf. system (5.40), and the same homotopy
method 5.2 is called to drive ε↘ 0.

5.4.3 Comparison of relaxations

All problems were solved with IPOPT v.3.11 invoked from AMPL v.20130327 using the HSL
linear algebra solvers. Most problems were run with the standard solver options, only the
perspective formulation (5.41) needed a larger amount of iterations in combination with a
slight modification of the initial parameters to converge for scenario 1. For the homotopy
methods, IPOPT warm start options were added.
The reference solutions were provided with a dynamic programming approach with a state
discretization of 0.001 [m/s] for the velocity and 20 [Nm] for the engine torques Mind and
MEB. The fuel consumption is solely dependent on the velocity and gear choices and hence is
not needed to be considered for the discretization. These solutions can be guaranteed to be
sufficiently close to the global, optimal solution of the problem.
The following nine problems described in the previous section were solved for both scenarios:

• IC of both the constraints and the ODE system,

• OC of both the constraints and the ODE system,

• Big-M formulation of the constraints with OC of the ODEs,

186

N U M E R I C A L R E S U LT S
�� CHAPTER 5

• relaxed vanishing constraints with OC of the ODE system,

• smoothed, relaxed vanishing constraints with OC of the ODEs,

• 0-corrected full perspective formulation,

• 0-corrected decomposed perspective formulation,

• tightened perspective formulation, i.e., smoothed, relaxed vanishing constraints with
OC of ODE and lifted controls,

• dynamic programming to provide global, optimal solutions.

We present numerical results for two selected scenarios in Figures 5.14–5.17. The track’s
height profile is shown on top, followed by nine plots of the relaxed (local) optimal solu-
tions identified by IPOPT for the described formulations and the global solution identified by
BUCHNER’s dynamic programming code, cf. [42].
We use four properties to analyze the formulations’ behavior, which are the objective function
value, the fractionality, the infeasibility and the computational time. The objective can be
used to describe the tightness of the relaxation. The fractionality property is defined to be the
average (over the different time steps) Manhattan norm difference from an integral point:

fractionality
def
=

nc−1∑
i=0

1

nc

nµ∑
j=1

�
0.5−

��yi, j − 0.5
��� .

The infeasibility property describes the average infeasibility with regard to the constraints
c(·) of the disjunction and is calculated using the vanishing constraint formulation (5.38). It
provides the weighted violation of the constraints for each gear, the ones for inactive modes
are set to 0 since their multipliers are 0. Here, aggregation effects – also called compensatory
effects – can be seen best. The vanishing constraint interpretation of the constraints also
enables feasible results after the usage of rounding strategies, which only round up nonzeros.
For each control interval, the summed infinity norm violations are averaged:

infeasibility
def
=

nc−1∑
k=0

1

3 nc

�
max

1¶i¶nµ

¦
yk,i

�
Mmax

ind

�
neng,k,0,i

�
−Mind,k

�©

+ max
1¶i¶nµ

n
yk,i

�
neng,k,0,i − nmin

eng

�o

+ max
1¶i¶nµ

n
yk,i

�
nmax

eng − neng,k,0,i

�o�
.

The scenarios are chosen such that the deviation of the velocity profile is prioritized during
optimization. The desired velocity is set to be constant 22 m/s. From both scenarios, a clear
picture emerges.

187

CHAPTER 5
�� N U M E R I C A L R E S U LT S

• IC favors fractional solutions but they are computed very fast. Yet, they are quite far
from satisfying the vanishing constraints. The solutions combine two gears to get a
maximum acceleration maintaining feasibility with regard to the aggregated constraints
– these aggregations allow compensatory effects to happen.

• OC is quite fast as well and and yields reasonable approximations, which also suffer
from compensatory effects but to a much lesser degree than IC.

• The Big-M formulation of constraints with OC of the ODE lies somewhere in between
the IC and OC with regard to the feasibility. However, it is farther away from integral
solutions and also provides a weaker relaxation than both previous formulations. Since
the computation times are comparable with OC, it is dominated by the OC formulation.

• The relaxed vanishing constraint formulation succeeds in yielding feasible solutions for
both scenarios. The fractionality is also very low. However, the effects of the non-
convexity of the problem can be seen here very well as the provided solution is only
a local solution. It is worse than the global solution found by dynamic programming.
The neglect of global solutions by the usage of local solvers – as e.g. IPOPT – removes
the relaxation property since only the global solution would provide a lower bound
to the problem. For the computational time, around half of it is spent to solve the
initial problem of the homotopy and the rest is spent driving ε ↘ 0 and re-solving the
warm-started problems. In comparison to the previously presented formulations, the
computational time is much higher.

• The relaxed and smoothed vanishing constraint formulation is quite comparable to the
relaxed one but suffers even more from being stuck in a local solution while ε↘ 0 and
hence needs longer to compute.

• The full perspective formulation seems to be a very weak relaxation for this problem.
The engine constraints can be satisfied while the highest and lowest gear are combined
to allow maximum acceleration while the lowest gear is used as much as needed to hit
the desired velocity profile.

• The slightly tighter decomposed variant of the perspective formulation provides a solu-
tion that looks much better, but is still inferior in all aspects to the OC formulation.

• The tightened perspective formulation needs much more computational time than the
other problems described so far. However, it provides the solution that is – with regard
to the integral variables – the closest one to the optimal solution. As the other for-
mulation with vanishing constraints, also this formulation succeeds in finding a locally
optimal feasible point in one case. In the other case, it is a proper relaxation. The infea-
sibility is due to the additional freedom of having lifted the controls. Their aggregation
does not necessarily fulfill the constraints anymore.

188

N U M E R I C A L R E S U LT S
�� CHAPTER 5

• Dynamic programming provides a global, optimal solution. However, the computa-
tional effort is several orders of magnitude higher than the effort spent to calculate the
relaxations’ solutions, locally.

5.4.4 Conclusions

We implemented the different relaxed formulations from Chapter 3 for MIOCPs and compared
them for a truck cruise control problem in two different scenarios. The different sizes and
complexities of the resulting problems let the computational times for the relaxations differ
by a wide margin. The longer solution times do not necessarily lead to stronger solutions but
may be a result of the large problem dimensions as for the full perspective approach. The
high number of disjuncts (16) makes the full perspective formulation too lenient as well as
too demanding.
The approach that gives the closest solutions to the optimal one is the tightened perspective
formulation, which essentially unifies the best options in using the OC technique for the ODE
while using vanishing constraints for the disjunctions’ constraints and lifting the controls to
be able to correctly use each single system mode. However, it takes a lot of time to compute
due to the usage of smoothed vanishing constraints inside a homotopy algorithm while lifting
the controls into a higher dimension and thereby enlarging the formulation.
The solution approaches for the other vanishing constraint formulations have problems over-
coming the non-convexity of the formulation. Therefore, they are no true relaxations in this
case. However, they provide integral or almost integral solutions, which are quite close to the
optimal solution. Like the tightened perspective, these solutions take quite long to compute.
The remaining formulations have some strong disadvantages as to attracting fractional and
infeasible solutions with regard to the disjunctions’ constraints. However, their computational
times are much smaller and the OC approach seems to do the best with regard to those two
disadvantageous properties.

189

CHAPTER 5
�� N U M E R I C A L R E S U LT S

Scenario 1

λfuel = 25

λdev = 1

λcomf = 1
-10

0

10

20

30

40

50

60

70

5 10 15 20 25 30 35 40

T
ra

c
k
 e

le
v
a

ti
o

n
 [

m
]

Interval

Inner Convexification

Constraints (5.33)

Objective 54389

Fractionality 0.18

Infeasibility 5.8e+02

Runtime 1.68 sec

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Outer Convexification

Constraints (5.34),(5.35),(5.36)

Objective 58749.4

Fractionality 0.4

Infeasibility 1.8

Runtime 8.68 sec

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Big-M

Constraints (5.34),(5.35),(5.37)

Objective 53235.4

Fractionality 0.68

Infeasibility 46

Runtime 9.04 sec
G

e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Relaxed Vanishing Constraints

Constraints (5.34),(5.35),(5.39)

Objective 63807.6

Fractionality 0.0095

Infeasibility 1.6e−05

Runtime 35.4 sec

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Figure 5.14: Relaxed gear choices y (reflected by the intensity of gray) and corresponding velocities v
for scenario 1.

190

N U M E R I C A L R E S U LT S
�� CHAPTER 5

Smoothed Vanishing Constraints

Constraints (5.34),(5.35),(5.40)

Objective 68268.3

Fractionality 0.044

Infeasibility 0

Runtime 83.3 sec

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Full perspective

Constraints (5.41)

Objective 1384.16

Fractionality 0.35

Infeasibility 3.4e+03

Runtime 50.4 sec

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Decomposed perspective

Constraints (5.42)

Objective 50794.7

Fractionality 0.679503

Infeasibility 9.5e+03

Runtime 12.4 sec

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Tightened perspective

Constraints (5.34),(5.35),(5.40)

with lifted controls

Objective 59102

Fractionality 0.35

Infeasibility 1.6

Runtime 318 sec
G

e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Dynamic programming

Constraints integer formulation

Objective 58703.7

Fractionality 0

Infeasibility 0

Runtime ∼ 4 days

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Figure 5.15: Relaxed gear choices y (reflected by the intensity of gray) and corresponding velocities v
for scenario 1.

191

CHAPTER 5
�� N U M E R I C A L R E S U LT S

Scenario 2

λfuel = 10

λdev = 100

λcomf = 1
-10

0

10

20

30

40

50

60

70

5 10 15 20 25 30 35 40

T
ra

c
k
 e

le
v
a

ti
o

n
 [

m
]

Interval

Inner Convexification

Constraints (5.33)

Objective 3821850

Fractionality 0.31

Infeasibility 8.2e+02

Runtime 2.46 sec

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Outer Convexification

Constraints (5.34),(5.35),(5.36)

Objective 4054180

Fractionality 0.31

Infeasibility 6.7

Runtime 10.6 sec

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Big-M

Constraints (5.34),(5.35),(5.37)

Objective 3608030

Fractionality 0.73

Infeasibility 1.9e+02

Runtime 9.91 sec
G

e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Relaxed Vanishing Constraints

Constraints (5.34),(5.35),(5.39)

Objective 4111570

Fractionality 0

Infeasibility 1.5e−05

Runtime 53.7 sec

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Figure 5.16: Relaxed gear choices y (reflected by the intensity of gray) and corresponding velocities v
for scenario 2.

192

N U M E R I C A L R E S U LT S
�� CHAPTER 5

Smoothed Vanishing Constraints

Constraints (5.34),(5.35),(5.40)

Objective 4135250

Fractionality 0

Infeasibility 1e−06

Runtime 124 sec

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Full perspective

Constraints (5.41)

Objective 96291.4

Fractionality 0.87

Infeasibility 2.4e+03

Runtime 3358 sec

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Decomposed perspective

Constraints (5.42)

Objective 1592100

Fractionality 0.6

Infeasibility 4e+03

Runtime 124 sec

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Tightened perspective

Constraints (5.34),(5.35),(5.40)

with lifted controls

Objective 2100620

Fractionality 0.32

Infeasibility 1

Runtime 345 sec
G

e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Dynamic programming

Constraints integer formulation

Objective 4008200

Fractionality 0

Infeasibility 0

Runtime ∼ 3 days

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

G
e
a
r

c
h
o
ic

e
 α

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

V
e
lo

c
it
y
 v

 [
m

/s
]

Figure 5.17: Relaxed gear choices y (reflected by the intensity of gray) and corresponding velocities v
for scenario 2.

193

Bibliography

[1] P. ABICHANDANI, H. BENSON, AND M. KAM, Multi-vehicle path coordination under commu-
nication constraints, in American Control Conference, 2008, pp. 650–656.

[2] T. ACHTERBERG, T. KOCH, AND A. MARTIN, Branching rules revisited, Operations Research
Letters, 33 (2005), pp. 42–54.

[3] W. ACHTZIGER AND C. KANZOW, Mathematical programs with vanishing constraints: op-
timality conditions and constraint qualifications, Mathematical Programming Series A,
114 (2008), pp. 69–99.

[4] M. ALAMIR AND S. ATTIA, On solving optimal control problems for switched hybrid non-
linear systems by strong variations algorithms, in 6th IFAC Symposium, NOLCOS,
Stuttgart, Germany, 2004.

[5] J. ALBERSMEYER, Adjoint based algorithms and numerical methods for sensitivity gen-
eration and optimization of large scale dynamic systems, PhD thesis, Ruprecht-Karls-
Universität Heidelberg, 2010.

[6] J. ALBERSMEYER AND M. DIEHL, The Lifted Newton method and its application in opti-
mization, SIAM Journal on Optimization, 20 (2010), pp. 1655–1684.

[7] P. ANTSAKLIS AND X. KOUTSOUKOS, On hybrid control of complex systems: A survey. In 3rd
International Conference ADMP’98, Automation of Mixed Processes: Dynamic Hybrid
Systems, March 1998.

[8] S. ATTIA, M. ALAMIR, AND C. CANUDAS DE WIT, Sub optimal control of switched nonlinear
systems under location and switching constraints, in IFAC World Congress, 2005.

[9] E. BALAS AND M. PERREGAARD, Lift and project for mixed 0-1 programming: Recent
progress, tech. rep., MSRR No. 627, Graduate School of Industrial Administration,
Carnegie Mellon University, 1999.

[10] V. BÄR, Ein Kollokationsverfahren zur numerischen Lösung allgemeiner Mehrpunkt-
randwertaufgaben mit Schalt– und Sprungbedingungen mit Anwendungen in der op-
timalen Steuerung und der Parameteridentifizierung, Diploma thesis, Rheinische
Friedrich–Wilhelms–Universität zu Bonn, 1983.

195

BIBLIOGRAPHY

[11] R. BARTLETT, A. WÄCHTER, AND L. BIEGLER, Active set vs. interior point strategies for
model predicitve control, in Proceedings of the American Control Conference, Chicago,
IL, 2000, pp. 4229–4233.

[12] P. BARTON, The modelling and simulation of combined discrete/continuous processes, PhD
thesis, Department of Chemical Engineering, Imperial College of Science, Technology
and Medicine, London, 1992.

[13] I. BAUER, Numerische Verfahren zur Lösung von Anfangswertaufgaben und zur Gener-
ierung von ersten und zweiten Ableitungen mit Anwendungen bei Optimierungsaufgaben
in Chemie und Verfahrenstechnik, PhD thesis, Universität Heidelberg, 1999.

[14] B. BAUMRUCKER AND L. BIEGLER, MPEC strategies for optimization of a class of hybrid dy-
namic systems, Journal of Process Control, 19 (2009), pp. 1248–1256. Special Section
on Hybrid Systems: Modeling, Simulation and Optimization.

[15] D. BEIGEL, Efficient goal-oriented global error estimation for BDF-type methods using
discrete adjoints, PhD thesis, Universität Heidelberg, 2012.

[16] R. BELLMAN, Dynamic Programming, University Press, Princeton, N.J., 6th ed., 1957.
ISBN 0-486-42809-5.

[17] P. BELOTTI, C. KIRCHES, S. LEYFFER, J. LINDEROTH, J. LUEDTKE, AND A. MAHAJAN, Mixed-
integer nonlinear optimization, in Acta Numerica, A. Iserles, ed., vol. 22, Cambridge
University Press, 2013, pp. 1–131.

[18] A. BEMPORAD AND M. MORARI, Control of systems integrating logic, dynamics, and con-
straints, Automatica, 35 (1999), pp. 407–427.

[19] S. BENGEA AND R. DECARLO, Optimal control of switching systems, Automatica, 41
(2005), pp. 11–27.

[20] D. BERTSEKAS, Dynamic programming and optimal control, Volume 1, Athena Scientific,
Belmont, Mass., 3. ed., 2005.

[21] D. BERTSEKAS, Dynamic programming and optimal control, Volume 2, Athena Scientific,
Belmont, Mass., 4. ed., 2012.

[22] J. BETTS, Trajectory Optimization using Sparse Sequential Quadratic Programming,
vol. 111 of International Series of Numerical Mathematics, Birkhäuser Verlag, 1993,
pp. 115–128.

[23] , Practical Methods for Optimal Control Using Nonlinear Programming, SIAM,
Philadelphia, 2001.

196

BIBLIOGRAPHY

[24] J. BETTS AND W. HUFFMAN, Mesh refinement in direct transcription methods for optimal
control, Optimal Control Applications and Methods, 19 (1998), pp. 1–21.

[25] , Exploiting sparsity in the direct transcription method for optimal control, Compu-
tational Optimization and Applications, 14 (1999), pp. 179–201.

[26] L. BIEGLER, Solution of dynamic optimization problems by successive quadratic pro-
gramming and orthogonal collocation, Computers & Chemical Engineering, 8 (1984),
pp. 243–248.

[27] , Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Pro-
cesses, Series on Optimization, SIAM, 2010.

[28] H. BOCK, Numerical treatment of inverse problems in chemical reaction kinetics, in Mod-
elling of Chemical Reaction Systems, K. Ebert, P. Deuflhard, and W. Jäger, eds., vol. 18
of Springer Series in Chemical Physics, Springer, Heidelberg, 1981, pp. 102–125.

[29] , Recent advances in parameter identification techniques for ODE, in Numerical
Treatment of Inverse Problems in Differential and Integral Equations, P. Deuflhard and
E. Hairer, eds., Birkhäuser, Boston, 1983, pp. 95–121.

[30] , Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlin-
earer Differentialgleichungen, vol. 183 of Bonner Mathematische Schriften, Universität
Bonn, 1987.

[31] H. BOCK, T. CARRARO, W. JÄGER, S. KÖRKEL, R. RANNACHER, AND J. SCHLÖDER, eds.,
Model Based Parameter Estimation: Theory and Applications, vol. 4 of Contributions in
Mathematical and Computational Sciences, Springer, 2013.

[32] H. BOCK AND R. LONGMAN, Computation of optimal controls on disjoint control sets for
minimum energy subway operation, in Proceedings of the American Astronomical Soci-
ety. Symposium on Engineering Science and Mechanics, Taiwan, 1982.

[33] H. BOCK AND K. PLITT, A Multiple Shooting algorithm for direct solution of optimal control
problems, in Proceedings of the 9th IFAC World Congress, Budapest, 1984, Pergamon
Press, pp. 242–247.

[34] P. BONAMI, Lift-and-project cuts for mixed integer convex programs, in Proceedings of
IPCO 2011, O. Günlük and G. Woeginger, eds., vol. 6655 of Lecture Notes in Computer
Science, Berlin Heidelberg, 2011, Springer-Verlag, pp. 52–64.

[35] P. BONAMI, G. CORNUEJOLS, A. LODI, AND F. MARGOT, Feasibility pump for mixed integer
nonlinear programs, Mathematical Programming, 199 (2009), pp. 331–352.

197

BIBLIOGRAPHY

[36] P. BONAMI, M. KILINÇ, AND J. LINDEROTH, Algorithms and software for convex mixed inte-
ger nonlinear programs, in Mixed Integer Nonlinear Programming, J. Lee and S. Leyffer,
eds., vol. 154 of The IMA Volumes in Mathematics and its Applications, Springer New
York, 2012, pp. 1–39.

[37] P. BONAMI, J. LEE, S. LEYFFER, AND A. WÄCHTER, More branch-and-bound experiments in
convex nonlinear integer programming, Preprint ANL/MCS-P1949-0911, Mathematics
and Computer Science Division, Argonne National Laboratory, September 2011.

[38] U. BRANDT-POLLMANN, Numerical solution of optimal control problems with implicitly
defined discontinuities with applications in engineering, PhD thesis, Universität Heidel-
berg, 2004.

[39] M. BRANICKY, V. BORKAR, AND S. MITTER, A Unified Framework for Hybrid Control: Model
and Optimal Control, IEEE Transactions on Automatic Control, 43 (1999), pp. 31–45.

[40] K. BRENAN, S. CAMPBELL, AND L. PETZOLD, Numerical solution of initial-value problems in
differential-algebraic equations, SIAM, Philadelphia, 1996. Classics in Applied Mathe-
matics 14.

[41] A. BRYSON AND Y.-C. HO, Applied Optimal Control, Wiley, New York, 1975.

[42] A. BUCHNER, Auf Dynamischer Programmierung basierende nichtlineare modellprädik-
tive Regelung für LKW, Diploma thesis, Ruprecht-Karls-Universität Heidelberg, January
2010.

[43] J. BURGSCHWEIGER, B. GNÄDIG, AND M. STEINBACH, Optimization models for opera-
tive planning in drinking water networks, Optimization and Engineering, 10 (2008),
pp. 43–73.

[44] , Nonlinear programming techniques for operative planning in large drinking water
networks, The Open Applied Mathematics Journal, 3 (2009), pp. 1–16.

[45] C. BÜSKENS, Optimierungsmethoden und Sensitivitätsanalyse für optimale Steuerpro-
zesse mit Steuer- und Zustands-Beschränkungen, PhD thesis, Westfälische Wilhelms-
Universität Münster, 1998.

[46] S. CAMPBELL AND C. GEAR, The index of general nonlinear DAEs, Numerische Mathe-
matik, 72 (1995), pp. 173–196.

[47] G. CEMBRANO, J. QUEVEDO, M. SALAMERO, V. PUIG, J. FIGUERAS, AND J. MARTÍ, Opti-
mal control of urban drainage systems: a case study, Control Engineering Practice, 12
(2004), pp. 1–9.

198

BIBLIOGRAPHY

[48] S. CERIA AND J. SOARES, Convex programming for disjunctive convex optimization, Ma-
thematical Programming A, 86 (1999), pp. 595–614.

[49] B. CHEN AND P. HARKER, Smooth approximations to nonlinear complementarity problems,
SIAM Journal on Optimization, 7 (1997), pp. 403–420.

[50] Y. CHEN AND M. FLORIAN, The nonlinear bilevel programming problem: Formulations,
regularity, and optimality conditions, Optimization, 32 (1995), pp. 193–209.

[51] T. CHRISTOF AND A. LÖBEL, PORTA – POlyhedron Representation Transformation Algo-
rithm. http://www.zib.de/Optimization/Software/Porta/. PORTA Homepage.

[52] T. CHRISTOF AND G. REINELT, Combinatorial optimization and small polytopes, TOP, 4
(1996), pp. 1 – 53.

[53] B. COLSON, P. MARCOTTE, AND G. SAVARD, Bilevel programming: A survey, A Quarterly
Journal of Operations Research, 3 (2005), pp. 87–107.

[54] S. DEMPE, Foundations of Bilevel Programming, Kluwer Academic Publishers, 2002.

[55] M. DIEHL, Real-Time Optimization for Large Scale Nonlinear Processes, vol. 920 of
Fortschritt-Berichte VDI Reihe 8, Meß-, Steuerungs- und Regelungstechnik, VDI Verlag,
Düsseldorf, 2002.

[56] B. DURAN, M. JUNG, C. OCAMPO-MARTINEZ, S. SAGER, AND G. CEMBRANOA, Minimization
of sewage network overflow. Accepted in Water Resources Management, 2013.

[57] M. DURAN AND I. GROSSMANN, An outer-approximation algorithm for a class of mixed-
integer nonlinear programs, Mathematical Programming, 36 (1986), pp. 307–339.

[58] M. EGERSTEDT, Y. WARDI, AND H. AXELSSON, Transition-time optimization for switched-
mode dynamical systems, IEEE Transactions on Automatic Control, 51 (2006), pp. 110–
115.

[59] M. ENGELHART, J. FUNKE, AND S. SAGER, A decomposition approach for a new test-scenario
in complex problem solving, Journal of Computational Science, 4 (2013), pp. 245–254.

[60] F. FACCHINEI, H. JIANG, AND L. QI, A smoothing method for mathematical programs with
equilibrium constraints, Mathematical Programming, 85 (1999), pp. 107–134.

[61] W. FEEHERY, J. TOLSMA, AND P. BARTON, Efficient sensitivity analysis of large-scale
differential-algebraic systems, Applied Numerical Mathematics, 25 (1997), pp. 41–54.

[62] E. FEHLBERG, Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit
Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme, Computing,
6 (1970), pp. 61–71.

199

http://www.zib.de/Optimization/Software/Porta/

BIBLIOGRAPHY

[63] M. FERRIS AND C. KANZOW, Complementarity and related problems: A survey, Mathema-
tical Programming Technical Report 98–17, Department of Computer Science, Univer-
sity of Wisconsin–Madison, November 1998.

[64] R. FLETCHER, S. LEYFFER, D. RALPH, AND S. SCHOLTES, Local convergence of SQP methods
for mathematical programs with equilibrium constraints, SIAM Journal on Optimiza-
tion, 17 (2006), pp. 259 – 286.

[65] C. FLOUDAS, Nonlinear and Mixed-Integer Optimization - Fundamentals and Applications,
Topics in Chemical Engineering, University Press, Oxford, 1995.

[66] C. FLOUDAS AND C. GOUNARIS, A review of recent advances in global optimization, Journal
of Global Optimum, 45 (2009), pp. 3–38.

[67] J. FORREST AND J. TOMLIN, Branch and bound, integer, and non-integer programming,
Annals of Operations Research, 149 (2007), pp. 81–87.

[68] A. FÜGENSCHUH, M. HERTY, A. KLAR, AND A. MARTIN, Combinatorial and continuous
models for the optimization of traffic flows on networks, SIAM Journal on Optimization,
16 (2006), pp. 1155–1176.

[69] A. FULLER, Study of an optimum nonlinear control system, Journal of Electronics and
Control, 15 (1963), pp. 63–71.

[70] M. GELORMINO AND N. RICKER, Model-predictive control of a combined sewer system,
International Journal of Control, 59 (1994), pp. 793–816.

[71] A. GEOFFRION, Duality in nonlinear programming: A simplified applications-oriented
development, SIAM Review, 13 (1971), pp. 1–37.

[72] , Generalized Benders decomposition, Journal of Optimization Theory and Appli-
cations, 10 (1972), pp. 237–260.

[73] , Approaches to integer programming, North-Holland Pub Co, 1974, ch. La-
grangean Relaxation for Integer Programming, pp. 82–114.

[74] M. GERDTS, Numerische Methoden optimaler Steuerprozesse mit differential-
algebraischen Gleichungssystemen höheren Indexes und ihre Anwendungen in der Kraft-
fahrzeugsimulation und Mechanik, PhD thesis, Universität Bayreuth, 2001.

[75] , Direct shooting method for the numerical solution of higher index dae optimal con-
trol problems, Journal of Optimization Theory and Applications, 117 (2003), pp. 267–
294.

200

BIBLIOGRAPHY

[76] , Solving mixed-integer optimal control problems by Branch&Bound: A case study
from automobile test-driving with gear shift, Optimal Control Applications and Methods,
26 (2005), pp. 1–18.

[77] , Optimal Control of Ordinary Differential Equations and Differential-Algebraic
Equations, Habilitation, University of Bayreuth, 2006.

[78] , A variable time transformation method for mixed-integer optimal control problems,
Optimal Control Applications and Methods, 27 (2006), pp. 169–182.

[79] M. GERDTS AND S. SAGER, Mixed-integer DAE optimal control problems: Necessary condi-
tions and bounds, in Control and Optimization with Differential-Algebraic Constraints,
L. Biegler, S. Campbell, and V. Mehrmann, eds., SIAM, 2012, pp. 189–212.

[80] S. GÖTTLICH, M. HERTY, C. KIRCHNER, AND A. KLAR, Optimal control for continuous supply
network models, Networks and Heterogenous Media, 1 (2007), pp. 675–688.

[81] M. GRÄBER, Energieoptimale Regelung von Kälteprozessen, PhD thesis, Technische Uni-
versität Carolor-Wilhelmina zu Braunschweig, 2013.

[82] M. GRÄBER, C. KIRCHES, H. BOCK, J. SCHLÖDER, W. TEGETHOFF, AND J. KÖHLER, Determin-
ing the optimum cyclic operation of adsorption chillers by a direct method for periodic
optimal control, International Journal of Refrigeration, 34 (2011), pp. 902–913.

[83] A. GRIEWANK, Evaluating Derivatives, Principles and Techniques of Algorithmic Differen-
tiation, no. 19 in Frontiers in Applied Mathematics, SIAM, Philadelphia, 2000.

[84] I. GROSSMANN, Review of nonlinear mixed-integer and disjunctive programming tech-
niques, Optimization and Engineering, 3 (2002), pp. 227–252.

[85] I. GROSSMANN, P. AGUIRRE, AND M. BARTTFELD, Optimal synthesis of complex distilla-
tion columns using rigorous models, Computers & Chemical Engineering, 29 (2005),
pp. 1203–1215.

[86] I. GROSSMANN AND S. LEE, Generalized disjunctive programming: Nonlinear convex hull
relaxation and algorithms, Computational Optimization and Applications, 26 (2003),
pp. 83–100.

[87] I. GROSSMANN AND J. RUIZ, Generalized disjunctive programming: A framework for for-
mulation and alternative algorithms for MINLP optimization, in Mixed Integer Nonlin-
ear Programming, J. Lee and S. Leyffer, eds., vol. 154 of The IMA Volumes in Mathe-
matics and its Applications, Springer, 2012, ch. 4, pp. 93–116.

[88] O. GÜNLÜK AND J. LINDEROTH, Perspective reformulations of mixed integer nonlinear pro-
grams with indicator variables, Mathematical Programming B, 124 (2010), pp. 183–
205.

201

BIBLIOGRAPHY

[89] E. HAIRER, C. LUBICH, AND M. ROCHE, The numerical solution of differential-algebraic
systems by Runge-Kutta methods, no. 1409 in Lecture Notes in Mathematics, Springer,
Heidelberg, 1989.

[90] C. HARGRAVES AND S. PARIS, Direct trajectory optimization using nonlinear programming
and collocation, AIAA J. Guidance, 10 (1987), pp. 338–342.

[91] R. HARTL, S. SETHI, AND R. VICKSON, A survey of the maximum principles for optimal
control problems with state constraints, SIAM Review, 37 (1995), pp. 181–218.

[92] W. HEEMELS, B. DE SCHUTTER, AND A. BEMPORAD, Equivalence of hybrid dynamical mod-
els, Automatica, 37 (2001), pp. 1085–1091.

[93] E. HELLSTRÖM, M. IVARSSON, J. ASLUND, AND L. NIELSEN, Look-ahead control for heavy
trucks to minimize trip time and fuel consumption, Control Engineering Practice, 17
(2009), pp. 245–254.

[94] M. HESTENES, Calculus of variations and optimal control theory, Wiley, New York, 1966.

[95] H. HIJAZI, P. BONAMI, G. CORNUEJOLS, AND A. OUOROU, Mixed-integer nonlinear pro-
grams featuring “on/off” constraints, Computational Optimization and Applications,
52 (2009), pp. 537–558.

[96] T. HOHEISEL, Mathematical Programs with Vanishing Constraints, PhD thesis, Julius–
Maximilians–Universität Würzburg, July 2009.

[97] T. HOHEISEL, C. KANZOW, AND A. SCHWARTZ, Theoretical and numerical comparison of
relaxation methods for mathematical programs with complementarity constraints, Ma-
thematical Programming, 137 (2013), pp. 257–288.

[98] J. HOLTE, Discrete Gronwall Lemma, tech. rep., Gustavus Adolphus College, 2009.

[99] J. HOOKER, A principled approach to mixed integer/linear problem formulation, in Oper-
ations Research and Cyber-Infrastructure, J. Chinneck, B. Kristjansson, and M. Saltz-
man, eds., Springer, 2009, pp. 79–100.

[100] A. IZMAILOV AND M. SOLODOV, Mathematical programs with vanishing constraints: Opti-
mality conditions, sensitivity, and a relaxation method, Journal of Optimization Theory
and Applications, 142 (2009), pp. 501–532.

[101] H. JONGEN AND V. SHIKHMAN, Bilevel optimization: on the structure of the feasible set,
Mathematical Programming, 136 (2012), pp. 65–89.

[102] J. JÚDICE, H. SHERALI, I. RIBEIRO, AND A. FAUSTINO, Complementarity active-set algo-
rithm for mathematical programming problems with equilibrium constraints, Journal of
Optimization Theory and Applications, 134 (2007), pp. 467–481.

202

BIBLIOGRAPHY

[103] M. JUNG, C. KIRCHES, AND S. SAGER, On perspective functions and vanishing constraints
in mixed-integer nonlinear optimal control, in Facets of Combinatorial Optimization
– Festschrift for Martin Grötschel, M. Jünger and G. Reinelt, eds., Springer Berlin
Heidelberg, 2013, pp. 387–417.

[104] M. JUNG, G. REINELT, AND S. SAGER, The Lagrangian relaxation for the combinatorial
integral approximation problem, Optimization Online, 2 (2012). Submitted to Opti-
mization Methods and Software 2013.

[105] S. KAMESWARAN AND L. BIEGLER, Simultaneous dynamic optimization strategies: Recent
advances and challenges, Computers & Chemical Engineering, 30 (2006), pp. 1560–
1575.

[106] Y. KAWAJIRI AND L. BIEGLER, A nonlinear programming superstructure for optimal
dynamic operations of simulated moving bed processes, I&EC Research, 45 (2006),
pp. 8503–8513.

[107] C. KAYA AND J. NOAKES, A computational method for time-optimal control, Journal of
Optimization Theory and Applications, 117 (2003), pp. 69–92.

[108] A. KEHA, I. FARIAS JR., AND G. NEMHAUSER, Models for representing piecewise linear cost
functions, Operations Research Letters, 32 (2004), pp. 44–48.

[109] J. KELLEY, The cutting-plane method for solving convex programs, Journal of SIAM, 8
(1960), pp. 703–712.

[110] M. KILINÇ, J. LINDEROTH, AND J. LUEDTKE, Effective separation of disjunctive cuts for
convex mixed integer nonlinear programs, tech. rep., Computer Sciences Department,
University of Wisoncsin–Madison, 2010.

[111] C. KIRCHES, Fast Numerical Methods for Mixed-Integer Nonlinear Model-Predictive Con-
trol, Advances in Numerical Mathematics, Springer Vieweg, Wiesbaden, July 2011.

[112] C. KIRCHES, S. SAGER, H. BOCK, AND J. SCHLÖDER, Time-optimal control of automobile
test drives with gear shifts, Optimal Control Applications and Methods, 31 (2010),
pp. 137–153.

[113] P. KRÄMER-EIS, H. BOCK, R. LONGMAN, AND J. SCHLÖDER, Numerical determination of
optimal feedback control in nonlinear problems with state/control constraints, Advances
in the Astronautical Sciences, 105 (2000), pp. 53–71.

[114] M. KVASNICA, P. GRIEDER, AND M. BAOTIĆ, Multi-Parametric Toolbox (MPT). http://
control.ee.ethz.ch/~mpt/, 2004.

203

http://control.ee.ethz.ch/~mpt/
http://control.ee.ethz.ch/~mpt/

BIBLIOGRAPHY

[115] S. LEE AND I. GROSSMANN, New algorithms for nonlinear generalized disjunctive program-
ming, Computers and Chemical Engineering Journal, 24 (2000), pp. 2125–2141.

[116] D. LEINEWEBER, Efficient reduced SQP methods for the optimization of chemical processes
described by large sparse DAE models, vol. 613 of Fortschritt-Berichte VDI Reihe 3,
Verfahrenstechnik, VDI Verlag, Düsseldorf, 1999.

[117] D. LEINEWEBER, I. BAUER, H. BOCK, AND J. SCHLÖDER, An efficient multiple shooting based
reduced SQP strategy for large-scale dynamic process optimization. Part I: Theoretical
aspects, Computers & Chemical Engineering, 27 (2003), pp. 157–166.

[118] C. LEMARECHAL, Lagrangian relaxation, in Computational Combinatorial Optimization,
M. Jünger and D. Naddef, eds., vol. 2241 of Lecture Notes in Computer Science,
Springer, 2001, ch. 4, pp. 112–156.

[119] S. LEYFFER, Deterministic methods for mixed-integer nonlinear programming, PhD thesis,
University of Dundee, 1993.

[120] , The return of the active–set method, preprint ANL/MCS-P1277-0805, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA, February
2005.

[121] , Optimization with Multivalued Mappings, vol. 2, Springer, 2006, ch. Comple-
mentarity Constraints as Nonlinear Equations: Theory and Numerical Experiences,
pp. 169–208.

[122] S. LEYFFER, G. LÓPEZ-CALVA, AND J. NOCEDAL, Interior methods for mathematical pro-
grams with complementarity constraints, SIAM Journal on Optimization, 17 (2006),
pp. 52–77.

[123] Y. LIN AND M. STADTHERR, Deterministic global optimization of nonlinear dynamic sys-
tems, AIChE Journal, 53 (2007), pp. 866–875.

[124] J. LINDEROTH AND M. SAVELSBERGH, A computational study of branch and bound search
strategies for mixed integer programming, INFORMS Journal on Computing, 11 (1999),
pp. 173–187.

[125] F. LOGIST, S. SAGER, C. KIRCHES, AND J. VAN IMPE, Efficient multiple objective optimal
control of dynamic systems with integer controls, Journal of Process Control, 20 (2010),
pp. 810–822.

[126] K. MALANOWSKI, H. MAURER, AND S. PICKENHAIN, Second-order sufficient conditions for
state-constrained optimal control problems, Journal of Optimization Theory and Appli-
cations, 123 (2004), pp. 595–617.

204

BIBLIOGRAPHY

[127] M. MARINAKI AND M. PAPAGEORGIOU, Nonlinear optimal flow control for sewer networks,
Proceedings of the American Control Conference, 2 (1998), pp. 1289–1293.

[128] , Rolling-horizon optimal control of sewer networks, Proceedings of the IEEE Inter-
national Conference on Control Applications, 1 (2001), pp. 594–599.

[129] , Optimal Real-time Control of Sewer Networks, Springer, London, 2005.

[130] A. MARTIN, M. MÖLLER, AND S. MORITZ, Mixed integer models for the stationary case of
gas network optimization, Mathematical Programming, 105 (2006), pp. 563–582.

[131] H. MAURER, On optimal control problems with boundary state variables and control ap-
pearing linearly, SIAM Journal on Control and Optimization, 15 (1977), pp. 345–362.

[132] H. MAURER AND N. OSMOLOVSKII, Second order sufficient conditions for time-optimal
bang-bang control, SIAM Journal on Control and Optimization, 42 (2004), pp. 2239–
2263.

[133] G. NANNICINI AND P. BELOTTI, Rounding-based heuristics for nonconvex minlps, Mathe-
matical Programming Computation, 4 (2012), pp. 1–31.

[134] L. NEUSTADT, Optimization: A Theory of Necessary Conditions, Princeton University
Press, 1976.

[135] C. OCAMPO-MARTINEZ, Model predictive control of wastewater systems, Springer, 2011.

[136] C. OCAMPO-MARTINEZ AND V. PUIG, Piece-wise linear functions-based model predictive
control of large-scale sewage systems, IET Control Theory and Applications, 4 (2010),
pp. 1581–1593.

[137] J. OLDENBURG, Logic–based modeling and optimization of discrete–continuous dynamic
systems, vol. 830 of Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, VDI Verlag,
Düsseldorf, 2005.

[138] J. OLDENBURG AND W. MARQUARDT, Optimization of discrete-continuous dynamic systems
based on disjunctive programming, in GAMM Annual Meeting 2005, Luxembourg, Lux-
embourg, vol. 5, 2005, pp. 51–54.

[139] , Disjunctive modeling for optimal control of hybrid systems, Computers & Chemical
Engineering, 32 (2008), pp. 2346–2364.

[140] J. OLDENBURG, W. MARQUARDT, D. HEINZ, AND D. LEINEWEBER, Mixed logic dynamic
optimization applied to batch distillation process design, AIChE Journal, 49 (2003),
pp. 2900–2917.

205

BIBLIOGRAPHY

[141] H. PESCH AND R. BULIRSCH, The maximum principle, Bellman’s equation and
Caratheodory’s work, Journal of Optimization Theory and Applications, 80 (1994),
pp. 203–229.

[142] M. PLEAU, H. COLAS, P. LAVALLÉE, G. PELLETIER, AND R. BONIN, Global optimal real-time
control of the Quebec urban drainage system, Environmental Modelling and Software,
20 (2005), pp. 401–413.

[143] K. PLITT, Ein superlinear konvergentes Mehrzielverfahren zur direkten Berechnung
beschränkter optimaler Steuerungen, Diploma thesis, Rheinische Friedrich–Wilhelms–
Universität Bonn, 1981.

[144] L. PONTRYAGIN, V. BOLTYANSKI, R. GAMKRELIDZE, AND E. MISCENKO, The Mathematical
Theory of Optimal Processes, Wiley, Chichester, 1962.

[145] A. POTSCHKA, H. BOCK, AND J. SCHLÖDER, A minima tracking variant of semi-infinite pro-
gramming for the treatment of path constraints within direct solution of optimal control
problems, Optimization Methods and Software, 24 (2009), pp. 237–252.

[146] V. PUIG, G. CEMBRANO, J. ROMERA, J. QUEVEDO, B. AZNAR, G. RAMÓN, AND J. CABOT, Pre-
dictive optimal control of sewer networks using CORAL tool: application to Riera Blanca
catchment in Barcelona, Water Science and Technology, 60 (2009), pp. 869–878.

[147] I. QUESADA AND I. GROSSMANN, An LP/NLP based branch and bound algorithm for con-
vex MINLP optimization problems, Computers & Chemical Engineering, 16 (1992),
pp. 937–947.

[148] A. RAGHUNATHAN AND L. BIEGLER, Mathematical programs with equilibrium constraints
(MPECs) in process engineering, Computers & Chemical Engineering, 27 (2003),
pp. 1381–1392.

[149] A. RAGHUNATHAN, M. DIAZ, AND L. BIEGLER, An MPEC formulation for dynamic opti-
mization of distillation operations, Computers & Chemical Engineering, 28 (2004),
pp. 2037–2052.

[150] J. RUIZ AND I. GROSSMANN, Using convex nonlinear relaxations in the global optimization
of nonconvex generalized disjunctive programs, Computers & Chemical Engineering, 49
(2013), pp. 70–84.

[151] S. SAGER, MIOCP benchmark site. http://mintoc.de.

[152] , Numerical methods for mixed–integer optimal control problems, Der andere Ver-
lag, Tönning, Lübeck, Marburg, 2005.

206

BIBLIOGRAPHY

[153] , Reformulations and algorithms for the optimization of switching decisions in non-
linear optimal control, Journal of Process Control, 19 (2009), pp. 1238–1247.

[154] , On the integration of optimization approaches for mixed-integer nonlinear optimal
control. Habilitation. University of Heidelberg, August 2011.

[155] , A benchmark library of mixed-integer optimal control problems, in Mixed Integer
Nonlinear Programming, J. Lee and S. Leyffer, eds., Springer, 2012, pp. 631–670.

[156] S. SAGER, C. BARTH, H. DIEDAM, M. ENGELHART, AND J. FUNKE, Optimization as an analy-
sis tool for human complex problem solving, SIAM Journal on Optimization, 21 (2011),
pp. 936–959.

[157] S. SAGER, H. BOCK, AND M. DIEHL, The integer approximation error in mixed-integer
optimal control, Mathematical Programming A, 133 (2012), pp. 1–23.

[158] S. SAGER, M. JUNG, AND C. KIRCHES, Combinatorial integral approximation, Mathema-
tical Methods of Operations Research, 73 (2011), pp. 363–380.

[159] S. SAGER, C. KIRCHES, AND H. BOCK, Fast solution of periodic optimal control problems in
automobile test-driving with gear shifts, in Proceedings of the 47th IEEE Conference on
Decision and Control (CDC 2008), Cancun, Mexico, 2008, pp. 1563–1568.

[160] S. SAGER, G. REINELT, AND H. BOCK, Direct methods with maximal lower bound for mixed-
integer optimal control problems, Mathematical Programming, 118 (2009), pp. 109–
149.

[161] R. SARGENT AND G. SULLIVAN, The development of an efficient optimal control package,
in Proceedings of the 8th IFIP Conference on Optimization Techniques (1977), Part 2,
J. Stoer, ed., Heidelberg, 1978, Springer.

[162] N. SAWAYA, Reformulations, Relaxations and Cutting Planes for Generalized Disjunctive
Programming, PhD thesis, Carnegie Mellon University, 2006.

[163] N. SAWAYA AND I. GROSSMANN, Computational implementation of non-linear convex hull
reformulation, Computers & Chemical Engineering, 31 (2007), pp. 856–866.

[164] H. SCHEEL AND S. SCHOLTES, Mathematical programs with complementarity constraints:
Stationarity, optimality and sensitivity, Mathematics of Operations Research, 25
(2000), pp. 1 – 22.

[165] M. SCHÜTZE, A. CAMPISANO, H. COLAS, W. SCHILLING, AND P. VANROLLEGHEM, Real time
control of urban wastewater systems – where do we stand today?, Journal of Hydrology,
299 (2004), pp. 335–348.

207

BIBLIOGRAPHY

[166] M. SHAIKH, Optimal Control of Hybrid Systems: Theory and Algorithms, PhD thesis,
Department of Electrical and Computer Engineering, McGill University, Montreal,
Canada, 2004.

[167] M. SHAIKH AND P. CAINES, On the hybrid optimal control problem: Theory and algo-
rithms., IEEE Transactions on Automatic Control, 52 (2007), pp. 1587–1603.

[168] A. SINGER AND P. BARTON, Global optimization with nonlinear ordinary differential equa-
tions, Journal of Global Optimization, 34 (2006), pp. 159–190.

[169] C. SONNTAG, O. STURSBERG, AND S. ENGELL, Dynamic optimization of an industrial evap-
orator using graph search with embedded nonlinear programming, in Proc. 2nd IFAC
Conf. on Analysis and Design of Hybrid Systems (ADHS), 2006, pp. 211–216.

[170] O. STEIN, J. OLDENBURG, AND W. MARQUARDT, Continuous reformulations of discrete-
continuous optimization problems, Computers & Chemical Engineering, 28 (2004),
pp. 3672–3684.

[171] O. STRYK, Numerical solution of optimal control problems by direct collocation, in Opti-
mal Control: Calculus of Variations, Optimal Control Theory and Numerical Methods,
vol. 111, Bulirsch et al., 1993, pp. 129–143.

[172] , Numerische Lösung optimaler Steuerungsprobleme: Diskretisierung, Parameterop-
timierung und Berechnung der adjungierten Variablen, PhD thesis, TU Munich, 1995.

[173] R. STUBBS AND S. MEHROTRA, A branch-and-cut method for 0-1 mixed convex program-
ming, Mathematical Programming, 86 (1999), pp. 515–532.

[174] H. SUSSMANN, A maximum principle for hybrid optimal control problems, in Conference
proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, 1999.

[175] M. SZYMKAT AND A. KORYTOWSKI, The method of monotone structural evolution for dy-
namic optimization of switched systems, in IEEE CDC08 Proceedings, 2008.

[176] N. TAUCHNITZ, Das Pontrjaginsche Maximumprinzip für eine Klasse hybrider Steuerungs-
probleme mit Zustandsbeschränkungen und seine Anwendung, PhD thesis, BTU Cottbus,
2010.

[177] S. TERWEN, Vorausschauende Längsregelung schwerer Lastkraftwagen, PhD thesis, Uni-
versität Karlsruhe (TH), März 2010.

[178] S. TERWEN, M. BACK, AND V. KREBS, Predictive powertrain control for heavy duty trucks,
in Proceedings of IFAC Symposium in Advances in Automotive Control, Salerno, Italy,
2004, pp. 451–457.

208

BIBLIOGRAPHY

[179] F. TORRISI AND A. BEMPORAD, HYSDEL – A tool for generating computational hybrid
models for analysis and synthesis problems, IEEE Transactions on Control Systems Tech-
nology, 12 (2004), pp. 235–249.

[180] M. TURKAY AND I. GROSSMANN, Logic-based MINLP algorithms for the optimal synthesis
of process networks, Computers & Chemical Engineering, 20 (1996), pp. 959–978.

[181] K. UTHAICHANA, S. BENGEA, R. DECARLO, S. PEKAREK, AND M. ZEFRAN, Hybrid model
predictive control tracking of a sawtooth driving profile for an HEV, in American Control
Conference, 2008, 2008, pp. 967–974.

[182] A. WÄCHTER AND L. BIEGLER, On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming, Mathematical Programming,
106 (2006), pp. 25–57.

[183] A. WALTHER AND A. GRIEWANK, Getting started with ADOL-C, in Combinatorial Scien-
tific Computing, U. Naumann and O. Schenk, eds., Chapman-Hall CRC Computational
Science, 2012, ch. 7, pp. 181–202.

[184] T. WESTERLUND AND F. PETTERSSON, An extended cutting plane method for solving convex
MINLP problems, Computers & Chemical Engineering, 19 (1995), pp. 131–136.

[185] H. WILLIAMS, Model Building in Mathematical Programming, 4th Edition, Wiley, 4 ed.,
October 1999.

209

Nomenclature

Throughout this thesis, lowercase roman and greek letter in boldface (x , y , λ, µ) are used
for vectors. Matrices use uppercase roman letters in boldface (A, B, C). Scalars are denoted
by lowercase roman and greek letters (f , g, λ, µ), while sets use uppercase calligraphic style
(A, F , X). Finally, number spaces are denoted in uppercase blackboard style (N, R, Z).

Several notational conventions mandate a brief explanation. Vector values are printed in
boldface and are assumed to be column vectors. Transposition of a vector v is indicated by
v T and is omitted in the concatenation of column vectors,

v =
h

v1 v2

i
def
=
h

v T
1 v T

2

iT
.

Sets are denoted by calligraphic letters in upper case and may at times be used as index sets
selecting a subset of elements of a vector or matrix. To this end, we use the convention

vI
def
=
�

vi
�

i∈I

for a vector v ∈ Rn and for a matrix A ∈ Rm×n we write

AI
def
=
�

Ai j

�
i∈I, j∈{1,...,n} , A?J

def
=
�

Ai j

�
i∈{1,...,m}, j∈J , AIJ

def
=
�

Ai j

�
i∈I, j∈J .

The gradient of a scalar valued function f : Rn→ R with respect to a vector valued unknown
x is denoted by fx and is understood as a row vector,

fx (x)
def
=

d f (x)
dx

=
h

∂ f (x)
∂ x1

· · · ∂ f (x)
∂ xn

i
,

while the derivative of a vector valued function f : R→ Rm with respect to the scalar valued
unknown x is denoted by fx and is understood as a column vector,

fx(x)
def
=

d f (x)
dx

=

d f1(x)
dx
...

d fm(x)
dx

 ,

Consequentially, the Jacobian of a vector valued function f : Rn → Rm, denoted by fx , is an

210

NOMENCLATURE

m× n matrix composed from the m gradients of the component functions fi : Rn→ R,

fx (x)
def
=

d f (x)
dx

=

f1,x (x)
...

fm,x (x)

=

∂ f1(x)
∂ x1

· · · ∂ f1(x)
∂ xn

...
. . .

...
∂ fm(x)
∂ x1

· · · ∂ fm(x)
∂ xn

.

List of Symbols

4 End of a definition, lemma, proposition, theorem, or corollary
� End of a proof
 Contradiction symbol
def
= Defined to be equal
(·) Wildcard notation for the omitted list of function arguments
d·e Component-wise mapping of a real number to the next largest integer value
b·c Component-wise mapping of a real number to the next smallest integer value
|·| Component-wise mapping of a real number to the absolute value
||·|| A norm of a vector
|||·||| A norm of a matrix
{ } Set delimiters
∪ Set–theoretic union (“unified with”)
∩ Set–theoretic intersection (“intersected with”)
⊆,⊂ Subset of a set (“is a (proper) subset of”)
∈, /∈ Set membership (“is (not) an element of”)
× Cartesian product of sets
; The empty set
∀ Universal quantifier (“for all”)
∃ Existential quantifiers (“there exist”)
∨ Logical inclusive disjunction (“or”)
⊥ Complementarity operator
AT , x T Transpose of matrix or vector
fx Gradient of the scalar function f (·) with respect to unknown x
fx Jacobian of the vector valued function f (·) with respect to unknown x
x i i–th entry of row or column vector x , a scalar value
xI Subvector of elements of x whose indices are contained in I ⊂ N
Roman Symbols

A Coefficient matrix for affine systems
G WRONSKI-matrices
L LIPSCHITZ constant

211

NOMENCLATURE

M Big-M bounds for functions and variables
ZLP Value of the LP relaxation
ZLR Value of the LAGRANGIAN relaxation
bi Discretization base functions
c(·) Path constraint function
ei The i–th unit column vector
e EULER’s number
f ODE system right hand side
m Number of intervals in a discretization
n Dimension of a vector, row or column dimension of a matrix
p Vector of binary control parametrization
q Vector of control parametrization
r Point constraint
s Vector of discretized states
t Model or process time
t0 Initial model or process time, start of time horizon
tf Final model or process time, end of time horizon
u(·) Trajectory of continuous process controls
v(·) Trajectory of discrete process controls
x (·) Trajectory of ODE system states
x0(tk) Observed process state at time tk for initial value embedding
zLR(·) LAGRANGIAN function

Greek Symbols

∆ Prefix for time steps
Ω Set of admissible choices for a discrete control trajectory
Φ Objective function/functional
α(·) Trajectory of relaxed controls.
λ LAGRANGE multipliers
µ LAGRANGE multipliers
ϕ NCP function
σ Switching variables
τ Auxilliary time descriptions
θ Control approximation quality
ω(·) Trajectory of binary controls.
ζ Min-up times

Calligraphic Symbols

C Space of differentiable functions
E Index set
F Set of fixed variable indices due to branching

212

NOMENCLATURE

H HAMILTONIAN

I Index sets
L1 Space of LEBESQUE integrable functions
L∞ Space of essentially bounded functions
L∞k Space of essentially bounded functions with k degrees of freedom
U Set of feasible continuous controls

Blackboard Symbols

Gm Grid with m+ 1 grid points
N,N0 Set of natural numbers excluding (including) zero
R,R+0 ,R−0 Set of real (nonnegative real, nonpositive real) numbers
Rn Space of n–vectors with elements from the set R
Rm×n Space of m× n–matrices with elements from the set R

213

List of Figures

2.1 B-splines of different order. 19
2.2 Visualization of single shooting state discretization. 21
2.3 Visualization of multiple shooting state discretization. 22

3.1 Feasible regions for complementarity and vanishing constraints 40
3.2 Regularized vanishing constraints . 44
3.3 Smoothed complementarity constraint formulation 46
3.4 Smoothed vanishing constraint formulation . 46
3.5 Feasible regions for different perspective formulations. 50
3.6 Inner Convexification illustration. 55
3.7 Outer Convexification illustration. 55
3.8 Big-M illustration. 57
3.9 Perspective illustration. 58
3.10 Vanishing constraint illustration. 59
3.11 Chattering solution . 60
3.12 Switch formulation. 61
3.13 Convex combination of the switch cost overestimators. 63
3.14 Branch-and-bound tree . 68

4.1 Control approximation scheme. 74
4.2 Sub-optimality of the SUR scheme. 91
4.3 Illustration of phases. 100
4.4 Sub-optimality of the SOS1-SUR scheme. 110
4.5 Output of PORTA, one-dimensional problem . 122

5.1 Results for nonlinear MIOCP without switching limits. 131
5.2 Results for nonlinear MIOCP with varying switching constraints. 133
5.3 Bound comparison for nonlinear MIOCP with varying switching constraints. . . 135
5.4 Small sewage network. 150
5.5 The overflow function. 154
5.6 The hyperbolically smoothed overflow function. 156
5.7 Relaxations of the overflow problem’s feasible set. 162
5.8 Partial Barcelona sewer network with 1 retention tank and 11 virtual tanks. . . 164

214

LIST OF FIGURES

5.9 Sewage problems’ dimensions. 165
5.10 Iteration numbers of sewage problems. 166
5.11 Computational times of sewage problems. 167
5.12 Objective values of sewage problems. 167
5.13 Truck engine characteristics for computational example. 178
5.14 Truck scenario 1, part 1 . 190
5.15 Truck scenario 1, part 2 . 191
5.16 Truck scenario 2, part 1 . 192
5.17 Truck scenario 2, part 2 . 193

215

List of Tables

4.1 Number of facets of the polytope of feasible points. 121
4.2 Number of facets of the polytope of feasible points with SOS1. 121

5.1 States and controls of the LOTKA-VOLTERRA model. 138
5.2 Parameters of the LOTKA-VOLTERRA model. 139
5.3 SUR results for LOTKA-VOLTERRA fishing problem. 141
5.4 Control approximation results for LOTKA-VOLTERRA fishing problem (1). 144
5.5 Control approximation results for LOTKA-VOLTERRA fishing problem (2). 145
5.6 Nonlinear switch description of LOTKA-VOLTERRA fishing problem (1). 146
5.7 Nonlinear switch description of LOTKA-VOLTERRA fishing problem (2). 147
5.8 Sets which determine the sewage network structure. 152
5.9 States and controls of the sewage model. 152
5.10 Parameters of the sewage model. 152
5.11 Controls of the truck model. 172
5.12 Differential states of the truck model. 172
5.13 Algebraic states of the truck model. 173
5.14 Parameters of the truck model. 174
5.15 Scenario specific parameters of the truck model. 174

216

List of Algorithms

4.1 Next-forced Rounding algorithm for SOS1-coupled controls. 111
4.2 Combinatorial branch-and-bound algorithm. 124
4.3 Node creation with switching constraint. 125

5.1 Constraint branching algorithm. 160
5.2 Homotopy method for smoothed and relaxed formulation. 182

217

List of Acronyms

ACQ ABADIE Constraint Qualification
BVP Boundary Value Problem
CSO Combined Sewer Overflow
DAE Differential Algebraic Equation
GCQ GUIGNARD Constraint Qualification
GDP General Disjunctive Programming
HYSDEL HYbrid System DEscription Language
IC Inner Convexification
IP Integer Program
IVP Initial Value Problem
KKT KARUSH-KUHN-TUCKER

LICQ Linear Independence Constraint Qualification
LP Linear Program
MLD Mixed Logical Dynamical
MFCQ MANGASARIAN-FROMOVITZ Constraint Qualification
MILP Mixed-Integer Linear Program
MINLP Mixed-Integer Nonlinear Program
MIOC Mixed-Integer Optimal Control
MIOCP Mixed-Integer Optimal Control Problem
MPCC Mathematical Program with Complementarity Constraints
MPEC Mathematical Program with Equilibrium Constraints
MPT Multi-Parametric Toolbox
MPVC Mathematical Program with Vanishing Constraints
NCP Nonlinear Complementarity Problem
NFR Next-forced Rounding
NLP Nonlinear Program
OC Outer Convexification
OCP Optimal Control Problem
ODE Ordinary Differential Equation
SOS Special Ordered Set type
STL Standard Template Library
SQP Sequential Quadratic Programming
SUR Sum-up Rounding

218

	Zusammenfassung
	Abstract
	Danksagung
	Contents
	1 Introduction
	2 Optimal Control
	2.1 Problem formulation
	2.2 Indirect approach
	2.3 Dynamic programming
	2.4 Direct approach
	2.4.1 Control discretization
	2.4.2 State discretization
	2.4.3 Constraint discretization
	2.4.4 Gradient computation
	2.4.5 Optimizer

	3 Mixed–Integer Optimal Control – Modeling and Relaxation
	3.1 Problem formulation
	3.2 Indirect approach
	3.3 Dynamic programming
	3.4 Direct approach
	3.5 Inner Convexification
	3.6 Outer Convexification
	3.7 Big-M formulation
	3.7.1 Mixed Logical Dynamical systems

	3.8 Vanishing and complementarity constraints
	3.8.1 Constraint qualifications
	3.8.2 Regularization
	3.8.3 NCP functions

	3.9 Perspective formulation
	3.9.1 Order preserving functions
	3.9.2 Tightened formulation

	3.10 Illustrative comparison of different formulations
	3.11 Controlling the switching behavior
	3.11.1 Switch modeling
	3.11.2 Min-up time

	3.12 Mixed-Integer Nonlinear Programming
	3.12.1 Enumeration
	3.12.2 Relaxations
	3.12.3 Cutting planes
	3.12.4 Nonlinear branch-and-bound

	4 The Control Approximation Problem for Control-Affine Systems
	4.1 Problem formulation
	4.2 Approximation of differential states
	4.2.1 Translation to discrete setting

	4.3 Approximation of decoupled controls in the integral sense
	4.3.1 Sum-up Rounding control scheme
	4.3.2 Analysis of the Lagrangian

	4.4 Approximation of SOS1-coupled controls in the integral sense
	4.4.1 Sum-up Rounding
	4.4.2 Next-forced Rounding
	4.4.3 Lagrangian relaxation

	4.5 Approximation of generally coupled controls
	4.5.1 Choice of the norm
	4.5.2 The Control Approximation Problem's polytope
	4.5.3 Typical combinatorial constraints
	4.5.4 Branch-and-bound algorithm

	5 Numerical Results
	5.1 Mixed-Integer Optimal Control with nonlinear ODE
	5.1.1 Problem formulation
	5.1.2 Computational experiments
	5.1.3 Conclusions

	5.2 Lotka-Volterra fishing problem
	5.2.1 Problem formulation
	5.2.2 Computational experiments
	5.2.3 Conclusions

	5.3 Sewage network overflow
	5.3.1 Problem formulation
	5.3.2 Modeling of overflow
	5.3.3 Reformulations for optimization
	5.3.4 Computational results
	5.3.5 Conclusions

	5.4 Dynamic truck model
	5.4.1 Problem formulation
	5.4.2 Formulation of problem relaxations
	5.4.3 Comparison of relaxations
	5.4.4 Conclusions

	Bibliography
	Nomenclature
	Figures, Tables, Algorithms, Acronyms

