Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Isometry Invariant Shape Priors for Variational Image Segmentation

Schmitzer, Bernhard

[img]
Preview
PDF, English (Dissertation Bernhard Schmitzer) - main document
Download (5MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the persistent URL or the URN below, as we can guarantee their long-time accessibility.

Abstract

Variational methods play a fundamental role in mathematical image analysis as a bridge between models and algorithms. A major challenge is to formulate a given model as a feasible optimization problem. There has been a huge leap in that respect concerning local data models in the framework of convex relaxation. But non-local concepts such as the shape of a sought-after object are still difficult to implement. In this thesis we study mathematical representations for shapes and develop shape prior functionals for object segmentation based thereon. A particular focus is set on the isometry invariance of the functionals and the compatibility with existing convex functionals for image labelling. Optimal transport is used as a central modelling and computational tool to compute registrations between different shapes as a basis for a shape similarity measure. This point of view leads to a link between the two somewhat dual representations of a shape by the region it occupies and its outline, allowing to combine their respective strengths. Naively the computational complexity implied by the derived functionals is unfeasible. Therefore suitable hierarchical optimization methods are developed.

Translation of abstract (German)

Variationsmethoden spielen eine grundlegende Rolle in der mathematischen Bildverarbeitung als Bindeglied zwischen Modellen und Algorithmen. Es ist oft schwierig, ein gegebenes Modell auf ein handhabbares Optimierungsproblem abzubilden. Zuletzt wurden große Fortschritte bei der (näherungsweisen) Lösung lokaler Modelle durch konvexe Relaxationen gemacht. Doch nicht-lokale Modellierungsaspekte, wie z.B. die Form des gesuchten Objekts, stellen weiter eine große Herausforderung dar. In dieser Dissertation werden verschiedene mathematische Abstraktionen des Konzepts `Form' studiert und, darauf basierend, Funktionale entwickelt, zur Einbringung von Vorwissen über die Objektform in variationelle Segmentierungsverfahren. Besondere Aufmerksamkeit wird der Invarianz der Funktionale unter Isometrien und der Kompatibilität mit den bereits existierenden konvexen Funktionalen für das Segmentierungsproblem gewidmet. Das Transportproblem wird als zentrales Werkzeug zur Modellierung und Berechnung von Korrespondenzen zwischen verschiedenen Formen eingesetzt. Auf Basis der berechneten Korrespondenzen kann ein aussagekräftiges Ähnlichkeitsmaß für Formen definiert werden. Unter diesem Blickwinkel wird zwischen den, in gewisser Weise komplementären, Darstellungen einer Form durch die Fläche die sie einnimmt oder durch ihre Kontur, eine Verbindung erkennbar. Dies ermöglicht die Kombination der jeweiligen Stärken. Ohne weiteres ist der implizierte Rechenaufwand der vorgestellten Funktionale sehr hoch. Daher werden geeignete hierarchische Optimierungsverfahren entwickelt.

Item Type: Dissertation
Supervisor: Schnörr, Prof. Dr. Christoph
Date of thesis defense: 5 May 2014
Date Deposited: 14 May 2014 07:49
Date: 2014
Faculties / Institutes: Service facilities > Heidelberg Collaboratory for Image Processing (HCI)
Subjects: 510 Mathematics
Controlled Keywords: Bildverarbeitung, Bildsegmentierung, Konvexe Optimierung
Uncontrolled Keywords: Shape Analysis Optimal Transport
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative