Dissertation

submitted to the

Combined Faculties for Natural Sciences and for Mathematics

of the Ruperto-Carola University of Heidelberg, Germany

for the degree of

Doctor of Natural Sciences

presented by

M. Sc. Robert Reinhardt

born in Leisnig, Germany

oral examination:

March 13th, 2014
Cell intrinsic control of stem cell features in the retina

Referees:
Prof. Dr. Joachim Wittbrodt
Prof. Dr. Jan Lohmann
Table of Contents

Summary .. 1

Zusammenfassung .. 2

1 Introduction ... 4

 1.1 The vertebrate eye ... 4

 1.1.1 Architecture of the vertebrate retina .. 4

 1.1.2 Retinal neurogenesis .. 5

 1.1.3 The ciliary marginal zone ... 6

 1.1.4 Optic vesicle formation .. 8

 1.2 Homeodomain transcription factors Pax6, Rx and Six3 play central roles in eye development .. 9

 1.3 Transcriptional cues regulating Rx expression .. 11

 1.4 Following mitotic lineages ... 11

 1.4.1 Label-retaining assays ... 12

 1.4.2 Cell transplantation .. 12

 1.4.3 Genetic Recombination ... 12

 1.5 Reprogramming of terminally differentiated somatic cells .. 14

 1.6 Gene knockdown and knockout in developmental genetics .. 16

 1.6.1 Forward genetics ... 16

 1.6.2 Reverse genetics .. 17

 1.6.2.1 Targeting induced local lesions in genomes ... 17

 1.6.2.2 Morpholino oligonucleotides ... 18

 1.6.2.3 Targeted genome editing .. 18

 1.6.2.4 Zinc-finger nucleases ... 19

 1.6.2.5 Transcription activator-like effector nuclease ... 19

 1.6.2.6 RNA-guided genome modification .. 20

 1.7 Methodological approaches allowing the identification of upstream regulators of regulatory DNA elements ... 22

 1.8 Aim of this thesis .. 23

2 Results .. 25

 2.1 Identification of regulators of retinal stem cell features .. 25

 2.1.1 Rx2 is specifically expressed in the eye ... 25
2.1.2 Rx2 is expressed in the peripheral-most part of the post-embryonic stem cell domain.

2.1.3 Identification of regulators of Rx2 expression.

2.1.4 Rx2, Sox2, Tlx, Her9 and Gli3 are co-expressed in the post-embryonic CMZ.

2.1.5 The Sox2, Tlx and Her9 cis-regulatory elements recapitulate endogenous gene expression.

2.1.6 Conditional clonal analysis in the post-embryonic medaka retina.

2.1.7 Sox2 and Tlx activate Rx2 expression in vivo.

2.1.8 Sox2 and Tlx individually activate Rx2 expression in vivo.

2.1.9 Clonal analysis reveals promotion of RSC-specific features by Sox2 and Tlx in vivo.

2.1.10 Transient exposure to Tlx transforms neurons into label-retaining cells.

2.1.11 Gli3 and Her9 repress Rx2 in the CMZ.

2.1.12 Sustained expression of Gli3 and Her9 represses proliferation in the CMZ.

2.1.13 Sox- and Gli-binding sites are necessary for the functionality of the Rx2 CRE.

2.2 Elucidating Rx2 function.

2.2.1 Gain of Rx2 in the medaka retina.

2.2.2.1 Rx2 gain-of-function in the Atoh7 domain results in morphological changes in the GCL and INL.

2.2.2.2 Rx2 gain-of-function does not alter proliferation and morphology during the beginning of retinal differentiation.

2.2.2.3 Rx2 expression under the Atoh7 CRE coincides with reduced expression of markers for neural differentiation of RGCs.

2.2.2.4 Reduced activity of the Shh regulatory element in the GCL coincides with Rx2 gain-of-function.

2.2.2.5 TALEN pairs 106/107 and 128/129 introduce locus-specific DNA breaks in the Rx2 coding sequence.

2.2.2.6 TALENs 106/107 and 128/129 induce heritable Rx2 mutations.

2.2.2.7 TALENs 106 and 107 show mutagenesis activity on the homebox of Rx1 and Rx2.

2.2.2.8 TALEN-induced mutants recapitulate eyeless phenotype.
Discussion

1. A regulatory framework containing Sox2, Tlx, Gli3 and Her9 controls stem cell features in the retina

2. Sox2 and Tlx positively regulate stem cell features in the retina

3.1. Gli3 and Her9 overexpression in the CMZ antagonizes Rx2 and stem cell proliferation

3.1.2 The RSC-specific expression of Rx2 is sustained through conserved Sox- and Gli-binding sites

3.2 Expression of Rx2 might antagonize activity of the Shh pathway in the CMZ

3.3 Rx mutants

3.3.1 TALEN pairs 106/107 and 128/129 produce disruptive mutations in Rx2

3.3.2 Off-target activities of TALENs 106 and 107 can generate Rx1 mutants

3.3.3 Phenotypic analysis suggests TALENs 106 and 107 might disrupt genes involved in early eye development

3.3.4 The function of Rx2 remains unknown

3.3.5 Applications of nuclease-based genome editing in fish

3.4 Outlook

Materials and Methods

1. Materials

2. Methods

2.1 Generation of medaka unigene cDNA library
Summary

Post-embryonic neurogenesis relies on the presence of neural stem cells, which are characterized by their multipotency and unique ability to self-renew. Despite their importance for the homeostasis and repair of the central nervous system, the transcriptional network governing stemness in adult neural stem cells is largely unknown.

We established the transcription factor Rx2 as proxy for retinal stem cells in the post-embryonic retina of the teleost medaka (O. latipes). By interrogating the regulatory input to the Rx2 cis-regulatory element, we identified four transcription factors (Sox2, Tlx, Gli3, Her9), which distinctly shape the stem cell domain and modulate stem cell features in the retina. First of all, we analyzed the gene expression and found that these genes have distinct spatio-temporal expression patterns in the retinal stem cell domain. Conditional mosaic analysis in vivo confirmed Sox2 and Tlx as activators of Rx2. The ectopic expression of Sox2 or Tlx was sufficient to trigger de-differentiation of post-mitotic neurons and induced stem cell features therein. Conversely, sustained ectopic expression of Gli3 or Her9 repressed Rx2. Gain of Gli3 or Her9 in retinal stem cells arrested cell cycle progression and proliferation. Modification of conserved binding sites in the Rx2 cis-regulatory element revealed the importance of Sox and Gli transcription factors for the precise spatial Rx2 expression in retinal stem cells. We propose that the combinatorial regulatory input of Sox2, Tlx, Gli3, Her9 confines Rx2 expression and other features of retinal stem cells specifically to the periphery of the stem cell domain in the post-embryonic retina.

To elucidate the functional role of Rx2 itself, mutants were established with the aid of targetable nucleases. Transcription activator-like effector nucleases were employed to induce double-strand breaks specifically in the Rx2 coding sequence, which in the case of erroneous non-homologous end-joining created sequence alterations at the site of cleavage. The generation of stable, heritable mutations in the endogenous Rx2 locus described here opens the opportunity for future genetic studies of Rx2 in medaka.
Zusammenfassung

Postembryonale Neurogenese ist abhängig von der Präsenz von neuralen Stammzellen, die sich durch ihre Multipotenz und einzigartige Fähigkeit der Selbstteilung auszeichnen. Trotz deren Rolle für das Gleichgewicht und die Erneuerung des zentralen Nervensystems ist das transkriptionelle Netzwerk, welches Stammzellenfähigkeiten von adulten neuralen Stammzellen reguliert, größtenteils unbekannt.

Um die funktionelle Rolle von Rx2 aufzuklären, wurden Mutanten mit der Hilfe von gezielten Nukleasen etabliert. Die spezifischen Nukleasen wurden benutzt, um Doppelstrangbrüche gezielt in der Sequenz von Rx2 zu erzeugen, die im Falle von fehlerhaften DNA Reparaturmechanismen zu Sequenzveränderungen an der Schnittstelle führten. Die Erzeugung von stabilen, vererbaren Mutationen im endogenen Rx2 Genlocus, die hier beschrieben werden, eröffnet die Möglichkeit für zukünftige genetische Studien über Rx2 im Japanischen Reisfisch.
1 Introduction

1.1 The vertebrate eye

1.1.1 Architecture of the vertebrate retina

Of all tissues that constitute the CNS, the eye represents the most accessible part and a well-studied paradigm for the process of neurogenesis and cell determination. The stereotypic spatial composition of the neural retina (NR), six types of neurons and one type of glia distributed in three nuclear layers interconnected by two synaptic layers, is conserved amongst vertebrates (Livesey and Cepko 2001). The ganglion cell layer (GCL) is located at the basal side of the retina and contains the cell bodies of displaced amacrine cells (ACs) and retinal ganglion cells (RGCs) (Figure 1). The axons of RGCs exit through an opening in the central retina, the so-called optic disc, and transmit visual stimuli through the optic nerve to their targets in the brain. ACs, bipolar cells (BPCs), horizontal cells (HCs) and Muller glia cells (MGCs), the only non-neural cell type in the retina, are found in the inner nuclear layer (INL). The processes of MGCs extend from the inner limiting membrane of the retina to the outer limiting membrane at base of the outer segments. The apical outer nuclear layer (ONL) is occupied by the cell bodies of cone and rod photoreceptors in radial arrangement. Neuronal processes occupy the space between each nuclear layer. Photoreceptor, bipolar and horizontal synapses are hosted in the outer plexiform layer (OPL), between the ONL and INL. The inner plexiform layer (IPL), which is located between the INL and the GCL, contains the synaptic connections of RGCs, BPCs and ACs. The NR is surrounded on its apical surface by the retinal pigmented epithelium (RPE), which serves as a shield, ensuring that light exclusively enters the eye through the lens (Figure 1B). When the light reaches the cone and rode photoreceptor outer segments below the RPE, a phototransduction cascade is triggered and information flows from the photoreceptors, to BPCs to RGCs, which send a response to the visual centers in the brain. The purpose of the RPE for the proper functionality of the NR extends beyond light and damage protection. Integrity of the RPE is required for normal development of photoreceptors and MGCs (Jablonski et al. 2000; Jablonski et al. 2001).
Figure 1. Shape and composition of the vertebrate retina.
(A) Cross-section through the adult fish retina. Nuclei were counter-stained with DAPI. Red lines indicate apico-basal axis of the nuclear layers. Dashed (red) lines indicate the apico-basal axis of the layers containing the cell bodies. The red areas at the margin represent the CMZ.
(B) Schematic representation of a magnified cross-section through the differentiated vertebrate retina. Apical side is up, basal side is down. Cone and rod photoreceptors are located in the ONL. They form synapses in the OPL with BPCs and HCs, which are located in the INL. Additionally, ACs are also found in the INL. RGC, positioned in the GCL, form synapses with ACs and BPCs in the IPL. MGCs span the entire apico-basal axis of the NR. Adapted from (Swaroop et al. 2010).

1.1.2 Retinal neurogenesis

The sequence of neurogenesis during embryonic development of the retina has been extensively studied in a variety of species. The temporal order of generated cell types is highly conserved across all vertebrates (Livesey and Cepko 2001). A common population of multipotent retinal progenitor cells (RPCs), arranged in a pseudostratified neuroepithelium, proliferates and gives rise to all different retinal cell types in a sequential yet overlapping order. The first cells to be generated are RGCs, followed by HCs, cone photoreceptors, ACs, rod photoreceptors, BCs and MGCs. The timing of RPC cell cycle exit is closely linked to cell fate the progeny adopt in retinal differentiation (Livesey and Cepko 2001; Marquardt and Gruss 2002; Cremisi et al. 2003). For instance, early cell cycle exit is associated with an over-production of early cell types at the expense of late cell types, while delayed cell cycle exit results in additional rounds of division and a reduction in early born cell types (Ohnuma et al. 2002; Dyer et al. 2003). During a process called interkinetic nuclear migration, the nuclei of retinal progenitors
move between the apical and basal surfaces of the neuroepithelium depending on the current phase of cell cycle. DNA synthesis (S-phase) takes place at the basal (vitreal) side, while mitotic nuclei (M-phase) are located apically (Del Bene 2011). It has been suggested that the plane of cell division relative to the apical surface of the neuroepithelium influences the outcome of cell divisions. During the genesis of RGCs in the developing zebrafish retina, circumferential divisions are more likely to produce asymmetric fates, such as one RGC and one non-RGC, while radial divisions generate symmetric fates with a higher frequency, both daughter cells committing to ganglion cell fate (Poggi et al. 2005). An extensive number of cell lineage studies have proofed the multipotency of retinal progenitors, (Turner and Cepko 1987; Holt et al. 1988; Wetts and Fraser 1988). The finding that RPC derived clones can vary greatly in size and composition, implicates a role for stochasticity in cell fate decisions controlling the balance between proliferation and differentiation (Wong and Rapaport 2009; He et al. 2012). Instead of different lineage-restricted progenitor cells producing different differentiated cells, it has been demonstrated that RPCs are restricted to make temporally appropriate cell types only. As shown in heterochronic transplantations, where RPCs from a particular time window are exposed to an younger or older environment, extrinsic cues from the environment are able to alter the relative proportions of each cell type generated at a particular time, but they cannot dictate the commitment towards a specific fate (Watanabe and Raff 1990; Austin et al. 1995; Belliveau and Cepko 1999; Belliveau et al. 2000). Progenitors pass progressively through a series of competence states, during each of which the progenitors are competent to produce a subset of retinal cell types (Livesey and Cepko 2001). This feature, that the sequence of cell birth is intrinsically determined in the progenitors cells, is similar to other lineages of the CNS, such as developing cerebral cortex (Qian et al. 2000). In addition to being multipotent, undifferentiated retinal precursors have been demonstrated to give rise to both NR and RPE in the retina of medaka (Centanin et al. 2011).

1.1.3 The ciliary marginal zone

Tissue growth and homeostasis during development and adulthood are fundamental features of all vertebrate species. In the CNS, both cell replacement and cell addition depend on newborn neurons being generated by neural stem cells (NSCs). NSCs have the ability to self-renew infinitely and contribute differentiated progeny to both neural and glial lineages, which will be integrated in the established circuitry. Whereas the existence of adult NSCs in the mammalian brain has been confirmed in the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus in the hippocampus (Lois and Alvarez-Buylla 1993; Kuhn et al. 1996), the NR of mammals is considered to be a post-mitotic
tissue (Amato et al. 2004). In contrast, the non-mammalian retina contains a reservoir of mitotically active cells after conclusion of initial retinogenesis. This stem cell domain, the ciliary marginal zone (CMZ), is spatially separated from post-mitotic cells and situated at the periphery of the retina (Figure 1A). Birth dating studies in lower vertebrates (frog and fish) have implicated the CMZ as the source of post-embryonic neurogenesis, which provides new neurons and glia to accommodate the life-long growth of the NR (Hollyfield 1968; Straznicky and Gaze 1971; Johns 1977). It has been suggested that the spatial distribution of the CMZ, from peripheral to central, reflects the temporal progression of embryonic retinogenesis (Harris and Perron 1998; Perron and Harris 2000). Slowly dividing retinal stem cells (RSCs) reside in the peripheral-most part of the CMZ, which give rise to short-term rapidly dividing progenitors (Figure 2A). These transiently amplifying progenitors are located more centrally. Cells in the CMZ, which are found closest to differentiated neurons, do not divide and in terms of gene expression resemble committed RPCs. Interestingly, in vitro studies have demonstrated that cells derived from the pigmented ciliary margin of mice, which is a domain topographically comparable to the non-mammalian CMZ, proliferate and form neurosphere colonies in culture (Tropepe et al. 2000). Lineage tracing analysis has identified bona fide multipotent RSCs in the medaka CMZ (Centanin et al. 2011). Single-cell-derived clones consist of all seven cell types, which comprise the vertebrate NR. Moreover, in the life-long growing medaka retina, post-embryonic stem cells maintain the simultaneous expansion of NR and RPE (Figure 2B-C). In frog and fish, the compartmentalized proliferation and addition of new cells occurs in the marginal domain of the RPE, which covers the CMZ (Perron et al. 2003). Thus, the post-embryonic medaka retina constitutes an excellent model to investigate adult NSCs.

It is currently unknown when the stem cell domain is established during development. The extracellular and intracellular signals defining the ciliary margin in amphibians have been addressed through gene expression profiling and modulation of signaling cascades mostly at embryonic stages. A number of studies have suggested opposing roles for canonical Wnt and Shh signaling pathways in the regulation of undifferentiated retinal progenitors - Shh shortens the length of the cell cycle (Locker et al. 2006), while Wnt targets such as Hes4 lengthen the phases of the cell cycle (El Yakoubi et al. 2012). Furthermore, both pathways have been demonstrated to inhibit each other through their downstream mediators in the margin of the retina (Borday et al. 2012).
Figure 2. Model of self-renewal in the fish retina.

(A) Regarding the growth of the NR in fish and frog, it has been proposed that slowly-cycling stem cells self-renew and generate rapidly dividing transient amplifying cells, which in turn give rise to differentiated cells (Locker et al. 2006).

(B-C) During the lifelong growth of the medaka retina, two tissues, the NR and the RPE, are independently maintained by individual RSCs located in the CMZ. Multipotent RSCs generate all seven cell types of the NR (B) or post-mitotic cells of the RPE (C). Descendents of each dedicated stem cell are either committed towards the NR- or RPE-lineage (Centanin et al. 2011).

1.1.4 Optic vesicle formation

Eye development begins at the end of gastrulation with the determination of the eye field, an epithelial eye precursor in the anterior neuroectoderm, simultaneously with the patterning of the prospective forebrain. Eye field specification requires the downregulation of Bmp signals, known inhibitors of a neural fate (Gestri et al. 2005). Similarly, findings in fish have indicated that beta-catenin-dependent Wnt signaling has to be repressed for the patterning of the anterior neural plate. It has been shown that Wnt8b-mediated ectopic activation of the canonical Wnt signal cascade antagonizes the specification process (Cavodeassi et al. 2005), while loss of wnt8 results in the reduction of posterior neuroectoderm and an expansion of forebrain structures and axial mesoderm (Lekven et al. 2001). The Zebrafish mutant masterblind, carrying a mutation in Axin1, lacks eyes and parts of the telencephalon, accompanied by an expansion of diencephalic tissue (Heisenberg et al. 2001; van de Water et al. 2001).

Experimental data from Xenopus and zebrafish indicate the importance of activation of IGF signaling for patterning of the retinal anlage. Blocking of the pathway through dominant-negative IGF receptors interferes with CNS development, particularly with the formation of anterior neural structures, leading to reduction or loss of head and eye (Pera et al. 2001; Eivers et al. 2004).
Following specification and patterning, the single retinal anlage is split into the two retinal primordia. Midline-derived signaling molecules, such as sonic hedgehog (Shh) and fibroblast growth factor (Fgf), are instructive for the split of the eye field and patterning of the laterally formed optic vesicles (Ekker et al. 1995; Macdonald et al. 1995; Chiang et al. 1996; Koster et al. 1997; Carl and Wittbrodt 1999). The morphogenetic events occurring during optic vesicle evagination have been analyzed in detail through 4D microscopy at a single-cell level in medaka and zebrafish (Rembold et al. 2006; Keller et al. 2008). The evagination of optic vesicles is initiated during neural tube closure by individual cell migration towards the midline. Future RPCs converge slower in comparison to the surrounding future forebrain cells, resulting in the formation of a wider domain from which the vesicles will arise. Afterwards, outward-directed migration of RPCs leads to the splitting of the eye field. In the forming optic vesicle individual RPCs intercalate and promote formation of the vesicular epithelium.

1.2 Homeodomain transcription factors Pax6, Rx and Six3 play central roles in eye development

It has been suggested that Pax6, Rx and Six3 are part of a highly conserved genetic network, which directs the initiation of eye development, in particular the establishment of retinal identity in cells involved in morphogenesis of the optic vesicle (Halder et al. 1995; Oliver and Gruss 1997; Gehring and Ikeo 1999). Consistent with their proposed role in specification of retinal fate, ectopic expression of each of these factors during amphibian embryonic development results in mutual cross-activation and ectopic formation of retinal tissue (Mathers et al. 1997; Chow et al. 1999; Loosli et al. 1999; Zuber et al. 1999; Bernier et al. 2000).

Loss of Pax6 is accompanied by defective optic vesicle formation and lens development, resulting in absent eyes (Jordan et al. 1992; Grindley et al. 1995). In the presumptive lens ectoderm, Pax6 is required for the inhibition of canonical Wnt signaling (Machon et al. 2010). Results from conditional inactivation implicated Pax6 in the maintenance of RPCs in a pluripotent state (Marquardt et al. 2001). The expression of other early eye field specification markers Rx and Six3 were unaffected in conditional mutants, suggesting that the specific function of Pax6 in RPC proliferation is downstream or independent of these homeobox genes. Despite evidence that loss of Pax6 affects progenitor cell division, the molecular connection to the cell cycle remains unknown (Warren et al.; Estivill-Torrus et al.).

Similar to Six3, Rx expression starts in the anterior neuroectoderm and later continues in progenitor cells during optic cup development. Cross-species analysis has highlighted early Rx function as a
crucial influence on steps of optic vesicle morphogenesis, convergence and evagination. In Xenopus, fish and mouse, inactivation of Rx is accompanied by reduced eye size or complete absence of eyes (Mathers et al. 1997; Andreazzoli et al. 1999; Loosli et al. 2001; Loosli et al. 2003; Kennedy et al. 2004). This conservation is underscored by findings that Rx is mutated in humans with anophthalmia (Voronina et al. 2004).

The medaka and zebrafish genomes contain three Rx genes, of which Rx3 is expressed the earliest in the early eye field (Loosli et al. 2001; Loosli et al. 2003).

The role of Rx3 in eye morphogenesis was further elucidated by in vivo imaging analysis, which showed that mutant cells converge fully towards the midline but fail to migrate outwards to form the optic vesicles (Rembold et al. 2006). Analysis of the underlying molecular mechanism revealed that Rx3 down-regulates expression of the Ig-domain protein Nlcam, which modulates the migration of progenitor cells during the initial phase of midline convergence (Brown et al. 2010).

The function of Rx1 and Rx2, which are expressed following optic vesicle formation, is less clear. In zebrafish, morpholino oligonucleotide-mediated knockdowns failed to produce an early phenotype in the retina (Rojas-Muñoz et al. 2005). During later stages, expression of Rx1 is required for the proliferation and survival of retinal progenitors, while both Rx1 and Rx2 are involved in regulating the expression of photoreceptor-specific genes (Nelson et al. 2009). In Xenopus, Rx, in combination with other TFs, is necessary for proper photoreceptor maintenance and function by direct regulation of genes such as rhodopsin and red cone opsin (Pan et al. 2010). Furthermore, Rx has been shown to be important for proliferation and migration of RPCs (Kenyon et al. 2001; Zaghloul and Moody 2007). Rx directly regulates Otx2 expression, which is required for photoreceptor cell fate determination, mainly in the final cell cycle prior to terminal differentiation of RPCs in the embryonic mouse retina (Muranishi et al. 2011). These results hint at a conserved Rx function in photoreceptor specification.

Rx transcription is upregulated as a response to injury in the retina of fish, while knockdown of Rx impairs wound healing in the frog retina (Raymond et al. 2006; Martinez-De Luna et al. 2011). In contrast to Pax6 and Six3, Rx expression continues following embryogenesis RSCs and RPCs. Rx1 and Rx2 have been described as molecular markers for the post-embryonic CMZ in zebrafish and Xenopus (Locker et al. 2006; Raymond et al. 2006; Borday et al. 2012). Furthermore, Rx is expressed in the quiescent stem cells of the central NR, the MGCs, which have the ability to trans-differentiate upon injury (Bernardos et al. 2007). Notably, lineage-tracing experiments have highlighted Rx2 as a marker for multipotent stem cells in the post-embryonic medaka retina (L. Centanin and J. Wittbrodt, unpublished). Clones derived from Rx2-positive cells through both traditional transplantation assays and conditional genetic labeling (inducible CreERT2 expressed under the medaka Rx2 CRE) contained
all seven cell types of the NR. In addition, recombination triggered in Rx2-positive RSCs located in the CMZ, generated clones of epithelial cells in the RPE. Examination of the clone composition underscored that a pool of Rx2-positive stem cells maintains both tissues independently, since cell types of the RPE and NR have never been found in the same clone. However, the function of either paralog in the RSC domain remains unknown.

1.3 Transcriptional cues regulating Rx expression

The regulatory elements upstream of the Xenopus Rx genes have been isolated and shown to be capable of driving reporter expression in the developing eye and mature retina (Zhang 2003; Martinez-De Luna et al. 2010). Detailed examination of the regulatory organization highlighted the importance of upstream trans-acting factors Otx2 and Sox2 for direct activation of the Xenopus Rx cis-regulatory element (CRE) (Danno et al. 2008), and implied the involvement of other factors such as Pou and forkhead TFs in the transcriptional regulation of Rx (Martinez-De Luna et al. 2010). Although a number of factors have been implicated in the upstream regulation of Rx, the exact molecular nature of their interaction and how they function on the CRE in vivo remains unknown. The isolated medaka Rx2 CRE has been shown to drive reporter expression in RPCs (Martinez-Morales et al. 2009), faithfully recapitulating endogenous Rx2 expression during the optic cup development and later retinogenesis (Inoue and Wittbrodt 2011). The fact that Rx2 labels bona fide RSCs in vivo and the availability of the relatively short (2400 base pairs) CRE makes the retina-specific TF Rx2 an interesting candidate to elucidate the regulatory framework governing stemness in the adult fish retina.

1.4 Following mitotic lineages

To understand the contribution of an individual progenitor or stem cell to tissue growth or maintenance, all descendents coming from this single cell have to be investigated. Lineage represents the result of each cell division in a temporal order. Diverse lineage-tracing techniques have been established to address a variety of questions, from exploring the embryonic origin of different tissues, over how certain progenitors contribute to a tissue, to finding the cellular origin of cancer. Ideally, the techniques allow labeling of individual cell and examining cellular fate dynamics by reconstruction of an entire lineage at single-cell resolution.
1.4.1 Label-retaining assays

Stem cells that divide slowly or infrequently will incorporate a marker during S-phase such as DNA analogs (e.g., BrdU) or fluorescent histone labels (e.g., H2B-EGFP) following pulse labeling, and upon repeated cell division pass them on to their progeny. The dilution of the label can be used to track the fate of their daughter cells, which provides knowledge about the properties of the initially labeled stem cell population (Cotsarelis et al. 1990; Tumbar et al. 2004).

In model amenable to direct visualization of cell movements in high spatio-temporal resolution by light microscopy, lineages can be followed in vivo. Data obtained from the tracking of cell movements via fluoroescently labeled chromatin over time has shed light on the mitotic lineages within key developmental processes, e.g., migration of retinal progenitors in the medaka anterior neuroectoderm, early zebrafish morphogenesis and the gastrulation in the fruitfly (Rembold et al. 2006; Keller et al. 2008; McMahon et al. 2008). Reconstruction of an entire lineage, by means of tracking cells via in vivo imaging analysis or in fixed samples, relies on the ability to clonally label the cell population of interest.

1.4.2 Cell transplantation

Transplantation assays, including the generation of interspecies chimeras or genetic mosaics, have been used extensively in developmental embryology to study cell fate in a clonal manner. Permanently labeled cells (e.g., fluorescent protein) transplanted into an unlabeled host present elegant ways to increase our understanding of tissue homeostasis and development, such as within the lung and retina (Giangreco et al. 2009; Centanin et al. 2011). However, non-permanent labels are prone to diffusion into neighboring cells (e.g., vital dyes) and quick turnover after successive rounds of cell division (e.g., fluorescent proteins provided by mRNA injections).

1.4.3 Genetic Recombination

In general, systems used for genetic recombination to achieve clonal labeling consist of two components: a recombinase and a genetically encoded conditional reporter gene. The two systems most commonly deployed are Flp/FRT and Cre/lox, derived from Saccharomyces cerevisiae and bacteriophage P1, respectively (Branda and Dymecki 2004). Reporter constructs, typically under control of an ubiquitously active regulatory element, constitute of a “default” cassette (transcriptional roadblock or fluorescent marker) flanked by target sites (e.g., lox2272) followed by the coding sequence for the desired genetic marker (e.g., fluorescent proteins or beta-galactosidase). Expression of a recombinase (e.g., Cre) in a cell-specific manner triggers site-specific recombination and expression of a conditional reporter gene,
ideally initializing life-long genetic labeling of all progeny of the marked cells.

In the fruitfly *Drosophila melanogaster* cell lineage analysis is typically based on reporter constructs equipped with FRT-sites, which are recognized by the Flp enzyme (Harrison and Perrimon 1993). In mice the Cre/lox approach has become the most commonly employed recombination system. Constitutive, ubiquitous reporter expression is commonly achieved in mice by insertion into the *Rosa26* locus (Srinivas *et al.* 2001). Chimeric Cre, fused to the human estrogen receptor (ER), provide accurate spatio-temporal control over the recombination event (Metzger *et al.* 1995a; Metzger *et al.* 1995b). The ligand-dependent recombination, Cre translocation to the nucleus is only permitted in case of hormone binding, has been significantly improved in terms of efficiency and sensitivity with the advanced CreERT and CreERT2 recombinases (Feil *et al.* 1996; Feil *et al.* 1997). The system is modular by crossing different cell-specific drivers controlling the recombinase to the same transgenic reporter, in theory allowing temporal and spatial control over the recombination in any tissue. For monitoring specific events in signal cascades, the Cre activity can be coupled to post-translational specific modifications. For instance, when fused to extracellular domain of the Notch1 transmembrane receptor, Cre protein is free to enter the nucleus and mediate recombination strictly upon receptor proteolysis, specifically tracing descendents of cells exposed to Notch1 activation (Vooijs *et al.* 2007).

In addition, the system is expandable by stacking differently colored fluorescent proteins between incompatible lox variants, resulting in stochastic recombination and uniquely labeled clones (Livet *et al.* 2007). The tamoxifen-inducible Cre enzyme has emerged as one of the most powerful tools in fate mapping, in particular for stem cell research concerning adult stem cells, since it allows visualizing the lineage potential of the (post-embryonically) induced cell population. Using the CreERT2, significant findings in the mice model have been made on cell fate dynamics in the interfollicular epidermis, germline, hair follicle, intestine and stomach (Barker *et al.* 2007; Clayton *et al.* 2007; Nakagawa *et al.* 2007; Barker *et al.* 2010; Snippert *et al.* 2010a). Concerning the CNS, an elegant study revealed nestin-positive radial glia-like precursors as self-renewing and multipotent NSCs in the adult mouse dentate gyrus (Bonaguidi *et al.* 2011). In medaka, the multipotency of Rx2-positive adult RSCs has been demonstrated with specific Cre expression under the Rx2 CRE at post-embryonic stages (L. Centanin and J. Wittbrodt, unpublished).

Recently, inducible genetic labeling offered potential solutions to the longstanding debate regarding the cellular origin of cancer. Lineage-tracing analysis of squamous skin tumors presents the first experimental evidence for the existence of cancer stem cells during unperturbed tumor evolution, independent of transplantation assays (Driessens *et al.* 2012). In another report examining the contribution of individual cells to tumor formation and growth in the mouse intestine, researchers
identified Lgr5-positive cells as the multipotent stem cells of adenomas (Schepers et al. 2012). Notably, this study took advantage of a reporter construct with inverted components and \textit{lox}-sites facing each other, continuing to switch colors after the initial induction as long as tamoxifen is provided, a process termed re-tracing.

Applied in zebrafish, fate-mapping through recombination of genetic markers shed light on different processes, such as the development of the cornea and plasticity of cardiac lineages during regeneration (Pan et al. 2013; Zhang et al. 2013). Moreover, lineage-tracing contributed greatly to our understanding of stem cell behavior in growing or renewing tissues, and whether asymmetry exists at the level of individual stem cells or an entire stem cell population. In the past numerous studies showed individual stem cells divide asymmetrically, giving strictly rise to one daughter cell that retains stem cell identity, therefore argued for a fate pattern of invariant asymmetry maintaining tissue homeostasis. More recently, quantitative analyses of long-term progression of labeled clones suggest that the prevalent strategy for homeostasis in cycling tissues is achieved by population asymmetry, for instance in the mammalian epidermis and the intestine (Clayton et al. 2007; Snippert et al. 2010b). Rather than maintaining balance by strictly dividing asymmetrically, clones in these tissues can be partially or entirely lost due to terminal differentiation or injury, while others expand through symmetric division to compensate for their absence, a pattern similar to what has been described in the germline (Morrison and Kimble 2006).

1.5 Reprogramming of terminally differentiated somatic cells

During the development of an entire organism, irreversible cellular identities are established and maintained in the embryo, all arising from undifferentiated pluripotent stem cells. It has been a long-standing challenge to reverse terminally differentiated cells back into a stem cell-state.

Reprogramming by somatic cell nuclear transfer was first demonstrated by the generation of tadpoles and adult frogs from unfertilized oocytes that had received a nucleus from the epithelial cells of the adult intestine (Gurdon 1962b; Gurdon 1962a). More than 30 years later, based on the same principle, the first mammals were successfully cloned from differentiated cells, which still hold all of the required genetic informations needed for the development of entire organisms, while unfertilized eggs contain factors that can reprogram the nuclei of somatic cells (Wilmut et al. 1997; Wakayama et al. 1998).

Embryonic stem cells (ESCs), derived from the inner cell mass of a blastocyst, are characterized by their ability to self-renew indefinitely and differentiate into any of the three germ layers. Fused with somatic cells, ESCs are capable of forming pluripotent hybrids (Tada et al. 2001). Nuclear reprogramming in
cell hybrids proofed the plasticity of differentiated mammalian cells; their differentiated state can be reversed when they are fused with embryonic germ cells or ESCs (Tada et al. 1997). Induced cell fate changes include de-differentiation of somatic cells into a stem cell-state, as well as trans-differentiation into another cell type. The idea of lineage-defining factors, single TFs that determine and induce the fate of a given lineage, stems from mis-expression experiments resulting in trans-differentiation. In Drosophila, ectopic expression of homeotic genes, such as Antennapedia or eyeless, was shown to be sufficient to induce the transformation of one body part into another (Schneuwly et al. 1987; Gehring 1996). The direct conversion of mammalian fibroblasts into myoblasts was achieved by forced expression of single TF, MyoD (Davis et al. 1987).

Combining the observations from nuclear reprogramming through cell fusion and lineage-defining TFs led to the hypothesis that reprogramming of somatic cells back into the embryonic state is achieved by the presence of multiple factors in unfertilized oocytes or ESCs. Therefore, it was tested if the simultaneous expression of defined factors induces a de-differentiation of somatic cells. Yamanaka and colleagues identified the four TFs Oct4, Sox2, Klf4 and c-Myc as sufficient to reprogram mouse and human embryonic fibroblast cells back to a pluripotent state (Takahashi and Yamanaka 2006; Takahashi et al. 2007). Global expression analysis revealed that in these so-called induced pluripotent stem cells (iPSCs) large quantities of ESC-specific genes are reactivated and many epigenetic marks are removed.

Recently, the first cellular reprogramming in vivo in genetically engineered mouse lines expressing the reprogramming TFs in an inducible manner was reported (Abad et al. 2013). Upon expression of Oct4, Sox2, Klf4 and c-Myc the mice developed teratomas, disorganized tissues containing cells representative of all three germ layers, across multiple tissues. When reprogrammed, iPSCs isolated from the bloodstream of transgenic mice were cultured, they adopted characteristics of trophoblast stem cells, indicating totipotency.

The successful reprogramming of differentiated cells into iPSCs followed by directed differentiation into the desired cell type offers an attractive route to regenerate any damaged or missing tissue. An alternative approach is the direct reprogramming - switching from one somatic lineage to another - through the expression of a multiple lineage-specifying TFs. One of the first studies reporting successful direct reprogramming was the conversion of exocrine cells to endocrine cells in the mouse pancreas mediated by a combination of Ngn3, Pdx1 and Mafa (Zhou et al. 2008).

Combined expression of the TFs Brn2, Ascl1 and Myt1l was sufficient to directly reprogram mouse fibroblast cells and human IPS cells into fully functional neuronal cells (Vierbuchen et al. 2010; Pang et al. 2011). Recently, it was demonstrated that expression of a single TF, Sox2, is capable of inducing
NSC-characteristics in cultured mouse and human fibroblast cells (Ring et al. 2012). These induced NSCs resemble wild-type NSCs in their morphology, self-renewal, ability to form neurospheres, and gene expression profiles. Directly reprogrammed NSCs are self-renewing and multipotent, as they differentiate into several classes of mature neurons, as well as astrocytes and oligodendrocytes. The freedom to generate patient-specific pluripotent stem cells provides new avenues for basic research and transplantation therapies with fully immunologically matched grafts for neurological and degenerative diseases. Moreover, cells could be manipulated for therapeutic purposes (e.g., cell replacement) towards a specific lineage, for instance a specific neuronal or glial cell type.

1.6 Gene knockdown and knockout in developmental genetics

1.6.1 Forward genetics

A common approach to interrogate the biological function of genes is the analysis of the loss-of-function phenotypes. In mutational analysis genes are functionally inactivated by disruptive mutations altering the protein-coding sequence, resulting in defective biological processes and the appearance of perceptible phenotypes. Alternatively, methods depleting mRNA transcript pool or interfering with translation or splicing allow functional characterization of genes without the necessity of introducing mutations into the genome. In addition, they allow studying the effect of knockdowns of multiple targets in one system, with the drawback that studies are limited to the early development. Traditionally, most gene functions have been exposed in phenotype-based approaches, where arbitrary gene disruption is followed by identification of mutant phenotypes. Mutants are identified by their displayed phenotypes; as a consequence the altered allele is mapped within the genome and associated with the observed phenotypic changes. Forward genetic screens have been successfully carried out in model systems as diverse as flies, worms, fish and mice (Brenner 1974; Nüsslein-Volhard and Wieschaus 1980; Hitotsumachi et al. 1985; Kubota et al. 1995; Driever et al. 1996; Haffter et al. 1996; Loosli et al. 2000). Base modifications resulting in heritable codon changes can be induced through ionizing radiation or chemical agents such as ENU or EMS, while transposase-mediated random insertions of transposable DNA elements provide a different method to cause disruption of extant coding sequences (Cooley et al. 1988; Gossler et al. 1989).
1.6.2 Reverse genetics

Teleost species medaka and zebrafish have become increasingly popular in biological research, in particular as resources in vertebrate developmental genetics. They are perfectly suited for large-scale forward genetic screens due their small size, accessibility and transparency. A large number of human disease genes have orthologs in medaka (more than 65%) and zebrafish (more than 75%), making both species amenable to disease-related genetic studies (Kasahara et al. 2007; Howe et al. 2013).

While the forward genetic screen is a powerful tool for uncovering unknown gene functions of great diversity, a reason why this approach is of interest for research in models where targeted mutagenesis is available (Anderson 2000), it imposes a number of limitations. The gene discovery is phenotype-driven and therefore relies on mutations that produce a visible phenotype. For instance, some mutations will lack an overt phenotype because of the existence of genes with redundant functions. Likewise, mutants can be missed during the screening process due to their subtle phenotype. Moreover, this approach is incapable of generating individual mutations at will for a specific gene of interest. This presents a general problem for model organisms such as fish and frogs, where the lack of reliable approaches mediating targeted mutagenesis has limited the functional analysis of genes.

1.6.2.1 Targeting induced local lesions in genomes

One application to bridge the gap between forward and reverse genetics in model organisms such as fish is targeting induced local lesions in genomes (TILLING). Pioneered in Arabidopsis thaliana, the initial steps of large-scale forward genetic screens based on random mutagenesis (e.g. chemically induced in sperm or spermatogonia) remain the same (McCallum et al. 2000; Colbert et al. 2001).

However, instead of phenotypic selection, individual DNA samples are obtained for sequence-based selection beforehand. Prior knowledge of the genomic sequence is required for the gene-specific PCR amplification steps, which are followed by endonuclease treatment to uncover mismatches in complementary DNA strands. Once the existence of a mutation in the gene of interest is confirmed, phenotypic consequences can be analyzed in the corresponding mutant fish (Wienholds et al. 2002; Ishikawa et al. 2010). Reduced sequencing costs make whole genome sequencing comparison an attractive alternative approach to identify altered coding sequences. Recently, the combination of large-scale random mutagenesis and high-throughput sequencing identified mutations in more than 38% of the protein-coding zebrafish genes (Kettleborough et al. 2013). Large-scale genetic screens in fish remain relevant for the systematic identification of vertebrate gene function due to their ease and range; adding to their appeal is the possibility to pair them with rapid and cost-efficient sequencing
protocols in order to identify precisely the altered sequence in the genome.

1.6.2.2 Morpholino oligonucleotides

Exploring gene function in fish and frog based on reverse genetics has mainly relied on injection of antisense oligonucleotides into the yolk or cytoplasm of a fertilized oocyte. Morpholino oligonucleotides are DNA analogues modified to resist endogenous enzymatic degradation processes and are designed to be complementary to the 5'UTR of a specific gene to block translation (Summerton and Weller 1997). Antisense morpholino oligonucleotide-mediated knockdown has been shown to phenocopy known zebrafish mutants (Nasevicius and Ekker 2000). While this approach has been successfully adopted to study gene function in a variety of model systems, prevalent limitations include dilution of efficiency through cell divisions, non-specific side effects and false-positive phenotypes through off-target knockdowns (Heasman 2002).

1.6.2.3 Targeted genome editing

Elucidating gene function by altering the coding sequence of a specific gene first and investigating the resulting phenotype later depends on the availability of efficient and sequence-specific methods for targeted genome editing in the model system of choice. Genome editing comprises a variety of applications, such as base pair deletions to induce frame shifts, substitutions to alter the amino acid sequence and therefore the protein structure, or insertion of exogenous DNA fragments into the host genome.

Recombination between homologous sequences permits the introduction of any desired fragment from exogenous DNA plasmid into the target genome. HR provides an unmatched precision (e.g. single nucleotide modifications) in the field of genome engineering. First established in yeast, HR has become the conventional method for mouse geneticist, aided by the existence of mouse ESCs, to engineer the mouse genome (Hinnen et al. 1978; Orr-Weaver et al. 1981; Thomas et al. 1986; Thomas and Capecchi 1987), in particular to investigate the role of genes in development and disease. The dominant role of model organisms with experimentally manipulable genomes is reflected by the vast knowledge we obtained from reverse genetic applications about gene function fundamental biological process, which contributed to the desire for the availability of genome editing methods as precise and efficient in other species.

Technologies developed for targeted mutagenesis such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and more recently RNA-guided systems can introduce chromosomal double-strand breaks (DSBs) to trigger endogenous repair pathways (Kim et al. 1996;
Lu et al. 2011; Tesson et al. 2011; Jiang et al. 2013; Wang et al. 2013). The error-prone repair of DNA DSBs by NHEJ can produce specific gene lesions but comes at the cost of unpredictable insertion and deletion mutations. Homology directed repair comes with the advantage of having complete control over the genomic modifications. By presenting donor DNA with homologous sequences to the desired locus, base pair deletions, insertions and substitutions of choice can be produced, extending the list of experimental applications beyond the generation of mutagenic lesions in coding sequences.

1.6.2.4 Zinc-finger nucleases

The ability to do reverse genetics - manipulate any desired locus in the genome followed by investigation for the phenotypic consequences - has been significantly enhanced by the emergence ZFNs. These hybrids comprised of zinc-finger arrays and FokI endonuclease offer precise genetic modification, in particular in living organisms that previously proofed too complicated or impossible to experimentally manipulate, for instance flies, fish or rats (Bibikova et al. 2002; Doyon et al. 2008; Meng et al. 2008; Geurts et al. 2009). The applications for ZFNs go beyond determining the biological role of arbitrary genes during development. ZFN-mediated disruption of HIV host co-receptor chemokine receptor 5 in T cells has been demonstrated to provide heritable protection against HIV-1 infection in vivo, highlighting the potential of ZFNs for therapeutic purposes (Perez et al. 2008). Similarly, the mutated alleles causing monogenic disorders could be specifically targeted and restored in their wild-type form. Cys2His2 zinc-fingers are DNA-binding domains that typically recognize three base pairs of DNA and are assembled in arrays of three to six fingers, therefore providing sequence specificity through binding to 18-36 base pairs of genomic DNA (Urnov et al. 2010). The zinc-finger arrays are fused to the non-specific proteolytic domain of the FokI (Flavobacterium okeanokoites) endonuclease. FokI nucleases catalyze DNA cleavage as dimers, thus the assembly of two customized ZFNs for one target locus is prerequisite for the generation of a DSB (Bitinaite et al. 1998). Development of obligate heterodimeric FokI nuclease domains has improved target specificity through reduced occurrence of unwanted homodimers (Miller et al. 2007). Following the generation of a ZFN-mediated site-specific DSB, NHEJ is triggered. Erroneous repair - insertion or deletion of base pairs - is likely to induce heritable frameshift mutations.

1.6.2.5 Transcription activator-like effector nuclease

Part of the desire for an alternative method stems from the difficult assembly process of individual zing-fingers, which has been reported as inefficient and laborious (Ramirez et al. 2008). TALENs are similar to ZFNs, as both are chimeras consisting of a customizable DNA-binding domain and a non-
specific FokI cleavage domain. The DNA-binding domain in TALENs is an array of highly conserved repeats, so-called TAL effectors, which were discovered in plant pathogenic bacteria. Upon entering the host plant cell, these transcriptional regulators are able to directly bind genomic DNA, therefore alter gene transcription in the nucleus during the course of pathogenesis (Boch and Bonas 2010). Binding specificity is achieved through tandem repeats in the central DNA-binding domain. Each repeat consists of two hyper-variable amino acid residues and allows binding to one base pair of genomic DNA (Boch et al. 2009; Moscou and Bogdanove 2009). The modularity of TAL effectors allows the construction of artificial effectors with novel binding specificities to target essentially any sequence of interest. As with ZFNs, the ability of TALENs to alter gene expression has been tested in a wide range of model organisms and cell types (Joung and Sander 2012). Studies reporting modification of the zebrafish genome were the first instances of gene disruptions created by TALENs in a vertebrate system (Huang et al. 2011; Sander et al. 2011). In addition, TALEN-mediated DSBs complemented with single-stranded DNA oligonucleotide donors yielded precise insertions into the zebrafish genome (Bedell et al. 2012). In this instance a loxP-site was inserted, offering the possibility to elucidate gene function in conditional mutants based on the Cre/lox or Flp/FRT recombination system (Branda and Dymecki 2004). In medaka, the successful generation of heritable lesions via TALENs has been reported; an exon of DJ-1, a gene implicated in the onset of early Parkinson's disease, has been targeted (Ansai et al. 2013). Both TALENs and ZFNs have been used to specifically activate gene expression, adding targeted transcriptional gene regulation to the list of applications. Instead of the FokI proteolytic fragment, a transcriptional activator domain was fused to the DNA-binding domain (Blancafort et al. 2004; Cermak et al. 2011; Miller et al. 2011), making them highly versatile tools to modify genes and gene expression.

1.6.2.6 RNA-guided genome modification

With more and more genomic resources available, there is an increasing demand for reliable reverse genetic approaches in fish. The rise of TALENs can be attributed to their easy design and rapid modular assembly; each TAL effector repeat recognizes one base pair in the target-binding site. A more recent class of engineered endonucleases employed for genome editing purposes achieves sequence specificity independent of a DNA-binding domain. RNA-guided nucleases are part of the adaptive immune system in bacteria and archea, which protects the organism against invading foreign DNA (Horvath and Barrangou 2010; Marraffini and Sontheimer 2010). Short fragments of nucleic acids from previous viral infections are integrated as clustered, regularly interspaced, short palindromic repeats (CRISPRs) into the host genome. Upon renewed infection, short CRISPR-derived RNAs (crRNAs) are
transcribed and guide the CRISPR-associated (Cas) protein, a non-sequence-specific nuclease, to the foreign genetic material, which will then be cleaved and inactivated. In type II CRISPR/Cas systems, another type RNA, trans-acting antisense RNA (tracrRNA), forms an RNA duplex together with pre-crRNA that is processed by RNase III (Deltcheva et al. 2011). The CRISPR/Cas system modified for genome editing purposes in eukaryotic cells features a single guide RNA (sgRNA), a hybrid between crRNA and tracrRNA, with 20 nucleotides of homology to the target. Immediately downstream follows the protospacer adjacent motif (PAM). The *Streptococcus pyogenes* Cas9 nuclease, which has been proposed to prefer the PAM sequence NGG, forms a ribonucleoprotein complex with the sgRNA and the homologous genomic target sequence. Choosing targets with deviations in the second or third nucleotide of the PAM sequence is detrimental to the cleavage efficiency, but does not entirely abolish cutting (Hsu et al. 2013; Jiang et al. 2013; Pattanayak et al. 2013). The binding specificity of the complex is determined by the sgRNA; therefore, the CRISPR/Cas approach requires generation of sgRNA matching the desired locus but is free of time-consuming engineering of specific DNA-binding fragments. The Cas nuclease and one specific guide RNA are the only components necessary and sufficient for induction of targeted DSBs. The efficacy of CRISPR/Cas system has been tested in human cells, zebrafish and mice (Chang et al. 2013; Cong et al. 2013; Hwang et al. 2013; Jao et al. 2013; Mali et al. 2013b; Shen et al. 2013). The applications in zebrafish include recapitulation of known phenotypes (Chang et al. 2013), germline transmission of the induced mutagenic lesions (Hwang et al. 2013; Jao et al. 2013), recessive null-like phenotypes induced by biallelic gene disruption (Jao et al. 2013), and knock-ins of experimenter-provided donor oligonucleotides (Chang et al. 2013; Hwang et al. 2013). Furthermore, a nuclease-inactivated version of the Cas9 protein has been fused to a transcriptional activator, allowing RNA-guided gene regulation (Mali et al. 2013a). Up to five genomic loci have been targeted simultaneously in ESCs and (Jao et al. 2013; Wang et al. 2013). The possibility of multiplex gene targeting will be beneficial in a number of applications, for instance the simultaneous introduction of multiple recombination sites to create conditional mutant alleles in a single step. Particularly research involving teleost fish, where multiple paralogs of one gene can exist as a result of whole genome duplication events, will profit from the multiplex feature of the CRISPR/Cas system. Paralogous genes can be targeted simultaneously with a single injection into fertilized eggs at one-cell stage, instead of performing tedious sequential single-knockouts.

So far, RNA-guided nucleases proofed to be at least as effective and versatile as ZFNs or TALENs in generating DSBs, which are the substrates for both mutagenic and homology directed repair. However, one constrain, when using the Cas9 protein, is presented by the required presence of the PAM site in the target sequence. Additionally, studies systematically testing the impact of mismatches in the
guide RNA found that single mismatches, particularly the ones near the PAM, reduced cleavage activity. Multiple mismatches rendered the targeted cleavage even less effective (Hsu et al. 2013). Furthermore, the system tolerated up to three mismatches, especially at PAM-distal positions of the sgRNA, highlighting the need for improved binding specificity in order to avoid off-target effects (Mali et al. 2013a).

1.7 Methodological approaches allowing the identification of upstream regulators of regulatory DNA elements

Chromatin immunoprecipitation offers the possibility to identify genomic DNA targets for a given TF in vivo. Interacting genomic DNA is identified by high-throughput sequencing following the co-immunoprecipitation with the protein of interest using an antibody against the protein (Collas and Dahl 2008). Likewise, prior knowledge of the binding site composition recognized by a TF allows bioinformatics-based search in non-coding promoter and enhancer regions. Computationally identified putative genomic targets need to be experimentally validated. Although chromatin immunoprecipitation is a very elegant method to show direct protein-DNA interactions in vivo, it is not suited to systematically search for transcriptional regulators of a given regulatory DNA. This would require the availability of specific antibodies against each protein or transgenic lines expressing epitope-tagged TFs. Interactions between TFs and a defined promoter have been successfully tested in yeast-one-hybrid and luciferase reporter assays. In the yeast-one-hybrid system, the protein is fused to an artificial activation domain and upon binding to the regulatory DNA, reporter gene expression (e.g., histidine synthase) is activated (Li and Herskowitz 1993). Although this approach indicates physical protein-DNA interactions, it is unable to reveal the regulatory mechanisms and the strength of interactions. The luciferase assay-based trans-regulation screen (TRS) has been shown to overcome those limitations. In this approach, cultured cells are co-transfected with the regulatory element upstream of a luciferase reporter (e.g., firefly luciferase), an expression vector encoding the candidate gene and a second reporter (e.g., Renilla luciferase). The obtained relative luminescence signals provide knowledge about the relative strength of activation or repression. Since the approach is cell culture-based and requires no tedious modifications of cDNA clones, rapid screening of transcriptome-scale cDNA libraries is possible, as successfully demonstrated for the regulatory element of the Atoh7 (also known as Ath5), a TF indispensable for ganglion cell specification (Souren et al. 2009).
1.8 Aim of this thesis

Over the last decades teleosts have become an increasingly popular model to study key developmental events and to dissect basic biological processes (Furutani-Seiki and Wittbrodt 2004). In particular the teleost eye, which is constantly growing from a compartmentalized stem cell domain, constitutes an excellent system to explore post-embryonic neurogenesis and the coordinated growth of several connected tissues. A recent study provided compelling evidence for the existence of multipotent NSCs in the post-embryonic medaka retina (Centanin et al. 2011). However, the molecular mechanism and the transcriptional framework underlying stemness in adult NSCs remain poorly understood.

This study aims to shed light on the gene regulatory framework orchestrating stem cell features in the retina by analyzing the regulatory cues controlling the expression of Rx2, a bona fide molecular marker for multipotent RSCs.

In addition, the study aims to establish the genetic tools to elucidate the role of Rx2. A plethora of studies in recent years described methods allowing the targeted modification of the genome (Gaj et al. 2013). These methods opened the opportunity to take advantage of reverse genetics with a precision previously available in a limited selection of model organisms. In both medaka and zebrafish, TALENs have been demonstrated to successfully introduce heritable mutations into the genomic sequences of choice (Sander et al. 2011; Ansai et al. 2013). Taking advantage of specific TALENs targeting endogenous Rx2, loss-of-function mutants are established, which will be analyzed in the future.
RESULTS
2 Results

2.1 Identification of regulators of retinal stem cell features

2.1.1 *Rx2* is specifically expressed in the eye

The embryonic expression of *Rx2* was first observed at the late neurula stage (stage 18) in retinal progenitors following the completion of optic vesicle evagination (Figure 3A). Later (stage 24) it was uniformly expressed in all RPCs throughout the proliferating mono-layered optic cup (Figure 3B). *Rx2* was centrally down-regulated concomitant with the onset of differentiation from the center, where the first progenitors exit the cell cycle and differentiate terminally into distinct neural retinal cell types. During the ongoing retinogenesis *Rx2* was progressively restricted to the margins of the expanding optic cup.

![Figure 3. Eye-specific TF Rx2 is expressed throughout eye development.](image)

(A-C) Brightfield images of whole-mount preparations at various developmental stages. *Rx2* transcripts are strongly detected in the optic vesicle (stage 18, A), the optic cup (stage 24, B) and the eye (stage 34, C).

2.1.2 *Rx2* is expressed in the peripheral-most part of the post-embryonic stem cell domain

Detailed analysis of the post-embryonic pattern of *Rx2* mRNA or protein and comparison with transgenic reporter animals expressing fluorescent proteins under the control of the *Rx2* CRE (Martinez-Morales *et al.* 2009; Inoue and Wittbrodt 2011) consistently revealed expression in stem cells in the most distal domain of the CMZ (stage 35) (Figure 4A’). The CMZ is populated by proliferating and undifferentiated cells, as indicated by the expression of the M-phase marker PHH3, the incorporation of the base analogue BrdU and the expression of the S-phase marker PCNA (Bravo *et al.* 1987; Negishi *et al.* 1991) (Figure 4B-D). Whereas PCNA protein co-localized with the majority of *Rx2* protein and fluorescent reporter expression, PCNA staining was absent from the peripheral-most *Rx2*-positive cells (Figure 5F-J). Likewise, BrdU was incorporated only in the central-most *Rx2*-expressing cells after a short pulse (not shown). In contrast to the findings at post-embryonic stages, peripheral *Rx2*-positive...
cells continuously expressed PCNA during optic cup stages (Figure 5A-E). Expression of Rx2 and differentiation markers appeared mutually exclusive in the peripheral retina (Figure 4E). Rx2 protein was also detected in cells of the INL and photoreceptor cells in the ONL (Figure 4A’’). Immunostaining against glutamine synthetase confirmed that Rx2 reporter and protein co-localize in MGCs throughout the INL (Figure 6). WISH analysis of Rx2 expression was consistent with Rx2 immunostaining and reporter expression, confirming that the Rx2 reporter faithfully recapitulates Rx2 expression in the post-embryonic retina (Figure 3C).

The expression analysis highlighted expression of Rx2 as a specific marker for the peripheral-most region in the CMZ and underscores the precise spatial reporter expression of the Rx2 CRE.

Figure 4. Rx2 reporter and protein expression co-localizes in the post-embryonic retina.

(A-E) Confocal stacks of frontal sections on the retina of transgenic Rx2 reporter (Rx2::Tub-GFP) embryo at stage 34. Transgenic reporter expression driven by Rx2 CRE (A, green) and Rx2 protein (A, red) closely overlap (A). Higher magnifications of boxed regions in (A) highlight overlapping expression in the peripheral CMZ (A’) and MGCs (white arrowheads) and photoreceptor cells (white arrow) of the central NR (A’’). Dashed lines demarcate border between CMZ and differentiated retina (A’) or between layers of the retina (A’’). Rx2 reporter expression in the periphery of the NR overlaps with mitotic markers BrdU (B, red), PCNA (C, red) and pH3 (D, red). Markers of differentiated neurons Zpr1 (E, red) and Islet1 (E, red) are absent from the juvenile CMZ. Scale bars: 50 μm in A and B; 25 μm in A’ and A’’.
Figure 5. Rx2 and PCNA proteins are co-expressed at embryonic and post-embryonic stages. (A-E) Confocal stacks of transversal sections show co-expression of Rx2 and PCNA in the optic cup (stage 24). (F-J) Confocal stacks of transversal sections show expression of Rx2 and PCNA in the post-embryonic retina (stage 37). Higher magnification pictures of boxed regions (A and F) are shown in (B-E and G-J). Scale bars: 50 μm in A and F; 10 μm in B and G.

Figure 6. Rx2 labels MGCs in the central retina. (A-D) Confocal stacks of frontal sections on the retina of transgenic Rx2 reporter (Rx2::Tub-GFP) embryo at stage 34. Transgenic reporter expression driven by Rx2 CRE (B, green) and Rx2 protein (C, red) co-localizes in the INL with glutamine synthetase immunostaining (D, grey) in the INL. Scale bar: 10 μm.
2.1.3 Identification of regulators of \(Rx2 \) expression

To identify genes controlling RSC-specific features, we investigated the regulatory input guiding \(Rx2 \) expression. For the systematic survey for regulators upstream of \(Rx2 \) the \textit{trans}-regulation screen was employed. This cell culture-based method involves the co-transfection of a reporter construct, which has the luciferase coding sequence downstream of the regulatory region of interest, together with candidate regulators. The luciferase reporter assays provide insight into the strength of the interaction and the actual regulatory function (e.g., activating) of the candidate protein. Rapid transfection under high-throughput conditions allows screening of large quantities of candidate genes in parallel on one or multiple regulatory regions. This approach reliably identified \textit{de novo} upstream regulators of \textit{Atoh7} expression (Souren \textit{et al.} 2009). We took advantage of the relatively short \(Rx2 \) CRE, which is sufficient to recapitulate the entire expression pattern of \(Rx2 \) \textit{in vivo} as described above, and tested 1151 individual full length cDNA clones representing a large complement of the putative medaka TF in a dual luciferase-based screen in cultured mammalian (BHK21) cells (Table 1). Activating or repressing candidates were validated by their expression relative to the expression of \(Rx2 \). Among the 51 genes analyzed, \(Sox2 \) was the top activator expressed in the mature retina. \(Gli3 \) and \(Her9 \) were the regulators with the strongest repressive activities. \(Tlx \), not present in the full-length TF library, was included because its particular expression in the CMZ and its role in NSCs (Yu \textit{et al.} 1994; Monaghan \textit{et al.} 1995; Shi \textit{et al.} 2004).
Table 1. Candidate regulators of Rx2 identified in the TRS.

Normalized ratios, Ensembl gene IDs and protein names are shown for the putative activators and repressors. Tested factors with normalized ratio of equal or more than 3.388 were considered as putative activators (left). Normalized ratios of equal or less 0.2755 were assigned as putative repressors (right). Factors are listed in descending order according to their normalized ratios. The TFs Sox2, Her9 and Gli3 (bold) were the strongest regulators expressed in the post-embryonic CMZ and therefore tested for the ability to regulate Rx2 \textit{in vivo}.

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Ensembl ID</th>
<th>Protein name</th>
<th>Ratio</th>
<th>Ensembl ID</th>
<th>Protein name</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8223</td>
<td>ENSORLG00000013930</td>
<td>MAFB (2 of 2)</td>
<td>0.2745</td>
<td>ENSORLG000000008319</td>
<td></td>
</tr>
<tr>
<td>6.3932</td>
<td>ENSORLG00000011685</td>
<td>SOX2</td>
<td>0.2724</td>
<td>ENSORLG000000010756</td>
<td>CYR61</td>
</tr>
<tr>
<td>5.6326</td>
<td>ENSORLG00000009709</td>
<td></td>
<td>0.2673</td>
<td>ENSORLG000000014942</td>
<td></td>
</tr>
<tr>
<td>5.0471</td>
<td>ENSORLG00000005001</td>
<td>SOX4</td>
<td>0.2661</td>
<td>ENSORLG000000019628</td>
<td></td>
</tr>
<tr>
<td>4.8001</td>
<td>ENSORLG00000012110</td>
<td>SOX1</td>
<td>0.2638</td>
<td>ENSORLG000000007548</td>
<td>ACVR1</td>
</tr>
<tr>
<td>4.3921</td>
<td>ENSORLG00000006390</td>
<td>P53_ORYLA</td>
<td>0.2633</td>
<td>ENSORLG000000013006</td>
<td></td>
</tr>
<tr>
<td>4.3592</td>
<td>ENSORLG00000012314</td>
<td>RND1</td>
<td>0.2612</td>
<td>ENSORLG000000017539</td>
<td>CDK5</td>
</tr>
<tr>
<td>4.2939</td>
<td>ENSORLG00000017977</td>
<td></td>
<td>0.2593</td>
<td>ENSORLG000000004561</td>
<td>DLX5</td>
</tr>
<tr>
<td>4.2580</td>
<td>ENSORLG00000001780</td>
<td>Q9PT76_ORYLA</td>
<td>0.2588</td>
<td>ENSORLG000000011137</td>
<td>MYST1</td>
</tr>
<tr>
<td>4.2226</td>
<td>ENSORLG000000003325</td>
<td>TRIM24</td>
<td>0.2570</td>
<td>ENSORLG000000004126</td>
<td>ROBO4 (1 of 2)</td>
</tr>
<tr>
<td>4.0101</td>
<td>ENSORLG00000014996</td>
<td>SOX11</td>
<td>0.2508</td>
<td>ENSORLG000000003221</td>
<td>IFRD2</td>
</tr>
<tr>
<td>3.9707</td>
<td>ENSORLG00000014398</td>
<td>TBL1XR1</td>
<td>0.2428</td>
<td>ENSORLG000000010055</td>
<td>Q7T1Q8_ORYLA</td>
</tr>
<tr>
<td>3.8176</td>
<td>ENSORLG00000014335</td>
<td></td>
<td>0.2360</td>
<td>ENSORLG000000007641</td>
<td>Q9PT79_ORYLA</td>
</tr>
<tr>
<td>3.8015</td>
<td>ENSORLG00000007859</td>
<td></td>
<td>0.2343</td>
<td>ENSORLG000000008072</td>
<td></td>
</tr>
<tr>
<td>3.7558</td>
<td>ENSORLG00000011491</td>
<td>MYCBP2</td>
<td>0.2333</td>
<td>ENSORLG000000015121</td>
<td>Q1XHL4_ORYLA</td>
</tr>
<tr>
<td>3.6907</td>
<td>ENSORLG00000011362</td>
<td>DUSP4</td>
<td>0.2285</td>
<td>ENSORLG000000010177</td>
<td>PDCD2</td>
</tr>
<tr>
<td>3.5596</td>
<td>ENSORLG00000014065</td>
<td></td>
<td>0.2259</td>
<td>ENSORLG000000013422</td>
<td>ARG1</td>
</tr>
<tr>
<td>3.5320</td>
<td>ENSORLG00000003250</td>
<td></td>
<td>0.2247</td>
<td>ENSORLG000000009030</td>
<td>RAB6C</td>
</tr>
<tr>
<td>3.5207</td>
<td>ENSORLG00000007960</td>
<td></td>
<td>0.2210</td>
<td>ENSORLG000000008054</td>
<td></td>
</tr>
<tr>
<td>3.5159</td>
<td>ENSORLG00000012362</td>
<td></td>
<td>0.2156</td>
<td>ENSORLG000000003982</td>
<td>GADD45G (1 of 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2035</td>
<td>ENSORLG000000017855</td>
<td>TBL1Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2010</td>
<td>ENSORLG000000014546</td>
<td>DLK1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1989</td>
<td>ENSORLG000000013231</td>
<td>GADD45B (1 of 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1981</td>
<td>ENSORLG000000004319</td>
<td>COL1A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1959</td>
<td>ENSORLG000000006591</td>
<td>IFT57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1939</td>
<td>ENSORLG000000009381</td>
<td>CHUK (2 of 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1918</td>
<td>ENSORLG000000017412</td>
<td>PAX1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1906</td>
<td>ENSORLG000000018979</td>
<td>STAU1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1752</td>
<td>ENSORLG000000004166</td>
<td></td>
</tr>
<tr>
<td>0.1666</td>
<td>ENSORLG000000005453</td>
<td>HER9</td>
<td>0.1031</td>
<td>ENSORLG000000012490</td>
<td>Gli3</td>
</tr>
</tbody>
</table>

Table 1. Candidate regulators of Rx2 identified in the TRS.

Normalized ratios, Ensembl gene IDs and protein names are shown for the putative activators and repressors. Tested factors with normalized ratio of equal or more than 3.388 were considered as putative activators (left). Normalized ratios of equal or less 0.2755 were assigned as putative repressors (right). Factors are listed in descending order according to their normalized ratios. The TFs Sox2, Her9 and Gli3 (bold) were the strongest regulators expressed in the post-embryonic CMZ and therefore tested for the ability to regulate Rx2 \textit{in vivo}.

2.1.4 \textit{Rx2}, \textit{Sox2}, \textit{Tlx}, \textit{Her9} and \textit{Gli3} are co-expressed in the post-embryonic CMZ

To address the function of our candidate genes, we first examined the expression of Sox2, Tlx, Gli3 and Her9 with respect to Rx2. Expression of the pan-neural determinant Sox2 was detected throughout the CMZ, from cells residing distally in the periphery, to more centrally located rapidly proliferating progenitors, to differentiating cells closest to the differentiated central retina (Figure 7A-C). Tlx and Her9, which were both expressed in the central CMZ, partially overlapped with the Rx2 expression domain (Figure 7D-I). Tlx- and Her9-positive cells that were Rx2-negative were found more centrally in...
the CMZ, where cells express PCNA and rapidly incorporate BrdU. In contrast, highest levels of Gli3 transcripts were found in the peripheral RPE surrounding the CMZ, while lower levels of Gli3 were also observed in the peripheral post-embryonic CMZ (Figure 7J-L). Two-color WISH confirmed the presence of Gli3 transcripts in the peripheral-most Rx2-expressing cells inside the CMZ (arrowhead in Figure 7L).

Taken together the expression of all Rx2 candidate regulators is tightly associated with the expression of Rx2 in distinctive domains of the post-embryonic retina and where they partially overlap with Rx2 in the CMZ.

Figure 7. Spatial expression pattern of Rx2 regulators in the post-embryonic retina of medaka.

(A-L) Confocal stacks of whole-mount two-color fluorescence in situ hybridizations with probes against Sox2 (B, red), Tlx (E, red), Her9 (H, red), Gli3 (K, red) and Rx2 (A, D, G, J, green) on stage 35 embryos. Rx2 (A, D, G, J, green) transcripts are found in the CMZ, INL and ONL. Sox2 (B, red) is expressed throughout the CMZ. Tlx (E, green), Her9 (H, green) have similar expression patterns in the central CMZ at stage 35, overlapping partially with Rx2 expression. Gli3 mRNA (K, red) is expressed primarily in the pigmented epithelium adjacent to the CMZ (inset in L). Gli3 mRNA in the CMZ is present in the peripheral-most Rx2-expressing cells (white arrowhead). Dashed line demarcates boundary between RPE and CMZ. Scale bar: 50 μm.
2.1.5 The Sox2, Tlx and Her9 cis-regulatory elements recapitulate endogenous gene expression

To analyze the expression of Sox2, Tlx and Her9 in the CMZ in more detail, transgenic reporter lines were generated. Based on the conservation in comparison to orthologous sequences, non-coding genomic fragments were tested for their cis-regulatory activity in the post-embryonic medaka retina (Ramialison et al. 2012). Reporter expression driven by the 2.4 kb fragment identified upstream of Sox2 was located in the entire CMZ (Figure 8A-D). The expression clearly overlapped with staining for Rx2 in the periphery and was extended into the central domain of the CMZ. Consistent with the expression analysis for the transcripts of Tlx and Her9, the respective transgenic reporter lines were expressed in the CMZ. Expression of both transgenic reporters was detected in the central-most Rx2 domain. Similar to Sox2, both Tlx (Figure 8E-H) and Her9 (Figure 8i-L) reporter activity appeared also in Rx2-negative cells of the central CMZ. In contrast, neither Tlx::GFP nor the Her9::GFP transgenic fish did express GFP in the most distal Rx2-positive cells.

To put these findings into relation, the transgenic Atoh7 reporter, labeling the central-most CMZ (Del Bene et al. 2007), was added (Figure 9). Transgenic fish carrying three reporter transgenes were analyzed for the expression of nuclear monomeric RFP (Rx2), cytoplasmatic GFP (Tlx) and membrane-bound YFP (Atoh7). Cross sections through the eye of hatchlings revealed three distinct domains: Consistent with previous findings, the cells in the most distal domain expressed the Rx2 reporter only (1). The next domain, which is located more centrally, was occupied by cells labeled with Rx2 and Tlx, but not by Atoh7 (2). The third domain, which did not express the Rx2 reporter, was entirely populated by memYFP-positive cells due to activity of the Atoh7 reporter transgene (3). At the transition from the second to the third domain Tlx was still expressed but did not spread as close as Atoh7 towards post-mitotic neurons.
Figure 8. Transgenic reporters for Sox2, Tlx and Her9 are expressed in the CMZ.
Confocal stacks of frontal sections on the retina of transgenic hatchlings. Peripheral CMZ is to the left, central retina is to the right.
(A-L) Expression of transgenic Sox2 (B), Tlx (F) and Her9 (J) reporter overlaps in part with Rx2 protein (C, G, K) in the CMZ. Scale bar: 50 μm.

Figure 9. Transgenic Rx2, Tlx and Atoh7 reporter lines label different domains in the post-embryonic CMZ.
(A) Confocal stacks of frontal sections on the retina of a triple-transgenic (Rx2::H2B-mRFP, Tlx::GFP and Atoh7::memYFP) hatchling. Higher magnifications of boxed region in (A) highlight the partially overlapping expression in the CMZ of all three reporter lines. Rx2::H2B-mRFP occupies the peripheral-most CMZ (1) and overlaps in part with Tlx::GFP (2). Tlx reporter expression extends into the most central part of the CMZ, labeled by Atoh7::memYFP (3). Rx2::H2B-mRFP at this stage does not overlap with the Atoh7::memYFP. Dashed (yellow) lines demarcate borders between peripheral and central-most Tlx reporter expression domain. Scale bars: 50 μm.
2.1.6 Conditional clonal analysis in the post-embryonic medaka retina

Since the in vitro characterization and the overlapping expression pattern of Sox2 and Tlx with Rx2 consistently argued for an activating function of Sox2 and Tlx, their interaction was addressed by a clonal gain-of-function approach in the post-embryonic retina.

For this, we employed a conditional, steroid-inducible expression system, which provided spatio-temporal control over the expression of the gene of interest (Emelyanov and Parinov 2008) and tested the consequences of acute clonal activation of Sox2 (cska::LexPR LexOP::Sox2) and Tlx (cska::LexPR LexOP::Tlx) gain-of-function through DNA microinjection into fertilized oocytes (Figure 10A). Positive clones were labeled by the expression of fluorescent proteins (LexOP::H2A-Cherry or LexOP::Cherry), encoded by co-injected reporter plasmids. Injection of the plasmids into a single cell at two-cell-stage in combination with the ubiquitous cska promoter (Grabher et al. 2003) facilitated randomized mosaic expression throughout all three nuclear layers. Expression of the candidate factors was hormonally induced (4 dpf) when the majority of cells in the central retina had exited the cell cycle and already differentiated into the neuronal and glial cell types (Figure 10B). Transgenic Rx2::Tub-GFP embryos, having reporter expression controlled by the same Rx2 CRE used in the TRS, were used as a sensitive read-out in vivo (Figure 10C).
Figure 10. Clonal gain-of-function in the central retina.

(A) Scheme outlining functional assays for clonal expression Rx2 activators. Driver (cska::LexPR LexOP::Sox2; cska::LexPR LexOP::Tlx) and effector (LexOP::Cherry) plasmids are co-injected into transgenic Rx2 reporter embryos (Rx2::Tub-GFP). Treatment with mifepristone results in mosaic expression pattern in the retinae of the embryos. Schematic cross section of the differentiated medaka retina with Rx2::Tub-GFP expression (green) in the CMZ, INL and ONL. Gain-of-function clones are randomly introduced into the central retina and identified via the co-expressed fluorescent protein (red) and examined for Rx2 CRE trans-activation (clones that are both green and red).

(B) Experimental timeline of clonal gain-of-function assay.

(C) Transgenic Rx2::Tub-GFP embryo after injection with control plasmids (cska::LexPR and LexOP::Cherry) and subsequent mifepristone treatment as outlined above. Anterior is up, posterior is down. Mosaic cherry expression is spread randomly throughout the head and eyes, while Tub-GFP expression continues unperturbed in the retina.

2.1.7 Sox2 and Tlx activate Rx2 expression in vivo

Sections of transgenic embryos at 7 dpf showed that the combined expression of Sox2 and Tlx resulted in strong Rx2 reporter activation (40/48, 83.33%) in all three nuclear layers (Figure 11). In addition to reporter expression outside of the Rx2 expression domain, enhanced levels of Rx2 were observed indicated by the Rx2 reporter (Rx2::Tub-GFP) in MGCs and photoreceptor cells, which co-expressed Sox2 and Tlx.
Results

Figure 11. Co-expression of Sox2 and Tlx trans-activates the Rx2 reporter in the central retina. (A-D) Confocal stacks of frontal sections on the central retina of transgenic fish (Rx2::Tub-GFP) at 7 dpf. Cells in all three nuclear layers of the NR (GCL, INL and ONL) over-expressing Sox2 and Tlx together (C, red), show ectopic Rx2 reporter activity (B, green). White arrowheads point to representative co-localizing cells. Scale bar: 10 μm.

2.1.8 Sox2 and Tlx individually activate Rx2 expression in vivo

Similarly, clonal miss-expression of Sox2 (32/48, 66.67%; Figure 12A-D) or Tlx (142/173, 82.08%; Figure 12F-I) individually resulted in ectopic Rx2 reporter activation. To corroborate that Sox2 and Tlx activate the endogenous Rx2 expression in vivo, WISH and immunohistochemistry were combined in whole-mount preparations (stage 30). DNA microinjection into two-cell stage wild-type embryos created mosaic expression in the central retina. Clones expressing Sox2 (53/62, 85.48%; Figure 12E-E”’) or Tlx, (34/56, 60.71%; Figure 12J-J”’), co-expressed ectopic Rx2 mRNA, which was never detected in controls (co-injection of cska::LexPR LexOP and LexOP::H2B-EGFP). These results revealed that Sox2 or Tlx trans-activate the endogenous Rx2 promoter as well as the Rx2 reporter in vivo and thus trigger Rx2 expression in differentiated cells of all three nuclear layers.
Figure 12. Sox2 or Tlx gain-of-function clones activate Rx2 reporter expression and ectopic Rx2 expression in the central retina.

(A-D) Confocal stacks of frontal sections showing the central retina of Rx2::Tub-GFP embryo 7 dpf. Cells in the GCL and INL expressing Sox2 (C, red) show ectopic Rx2 reporter activity (B, green).

(E-E”’) Confocal stacks of whole-mount embryo show co-localization of Sox2 (E’’, false-colored red) and Rx2 mRNA (E”, false-colored green) in the central retina at stage 30 (E).

(F-I) Confocal stacks of frontal sections showing the central retina of Rx2::Tub-GFP embryo 7 dpf. Cells in the ONL expressing Tlx (H, red) show ectopic Rx2 reporter activity in the INL and increased activity in the ONL (G, green). Tlx-positive clones of the ONL exhibit modified cell morphology in comparison with wild-type cells (inset in F).

(J-J’’) Confocal stacks of whole-mount embryo show co-localization of Tlx (J’’, false-colored red) and Rx2 mRNA (J”, false-colored green) in the central retina at stage 30 (J). Scale bars: 10 μm in A, E’, F and J’; 50 μm in E and J.
2.1.9 Clonal analysis reveals promotion of RSC-specific features by Sox2 and Tlx in vivo

The rationale behind investigating the regulation of Rx2 was the possibility to identify transcriptional RSC modulators. Given that Sox2 and Tlx are activators of Rx2 in vivo, we addressed whether clonal activation of Rx2 expression by Sox2 and Tlx coincided with the induction of other RSC features. In response to ectopic Sox2 or Tlx expression, changes in cell shape were observed, for instance in photoreceptors lacking the characteristic cone- or rod-like shape (inset in Figure 12F). To evaluate whether clonal activation of Rx2 expression by Sox2 or Tlx coincided with the induction of other RSC features, we first examined the mitotic state in those cells. Gain-of-function clones were induced as described above and analyzed for the expression of PCNA. In sections of the central retina of controls analyzed at 7 dpf, PCNA-positive clones were never detected. In contrast, both, the expression of Sox2 (7/11, 63.63%; Figure 13A-E) as well as Tlx (3/23, 13.04%; Figure 13F-J) resulted in enhanced mitotic activity as indicated by PCNA staining. This shows that clonal ectopic expression of Sox2 or Tlx re-activated the proliferative potential and shifted cells back into the mitotically active state. PCNA-positive clones were observed in the INL and ONL, indicating that de-differentiation was widespread and not restricted to one particular type of retinal neurons.

Figure 13. Expression of Sox2 or Tlx promotes stem cell features in terminally differentiated neurons.

(A-J) Confocal stacks of frontal sections showing the central retina of transgenic Rx2::Tub-GFP embryo 7 dpf. Sox2 (D, red) activates Rx2 reporter expression (C, green) and coincides with PCNA staining (B, grey) in the ONL. Sox2-positive cell of the ONL shows modified cell morphology in comparison with adjacent wild-type cells (E, blue). Likewise, a proportion of Tlx-expressing neurons (I, red), which activate the Rx2 promoter (H, green), co-localize with staining for PCNA (G, grey). Scale bar: 10 μm.
2.1.10 Transient exposure to Tlx transforms neurons into label-retaining cells

Label-retention over extended periods of time has been shown to be a common feature of bona fide stem cells in different animal niches (Bickenbach 1981; Tumbar et al. 2004). The tools for conditional gene expression described earlier allowed us to transiently mis-express $Rx2$ activators and fluorescent proteins in the same cells in vivo. To address the label-retaining potential in cells expressing $Rx2$ in response to the clonal activation of Tlx, the retention of fluorescent protein 49 days after the transient induction of Tlx was analyzed. The clonal expression of Tlx was repeated as described above in $Rx2::Tub-GFP$ transgenic embryos. Limited expression of Tlx was activated by a hormone pulse (d4-d7) and the fish were allowed to grow for 7 additional weeks in the absence of the inducing hormone (Figure 14A). Strikingly, 49 days after end of the transient induction fluorescently labeled cells were still observed. Those cells were positive for ectopic GFP and cherry (Figure 14B-E). Overlap of the green and red fluorescence in the central retina indicated that transient activation of the $Rx2$ CRE was successful at 7 dpf and that these cells retained both labels for almost 50 days. Control retinae, where cherry expression was induced in parallel, did not retain any ectopic label in the central retina. Taken together, this analysis highlighted the potential of $Sox2$ and Tlx to trigger stem cell features in differentiated retinal cells, which are highly reminiscent of RSCs.

2.1.11 Gli3 and Her9 repress $Rx2$ in the CMZ

To assess whether $Gli3$ and $Her9$ act as transcriptional repressors of $Rx2$ in vivo, their clonal expression in cells endogenously expressing $Rx2$ was triggered. As described above, $Rx2$-positive cells resided...
Results

in the peripheral CMZ, centrally and peripherally flanked by the Her9 and Gli3 expression domains respectively (Figure 15B). Gli3 transcripts were primarily detected distantly in the adjacent RPE. Her9 mRNA conversely was found in the centrally adjacent CMZ. Therefore the Gli3 and Her9 expression was shifted into the Rx2 domain using inducible clonal expression in transgenic fish (Figure 15C-D). The clones were traced via a co-expressed nuclear GFP (H2B-EGFP) (Figure 15A). An Rx2 antibody was employed to assess Rx2 protein presence and levels. Clonally increased Gli3 expression in the peripheral CMZ (Rx2::LexPR LexOP::Gli3 LexOP::H2B-EGFP), resulted in the loss of Rx2 protein in almost 40% of the ectopic Gli3-positive cells (13/33, 39.39%; Figure 16E-H). Of the clones expressing ectopic Her9 within the Rx2 domain (Rx2::LexPR LexOP::Her9 LexOP::H2B-EGFP), 20% showed decreased levels of Rx2 protein (7/35, 20.00%; Figure 16I-L). In contrast, Rx2 protein expression remained unaffected (1/34, 2.94%; Figure 16A-D) in the control (Rx2::LexPR LexOP::Her9 LexOP::H2B-EGFP). These findings are consistent with hypothesis that the domain of Rx2-positive stem cells is established and maintained by the activity of Sox2 and Tlx, is centrally (NR) and peripherally (RPE) confined by the expression of Her9 and Gli3.

Figure 15. Conditional clonal gain of Gli3 and Her9 in the CMZ.
(A) Schematic cross section of the mature retina upon induction of clonal expression as indicated by H2B-EGFP under the Rx2 CRE.
(B-D) Close up of the post-embryonic CMZ outlines the expression domains of RSC-marker Rx2, Gli3 and Her9 (B) in the controls, upon increased Gli3 (C) or Her9 (D) expression in the peripheral Rx2 domain.
Figure 16. Clonal over-expression of Gli3 or Her9 in the CMZ reduces Rx2 protein levels.

(A-L) Confocal stacks of transversal sections on transgenic retinae (Rx2::LexPR LexOP LexOP::H2B-EGFP; Rx2::LexPR LexOP::Gli3 LexOP::H2B-EGFP; Rx2::LexPR LexOP::Her9 LexOP::H2B-EGFP) with immunostaining against the Rx2 protein at 9 dpf.

(A-D) In control experiments (Rx2::LexPR LexOP LexOP::H2B-EGFP), Rx2 is detected in the peripheral-most cells of the CMZ (B, red) despite sustained expression of H2B-EGFP (C, green).

(E-H) Clonal expansion of the Gli3 (G, green) expression domain in the CMZ reduces levels of Rx2 protein (F, red) in transgenic fish (Rx2::LexPR LexOP::Gli3 LexOP::H2B-EGFP).

(I-L) Similarly, sections on transgenic fish (Rx2::LexPR LexOP::Her9 LexOP::H2B-EGFP) reveal reduction or loss of Rx2 staining (J, red) in the peripheral CMZ is observed in clones expressing Her9 (K, green). Dashed lines demarcate Rx2 domain in the CMZ. Dotted lines highlight affected clones. Scale bar: 10 μm.

2.1.12 Sustained expression of Gli3 and Her9 represses proliferation in the CMZ

Having shown that Rx2 activators Sox2 and Tlx promote RSC-specific behavior, we asked whether expression of Rx2 repressors mediates the opposite phenotype. To test this hypothesis the mitotic activity of clones expressing Gli3 or Her9 was investigated through PCNA immunostaining. Gain-of-function clones were generated and traced as described above (Figure 15). In sectioned control retinae of embryos at 9 dpf, homogenous presence of PCNA protein was detected throughout the central domain of the CMZ, unaffected by expression of H2B-EGFP (3/38, 7.89%; Figure 17A-D). In contrast, in Gli3 gain-of-function clones PCNA was markedly reduced. Less or no PCNA protein was found in more than 36% of the H2B-EGFP-positive (indicative of Gli3 expression) cells (39/106, 36.79%; Figure
Similarly, PCNA staining was strongly reduced or completely absent in more than 30% of the Her9 over-expressing cells (21/64, 32.81%), indicating that entry of RPCs or RSCs cells into S-phase of the cell cycle was prevented (Figure 17I-L). Taken together these results indicate that ectopic Gli3 and Her9 expression in the CMZ antagonize both, Rx2 expression and proliferation in adult RSCs.

Figure 17. Clonal over-expression of Gli3 or Her9 in the CMZ reduces proliferation.

(A-L) Confocal stacks of transversal sections on transgenic retinae (Rx2::LexPR LexOP LexOP::H2B-EGFP; Rx2::LexPR LexOP::Gli3 LexOP::H2B-EGFP; Rx2::LexPR LexOP::Her9 LexOP::H2B-EGFP) with immunostaining against the PCNA protein at 9 dpf.
(A-D) PCNA labels a continuous group of mitotically active, undifferentiated cells in the CMZ (B, red).
(E-H) Gli3 gain-of-function clones (G, green) show frequently lowered PCNA staining (F, red) compared to control cells.
(I-L) Her9 gain-of-function clones (K, green) have less PCNA protein (J, red). Dotted lines highlight affected clones. Scale bar: 10 μm.

2.1.13 Sox- and Gli-binding sites are necessary for the functionality of the Rx2 CRE

To further address the significance of the identified trans-regulators for the accurate expression of Rx2, we analyzed the architecture of the Rx2 CRE. Applying evolutionary footprinting to uncover putatively functional, non-coding DNA elements by their conservation, binding sites for Sox, the strongest activator in the in vitro assay, as well as for Gli, the strongest repressor were identified. Alignment of non-coding
Results

genomic DNA sequences upstream of the \(Rx2 \) transcriptional start site showed conservation between teleost fish species (Figure 18A). Despite low overall similarities of the entire medaka CRE to higher vertebrates, a conserved putative Sox-binding site was identified (Figure 18B).

Figure 18. The \(Rx2 \) CRE contains conserved Sox- and Gli-binding sites.

(A-B) Result of BLAT search for the 2.4kb medaka \(Rx2 \) CRE using the UCSC Genome Browser (1 in A). The region (2 in A), which contains the putative Sox-binding site (orange) and Gli-binding site (green) is conserved (B). Blue peaks indicate conservation of coding and non-coding DNA sequences among teleost species.

The importance of conserved transcription factor binding sites (TFBSs) for the precise spatio-temporal expression coordinated by the \textit{Xenopus} \(Rx \) CRE has been implicated previously (Danno \textit{et al.} 2008; Martinez-De Luna \textit{et al.} 2010). Given that the TF Sox2 is able to \textit{trans}-activate expression of genes downstream of the medaka \(Rx2 \) CRE \textit{in vivo}, we addressed whether alterations in the putative Sox-binding site affect \(Rx2 \) reporter expression. To address this, two point mutations (Danno \textit{et al.} 2008) were introduced into the core of the predicted Sox-binding site (\(Rx2::H2B-mRFP \text{ mtSox2} \)) and the activity of the mutated \(Rx2 \) CRE in transgenic medaka embryos was tested. As described above, \(Rx2 \) reporter activity accurately matched the expression of the \(Rx2 \) protein in the retina (Figure 19A-B). In contrast, mutations in the Sox TFBS resulted in an altered expression pattern. In sectioned retinae of
stage matched transgenic $Rx2::H2B-mRFP \text{mtSox2}$ embryos, reporter activity in the CMZ was strongly reduced (Figure 19C-C’’’). Also in the INL, where $Rx2$ is expressed in MGCs 9 dpf (Figure S2), the number of mRFP-positive cells was reduced (Figure 19D-D’’’). Interestingly, $Rx2$ reporter expression in photoreceptor cells of the ONL, where Sox2 is not expressed, was unchanged and identical to the control (Figure 19D-D’’’). Strikingly, the mutation in the putative Sox-binding site in the $Rx2$ CRE affects all domains of $Rx2$ expression that overlap with the expression of Sox2. The finding that upon mutation of the predicted Sox TFBS expression in the CMZ is strongly reduced, albeit not entirely abolished, highlights the in vivo relevance of the Sox-binding site contained within the $Rx2$ CRE for the activation of $Rx2$ expression in the peripheral CMZ.

Figure 19. Mutation of Sox-binding site abolishes $Rx2$ cis-regulatory activity in the CMZ.

(A-B’’’) Confocal stacks of frontal sections on the retina of $Rx2::H2B-mRFP$ transgenic embryo 9 dpf. Transgene expression (A, red), driven by $Rx2$ CRE, co-localizes with $Rx2$ protein in the CMZ, INL and ONL (A, green). Higher magnification pictures of boxed regions (A) are shown in (A’-A’’’; B-B’’’).

(C-D’’’) Confocal stacks of frontal sections on the retina of $Rx2::H2B-mRFP \text{mtSox2}$ transgenic embryo 9 dpf. Number of cells with transgene expression (C, red), driven by mutated $Rx2$ CRE, is markedly reduced in the CMZ and INL in comparison to $Rx2$ immunostaining (C, green) and control transgene expression (A, red). In contrast, transgene expression in $Rx2::H2B-mRFP \text{mtSox2}$ fish continues in the photoreceptor cells of the ONL. Higher magnification pictures of boxed regions (C) are shown in (C’-C’’’; D-D’’’). Dashed line indicates transition from CMZ to CR. Dotted line represents border between layers of the NR. Scale bars: 50 μm in A and C; 25 μm in A’ and C’.
Given the ability of \(\text{Gli3} \) to repress \(\text{Rx2} \) \textit{in vivo}, it was also investigated whether Gli TFs (like Sox) act as direct transcriptional regulators of the \(\text{Rx2} \) CRE. Following the identification of a putative Gli TFBS (Sasaki \textit{et al.} 1997), 11 bp containing the Gli DNA motif were deleted from the \(\text{Rx2} \) CRE (Figure 18B). Analysis of transgenic medaka fish (\(\text{Rx2}::\text{H2B-mRFP delGli} \)) revealed a marked shift in reporter expression from the peripheral CMZ to the mono-layered RPE (Figure 20B-B’’’). Consistent with our previous results from the \(\text{Gli3} \) expression analysis, reporter expression within the RPE was detected only in epithelial cells adjacent to the CMZ in transgenic embryos (\(\text{Rx2}::\text{H2B-mRFP delGli} \)). mRFP expression in the transgenic control (\(\text{Rx2}::\text{H2B-mRFP} \)) was confined to the NR and absent from the RPE (Figure 20A-A’’’). Interestingly, in \(\text{Rx2}::\text{H2B-mRFP delGli} \) transgenic fish fewer mRFP-positive cells were observed within the CMZ, suggesting that the loss of the Gli TFBS resulted in a shift of expression towards the RPE rather than an expansion. These results demonstrate that inhibitory factors confine \(\text{Rx2} \) to the RSCs in the CMZ and prevent expression in the proliferating cells of the RPE. Furthermore, the Gli-binding site is of importance within the CMZ for the trans-activation of \(\text{Rx2} \).

Figure 20. Loss of the Gli-binding site in the \(\text{Rx2} \) CRE shifts reporter expression into the RPE.

(A-A’’’’) Confocal stacks of frontal sections on the retina of \(\text{Rx2}::\text{H2B-mRFP} \) transgenic embryo 9 dpf. Immunostaining against nuclear mRFP shows transgene expression in the controls as expected in the CMZ, INL and ONL (A, red). Expression of the transgene is confined to the CMZ and does not extend to the RPE (A’, red). Higher magnification pictures of boxed regions (A) are shown in (A’-A’’’’).

(B-B’’’’) Confocal stacks of frontal sections on the retina of \(\text{Rx2}::\text{H2B-mRFP delGli} \) transgenic embryo 9 dpf. Deletion of putative Gli-binding site in the \(\text{Rx2} \) CRE causes ectopic transgene expression in cells of the RPE and reduces expression in the CMZ (B’). Higher magnification pictures of boxed regions (B) are shown in (B’-B’’’’). Yellow dashed line demarcates border between RPE and CMZ. Scale bars: 50 μm in A and B; 25 μm in A’ and B’.
2.2 Elucidating Rx2 function

2.2.1 Gain of Rx2 in the medaka retina

To address the function of Rx2 itself, the effect of Rx mis-expression was studied in vivo. For this purpose, a single mRNA encoding Rx2 and mRFP separated by a sequence for a viral T2A cleavage site was engineered (Rx2-T2A-mRFP), resulting in the equal proportions of (separate) Rx2 and mRFP proteins. The regulatory element of Atoh7 (Del Bene et al. 2007) was chosen to express Rx2-T2A-mRFP. Atoh7 is involved in specification of RGCs during early neurogenesis in the retina (Kanekar et al. 1997; Brown et al. 2001; Wang et al. 2001; Kay et al. 2005) and, as described above, later demarcates the central-most CMZ, where cells exit the cell cycle and terminally differentiate (Cerveny et al. 2010). In addition the Atoh7 CRE is also active in a fraction of differentiated cells of the post-embryonic retina. As a result, the transgene Atoh7::Rx2-T2A-mRFP was expressed in post-mitotic precursors (at embryonic and post-embryonic stages) as well as neurons in the GCL and INL.

2.2.1.1 Rx2 gain-of-function in the Atoh7 domain results in morphological changes in the GCL and INL

Cross-sections of transgenic Atoh7::Rx2-T2A-mRFP hatchlings were characterized by apical extensions of the GCL. Furthermore, the INL was extended towards the GCL (basally), resulting in irregular spacing between the two layers. These extensions were inhabited by mRFP-positive cells and distributed at similar positions in GCL and INL along the dorsal-ventral axis of the sectioned retinae (Figure 21A-D). In the most severe cases, the IPL, usually free of cell nuclei, was populated by cells, which formed continuous connections between the GCL and INL (Figure 21E-H). In all retinae analyzed, multiple extensions were found along the apical surface of the GCL and basal surface of the INL. On average, 3.67 positions across the IPL were irregular spaced per section (3.67±1.37, six sections). Two independent transgenic lines with the same transgene (Atoh7::Rx2-T2A-mRFP) were established, similar in pattern but different in level of mRFP expression due to their varying copy-numbers and different positions of insertion into the genome. While embryos of both lines displayed the phenotype described above, the length of the extensions along the apico-basal axis entering the IPL was increased in offspring with stronger mRFP expression (not shown). Since Rx2 and mRFP originate from the same mRNA and therefore the translation of both proteins is stoichiometrically equivalent, increased expression of mRFP is indicative of higher Rx2 levels. Enucleated eyes from Atoh7::Rx2-T2A-mRFP transgenics were undistinguishable from control eyes in their external morphology.

To test whether proliferation is altered in retinae over-expressing Rx2, a 24 h (at day 9) pulse of BrdU
was provided without a chase (fixed at day 10). With the exception of the cells inside and surrounding the optic nerve, no BrdU-positive cells were detected in the central retina of *Atoh7::Rx2-T2A-mRFP* transgenics (Figure 21E-H). These findings were similar to wild-type controls treated in parallel (not shown). Inside the CMZ, where ectopic *Rx2* was expressed in the central-most cells, incorporation of BrdU was limited to the transit-amplifying domain (white arrowhead in Figure 21I-L). Similarly, a short pulse resulted mainly in BrdU uptake in rapidly dividing progenitors in between peripheral and central CMZ of control retinae. The irregular spacing of the nuclear layers was not accompanied by cell divisions in cells expressing Rx2-T2A-mRFP, hinting at either ectopic proliferation occurring earlier during development or that the phenotype seen in *Atoh7::Rx2-T2A-mRFP* transgenics is established independent of changes in proliferation.

![Confocal images showing retina](image)

Figure 21. Gain of *Rx2* in the *Atoh7* domain does not coincide with enhanced proliferation.

(A-L) Confocal stacks of frontal sections showing the central retina of transgenic *Atoh7::Rx2-T2A-mRFP* fish 10 dpf. BrdU was provided for 24 h prior to fixation. Rx2-T2A-mRFP (B, F, J, red) expression induces irregular spacing between the GCL and INL. No cell divisions outside of the CMZ and optic nerve occurred during the 24 h BrdU pulse (C, G, K, green). Higher magnification pictures of boxed regions (A) are shown in (E-H and I-L). Asterisks (yellow) indicate irregular layering. White arrowheads highlight outer margin of the *Atoh7* expression domain. Scale bars: 50 μm in A; 10 μm in E and I.
2.2.1.2 *Rx2* gain-of-function does not alter proliferation and morphology during the beginning of retinal differentiation

To assess the dynamics in the phenotype caused by Rx2 mis-expression, earlier stages of eye development, in particular during the onset and progression of retinal neurogenesis were examined in *Atoh7::Rx2-T2A-mRFP* transgenic embryos.

At 2.5 dpf *Rx2-T2A-mRFP* was ectopically expressed throughout the GCL and in very few cells on the basal surface of the future INL (Figure 22A-H). Similarly, transgene expression at 3.5 dpf was detected in the GCL and INL (Figure 22I-P). At both stages analyzed, *mRFP*-expressing cells clustered together in small groups at the basal surface of the INL (yellow asterisks in Figure 22). Additionally, weak mRFP signal was detected in a small number of individual cells of the ONL. Compared to retinae at 2.5 dpf, more mRFP-positive cell cluster were detected in the INL at 3.5 dpf.

Cells passing through the S-phase of the cell cycle were localized at the periphery of the NR at 2.5 dpf and 3.5 dpf (Figure 22). Neither during 24 h (fixed at 2.5 dpf) nor 48 h pulses (fixed at 3.5 dpf) was BrdU incorporated in *Rx2* over-expressing cells. In terms of morphology and proliferation these retinae did not differ from stage-matched wild-type controls (not shown). In particular, the spacing between GCL and INL was similar to the controls, arguing for the phenotype being established at later stages of embryonic retinogenesis.
2.2.1.3 *Rx2* expression under the *Atoh7* CRE coincides with reduced expression of markers for neural differentiation of RGCs

The proneural gene *Atoh7* encodes a basic helix-loop-helix TF crucial for the genesis of RGCs. *Atoh7* has the ability to activate itself through an auto-regulatory feedback loop; the TF recognizes and binds
the Atoh7 CRE to mediate expression (Matter-Sadzinski et al. 2001; Del Bene et al. 2007). Other known targets of Atoh7 include Hu antigen C (HuC, ELAV-like 3) Brn3C and CD166. Atoh7 is able to trans-activate HuC expression via direct binding to an E-box motif in the proximal regulatory element (Del Bene et al. 2007). To investigate the molecular mechanism behind the phenotype in the post-embryonic retina of Atoh7::Rx2-T2A-mRFP transgenics, HuC as a known Atoh7 target gene and Islet as a RGCs marker (Martinez-Morales et al. 2001) were assessed through immunostainings. At 10 dpf when embryonic neurogenesis was concluded, cells in GCL with strong Rx2 expression (as indicated by the mRFP) had reduced levels of HuC/D protein (Figure 23A-A'''). Similarly, weak immunostainings for Islet coincided with high mRFP expression, while high Islet levels occurred in cells with no or little mRFP expression (Figure 23B-E).

Figure 23. Rx2 overexpression in RGCs coincides with reduced expression of markers for RGCs.
(A-E) Confocal stacks of transversal sections showing the central retina of transgenic Atoh7::Rx2-T2A-mRFP fish 10 dpf.
(A-A''') Rx2-T2A-mRFP (red, A'') expression coincides with reduced staining for the RGC-marker HuC/D (green, A'''').
(B-E) Rx2-T2A-mRFP (red, C) expression coincides with reduced staining for the RGC- and AC-marker Islet (green, D). Asterisks (yellow) indicate absence of Rx2-T2A-mRFP in strongly HUC/D- or Islet-positive cells in the GCL. Yellow arrowheads indicate Rx2-T2A-mRFP-expressing cells with no or less HuC/D (or Islet) in the GCL. Scale bars: 50 μm in A; 10 μm in A' and B.

2.2.1.4 Reduced activity of the Shh regulatory element in the GCL coincides with Rx2 gain-of-function

Having shown above that downstream mediators of the Hh pathway regulate Rx2 expression, the impact of gain of Rx2 in cells with active Hh signaling was evaluated. For this purpose double transgenic offspring from a cross between Atoh7::Rx2-T2A-mRFP and Shh::GFP carriers were analyzed. Siblings
expressing only Shh::GFP were used as the control. The zebrafish regulatory element of Shh (Neumann and Nuesslein-Volhard 2000) introduced upstream of GFP resulted in reporter gene expression in the GCL and INL in hatchlings (Figure 24A-H). Thus, the observed reporter expression in transgenic medaka embryos was consistent with studies in other vertebrate species detailing Shh expression in the NR (Wallace 2008). Given that the Atoh7 CRE is primarily active in the RGCs, offspring carrying both transgenes should co-express Rx2-T2A-mRFP and GFP in the GCL. On average 12.5 GFP-positive cells (12.5±2.43, six sections) were detected in the GCL of Shh::GFP hatchlings (yellow asterisks in Figure 24A-H). In contrast, this number was reduced to 2.5 cells (2.5±1.05, six sections) in the GCL of Atoh7::Rx2-T2A-mRFP / Shh::GFP transgenics (yellow asterisks in Figure 24I-P). The number of GFP-positive cells in INL of double-transgenic hatchlings (13.67±2.88, six sections) was similar to the average number in control siblings (13±4.56, six sections). The findings show that the non-conditional expression of Rx2 coincided with lower activity of the Shh promoter.
Results

Figure 24. Expression of Rx2 in the GCL reduces Shh promoter activity.

(A-H) Confocal stacks of transversal sections showing the central retina of transgenic *Shh::GFP* fish 9 dpf. The *Shh* promoter (green, C, G) is active in the GCL and INL.

(I-P) Confocal stacks of transversal sections showing the central retina of double transgenic *Atoh7::Rx2-T2A-mRFP* and *Shh::GFP* fish 9 dpf. Rx2-T2A-mRFP expression (red, J, N) coincides with reduced number of cells with Shh reporter expression (green, K, O). Higher magnification pictures of boxed regions (A and I) are shown in (E-H and M-P). Asterisks (yellow) indicate GFP-positive cells in GCL. Scale bars: 50 μm.

2.2.2 Rx2 loss-of-function

Rx2 has been established as a molecular marker for multipotent NSCs in the adult fish retina. However, the function of Rx2 remains unknown. To accurately gauge the role of Rx2, loss-of-function studies are inevitable. Morpholino oligonucleotides directed against the start codon of Rx2 failed to produce
phenotypes (not shown). Instead of changing Rx2 protein levels by means of mRNA knockdown strategies, we aimed for the permanent genetic inactivation of Rx2 through locus-specific disruptive mutations.

For this purpose two customized TALEN pairs were designed against the coding sequence of the Rx2 gene. TALENs 128 and 129 TALEN consist of DNA binding domains matching the first coding exon of Rx2 (Figure 25A). The TAL effectors of pair 106/107 were designed to bind the second exon (Figure 25A). Analysis of the protein domains encoded in the Rx2 gene showed TAL effectors 128 and 129 binding in between the sequence of the octapeptide domain and the homeobox (Figure 25B). TALENs 106 and 107 were binding in the middle of the homeobox. Depending on the nature of mutations, TALEN-mediated changes in the exonic sequences could result different truncated protein variants.

(A) Result of BLAST search for the two TALEN pairs against the medaka genome in the Ensembl browser. The Rx2 gene is located on chromosome 17 of the genome and the transcript consists of three coding exons (dark red). One small additional coding exon is included in an alternative Rx2 transcript. All four TALEN DNA binding domains (red) align free of mismatches to exonic Rx2 sequences.

(B) The annotated coding sequence of Rx2 results in a single ORF (orange). The binding sequences (green) of 106/107 align to the sequence encoding the homeodomain (grey). 128 and 129 (green) bind upstream of the homeobox and downstream of the octapeptide domain (grey). Restriction enzymes BspEI and HpaII (grey triangular pyramids) were used for the band-retaining assays.

2.2.2.1 TALEN pairs 106/107 and 128/129 introduce locus-specific DNA breaks in the Rx2 coding sequence

To test whether the TALENs are able to accomplish the desired genomic modifications, wild-type embryos were co-injected with TALEN mRNAs at one-cell stage and genotyped prior to hatching. For the genotyping process genomic DNA from injected embryos was isolated. The predicted TALEN target regions were specifically amplified and tested in restriction digest-based band-shift assays (Figure 26). Mutations in sub-cloned retained bands were confirmed in sequencing reactions. One clone (1/1, 100%) for the pair 128/129 was sequenced, aligned with the Rx2 locus and carried a
mutation (Figure 27A). The deletion in between the predicted TALEN binding sites was 5 base pairs, which resulted in a frame shift and a truncated Rx2 protein with 101 amino acids (wild-type Rx2 protein consists of 328 amino acids). For TALENs 106 and 107, 15 out of 16 (15/16, 93.75%) sequenced clones from seven individual embryos contained mutations in between the binding sites (Figure 27B). The mutations were deletions of either 4 or 10 base pairs, all causing frame shifts in the ORF and in theory producing truncated Rx2 proteins. This shows that both TALEN pairs induce disruptive mutations in their respective binding domains of the Rx2 coding sequence upon injection at one-cell stage.

Figure 26. Band-retaining assay on isolated genomic DNA of injected medaka fish.
Amplified PCR products from injected fish (F0) were digested with a restriction enzyme cutting in between the binding sites of the TALENs (HpaII for TALENs 106/107, BspEI for 128/129). Retained bands (identical in size to the undigested PCR product) were isolated from the gel (yellow arrowheads), sub-cloned and confirmed through sequencing. A fraction of the amplified products were not mutated and therefore digested by the restriction enzyme (yellow asterisks). L, ladder; bp, base pairs.

Figure 27. Alignments of sequenced clones (F0) with the Rx2 coding sequences.
(A) Genomic DNA isolated from injected embryo contains deletion of base pairs between binding sites of TALENs 128 and 129.
(B) Several sequenced clones show a variety of modifications caused by TALEN (106 and 107) co-injection. One clone is aligned perfectly with the Rx2 sequence of interest, meaning no modification was created on this genomic DNA.
2.2.2.2 TALENs 106/107 and 128/129 induce heritable Rx2 mutations

In order to determine whether the customized TALENS efficiently create mutations in the endogenous Rx2 gene in medaka germ cells and in turn pass them on to the following generation, the offspring of injected fish were genotyped. Injected F0 embryos were raised to adulthood and crossed to wild-type fish. Collected offspring (F1) from each cross were divided in two halves; one group was raised to adulthood, while the rest was pooled and genotyped as outlined above for the F0 generation. This approach was chosen to detect whether the injected fish are carriers and therefore the TALENs induced genomic modifications in the germline. Eight outcrosses with TALEN 106 and 107 injected fish were genotyped (Table 2). In four of these crosses alteration in the target region were detected. All deletions observed in the sequencing process were 10 base pairs in size. Regarding putative founders from 128/129 injections, two out of two crosses produced offspring with mutations in Rx2. Sequencing revealed at least two different types of mutations (6 and 9 base pair deletions) in the offspring of the two founders (Figure 28). The observed deletions of 6 and 9 base pairs were both in frame, therefore resulting in the deletion of entire amino acids instead of a shift in the ORF. The analyses of the F1 generation revealed heritable targeted gene disruption can be created with both pairs of TALENs.

<table>
<thead>
<tr>
<th>individual outcrosses</th>
<th>n clones mapping to the Rx2 gene</th>
<th>n of clones with mutations</th>
<th>percentage of mutations identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>7</td>
<td>1</td>
<td>14.29</td>
</tr>
<tr>
<td>2.</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>8</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>4.</td>
<td>5</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>5.</td>
<td>6</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>6.</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>47</td>
<td>9</td>
<td>19.15</td>
</tr>
</tbody>
</table>

Table 2. Overview of analyzed offspring from outcrosses between fish injected with TALENs 106/107 and wild-type fish.

The offspring from four (bold) of the eight injected (TALENs 106/107) fish inherited lesions in the targeted Rx2 sequence.
Results

Figure 28. Alignments of sequenced clones (F1) with the Rx_2 coding sequences.

Two adult medaka fish were injected with TALENs 128 and 129 were outcrossed to wild-type fish and their progeny were genotyped. The sequenced clones show a variety of heritable modifications. One clone is a false-positive and aligns perfectly with the Rx_2 sequence of interest, meaning no modification was created on this genomic DNA.

2.2.2.3 TALENs 106 and 107 show mutagenesis activity on the homeobox of Rx_1 and Rx_2

The homeodomain is a well-conserved protein structure among various animals, including vertebrates (Gehring 1992). Given that Rx_2 has two paralogs (Rx_1 and Rx_3) in the medaka genome, we explored whether the TALENs designed for Rx_2 recognize other Rx coding sequences. Alignment of the homeoboxes of Rx_1 and Rx_2 with the TALE effector binding sites showed perfect match with TALEN 106. For TALEN 107, three mismatches were found when compared with Rx_1 (Figure 29A).

Nevertheless, we addressed whether this particular TALEN pair is able to induce lesions in this specific region of the Rx_1 gene. The genotyping process (genomic DNA was isolated from the fins of adults) on the F1 generation was repeated using specific primers for the Rx_1 homeobox. Sequencing of picked DNA clones revealed deletions in Rx_1 within the predicted target region of the homeobox flanked by TALE effectors 106 and 107 (Figure 29B), arguing for the chance to induce TALEN-mediated mutation with partially mismatching binding domains. Furthermore, this opens the possibility to generate and analyze Rx_1 mutant fish.
Figure 29. TALENs 106/107 introduce heritable modifications in the Rx1 homebox.

(A) Alignment of Rx1 and Rx2 coding sequences for the TALE effector binding sites. TALEN 106 matches perfectly to Rx1 and Rx2, while TALEN 107 only aligns without mismatches to Rx2.

(B) Amplification of Rx1 homeobox sequence from genomic DNA of adult fish (F1) was sub-cloned and sequenced. Disruptive mutation in Rx1 was caused by TALEN (106 and 107) co-injection and passed on through the germline.

The fraction of the offspring (F1) collected from the injected F0 generation, which were grown to adulthood, was genotyped (genomic DNA isolated from the fins) (Table 3). Out of the twelve mutant fish eleven had deletions in Rx1 and four in Rx2. With the exception of the Rx2 target site of carrier 8, all deletions in the predicted target sites were 10 bases in size. Translation of the mutant sequences in silico contained frame-shifts, resulting in truncated Rx1 or Rx2 proteins. The deleted 6 bp in Rx2 of mutant fish 8 were in frame, removing two amino acids in the homeodomain. A low frequency of sequenced clones contained single base pair substitutions or indels upstream or downstream of the predicted TALEN target region. These unexpected modifications were present in sequences with and without the desired modifications in the Rx1 or Rx2 target site. F1 mutant carriers with the intended modifications in the Rx1 target sequence were occasionally accompanied by additional deletions of 6 consecutive bases. All instances of these unpredicted genetic events in Rx1 mapped at the same position, approximately 60 nucleotides upstream of the TALEN 106 binding site. In contrast, sequencing reads of the Rx1 homeobox free of genomic modifications in the TALEN target site, which were false-positives from the band-retaining assay, never missed 6 base pairs upstream or downstream of the predicted TALEN binding sites.

The fish carrying mutations leading to a frame shift in Rx1 or Rx2 were outcrossed to wild-type medaka. The offspring (F2) of genotyped individual F1 carriers of Rx1 and Rx2 mutations are currently being raised to adulthood. For the molecular analysis of the Rx1 or Rx2 genes, heterozygous siblings (F2) will be intercrossed to homozygosity. So far, the phenotype of homozygous Rx1 and Rx2 mutant fish remains to be determined.
<table>
<thead>
<tr>
<th>F1 fish gene</th>
<th>n of mapped clones</th>
<th>n of clones with mutations</th>
<th>size of deletion in the target sequence</th>
<th>other genomic modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx1</td>
<td>3</td>
<td>1</td>
<td>10 bp</td>
<td>additional 6 bp del</td>
</tr>
<tr>
<td>Rx2</td>
<td>3</td>
<td>2</td>
<td>2 bp</td>
<td>additional A nt</td>
</tr>
<tr>
<td>Rx1</td>
<td>3</td>
<td>1</td>
<td>10 bp</td>
<td>additional 6 bp del</td>
</tr>
<tr>
<td>Rx2</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx1</td>
<td>3</td>
<td>2</td>
<td>10 bp</td>
<td></td>
</tr>
<tr>
<td>Rx2</td>
<td>3</td>
<td>3</td>
<td>10 bp</td>
<td></td>
</tr>
<tr>
<td>Rx1</td>
<td>4</td>
<td>4</td>
<td>10 bp</td>
<td></td>
</tr>
<tr>
<td>Rx2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx1</td>
<td>2</td>
<td>2</td>
<td>10 bp</td>
<td>additional 6 bp del</td>
</tr>
<tr>
<td>Rx2</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx1</td>
<td>3</td>
<td>2</td>
<td>10 bp</td>
<td></td>
</tr>
<tr>
<td>Rx2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx1</td>
<td>3</td>
<td>3</td>
<td>10 bp</td>
<td>one clone with additional T</td>
</tr>
<tr>
<td>Rx2</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx1</td>
<td>3</td>
<td>2</td>
<td>10 bp</td>
<td>same reads having 10 bp del have also 1 nt substituted</td>
</tr>
<tr>
<td>Rx2</td>
<td>3</td>
<td>2</td>
<td>6 bp</td>
<td>same read having 10 bp del has also 1 nt substituted</td>
</tr>
<tr>
<td>Rx1</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx2</td>
<td>2</td>
<td>1</td>
<td>10 bp</td>
<td></td>
</tr>
<tr>
<td>Rx1</td>
<td>3</td>
<td>2</td>
<td>10 bp</td>
<td></td>
</tr>
<tr>
<td>Rx2</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx1</td>
<td>4</td>
<td>3</td>
<td>10 bp</td>
<td></td>
</tr>
<tr>
<td>Rx2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx1</td>
<td>3</td>
<td>1</td>
<td>10 bp</td>
<td></td>
</tr>
<tr>
<td>Rx2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Overview of Rx1 and Rx2 mutations in genotyped adult F1 (F0 injected with TALENs 106/107).

Summary of the results obtained from genotyping. Genomic modifications in each individual fish were determined for the predicted target region in the Rx1 and Rx2 homeoboxes (bold). The number of modified nucleotides inside the target as well as outside is listed.
2.2.2.4 TALEN-induced mutants recapitulate eyeless phenotype

When injected F0 fish were raised to adulthood and inter-crossed, a fraction of the progeny (F1) from some of these crosses repeatedly exhibited a phenotype in the eye. These embryos were identified by small or absent optic cups during embryogenesis. Embryos screened at late gastrula and early neurula stages showed incompletely formed or missing optic vesicle, resembling phenotypes of mutants for genes involved in early eye field patterning and vesicle evagination such as Rx3 or Pax6. Given that TALENS 106 and 107, which targeted the homeobox of Rx2, produced mutations in Rx1 as well as Rx2, it was a strong possibility that disruptive lesions were introduced in the coding sequence of Rx3. To test this hypothesis without the genotyping process, fish co-injected with TALEN 106 and 107 mRNAs at one-cell stage (F0) were crossed to wild-type fish. In the following generation (F1), the offspring were crossed, without prior genotyping, to heterozygous eyeless mutant carriers. Eyeless mutants harbour a recessive, temperature-sensitive mutation in the Rx3 locus. Homozygous eyeless embryos raised at the restrictive temperature show smaller or absent eyes (Winkler et al. 2000; Loosli et al. 2001). Out of all the F1 fish outcrossed to known eyeless+/- carriers so far, one (out of 12) produced offspring with an eye phenotype. All embryos collected from this particular cross of TALEN 106/107 fish and eyeless founders were raised at the permissive temperature, however, more than 22% (5/22, 22.73%) of the collected offspring morphologically resembled Rx3+/- mutants and showed phenotypes ranging from small eyes to the complete lack of eyes (Figure 30). As early as neurula stage embryos exhibited phenotypes in the forming eye (not shown), the most severe cases showing a complete failure to form optic vesicles. Mutants with small optic cups (Figure 30B) failed to develop normal sized retinae, instead the eye remained small yet underwent pigmentation (Figure 30D), while the overall body shape and size (excluding the eyes) was similar to wild-type or heterozygous siblings (Figure 30C). This morphological analysis of the offspring from a cross between TALEN 106/107+/- and eyeless+/- founders recapitulates the phenotype described for homozygous Rx3 mutants.
Figure 30. Cross of TALEN 106/107-injected progeny and heterozygous Rx3 carriers results in eyeless phenotype.

(A-D) Dorsal view of medaka embryos in the brightfield. Close to a quarter of the siblings at optic cup stage exhibit small or absent optic cups (B), while the remaining collected embryos show wild-type morphology (A). The mutant embryos continue development with small or no eyes (D), as the siblings go through retinogenesis and form a properly differentiated eye (C). All images were obtained with the same magnification.
DISCUSSION AND OUTLOOK
3 Discussion

3.1 A regulatory framework containing Sox2, Tlx, Gli3 and Her9 controls stem cell features in the retina

3.1.1 Sox2 and Tlx positively regulate stem cell features in the retina

Previous studies have highlighted the importance of Sox2 and Tlx for NSCs and progenitors. Sox2 plays a crucial role in maintaining neural precursors in an undifferentiated state and suppressing terminal differentiation (Bylund et al. 2003; Graham et al. 2003; Van Raay et al. 2005; Taranova et al. 2006). Consistent with reports of the pan-neural determinant Sox2 being expressed in self-renewing and multipotent adult NSCs in the brain (Suh et al. 2007), expression in the retina labeled the CMZ including the Rx2 domain. Tlx has been demonstrated to be expressed in neural progenitors in the developing retina and brain, as well as mitotically active cells in the adult brain of mammals (Yu et al. 1994; Monaghan et al. 1995; Shi et al. 2004). Genetic inactivation has highlighted the role of Tlx in retinal development as well as in keeping adult NSCs and precursors in a proliferative state (Yu et al. 2000; Shi et al. 2004). Tlx expression was partially overlapping with Rx2, but mainly observed in the centre of the CMZ, where the transiently amplifying progenitors are located, reminiscent of the expression reported in the mouse brain (Obernier et al. 2011).

The present study provides evidence that both Sox2 and Tlx have the ability to induce RSC characteristics in terminally differentiated neurons of the post-embryonic retina. We found the RSC-specific marker Rx2 upregulated in clonal overexpression assays, with the highest rate of trans-activation achieved by co-expression of Tlx and Sox2. Sox proteins are involved in a great variety of cell specifications and depend on interaction with process-specific partner proteins (Kondoh and Kamachi 2010). For instance, ectopic Rx CRE activity had previously been shown to be the result of the collaborative effort between Sox2 and Otx2; however, in contrast to our findings regarding the medaka Rx2 CRE, Sox2 overexpression on its own was not sufficient to trans-activate the Xenopus Rx CRE (Danno et al. 2008). Otx2, which has been reported to play a critical role in photoreceptor cell development in the embryonic mouse retina (Nishida et al. 2003), could still be involved in regulation of Rx2 expression at early developmental stages or in post-mitotic cells. Interestingly, studies in mice on the Otx2 regulatory element revealed Rx as an activator (Muranishi et al. 2011), which suggests an independent regulatory network governing commitment of RPCs towards photoreceptor cell fate. Recent studies carried out in NSCs have shown that Sox2 expression induces Tlx expression (Shimozaki et al. 2012). Furthermore, direct interaction between Sox2 and Tlx proteins relieved a negative feedback loop on the Tlx promoter.
Therefore, it is possible that a similar protein-protein interaction between Sox2 and Tlx synergistically regulates \(Rx2 \) expression in the context of the retina. While it has been shown that Tlx in general acts as a transcriptional repressor through interaction with HDACs to maintain neural precursors in an undifferentiated state (Sun et al. 2007), the TF Tlx is also able to directly activate target genes when associated with co-activators instead of HDACs (Elmi et al. 2010). Thus, it is possible that \(Tlx \) induces \(Rx2 \) expression either through activation of transcription or repression of an \(Rx2 \) repressor.

Upon clonal activation of \(Rx \) activators, terminally differentiated cells lost their differentiation markers, re-entered S-phase and rested in a proliferatively quiescent state, a general hallmark of adult stem cells (Orford and Scadden 2008). The appearance of mitotic markers and morphological changes in differentiated neurons argues for loss of neuronal identity. Moreover, after transient exposure to \(Tlx \), cells retained fluorescent labels for multiple weeks, suggesting altered cell metabolism or protein turnover. In comparison, in the control experiments no transiently expressed fluorescent labels were retained in post-mitotic neurons several weeks after the expression was discontinued.

However, we did not observe increase in clone size or cell divisions, even when Sox2 and \(Tlx \) were co-expressed. Instead, neurons showed RSC-specific features without proliferating. This is agreement with results from previous reports, where Sox2 or \(Tlx \) gain-of-function experiments were conducted in undifferentiated stem cells or progenitors of the CNS, even though not in differentiated neurons as in the present study. Although it has been recently demonstrated that Sox2 is sufficient to convert mouse and human fibroblasts into induced NSCs (Ring et al. 2012), Sox2 overexpression in retinal progenitors of frog and mouse does not induce proliferation, instead, progenitors increasingly commit to post-mitotic MGC fate (Agathocleous et al. 2009; Lin et al. 2009). In mammalian neural progenitors and stem cells, \(Tlx \) overexpression has been shown to transiently enhance proliferation; however, even there sustained \(Tlx \) expression is necessary for persisting effects and was not tested in terminally differentiated neurons (Elmi et al. 2010; Liu et al. 2010).

In light of the results presented here, we hypothesize that transient gain of Sox2 or \(Tlx \) mediates de-differentiation into a quiescent RSC-like state, but is not sufficient to trigger proliferation of terminally differentiated neurons. Rather, prolonged expression or combination with other factors, for instance cell cycle activators (Agathocleous et al. 2009), is required for post-mitotic neurons to complete the entire cell cycle and divide.
3.1.2 Gli3 and Her9 overexpression in the CMZ antagonizes Rx2 and stem cell proliferation

In the frog retina ligands of the Hh signaling pathway are expressed in the GCL and the central RPE. The key transcriptional regulators of the cascade, zinc-finger containing Gli TFs, are expressed at a distance to the source at the boundary between NR and RPE (Borday et al. 2012). Consistently, we found full-length Gli3, which encodes a repressor and activator-domain, expressed in the peripheral RPE and peripheral CMZ. In absence of Hh signaling, Gli3 is proteolytically cleaved and functions as a transcriptional repressor of Hh target genes. In the event of Hh signal transduction, proteolytic processing is inhibited, and Gli3 translocates to the nucleus to activate Hh target gene transcription (Humke et al. 2010). Clonal expression of Gli3 in the peripheral CMZ repressed Rx2 transcription arguing for only restricted Hh signaling activity in that domain. Additionally, we found a decrease of RSCs in S-phase after exposure to Gli3, reminiscent of results in the chicken neural tube, where dominant-negative Gli3 delays cell cycle progression and decreases expression of mitotic markers (Cayuso et al. 2006).

Consistent with our findings in the CMZ, Gli3 regulates the proliferative expansion of mesenchymal progenitors through restriction of their entry into S-phase during chondrogenesis (Lopez-Rios et al. 2012). Similarly, the blocking of the Hh cascade has been reported to impact on the cell cycle exit of retinal progenitors cells in fish and frogs (Locker et al. 2006). Interestingly, pharmacological inhibition of Hh signaling is not sufficient to modulate Rx expression in the CMZ of frog (Locker et al. 2006; Borday et al. 2012). The finding that Gli3 and Rx2 share expression in the peripheral CMZ, while the peripheral RPE is simultaneously occupied by Gli3 only, suggests a dual role for the TF Gli3 as activator and repressor.

In our gain-of-function assays full-length Gli3 acted as a repressor of Rx2 and inhibited proliferation, although it also encoded an activator domain. This indicates limited levels of Hh signaling likely due to the distance to the source of Hh ligands in the GCL (Neumann and Nuesslein-Volhard 2000; Stenkamp et al. 2000), resulting in an accumulation of Gli3 in the repressive form.

Similarly, acute and sustained expression of Her9, a Hes1 ortholog in fish, in the peripheral CMZ reduced Rx2 levels and proliferation. This finding is surprising since Hes genes have generally been reported to antagonize proneural function and are required to keep neural progenitor cells in a proliferative state (Kageyama et al. 2007). However, it has been demonstrated that persistent and high levels of Hes1 expression inhibit both cell proliferation and differentiation (Baek et al. 2006). Furthermore both, sustained gain or loss of Hes1 activity causes G1 phase retardation, resulting in reduced cell proliferation (Yoshiura et al. 2007). Thus, the loss of proliferation upon exposure to high levels of Her9 likely represents a pausing of cell cycle progression and failure to enter S-phase. We did
not detect apoptosis in clones with reduced proliferation in response to Gli3 or Her9 over-expression (not shown). Furthermore, these cells did not express any markers characteristic for neurons or glia (not shown), again arguing for a pausing of the cells.

3.1.3 The RSC-specific expression of Rx2 is sustained through conserved Sox- and Gli-binding sites

Our analysis of the Rx2 CRE indicated that Sox-binding is crucial for Rx2 expression in RSCs of the CMZ as well as for MGCs. Mutations in a Sox-binding site of the Rx2 CRE resulted in the massive reduction of reporter expression in the CMZ and MGCs, consistent with the expression of Sox2 transcripts in the CMZ and INL described above. In contrast, the expression in photoreceptors, where Sox2 is not expressed, remained unaffected. Our data are consistent with and extending previous studies on the CRE of Xenopus Rx. Combined mutations in the Sox- and Otx-binding sites resulted in reduced reporter activity in the frog CMZ (Martinez-De Luna et al. 2010), however, the impact of mutations in either the Sox- or Otx-motif was not shown. Experiments carried out in cultured cells have shown that physical interaction and binding of the TFs Sox2 and Otx2 sustain activity of the Xenopus Rx CRE (Danno et al. 2008). However, Otx2 transcripts were absent from the mature medaka CMZ (not shown). Since a putative Otx-binding has been predicted in the medaka Rx2 CRE (M. Ramialison, unpublished), it is a possibility that Otx trans-acting factors are involved in Rx2 regulation, for instance during embryonic stages of eye development.

The finding that reporter expression controlled by the mutated CRE was not fully absent suggests that Rx2 expression in the CMZ is not entirely dependent on trans-acting factors, which utilize the Sox-binding site, but rather that Rx2 expression in the CMZ is the result of multiple regulatory inputs. Given the ability of Tlx to activate the Rx2 regulatory element and their overlapping expression domains, it is possible that Tlx is also directly involved in Rx2 regulation in the NR. Future experiments predicting and testing Tlx-binding motifs will address the role of direct Tlx-binding for correct Rx2 expression. Alternatively, the base pair substitutions in the Sox-binding site might not be sufficient to completely abolish Sox protein interaction with the Rx2 CRE. Analyzing Rx2 reporter expression after deletion of the entire Sox-motif could test this hypothesis. Out of the three members of the Sox B1 sub-group only Sox2 was expressed in the CMZ, supporting the hypothesis that Sox2 is the TF acting through the mutated binding site in vivo. Interestingly, mutation of the Sox-binding site also affected Rx2 reporter expression in the MGCs, the reservoir of quiescent stem cells in the central NR (Bernardos et al. 2007). With Rx being necessary for wound-regeneration in the Xenopus retina (Martinez-De Luna et al. 2011), this finding indicates a similar regulatory scaffold governing quiescence in the peripheral
CMZ and injury-free NR.

Conversely, upon deletion of a putative Gli-binding site, reporter expression was shifted towards the RPE. Here it was restricted to cells adjacent to CMZ, the domain of Gli3 expression. In contrast to cells in the central RPE, they continue to proliferate beyond the conclusion of embryogenesis, similar to RSCs in the CMZ. Combined with the results showing that Gli3 is a Rx2 repressor in vivo, it is tempting to speculate that Gli3 is the TF acting through the deleted binding-site and responsible for preventing Rx2 CRE activity in the RPE. This way it confines Rx2 expression to the CMZ and blocks it from entering the RPE. The shift of Rx2 reporter expression in the CMZ upon deletion of the Gli-binding site is intriguing. It indicates a dual function of this Gli-binding site, mediating repressive activity in the RPE as well as transcriptional activation in the directly adjacent CMZ. Upon deletion of the Gli-binding site, the loss of repression resulted in the gain of Rx2 reporter expression in the RPE, while the loss of activation in the CMZ abolishes Rx2 reporter expression in that domain. As an alternative to Gli3, the reduced activation in the CMZ could also be attributed to another trans-acting factor requiring the deleted DNA motif. For instance, the transcriptional activator Gli1 is expressed in the CMZ (not shown) and has been shown to share overlapping activating functions with Gli3 during vertebrate neurogenesis (Tyurina et al. 2005). Further, it has been demonstrated that input from both Gli1 and Sox2 is required for precise neural enhancer activity in the mammalian neural tube (Peterson et al. 2012), raising the possibility that similar cross talk between signal transduction cascades and neural determinants takes place in the context of RSCs and retinal progenitors. Future experiments addressing the identity of the protein binding to the Gli-motif (e.g., chromatin immunoprecipitation or electrophoretic mobility shift assays) will be required to determine whether these activating and repressing functions are mediated by one or more factors binding to the site identified.

Given that our data indicates Gli TFs as activators in the CMZ, it is possible that the weak activity of the Sox2 mutant Rx2 CRE is mediated through the Gli-motif. This could be tested in a transgenic strain carrying an Rx2 reporter with both, altered Sox- and Gli-binding sites, and analyzing whether this results indeed in total loss of reporter expression in the CMZ.

Based on the evidence collected, we propose a model for the confinement of post-embryonic RSCs to the peripheral post-embryonic CMZ, which incorporates the regulatory cues of transcriptional activators and repressors.

The Rx2-positive RSC population located within the CMZ is defined by both activators (Sox2, Tlx) and repressors (Gli3, Her9) (Figure 31), which have the ability to modulate stem cell features upon ectopic expression. Our data demonstrate that Sox2, similar to setting up neural competence in mammalian NSCs, induces Rx2 expression and stem cells fate in the CMZ (Figure 31A) and also ectopically. High
levels of the Her9 repressor in the central CMZ normally limit slow-cycling RSCs and consequently Rx2 expression towards the differentiated central retina. On the peripheral side, Gli3 in its repressive form restricts Rx2 and prevents it from extending into the mitotically active domain of the adjacent RPE. Tlx, overlapping with Sox2 and in part Her9, specifies transiently amplifying neural precursors in the central part of the CMZ. The transcriptional confinement of Rx2 to the CMZ by the activity of the regulatory scaffold presented here (Figure 31B) connects the stem cells of the NR and those of the RPE and thus sheds light on the mechanism specifying this composite stem cell niche. We hypothesize that the combined activities of those factors within the Rx2 expression domain coordinate the proliferation and commitment towards neural lineages (either to the NR or the RPE) of the stem cells in the retina.

Figure 31. A proposed model summarizing spatial regulation of Rx2 expression and RSC-specific features by Sox2, Tlx, Gli3 and Her9.

(A) Schematic illustration outlining the spatial distribution of Rx2 (red), Sox2 (black dashed line), Tlx (green), Her9 (green) and Gli3 (blue) in the medaka CMZ and RPE. Magenta indicates overlap between red and blue; yellow indicates overlap between red and green.

(B) A model summarizing our findings on the regulation of multipotent Rx2-positive RSCs by Sox2, Tlx, Gli3 and Her9.

3.2 Expression of Rx2 might antagonize activity of the Shh pathway in the CMZ

Constitutive expression of Rx2 under the Atoh7 CRE did not alter proliferation in the stages analyzed. Rather, this approach resulted in a phenotype affecting the patterning of the RGC and INL. How this phenotype was established is presently unknown. Already before the phenotype was visible, Rx2-expressing cells in the INL appeared in small clusters. One of the paralogs of Rx2, Rx3, has been shown to influence cell migration by transcriptionally antagonizing Nlcam expression (Brown et al.
Molecules belonging to the Alcam family, which Nlcam is part of, have been shown to participate in cell-cell adhesion and to mediate cell migration (Heffron and Golden 2000). Ectopic expression of Rx2 might transcriptionally regulate the expression of cell adhesion molecules and encourage affected cells to form clusters. 4D imaging of the transgenic retinas could address whether this is an active process of Rx2-positive cells (labeled by RFP) migrating towards each other. Long-term in vivo imaging might also determine how the phenotype is established and whether only Rx2-expressing cells are involved.

In frog, injections of Rx mRNA have been shown to expand retinal tissues, resulting in the formation of folds and rosette-like structures within the layered retina (Wu et al. 2009). Although this phenotype, where multiple layers fold in parallel, differs from the one observed in the Atoh7::Rx2-T2A-mRFP retinas, both show defects in layering of the central NR. Consistent with our findings, Rx mis-expression did not induce ectopic proliferation (Wu et al. 2009). Conditional clonal gain-of-function assays based on the same tools used for Sox2, Tlx, Gli3 and Her9 will be necessary to address whether Rx2 itself is able to trigger stem cell features. Although the increased Rx2 levels coincided with reduced expression of molecular markers for RGCs, those experiments need to be quantified and compared to control retinas (e.g., Atoh7::mRFP). In studies in mouse and frog, it has been reported that Rx TFs regulate genes involved in photoreceptor specification (Pan et al. 2010; Muranishi et al. 2011). Morphologically, none of the Rx2-expressing cells resembled cones or rods in their shape; however, it still needs to be tested through expression profiling whether photoreceptor-specific genes are activated ectopically.

Unlike Six3, which has been described to be involved in an auto-regulatory feedback-loop (Loosli et al. 1999), gain of Rx2 did not activate ectopic Rx2 reporter expression (not shown). Similarly, transgenic reporters for Sox2, Tlx and Her9 were unaffected by Rx2 overexpression in the Atoh7 domain (not shown). This finding is consistent with the proposed role of Rx2 in our model as the RSC-specific component in the described regulatory scaffold, downstream of neural determinants.

Surprisingly, expression controlled by the zebrafish Shh promoter was reduced in the GCL. The downregulation in Shh reporter expression is intriguing, since it indicates a possible cross-regulation between Rx2 and the Shh signal pathway. The relationship between Rx2 and the Shh CRE is presently unclear and needs to be addressed in detail. Computational analysis of the sequence of the Shh CRE could be used to predict putative Rx binding sites (Brown et al. 2010), which then could be modified to investigate the response in reporter expression. Future gene expression analyses of components of the Shh signal pathway, in particular the ligand itself and the Gli family members, in the Rx2 mutant will address whether loss of Rx2 achieves the opposite effect of Rx2 mis-expression, resulting in a more widespread secretion of Shh ligands and the expression of downstream mediators.
It is tempting to speculate that endogenous Rx2 in RSCs prevents expression of the Shh ligand in the CMZ, thus, restricting broader expression of Gli genes and their transcriptional activity on target genes. Our data from in vitro and in vivo assays have shown that transcriptional regulators downstream of the Shh pathway regulate Rx2 expression; Rx2 is activated in the CMZ and prevented from expanding into the RPE, thus, confined to the peripheral CMZ. In turn, Gli TFs activating Rx2 could trigger a negative feedback loop, with Rx2 limiting the range of Shh signaling. In experiments carried out in Xenopus, it was demonstrated that balanced proliferation of retinal precursors depends on Hh and Wnt/beta-catenin signaling pathways negatively regulating each other (Borday et al. 2012). Notably, expression Wnt ligands reduced transcriptional activity of the Rx2 CRE in the trans-regulation assays (not shown). Consistently, a previous study in mouse has linked Rx and canonical Wnt signaling by demonstrating that genetic inactivation of beta-catenin resulted in expanded expression of Rx at the expense of RPE-markers (Fujimura et al. 2009). Combining those results into a speculative model suggests that coordinated spatial interplay between Hh, Wnt and Rx is fine-tuning stem cell behavior and balancing their commitment towards either NR or RPE.

3.3 Rx mutants

3.3.1 TALEN pairs 106/107 and 128/129 produce disruptive mutations in Rx2

The data presented here demonstrate the success of targeted mutagenesis in medaka. By applying chimeric nucleases, we were able to induce stable, heritable genetic marks in specific sites of the endogenous Rx2 locus. Already transient expression of the TALEN pairs was sufficient to induce modifications in the genome of injected embryos. In zebrafish, the efficiency of TALEN mRNA injections has been described as potent enough to phenocopy morpholino-based knockdowns of previously described genes (Bedell et al. 2012). DNA fragments containing genetic alterations caused through erroneous NHEJ-mediated repair were detected in the band-retaining assay. Although this method has been used to determine the efficiency of targetable nucleases in injected embryos, we still identified false-positive sub-cloned fragments with an unchanged target site, underscoring the importance of confirmation through sequencing reaction. It has been suggested that TALEN mRNAs induce mutations in a dose-dependent manner (Ansai et al. 2013); whether increased mRNA concentration of the TALENs against Rx2 would decrease the occurrence of unmutated retained bands needs to be determined. Together with reports of biallelic changes in somatic cells in the injected zebrafish embryos (Bedell et al. 2012), this raises the possibility to study gene function by assessing phenotypes of the F0 generations. While the enzymatic restriction digest allows estimating mutagenesis activity,
mutations inside the target sequence not affecting the palindromic recognition sequence will not result in a retained band. Instead, the band will be digested and in the case of small insertions or deletions appear identical to cleaved wild-type bands, resulting in false-negatives. Interestingly, both pairs of TALENs created varying sizes of modifications in the respective genomic target sites, however, all of them were deletions. Other types of genetic modifications such as substitutions or insertions were absent from the sequenced clones. In both medaka and zebrafish, TALENs have been reported to produce mixtures of genomic changes through the homology-free repair pathway (Sander et al. 2011; Ansai et al. 2013). The bias towards deletions in our analyses could be explained through the relatively small sample size. For instance, for 128/129 TALEN-injected embryos only one clone (a mutant) was successfully sequenced. The target size of TALENs 106/107 is 19 base pairs in the Rx2 homeobox, while the recognition sequence of HpaII is 4 bases. For example, if insertions occur preferentially adjacent to the HpaII restriction site, the amplified DNA fragment will be cleaved and not sequenced. Thus, selecting a different restriction enzyme could lead ultimately to a different set of mutant carriers. However, the potential bias of the Rx2 TALENs to produce deletions did not present a disadvantage since the targetable nucleases were intended to induce disruptive lesions in exonic Rx2 sequences and produce mutants with frame-shifts or premature stop codons. The most promising F1 carriers revealed in the genotyping assays contained mutations in the centre of the homeobox in exon 2 of Rx2. While the majority were frame-shifts resulting in truncated proteins with only half of the homeodomain, one mutation removed two amino acids in the middle of the homeodomain. Whether the mutations do disrupt Rx2 protein function completely or create hypomorphic alleles needs to be determined by analyzing the phenotypic consequences in the homozygous progeny. Taken together, both Rx2 TALENs efficiently induced heritable genetic modifications within the intended exonic regions and yielded mutant carriers for future functional studies.

3.3.2 Off-target activities of TALENs 106 and 107 can generate Rx1 mutants

Although the high binding specificity of TALENs has been demonstrated in a plethora of studies, unintended cleavages have to be taken into consideration. The most widespread method to assess off-target activity of TALENs is based on identifying and testing sequences in the genome similar to the binding site or target sites of choice. Several studies following this approach reported that off-target events accompanied cleavage in the desired genomic modifications at a low frequency (Hockemeyer et al. 2011; Mussolino et al. 2011; Tesson et al. 2011). Additionally, computational programs have been developed to improve genome-wide predictions of potential off-target sites (Grau et al. 2013). For the TALEN pair 106/107, which in contrast to pair 128/129 binds in the conserved homeobox,
off-target events were assessed in the paralogs of Rx2. The sites of potential off-target activity of the TALENs were determined by pair-wise alignment of the Rx1 coding sequence and binding domains of 106 and 107. The genotyping of the predicted Rx1 target site in F1 fish revealed the existence of TALEN-induced off-target deletions similar to those in the Rx2 homeobox. Since the F1 generation instead of the injected fish was tested, it is impossible to determine in which Rx gene TALENs 106 and 107 preferentially induced DSBs. Interestingly, the genomic modifications in Rx1 were accompanied infrequently by additional deletions, which occurred always at the same position and affected the identical number of nucleotides. None of the sequencing reads for Rx2 were affected by similar unwanted modifications, arguing for this phenomena being linked to the TALEN-induced alterations in Rx1 locus, potentially due to the imperfectly binding TALEN 107, rather than general off-target events mediated by TALENs 106 and 107. All tested F1 fish with alterations in the Rx1 homeobox, both those with and without deletions upstream of the target site, were frame-shift mutants, resulting in shortened and partially incorrect Rx1 proteins. Thus, all the Rx1 mutants can still be tested for Rx1 loss-of-function phenotypes. However, the molecular pathway causing these additional yet specific deletions upstream of the target site in Rx1 remains unknown.

In general, we observed single nucleotide modifications at low frequency in individual sequencing reads with and without the desired genetic modifications during the genotyping, arguing for those mutations being introduced in the polymerase-based cloning process. Unidentified off-target mutations accompanying the desired modifications can be removed by consecutively crossing founders to wild-type animals, provided that the unintended alterations are not closely linked to the desired mutation. While off-target effects represent a serious problem, they open the opportunity to interrogate the function of similar genes with a limited number of TALENs.

For instance, the promiscuity shown by TALENs designed against Rx2 could be exploited for in a small-scale mutagenesis screen targeting genes similar to Rx, in particular those containing a homeobox. Not all Rx1 mutants identified in the F1 generation were carriers of Rx2 mutations and vice versa, arguing for independent instances of erroneous repair processes being the cause for the alterations in the individual Rx genes. Furthermore, the unintended deletions in Rx1 occurred in the predicted target site or in case of the additional off-target deletions, adjacent to it. Thus, alignments of the used TAL effectors with the protein-coding genes could be used as reference points for the genotyping assays in such a mutagenesis screen.
3.3.3 Phenotypic analysis suggests TALENs 106 and 107 might disrupt genes involved in early eye development

The F1 of TALEN 106/107-injected fish, which crossed to heterozygous *eyeless* mutants, produced offspring in expected mendelian ratios without eyes, are likely to carry a mutation in the *Rx3* locus. In that case it is reasonable to assume that these alterations occurred inside the homeobox of *Rx3*. Aligned with the sequence of *Rx3*, TALENs 106 and 107 produced two and four mismatches, respectively, flanked a window of 19 nucleotides. Through the sequencing of the *Rx1* homeobox, it was confirmed that TALENs 106 and 107 have the ability to induce lesions, despite TALEN 107 containing three mismatches in the binding domain, giving *in vivo* evidence for the functionality of partially mismatching TAL effectors. An alternative explanation for the absence of eyes is presented by the possibility that these were transheterozygous mutants with one mutant *Rx3* allele (from the *eyeless* carriers) and one mutated *Rx1* or *Rx2* allele (from the TALEN 106/107 F1). That the TALEN pair 106/107 has the potential to induce mutations in *Rx1* or *Rx2* has been confirmed by the genotyping done on injected fish. This theory could be tested by examining the offspring of a cross between the genotyped *Rx1*" or *Rx2" mutants with heterozygous *eyeless* carriers. Consequently, transheterozygous progeny (*Rx1" / Rx3" or *Rx1" / Rx2") should have the *eyeless* phenotype. However, *Rx1* and *Rx2* gene expression begins later than *Rx3* expression, after the optic vesicles are established, arguing for the *eyeless* phenotype being caused by mutations in genes actively expressed during optic vesicle morphogenesis (e.g., *Rx3*). Ultimately, genotyping will be required to determine where the mutations contributing to the *eyeless* phenotype were introduced in the TALEN 106/107-injected fish.

3.3.4 The function of Rx2 remains unknown

Morpholino oligonucleotides directed against *Rx1* and *Rx2* did not yield any specific phenotypes. Morpholino-mediated knockdowns can be a powerful tool to inhibit gene function, however, since the morpholino oligonucleotides are delivered via microinjections at one-cell stage, they are designed to interfere with genes expressed during early embryogenesis. For instance, *Rx3* morphants phenocopy the morphology of *eyeless* mutants and recover during later, when the morpholino nucleotides are diluted after multiple rounds of cell divisions, growing eyes identical in size to the uninjected siblings (L. Centanin and J. Wittbrodt, unpublished). As described above, *Rx1* and *Rx2* gene expression begins later than *Rx3*, arguing for a lack of phenotypes due to the inefficiency of the morpholinos during embryonic and adult stages when *Rx1* and *Rx2* might play a role. The knockdown of *Rx1* and *Rx2* transcripts was not evaluated through PCR or Northern analysis. While inefficient knockdown will not be a concern
in the \(Rx1\) or \(Rx2\) mutants, once these are crossed to homozygosity, there are a number of issues that could explain the lack of phenotype in the morphants, which might also concern the analyses of the mutants. \(Rx1\) and \(Rx2\) share similar expression domains and have related sequences, probably as a result of the teleost-specific genome duplication event, and therefore might have overlapping or partially redundant functions. As a consequence, disruption of a single \(Rx\) gene might result in no or subtle phenotypes only. The potential redundancy could be addressed by generating double-knockout mutants (\(Rx1^{+/−} / Rx2^{+/−}\)) by crossing the existing \(Rx1\) and \(Rx2\) carriers, preventing one \(Rx\) gene from compensating for the loss of the other one.

Systematic analysis of over 1200 zebrafish mutants revealed that less than 10% of the mutated genes caused a phenotype during development (Kettleborough et al. 2013). While redundancy of duplicated genes might contribute to the low percentage of phenotypes, other factors such as presence of maternal transcripts and loss-of-function phenotypes not resulting in external morphological changes have to be considered. Similarly, the phenotype of \(Rx1\) or \(Rx2\) mutants, even of the double-knockout mutants, could be very subtle compared to the dramatic phenotype of \(Rx3\) mutants. Thus, phenotypic consequences caused by \(Rx1\) or \(Rx2\) loss-of-function might only be evident in assays providing single-cell resolution, such as transplantation experiments, where labeled mutant cells are transplanted to wild-type host and vice versa at blastula stage.

Interestingly, during the incrossing of TALEN-injected F0 fish, where we identified the embryos resembling \textit{eyeless} mutants, we also observed the occurrence of embryos with small eyes, although not in mendelian ratios. The phenotype became apparent at optic cup stage and while the eyes continued to grow in size, they were smaller than those of phenotypically normal siblings or stage-matched wild-type embryos (not shown). These mutant embryos were grown to adulthood without genotyping and will be incrossed to test whether the progeny are affected by similar anatomical abnormalities. It is tempting to speculate about the connection between the functions of \(Rx\) genes and altered mitotic activity of retinal progenitors being the cause for small optic cups in the mutant embryos.

\(Rx\) genes are molecular markers of quiescent stem cells in the post-embryonic amphibian retina - \(Rx2\) labels RSCs in the peripheral CMZ and \(Rx\) genes are expressed in the MGCs located the central NR. If \(Rx\) genes indeed play a functional role in maintaining multipotent stem cells in a quiescent state, loss of \(Rx\) could result in increased short-term proliferation in the CMZ, depleting the pool self-renewing cells, which would interfere with the steady supply of new neurons required for the constant growth of the fish retina. Small-eyed zebrafish mutants with an enlarged CMZ containing very few proliferative active cells have previously been reported (Wehman et al. 2005). In case of a similarly enlarged CMZ in the TALEN-induced small eye mutants, this would argue for \(Rx\) being required for restricting the
population of quiescent cells in the CMZ and potentially interfering transcriptionally with their cell cycle progression. However, so far the correlation between phenotype and genotype, as well as shape of the CMZ, if any exists, is unknown.

Complementary to the analyses of the morphological consequence, the regulatory network orchestrated by \(Rx \) genes could be delineated in the stable mutants. Gene expression profiling of the \(Rx \) mutants through transcriptome assembly from RNA deep sequencing data would give insight into the biological processes and genetic programs \(Rx2 \) is involved in. Chromatin immunoprecipitation followed by microarray analysis or deep sequencing could predict the direct targets forming the transcriptional network downstream of \(Rx2 \). For this purpose, tagged \(Rx2 \) fusion proteins, which exist in the laboratory (D. Inoue and J. Wittbrodt, unpublished), will be inserted as transgenes in the genome of the \(Rx2 \) mutants. The expressed fusion protein would then allow the immunoprecipitation with commercial antibodies for the genome wide mapping of \(Rx2 \) bindings sites.

3.3.5 Applications of nuclease-based genome editing in fish

The findings that TALEN-induced stable genetic marks in medaka are feasible raises the possibility to carry out more advanced nuclease-induced genetic engineering in the fish model. While the type of mutation generated by incorrect NHEJ is unpredictable, the majority is likely to cause frame-shifts through small indels. On the other hand, homology directed repair offers precise control over genetic editing and opens the opportunity to a variety of different applications. By simultaneously providing a DNA donor with homology flanks matching the target region and locus-specific nucleases, the type and position of modification can be freely orchestrated with single-nucleotide resolution. Insertions of up to 8000 base pairs have been reported (Moehle et al. 2007). Experiments carried out in ESCs and iPSCs provided evidence for the efficiency and precision of genome editing with TALENs being similar to ZFNs (Hockemeyer et al. 2011). TALEN-mediated genome editing has already been successfully utilized to insert a \(lox \)-site in the zebrafish genome, which presents a crucial step to carry out advanced genetic studies of conditional alleles in fish (Bedell et al. 2012). In particular, TALEN-mediated homology directed repair to generate functional fusion proteins \textit{in vivo} without being disruptive is desirable and will be beneficial for a wide range of applications. As it has been demonstrated for the endogenous \(Oct4 \) locus in ESCs, nuclease-mediated integration of a splice acceptor-EGFP into an intron or replacement of the stop codon can yield in frame fusion proteins expressed in physiological levels (Hockemeyer et al. 2011). Due to their accurate spatio-temporal expression, transgenic reporter lines generated in this manner could one day replace traditional expression reporter designs based on recombined BACs or isolated regulatory elements. Although improved protocols allow immunohistochemistry in medaka
and zebrafish based on antibodies against conserved proteins from other species (Inoue and Wittbrodt 2011), the lack of fish-specific antibodies has been a long-standing problem. Proteins fused either with a fluorescent protein or a small exogenous tag will be a valuable resource in particular for studies requiring specific antibodies, such as cell-type specific immunoprecipitations or protein-localization studies.

Using targeted nucleases to generate loss-of-function mutants and tag the gene of interest provides a powerful resource to study direct downstream targets. Similar to what has recently been demonstrated with RNA-guided nucleases in transgenic GFP-expressing zebrafish, where the GFP coding sequence was replaced with RFP (Auer et al. 2013), existing tissue-specific fluorescent reporter strains caused through positional effects could be exploited by exchanging the existing reporter cassettes with Cre or Flp coding sequences supplied by the donor DNA.

3.4 Outlook

By investigating the regulatory input on the \(Rx2 \), the molecular marker for multipotent RSCs, we identified a regulatory framework defining the stem cell compartment of the post-embryonic NR, the CMZ. However, many aspects have to be addressed in detail to fully understand the definitive mechanisms underlying this regulatory network.

The potential of undifferentiated cells in the RPE is poorly understood. Studying the composition of clones originating from individual Gli3-positive cells will address whether these cells are stem cells or progenitors with a limited capacity to self-renew. Particularly, lineage-tracing of the cells co-expressing \(Rx2 \) and \(Gli3 \) in the CMZ will delineate the contribution of the stem cells of the NR and those of the RPE; thus, shed light on the mechanism coordinating those adjacent stem cell domains. Making use of the rapidly evolving methods allowing targeted genome modifications, conditional clonal loss of \(Sox2, Tlx, Gli3 \) or \(Her9 \) will give insight into the molecular mechanism governing multipotency and mitotic activity in RSCs. Examining the outcome of sustained clonal expression of \(Tlx \) or \(Her9 \) in the peripheral \(Rx2 \)-domain will help us to understand how the commitment of individual RSCs to the NR or the RPE is regulated. Analyzing the behavior of RSCs in the TALEN-induced \(Rx2 \) mutants will address the functional role \(Rx2 \) in the regulatory scaffold. In particular investigating the progeny of individual mutant stem cells will reveal whether \(Rx2 \) coordinates stemness in both the NR and the RPE.
MATERIALS AND METHODS
4 Materials and Methods

4.1 Materials

4.1.1 Buffers

All buffers not specifically described in this section were prepared according to standard protocols (Sambrook et al. 1989) using highly deionized water (Millipore), unless indicated differently. Sterilization was achieved by autoclaving.

6x DNA loading buffer
ficoll (type 400, Pharmacia) 15 % (w/v)
bromphenol blue 0.05 % (w/v)
xylene cyanol FF 0.05 % (w/v)

Embryonic Rearing Medium (ERM)
NaCl (Merck) 0.1 % (w/v)
KCl (Merck) 0.003 % (w/v)
CaCl$_2$ × 2H$_2$O (Merck) 0.004 % (w/v)
MgSO$_4$ × 7H$_2$O (Merck) 0.016 % (w/v)

Fin clip buffer
Tris (Sigma)-HCl (Merck), pH8.0 400 mM
EDTA (Merck), pH8.0 5 mM
NaCl 150 mM
SDS 0.1 % (v/v)

LB agar
Agar 15 g/l in LB medium
dissolved by boiling

LB medium (Luria-Bertani)
tryptone 10 g/l
yeast extract 1 g/l
Materials and Methods

NaCl 10 g/l
to pH7.0 with 5N NaOH (Merck), autoclaved

Hatching medium
NaCl (Merck) 0.1 % (w/v)
KCl (Merck) 0.003 % (w/v)
CaCl$_2 \times 2$H$_2$O (Merck) 0.004 % (w/v)
MgSO$_4 \times 7$H$_2$O (Merck) 0.016 % (w/v)
Methylene blue 0.0002 % (w/v)

PBS
NaCl 10 mM
KCl (Merck) 195 mM
Na$_2$HPO$_4$ (Merck) 5.9 mM
KH$_2$PO$_4$ (Merck) 1.1 mM
pH adjusted to 7.3

PTW
PBS containing 0.1 % Tween 20

TAE buffer
Tris 40 mM
acetic acid (Merck) 20 mM
EDTA 1 mM

TE buffer
Tris-HCl, pH8.0 10 mM
EDTA, pH8.0 1 mM

4.1.2 Oryzias latipes stocks

Wild-type *Oryzias latipes* from a closed stock at the COS were kept as described (Koster *et al.* 1997).

Transgenic lines *Rx2::H2B-mRFP* (Inoue and Wittbrodt 2011), *Rx2::Tub-GFP* (generated by Juan-Ramon Martinez-Morales) *Atoh7::mYFP* (Filippo Del Bene) and *Shh::GFP* (generated by Beate
Wittbrodt) were used in this study. The eyeless mutants were kept as described (Winkler et al. 2000; Loosli et al. 2001).

4.1.3 Laboratory equipment and instruments

Binoculars and Stereo Microscopes
DM5000 scope (Leica) with a DFC500 camera (Leica)
Stemi 2000-C (Zeiss)
Stemi SV 11 (Zeiss)

Centrifuges
5417 C (Eppendorf)
5430 R (Eppendorf)
5810 R (Eppendorf)

Cryostat
CM3050S (Leica)

Electroporator
Micro Pulser electroporator (Bio-Rad)

Fluorescence binoculars
Olympus MVX10 MacroView (Olympus)

Incubators
Hera CO₂ cell incubator 150 (Heraus)
Hybaid OmniGene (MWG-Biotech)
Innova 44 Incubator Shakers (New Brunswick Scientific)
Rumed (Rubarth Apparate)

Laminar flow hood
Hera safe HS12 (Heraus)
Materials and Methods

Laser scanning confocal microscope
(Inverted) TCS SPE (Leica)

Luminescence Counter
Victor Light 1420 (PerkinElmer)

Microinjector
InjectMan NI 2 (Eppendorf)
Microinjector 5242 (Eppendorf)

Nanodrop
Nanodrop Spektrophotometer ND-1000 (peqlab Biotechnologie)

Thermocycler
PTC-200 Peltier Thermal Cycle (Bio-Rad)

Thermomixer
Thermomixer compact (Eppendorf)

4.1.4 Reagents
Alkaline Phosphatase (Roche)
dNTP Mixture, 2.5mM each (Takara)
Fast Red Tablets (Roche)
GeneRuler Ladder Mix (Fermentas)
House Taq Polymerase (EMBL)
innuPREP Gel Extraction kit (Analytik Jena)
innuPREP PCRpure kit (Analytik Jena)
Klenow (Roche)
Ligation buffer (Fermentas)
mMessage machine (SP6) kit (Ambion)
Pfu DNA Polymerases (Stratagene)
Phusion® DNA Polymerase (Thermo Scientific)
QIAfilter Plasmid Maxi kit (Qiagen)
Materials and Methods

QIAquick Gel Extraction kit (Qiagen)
QiaQuick Nucleotide Removal kit (Qiagen)
QuikChange™ Site-Directed Mutagenesis Kit (Stratagene)
Restriction enzyme buffer (Fermentas, Roche, New England Biolabs)
Restriction enzymes (Fermentas, Roche, New England Biolabs)
RNA Polymerase (SP6, T7) (Roche)
RNeasy Mini kit (Qiagen)
T4 DNA ligase (Fermentas)
TSA™ Plus Fluorescein System (PerkinElmer)

4.1.5 Miscellaneous Materials

Agarose (Sigma)
GC100F-10 Borosilicate glass capillaries with filament (Clark Electromedical Instruments)

4.1.6 Chemicals

5-bromo-4-chloro-3-indolyl-phosphate (Roche)
Aceton (Sigma)
Anti-Digoxigenin-AP, Fab fragments (Roche)
Anti-Fluorescein-POD, Fab fragments (Roche)
Blocking reagent (Roche)
Cover slips (24 mm x 60 mm) (Roth)
DAPI (Sigma)
Digoxigenin-UTP (Roche)
Fast Red Tablets (Roche)
Fluorescein-UTP (Roche)
Formamide (Sigma)
Glass Bottom Culture Dishes (35mm) (MatTek)
Glycerol (Merck)
Glycin (Merck)
Heparin sodium salt (Sigma)
Methanol (Merck)
Nitro blue tetrazolium chloride (Roche)
4.1.7 Cell culture and DNA plasmid transfection

Dishes Nunclon (Nunc)
DMSO (Merck)
Dual-Luciferase Reporter Assay System (Promega)
Dulbecco’s Modified Eagle Medium (1x), liquid (High Glucose), 4500 mg/l D-Glucose, without Sodium Pyruvate and L-Glutamine (Invitrogen)
Foetal Bovine Serum, Qualified, Heat-Inactivated (Invitrogen)
FuGENE6 Transfection Reagent, (Roche)
L-Glutamine 200 mM (100x), liquid (Invitrogen)
Opti-MEM® I Reduced Serum Medium (1X), liquid - with L-Glutamine (Invitrogen)
OptiPlate-96, White Opaque 96-well Microplate, (PerkinElmer)
Penicillin-Streptomycin-Glutamine (100x), liquid (Invitrogen)
Stericup-GP, 0.22 um (Millipore)
Trypsin-EDTA Solution (1x) (Sigma)

4.1.8 Antibodies

Primary antibodies
chicken anti-GFP (1:500, Invitrogen)
mouse anti-PCNA (1:100; Santa Cruz)
mouse anti-BrdU (1:50, Becton Dickinson)
mouse anti-Islet (1:250, DSHB)
mouse anti-Zpr1 (1:250, ZIRC)
mouse anti-GS (1:50, Chemicon)
rabbit anti-Phospho-Histone3 (1:500; Upstate)
rabbit anti-OIRx2 (1:500)
rabbit anti-DsRed (1:250, Clontech)

Secondary antibodies
anti-chicken (1:500, DyLight488, DyLight549 and DyLight647, Jackson)
anti-mouse (1:500, DyLight488, DyLight549 and DyLight647, Jackson)
anti-rabbit (1:500, DyLight488, DyLight549 and DyLight647, Jackson)

4.1.9 Cell line
Syrian Hamster Fibroblast (BHK21)

4.1.10 Electrocompetent cells
Electro MAX DH10B cells (Stratagene)

4.1.11 Embryo injection plates
Petri dishes were filled with liquid 1.5 % (w/v) agarose (Sigma) in H₂O. Afterwards, plastic molds were added to create the injection trenches during agarose solidification.

4.1.12 TALEN
The TALENs designed to bind the Rx2 coding sequence were provide by (Jean-Paul Concordet) in pCS2+ backbones with the following DNA binding domains: N106: TCGAGAAGTCCACTA; N107: TCGTTGCCAGTTCCTC; S128: TCAGAACCCTATGGAA; S129: GATGCTGTGAGCTGTC.
4.2 Methods

4.2.1 Generation of medaka unigene cDNA library

Full-length cDNA clones were generated based on total RNA extracted from medaka embryos of different developmental stages as previously described (Souren et al. 2009). The cDNAs were inserted into a pCMV-Sport6.1 vector, end-sequenced, clustered based on sequence alignments and collected in a consolidated unigene library. Based on GO annotations a subset of developmental relevant genes and genes encoding TFs were collected in a library consisting of 1151 cDNA clones (Thorsten Henrich).

4.2.2 Molecular cloning

A cassette containing the LexOP operator upstream of the Cherry coding sequence was extracted from pDs(cry:C-LOP:Ch). The Cherry coding sequence was replaced with H2B-EGFP and H2A-Cherry. Effectors: LexOP::H2A-Cherry; LexOP::H2B-EGFP; LexOP::Cherry. A cassette containing the coding sequence for the LexPR trans-activator followed by the LexOP operator was released from pDs(krt8:LPR-LOP:G4) and inserted downstream of the Rx2 CRE (Inoue and Wittbrodt 2011). Coding sequences for Gli3 and Her9 were inserted downstream of the LexOP operator. A second LexOP operator followed by H2B-EGFP coding sequence was added (released from LexOP::H2B-EGFP). Driver-Effectors: Rx2::LexPR LexOP::Gli3 LexOP::H2B-EGFP; Rx2::LexPR LexOP::Her9 LexOP::H2B-EGFP; Rx2::LexPR LexOP LexOP::H2B-EGFP.

A cassette containing the coding sequence for the LexPR trans-activator followed by the LexOP operator was introduced downstream of the cska promoter (Grabher et al. 2003). Coding sequences for Sox2 and Tlx were inserted downstream of the LexOP operator. Drivers: Cska::LexPR LexOP::Sox2; Cska::LexPR LexOP::Tlx; Cska::LexPR LexOP.

LexPR and LexOP cassettes were derived from pDs(krt8:LPR-LOP:G4) and pDs(cry:C-LOP:Ch) to generate driver, effector or driver-effector constructs (Emelyanov and Parinov 2008). The 2.4 kb Rx2 CRE was released through restriction digest and cloned upstream of the luciferase gene in to the pGL3 luciferase reporter vector (Promega).

Coding sequences for Sox2, Gli3 and Her9 were derived from a full-length cDNA library based on the pCMV-Sport6.1 vector (Souren et al. 2009). Tlx cDNA was derived from a Lambda ZAP cloning vector (Felix Loosli). Full-length OlRx2 coding sequence (NP_001098373.1) for antibody generation was cloned by PCR from medaka stage 32 cDNA using the following primers: forward primer: 5’-GGAATTCCATATGATGCATTTGTCAATGGATAC-3’; reverse primer: 5’-CGGGATCCTCACATGTGCTGCCAGG-3’. PCR products were digested with restriction enzymes.
NdeI and BamHI, ligated into the pET15b (Merck Millipore), which was cleaved with the same enzymes. pET15b-OIRx2 was used to bacterially express OIRx2 protein as the antigen for generation of OIRx2 antibody (Daigo Inoue). All constructs generated for transient expression or transgenesis were based on a pBluescript plasmid containing two I-SceI sites flanking the insert. The gene regulatory regions of Tlx, Sox2 and Her9 were amplified via PCR from genomic DNA using the following primers for Tlx (ENSORLG00000013426): forward primer: 5’-GGCGGAATATTTAATGAACGTGATACTTGTGATCA-3’; reverse primer: 5’-CTCACAGGCGAGTACGTGAGGAAG-3’. Sox2 (ENSORLG00000011685): forward primer: 5’-TTTACAGGTCGAGGAGGAG-3’; reverse primer: 5’-AGGGAAATTTAACTTTCGGTACGTGG-3’. and Her9 (ENSORLG00000005453): forward primer: 5’-AGCGCTTCATTAGTGTGGCG-3’; reverse primer: 5’-GCGCAGAGCAGCTCTCCACA-3’. The corresponding PCR products were cloned into a pBluescript-based transgenesis vector containing two recognition sites for the meganuclease I-SceI (New England Biolabs) flanking a multiple cloning site followed by a cassette containing an enhanced GFP and a SV40-polyadenylation signal.

Fusion PCR

The Rx2 coding sequence was amplified excluding the last three nucleotides (stop codon) from Rx2 cDNA with the following primers:

Rx2 forward primer: 5’-ATGCATTTTGTAATGGATACCC-3’; reverse primer: 5’-AGGGCCGGGATTCTCCTCCACGTCACCGGATAGGATACTTCGACTTCTCGCTCCCTCTCCCATGT-GCTGACCG-3’, underlined overhangs encode T2A (Kim et al. 2011). In a separate PCR the mRFP coding sequence was obtained from the linearized Vsx3::H2B-mRFP (Marcel Souren) vector with the following primers: forward primer: 5’-GAGGGGAGAGGAAGTCTTCTAACATGGCGGTGAGGACGTGGAGGAG-AAGATCCCCGCCATGTGGCCTCTCCGAGG-3’, underlined overhangs encode T2A; reverse primer: 5’-AACAAAGCTGGAGGACGTCCGACCA-3’. A single fusion PCR was performed on the resulting PCR products with the Rx2 forward primer and mRFP reverse primer. Afterwards, the Rx2-T2A-mRFP fragment was cut with NotI (recognition site in mRFP reverse primer not shown) and ligated into Atoh7::mYFP (Filippo Del Bene), which was digested with SnaBI and NotI to release the mYFP and provide a complementary overhang. All PCR fragments were amplified with identical PCR steps (30 sec 98°C, (20 sec 98°C, 45 sec 60°C, 1 min 15 sec 72°C) repeated for 4 cycles, (20 sec 98°C, 45 sec 58°C, 1 min 15 sec 72°C) repeated for 9 cycles, (20 sec 98°C, 45 sec 56°C, 1 min 15 sec 72°C) repeated for 14 cycles, followed by 72°C 5 min) and purified with the innuPREP Gel Extraction kit (Analytik Jena) or the innuPREP PCRpure kit according to manufacturers protocol.
Site-directed mutagenesis

Amino-acid substitutions or deletions were introduced into the Rx2 gene regulatory region of Rx2::H2B-mRFP by site-directed mutagenesis (3 min 95°C, (30 sec 95°C, 30 sec 55°C, 12 min 30 sec 72°C) repeated for 18 cycles, followed by 15 min 72°C) using the following primers: Sox-binding site, forward primer: 5'-CCACACAAGCCATTATCTTTCAGACGCTAGATTTGAAAGGAAGTTTTGT-3'; reverse primer: 5'-ACAAAACTTCTTTCACAAATCTAGCGTCTGAAAGATAATGGCTTGTGG-3'; Gli-binding site, forward primer: 5'-GAAGTTTTGTTGAGGCTTCATTAGCAATGTGGTCTGAAAGCAG-3'; reverse primer: 5'-CTGCTTTCAGACCACATTGCTAATGAAGCCTCAACAAAACTTC-3'.

All steps were carried out according to the manufactures protocol (QuikChange™, Stratagene) with the exception of the transformation, which was done using electrocompetent DH10B cells.

mRNA transcription in vitro

Supercoiled DNA of the pCS2+ plasmid was subjected to restriction digest with NotI and the linearized DNA template was purified using the innuPREP PCRpure kit (Analytik Jena) according to the manufacturers protocol. TALEN N106, N107, S128 and S129 mRNA transcription in vitro from the SP6 promoter was performed using the mMessage machine (Ambion) according to the manufacturers protocol. The mRNA was purified using the RNeasy RNA purification kit (Qiagen) according to the manufacturers protocol and stored at –80°C.

4.2.3 Microinjection

Fertilized eggs were collected from wild-type CAB or transgenic crosses and placed in chilled ddH2O to slow down development. For microinjections a pressure injector was used. Borosilicate glass capillaries (Clark Electromedical Instruments) were backfilled with the injection solution (final concentration DNA: 30 ng/ul). The injection solution was injected through the chorion into the cytoplasm of the one-cell stage embryos. TALEN mRNAs (N106 and N107; S128 and S129) were co-injected at a concentration of up to 100 ng/ul in ddH2O. For transient mosaic expression injection solution (DNA) was injected into the cytoplasm at two-cell stage.

4.2.4 Generation of transgenic lines

Transgenic lines were established by co-injection of the DNA plasmid and I-SceI enzyme into one-cell stage medaka eggs as described (Thermes et al. 2002). All DNA plasmids used in injections
were isolated from bacterial lysate using Qiagen-tip 500 columns from the QIAfilter Plasmid Maxi kit (Qiagen) according to manufacturers protocol.

4.2.5 BrdU treatment
Embryos were incubated in a solution of 1 g/l BrdU for a varying amount of time and fixed immediately afterwards in 4 % PFA/PTW.

4.2.6 RU486 treatment
Mifepristone (Sigma, Tocris, Cayman) was dissolved in DMSO to a final concentration of 25 mM and stored as stock solution at -20 °C. The stock solution was added to the medium and used at final concentrations up to 20 uM.

4.2.7 pBluescript-TA
A PCR under low-stringency conditions (5 min 95°C, (45s 95°C, 45s 45°C, 1 min 72°C) repeated for 29 cycles, followed by 5 min 72°C) using a single primer (CGGAATTC\textcolor{red}{\text{CCATGGTTGTGG}}G, recognition site for EcoRI underlined, \textcolor{red}{\text{XcmI}} bold) on medaka CAB genomic DNA yielded random fragments of various sizes after standard gel electrophoresis (Beate Wittbrodt). A 500 bp fragment was excised from an agarose gel using the innuPREP Gel Extraction kit according the manufacturers protocol (Analytik Jena). Taq DNA polymerase derived A-overhangs were used to sub-clone the PCR fragment into the pCR®II-TOPO® vector provided by the TOPO® TA Cloning® Kit (Invitrogen) according the manufacturers protocol. The inserted fragment, which retained EcoRI recognition sequences in its flanks from the oligonucleotide, was released from pCR®II-TOPO® vector through enzymatic digest with EcoRI and ligated into an EcoRI-cleaved pBluescript II vector. After restriction digest with \textcolor{red}{\text{XcmI}}, the 500 bp insert was released from the linearized vector, leaving behind T-overhangs flanked by EcoRI recognition sequences. The fragments were separated by standard gel electrophoresis, the linearized pBluescript-TA vector was excised, purified and stored at -80°C. PCR fragments intended for TA cloning were always freshly prepared. The two EcoRI sites of the pBluescript-TA vector allow rapid identification of clones, which successfully inserted the DNA fragment of interest.
4.2.8 Genotyping

4.2.8.1 Genomic DNA extraction

Single medaka eggs were placed in individual 2 ml tubes, flash-frozen in liquid nitrogen, crushed with sterile pestle and homogenized in 100 µl (for pool of embryos use 300 ul) fin clip buffer containing proteinase K (add 500 µl proteinase K (20 mg/ml) to 10 ml fin clip buffer) (Beate Wittbrodt). The homogenate was incubated o/n at 60 °C. Afterwards 200 µl ddH2O (500 µl for multiple embryos) were added and the tube gently turned without shaking and incubated for 10 min at 95°C. After a short spin down of the samples, the supernatant was transferred to a fresh tube and stored at 4°C.

For the isolation of genomic DNA from adult tissues, fish were transferred into ice water or 0.4 % Tricaine (4 ml Tricaine in 100 ml fish water), collected with a large plastic spoon and cut at the tailfin. The tissue samples were placed with the aid of forceps in tubes and 100 µl fin clip buffer containing proteinase K was added. The adult fish were kept in 2/3 hatching medium and 1/3 fish water o/n. The remaining steps of the genomic DNA extraction from adults were carried out as described above.

4.2.8.2 Genotyping PCR and restriction digest-based band-retention

The regions of interest for TALEN pair 106/107 were amplified from the isolated genomic DNA with the following primers: Rx1 forward primer: 5’-ATTCGTCCGTTGTGACCTGT-3’; reverse primer: 5’-TCTCGTGCTCCAAACAGACA-3’; Rx2 forward primer: 5’-AACAGTGAGTAGCGGGTCGT-3’; reverse primer: 5’-TCTGAGGGATGGAATTCTGG-3’. The PCR amplification was mediated by a proofreading polymerase (Rx1: 30s 98°C, (20s 98°C, 45s 67°C, 15s 72°C) repeated for 29 cycles, followed by 5 min 72°C; Rx2: 30s 98°C, (20s 98°C, 45s 67°C, 45s 72°C) repeated for 29 cycles, 5 min followed by 72°C) and followed by 15 min at 72°C with Taq polymerase. The resulting PCR products (Rx1: 300 bp; Rx2: 930 bp) were enzymatically digested with HpaII for 1 h. The region of interest for TALEN pair 128/129 was amplified from the isolated genomic DNA with the following primers: Rx2 forward primer: 5’-GAGTCCAAAGGCAAGTCCAC-3’; reverse primer: 5’-TTTGAAACCTCTCCTGCTGTA-3’. The PCR amplification was mediated by a proofreading polymerase (Rx2: 30s 98°C, (20s 98°C, 45s 67°C, 45s 72°C) repeated for 29 cycles, 5 min followed by 72°C) and followed by 15 min at 72°C with Taq polymerase. The resulting PCR products (1040 bp) were enzymatically digested with BspEI for 1 h. The uncleaved bands retaining original size were purified and through the Taq polymerase derived A-overhangs ligated into a pBluescript-TA vector, with complementary T-overhangs created by the restriction enzyme XcmI. The DNA minipreps were subjected to restriction digest with EcoRI and clones with the correct insert size were selected for sequencing.
4.2.9 WISH

4.2.9.1 Riboprobe preparation

For anti-sense riboprobe synthesis linear templates were produced from full-length cDNA clones either through standard PCR using standard M13 forward and reverse primers (Sox2, Gli3 and Her9) or digestion with restriction enzymes cutting 5’ of the start codon (Rx2 and Tlx). T7 RNA polymerase-based transcription and incorporation of digoxigenin-UTP or fluorescein-UTP was carried out as previously described (Loosli et al. 1998).

4.2.9.2 Single color WISH

Whole-mount in situ hybridizations using NBT/BCIP detection were carried out as previously described (Loosli et al. 1998).

4.2.9.3 (Double-) Fluorescent WISH

Fluorescent whole mount in situ hybridizations were performed as previously described (Souren et al. 2009). For combined single-color fluorescent whole mount in situ hybridization and immunostaining, embryos were incubated for two days with anti-fluorescein antibody conjugated to horseradish peroxidase (Roche) and anti-GFP antibody at 4°C. After riboprobe detection using TSA-Plus Cyanine 3 System (PerkinElmer) the embryos were incubated with fluorescent-conjugated secondary antibody and DAPI for two days at 4°C. In case of WISH followed by immunostaining, the embryos were subjected to 3 % H₂O₂ (Sigma), 1 % KOH in 1x PTW for 30 minutes at RT after fixation and removal of the chorion.

4.2.10 Immunohistochemistry

4.2.10.1 Rx2 antibody

Anti-OiRx2 antibody was raised against the full-length OiRx2 (NP_001098373.1) recombinant protein in rabbits (Charles River), and affinity purified as described previously (Barenz et al. 2013).

4.2.10.2 Fixation

Embryos were fixed in 4 % PFA/PTW o/n at 4°C.
4.2.10.3 Antigen retrieval and cryosections

Fixed embryos were washed in PTW. In case of embryos fixed at pre-hatch stages, the chorion was removed with forceps. Cryoprotection, heating steps for retrieving antigens and sections were performed as previously described (Inoue and Wittbrodt 2011).

4.2.10.4 Immunostaining on cryosections

Dried cryosections were incubated in aceton for 10 min at -20°C. When necessary, cryosections were subjected to 3 % H₂O₂ (Sigma), 1 % KOH in 1x PTW for 30 minutes at RT prior to the aceton step. The sections were washed and blocked with 10 % sheep serum/PTW for at least 2 h at RT. Afterwards, incubation with the primary antibody followed o/n at 4°C. The cryosections were washed and incubated with the secondary antibody for 90 min at 37°C in the dark. Cell nuclei were counterstained with DAPI (final concentration; 200 mg/ml) for 5 min at RT in the dark. For imaging, the slides were washed, 70 % glycerol and was added. The stained tissues were covered with cover slips and sealed with nail polish. All washing steps were performed with 1x PTW for 10 min for at least three times.

For BrdU detection, cryosections were dried o/n, re-hydrated with 1x PTW and treated with 2N HCL, 0.5 % Triton X-100 in 1x PBS for 90 minutes at RT.

4.2.11 Imaging

Images of sections and whole-mount embryos were acquired using the Leica Application Suite Advanced Fluorescence software and an inverted Leica TCS SPE confocal microscope with ACS APO 10x/0.30, 20x/0.60, 40x/1.15 and 63x/1.30 objective lenses. 405 nm, 488 nm, 532 nm and 635 nm laser lines were used for fluorophore excitation. Whole-mount embryos were mounted as previously described (Ramialison et al. 2012). Images were processed using ImageJ software, v.1.41o. Images of NBT/BCIP stainings were taken using a Leica DM5000 scope equipped with a Leica DFC500 camera.

4.2.12 Trans-regulation screen

Cell culture, transfection and luciferase read-out were carried out with 1151 cDNA clones (300 ng) on the pGL3 Rx2:Luc2 vector (40 ng) as previously described (Souren et al. 2009).
References

References

References

Acknowledgments

First of all, I would like to thank my supervisor Prof. Dr. Joachim Wittbrodt for giving me the opportunity to work in his lab and for providing me with an exciting thesis project. He supported me throughout my thesis with helpful scientific ideas.

I am grateful to my PhD advisory committee, Prof. Dr. Jan Lohmann and Dr. Stefano De Renzis, for their suggestions and the fruitful discussions during my thesis advisory committee meetings.

I would like to thank Dr. Juan Luis Mateo Cerdan and Dr. Mirana Ramialison for all the bioinformatic analyses they performed and the stimulating scientific discussions.

I would also like to thank Dr. Daigo Inoue and Dr. Juan Ramon Martinez Morales for providing the Rx2 antibody and Rx2 transgenic line, respectively.

Many thanks to my bay mates Beate, Lea and Tanja (a former bay mate) for supporting me, in particular when it came to doing molecular biology. Special credit belongs to Beate for the amount of work and time she put into genotyping and establishing the mutants.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>amacrine cell</td>
</tr>
<tr>
<td>Atoh7</td>
<td>atonal homolog 7</td>
</tr>
<tr>
<td>Bmp</td>
<td>Bone morphogenetic protein</td>
</tr>
<tr>
<td>BPC</td>
<td>bipolar cell</td>
</tr>
<tr>
<td>BrdU</td>
<td>bromodeoxyuridine</td>
</tr>
<tr>
<td>Cas</td>
<td>CRISPR-associated</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CMV</td>
<td>cytomegalovirus</td>
</tr>
<tr>
<td>CMZ</td>
<td>ciliary marginal zone</td>
</tr>
<tr>
<td>CRE</td>
<td>cis-regulatory element</td>
</tr>
<tr>
<td>CRISPR</td>
<td>Clustered, regularly interspaced, short palindromic repeats</td>
</tr>
<tr>
<td>DAPI</td>
<td>4', 6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>EMS</td>
<td>ethyl methanesulfonate</td>
</tr>
<tr>
<td>ENU</td>
<td>N-ethyl-N-nitrosourea</td>
</tr>
<tr>
<td>Fgf</td>
<td>fibroblast growth factor</td>
</tr>
<tr>
<td>GCL</td>
<td>ganglion cell layer</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>H2A</td>
<td>histone 2A</td>
</tr>
<tr>
<td>H2B</td>
<td>histone 2B</td>
</tr>
<tr>
<td>HC</td>
<td>horizontal cell</td>
</tr>
<tr>
<td>Hh</td>
<td>hedgehog</td>
</tr>
<tr>
<td>IGF</td>
<td>insulin-like growth factor</td>
</tr>
<tr>
<td>INL</td>
<td>inner nuclear layer</td>
</tr>
<tr>
<td>IPL</td>
<td>inner plexiform layer</td>
</tr>
<tr>
<td>MGC</td>
<td>Muller glia cell</td>
</tr>
<tr>
<td>mRFP</td>
<td>monomeric red fluorescent protein</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>NHEJ</td>
<td>non-homologous end-joining</td>
</tr>
<tr>
<td>NR</td>
<td>neural retina</td>
</tr>
</tbody>
</table>
NSC neural stem cell
O.I. *Oryzias latipes*
O/n overnight
ONL outer nuclear layer
OPL outer plexiform layer
Pax Paired box
PBS Phosphate Buffered Saline
PCR polymerase chain reaction
PFA paraformaldehyde
PTW PBS with Tween20
Rax/Rx Retinal homeobox
RGC retinal ganglion cell
RNA ribonucleic acid
RPC retinal progenitor cell
RPE retinal pigmented epithelium
RSC retinal stem cell
RT room temperature
SDS sodium dodecyl sulfate
Shh sonic hedgehog
Six sine oculis homeobox homologue
Sox Sex determining Y-box-related high-mobility group box
TALEN Transcription activator-like effector nuclease
TF transcription factor
TFBS transcription factor binding site
TILLING targeting induced local lesions in genomes
TRS trans-regulation screen
WISH whole mount in situ hybridization
Wnt wingless and int-1
ZFN zinc-finger nuclease
List of publications
