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Abstract

Recent advances in electron microscopy techniques make it possible to acquire high-
resolution, isotropic volume images of neural circuitry. In connectomics, neuroscientists
seek to obtain the circuit diagram involving all neurons and synapses in such a volu-
me image. Mapping neuron connectivity requires tracing each and every neural process
through terabytes of image data. Due to the size and complexity of these volume images,
fully automated analysis methods are desperately needed. In this thesis, I consider auto-
mated, machine learning-based neurite segmentation approaches based on a simultaneous
merge decision of adjacent supervoxels.

� Given a learned likelihood of merging adjacent supervoxels, Chapter 4 adapts a
probabilistic graphical model which ensures that merge decisions are consistent
and the surfaces of final segments are closed. This model can be posed as a multi-
cut optimization problem and is solved with the cutting-plane method. In order to
scale to large datasets, a fast search for (and good choice of) violated cycle cons-
traints is crucial. Quantitative experiments show that the proposed closed-surface
regularization significantly improves segmentation performance.

� In Chapter 5, I investigate whether the edge weights of the previous model can be
chosen to minimize the loss with respect to non-local segmentation quality measu-
res (e.g. Rand Index). Suitablew are obtained from a structured learning approach.
In the Structured Support Vector Machine formulation, a novel fast enumeration
scheme is used to find the most violated constraint. Quantitative experiments show
that structured learning can improve upon unstructured methods. Furthermore,
I introduce a new approximate, hierarchical and blockwise optimization approach
for large-scale multicut segmentation. Using this method, high-quality approximate
solutions for large problem instances are found quickly.

� Chapter 6 introduces another novel approximate scheme for multicut segmentation
– Cut, Glue & Cut – which is based on the move-making paradigm. First, the graph
is recursively partitioned into small regions (cut phase). Then, for any two adjacent
regions, alternative cuts of these two regions define possible moves (glue & cut
phase). The proposed algorithm finds segmentations that are – as measured by a
loss function – as close to the ground-truth as the global optimum found by exact
solvers, while being significantly faster than existing methods.

� In order to jointly label resulting segments as well as to label the boundaries
between segments, Chapter 7 proposes the Asymmetric Multi-way Cut model, a
variant of Multi-way Cut. In this new model, within-class cuts are allowed for some
labels, while being forbidden for other labels. Qualitative experiments show when
such a formulation can be beneficial. In particular, an application to joint neurite
and cell organelle labeling in EM volume images is discussed.
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� Custom software tools that can cope with the large data volumes common in the
field of connectomics are a prerequisite for the implementation and evaluation of
novel segmentation techniques. Chapter 3 presents version 1.0 of ilastik, a joint
effort of multiple researchers. I have co-written its volume viewing component,
volumina. ilastik provides an interactive pixel classification workflow on larger-
than-RAM datasets as well as a semi-automated segmentation module useful for
acquiring gold standard segmentations. Furthermore, I describe new software for
dealing with hierarchies of cell complexes as well as for blockwise image processing
operations on large datasets.

The different segmentation methods presented in this thesis provide a promising direc-
tion towards reaching the required reliability as well as the required data throughput
necessary for connectomics applications.
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Zusammenfassung

Neue Methoden der Elektronenmikroskopie ermöglichen es, hochauflösende Volumenbil-
der von neuronalem Gewebe aufzunehmen, die isotrope Auflösung haben. Im Forschungs-
feld Connectomics versuchen Neurowissenschaftler, den Schaltplan aller Neuronen und
Synapsen in einem solchen Volumenbild zu rekonstruieren. Um die neuronale Konnek-
tivität kartieren zu können, müssen Neuronen durch Bilddaten in Terabyte-Größe ver-
folgt werden. Aufgrund der Größe und Komplexität der Daten werden hierfür dringend
automatische Methoden benötigt. In dieser Arbeit beschäftige ich mich mit automati-
schen Segmentierungsverfahren, die auf maschinellem Lernen basieren. Dabei verfolge
ich Ansätze, die auf dem gleichzeitigen Verschmelzen von benachbarten Supervoxeln
aufbauen.

� Basierend auf gelernten Wahrscheinlichkeiten des Verschmelzens benachbarter Su-
pervoxel wird in Kapitel 4 ein probabilistisches graphisches Modell adaptiert, wel-
ches konsistente Verschmelzungsentscheidungen sicherstellt und damit erzwingt,
dass die Oberflächen der resultierenden Segmente geschlossen sind. Das Modell
kann als Multicut-Optimierungsproblem formuliert werden und anschließend mit
der Cutting-Plane-Methode gelöst werden. Für die erfolgreiche Optimierung großer
Datensätze ist eine schnelle Suche (und eine gute Auswahl) von verletzten Kreis-
Ungleichungen entscheidend. Quantitative Experimente zeigen, dass die vorge-
schlagene Regularisierung die Qualität der Segmentierungsergebnisse wesentlich
verbessert.

� In Kapitel 5 untersuche ich, ob die Kantengewichte w im vorher beschriebenen
Modell derart gewählt werden können, dass der Loss bezüglich nicht-lokaler Maße
für Segmentierungsqualität (z.B. des Rand Indexes) minimiert wird. Derartige w
können mit Hilfe von Methoden des strukturierten Lernens gefunden werden. In
einer Structured-Support-Vector-Machine-Formulierung wird eine neue Methode
zum systematischen Aufzählen von Segmentierungen benutzt, um die am meis-
ten verletzte Zwangsbedingung zu finden. Quantitative Experimente zeigen, dass
mit strukturiertem Lernen Verbesserungen gegenüber unstrukturierten Verfahren
erzielt werden können. Zudem stelle ich eine neue approximative Optimierungsstra-
tegie für große Multicut-Probleme vor, die blockweise und hierarchisch arbeitet.
Mit dieser Methode können Näherungslösungen hoher Qualität schnell gefunden
werden.

� In Kapitel 6 wird ein weiteres approximatives Verfahren zur Optimierung von
Multicut-Problemen – Cut, Glue & Cut – vorgestellt, das auf der Idee des Move-
Making aufbaut. Hierbei wird zunächst der Graph rekursiv in kleine Regionen
zerlegt (Cut-Phase). Dann wird für jedes Paar benachbarter Regionen geprüft, ob
es bessere Cuts zwischen diesen Regionen gibt (Glue & Cut-Phase). Der vorgeschla-
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gene Algorithmus findet Lösungen, die – gemessen an Loss-Funktionen – ebenso
gut sind wie die global optimale Segmentierung. Diese empirisch guten Lösungen
findet der neue Algorithmus wesentlich schneller als existierende approximative
Methoden.

� In Kapitel 7 diskutiere ich eine neue Variante des Multi-way Cut, den Asymmetric
Multi-way Cut. Ziel ist es, gleichzeitig sowohl die resultierenden Segmente als auch
die Grenzen zwischen Segmenten zu labeln. In dem neuen Modell werden Cuts in-
nerhalb bestimmter Klassen erlaubt, während sie für andere Klassen verboten sind.
Erste qualitative Experimente zeigen, wann eine solche Formulierung vorteilhaft
sein kann. Insbesondere diskutiere ich die Anwendung für das gleichzeitige Labeln
von Neuronen und Zellorganellen in EM-Volumenbildern.

� Spezielle Softwarelösungen für den Umgang mit den großen Connectomics-Daten-
mengen sind Voraussetzung für die Implementierung und Evaluierung neuer Seg-
mentierungsverfahren. In Kapitel 3 stelle ich die Version 1.0 des ilastik Softwa-
repakets – einem Gemeinschaftsprojekt – vor. Ich habe insbesondere die Anzeige-
komponente für Volumenbilder, volumina, mitentwickelt. ilastik bietet eine inter-
aktive Klassifikation von Pixeln in Datensätzen, die die Größe des Arbeitsspeichers
weit überschreiten können. Außerdem bietet ilastik eine halbautomatische Metho-
de zur Segmentierung, die für das Erstellen von dichten Referenzsegmentierungen
benutzt wurde. Darüber hinaus beschreibe ich neue Software für den Umgang mit
hierarchischen Zellkomplexen. Weitere Software stellt außerdem Bildverarbeitungs-
operationen auf großen Datenmengen bereit.

Die verschiedenen Segmentierungsmethoden, die in dieser Arbeit diskutiert werden, stel-
len einen vielversprechenden Schritt in Richtung von Zuverlässigkeit und Datendurchsatz
dar, wie sie für Connectomics Anwendungen gebraucht werden.
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Chapter 1

The Case for Connectomics

In order to understand how the brain is able to perceive, think and remember, neurosci-
entists are acquiring huge volume images of neural circuitry. Using this data, they want
to map the connectivity of the brain at a cellular level. The analysis of connectivity infor-
mation, termed connectomics, promises to answer many questions about the functioning
principles of the brain [135]. This chapter summarizes why neuroscientists believe that
connectomics can answer those questions. Furthermore, it gives an overview of the tech-
nology used for volumetric image acquisition of neural tissue — serial sectioning electron
microscopy. Finally we argue why fully automated analysis is necessary.

1.1 The Neuron Doctrine

Psychology describes mental functions and behavior. Here, the entire brain is treated
as a black box: inputs are varied and outputs analyzed. However, little can be learned
about the fundamental functioning principles of the brain.

Neuroscientists now want to look inside this black box. After having discovered and
largely understood the elementary functional units of brain tissue, current research aims
to discover how these rather simple elements are combined to give rise to complex be-
havior.

On the macroscale, neuroanatomists first used histological criteria to create maps of
different brain areas, such as the one by Korbinian Broadman in 1909, in which the
cerebral cortex is divided into 52 regions. The brains of persons with mental illnesses
sometimes revealed damage to certain brain regions. This allowed to assign function
to them, for example the “source of speech” to Broca’s region. Today, magnetic reso-
nance imaging (MRI) can be used for noninvasive measurement of structural connectiv-
ity (diffusion-weighted MRI) and functional connectivity (functional MRI) of the living
brain with cubic millimeter resolution [43]. Diffusion-weighted MRI (dMRI) measures
the diffusion direction of water in each volume element (voxel), which is strongly corre-
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1 The Case for Connectomics

Figure 1.1: Ramón y Cajal’s hand-drawn illustration [156]
from 1899 of (A) Purkinje cells and (B) Granule cells from
pigeon cerebellum. The Golgi staining made only a small
fraction of the densely packed nerve cells visible, such that
Cajal could use a low resolution light microscope to study
the form of the stained cells.

lated with the directionality of axon bundles through white matter. However, the low
resolution effectively averages the directionality of hundreds of thousands of axons (the
main signaling units) in each voxel; for single axon resolution different imaging tech-
niques are needed. Functional MRI (fMRI) is another widely used method for indirect
measurements of neural activation over time, from which functional correlations between
brain regions can be inferred.

On the microscale, a more thorough understanding of functionality critically relies on
the ability to image at nanometer resolution. The work of Camillo Golgi and Santiago
Ramón y Cajal (shared Nobel Prize in Medicine in 1906) is therefore considered as the
foundation of modern neuroscience [46]. In 1873, Golgi had developed a sparse staining
method for brain tissue, which was further perfected and extensively used by Cajal.
Using a light microscope with apochromatic lenses, the stain revealed an intricately
connected network of thin and branching processes. Figure 1.1 shows a drawing by
Cajal made in 1899 of nerve cells in pigeon cerebellum. The Golgi method stains only a
small fraction of cells, but if a cell is stained, it is stained in its entirety. Though most
structures in neural tissue are smaller than visible wavelengths, the structure of the few
stained cells can still be captured by light microscopy if they are contrasted against the
unstained background.

Based on his observations, Cajal put forward the neuron doctrine, which states that
the nervous system is made up of individual cells (“neurons”), as opposed to a diffuse
network as suggested by Golgi and others. The neurons would transmit nerve impulses
amongst each other at the points of contact. Otto Loewi and Henry Dale (Nobel Prize
1936) found evidence that information can be sent between neurons by chemical means:
neurotransmitter molecules are released in one cell and sensed by another [135]. Contact
sites between neurons where information can be transmitted are called synapses.

A neuron is a cell consisting of the cell body called soma, from which two types of pro-
cesses, dendrites and axons (collectively called neurites), emanate. The soma typically
gives rise to multiple dendrites, which branch in a tree-like fashion in the vicinity of the

2



1.1 The Neuron Doctrine

vesicle synaptic cleft

postsynaptic
density

mitochondrion

neurite
membrane

cytoplasm

Figure 1.2: Appearance of cell organelles and neurite membranes in mouse brain tissue
(conventional heavy metal staining, FIBSEM imaging at 5 nm resolution). Data courtesy
of Graham Knott. See [58] for more details on synapse ultrastructure appearance in
electron microscopy images.

soma. This neuron can receive information from multiple other neurons via synapses
formed at the dendrite branches’ ends (the part of a synapse which resides at the end of
a dendrite branch is called the postsynaptic terminal). A single axon, a tubular process
which can extend over large distances, also emerges from the soma. At its destination,
the axon branches and forms presynaptic terminals (which are part of synapses relaying
information to the dendritic branches of multiple other neurons). Neurons are the main
signaling units of the brain: activated synapses cause graded electrical signals to travel
from postsynaptic terminals towards the soma. If the sum of all converging graded po-
tentials is above some threshold, an all-or-nothing electrical impulse is generated which
travels along the axon (the neuron spikes). When reaching the presynaptic terminals,
this impulse stimulates the emission of neurotransmitter molecules from their containers,
the vesicles. These molecules drift through the synaptic cleft separating the pre- and
postsynaptic sites and are sensed by receptor molecules, which make up the postsynaptic
density. Synapses provide directed connections between one presynaptic cell and one or
several postsynaptic cells [77, 135]. Importantly, there exist different types of synapses:
firing excitatory synapses contribute fractional votes towards the spiking of the post-
synaptic neuron, whereas inhibitory synapses contribute negative fractional votes. The
existence of inhibitory pathways prevents an exponential cascade of spiking neurons.

In addition to vesicles, other cell organelles, such as the energy-producing mitochon-
dria, can be found within neurons. Figure 1.2 labels a mitochondrion and a synapse’s
ultrastructure in an electron microscopy image.

3



1 The Case for Connectomics

A large number of glial cells surround the neurons. They provide several functions,
such as structural support, insulation, debris and excess neurotransmitter removal as
well as nutritive and developmental functions [77, Chapter 2].

Of course, the above is a much simplified description of neural wiring and signaling.
The discussion has mainly focused on stereotypic connections in mammalian brains,
whereas in the fly brain, for example, many neurites are short and do not spike [135].
Furthermore, there are also synapses which relay information by electrical impulses
directly instead of using the diffusion of neurotransmitter molecules. Exceptions from
the rule of axo-dendritic connections also occur.

However, it is believed that individual neurons may nonetheless be summarized with
a relatively simple voting model and that complex function arises because of the specific
connections (and their relative strengths) that neurons make or do not make amongst
each other [31, 61, 135, 114], a theory discussed in more detail in Section 1.3.

Consequently, the next section focuses on imaging techniques that enable us to see
individual neurons and their connections via synapses.

1.2 Imaging at Neuron Resolution

Most structures in neuropil [61] – brain tissue containing a highly packed and entangled
mass of axons, dendrites, cell bodies, glial cells and blood vessels – are tiny: somas
have diameters of 50 µm, but the branching dendrites and axons can have diameters as
low as 30 nm (dendrites in the fly mushroom body) or 40 nm (dendritic spine necks in
mouse hippocampus), cf. [61]. To study the structure and dense connectivity of neuropil,
high resolution imaging techniques – together with effective staining procedures – are
necessary.

1.2.1 Light Microscopy

Abbe’s diffraction theory limits the resolution capability of an optical microscope, such
that most structures in neuropil cannot be resolved, as they are smaller than the wave-
length of visible light (from red to blue: 700 nm to 300 nm). However [139], super-
resolution techniques are now becoming available. For example the technique of flu-
orescence tag photoswitching [131] can now achieve a localization accuracy of 10 nm
by combining many images with stochastic sparse emission of visible light from marker
molecules.

For volumetric imaging, Micheva and Smith [111] have introduced array tomography,
which first cuts the acrylic resin embedded tissue into ultrathin (50 nm) sections, which
are then transferred onto glass slides to form a matrix of consecutive sections. The entire
array can be stained with fluorescent markers and imaged with a light microscope. It
is possible to elute the staining and to restain with different markers multiple times,
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1.2 Imaging at Neuron Resolution

allowing to obtain a stack of fluorescent images per section. As a last step, the tissue
slices can even be stained and prepared for electron microscopy imaging (Section 1.2.2).

Another approach using light microscopy is the brainbow imaging technique [102, 34],
which may allow to distinguish and trace individual neurons even with light microscopy
resolution. Whereas Golgi staining only allows to map a small fraction of neurons,
Jeff Lichtman and colleagues have developed a way to randomly express different ratios
of red, green and blue fluorescent proteins in each neuron. All neurons are labeled,
but each one has a distinctive color, drawn from a large pool of available colors. This
may allow to differentiate neighboring neurites even in low resolution images, where their
colors appear mixed. However, at present, the limited amount of colors coupled with the
complexity of neuropil at visible wavelength scales precludes the use of brainbow imaging
for connectivity analysis in the brain (J. Lichtman, talk at Society for Neuroscience
annual meeting, 2013). For a recent review of light microscopy techniques for brain
circuit mapping, see [122].

1.2.2 Electron Microscopy

An electron microscope can achieve a much higher lateral resolution by using electrons
for imaging, which have a shorter De-Broglie wavelength than visible light. The course
of the charged electrons can be altered by applying electric and magnetic fields, such
that building a “magnetic lens” is possible.

Imaging in Two Dimensions

In the first electron microscopes [88], electrons were sent through a thin section of
the sample and detected on the other side as a two-dimensional image (Transmission
Electron Microscopy, TEM). Regions of the sample containing atoms with large atomic
numbers will absorb and scatter more electrons than less electron dense regions, thus
creating contrast in the detected image.

Transmission Electron Microscopy requires very thin sample sections (fractions of
a micrometer), such that electrons can penetrate the sample. In Scanning Electron
Microscopy (SEM), a thin beam of electrons raster-scans the surface of the sample.
The number of electrons from elastic or inelastic back-scattering are detected at each
location, consecutively forming a grayscale image. SEM therefore allows to image the
two-dimensional surface of a thick sample without having to first cut a thin section off.

Staining and Embedding

Staining protocols, already in use for decades, are based on the selective binding of
heavy metals (such as osmium, uranium or lead) to membranes or protein aggregates
[31, 48]. For block-face volume electron microscopy techniques (discussed below), it is
necessary to stain the entire sample “en-bloc” before embedding it into plastic material
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1 The Case for Connectomics

(a) (b) (c)

Figure 1.3: The choice of specimen, brain region, imaging technique and staining can
produce EM images that look quite different.
(a) HRP staining (SBFSEM imaging; data courtesy of Kevin Briggman and Winfried
Denk) contrasts the thin extra-cellular space against the intra-cellular space, but does not
target intra-cellular organelles like mitochondria. (b) A different membrane-emphasizing
staining protocol (SBFSEM imaging; preliminary work by Shawn Mikula towards whole-
brain staining). (c) Conventional staining shows – apart from neurite membranes – also
mitochondria, vesicles and synapses (FIBSEM imaging; data courtesy of Graham Knott).

for stabilization. In order to facilitate the tracing of neurites, heavy metal stains that
emphasize the cell surface have been developed. For example, introducing horseradish
peroxidase (HRP) into the living tissue triggers the production of a polymer with high
osmium affinity [33, 63, 48]. However, this staining protocol de-emphasizes intracellular
structures, such as vesicles or postsynaptic densities, which renders synapse detection
much harder. Figure 1.3 visually compares different staining protocols.

Recently, Mikula et al. have demonstrated [112] that the whole mouse brain can be
stained and embedded, such that myelinated axons can be traced with high accuracy.
Axons that travel long distances from one brain region to another are electrically insu-
lated from each other by myelin sheaths. Even though this method does not yet allow the
tracing of all neurites, tracing just myelinated axons will enable researchers to map the
inter-areal connectome or projectome. Current research indicates (S. Mikula, personal
communication) that whole brain staining and imaging will enable the reliable tracing
of all processes in the near future.

Volume Electron Microscopy

In order to be able to reconstruct the morphology and connectivity of a set of densely
packed neurons, three-dimensional imaging techniques are needed. Current techniques
all build on serial sectioning, in which thin slices are repeatedly sliced, scraped or milled
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1.2 Imaging at Neuron Resolution

(a) ATUM imaging (b) SBFSEM imaging

(c) FIBSEM imaging (d) ssTEM imaging

Figure 1.4: Illustration of volume electron microscopy techniques used for connectomics
analysis. All methods have serial sectioning in common.

off the embedded tissue block’s surface. Two dimensional electron microscopy is used to
either image each of the cut slices or to image the block face exposed by scraping. The
resulting images are then stacked along the z-axis to yield a three dimensional volume
image, which can have a z-resolution of five to 50 nm, depending on the cutting method.

Individual techniques differ in the way how and when images are taken (transmission
or scanning EM, before or after cutting) and in the way how slices are removed from the
block (diamond knife or focused ion beam milling). Figure 1.4 illustrates these methods.

In serial section Transmission Electron Microscopy (ssTEM [154], Figure 1.4d) an
ultramicrotome uses a diamond knife to cut a slice (approximately 50 nm thick) off the
top of a block of epoxy resin embedded neural tissue. The slice is then transferred to a
transmission electron microscope and imaged. In this manner, thousands of consecutive
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(a) x, y-view (b) y, z-view (c) x, z-view

Figure 1.5: The SBFSEM data from [63] is as good as isotropic: even though serial
sectioning produced a z-stack of (x, y)-images (a), reslicing (b, c) produces images with
what appears to be the same quality.

slices are imaged. An advantage of this method is the high throughput and high lateral
resolution that can be obtained with high-energy electron beams. A disadvantage is that
ssTEM involves transferring the slices from the ultramicrotome to the microscope. As
the slices are very thin, distortions, folds, tears or loss may occur in the process, which
at best complicate subsequent registration of the image stack [133], but may also lead to
irrevocable information loss (missing slices, folds). Nonetheless, ssTEM has been used
for the reconstruction of the C. Elegans nervous system [155] and more recently in a
connectomics study of fly medulla (Takemura et al. [146], 1769 slices at 40 nm thickness)
and of mouse primary visual cortex (Bock et al. [25], 1215 slices at 50 nm thickness
imaged with a fast camera array).

The Automated Tape-collecting Ultramicrotome (ATUM, Hayworth et al. [60], cf. Fig-
ure 1.4a) makes the collection of slices more robust. A plastic tape automatically collects
the slices one after another. The slices stick to the tape, which can be rolled up onto
reels for storage. Because of the thick tape, ATUM uses scanning electron microscopy
to capture the image. As the sliced brain tissue is physically stored on tape, individ-
ual section can be imaged again later, for example at higher resolution, when necessary
[135].

Serial Block-Face Scanning Electron Microscopy invented by Denk and Horstmann
in 2004 (SBFSEM or SBEM [49], Figure 1.4b) transfers the ultramicrotome into the
low-vacuum chamber of a scanning electron microscope, which detects backscattered
electrons. The block-face of the tissue sample is first imaged with SEM. Then, a diamond
knife scrapes away the surface of the block. Because the image is acquired before cutting,
the slice thickness can be smaller than in ssTEM, where slices have to be transferred
for imaging. Repeated scraping and imaging yields a stack of images, which is easier to
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(a) x, y-view (b) y, z-view (c) x, z-view

Figure 1.6: Part of the anisotropic dataset for which an automated 3D neurite segmenta-
tion algorithm was sought in an ISBI 2013 challenge. While membranes are easy to see
in (a), note the low resolution, registration artifacts and varying contrast in (c) and (b).

align than ssTEM image stacks. The resulting volume image typically contains fewer
artifacts. A recent connectomics study by Helmstaedter et al. [63] of the inner plexiform
layer in the mouse retina used SBFSEM to acquire 3200 serial sections with 16.5 nm
lateral resolution and 25 nm cutting thickness.

Focused Ion Beam Scanning Electron Microscopy (FIBSEM, Knott et al. [90], cf. Fig-
ure 1.4c) is similar to SBFSEM, but replaces the diamond knife with a focused ion beam
which ablates the top few nanometers off the block face. Using this method, unprece-
dented isotropic resolution of 5 nm3 could be achieved. However, the small field of view
(smallest dimension at most 40 µm, [61]) currently precludes the analysis of many in-
teresting neuronal circuits. Nonetheless, efforts are underway by a team of scientists at
Janelia Farm Research Campus to analyze small circuits in fly medulla using a FIBSEM
volume image.

Reviews of the different electron microscopy techniques can be found in [32, 31, 61].
Knott and Genoud argue [89] why electron microscopy remains a vital imaging technique
to this day in various other areas of the biological sciences.

1.3 Connectivity Matters

In 1986, J.G. White et al. published the first (and until today only) complete synaptic
wiring diagram of any organism [155]. They studied all 302 neurons of the hermaphrodite
roundworm Caenorhabditis Elegans and how they are interconnected via synapses. In
the 50 µm × 50 µm × 1000 µm [31] worm, the nervous system is spread throughout the
body. White and colleagues used serial section Transmission Electron Microscopy to
image the worm. Then, in a painstaking effort that lasted over a decade, neurons were
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1 The Case for Connectomics

identified and labeled on large printouts of each slice by hand and manually tracked
across the preceding and following slices.

In 2005, Olaf Sporns coined the term “connectome” for the set of data describing “a
comprehensive structural description of the network of elements and connections forming
the [human] brain” [142]. The scientific field is known as “connectomics”, similar to how
genomics studies the genome. Neurobiologists believe that the knowledge of the wiring
diagram will prove to be invaluable to “reverse engineer” the brain.

Winfried Denk draws an analogy to another computational device [48]: an electronic
circuit consisting of binary logic gates (AND, OR, NOT). By applying all possible inputs
and observing the outputs (functional measurements), it is in theory possible to obtain
a complete description of the circuit’s behavior. However, the amount of measurements
required is exponential in the number of inputs. This is in contrast to the compact
description of the circuit in a hardware description language. With knowledge of the
circuit diagram, however, we can predict each output (given the functional description of
the used logic gates). Importantly, meaningful connectivity diagrams are sparse, and can
therefore be described much more compactly than the exponentially large value table
of input-output relations. In the brain, the circuit elements are neurons and synapses
(likely all stereotypical instances from a small set of types available), which can be well
understood individually.

Various review articles discuss the promise of “connectomics” for the field of struc-
tural neurobiology at the macroscale (brain regions and pathways, [142, 43]) and the
microscale (single neurons and synapses, [114, 48, 61]). Sebastian Seung, a prominent
researcher in the field, has also written an accessible book [135] on connectomics.

1.3.1 Requirements for Cellular-Level Connectomics

Given the volume of tissue containing the circuit to be studied, obtaining the circuit
diagram requires the reconstruction of most neuronal wires within. The only viable
option for dense reconstruction is using high-throughput volume electron microscopy for
imaging (Section 1.2.2) with dense staining, high lateral resolution, very thin cutting,
and highly reliable, preferably automated data acquisition.

The electron-dense staining targets each neuron’s membranes (as well as cell or-
ganelles’ membranes) indiscriminately, making all of them visible at the same time.
In order to reliably detect synapses, vesicles and the postsynaptic density need to be
stained as well. Because neuronal processes do not necessarily have a preferred direction,
the lowest resolution dimension should account for the smallest occurring neurite diame-
ters [61]. In the volume image, the smallest tubular cross-sections should have diameters
of a few voxels. Traceability not only depends on achieving the required minimal reso-
lution, but also on the reliability of the staining (no artifacts, homogeneous throughout
the volume) and the ability to collect a large number of slices without artifacts (no slice
loss, no folds).
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Helmstaedter and Briggman give examples [61, 31] of minimal circuit volumes con-
sidered meaningful: mouse retina (40 µm3), mouse olfactory bulb (300 µm3) and mouse
cortical column (400 µm×400 µm×1000 µm). Assuming an isotropic resolution of 20 nm3,
and 8 bits per voxel, this would amount to data sizes of 20 GB for the retina circuit,
10 TB for the olfactory bulb circuit and 60 TB for the cortical column circuit. With SBF-
SEM, the acquisition of the cortical column dataset would take in the order of one year,
but significant speed-ups are already on the horizon with the introduction of multi-beam
scanning electron microscopes.

1.3.2 The Need for Automation

Even though acquisition times of one year may sound long, image acquisition is fast com-
pared to data analysis. The accurate neurite reconstruction from the acquired volume
images is much more time consuming and labour intensive.

One approach is to manually trace the contour of each neuron in each slice and then to
link these contours across consecutive slices (contouring). The resulting 3D reconstruc-
tion of the local neurite morphology is invaluable in the study of synaptic ultrastructure,
cf. [113, 58]. For connectivity studies, volumetric reconstructions are not required; it is
sufficient to trace only the center lines (skeleton tracing), which results in a speed up of
approx. 50 times compared to contouring [61].

Branching neurites must be traced with high accuracy, because any mistraced branch
causes a large number of synapses to be assigned to the wrong neurons. Because humans
often make attention-related mistakes, or disagree about the interpretation of the raw
data at difficult locations, the skeleton of each neuron is often traced redundantly by
many tracers [62, 146, 31, 63] after which a consensus skeleton is constructed [62].

The manual reconstruction of the C. Elegans connectome from paper printouts of
ssTEM images needed a few thousand hours analysis time spread over the course of 12
years [155, 61]. A computer-assisted (but still essentially manual) workflow streamlines
skeleton annotation, such that analysis times on the same data could be reduced ten-fold
[157]. A recent connectomics study of mouse retina by Helmstaedter et al. [63] needed
a combined annotation time of 30 000 hours.

Clearly, automated methods are necessary: the volume of neural tissue that can be
imaged using serial EM methods is rapidly increasing, while humans are slow in tracing
and make attention-related errors. The time of expert annotators is also too valuable to
be spent on dull tasks such as neurite tracing and synapse identification.

This is why this thesis focuses on fully automated methods for neurite segmentation in
electron microscopy volume images of neural tissue.
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Chapter 2

Related Work

In this chapter, we give an overview of existing approaches to cope with the huge volu-
metric datasets obtained for connectomics studies.

Section 2.1 summarizes various existing software packages for visualizing and exploring
connectomics datasets. For each software, we describe its approach to handling the
massive dataset sizes and highlight the different methods offered for manual or semi-
automated annotation. This summary will be helpful when we describe our own software,
ilastik, in Section 3.1. Methods for semi-automated segmentation of neurites are further
discussed in Section 2.2.

Ultimately, interactive annotation should only be needed for teaching a computer what
to do. Once properly parameterized (or trained), a computer algorithm would then be
able to analyze vast amounts of data at little cost. Section 2.3 highlights automated
methods for detecting and segmenting neuron ultrastructure, in particular mitochondria
and synapses. Importantly, Section 2.4 focuses on related work in fully automated neurite
segmentation, the main topic of this thesis.

The question of how to quantitatively evaluate a neurite segmentation algorithm is
the topic of Section 2.5. The introduced segmentation quality measures are used later
for evaluating the proposed multicut segmentation algorithm in Chapters 4, 5 and 6 and
are used as a loss function for learning in Chapter 5.
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tool display tracing/annotation RAM
limited?

Open
Source

Reconstruct [52] 2D+z 2D contour no yesa

TrakEM2 [37] 2D+z 2D contour, skeletons no yesb

Elegance [157] 2D+z skeletons no yesc

CATMAID [132] 2D+z 2D contour, skeletons no yesd

Raveler [120] 2D+z proofreading (split/merge) no yese

KNOSSOS [62] 3D orthogonal skeletons no yesf

itk-snap [160] 3D orthogonal 3D active contours yes yesg

ilastik [140] 3D orthogonal 3D seeded region growing no yesh

Ssecrett [70] arbitrary skeletons no no
NeuroTrace [71, 70] arbitrary 2D active contour + tracking no no
ConnectomeExplorer [22, 21] arbitrary n/a no no

ahttps://github.com/meawoppl/reconstruct-1101
bhttp://repo.or.cz/w/trakem2.git
chttps://github.com/Emmonslab/Elegance
dhttps://github.com/acardona/CATMAID
ehttps://openwiki.janelia.org/wiki/display/flyem/Raveler
fhttp://code.google.com/p/knossos-skeletonizer
ghttp://sourceforge.net/projects/itk-snap
hhttps://github.com/ilastik

Table 2.1: Overview of various tools for visualization, manual tracing and semi-
automated tracing of electron microscopy volume images of neural tissue.

2.1 Visualization and Manual Analysis

Various software tools have been written for visualization and to support human tracers
in their analysis of connectomics datasets. As we introduce ilastik and its viewer
component, volumina, in Sections 3.1 and 3.2, we give a short overview of related work
here.

Some applications (Reconstruct, TrakEM2, Elegance, CATMAID) are designed for
anisotropic data, for which a preferred “depth” direction exists. The data is treated as
a set of two-dimensional images stacked in z-direction. Annotation is performed on each
(x, y)-slice individually and tracked across z. The user interacts with the data volume
by scrolling through the image stack.

Other applications (KNOSSOS, ilastik) are designed with isotropic data in mind. To
interact with the data, they usually offer three orthogonal slice views, (x, y), (x, z) and
(y, z). Annotation can either be performed in 2D, but on any of the views, or in 3D, for
example by constructing a sphere centered on one of the slice views. Applications such
as Ssecrett and ConnectomeExplorer even allow to display arbitrary 2D slicing views
through the volumetric dataset by resampling the data.
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2.1 Visualization and Manual Analysis

Software for Viewing and Analysing Volume Images

� Reconstruct [52] focuses on dense reconstruction in anisotropic volume data.
To segment an object, the user traces the contour of the object on each slice. The
program then links all contours together and calculates a surface representation of
the object. Contouring can be semi-automated by using a 2D region growing algo-
rithm (with a user-defined stopping criterion) to generate contours. Reconstruct
has been used for example in [113, 58]; however, the last release (version 1.1) was
in 2007. Reconstruct is written in C++ targeting the Win32 API.

� Ssecrett or the Serial Section Reconstruction and Tracing Tool [70] is a volu-
metric dataset viewer (allowing arbitrary slicing) and a manual skeleton tracing
tool with a client-server architecture to support massive datasets.
The companion module NeuroTrace [71, 70] implements a 2D segmentation plus
tracking approach for the reconstruction of tubular structures. After manual ini-
tialization, two nested level sets converge under the influence of various internal
and external forces to the inner and outer wall of the cell membrane, yielding a
segmentation of the two-dimensional cross-section. The algorithm then attempts
to follow the centerline of the tubular structure by tracking the cross section across
the depth dimension.

� ConnectomeExplorer [22, 21], developed by the same research group after their
previous tools Ssecrett and NeuroTrace, focuses on the interactive exploration of
volume segmentation and annotation data. A client-server architecture allows for
arbitrary slicing and large-scale on-demand volume rendering. The program as
well as the source code for Ssecrett, NeuroTrace and ConnectomeExplorer are not
publicly available, however.

� TrakEM2 [37] has been used for several connectomics reconstructions, for exam-
ple of anisotropic serial section EM data from drosophila central nervous system by
Cardona et al. [36] and mouse primary visual cortex by Bock et al. [25]. TrakEM2
is part of the Fiji1 suite of image processing components and written in Java.
During pre-processing of image stacks, it computes tiled mipmaps of each slice.
Similar to Reconstruct, it offers various tools to semi-automatically label an area
based on user clicks.

� Catmaid or the Collaborative Annotation Toolkit for Massive Amounts of Image
Data [132] offers similar functionality to TrakEM2, but consists of a web front
end (HTML + JavaScript) and server back end (built with Django), such that
collaborative annotation over the internet is easily possible.

1http://fiji.sc

15

http://fiji.sc
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� Elegance [157] is a tool for skeleton reconstruction of anisotropic datasets and
has been used to re-trace the data of the first published complete connectome [155].
Unlike its competitors, Elegance shows three consecutive sections side-by-side for
context. Elegance is written in Java.

� Raveler [120] is a manual annotation tool developed by the FlyEM team at
Janelia Farm. Raveler is written in C++/Python, using the Tkinter2 toolkit. It
has been released as open source software at the end of 2013.

� Knossos [62] is designed for redundant skeleton tracing in isotropic datasets.
The data can be viewed and navigated using three orthogonal slice views; data
is loaded on-demand from pre-generated 3D mipmaps stored on disk. Skeletons
are traced manually, but a streamlined workflow (for example revisiting marked
branching points) accelerates manual tracing. KNOSSOS has been used in recent
connectomics studies by Helmstaedter et al. [62, 63]. Knossos is written in C/C++;
a switch to the popular Qt3 user interface toolkit is currently in development.

� itk-snap [160] offers orthogonal slice views for navigation through volumetric
datasets that fit into RAM. It implements 3D active contour algorithms for inter-
active segmentation using C++ and the VTK and ITK toolkits.

� ilastik, the interactive learning and segmentation toolkit (Sommer et al. [140]
and Sections 3.1, 3.2 and 3.3) enables interactive machine learning on large volu-
metric datasets, which are displayed using its orthogonal slicing viewer, volumina.
ilastik performs computations on-demand on small chunks of data at a time, with
volumina visualizing the resulting image blocks as soon as their computation is
finished. ilastik’s voxel classification workflow allows to interactively train and ap-
ply a voxel classifier on huge datasets.
In addition, the Carving module provides semi-automated segmentation based
on sparse user scribbles [144, 143].

To summarize, a plethora of software applications for working with EM volume images
exist. Allmost all applications allow to stream parts of the dataset from disk for viewing
regions of interest. While tools for manual and semi-automatic annotation are common,
few programs offer automated processing of large datsets.

Each software has its own list of strengths and weaknesses, and most are tailored to
the specific use cases of the research group that led the software development. I have
contributed to the development of ilastik, being mainly responsible for the volumina
viewer and the Carving user interface; for details, see Sections 3.1 and 3.3.

2http://docs.python.org/2/library/tkinter.html
3http://qt-project.org
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2.2 Semi-Automated Segmentation

2.2 Semi-Automated Segmentation

Fully manual annotation of neurites is too time-consuming [61]; Section 1.3.2 has argued
why automation is needed. Ideally, a fully automated algorithm would trace all neurites
without intervention by the domain expert to extremely high accuracy. As the problem
(the focus of this thesis) is very difficult, it is worthwhile to consider semi-automated
segmentation methods. These methods solve the easy parts of the problem automatically,
but require help from the domain expert for the harder parts.
Semi-automated segmentation algorithms can be classified as

� proof-reading of dense automated segmentations [84] by manually correcting split
and merge errors or by multiple-choice [158],

� utilizing sparse annotations of membrane pixels in order to constrain the segmen-
tation of a 2D image slice [72]. Here, annotations are refined until all segments in
the slice are correctly segmented,

� methods in which one neurite is being worked on at a time. One interaction mode
is to let the annotator give sparse scribbles indicating foreground (the neurite of
interest) and background (everything else). The constrained 2D or 3D segmentation
is displayed, and further scribbles are given to correct any remaining errors [127,
158, 144, 143].

For obtaining correct results, semi-automated segmentation methods should

� minimize the number and complexity of manual annotations,
� provide interactive update speeds,
� guide the annotator to locations of uncertain segmentation.

All competitive fully automatic neurite segmentation approaches today rely on machine
learning. The algorithms discussed in this section therefore have other uses: to quickly
create precise and sufficiently large training and validation sets.

The ilastik software (Section 3.1) includes a module for semi-automated segmenta-
tion similar to Reconstruct, based on a region-growing algorithm (termed Carving) by
Christoph Straehle et al. [144, 143]. Carving has been used for reconstruction of neurons
in a recent study of correlative two-photon and FIBSEM microscopy [105]. Datasets can
be larger than RAM if pre-processed beforehand (construction of a supervoxel-adjacency
graph). In the re-implementation of ilastik, I have been responsible – apart from other
tasks – for the user interface implementation and interaction design of the carving inter-
face, which is described in more detail in Section 3.3. This tool has been used to acquire
gold standard segmentations of small volumes of neural tissues, which have been useful
for the quantitative evaluation of the proposed fully automated algorithms (Chapter 4
and Chapter 5).
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2.3 Detection of Mitochondria and Synapses

In order to reconstruct the wiring diagram, tracing all branching neurites within the
volume image (“segmentation”, reviewed in Section 2.4) is not enough. Additionally,
one needs to find all the synapses in the volume. It may also be useful to understand
more about neurite ultrastructure, for example by an automated semantic labeling of
voxels (classes vesicle, mitochondrion, neurite membrane, postsynaptic density, etc.; see
Figure 1.2).

Synapses. Various automated synapse detection methods have been proposed [65, 115,
97, 18, 19]. Anna Kreshuk et al. propose a multi-step procedure [97]: a trained classifier
predicts for each voxel whether it belongs to a synapse based on local image features.
The probability volume is thresholded to yield connected components, which are filtered
by size. All remaining components are reported as detected synapses. For training, the
ilastik software (Chapter 3) was used. This method is able to find synapses in high-
resolution isotropic FIBSEM images with high reliability. Carlos Becker et al. [18, 19]
argue that context cues (synapses have nearby vesicles on the presynaptic side) should
help to improve classification accuracy. Their method uses a boosting classifier to select
relevant features from a large pool of context cues. After voxel classification, the method
proceeds as in [97] to detect synapses. It is worth noting that none of these methods
make use of neurite segmentation results, but rather treat the detection of synapses as
decoupled from the reconstruction of neural wiring.

Mitochondria. Automated mitochondrion detection and segmentation has also been
studied [104, 103, 136]. The distribution of mitochondria within neural tissue is an
interesting biological question in its own right. However, even those studying neurite
segmentation need to be concerned with mitochondria, because when in close proximity
to neurite membranes they tend to confuse automated segmentation algorithms.

Aurélien Lucchi et al. [104, 103] first divide the volume image into supervoxels using
the SLIC algorithm [1], and then treat mitochondrion segmentation as a binary label-
ing problem on the supervoxel-adjacency-graph. For each supervoxel xi and all pairs of
adjacent supervoxels xij , a number of textural and shape features are computed. Super-
vised learning (in this case a SVM [23] classifier) is used to derive the weights which are
combined into a submodular “graph cut” energy function [93].

Mojtaba Seyedhosseini et al. [136] use algebraic curve fitting on 2D image patches to
extract textural and shape features. A Random Forest classifier [30] then predicts for
each patch whether its center lies within a mitochondrion or not.

This previous work does not consider neurite segmentation and cell organelle detection
as a joint problem, but considers the detection problem independently. In Chapter 7,
we propose a joint segmentation and detection approach.
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2.4 Fully Automated Segmentation

In Sections 2.1 and 2.2 we have reviewed methods for semi-automated tracing of individ-
ual neurons. Because the annotator has to re-initialize these methods for each neuron
individually, they do not scale to connectomics-size datasets. Instead, a truly automated
approach should trace all neurons without intervention by the user. Once parameterized
correctly, such an algorithm can be applied on massive datasets.

Various review articles and commentaries [38, 68, 61, 35] highlight the importance of
automated analysis. In particular, Moritz Helmstaedter writes in the 2013 special issue
“Focus on Mapping the Brain” of Nature Methods [63]:

“Analysis of electron microscopy data is thus meeting a substantial challenge:
humans can solve difficult locations but are slow and make attention-based
errors, whereas machines are efficient at solving easy locations but fail when
neurites become small and their packing is dense. [. . . ] The current accuracy
of automated classifiers is at least three orders of magnitude less than what
is needed for reconstruction of entire neurons.”

Chapter 1 has described the brain as an intricate machine composed of virtually
identical parts. The fact that there are only few neuron types, and that these types can
only be distinguished by their overall morphology (as opposed to being distinguishable
by local texture), makes the connectomics segmentation problem very challenging.

Telling two adjacent neurons apart is rendered so difficult because of the constraints
of tissue preparation (staining) and electron microscopy imaging. For example, in Brain-
bow imaging, each neuron expresses a random fluorescent color. However, in electron
microscopy, the heavy metal stain targets all membranes of the tissue volume indiscrim-
inately. While this allows full reconstruction (unlike Golgi staining), the drawback is
that neuropil appears as a tangled mass of identically looking neurites.

One neuron can however be distinguished from another because they are separated
by a stained membrane. This is why all segmentation approaches revolve around mem-
brane detection. If voxels belonging to neurite membranes could be labeled with 100%
accuracy, the neurite segmentation problem would be solved.

In 2007, Viren Jain et al. discussed two simple baseline image processing approaches
for neurite segmentation [67, Section 4]. Their dataset, similar to the one shown in
Figure 1.3a, contrasted the bright intra-cellular space against the dark extra-cellular
space and therefore lent itself to binary labeling. First, they tried thresholding the raw
data (cf. Figure 2.6b). However, they found that the voxel-wise accuracy – even on the
training set – rendered this approach useless. Next, in an attempt to de-noise the data,
an edge-preserving anisotropic smoothing filter was applied to the raw data first, and
after that thresholding was performed. This did not improve performance significantly.

Obviously, the noisy raw image data (Poisson noise, staining imperfections, imaging
artifacts, registration problems, low resolution, small structures) requires far more com-
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plex models for automated analysis. All methods today use machine learning to find
good parameterizations of such complex models with a supervised learning setup.

2.4.1 Categorization of Existing Approaches

Current approaches for tackling the neurite segmentation problem can be categorized as
follows:

(1) Voxel classification. A classifier is trained that can predict, for each pixel or
voxel in the image, if it belongs to a neurite membrane or not. This decision is
based on local image features.

(1a) The classifier uses designed local image features. For example, the software
package ilastik (Chapter 3, [140]) can be used to interactively train a Ran-
dom Forest classifier, which uses a set of convolution-based features at vari-
ous scales. Features explicitly designed for the neurite segmentation problem
have also been proposed [99]. After prediction, thresholding the probability
map and connected component analysis can be used to obtain a segmenta-
tion. However, voxel classification is usually just a pre-processing step in a
segmentation pipeline [7, 10].

(1b) Voxel classification using learned local image features, and convolutional neu-
ral networks [149, 66, 68, 150, 64, 40, 108, 74, 75]. As in (1a) this may only
be a pre-processing step; see [119, 69].

(1c) Mojtaba Seyedhosseini et al. study how to incorporate multi-scale context
[137] and develop a hierarchical model for voxel classification [138].

(2) Pixel-level regularization. Because pixel classification is noisy, regulariza-
tion is desirable. Verena Kaynig et al. propose a graph cut regularization method
over all pixels in a 2D image [82, 84]. Their method is designed to close holes in
the segmentation of membranes.

(3) 2D segmentation and linking. For anisotropic image stacks with a preferred
z-direction a common approach is to first propose one or multiple segmentations
for each 2D slice independently and then find a linking of the segments across all
slices to form neurites [83, 55, 151, 84, 74]. To take context into account, one may
formulate the segmentation of two consecutive slices as a co-clustering problem
[153].

(4) Supervoxel-based algorithms. The volume image is first decomposed into
supervoxels. Supervoxels are small connected components of voxels that adhere
to the local edge structure present in the data. Supervoxel algorithms have to
balance two opposing requirements: on the one hand, supervoxels should be as

20



2.4 Fully Automated Segmentation

large as possible while on the other hand, they should never straddle more than one
semantic object (e.g. a neurite). All algorithms proceed to build the supervoxel
adjacency graph RAG = (V, E). The segmentation problem is then to find the
sequence of merge operations on RAG that yields the desired segmentation into
neurites.

(4a) In Agglomerative Clustering, supervoxels are merged sequentially. The merge
order is determined by a greedy algorithm [69, 119, 76, 101, 26].

(4b) In this thesis, we consider a simultaneous decision of all pairs of adjacent
supervoxels whether they should be merged together or not [7, 10, 98, 20].

In the following, these approaches are discussed in more detail. Voxel classification
using Random Forest classifiers (1a) and Neural Networks (1b) is the subject of Sec-
tion 2.4.2. Pixel-level regularization (2) is discussed in Section 2.4.3. For anisotropic
datasets, 2D segmentation and linking (3) is the method of choice (Section 2.4.4). Fi-
nally, we discuss supervoxel-based algorithms (4) in Section 2.4.5.

2.4.2 Voxel Classification

Supervised machine learning methods [23, 59] can be used to obtain a decision function
which assigns a class label to every voxel based on local image features. More precisely,
let S = {(x1, y1), . . . , (xN , yN )} be the set of N training samples. Each sample consists
of a feature vector, x ∈ Rm, and a target label y. In classification, y can attain values
from a discrete set L, such as y ∈ {membrane, non-membrane}. The aim of supervised
machine learning is to use the training set to find a mapping

f : Rm → L , (2.1)

(a) (b) (c) (d) (e)

Figure 2.1: From the raw data (a), voxel features include the smoothed raw data (b),
the gradient magnitude (c) and the greatest eigenvalue of the Hessian Matrix (d). Using
the ilastik software, a Random Forest classifier was trained, which yielded the output
(e). Data courtesy of Graham Knott.
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Figure 2.2: Illustration of the idea behind Classification and Regression Trees, inspired
by [59], Chapter 9. A partitioning of the (two-dimensional) feature space (a) induces a
binary decision tree (b).

such that f is likely to perform well on previously unseen test samples. The mapping
f is called a classifier. In the simplest case, performance is measured by the misclas-
sification rate, i.e. the fraction of training samples that are assigned a wrong label.
To avoid overfitting one typically tunes a regularization hyper-parameter which limits
model complexity.

Figure 2.1 illustrates voxel classification: given the raw data, a set of different voxel
features is computed, which are stacked to make up the feature vector x for each voxel.
Based on these features, a trained classifier outputs a probability for each voxel to belong
to the “membrane” class on the test data.

Voxel Classification with Random Forests

A Random Forest classifier [30, 59, 44] is an ensemble of decision trees. To classify a
sample x, each decision tree casts a vote for a specific class label l ∈ L = {1, . . . , |L|}.
The majority vote of all trees in the ensemble decides the output of the classifier f for
sample x.

Figure 2.2b illustrates a binary decision tree, consisting of nodes and edges. Leaf
nodes have no children, while split nodes have exactly two child nodes. Each split node
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is associated with a test function to be applied to data. Each leaf node stores a class
label. Given a sample x ∈ Rm from the test set, the decision tree applies a sequence of
test functions in order to predict the label of x. First, x is passed to the root nodes’ test
function. If it yields “true”, the datum x is passed to the left child, if it yields “false”, x
is passed to the right child. This process is continued until a leaf node is reached. The
stored label determines the classification decision of the tree for the given sample.

In Random Forests, each test function is usually chosen to divide the feature space Rm
into two halves with an axis-aligned split: feature xk, 1 ≤ k ≤ m, is tested for xk < ξk
with an abitrary threshold ξk ∈ R. A decision tree thus partitions the feature space into
a set of regions, which are each assigned a label via the leaf nodes. This is illustrated in
Figure 2.2.

The ensemble of decision trees is constructed in a greedy fashion from the training
data. In order to avoid overfitting to the training data,

� each tree is constructed independently,
� each tree sees a different training set, generated with bagging,
� the optimal decision function for each split is found only from a random subset of

all possible decision functions,
� the output of all trees in the ensemble is averaged to reduce bias.

To train a single decision tree, a new training set S̄ with |S̄| = |S| is first generated by
sampling uniformly with replacement from the original training set S. This procedure is
called bagging. Starting at the root node, the decision tree is then constructed greedily.
At each node τ , the algorithm considers only that subset S̄τ ⊂ S̄ of the training samples
for which the previously generated decision functions on the path from τ to the root node
apply. To find an appropriate decision rule xk < ξk for node τ , a subset of all features
F ⊂ {1, . . . ,m} is considered (usually, one chooses |F | =

√
m). Then, an exhaustive

search over all features k ∈ F , and over all possible splits ξk is performed, in order to
find those parameters which maximize the decrease in Gini impurity [30] or entropy [44].

Let n := |S̄τ | and nj denote the number of samples in S̄τ labeled j ∈ L. Then the gini
impurity i(τ) is defined as

i(τ) = 1−
∑
j

(nj
n

)2
. (2.2)

Based on the current choice of decision rule xk < ξk, the samples S̄τ will be split into
the sets S̄τ,left and S̄τ,right, which have cardinality nl and nr, respectively. The decrease
∆i in gini impurity is then calculated as

∆i(τ) = i(τ)− nl
n
· i(nl)−

nr
n
· i(nr) . (2.3)

Node splitting stops when n = 1. Random Forests have the reputation to “do remarkably
well, with very little tuning required” [59, Chapter 15], which is why they are the classifier
of choice in the ilastik software, which we describe in more detail in Section 3.1.
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In the proposed neurite segmentation algorithm (Chapter 4), we make use of Random
Forest classifiers both for obtaining supervoxels from a voxel membrane probability map
(voxel classification) and for separating true from false boundaries.

Voxel Classification with Neural Networks

In 2007, Viren Jain et al. proposed to use convolutional neural networks to tackle the
neurite segmentation problem [67].

A feed-forward neural network is a universal function approximator [45]. It can be
represented as a directed network, see Figure 2.3. In convolutional neural networks
(CNNs), each arrow represents a convolution with a filter mask (fixed size) with weights
to be parameterized. For example in [67], such a filter would be of size 5 × 5 × 5
voxels, representing 125 free parameters. Each hidden node (blue) represents a non-
linear function applied to the biased sum of the node’s input. Often this function is
chosen to be a sigmoid f : R → [0, 1], f(x) = 1/(1 + e−x), see Figure 2.5. The nodes
are organized in hidden layers k which consist of different feature maps indexed with a.
In the architecture of [67], the output of a node Ika depends on all nodes in the previous
layer:

Ika = f

(∑
b

wkab ⊗ Ik−1b − θka

)
, (2.4)

where “⊗” denotes convolution of the filter mask wkab with the input image Ik−1b and θka
is a node-specific bias parameter. The function represented by such a CNN has many
parameters: in Figure 2.3, there are 85 connections (5 each from the input and to the
output, plus 3 ·52 for connections between the hidden layers). Assuming each connection
represents a 5× 5× 5 filter mask, and each hidden node contributes a bias, this sums to
10645 free parameters in total.

In a CNN architecture, each additional hidden layer increases the context that each
voxel can use to compute its output value. For filters with fixed size F 3 and K layers,
the context is (F − 1) ·K + 1. In the example above, this is a context of 253 voxels.

For learning, one first has to choose a loss function ∆ that defines a distance measure
between the output image X̂ produced by the neural network and the true solution X.
A simple loss function considers each voxel x separately using a per-voxel loss l(x, x̂)
and then sums the result:

∆(X, X̂) =
∑

l(x, x̂) . (2.5)

Examples (Figure 2.4) for the per-voxel loss are quadratic (Eq. 2.6), square-square
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k=1 k=2 k=3 k=4

a=1

a=2

a=3

a=4

a=5

raw data I output X̂

Figure 2.3: Setup of a convolutional network as used in [67, 149]. This network has four
hidden layers (columns, k = 1, . . . , 4) and five feature maps (rows, a = 1, . . . , 5) at each
depth layer.
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Figure 2.4: Different loss functions
l(x, x̂) for voxel classification and x =
1. The functions were rescaled to
pass through the point (0.5, 1). For
square-square loss, m = 0.3 as in
[149].

(Eq. 2.7, used in [149]) and the cross-entropy loss (Eq. 2.8, used in [67]).

l(x, x̂) =
1

2
(x− x̂)2 , (2.6)

l(x, x̂) = x ·max(0, 1− x̂−m)2 + (1− x) ·max(0, x̂−m)2 , (2.7)

l(x, x̂) = x ln x̂+ (1− x) ln(1− x̂) . (2.8)

The predicted image X̂ = X̂(I,w) is the complicated function represented by the
neural network which depends on the input image I and the parameters w. However,
because f(·) is chosen as a sigmoid function, X̂(I,w) is a smooth and differentiable
function. For training, the aim is to find the parameters w which minimize the loss
∆(X, X̂(I,w)). Minimization can be performed by gradient descent algorithms. Train-
ing a feed-forward neural network using gradient descent is known as backpropagation
from the work of Rumelhart et al. [130].
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Figure 2.5: The sigmoid function
f : R → [0, 1] maps any real
value to the range between zero
and one. It is defined as f(x) =
1/(1 + e−x).
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Srinivas Turaga et al. [149] argue that a different loss function is better suited to the
segmentation problem when the post-processing consists of thresholding X̂ and com-
puting the connected component labeling. As defined above, the loss function ∆ just
sums up the individual contributions l of each voxel to the loss. However, the accuracy
of voxel classification must be weighted depending on the context: for some pixels, a
wrong decision will not change the segmentation much; for others, this may have dra-
matic consequences. This concept, also crucial to our work, is discussed in more detail
in Section 4.3.2.

The authors of [149] advocate using the Rand Error [124], a distance measure between
two segmentations that is discussed in detail in Section 2.5.1. Briefly, each possible pair
of pixels contributes to the loss if the segmentations disagree on whether this pair should
be connected or not. The segmentation is formulated using the voxel-adjacency graph
(called affinity graph). The CNN produces a real-valued affinity for each edge (the larger
the affinity the stronger the belief that the voxels should be connected). Thresholding
the affinity graph and connected component analysis yields a segmentation. In their
stochastic gradient descent learning, the aim is to minimize the Rand Error on the
training set. A stochastic gradient update step involves picking any pair of voxels i and
j. Among all possible paths i → j, they find the path which maximizes the minimal
affinity along that path. The derivative of the loss l of that maximin edge (with respect
to the parameters) is used for the gradient update.

The work of Turaga et al. has been influential for this thesis. The observation that
some edges are more important than others when applying thresholding and connected
component analysis has led to the multicut formulation of neurite segmentation (Chap-
ter 4). By now, the use of the Rand Error (as well as the Variation of Information, see
Section 2.5.2) has become a standard measure in image segmentation [13, 126] as well
as neurite segmentation [119, 84, 149, 101, 10, 98, 40]. In Chapter 5, we investigate
the use of Rand Error and Variation of Information for structured learning of multicut
segmentation.
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(a) raw data (b) λ = 0 (thresholding) (c) λ = 0.1

Figure 2.6: Graph cut segmentation on FIBSEM data. The raw image data D, normal-
ized to range [0, 1], was used to define the unary potentials Ei(0) = Di, Ei(1) = 1−Di

and the pairwise potentials E(0, 0) = E(1, 1) = 0, E(0, 1) = E(1, 0) = λ.
Panel (b) amounts to thresholding. In (c), there is much less noise visible. However,
some membranes have gaping holes (especially visible in the lower left). Data courtesy
of Graham Knott.

Other neural network architectures, incorporating hierarchical sparse pixel neighbor-
hood sampling [74, 76] or deep neural networks [64, 40, 108] (which include convolutional
networks as sub-components) have recently been shown to yield impressive results for
neurite segmentation. However, the segmentation quality is still not good enough for
connectomics scale segmentation. Our segmentation methods (Chapters 4 to 7), can
profit from improved voxel classification methods, as they all start from a supervoxel
representation. In general, the better the classification performance on the voxel level,
the better the supervoxel segmentation derived from it.

2.4.3 Pixel-Level Regularization

Markov Random Field (MRF) and Conditional Random Field (CRF) methods [24] have
been enormously successful for many labeling problems in computer vision [128, 29].
Briefly, in a typical discrete CRF model of image segmentation, each pixel can attain
one out of a set of labels (e.g. foreground, background). Each pixel quantifies its
(noisy) desire to be assigned each label. To introduce regularization, one further specifies
the joint preferences of pairs of pixels for all possible joint labelings. The problem of
finding likely image labelings can then be approached as an inference problem on multi-
dimensional probability distributions.

The popularity of CRF models is partly due to the graph cut algorithm, which can
compute the most likely binary labeling (MAP estimate) in polynomial time for a certain
subset of models [93].

More formally, such models are formulated using the pixel (or superpixel) adjacency
graph RAG = (V, E). A binary labeling of the nodes V (pixels, superpixels) is denoted
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y ∈ Y = {0, 1}|V|. Any function Ei : {0, 1} → R gives the local compatibility of each
label with the image evidence (the higher the value, the less likely the state is). Similarly,
Eij : {0, 1}2 → R gives the compatibility of the labeling of pairs (i, j) ∈ E of adjacent
pixels (superpixels) with the image evidence. One then defines an energy function

E(y) =
∑
i∈V

Ei(yi) +
∑

(i,j)∈E
Eij(yi, yj) . (2.9)

Alternatively, one can formulate the probability distribution over all possible labelings

P (Y = y) =
1

Z
exp {−E(y)} , (2.10)

where Z is a normalization constant called the partition function. The MAP state can
be found by maximizing P (y) over y ∈ Y, or, alternatively by minimizing E(y).

In “graph cut models” of binary image segmentation, the regularization is chosen to
discourage label transitions. In the MAP labeling, this has the effect that small holes
are filled and small speckles are eliminated.

To apply these methods to neurite segmentation, one could set up a binary labeling
problem (neurite membrane versus everything else) over the pixels, and hope that the
regularization terms will serve to close those small holes in the membranes which can
have catastrophic consequences in connected component labeling on the probability map
(see Chapter 4). However, this näıve approach does not work. Graph cut segmentation
suffers from “shrinking bias” [152, 82] because it regularizes boundary length: thin,
elongated structures (such as membranes!) are cut off (cf. Figure 2.6).

Verena Kaynig et al. have designed the terms Eij specifically to overcome this problem
by incorporating the orientedness in each pixel [82, 84]. However, in practice only small
holes can be closed using this method.

Closing small gaps in membranes may also be achieved by other means; for example,
Cory Jones et al. propose a method using partial differential equations [73].

2.4.4 2D Segmentation and Linking

For anisotropic data (e.g. obtained with ssTEM imaging), many researchers have ap-
proached the segmentation problem from a tracking perspective.

First, the cross sections of neurites are segmented individually on each slice. Here, au-
tomated segmentation algorithms can benefit from the high lateral resolution. However,
membrane appearance varies with the angle between membrane normal and image plane
(Figure 2.7): for small angles, the membrane appears thin and crisp; for larger angles
the membrane appears faint and broadly smoothed out. This appearance variability
in thick-slice data complicates 2D segmentation; the context of adjacent slices may be
necessary for the correct interpretation [35].
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Figure 2.7: In thick-slice data, membranes appear different depending on their relative
orientation with respect to the slice. Left: The membrane runs perpendicular to the
cutting plane, resulting in a crisp image. Right: An oblique membrane produces a broad
and fuzzy image.

Second, the individual segmentations are linked together by tracking the previously
segmented 2D contours across slices. In this tracking-by-association approach, segments
in adjacent slices may be associated by location and similarity of shape and internal
texture. Figure 2.8 compares this approach to segmentation in isotropic volume data.

In the linking step, the algorithm needs to find a plausible tracking of all 2D segments
across the image stack. This is further complicated by the fact the neurites may start,
branch and end, which requires (apart from the common one-to-one matchings) also
one-to-many (split), many-to-one (merge), none-to-one (appearance) and one-to-none
(disappearance) assignments of 2D segments across adjacent z-slices. For non-branching
neurons (traversing through the whole image stack) Elizabeth Jurrus et al. propose a
greedy shortest-path algorithm [76] working on the hypothesis graph of possible region
linkages. The current state-of-the-art is to propose many segmentation hypotheses for
each slice [151, 55, 84] and then to find an optimal and consistent set of assignments.

In isotropic volume data, there is no preferred slicing direction. This makes it hard to
apply the tracking approach on these datasets (of course, one could break the symmetry
by choosing an arbitrary directionality). In this thesis, I work with isotropic data, for
which true 3D segmentation approaches are developed.

2.4.5 Supervoxel-based Algorithms

Many algorithms begin by partitioning each image slice into superpixels, or, for isotropic
data, partitioning the volume image into supervoxels. Superpixels “group pixels into
perceptually meaningful atomic regions which can be used to replace the rigid structure
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Figure 2.8: Left : Illustration of the 2D segmentation and linking approach. One neurite
is tracked across z-slices. Note that contours can merge and split. Right : In isotropic
volume data there is no preferred direction. Conceptually, 2D contours may be found on
any arbitrary slicing plane through the data (shown: three perpendicular slicing planes).

(a) raw data (b) SLIC superpixels

Figure 2.9: Using the SLIC algorithm [1] to generate superpixels on a slice of FIBSEM
raw data. Notice that superpixels lie on membranes or within cytoplasm. Data courtesy
of Graham Knott.
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of the pixel grid. They capture image redundancy, provide a convenient primitive from
which to compute image features, and greatly reduce the complexity of subsequent image
processing tasks.” [1].

Superpixels have been used – to name only a few examples – for unsupervised par-
titioning [5, 159, 87], and semantic labeling [54] of photographs. Using superpixels has
the following advantages and disadvantages:

(+) They drastically reduce the size of the graph RAG = (V, E) by transitioning from
the pixel-adjacency graph to the superpixel-adjacency graph. For example, the
graph cut approach of V. Kaynig et al. described in Section 2.4.3 could also have
been executed on the superpixel graph for faster inference.

(+) Features computed from irregular superpixels are more expressive than features
computed from a rigid pixel neighborhood.

(−) The above only holds if no superpixel ever straddles more than one atomic region
(for example, in the context of Figure 2.9, it should never encompass both mem-
brane pixels and non-membrane pixels; in Figure 2.10, it should never straddle
two distinct intra-cellular regions). In practice, this is impossible to achieve and a
compromise between superpixel size and the frequency of such errors needs to be
made.

In the following, we describe two superpixel algorithms, SLIC and watershed, and use
them to highlight important choices in the definition of what constituates a “meaningful
atomic region”.

SLIC algorithm

The simple linear iterative clustering or SLIC algorithm [1] is a variant of k-means
clustering for fast computation of superpixels which has been used in the work of Aurélien
Lucchi et al. on mitochondrion segmentation [104, 103]. Figure 2.9 shows example
output on EM data.

As input, the user sets a number k of desired superpixels. Then, cluster centers Ci
are distributed equally on the images using a rigid grid with spacing S. Each center is
then moved to the location of minimal gradient magnitude within a 3×3 neighborhood.
Next, each pixel is assigned to the nearest cluster center within a spatial distance of 2S.
Here, “nearest cluster” is measured using a distance measure D which takes both spatial
distance and color similarity into account. Finally, the cluster centers are updated as the
mean of all assigned pixels (according to distance D). Assignment and center updates
are repeated multiple times.

The above algorithm will find compact superpixels of similar-colored pixels. In Fig-
ure 2.9, this results in two types of superpixels: (1) dark superpixels which lie on a
membrane, and (2) light superpixels which lie in the cytoplasm.
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Watershed algorithm

The watershed algorithm [42] is a popular choice in neurite segmentation pipelines: it
is used to generate 2D segments from neural network output in the ssTEM pipeline of E.
Jurrus et al. [76] and to generate 3D supervoxels (for subsequent hierarchical clustering)
in the pipeline of the FlyEM project at Janelia Farm [119, 146]. Supervoxels based
on the watershed algorithm are also the starting point in the agglomerative clustering
algorithm of Viren Jain et al. [69] and are used in the semi-automated “Carving” neurite
segmentation algorithm [144], Section 3.3. In this thesis, we make use of the watershed
algorithm to obtain supervoxels in all our algorithms described in Chapters 4 to 7.

The watershed transform of an image can be understood by thinking of the image as
a topographic surface, where the gray scale value of pixel (x, y) gives the height at that
point. Define a set of cluster centers Ci (called seeds; for now chosen as the local minima
of the image). From these centers, water starts to pour into the surrounding basins, such
that the water level rises uniformly across the topographic surface. Whenever water from
two neighboring basins would flow together, an inter-pixel barrier – called a watershed –
is constructed. All watersheds together define the boundaries between the superpixels.
Note that each seed creates one superpixel.

Instead of choosing all local minima as seeds, the number of created superpixels can
be substantially reduced by choosing the seeds in a different way (the algorithm is then
called seeded watershed or seeded region growing). The algorithm is straightforward to
apply to 3D data, too.

For neurite segmentation, we follow [8, 7] and compute a supervoxel segmentation by
seeded region growing on a volume image in which the value of each voxel indicates the
probability of it being part of a membrane. Such an image is also called an elevation map,
which can be obtained by using ilastik to train a membrane versus non-membrane voxel
classifier or simply by computing the largest eigenvalue of the Hessian matrix on the raw
data. Seeds are obtained as local minima of a smoothed version of the elevation map.
The amount of smoothing controls the trade-off between fewer but larger supervoxels
and undesirable under-segmentation already at the supervoxel level. Figure 2.10 shows
the watershed algorithm applied to EM data.

Discussion: Modelling Choices and Supervoxels

Above, we have illustrated two different choices for defining supervoxels as a starting
point for neurite segmentation pipelines:

(i) region-based: supervoxels encompass either only membrane voxels, only intra-
cellular voxels or only extra-cellular voxels (Figures 2.9 and 2.11b),

(ii) boundary-based: supervoxels touch on the centerline of a membrane
(Figures 2.10 and 2.11a).
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(a) raw data (b) elevation map

(c) seeds (original elevation map) (d) watershed segmentation

(e) seeds (smoothed elevation map) (f) watershed segmentation

Figure 2.10: Given the raw data (a), an elevation map is obtained by computing the
largest eigenvalue of the 3D Hessian matrix (b). When choosing the local minima of
this elevation map as seeds (c), the resulting watershed supervoxels are numerous and
tiny (d). By choosing only local minima of the smoothed elevation map as seeds (e), the
number of supervoxels is reduced and each defines a more useful atomic region (f).
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?

(a) boundary-based supervoxels

?

(b) region-based supervoxels

Figure 2.11: How to recognize “holes” in the current membrane detection depends on the
choice of supervoxels. In (a), blue lines indicate the belief that the adjacent supervoxels
are separated by a membrane, whereas red lines indicate the opposite. In (b), regions
believed to be a membrane are outlined in blue, while all other boundaries are marked
in red. In both panels, the “?” indicates that there might be a “hole” in the membrane.

First, choice (i) seems best suited for high-resolution data in which membranes are at
least a few pixels thick. At places where membrane appearance is very faint however,
it can be difficult to obtain supervoxels adhering to the extent of the membrane. In
contrast, choice (ii) usually finds a membrane boundary even if image evidence is faint.

Second, choice (i) does not differentiate between 3-dimensional entities (intra- and
extra-cellular space) and 2-dimensional entities (thin membranes). In contrast, choice
(i) models the interior of cells as 3-dimensional regions composed of supervoxels, but
models membranes as 2-dimensional surfaces between regions.

In order to close “holes” in the detected membranes (staining imperfections, noise,
faulty classification etc.), it will be necessary to connect the detected membrane frag-
ments. For boundary-based supervoxels, holes occur where boundaries classified as mem-
brane continue as boundaries classified as non-membrane (Figure 2.11a: b1 and b3 are
classified as membrane, while b2 is classified as non-membrane). However, for region-
based supervoxels, detecting holes is more difficult. Should membrane regions m1 and m2

be connected in Figure 2.11b? This depends on whether we interpret m1,m2 merely as
“bumps” of the membrane supervoxel or rather as an indication of boundary fragments.

In Chapters 4, 5, 6 and 7, we describe algorithms which all build upon boundary-based
supervoxels in order to deal with the problem of holes in membranes.
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2.5 Performance Evaluation

The performance of any algorithm should be evaluated with the application in mind.
For the problem of segmenting electron microscopy volume images for connectomics, the
aim is to trace neural wiring over long distances without error. Helmstaedter et al. have
introduced the RESCOP measure, which compares the proposed skeleton tracing of a
neurite with multiple tracings of the same neurite, each done by a different person [62].
However, as a high-level error measure it requires working on very large datasets and
acquiring large amounts of consensus tracings. As current best automatic segmentation
methods still make mistakes on a more local level, we instead turn to error measures
popular in the image segmentation community.

2.5.1 Rand Index

The Rand Index, published in 1971 by William Rand [124], is a measure of the similarity
of two different clusterings of a given dataset. The data to cluster is D = (d1, . . . , dN ).
A partition or clustering S of D into K clusters is a set of nonempty sets:

S = {s1, . . . , sK} with

∀i : si ⊆ D
∀i 6= j : si ∩ sj = ∅
K⋃
i=1

si = D .

(2.11)

Given two data elements di, dj ∈ D, the function δ(Si, Sj) indicates whether they are
within the same cluster in S:

δ(Si, Sj) =

{
1 if ∃k : di ∈ sk ∧ dj ∈ sk
0 else

. (2.12)

C(S, d) returns the index of the cluster in S that contains the element d:

C(S, d) = i | d ∈ si . (2.13)

For two given partitionings S1 and S2, the Rand Index RI is a measure of their agree-
ments

RE =

(
N

2

)−1
·
∑
i<j

∣∣∣δ(s1i , s1j )− δ(s2i , s2j )∣∣∣ , (2.14)

RI = 1− RE . (2.15)

The Rand Error (RE) measures the disagreement between S1 and S2 instead.
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Contribution to RI

δ(s1i , s
1
j ) δ(s2i , s

2
j ) summand comment

0 1 0 S1, S2 disagree on whether to cluster di
and dj together or not1 0 0

0 0 1 S1, S2 agree that both elements di, dj are
not clustered together

1 1 1 S1, S2 agree that both elements di, dj are
clustered together

Table 2.2: Contributions (“summand”) to the Rand Index (2.15) for a single pair of
elements di and dj .

In (2.15), the sum runs over all pairs of elements. If both are contained within the
same cluster in one clustering and contained in different clusters in the other clustering,
this will contribute the count “1” to the sum. For all other cases (both elements of the
pair are contained within the same cluster for the one clustering as well as the other;
both elements of the pair are contained within different clusters for the one clustering
as well as the other), the contribution is zero (also compare Table 2.2). Finally, dividing
by the number of possible pairs normalizes RI and RE to the range [0, 1].

2.5.2 Variation of Information

Recently a distance measure proposed by Marina Meilǎ [110] – the Variation of Infor-
mation (VI) – has become increasingly popular for comparing segmentations. VI uses
information theory to relate how much information there is in each of the two cluster-
ings with the amount of information one clustering has about the other. The probability
P (k) : [1, . . . ,K] → [0, 1] of picking any datum in cluster sk (assuming each d1, . . . , dN
has equal probability of being picked) is

P (k) =
|sk|
N

. (2.16)

The entropy of this random variable (and the clustering S) is

H(S) = −
K∑
k−1

P (k) logP (k) . (2.17)

Furthermore, the probability P (k, k′) : [1, . . . ,K]×[1, . . . ,K ′]→ [0, 1] of picking a datum
belonging to cluster sk in S1 and sk′ in S2 is

P (k, k′) =
|sk
⋂
sk′ |

N
. (2.18)
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The mutual information of the clusterings S1 and S2 measures how much the entropy
of one clustering is reduced if the second clustering is known:

I(S1, S2) =

K∑
k=1

K′∑
k=1

P (k, k′) log
P (k, k′)
P (k)P (k)

. (2.19)

The Variation of Information is then defined as

VI(S1, S2) =
(
H(S1)− I(S1, S2)

)
+
(
H(S2)− I(S1, S2)

)
= H(S1) +H(S2)− 2I(S1, S2) .

(2.20)

VI satisfies the properties of a metric.

2.5.3 Computing RE and VI

Both Rand Error and Variation of Information belong to the class of clustering measures
that can be computed efficiently from the contingency table:

S1\S2 s21 s22 . . . s2s Sums

s11 n11 n12 . . . n1s a1
s12 n21 n22 . . . n2s a2
...

...
...

. . .
...

...
s1r nr1 nr2 . . . nrs ar

Sums b1 b2 . . . bs N

For a gold standard segmentation S1 and proposed segmentation S2 of a volume with
N voxels, the contingency table contains the overlap count of segment s1i and segment s2j ,

nij = |s1i ∩s2j | (such that N =
∑

ij nij), and the sizes of segments s1i and s2j , ai =
∑

j nij ,
and bj =

∑
i nij .

Variation of Information. With pi = ai/N , qj = bj/N and pij = nij/N , the Variation
of Information (2.20) between S1 and S2 can be rewritten as expressions involving the
contingency table only:

H0 = −
∑
i

pi log pi, H1 = −
∑
j

qj log qj , (2.21a)

I =
∑
i,j

pij · log
pij
pi · qj

, (2.21b)

VI = H0 +H1 − 2I . (2.21c)
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Rand Error. The Rand Error is based on the counts of true positives (TP), false pos-
itives (FP), true negatives (TN) and false negatives (FN) of pixel pair labelings in S1

and S2. If two pixels x, y lie within the same segment, they are connected (x ↔ y),
otherwise disconnected (x= y).

� TP: x↔ y in S1 and S2,
� TN: x= y in S1 and S2,
� FP: x= y in S1 and x↔ y in S2,
� FN: x↔ y in S1 and x= y in S2.

These counts are easily computed from the contingency table:

FP =
∑
j

(
bj
2

)
− TP, FN =

∑
i

(
ai
2

)
− TP, (2.22a)

TP =
∑
i,j

(
nij
2

)
, TN =

(
N

2

)
− TP− FP− FN. (2.22b)

With these counts, the Rand Error (2.15) can be rewritten in terms of the contingency
table

RE = 1− TP + TN

TP + TN + FP + FN
. (2.23)
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Chapter 3

Software

The research presented in this thesis necessitated writing or extending various software
tools and libraries. Section 3.1 introduces the open source ilastik software, a joint
effort of multiple researchers. I have contributed to various aspects of the software,
focusing mainly on the volume viewer component (volumina, Section 3.2) and the user
interaction in ilastik’s semi-automated segmentation module (Carving, Section 3.3).
Not only has ilastik enabled me to run voxel classification training and prediction on
large volume images (a first step in the proposed neurite segmentation pipeline), but
the development of volumina has provided me with a stand-alone viewer component
which I have used frequently during my research. For example, volumina could be easily
extended for interactive boundary learning (Section 3.7) central to our segmentation
approach in Chapter 4.

Section 3.4 briefly reviews region adjacency graphs, topological grids and cell com-
plexes, in order to describe my solution to query a hierarchy of cell complexes in Sec-
tion 3.5. This software was needed to implement the approximate hierarchical and block-
wise multicut segmentation scheme in Chapter 5. The relation between cell complexes
and region adjacency graphs is explored in Section 3.6.

Finally, Section 3.8 introduces the blockedarray library, which provides a chunked,
in-memory compressed array class and implements some blockwise operations (such as
connected component labeling) on large volume datasets. The library was used in my
joint work with Boray Tek on soma detection [148].
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(a) (b) (c)

Figure 3.1: Usage of ilastik by our collaborators, the FlyEM team at Janelia Farm.
(a) Using a brush tool, various structures visible in the EM image – such as membranes,
mitochondria, synapses and cytoplasm – have been sparsely annotated at the pixel level.
Each class is associated with a color. (b) ilastik predicts the likelihood of assigning
each of the chosen classes to each pixel in the image. Here, color opacity indicates these
probabilities. (c) A classification of all pixels is obtained by choosing the most likely class
label for each pixel. This interactive workflow is implemented both for 2D images as well
as larger-than-RAM volume images (of which these screenshots show only a subset).

3.1 ilastik

ilastik is a set of open-source frameworks and graphical user applications for interactive
machine learning on multi-dimensional images. The project was initiated by Christoph
Sommer and Fred Hamprecht, and a first version was published in 2011 [140].

The software package is best known for its pixel classification module. Here, the
user first defines a set of classes he wishes to distinguish at the voxel level (such as
“membrane” versus “non-membrane” for binary classification, see Section 2.4). After
choosing a set of image features likely to be relevant for the classification problem at
hand, the user gives sparse training labels at the voxel level using a brush tool. A
Random Forest classifier [30] is trained and the current prediction on the entire dataset is
displayed to the user as soon as possible. This enables a feed-back loop: after examining
the current classification, erroneous voxel predictions can be corrected by giving more
training samples. By focusing on the difficult samples, this labeling strategy achieves
good accuracy faster than indiscriminately labeling all pixels [84].

Pixel classification is a first step in the proposed neurite segmentation pipeline (Chap-
ter 4; Figure 3.1). Unfortunately, the first version of ilastik (v0.5) was limited by the
computer’s main memory: raw data, all voxel features (single precision float) and classi-
fication results had to fit into RAM, severely limiting the applicability to connectomics-
size datasets. Furthermore, the monolithic architecture made it hard to extend ilastik
for use cases beyond pixel classification.
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3.1 ilastik

Figure 3.2: Data flow in ilastik’s pixel classification workflow. Note that only the region
marked with a red rectangle is read from the input data file in order to show the filter
result in the viewer.

This motivated us to re-implement ilastik as a set of loosely coupled components based
on a lazy computation paradigm (version 1.0, manuscript in preparation).

Computational Backend. The lazyflow library implements a directed acyclic data
flow graph (development led by Christoph Straehle). Nodes represent operations (an
operator) on the data associated with the incoming edges. The result of the computation
is sent along the outgoing edges to further operators downstream. Usually, operators
do not have state; however, an important subclass are caches which serve previously
computed results (as long as they are still valid). When requesting the result on only a
small subset of the data, lazyflow takes care to only schedule the operations necessary
to give the correct result, but no more. This ensures fast response time for interactive
speed. Lazyflow also schedules tasks in parallel, if possible. Figure 3.2 illustrates the
data flow in pixel classification schematically.

Viewer Frontend. The volumina library (development led by Bernhard Kausler and
myself) is a slicing viewer for large volumetric datasets which supports pixel-level an-
notations. Its main strength is the tile-based display of orthogonal slice views. Data
is only requested asynchronously when needed. Volumina can display a stack of image
layers (blended with different opacities) and caches the resulting composite image tiles.

GUI library. Finally, the ilastik project (development led by Stuart Berg) ties together
the lazyflow and volumina libraries. Graphical user interfaces for new image processing
and machine learning tasks can be quickly created from existing building blocks. Each
application consists of a sequence of steps (for example loading data, selecting features,
labeling and prediction for the pixel classification workflow). Across all steps, the un-
derlying lazyflow graph ensures that as little computation as possible is performed in
order to satisfy a user request (such as viewing a new region of interest or an update to
the set of labels).
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Figure 3.3: The volumina viewer shows a 3D dataset with a watershed segmentation
overlay. The code to bring up this view is printed in Listing 3.1.

ilastik is mostly written in Python, with the exception of some computationally
expensive operations, which are implemented in C++. For array processing, the numpy
and vigra1 libraries are used on the Python and C++ sides, respectively. The user
interface builds upon the Qt toolkit (using the PyQt bindings). All source code can
be found on https://github.com/ilastik.

3.2 volumina – a Volumetric Dataset Viewer and Editor

While Section 2.1 has given an overview of existing viewers for large datasets in connec-
tomics research, none of them fit our requirements at the time:

� support for datasets larger than main memory
(limit data requests to current viewport)

� can work with images (2D), volume images (3D) and time sequences of image
volumes (4D), each possibly with multiple channels
(ilastik is also used for 3D+t tracking, [81])

� orthogonal slice views and navigation
� allow the user to draw on top of any slice view with a pixel brush

(for creating training labels in ilastik)
� interface with Python/Numpy for integration into ilastik

1https://github.com/ukoethe/vigra
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3.2 volumina – a Volumetric Dataset Viewer and Editor

BrushingInterpreter NavigationInterpreter

EventSwitch

event filter on everything that goes on in the
three x, y, z slice views

mouse click events
mouse wheel events
key press events

the user has clicked on
one of the slice views

CrossHairControler

ImageView2D
(QGraphicsView)

ImageScene2D
(QGraphicsScene)

SyncedSliceSources PositionModel

position
view properties
volume shape

pixel
pipeline

slicing position
with regard to
volume dataset

VolumeEditor

VolumeEditorWidget

CrosshairCursor
SliceIntersectionMarker
DirtyIndicator

TiledImageLayer
ImageTile
Tiling

SliceSources
ImageSources
DataSources

Layer
LayerStackModel

related classes:

update
cursor position

NavigationControler

Figure 3.4: State updates and data flow after the user has initiated a change of position
by clicking on one of the orthogonal slice views in volumina.

� ability to display multiple volumes as a stack of layers (similar to the GIMP or
Photoshop software), and allow grayscale, indexed color table, and RGBA display
(in order to overlay various results on top of the raw data)

� provide an asynchronous interface for data access
(with responsive interfacing to the lazyflow library)

� stand-alone component that is easily extensible.

To address these requirements, volumina is written in Python and PyQt using the
Model-View-Controller design pattern where possible in order to promote decoupling of
components using Qt’s signals and slots mechanism. Figure 3.4 illustrates state updates
and data flow after the user has initiated a change of position by clicking on one of the
orthogonal slice views.
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Briefly, each slice view is an instance of ImageView2D (a subclass of QGraphicsView)
which visualizes the scene model in the associated ImageScene2D instance (a subclass
of QGraphicsScene). In the scene, each layer is composed of non-overlapping fixed-size
image tiles (class ImageTile, grouped into a Tiling). A limitation of this approach is
that a zoomed-out view of large datasets will request too many image tiles at the original
resolution — a pyramid scheme is not yet implemented.

The synchronization of views to show a certain (x, y, z)-position is mediated by the
PositionModel, which is observed by the slice views. User interactions on the slice views
(double clicking to jump to a position, mouse wheel scrolling or keyboard shortcuts)
are interpreted as navigational commands using the NavigationControler and then
forwarded to the position model.

On jumping to a new region of interest, each viewport checks if the needed image tiles
are still valid and in the cache of composited tiles. If yes, they are blitted on the screen.
If no, an asynchronous update operation is triggered. For each visible layer, the raw data
is first requested and then transformed into an image using the pixelpipeline submodule.
Finally, all layers’ tiles are composited together and made available for blitting.

The LayerStack stores an ordered list of Layer objects, which have the visible and
opacity properties needed to compute the alpha-blended composite image of the layer
stack. Different representations of the data (grayscale, indexed color table, RGBA) are
chosen by using different Layer subclasses such as GrayscaleLayer, ColortableLayer
and RGBALayer.

More details on the architecture can be found in Bernhard Kausler’s thesis [81]. The
code is open source and available at https://github.com/ilastik/volumina. Listing 3.1
demonstrates the use of volumina’s high-level API in order to bring up the window shown
in Figure 3.3.
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3.2 volumina – a Volumetric Dataset Viewer and Editor

import sys , h5py; from numpy import float32 , uint8
from vigra.filters import hessianOfGaussianEigenvalues ,gaussianSmoothing
from vigra.analysis import watersheds
from vigra.analysis import labelVolumeWithBackground ,extendedLocalMinima3D

5 from PyQt4.QtCore import QTimer; from PyQt4.QtGui import QApplication
app = QApplication(sys.argv)

from volumina.api import Viewer
v = Viewer ()

10 v.title = "Volumina Demo"
v.showMaximized ()

f = h5py.File("data.h5"); data = f["sbfsem"].value; f.close()

15 v.addGrayscaleLayer(data , name="raw data")

ev = hessianOfGaussianEigenvalues(data.astype(float32), 1.0)[: ,: ,: ,0]
ev = gaussianSmoothing(ev, 1.0)
seeds = labelVolumeWithBackground(extendedLocalMinima3D(ev). astype(uint8))

20 seg = watersheds(ev, seeds=seeds )[0]

wsL = v.addRandomColorsLayer(seg , name="watershed")
wsL.visible = True
wsL.opacity = 0.5

25
v.editor.posModel.slicingPos = (10 ,20 ,30)

def cycleZ ():
Z = v.editor.posModel.volumeExtent (2)

30 z = v.editor.posModel.slicingPos [2]
if z<Z-1:

return z+1
else:

return 0
35

t = QTimer ()
t.setInterval (200)
def jump ():

v.editor.posModel.slicingPos = (0,0,cycleZ ())
40 t.timeout.connect(jump)

t.start()
app.exec_()

Listing 3.1: Example usage of volumina’s high-level API. A 3D data volume is displayed
as a grayscale layer. On this data, a seeded watershed segmentation is computed and
visualized as a layer with 50% opacity overlaying the raw data. Each segment is assigned
a random color. Finally, the position model is leveraged to program a continuous cycling
through the z-dimension.
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Figure 3.5: Screenshot of the Carving workflow in ilastik version 1.0. Using sparse
foreground/background annotations, the user can quickly extract volumetric objects
from 3D datasets. After refining the segmentation by adding more brush strokes, the
result is saved to disk.

3.3 Creating Gold Standard Segmentations with Carving

Christoph Straehle’s Carving algorithm [144, 143] has proven to be a useful tool for
creating dense gold standard segmentations to be used either as training or validation
volumes (for Carving also see Section 2.2).

For the work presented in Chapter 4, I have modified the Carving in ilastik v0.5 so
as to enable a more streamlined workflow for dense volume annotation. The original
interface (as implemented by C. Straehle) allowed the user to segment multiple objects
by using differently colored foreground labels and one background label. However, while
segmenting a new object the user might be biased by the previously segmented objects
in his placement of labels. Furthermore, the Carving algorithm depends on all current
labels, making the segmentation of a single neurite depend on the entire segmentation
history.

In order to circumvent these problems, we propose to segment neurites independently
as a binary segmentation problem. The user only has to consult the previous segmen-
tation when choosing a new, yet unlabeled neurite. The implementation allows to save
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and load the individual segmentations (by name or by context menu on any slice view),
making it easy to correct mistakes if found later. Labeling errors can often be found by
inspecting the overlap of independently segmented neurites.

After a first implementation in ilastik v0.5, Christoph Straehle, Stuart Berg and myself
have reimplemented this approach in ilastik v1.0. Figure 3.5 shows a screenshot of the
new version.

3.4 Representing Topology and Geometry of a Supervoxel
Volume

In order to describe my solution for computing boundary features (Section 3.4.3) and
for hierarchical and blockwise supervoxel adjacency graph construction (Section 3.5 and
Chapter 5), I have to introduce some key concepts first.

Consider a supervoxel segmentation algorithm that produces a label volume as output.
Formally, the label volume σ maps from the finite voxel grid G = {0, . . . , n1 − 1} ×
{0, . . . , n2 − 1} × {0, . . . , n3 − 1} to the nSV supervoxels or segments:

σ : G→ {1, . . . , nSV} such that

∀v1, v2 ∈ G : v1 ↔ v2 ⇔ σ(v1) = σ(v2),
(3.1)

where “↔” denotes path connectivity under the 6-neighborhood.

Implicit versus explicit representations. Obviously, the label volume σ describes the
geometry of each segment. A more explicit representation for the segment labeled l is
its constituent set of coordinates CCl = {v ∈ G | σ(v) = l}. Furthermore, consider two
adjacent segments with labels l1 and l2:

l1, l2 ∈ {1, . . . , nSV} adjacent

⇔ ∃ (v1, v2) ∈ G : σ(v1) = l1 ∧ σ(v2) = l2 ∧ (v1, v2) are 6-neighbors.
(3.2)

The list of adjacent segments is only implicitly encoded in σ. Another interesting entity
are the shared surfaces between segments l1 and l2. To represent these explicitly, one
needs to find all adjacent pairs of pixels which are labeled l1 and l2, respectively.

Often, it is worthwhile to construct explicit representations of the above entities (ge-
ometry) and their relationships (topology) amongst each other. This way, expensive
search operations through the volume are only executed once (at the expense of storage
space). In addition, the explicit representation of these entities makes them addressable
with dense indices. For example, this makes attaching a feature value to a shared surface
easy. Using the relationship of entities, questions such as “which two segments have the
given shared surface in common?” can be easily answered.

There exist various ways to represent the topology and geometry inherent in σ more
explicitly. Figure 3.6 illustrates two choices with an example label image.
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3.4.1 Region Adjacency Graph

A common choice is the region adjacency graph RAG = (V, E) where the segments form
the set of nodes V and an edge e ∈ E is created between each pair of adjacent segments.
Formally,

V = {1, . . . , nSV} ,
E = {e = (σ(v1), σ(v2)) ∈ V × V | σ(v1) 6= σ(v2) ∧ ‖v1 − v2‖ = 1} . (3.3)

For the optimization algorithm in Chapter 4, the simple RAG data structure is sufficient.
However, for the enumeration of segmentations (Chapter 5) or for boundary feature ex-
traction (Section 3.4.3) we have found it convenient to use a Cell Complex representation
of σ. It can be easily reduced to a RAG when desired (Section 3.6).

3.4.2 Cell Complex Representation

The boundaries between supervoxels are only represented implicitly in the label image σ
as inter-voxel surfaces where two adjacent supervoxels meet. The topological grid T [96]
does not only represent voxels, the unit cubes or 3-cells of the volume image. It also
represents the following inter-voxel entities (Figure 3.7a-c):

� surfels (2-cells), the unit squares in between two voxels,
� edgels (1-cells), the unit lines in between two surfels,
� pointels (0-cells), the points between two edgels.

Let T = {0, . . . , 2n1− 2}×{0, . . . , 2n2− 2}×{0, . . . , 2n3− 2}. This enlarged grid allows
to represent surfels, edgels and pointels explicitly :

� voxel v ∈ G corresponds to position 2 · v ∈ T
which is a coordinate with all-even entries,

� the surfels of voxel v are found at positions
{v + δ | δ ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1, 0), (0, 0,−1)} },
which are coordinates with two even entries and one odd entry,

� the linels of voxel v are found at positions
{v + δ | δ ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1), (−1,−1, 0), (−1, 0,−1), (0,−1,−1),

(1,−1, 0), (1, 0,−1), (0, 1,−1), (−1, 1, 0), (−1, 0, 1), (0,−1, 1)},
which are coordinates with one even entry and two odd entries,

� the pointels of voxel v are found at positions
{v + δ | δ ∈ {(1, 1, 1), (−1, 1, 1), (1,−1, 1), (1, 1,−1), (−1,−1, 1),

(1,−1,−1), (−1, 1,−1), (−1,−1,−1)} },
which are coordinates with all-odd entries.

Next, we review some definitions [6, 96].
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Figure 3.6: Different ways to represent the topology and geometry inherent in a label
image. (a) the original label image. (b) a RAG representation as a graph (above)
and multi-graph (below). Alternatively, the relation among segments in (a) may be
represented by a cell complex (c,d). For details see text.
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(a) (b) (c) (d)

Figure 3.7: The topological grid representation of label volume. (a) The Γ-neighborhood
of 0-cells, (b) of 1-cells and (c) of 2-cells. Each 0-cell bounds six 1-cells, each 1-cell
bounds four 2-cells , and each 2-cell bounds two 3-cells. Panel (d) shows the topological
grid T for a volume image of 3× 3× 3 voxels.

Definition (Γ-neighborhood)
The Γ-neighborhood of a j-cell t ∈ T (with 0 ≤ j < 3) is a mapping Γ : T → P(T ),
such that Γ(t) consists of all 6-neighbors of t that are (j + 1)-cells.

Definition (bounded by, bounded, adjacent)
The Γ-neighborhood describes the relation of j-cells: A 0-cell bounds six 1-cells, which in
turn each bound four 2-cells, which each bound two 3-cells (Figure 3.7). The “ bounded”
relation is a partial order relating j-cells and (j + 1)− cells. By transitivity, it induces
an order amongst j-cells of any dimensionality. The inverse relation, “ bounded by”,
states that a 3-cell is bounded by six 2-cells. Each 2-cell is bounded by four 1-cells, and
each 1-cell is bounded by two 0-cells. Finally, a j-cell t1 with j ≥ 1 is adjacent to j-cell
t2 iff there exists a (j − 1)-cell t ∈ T such that both t1 and t2 are Γ-neighbors of t.

In order to define more complex entities than the atomic j-cells, we can define a
labeling on the topological grid T :

τ : T → N0 . (3.4)

Two adjacent j-cells are called connected if they are both Γ-neighbors of a (j − 1)-cell t
for which τ(t) = 0. A cell t is called inactive if τ(t) = 0, otherwise it is called active.

Using this connectivity, one can obtain a labeling τ from σ in which the surfaces
between adjacent segments, the curves in which these surfaces meet and the points
where such curves meet are represented as connected components. This is depicted in
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Figure 3.6c, in which we keep the notation for 3D volumes in order to avoid confusion.
Any 3-cell is always active. The label for each voxel v ∈ G is simply transferred as
τ(2 · v) := σ(v). However, 1-cells and 2-cells are either labeled as inactive by setting
τ(v) = 0, or as active by setting τ(v) ∈ N. In the figure, inactive 2-cells are marked in
gray, and inactive 1-cells are invisible. The active 2-cells form a maximal set of connected
surfels (a 2D surface in 3D space) such that each surfel lies between voxels belonging to
the same pair of supervoxels. Similarly, 1-cells are active when three or more such faces
meet. Active 1-cells form a maximal set of connected linels (1D curve in 3D space) such
that each linel lies between surfels belonging to the same pair of surfaces. The relation
of points, curves, faces and segments is described with a cellular complex :

Definition (cellular complex, [96])
A cellular complex C = (C,≺, dim) consists of a set of elements C =

⋃
Ci which are

related amongst each other via the bounding relation “≺”. The binary relation ≺ is
antisymmetric, irreflexive and transitive. The function dim : E → N0 assigns each
element a dimensionality such that dim(e) < dim(e′) for all (e, e′) with e ≺ e′.

For a 3-dimensional cell complex, the set C consists of four distinct sets with dimension
dim ∈ {0, 1, 2, 3}:

C = C0 ∩ C1 ∩ C2 ∩ C3, (3.5)

where C3 are the segments, C2 the faces between segments, C1 the curves between faces
and C0 the points between curves. Because each CC ∈ Cj is a connected component of
elementary elements of like dimension j (voxels, surfels, edgels, linels or pointels), CC
is called a j-component (see Figure 3.8).

This is illustrated in Figure 3.6d: here, C consists of (i) 3-components or segments
C3 = {1, 2, 3, 4} which appear as areas, (ii) 2-components or faces C2 = {1, 2, 3, 4, 5, 6, 7}
which appear as lines, (iii) 1-components or curves C1 = {1, 2, 3, 4} which appear as
points. There are no 0-components in this slice. The j-components CC ∈ Cj are
addressed using their dimension j ∈ {0, 1, 2, 3} and an integer label l ∈ {1, . . . , |Cj |}.

The “bounded”, “bounded by” and “adjacent” relations are defined for j-components
by using the definition for j-cells. For example, a 2-component CC ∈ C2 may bound
exactly two segments. For all 2-cells c ∈ CC, the set of labels in the Γ-neighborhood,
{τ(t)|τ(t) > 0 ∧ t ∈ Γ(c)}, is the same.

In Figure 3.6, the bounding relation ≺ states, for example, that (i) face 1 bounds
segments {1, 2}, and (ii) curve 1 bounds faces {1, 2, 3}. In practice, this information is
stored using matrices (in which “0” denotes inactive neighbors):

Bj : {1, . . . , |Cj |} → {0, . . . , |Cj+1|}6−2j . (3.6)

The CGP software package [6] first constructs τ by blockwise connected component
labeling, which scales to large data sets. Starting from τ , the bounding relation of
all entities is constructed. Additionally, the constituent set of j-cells making up each
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Figure 3.8: Example of a 2-component, a connected component of 2-cells. Internal,
inactive 1-cells and 0-cells are shown in red and black.

j-component is written to disk. Together, this information defines the cell complex
representation of σ.

3.4.3 Computing Boundary Features

In our application domain – the segmentation of neurites in EM volume images – we
need to decide whether a 2-component (also called a boundary between two supervoxels)
represents a true membrane or is only due to noise. In order to let a machine learning
classifier decide, a feature vector fCC ∈ Rm describing j-component CC ∈ C2 is needed.
As features in fCC , we consider – amongst others – statistics of the set of voxel values
accumulated along the boundary (cf. Section 4.8.2).

In order to collect these voxel values, the stored list of topological coordinates making
up the 2-component is leveraged. Given face CC ∈ C2, one first obtains the set of
coordinates

V = {Γ(c)/2 | c ∈ CC} , (3.7)

which are all voxel coordinates in G adjacent to any surfel making up CC. Next, we
use these coordinates to index a voxel feature map f : G → R, such as the gradient
magnitude computed on the raw data. The set of voxel features along the surface,

F = {f(v) | v ∈ V }, (3.8)

is then used to compute various statistical features, such as the mean, standard deviation
and quantiles.
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(a) Cell Complex (b) inconsistent merge
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Figure 3.9: Given a cell complex C, a binary labeling y for each face CC ∈ C2 is
consistent if there are no dangling faces.

3.5 Managing Cell Complex Hierarchies

Starting from a cell complex representation of some data’s supervoxel representation
(Section 3.4), we propose in this thesis to make a simultaneous decision whether to merge
each two adjacent supervoxels or not. The result of this merge operation can be either
described by a new region adjacency graph in which some edges have been contracted,
or, alternatively, as a new cell complex in which some pairs of adjacent 1-components,
2-components or 3-components have been merged. This section describes how this new
cell complex is constructed. The merge operation can be applied successively, creating
a hierarchy of cell complexes.
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3.5.1 Merge Operations in a Cell Complex

Let Ct be a given cell complex representation of any label volume. Furthermore, let a
binary vector y ∈ {0, 1}|C2| encode a simultaneous merge decision (zero means “merge”
and 1 means “do not merge”) for each face CC ⊂ Ct2. Then, by applying the merge(·, ·)
function,

Ct+1 = merge(Ct,y), (3.9)

one obtains a new cell complex Ct+1. We require that y is consistent, which is explained
in Figure 3.9 and more formally in Chapter 4. For convenient notation, we refer to the
segments, faces, lines and points in Ct in this context as j-cells, which are the constituent
elements of j-components in the merged cell complex Ct+1.

Constructing Ct+1

Algorithm 3.1 describes the merge operation. Briefly, 2-cells that should be merged are
marked inactive and 2-cells that should not be merged are marked active. The next step
marks first 1-cells, then 0-cells active or inactive. A j-cell is marked as active only when
at least three of its Γ-neighbors are marked active. An active 1-cell signals a junction
of three or four surfaces, and an active 0-cell signals a junction of three or more curves.
Next, the algorithm constructs the new cell complex by running a connected component
labeling of 3-cells, 2-cells and 1-cells. Two j-cells are only connected if there exists an
active (j−1)-cell which bounds them. By keeping track of the label mappings (relabeling
function r(·) and its inverse, r−1), it is then easy to construct the new boundings Bt+1

j

from the old boundings Bt
j .

3.5.2 The CellComplexMerger Class

A CellComplexMerger instance ccm1 represents a cell complex C1. For example, it im-
plements functions bounds, boundedBy, and adjacent to query the bounding relation
between j-cells. This interface replicates the interface of the GeometryReader class that
I have written for the CGP package, as released in [6].

A new CellComplexMerger instance, ccm2, can then be constructed to represent the
result C2 of a merge(C1,m) call. In this case, ccm2 stores a reference to the previous cell
complex, ccm1.

The class offers multiple functions to translate between the j-cells in C1 to the j-
components in C2 and vice versa. The project forward functions are called from ccm2
and map information in terms of C1 into the domain of C2. Similarly, the project back
functions are called from ccm2 and map information in terms of C2 into the domain of
C1. For example, given a set of j-components in C2, the ccm2.projectLabelSetBack
function returns the union of the j-components in terms of the C1

j labels of j-cells. The
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Algorithm 3.1: merge pairs of adjacent supervoxels and construct a new cell
complex representation

Input : Cell Complex Ct, specified via
the sets of j-cells Ct0, C

t
1, C

t
2, C

t
3 and

the boundings relations Bt+1
0 , Bt+1

1 , Bt+1
2

merge decision y ∈ {0, 1}|Ct2| for all faces of Ct
Output: new cell complex Ct+1

1 mark all 0, 1, 2-cells in Ct as inactive and all 3-cells as active.
2 for c ∈ Ct2 do
3 mark c active if yc = 1, else inactive

4 for j ← 1 to 0 do
5 for c ∈ Ctj do

6 mark c active if more than two (j + 1)-components in the Γ-neighborhood
are active

7 for j ← 3 to 0 do

8 |Ct+1
j | ← 0

9 rj ← a mapping Ctj → Ct+1
j // store relabeling from old to new

10 for c ∈ Ctj do

11 if c is inactive then
12 rj(c)← 0 // relabel to special ‘0’ value

13 else if c does not yet belong to a connected component then
14 CC ← ConnectedComponent(j,c)

15 |Ct+1
j | ← |Ct+1

j |+ 1 // unique label for CC

16 for c̃ ∈ CC do

17 rj(c̃) = |Ct+1
j | // relabel from old to new

18 Construct r−1j // reverse relabeling from new to old

19 for j ← 3 to 0 do

20 for CC ∈ Ct+1
j do

21 take any c ∈ r−1j (CC)

22 for k ← 1 to 6− 2k do

23 Bt+1
j [CC, k]← rj(B

t[c, k]) // relabel boundings
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import numpy , sys; from numpy import *; U=uint32
from cgp import CellComplexMerger

#boundings to set -up panel (a)
5 bd0 = zeros ((0,0), U) #no 0-sets for 2D example

bd1 = asarray ([[1, 4, 5, 8], [2, 5, 6, 9], [ 3, 6, 7,10],
[8,11,12,15], [9,12,13,16], [10,13,14,17]], U)

bd2 = asarray ([[1,2], [2,3], [3, 4], [1, 5], [2, 6], [3, 7], [4, 8],
[5, 6], [6,7],[7, 8], [5, 9], [6,10], [7,11], [8,12],

10 [9,10], [10 ,11] ,[11 ,12]] , U)

a = CellComplexMerger(bd0 , bd1 , bd2)
a.setObjectName("panel (a)")

15 b = a.subComplex(asarray ([1,2,5,6], U), verbose=False)
b.setObjectName("panel (b)")

m = ones(bd2.shape[0], U)
m[1-1] = 0; m[2-1] = 0 #convert to 0-based indices

20 c = CellComplexMerger(a, m, verbose=False)
c.setObjectName("panel (c)")

m = ones(c.maxLabel (2), U)
m[2-1:5-1] = 0; m[6-1:8-1] = 0 #0-based indices!

25 d = CellComplexMerger(c, m, verbose=False)
d.setObjectName("panel (d)")

assert ( d.projectLabelSetForward0 (3, asarray ([3,4],U)) == [1,2] ).all()
assert ( d.projectBack (3, arange(0,d.maxLabel (3)+1, dtype=U))

30 == [0,1,2,1,1,1,3,4,5,6,7] ).all()

Listing 3.2: Example usage of the CellComplexMerger class from Python. The code
reproduces the operations illustrated in Figure 3.10.

ccm2.projectLabelSetForward functions takes a set of j-cells of C1 as input. It then
finds those j-components in C2 which contain any of the j-cells.

A sequence of successive merge operations creates a linked list C4 ← C3 ← C2 ← C1
of CellComplexMerger instances. This list can be serialized to disk as an HDF5 file. On
de-serializing any merger, all preceding mergers are also loaded.

The code is written in C++ and exported to Python via boost::python. Fig-
ure 3.10 and Listing 3.2 – together with Figure 3.10 – illustrate the usage of the
CellComplexMerger class.
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d.projectBack(
  3, arange(0,maxLabel(3)+1)
)

→ [0,1,2,1,1,1,3,4,5,6,7]

d.projectLabelSetForward0(
  3, [3,4]
)

→ [1,2]

Figure 3.10: Illustration of a few operations on a chain of CellComplexMerger objects.
For details see text and Listing 3.2.
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3.6 From the Cell Complex to the RAG Representation

Consider Figure 3.6d. Regions 1 and 2 share three distinct surfaces labeled 1, 4 and 7.
This could be represented as a region adjacency multigraph (panel b, bottom). However,
it is more convenient to construct a simple region adjacency graph (panel a, top). This
is achieved with the following algorithm for cell complex C:

� Create an empty map M from ordered pairs of labels to a set of labels.
� Each surface c ∈ C2 bounds exactly two segments (s1, s2) ∈ C3 with s1 < s2.

Add c to the set M [(s1, s2)].
� Construct RAG = (V, E) with V = C3 and E = {(s1, s2) ∈ V×V |M [(s1, s2)] 6= ∅}.

3.7 Interactive Classification of Supervoxel Boundaries

The application presented in this section allows to train a binary Random Forest classifier
to distinguish true from false boundaries based on pre-computed boundary features fi.
Here, we follow the successful ideas from the pixel classification module of ilastik, but
extend the interactive labeling approach to boundaries between supervoxels. We base our
application on the volumina component. It requires some pre-processing of the over-
segmentation in order to quickly display the boundaries on each slice view in volumina.

Pre-processing the Over-Segmentation

Given an over-segmentation σ represented as a label volume (with dense labels starting
from one), we use the CGP library [6] to obtain a topological grid representation τ in
which the 3D segments, 2D faces between adjacent segments, 1D lines between adjacent
faces and 0D points between adjacent lines are represented as connected components
(see Section 3.4).

In a slice view through the volume image, the faces appear as inter-pixel paths between
the cross-sections of two adjacent segments. However, a single face may appear as a set
of disconnected paths (Figure 3.12b).

We pre-compute an explicit representation of the faces for each orthogonal slicing
through the dataset. For each slice of σ (origin p, normal n), the corresponding slice
τsl (origin 2 · p, normal n) from the topological grid τ is loaded. An entry (i, j) ∈ τsl
with mod(i, 2) + mod(j, 2) = 1 represents an edgel. All such edgels which are part of a
face (2-component) intersecting the slice are grouped according to the face label using a
map data structure. All lines for a given face label f ∈ C2 are then sorted to form a set
of maximally connected paths representing f on the slice. These paths are serialized as
illustrated in Figure 3.12. Finally, the serialized representations of all faces intersecting
the slice are concatenated and stored using the HDF5 file format shown in Figure 3.12c.
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Figure 3.11: Screenshot of the FaceLabeler tool for interactive boundary learning based
on pre-computed face features fi and a Random Forest classifier.

Drawing Boundaries

We utilize this pre-processing for fast rendering in volumina. The BoundariesLayer class
is derived from QGraphicsItem and takes a serialized slice as input. All boundaries can
then be drawn quickly using successive calls to drawPolyline for each path. When addi-
tionally passing a real value for every face f ∈ C2 (such as the value of a face feature), it
can be visualized using a choice of color tables. Furthermore, BoundariesLayer imple-
ments user interaction. On mouse click, the nearest boundary is found and highlighted.
If desired, the data entry for the clicked face f ∈ C2 is toggled between zero and one,
such that binary labeling can be implemented. The class is implemented in C++ and
Qt and exposed to Python and PyQt using the sip2 generator.

Interactive Boundary Learning

Using the BoundariesLayer component and building on top of the volumina viewer, we
have implemented a GUI tool (class FaceLabeler) for learning a boundary classifier as
shown in Figure 3.11. It offers the following features:

� display of the different pre-computed face features using a choice of color maps
� the creation of binary face labels via clicking on boundaries and the ability to save

and load labels

2http://www.riverbankcomputing.co.uk/software/sip/intro
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Figure 3.12: Data layout (a) for the serialized representation of the inter-voxel surface
“42” as it appears on the slice shown in (b). Note that – while connected in 3D – the
surface appears as two broken line segments within the slice. (c) The HDF5 file format
for the entire volume image.

� training a Random Forest classifier at the click of a button; current prediction
results are subsequently displayed using a colormap

� further analysis of the quality of the current prediction by thresholding in order
to find misclassified samples (gaps in boundaries and spurious line segments)

� display multicut segmentation results (Chapter 4) as a separate layer.

In Chapter 4, we have utilized this application to quickly learn boundary classifiers
for SBFSEM and FIBSEM datasets based on hundreds of boundary annotations. By
inspecting the current result, and by analyzing gaps and spurious line segments in the
thresholding view, it is easy to spot misclassified edges. These edges are iteratively
added to the training set, thereby quickly improving the classifier.
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3.8 Blockwise Array Processing

I have written the blockedarray library for two reasons: (i) to provide a clean and
fast implementation of ilastik’s cache of image tiles or volume blocks with optional in-
memory compression, and (ii) to enable the computation of connected components on
label volumes larger than main memory as needed for my joint work with Boray Tek on
soma detection [148].

The library is written in C++, using vigra for multi-dimensional arrays and is ex-
posed to Python with boost::python. It is available – together with extensive unit
tests – as open source from https://github.com/thorbenk/blockedarray.

Briefly, with the CompressedArray class it provides a multi-dimensional array that can
optionally be compressed in-memory using the fast snappy3 compression library. Es-
pecially for binary volumes or connected component labelings, compression can achieve
a memory footprint that is an order of magnitude smaller.

The Array class represents a (potentially) large array whose data is stored in blocks
internally. This has several advantages: (i) it allows for arbitrary large image volumes,
of which only a small amount of data is loaded into RAM, possibly at various positions
in the volume, (ii) it allows for in-memory compression: blocks that are currently not
needed can be stored in RAM in compressed form, without incurring the hit of disk I/O,
and (iii) using blocks instead of linear storage may alleviate cache-misses in the CPU
caused by large strides when accessing certain array views.

The Array class also optionally keeps track of non-zero coordinates as well as the
minimum/maximum value seen so far, and can save data version annotation (“dirtiness”)
down to the level of single slices within blocks. These features are a requirement for
integration into lazyflow (Section 3.1).

As a foundation for blockwise processing, the interfaces Source and Sink define block-
level read and write operations. All these classes have been used to implement some
basic algorithms (such as thresholding) in a blockwise fashion, streaming from one file
to another.

The blockwise connected component algorithm (illustrated in Figure 3.13) works by
first running connected components independently on overlapping blocks. After labeling
each block, it is stored compressed in memory. As a next step, each pair of overlapping
blocks is de-compressed and a global union-find data structure updated to merge cor-
responding regions. Finally, each block is relabeled according to the union-find data
structure and the result is written to disk.

In the work [148], this implementation achieved a compression factor of 1/20, enabling
us to run our experiments on a standard desktop computer.

3http://code.google.com/p/snappy
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Figure 3.13: Illustration of blockwise connected component labeling in the blockedar-
ray library. By using blockwise processing and in-memory compression, datasets larger
than RAM can be processed. For details see text.
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3.9 Summary

In this chapter, I have presented various software solutions related to machine learning
and image processing on large connectomics datasets. This software needed to be writ-
ten for the implementation and evaluation of novel segmentation techniques, which are
presented later in this thesis.

� I have introduced version 1.0 of the open source ilastik software framework, a
toolkit and set of GUI programs for interactive machine learning on large volu-
metric image data, leveraging a lazy computation paradigm.

� In the context of this thesis, ilastik has been used both for interactive training
of a voxel classifier (pixel classification workflow, used in [10, 148]) and for
acquiring gold standard segmentations (Carving workflow, used in [10, 98, 20]).

� In particular, I have contributed to ilastik’s volumina component (Section 3.2),
a Python library for viewing and annotating large volumetric datasets. Volumina
can handle larger-than-RAM datasets by a tile-based streaming approach and can
display various data sources on top of the raw data.

� For interactive learning of the boundary classifier in [10], I have developed the
FaceLabeler tool (Section 3.7) which builds upon volumina.

� A cell complex representation of a label volume is beneficial when relating seg-
ments, surfaces between segments and other topological and geometric entities
derived from the volume image. It can be easily converted to a Region Adjacency
Graph representation if necessary. In Section 3.5, I have described an approach for
dealing with hierarchies of cell complexes. This approach has been implemented
as a C++ class called CellComplexMerger, which I haved used in [98], see
Chapter 5.

� Finally, a new open source C++ library for blockwise array operations, called
blockedarray, has been introduced in Section 3.8. This library was written both
for the needs of ilastik’s cache backend as well as for running connected component
analysis on larger-than-RAM volume images as part of the soma detection pipeline
in [148].
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Chapter 4

Closed-surface Segmentation for
Connectomics

In this chapter we address the problem of partitioning a volume image into a previously
unknown number of segments, based on a likelihood of merging adjacent supervoxels.
Towards this goal, we adapt a higher-order probabilistic graphical model that makes
the duality between supervoxels and their joint faces explicit and ensures that merging
decisions are consistent and surfaces of final segments are closed. First, we propose a
practical cutting-plane approach to solve the MAP inference problem to global optimality
despite its NP-hardness. Second, we apply this approach to challenging large-scale 3D
segmentation problems for neural circuit reconstruction (connectomics), demonstrating
the advantage of this higher-order model over independent decisions and finite-order
approximations.

This chapter is an extended version of publication [10], also see page 145.
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(a) without multicut constraints (b) with multicut constraints

Figure 4.1: Segmenting volume images based on a likelihood of merging adjacent super-
voxels is difficult if merging decisions are made independently. (a) Segmentation errors
remain a problem even if the model is biased optimally with β = 0.8 in (4.9). Note
the under-segmentation at the bottom and missing segments at the top. (b) Multicut
constraints alleviate this problem and allow for an unbiased, parameter-free model.

4.1 Introduction

We study the problem of simultaneously merging pairs of adjacent supervoxels with the
main application being neurite segmentation. Given a volume image, the number of
segments contained within are previously unknown. However, the likelihood of merging
adjacent supervoxels can be computed.

We choose a graphical model approach in which binary variables are associated with
the joint faces of supervoxels, indicating for each face whether the two adjacent super-
voxels should belong to the same segment (0) or not (1). Models of low order can lead
to inconsistencies where a face is labeled as 1 even though there exists a path from one
of the adjacent segments to the other along which all faces are labeled as 0. As a result,
the union of all faces labeled as 1 need not form closed surfaces. Such inconsistencies
can be excluded by a higher-order conditional random field (CRF) [5] that constrains
the binary labelings to the multicut polytope [39], thus ensuring closed surfaces. While
the number of multicut constraints can be exponential [2], constraints that are violated
by a given labeling can be found in quadratic time [57]. The MAP inference problem
can therefore be addressed by the cutting-plane method, i.e. by solving a sequence of
relaxed problems to global optimality until no more constraints are violated [57].

Here, we show that the optimization scheme described in [5] is unsuitable for large
3D segmentations where the supervoxel adjacency graph is denser and non-planar. We
therefore extend the cutting-plane approach by adding only constraints which are facet-
defining by a property of the multicut polytope (Section 4.4.3), a double-ended, parallel
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search to find violated constraints (Section 4.4.2) and a problem-specific warm-start
heuristic (Section 4.4.4). This approach can scale to volume images that consist of 109

voxels and are initially segmented into 106 supervoxels (Section 4.5).

The fact that exact MAP inference remains tractable at this scale is important for the
reconstruction of neural circuits from electron microscopic volume images (Figure 4.1 and
Chapter 1) where multicut constraints substantially improve the quality of segmentations
across different imaging techniques (Section 4.5).

For this quantitative analysis, we manually segmented 109 voxels of two different
datasets acquired at different laboratories using different imaging techniques and assess
the performance of three models:

� the simplest, local model uses learned unary conditional probabilities that state,
independently, if each face should be on (establish part of an object boundary) or
off (merge adjacent supervoxels). Optimization of this model almost always results
in inconsistent labelings (Figure 4.6b, 4.11b).

� The intermediate, finite-order model guarantees consistency across a small local
horizon, leading to better results.

� The best results are obtained with the fully constrained model which admits only
labelings that are globally consistent. With the cutting-plane approach proposed
here, the full model is often faster to optimize than the finite-order approximation.
Figures 4.6, 4.11 and 4.7, 4.13 summarize why the fully constrained method is the
one we recommend.

4.2 Related Work

The problem we address is known as the multicut problem [41] in combinatorial opti-
mization and as correlation clustering [16, 47] in statistics, and it is a special case of
the partition problem [39]. Both problems are NP-hard [16, 56]. Instances of the mul-
ticut problem have been solved by tightening an outer approximation of the multicut
polytope [141] via cutting planes [17, 57]. In computer vision, this technique has been
applied in [79, 86, 116] where the relaxed LP is solved first, as well as in [5] where
the integrality constraints are kept throughout the cutting-plane loop. Cutting planes
have also been used to enforce connectivity in foreground vs. background image seg-
mentation [152, 117, 100]. Here, we build on the probabilistic formulation in [5] but
without the likelihood terms w.r.t. geometry that were shown to have a negligible effect
on segmentations of photographs.

We concentrate on exact MAP inference for which we propose a cutting-plane approach
that is efficient for large-scale 3D segmentation. In particular, we discuss the efficient
search for violated constraints that are facet-defining and the parallelization of this
search. We measure how the optimization runtime scales with the size of the image and
the number of variables, respectively, with and without improvements.
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4 Closed-surface Segmentation for Connectomics

Results were shown in [5] for photographs in the Berkeley Segmentation Dataset [107]
which consist each of 105 pixels that were initially partitioned into 104 superpixels,
leading to optimization problems with at most 104 variables. Here, we segment 3D
images of up to 109 voxels which are initially partitioned into 105 supervoxels, leading
to 100 times larger optimization problems with 106 variables.

4.3 Probabilistic Model

In order to make the duality between supervoxels and their joint faces explicit, we build a
cell complex C = (C,≺,dim) representation of the supervoxel segmentation by connected
component labeling of the finest possible grid-cell topology (for details, see Section 3.4).
This yields disjoint sets of supervoxels C3, joint-faces between supervoxels C2, curves C1

and points C0. The function dim : C → N maps each cell to its dimension. For any cells
c, c′ ∈ C =

⋃3
j=0Cj , the relation c ≺ c′ indicates that c bounds c′, which implies dim(c) <

dim(c′). Compared to a region adjacency graph (Section 3.4.1), this representation
has the advantage that multiple disconnected joint-faces separating the same pair of
supervoxels can be treated independently for feature extraction and classification.

4.3.1 Modeling Decisions

We model the posterior probability of a joint labeling y ∈ {0, 1}|C2| of all faces, given

� features fc ∈ Rm of each face c ∈ C2,
the rows of the feature matrix F ∈ Rm×|C2|

� the bounding relation between faces and supervoxels,
encoded in a topology matrix T ∈ {0, 1}|C2|×|C3| in which Tcc′ = 1 iff c ≺ c′.

We make the following independence assumptions for all pairs of faces c′ 6= c′:

F ⊥⊥ T (a)

F ⊥⊥ T | y (b)

fc ⊥⊥ fc′ (c)

fc ⊥⊥ fc′ | y (d)

yc ⊥⊥ yc′ | fc (e)

yc ⊥⊥ yc′ (f)

yc ⊥⊥ fc′ . (g)

Note, however, that the entries in y become dependent as soon as the topology is known;
that is yc 6⊥⊥ yc′ | T.
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4.3 Probabilistic Model

From these conditional independence assumptions follows together with Baye’s rule (BR)

p(y|F,T)
BR
=

p(F,T|y) p(y)

p(F,T)
(4.1a)

(a,b)
=

p(F|y) p(T|y) p(y)

p(F) p(T)
(4.1b)

=
p(T|y)

p(T)
· p(F|y)

p(F)
· p(y) (4.1c)

(c,d)
=

p(T|y)

p(T)

∏
c∈C2

{
p (fc|y)

p (fc)

}
· p(y) (4.1d)

BR
=

p(T|y)

p(T)

∏
c∈C2

{
p (y|fc)
p(y)

}
· p(y) (4.1e)

(e,f)
=

p(T|y)

p(T)

∏
c∈C2


 ∏
c′∈C2

p (yc′ |fc)
p(yc′)

 · p(yc)
 (4.1f)

=
p(T|y)

p(T)

∏
c∈C2

p(yc|fc)
∏
c 6=c′

p(yc′ |fc)
p(yc)

(4.1g)

(g)
=

p(T|y)

p(T)

∏
c∈C2

p(yc|fc)
∏
c 6=c′

p(yc′)

p(yc)︸ ︷︷ ︸
=1

(4.1h)

BR
=

p(T|y)

p(T)

∏
c∈C2

p(fc|yc) p(yc)
p(fc)

(4.1i)

∝ p(T|y)
∏
c∈C2

p(fc|yc) p(yc) . (4.1j)

The prior p(yc) is assumed to be identical for all faces and is specified with a single
design parameter β ∈ (0, 1) as

p(yc) =

{
β if yc = 1

1− β if yc = 0
. (4.2)

4.3.2 Consistency

The likelihood p(T|y) is the instrument that is used to enforce consistency: while un-
informative for all consistent labelings, it assigns zero probability to all inconsistent
labelings

p(T|y) =

{
1 if y consistent

0 if y inconsistent
. (4.3)
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Figure 4.2: Depicted is one slice of a supervoxel segmentation. Supervoxels (square, green
nodes) are bounded by joint faces (round, violet nodes) which are labeled as 0 (boundary
is gray) or 1 (boundary is black). The simple circles drawn in blue are chordless; the
red circle is chordal.

In Section 3.5, we have already described the consistency problem informally using the
example in Figure 3.9. A more formal definition is

Definition (Consistent face labeling)
Let C describe the cell complex representation of a label volume. Vector y ∈ {0, 1}|C2|

attaches a binary decision to every face c ∈ C2, which bounds segments (s1, s2) ∈ C3.
Setting yc = 1 expresses the desire that s1 and s2 should be separated. Conversely, yc = 0
signifies that s1 and s2 should be merged.

Now consider the connected component labeling of the segments C3 according to y, in
which any adjacent segments separated by a face labeled “0” are merged.

If yc = 1 but s1 and s2 belong to the same connected component, we say that the
labeling of c is inconsistent: locally, s1 and s2 should be separated, but in the connected
component labeling, they are merged transitively.

The labeling y is said to be inconsistent as soon as any face c ∈ C2 is inconsistent.

A simple cycle of n segments, denoted cy ∈ SC(n), is a sequence cy = {c1, . . . , c2n+1}
of n pairwise distinct segments (the nodes of a graph) via n pairwise distinct faces (the
edges of a graph), for which all of the following (Equations 4.4a-4.4d) is true:

c1 = c2n+1 (4.4a)

∀j ∈ {1, . . . n} : c2j−1 ∈ C3 ∧ c2j ∈ C2 (4.4b)

∀j ∈ {1, . . . n} : c2j ≺ c2j−1 ∧ c2j ≺ c2j+1 (4.4c)

∀j, k ∈ {1, . . . n} : j = k ∨ (c2j 6= c2k ∧ c2j−1 6= c2k−1) . (4.4d)

For example, in Figure 4.2, the cycle cy = {11, 16, 7, 15, 10, 20, 11} describes a cycle
formed by segments 11, 7 and 10 together with the faces 16, 15 and 20. The set SC(n)
collects all possible such cycles of n segments.
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4.3 Probabilistic Model

A cycle cy = {s1, t1, . . . , sn, tn, s1} ∈ SC(n) describes an inconsistent face t1 if t1 is
one but all ti 6= t1 are zero. Alternatively, face t1 is consistent if the following inequality
holds, which ensures that along the cycle either none or more than one face is labeled
as one:

t1 consistent ⇔ yt1 ≤
n∑
j=2

ytj . (cycle inequality, 4.5)

The set of all labelings y ∈ {0, 1}|C2| which are consistent with respect to all cycles in
SC(n) is termed

MC(n) =

y ∈ {0, 1}|C2|

∣∣∣∣∣∣ ∀(s1, t1, . . . sn, tn, s1) ∈ SC(n) : yt1 ≤
n∑
j=2

ytj

 , (4.6)

and, for arbitrary n,

MC =

|C2|⋂
j=1

MC(j) . (4.7)

Consistent labelings y ∈ MC are labelings inside the multicut polytope, the convex hull
of MC, by Lemma 2.2 in [39].

4.3.3 Considered Models

The likelihood p(fc|yc) is learned by means of a Random Forest (cf. Section 2.4.2). More
precisely, we learn p̂(yc|fc) from class-balanced training data, i.e. with p̂(yc) = 0.5, and
assume p(fc|yc) = p̂(fc|yc). Therefore, p(fc|yc) ∝ p̂(yc|fc) p̂(fc) and thus it follows from
(4.1j) that

p(y|F,T) ∝ p(T|y)
∏
c∈C2

p̂(yc|fc) p(yc) . (global model, 4.8)

For comparison, we consider two simpler models, a local model in which p(T|y) is uniform
and thus faces are labeled independently,

p′(y|F,T) ∝
∏
c∈C2

p̂(yc|fc) p(yc) , (local model, 4.9)

and a finite-order approximation of (4.8) in which not all multicut constraints need to be
fulfilled but only those that correspond to cycles up to length 4. With p′′(T|y) = const.
if y ∈ ⋂4

j=1 MC(j) and p′′(T|y) = 0, otherwise,

p′′(y|F,T) ∝ p′′(T|y)
∏
c∈C2

p̂(yc|fc) p(yc) . (finite order model, 4.10)
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4 Closed-surface Segmentation for Connectomics

4.4 MAP Inference

Instead of maximizing (4.8) to find the most likely solution, we minimize the negative
log likelihood. For p(T|y) = 1 we have

p(y|F,T) ∝
∏
c∈C2

p̂(yc|fc) p(yc) (4.11a)

=
∏
c∈C2

p̂(yc = 0|fc)1−yc p̂(yc = 1|fc)yc p(yc = 0)1−yc p(yc = 1)yc (4.11b)

− log p(y|F,T) =
∑
c∈C2

−yc log p̂(yc = 1|fc)− (1− yc) log p(yc = 0|fc) (4.11c)

− yc log β − (1− yc) log(1− β)

∝
∑
c∈C2

yc

[
log

p(yc = 0|fc)
p(yc = 1|fc)

+ log
1− β
β

]
︸ ︷︷ ︸

wc

(4.11d)

= wTy . (4.11e)

4.4.1 Integer Linear Programming Problem

Consequently, the MAP solution of (4.8) is found by the following integer linear program
(ILP)

min
y∈{0,1}|C2|

wTy

subject to y ∈ MC
(4.12a)

with w ∈ R|C2| such that ∀j ∈ {1, . . . , |C2|}

wc = log
p(yc = 0|fc)
p(yc = 1|fc)

+ log
1− β
β

. (4.12b)

Note that the constraint y ∈ MC ensures that all inconsistent solutions have zero prob-
ability, as stated by the chosen prior p(T|y), see (4.3).

We start by solving the (trivial) ILP without multicut constraints. The optimal so-
lution is simply obtained by thresholding at zero, such that only faces with wc < 0
contribute to the objective function wTy. We then search for constraints that are vi-
olated by the solution, add these to the constraint pool and re-solve the constrained
ILP using the branch-and-cut algorithm of a state-of-the-art solver. This procedure is
repeated until no more multicut constraints are violated and thus the original problem
(4.12a) has been solved to optimality. Figure 4.3 shows the iterations of this cutting
plane procedure for a 2D segmentation example.
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4.4 MAP Inference

(a) raw data (b) iteration 1: thresholding (c) generated constraints after
iteration 1

(d) generated constraints after
iteration 3

(e) generated constraints after
iteration 4

(f) final result, iteration 5

Figure 4.3: Running the cutting plane algorithm on a 2D example problem. Using the
raw data (a), superpixels were computed (b) and simple weights w for the faces were
chosen. The panel shows the thresholding of these weights, such that positive wc are
red, and negative wc are either yellow (inconsistent) or blue. Panels (c-f) show some
cutting plane iterations. Here, the current solution y is shown in black (yc = 1) and
gray (yc = 0). All constraints that have been generated up to this point are visualized.
Each constraint is shown as a cycle with a random color, connecting faces (filled dot)
and passing through the bounded segments. Panel (f) shows the final result, where no
multicut constraints are violated anymore.
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4 Closed-surface Segmentation for Connectomics

(a) single-ended path search (b) double-ended path search

Figure 4.4: The number of nodes that need to be visited (all colored nodes) to find
the shortest path between two given nodes (here: top left and bottom right node of the
graph) can be reduced by starting a breadth-first search not just from the start node
(a), but also from the target node (b).

4.4.2 Search for Violated Constraints

If any multicut constraints are violated by a given labeling y, then at least one can
be found by considering all faces c ∈ C2 with yc = 1 and looking for a shortest cycle
(s1, t1 = c, s2, t2, . . . , sn, tn, s1) ∈ SC(n) with n ∈ N along which all other faces t2, . . . , tn
are labeled as 0 [5, 57]. Shortest cycles correspond to constraints with minimal numbers
of variables.

Double-ended search. Although a breadth-first search for such a cycle can be carried
out in time O(|C2|+ |C3|), starting from either s1 or s2, the absolute runtime to perform
this task for all relevant faces can be comparable to that of solving the ILP (Section 4.5).
We therefore propose to grow two search trees, rooted at s1 and s2, simultaneously
(illustrated in Figure 4.4). This saves runtime because both trees are only half as deep
as a single one would be, at the point when a shortest cycle is found.

Parallelization. Shortest paths need to be found for many faces, from one adjacent
supervoxel to the other, and yet not so many that it would be profitable to solve the All
Pairs Shortest Path problem. We therefore propose to solve Single Pair Shortest Path
problems in parallel with a space complexity that is linear in the number of threads. In
practice, we use OpenMP for this embarrassingly parallel task.
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4.4 MAP Inference

4.4.3 Chordality Check

Not all inequalities in (4.7) define a facet of the multicut polytope due to the following

Theorem (facet-defining constraints [39])
Given a simple cycle (cj) = (s1, t1, . . . sn, tn, s1) ∈ SC(n), the inequality yt1 ≤

∑n
j=2 ytj

is facet-defining if and only if (cj) is chordless.

A path is chordless (opposite: chordal) if each node is connected only to its successor
and predecessor. Here, the path of segments via joint faces is chordless if each segment
is connected by a face only to its successor and predecessor. Figure 4.2 illustrates both
chordal and chordless cycles. For example the path 11, 16, 7, 15, 10, 20, 11 is chordless.
However, the path 11, 16, 7, 10, 5, 14, 10, 20, 11 is chordal, because segments 7 and 10 are
connected via face 15 in addition to their respective predecessors/successors.

We exploit this algorithmically by adding violated inequalities only if these correspond
to chordless cycles.

4.4.4 Warm Start Heuristic

When violated constraints are added, the solution of the relaxed problem becomes infea-
sible and thus the upper bound on the global minimum is lost. However, the structure
of the problem allows us to find a new feasible solution efficiently: a given labeling
y ∈ {0, 1}|C2| is mapped to a labeling on the multicut polytope by labeling all variables
of all violated inequalities as 0. Since violated inequalities have already been found, this
heuristic does not change the runtime complexity of the optimization scheme overall.
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4 Closed-surface Segmentation for Connectomics

(a) raw data (b) probability map (c) gold standard seg.

Figure 4.5: SBFSEM dataset (a) together with the voxel probability map (b) learned
with ilastik. The gold standard segmentation (c) encompasses a volume of 400×200×
200 voxels.

4.5 Applications

4.5.1 SBFSEM Volume Image

A volume image referred to as E1088 in [62] was acquired using serial block-face electron
microscopy (SBFSEM) [49] and shows a section of rabbit retina at the almost isotropic
resolution of 22 × 22 × 30 nm3. A small subset is shown in Figure 4.6a. The bright
intra-cellular space that makes up more than 90% of the volume contrasts the stained
extra-cellular space that forms thin membranous faces. This staining [33] simplifies the
automated segmentation because no intra-cellular structures such as mitochondria or
vesicles are visible (Figure 4.11a shows a different staining). A supervoxel segmentation
is obtained as described in Section 4.8.3.

Features fc of each face c ∈ C2 described in Section 4.8.2 include statistics of voxel
features over c as well as characteristics of the two supervoxels that are bounded by c.
In order to learn p(yc|fc) by means of a Random Forest, 437 faces per class were labeled
interactively in a subset of 2503 voxels in about one hour, starting with obvious cases
and continuing where the predictions needed improvement.

This online learning workflow was implemented as a custom extension of ilastik,
and is described in detail in Section 3.7. The user can mark faces as “on”, “off” or
“unlabeled” via a single mouse click and inspect intermediate predictions by viewing
faces colored according to p̂(yc|fc).

Qualitative results on independent test data are shown in Figure 4.6a-c. The global
maximum of the local model (4.9) is inconsistent, i.e. not all surfaces are closed. A
consistent labeling with closed surfaces and thus a segmentation is obtained by merging
supervoxels transitively, i.e. whenever there exists a path from one supervoxel to the
other along which all faces are labeled as 0 (cf. Section 4.4.4), regardless of how many
faces between these supervoxels are labeled as 1. This mapping to the multicut polytope
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1 µm

(a) SBFSEM raw data (b) w/o constraints, β = 0.5 (c) with constraints, β = 0.5

Figure 4.6: Segmentations of the SBFSEM dataset (2422 voxels). Faces are colored to
show if the algorithm decides that these are part of a segment boundary (blue) or not
(magenta). Importantly, yellow faces are decided to be part of a segment boundary, but
are ignored because the bounded supervoxels are merged elsewhere.

is biased towards under-segmentation (Figure 4.6b). In contrast, the global maximum
of the fully constrained model (4.8) is consistent and directly yields a segmentation with
closed surfaces (Figure 4.6c). Note also the quality of the initial supervoxel segmentation
from which only 19.3% of all faces are removed in the found global optimum.

Quantitatively, the effect of introducing multicut constraints is shown in Figure 4.7
where maxima of the global model (4.8), the local model (4.9) and the finite-order
approximation (4.10) are compared to a man-made segmentation of 400 × 200 × 200
voxels (Section 4.8.1) in terms of the Variation of Information (VI) [110] and Rand Index
(RI) [124]. These segmentation quality measures are discussed in detail in Section 2.5.

The overall best segmentation is obtained from (4.8), i.e. with all multicut constraints,
and without an artificial bias β 6= 0.5; note that the bias term in (4.12b) vanishes for
β = 0.5. Without any multicut constraints, the best segmentation, obtained for β = 0.8,
is worse in terms of both VI and RI. Segmentations of intermediate quality are obtained
from the finite-order approximation (4.10).

Run times for optimizing (4.8) are shown in Figure 4.8 and Table 4.1 for our C++
implementation. The ILP (4.12a) is solved with IBM ILOG CPLEX and Gurobi alterna-
tively, with the duality gap set to 0 in order to obtain globally optimal solutions. Global
optima of (4.8), for a block of 8003 voxels with 1.6 ·106 faces (i.e. variables yc) are found
in less than 13 minutes (Table 4.1), about 22 times as fast as with the optimization
scheme in [5].

Maximizing (4.8) can be faster than maximizing the finite-order approximation (4.10)
that does not guarantee closed surfaces and yields worse segmentations empirically (run
times not shown). We therefore recommend to use all multicut constraints.
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Figure 4.7: Variation of information (VI) and Rand Index (RI) wrt. the gold standard
segmentation (400 × 200 × 200 voxels) of the SBFSEM dataset. For various priors β,
shown are the optima of red: fully constrained model (4.8), green: finite-order approxi-
mation (4.10), blue: local model (4.9).

CPLEX 3
√
|C3| |C2| all noW noD noC noP noCDPW

150 13 987 0.01 0.01 0.01 0.02 0.01 0.01
391 215 331 0.18 0.17 0.30 0.93 0.33 1.82
488 388 849 0.57 0.54 1.34 2.47 1.26 6.86
557 561 431 1.04 1.07 3.40 3.90 2.82 17.04
612 736 037 2.11 2.23 7.32 6.03 6.24 38.27
659 910 296 3.07 3.52 12.35 9.61 10.75 75.02
700 1 089 973 4.21 4.80 17.79 13.08 15.50 90.07
736 1 265 219 6.26 7.05 25.35 19.25 22.63 128.35
769 1 438 276 8.28 8.94 33.59 25.21 31.10 189.41
800 1 603 683 11.41 12.20 44.27 33.43 43.37 248.74

Gurobi 3
√
|C3| |C2| all noW noD noC noP noCDPW

150 13 987 0.01 0.01 0.01 0.02 0.01 0.01
391 215 331 0.22 0.21 0.35 2.29 0.36 3.73
488 388 849 0.52 0.67 1.31 10.02 1.27 13.06
557 561 431 1.08 1.29 3.32 14.31 2.87 29.47
612 736 037 1.94 2.31 7.01 22.25 5.92 60.09
659 910 296 3.11 3.99 12.41 43.52 10.56 118.95
700 1 089 973 4.27 5.30 18.02 63.75 16.16 198.14
736 1 265 219 6.02 6.71 24.60 62.27 22.61 169.88
769 1 438 276 8.01 9.27 32.72 78.36 30.49 281.43
800 1 603 683 10.81 11.86 42.93 109.43 42.56 298.81

Table 4.1: Runtimes for the SFBSEM dataset. All times are given in minutes.
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Figure 4.8: Wall clock run times for optimizing (4.8) with β = 0.5 (on an 8-core Intel i7
at 2.8 GHz), with and without improvements to the optimization scheme in Andres et al.
[5], for increasing problem size (number of joint faces of supervoxels, left, and number of
voxels, right), for datasets ranging in size from 1503 through 8003 voxels. all : proposed
optimization scheme, noC : no chordality check, noD : no double-ended search, noP : no
parallel search, noCDPW : no improvements.
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4 Closed-surface Segmentation for Connectomics

Figure 4.9: The largest SBFSEM volume image we have segmented with multicut con-
straints. Shown are 600 segments within a dataset of 1400× 1400× 600 voxels size.
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(a) raw data (b) probability map (c) gold standard seg.

Figure 4.10: FIBSEM dataset (a) and the elevation map (b) used for obtaining the initial
oversegmentation (largest value of Hessian eigenvalues). The gold standard segmentation
(c) encompasses a volume of 9003 voxels.

4.5.2 FIBSEM Volume Image

A volume image acquired with a focused ion beam serial-section electron microscope
(FIBSEM) [90] shows a section of adult mouse somatosensory cortex at the almost
isotropic resolution of 5 × 5 × 6 nm3. A small subset is shown in Figure 4.11a. Intra-
and extra-cellular space are indistinguishable by brightness and texture. Not only cell
membranes but also intra-cellular structures such as mitochondria and vesicles are visible
due to a different staining. The resolution is four times as high as that of the SBFSEM
image. However, intra-cellular structures have membranous surfaces themselves and thus
make the problem of segmenting entire cells more difficult. A supervoxel segmentation
is obtained as described in Section 4.8.3.

We use the same features as for the SBFSEM dataset but adjusted in scale. Our
labeling strategy was to annotate membranes of both cells and mitochondria1 as yc = 1.

Qualitative results are shown in Figure 4.11a-c for a slice of 5122 voxels. The MAP
labeling of the local model (4.9) is inconsistent and almost all faces are removed by
transitivity (note the lack of blue faces in Figure 4.11b). In contrast, the global maximum
of the fully constrained model (4.8) is consistent (Figure 4.11c). In contrast to the
SBFSEM dataset in which only 19.3% of the faces are removed, 80.7% of all faces are
removed here, due to the inferior supervoxel segmentation.

Quantitative results are shown in Figure 4.13. VI and RI are w.r.t. a complete seg-
mentation of 9003 voxels carried out by a neurobiologist (Section 4.8.1). Similarly as for
the SBFSEM volume segmentation, the best segmentations are obtained from the full

1It is still possible to obtain the geometry of cells because mitochondria can be detected reliably [103],
even via their mean gray-value once a segmentation is available. Segments which are classified as
mitochondria are disregarded when computing VI [110] and RI [124].
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1 µm

(a) FIBSEM raw data (b) w/o constraints, β = 0.5 (c) with constraints, β = 0.5

Figure 4.11: Segmentations of the FIBSEM dataset (5122 voxels). Faces are colored to
show if the algorithm decides that these are part of a segment boundary (blue) or not
(magenta). Importantly, yellow faces are decided to be part of a segment boundary, but
are ignored because the bounded supervoxels are merged elsewhere.

model (4.8). Exact MAP inference for the finite-order approximation (4.10) becomes
intractable for most β.

Run times are reported in Figure 4.14 and Table 4.2 for problem instances from blocks
between 1503 and 8003 voxels. Unlike for the SBFSEM dataset (Figure 4.8), the overall
speedup is dominated by the chordality check.

Figure 4.12: The largest FIBSEM vol-
ume image we have segmented with
multicut constraints. Shown are 50 ob-
jects in a volume of 900 × 900 × 900
voxels size. Note that – due to the
high resolution – there are considerable
less, but larger objects in the volume
compared to the SBFSEM image (Fig-
ure 4.9).
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Figure 4.13: VI and RI compared to the gold standard segmentation (900 × 900 × 900
voxels) of the FIBSEM dataset. Exact optimization of the finite-order approximation
becomes intractable for most β on the FIBSEM data. In contrast, optima of the full
model are found in less than 13 minutes. (Figure 4.14).

CPLEX 3
√
|C3| |C2| all noW noD noC noP noCDPW

150 3416 0.02 0.02 0.02 0.02 0.03 0.00
391 79 769 0.24 0.28 0.24 0.69 0.25 0.34
488 155 439 0.31 0.24 0.34 2.13 0.38 2.61
557 226 890 1.14 1.53 1.40 86.65 1.51 14.63
612 296 171 1.73 2.21 1.53 28.01 1.87 22.58
659 367 649 4.07 3.79 3.67 76.72 5.18 69.79
700 433 743 4.80 7.63 6.03 98.39 6.13 188.12
736 498 705 10.04 12.37 15.31 264.69 14.31 247.46
769 560 433 14.82 13.50 11.91 294.41 13.51 315.37
800 624 747 9.15 11.15 12.26 418.66 14.01 386.24

Gurobi 3
√
|C3| |C2| all noW noD noC noP noCDPW

150 3416 0.01 0.02 0.01 0.01 0.01 0.0
391 79 769 0.24 0.26 0.25 1.02 0.23 0.45
488 155 439 0.29 0.27 0.28 2.53 0.39 3.42
557 226 890 0.82 0.98 0.87 7.17 1.00 10.39
612 296 171 1.29 1.97 1.65 14.50 1.75 19.62
659 367 649 2.82 3.09 3.28 59.82 3.40 71.90
700 433 743 3.63 5.06 4.07 115.59 4.95 216.28
736 498 705 7.13 6.34 7.40 262.46 8.44 241.28
769 560 433 6.79 7.27 7.65 317.84 8.85 291.75

Table 4.2: Runtimes for the FIBSEM dataset. All times are given in minutes.
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(a) FIBSEM dataset, CPLEX solver
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(b) FIBSEM dataset, Gurobi solver

Figure 4.14: Wall clock run times for optimizing the fully constrained model with β = 0.5
(on an 8-core Intel i7 at 2.8 GHz), with and without improvements to the optimization
scheme in Andres et al. [5], for increasing problem size (number of joint faces of super-
voxels, left, and number of voxels, right), for datasets ranging in size from 1503 through
8003 voxels. all : proposed optimization scheme, noC : no chordality check, noD : no
double-ended search, noP : no parallel search, noCDPW : no improvements.
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4.5 Applications

(a) original frames
1285 and 1950

(b) without multicut constraints,
β = 0.5

(c) with multicut constraints,
β = 0.5

Figure 4.15: Color video segmentation. Supervoxel faces are colored blue if yc = 1,
magenta if yc = 0 and yellow if the decision is inconsistent, i.e. yc = 1 but the adjacent
supervoxels are merged. Segments are filled with their mean color.

4.5.3 Video Segmentation

As a proof-of-concept, we applied the same model to bottom-up video segmentation,
treating the video2 as a three-dimensional (x,y,t)-volume. Obtaining a supervoxel seg-
mentation that strikes a balance between negligible under-segmentation and a small
number of excessive supervoxels has proven difficult. We settled for a marker-based
watershed transformation of the color gradient magnitude in the Lab color space. A
486 × 360 video with 1000 frames (Figure 4.15a) is thus partitioned into |C3| = 22 056
supervoxels with |C2| = 256 734 joint faces.

As features fc, we use (i) the mean (over the face c) of the 2D patch features in [5]
which are computed per frame, and (ii) the absolute distance of color histograms of the
bounded supervoxels. A training set of 153 labels per class was acquired using the same
tool and protocol as for the SBFSEM dataset. Only faces intersecting frame 1015 were
labeled.

Qualitative results are shown in Figure 4.15. While the finite-order model is intractable
for this problem, global optimization of the fully constrained model (4.8) with β = 0.5
takes 131 seconds.

2Frames 1000–2000 of the video at youtube.com/watch?v=YN0I-TZFn58
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4 Closed-surface Segmentation for Connectomics

4.6 Discussion

In a fully connected graph with n ∈ N nodes, the
(
n
3

)
cycle constraints of order three

imply all higher-order cycle constraints. However, in the sparse graphs that we consider,
the higher-order constraints need to be dealt with explicitly. An example is depicted in
Figure 4.2 where the constraint that corresponds to the blue cycle on the left has order
four, excluding from the feasible set a locally closed loop that is globally inconsistent.
Our experiments have shown that including these higher-order constraints is essential
to achieve the best performance with regard to ground truth.

When inconsistent labelings are permitted, unlike in the fully constrained model (4.8),
and mapped to the multicut polytope as described in Section 4.4.4, the risk of false
mergers is higher in 3D than in 2D because there are on average more and shorter paths
from one supervoxel to another along which faces can be incorrectly labeled as 0. We
therefore expect multicut constraints to be more important in 3D than in 2D.

Solving (4.12a) as proposed here requires the solution of problems of an NP-hard class.
Whether or not this is tractable in practice depends on the quality of the predictions
p̂(yc|fc). The learning of this function is therefore especially important.

The warm start heuristic described in Section 4.4.4 is biased maximally towards under-
segmentation. Finding smarter heuristics is an interesting problem for future research.

The reconstruction of neural circuits such as a neocortical column or the central ner-
vous system of Drosophila melanogaster will eventually require the segmentation of vol-
ume images of 1012 voxels. The result that 109 voxels can be segmented by optimizing
a non-submodular higher-order multicut objective exactly on a single computer in 13
minutes is encouraging.

4.7 Towards Exploiting Biological Prior Knowledge

The multicut segmentation model described above draws upon local image evidence to
enforce global consistency. It enforces the biological prior that membranes form closed
surfaces. Any perforated membrane visible in the raw data is assumed to be due to
staining artifacts. In this section, we discuss the possibility of incorporating additional
biological priors within the multicut segmentation framework.

Bounded number of neurites. The number of neurites in a given volume image G is
bounded. Each neurite which can be found in G has to originate from a soma (cell body)
either inside or outside the imaged tissue block. In typical datasets of interest, somata
occur rarely, and can even be found automatically [148]. Therefore, an upper bound
on the number N < Nmax of neurites in G can be found by counting the number of
neurite cross sections on the six bounding faces ∂G of the cuboidal dataset and adding
the number of somata found.
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Figure 4.16: Notation for the model in which
neurites are constrained to touch the border.
Here, the labeling y induces three connected
components of superpixels, CC1 (does not touch
the border ∂G of the image), CC2 (touches ∂G),
and CC3.

Imposing the constraint N < Nmax is difficult, because it only applies to segments
corresponding to neurites. However, many segments are due to cell organelles, glial
cells, extra-cellular space (depending on sample preparation) or imaging artifacts. In
order to apply the above constraint, it would be necessary to first classify segments
into neurite and non-neurite. Furthermore, implementing the constraint in the multicut
segmentation framework is very difficult. This is because the number of segments is only
encoded implicitly through the boundary indicator variables y. We therefore turn to a
relaxed variant of this constraint.

Neurites are connected to ∂G. From above it follows that no neurite can be wholly
contained within G (unless somata exist) — each neurite has to reach the border some-
where. Let B be the set of all supervoxels that touch the border ∂G of the dataset G. A
face labeling y ∈ MC induces a labeling of the superpixels C3 as connected components
CC(y) = {CC1, . . . , CCN}. Then, the problem can be formulated as

min
y

{
wTy

}
subject to

y ∈ MC ,

CCi ∩B 6= ∅ ∀CCi ∈ CC(y) with CCi neurite .

(4.13)

Problem (4.13) can be solved with the cutting plane method (see Figure 4.16 for no-
tation). First, the ILP (4.8) is solved to obtain y. Each connected component in the
solution CC(y) is classified to be either neurite or non-neurite. Then, for each neurite
segment CCi which does not touch the border, the following constraint is added to the
problem: ∑

c∈∂CCi
yc 6= |∂CCi| , (4.14)

where ∂CCi is the set of surfaces c ∈ C2 which separate the connected component CCi
from the surrounding segments. Intuitively, the constraint enforces that the segment
has to be merged with at least one other adjacent segment by creating a “hole” in the
previously closed surface around CCi. Next, this constrained problem is solved to yield
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a new labeling y. The process is iterated until in the final solution, all induced segments
either touch the border of the data cuboid or are classified as non-neurites.

I have implemented this algorithm, using the CPLEX integer linear programming
solver and I have made the following observations:

� Even for small volume images (2003 voxels, ca. 5000 supervoxels), optimization of
(4.13) using cutting planes can take a considerable amount of time (tens of min-
utes). This is to be expected: each cutting plane iteration produces constraints
which are not very informative. One solution is excluded, but many nearby solu-
tions (slight variations in the extent of objects by adding or removing supervoxels)
exist, which will have to be excluded in later iterations.

� The solution does not consistently improve in terms of Rand Index or Variation
of Information. One reason could be that the model leaves too much freedom in
how to re-assign supervoxels in order to fulfill the constraints: it does not consider
cues such as “good continuation” based on the geometry of segments.

In summary, (4.13) contains too little non-local information (other than hard constraints)
to yield useful results.

4.8 Detailed Methods

In this section, we give more details on the acquisition of the test set, the choice of both
voxel and face features as well as details on the choice of supervoxels.

4.8.1 Acquisition of Gold Standard Segmentations

We manually segmented subsets of the SBFSEM and the FIBSEM dataset (Figures 4.5
and 4.10) using the interactive method “Carving” (Straehle et al. [144], see Section 3.3
for details on the integration into the ilastik software framework). Each object was
segmented independently. Some independently segmented objects needed correction
because there was overlap. This asserts a consistent ground truth and shows that the
segmentation problem is non-trivial, even for a human. For the SBFSEM dataset, 528
objects (90.8% of 400×200×200 voxels) were segmented by one expert in two weeks. For
the FIBSEM dataset, 514 objects (96.8% of a cubic block of 9003 voxels) were segmented
by a neurobiologist in three weeks.

4.8.2 Voxel- and Boundary Features

From every joint face of adjacent supervoxels, 31 features are extracted (Table 4.4).
One of these features is the response of a Random Forest that discriminates between
membranes on the one hand and intra-/extra-cellular tissue on the other hand, based on
28 rotation-invariant non-linear features of local neighborhoods of 113 voxels (Table 4.3).
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Index Feature

1 Volume image
2 Bilateral filter

wσs(r) = 1
σs(2π)3/2

exp
(
− r2

2σ2
s

)
, wσv(v) = 1

1+ v2

σ2v

3–4 Gradient magnitude
5–16 Structure Tensor eigenvalues
17–28 Hessian matrix eigenvalues

Table 4.3: Features of voxel neighborhoods

Index Feature Details

1 Size of the face

2–3 Sizes v1 and v2 of (v1 + v2)
1/3

adjacent supervoxels |v1 − v2|1/3
4–10 Bilateral filter b *
11–17 Gradient magnitude *
18–24 Hessian matrix of max. eigenvalue*
25–31 Voxel classifier *

Table 4.4: Features of supervoxel faces. The statistics (*) include the min, max, mean,
median, standard deviation, 0.25- and 0.75-quantile over all voxels adjacent to the face.

4.8.3 Supervoxel Segmentation

Are supervoxels necessary? First, we should pose the following question: why start
from supervoxels and not simply voxels? Apart from the argument that supervoxels
reduce problem size, there is a more fundamental reason: multicut segmentation loses
its advantage of being able to close holes in a voxel-based setting. This is demonstrated
in Figure 4.17. Boundaries (edgels in this settings) which lie on or near membranes in
the image all obtain similar (negative) weights wc via the Random Forest classifier. This
is because (i) membranes are a few voxels in width and (ii) boundary features are com-
puted from the voxel neighborhood and cannot be accurate to sub-voxel precision. Now,
however, it is almost always energetically cheaper to remove inconsistencies by forming
compact groups of membrane edgels, rather than closing “holes” in the membrane over
long distances. In a sense, we have described the multicut equivalent of shrinking bias.

Supervoxels of sufficient size are therefore a pre-requisite for the segmentation ap-
proach described in this chapter.

89



4 Closed-surface Segmentation for Connectomics

(a) raw data (b) multicut segmentation

Figure 4.17: Formulating multicut segmentation for data (a) on the pixel level does not
make sense. Because boundaries cannot be given a pixel-precise location (they have
widths of multiple pixels), many edgels on and near the boundaries are given negative
weights wc. In the multicut segmentation result (b), this leads to over-segmentation into
single pixels along the visible membranes. Even more importantly, multicut segmenta-
tion loses the advantage of being able to close membrane “holes”: It is almost always
energetically cheaper to form compact clusters of membrane edgels. This is the multicut
equivalent of graph cut’s shrinking bias.

Details on supervoxel generation. For the experiments in Section 4.5, we computed
supervoxels by marker-based watersheds (see Section 2.4.5). To obtain an elevation
map and markers for the SBFSEM dataset, we train a Random Forest classifier to
distinguish between two classes of voxels, extra-cellular space and intra-cellular space,
based on rotation invariant features of local neighborhoods (Table 4.3 and Section 4.8.2).
As training data, 1600 voxels per class were labeled interactively in two subsets of 1503

voxels which has taken three hours using ilastik [140]. Predicted probabilities are
used as elevation levels. Connected components of at least three voxels classified as
intra-cellular space are used as markers. For the FIBSEM dataset, the elevation level
is defined as the largest eigenvalue of the Hessian matrix at scale σ = 1.6. Markers are
taken to be maximal plateaus of the raw data that consist of at least two voxels.
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4.9 Conclusion

In this chapter we have addressed the problem of segmenting volume images based on
a learned likelihood of merging adjacent supervoxels. To solve this problem, we have
adapted a probabilistic model that enforces consistent decisions via multicut constraints
to 3D cell topologies and suggested a fast scheme for exact MAP inference. The resulting
22-fold speedup has allowed us to systematically study the positive effect of multicut
constraints in large-scale 3D segmentation problems for neural circuit reconstruction.
The best segmentations have been obtained for an unbiased parameter-free model with
multicut constraints.

Here, we have used a Random Forest classifier for learning p(yc|fc). This probability
was then used to derive the weights wc in the multicut model (4.12a). However, an
open question is whether the weights wc can be chosen directly such as to yield better
segmentations as measured by Rand Index or Variation of Information. This is the
subject of Chapter 5.
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Chapter 5

Learning to Segment with a
Global Loss Function

Segmentation schemes such as hierarchical region merging or correllation clustering rely
on edge weights between adjacent (super-)voxels. The quality of these edge weights di-
rectly affects the quality of the resulting segmentations. Unstructured learning methods
seek to minimize the classification error on individual edges. This ignores that a few
local mistakes (tiny boundary gaps) can cause catastrophic global segmentation errors.
Boundary evidence learning should therefore optimize structured quality criteria such as
Rand Error or Variation of Information. We present the first structured learning scheme
using a structured loss function; and we introduce a new hierarchical scheme that allows
to approximately solve the NP hard prediction problem even for huge volume images.
The value of these contributions is demonstrated on two challenging neural circuit re-
construction problems in serial sectioning electron microscopic images with billions of
voxels. Our contributions lead to a partitioning quality that improves over the current
state of the art.

This chapter is an extended version of publication [98], also see page 145.
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(a) raw data (b) gold standard

(c) small Hamming error,
large VI, large RE

(d) large Hamming error,
small VI, small RE

Figure 5.1: Segmentation quality is commonly [10, 13] measured by Rand Error [124] and
Variation of Information [110] which capture (in contrast to the Hamming error HE) not
only local segmentation quality, but also some global structural correctness. (b) Gold
standard for supervoxel segmentation: white edges are correct, black edges incorrect.
(c) A single missed edge (arrow) has the catastrophic global consequence of merging the
two adjacent regions (resulting in the red segment). (d) The slightly displaced boundary
(arrow) produces a large HE, but small RE or VI.

5.1 Introduction

Connectomics requires extremely accurate circuit reconstruction because minor local
mistakes can lead to catastrophic global connectivity errors (Chapter 1). Automatic
methods that achieve the required accuracy level and scale to huge datasets are still an
open problem (Chapter 2). When segmentation is based on electron microscopy volume
images, one must exclusively rely on boundary evidence, because the desired regions
(neurons) cannot be differentiated on the basis of appearance features.

For such partitioning problems, correlation clustering [16, 53], or multicut segmenta-
tion [39], is a powerful paradigm [153, 87, 5, 79, 15, 159, 10] as we have demonstrated
in Chapter 4. An image is represented as a weighted region adjacency graph of (super)-
voxels. Positive edge weights indicate that the incident regions should be merged; neg-
ative weights indicate that they should be kept separate. An optimal segmentation
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makes binary decisions for each edge so as to minimize the total cut weight, subject to
the constraint of producing a topologically consistent solution [39].

The quality of the resulting segmentation depends critically on the edge weights, which
are some function of features computed from the raw data. We focus on learning such
weights using a cutting-planes approach. In each iteration, a structured loss is used to
compare the segmentations obtained from the current weights to the gold standard.

Ideally, [149, 69], the loss function takes the entire segmentation into account (Fig-
ure 5.1). Unfortunately, such loss functions do not decompose over the binary decisions
for individual edges, prohibiting efficient inference. This is why previous work has re-
sorted to merely counting the number of deviating edge decisions between gold standard
and current prediction [87]. Figure 5.10 shows that better results can be achieved when
a structured loss function is used during training. Various attempts have been made to
train struct-SVMs with more complex loss functions, but these approaches are tailored
to specific applications [147], or use approximation techniques that do not apply to RE
and VI [125].

Our first contribution (Section 5.2) is to allow arbitrary structured loss functions,
such as Rand Error (RE) or Variation of Information (VI) during struct-SVM train-
ing on moderately-sized neighborhoods. This is made possible by a non-redundant and
efficient exhaustive enumeration of segmentations. Our second contribution is a hier-
archical, blockwise scheme for the structured prediction on large volumes. It produces
segmentations that are empirically close to optimal (Section 5.3). Experiments on two
different electron microscopy volume images of neural tissue show that the proposed
method can improve upon unstructured learning using SVM or Random Forest classi-
fiers (Section 5.4).

5.2 Structured Learning for Segmentation

As in Chapter 4 we work in a dual representation which specifies a segmentation in terms
of binary labels y pertaining to boundaries between supervoxels. However, not every
candidate configuration y ∈ {0, 1}|C2| (where |C2| is the number of boundaries) repre-
sents a valid segmentation: if yi = 1 (boundary is correct) but the adjacent supervoxels
belong to the same region (i.e. there exists a path between these supervoxels along which
all yk are labeled yk = 0), y is inconsistent, (Figures 5.1c, 5.2b and Section 4.3.2). All
consistent y form the set of multicuts MC [39]. Region labels are easily determined by
connected components. The alternative approach to assign region labels directly (primal
representation) leads to a much larger search space, see Table 5.1.

We employ a structured risk minimization formulation in order to learn suitable edge
weights from training data. Structural risk minimization aims at finding a regularized
predictor that minimizes the empirical loss [118]. Training samples xn are connected
components of surfaces with the gold standard labeling yn. Sample x and any labeling y
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(a) (b) (c)

Figure 5.2: (a) 2D slice through a 3D cell complex representation. (b) “Dangling”
surfaces can be detected locally. (c) More efficient enumeration uses the colored lines
and their bounded surfaces.

are described by a joint feature vector φ(x,y) ∈ RM . The optimal multicut segmentation
y∗ according to a structured SVM model [118] is then given by

y∗ = argmin
y∈MC

〈m∗, φ(x,y)〉 , (5.1)

m∗ = argmin
m∈RD

{
1

2
‖m‖2 +

λ

N
l(m)

}
, (5.2)

l(m) =

N∑
n=1

max
y∈MC

{
∆(yn,y)−mTφ(xn,yn) + mTφ(xn,y)

}
. (5.3)

The model is trained by finding optimal weights m∗. The loss function ∆(yn,y) mea-
sures the deviation of y from the gold standard (e.g. by using RE or VI). Hyperparameter
λ trades off the regularization and data terms.

How should φ(x,y) be chosen? The objective is linear in the edge weights w subject
to exponentially many constraints restricting y to multicuts (cf. Equation 4.12a).

min
y∈{0,1}|C2|

wTy

subject to y ∈ MC
(5.4)

We seek to optimize the edge weights w indirectly by choosing optimal feature weights
m in the ansatz wi =

〈
m,α(i)

〉
, where α(i) is a suitable feature vector associated with

each edge. Note that w is learned from entire configurations, whereas existing methods
[5, 10, 159] learn a probabilistic model p(yi|α(i)) for individual edges and then define

wi = log p(yi = 0|α(i)) / log p(yi = 1|α(i)). (5.5)
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5.2 Structured Learning for Segmentation

This yields after an exchange of summation order

min
y∈MC

|C2|∑
i=1

〈
m,α(i)

〉
yi = min

y∈MC

|C2|∑
i=1

M∑
j=1

mjα
(i)
j yi (5.6a)

= min
y∈MC

M∑
j=1

mj

|C2|∑
i=1

α
(i)
j yi (5.6b)

def
= min

y∈MC

〈
m, φ

〉
. (5.6c)

The joint feature vector φ(x,y) has length M , the number of features for each surface:

φ(x,y)T =

|C2|∑
i=1

α
(i)
1 · yi, · · · ,

|C2|∑
i=1

α
(i)
M · yi

 . (5.7)

The key operation for determining optimal weights in (5.3) is the maximization over
all feasible segmentations in l(m), i.e. the identification of the most violated constraint.
In this chapter we investigate how this can be done by exhaustive search on a subset of
the data as large as possible. We explain our approach to the efficient enumeration of
segmentations by means of 2D grids, but the findings likewise apply to 3D supervoxels,
which are used in the experiments.

Table 5.1 shows the ratio between the number of true segmentations S and the number
of possible configurations for different grid sizes: SP are the number of candidates that
would have to be enumerated using the primal representation, SD for the dual represen-
tation and SDI for an improved dual enumeration described below. Apparently, S/SDI
achieves the best ratio, i.e. the least work is wasted for solutions that are ultimately
rejected.

In the dual representation, when exhaustively enumerating all binary vectors y, an
inconsistent configuration (y /∈ MC) can be identified by connected component labeling,
which is expensive. Fortunately, many inconsistent configurations (those which contain
one or more “dangling” surfaces, Figure 5.2b) can be identified more simply.

Efficient and unambigous enumeration is greatly facilitated by a cell complex data
structure (Chapter 3.4.2). It represents entities of different dimensionality simultane-
ously along with their bounding relations: supervoxels c3 ∈ C3 are bounded by joint-faces
between pairs of adjacent supervoxels c2 ∈ C2 which in turn are bounded by joint-lines
c1 ∈ C1 between adjacent faces. Our 2D illustrations should be understood as slices
through 3D data: surfaces appear as lines and joint-lines between surfaces appear as
points (Figure 5.2a). A line c1 ∈ C1 is formed where multiple faces c2 ∈ C2 meet.
Using the Γ-neighborhood, this is written as c2 ∈ Γ(c1). For example, in Figure 5.2,
‘green line’ ∈ Γ(‘green dot’).
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5 Learning to Segment with a Global Loss Function

Table 5.1: For a n × m pixel patch,
the ratio between the number of fea-
sible segmentations S and the number
of candidate configurations (SP, SD or
SDI) depends on the enumeration tech-
nique.

n×m 2|C2| S/SP S/SD S/SDI

2× 2 16 0.1875 0.7500 1.0000

2× 3 128 0.0723 0.5781 0.7708

3× 3 4’096 0.0219 0.3501 0.6224

4× 3 131’072 0.0066 0.2119 0.5024

4× 4 16’777’216 0.0016 0.1008 0.4249

5× 4 2’147’483’648 0.0004 0.0480 0.2695

For efficient enumeration of segmentations, we first find a preferably maximal set of
lines C ′1, such that no Γ-neighborhoods overlap:

max
C′1∈P(C1)

{
|C ′1|

}
such that

⋂
c∈C′1

Γ(c) = ∅ . (5.8)

In Figure 5.2c, such a maximal set C ′1 consists of all the colored dots. In order for
y ∈ MC to hold, a necessary condition is that all surfaces c2 ∈ Γ(c′1) must be assigned
a locally consistent labeling. From the cycle inequalities (4.5) follows:

∀c ∈ C2 :
{
c21, c

2
2, c

2
3, c

2
4

}
:= Γ(c) with

(yc21 , yc22 , yc23 , yc24) /∈
{

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
}
.

(5.9)

The configurations in which only one face in Γ(c) is assigned yi = 1 are already locally
inconsistent (a “dangling” surface, Figure 5.2b). Consequently, any y in which these
configurations occur for one or more of the sets Γ(c′1) with c′1 ∈ C ′1 can be excluded from
the enumeration.

We term this algorithm improved dual enumeration or DI. After having excluded many
locally inconsistent segmentations, we only need the expensive connected components
check on a tiny fraction of the actual number of segmentations. This way we can handle
larger subsets.

In a supervoxel segmentation, due to the voxel grid topology, either three or four
surfaces meet to form a line c1. We first find an approximately maximal set C ′1 by random
sampling. Then candidate configurations y ∈ {0, 1}|C2| that are locally consistent are
enumerated. For each locally consistent candidate, a connected component labeling is
then performed in order to check if it is also globally consistent.

In our C++ implementation, each segmentation y with |C2| < 32 is stored efficiently
as a 4-byte integer. The enumeration via C ′1 is implemented via fast bitwise operations.
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Figure 5.3: Histogram of the number of (unique) segmentations for the 200 training
samples from the mouse dataset. These sizes are still sufficiently small for storage and
exhaustive search.

5.3 Structured Prediction

As the structured prediction problem (5.4) is NP-hard [16], in practice a solution cannot
be found if the number of variables is too large or the weights make for a “difficult”
problem (Figure 5.5 left). Given weights w obtained with structured learning, the
global optimum of the multicut objective is found using the integer linear programming
approach developed in Chapter 4. In our experiments, only problems with about 105

variables could be optimized in reasonable time, while we would like to run structured
prediction on problems which are several orders of magnitude larger (note that the
datasets used in this chapter seem to be more difficult than those in Chapter 4). We
therefore propose a hierarchical blockwise optimization scheme.

Blocks. Given an oversegmentation C and weights w we divide the problem into sub-
problems via blocks:

� Bu (unshifted blocking) is a partitioning of the volume into rectangular blocks with
shape L = (L1, L2, L3),

� Bs (shifted blocking) is a blocking which is shifted by L/2.

For the chosen blocking B, each supervoxel is uniquely assigned to the block of smallest
scan-order index b ∈ B with which it intersects (creating a supervoxelized blocking of the
volume, Figure 5.4 right). Let C3(b) be the set of supervoxels assigned to block b and
C2(b) the set of all surfaces which bound at least one of these supervoxels. ∂C2(b) ⊂ C2(b)
forms b’s surface.
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5 Learning to Segment with a Global Loss Function

(a) (b)

Figure 5.4: Dividing a supervoxel segmentation into blocks.
Panel (a) shows Bu, panel (b) shows Bs. Dashed blue lines indicate the unshifted blocking
Bu of the pixels, dashed red lines the shifted blocking Bs. The set ∂C2 of surfaces
separating adjacent blocks is shown with bold magenta lines.

Blockwise Optimization. For hierarchy level 1, an initial block shape L is chosen. We
start with an unshifted blocking Bu.

For each block b, the optimization problem (5.4) is solved, subject to the additional
constraints that surfaces c2 /∈ C2(b) are assigned zero and c2 ∈ ∂C2(b) are assigned one.
Effectively, this reduces the problem size to |C2(b)| variables. Results from all blocks are
combined via binary OR to yield a result y(Bu). As each subproblem yields a consistent
solution, and all surfaces separating the blocks have yi = 1, the entire state y(Bu) is
consistent. The procedure is repeated with a shifted blocking Bs, yielding y(Bs).

A vector y(1) for the first hierarchy level is obtained by binary OR of y(Bu) and y(Bs).
As an intersection of two segmentations, y(1) ∈ MC. Combining Bu and Bs considerably
reduces boundary artifacts, see Figures 5.5 and 5.6.

Hierarchical Optimization. In a hard decision, all variables yi = 0 are removed from
the problem. We then obtain a new cell complex C′ (hierarchy level 2) by a connected
component labeling of the 1,2, and 3-cells in C, and a bijection M(C) → C′ mapping
between the entities of level 1 and 2. C′ consists of fewer, but bigger lines, surfaces and
segments. New weights w(c′) for c′ ∈ C′ are computed by wc′ =

∑
c∈M−1(c′)wc. Finally,

the block size is increased, and the above scheme is applied to C′. In this way, a hierarchy
of N levels is created. The final optimization uses no blocking. This algorithm can be
parallelized and performs well empirically (Section 5.4).
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Figure 5.5: Left: Increasing sign noise on the weights w simulates “difficult” weights.
With increasing noise, the runtime for obtaining a globally optimal solution explodes.
However, if the hierarchical blocked algorithm is used, overall runtime is substantially
reduced. Right: the quality of the approximation degrades very slowly, as measured by
the energy gap and Hamming distance relative to the optimal solution.
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Figure 5.6: Effect of the block side length on the quality of the segmentation. For each
parameter, blockwise multicut optimization was run either with no block shift (green
curve) or with block shift (red curve). Both in terms of VI and RE, using the shifted
blocks additionally improves performance, as does a larger block size.
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5 Learning to Segment with a Global Loss Function

(a) raw data (b) gold standard segmentation

Figure 5.7: For the mouse dataset, a block of 200 × 300 × 150 voxels (a) was partially
annotated using Carving to obtain a gold standard segmentation (b).

5.4 Experiments

The first dataset (Figures 5.9, top left and 5.7), shows part of adult mouse cerebral
cortex at 20 nm3 voxel size (SBFSEM imaging). The sample was prepared to preserve
extracellular space and to suppress intracellular organelle contrast. A 200 × 300 × 150
subset was segmented into 185 segments as gold standard. The second dataset (Fig-
ures 5.9, bottom left and 5.8), shows a part of Drosophila medulla (voxel size 10 nm3,
FIBSEM imaging). Here, organelles such as mitochondria are also stained. We would
like to thank Harald Hess and C. Shan Xu at Janelia Farm Howard Hughes Medical
Institute for providing this dataset. 49 blocks of 1003 have been partially segmented
(covering about 2/3 of each volume) as gold standard. Note that both datasets have
isotropic voxel size and are therefore amenable to a true 3D approach, as opposed to
thick slice data, such as from TEM imaging.

A watershed transform yields an oversegmentation. Then, the voxel ground-truth is
projected onto these supervoxels to create ground-truth for c2 ∈ C2. The feature vector
α(i) describes a surface c2 which separates two adjacent supervoxels cA3 and cB3 . Given
different voxel features (smoothed data, 1st and 2nd derivative filters), several statistics
over the voxels near the surface are computed. Additional features include topological
and geometric features such as size(c2), | size(cA3 )−size(cB3 )|, ratio between circumference
to area of c2 and number of adjacent surfaces.

The gold standard of each dataset is divided into training and test blocks. We sample
connected components of |C2| ≈ 27 surfaces and their gold standard labeling to create
training samples (xn,yn), n = 1 . . . 200. In order to maximize the number of supervoxels
involved in each sample, we only consider, for each sample, surfaces that intersect the
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5.4 Experiments

(a) raw data of validation set (b) gold standard segmentation

Figure 5.8: For the Drosophila dataset, 50 cubes of 2003 voxels each (a) were partially
annotated as gold standard segmentation (b).

same axis-aligned plane. To capture the asymmetric distribution of edges yi = 0 versus
y1 = 1, the sampling algorithm attempts to obtain samples with a ratio of p(yi =
1)/p(yi = 0) estimated from the gold standard segmentation.

Enumerating all (hundreds of thousands, see Figure 5.4) segmentations for one sample
takes only about a second, thanks to the efficient enumeration from Section 5.2. About
3 seconds are needed to precompute different loss functions (RE, VI, Hamming). Both
the list of segmentations (compressed to 4 bytes per segmentation) and the losses are
stored on disk to be reused during structured learning. Figure 5.4 shows that, for most
samples, we have to consider about half a million possible segmentations. Finally the
vector φ(x,y) is precomputed for all training samples. When the separation oracle
asks for the most violated constraint during cutting-plane training, we only need to
compute a dot product of the current weight vector and φ for each segmentation and
look up the segmentation’s loss w.r.t. the gold standard. In addition, it parallelizes
easily. Training usually needs about 200 iterations for convergence on 8 CPUs and takes
about 20 minutes.

For prediction, the trained model is optimized on several blocks taken from the test
portion of each dataset. We compare our results to unstructured methods. Different
binary classifiers are trained using a training set which consists of the union of all surfaces
involved in any training sample and their gold standard label. For Random Forest
and Regression Forest classifiers, the probabilistic output is transformed into weights
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5 Learning to Segment with a Global Loss Function

Figure 5.9: Left : Mouse dataset (above) and, drosophila dataset (below), with gold
standard segmentations. Right : Segmentation result (showing only 900 objects) with
structured prediction on 106 supervoxels with 107 variables, using blockwise hierarchical
optimization.

w via (5.5); for linear SVM and RBF SVM classifiers, the weights are taken to be the
distance from the margin. Hyperparameters (regression forest: tree depth; linear SVM:
regularization strength λ; RBF SVM: γ, λ) are optimized via cross-validation.

Figure 5.10 shows VI and RE, averaged over multiple test blocks as a function of the
regularization parameter λ with respect to the performance of unstructured methods.
For the mouse dataset our approach is able to outperform both an unstructured learning
of w as well as structured learning with decomposable Hamming loss, while being insen-
sitive to the exact choice of hyperparameter λ. Choosing either VI and RE loss during
learning yields similar performance (as measured by VI or RE) with respect to the gold
standard. On the drosophila dataset, using VI for learning improves over unstructured
methods; interestingly the RE loss does no better than unstructured learning. Note
also that the relative performance of unstructured SVM and Random Forest is inverted
between both datasets, emphasizing the distinctness of the two problems.
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Figure 5.10: VI and RE (lower is better) as a function of the regularization parameter λ.
Results have been averaged over multiple blocks. For struct-SVM, using the structured
loss functions VI “×” or RE “◦” gives substantially better results than the unstructured
Hamming loss “�”.
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5 Learning to Segment with a Global Loss Function

5.5 Conclusion

This chapter addressed the problem of learning a supervised segmentation algorithm
with arbitrary loss functions. A structured support vector machine has been used to
learn weights for correlation clustering on an edge-weighted region adjacency graph.

Our first contribution is an efficient exhaustive enumeration of segmentations for small
subsets of the training data for loss-augmented prediction. This allows to train on the
same structured loss functions (RE or VI) as are used for evaluation of the segmentation
quality. We find that, for a neighborhood of |C2| ≈ 27 and the linear struct-SVM
classifier, structured learning with a structured loss function can beat more complex,
but unstructured classifiers in two different microscopic modalities. However, the final
segmentation still fails to match the quality of a human expert. Our second contribution,
a hierarchical blockwise scheme for structured prediction, enables us to analyze a 10003

dataset involving over 10 million variables, which was broken up initially into 3,000
blocks. The complete hierarchical blockwise segmentation takes about a day, but can
be easily parallelized over the independent subproblems. Figure 5.9, right, shows 900
objects from the final partitioning.
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Chapter 6

Cut, Glue & Cut – Approximate
Multicut Segmentation

Recently, unsupervised image segmentation has become increasingly popular. Starting
from a superpixel segmentation, an edge-weighted region adjacency graph is constructed.
Amongst all segmentations of the graph, the one which best conforms to the given image
evidence – as measured by the sum of cut edge weights – is chosen (Chapters 4 and 5).

Since this problem is NP-hard, we propose a new approximate solver based on the
move-making paradigm: first, the graph is recursively partitioned into small regions
(cut phase). Then, for any two adjacent regions, we consider alternative cuts of these
two regions defining possible moves (glue & cut phase). For planar problems, the optimal
move can be found, whereas for non-planar problems, efficient approximations exist.

We evaluate our algorithm on published and new benchmark datasets, which we make
available online. The proposed algorithm finds segmentations that, as measured by a loss
function, are as close to the ground-truth as the global optimum found by exact solvers.
It does so significantly faster than existing approximate methods, which is important for
large-scale problems as proposed in this thesis for segmentation of neurites in electron
microscopy volume images.

This chapter is based on [20] (at the time of writing still under review), also see page 145.
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6 Cut, Glue & Cut – Approximate Multicut Segmentation

6.1 Introduction

Segmentation is an important problem in computer vision as a first step towards un-
derstanding an image. Many algorithms start with an over-segmentation into superpix-
els, which are then clustered into “perceptually meaningful” regions (cf. Section 2.4.5).
Usually, the number of regions into which the image should be partioned is not known
beforehand.

Recently, the multicut formulation [39] (sometimes called correlation clustering, [16])
has become increasingly popular for unsupervised image segmentation. Given an edge-
weighted region adjacency graph, the problem is to find the segmentation which mini-
mizes the cost of the cut edges. Such an approach has been shown to yield state-of-the-art
results on the Berkeley Segmentation Dataset [5, 159, 4].

Unfortunately, solving the multicut problem is in general NP-hard. Any exact solver
will therefore be plagued by scalability issues. However, segmentation of images with ever
finer superpixel partitionings and of large volume images in computational neuroscience
(Chapters 4 and 5, [10, 98]) demand solutions to large scale multicut problems. In
this regime of large-scale problems, existing solvers either fail to find any solution after
a reasonable time, rely on suitable edge weights (such that the problem decomposes
naturally into independent subproblems) or yield an approximate solution possibly far
away from the optimum.

Contribution.

(i) This chapter provides a new perspective on solving the multicut problem by local
move-making methods together with

(ii) a new approximate multicut solver called Cut, Glue & Cut (CGC). Furthermore,
(iii) our method avoids re-solving the same moves by tracking their “dirtiness”, which

decreases the runtime.
(iv) An extensive evaluation on existing and new benchmark datasets shows that CGC

provides results close to optimality and equal application performance significantly
faster than all its competitors, both exact and approximative methods, and gives
new insights concerning the applicability of competing methods.

(v) Our C++ implementation of CGC is available online.

Organization. In Section 6.2 we review two common formulations of the multicut prob-
lem. Next, related work is discussed in Section 6.3 and the max-cut problem in Sec-
tion 6.4. Based on a general formulation of local partition moves on segmentations in
Section 6.5, we describe our new Cut, Glue & Cut algorithm in Section 6.6. Extensive
experiments on benchmark datasets are presented in Section 6.7. Finally, we discuss our
findings.
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6.2 Problem Formulation

6.2 Problem Formulation

Let G = (V, E ,w) be a weighted region adjacency graph of nodes V, representing super-
pixels, and edges E . The function w : E → R assigns a weight to each edge. A positive
weight expresses the desire that two adjacent nodes should be merged, whereas a neg-
ative weight indicates that these nodes should be separated into two different regions.
Chapter 4 has described this model in detail.

A subgraph GA = {A, EA,w} consists of nodes A ⊆ V and edges EA = E ∩ (A × A).
In the following, we will call a connected component of nodes V a region R ⊆ V. Each
node i is assigned a label li ∈ {0, . . . , |V | − 1}. Using the indicator function δ(·), the
multicut problem can be written as a node labeling problem [14]:

argmin
l

 ∑
e=(i,j)∈E

we · δ(li 6= lj)

 , (multicut – node labeling, 6.1)

where δ(a) = 1 if a is true and 0 else. While (6.1) looks like a common Potts energy
without unary terms, there are some crucial differences:

� Any weight we with e ∈ E can be positive or negative.
� The lack of any unary data terms renders the problem much harder and introduces

ambiguity.
� The label space is large. In general we have to set |li| = |V| to allow for the

solution where every supervoxel becomes its own region without having to solve
the graph coloring problem implicitly. For planar graphs, it would be sufficient
that li ∈ {0, ..., 3} because any planar graph is 4-colorable [11].

An alternative formulation of problem (6.1) is in terms of binary edge indicator variables
y ∈ {0, 1}|E|:

argmin
y

 ∑
e=(i,j)∈E

we · ye

︸ ︷︷ ︸
CUTG(y)

s.t. y ∈ MCG . (multicut – edge labeling, 6.2)

A segmentation y has an associated energy which is denoted by CUTG(y). Here, MCG is
the set of all multicut constraints [39] for graph G forming the so-called multicut polytope
(see Equation 4.7). These constraints ensure that labeling y is consistent (Section 4.3.2):
if yij = 1 then nodes i and j should be in separate regions even after connected com-
ponent labeling. Intuitively, dangling line segments are forbidden in two dimensional
images, and punctured walls or faces are ruled out in three dimensional images.

While any segmentation
⋃
iRi ≡ V is represented by exactly one edge labeling y

with y ∈ MCG, many node labelings l represent the same segmentation. Therefore, a
multicut representation (6.2) is preferable to avoid large multiplicities of local optima.
However, an efficient handling of the multicut polytope is essential.
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6 Cut, Glue & Cut – Approximate Multicut Segmentation

6.3 Related Work

Applying state-of-the-art solvers for the labeling problem (6.1) is challenging since any
permutation of the labelings transforms an optimal solution into another optimal solu-
tion, see [80] for more details and a recent review.

In general, y ∈ MCG can be enforced by an exponential number of constraints [39],
but in practice – for a given objective function – a small subset of those are sufficient.
Therefore, a major branch of research has focused on cutting plane approaches, either
by solving a relaxation of (6.2) by a sequence of linear programs [86, 87, 80, 53] or by
solving problem (6.2) exactly by a sequence of integer linear programs [79, 5, 10, 80, 3, 4].

For the latter, one can avoid the cutting plane procedure by lifting to the fully con-
nected graph at the expense of problem size [3]. For many image segmentation problems,
however, the size of the complete graph is prohibitively large.

Alush and Goldberger [3, 4] suggest to use partial optimality in order to decompose the
problem into its positively connected components, defined as the connected components
of the graph G′ = (V, E ′) with E ′ = {e ∈ E|we > 0}. These problems are then separately
solved to global optimality. While this recovers the true solution, it depends on the
weights w whether a significant reduction of the problem is possible.

Yarkony et al. [159] suggest a method, called PlanarCC, which solves a relaxed lin-
ear program by iteratively solving weighted two-coloring problems. Because these sub-
problems require planarity to be tractable, PlanarCC is restricted to problems with
planar structure.

Another branch of research [85, 162, 14] has focused on specialized move-making
methods that take the degeneracy of the solution, due to label permutations in (6.1), into
account. Move-making algorithms maintain a valid solution throughout the optimization
procedure (a segmentation defined via a node labeling l or, equivalently, by an edge
labeling y ∈ MCG). In each step, a set of possible moves transforming the current
segmentation is considered, and the move which realizes the maximal energy decrease is
chosen. Therefore, the energy decreases monotonically until a (local) optimum is found.
The Kerninghan-Lin method [85], used in circuit-layout design, applies a sequence of
greedy local moves to neighboring regions. Bagon [14] recently proposed an extension to
the α-expansion move-making algorithm for solving multicut problems, which handles
the large label space and label ambiguity in (6.1) by using dynamic label sets and
additional label fixing, respectively.

6.4 Max-Cut

A basic subproblem which has to be solved in the Kerninghan-Lin method [85], Ex-
pand & Explore [14], PlanarCC [159] and also our method is the max-cut problem [50]
(also known as weighted 2-coloring).
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Figure 6.1: Left : Illustration of the cut phase. The steps are visualized as a tree. First,
a weighted 2-coloring problem (6.3) is solved on the initial superpixel adjacency graph
of an image. A connected-component labeling yields the child nodes. For each node,
the sequence of solving (6.3) and connected component labeling are repeated. Whenever
a weighted 2-coloring yields only a single component, the energy cannot be decreased
any further and the node has no children (“done”). Right : Illustration of the glue&cut
phase. In the illustrated move, the regions labeled 3 and 4 are first merged and then a
new, better partition is sought, which leads to a better global segmentation. This step
is repeated until no more improvement is possible.

The max-cut problem1 is the specialization of the node labeling problem (6.1) for the
case of binary labels li = {0, 1}, given by

argmin
l∈{0,1}|E|

 ∑
e=(i,j)∈E

we · δ(li 6= lj)

 . (max cut, 6.3)

This should not be confused with the min-cut problem, which refers to sub-modular
“graph cut problems” with non-negative edge weights w, for which a max-flow problem
can be formulated [93]. Intuitively, restricting the label space to two labels (0 and 1)
simplifies the problem. For planar graphs, (6.3) can be solved by the Blossom algorithm
[134] in polynomial time. In general this problem is still NP-hard. In response, Kern-
inghan and Lin have suggested a greedy method for (6.3) used in the KL algorithm [85].
Recently, Bagon [14] suggested to use QPBO-I [129] for (6.3). While this LP relaxation
often gives non-integral solutions for many nodes, the improving extension (-I) [129]
iteratively fixes such nodes and therefore also deals with the ambiguity of the problem.

In our experiments, we found that using QPBO-I performs better than the greedy
method used in the KL algorithm, but slightly worse than optimal solvers (Section 6.7).

1For reasons of consistency, we consider wlog. minimization instead of maximization.
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6 Cut, Glue & Cut – Approximate Multicut Segmentation

6.5 Partition Moves

In this section we define a class of moves which can be used to iteratively improve
segmentations. The Partition Move Theorem shows that under some technical condi-
tions, the improvement of the local sub-problem leads to monotonous improvement of
the global energy.

Theorem (Partition Moves)
Let yt ∈ MCG represent the segmentation of G at step t. Local partition moves are
defined over a subset S ⊂ V for which all edges crossing its borders have to be labeled
one: ∀ e ∈ E ∩ (S × (V \ S)) : yte = 1.

Let GS be the respective subgraph of G and ŷ ∈ MCGS represent a given valid segmen-
tation of S. For the combined segmentation

yt+1
e :=

{
ŷe if e ∈ ES
yte else

, (6.4)

the following holds:

(i) yt+1 ∈ MCG,
(ii) CUTGS (ŷES ) ≤ CUTGS (ytES )⇒ CUTG(yt+1) ≤ CUTG(yt).

Proof.

(i) Let us extend the local segmentation ŷ to the global graph G with

ŷG :=


ŷe ∀e ∈ ES
1 ∀e ∈ E ∩ S × (V \ S)

0 ∀e ∈ E ∩ (V \ S)× (V \ S) .

(6.5)

Since (a) ŷG ∈ MCG, (b) yt+1 = OR(ŷG,y
t), and (c) the set of multicuts is closed

under the OR operation, (i) holds.

(ii) For CUTGS (ŷES ) ≤ CUTGS (ytES ), the energy after the move can be written as:

CUTG(yt+1) =
∑
e∈ES

we · yt+1
e +

∑
e∈E\ES

we · yt+1
e (6.6a)

≤
∑
e∈ES

we · yte +
∑

e∈E\ES
we · yt+1

e (6.6b)

=
∑
e∈ES

we · yte +
∑

e∈E\ES
we · yte (6.6c)

= CUTG(yt) � (6.6d)
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6.5 Partition Moves

(a) (b)

Figure 6.2: Solving the labeling problem (6.1) with more than two colors (a) allows for
T-junctions. A sequence of two colorings can often model the same T-junction (b).

To obtain a segmentation ŷ on GS , one can either

(a) solve the multicut problem over GS (which is smaller than G) or
(b) restrict the subset of possible segmentations, e.g. to all two-colorable segmentations

of GS .

If we solve the problem to optimality and the current segmentation is in the feasible
set of the move, it is guaranteed that yt+1 never increases the energy. For approximate
solutions this is not the case; here the move should only be accepted in case of energy
decrease. While (b) restricts the set of possible moves, the problems become easier and
in most cases, a sequence of two-coloring moves (b) can generate the same segmentation
as one single N -coloring move (a) as sketched in Figure 6.2.
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6 Cut, Glue & Cut – Approximate Multicut Segmentation

Algorithm 6.1: Cut, Glue & Cut algorithm

Input: weighted graph G = (V, E ,w)
Output: approx. solution Q to (6.1) for G

1 Q0 ← segmentation of G into positively connected components
2 for n = 1 . . . niter do
3 Qn ← cut phase(G,Qn−1) //Algorithm 6.2
4 Qn ← glue cut phase(G,Qn) //Algorithm 6.3
5 if Qn = Qn−1 then
6 exit
7 end

8 end

6.6 Cut, Glue & Cut Algorithm

The CGC algorithm (Algorithm 6.1) always maintains a valid partitioning of the graph,
which is iteratively improved by local moves which act on single or neighboring regions.
It works in two distinct phases: (i) recursive cut phase, and (ii) glue & cut phase.

The cut phase recursively splits regions by solving max-cut problems (6.3), finally
yielding a finer, lower energy segmentation driven by the problem’s weights. In the
glue & cut phase, any two neighboring segments are first merged and then a new cut is
sought between them by solving (6.3). These two phases are repeated and the process
stops when the energy cannot decrease any further.

Cut Phase

In the cut phase, the regions are recursively split into smaller and smaller regions tuned
to the weights w until a local optimum is found. As cut moves we consider the max-cut
solution (6.3) for a single given region R to find a better segmentation of the region
ŷ ∈ MCGR , and accept the local move if the energy could be decreased compared to
the previous solution CUTGR(yR) = 0. The Partition Move Theorem then guarantees
a monotonically decreasing global energy for the segmentation.

The cut phase is illustrated in the left part of Figure 6.1, and is given as Algorithm 6.2.
All regions are first inserted into a queue Q. While Q is not empty, take a region R ∈ Q,
then solve the max-cut problem (6.3) for GR. Finally, a connected component labeling of
the solution defines a new set of regions2. If the suggested cut reduces the local energy,
we add the induced regions to Q. Otherwise, the energy of region R cannot further be
reduced by this type of move; region R is marked as “done” and added to a list Q′.

2Note that in general there may be more than two connected regions, cf. Figure 6.1, initial 2-coloring.
3Note that by using E ′ instead of E , we consider only one representative edge for each boundary between

two regions for performance reasons.
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6.6 Cut, Glue & Cut Algorithm

Algorithm 6.2: Cut phase

Input: weighted graph G=(V, E ,w), segmentation into regions given as queue Q
Output: segmentation into smaller regions Q′

1 Q′ ← ∅
2 while Q 6= ∅ do
3 R← queue pop(Q)
4 yER ← solve max-cut (6.3) for GR
5 if CUTGR(yER) < 0 then
6 Q← Q ∪ connected components(yVR)
7 end
8 else
9 Q′ ← Q′ ∪R

10 end

11 end

Glue & Cut Phase

In this phase, we consider Glue & Cut moves of pairs of adjacent segments until the
energy cannot be decreased any further, yielding a better solution.

Intuitively, we expect that two common local operations can decrease the energy: (i)
merging two segments or (ii) moving the boundary between two adjacent segments. This
motivates the following algorithm.

We again apply the Partition Move Theorem from Section 6.5. Given two adjacent
regions R1, R2 in the current segmentation, we consider the merged region R = R1 ∪R2

(glue), and find a new segmentation ŷ ∈ MCGR (cut) by solving the max-cut problem
(6.3). The local move is accepted if the energy CUTGR(ŷ) is lower than the energy of the
previous cut. The Partition Move Theorem then guarantees a monotonically decreasing
energy for the segmentation.

Formally, (Algorithm 6.3 and Figure 6.1, right), the glue & cut phase starts from a
given segmentation Q. We first obtain its edge labeling ȳ. Initially, all edges e ∈ E are
marked “dirty”. The following is repeated (line 3): for each pair (R1, R2) of adjacent
regions we pick a single representative edge from the shared boundary E ∩ (R1 ×R2) to
form the set E ′ (line 5). Then, for each such representative e = (i, j) with ye = 1 and
which is marked dirty, we find the best glue & cut move as described above. If, after
processing all edges e ∈ E ′, no move could be performed, we break out of the outer loop
(line 26).
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6 Cut, Glue & Cut – Approximate Multicut Segmentation

Algorithm 6.3: Glue & Cut phase

Input: weighted graph G = (V, E ,w), segmentation Q
Output: improved segmentation Q wrt. (6.1)

1 mark all edges e ∈ E as dirty
2 ȳ ← edge labeling(Q)
3 while true do
4 c← 0
5 E′ ← {e ∈ E ∩ (R1 ×R2)|R1, R2 ∈ Q adjacent}3
6 for e = (i, j) ∈ E ′ do
7 if ȳe = 0 or e is clean then
8 continue
9 end

10 find regions R1, R2 ∈ Q, s.t. i ∈ R1, j ∈ R2

11 S ← R1 ∪R2 //glue
12 yES ← solve (6.3) for GS //cut
13 mark edges E ∩ S × S clean (?)
14 if CUTGS (yES ) < CUTGS (ȳES ) then
15 c← c+ 1
16 mark edges E ∩ S × (V \ S) dirty (?)
17 CC← connected components(yES )
18 if |CC| > 2 then
19 mark edges E ∩ (S × S) dirty (?)
20 end
21 Q← Q \ {R1, R2} ∪ CC
22 ȳ ← edge labeling(Q)

23 end

24 end
25 if c = 0 then
26 break
27 end

28 end

Book-keeping of Modified Boundaries

In order to avoid re-solving the same problem multiple times, the algorithm marks edges
as “dirty” or “clean”. If two adjacent regions are only separated by clean edges, a
glue & cut move is not considered for this pair. In Algorithm 6.3, statements related to
book-keeping are marked with (?).

Imagine an accepted glue & cut move which yields exactly two regions R1 and R2. We

116



6.6 Cut, Glue & Cut Algorithm

(a) original image (b) superpixels (c) first two color-
ing

(d) end of the cut
phase

(e) CGC

(f) MC-I (global
optimum)

(g) MC-R (h) PlanarCC (i) Expand & Ex-
plore

(j) Kerninghan-
Lin

Figure 6.3: Comparison of the different multicut algorithms for a model from [5], based
on the superpixel segmentation in (b). The colored boundaries indicate true positives
(yellow), false negatives (red), false positives (blue) and true negatives (invisible) with
respect to the globally optimal solution (f). Top: The image (a) is partitioned into
superpixels (b). A single two-coloring leads to (c) and the cut phase ends with (d).
The final output of the CGC algorithm is (e). Bottom: Results of various competitive
methods.

mark the boundary between R1 and R2, E ∩ (R1 × R2), as clean, since re-solving (6.3)
for R1 ∪ R2 would again lead to the same two-coloring into R1 and R2. However, if an
adjacent pair (R1, R3) is chosen subsequently, a glue & cut move could alter region R1

into R′1. Therefore, a move between R′1 and R2 could improve the energy again. To
allow this move it is necessary to mark the boundary of R′1 ∪R2 as dirty. Note that for
the case where an accepted move yields more than two regions, the above would not be
correct and the internal edges have to be marked dirty.
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6 Cut, Glue & Cut – Approximate Multicut Segmentation

6.7 Experiments

We evaluate the performance of our Cut, Glue & Cut algorithm on two different 2D
segmentation benchmarks as well as on a new 3D volume segmentation benchmark.

Algorithms

For our CGC algorithm, we consider three variants: CGC-B does not do book-keeping,
CGC-P does not use the globally optimal Blossom solver for planar max-cut problems,
but rather uses the approximate QPBO-I. CGC-PB does not do book-keeping while
using QPBO-I as max-cut solver.

We compare against the following algorithms: Kerninghan-Lin (KL, [85]), Planar Cor-
relation Clustering (PlanarCC, [159]), Expand & Explore [14], LP-based cutting plane
method of a relaxed problem (MC-R), integer linear program based cutting plane method
(MC-I), which always finds the globally optimal solution. MC-R and MC-I use facet-
defining separation procedures and bounding techniques as described in [80]. We use the
publicly available C++ implementation in OpenGM 2.1.1 [9] for KL, MC-R and MC-I.
For Expand & Explore, we use the publicly available code4 of the corresponding authors.
For PlanarCC, we kindly obtained the implementation by the authors of [159]. While
both are implemented in MATLAB, all computation-heavy parts are delegated to C++
functions via MEX wrappers, such that our comparison is fair.

For PlanarCC, we follow the suggestion of the authors to stop the algorithm after 40
iterations for better runtime. Without this, for several instances, PlanarCC does not
converge after one hour. With more iterations, the energy of the solutions improves
slightly but at the expense of significantly longer runtime.

Note that in the Expand & Explore algorithm, each binary sub-problem includes by
construction unary terms, which leads to non-planar sub-problems even when the original
problem is planar.

6.7.1 2D Segmentation

We consider planar 2D segmentation problems derived from the Berkeley Segmentation
Dataset [107]:

(i) models from Andres et al. [5] (BSD 300 test data, 100 instances),
(ii) models from Yarkony et al. [159] (BSD 300 training data, 200 instances).

While the former uses local edge likelihoods learned by a Random forest, the latter uses
global probability of boundary (gPb). Furthermore, they are distinguished in the way

4http://www.wisdom.weizmann.ac.il/∼bagon
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6.7 Experiments

they derive the edge weights w from the edge probabilities p(e). In [5],

we = log

(
p(ye = 0)

p(ye = 1)

)
+ log

1− β
β

(6.7)

is chosen while [159] use

we = log

(
1− gPbe

gPbe

)
+ γ . (6.8)

Results for both datasets and different values of β and γ are shown in Figures 6.4
and 6.5. MC-I finds the global optimum for all instances. The plots show the average
energy distance (mean gap) to the optimum. Among all approximate methods, CGC
performs best. Concerning run times, CGC has robustly low runtime for a wide range
of parameters β and γ.

A more detailed comparison for β = 0.33, as used in [78], and γ = 0.3 can be found
in Tables 6.1a and 6.2a. These tables additionally show how often the methods find
the global optimum (best), and how often they were able to verify the optimality by
themselves (ver. opt). For Table 6.1a, ground truth segmentations and superpixels were
available, such that we can calculate the Variation of Information (VI, [109]). Interest-
ingly, the globally optimal solution does not necessarily give the best segmentation as
measured by the VI (but approximately, VI distance gets larger with increasing energy
as expected). This means that in practice, it is sufficient to run the much faster CGC
algorithm, see also Figure 6.3.

6.7.2 3D Segmentation

We have created a new public benchmark dataset derived from the experiments in Chap-
ter 4. Using the FIBSEM dataset, we derived a set of problem instances over a range of
different problem sizes from volumes of 303 up to 4503 voxels.

Results are shown in Figure 6.6 and for volumes of 4003 are detailed in Table 6.4. Based
on the energy difference of CGC and CGC-P for the planar models, we expect reduced
performance for the non-planar case of 3D volume image segmentation (Figure 6.6). Still,
with a runtime as fast as KL (the fastest algorithm considered), CGC-P is able to obtain
much lower-energy solutions and lies between MC-I, MC-R and Expand & Explore. For
instances with 4003 voxels, MC-I was only able to find for 7 out of 8 instances the global
optimum within one hour (Table 6.4).
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Figure 6.4: Evaluation on the planar model from Yarkony et al. [159] for different
boundary penalties γ, averaged over 200 instances.
Top: Gap to the global optimal energy (MC-I) averaged over all instances.
Bottom: Mean runtime is shown as solid curves, median runtime in dashed curves. For
both 2D and 3D images, CGC outperforms all competitors in terms of runtime. On 2D
images, CGC gives better results in terms of energy than all competitive approximative
methods. Only Integer Multicut (MC-I) gives better partitions in terms of energy but
is significantly slower.
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Figure 6.5: Evaluation on the planar models from Andres et al. [5] for different boundary
penalties (β), averaged over 100 instances.
Top: Gap to the global optimal energy (MC-I) averaged over all instances.
Bottom: Mean runtime is shown as solid curves, median runtime in dashed curves. For
both 2D and 3D images, CGC outperforms all competitors in terms of runtime. On 2D
images, CGC gives better results in terms of energy than all competitive approximative
methods. Only Integer Multicut (MC-I) gives better partitions in terms of energy but
is significantly slower.
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Figure 6.6: Evaluation on a 3D segmentation benchmark (derived from Chapter 4) for
different volume sizes N3 averaged over 8 instances. For 3D volume image segmentation,
the approximate MC-R method beats CGC, though at significant runtime cost.
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algorithm runtime value bound best ver. opt. VI

KL 4.96 sec 4608.57 −∞ 0 0 2.6431
Expand & Explore 2.90 sec 4486.57 −∞ 1 0 2.9153

CGC-PB 6.35 sec 4466.80 −∞ 1 0 2.5247

CGC-P 5.35 sec 4466.80 −∞ 1 0 2.5247

CGC-B 0.63 sec 4445.06 −∞ 23 0 2.5355
CGC 0.42 sec 4445.06 −∞ 23 0 2.5355

MC-R 5.16 sec 4447.47 4442.34 35 35 2.5490
Planar-CC 5.20 sec 4450.73 4437.29 9 8 2.5603

MC-I 2.20 sec 4442.64 4442.64 100 100 2.5363

(a) Models from Andres et al. [5].

algorithm runtime value bound best ver. opt.

KL 0.04 sec −73.41 −∞ 45 0
Expand & Explore 0.03 sec −89.90 −∞ 130 0

CGC-PB 0.03 sec −89.45 −∞ 104 0

CGC-P 0.03 sec −89.45 −∞ 104 0

CGC-B 0.03 sec −92.25 −∞ 185 0
CGC 0.03 sec −92.25 −∞ 185 0

MC-R 3.48 sec −91.70 −92.39 181 180
Planar-CC 0.36 sec −92.16 −92.39 184 174

MC-I 29.80 sec −92.35 −92.35 200 200

(a) Models from Yarkony et al. [159].

Table 6.3: Mean runtime, energy and bound (if available) for different multicut solvers.
Also shown is how often each method finds the global optimum (“best”), and how often
a method is able to verify the optimality by itself (“ver. opt”). Execution was aborted
after one hour. Best values are marked in bold. The VI column reports the Variation of
Information [109].
(a) Summary over the models from [5], 100 instances. (a) Summary over the models from
[159], 200 instances. Without superpixel maps available, VI could not be calculated.
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algorithm runtime value bound best ver. opt.

KL 85.06 sec −53476.75 −∞ 0 0
Expand & Explore 1087.84 sec −57054.25 −∞ 0 0

CGC−P 64.95 sec −57206.18 −∞ 0 0

MC-R 4121.08 sec −20111.68 −58774.97 0 0

MC-I 745.53 sec −57319.41 −57386.73 7 7

Table 6.4: Performance of various multicut solvers on instances derived from [10] (cf. FIB-
SEM dataset, Chapter 4). Eight instances with cube length N = 400 voxels were used.
See Table 6.3 for a column legend.

6.8 Conclusion

In this Chapter I have presented a new approximate solver for multicut problems –
called Cut, Glue & Cut (CGC). The solver can be used both for planar and non-planar
problems and is based on the move-making paradigm. It works in two phases:

� In the Cut phase, a low energy segmentation tuned to the problem’s weights is cre-
ated by recursively solving 2-coloring problems, either using the Blossom method
(for planar problems) or QPBO-I.

� In the Glue & Cut phase, two adjacent sub-problems are first merged (glue) and
then a possibly better cut is sought between them (cut). This process is repeated
until no energy improvement is possible anymore.

The experimental evaluation shows that the new algorithm is considerably faster than
existing methods while able to match an exact solver in quality, as measured by the
Variation of Information on 2D images.
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Chapter 7

Towards Joint Segmentation and
Labeling

In this chapter, I propose the Asymmetric Multi-way cut model in order to jointly
segment neurites as well as label cell organelles (e.g. mitochondria) in volumetric electron
microscopy data of neural tissue.

For image segmentation, recent advances in optimization of non-submodular pairwise
energy functions make it possible to combine noisy region appearance terms with pairwise
terms which can not only discourage, but also encourage label transitions, depending on
boundary evidence. These general multi-label second-order Conditional Random Fields
have the potential to overcome problems inherent to graph cut algorithms, such as
the shrinking bias. However, with the ability to encourage label transitions comes a
different problem: strong boundary evidence can overrule weak region appearance terms
to create new regions out of nowhere. We make the observation that some label classes
exhibit strong internal boundaries, such as the background class which is the pool of all
objects which are not of interest and for which no separate region appearance terms are
available. Other label classes, meanwhile, should be modeled as a single region, even if
some internal boundaries are visible.

We therefore propose in this chapter to treat label classes asymmetrically: for some
classes, we allow a further partitioning into their constituent objects as supported by
boundary evidence; for other classes, further partitioning is forbidden. We show how
such a model can be expressed as both a labeling problem with a large label space as
well as a binary edge labeling problem, for which we give a succinct formulation. This
formulation allows us to obtain an exact solver for our new type of models by extending
the optimizer of Kappes et al. In our experiments, we show where such a model can be
useful for both 2D and 3D segmentation.
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(a) image (b) region appearance (c) boundary prob.

(d) graph cut (e) Multi-way cut (f) AMWC

Figure 7.1: Segmentation of image (a) can combine information from both region ap-
pearance terms (b) and boundary probabilities (c). We examine different variants of
pairwise Conditional Random Field models with Potts potentials. Graph cut (d) uses
positive coupling strengths only, which leads to shrinking bias. Multi-way cut (e) uses
both negative and positive coupling strengths, such that the creation of boundaries can
be actively encouraged. However, this leads to some spurious labelings, induced by
strong boundary evidence. Our proposed variant, (f), may yield a better segmentation
by allowing boundaries within the background class.

7.1 Introduction

Image segmentation methods typically rely on two complementary sources of informa-
tion: object appearance and boundary evidence. For example, in semantic labeling tasks
[51] a set of object classes of interest is given. Each image can contain one or more of
these instances, but might also contain many objects of unknown classes (“background”).
One approach for semantic segmentation is to make use of (noisy) local object class prob-
abilities – as obtained from learned appearance models – which can be regularized using
local boundary cues.

On the other hand, pure partitioning problems, as in the Berkeley Segmentation
Dataset [107], do not specify any object classes but rely on boundary evidence alone,
e.g. [12, 5, 159].
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In this chapter, I propose a combined semantic labeling and partitioning which can
naturally deal with object classes which are known to have strong internal boundaries.
Our model, called Asymmetric Multi-way cut (AMWC ), jointly optimizes the region
labeling, the boundaries between classes and the boundaries within classes. This model
is motivated by the problem of simultaneously segmenting neurites as well as labeling
mitochondria and other cell organelles in EM data of neural tissue (see Section 7.5.2).

Many segmentation algorithms, including AMWC, are formulated as second-order
Conditional Random Fields over a discrete set of labels, in which the unary potentials
transport local evidence for each object class. The pairwise potentials are usually chosen
to be Potts functions with varying coupling strengths we ∈ R+, which may depend on
boundary evidence. The optimal labeling (in the MAP sense) can then be found by
minimizing the associated energy function.

Graph cut based algorithms have been extremely influential in the last decade [29, 93,
128], because they allow to find the optimal solution for binary labeling problems and
approximate solutions for multi-label problems with non-negative coupling strengths in
polynomial time. They regularize noisy detections by penalizing boundary length.

Unfortunately, this leads to “shrinking bias” [152], i.e. thin, elongated objects are
cut off (Figure 7.1d and – in the context of neurite segmentation – Section 2.4.3). As a
counter measure, the coupling strength can be chosen as an inverse function of boundary
evidence, making label transitions less costly when strong boundary evidence exists and
more costly when boundary evidence is weak. However, the general problem remains:
positive coupling strengths cannot actively encourage label transitions.

Since negative coupling strengths we encourage label transitions and positive we dis-
courage label transitions, a model with no restriction on the sign of we may be more
expressive: with strong boundary evidence (resulting in we < 0) along a thin, elongated
object, shrinking bias can be overcome.

Recently, Kappes et al. [79] presented a method that, contrary to others [92, 94], is
able to find the globally optimal solution for these more general models. This allows us
to evaluate the models without any error introduced by approximate optimization.

However, besides their increased computational hardness, models which can encourage
label transitions also have a major drawback: spurious label transitions are provoked
in highly cluttered background (Figure 7.1e) or within textured objects when strong
boundary evidence overrules homogeneous region appearance terms.

In this chapter, we investigate a new subclass of labeling problems, which do allow
intra-category boundaries. The energy function can still be expressed as a pairwise
Conditional Random Field. Figure 7.1f shows the result of our new AMWC model, in
which we allow internal edges in the “background” class, but disallow internal edges in
the “foreground” class.
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can use
appearance

terms

can use
positive
coupling

can use
negative
coupling

can partition
same-labeled

regions

graph cut, e.g. [29, 93] X X × ×
Multicut, e.g. [39, 5] × X X n/a
Multi-way cut, e.g. [79, 161] X X X ×
AMWC (this chapter) X X X X

Table 7.1: Overview of different subclasses of discrete labeling problems, which can all
be expressed as pairwise Conditional Random Fields.

Contributions.

(i) A formulation of joint labeling and partitioning problems, where some classes may
have internal boundaries and others may not. This addresses a gap in the literature,
see Table 7.1.

(ii) An exact solver for AMWC problems based on a formulation using binary edge
indicator variables [80].

(iii) Experiments that show when such a formulation is useful and when it is not.

Organization. Related work is surveyed in Section 7.2, followed by a review of the
Multi-way cut formulation of the labeling problem in Section 7.3. Our new AMWC
model is described in Section 7.4 together with a method to find the globally optimal
solution. Experiments are presented and discussed in Section 7.5. Finally, we conclude
with Section 7.6.

7.2 Related Work

Let G = (V, E) be a given pixel (or superpixel) adjacency graph. Each node i ∈ V can
be assigned one of k discrete labels: li ∈ L = {0, . . . , k − 1}. Many common pixel or
superpixel labeling problems [29, 128, 145, 152, 14, 78] are then written as an energy
minimization over the sums of unary and pairwise terms:

argmin
l∈L|V|

∑
i∈V

Ei(li)+
∑

(i,j)∈E
Eij(li, lj)

 . (2nd-order CRF, 7.1)

The unary terms are functions Ei : L → R and indicate the local preference of node i
to be assigned a label. The pairwise terms are functions Eij : L × L → R that express
the local joint preferences of two adjacent nodes i and j.
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7.3 Multi-Way Cut Formulation

A common choice for the binary term is a Potts function [29]:

Ew
ij (li, lj) =

{
0 if li = lj

wij if li 6= lj
. (Potts function, 7.2)

Depending on the weight wij a Potts function can either encourage (wij < 0) or discour-
age (wij > 0) label transitions.

Binary labeling problems with L = {0, 1} and pairwise potentials for which wij ≥ 0
for all (i, j) ∈ E (known as graph cut problems) can be solved in polynomial time with a
max-flow algorithm [29, 93, 28]. Graph cut has been ubiquitous in image segmentation
[128], but penalizes a weighted sum of cut edges which leads to the problem of shrinking
bias [152], for which many sophisticated counter measures have been developed.

For k > 2 labels, (7.1) becomes a multi-label energy minimization problem that is NP-
hard in general, even for non-negative weights w. We will refer to the general problem
of (7.1) with 2 ≤ k � |V| and w ∈ R|E| as the multi-way cut problem because the
optimal solution can be found as a cut in a graph with special structure (reviewed in
Section 7.3). Approaches to solve this problem approximately are, amongst others, move-
making algorithms [29, 14], linear programming [91, 95, 80, 78] and dual decomposition
[94]. An integer linear program to which violated constraints are added in a cutting-
plane fashion [79, 80] is able to find the globally optimal solution on many problem
instances, see Section 7.3.

A special case of the labeling problem with Ei(li) ≡ 0, a virtually unlimited set of
labels k = |V| and no restriction on the sign of wij is called the correlation clustering
[16] or multicut problem [39]. The multicut formulation has recently become popular for
unsupervised image segmentation [5, 10, 14, 87, 159, 4, 98] where the weightsw are either
learned in a supervised fashion [5, 14, 10, 87, 98], or derived from boundary detectors
such as gPb [106] as in [159]. In particular, Chapters 4 and 5 have introduced such
models for automatic segmentation of neurites in electron microscopy volume images
of neural tissue. Multicut models have an inherent model-selection ability [14] such
that they recover the optimal number of regions needed for an accurate segmentation
automatically, based only on boundary evidence. However, as region appearance is not
taken into account, the resulting segments are not given a class label. Labels can be
assigned to segments only in a post-processing step, which takes the segmentation as
given.

Table 7.1 summarizes the different subclasses of pairwise Conditional Random Field
models considered in this chapter. Note that we review only unified formulations with a
specified objective function here and omit workflows that chain several processing steps.
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7 Towards Joint Segmentation and Labeling

Data:

Graph/Cut:

Segmentation:

t00 t01 t02 t10 t20 t30 t40 t01 t02 t00 t01 t02

Figure 7.2: Illustration of the graph representation of (7.1), as given by (7.3).
Shown is a 4 × 1 pixel image strip (“Data” row). There are three possible classes
L = {red,blue, yellow}. From the left to the right pixel, the region appearance terms
indicate strong preference for the yellow class (pixels 1, 2), a preference for yellow over
the blue class (pixel 3, p3), and a strong preference for the red class for the last pixel.
Furthermore, there are strong boundaries to the left and right of p3. Left: Multi-way cut
solution. Due to the strong boundary evidence, p3 is assigned the blue label contrary
to its unary potential. Middle: The AMWC model with A = {yellow} is obtained by
duplicating the terminal nodes for the yellow class |V| = 4 times. Right: With the
modified constraint (7.5c′), the number of terminal nodes does not have to be increased
to yield the same solution.

7.3 Multi-Way Cut Formulation

In order to discuss our new AMWC model in Section 7.4, we first review a different
representation of the labeling problem (7.1) with Potts potentials (7.2), based on Kappes
et al. [79, 80].

We call the nodes V the internal nodes and edges E the internal edges. We then define
a new graph G′ = (V ′, E ′), where a set of terminal nodes T = {t0, . . . , tk−1}, representing
k labels, has been added (Figure 7.2, left). Furthermore, terminal edges are introduced
between each pair of internal and terminal nodes as well as between all pairs of terminal
nodes:

V ′ = V ∪ T ,

E ′ = E ∪
{

(t, v) | t ∈ T, v ∈ V
}

∪
{

(ti, tj) | 0 ≤ i < j < k
}
.

(7.3)

Then, the node labeling problem (7.1) with Potts potentials (7.2) can be written using
binary indicator variables y for the edges E ′ and weights w′, derived from the potential
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7.4 The Asymmetric Multi-Way Cut Model

functions Ei(·) and Eij(·, ·), see Kappes et al. [79]:

argmin
y∈{0,1}|E′|

 ∑
(i,j)∈E ′

w′ij · yij

 s.t. y ∈ MWCG , (7.4)

where MWCG is the multi-way cut polytope as defined by the following set of linear
constraints [80]: ∑

(i,j)∈P
yij ≥ yuv ∀ (u, v) ∈ E

P ∈ Path(u, v) ⊆ E (7.5a)

ytt′ = 1 ∀ (t, t′) ∈ T, t 6= t′ (7.5b)

ytu + ytv ≥ yuv ∀ (u, v) ∈ E , t ∈ T (7.5c)

ytu + ytv ≥ ytv ∀ (u, v) ∈ E , t ∈ T (7.5d)

ytv + yuv ≥ ytu ∀ (u, v) ∈ E , t ∈ T . (7.5e)

For internal nodes, the cycle constraint (7.5a) [39, 5] intuitively forbids “dangling”
boundaries (discussed in detail in Section 4.3.2). Constraint (7.5b) ensures that all
terminals are always separated. Finally, (7.5c)-(7.5e) constitute cycle constraints for all
cycles of three nodes involving one terminal. In particular, (7.5c) says that, if there is
a label transition (yuv = 1), label t cannot belong to both u and v (which would be the
case for ytu = 0 and ytv = 0).

Although a complete description of MWCG needs a possibly exponential number of
constraints, in practice only a small set of active constraints is needed to find the (valid)
globally optimal solution. The cutting plane method [79, 80] first formulates an uncon-
strained integer linear program and then identifies violated constraints in the solution,
which are subsequently added to the problem. This is repeated until a solution does not
violate any of the constraints in (7.5a)-(7.5e), yielding the globally optimal solution.

7.4 The Asymmetric Multi-Way Cut Model

In the proposed Asymmetric Multi-way cut model, we want to allow internal boundaries
within regions labeled as l ∈ A, and disallow internal boundaries in all regions labeled
l ∈ {0, . . . , k − 1} \ A. This is illustrated in Figure 7.3.

7.4.1 Formulation within the Binary Edge Labeling Framework

We first give the advantageous formulation of AMWC in terms of the binary labeling of
E ′ in (7.4). One way to formulate the model is to replace every terminal node ta ∈ A
with a set Ta = {t0a, . . . , t|V|−1a }, as shown in Figure 7.2, middle and Figure 7.4, for which
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7 Towards Joint Segmentation and Labeling

Figure 7.3: Illustration of allowed cuts, depending on A.
Blue denotes background (label 0) and yellow foreground (label 1). From left to right
we demand no label transitions within foreground and background regions (A = ∅),
we allow label transitions within the background class (A = {0}), or only within the
foreground class (A = {1}) or in both classes (A = {0, 1}). In all cases, we admit only
closed contours (black boundaries).

edge weights are copied from the existing terminal edges. These new nodes can represent
a partitioning of class a into subclasses, which are separated by salient boundaries in
the image. Similar to the multicut formulation, the label space has to be increased
dramatically. By setting |Ta| = |V|, solutions where every node is assigned a different
label from the set Ta are made possible.

However, instead of adding |A|·(|V|−1) additional terminal nodes, the same effect can
be achieved by simplifying a single constraint in the binary edge labeling formulation of
Section 7.3. We relax constraint (7.5c) to be

ytu + ytv ≥ yuv ∀ (u, v) ∈ E , t ∈ T \ A . (7.5c′)

In practice, we extend the implementation of [80] such that constraint (7.5c) is only
added in the cutting-plane procedure when t /∈ A holds.

With this change, we obtain a method that is able to solve our new AMWC-type
models to global optimality.

7.4.2 Formulation as a Node Labeling Problem

Our AMWC model can still be formulated as a second-order Conditional Random Field
(7.1) with Potts potentials. Starting from the edge labeling formulation from the previ-
ous section, we construct the corresponding model by choosing a new set of labels L′ as
well as constructing appropriate unary and pairwise potentials E′i(·) and E′ij(·, ·). Let
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7.4 The Asymmetric Multi-Way Cut Model

Figure 7.4: In this example with A = {0}, the background
class (label zero, shown in blue) actually consists of several
distinct segments t00, t

1
0, t

2
0 and t30 (different shades of blue),

all separated by boundaries (black). Another region, t1 /∈ A
cannot be split into sub-segments.

the original set of labels be L = {t0, . . . , tk−1}. Then we set

L′ =
⋃
a∈A

(
{t0a, . . . , t|V|−1a }

)
∪ (L \ A) , (7.6a)

E′i(l
′
i) =

{
Ei(l

′
i) if l′i ∈ (L \ A)

Ei(a) if l′i = tja
, (7.6b)

E′ij(l
′
i, l
′
j) = Ei,j(a, b) with t?a = li, t

?
b = lj . (7.6c)

In (7.6a), we introduce |V| − 1 additional labels for each label class for which internal
boundaries are allowed. These extra labels are assigned the same weights in the new
unary terms (7.6b) as the original label class. Finally, the Potts terms do not change
(7.6c).

The inflated label space makes this formulation unwieldy for practical optimization
methods: similar to multicut models, a large number of different labelings, obtained by
label permutations, have the same energy.

7.4.3 Labeling of Regions and Boundaries

At first sight, it may seem that an optimal solution of AMWC can also be obtained by
the following algorithm:

1. Run the Multi-way cut algorithm using the original label set L = {0, . . . , k− 1} to
obtain a segmentation into regions R1, . . . , Rn.

2. For each region Ri assigned a label l ∈ A, run the multicut algorithm to obtain an
internal partitioning.

We give two toy examples with L = {b, w} in which this decomposition is not possible,
both with the setting A = {w}. In Figure 7.5, the b-object shrinks when using the
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(b) A = {w} (AMWC)

Figure 7.5: Toy example showing how AMWC can lead to changes in the extent of
objects. Here, we consider a binary labeling problem of a 4 × 3 pixel grid with classes
L = {b, w}, which are shown in dark and light shades of gray, respectively. In the center
of each square, unary potentials are given for b and w. On each boundary, the circled
number gives the weight parameterizing the associated Potts potential. Left: Using
the standard Multi-way cut model, the segmentation yielding the best energy marks
a single pixel as background. Right: With the same weights, the AMWC model with
A = {w} yields a segmentation in which the b-object shrinks and the w-object grows.
See Figure 7.6 for an example of the opposite case.
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(b) A = {w} (AMWC)

Figure 7.6: Toy example showing how AMWC can lead to changes in the extent of
objects. Left: Optimal solution for the standard Multi-way cut model. Right: Using
the same weights, the AMWC model with A = {w} yields a segmentation in which the
extent of the b-object changes. (For notation, also see Figure 7.5).
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AMWC model with respect to the Multi-way cut solution; in Figure 7.6, the b-object
grows when using the AMWC model with respect to the Multi-way cut solution.

7.5 Experiments

In this section, we show qualitatively when the AMWC model is useful and when it is
not. A quantitative analysis is subject of future work.

7.5.1 Application to 2D Segmentation of Photographs

We consider foreground/background segmentation problems with L = {0, 1}, in which
internal boundaries are only allowed in the background: A = {0}. For all images, we
first compute an over-segmentation into superpixels using a seeded watershed algorithm
(Section 2.4.5) on an elevation map combining gradient magnitude and the output of
the generalized probability of boundary (gPb) detector from [106].

Then, the superpixel adjacency graph G = (V, E) defines the structure of the Condi-
tional Random Field (7.1). For each edge (i, j) ∈ E which represents the shared boundary
between superpixels i and j, we compute the mean boundary probability, fij , as given
by the gPb detector. Weights wij ∈ R are then obtained as follows

wij = log
1− fij

fij
+ log

1− β
β

, (7.7)

where β ∈ [0, 1] is a hyper-parameter giving the prior boundary probability. As region
appearance terms, we use the output of the object saliency detector [123], or region
appearance terms derived from manually placed object bounding boxes. Again, there is
a bias hyper-parameter α which gives the prior foreground probability. Finally, we write
the energy function (7.1) as

argmin
l∈L|V|

γ ·∑
i∈V

Ei(li) +
∑

(i,j)∈E
Ew
ij (li, lj)

 , (7.8)

where the hyper-parameter γ weights unary and pairwise terms.
Figure 7.7 gives examples where the AMWC formulation can help and where it cannot.

Column (a) shows the original images, taken from benchmark datasets [121, 107, 27].
Column (b) shows foreground maps either obtained using [123] or given as manual
bounding box annotations (rows 1-4). The boundary probability for superpixel edges
is visualized in column (c). The Multicut algorithm, column (d), ignores the region
appearance terms and gives a decomposition into regions which are shown with random
colors. Column (e) shows the visually best solution of a standard graph cut model.
Finally, columns (f) and (g) show results for both the multi-way cut model as well as
the AMWC model with A = {background}.
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7 Towards Joint Segmentation and Labeling

For each row, hyper-parameters α, β and γ – shared among Multicut, Multi-way cut
and Asymmetric Multi-way cut models – were chosen to give reasonable and comparable
results for these three algorithms.

For the pedestrian detection (Figure 7.7, rows 1–4) both the local appearance and edge
detection terms are weak. The latter leads to regions which “leak” into the background
when using multicut segmentation. Classical graph cut methods suffer severely from
the very rough local data terms and show many artifacts caused by shrinking bias.
While Multi-way cut generates foreground artifacts due to strong edges present in the
background, the proposed AMWC model can handle these by introducing closed contours
in the background at these locations. Sometimes, however, strong within-foreground
contours can produce some artifacts (rows 2 and 4).

For the examples using saliency detection as the region appearance model (Figure 7.7,
rows 5–8), both the region and edge terms are more confident. However, graph cut still
shows shrinking artifacts and AMWC sometimes “hallucinates“ foreground-regions in
the background, though this is no longer as significant as with the weaker data terms in
rows 1–4.

The run times for Multicut, Multi-way cut and AMWC are comparable with less than
10 seconds per image.
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(a) (b) (c) (d) (e) (f) (g)

Figure 7.7: Example segmentations of various pairwise Conditional Random Fields Mod-
els. (a) original image, (b) region terms, (c) boundary terms, (d) Multicut, (e) best graph
cut, (f) Multi-way cut and (g) AMWC. For details see text.
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7.5.2 Application to Joint Neurite and Cell Organelle Segmentation

In Chapter 4, we have shown the benefits of applying the multicut model to automatic
segmentation of neurites in high-resolution electron microscopy volume images of neural
tissue. In the SBFSEM dataset (Section 4.5.1), we could benefit from the chosen staining,
which suppressed internal structures of neurites, such as mitochondria, vesicles and
postsynaptic densities. However, researchers are worried that it is too difficult to reliably
detect synapses based on shape-cues alone (Shawn Mikula, personal communication).
This is one reason why the more complicated conventional staining, such as the one used
for the FIBSEM dataset in Section 4.5.2, needs to be dealt with.

In the past, automatic methods to segment mitochondria [103] or synapses [97, 19],
have been considered independently from the neurite segmentation problem (cf. Sec-
tion 2.3). The Asymmetric Multi-way cut model now allows to combine both problems
into a single, joint model.

In our preliminary experiments, we consider two classes, mitochondrion m and cy-
toplasm c. In the future, we plan to consider also vesicle clusters and postsynaptic
densities. We set A = {c} to allow internal boundaries within the cytoplasm class — ac-
counting for the strong boundary evidence of neurite membranes, which separate regions
of cytoplasm into distinct neurites.

Figure 7.8 shows results on the FIBSEM dataset from Section 4.5.2, where we combine
learned pixel-wise mitochondrion probabilities with learned membrane (boundary) prob-
abilities. Starting from the raw data (7.8a), we train a Random Forest classifier using
ilastik’s pixel classification workflow (Section 3.1) to distinguish mitochondria voxels
from background. The resulting probability map is shown in (7.8b). Additionally, we
train a boundary classifier using the interactive boundary learning tool FaceLabeler
from Section 3.7. Edge weights derived from this Random Forest classifier are depicted
in Figure 7.8c. In Figure 7.8d, the multicut segmentation method from Chapter 4 has
been applied by disregarding the region terms. Finally, Figure 7.8e shows the result of
the AMWC algorithm. This is the first time that a joint partitioning into neurons and
labeling of intracellular structures becomes possible.
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(a) raw data (b) mitochondria probability (c) probability of membrane

(d) Multicut (e) Asymmetric Multi-way cut
model

Figure 7.8: From the raw volume image (a), a mitochondria versus background prob-
ability map (b) was obtained using ilastik [140]. Boundary probabilities are obtained
from a Random Forest classifier using local edge features (c). The multicut algorithm (d)
yields a decomposition of the volume image into segments, relying only on the boundary
evidence in (c). Finally, Asymmetric Multi-way cut (e) is the first method that can
jointly find a similar segmentation to the one in (d), while at the same time labeling
regions by their appearance (here: mitochondria (yellow) vs. cytoplasm).
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7.6 Conclusion

In this chapter, I have introduced a new subclass of non-submodular pairwise multi-label
Conditional Random Fields with Potts potentials in which

(i) label transitions can be both discouraged as well as encouraged and
(ii) some labels, such as background, are allowed to have internal boundaries. As a con-

sequence, strong boundaries within these classes can be naturally accommodated
by a further partitioning.

The proposed model can be solved exactly using an extension of an existing Multi-way
cut solver. We expect this model to be most useful in a regime where regional appearance
terms and boundary evidence are both noisy, but, and this is crucial: complementary.
In this setting, this chapter has offered a principled unified approach to simultaneous
labeling and partitioning.

For application to automated neurite segmentation, we hope that this method will
prove useful for jointly segmenting all neurites as well as labeling cell organelles, such as
mitochondria.
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Chapter 8

Conclusion and Outlook

The research presented in this thesis has focused on the challenging problem of automated
neurite segmentation in electron microscopy volume images of neural tissue. Towards
solving this problem, I have proposed several machine learning-based segmentation ap-
proaches. These approaches all start from an over-segmentation of the volume image
into supervoxels. In particular, I have considered a simultaneous merge decision of all
pairs of adjacent supervoxels based on image evidence.

Contributions

� In Chapter 4 and reference [10] we have adapted a probabilistic graphical model
– multicut segmentation – which ensures that merge decisions are consistent and
surfaces of final segments are closed. Although the model is NP-hard to optimize,
we show that our cutting-plane approach coupled with an integer linear program-
ming solver can find the global optimum for real-world 3D problems of up to 106

variables. For good performance, adding only facet-defining constraints and a fast,
parallel search for violated constraints is crucial. In our quantitative analysis we
show that in terms of segmentation quality measures, the closed-surface regular-
ization is beneficial.

� The decision to merge or not to merge adjacent supervoxels is driven by the
weights w which are derived from a learned likelihood in Chapter 4. Next, we
have investigated whether these weights can instead be chosen directly such as
to minimize the expected loss (Chapter 5 and reference [98]). As loss functions,
we consider Rand Index and Variation of Information, which are global measures
based on the contingency table. We use structured learning coupled with an ef-
ficient exhaustive enumeration over small subsets of variables to find the most
violated constraint. In a quantitative analysis on two different datasets we found
that this method can improve upon unstructured learning.
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� Whether optimization of the multicut objective is tractable in practice depends
on the quality of the edge weights (how many “holes” are created by thresholding
the weights). In order to scale to challenging and large datasets, I have devel-
oped an approximate, blockwise and hierarchical optimization scheme for multicut
segmentation in Chapter 5 and reference [98].

� Furthermore, in Chapter 6, we propose a novel move-making approach to finding
low-energy solutions to the multicut segmentation problem. We call this method
the Cut, Glue & Cut algorithm. Compared to the optimal solution, this algo-
rithm can find locally optimal solutions which give equal performance as measured
by segmentation quality measures. However, our algorithm finds these solutions
significantly faster than competing methods.

� Chapter 7 discusses a novel approach to jointly find a closed-surface segmentation
as well as to label the resulting segments. In order to allow for within-class cuts,
I have modified the Multi-way Cut formulation of image segmentation. Here, the
application in mind is the simultaneous segmentation of neurites together with the
semantic labeling of cell organelles such as mitochondria. Towards this goal, we
have reported qualitative experiments that show when the proposed Asymmetric
Multi-way Cut model can be beneficial.

� Finally, I have presented some of the software tools written for this thesis in Chap-
ter 3. The open source ilastik software has been used for obtaining voxel prob-
ability maps, which are needed for generating an initial over-segmentation into
supervoxels. Furthermore, ilastik’s Carving module was improved to facilitate
the acquisition of gold standard segmentations for my quantitative experiments.
As volume viewing and annotation component, ilastik utilizes the volumina li-
brary, which I have co-written.

In order to work with label volumes, region adjacency graphs and cell complexes,
I have written tools which integrate into volumina, such that a boundary classi-
fier can be trained interactively. Furthermore, the implementation of hierarchical
and blockwise approximate multicut segmentation builds upon novel software for
working with hierarchies of cell complexes.

To handle huge datasets, the open source blockedarray library provides block-
wise operations, such as connected component analysis and in-memory compressed,
blocked arrays.
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Outlook

Segmentation Model.
Multicut segmentation can be formulated as an integer linear program. The formulation
as an energy function is appealing, because it allows to separate the analysis of segmen-
tation quality into (i) the performance of the model itself and (ii) the performance of
model optimization. As we have shown, the globally optimal MAP solution can often be
found. The block-based optimization scheme from Chapter 5 can scale the segmentation
to large volume images. The empirical success of this approximate optimization scheme
suggests to me that instead of working on optimization methods, research should now
mainly focus on improving the model.

Recently, agglomerative clustering has seen renewed interest in the neurite segmenta-
tion community [69, 119, 76, 101, 26], as well as in the image segmentation community
[126]. Because supervoxels are merged step-by-step, features for segments and surfaces
can be re-computed after each merge. Possibly, this can improve agglomerative cluster-
ing methods enough to overcome problems related to greedy optimization.

As a compromise, one might envision the following hierarchical scheme. First, mul-
ticut segmentation is applied to a fine over-segmentation, but biased such as to yield a
coarser over-segmentation. Next, new features are computed. As the over-segmentation
is coarser, these features can be more expressive. For example, one could include the
directionality of tubular segments, a feature that is uninformative on the very fine initial
over-segmentation. Based on the output of a classifier, a new multicut problem is then
set up and the MAP segmentation is found. The entire process is repeated multiple
times.

Feature learning.
Assuming large enough fragments of neurites can be reliably detected, it is then impor-
tant to come up with better features for classifying whether two adjacent supervoxels
should be merged, for which [26] shows an interesting direction.

While we found that structured learning can indeed improve the quality of resulting
segmentations (Chapter 5), recent research by Bogovic et al. [26] indicates that hundreds
of features, together with highly non-linear classifiers (such as neural networks), may be
necessary for further improvements in accuracy. Structured learning, however, employs
a linear classifier and is typically used with only tens of features.

Biological Prior Knowledge.
Finally, in my opinion a long-term aim should be to incorporate long-range affinities
between any pair of supervoxels (not only between adjacent supervoxels), into a new
segmentation model. The current model “only” enforces closed membranes. In addition,
biology dictates certain rules over larger scales. These rules should either not be violated
(hard-constraints) or incur a penalty when violated (soft-constraints). In Section 4.7,
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8 Conclusion and Outlook

I have already described the prior that neurites should not be wholly contained within
a small block of tissue without being connected to any soma. In addition, it may be
useful to consider rules about branching angles of neurites, priors on geometry (tubular
structures) as well as the interaction of neurites with cell organelles and synapses.
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[12] Pablo Arbeláez. Boundary Extraction in Natural Images Using Ultrametric Con-
tour Maps. In Computer Vision and Pattern Recognition Workshop, pages 182–
182. IEEE, 2006. 126
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